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Abstract

Several emerging wireless sensor network applications must cope with a combina-
tion of node mobility (e.g., sensors on moving cars) and high data rates (media-rich
sensors capturing videos, images, sounds, etc.). Due to their mobility, these sensor
networks display intermittent and variable network connectivity, and often have to
deliver large quantities of data relative to the bandwidth available during periods
of connectivity. Unfortunately, existing distributed data management and stream
processing are not appropriate for such applications because they assume that the
network connecting nodes in the data processor is “always on,” and that the absence
of a network connection is a fault that needs to be masked to avoid failure.

This thesis describes ICEDB (Intermittently Connected Embedded Database), a
continuous query processing system for intermittently connected mobile sensor net-
works. ICEDB incorporates two key ideas: (1) a delay-tolerant continuous query
processor, coordinated by a central server and distributed across the mobile nodes,
and (2) algorithms for prioritizing certain query results to improve application-defined
“utility” metrics. We describe the results of several experiments that use data col-
lected from a deployed fleet of cabs driving in Boston.
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Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Over the past few years, the “first generation” of wireless sensor computing systems
have taken root [27, 29], and the idea of treating a sensor network as a streaming data
repository over which one can run continuous queries [24, 21|, with optimizations such
as “in-network” aggregation [20], is now well-established. This approach works well
for a class of applications that are characterized by static sensor nodes with relatively
low data rates, where the primary function of the sensor network (“sensornet”) is to
periodically monitor a remote environment or to track some event.

We believe that the next generation of sensornets will display much higher de-
grees of mobility and significantly higher data rates. Media-rich sensors connected to
thousands of automobiles in urban and suburban areas of the world can dramatically
improve the scale and fidelity of spatio-temporal sensing of a wide range of important
phenomena. Examples of such sensors include: cameras to capture images and video,
chemical sensors to monitor pollution, vibration (acceleration) sensors to monitor car
and road conditions, and cellular and 802.11 (Wi-Fi) radio sensors to map wireless
network conditions. Due to the mobility of cars, such a deployment of sensors can be
substantially cheaper or cover a wider area than a comparable static infrastructure
in which sensors are placed in or on roads and highways.

There are many issues that must be addressed to successfully design and im-
plement such mobile, high-data-rate sensor systems, of which this thesis focuses on

one: query processing. Motivated by the success of first-generation systems that have
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viewed the “sensornet as a streaming database,” we adopt a similar programming
model. The goal is to enable users to connect to a central server (which we call
the portal), declaratively specify (primarily via continuous queries) what data they
are most interested in collecting, and receive responses at the portal from intermit-
tently connected cars running our data processing software. The portal takes care of
distributing queries to the mobile nodes, each of which has a local query processor.
The combination of mobility and high data rates, however, introduces two crucial

differences from previous stream processing systems [7, 9, 21, 22]:

1. Intermittent and variable network connectivity: One approach to deliver
data to the portal is to take advantage of the rise of open Wi-Fi networks. Although
these networks have high bandwidth, their coverage is limited and thus fundamentally
spotty for moving cars. Another approach involves using the wide-area cellular wire-
less infrastructure, which also shares this spottiness—cellular “holes” are common,
and bandwidth over these networks is low. For instance, the EVDO broadband stan-
dard for mobile phones claims to offer uplink data rates upwards of 100 KBytes/s,
but in practice, our experiments achieve 5 KBytes/s on average. In our effort, we

consider both Wi-Fi and cellular forms of connectivity.

2. Large quantities of data relative to network bandwidth: Media-rich sensors
generate data at high rates, which means that whenever network connectivity is
available, it might not be possible to send all the data collected since the last upload.
Information that is more important may be unduly delayed, while less important
data takes its place. For example, users on the portal may be interested in learning
of traffic speeds around the locations they are about to visit, but if there is data
waiting to be delivered about speeds from other locations or about other sensors such
as car diagnostics, the users may not be able to see the desired speed data in a timely
manner.

The combination of these two properties—unaddressed in previous work on query
processing—motivates a new framework for specifying and processing continuous

queries. This thesis describes the design, implementation, and evaluation of ICEDB,
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a system that embeds two main ideas:

1. Delay-tolerant continuous query processing: Intermittent connectivity
changes the “always on” network assumption that all existing distributed query pro-
cessing systems make. In current systems, the absence of network connectivity is an
example of a fault [4, 26, 17], whereas in ICEDB it is part of normal operation. In
ICEDB, the local query processor continues to gather, store, and process collected
data even during periods of poor or absent connectivity, such that when connectiv-
ity resumes, the “most important” data, as expressed by the query, is sent in order
of perceived importance. Thus, queries are continuous, yet intermediate results are
stored locally, with the results of the continuous queries being streamed from this
stored data. We propose a simple buffering mechanism and a protocol for managing
the staging and delivery of query results from mobile nodes to the portal, and of

queries from the portal to the mobile nodes.

2. Inter- and intra-stream prioritization of query results: Because bandwidth
is limited and variable, it is essential that mobile nodes make the best possible use
of connectivity when it arrives. Hence, some form of data prioritization is needed to

allow nodes to decide what data to transmit first.

We propose a set of SQL extensions that allow users to declaratively express inter-
and intra-stream prioritization of data so that, given the constrained, intermittent
nature of connectivity, the most important data is delivered first. Our extensions allow
for both local (within a mobile node) as well as global (portal-driven) prioritization
of results within a stream. These priorities are specified via SQL-like statements
that give the application designer the flexibility to decide what data is important
without being concerned with low-level details of buffer management and intermittent

connectivity.

We have implemented ICEDB under Linux in the context of the CarTel project [16].
A small number of cars equipped with CarTel boxes are currently in daily use, col-
lecting data from GPS receivers, Wi-Fi interfaces, cameras, and the cars’ standard

on-board diagnostics (OBD) interfaces. We use the data collected from this real
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system to conduct a series of trace-driven simulations of different prioritization poli-
cies expressed using our query language extensions. Our results demonstrate the
usefulness of our language features and need for data prioritization in bandwidth
constrained settings.

This thesis is in five parts. The remainder of Chapter 1 motivates the need for
ICEDB by providing an overview of the CarTel system. In Chapter 2, we describe
the design of ICEDB and the ways in which it tolerates intermittent and variable
connectivity. In Chapter 3, we describe in detail the system’s declarative prioritiza-
tion mechanisms. In Chapter 4, we show how the prioritization and summarization
features of ICEDB can be used in practice, and we evaluate its effectiveness in a
simulator seeded with data collected from ICEDB deployments. In Chapter 5, we
present the results of our experimental evaluation from a deployment onto a fleet of
cabs in the Boston area. In Chapter 6, we describe related work, and in Chapter 7,

we conclude with a discussion of the results and ideas for future work.

1.1 Motivation and Context

To set the context for our design, we briefly describe the CarTel system [16]. The
system consists of a Web-based portal that disseminates queries to the CarTel nodes
in users’ cars. Each CarTel node is a small embedded Linux computer equipped with
a variety of sensors, including GPS, a camera, an accelerometer, and a Wi-Fi network
interface. The node also connects to the car’s sensors using the standard on-board
diagnostic (OBD) interface. The primary mode of communication between the cars
and the portal is via Wi-Fi access points.

Though Wi-Fi may seem an unlikely choice of vehicular network, in a previous
study [6], performed using the CarTel infrastructure, we showed that there is a sur-
prising degree of Wi-Fi connectivity in suburban and urban environments in the US
that cars can make use of.

Currently, the main use of CarTel is to allow users to visualize various aspects of

their routes. For example, they might be interested in learning about the peak times
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when segments of the paths they traverse are congested and when congestion eases.
Another class of questions relates to landmark-based route planning, where images
captured opportunistically by cameras can be used by a mapping service as visual cues
for waypoints. A third class of questions concerns diagnostic information obtained
from high-data-rate accelerometers or from sensors within the car; in particular, we
use accelerometer data for detecting potholes with statistical classification methods.

The CarTel system has not implemented all of these applications yet, but they
all share the need to periodically issue queries to cars informing them of what data
to deliver and in what form, and the need to deliver potentially large volumes of
this data to the portal. The challenge is doing this efficiently in the face of a highly
variable network. ICEDB provides a general purpose data management infrastructure

for such uses.
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Chapter 2

ICEDB Design

ICEDB is a delay-tolerant distributed continuous query processor. User applications
define data sources and express declarative queries at a centralized portal. ICEDB
distributes these data sources and queries to the “local” query processors running
on the mobile nodes, such that all nodes share the same data sources and queries.
The nodes gather the required data, process it locally, and deliver it to the portal
whenever network connectivity is available. Queries and control messages also flow
from the portal to the remote nodes during these opportunistic connections. All
communication between the car and the portal is accomplished via CafNet, a delay-
tolerant networking stack [16]. We describe CafNet in more detail in Section 2.2

A data source consists of a physical sensor attached to the node, software on the
node that converts raw sensor data to a well-defined schema, and the schema itself.
As shown in Figure 2-1, these data sources produce tuples at a certain rate and store
them into a local database on each node, with one table per data source. Continuous
and snapshot queries sent from the portal are then executed over this database. (We
could, in principle, add a “fast-path” from the data sources directly to the continuous
query processor, but have not found streaming query performance to be an issue.)

The main difference between ICEDB and traditional continuous query processors
is that the results of continuous queries are not immediately sent over the network,
but instead are staged in an output buffer (see Figure 2-1). The total size of each raw

sensor data store and output buffer is limited by the size of the node’s durable storage.
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Figure 2-1: Software architecture of an ICEDB node and the portal.

As described in the next section, queries and data sources are prioritized, and we use
a policy that evicts the oldest data from the lowest-prioritized buffers or tables first.
Buffers are drained using a network layer tuned for intermittent and short-duration
wireless connections. As results arrive at the portal, tuples are partitioned into tables

according to the name of the source query and the remote node ID.

To populate these result buffers, we add a BUFFER IN clause to our continuous
queries to specify a named output buffer. In other respects, our continuous queries
are simply relational queries that are periodically run over the stored database:

SELECT ..

EVERY n [SECONDS]
BUFFER IN buffername

Here, the SELECT query is a SQL query that is run against any of the local database
tables once every n seconds, with the result being appended to buffername, a buffer
of results waiting to be delivered. We note that, in principle, any existing stream-
query language could be used in place of this simple continuous query syntax as long
as results are buffered. However, by running SQL-only queries periodically, we are
able to re-use the conventional DBMS (in our case, PostgreSQL) already available on

our mobile nodes.

The next section gives a brief overview of ICEDB’s mechanisms to deliver query
results in an order that maximizes application utility and allows the portal and the
nodes to synchronize their state. Then the remainder of the chapter presents the

design of the delay-tolerant networking subsystem, CafNet.
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2.1 Ordering Result Streams

In general, each node produces many more tuples than it can transmit to the portal
at any time. The main advantage of buffering is that it allows an ICEDB node to
select an order in which it should transmit data from amongst currently available
readings when connectivity is present, rather than simply transmitting data in the
order produced by the queries. This allows us to reduce the priority of old results
when new, higher priority data is produced, or to use feedback from the portal to

extract results most relevant to the current needs or users.

As result tuples flow into the output buffer from the continuous and ad-hoc queries,
they are placed into separate named buffers (as specified in the BUFFER IN clause).
Figure 2-2 shows how tuples are processed once they reach the query output buffer
associated with their source query. Each query (and corresponding buffer) can specify
several different data prioritization options, which we summarize here and describe
in more detail in the next chapter. The node’s network layer empties these buffers in
priority order. Tuples from queries of the same priority are by default processed in a
round-robin fashion, but an optional WEIGHT associated with each query can be used

to bias this fair queuing mechanism towards a particular query.

The PRIORITY clause alone is insufficient to address all prioritization issues because
the amount of data produced by a single query could still be large. To order data
within a query’s buffer, queries may include a DELIVERY ORDER BY clause, which
specify a function that computes a “score” for each tuple in the buffer and delivers

data in score order.

ICEDB also provides a centralized way for the sink to tell nodes what is most
valuable to it, using the optional SUMMARIZE AS clause in queries. Using this clause,
nodes generate a low-resolution summary (using SQL’s aggregation facilities) of the
results present in the corresponding query’s output buffer. When a node connects
to the portal, it first sends this low-resolution summary. The portal then uses the
summary to rank the node’s results, and sends the ranking to the node. The node

then orders the data in that query’s buffer according to the ranking. This enables the
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Figure 2-2: Tuple data path through per-query output buffer. Note, ranks are as-
signed to summary segments by the portal, and tuples are scored using DELIVERY
ORDER BY. The output iterator selects tuples for transmission first based on rank,
then based on score.

portal, for example, to ask different cars to prioritize data from different geographic
locations, avoiding redundant reports.

These prioritization mechanisms are run continuously, maintaining a buffer of
data that will be delivered when a network connection is available. When a node
does connect to the portal, several different rounds of communication occur. First,
the portal sends a changelog of updates (adds, removes, modifications) to queries, data
sources, and prioritization functions that have occurred since the node last connected
(this information is maintained in a local database on the portal). Simultaneously,
the node sends any summaries generated by SUMMARIZE AS queries and the portal
sends back orderings for results based on these summaries. Once the summarization
process is complete, the node drains its output buffers using an output iterator in

the following order: (1) in order of buffer priority, using weights among equal priority
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buffers; (2) within each buffer, in the rank order specified in the summaries (if the
query uses SUMMARIZE AS); (3) within each “summary segment”, in order of the score

assigned by the DELIVERY ORDER BY clause.

2.2 CafNet

CafNet is a general-purpose network stack for delay-tolerant communication. Appli-
cations can use it to send messages across an intermittently connected network. Its
mechanisms allow messages to be delivered across two kinds of intermittency: first,
when end-to-end connectivity is available between the sending and receiving applica-
tion, but is intermittent; and second, when the only form of connectivity is via one or
more intermediate mules. In CarTel, the portal and the mobile nodes communicate

with each other using CafNet across both forms of intermittent connectivity.

All CafNet nodes are named using globally unique flat identifiers that don’t embed
any topological or organizational semantics.! CafNet offers a message-oriented data
transmission and reception API to applications, not a stream-oriented connection
abstraction like TCP. As previous work has shown (8, 13], a message abstraction is
better suited to a network whose delays could be minutes or hours.

The unit of data transport in CafNet is an Application Data Unit (ADU) [11].
Each ADU has an identifier; the combination of source, destination, and ADU ID is
unique. (The terms “message” and “ADU” refer to the same thing.)

Unlike the traditional sockets interface, a CafNet application does not call send (ADU)
when it has data to send. The reason is that if the host is currently not connected to
the destination, this message would simply be buffered in the protocol stack (e.g., at
the transport layer). Such buffers could grow quite large, but more importantly, all
data in those buffers would end up being sent in FIFO order. FIFO packet delivery
is a mismatch for many delay-tolerant network applications, including ICEDB, which

require and benefit from dynamic priorities. In general, only the application knows

!As in previous work such as DOA [28], making these identifiers a hash of a public key (and a
random salt) would ease message authentication.
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which messages are currently most important.

What is needed is a scheme where the network stack buffers no data, but just
informs the application when connectivity is available or when network conditions
change. If all data buffers were maintained only by the application (which already
has the data in RAM or on disk), and if it were able to respond quickly to callbacks
from the network stack, then dynamic priorities and fine-grained departures from
FIFO delivery order would be easier to achieve. CafNet adopts this basic approach:
CafNet informs the application when connectivity is available or changes, and in
response, the application decides what data to send “at the last moment”, rather

than committing that data to the network in advance.

CafNet defines a three-layer protocol stack. In this stack, the CafNet Transport
Layer (CTL) provides this notification to the application. In the basic version of the
stack, the API consists of just one callback function: cb_get_adu(), which causes the
application to synchronously return an ADU for (presumably) immediate transmis-
sion. The CTL also provides a (standard) input () function to receive messages from

the lower layers of the stack.

CafNet hides the details of the communication medium (Wi-Fi, Bluetooth, flash
memory, etc.) from the CTL and the application. All media-dependent tasks are per-
formed by the lowest layer of the CafNet stack, the Mule Adaptation Layer (MAL),
which presents a media-independent interface to the higher layers. The MAL im-
plements media-specific discovery protocols, and sends and receives messages across
several possible communication channels (TCP connections to Internet hosts, TCP or
media-specific protocols to mules across a “one-hop” channel, writes and reads of data
on portable disks, etc.). When the MAL detects any connectivity, it issues a callback
to the higher layers informing them of that event. This callback propagates until the
application’s cb_get_adu() returns an ADU for transmission to some destination.

Bridging the CTL and the MAL is the CafNet Network Layer (CNL), which han-
dles routing. In our current implementation, the CNL implements only static routing
(it can also flood messages to all mules it encounters). On any intermediate node

muling data, the CNL also buffers messages. In the basic version of the stack, the
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Figure 2-3: The CafNet communication stack.

CTL, CNL, and MAL on the sending application’s node do not buffer more than one
message at a time.

Section 2.2.1 describes some additional details of these three layers. In Sec-
tion 2.2.2, we describe an important set of optimizations to improve the performance
of this basic stack, which requires some buffering in the network stack as well as an

API extension.

2.2.1 The Basic CafNet Stack

Figure 2-3 depicts the CafNet communication stack. The functions shown in the
picture for each layer are for the version that includes the performance optimizations;
for now, assume that all the message buffering is in the application alone. The CTL
can be implemented as a library that applications link against or as a separate process
that communicates with the application using remote procedure calls, while the CNL
and MAL are separate daemons that the CTL library communicates with over a
socket interface. No kernel changes are required.

The CTL provides optional delivery confirmation service. The application can
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specify what type of delivery confirmation it wants by setting a flag (NONE or END2END)
on the ADU header when it returns the ADU in the cb_get_adu() call. END2END
requires the CTL to periodically retransmit a given ADU until either: (1) an ac-
knowledgment is eventually received from the destination node, or (2) the ADU is
“canceled” by the sending application, or (3) a certain maximum number of retrans-
missions have been attempted.

The CNL’s API is simple: when the CTL gets an ADU from the application, it
can call the CNL’s send(dest, ADU) function, which forwards the ADU towards the
destination. The CNL uses its routing tables to decide how to forward the message.
The CNL’s send () provides only best effort semantics.

In addition to send (nexthop, ADU), which sends a given ADU to the node with ID
nexthop, the MAL invokes a callback function implemented by the CNL to update the
list of currently reachable CafNet nodes. This cb_.neighbor_list(neighbor_list)
call always provides a complete list of reachable neighbors to save the higher layers
the trouble of detecting if any given CafNet “link” is working or not.

CafNet provides peer discovery in the lowest layer (MAL) of its stack because those
mechanisms are media-specific. For example, our current implementation includes a
MAL layer for Wi-Fi; in order to provide Wi-Fi connectivity at vehicular speeds, it
provides fast scans and associations. We are implementing other MALs, which will
require other media-specific support. For example, a Bluetooth-enabled cellphone
might present itself as a single next-hop contact whose discovery requires Bluetooth
protocols. A passive device such as a USB Key would present itself as a set of peers
that it had visited in the past. Any connection to the Internet would present itself
as a list of CafNet-enabled peers (or a more concise “Internet” peer, saying that the

link has Internet connectivity).

2.2.2 Optimizations and Enhancements

The above design is “pure” (no network buffering), but performs poorly when the
average duration of connectivity is not significantly larger than the time required for

the application to package and return data in response to a cb_get_adu() call. This
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problem is not academic—for some ICEDB queries, it takes several seconds to package
data, reading tuples from a relational database on the mobile nodes. At vehicular
speeds, Wi-Fi connectivity often lasts only a few seconds.

To solve this problem (which we experienced in our initial implementation), CafNet
introduces a small amount of buffering in the stack. The CNL (rather than the CTL)
is the natural place for this buffering, because intermediate mules already require
such buffers.

Applications no longer receive callbacks upon discovering connectivity, but do
S0 as soon as any space is available in the CNL buffer. This notification from the
CNL, clear_to_send(nbytes), allows the CTL to send() up to nbytes worth of
messages to the CNL. This modification to the basic stack allows CafNet to achieve
high network utilization when connectivity is fleeting.

Setting the CNL buffer to be too large, however, hinders the application’s ability
to prioritize data. For example, because ICEDB dynamically re-evaluates the impor-
tance of each chunk of data based on the latest queries and sensor inputs, a problem
arises when priorities of data already buffered for transmission need to change. A
plausible solution might be to expand the CafNet interface to make the CNL buffer
visible to the application, allowing it to change priorities of buffered messages. Un-
fortunately, this approach is both complicated and violates layering.

To mitigate the problem, CafNet simply allows the application to set a desired size
for its CNL buffer. Applications that require dynamic priorities set a buffer size just
large enough to mask the delay in re-prioritizing and packaging data when network
connectivity is made available.

The above API focuses on the novel aspects of our design and is not complete; for
instance, it does not include the data reception path, which is similar to traditional
protocol stacks. It also does not include some other details such as the application
being informed of what destinations are now reachable in the callback invocation,
functions to manage the CNL buffer, functions to cancel previous transmissions,

etc.
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Chapter 3

Result Prioritization

In this chapter, we describe the three declarative prioritization mechanisms intro-

duced in the previous section in more detail.

3.1 Inter-Query Prioritization

The PRIORITY clause specifies a non-negative integer priority level as an annotation
to the query. Queries for which this clause is omitted run at a default priority.
All pending query results for higher-priority queries are delivered before any lower
priority results, making PRIORITY useful for enforcing strict prioritization. When
multiple queries run at the same priority level, results are delivered by draining each
queries’ buffer in a round-robin fashion. To assign a preference for certain queries
without starving others, a WEIGHT can be associated with the queries for use in a
weighted fair queueing scheme over all queries within the same priority level.

For example, to specify that a query runs with weight 5 within priority 3, a user
would write:

SELECT ... BUFFER IN resultbuf
PRIORITY 3 WEIGHT 5

We expect that different data streams will have multiple continuous queries run-
ning over them, with low priority queries streaming more complete versions of the data

and high priority queries delivering lower-resolution versions or reports of outliers.
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1: procedure BISECT(tuples)

2 segs «— empty priority queue of segments, ordered by segment length
3 push NEW-SEGMENT(tuples sorted by time) onto segs

4 while NOoT-EMPTY(segs) do

5: let seg = PoP-MIN(segs)

6 add MIDPOINT(seg) to output buffer

7 if NuM-TUPLES(seg) > 1 then

8 let (leftseg, rightseg) = SPLIT- AT-MIDPOINT(segs)

9: push leftseg and rightseg onto segs
10: end if

11: end while

12: end procedure

Figure 3-1: Pseudocode for bisect delivery function.
3.2 Intra-Query Prioritization

Whenever a continuous query en-queues results for delivery, ICEDB assigns each tuple
in a query’s output buffer a score and delivers results in ascending score order (note
that previously scored tuples can be re-scored). By default, tuples are scored accord-
ing to their insertion time, so that they are delivered in FIFO order. Applications are
given two options for assigning their own scores to results: they can specify a local
scoring function via a DELIVERY ORDER BY clause and/or a global scoring function
that is used to provide feedback from the portal to the mobile nodes to specify what

data is most important.

3.2.1 Local Scoring Via DELIVERY ORDER BY

The DELIVERY ORDER BY clause, like a traditional SQL ORDER BY, can specify an
attribute (e.g., time) or a numerical expression for ordering the delivery of results.

For example, the query:

SELECT gps.speed FROM gps, road._seg
WHERE gps.insert_time > cqtime - 5 AND
road_seg.id = lookup(gps.lat, gps.lon)
EVERY 5 seconds BUFFER IN gpsbuf
DELIVERY ORDER BY gps.speed -

road_seg.speed_limit DESC
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requests that speed readings from cars that most exceed the speed limit be delivered
first. Here, cqtime is the time when the query runs, insert_time is the time the
record was inserted into the database, and lookup is a user-defined function that
returns the ID of the road segment closest to the given GPS location. In this case,
ICEDB maintains a priority queue of readings, and inserts new data with priority set

to the results of the DELIVERY ORDER BY expression.

Unlike the traditional ORDER BY clause, DELIVERY ORDER BY can also accept a
user-defined function that can reorder the result tuples in a query’s output buffer.
This function sets the output order by updating a score column in the query result
set. Tuples are removed for transmission from the result set in score order (lowest
score first). Since the DELIVERY ORDER BY function may be computationally inten-
sive, ICEDB invokes it only at fixed intervals, rather than each time a tuple is added

or removed from the output buffer.

Because DELIVERY ORDER BY has direct access to the entire result set, applications
can potentially specify more powerful ordering functions that take into account the
spatial extent of the data. As a simple example, consider the problem of representing
a car’s route using a sequence of GPS points (called a trace). When transmitting this
trace to the portal, we may want to order the points such that an application on the
portal can create a piecewise linear curve that minimizes the error compared to the
actual route from any returned subset. One simple approximation is to recursively

bisect the trace (in the time domain), sending back midpoints.

Figure 3-1 shows the pseudocode for this algorithm. Here tuples represents the
data to be transmitted, and a segment of the trace is a subsequence of consecutive
un-en-queued tuples. This algorithm first puts all tuples into a single segment, and
then iteratively splits the largest segment, adding its midpoint to the output buffer
and putting its left and right halves back into the segs priority queue. The end result

is a total ordering of all the tuples passed into the algorithm.

Given that the bisect function is defined in ICEDB, a query to extract traces

would look as follows:
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SELECT lat, lon, insert_time FROM gps
WHERE insert_time > cqtime - 5
EVERY 5 seconds BUFFER IN gpsbuf
DELIVERY ORDER BY bisect

Although our implementation of ICEDB allows users to specify DELIVERY ORDER
BY as an arbitrary user-defined function, a library of commonly used functions could

also be developed.

3.2.2 Global Scoring Via SUMMARIZE

Though local prioritization can help to deliver important results first, in some situa-
tions it is insufficient because it cannot receive feedback from the portal about which
results are most important. Such portal-driven scoring might be important when the
users of the portal are particularly interested in certain types of data (e.g., about
specific locations on the road at certain times), or because there are multiple data
collection nodes in the same area that would otherwise report redundant data (e.g.,
several cars all on the same section of a road.)

To enable this kind of global feedback, we allow queries to specify a SUMMARIZE
clause that computes a summary of a query’s buffered data. This summary is sent to
the portal whenever a connection is established. Using a user-specified program, the
portal can use this summary to compute which results are highest priority, and then
send a request back to the remote node to allow it to re-prioritize its data.

The basic syntax of continuous queries with the SUMMARIZE clause is as follows:

SELECT ... EVERY ...
BUFFER IN bufname SUMMARIZE AS

SELECT fi,..., fasag9(fus1)s-- -, a99(frim)
FROM bufname WHERE pred;...pred,

GROUP BY fi,..., fa

The idea is that the SUMMARIZE clause selects a partitioning of the data from
the output buffer into groups, representing a low-resolution synopsis of the complete
buffered data. We currently rely on the user to ensure that the size of this subset

is relatively small, though we could, in principle, truncate the summary to some
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maximum size. Aggregate expressions can be used to transform tuple values into a
smaller domain; a common summary divides numerical attributes into a small number
of bins. In our implementation, the SUMMARIZE clause is executed using a standard
relational query processor on bufname; we restrict the summary query to consist

only of single table aggregates, with grouping and no nested queries.

As an example, suppose that we want to collect data from users about the times
and locations (expressed as latitude/longitude points) they have visited recently,
and that we want our summary to consist of latitude and longitude cells of size

.001° x .001° in five-minute intervals. We can express this query as:

SELECT lat,lon,insert_time,speed FROM gps
WHERE insert_time > cqtime - 5
EVERY 5 seconds BUFFER IN gpsbuf
SUMMARIZE AS
SELECT floor(lat/.001), floor(lomn/.001),
floor(insert_time/300)
FROM gpsbuf
GROUP BY floor(lat/.001), floor(lon/.001),
floor(insert_time/300)

When a car runs this query, it produces (time, lat, lon) triplets (which we
call summary records) and sends them to the portal. The portal then runs the user-
specified global prioritization function to produce an ordering of the records, and
replies to the car with this ordering. For instance, a traffic monitoring system may
prioritize “hotspots” where speeds are unusually lower than their historical average.

The prioritized summary records are stored in a table, bufsummary, with one
field for each of the n grouping attributes, g, ..., gn, plus a rank representing each
tuple’s position in the prioritized list sent back to the car. To find tuples in the
results buffer that correspond to each summary record, each runs an automatically

generated join query of the form:

SELECT b.* FROM buf AS b
LEFT OUTER JOIN bufsummary AS s
WHERE ¢,(b) = s.g; ...AND ¢,(b) = s.g,
ORDER BY s.rank :

The results of this query form a total ordering on the buffer, with the prioritized
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results appearing before the non-prioritized ones. Because multiple tuples in the
output buffer may correspond to each summary record, we optionally allow the user
to specify a DELIVERY ORDER BY statement to order results that are assigned the

same rank value by the above query.

For our GPS query above, this join query would look as follows:

SELECT b.* FROM gpsbuf AS b
LEFT OUTER JOIN gpsbufsummary AS s
WHERE floor(b.lat/.001) = s.gi
AND floor(b.lon/.001) = s.g2
AND floor(b.time/300) = s.g3
ORDER BY s.rank

Because processing these join queries can be expensive, we expect that mobile nodes
will typically execute them between periods of connectivity when there is little other
work to be done.

To order summary records on the portal, users supply a function that takes as
input the list of summary records and outputs them in a user-specified order using an
iterator (as with the DELIVERY ORDER BY clause). ICEDB takes care of receiving the

summary lists on the remote node and sending the results back in summary order.
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Chapter 4

Experimental Evaluation

In this chapter, we show how the prioritization and summarization features of ICEDB
can be used in practice. Specifically, we consider the problem of collecting sensor
data from a number of cars on the road that can best answer a set of continuous
queries running at the ICEDB portal. These queries request variable amounts of
data about particular locations on the road; we imagine, for instance, that users
might be interested in images, video clips, or current traffic. In this context, ICEDB’s
prioritization schemes are important because there is not enough bandwidth available
along a typical drive to centrally collect all of this information without significant
buffering.

We perform this evaluation using a trace-driven simulator. This simulator uses
real traces collected from actual cars running CarTel. Each trace includes the data
that was collected as the car drove and the location of access points that could be used
to upload data. This trace-based approach allows us to model multiple cars driving
on the same roads at approximately the same times to measure the effectiveness of

our prioritization schemes.

4.1 Query Workload

Each query asks for information pertaining to a particular location or query point.

In the uniform workload, every location is considered equally likely to be queried. In
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the hotspot workload, the locations are chosen to be those whose historical data for
speed show a high variance over time. For the data we collected around Boston, we
determined hot spots by dividing the area into evenly sized grids of roughly 10,000

square meters and taking » grids exhibiting the greatest variance in their data points.

4.2 Metrics

To evaluate the performance of different prioritization schemes on our query workload,
a metric must be defined. We propose a utility function that assigns higher scores to
schemes that produce more data falling within a certain “satisfying” distance of the
various query locations. One simple metric counts the number of data points that
satisfy any of the queries. This score is suitable for a wide range of applications that

collect geographic data, such as querying for images of particular hotspot locations.

Given a set of query points @ that the user wants information about and a set
of captured data points P (where each point p; is obtained at location p;.z at time
p;.t), this metric determines the score of a subset P’ C P, where the score is defined

as (here, each query point can contribute at most one point):

score(P’) = Y max {pairscore(p,
(P) I; max {p (», )}

0, distance(q,p) > d
pairscore(p, q) =

1, distance(q,p) <d

subject to the constraint that, Vp € P’, now()—p.t < §. Here d is a maximum distance
between the user’s query location and the reported location, § is a user-defined time
bound, and now () is the current time. In our experiments, d is 0.1 km and 4§ is 1

hour.
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4.3 Prioritization Schemes

We experimented with four prioritization schemes that determine the subset P’ that

gets delivered to the portal:

FIFO. A simple delivery scheme is to send the data in order of its collection time.
However, the constrained bandwidth available to the nodes suggests that such a FIFO
scheme will lead to poor performance, as most of the sent data will be far from the

query points.

Bisect. An algorithm with significantly improved coverage is bisect, which is illus-
trated in the example of a DELIVERY ORDER BY clause given in Section 3.2.1 (Fig-
ure 3-1). Recall that bisect repeatedly sends the midpoint of the longest segment of
unsent data (with respect to the distance along the trace). As an example of a con-
tinuous query that uses bisect, the system might en-queue images for delivery every
minute:
SELECT thumbnail, lat, lon FROM photos, gps
WHERE insert_time > cqtime - 1
AND photos.insert_time = gps.insert_time

EVERY 1 minute BUFFER IN thumbbuf
DELIVERY ORDER BY bisect

Random. This scheme randomly selects points to transmit.

Note that queries that use such local prioritization schemes do not not take into
consideration feedback from the portal. For instance, the bisection algorithm is unable
to consider the redundancy of data available among different cars that have recently
traveled on similar roads, nor can it take into account the distribution of the query
workload, which may not be uniform (for which random and bisection prioritization

are best suited).

Global. Global prioritization algorithms address this limit. In these schemes, the
car sends a synopsis of the data it has available (using the SUMMARIZE AS clause) to
the portal, which responds with a prioritization of this data. In our experiment, we

use a SUMMARIZE AS query as follows:
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: procedure CAMERAGLOBALPRIORITIZATION(query points, summary grids)

2: for all g € summary grids do
Vg € query points, no car previously answered q
3: scores|g] «— ’ and DISTANCE(g.center, q) < threshold
0, otherwise
4: end for
5: return summary grids sorted by scores

[=2]

: end procedure

Figure 4-1: Pseudocode for a global prioritization scheme.

SELECT thumbnail, lat, lon FROM photos, gps
WHERE insert_time > cqtime - 1
AND gps.insert_time = photos.insert_time
EVERY 1 minute BUFFER IN thumbbuf
SUMMARIZE AS
SELECT floor(lat/.001), floor(lon/.001)
FROM thumbbuf
GROUP BY floor(lat/.001), floor(lon/.001)
DELIVERY ORDER BY random

Here, the SUMMARIZE AS clause requests that data be summarized by reporting
grids of .001° x .001° (roughly 0.1 x 0.01 km) that the node has collected information
about. We use random tuple-level local prioritization scheme is used to handle the

globally prioritized summary returned from the portal.

The portal replies to this summary list with a prioritization of all the grids based
on the aforementioned scoring metric. The exact algorithm orders the summary
grids by their projected score. The node then sends data points from each grid in the
returned order. Figure 4-1 shows the pseudocode of the portal side of a global prioriti-
zation function whose metric is similar to the scoring metric, but which demonstrates
cross-node prioritization by preferring data for unanswered query points only. The
communication overhead of each summary is computed by treating the summary as
an uncompressed sequence of pairs of 4-byte numbers representing the latitude and

longitude of each reported grid.
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4.4 Trace-Driven Simulation

Our simulation models a variable number of cars traveling on paths corresponding to
a large number of traces from real-world data. These traces cover 12,657 miles and
1,152 hours of data, and are time-shifted in the simulation so that they appear to all
start within an arbitrary time interval. Among the parameters that may be configured
are the number of cars, traces, access points, bytes per image, and query points, and
the distribution of these query points. We also model the overhead of transmitting a
summary and receiving a re-ordered summary as a part of the SUMMARIZE AS.

We perform three classes of experiments: (1) where there is one car and portal-
generated queries are uniformly distributed over all locations, (2) where there is one
car and portal-generated queries are selected from the top five hotspots, and (3) where
there are multiple cars driving over multiple traces using portal-generated hotspot

queries.

4.4.1 Single Car, Uniform Queries

This experiment shows a simple case of simulating the travel of one car as it moves
from Cambridge, MA to Woburn, MA. In this experiment, query points are dis-
tributed uniformly at random along the trace, and are assumed to have been reg-
istered before the car starts driving. We re-evaluate the quality of query answers
every time a car connects to an access point according to the scoring metric defined
in Section 4.2. In some cases, our graphs show the evolution of this quality over time,
and in others, they show the quality at the end of the run.

Figure 4-2 shows the simulation results for one particular run of this experiment
over time. In this experiment, the size of each data point is fixed at 50 KBytes, the
number of queries is 20, and the number of open access points is 5. It compares
the success ratios that each of the local and global prioritization schemes yield as
time progresses on this trace, where the success ratio corresponds to the fraction of
successfully answered user queries according to the scoring metric. Given sufficient

bandwidth, all prioritization schemes will have a score of 1; that is, they will success-
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Figure 4-2: The scores of various prioritization schemes for a single car as time
progresses.

fully be able to answer all user queries. But given the bandwidth encountered by the
vehicle throughout this trace, global prioritization converges significantly faster than
other prioritization schemes.

The most important result from this figure is that the FIFO (unprioritized) ap-
proach is unable to satisfy any queries at all. Some form of prioritization is necessary
to provide useful answers to queries at the portal. Cars collect so much data that
the FIFO scheme makes it through only a small fraction of the total readings when
the node is connected. Bisect and random are able to satisfy a small number of the
queries; both perform roughly the same.

Figure 4-3 compares the scores of the randomized local prioritization scheme and
the aforementioned global prioritization scheme, where we vary (a) the size of each
data point, (b) the number of queries, and (c) the number of open access points
through which the vehicle is capable of uploading. The default parameters (when
we're not varying them) are 50 KByte data points, 10 access points, and 10 query
points.

The global prioritization scheme dominates local prioritization because it can syn-
chronize with the portal and send only the data in which the user is interested. The

summaries of this data are small compared to the size of the data: the number of grids
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Figure 4-3: Single car, uniform query point distribution, varying (a) data size, (b)
query point count, and (c) connection count.

spanned by this trace is less than 200, and the size of each grid summary is 4 bytes
(two long integers representing latitude and longitude), so the maximum size is of
the uncompressed summary is 800 bytes. The actual size is substantially smaller due
to the fact that the summaries are cumulative, so on each connection the node only
sends information about what new grids it has encountered, and also the summary
benefits from (delta) compression due to the adjacency of grids. Hence the cost of

this synchronization step is cheap.

Figure 4-3 shows the average success ratios achieved by different schemes as we
vary the data size, number of user queries, and number of connection points. We see
that either increasing the data size or decreasing the bandwidth leads both the local

and global prioritization schemes to produce a lower average yield.

Varying the data size shows that if each data point is small enough, then the
relative amount of bandwidth is enough to allow random prioritization to send enough
points to cover the same number of query points as global prioritization. However, as

the relative amount of bandwidth becomes more constrained, random can no longer
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Figure 4-4: Single car, hotspot-based query points, varying the data size.

satisfy as many queries, whereas the global prioritization degrades more gracefully.
The average score over the duration of the drive decreases for all schemes, since the
rate at which the unit can send data over time is lower. Similarly, as the number of
queries grows, the score will be lower on average, since the rate at which these queries

are satisfied remains constant.

4.4.2 Single Car, Hotspot Queries

This experiment uses a similar setup, except the query points are now chosen to be
hotspots, which are locations with high variance in their speed data. The parameter
settings are 5 connection points and 5 query points. Figure 4-4 shows the success
ratios for the different ordering schemes and for various sizes of the data point. Again,
we see that global prioritization scheme dominates random prioritization, which sends

very few data points due to the non-uniform hotspot distribution.

4.4.3 Multiple Cars, Hotspot Queries

This experiment shows what happens when multiple cars travel along many distinct
traces simultaneously. Each vehicle encounters 5 connection points and 2 hotspot

query points along its unique trace, and the size of each data point is 50 KBytes. As
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Figure 4-5: Multiple cars, hotspot-based query points, varying the number of cars.

a result, even with many cars, there are significantly more data points than what can
be delivered by any car given the amount of bandwidth available. Figure 4-5 shows
the success ratios for local and global prioritization with varying numbers of cars.
With more cars and more severely constrained network connectivity, the benefits of
global prioritization are evident. The rate of increase is linear with the number of cars,
since the bottleneck in this scenario is not the number of query points to be satisfied
(as has been the case in the previous experiments), but rather the total network
capacity over the entire duration of the experiment. Since global prioritization is
capable of sharing information between the portal and the node, it makes optimal

use of this limited capacity.
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Chapter 5

Deployment Evaluation

We have implemented and deployed ICEDB on a live vehicular testbed, which includes
27 taxis belonging to a Boston-area taxi company. The results reported in this thesis
come from 5 taxis running the system for over 2 days. In the following sections, we
first describe the implementation of our deployed CarTel and ICEDB system. Next,
we outline the experimental setup, followed by an analysis of the results. Finally, we

conclude with some lessons we learned in building and deploying the system.

5.1 Implementation

For our ICEDB deployment, we used a mobile testbed that runs on local taxis. In
exchange for simple fleet management facilities, the taxi company has allowed access
to their cars for experimentation purposes. Each taxi in the testbed (which currently
contains 27 cars) is equipped with two embedded Linux nodes, a master and a slave.
The master is a “production system” that provides a position feed over EVDO to
the taxi company’s fleet management portal, while the slave is fully at our disposal
to run experiments. The node hardware is a Soekris net4801 that has a 586-class
processor running at 266 MHz with 128 MB of RAM and 1 GB of flash memory.
The master includes an EVDO modem and GPS receiver, 2 GB flash storage, and a
high-powered 802.11b mini-PCI Wi-Fi card, the Ubiquity SR2 Atheros card with a 3

dBi gain omnidirectional external antenna. Figure 5-1 shows this platform.
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Figure 5-1: The CarTel node hardware.

The CarTel node software runs on the Linux 2.6 kernel and a custom distribu-
tion derived from the OpenEmbedded development environment, which targets small
devices and provides a number of tools to facilitate cross-compilation and system
image construction. We implemented ICEDB largely in Python, and leverage the
PostgreSQL database system to perform storage management and query processing.
ICEDB consists of 12,000 lines of code, written mostly in high-level languages wher-

ever practical.

The source is split into several modules in addition to the ICEDB client and
server. The CafNet layer is built on top of an asynchronous programming framework
for Python called AF, which provides lightweight cooperative threading, blocking and
non-blocking channels, and sockets, with additional higher-level functionality in a sep-
arate module, AFX. In particular, these allow us to do asynchronous socket program-
ming and implement prioritized resource multiplexing in a natural threaded/blocking
style. To facilitate development and experimentation, a deployment suite called Au-
toMirror provides resumable downloading, installation, and atomic upgrading of data
and software packages (including itself) in the face of intermittent network connectiv-
ity and power cycles. Packages for AutoMirror set up the slave system while dealing
with such issues as file system corruption and transient boot failures. The wireless
networking subsystem on which CarTel depends is called QuickWifi [12], and con-
sists of modified Linux Wi-Fi drivers that perform fast association and notify user

applications of changes in the network connectivity status. TODO cite Jakob’s work.

Each node includes a number of adapters for various sensors, including the Rayming
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TN200 GPS unit and the SerAccel Tri-Axis v5 accelerometer. The adapters are small
programs that convert the raw sensor data into a common CSV format, which are then
sent over a socket to ICEDB. Several small libraries are available for Perl, Python,
and C that take care of serializing and inserting data into ICEDB. These libraries
make it trivial to retrofit many existing data collection programs with the ability to

store and deliver data via ICEDB.

5.2 Experimental Setup

We evaluated the perforrﬁance of different prioritization schemes for collecting ac-
celerometer data in a pothole detection application. For our purposes, potholes are
defined by simple thresholding: after partitioning the data into 50-sample windows,
a pothole signature is defined as the three surrounding windows of any sample whose
magnitude exceeds the threshold. The application is interested only in pothole sig-
natures, so the goal is to prioritize these signature windows over other accelerometer
data. With a more realistic definition of signature windows, more elaborate signal
processing tools can be substituted, such as the XStream system [14].

Accelerometer data is a time series of z, y, z samples collected at a rate of 10 sam-
ples per second. In our schema, a tuple represents a single timestamped accelerometer
sample. Because not all our cabs were equipped with accelerometer sensors, we sim-
ulated the sensor by building a stub adapter that replays tuples from a file. The file
contains data collected from a SerAccel Tri-Axis v5 accelerometer.

We compare two local prioritization schemes: FIFO prioritization and threshold
prioritization. In threshold prioritization, a threshold filter identifies signature win-
dows as defined above; these windows are prioritized to be delivered before other
windows. The number of available signature windows collected by the node is deter-
mined using ICEDB’s summarization mechanism to report the window numbers of
all signature windows.

The experiment consists of two separate deployments of ICEDB onto the same

set of five cab nodes. Each deployment spans over 57 hours, although the cabs are
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description | sum | mean | median | min | max | standard deviation

tuples per connection 514258.00 | 5651.19 | 450.00 | 50.00 | 63100.00 12384.71
connection duration (s) 9964.88 117.23 0.18 0.01 2265.76 361.66
delivery rate (KB/s) 25.99 25.33 | 232 121.90 18.10
summaries per connection 237.00 2.79 1.00 1.00 80.00 8.92

Table 5.1: Aggregate connection statistics for both deployments.

usually operational for 12 hours per day. For both deployments, the central server
pushes the stub accelerometer adapter and a query for the full accelerometer data,
with a SUMMARIZE AS clause to count the number of signature windows available. The

first deployment prioritizes these using FIFO prioritization:

SELECT * FROM accel [now] DELIVERY ORDER BY fifo
SUMMARIZE AS
SELECT now() as time, rec_id/50 as window
FROM accel GROUP BY rec_id/50 HAVING max(z) > 650
UNION
SELECT now() as time, null as window

The query for the second deployment prioritizes the tuples using threshold prior-
itization:

SELECT * FROM accel [now] DELIVERY ORDER BY thresh
SUMMARIZE AS
SELECT now() as time, rec_id/50 as window
FROM accel GROUP BY rec_id/50 HAVING max(z) > 650
UNION
SELECT now() as time, null as window

The difference in the above two queries is emphasized. In each deployment, the
query runs for over 57 hours. In the following section, we analyze the query results

delivered from the cabs.

5.3 Results

Table 5.1 shows some statistics about the connections that the two deployments
experienced in aggregate. Most connections were fleeting, lasting a fraction of a
second; the FIFO and threshold deployments saw 79 and 86 minutes of connectivity
and 277K and 237K tuples delivered, respectively. (Each window of data is typically
about 7KB in size.)
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Figure 5-2: The ratio over delivered windows of number of delivered signature win-
dows to maximum possible number of delivered signature windows, inferred from the
summaries and the number of delivered windows.

Nodes experienced substantially varying degrees of connectivity. Table 5.2 shows
the final results from our deployment using threshold prioritization, and Table 5.3
shows the results from the deployment using FIFO prioritization. For brevity, we label
the number of delivered signature windows as good, the number of other windows as
bad, and their sum as total. nid is the node ID, and conns is the number of connections
the node has made with the portal. The “base” node does not correspond to any real
node, but instead represents the complete injected dataset of the stub accelerometer
adapter (this dataset is the same in both deployments). tuples is the total number
of distinct tuples delivered, whereas real tuples is the number of tuples including
duplicates. The available goods is the number of signature windows that are available
on the device, as reported by the most recent failure. Finally, goods ratio is the ratio

of goods to available goods.

nid | conns | goods | bads | total | tuples | real tuples | available goods | goods ratio
base 635 | 12022 | 12657

cartel-cabl6 20 75 875 950 47400 48250 76 | 0.986842105263158
cartel-cab18 17 88 338 426 20850 21700 93 | 0.946236559139785
cartel-cab24 16 119 353 472 23450 24550 122 | 0.975409836065574
cartel-cab25 48 69 2011 2080 | 103931 106212 69 1
cartel-cab35 15 96 287 383 19050 36410 96 1

Table 5.2: Accelerometer sensor query results for threshold prioritization.
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nid | conns | goods | bads | total | tuples | real tuples | awailable goods | goods ratio
base 635 | 12022 | 12657

cartel-cabl6 33 44 1220 1264 62840 70490 81 0.54320987654321
cartel-cab18 5 46 1188 1234 58480 65620 79 | 0.582278481012658
cartel-cab24 3 0 44 44 1650 1650 34 0
cartel-cab25 7 15 382 397 15570 15880 95 | 0.157894736842105
cartel-cab35 20 55 1988 2043 | 101966 114316 55 1

Table 5.3: Accelerometer sensor query results for FIFO prioritization.
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Figure 5-3: The ratio over tzme of number of delivered signature windows to maximum

possible number of delivered signature windows, inferred from the summaries and the
number of delivered windows.
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Figures 5-2 and 5-3 show the ratio

number of delivered signature windows

maximum possible number of delivered signature windows

as it changes over the number of windows delivered and over the number of elapsed
hours since the start of the deployment, respectively. The maximum possible number
of delivered signature windows is inferred from the number of available signature
windows as reported in the most recent summary, and the number of windows that
the cab managed to deliver. More precisely, letting N be the set of nodes in the

deployment, the ratio is defined to be, at delivered window i,

EneN gn,i
Z'H,EN Cna"'

T =

where gy ; is the number of delivered signature windows for node n up through delivery
i, and, letting a,, ; be the number of available signature windows by the time of delivery

i windows as reported by the most recent summary,

Cno = 0

1, ifenim1 <@niVeni-1<gngi
Cni=Cni1t
0, otherwise

That is, we tally the number of opportunities for a delivered window to be a signature

window. The ratio is defined similarly for time.

The ratio is consistently close to 1 for threshold prioritization. It is not necessarily
perfect; for instance, following the delivery of a summary reporting the number of
available signature windows, a cab may simply become disconnected, or otherwise
have little opportunity to deliver any windows. However, even with enough opportu-
nity to deliver data, a perfect ratio would be achievable only if prioritization could be
performed instantaneously following each summarization. This is infeasible in gen-
eral; on the CarTel platform, threshold prioritization takes approximately two hours

to prioritize 200,000 tuples, for instance. This is primarily due to the node’s under-
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Figure 5-4: Number of signature windows delivered, sampled over time.

powered processor and large amounts of disk 10. As a result, the ratio is additionally
affected by the latency between the collection of sensor data and the prioritization of

data.

The ratio plot for FIFO prioritization renders delivery more clearly as a collection
of step functions representing connections. Tall steps are due to long periods of
good connectivity, during which a cab is able to deliver a large portion of its entire
dataset. Plateaus in Figure 5-2 are due to periods of data delivery during which
summaries do not report any newly available signature windows. When delivering a
static dataset, FIFO prioritization would eventually achieve a ratio close to 1, but
continual collection of data lowers the ratio, since summaries reports increasingly
more signature windows to be delivered.

There are many possible ratios one could compute to compare the two prioriti-
zation schemes. For example, Figure 5-4 shows samples over time of the number of
delivered windows of query results that were signature windows. The periods of no

change correspond to hours when the cabs are not in service.

Figure 5-5 shows samples over time of the ratio:

number of delivered signature windows from all cabs
number of available signature windows from all cabs

The ratio reported depends on the availability count as reported by the most recently
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Figure 5-5: Ratios of the number of delivered signature windows to the number of
delivered signature windows, sampled over time.

delivered summary. This summary is regenerated periodically and is the first packet
of data sent to the portal when a connection is established. The ratios grow quickly
for both deployments, because both deployments experienced long periods of good
connectivity during which a large portion of data is uploaded from some cabs. The
drop in ratio for the threshold deployment after one day is caused by the introduc-
tion of a new node (one that had not previously encountered connectivity) that had
accumulated a large number of signature windows—nearly as many as the sum of the
available signature windows on all other cabs as of their most recent summaries—but
had a short opportunity to deliver data that ended before the cab managed to offload
10% of its data, resulting in a low component ratio with a large weight. A similar
situation caused the drop after 10 hours. FIFO prioritization manages to deliver a
ratio of nearly 0.5 after the second day, because at this point several of its cabs have
delivered a substantial amount of data (among nearly half the available signature

windows).

We also observed in our deployments that the FIFO prioritization scheme performs
similarly to a randomized prioritization scheme. This is attributed to the fact that
the signature windows tend to be dispersed across the accelerometer samples; the few

clusters are small, consisting of a couple of adjacent windows.
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5.4 Lessons Learned

Building and deploying CafNet/ICEDB turned out to be an extremely painful process,
requiring 8 months of continuous development and debugging. We learned several
lessons from this process. Generally, we found that our setup stretches the limits
of existing software and hardware, because they are not designed to operate in a
challenging environment where power disruption is frequent and where the low-level
Wi-Fi operations of scanning and association are controlled by a user-level process

and occur at such high rates.

Most time-consuming is the iterative development process in this environment.
Remote debugging is difficult given the intermittent nature of the cabs’ connectivity.
The deployment and testing cycle takes at least one day and usually several, including
the time cabs take to obtain new disk images. Furthermore, it is difficult to reproduce

in the lab certain conditions the cabs encounter.

Deployment consists of downloading and extracting a 14MB gzipped tarball of the
root filesystem for the slave, and running a series of initialization routines—checking
for filesystem corruption and reformatting if necessary, resetting the daemons on the
master to serve the slave kernel and filesystem, creating databases and users, etc.
This process must be fully automated and robust, and includes workarounds for bugs

in the many third-party software packages involved.

To cope with failures while running “in the field,” we designed ICEDB to fully uti-
lize the existing transactional safety mechanisms provided by PostgreSQL. Nonethe-
less, frequent power disruptions and flash failures easily corrupt the filesystem. In
particular, we have used ReiserFS and Ext3F'S, and found that ReiserFS is substan-
tially less susceptible to corruption than Ext3FS. Occasionally, disks also suffered

hardware failures.

Many stateful operations occur outside the database as well. For instance, the
initialization process is complicated by the fact that the embedded computer has a
high processing overhead; it may take several seconds to start new processes (e.g.,

Python, PostgreSQL), and the system becomes highly loaded once the data processing
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starts. The deployment process takes over an hour to complete on our under-powered
boxes, and as a result the initialization process is frequently interrupted by car power
outages; care must be taken to make stateful operations atomic.

Debugging and interacting with the system is a challenge, as the boxes are fre-
quently unavailable for inspection. Most information comes from logs, but because
the time and date is frequently lost by the hardware or reset by the GPS adapter,
the log timestamps are unreliable, and various tools such as make do not work in
this environment. The time to re-image or initiate a new experiment is also highly
variable - boxes may not connect to the portal for an indefinite amount of time. This
is an area in which having an interpreted language helps - we were able to test out
small bug fixes directly on the cabs, despite the absence of a compilation toolchain.

Because the masters cannot be re-imaged and must be kept operational, the state
of each master is tracked so as to maintain consistency across all masters. Updates
are deployed onto the masters as a non-commutative ordered set of patches. Care
must also be taken to isolate changes to the slave so that we do not inadvertently
affect the master.

The network environment gives rise to problematic behavior in the Wi-Fi subsys-
tem; for instance, the system becomes “wedged” occasionally at high rates of scanning
and association, preventing due notification of connectivity to CafNet. As a result,
CafNet needs to periodically proactively establish connectivity. CafNet also uses di-
rect TCP connections to the portal; we chose TCP because because we found UDP
to be more problematic with firewalls and less fair to other connections.

On a positive note, our reliance on a RDBMS is critical for transactional safety,
and it also allows us to express most of our local prioritization schemes using declar-
ative SQL scripts. Furthermore, on the portal, nearly all of our analysis is performed

using through collections of high-level SQL programs.
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Chapter 6

Related Work

Continuous Query Systems: ICEDB’s continuous query processing engine is a sim-
ple stream processor that provides a subset of the features offered by recent streaming
query engines [22, 7, 9]. We expect that any one of these systems could be used in
place of our query processor, and use the techniques we have developed to handle
variable connectivity.

Intermittently Connected Systems: Infostations [15] provide pockets of high-
bandwidth connectivity to mobile users. Infostation networks are quite similar in
character to the urban Wi-Fi networks we describe. Most of the work on Infostations,
however, is focused on either network-layer issues related to making the best use of
intermittent and variable communications links or to determining what data to cache
on clients when intermittent connections become available [5, 18].

Another class of work on intermittently connected systems is Data Recharging [10],
where mobile users have location-sensitive profiles that specify what data is most
important to them at a particular location. As in ICEDB, these profiles are used to
prioritize the collection of data. Unlike ICEDB, however, in data recharging, data
moves toward mobile users, not toward the server, and hence the optimizations we
propose where the server avoids collecting redundant data do not apply.

Data Prioritization: In the context of broadcast dissemination of data, Aksoy and
Franklin [1] propose a metric for prioritizing data broadcasts called RxW. This metric

weighs the frequency of transmission of data by its popularity (based on user queries)
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and size. This scheme is similar to our notion of prioritization in that it ensures that
more popular data is disseminated first. Their scheme, however, does not provide the
same flexible data management facilities for defining streams, and seeks to maximize
a different set of metrics than ICEDB.

Olston et al. [23] present a scheme for best-effort caching of client data at a server.
Rather than deriving the value of information from user-driven queries, however, they
assign priorities to data based on its deviation from the last transmitted value. Hence,
their scheme is similar to our local DELIVERY ORDER BY clause, but lacks the expres-
siveness of our server-driven summarization policies. Labrinidis and Roussopoulos [19]
looked at similar issues in deciding when to refresh cached copies of a web sites.

Work on adaptive query processing has looked at the problem of database query
execution in the face of delayed inputs, as when processing data over a network [2, 3]
By reordering and restructuring the query plan, the query processor can perform other
useful work while waiting for data from a data source. These techniques, however,
do not specifically address the buffering and prioritization issues that are needed to
handle dis-connectivity, as in ICEDB.

Finally, in the context of on-line query processing, Raman et al. [25] present
Juggle, a pipelining, dynamically tunable reordering operator suited for continuous
query processing. Juggle focuses primarily on dynamically reordering the results of
aggregation queries over stored data, rather than reordering and summarization of

arbitrary queries over streaming results.
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Chapter 7

Conclusion

This thesis showed how data collection can be optimized in intermittently connected
sensor networks using the dynamic prioritization mechanisms provided by ICEDB.
In our experimental evaluation, the local and global prioritization schemes are able
to deliver results that satisfy queries where FIFO delivery fails to satisfy any. Fur-
thermore, global prioritization consistently dominates local prioritization according
to our chosen utility metric. The declarative query interface allows end-users to take
advantage of these benefits for a wide range of data collection applications without
having to modify low-level code.

As sensor networks become more widely deployed, especially in mobile or harsh
environments where network connectivity is intermittent and highly variable, data
collection methods sensitive to the priority of data will become increasingly important.
In such scenarios, ICEDB can be a useful data management service that can integrate

into a current distributed database or stream processing system.

29



60



Bibliography

[1]

[2]

[3]

[6]

[7]

Demet Aksoy and Michael Franklin. R x w: a scheduling approach for large-scale
on-demand data broadcast. IEEE/ACM Trans. Netw., 7(6):846-860, 1999.

Laurent Amsaleg, Michael J. Franklin, Anthony Tomasic, and Tolga Urhan.
Scrambling query plans to cope with unexpected delays. In PDIS, pages 208-219,
1996.

Ron Avnur and Joseph Hellerstein. Eddies: Continuously adaptive query pro-

cessing. In Proceedings of SIGMOD, 2000.

M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker. Fault-tolerance
in the borealis distributed stream processing system. In SIGMOD, pages 13-24,
2005.

Daniel Barbara and Tomasz Imielinski. Sleepers and workaholics: caching strate-

gies in mobile environments. In SIGMOD, pages 1-12, 1994.

Vladimir Bychkovsky, Bret Hull, Allen K. Miu, Hari Balakrishnan, and Samuel
Madden. A Measurement Study of Vehicular Internet Access Using In Situ Wi-Fi
Networks. In 12th ACM MOBICOM Conf., Los Angeles, CA, September 2006.

D. Carney, U. Centiemel, M. Cherniack, C. Convey, S. Lee, G. Seidman,
M. Stonebraker, N. Tatbul, and S. Zdonik. Monitoring Streams—A New Class
of Data Management Applications. In VLDB, 2002.

61



[8] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, E. Travis,
and H Weiss. Interplanetary Internet (IPN): Architectural Definition. http:

//www.ipnsig.org/reports/memo-ipnrg-arch-00.pdf.

[9] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,
Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel R. Madden,
Vijayshankar Raman, Fred Reiss, and Mehul A. Shah. TelegraphCQ: Continuous

dataflow processing for an uncertain world. In CIDR, 2003.

[10] M. Cherniack, M. Franklin, and S. Zdonik. Expressing User Profiles for Data
Recharging. IEEE Personal Communications, pages 32-38, August 2001.

[11] D. Clark and D. Tennenhouse. Architectural Considerations for a New Genera-

tion of Protocols. In ACM SIGCOMM, pages 200-208, 1990.

[12] Jakob Eriksson. Cabernet: A Content Delivery Network for Moving Vehicles.
Technical Report MIT-CSAIL-TR-2008-003, Massachusetts Institute of Technol-
ogy Computer Science and Artificial Intelligence Laboratory, January 2008.

[13] Kevin Fall. A delay-tolerant network architecture for challenged internets. In

Proc. ACM SIGCOMM, pages 27-34, 2003.

[14] Lewis Girod, Yuan Mei, Ryan Newton, Stanislav Rost, Arvind Thiagarajan, Hari
Balakrishnan, and Samuel Madden. XStream: A Signal-Oriented Data Stream
Management System. In Proc. ICDE, 2008.

[15] D. Goodman, J. Borras, N. Mandayam, and R. Yates. Infostations: A new system
model for data and messaging services. In Proc. IEEE Vehicular Technology

Conference, pages 969-973, May 1997.

[16] Bret Hull, Vladimir Bychkovsky, Yang Zhang, Kevin Chen, Michel Goraczko,
Eugene Shih, Hari Balakrishnan, and Samuel Madden. CarTel: A Distributed
Mobile Sensor Computing System. In Proc. ACM SenSys, November 2006.

62



[17]

[18]

[19]

[20]

[21]

[22]

[26]

J. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stonebraker, and
S. Zdonik. High-availability algorithms for distributed stream processing. In
Proc. 21st International Conference on Data Engineering (ICDE), April 2005.

Uwe Kubach and Kurt Rothermel. Exploiting location information for

infostation-based hoarding. In MOBICOM, pages 15-27, 2001.

Alexandros Labrinidis and Nick Roussopoulos. Update propagation strategies

for improving the quality of data on the web. In Proceedings of VLDB, 2001.

S. Madden, M. Franklin, J. Hellerstein, and W. Hong. Tag: A tiny aggregation

service for ad-hoc sensor networks. In OSDI, 2002.

S. Madden, M. Franklin, J. Hellerstein, and W. Hong. The design of an acqui-
sitional query processor for sensor networks. In SIGMOD, pages 491-502, June
2003.

R. Motwani, J. Widom, A. Arasu, B. Babcock, S.Babu, M. Data, C. Olston,
J. Rosenstein, and R. Varma. Query Processing, Approximation and Resource

Management in a Data Stream Management System. In CIDR, 2003.

Chris Olston and Jennifer Widom. Best-effort cache synchronization with source

cooperation. In SIGMOD, pages 73-84, 2002.

P. P.Bonnet, J. Gehrke, and P. Seshadri. Towards sensor database systems. In

Conference on Mobile Data Management, January 2001.

Vijayshankar Raman, Bhaskaran Raman, and Joseph M. Hellerstein. Online

dynamic reordering for interactive data processing. In The VLDB Journal, pages

709720, 1999.

M. Shah, J. Hellerstein, and E. Brewer. Highly-available, fault-tolerant parallel
dataflows. In SIGMOD, June 2004.

63



[27] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess,
T. Dawson, P. Buonadonna, D. Gay, and W. Hong. A macroscope in the red-
woods. In ACM SenSys, pages 51-63, 2005.

[28] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris, and S. Shenker.
Middleboxes no longer considered harmful. In USENIX OSDI 2004, 2004.

[29] N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan, and
D. Estrin. A wireless sensor network for structural monitoring. In SenSys, pages

13-24, Baltimore, MD, November 2004.

64



