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AND DYNAMIC TILT PERCEPTION
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Abstract:

Measured differences between human and primate VOR may derive from
disparate experiences with psychophysical motion stimuli. To test this hypothesis,
horizontal and torsional eye movements, as well as roll tilt perception, were measured in
both "naive" and "experienced" human subjects during 0.5 Hz sinusoidal roll motion.
Between these measurement sessions, subjects experienced pseudo-random roll tilt
adaptation sessions. For half of the subjects, these adaptation sessions occurred in the
light. Subjects participated in 12 measurement sessions and 9 adaptation sessions over
the course of three days. (1) The presence of visual cues did not significantly affect
horizontal or torsional VOR, but did adversely influence perception of roll tilt as
measured using a somatosensory bar. (2) Torsional VOR followed a pattern of
habituation and/or adaptation for naive and dark-adapted subjects. (3) Experienced
subjects made horizontal eye movements of significantly larger amplitude than those
made by naive subjects. (4) The motion paradigm yielded a significant decrease in
torsional amplitude without a corresponding decrease in horizontal amplitude. These last
two findings suggest experience does not affect the horizontal VOR. Consequently, the
hypothesis that human/primate horizontal VOR differences stem from dissimilar motion
experience is not supported. Primate and human VOR must continue to be studied
separately.
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Purpose:

Living and working in space is a challenge for human beings. Having evolved in

a constant 1-g environment, the human body does not readily adapt to novel gravitational

conditions. Physiological responses that rely on feedback from gravity-sensing

organs--particularly spatial perception and reflexive eye movements--are fallible during

and immediately following spaceflight. These shortcomings add danger to an already

risky endeavor.

Nevertheless, NASA plans to return to the moon in the following decade, a trip

that requires no less than 6 gravitational transitions'. Certainly, the voyage is feasible

from a biological standpoint; indeed, it has been achieved safely in the past. Tomorrow's

astronauts, however, face cumulatively greater risks: they will return in greater numbers,

and for longer time intervals. For this reason, countermeasures that enhance the body's

ability to adapt to microgravity must be developed. The task starts here on earth, as we

'Astronauts on a round trip voyage to the moon face 4 discrete gravitational
environments. In addition to the 1-g environment of earth, moonbound astronauts face
microgravity en-route, 1/6" gravity on the lunar surface, and multiple "g's" during
terrestrial launch and landing. Together, these equate to the 6 gravitational
transformations mentioned here.
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work to accurately characterize the sensory network responsible for interpreting gravity

and motion: the vestibular system.

Background:

Humans use information derived from both visual and vestibular cues to estimate

both body movement and spatial orientation (Young 1984). The vestibular system,

located in the inner ear, is comprised of two distinct organs: the otolith organs and

semicircular canals. Specifically, the semicircular canals act as integrating angular

accelerometers, and accurately measure head angular velocity for frequencies above 0.04

Hz. The otolith organs act as linear accelerometers, measuring gravito-inertial force

(GIF, f), the vector sum of inertial force (translation, a) and gravity (tilt, g).

Translation Tilt

.. .. '  .....
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Figure 1: Tilt and translation can produce an equivalent GIF vector with
respect to the idiotropic vector. Adapted from Zupan, Peterka, and Merfeld
(Zupan et al. 2000)

Tilt/Translation Ambiguity:

Afferent information relayed from the otolith organs is inherently ambiguous.

According to Einstein's equivalence principle (Einstein 1908), no linear accelerometer



can alone resolve gravito-inertial force into its constituent components (see figure 1).

Indeed, neurons in the utricular otolith fire at the same rate during tilt and translation of

equal frequency and amplitude, suggesting that inertial and gravitational forces are

indistinguishable at the peripheral level (Fernandez and Goldberg 1976a; b; c).

Eye movement response characteristics epitomize this ambiguity. During angular

and linear acceleration, the vestibular system works to stabilize the eye in space so as to

minimize retinal slip (vestibulo-ocular reflexes or VORs). However, low frequency

sinusoidal translation generates small torsional eye movements in both primates and

humans (Angelaki et al. 2000; Lichtenberg et al. 1982), a response compensatory for

image stabilization during tilt, but anti-compensatory for translation.

Resolution of the tilt/translation ambiguity:

A number of crucial physiological tasks, such as walking and running, require

accurate resolution of the measured GIF. Fortunately, despite the GIF's inherent

ambiguity, vestibular responses to motion are generally compensatory (Green et al.

2005). Humans have little difficulty accurately perceiving ego-motion during either

active or passive movement. Furthermore, VORs adequately minimize retinal slip for

motions in the behaviorally relevant frequency range ((Angelaki et al. 1999; Merfeld and

Young 1995) as cited by (Zupan et al. 2000)). Even during low-frequency translation (as

described above) anticompensatory torsional eye movements are accompanied by

compensatory horizontal VORs (Angelaki et al. 2000; Lichtenberg et al. 1982). These

results suggest that the nervous system has identified a reliable, if imperfect, means of

distinguishing tilt from translation.



How the brain resolves this ambiguity remains undetermined. Three distinct,

though not necessarily exclusive hypotheses have been proposed: peripheral processing,

frequency segregation and internal models.

Peripheral Processing:

The peripheral processing hypothesis suggests that translation is signaled by

activation of phasic irregular otoliths, and tilt is marked by stimulation of tonic regular

afferents (Mayne 1974; Young and Meiry 1967).

Frequency Segregation:

Alternatively, the frequency segregation hypothesis postulates that motion is

interpreted as either tilt or translation based on the frequency of the stimulus (Mayne

1974; Paige and Tomko 1991). Motion below 0.2 Hz is interpreted as tilt; motion above

0.2 Hz is perceived as translation. Theoretical and experimental evidence suggests that

simple filtering may partially explain the response characteristics of VOR and motion

perception.

Theoretical Evidence for Frequency Segregation:

Humans rarely experience low frequency inertial motion; to do so requires an

uncharacteristically long translation. Paige and Tomko state that to meet the perceptual

threshold of 0.01g at 0.05 Hz requires a translation of Im (Paige and Tomko 1991). Such

lengthy translations rarely occur in nature. Thus, interpreting low frequency motion as

tilt is ordinarily the correct assumption.



High frequency stimulation of the otoliths, in the absence of other cues, is

generally attributed to translation. While high frequency tilt is not uncommon, afferent

signals from the semicircular canals (which are reliable in this frequency range), provide

a secondary cue to help correctly distinguish the motion. Indeed, torsional eye responses

in the squirrel monkey decrease with increasing frequency, a result that is consistent with

low-pass filtering (Telford et al. 1997).

Perceptual Evidence for Frequency Segregation:

During eccentric centrifugation at constant velocity, humans typically experience

a tilting sensation despite body alignment with the gravity vector (Graybiel and Brown

1951; Merfeld et al. 2001). Here, low frequency centripetal acceleration is interpreted as

tilt (albeit, incorrectly), a finding that suggests frequency segregation may also help to

regulate the perception of motion.

Even the limitations of filtering as a means of motion interpretation provide

support for the frequency segregation hypothesis. In the frequency range where filtering

is ineffective (mid-level, "crossover frequencies'), motion sickness, a response generally

attributed to sensory conflict (Oman 1990), is most pronounced (Wood 2002).

Conversely, where filtering is most effective, sensory conflict is at a minimum (as

indicated by a decrease in motion sickness susceptibility). Though correlative, these

associations strongly suggest that motion perception is at least partially influenced by

frequency segregation.



Internal Models:

The third hypothesis presumes that the brain uses an "internal model" to resolve

linear acceleration from gravity (Merfeld et al. 1999; Merfeld and Zupan 2002). Internal

models are defined as neural representations of physical relationships; in this specific

instance, the internal model represents the relationship between gravito-inertial force

(GIF, j•), gravity (g), and linear acceleration (a) (see equation ib).

Physical Representation: f = g - a (eqn. la)

Neural Estimates: f g - a (eqn. lb)

Mathematically, gravito-inertial force ( f) can result from countless

combinations of gravitational and linear forces. To adequately define all three variables

in an internal model, gravity or linear acceleration must be estimated. The internal model

hypothesis postulates that the semicircular canals provide a cue that helps estimate

gravity with the following equation (see equation 2b)2 :

dg
Physical Representation: dg = x g (eqn. 2a)

dt

Neural Estimates: d = (0X g (eqn. 2b)
dt

2 In this example the semicircular canals are used to derive the estimate of gravity;
however any sensory, cognitive, or efferent cue can also contribute to the gravitational
estimate.



By integrating both sides of the equation, g can be determined:

Physical representation: g = f(w x g)dt (eqn. 3a)

Neural representation: = f(A x )dt (eqn. 3b)

In these equations, (0 refers to angular head velocity as measured by the

semicircular canals. From this gravitational estimate, an estimate of linear acceleration

can be derived from the measured GIF, as shown by combining equation lb with 3b.

a =f(i x g)dt - f (eqn. 3)

Neuronal Evidence for Internal Models:

The firing patterns of cells in the vestibular and fastigal nuclei provides evidence,

at the neuronal level, for an internal model (Angelaki and Dickman 2003; Green et al.

2005). So-called "Otolith+Canal" cells (Angelaki and Dickman 2003) receive afferent

input from both the semicircular canals and otolith organs, but fire only in response to

translation. This discovery indicates that a centralized neural network exists to resolve

the ambiguous vestibular signals 3.

3 For a neural network to give rise to an internal model, there must exist a cellular
mechanism capable of temporally integrating angular velocity (Green and Angelaki,
2004). (While Angular position is required to resolve the GIF vector, the semicircular
canals afferents encode angular velocity) Though this neural integrator is not well
understood, the discovery of Otolith+Canal cells affirms the existence of such a
mechanism.



Caloric Evidence for Internal Models:

Several lines of psychophysical evidence support the internal model hypothesis.

When humans (Coats and Smith 1967; Peterka et al. 2004) and primates (Minor and

Goldberg 1990; Paige 1985) are exposed to caloric stimuli, the magnitude of the VOR

response is dependent on position; when supine, the response is larger than when prone.

This asymmetry may be due to stimulation of the semicircular canals without

simultaneous activation of the otoliths. In this instance, the gravito-inertial force

measured by the static otolith organs does not equal the shifting estimate of gravity

provided by the semicircular canals. According to the internal model hypothesis, this

disparity is interpreted as linear acceleration, and linear VORs are induced to compensate

for the perceived motion. Based on geometric considerations, the linear VOR should

sum with the canal-driven angular VOR while supine, but subtract from the angular VOR

while prone, a prediction experimentally verified by Peterka and colleagues (Peterka et

al. 2004).

"Dumping" Protocol:

Rapid tilt after sudden angular deceleration (post-rotatory tilt) induces linear

VORs which are consistent with an internal model (Merfeld et al. 1999; Zupan et al.

2000). The physical dynamics of the semicircular canals prohibit accurate assessment of

motion during rapid deceleration. In fact, during deceleration, the canals actually

measure angular motion in the direction opposite the initial rotation (Wilson and Melvill

Jones 1979). This illusory movement consequently shifts the estimate of gravity. As

with caloric stimulation, this new gravitational vector does not match the GIF measured



by the static otolith organs, thereby generating a non-zero estimate of linear acceleration.

The internal model predicts that this induced linear acceleration should generate linear

VORs that are dependent on the direction of the preceding rotation and the final position

post-tilt. Indeed, nose-up rotations do generate larger VORs than nose-down rotations

(Zupan et al. 2000).

Off-Vertical Axis Rotation (OVAR):

Subjects rotated about an axis not aligned with the gravitational vertical receive

dynamic signals from both the semicircular canals and the otolith organs. Once rotation

ceases, the two vestibular organs convey conflicting information-the semicircular canals

indicate rotation in the direction opposite the preceding motion, whereas the otoliths

correctly indicate motion termination. Thus, the otolith-measured GIF is unequal to the

estimate of gravity provided by the semicircular canals. As discussed in the "Dumping"

(p. 12) and "Caloric" (p. 11) sections, the internal model interprets this inequality as

linear motion, inducing horizontal eye movements that are dependent on the subject's

final orientation. Indeed, after yaw rotation along an earth-horizontal axis ("barbeque

spit"), horizontal VOR is greater when the final orientation is nose up than nose down

(Zupan et al. 2000).

Combined Tilt and Translation:

Primates exposed to a novel tilt-translation paradigm also exhibit eye movement

responses that reflect an internal model of motion (Angelaki et al. 1999; Angelaki et al.

2001). During inter-aural, sinusoidal translation, the shear force on the otoliths can be



eliminated by carefully incorporating sinusoidal tilt ("Tilt-Translation" paradigm). In

labyrinthine-intact primates, robust torsional and horizontal eye movements are

appropriately compensatory (Angelaki et al. 1999; Angelaki et al. 2001). Upon

inactivation of the semicircular canals, however, eye movements follow the resultant

interaural acceleration (Angelaki et al. 1999). In this example, canal cues appear to

regulate the interpretation of otolith afferents, a finding consistent with an internal model.

Perception and Action Use Qualitatively Different Mechanisms:

The frequency segregation and internal model hypotheses may not be mutually

exclusive. Merfeld and colleagues postulate that a combination of both internal models

and frequency segregation are used by the human central nervous system to interpret

motion. Frequency segregation may be principally utilized to drive reflexive eye

movements, and internal models may be primarily responsible for spatial perception

(Merfeld et al. 2005a; b; Zupan and Merfeld 2005).

The frequency segregation hypothesis presumes that motion is categorized based

on the frequency of the stimulus. Low frequency motion is perceived as tilt; high

frequency motion is identified as translation. While the frequency segregation hypothesis

predicts a number of experimental findings (Paige and Tomko 1991; Telford et al. 1997;

Wood 2002), it fails to explain how "non-categorical" motion is interpreted. Humans

accurately perceive low frequency translation and high frequency tilt (Merfeld et al.

2005a), a finding that suggests that human perception is not dictated by frequency

segregation.



Instead, human perception appears to be governed by an internal model.

Increasing the vertical distance from the axis of rotation during roll tilt increases the shear

force on the otoliths while maintaining uniform canal cues. Despite the changing otolith

signal, tilt continues to be correctly perceived (Merfeld et al. 2005b). This indicates

canal cues are required to interpret the otolith signal during motion perception, a finding

in line with an internal model of motion.

In contrast, radial position relative to the axis of rotation does strongly affect the

magnitude of the vestibulo-ocular reflex in humans (Merfeld et al. 2005b). Horizontal

VOR increases with distance (and, by association, inter-aural acceleration), despite

uniform canal cues. Though consistent with simple filtering, these results do not

preclude the possibility that internal models contribute to the VOR response (Merfeld et

al. 2005a; b).

Monkeys vs. Humans:

The human VOR results just described stand in direct contrast to Angelaki's VOR

measurements in non-human primates. As mentioned previously, normal rhesus

monkeys exposed to a "Tilt-Translation" motion paradigm exhibit compensatory eye

movements predicted by an internal model, but antithetical to simple filtering (Angelaki

et al. 1999; Angelaki et al. 2001). Human VORs characteristics, on the contrary, appear

consistent with filtering (Merfeld et al. 2005a; b).

These contradictory findings may be due to differences between species. Indeed,

as reported by Merfeld (Merfeld et al. 2005b; Merfeld and Zupan 2002), the ocular

response to motion differs in non-human primates. While the eye axis of rotation in



humans remains constant following post-rotational tilt and fixed-radius centrifugation,

the monkey eye axis tends to align with the resultant gravito-inertial force. In addition,

horizontal VOR in humans immediately following both centrifugation and post-rotatory

tilt shows a strong orientation dependency. Such dependence on orientation is not found

in monkeys. Lastly, human VOR appears less influenced by static otolith cues than

monkey VOR (Haslwanter et al. 2000).

Motion Experience and VOR:

Another possible explanation, explored in this thesis, is that motion experience

enhances the brain's ability to accurately interpret vestibular information. Because of

ethical and financial considerations, most laboratories test the same monkey in a number

of different experiments LMerfeld, personal communications- May 20061. This repeated

testing may improve the VOR response. Human subjects do not typically participate in

more than a few psychophysical studies; thus, reported inter-species VOR differences

may at least partially be attributed to variations in motion experience.

Indeed, a number of studies have shown an effect of motion exposure on reflexive

eye movements. Fighter pilots, who experience high G-loads in flight, typically show

different angular VOR characteristics across a range of rotation frequencies (Ahn 2003).

The horizontal VOR in pilots also better compensates for slow harmonic accelerations

(Lee et al. 2004). Moreover, even a small amount of exposure can improve the vestibulo-

ocular response to motion, as student pilots have been show to exhibit a more appropriate

horizontal VOR gain than non-pilots (Lee et al. 2004).



Motion Experience and Spatial Perception:

Motion exposure has also been shown to influence spatial perception. In space,

perception of tilt during radial centrifugation changes over the course of a mission

(Clement et al. 2001), as astronauts gain experience with the novel gravitational

environment. Gymnasts, who are well acquainted with rolling and tumbling motions that

dynamically stimulate both the canals and otolith organs, have been shown to better

approximate their subjective postural vertical (SPV) (Bringoux et al. 2000) than non-

gymnasts. Indeed, experience is thought to play such a strong role in human adaptation

that it has been suggested as a means of preparing astronauts for spaceflight. By pairing

tilt motion with visual translation information, a conflicting interaction on earth, but an

applicable relationship in space, astronauts can gain experience with novel spaceflight

sensations while still on earth (Woodard et al. 1987).

Hypothesis:

Together, these findings suggest that VOR and spatial orientation, though

governed by seemingly different mechanisms, may both be influenced by prior motion

experience.



Methodology:

Approval:

This experimental protocol was approved by the Internal Review Board at the

Massachusetts Eye and Ear Infirmary (MEEI) and the Committee on the Use of Humans

as Experimental Subjects (COUHES) at the Massachusetts Institute of Technology

(MIT).

Subject recruitment:

8 subjects (3 females, 5 males, mean age 30.5 years, range 25-47) were recruited

for this experiment. Only individuals who were in good physical health and free of back,

neck, joint, and dental problems were eligible to participate. In addition, potential

subjects who exhibited a high proclivity for motion sickness were excluded from the

experiment. Prior to experimental testing, all subjects underwent a series of standardized

tests to ensure normal vestibular function. (Jenks Vestibular Diagnostic Lab,

Massachusetts Eye and Ear Infirmary -see Appendix A, p. 67).

Each subject signed an Informed Consent form and an Authorization to Release

Protected Health Information form. Subjects who participated in the experimental

Methodology:



portion of this study were financially compensated for their time.

Na've vs. Experienced:

A questionnaire was utilized in this study to investigate level of experience with

atypical motion (see Appendix B). Subjects were classified either as "naive" or

"experienced" based on their responses. Four of the five male subjects were classified as

experienced; all three female subjects were categorized as naive4.

The four experienced subjects had either considerable experience with passive

motion testing devices (such as centrifuges, linear sleds, tilt devices, and motion

simulators) and/or extensive flight experience (al00 hours pilot in command). The

remaining four subjects (all non-pilots with little passive motion testing experience) were

classified as naive.

The fact that most experienced subjects were pilots is significant given the strong

correlation between flight training and reflexive eye movements. Compared to non-

pilots, compensatory eye movements in pilots tend to be more appropriate during both

earth-vertical yaw rotation (Ahn 2003) and slow harmonic acceleration (Lee et al. 2004).

Together, this suggests that our classification system was well suited to uncover even

subtle differences in spatial perception between naive and experienced subjects.

4 While no studies have yet identified gender differences in compensatory eye
movements, a number of experiments have shown a robust gender difference in spatial
perception (for detailed literature review, see Halpern, 2000). Typically, men perform
better on tests of spatial perception (most notably in Piaget's water level task (Thomas et
al. 1973; Witting and Allen, 1984). Thus, analysis of spatial perception in naive (mostly
female) and experienced subjects (all male) was initially approached with caution.
However, as will be shown, spatial perception did not differ between naive and
experienced subjects; thus it can safely be assumed that gender did not act as a confound
in this experiment.



Experimental Testing:

All eight subjects participated in three days of testing. Each of the three days of

testing consisted of four "measurement' sessions alternating with three "adaptation"

sessions (see figure 2). The majority of subjects were tested over a span of three

consecutive days. No subject participated in more than one testing session a day, and all

subjects completed the three testing sessions within a one-week time period.

Both the measurement and adaptation sessions were performed on a swinging

motor-driven chair known as the "tilt device" (Neurokinetics, Pittsburgh, PA) that was

specifically configured for roll tilt motion.

Testing Session

Adaptation Adaptation Adaptation

U
l I

S U/ S

Measurement Measurement Measurement Measurement

Figure 2: For each testing session, four measurement sessions were interspersed
with three adaptation sessions. Measurement sessions consisted of four
movements (2 x 0.5 Hz and 2 x 1.0 Hz motions) performed in the dark.
Adaptation sessions consisted of pseudo-random sum of sines (SS) motions
conducted either in the light or dark. Each subject experienced a total of three
testing sessions over the course of three separate days.

Head Center:

Prior to the start of each testing session, the external auditory meatus for each

subject was aligned with a horizontal reference line located on the tilt device chair. The

subject was then vertically translated so this reference line was level with the axis of

! I
| • • ·



rotation (within lcm). In this manner, tangential and centripetal accelerations were kept

at a sub-threshold level during both the measurement and adaptation sessions ((Benson et

al. 1986; Jones and Young 1978), as cited by (Merfeld et al. 2005a)).

Fixation Material:

All subjects wore a five-point safety harness, in combination with leg, torso, and

foot restraints. Foam padding was also employed when necessary to further minimize

body motion with respect to the device. Lastly, a moldable, thermoplastic mask (WFR-

Aquaplast, Wyckoff, New Jersey) was used to fix the subjects head to the device

headrest. This mask was custom-fitted for each subject, and allowed for rapid removal.

Measurement Sessions:

Eye movements and spatial perception were measured during the measurement

sessions. With the ear aligned at the center of rotation, subjects were tilted in roll (- 200)

at two alternating sinusoidal frequencies (the exact sequence: 0.5 Hz, 1.0 Hz, 0.5 Hz, 1.0

Hz). Thel.0 Hz trial consisted of 20 steady-state cycles; the 0.5 Hz trial consisted of 15

steady-state cycles. For both 0.5 Hz and 1.0 Hz trials, the angular velocity was linearly

increased (and decreased) over 3 and 4 cycles, respectively, so as to limit rapid and

uncomfortable acceleration. A brief (~10s) delay occurred between each of the four

profiles. All measurement sessions were performed in the dark.



Adaptation Sessions:

During the adaptation sessions, subjects experienced pseudo-random sum of sines

roll tilt ("SS motion"). This type of motion was designed to expose subjects to a variety

of roll tilt frequencies (0.1, 0.2, 0.5, 0.7, and 1.0 Hz, with the tilt amplitude for each

frequency equal to 6. 10). All subjects experienced three variations ("profiles") of pseudo-

random sum of sines tilt. The characteristics of each profile were the same except for the

amount of phase lead between frequencies. The three phase separations were 0, 144, and

216 degrees. Subjects were positioned so their ears were aligned with the center of

rotation, and tilted no more than t 200. Each adaptation session lasted 15 minutes.

Light vs. Dark:

Half of the naive and half of the experienced subjects experienced the adaptation

sessions in the dark; the remaining four subjects experienced adaptation in the light. For

each subject, light level was consistent from session to session and day to day.

Visual cues were provided to some of the subjects in an attempt to improve the

appropriateness of the VOR and perceptual response. Past research has shown that visual

cues influence the human VOR. While the vestibulo-ocular reflex operates primarily in

an open-loop manner, a mechanism for plasticity exists to maintain the VOR in a manner

that keeps retinal images stable during novel visual-vestibular interactions5 (Miles and

Lisberger 1981). Humans exposed to binocular lenses (Paige and Sargent 1991) or field-

reversing prisms (Jones 1977) show an adapted VOR which compensates for the novel

5 Anecdotally, VOR plasticity is easily demonstrated with a pair of prescription glasses.
Putting on the glasses requires a decrease in VOR gain to compensate for the magnified
visual scene.



visual-vestibular environment. Additionally, exposure to optokinetic stimuli in conflict

with vestibular cues has been shown to influence VOR gain in a number of species,

including mice (Faulstich et al. 2004), primates (Angelaki and Hess 1998; Wei and

Angelaki 2001), and humans (Watanabe et al. 2003). In this experiment, visual cues

faithfully supplemented vestibular afferent signals, and as such were predicted to improve

both spatial perception and the VOR response.

Visual Cues:

A horizontal line painted on the wall facing the subject served to enhance the

subject's perception of earth horizontal. In addition, three earth stationary posters helped

orient the subject to the gravitational vertical. Two of the posters were identical and

depicted human figures walking across a crosswalk (taken from the Beatles' "Abbey

Road" album cover). The remaining poster depicted a number of vertical pencils aligned

in parallel.

Figure 3: The Beatles "Abbey Road" album cover, and a poster with vertical
pencils, were used as visual cues for light adapted subjects. Note the strong, vertical
cues.



Subjects were also exposed to several visual cues that rotated synchronously with

the tilt device. The most notable of these cues was the tilt device arm, which

continuously took up nearly 40 percent of the visual field6

Eye Movement Measurements:

Eye position was measured using a clinically certified video-oculography (VOG)

mask (SensoriMotor Instruments (SMI), Teltow, Germany). Infrared LEDs invisible to

the subject were used to illuminate the eye.

Figure 4: 9 point calibration bar

A standard 9-point calibration performed prior to the first testing session allowed

horizontal and vertical eye position to be inferred from video image data. During these

calibration sessions, each subject, sitting a measured distance from the "calibration bar"

(9 LEDs evenly distributed in a cross-like pattern, see figure 4) fixated on individual

6 Only subjects adapted in the light were exposed to the visual cues, and then only during
the adaptation session.



LED targets as they were illuminated in sequence. By comparing the actual location of

the eye with the location predicted by eye-LED geometry, each eye was separately

calibrated.

Torsional eye movements were calculated with the help of a reference image

taken immediately after the calibration session. Commercially developed software

(SensoriMotor Instruments (SMI), Teltow, Germany) calculated the grey levels of each

reference image to produce an ellipse concentric with the subject's pupil. Subsequent

angular changes in the ellipse with respect to the reference image were recorded as

torsion. Reference images were taken for both eyes.

Bite Bar:

A moldable bite bar was made for each subject, and was worn throughout each

day of testing. The bite bar attached to the VOG mask and helped minimize movement

of the head with respect to the cameras.

Calibration Bar:

A 9-point LED panel ("Calibration Bar"-see figure 4) was built specifically for

this experiment. In both the horizontal and vertical planes, LEDs were spaced 2 inches

apart, generating an angle from ocular centerline of roughly 100 for the inner ring of

LEDs, and 200 for the outer ring (The actual angles differed for each subject, directly

depending on their horizontal distance from the calibration bar). During the calibration

session, each LED was illuminated for approximately 2 seconds.



Somatosensory Bar:

A non-visual somatosensory task was chosen as the perceptual measurement in

this experiment, as past research has shown that aligning a visual stimulus interferes with

eye responses and may provide an ambiguous measurement of spatial perception

(Curthoys 1996). Subjects were asked to continuously align a metal "somatosensory bar"

with their perception of earth-horizontal (Merfeld et al. 2001; Park et al. 2006; Zupan and

Merfeld 2003).

The somatosensory bar was attached to an analog potentiometer connected to a

5V power supply, such that rotational changes in bar position generated a commensurate

change in voltage. Somatosensory bar voltage was continuously measured and recorded

throughout each measurement session.

The mathematical relationship between bar angle and voltage was obtained by

measuring voltage at 17 discrete bar angles (-80', -700, -60', -50', -400, -300, -200, -100,

00, 100, 200, 300, 400, 500, 600, 700, 800) prior to the start of the experiment. A digital

inclinometer accurate to within 0.010 degrees was used to assure that the bar was

accurately positioned in each of the 17 positions. Voltage was measured on a digital

voltmeter, accurate to within 0.0001V.

A linear regression was performed on this preliminary somatosensory bar data,

and a line of best fit was calculated using the method of least squares (Angle = 75.5 x

Voltage - 100.64). The relationship between bar angle and voltage was highly

correlated, with an R2 value equal to 0.999.



Somatosensory Bar Bias:

Prior to each measurement session, each subject was asked to offset the bar and

then align it with his or her perception of earth horizontal. Once this alignment had been

performed, the subject pressed a button on the bar. Each subject performed this task six

times per measurement session. Bar position immediately preceding button push was

averaged for each measurement session, and this value was used as the perceptual bias

for the session.

Data Acquisition:

Eye movement data was collected at 60 Hz on a commercially built computer

(SensoriMotor Instruments (SMI), Teltow, Germany). Somatosensory bar data, as well

as analog translation and digital tilt signals, were filtered and collected on a separate

"Data Acquisition Computer" at 120 Hz. Motion start initiated a digital trigger that was

recorded by both the SMI and Data Acquisition computers. This trigger signal provided

a means of temporally syncing the data acquired by the two computers.

Practice Session:

Subjects participated in a practice session prior to the first testing session to

ensure they understood the somatosensory task, as well as to familiarize them with the

motion of the tilt device. All subjects experienced 200 static roll tilts to the left and right,

as well as 3 cycles of a 200, 0.02 Hz sinusoidal roll tilt7 . After the practice session,

subjects were asked if they felt comfortable with the task; no subject requested additional

7 A relatively low tilt frequency was chosen for the practice session so as to minimize
adaptation.



practice.

Monitoring the subjects:

All subjects were monitored for alertness; those subjects who appeared tired or

drowsy were given trivia questions. For dark-adapted subjects, lights were briefly turned

on prior to each measurement session. This helped ensure vergence remained relatively

constant during measurement sessions (see the "Vergence" section (p. 35) for more on

vergence).

Motion Sickness:

Movement during both the measurement and adaptation sessions was relatively

benign and elicited little sensory conflict. Nevertheless, we remained alert for evidence

of motion sickness throughout the experiment. At the end of each testing and training

session, subjects were asked to rate their motion sickness on a scale of 0-10, with 0

indicating they felt fine and 10 indicating they were about to throw up. To ensure subject

safety, the testing protocol dictated that all motion would cease once a response higher

than 4 was given; however, at no point did any subject indicate a motion sickness value

greater than 2.

As an additional precaution, the duration of motion was increased incrementally

during the adaptation session to minimize the possibility of motion sickness (which tends

to build rapidly). If a subject felt fine after one minute of SS motion, he or she underwent

two minutes of SS motion; if he or she felt fine after two minutes of SS motion, he or she

would experience three minutes of SS motion. This buildup continued until the subject



showed he or she could safely experience 5 minutes of uninterrupted SS motion. In this

piecemeal manner, subjects experienced 15 minutes of motion during each adaptation

session. After the first day's adaptation session, each subject experienced 5-minute SS

intervals during subsequent adaptation sessions.

Fatigue:

Subjects were tested on three separate days. Eye movements and perceptual

responses were compared from day to day to ensure that any changes were due to

psychophysical modifications, and not fatigue.

Kinematic Corrections:

The video-oculography mask utilized in this experiment measured eye

movements in an eye-fixed coordinate system. A kinematic correction was made to

rotate the acquired VOG data from an eye fixed to a head fixed reference frame.

I -
-iy =S(0 1, 02) 0 = S(0 1, 02) b2
IA 1 (eqn. 4)

Where,

0 -sin(O1)cos(01) cos(02)
S(0 1, 2) = 0 cos(O,)sin(1,) cos(02)

1 0 -sin(02) (eqn. 5)



In these equations, x,, Xy, and Xz refer to torsional, vertical, and horizontal

eye velocity in a head fixed reference frame. 019 02, and 03 refer to horizontal,

vertical, and torsional eye position in an eye fixed reference frame. Both uncorrected and

corrected eye velocity values were analyzed in this study. While corrected values have

the advantage of being largely unaffected by head motion, they are easily contaminated

by small calibration errors, particularly when there is a predominant response (in this

case, a large, predicted torsional response). For further details, see Merfeld (Merfeld

1990).

Fitting the data:

Eye position was differentiated and fast phase saccades were manually removed

to generate measurements of torsional and horizontal slow phase velocity. For each trial8 ,

both torsional and horizontal SPV were fitted using a least-mean-square linear regression

to the equation:

x(t) = B + Ac cos(2r f t) + A s sin(2r f t) (eqn.6).

Here, AC represents cosine amplitude, A, represents sine amplitude, and B is the

DC bias. SPV was fitted on a cycle-by-cycle basis. In most cases, several cycles were

manually excluded from further analysis, as their fit did not accurately characterize the

8 In this experiment, a "trial" was defined as either a 0.5 Hz or 1.0 Hz steady state
motion. Each measurement consisted of two trials of the same frequency.



measured data. The remaining fits were then averaged to produce eye amplitude (Atrial)

for each trial. In this example, Atrial is a complex value, where As equals the real

component, and Ac equals the imaginary component.

Atra = A; + Aci (eqn. 7)

In the same manner amplitude for somatosensory bar position, device position,

and device velocity were calculated.
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Figure 5: An example of a "good" horizontal and torsional fit. In the first subplot,
horizontal eye movements are plotted against time; in the second subplot, torsional
eye movements are plotted against time. In both subplots, the darker overlayed line
represents the calculated "fit." In this example, all 10 cycle fits were included for
analysis.
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Figure 6: An example of a "bad" fit. In the first subplot, horizontal eye movements
are plotted against time; in the second subplot, torsional eye movements are plotted
against time. In both subplots, the darker overlayed line represents the calculated
"fit." Note that the fit equation does not do an adequate job of fitting a sinusoid to
the third cycle of horizontal velocity. The remaining 9 cycles were used for analysis.

Gain and Absolute Phase Calculations:

For each trial, measured response amplitude was divided by device motion

amplitude. These values were then averaged across the two equal frequency trials within

a measurement session to generate a gain value for each measurement session (equation

8):

I I I
;i n a



A response A response
rial I + rial 2

A, device A response

= trial2 (eqn. 8)measurement 2(eqn. 8)

Finally, Gmeaurements were averaged across subjects within a common group (e.g.

light, dark, experienced, or naive subjects). By taking the absolute value and arctan of

these complex values, group gain (Ggroup, equation 9) and group absolute phase (Pgroup,

equation 10), respectively, were calculated.

group = G P = tan-' (G ) (eqn. 9& 10)group measurements group measurements

Amplitude vs. Gain:

Gain reflects both the response and the stimulus (as opposed to the response

alone). However, horizontal "gain" is not a pertinent calculation in this experiment, as it

is defined by a horizontal eye response divided by a roll stimulus. For this reason,

amplitude, not gain, is depicted in the subsequent figures presenting eye movement data9.

Group horizontal amplitude was calculated by multiplying group horizontal "gain" by

group device amplitude (equation 11).

Aresponse = G x Ad've (eqn. 11)
group group group

9 Torsional gain is an appropriate calculation; as such, a relevant gain scale appears on
the right side of each torsion figure.



Standard Error

Response amplitude and phase standard error were derived from a two-

dimensional covariance ellipses calculated from sine and cosine components ((Johnson

and Wichern 1982), as cited by Merfeld (Merfeld et al. 2005a)) 10

Statistical Analysis:

Multivariate analysis of variance (MANOVA) tests were used to identify

statistical differences between subject groups in eye responses and bar responses, except

where specifically indicated. The real and imaginary components of these complex

values were considered two independent variables in the MANOVA analysis.

Data analysis:

Preliminary analysis of the data revealed noise in the right eye torsion signal.

Numerous attempts were made to try and eliminate the source of this noise;

unfortunately, these efforts were not fully successful. For this reason, only left eye

measurements were included in the final analysis.

In addition, only somatosensory bar and eye movement data recorded during 0.5

Hz trials were analyzed. 1.0 Hz eye data proved difficult to characterize, as these data

could not be readily fit to a sinusoid.

10 Gain standard error was proportional to amplitude standard error, since response
standard error was much greater than tilt device standard error.
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Vergence:

Vergence is known to affect horizontal VOR gain in humans (Paige et al. 1998).

To ensure variations in vergence did not bias our gain calculations, subjects were shown

an identical fixation target prior to each measurement test. This established vergence at a

set angle prior to eye movement recording. Since vergence measured in darkness

compares favorably with vergence previously measured in light (Merfeld et al. 2005a),

we anticipated vergence to remain uniform across tests and across subjects.

Indeed, vergence angle did not vary to a great degree for most eye movement

recordings (see figure 9). Vergence angle was plotted against uncorrected horizontal

amplitude, and a line of best fit was calculated using the method of least squares (see

figure 10). This regression line did not significantly differ from zero (R2=0.013, F=2.12,

p=O. 148), suggesting vergence was not correlated with amplitude. In fact, the regression

line's negative slope is the reverse of what is normally associated with vergence. This

suggests vergence did not preferentially affect horizontal gain measurements.

Results:
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Figure 7: An example of vergence angle during 0.5 Hz motion. The top subplot
represents the left and right eye angles over the course of one measurement session.
The middle subplot represents the calculated vergence angle, and the bottom
subplot represents the motion of the tilt device.
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Figure 8: Number of vergence angle occurrences across 192 0.5 Hz trials. The
roughly bell shaped curve suggests vergence was relatively constant from subject to
subject and test to test.



Uncorrected H orizontal Amplitude vs. Vergence
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Figure 9: Uncorrected horizontal amplitude vs. vergence. The regression line to the
data is not significant, suggesting vergence variability does not affect uncorrected
horizontal amplitude.
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Eye Movements- Overview:

Average Amplitude Decrease

Figure 10: Change in eye movement amplitude between the start of day 1
and the end of day 3. (UH=Uncorrected Horizontal, UT=Uncorrected
Torsional, CH=Corrected Horizontal, CT=Corrected Torsional)

A two-tailed paired t-test indicates an overall decrease in uncorrected torsional

(UT, p=0.04) and corrected torsional (CT, p=0.03) amplitude between the first and last

measurement sessions. Subjects on average exhibited nearly a 23% reduction in

uncorrected torsional amplitude, and a 25% reduction in corrected torsional amplitude.

Conversely, horizontal eye movements (both corrected and uncorrected) did not show a

significant amplitude change (see figure 11).

Phase did not change between initial and final measurement sessions for any of

the four eye movement types (two-tailed paired t-test).
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Eye Movements--Light vs. Dark Overall Comparisons:

Uncorrected Horizontal VOR vs. Test
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Figure 12: Uncorrected horizontal amplitude (top subplot) and phase (bottom
subplot) vs. measurement session. Across the 12 measurement sessions, dark-
adapted subjects showed significantly greater horizontal amplitude than light-
adapted subjects. Error bars represent standard error of the mean.

Across the 12 measurement sessions, UH, UT, CH, and CT eye responses" were

significantly different between subjects adapted in the light and subjects adapted in the

dark (MANOVA, p<0.01, for all four eye movement types). Subjects who experienced

the adaptation protocol in the dark (to be described from here on as "dark-adapted

1 "Eye responses" refer to the average complex value computed for each test (see "Gain
and Phase Calculations", p. 32). MANOVA tests that reach significance indicate
complex values that exist in significantly different two-dimensional space, but do not
imply that both gain and phase are significantly different. The results instead suggest that
either the real and/or imaginary components and/or both of the complex values differ.
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subjects) exhibited larger horizontal and torsional amplitude than "light-adapted subjects"

(see figures 12, 13, 14, 15).

Surprisingly, these amplitude differences were evident even before the first

adaptation session. Dark-adapted subjects expressed significantly larger UH (p=0.009),

UT (p=0.048), and CT (p=0.032) amplitude during the first measurement session (one-

tailed between subjects t-test). However, for both types of horizontal eye movements,

these differences in amplitude disappear during measurements 11 and 12. Indeed,

between subjects t-tests indicate that horizontal amplitude for light and dark-adapted

subjects do not significantly differ during the last two measurement sessions.

Phase did not significantly differ for any of the four eye movement types.

Eye Movements-Light vs. Dark Horizontal Eye Movements:

When grouped by adaptation type, horizontal amplitude measured during the final

measurement session (measurement 12) did not differ significantly from horizontal

amplitude measured at the start of testing (measurement 1) for either light or dark-

adapted subjects (one-tailed paired t-test, both UH and CH eye movements). These

findings compare favorably with the absence of horizontal changes for subjects as a

whole (see "Eye Movement--Overview" section, p.39).
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Figure 13: Corrected horizontal amplitude (top subplot) and phase (bottom subplot)
vs. measurement session. Across the 12 measurement sessions, dark-adapted
subjects showed significantly greater horizontal amplitude than light-adapted
subjects. Error bars represent standard error of the mean.

Eye Movements-Light vs. Dark Torsional Eye Movements:

Overall, subjects showed a significant decrease in UT and CT amplitude from

tests 1 to tests 12 (see "Eye Movement--Overview" section, p.39). However, when

segregated by adaptation type, neither light nor dark subjects showed a significant change

in either corrected or uncorrected torsional amplitude (one-tailed paired t-test).



Uncorrected Torsional Amplitude vs. Test
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Figure 14: Uncorrected torsional amplitude (top subplot) and phase (bottom
subplot) vs. measurement session. Across the 12 measurement sessions, dark-
adapted subjects showed significantly greater torsional amplitude than light-
adapted subjects. Note the sawtooth pattern exists for both groups of subjects.
Error bars represent standard error of the mean.

Torsional gain for light and dark subjects exhibited a sawtooth-like pattern across

the 12 measurement sessions (see figure 14, 15). Gain decreases within days were offset

by gain increases between days. To assess whether these changes were significant,

regression lines for light and dark subjects were fitted to amplitude values measured

during each day of testing. In addition, regression lines were fitted to amplitude values

obtained during the last measurement session of the day and the first measurement

session of the following day. Specifically, lines of best fit were calculated for amplitude

I
I
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values measured between tests 1 and 4, tests 4 and 5, tests 5 and 8, tests 8 and 9, and tests

9 and 12, using the method of least squares (see figure 16).

For subjects who experienced adaptation in the dark, amplitude showed a

significant change between tests 1 and 4, and between tests 4 and 5, for both uncorrected

and corrected torsional eye movements (regression analysis, UT, testsl:4, p=0.038; UT,

tests 4:5, p=0.04; CT, tests 1:4, p=0.04; CT, tests 4:5, p=0.05). The slope of the

remaining regression lines for dark-adapted subjects did not differ significantly from

zero. Additionally, none of the fitted regression lines for light adapted subjects reached

significance.
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Figure 15: Corrected torsional amplitude (top subplot) and phase (bottom subplot)
vs. measurement session. Across the 12 measurement sessions, dark-adapted
subjects showed significantly greater torsional amplitude than light-adapted
subjects. Note the sawtooth pattern exists for both groups of subjects. Error bars
represent standard error of the mean.
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Figure 16: An example of how regression lines were fitted to torsion data across test
sessions. Regression lines were calculated using the method of least squares.

Eye Movements--Experienced vs. Naive Overall Comparisons12:

Across the 12 measurement sessions, experienced subjects exhibited significantly

greater uncorrected and corrected horizontal eye movements than naive subjects

(MANOVA, UH: p<0.01, CH: p<0.01). However, neither uncorrected nor corrected

torsional eye movements were significantly affected by experience level.

12 The evidence suggests that differences in light and dark-adapted subjects may be a
function of subject grouping, as opposed to an effect of adaptation (for a thorough
explanation of why this may be, see Eye Movement Response Characteristics- Light vs.
Dark, p. 58). For this reason, subjects were collapsed across the adaptation variable
during our analysis of experience on horizontal and torsional eye movements. This
course of action had the added benefit of substantially simplifying the MANOVA
analysis.
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Eye Movements-Experienced vs. Naive Horizontal Eye Movements:

Uncorrected Horizontal VOR vs. Test
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Figure 17: Uncorrected horizontal amplitude (top subplot) and phase (bottom
subplot) vs. measurement session. Across the 12 measurement sessions, experienced
subjects showed significantly greater horizontal amplitude than naive subjects.
Error bars represent standard error of the mean.

At the start of testing, experienced and naive subjects exhibited similar UH and

CH amplitude (2-tailed between subject t-test). As testing progressed, neither

experienced nor naive subjects showed a significant change in UH or CH amplitude (one-

tailed paired t-test, comparing measurement 1 with measurement 12).

While MANOVA tests indicate UH eye movements differed significantly

between experienced and naive subjects across the 12 measurement sessions, it should be

P
pre



noted that when grouped by day, UH amplitude differed between experienced and naive

subjects on days 1 and 2, but not on day 3.

Corrected Horizontal VOR vs. Test

Corrected Horizontal Phase vs. Test
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Figure 18: Corrected horizontal amplitude (top subplot) and phase (bottom subplot)
vs. measurement session. Across the 12 test sessions, experienced subjects showed
significantly greater horizontal amplitude than naive subjects. Error bars represent
standard error of the mean.

Eye Movements-Experienced vs. Naive Torsional Eye Movements:

Experienced and naive subjects did not exhibit significantly different UT or CT

amplitude during measurement 1. In addition, neither experienced nor naive subjects

showed a significant decrease in either corrected or uncorrected torsional amplitude

between the first and last measurement sessions. (one-tailed paired t-test). This contrasts
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with the decrease in torsional amplitude found across all 8 subjects (see "Eye

Movements- Overview" section, p.39).

Uncorrected Torsional Amplitude vs. Test
60

50

40
T VOR 30

20

10

0

20

10

Phase 0
[21

-10

-20

I I I I - I I I
0 2 4 6 8 10 12

Uncorrected Torsional Phase vs. Test

| u !I

0.96

0.80

0.64

0.48

0.32

0.16

0

Test

Figure 19: Uncorrected torsional amplitude (top subplot) and phase (bottom
subplot) vs. test session. Across the 12 measurement sessions, experienced subjects
did not significantly differ than naive subjects. Note the sawtooth pattern exists for
both groups of subjects. Error bars represent standard error of the mean.

Torsional amplitude for naive and experienced subjects exhibited a sawtooth-like

pattern. As with the light-dark analysis, regression lines were fitted to measurement

sessions within days and between days to test for significant changes. Corrected and

uncorrected torsional eye movements showed significant changes between tests 1 and 4,

but only for naive subjects (UT 1:4, p=0.01; CT 1:4, p=0.02).
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Corrected Torsional Amplitude vs. Test
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Figure 20: Corrected torsional amplitude (top subplot) and phase (bottom subplot)
vs. test session. Across the 12 measurement sessions, experienced subjects did not
significantly differ than naive subjects. Note the sawtooth pattern exists for both
groups of subjects. Error bars represent standard error of the mean.
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Figure 11: Overview of the ocular response for each of the four "groups" of
subjects. Clockwise from top left: uncorrected horizontal amplitude vs.
measurement session, corrected horizontal amplitude vs. measurement session,
corrected torsional amplitude vs. measurement session, and uncorrected torsional
amplitude vs. measurement session.

Somatosensory Bar--Overview:

As a whole, the 8 subjects did not show a significant change in somatosensory bar

gain between the first and last measurement session (two-tailed, paired t-test). In

addition, gain remained relatively constant across subjects and across measurement

sessions. At the start of testing, gain was 0.7; at the end, average gain was 0.77.
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SS Bar vs. Test
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Figure 22: An overview of the somatosensory bar gain changes between
measurements 1 and 12, for all four "groups".

Somatosensory Bar-Light vs. Dark Overall Comparisons:

The somatosensory bar showed an effect of adaptation type across the 12 test

sessions (MANOVA, p<0.01). Indeed, plots of both gain and phase for show a larger

amplitude and greater phase lag for dark-adapted subjects. However, unlike eye

responses, somatosensory gain did not show a significant difference between light and

dark subjects for test 1 (two-tailed between subjects t-test), though large initial

differences are clearly evident (see figure 23).
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When grouped by adaptation type, neither light nor dark-adapted subjects showed

a significant change in somatosensory bar gain between measurement 1 and measurement

12 (two-tailed paired t-test).
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Figure 23: Somatosensory bar gain (top subplot) and phase (bottom subplot) vs.
measurement session. Across the 12 measurement sessions, dark-adapted subjects
showed significantly greater somatosensory bar responses than light-adapted
subjects. Error bars represent standard error of the mean.
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Somatosensory Bar-Experienced vs. Naive:
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Figure 24: Somatosensory bar gain (top subplot) and phase (bottom subplot) vs.
measurement session. Across the 12 measurement sessions, experienced and naive
subjects did not show a significantly different somatosensory bar gain. Error bars
represent standard error of the mean.

As with eye movements, bar responses were collapsed across the light/dark

variable during analysis of experience. Across the 12 testing sessions, experienced

subjects did not exhibit a significantly different somatosensory response than naive

subjects (MANOVA). Additionally, for the first measurement session, gain did not

significantly differ between the two groups of subjects. Furthermore, gain did not

significantly change between tests 1 and tests 12 for either experienced or naive subjects

(two-tailed paired t-test).
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Figure 25: Significant Response Overview. Cells shaded in black indicate a
significant change,
number indicating
(p> 0.05).
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the significance value. Cells shaded in white are not significant
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Eye Movement Response Characteristics- Overview:

Inappropriate horizontal VOR was expected to decrease over the course of testing

as subjects became acclimated to roll tilt stimuli. Torsional VOR was also predicted to

decrease over the 12 measurement sessions. In this study, eye movement responses

showed a somewhat different effect: while torsional amplitude significantly decreased

between measurement 1 and measurement 12, horizontal amplitude remained unchanged.

The measured decline in torsional amplitude is not without precedent.

Anecdotally, pilots flying under instrument flight rules (IFR) learn to inhibit torsional eye

movements during roll so as to accurately fixate on instruments within the aircraft 3. In a

similar fashion, fixation on a target attached to the tilt device may have triggered a

decline in torsional eye movements. During the adaptation sessions, light-adapted

subjects were presented with a target rolling synchronously with them (in this case, the

moving arm of the tilt device). Though the target was not visible during measurement

sessions conducted in the dark, it is reasonable to assume subjects were aware the target

'3 IFR pilots rely solely on aircraft instruments-not outside references-for geographic
and spatial orientation. Torsional eye movements are undesirable during roll, as torsion
stabilizes the eye with respect to the horizon, not with respect to the aircraft.



was continuing to move with them14. Under this premise, a reduction in torsional

amplitude is the appropriate adaptive response, as the visual cues remained stationary

with respect to the tilting subject.

Horizontal amplitude was small but non-negligible during the pre-adaptation

period (measurement 1). This finding is not unexpected, as the presence of horizontal

eye movements epitomizes the ambiguity inherent to the GIF vector (Angelaki et al.

2000; Lichtenberg et al. 1982). The consistency of horizontal eye movements across the

12 measurement sessions, however, is more difficult to interpret. Previous studies have

shown reductions in horizontal gain can occur anytime between 30 minutes (Faulstich et

al. 2004; Watanabe et al. 2003) and 2 hours (Angelaki and Hess 1998; Wei and Angelaki

2001). In this investigation, neither uncorrected nor corrected horizontal eye movements

displayed a significant decrease in amplitude, despite adaptation sessions cumulatively

lasting over 2 hours.

Conceivably, the uniformity of horizontal eye movements across test sessions

may stem from limitations inherent to the statistical analysis, as opposed to a true absence

of change. When initial values are low, as they were for horizontal amplitude, statistical

reductions can prove impossible to achieve' 5. However, calculations show that floor

effects did not impede statistical reductions, as even a 10% horizontal gain reduction

(from 6.960/s to 6.270/s for UH, and from 7.51 0/s to 6.750/s for CH) constitutes a

14 To a lesser extent, this effect also holds true for dark-adapted subjects. Though they
did not experience adaptation in the light, they were exposed to the visual scene, for a
very short period, after adaptation sessions. During this time, dark-adapted subjects
likely acquired the same target to fixate on as light-adapted subjects.
15 As amplitude can never be less than zero, there is a physical limit to how much it can
be reduced. This is known statistically as a floor effect.



significant decrease in amplitude. These decreases were certainly plausible from a

physical standpoint.

This leads us to conclude three days exposure to sum of sines roll tilt does not

produce a significant horizontal VOR change. The motion paradigm was of sufficient

duration and intensity to trigger a torsional amplitude decrease, but was incapable of

stimulating a similar decline in inappropriate horizontal amplitude.

VOR adaptation is not perfect, nor is it absolute. In microgravity, where

translation is the only source of stimulation for the otoliths, torsional eye movements

remain (Young et al. 1984). Perhaps in a similar manner, inappropriate horizontal eye

movements endure after repeated roll tilt motion. Presumably these inappropriate

responses are retained for re-adaptive purposes. While small horizontal and torsional eye

movements do not substantially destabilize the image during roll tilt or spaceflight,

respectively, they contribute to image stabilization during normal motion paradigms,

which predominate.

Eye Movement Response Characteristics -Light vs. Dark:

The presence or absence of visual cues during adaptation does not appear to

influence torsional or horizontal eye movements during 0.5 Hz roll tilt motion. While

MANOVA analyses indicate light and dark-adapted subjects differ significantly in UH,

CH, UT, and CT eye responses post-adaptation, it is relevant to note these differences

existed even during the first measurement session 16. This suggests that an irregular

partitioning of subjects -not necessarily the adaptation variable itself--contributed to

16 Theoretically, subjects should show similar responses during measurement 1,
regardless of grouping variable, as adaptation has yet to occur.



overall eye response differences between light and dark-subjects. Indeed, if visual cues

do have an effect on eye responses, differences between light and dark-adapted subjects

recorded during measurement I should change with time. Tellingly, these differences

remained constant across the 12 measurement sessions. Neither light nor dark-adapted

subjects exhibited a significant change in UH, CH, UT, or CT amplitude between the

start and end of testing

Arguably, the presence of visual cues during adaptation may not alter the VOR

response. This assertion, however, contradicts a number of studies that have found an

effect of visual cues on VOR gain (Angelaki and Hess 1998; Faulstich et al. 2004; Jones

1977; Paige and Sargent 1991; Watanabe et al. 2003; Wei and Angelaki 2001).

What then could have led to such irreconcilable findings? As noted previously,

the select group of subjects who participated in adaptation in the light differed from their

dark-adapted peers even before the start of testing. Logically, these subjects may also

have differed from the normal population in their ability to adapt to roll tilt stimuli.

Therefore, conclusions based on the presence or absence of visual cues must be

interpreted with these a priori differences in mind.

Eye Movement Response Characteristics-Light vs. Dark Torsion

MANOVA analyses indicate light-adapted subjects exhibited smaller torsional

eye movements across 12 measurement sessions than their dark-adapted peers. However,

because both groups of subjects differed in their torsional responses at the start of testing,

and because neither group showed a significant change in torsional amplitude between

measurements 1 and 12, discussion of statistical differences must be interpreted with



caution. Presumably, innate differences between groups, not visual cues, were

responsible for the torsion disparities between light and dark-adapted subjects.

Eye Movement Response Characteristics -Light vs. Dark Sawtooth Response:

Torsional amplitude showed a significant decrease between measurements 1 and

4, and a significant increase between measurements 4 and 5 for dark-adapted subjects.

However, after measurement 5, both uncorrected and corrected torsional eye movements

remained constant for the remainder of the experiment.

The reduction of torsional eye movements during the first day of testing could

exemplify a type of non-associative learning known as habituation, which "yields

reduced responses to sensory stimuli following repeated exposure to the stimuli"

(Merfeld et al. 2007). VOR habituation occurs in a number of species, including

goldfish (Anastasio 2001) and humans (Ahn 2003).

Conceivably, this reduction could also be classified as adaptation. Adaptation,

unlike habituation, requires learning to be associative. During the first day of testing,

dark-adapted subjects may have associated afferent canal and otolith cues with the roll tilt

motion. This may have triggered an adaptive torsional response, similar to the reduced

vertical response to cross-coupled head turns seen during whole-body centrifugation

(Young et al. 2003). Unfortunately, due to limitations inherent to the methodology, this

study cannot definitively state what role adaptation or habituation played in influencing

the VOR response characteristics.



Eye Movement Response Characteristics-Nai've vs. Experienced:

Experience, as categorized by the motion questionnaire, was predicted to

negatively correlate with uncorrected horizontal amplitude. Instead, the reverse held

true: during the first two days of testing, UH amplitude for experienced subjects was

significantly greater than UH amplitude for naive subjects. This finding suggests

experience may not actually improve the horizontal VOR response.

This explanation contradicts past research. Several studies have found a favorable

effect of experience on VOR response characteristics (Ahn 2003; Lee et al. 2004).

Conceivably, the categorization of naive and experienced subjects may have been

inadequate. Perhaps subjects classified as nalve had experience with atypical motion not

identified by the motion questionnaire; that, in fact, "naive" subjects had greater

experience with motion than "experienced" subjects. However, given the disparity in

pilot experience between "naive" and "experienced" subjects, and the strong correlation

between flight training and VOR enhancement, it is unlikely that the classification system

was inappropriate.

Furthermore, as "nalve" subjects gained experience with the motion paradigm,

inappropriate UH eye movements increased in amplitude. This finding cannot be

attributed to an inappropriate classification system. Therefore, it appears that the roll tilt

stimuli used herein to yield adaptation did not improve the horizontal VOR.

Eye Movement Response Characteristics-Naive vs. Experienced Sawtooth Response:

Naive subjects expressed a "sawtooth" pattern of torsional amplitude change

between measurements 1 and 4, and between measurements 4 and 5. This pattern of



amplitude change is similar to what is seen in dark-adapted subjects, and provides further

evidence for the theory that torsional eye responses either habituate or adapt during the

first day of testing for subjects without experimental advantages .

Across 12 measurement sessions, naive and experienced subjects showed similar

torsion responses. This indicates experience, as defined in this study, did not

significantly improve the torsional response to motion.

Somatosensory Bar Overview:

Previous studies have shown that humans underestimate tilt at frequencies above

0.05 Hz (Park et al. 2006). Thus, the average somatosensory bar gain for the first

measurement session (0.70), though less than unity, does not appreciably differ from

published values. This suggests improvements in somatosensory gain, limited as they

were by statistical and physical ceilings, were unlikely. Indeed, during the last

measurement session, gain had increased only slightly (from 0.70 to 0.77).

Somatosensory Bar Characteristics-Light vs. Dark:

Human motion perception heavily depends on visual cues, particularly at low

frequencies ((Dichgans et al. 1972; Zupan and Merfeld 2003), as cited by (Merfeld et al.

2005a)). The availability of both visual and vestibular cues during adaptation was thus

predicted to improve spatial perception; light-adapted subjects were expected to exhibit

gain values closer to unity than dark-adapted subjects.

"7 Experienced subjects have the advantage of experience, and light-adapted subjects have
the advantage of visual cues.

62



While visual cues did not hinder motion perception per se (gain values for light-

adapted subjects remained constant between measurements 1 and measurements 12), it is

surprising that visual cues did not serve to improve spatial perception. Indeed, across all

12 measurement sessions, subjects who experienced adaptation in the dark showed

somatosensory bar gain values closer to unity than subjects who experienced adaptation

in the light. Notably, somatosensory bar gain did not differ for light and dark-adapted

subjects during measurement 1, suggesting that gain differences for subsequent

measurement sessions were due to the visual cue variable, not to group differences

established prior to testing.

Conceivably, dark adapted subjects may be more sensitive to motion in the dark

than their light-adapted peers. As mentioned previously, humans typically base their

perception of motion on visual signals ((Dichgans et al. 1972; Zupan and Merfeld 2003),

as cited by(Merfeld et al. 2005a)). With visual cues absent, dark-adapted subjects were

forced to rely entirely on vestibular, proprioceptive, and kinesthetic cues for spatial

orientation. This increased reliance on non-visual cues may have carried over to the

measurement sessions, which were also conducted in the dark. Such carryover could

explain the larger somatosensory bar gain values exhibited by dark-adapted subjects.

Somatosensory Bar Characteristics-Experienced vs. Na've:

Spatial perception, as measured by somatosensory bar response, was largely

unaffected by experience level. Experienced and naive subjects showed similar

somatosensory bar gain across the 12 measurement sessions. Furthermore,



somatosensory bar gain did not differ between measurement 1 and measurement 12 for

either experienced or naive subjects.

This finding has two potential explanations: either (1) naive and experienced

subjects do not differ in their perception of motion, or (2) the measurement of spatial

perception used in this experiment was not sensitive enough to resolve the prevailing

differences. The former seems unlikely, as a number of studies have shown an effect of

experience on motion perception (Bringoux et al. 2000; Clement et al. 2001; Woodard et

al. 1987). Neither experienced nor naive subjects identified the 0.5 Hz somatosensory

task as particularly difficult, suggesting instead that a ceiling effect may have hindered

potentially significant differences from being identified. This assertion is consistent with

the uniform somatosensory bar responses described previously.

Sources of error:

Noise considerably reduced the quality of the right eye torsion signal, forcing us

to rely entirely on left eye responses for our analysis. Unfortunately, torsion

measurements of the left eye were also impaired by noise. This had a two-fold effect: it

reduced the reliability of our torsion measurements, and hindered our ability to fit the

data. Fortunately, the noise in the left eye torsion signal was relatively small, and limited

to only a few measurement sessions. Consequently, our method of fitting (and thus

characterizing) movement data for the left eye should not have been significantly

affected.



Future Studies:

To improve statistical power, future investigations must examine a larger number

of subjects. Relatively small sample sizes, such as the one described here, typically

suffer from large within-group variability (Aron and Aron 1999). The two dark

experienced subjects, for example, expressed uncorrected horizontal amplitude values

during measurement 12 that ranged from 3.3O/s to 11.00/s. This within-group variability

made identifying between-group differences difficult, and may have adversely influenced

the statistical tests conducted in this study.

A stricter criterion for recruiting subjects will help ensure "naive" subjects truly

have less experience with roll tilt motion than "experienced" subjects. Although

recruiting naive subjects in such a manner is logistically taxing, it may yield improved

scientific benefits.

Lastly, the results that were significant apply only to monocular responses at 0.5

Hz. Compensatory eye movements are strongly tied to frequency (Paige and Tomko

1991); as such, future studies must confirm these results hold true at both higher and

lower frequencies. Furthermore, future research should analyze the effect of motion

experience on binocular eye responses. While it's unlikely that a left/right discrepancy

exists with regards to horizontal or torsional VOR, the absence of such a disparity must

be verified experimentally.

Conclusions:

Previous studies indicate that humans and monkeys respond to motion in a

fundamentally different manner. Monkey VOR appears governed by an internal model



(Angelaki et al. 1999; Angelaki et al. 2001), Conversely, human VOR is presumably

defined by frequency segregation (Merfeld et al. 2005a;b). Some researchers suspect

these VOR differences are due to disparities in motion experience. The results found

herein, however, do not support this hypothesis.

In this study, experience was operationalized two ways: (1) as between group

differences between naive and experienced subjects, and (2) as within subject differences

between measurement 1 and measurement 12. The first method categorized subjects as

either "experienced" or "naive" based on their response to a motion questionnaire. Level

of experience was positively correlated with UH eye amplitude, a result inconsistent with

past research. Nevertheless, the second method of operationalizing experience also

produced results that suggest experience does not improve horizontal VOR responses8.

As subjects acquired experience with the motion paradigm, torsional amplitude declined,

but horizontal amplitude remained stable. The measured decline in torsional amplitude

indicates the motion experience was of sufficient duration and intensity to yield a

significant VOR change. Therefore, the absence of a horizontal amplitude reduction

suggests motion experience, as provided by the adaptation motion paradigm, does not

improve the horizontal VOR response to motion.

If experience does not affect horizontal VOR, then measured horizontal VOR

differences between monkeys and humans cannot be attributed to variations in motion

experience. Of course, motion experience acquired during this investigation may not

exemplify the background motion differences between primates and human. Subjects at

the start and end of testing differ by three days of motion testing; primates and humans

8 This method of operationalizing experience is probably more appropriate than the
classification system, as it does not rely on subjective measures.



differ by years of testing. Thus, these findings may not generalize to human/primate

VOR discrepancies. However, until further research proves otherwise, explicit testing of

both species must be performed for the vestibulo-ocular reflex to be accurately and fully

understood.



Appendix A--Clinical Testing Instructions

The following were the explicit instructions given to each subject prior to clinical testing.
The instructions were taken verbatim from the Jenks Vestibular Diagnostic Laboratory,
the location where clinical testing took place.

1. Dynamic Posture Testing: In this test, you will be asked to stand on a platform
surrounded by a box providing a visual field. During testing the platform and/or the
visual field may move. Your responses to these movements will be measured. Small
disk electrodes may be placed on your legs to measure the electric signals emitted by
your leg muscles as they contract. The forces you exert on the platform will be measured
by pressure sensors in the platform. Your body movements will be directly measured by
belts attached to your hips and shoulders.

2. Rotation Testing: In this test, identical to the clinical examination performed on
patients, you will be seated in a rotation chair which will swivel from side to side like an
office chair. Some parts of the test will be done in the dark. During other parts you will
look at a moving or stationary lighted pattern. Small electrodes placed on the skin around
your eyes will record your eye movements during the test

3. Electronystagmography (ENG) Testing: This test, which is identical to a widely
used clinical examination, has several parts. Small electrodes placed on the skin around
your eyes will record your eye movements during each of the following tests. We will
test your ability to follow a moving target with your eyes and measure your eye
movements while your head and body are placed in different positions. In the caloric test
a small balloon will be placed in your ear canal and your eye movements will be
monitored while warm or cool water is circulated through the balloon. In the Hallpike
test you will be moved rapidly from a sitting position to one in which you are reclining
with your head hanging slightly over the edge of the examination table, while your eye
movements are measured.



Appendix B--Motion Questionnaire

1. Have you ever flown in an aircraft? Y N (Please circle your answer)

la. If yes, please estimate the number of times: (Please circle your answer )

In your lifetime? 0 times 1-10 times 11-50 times > 51 times

In the last month? 0 times 1-2 times 3-5 times 2 5 times
In the last week? 0 times 1 times 2 times > 2 times

lb. If yes, what type(s) of aircraft? (Please place a check next to all that apply)

Commercial Jetliner GA Aircraft (Cessna, Piper, etc.)
Helicopter Aerobatic Aircraft
Glider Other

2. Have you ever been on board a boat? Y N (Please circle your answer)

2a. If yes, please estimate the number of times: (Please circle your answer )

In your lifetime? 0 times 1-10 times 11-50 times 2 51 times

In the last month? 0 times 1-2 times 3-5 times > 5 times
In the last week? 0 times I times 2 times _ 2 times

2b. If yes, what type(s) of boats? (Please place a check next to all that apply)

Sailboat Motor Boat
Yacht Row Boat
Cruise Ship

3. Have you ever ridden an amusement park ride? Y N (Please circle your answer)

3a If yes, please estimate the number of times: (Please circle your answer )

In your lifetime? 0 times 1-10 times 11-50 times > 51 times

In the last month? 0 times 1-2 times 3-5 times 2 5 times
In the last week? 0 times 1 times 2 times _ 2 times

3b. If yes, what type(s) of rides? (Please place a check next to all that apply)

Roller Coaster Motion Simulator
Merry Go Round Other Rotating Rides

4. Have you ever ridden an active, motion-based simulators? Y N (Please circle your answer)

4a. If yes, please estimate the number of times: (Please circle your answer )

[In your lifetime? 0 times 1-10 times 11-50 times > 51 times

In the last month? 0 times 1-2 times 3-5 times _ 5 times
In the last week? 0 times 1 times 2 times > 2 times

5. Have you ever ridden in a high performance sports car? Y N (Please circle your answer)

5a. If yes, please estimate the number of times: (Please circle your answer )

In your lifetime? 0 times 1-10 times 11-50 times > 51 times
In the last month? 0 times 1-2 times 3-5 times > 5 times



In the last week? 0 times 1 times 2 times a 2 times

6. In the space below, please describe any other types of atypical motion you have experienced,
especially in the last year. (Enter "None", if no additional motion experience to report.)



Appendix C

Four programs, created in Matlab, were used to analyze the data. The first program,
"VNAS", gives the user the ability to manually delete saccades. Because of its length
and number of subroutines, as well as its successful use in other experiments (it has been
used by this lab for over 10 years), it will not be described in this thesis.
The second program, "lvb_daq_vog" (p. 70) allows the user to graphically display the
three primary variables of interest-tilt device position, somatosensory bar position, and
desaccaded eye velocity -and generates the necessary values used to temporally sync the
three variables. In addition, "lvb_daq_vog" calculates the somatosensory bar offset
based on the 0.1 second time period prior to button push. The third program ("SS Bar
Fit", p. 78) fits either the somatosensory bar or slow phase velocity to a sinusoid as
described in the results section, and from this calculates gain and relative phase. The
fourth program ("Standard Error", p. 84) employed in this study calculates the standard
error for gain and phase. (Several other programs were employed in automating the
analysis, but are not described here, as they are basic derivatives of the four programs
listed.) The last two programs in this study were used to calculate day and group
amplitude and phase, for eye movements ("Eye Movement Response Plots", p. 87) and
somatosensory bar ("Somatosensory Bar Plots", p. 140), respectively. Sections in the
program denoted by a "%" indicate a programming comment.



lvb_daq_vog
The first portion of "lvb_daq_vog" program is based on a program originally

written by Lionel Zupan. It converts Ivb data (tilt motion and somatosensory bar) into a
format accessible by Matlab. The primary goal of this program is to identify the time
points in the VOG data file where the tilt device motion first reaches steady state. By
calculating the trigger and the motion start in the .1vb file, and knowing the trigger start in
the vog file, one can identify the motion start in the vog file. Steady state begins 6
seconds after motion start for 0.5 Hz data, and 4 seconds after motion start for 1.0 Hz
data.

Additionally, the program allows the user to either manually or automatically
calculate the somatosensory bar bias. The time points where the right button is pressed
(indiciating the subject had set the bar to his or her perception of earth horizontal) were
used to identify the actual angle of the somatosensory bar. From these values, an average
bias was calculated

clear all; %ckears all variables

%Selects the tilt motion files (.lvb files) and then opens and reads the DAQparams files

[filename,pathname]=uigetfile(,'Choose an LVB data file');
l=length(filename);filepar=[filename( 1 :(1-16)),'_DAQparams.txt';
fid=fopen(lpathname,filepar I);
filebit=[filename( 1:(1-16)),'_DigitalInData.bit']I;

nchannel=0;
category=0;
while 1

tline = fgetl(fid);
if (category==1)& strncmp(tline, '', 1), category =2;end;
if strncmp(tline, 'LAcquisition]', 13) category=1; end;
indq=find(tline=="');
if length(indq)>1,
tline(indq(1))="".;tline(indq(length(indq)))='"'";

end;

if (category== 1) & strncmp(tline, 'Channel', 7)

nchannel=nchannel+ 1;
ChannelN=tline(1:8);
indq2=find(tline=="");
string = tline((indq2(1)+1):(indq2(2)- 1));
indc = find(string==',');indc=[indc,length(string)+ 11;
dindc=diff(indc);
eval(IChannelN,'_Nr=string( 1 :(indc(1)-1));'1);
if dindc( 1)> 1 ,eval([ChannelN,'_Lbl=string((indc(1)+ 1):(indc(2)- 1));']),



else eval([ChannelN,'_Lbl=[]J;']);end;

if dindc(2)>1 ,eval([ChannelN,'_Sca=string((indc(2)+1):(indc(3)-1));']),
else eval([ChannelN,'_Sca="l";']);end;

if dindc(3)>1 ,eval([ChannelN,'_Off=string((indc(3)+1):(indc(4)-1));'J),
else eval([ChannelN,'_Off="O";']);end;

if dindc(4)>1 ,eval([ChannelN,'_Uni=string((indc(4)+ 1):length(string));']I),
else eval([ChannelN,'_Uni= [];']);end;

end;

if (category== 1) & strncmp(tline, 'SampleFrequency', 15),eval([tline,';'J),end;
%Determine sample frequency

if (category==1) & strncmp(tline, 'ScaleFactor', 11),eval([tline,';'J),end;

%Determine scale factor that converts A/D counts to volts

if -ischar(tline), break, end
end

fclose(fid);

% Open and read the *.bit file

fidl=fopen([pathname,filebitl,'r','ieee-be');
[databit,count]=fread(fid 1 ,'uint8');
fclose(fidl);

for i=0:7

eval(['Digitalln',int2str(i),'=bitget(databit,',int2str(i+1),');'J)
subplot(8,1,i+1), eval(['plot(Digitalln',int2str(i),')'J); ylim([0 2]);

end

% Open and read *.lvb (tilt motion) file

fid2=fopen([pathname,filenamel,'r','ieee-be');
[data_open,count]=fread(fid2,'short');
fclose(fid2);

%Convert data



for i=1:nchannel % This for-loop converts data to matlab array containing A-to-D counts
eval(['data_b(:,',int2str(i),')=data_open(',int2str(i),':nchannel:count);']);

end

% In figure 1, plot data in physical units as a function of time (in seconds)

figure(1),clf;
[a,b]=size(data_b);
t = (0:1 :(a- 1))/SampleFrequency; %Calculate time vector
I = ones([a,1l);

for i=1:nchannel
eval(['Channel_Nr=Channel',char(64+i),'_Nr;']);
eval(['Channel_Lbl=Channel',char(64+i),'_Lbl;' );
eval(['Channel_Sca=eval(Channel',char(64+i),'_Sca);'J);
eval(['Channel_Off=eval(Channel',char(64+i),'_Off);']);
eval(['Channel_Uni=Channel',char(64+i),'_Uni;']);

subplot(nchannel, 1,i), plot(t,((data_b(:,i)/ScaleFactor)-Channel_Off*I)*ChannelSca);
ylabel(Channel_Uni);
title(['Channel',char(64+i),': ',Channel_Lbl,' I',Channel_Nr,' ']);
hold on

subplot(3,1,1), plot(t,(Digitalln5*20),'r',t,(Digitalln5*-20),'r')

subplot(3,1,3), plot(t,(Digitalln7*100),'k',t,(Digitalln7*-
100),'k',t,(Digitalln5* 100),'r',t,(DigitalIn5*-100),'r')

end

%Selects the somatosensory offset based on right button pushes

offset=input('Do you want to manually select the offsets [Y/NJ: ','s');

if offset=='N' %Automatically identifies when the button was pushed, and calculates the
%SS bar offset from these time points

[s7,s7aj=size(Digitalln7);
Ival,indl_b j=min(abs(Digitalln7-0));
indl_b;
Ival,ind f b-l=min(abs(Digitalln7(indl_b:s7)-1));
ind f_b=indlf_b+indl_b-1;
[val,ind2_bl=min(abs(Digitalln7(indlfb:s7)-0));
ind2_b=ind2_b+indlf_b-1;



[val,ind2f_b]=min(abs(Digitalln7(ind2_b:s7)- 1));
ind2f_b=ind2f_b+ind2_b-1;
[val,ind3_b]=min(abs(Digitalln7(ind2f_b:s7)-0));
ind3_b=ind3_b+ind2f b- 1;
[val,ind3f-b]=min(abs(Digitalln7(ind3_b:s7)- 1));
ind3f_b=ind3f_b+ind3_b-1;
[val,ind4_b]=min(abs(Digitalln7(ind3f_b: s7)-0));
ind4_b=ind4_b+ind3f_b-1;
[val,ind4f_b]=min(abs(Digitalln7(ind4_b:s7)-1));
ind4f_b=ind4f_b+ind4_b-1;
[val,ind5_b]=min(abs(Digitalln7(ind4f_b:s7)-0));
ind5_b=ind5_b+ind4f_b-1;
[val,ind5fb]=min(abs(Digitalln7(ind5_b: s7)- 1));
ind5f_b=ind5f_b+ind5_b- 1;
Ival,ind6_b]=min(abs(DigitalIn7(ind5f_b:s7)-0));
ind6_b=ind6_b+ind5f_b-1;
[val,ind6f_b]=min(abs(Digitalln7(ind6_b:s7)-1));
ind6f_b=ind6f_b+ind6_b-1;

q=((data_b(:,3)/ScaleFactor)-Channel_Off*I)*ChannelSca;

SSaverage=((mean(q((ind l_b- 12):ind I_b)))+(mean(q((ind2 b-
12): ind2_b)))+(mean(q((ind3_b- 12):ind3_b)))+(mean(q((ind4_b-
12):ind4_b)))+(mean(q((ind5_b- 12):ind5_b)))+(mean(q((ind6_b- 12):ind6_b))))/6;

else

'Select the starting points for the 6 offset button pushes' %Allows the user to manually
%select the timepoints used to calculate the offset

pause
[xl]==ginput(i);
xl =round(SampleFrequency*x 1);
q=((data_b(:,3)/ScaleFactor)-Channel_Off*I)*Channel_Sca;
SS1=mean(q((xl(1 ,1)-12):xl(1,1)));

pause
[x2]=ginput(1);
x2=round(SampleFrequency*x2);
q=((data_b(:,3)/ScaleFactor)-Channel_Off*I)*Channel_Sca;
SS2=mean(q((x2(1,1)-12):x2( 1,1)));

pause
[x3]=ginput(1);
x3=round(SampleFrequency*x3);
q=((data_b(:,3)/ScaleFactor)-Channel_Off*I)*Channel_Sca;



SS3=mean(q((x3(1,1)-12):x3(1,1)));

pause
[x4]=ginput(1);
x4=round(SampleFrequency*x4);
q=((data_b(:,3)/ScaleFactor)-Channel_Off*I)*Channel_Sca;
SS4=mean(q((x4(1,1)-12):x4(1,1)));

pause
[x5 ]=ginput(1);
x5=round(SampleFrequency*x5);
q=((data_b(:,3)/ScaleFactor)-Channel_Off*I)*Channel_Sca;4
SS5=mean(q((x5( 1,1)-12):x5( 1,1)));

pause
1x61=ginput(1);
x6=round(SampleFrequency*x6);
q=((data_b(:,3)/ScaleFactor)-Channel_Off*I)*Channel_Sca;
SS6=mean(q((x6(1,1)-12):x6(1,1)));

SSaverage=(SS 1 +SS2+SS3+SS4+SS5+SS6)/6;

end

%Displays the trigger start in points, There were four triggers in each measurement
%session that helped define the starting points for each of the four motions

trigger=input('Do you want to manually select the triggers [Y/N]: ','s');

if trigger=='N'

1s5,s7a =size(Digitalln5);
[val,indl_tl]=min(abs(Digitalln5-1));
ind l_t;

Ival,ind2_tl=min(abs(Digitalln5(indl_t+125:s5)- 1));
ind2_t=ind2_t+indl_t+125-1;
ind2_t;

[val,ind3_t]=min(abs(Digitalln5(ind2_t+ 125:s5)-1));
ind3_t=ind3_t+ind2_t+125-1;
ind3_t;

[val,ind4_t]=min(abs(Digitalln5(ind3_t+ 125:s5)-1));
ind4_t=ind4_t+ind3_t+125-1;
ind4_t;



else

'Select the starting points for the 4 triggers'

[s5,s7a]=size(Digitalln5);

[tl I=ginput(1);
[t2 ]=ginput(1);
[t3]=ginput(1);
[t4]=ginput(1);

tl=round(SampleFrequency*tl);

[val,ind l_t]=min(abs(Digitalln5(tl :tl+500)-1));
indl_t=indl_t(1)+tl(1)-1;

t2=round(SampleFrequency*t2);
[val,ind2_t]=min(abs(Digitalln5(t2:t2+500)- 1));
ind2_t=ind2_t(1)+t2(1)-1;

t3=round(SampleFrequency*t3);
[val,ind3_t]=min(abs(Digitalln5(t3 :t3+500)- 1));
ind3_t=ind3_t(1)+t3(1)-1;

t4=round(SampleFrequency*t4);
[val,ind4_t =min(abs(Digitalln5(t4:t4+500)- 1));
ind4_t=ind4_t( 1)+t4( 1)-1;

end

%DAQ Motion Finder, automatically identifies the start of motion for each of the four
movements

r=(((data_b(:,1)/ScaleFactor)-Channel_Off*I)*ChannelSca);
steady=mean(r(ind l_t- 155:ind l_t- 145));
for i= 100:130;

if r(ind lt-i)-steady>=0.02
indl_m=indl_t-i;

end

end

steady=mean(r(ind2_t- 155: ind2_t- 145));
for i=100: 130;



if r(ind2_t-i)-steady>=0.02
ind2_m=ind2_t-i;

end

end

steady=mean(r(ind3_t-155:ind3_t-145));
for i= 100:130;

if r(ind3_t-i)-steady>=0.02
ind3_m=ind3_t-i;

end

end

steady=mean(r(ind4_t-155:ind4_t-145));
for i= 100:130;

if r(ind4_t-i)-steady>=0.02
ind4_m=ind4_t-i;

end
end

%Selects the VOG data file, then identifies the temporal location where the trigger
occured
[fnameVOG,pnameVOG] = uigetfile('*.txt','SELECT VOG FILE (_cor.txt)');
[header,M]=hdrload([pnameVOG fnameVOG]);

t=M(:, 1);
Analog 1l=M(:,28);

for i=1:size(t)-1
if Analog 1 (i+1)-Analog 1 (i)>-4.7;

break
end

end
indl_v=i+1;

for i=indl_v+61:size(t)-1
if Analog1(i+1)-Analogl(i)>=4.7;

break
end

end
ind2_v=i+1;

for i=ind2_v+61:size(t)-1
if Analog 1 (i+ 1)-Analog 1 (i)>=4.7;

break



end
end
ind3_v=i+l;

for i=ind3_v+61:size(t)-1
if Analog 1 (i+1)-Analog 1 (i)>=4.7;

break
end

end
ind4_v=i+1;

%Verifies that the motion index points are correct
if (r(ind l_m)-r(ind l_m-1)>=0.0245) & (r(ind2_m)-r(ind2_m- 1)>=0.0245) & (r(ind3_m)-
r(ind3_m- 1)>=0.0245) & (r(ind4_m)-r(ind4_m- 1)>=0.0245)

fprintf('Motion OK\n')

else

fprintf('Motion NOT OK\n')

end

%Calculates the steady state motion start time
p5aSS=((indl_v/60)-((ind l_t-ind l_m)/120))+6;
opOaSS=((ind2_v/60)-((ind2_t-ind2_m)/120))+4;
p5bSS=((ind3_v/60)-((ind3_t-ind3_m)/ 120))+6;
opObSS=((ind4_v/60)-((ind4_t-ind4_m)/ 120))+4;

fprintf('\nOffset: %.4f degrees\n0.5 Hz DAQ Trigger: %.Of DAQ Motion: %.Of VOG
Trigger: %.Of VOG Steady State Start: %.4fs\nl.0 Hz DAQ Trigger: %.Of DAQ
Motion: %.Of VOG Trigger: %.Of VOG Steady State Start: %.4fs\nO.5 Hz DAQ
Trigger: %.Of DAQ Motion: %.Of VOG Trigger: %.Of VOG Steady State Start:
%.4fs\nl.0 Hz DAQ Trigger: %.Of DAQ Motion: %.Of VOG Trigger: %.Of VOG
Steady State Start:
%.4fs\n',SSaverage,indl_t,indl_m,indl_v,p5aSS,ind2_t,ind2_m,ind2_v,opOaSS,ind3_t,in
d3_m,ind3_v,p5bSS,ind4_t,ind4_m,ind4_v,opObSS)



SS Bar Fit

The SS Bar Fit program fit the somatosensory bar and device position to a
sinusoid, and from these fits, calculated gain and phase. If a portion of the fit did not
accurately characterize the data, the user could remove this cycle from the gain and phase
calculation.

A variation of this program was used to fit the slow phase velocity for horizontal
and torsional eye movements. This program also had the additional task of converting
the tilt device position signal, as recorded by in the .lvb file, into a measure of tilt
velocity.

% Manually read the labview files
cd /Volumes/Untitled/Motion_Experience/RCT74_D2/RCT74_D2_Motion/
%cd H:/Motion_Experience/RPO_D1/SZ80_Dl_Motion/
[filename,pathname]=uigetfile({'*.lvb'},'Choose an LVB data file');
%questions
offset=input('What is the somatosensory bar offset value?');
t_daq_start=input('What is the DAQ motion start time (pts)?');

l=Iength(filename);filepar=[filename(1 :(1-16)),'_DAQparams.txt'];
fid=fopen([pathname,filepar]);
if (fid<O)

error(['error opening file ',Ipathname,filepar]]);
end
filebit=[filename(l:(1-16)),'_DigitallnData.bit'];

nchannel=0;
category=0;
while 1

tline = fgetl(fid);
if (category==1)& strncmp(tline, '[', 1), category =2;end;
if strncmp(tline, '[Acquisition]', 13) category=1; end;
indq=find(tline=="");
if length(indq)>l,

tline(indq(1))="";tline(indq(length(indq)))=""; %Replace quotations (") with
apostrophes (') for MATLAB

end;
if (category==1) & strncmp(tline, 'Channel', 7)

nchannel=nchannel+1;
ChannelN=tline(1:8);
indq2=find(tline=="");
string = tline((indq2( 1)+1):(indq2(2)- 1));
indc = find(string==',');indc=[indc,length(string)+ 1 I;
dindc=diff(indc);



eval([ChannelN,'_Nr=string( 1:(indc(1)-1));']);
if dindc( )>1 ,eval([ChannelN,'_Lbl=string((indc(1)+1 ): (indc(2)- 1));'),
else eval([ChannelN,'_Lbl=[] ;']);end;
if dindc(2)> 1,eval([ChannelN,'_Sca=string((indc(2)+ 1): (indc(3)-1));'),
else eval([ChannelN,'_Sca="1 ";']);end;
if dindc(3)>1 ,eval([ChannelN,'_Off=string((indc(3)+ 1): (indc(4)- 1));']),
else eval([ChannelN,'_Off="O";']);end;
if dindc(4)> 1,eval([ChannelN,'_Uni=string((indc(4)+ 1):length(string));']),
else eval([ChannelN,'_Uni=I [;']);end;

end;
if (category==l) & strncmp(tline, 'SampleFrequency', 15),eval(ltline,';'l),end;

%Determine sample frequency
if (category==1) & strncmp(tline, 'ScaleFactor', 11),eval(ltline,';'I),end;

%Determine scale factor that converts A/D counts to volts
if ~ischar(tline), break, end

end
fclose(fid);

clear data_bit dataopen data_b SSbar var
% Open and read the *.bit file
fid 1 =fopen([pathname,filebitl,'r','ieee-be');
[data_bit,count]=fread(fidl,'uint8');
fclose(fidl);

for i=0:7
eval(['Digitalln',int2str(i),'=bitget(data_bit,',int2str(i+1),');'])

end

% Open and read *.lvb file
fid2=fopen([pathname,filename],'r','ieee-be');
[data_open,count]=fread(fid2,'short');
fclose(fid2);

%Convert data
for i=l:nchannel % This for-loop converts data to matlab array containing A-to-D

counts
eval(['data_b(:,',int2str(i),')=data_open(',int2str(i),':nchannel:count);' );

end

%Calculate time vector
[a,b l=size(data_b);
t = (0: 1:(a- 1))/SampleFrequency;

I = ones([a,11);
for i= 1:nchannel

eval(['Channel_Nr=Channel',char(64+i),'_Nr;' I);



eval(['Channel_Lbl=Channel',char(64+i),'_Lbl;']);
eval(['Channel_Sca=eval(Channel',char(64+i),'_Sca);']);
eval(['Channel_Off=eval(Channel',char(64+i),'_Off);']);
eval(['Channel_Uni=Channel',char(64+i),'_Uni;']);

end

%load /Volumes/Untitled/Motion_Experience/RPO81 _D/L_Testl_0.5 Hz.mat
cd /Volumes/Untitled/Analysis_Programs/endallbeall
%cd H:/Analysis_Programs/endallbeall

%t_VOG_start=input('What is the VOG state motion start time (pts)?');
%shift=(t_daq_start/120)-(t_VOG_start/60);

SSBar=(((data_b(:,3)/3125)-1 .3248*I)*76.6834)-offset;
Device_Position=((data_b(:,1)/3125)-0*I)*3.018;

var(:,1)=SSBar(:,l1);
var(:,2)=Device_Position(:, 1);

for j = 1:2 % j: index of varibles
for i = 1:10 % i: index of cycles

cycle_begin = (t_daq_start/120) +6 + (i-1)/0.5;
cycle_end = (t_daq_start/120) +6 + i/0.5;
t_index(i,:) = find( t >= cycle_begin & t < cycle_end);

a = var(t_index(i,:),j);
samp = (t(t_index(i,:))*0.5)';
e = ones(size(samp));

[y_complex(i,j),bias(i,j),amp,phase] = slowdft3(a,samp,e,1);
fit_curve(:,i,j) = amp*cos(2*pi*samp+phase/180*pi) + bias(i,j);

%slowdft3 is a subroutine that computes a discrete fourier transform of the data
end

end

figure(3)
subplot(2,1,1)
for i = 1:10 % i: index of cycles

plot(t(t_index(i,:)), var(t_index(i,:),l),'c');hold on; % SSBar
Position

end
subplot(2,1,2)
for i = 1:10 % i: index of cycles

plot(t(t_index(i,:)), var(t_index(i,:),2),'c');hold on; % Device
Position



end

pause

figure(3)
subplot(2,1,1)
for i = 1:10 % i: index of cycles

plot(t(t_index(i,:)), fit_curve(:,i, 1),'r');hold on;
end
subplot(2,1,2)
for i = 1:10 % i: index of cycles

plot(t(t_index(i,:)), fitcurve(:,i,2),'r');hold on;
end

% pick out bad cycles
num_cycl= 10;
delet_mark = zeros(num_cycl,1);
mouse_button = 1;
while (mouse_button -= 2)

[x, y, mouse_buttonl = ginput(1);
i = ceil((x - (t_daq_start/120)+ 6) * 0.5);
if (mouse_button == 1)

delet_mark(i) = 1;
subplot(2,1,1); hold on, plot(t(t_index(i,:)), fit_curve(:,i,1),'b');
subplot(2,1,2); hold on, plot(t(t_index(i,:)), fit_curve(:,i,2),'b');

end
if (mouse_button == 3)

delet_mark(i) = 0;
subplot(2,1,1); hold on; plot(t(t_index(i,:)), fitcurve(:,i,1),'r');
subplot(2,1,2); hold on, plot(t(t_index(i,:)), fit_curve(:,i,2),'r');

end
end

% transfer good cycle values to new variables,
%clear y_complex_good bias_good;
j = 1;
for i = 1:10

if (delet_mark(i)==O) % 1: deleted, 0: not deleted
y_complex_good(j,:) = ycomplex(i,:);
bias_good(j,:) = bias(i,:);
j =j + 1;

end
end

%clear y_complex_good_ave;



for j = 1:2
y_complex_good_ave(j) = mean(y_complex_good(:,j));
bias_good_ave() = mean(bias_good(:,j));

end

SS_gain=abs(y_complex_good_ave(1)/y_complexgoodave(2));
SS_amp=abs(y_complex_good_ave(1));
SS_phase= 180/pi *angle(y_complex_good_ave( 1 )/ycomplexgoodave(2));
if SS_phase<0, SS_phase= SS_phase+360; end;
%SS_phase=SS_phase- 180;

fprintf('The SSBar amplitude is %7.4f. \n',SS_amp)
fprintf('The SSbar gain is %7.4f. \n',SS_gain)
fprintf('The SSBar phase is %6.2f degrees.\n',SS_phase)
fprintf('The SSBar bias is %6.2f deg/s\n\n',bias_good_ave(1))
cd /Volumes/Untitled/Motion_Experience/MM80_D3/MM80_D3_S SBar_Variables
%cd H:/Motion_Experience/MM80_D1/MM80_Dl_SSBar_Variables
fprintf('%7.4f\t%7.4f\t%t%6.2t%6.2f\n',SS_amp,SSgain,SSphase,bias_good_ave(1))

Slowdft3 -subroutine for all fit programs

Slowdft3 is the subroutine used by each variation of the fit program. See
comments for details.

function Ly,bias,amp,phase]=slowdft3(a,samp,e,units)

% SLOWDFT3 - Computes a discrete Fourier transform by a least squared error fit of
%cosine and sine waves to the amplitude series that are sampled at specific sample point
%coordinates. Points from the time series can be excluded from the fit procedure by
%flagging them with a zero value in the vector "e". The input data series assumes that
%you are giving one cycle of the series, and the amplitude and phase data of the sine fit
%are at the fundamental frequency of that single cycle.

% a = amplitude series (a column vector)
% samp = sample point corrdinates (a column vector)
% (e.g. radians or degrees)
% e = vector the same size as "a" with elements:
% 1 = include point in fit
% 0 = exclude point from fit
% units = the value of one full cycle of sample points
% (e.g. 2*pi or 360)
% bias = DC offset of sine fit
% amp = amplitude of the sine fit
% phase = phase of sine fit - phase is relative to a cosine
% waveform with negative indicating a phase lag



%x=detrend(x); % take out any linear trend
ag=a(e==1); % good points only
c=cos(2*pi*samp/units);
s=sin(2*pi*samp/units);
cg=c(e== 1); % good points only
sg=s(e== 1);
csum=sum(cg);
ssum=sum(sg);
cssum=sum(cg.*sg);
A=[max(size(ag)) csum ssum

csum sum(cg.*cg) cssum
ssum cssum sum(sg.*sg)];

B=[sum(ag) sum(ag.*cg) sum(ag.*sg)];
X=A\B'; % least squares fit of dc, cosine, sine
y=X(2)-X(3)*i; % cosine & sine terms in complex number
bias=X(1); % DC term
amp=abs(y); % amplitude of sine fit
phase=180/pi*atan2(imag(y),real(y)); % phase -pi <= phase <= pi



Standard Error

To calculate standard error, one program and one routine were used in this study.
Real and imaginary values, which represented gain and phase for a particular category on
a particular testing session, were entered, and phase and amplitude standard error were
computed. The standard error for gain was proportionate to the standard error of the
amplitude.

%Subject enters real and imaginary values below

A_real = [-19.8738 -7.7469 0 1;
A_imag = 1-15.3710 - 1.1592 01;

A_complex = complex(A_real, A_imag)
A_mean = mean(A_complex, 2);
A_amp = abs(A_mean)
A_ph = 180/pi *atan2(imag(A_mean),real(A_mean));

display = 1; % 1:display, 0:no
e = 1; % e = [ I: standard error, e = 1: standard deviation
A_std = fcovellips_wg(A_complex,e,display);
%f_covellips_wg is a subroutine called by this program. It is shown below

Amp_STDorSE = Astd(1)
Ph_STDorSE = A_std(2) * 180/pi

function output = f_covellips(xorg,e,plot_option)

f_covellips_wg -subroutine for standard error program

% CALUCLATE COVARIANCE ELLIPSE AND RELATED PARAMETERS
% INPUT: x shoud have complex form data components
% e = [I indicates the output as standard error
% e = 1 indicates the output as standard deviation
% OUTPUT: the first is the std (or se) on magnitude
% the second is std (or se) on phase

% how to use: (from Lionel)
% x=abs(randn(100,2)); % create a positive-only random 2D sample (n =100)
% z=x(:,1)+i*x(:,2); % convert it in imaginary format
% o=f_covellips(z,[],1) % This gives standard error
% o=f_covellips(z,1,1) % This gives std

%K = 1; % probability = 1-1/sqrt(e) = 0.39
%K = 4.6; % probability = 90%



K = 6; % probability = I-eA(-3)= 0.95
%K = 9.2; % probability = 1-eA(-4.6)= 0.99

% Preparing data
x = real(xorg);
y = imag(xorg);

center = [mean(x),mean(y)];
th = [-pi:0.0005*pi:pil;

% Calculate covariance and covariance ellipse radius, r
a = cov(x,y);
rho = a(2)/sqrt(a(1)*a(4));
A = (cos(th).A2/a(1) - 2*rho^2/a(2)*sin(th).*cos(th) + sin(th).A2/a(4));
B = K*(1-rhoA2);
r = sqrt(B./A);

% principal axis radius
alpha = atan(2*a(2)/(a( 1)-a(4)))/2;
pl = sqrt(a(1)*a(4)*K*(1-rhoA2)/(a(4)*(cos(alpha))A2 -

2*a(2)*sin(alpha)*cos(alpha)+a(1)*(sin(alpha))^2));
p2 = sqrt(a(1)*a(4)*K*(1-
rhoA2)/(a(4)*(sin(alpha))A2+2*a(2)*sin(alpha)*cos(alpha)+a(1)*(cos(alpha))A2));

% STD of the magnitude of complex data
phi = atan2(center(2),center(1));
R = sqrt(center(1).A2+center(2).A2);
A l = (cos(phi).A2/a(1) - 2*rhoA2/a(2)*sin(phi).*cos(phi) + sin(phi).A2/a(4));
Rstd = sqrt(B/A 1);

% STD of the angle of complex data: Definied by tangent to the ellipse
A2 = 2*center(1)/a(1)-2*rhoA2*center(2)/a(2);
B2 = 2*center(2)/a(4)-2*rhoA2*center( 1)/a(2);
C2 = center( 1 )A2/a( 1 )+center(2)A2/a(4)-2*rhoA2/a(2)*center( 1 )*center(2)-(1-rhoA2);
A3 = B2A2-4*C2/a(4);
B3 = 2*A2*B2+8*rhoA2*C2/a(2);
C3 = A2A2-4*C2/a(1);
beta = (atan(roots([A3,B3,C31)))';

% STD of the angle of complex data: Defined by orthogonal to the radius
m = -1/tan(phi);
b = center(1)/tan(phi) + center(2);
A3 = 1/a(1) - 2*rhoA2*m/a(2) + mA2/a(4);
B3 = -2*center(1)/a(1) - 2*rhoA2/a(2)*(b-center(2)-m*center(1)) + 2*m*(b-
center(2))/a(4);



C3 = center(1)A2/a(1) + 2*rho^2*center(1 )/a(2)*(b-center(2)) + (b-center(2))A2/a(4) - (1-
rho^2);
sol = roots([A3,B3,C31)';
beta = [atan2(m* sol(1)+b,sol(1 )),atan2(m*sol(2)+b,sol(2)) ];

% Plotting
if plot_option

figure;
clf

plot(x,y,'.')
%for i = 1:length(x)
% text(x(i),y(i),num2str(i))
% hold on
%end
hold on,
plot(r.*cos(th)+center(1),r.*sin(th)+center(2)),axis equal
grid on
plot(center(1),center(2),'ro')
R2 = R*2;
line([0,(R2)*cos(phi)],[0,(R2)* sin(phi))
line([O,(R2)*cos(beta( 1 ))],[0O,(R2)*sin(beta(1 ))])
line([0,(R2)*cos(beta(1)+pi)],[O,(R2)*sin(beta(1)+pi)])
line([0,(R2)*cos(beta(2)),1[0,(R2)*sin(beta(2))])
line([0,(R2)*cos(beta(2)+pi)],10,(R2)*sin(beta(2)+pi)])
% title(['p_l = ',num2str(p ), ', p_2 = ',num2str(p2),', R_{mean} = ',num2str(R),',

R_{\sigma} = ',num2str(Rstd),', \phi = ',num2str(phi),', \beta = ',num2str(beta)l)
title(['R_ {\sigma} = ',num2str(Rstd),', \phi = ',num2str(phi),', \beta = ',num2str(beta),',

\Delta\beta = ',num2str(beta-phi) I)
% xorg
% pause

end

beta = min(abs(beta - phi));

if isempty(e)
output = [Rstd beta]/sqrt(length(x)); % standard error

else
output = [Rstd beta]; % standard deviation

end



Eye Movement Response Plots

clear all

load /Volumes/Untitled/Motion_Experience/eye 10.mat

cd /Volumes/Untitled/Analysis_Programs/

cf=62.46;

q=input('Show graphs? [Y/NI:','s');

%RPO=subject 1, AAR=subject 2, DMM=subject 3, FK=subject 4, MM=SUbject 5,
%JK=subject 6 SZ=subject 7, RCT=subject 8

%y_complex_good_all(:,1)=Uncorrected Horizontal Velcoity
%y_complex_good_all(:,2)=Uncorrected Torsional Velcoity
%y_complex_good_all(:,3)=Corrected Horizontal Velcoity
%y_complex_good_all(:,4)=Corrected Torsional Velcoity
%y_complex_good_all(:,5)=Device velocity

%Subject 7 discluded for tests 1 through 4 because of thermoplastic mask
%occlusion
%Subject 6 Movement 3 removed because not recorded
%Subject 2 Test 12 removed because not recorded

%Calculates the non-nan length of each MOVEMENT, e.g. calculates the number
%of used cycles in the MOVEMENT
for subject=1:8

for days=1:3
for tests=1:4

for movements= 1:2
new_length(subject,days,tests,movements)= 10-

length(find(isnan(y_complex_good_all(subject,days,tests,movements,:, 1))));
end

end
end

end

%Calculates the average complex value for each MOVEMENT
for subject=1:8

for days=1:3



for tests= 1:4
for movements= 1:2

average_uh(subject,((days- 1)* 8)+((tests-
1)*2)+movements)=nansum(squeeze(y_complexgoodall(subject,days,tests,movements
,:,1)))/new_length(subject,days,tests,movements);

average_ut(subject,((days- 1)*8)+((tests-
1)*2)+movements)=nansum(squeeze(y_complexgoodall(subject,days,tests,movements
,:,2)))/new_length(subject,days,tests,movements);

average_ch(subject,((days- 1)* 8)+((tests-
1)*2)+movements)=nansum(squeeze(y_complexgoodall(subject,days,tests,movements
,:,3)))/new_length(subject,days,tests,movements);

average_ct(subject,((days-1)*8)+((tests-
1)*2)+movements)=nansum(squeeze(y_complexgoodall(subject,days,tests,movements
,:,4)))/new_length(subject,days,tests,movements);

average_device(subject,((days-1)*8)+((tests-
1)*2)+movements)=nansum(squeeze(y_complexgoodall(subject,days,tests,movements
,:,5)))/new_length(subject,days,tests,movements);

end
end

end
end

%Andrew,Jen,Suzanne
for subject=1:8

for movements= 1:2:23
if subject==6 & movements==3

complex_uh(subject,round(movements/2))=(average-uh(subject,movements)/average-de
vice(subject,movements));

complex_ut(subject,round(movements/2))=(averageut(subject,movements)/averagedev
ice(subject,movements));

complex_ch(subject,round(movements/2))=(averagech(subject,movements)/average-de
vice(subject,movements));

complex_ct(subject,round(movements/2))=(average-ct(subjectmovements)/average-devi
ce(subject,movements));

else

complexuh(subject,round(movements/2))=((average-uh(subject,movements)/average-d



evice(subject,movements))+(average_uh(subject,movements+1)/average_device(subject,
movements+ 1)))/2;

complex_ut(subject,round(movements/2))=((average_ut(subject,movements)/averagede
vice(subject,movements))+(averageut(subject,movements+1)/averagedevice(subject,m
ovements+l)))/2;

complexch(subject,round(movements/2))=((averagech(subject,movements)/averagede
vice(subject,movements))+(average_ch(subject,movements+1)/averagedevice(subject,m
ovements+1)))/2;

complexct(subject,round(movements/2))=((averagect(subject,movements)/averagede
vice(subject,movements))+(average_ct(subject,movements+ 1 )/average_device(subject,m
ovements+1)))/2;

end
end

end

for tests=1:12
if tests== 12

gainuh_Iight(tests)=abs((complex-uh(4,tests)+complex_uh(5,tests)+complexuh(6,tests
))/3);

gainutlight(tests)=abs((complex_ut(4,tests)+complexut(5,tests)+complex_ut(6,tests))/
3);

gain_ch_light(tests)=abs((complex_c h(4,tests)+complex_ch(5,tests)+complex_ch(6,tests)
)/3);

gainctlight(tests)=abs((complex_ct(4,tests)+complex_ct(5,tests)+complex_ct(6,tests))/
3);

phase-uhIight(tests)=1 80/pi*angle((complexuh(4,tests)+complexuh(5,tests)+complex
_uh(6,tests))/3);

phase ut_light(tests)= 1 80/pi*angle((complex_ut(4,tests)+complex_ut(5,tests)+complex
ut(6,tests))/3);

phase_ch_light(tests)= 1 80/pi* angle((complex_ch(4,tests)+complex_ch(5,tests)+complex
_ch(6,tests))/3);

phase ct_light(tests)= 1 80/pi*angle((complex_ct(4,tests)+complex_ct(5,tests)+complex_c
t(6,tests))/3);

else



gainuh-light(tests)=abs((complexuh(3,tests)+complexuh(4,tests)+complexuh(5,tests
)+complex_uh(6,tests))/4);

gainut_ ight(tests)=abs((complex_ut(3,tests)+complex_ut(4,tests)+complex_ut(5,tests)+
complex_ut(6,tests))/4);

gainch-light(tests)=abs((complex_ch(3,tests)+complex_ch(4,tests)+complexch(5,tests)
+complex_ch(6,tests))/4);

gain_ct_li ght(tests)=abs((complex_ct(3 ,tests)+complex_ct(4,tests)+complex_ct(5,tests)+c
omplex_ct(6,tests))/4);

phase_uh_light(tests)= 180/pi*angle((complex_uh(3,tests)+complex_uh(4,tests)+complex
_uh(5,tests)+complex_uh(6,tests))/4);

phase_ut_light(tests)= 1 80/pi*angle((complex_ut(3,tests)+complex_ut(4,tests)+complex_
ut(5,tests)+complex_ut(6,tests))/4);

phase_ch_l ight(tests)= 1 80/pi *angle((complex_ch(3,tests)+complex_ch(4,tests)+complex
_ch(5,tests)+complex_ch(6,tests))/4);

phasect _ight(tests)=1 80/pi*angle((complex_ct(3,tests)+complex_ct(4,tests)+complex_c
t(5,tests)+complex_ct(6,tests))/4);

end

if tests== I tests==2 I tests==3 I tests==4

gain_uh_dark(tests)=abs((complex_uh(1,tests)+complex_uh(2,tests)+complexuh(8,tests
))/3);

gainutdark(tests)=abs((complex_ut(1,tests)+complex_ut(2,tests)+complex_ut(8,tests))/
3);

gain_ch_dark(tests)=abs((complex_ch( 1 ,tests)+complex_ch(2,tests)+complex_ch(8,tests)
)/3);

gainctdark(tests)=abs((complex_ct(1,tests)+complex_ct(2,tests)+complex_ct(8,tests))/
3);

phase_uh_dark(tests)= 180/pi*angle((complexuh( 1,tests)+complex_uh(2,tests)+complex
_uh(8,tests))/3);



phase ut_dark(tests)= 1 80/pi*angle((complex_ut(1,tests)+complex_ut(2,tests)+complex_
ut(8,tests))/3);

phase chdark(tests)= 1 80/pi*angle((complex_ch(1,tests)+complex_ch(2,tests)+complex
_ch(8,tests))/3);

phasect_dark(tests)= 1 80/pi*angle((complex_ct(1,tests)+complex_ct(2,tests)+complex_c
t(8,tests))/3);

else

gainuh_dark(tests)=abs((complexuh( 1 ,tests)+complex_uh(2,tests)+complexuh(7,tests
)+complex_uh(8,tests))/4);

gainut_dark(tests)=abs((complex_ut(1,tests)+complex_ut(2,tests)+complex_ut(7,tests)+
complex_ut(8,tests))/4);

gain_ch_dark(tests)=abs((complex_ch( 1 ,tests)+complex_ch(2,tests)+complex_ch(7,tests)
+complex_ch(8,tests))/4);

gainct_dark(tests)=abs((complex_ct(1,tests)+complex_ct(2,tests)+complex_ct(7,tests)+c
omplex_ct(8,tests))/4);

phase_uh_dark(tests)= 180/pi*angle((complex_uh( 1 ,tests)+complex_uh(2,tests)+complex
_uh(7,tests)+complex_uh(8,tests))/4);

phase utdark(tests)= 180/pi*angle((complex_ut(1,tests)+complex_ut(2,tests)+complex_
ut(7,tests)+complex_ut(8,tests))/4);

phase_ch_dark(tests)= 180/pi*angle((complexch( 1,tests)+complex_ch(2,tests)+complex
_ch(7,tests)+complex_ch(8,tests))/4);

phase ctdark(tests)=180/pi*angle((complex_ct(1,tests)+complex_ct(2,tests)+complex_c
t(7,tests)+complex_ct(8,tests))/4);

end

if tests== 12

gain_uh_exp(tests)=abs((complex_uh( 1 ,tests)+complex_uh(2,tests)+complex_uh(4,tests)
)/3);

gain-ut exp(tests)=abs((complexut(1,tests)+complex_ut(2,tests)+complex_ut(4,tests))/3



gain_ch_exp(tests)=abs((complex_ch( 1 ,tests)+complex_ch(2,tests)+complex_ch(4,tests))
/3);

gain_ctexp(tests)=abs((complex_ct(1,tests)+complex_ct(2,tests)+complex_ct(4,tests))/3

phase_uh_exp(tests)= 180/pi*angle((complex_uh( 1 ,tests)+complex_uh(2,tests)+complex_
uh(4,tests))/3);

phaseutexp(tests)= 1 80/pi*angle((complex_ut(1,tests)+complex_ut(2,tests)+complex_u
t(4,tests))/3);

phase_ch_exp(tests)= 180/pi *angle((complex_ch( 1 ,tests)+complex_ch(2,tests)+complex_
ch(4,tests))/3);

phasect exp(tests)=180/pi*angle((complex_ct(1,tests)+complex_ct(2,tests)+complex_ct
(4,tests))/3);

else

gainuhexp(tests)=abs((complexuh( 1 ,tests)+complex-uh(2,tests)+complexuh(3,tests)
+complex_uh(4,tests))/4);

gainut exp(tests)=abs((complex_ut(1,tests)+complex_ut(2,tests)+complex_ut(3,tests)+c
omplex_ut(4,tests))/4);

gainch-exp(tests)=abs((complex_ch( 1 ,tests)+complex_ch(2,tests)+complexch(3,tests)
+complex_ch(4,tests))/4);

gainctexp(tests)=abs((complex_ct(1,tests)+complex_ct(2,tests)+complex_ct(3,tests)+c
omplex_ct(4,tests))/4);

phase_uh_exp(tests)= 180/pi*angle((complex_uh(1,tests)+complex_uh(2,tests)+complex_
uh(3,tests)+complex_uh(4,tests))/4);

phase_ut exp(tests)= 1 80/pi*angle((complex_ut(1,tests)+complex_ut(2,tests)+complex._u
t(3,tests)+complex_ut(4,tests))/4);

phase_chexp(tests)= 1 80/pi*angle((complex_ch( 1 ,tests)+complex_ch(2,tests)+complex_
ch(3,tests)+complex_ch(4,tests))/4);

phasect exp(tests)= 180/pi*angle((complex_ct(1,tests)+complex_ct(2,tests)+complex_ct
(3 ,tests)+complex_ct(4,tests))/4);

end
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if tests== 1 I tests==2 I tests==3 I tests==4

gain_uh_nve(tests)=abs((complexuh(5,tests)+complexuh(6,tests)+complexuh(8,tests)
)/3);

gainut_nve(tests)=abs((complex_ut(5,tests)+complex_ut(6,tests)+complex_ut(8,tests))/3

gain_ch_nve(tests)=abs((complex_ch(5,tests)+complex_ch(6,tests)+complexch(8,tests))
/3);

gainct_nve(tests)=abs((complex_ct(5,tests)+complex_ct(6,tests)+complex_ct(8,tests))/3

phase_uh_nve(tests)= 1 80/pi *angle((complex_uh(5,tests)+complex_uh(6,tests)+complex_
uh(8,tests))/3);

phase ut_nve(tests)= 1 80/pi*angle((complex_ut(5,tests)+complex_ut(6,tests)+complex_u
t(8,tests))/3);

phase_ch_nve(tests)= 1 80/pi *angle((complex_ch(5,tests)+complex_ch(6,tests)+complex_
ch(8,tests))/3);

phase ct_nve(tests)= 1 80/pi *angle((complex_ct(5,tests)+complex_ct(6,tests)+complex_ct
(8,tests))/3);

else

gainuh_nve(tests)=abs((complex_uh(5,tests)+complexuh(6,tests)+complex_uh(7,tests)
+complex_uh(8,tests))/4);

gainut_nve(tests)=abs((complex_ut(5,tests)+complex_ut(6,tests)+complex_ut(7,tests)+c
omplex_ut(8,tests))/4);

gainchnve(tests)=abs((complex_ch(5,tests)+complexch(6,tests)+complex_ch(7,tests)
+complex_ch(8,tests))/4);

gainct_nve(tests)=abs((complex_ct(5,tests)+complex_ct(6,tests)+complex_ct(7,tests)+c
omplex_ct(8,tests))/4);

phase_uh_nve(tests)= 1 80/pi *angle((complex_uh(5,tests)+complex_uh(6,tests)+complex_
uh(7,tests)+complex_uh(8,tests))/4);



phaseut nve(tests)=1 80/pi*angle((complex_ut(5,tests)+complex_ut(6,tests)+complex_u
t(7,tests)+complex_ut(8,tests))/4);

phasech_nve(tests)= 1 80/pi *angle((complexch(5,tests)+complexch(6,tests)+complex-
ch(7,tests)+complex_ch(8,tests))/4);

phasectnve(tests)=1 80/pi*angle((complex_ct(5,tests)+complexct(6,tests)+complexct
(7,tests)+complex_ct(8,tests))/4);

end
end

%Light Standard Error
clear complextype realtype imagtype gaintype amptype
type=[{'uh','ut','ch','ct'}];
for i=1:4

for tests= 1:12
complextype=eval(['complex_',type{i}l);
realtype=real(complextype);
imagtype=imag(complextype);

if tests==12
A_real=[realtype(5,tests),realtype(6,tests),realtype(4,tests)];
A_imag=[imagtype(5,tests),imagtype(6,tests),imagtype(4,tests)];
else
A_real=[realtype(5,tests),realtype(6,tests),realtype(3,tests),realtype(4,tests)];
A_imag= [imagtype(5,tests),imagtype(6,tests),imagtype(3,tests),imagtype(4,tests)];
end

A_complex = complex(A_real, A_imag);
A_mean = mean(A_complex, 2);
A_amp = abs(A_mean);
A_ph = 180/pi*atan2(imag(A_mean),real(A_mean));
cd /Volumes/Untitled/Analysis_Programs/
display = 0; % 1:display, 0:no
e = []; % e = []1: standard error, e = 1: standard deviation
A_std = f_covellips_wg(A_complex,e,display);

gain_light_se(tests,i) = A_std(1);
phase_lightse(tests,i) = A_std(2) * 180/pi;

end
end



%Dark Standard Error
clear complextype realtype imagtype gaintype amptype
type=[{'uh','ut','ch','ct'}I;
for i=1:4

for tests= 1:12
complextype=eval(['complex_',type {i} );
realtype=real(complextype);
imagtype=imag(complextype);

if tests==l I tests==2 I tests==3 I tests==4
A_real= realtype(1,tests),realtype(2,tests),realtype(8,tests) ;
A_imag=limagtype(1,tests),imagtype(2,tests),imagtype(8,tests)J;
else
A_real= realtype( 1,tests), realtype(2,tests),realtype(7,tests),realtype(8,tests) ;
A_imag=[imagtype(1,tests),imagtype(2,tests),imagtype(7,tests),imagtype(8,tests) 1;
end

A_complex = complex(A_real, A_imag);
A_mean = mean(A_complex, 2);
A_amp = abs(A_mean);
A_ph = 180/pi*atan2(imag(A_mean),real(A_mean));
cd /Volumes/Untitled/Analysis_Programs/
display = 0; % 1:display, 0:no
e = l[; % e = [I: standard error, e = 1: standard deviation
A_std = f_covellipswg(A_complex,e,display);

gain_dark_se(tests,i) = A_std(1);
phase_dark_se(tests,i) = A_std(2) * 180/pi;

end
end

%Experienced Standard Error
clear complextype realtype imagtype gaintype amptype
type= [{'uh','ut','ch','ct'}];
for i=1:4

for tests= 1:12
complextype=eval(['complex_',type{i}l);
realtype=real(complextype);
imagtype=imag(complextype);

if tests==12
A_real=Irealtype( 1,tests),realtype(2,tests),realtype(4,tests)];



A_imag=[imagtype(1,tests),imagtype(2,tests),imagtype(4,tests)];
else
A_real= [realtype( 1,tests),realtype(2,tests),realtype(3,tests),realtype(4,tests)];
A_imag=[imagtype( 1,tests),imagtype(2,tests),imagtype(3,tests),imagtype(4,tests)];
end

A_complex = complex(A_real, A_imag);
A_mean = mean(A_complex, 2);
A_amp = abs(A_mean);
A_ph = 180/pi*atan2(imag(A_mean),real(A_mean));
cd /Vol umes/Untitled/Analysis_Programs/
display = 0; % 1:display, 0:no
e = []; % e = []: standard error, e = 1: standard deviation
A_std = f_covellips_wg(A_complex,e,display);

gain_exp_se(tests,i) = A_std(1);
phase_exp_se(tests,i) = A_std(2) * 180/pi;

end
end

%Naive Standard Error
clear complextype realtype imagtype gaintype amptype
type= [{'uh','ut','ch','ct'}];
for i=1:4

for tests= 1:12
complextype=eval(['complex ',type {i}]);
realtype=real(complextype);
imagtype=imag(complextype);

if tests==l I tests==2 I tests==3 I tests==4
A_real= [realtype(5,tests),realtype(6,tests),realtype(8,tests)];
A_imag=[imagtype(5,tests),imagtype(6,tests),imagtype(8,tests)];
else
A_real=[realtype(5,tests),realtype(6,tests),realtype(7,tests),realtype(8,tests)];
A_imag=[imagtype(5,tests),imagtype(6,tests),imagtype(7,tests),imagtype(8,tests)];
end

A_complex = complex(A_real, A_imag);
A_mean = mean(A_complex, 2);
A_amp = abs(A_mean);
A_ph = 180/pi*atan2(imag(A_mean),real(A_mean));
cd /Volumes/Untitled/Analysis_Programs/
display = 0; % 1:display, 0:no



e = []; % e = []: standard error, e = 1: standard deviation
A_std = f_covellips_wg(A_complex,e,display);

gainnve_se(tests,i) = A_std(1);
phase_nve_se(tests,i) = A_std(2) * 180/pi;

end
end

%Test Values
types=[{'uh','ut','ch','ct'}];
for type= 1:4

complextype=eval(['complex_',types{type}]);
for days=1:3

for tests=1:4

one(tests,days,type)=complextype(1,((days-1)*4)+tests);
two(tests,days,type)=complextype(2,((days- 1)*4)+tests);
three(tests,days,type)=complextype(3,((days- 1)*4)+tests);
four(tests,days,type)=complextype(4,((days- 1)*4)+tests);
five(tests,days,type)=complextype(5,((days- 1)*4)+tests);
six(tests,days,type)=complextype(6,((days- 1)*4)+tests);
seven(tests,days,type)=complextype(7,((days- 1)*4)+tests);
eight(tests,days,type)=complextype(8,((days- 1)*4)+tests);

end
end

end

%Look for 2 and 7
for type= 1:4

for days=1:3

gain-lightday(days,type)=abs((nansum(three(:,days,type))+nansum(four(:,days,type))+n
ansum(five(:,days,type))+nansum(six(:,days,type)))/15);

phase_light_day(days,type)= 180/pi*angle((nansum(three(:,days,type))+nansum(four(:,da
ys,type))+nansum(five(:,days,type))+nansum(six(:,days,type)))/15);



if days==1

gain-dark_day(days,type)=abs((nansum(one(:,days,type))+nansum(two(:,days,type))+na
nsum(eight(:,days,type)))/12);

phase_dark_day(days,type)= 180/pi *angle((nansum(one(:,days,type))+nansum(two(:,days
,type))+nansum(eight(:,days,type)))/12);

elseif days==3

gain_dark_day(day( s,type)=abs((nansum(one(: ,days,type))+nansum(two( 1:3,days,type))+
nansum(seven(:,days,type))+nansum(eight(: ,days,type)))/15);

phase_darkday(days,type)= 180/pi*angle((nansum(one(:,days,type))+nansum(two(1:3,da
ys,type))+nansum(seven(:,days,type))+nansum(eight(:,days,type)))/ 15);

else

gainar-dayrk (dayas,type)=abs((nansum(one(: ,days,type))+nansum(two(: ,days,type))+na
nsum(seven(:,days,type))+nansum(eight(:,days,type)))/16);

phase_dark_day(day( s,type)= 180/pi*angle((nansum(one(:,days,type))+nansum(two(:,days
,type))+nansum(seven(:,days,type))+nansum(eight(:,days,type)))/ 16);

end

if days==3

gainexpday(dayas,type)=abs((nansum(three(:,days,type))+nansum(four(:,days,type))+na
nsum(one(:,days,type))+nansum(two( 1:3,days,type)))/15);

phase_exp_ay(days,type)= 180/pi *angle((nansum(three(:,days,type))+nansum(four(:,day
s,type))+nansum(one(:,days,type))+nansum(two( :3,days,type)))/15);

else

gainexpday(dayas,type)=abs((nansum(three(: ,days,type))+nansum(four(:,days,type))+na
nsum(one(:,days,type))+nansum(two(:,days,type)))/16);

phase_exp_ay(day( s,type)= 180/pi*angle((nansum(three(:,days,type))+nansum(four(:,day
s,type))+nansum(one(:,days,type))+nansum(two(: ,days,type)))/16);

end

if days==1

gai nnveday(dayas,type)=abs((nansum(eight(: ,days,type))+nansum(five(:,days,type))+na
nsum(six(:,days,type)))/12);
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phase_nveday(days,type)= 180/pi*angle((nansum(eight(:,days,type))+nansum(five(: ,day
s,type))+nansum(six(:,days,type)))/12);

else

gain-nve_day(days,type)=abs((nansum(seven(:,days,type))+nansum(eight(:,days,type))+
nansum(five(:,days,type))+nansum(six(:,days,type)))/16);

phase_nve_day(days,type)= 180/pi *angle((nansum(seven(:,days,type))+nansum(eight(:,da
ys,type))+nansum(five(:,days,type))+nansum(six(:,days,type)))/16);

end
end

end

%Light Standard Error
for type= 1:4

for days=1:3

A_real=[real(three(:,days,type))',real(four(:,days,type))',real(five(:,days,type))',real(six(:,d
ays,type))'J;

Aimag=[imag(three(:,days,type))',imag(four(:,days,type))',imag(five(:,days,type))',imag(
six(:,days,type))'];

A_complex = complex(A_real, A_imag);
A_mean = mean(A_complex, 2);
A_amp = abs(A_mean);
Aph = 180/pi*atan2(imag(A_mean),real(A_mean));
cd /Volumes/Untitled/Analysis_Programs/
display = 0; % l:display, 0:no
e = II; % e = 1I: standard error, e = 1: standard deviation
A_std = f_covellips_wg(A_complex,e,display);

gain_light_day_se(days,type) = A_std(1);
phase_light_day_se(days,type) = A_std(2) * 180/pi;

end
end

%Dark Standard Error
for type= 1:4

for days=1:3
if days==l
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A_real=[real(one(:,days,type))',real(two(:,days,type))',real(eight(:,days,type))'];
A_imag=[imag(one(: days,type))',imag(two(:,days,type))',imag(eight(:,days,type))'];
elseif days==3

A_real=[real(one(:,days,type))',real(two(1:3 days,type))',real(seven(: days,type))',real(eig
ht(:,days,type))'];

A_imag=[imag(one(:,days,type))',imag(two(:3,daystype))',imag(seven(:,days,type))',im
ag(eight(:,days,type))'];

else

A_real=[real(one(:,days,type))',real(two(:,days,type))',real(seven(:,days,type))',real(eight(
:,days,type))'];

A_imag=[imag(one(:,days,type))',imag(two(:,days,type))',imag(seven(:,days,type))',imag(
eight(:,days,type))'];

end

A_complex = complex(A_real, A_imag);
A_mean = mean(A_complex, 2);
A_amp = abs(A_mean);
A_ph = 180/pi*atan2(imag(A_mean),real(A_mean));
cd /Volumes/Untitled/Analysis_Programs/
display = 0; % 1:display, 0:no
e = []; % e = []: standard error, e = 1: standard deviation
A_std = f_covellips_wg(A_complex,e,display);

gain_dark_day_se(days,type) = A_std(1);
phase_dark_day_se(days,type) = A_std(2) * 180/pi;

end
end

%Experienced Standard Error
for type= 1:4

for days=1:3
if days==3

A_real=Ireal (three(:,days,type))',real(four(:,days,type))',real(one(:,days,type))',real(two( 1:
3,days,type))'];

A_imag=[imag(three(:,days,type))',imag(four(:,days,type))',imag(one(:,days,type))',imag(
two(1: 3,days,type))'];

else
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Areal=[real(three(:,days,type))',real(four(:,days,type))',real(one(:,days,type))',real(two(:,
days,type))'];

Aimag=I imag(three(:,days,type))',imag(four(:,,days,type))',imag(one(:,days,type))',imag(
two(:,days,type))'];

end

A_complex = complex(A_real, A_imag);
A_mean = mean(A_complex, 2);
A_amp = abs(A_mean);
A_ph = 180/pi *atan2(imag(A_mean),real(A_mean));
cd /Volumes/Untitled/Analysis_Programs/
display = 0; % l:display, 0:no
e = [l; % e = []: standard error, e = 1: standard deviation
A_std = f_covellips_wg(A_complex,e,display);

gain_exp_day_se(days,type) = Astd(1);
phase_exp_day_se(days,type) = A_std(2) * 180/pi;

end
end

%Naive Standard Error
for type= 1:4

for days= 1:3
if days==1
A_real=[real(five(:,days,type))',real(six(:,days,type))',real(eight(:,days,type))'];
A_imag= [imag(five(:,days,type))',imag(six(:,days,type))',imag(eight(: ,days,type))'];

else

A_real=[real (five(: ,days,type))',real(six(:,days,type))',real(seven(:,days,type))',real(eight(:
,days,type))'I;

Aimag=[imag(five(: ,days,type))',imag(six(:,days,type))',imag(seven(:,days,type))',imag(
eight(:,days,type))'1;

end

A_complex = complex(A_real, A_imag);
A_mean = mean(A_complex, 2);
A_amp = abs(A_mean);
A_ph = 180/pi*atan2(imag(A_mean),real(A_mean));
cd /Volumes/Untitled/Analysis_Programs/
display = 0; % 1:display, 0:no
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e = H[; % e = [1: standard error, e = 1: standard deviation
A_std = f_covellips_wg(A_complex,e,display);

gain_nve_day_se(days,type) = A_std(1);
phase_nve_day_se(days,type) = A_std(2) * 180/pi;

end
end

%Stats
%Compare 1st test to last test x
%Compare 1st day to last day x
%Compare overall Manova x
%Specifically for Torsion--Regression x
% st test to last test for individual

%Light Tests
s_e_light_uh=[complex_uh(3,1 ),complex_uh(4,1),complex_uh(5,1 ),complex_uh(6,1 ),co
mplex_uh(3,1 2),complex_uh(4,12),complex_uh(5,12),complex_uh(6,12)1';
s_e_light_ut=[complex_ut(3,1 ),complex_ut(4,1 ),complex_uh(5,1 ),complex_uh(6,1 ),com
plex_ut(3,12),complex_ut(4,12),complex_ut(5,12),complex_ut(6,12)1';
s_e_light_ch=[complex_ch(3, 1),complex_ch(4,1),complex_uh(5,1),complex_uh(6, 1),co
mplex_ch(3,12),complex_ch(4,12),complex_ch(5,12),complex_ch(6,12)1';
s_e_light_ct=[complex_ct(3,1 ),complex_ct(4, 1),complex_uh(5, 1),complex_uh(6, 1),comp
lex_ct(3,12),complex_ct(4,12),complex_ct(5,12),complex_ct(6,12)1';

for i= 1:length(s_e_light_uh)
start_end_light_uh(i, 1)=real(s_e_light_uh(i));
start_end_light_uh(i,2)=imag(s_e_light_uh(i));
start_end_light_ut(i, 1 )=real(s_e_light_ut(i));
start_end_light_ut(i,2)=imag(s_e_light_ut(i));
start_end_light_ch(i, 1)=real(s_e_light_ch(i));
start_end_light_ch(i,2)=imag(s_e_light_ch(i));
start_end_light_ct(i, 1 )=real(s_e_light_ct(i));
start_end_light_ct(i,2)=imag(s_e_light_ct(i));

end

grouping_light(1:4)={'starting'};
grouping_light(5:8)={'ending'};

Id,p,stats I=manoval(start_end_light_uh,groupinglight)

104



[d,p,stats]=manova 1 (start_end_light_ut,grouping_light)
[d,p,stats]=manova 1 (start_end_lightch,groupinglight)
[d,p,stats]=manova 1 (start_end_light_ct,grouping_li ght)

%Dark Tests
s_e_dark_uh=[complex_uh( 1,1),complex_uh(2,1 ),complex_uh(8, 1),complex_uh(1,12),co
mplex_uh(2,12),complex_uh(7,12),complex_uh(8,12)1';
s_e_dark_ut=lcomplex_ut( 1,1),complex_ut(2,1 ),complex_ut(8,1),complex_ut(1,12),com
plex_ut(2,12),complex_ut(7,12),complex_ut(8,12)1';
s_e_dark_ch=[complex_ch(1,1),complex_ch(2,1 ),complex_ch(8,1),complex_ch( 1,12),co
mplex_ch(2,12),complex_ch(7,12),complex_ch(8,12)]';
s_e_dark_ct=[complex_ct(1,1),complex_ct(2, 1),complex_ct(8,1),complex_ct(l, 12),comp
lex_ct(2,12),complex_ct(7,12),complex ct(8,12)1';

for i=1:length(s_e_dark_uh)
start_end_dark_uh(i, I )=real(s_e_dark_uh(i));
start_end_dark_uh(i,2)=imag(s_e_dark_uh(i));
start_end_dark_ut(i,1)=real(s_e_dark_ut(i));
start_end_dark_ut(i,2)=imag(s_e_dark_ut(i));
start_end_dark_ch(i, I )=real(s_e_dark_ch(i));
start_end_dark_ch(i,2)=imag(s_e_darkch(i));
start_end_dark_ct(i,1)=real(s_e_dark_ct(i));
start_end_dark_ct(i,2)=imag(s_e_dark_ct(i));

end

grouping_dark( 1:3)={'starting'};
grouping_dark(4:7)={'ending'};

I d,p,stats ]=manoval (start_end_dark_uh,grouping_dark)
Id,p,statsl=manova 1 (start_end_dark_ut,grouping_dark)
[d,p,statsl=manoval(start_end_dark_ch,grouping_dark)
[d,p,stats]=manova I(start_end_dark_ct,grouping_dark)

%Experienced Tests
s_eexp_uh=[complex_uh( 1,1),complex_uh(2,1),complex_uh(3,1 ),complex_uh(4,1),com
plex_uh(l, 12),complex_uh(2,12),complex_uh(3,12),complex_uh(4,12)]';
s_eexput=[complex_ut(1,1),complex_ut(2, 1),complex_ut(3,1 ),complex_uh(4, 1),compl
ex_ut( 1,12),complex_ut(2,12),complex_ut(3,12),complex_ut(4,12)1';
s_eexpch=[complex_ch(1,1),complex_ch(2, 1),complex_ch(3,1 ),complex_uh(4, 1),com
plex_ch( 1,12),complex_ch(2,12),complex_ch(3,12),complex_ch(4,12)1';
s_eexp_ct=[complex_ct(1,1),complex_ct(2,1 ),complex_ct(3,1 ),complex_uh(4,1),comple
x_ct( 1,12),complex_ct(2,12),complex_ct(3,12),complex_ct(4,12)1]';

for i= 1 :length(s_e_exp_uh)
start_end_exp_uh(i, 1)=real(s_e_exp_uh(i));
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start_end_exp_uh(i,2)=imag(s_e_exp_uh(i));
start_end_exp_ut(i, 1 )=real(s_e_exp_ut(i));
start_end_exp_ut(i,2)=imag(s_e_exp_ut(i));
start_end_exp_ch(i, 1 )=real(s_e_exp_ch(i));
start_end_exp_ch(i,2)=imag(s_e_exp_ch(i));
start_end_exp_ct(i, 1 )=real(s_e_exp_ct(i));
start_end_exp_ct(i,2)=imag(s_e_exp_ct(i));

end

grouping_exp(1:4)={'starting'};
grouping_exp(4:8)={'ending'};

Id,p,stats I=manova 1 (start_end_exp_uh,groupingexp)
I d,p,stats I=manova 1 (start_end_exp_ut,grouping_exp)
[d,p,stats =manoval (start_end_exp_ch,grouping_exp)
Id,p,stats I=manova 1 (start_end_exp_ct,grouping_exp)

%Naive Tests
s_e_nve_uh=[complex_uh(5, 1),complex_uh(6,1 ),complex_uh(8, 1),complex_uh(5,12),co
mplex_uh(6,12),complex_uh(7,12),complex_uh(8,12)]1';
s_e_nve_ut=[complex_ut(5,1),complex_ut(6,1),complex_uh(8, 1),complex_ut(5,12),comp
lex_ut(6,12),complex_ut(7,12),complex_ut(8,12)]';
s_e_nve_ch=[complex_ch(5, 1),complex_ch(6,1),complex_uh(8, 1),complex_ch(5,12),co
mplex_ch(6,12),complex_ch(7,12),complex_ch(8,12)1';
s_e_nve_ct=l complex_ct(5, I1),complex_ct(6, 1),complex_uh(8, 1),complex_ct(5,12),compl
ex_ct(6,12),complex_ct(7,12),complex_ct(8,12) 1';

for i= :length(senve_uh)
start_end_nve_uh(i, 1)=real(senve_uh(i));
start_end_nve_uh(i,2)=imag(s_e_nve_uh(i));
start_end_nve_ut(i, 1)=real(s_e_nve_ut(i));
start_end_nve_ut(i,2)=imag(s_e_nve_ut(i));
start_end_nve_ch(i, 1 )=real(s_e_nve_ch(i));
start_end_nve_ch(i,2)=imag(s_e_nve_ch(i));
start_end_nve_ct(i,1 )=real(s_e_nve_ct(i));
start_end_nve_ct(i,2)=imag(s_e_nve_ct(i));

end

grouping_nve( 1:3)={'starting'};
grouping_nve(4:7)={'ending'};

Id,p,stats]=manoval (startend-nve_uh,groupingnve)
I d,p,stats I=manova 1 (start_end_nve_ut,grouping_nve)
Id,p,stats I=manova 1 (start_end_nve_ch,grouping_nve)
I d,p,stats I=manova 1 (startend_nve_ct,grouping_nve)
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%Light Days
selight_uh_days=[complex_uh(3, 1),complex_uh(3,2),complex_uh(3,3),complex_uh(3,
4),co),exuh complexuh4,uh(42),complexuh(4,3),complex-uh(4,4),complexuh(5,
1),complex_uh(5,2),complex_uh(5,3),complexuh(5,4),complexjuh(6,1),complex_uh(6,
2),complex_uh(6,3),complex_uh(6,4),complexuh(3,9),complex_uh(3,10),complex_uh(3
,11),complex_uh(3,12),complex_uh(4,9),complex_uh(4, 10),complex_uh(4,11),complex_
uh(4,12),complex_uh(5,9),complex_uh(5,10),complex_uh(5,11),complex_uh(5,12),comp
lex_uh(6,9),complex_uh(6,10),complex_uh(6,11),complex_uh(6,12)];
s_e_light ut days=lcomplex_ut(3,1),complex_ut(3,2),complex_ut(3,3),complex_ut(3,4),
complexut(4,1),complexut(4,2),complexut(4,3),complex_ut(4,4),complex-ut(5, 1),co
mplexut(5,2),complexut(5,3),complexut(5,4),complexut(6,1 ),complex_ut(6,2),compl
exut(6,3),compl - ut(6,4),complexut(3,9),complexut),compe (,complexut(3,11),comple
x_ut(3,12),complex_ut(4,9),complex_ut(4, 10),complex_ut(4, 1),complex_ut(4,12),compl
ex_ut(5,9),complex_ut(5,10),complex_ut(5,11),complex_ut(5,12),complex_ut(6,9),compl
ex_ut(6,10),complex_ut(6,1 1),complex_ut(6,12)];
s_e_light_ch_days=[complexch(3,1 ),complexch(3,2),complexch(3,3),complexch(3,4
),complex_ch(4,1),complexch(4,2),complexch(4,3),complexch(4,4),complexch(5,1),
complex_ch(5,2),complex_ch(5,3),complex_ch(5,4),complexch(6,1 ),complex_ch(6,2),c
omplex_ch(6,3),complex_ch(6,4),complexh(3,9),complexcch(3 10),complex_ch(3,11),
complex_ch(3,12),complex_ch(4,9),complex_ch(4, 10),complex_ch(4,11),complex_ch(4,
12),complex_ch(5,9),complex_ch(5,10),complexch(5,11),complex_ch(5,12),complex_c
h(6,9),complex_ch(6,10),complex_ch(6, 11),complex_ch(6,12)];
s_e_light ct days=[complexct(3,1),complexct(3,2),complexct(3,3),complexct(3,4),c
omplex_ct(4,1 ),complex_ct(4,2),complex_ct(4,3),complex_ct(4,4),complex_ct(5,1 ),comp
lex_ct(5,2),complex_ct(5,3),complex_ct(5,4),complexct(6,1),complex_ct(6,2),complex_
ct(6,3),complex_ct(6,4),complex_ct(3,9),complex_ct(3,10),complexct(3,11 ),complexct
(3,12),complex_ct(4,9),complex_ct(4,10),complex_ct(4,11),complexct(4,12),complexc
t(5,9),complex_ct(5,10),complex_ct(5, 11),complex_ct(5,12),complex_ct(6,9),complexct
(6,10),complex_ct(6,11),complex_ct(6,12)1;

for i= 1 :length(s_e_light_uh_days)
start_end_light_uh_days(i, 1 )=real(s_e_light_uh_days(i));
start_end_lightuh_days(i,2)=imag(s_e_light_uh_days(i));
start_endlightutdays(i, 1)=real(s_e_lightutdays(i));
start_end_lightut days(i,2)=imag(s_e_lightutdays(i));
start_end_lightch_days(i, 1)=real(s_e_lightch_days(i));
start_end_light_ch_days(i,2)=imag(s_e_lightch_days(i));
start_end_lightctdays(i, 1)=real(s_e_light ct days(i));
start_end_light ct days(i,2)=imag(se_lightctdays(i));

end

grouping_light_days(: :16)={'starting'};
grouping_light_days(17:32)={'ending'};
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[d,p,stats ]=manova 1 (start_end_light_uh_days,groupinglightdays)
[d,p,stats =manoval (start_end_lightutdays,grouping_light_days)
[ d,p,stats]=manova 1 (start_end_light_ch_days,grouping_lightdays)
[d,p,statsl=manova l(start_endlight-ctdays,groupinglightdays)

%Dark Days
s_e_dark_uh_days=lcomplex_uh(1,1),complex_uh(1,2),complex_uh(1,3),complex_uh(1,
4),complex_uh(2, 1),complex_uh(2,2),complex_uh(2,3),complexuh(2,4),complex-uh(8,
1),complex_uh(8,2),complexuh(8,3),complexuh(8,4),complexuhh( ,9),complex_uh(1,
10),complex_uh( 1,11 ),complex_uh( 1,1 2),complex_uh(2,9),complex_uh(2,10 ),complexu
h(2,11),complex_uh(2,12),complex_uh(7,9),complex_uh(7,10),complex_uh(7,11),compl
ex_uh(7,12),complex_uh(8,9),complex_uh(8, 10),complex_uh(8,11 ),complex_uh(8,12)];
s_e_dark_utdays=[complex_ut( 1,1),complex_ut(1,2),complex_ut(1,3),complex_ut(1,4),
complex_ut(2, 1),complexut(2,2),complex_ut(2,3),co4),complexut(8, 1),co
mplexutl, I),complexu,3),complexut(8,4),complexut(,9),complexut(1,10),com
plex_ut( 1,11),complex_ut(1,12),complex_ut(2,9),complex_ut(2, 10),complex_ut(2,11),co
mplex_ut(2,12),complex_ut(7,9),complex_ut(7, 10),complex_ut(7,11),complex_ut(7,12),c
omplex_ut(8,9),complex_ut(8,10),complex_ut(8,11 ),complex_ut(8,12)];
s_e_dark_ch_days=[complex_ch(1,1 ),complex_ch(1,2),complex_ch( 1,3),complex_ch(1,4
),complex_ch(2, 1),complexch(2,2),complex_ch(2,3),compexch(24),complexch(8, 1),
complex_ch(8,2),complex_ch(8,3),complex_ch(8,4),complex_ch( 1,9),complex_ch( 1,10),
complex_ch( 1,11 ),complex_ch( 1,12),complex_ch(2,9),complex_ch(2, 10 ),complex_ch(2,
11 ),complex_ch(2,12),complex_ch(7,9),complex_ch(7,10),complex_ch(7,11 ),complex_c
h(7,12),complex_ch(8,9),complex_ch(8,10),complex_ch(8, 11),complexch(8,12)];
s_e_dark_ctdays=lcomplex_ct( 1,1),complex_ct(1,2),complex_ct(1,3),complex_ct(1,4),c
omplex_ct(2,1 ),complex_ct(2,2),complex_ct(2,3),complex_ct(2,4),complex_ct(8,1 ),comp
lex_ct(8,2),complex_ct(8,3),complex-ct(8,4),complexct( ,9),complex_ct(1,1 0),complex
_ct(1,11 ),complex_ct( 1,12),complex_ct(2,9),complex_ct(2, 10),complex_ct(2,11 ),comple
x_ct(2,12),complex_ct(7,9),complex_ct(7,10),complex_ct(7,11 ),complex_ct(7,12),compl
ex_ct(8,9),complex_ct(8,10),complex_ct(8,11 ),complex_ct(8, 12)1;

for i=l:length(sedark_uh_days)
start_end_dark_uh_days(i,1)=real(s_e_dark_uh_days(i));
start_end_dark_uh_days(i,2)=imag(s_e_dark_uhdays(i));
start_end_dark_utdays(i, I1)=real(s_e_darkut_days(i));
start_end_dark_utdays(i,2)=imag(s_e_dark_utdays(i));
start_end_dark_ch_days(i,1)=real(s_e_dark_ch_days(i));
start_end_dark_ch_days(i,2)=imag(s_e_dark_chdays(i));
start_end_dark_ctdays(i,1)=real(s_e_dark_ct_days(i));
start_end_dark_ctdays(i,2)=imag(s_e_dark_ctdays(i));

end

grouping_dark_days( 1:12)={'starting'};
grouping_dark_days(13:28)={'ending'};
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[d,p,stats]=manova 1 (start_end_dark_uh_days,grouping_darkdays)
[d,p,stats]=manoval (start_end_dark_ut_days,grouping_dark_days)
[d,p,stats]=manoval (start_end_dark_ch_days,grouping_darkdays)
[d,p,stats]=manova 1 (start_end_dark_ct_days,grouping_darkdays)

%Experienced Days
s_e_exp_uh_days=[complexuh(3,1 ),complex_uh(3,2),complex_uh(3,3),complex_uh(3,4
),complex_uh(4, 1),complex_uh(4,2),complex_uh(4,3),complex_uh(4,4),complex_uh( 1,1)
,complexuh(1,2),complexuh(1,3),complexuh(1 ,4),complexuh(2,1),complexuh(2,2),
complex_uh(2,3),complex_uh(2,4),complex_uh(3,9),complex_uh(3, 10),complex_uh(3,11
),complex_uh(3,12),complex_uh(4,9),complex_uh(4, 10),complex_uh(4, 11),complex_uh(
4,12),complex-uh(1,9),complexuh(l 1 0),complex_uh(1,11 ),complex-uh(, 11),complexuh(1,12),complex
_uh(2,9),complexuh(2, I),complex_uh(2,11 ),complex_uh(2,12)];
s_e_exp_utdays=[complex_ut(3,1 ),complex_ut(3,2),complex_ut(3,3),complex_ut(3,4),c
omplexut(4, 1),complex-ut(4,2),complex-ut(4,3),complex ut(4,4),complex_ut(1,1 ),com
plex_ut(1,2),complexut(1,3),complex_ut(1,4),complex_ut(2,1),complexut(2,2),comple
x_ut(2,3),complex_ut(2,4),complex_ut(3,9),complex_ut(3,10),complex_ut(3,11 ),complex
_ut(3,12),complex_ut(4,9),complex_ut(4,10),complex_ut(4,11 ),complex_ut(4,12),comple
x_ut(1,9),complex_ut( 1,10),complex_ut( 1,11 ),complex_ut( 1,12),complex_ut(2,9),comple
x_ut(2, 10),complex_ut(2,11 ),complex_ut(2,12)];
s_e_exp_ch_days=[complex_ch(3,1 ),complex_ch(3,2),complex_ch(3,3),complex_ch(3,4)
,complex-ch(4,1),complexch(4,2),complex ch(4,3),complex-ch(4,4),complexch(1,1),c
omplexch(1 ,2),complex-ch(1,3),complex_ch(1,4),complex ch(2,1),complexch(2,2),co
mplex_ch(2,3),complex_ch(2,4),complex_ch(3,9),complexch(3,10),complexch(3,11 ),c
omplex_ch(3,12),complex_ch(4,9),complex_ch(4,10),complex_ch(4,11 ),complex_ch(4, 1
2),complex_ch( 1,9),complex_ch( 1,10),complexch( 1,11),complex_ch( 1,12),complex_ch
(2,9),complex_ch(2,10),complex_ch(2,11),complex_ch(2,12)];
se-exp-ctdays=[complex-ct(3,1),complexct(3,2),complex-ct(3,3),complexct(3,4),co
mplexct(4 mplext(4,2),complexct(4,3),complexctplexct(1,1),compl
exct(1,2),complexct(1,3),complex,4),complexcct4)mp t(2,1),complexct(2,2),complex
ct(2,3),complex_ct(2,4),complexct(3,9),complmplet(,t(3,10),complexct( lex_ct(3,11),complex_ct
(3,12),complex_ct(4,9),complex_ct(4,10),complex_ct(4,11),complex_ct(4,12),complexc
t(1,9),complex_ct( 1,10),complexct( 1,11 ),complext(l1,12),complex_ct(2,9),complexct
(2,10),complex_ct(2,11),complex_ct(2,12)];

for i=1 :length(s_e_exp_uh_days)
start_end_exp_uh_days(i, 1 )=real(s_e_exp_uh_days(i));
start_end_exp_uh_days(i,2)=imag(s_e_expuh_days(i));
start_end_exp_utdays(i, 1)=real(s_e_exp_utdays(i));
start_end_exp_utdays(i,2)=imag(s_e_exp_utdays(i));
start_end_exp_ch_days(i, 1)=real(s_e_exp_ch_days(i));
start_end_exp_ch_days(i,2)=imag(s_e_exp_ch_days(i));
start_end_exp_ctdays(i, 1)=real(se_exp_ct days(i));
start_end_exp_ctdays(i,2)=imag(s_e_exp_ctdays(i));

end
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grouping_exp_days( 1:16)={'starting'};
grouping_exp_days( 17:32)={'ending'};

Id,p,stats]=manova 1 (start_end_exp_uh_days,grouping_exp_days)
Id,p,stats =manoval(start_end_exp_ut_days,groupingexpdays)
Id,p,stats ]=manoval (start_end_exp_ch_days,grouping_exp_days)
[d,p,stats]=manoval(start_end_exp_ct_days,grouping_exp_days)

%Naive Days
s_e_nve_uh_days=[complex_uh(5, 1),complex_uh(5,2),complex_uh(5,3),complex_uh(5,4
),complex_uh(6,1 ),uh(6,2)_uh(6,2),complex_uh(6,3),complex_uh(6,4),complex_uh(8, 1)
,complexuh(8,2),complex_uh(8,3),complexuh(8 complexuh(5),complxexuh(5,10
),complex_uh(5,11 ),complex_uh(5,12),complex_uh(6,9),complex_uh(6, 10),complex_uh(
6,11),complex_uh(6,12),complex_uh(7,9),complex_uh(7, 10),complex_uh(7,11),complex
_uh(7,12),complex_uh(8,9),complex_uh(8,10),complex_uh(8,11 ),complexuh(8,12)];
s_e_nveut_days=I complex_ut(5, 1),complex_ut(5,2),complex_ut(5,3),complex_ut(5,4),c
omplexut(6, 1),complex-ut(6,2),complexut(6,3),complexut(6,4),complexut(8,1),com
plex_ut(8,2),complex_ut(8,3),complextut(8,4),compexut(5,9),cmp•••mpexut(5, mpl
ex_ut(5,11 ),complex_ut(5,12),complex_ut(6,9),complex_ut(6, 10),complex_ut(6,11 ),com
plex_ut(6,12),complex_ut(7,9),complex_ut(7, 10),complex_ut(7,11),complex_ut(7,12),co
mplex_ut(8,9),complex_ut(8,10),complex_ut(8,1 1),complex_ut(8,12)];
s_e_nve_ch_days=[complex_ch(5, 1),complex_ch(5,2),complex_ch(5,3),complex_ch(5,4)
,complex_ch(6,1 ),complex_ch(6,2),complex_ch(6,3),complex_ch(6,4),complex_ch(8,1 ),c
omplex_ch(8,2),complex_ch(8,3),complex_ch(8,4),complex_ch(5,9),complex_ch(5,10),c
omplex_ch(5,11 ),complex_ch(5,12),complex_ch(6,9),complex_ch(6, 10),complex_ch(6,1
1),complex_ch(6,12),complex_ch(7,9),complex_ch(7, 10),complex_ch(7,11),complex_ch
(7,12),complex_ch(8,9),complex_ch(8,10),complex_ch(8,11 ),complex_ch(8,12)];
s_e_nve_ctdays=[complex_ct(5,1),complex_ct(5,2),complex_ct(5,3),complexct(5,4),co
mplex_ct(6,1 ),complex_ct(6,2),complex_ct(6,3),complex ct(6,4),compl
ex_ct(8,2),complex_ct(8,3),complex_ct(8,4),complexct(5,9),complexct(5, 10),complex
_ct(5,11 ),complex_ct(5,12),complex_ct(6,9),complex_ct(6, 10),complex_ct(6,11 ),comple
x_ct(6,12),complex_ct(7,9),complex_ct(7,10),complex_ct(7,11),complex_ct(7,12),compl
ex_ct(8,9),complex_ct(8,10),complex_ct(8,11 ),complex_ct(8,12)1;

for i= 1: length(s_e_nve_uh_days)
start_end_nve_uh_days(i,1)=real(s_e_nve_uh_days(i));
start_end_nve_uh_days(i,2)=imag(s_e_nve_uh_days(i));
start_end_nve_utdays(i,1)=real(s_e_nve_ut_days(i));
start_end_nve_utdays(i,2)=imag(s_e_nve_utdays(i));
start_end_nve_ch_days(i, 1)=real(s_e_nve_ch_days(i));
start_end_nve_ch_days(i,2)=imag(s_e_nve_ch_days(i));
start_end_nve_ctdays(i,1)=real(s_e nve_ct_days(i));
start_end_nve_ctdays(i,2)=imag(s_e_nve_ctdays(i));

end
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grouping_nve_days( 1:12)={'starting'};
grouping_nve_days(13:28)={'ending'};

[d,p,stats]=manoval (start_endnve_uh_days,grouping_nve_days)
[d,p,stats]=manoval(start_end_nve_ut_days,grouping_nve_days)
[d,p,stats]=manoval (start_end_nve_ch_days,grouping_nve_days)
[d,p,stats]=manoval (start_end_nve_ct_days,grouping_nve_days)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for subject=1:8
for tests= 1:12

total_uh(((subject- 1)* 12)+tests, 1 )=real(complex_uh(subject,tests));
total_uh(((subject- 1)* 12)+tests,2)=imag(complex_uh(subject,tests));

total_ut(((subject- 1)* 12)+tests, 1 )=real(complex_ut(subject,tests));
total_ut(((subject-1)* 12)+tests,2)=imag(complex_ut(subject,tests));

total_ch(((subject- 1)* 12)+tests, 1 )=real(complex_ch(subject,tests));
total_ch(((subject- 1)* 12)+tests,2)=imag(complex_ch(subject,tests));

total_ct(((subject- 1)* 12)+tests, 1)=real(complex_ct(subject,tests));
total_ct(((subject- 1)* 12)+tests,2)=imag(complex_ct(subject,tests));

end
end

%Removes subject 7, tests 1:4
for i=73:92;

total_uh(i, 1)=total_uh(i+4, 1);
total_uh(i,2)=total_uh(i+4,2);

total_ut(i, 1)=total_ut(i+4, 1);
total_ut(i,2)=total_ut(i+4,2);

total_ch(i,1 )=total_ch(i+4, 1);
total_ch(i,2)=total_ch(i+4,2);

total_ct(i, 1)=total_ct(i+4, 1);
total_ct(i,2)=totalct(i+4,2);

end

for i=1:92
total_uh_new(i, 1)=total_uh(i, 1);
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total_uh_new(i,2)=total_uh(i,2);

total_utnew(i, 1)=total_ut(i,1);
total_utnew(i,2)=total_ut(i,2);

total_ch_new(i, 1)=total_ch(i, 1);
total_ch_new(i,2)=total_ch(i,2);

total_ctnew(i, 1)=total_ct(i,1);
total_ctnew(i,2)=total_ct(i,2);

end

groupingldtotal(25:72)={'Light'};
groupingldtotal(1:24)={'Dark'};
groupingldtotal(73:92)={'Dark'};

Id,p,stats j=manoval(total_uh_new,grouping_ d_total)
[d,p,stats =manoval (totalutnew,groupingldtotal)
[d,p,stats I=manoval (total_ch_new,groupingldtotal)
Id,p,stats j=manoval (totalctnew,grouping ld total)

grouping_en_total(48:92)={'Naive'};
grouping_en_total( 1:48)={'Expereinced'};

Id,p,stats =manova l(total_uh_new,grouping_en_total)
Id,p,stats_]=manoval (total ut new,grouping_en_total)
[d,p,stats]=manoval(total_ch_new,groupingentotal)
Id,p,stats]=manoval (total ct new,grouping_en_total)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Regression Analysis--see Excel

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Individual Comparisons for all subjects, regardless of groups
individ_uh=[complex_uh( 1,1 ),complex_uh(2,1 ),complex_uh(3,1 ),complex_uh(4,1),comp
lex_uh(5, 1),complex_uh(6,1 ),complex_uh(8,1 ),complex_uh( 1,12),complex_uh(2,12),co
mplex_uh(3,12),complex_uh(4,12),complex_uh(5,12),complex_uh(6,12),complex_uh(7,
12),complex_uh(8,12)-];
individ_ut=[complex_ut( 1,1 ),complex_ut(2,1 ),complex_ut(3,1 ),complex_ut(4, 1),comple
x_ut(5, 1),complex_ut(6,1 ),complex_ut(8, 1),complex_ut( 1,12),complex_ut(2,12),complex
_ut(3,12),complex_ut(4,12),complex_ut(5,12),complex_ut(6,12),complex_ut(7,12),compl
ex_ut(8,12)1;
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individ_ch=[complex_ch(1, 1),complex_ch(2,1 ),complex_ch(3,1 ),complex_ch(4,1 ),compl
exch(5, ),complexch(6,1),complexch(8,),complexch(1 ,12),complexch(2, 12),comp
lex_ch(3,12),complex_ch(4,12),complex_ch(5,12),complex_ch(6,12),complex_ch(7,12),c
omplexch(8,12)];
individ_ct=[complex_ct(1,1),complexct(2,1 ),complexct(3,1),complex_ct(4,1 ),complex
_ct(5, 1),complex_ct(6,1 ),complex_ct(8, 1),complex_ct( 1,12),complex_ct(2,12),complex_
ct(3,12),complex_ct(4,12),complex_ct(5,12),complex_ct(6,12),complex_ct(7,12),comple
x_ct(8,12)];

for z= 1:length(individ_uh)
individual_stats_uh(z, 1 )=real(individ_uh(z));
individual_stats_uh(z,2)=imag(individ_uh(z));

individual_stats_ut(z, 1 )=real(individ_ut(z));
individual_stats_ut(z,2)=imag(individ_ut(z));

individual_stats_ch(z, 1 )=real(individ_ch(z));
individual_stats_ch(z,2)=imag(individ_ch(z));

individual_stats_ct(z, 1 )=real(individ_ct(z));
individual_stats_ct(z,2)=imag(individ_ct(z));

end

individual_grouping( 1:7)={'first'};
individual_grouping(8:15)={'last'};

[d,p,statsJ=manoval (individual_stats_uh,individual grouping)
[d,p,stats]=manoval (individual_stats_ut,individual_grouping)
[d,p,stats]=manoval (individual_stats_ch,individual_grouping)
[d,p,stats]=manova 1 (individual_stats_ct,individual_grouping)

%Individual Comparisons for all subjects, segregated by group

%Light
all=[1:15];
erase=[l 2 7 8 9 14 15];
individ_uh_demo=individ_uh(setxor(all,erase));
individut demo=individ_ut(setxor(all,erase));
individchdemo=individ_ch(setxor(all,erase));
individ_ct_demo=individ_ct(setxor(all,erase));

clear z
for z=1:length(individ_uh_demo)

individ_uh_light(z, 1)=real(individ_uh_demo(z));
individ_uh_light(z,2)=imag(individ_uh_demo(z));

113



individ_utlight(z,1 )=real(individut demo(z));
individ_ut_light(z,2)=imag(individutdemo(z));

individ_ch_light(z, 1)=real(individ_ch_demo(z));
individ_ch_light(z,2)=imag(individ_ch_demo(z));

individ_ct_light(z, 1)=real(individ_ct_demo(z));
individ_ct_light(z,2)=imag(individ_ctdemo(z));

end

individual_light( 1:4)={'first'};
individual_light(5:8)={'last'};

[d,p,stats =manoval(individ_uh_light,individual_light)
Id,p,stats =manoval (individ_utlight,individual_light)
Id,p,stats j=manova 1 (individ_ch_light,individual_light)
Id,p,stats j=manoval (individctlight,individual_light)

%Dark
all=[ 1:151;
erase=[3 4 5 6 10 11 12 131;
individ_uh_demo=individ_uh(setxor(all,erase));
individ_ut_demo=individ_ut(setxor(all,erase));
individ_ch_demo=individ_ch(setxor(all,erase));
individctdemo=individ_ct(setxor(all,erase));

clear z
for z= 1:length(individ_uh_demo)

individ_uh_dark(z, 1 )=real(individ_uh_demo(z));
individ_uh_dark(z,2)=imag(individ_uh_demo(z));

individut dark(z, I )=real(individ_utdemo(z));
individutdark(z,2)=imag(individutdemo(z));

individ_ch_dark(z, 1 )=real(individ_ch_demo(z));
individ_ch_dark(z,2)=imag(individ_ch_demo(z));

individctdark(z, 1 )=real(individ_ct demo(z));
individctdark(z,2)=imag(individctdemo(z));

end

individual_dark( 1:3)={'first'};
individual_dark(4:7)={'last'};

[d,p,stats =manoval (individ_uh_dark,individual_dark)
[d,p,stats =manoval(individ utdark,individual_dark)
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[d,p,stats]=manoval(individ_ch_dark,individual_dark)
[d,p,stats]=manoval(individct dark,individual_dark)

%Experienced
all=[1:15];
erase=[5 6 7 12 13 14 151;
individ_uh_demo=individ_uh(setxor(all,erase));
individ_ut_demo=individ_ut(setxor(all,erase));
individ_ch_demo=individ_ch(setxor(all,erase));
individ_ct_demo=individ_ct(setxor(all,erase));

clear z
for z=1:length(individ_uh_demo)

individ_uh_exp(z, 1)=real(individ_uh_demo(z));
individ_uh_exp(z,2)=imag(individ_uh_demo(z));

individ ut exp(z, 1)=real(individutdemo(z));
individut exp(z,2)=imag(individ_utdemo(z));

individ_ch_exp(z, 1)=real(individ_ch_demo(z));
individ_ch_exp(z,2)=imag(individ_ch_demo(z));

individ ct exp(z, 1)=real(individ_ct_demo(z));
individ_ctexp(z,2)=imag(individ ctdemo(z));

end

individual_exp( 1:4)={'first'};
individual_exp(5:8)={'last'};

[d,p,stats]=manoval (individ_uh_exp,individual_exp)
[d,p,stats]=manoval(individ ut exp,individualexp)
[d,p,stats]=manoval (individ_ch_exp,individual_exp)
[d,p,stats]=manoval (individ ct exp,individual_exp)

%Naive
all=[1: 15];
erase= [1:4 8:11];
individ_uh_demo=individ_uh(setxor(all,erase));
individut_demo=individ_ut(setxor(all,erase));
individ_ch_demo=individ_ch(setxor(all,erase));
individ_ct_demo=individ_ct(setxor(all,erase));

clear z
for z=1:length(individ_uh_demo)
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individ_uh_nve(z, 1 )=real(individ_uh_demo(z));
individ_uh_nve(z,2)=imag(individ_uh_demo(z));

individ ut nve(z, 1)=real(individutdemo(z));
individutnve(z,2)=imag(individut demo(z));

individ_ch_nve(z, 1)=real(individ_ch_demo(z));
individ_chnve(z,2)=imag(individ_ch_demo(z));

individ ct nve(z,1)=real(individ_ctdemo(z));
individ ct nve(z,2)=imag(individct demo(z));

end

individual_nve( 1:3)={'first'};
individual_nve(4:7)={'last'};

[d,p,statsl=manoval (individ_uh_nve,individual_nve)
[d,p,stats]=manoval(individ ut nve,individual_nve)
[d,p,stats]=manoval (individ_ch_nve,individual_nve)
[d,p,stats]=manoval(individ ctnve,individual_nve)

%Light vs. Dark Test 1
day 1_uh=lcomplex_uh(1,1 ),complex_uh(2,1 ),complex_uh(8,1 ),complex_uh(3, 1),comple
x_uh(4,1),complex_uh(5,1),complex_uh(6,1);
day l_ut=[complex_ut( 1,1),complex_ut(2,1),complex_ut(8,1 ),complex_ut(3,1 ),complex
ut(4, 1),complex_ut(5,1),complex_ut(6,1);
day l_ch=lcomplex_ch( 1,1),complex_ch(2,1 ),complex_ch(8,1 ),complex_ch(3,1 ),complex
_ch(4,1),complex_ch(5,1),complex_ch(6,1)];
day l_ct=[complex_ct(1,1 ),complex_ct(2,1 ),complex_ct(8,1 ),complex_ct(3,1 ),complexc
t(4,1),complex_ct(5,1),complex_ct(6,1)];

day l_grouping(1: 3)=('Light'};
day l_grouping(4:7)={'Dark'};

for i=1:7
day l _uh_final(i, 1)=real(day _uh(i));
day l_uh_final(i,2)=imag(day l_uh(i));

dayl ut final(i,1)=real(day l_ut(i));
dayl ut final(i,2)=imag(dayl_ut(i));

day l_chfinal(i, 1)=real(day l_ch(i));
day l_chfinal(i,2)=imag(day l_ch(i));

dayl ct final(i,1)=real(day l_ct(i));
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day l_ctfinal(i,2)=imag(day l_ct(i));
end

[d,p,stats]=manova 1 (day l_uhfinal,day l_grouping)
[d,p,stats]=manova 1 (day l_utfinal,day l_grouping)
[d,p,stats]=manoval(day l chfinal,day l_grouping)
[d,p,stats]=manova 1 (day l_ct_final,day _grouping)

%Stats
%group 1 = Light vs. Dark
%group 2 = Experienced vs. Naive
%group 3 = Test Number

group (l1:24)={'Dark'};
group 1 (25:72)={'Light'};
group 1(73:96)= {'Dark'};

group2(1:48)={'Experienced'};
group2(49:96)={'Naive'};

for subject=1:8
for tests= 1:12

a=['test ',num2str(tests)];
group3(((subject- 1 )* 12)+tests)= {a};

end
end

for subject=1:8
for tests= 1:12

total_uh(((subject- 1)* 12)+tests, 1 )=real(complex_uh(subject,tests));
total_uh(((subject- 1 )* 12)+tests,2)=imag(complex_uh(subject,tests));

total_ut(((subject- 1 )* 12)+tests, 1 )=real(compl ex_ut(subject,tests));
total_ut(((subject- 1 )* 12)+tests,2)=imag(complex_ut(subject,tests));

total_ch(((subject- 1 )* 12)+tests, 1 )=real(complex_ch(subject,tests));
total_ch(((subject- 1)* 12)+tests,2)=imag(complex_ch(subject,tests));

total_ct(((subject- 1 )* 12)+tests, 1)=real(complex_ct(subject,tests));
total_ct(((subject- 1 )* 12)+tests,2)=imag(complex_ct(subject,tests));

end
end

% testnum=1; idark=testnum+10: 12:23 84:12:951]; ilight=testnum+(24:12:71);
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idark=[1:10 13:22 85:941;
% ilight=[25:34 37:46 49:58 61:701;

figure,plot(total_uh(idark, 1),total_uh(idark,2),'*',total_uh(ilight, 1),total_uh(ilight,2),'o')

% firsttentests=setxor(1:96,[11 12 23 24 35 36 47 48 59 60 71 72 83 84 95 96])';
firsttentests=(1:96)';
firsttentests=setxor(firsttentests, [76:84])';

%firsttentests isn't just the first 10 tests, it just excludes subject 7
%day 1
[d_uh 1 ,p_uh 1 ,stats_uh 1 ]=manova 1 (total_uh(firsttentests),group 1 (firsttentests))
[d_ch l,p_ch 1 ,stats_ch l=manova 1 (total_ch(firsttentests),group 1 (firsttentests))

groupprepost([1:10 13:22 77:82 85:94])=1;
groupprepost([11 12 23 24 83 84 95 96])=2;
iprepost=([1:24 77:84 85:961);
[d_uh 1 ,p_uh 1 ,stats_uh 1 ]=manova 1 (total_uh(iprepost)',groupprepost(iprepost)')
[d_ch 1 ,p_ch 1l,stats_ch 1 ]=manova 1 (total_ch(iprepost)',groupprepost(iprepost)')

%group3
junk=(1:96)'
junk=setxor(junk,[72:75 I)
d_ch 1 ,p_ch 1 ,stats_ch 1 I=manova 1 (total_uh(junk,:),group2(junk))

[d_uh2,p_uh2,stats_uh2]=manoval(total_uh,group2)
Id_uh3 ,p_uh3 ,stats_uh3]=manova 1(total_uh,group3)

[d_utl,p_ut l,stats_utl] =manoval(total_ut,groupl)
[d_ut2,p_ut2,stats_ut2]=manova 1 (total_ut,group2)
[d_ut3,p_ut3,stats_ut3 ]=manova l(total_ut,group3)

[d_ch 1 ,p_ch 1 ,stats_ch 1 ]=manova 1 (total_ch(firsttentests),group 1 (firsttentests))
[d_ch2,p_ch2,stats_ch2]=manova 1 (total_ch,group2)
id_ch3 ,p_ch3, stats_ch3 1=manova 1 (total_ch,group3)

Id_ctl,p_ctl,stats_ctl I=manoval(total_ct,groupl)
Id_ct2,p_ct2,stats_ct2]=manoval(total_ct,group2)
[d_ct3,p_ct3,stats_ct3 1=manoval(total_ct,group3)
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[d_uh l,p_uh 1,stats_uh 1 ]=manova 1 (total_uh,group 1)
[d_uh2,p_uh2,stats_uh2]=manova I(total_uh,group2)
[d_uh3,p_uh3,stats_uh3]=manova 1 (total_uh,group3)

[d_ut l,p_utl ,stats_ut 1 ]=manova 1 (total_ut,group 1)
[d_ut2 , p_ut2,stats_ut2]=manova l(total_ut,group2)
[d_ut3,p_ut3,stats_ut3 ]=manova 1 (total_ut,group3)

[d_chl,p_ch l,stats_chl ]=manoval(total_ch,groupl)
[d_ch2,pch2,stats_ch2]=manova 1 (total_ch,group2)
[I d_ch3 ,p_ch3 ,stats_ch3 I=manova 1 (total_ch,group3)

[d_ctl,p_ctl,stats_ctl I=manoval (total_ct,groupl)
[d_ct2,p_ct2,stats_ct2 I=manova l(total_ct,group2)
[d_ct3,p_ct3,stats_ct3 ]=manova 1 (total_ct,group3)

%Test 11
clear a b
%Light
a( 1,1 )=real(complex_uh(3,11));
a(2,1)=real(complex_uh(4,11));
a(3,1)=real(complex_uh(5,11));
a(4, 1 )=real(complex_uh(6, 11));
a(1,2)=imag(complex_uh(3,11));
a(2,2)=imag(complex_uh(4,11));
a(3,2)=imag(complex_uh(5,11));
a(4,2)=imag(complex_uh(6,11));
%Dark
a(5, 1)=real(complex_uh( 1,11));
a(6, 1)=real(complex_uh(2, 11));
a(7, 1)=real(complex_uh(7,11));
a(8,1)=real(complex_uh(8,11));
a(5,2)=imag(complex_uh(1,11));
a(6,2)=imag(complex_uh(2,11));
a(7,2)=imag(complex_uh(7,11));
a(8,2)=imag(complex_uh(8,11));

b(1:4)={'Light'};
b(5:8)={'Dark'};

[d,p,stats I=manoval (a,b)
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%Test 5
clear a b
%Light
a( 1,1 )=real(complex_uh(3,6));
a(2,1 )=real(complex_uh(4,6));
a(3, 1)=real(complex_uh(5,6));
a(4, 1)=real(complex_uh(6,6));
a(1,2)=imag(complex_uh(3,6));
a(2,2)=imag(complex_uh(4,6));
a(3,2)=imag(complex_uh(5,6));
a(4,2)=imag(complex_uh(6,6));
%Dark
a(5,1 )=real(complex_uh(1,6));
a(6,1 )=real(complex_uh(2,6));
a(7, 1)=real(complex_uh(7,6));
a(8, 1)=real(complex_uh(8,6));
a(5,2)=imag(complex_uh(1,6));
a(6,2)=imag(complex_uh(2,6));
a(7,2)=imag(complex_uh(7,6));
a(8,2)=imag(complex_uh(8,6));

b(1:4)={'Light'};
b(5:8)={'Dark'};

[d,p,stats]=manoval (a,b)

if q=='Y'
%Graphs
figure('Name','Light vs. Dark Uncorrected Horizontal','NumberTitle','off');
tests=1: 12;
subplot(2,1,1)
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errorbar(tests,cf*gain_uh_light,cf*gainlightse(:, ),'o-','Color',[0.5 0.5 0.5])
hold on
errorbar(tests,cf*gain_uh_dark,cf*gaindarkse(:, 1),'k:*')
X1=[4.5 4.5];
Y 1=[-12 30];
line(X1,Y 1,'Color',[0.7 0.7 0.7],'LineWidth',1,'LineStyle',':')
X2=[8.5 8.5];
Y2=[-12 30];
line(X2,Y2,'Color',[0.7 0.7 0.7],'LineWidth', 1,'LineStyle',':')
text(2,25,'Day 1')
hold on
text(6,25,'Day 2')
hold on
text(10.5,25,'Day 3')
legend('Light','Dark','Location',([0.8 0.815 .03 .02]))
legend('boxoff)
axis([0 13 -12 30])
text(-1.8,9,{'H VOR';' 1f/s]'})
title('Uncorrected Horizontal VOR vs. Test')

for i=1:12
if phase_uhlight(i)<0,phase_uh_light(i)=phase_uh_light(i)+360;end
end
for i=1:12
if phase_uh_dark(i)<0,phase_uh_dark(i)=phaseuhdark(i)+360;end
end

subplot(2,1,2)
errorbar(tests,phase_uh_light,phaselightse(:, 1),'o-','Color',[0.5 0.5 0.5])
hold on
errorbar(tests,phase_uh_dark,phasedark_se(:,1),'k:*')
hold on
line(X1,Y 1,'Color',[0.7 0.7 0.7],'LineWidth', ,'LineStyle',':')
line(X2,Y2,'Color',[0.7 0.7 0.7I,'LineWidth',l,'LineStyle',':')
text(-2, 150,{'Phase';' Ifl'})
X1=[4.5 4.5];
Y 1=[-100 400];
line(X1,Y 1,'Color',[0.7 0.7 0.7I,'LineWidth', ,'LineStyle',':')
X2=[8.5 8.51;
Y2=[-100 400];
line(X2,Y2,'Color',[0.7 0.7 0.7 I,'LineWidth',l,'LineStyle',':')
title('Uncorrected Horizontal Phase vs. Test')
xlabel('Test')
axis([0 13 0 500])
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figure('Name','Light vs. Dark Uncorrected Torsional','NumberTitle','off');
tests=1: 12;
subplot(2,1,1)
errorbar(tests,cf*gain_ut_light,cf*gain_lightse(:,2),'o-','Color',10.5 0.5 0.5])
hold on
errorbar(tests,cf*gain ut_dark,cf*gain_dark_se(:,2),'k:*')
X1=[4.5 4.51;
Y 1=[0 cf];
line(X 1,Y 1,'Color',[0.7 0.7 0.7],'LineWidth', l,'LineStyle',':')
X2=[8.5 8.5];
Y2=[0 cfl;
line(X2,Y2,'Color',[0.7 0.7 0.71,'LineWidth', 1,'LineStyle',':')
text(2,55,'Day 1')
hold on
text(6,55,'Day 2')
hold on
text(10.5,55,'Day 3')
text(-1.8,30,{'T VOR';' IL/s]'})
legend('Light','Dark','Location',([0.8 0.82 .03 .021))
legend('boxoff)
axis([0 13 0 cfl)
text(13.2,0,'0')
text(13.2,10,'0.16')
text(13.2,20,'0.32')
text(13.2,30,'0.48')
text(13.2,40,'0.64')
text(13.2,50,'0.80')
text(13.2,60,'0.96')
axis([0 13 0 cfl)
text(14.3, 37,'Gain', 'rotation',-90)
title('Uncorrected Torsional Amplitude vs. Test')

for i=1:12
if phase utlight(i)<0,phase_ut_light(i)=phaseutlight(i)+360;end
end
for i=1:12
if phase utdark(i)<0,phaseutdark(i)=phase ut dark(i)+360;end
end

for i=1:12
if phase_ut_light(i)>300,phase_ut_light(i)=phaseutlight(i)-360;end
end
for i=1:12
if phaseutdark(i)>300,phaseut_dark(i)=phaseutdark(i)-360;end
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end

subplot(2,1,2)
errorbar(tests,phase_ut_light,phase_lightse(:,2),'o-','Color',[0.5 0.5 0.511)
hold on
errorbar(tests,phaseut dark,phase_dark_se(:,2),'k:*')
hold on
line(X1,Y 1,'Color',[0.7 0.7 0.7],'LineWidth',1,'LineStyle',':')
line(X2,Y2,'Color',[0.7 0.7 0.7],'LineWidth', 1 ,'LineStyle',':')
text(-2,0,{'Phase';' [fl'})
X1=[4.5 4.5];
Y 1=[-25 251;
line(X 1,Y 1,'Color', [0.7 0.7 0.7j,'LineWidth', 1,'LineStyle',':')
X2=[8.5 8.5];
Y2=[-25 251;
line(X2,Y2,'Color',[0.7 0.7 0.7],'LineWidth',1,'LineStyle',':')
axis(I0 13 -25 25])
title('Uncorrected Torsional Phase vs. Test')
xlabel('Test')

figure('Name','Light vs. Dark Corrected Horizontal','NumberTitle','off');
tests=1: 12;
subplot(2,1,1)
errorbar(tests,cf*gain_ch_light,cf*gain_lightse(:,3),'o-','Color', [0.5 0.5 0.5])
hold on
errorbar(tests,cf* gain ch_dark,cf*gain_dark_se(:,3),'k:*')
X 1=[4.5 4.5];
Y 1=[-12 3011;
line(X1,Y 1,'Color',[0.7 0.7 0.7],'LineWidth',1,'LineStyle',':')
X2=[8.5 8.5];
Y2=[-12 30];
line(X2,Y2,'Color',[0.7 0.7 0.7 j,'LineWidth',l,'LineStyle',':')
text(2,25,'Day 1')
hold on
text(6,25,'Day 2')
hold on
text(10.5,25,'Day 3')
legend('Light','Dark','Location',(10.8 0.815 .03 .021))
legend('boxoff')
axis([0 13 -12 30])
text(-1.8,9,{'H VOR';' If/sJ'})
title('Corrected Horizontal VOR vs. Test')
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for i=1:12
if phase_ch_li ght(i)<0,phase_ch_li ght(i)=phase_ch_li ght(i)+3 60;end
end
for i=1:12
if phase_ch_dark(i)<0,phase_ch_dark(i)=phasechdark(i)+360;end
end

subplot(2,1,2)
errorbar(tests,phase_ch_light,phase_lightse(:,3),'o-','Color',j0.5 0.5 0.51)
hold on
errorbar(tests,phase_ch_dark,phase_dark_se(:,3),'k:*')
hold on
line(X 1,Y 1 ,'Color',10.7 0.7 0.7 j,'LineWidth', 1,'LineStyle',':')
line(X2,Y2,'Color',10.7 0.7 0.71,'LineWidth',l,'LineStyle',':')
text(-2,150, {'Phase';' Ill'})
X1=14.5 4.5 1;
Y 1=I- 100 4001;
line(X1,Y 1,'Color',[0.7 0.7 0.7],'LineWidth', 1,'LineStyle',':')
X2=[8.5 8.51;
Y2=1-100 4001;
line(X2,Y2,'Color',[0.7 0.7 0.7],'LineWidth',1,'LineStyle',':')
title('Corrected Horizontal Phase vs. Test')
xlabel('Test')
axis([0 13 0 500])

figure('Name','Light vs. Dark Corrected Torsional','NumberTitle','off);
tests=1: 12;
subplot(2,1,1)
errorbar(tests,cf* gainctlight,cf* gain_light_se(:,4),'o-','Color', 10.5 0.5 0.51)
hold on
errorbar(tests,cf*gain_ct_dark,cf* gain_darkse(:,4),'k:*')
X1=14.5 4.5];
Y 1=[0 cf ;
line(X1,Y 1,'Color',J0.7 0.7 0.7 j,'LineWidth', ,'LineStyle',':')
X2=[8.5 8.51;
Y2=[0 cf1;
line(X2,Y2,'Color',[0.7 0.7 0.7 1,'LineWidth', ,'LineStyle',':')
text(2,55,'Day 1')
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hold on
text(6,55,'Day 2')
hold on
text(10.5,55,'Day 3')
text(-1.8,30,{'T VOR';' If/sI'})
legend('Light','Dark','Location',([0.8 0.82 .03 .021))
legend('boxoff')
axis([0 13 0 cfl)
text( 13.2,0,'0')
text(13.2,10,'0.16')
text( 13.2,20,'0.32')
text(13.2,30,'0.48')
text( 13.2,40,'0.64')
text(13.2,50,'0. 80')
text( 13.2,60,'0.96')
axis([0 13 0 cf])
text(14.3, 37,'Gain', 'rotation',-90)
title('Corrected Torsional Amplitude vs. Test')

for i=1:12
if phasectlight(i)<0,phase_ct_light(i)=phase ctlight(i)+360;end
end
for i=1:12
if phasectdark(i)<0,phasectdark(i)=phasectdark(i)+360;end
end

for i=1:12
if phasectlight(i)>300,phase_ctlight(i)=phase ctlight(i)-360;end
end
for i=1:12
if phasectdark(i)>300,phase ct dark(i)=phase ct dark(i)-360;end
end

subplot(2,1,2)
errorbar(tests,phasect light,phase_lightse(:,4),'o-','Color',[0.5 0.5 0.5])
hold on
errorbar(tests,phasectdark,phase_dark_se(:,4),'k:*')
hold on
line(X1,Y 1,'Color',[0.7 0.7 0.7],'LineWidth',1,'LineStyle',':')
line(X2,Y2,'Color',[0.7 0.7 0.7],'LineWidth', 1,'LineStyle',':')
text(-2,0,{'Phase';' IPf'})
X 1=14.5 4.5 1;
Y 1=[-25 251;
line(X 1,Y 1,'Color',l0.7 0.7 0.7 j,'LineWidth', 1,'LineStyle',':')
X2=[8.5 8.51;
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Y2=[-25 25];
line(X2,Y2,'Color',[0.7 0.7 0.7],'LineWidth',l,'LineStyle',':')
axis([0 13 -25 251)
title('Corrected Torsional Phase vs. Test')
xlabel('Test')

figure('Name','Exp vs. Naive Uncorrected Horizontal','NumberTitle','off');
tests=1: 12;
subplot(2,1,1)
errorbar(tests,cf*gain_uh_exp,cf*gain_expse(:,1),'o-','Color',[0.5 0.5 0.5])
hold on
errorbar(tests,cf* gain_uh_nve,cf*gain_nvese(:,1),'k:*')
X 1=14.5 4.51;
Y 1=[-12 301;
line(X 1,Y 1,'Color',|0.7 0.7 0.7 ,'LineWidth',1,'LineStyle',':')
X2=[8.5 8.5];
Y2=[-12 30];
line(X2,Y2,'Color',[0.7 0.7 0.71,'LineWidth',l,'LineStyle',':')
text(2,25,'Day 1')
hold on
text(6,25,'Day 2')
hold on
text(10.5,25,'Day 3')
legend('Exp','Nve','Location',([0.8 0.815 .03 .021))
legend('boxoff')
axis(I0 13 -12 301)
text(-1.8,9,{'H VOR';' If/s]'})
title('Uncorrected Horizontal VOR vs. Test')

for i=1:12
if phase_uh_exp(i)<0,phase_uh_exp(i)=phase_uh_exp(i)+360;end
end
for i= 1:12
if phase_uh_nve(i)<0,phase_uh_nve(i)=phase_uhnve(i)+360;end
end

subplot(2,1,2)
errorbar(tests,phase_uh_exp,phase_exp_se(:, 1),'o-','Color', 10.5 0.5 0.51)
hold on
errorbar(tests,phase_uh_nve,phase_nve_se(:,1),'k:*')
hold on
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line(X1,Y 1,'Color',[0.7 0.7 0.7],'LineWidth',1,'LineStyle',':')
line(X2,Y2,'Color',[0.7 0.7 0.7],'LineWidth',l,'LineStyle',':')
text(-2,150,{'Phase';' [f'})
X 1=[4.5 4.5];
Y 1= [-100 400];
line(X 1,Y1,'Color',[0.7 0.7 0.7],'LineWidth', 1,'LineStyle',':')
X2=[8.5 8.5];
Y2=[-100 400];
line(X2,Y2,'Color',[0.7 0.7 0.7],'LineWidth', 1,'LineStyle',':')
title('Uncorrected Horizontal Phase vs. Test')
xlabel('Test')
axis([0 13 -100 5001)

figure('Name','Exp vs. Naive Uncorrected Torsional','NumberTitle','off);
tests=1: 12;
subplot(2,1,1)
errorbar(tests,cf*gain utexp,cf*gain_exp_se(:,2),'o-','Color',[0.5 0.5 0.5])
hold on
errorbar(tests,cf* gain_ut_nve,cf* gain_nve_se(:,2),'k:*')
X 1=[4.5 4.5];
YI=[0 cf];
line(X 1,Y 1,'Color',[0.7 0.7 0.7 j,'LineWidth', l,'LineStyle',':')
X2=[8.5 8.51;
Y2=[0 cf];
line(X2,Y2,'Color',[0.7 0.7 0.7],'LineWidth',l,'LineStyle',':')
text(2,55,'Day 1')
hold on
text(6,55,'Day 2')
hold on
text(10.5,55,'Day 3')
text(-1.8,30,{'T VOR';' [f/s]'})
legend('Exp','Nve','Location',([0.8 0.83 .03 .02]))
legend('boxoff')
axis([0 13 0 cf])
text(13.2,0,'0')
text(13.2, 10,'0.16')
text( 13.2,20,'0.32')
text(13.2,30,'0.48')
text(1 3.2,40,'0.64')
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text(13.2,50,'0.80')
text(13.2,60,'0.96')
axis([0 13 0 cfl)
text(14.3, 37,'Gain', 'rotation',-90)
title('Uncorrected Torsional Amplitude vs. Test')

for i=1:12
if phaseutexp(i)<0,phaseutexp(i)=phase ut_exp(i)+360;end
end
for i=1:12
if phaseut exp(i)>300,phaseutexp(i)=phaseutexp(i)-360;end
end
for i=1:12
if phase_utnve(i)<0,phaseutnve(i)=phase utnve(i)+360;end
end
for i=1:12
if phaseutnve(i)>300,phaseutnve(i)=phase ut nve(i)-360;end
end

subplot(2,1,2)
errorbar(tests,phaseutexp,phase_exp_se(:,2),'o-','Color',[0.5 0.5 0.51)
hold on
errorbar(tests,phaseutnve,phase_nve_se(:,2),'k:*')
hold on
line(X1,Y 1,'Color',[0.7 0.7 0.7],'LineWidth',l ,'LineStyle',':')
line(X2,Y2,'Color',[0.7 0.7 0.71,'LineWidth',l,'LineStyle',':')
text(-2,0,{'Phase';' [JI'})
X1=[4.5 4.51;
Y 1=[-25 251;
line(X 1,Y 1,'Color',[0.7 0.7 0.7],'LineWidth', 1,'LineStyle',':')
X2=[8.5 8.5 1;
Y2= [-25 251;
line(X2,Y2,'Color',[0.7 0.7 0.71,'LineWidth',1,'LineStyle',':')
axis([0 13 -25 251)
title('Uncorrected Torsional Phase vs. Test')
xlabel('Test')

figure('Name','Exp vs. Naive Corrected Horizontal','NumberTitle','off);
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tests= 1: 12;
subplot(2,1,1)
errorbar(tests,cf*gain_ch_exp,cf*gain_exp_se(:,3),'o-','Color',[0.5 0.5 0.5])
hold on
errorbar(tests,cf*gain_ch_nve,cf*gain_nve_se(:,3),'k:*')
X1=[4.5 4.5];
Y 1=[-12 30];
line(X1,Y 1,'Color',[0.7 0.7 0.7],'LineWidth', 1,'LineStyle',':')
X2=[8.5 8.5];
Y2=[-12 30];
line(X2,Y2,'Color',[0.7 0.7 0.7],'LineWidth', 1,'LineStyle',':')
text(2,25,'Day 1')
hold on
text(6,25,'Day 2')
hold on
text(10.5,25,'Day 3')
legend('Exp','Nve','Location',([0.8 0.823 .03 .021))
legend('boxoff')
axis([0 13 -12 30])
text(-1.8,9,{'H VOR';' If/s]'})
title('Corrected Horizontal VOR vs. Test')

for i=1:12
if phase_ch_exp(i)<0,phasechexp(i)=phase_ch_exp(i)+360;end
end

for i=1:12
if phase_ch_nve(i)<50,phase_ch_nve(i)=phase_ch_nve(i)+360;end
end

subplot(2,1,2)
errorbar(tests,phase_ch_exp,phase_exp_se(:,3),'o-','Color',[0.5 0.5 0.51)
hold on
errorbar(tests,phase_ch_nve,phase_nve_se(:,3),'k:*')
hold on
line(X 1,Y 1,'Color',[0.7 0.7 0.7]j,'LineWidth', 1,'LineStyle',':')
line(X2,Y2,'Color',[0.7 0.7 0.7],'LineWidth',1,'LineStyle',':')
text(-2,150,{'Phase';' If]'})
X1=[4.5 4.5];
YI=i-100 400];
line(X I1,Y 1,'Color',[0.7 0.7 0.7],'LineWidth', l,'LineStyle',':')
X2=[8.5 8.51;
Y2=[-100 400];
line(X2,Y2,'Color',[0.7 0.7 0.7J,'LineWidth', 1 ,'LineStyle',':')
title('Corrected Horizontal Phase vs. Test')
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xlabel('Test')
axis(10 13 -100 500])

figure('Name','Exp vs. Naive Corrected Torsional','NumberTitle','off');
tests=1: 12;
subplot(2,1,1)
errorbar(tests,cf*gainctexp,cf*gain_exp_se(:,4),'o-','Color',[0.5 0.5 0.5])
hold on
errorbar(tests,cf*gain_ctnve,cf*gain_nve_se(:,4),'k:*')
X1=[4.5 4.5];
Y 1=[0 cfl;
line(X1,Y1,'Color',10.7 0.7 0.71,'LineWidth',1,'LineStyle',':')
X2=[8.5 8.51;
Y2=[0 cf l;
line(X2,Y2,'Color',[0.7 0.7 0.7 j,'LineWidth',1,'LineStyle',':')
text(2,55,'Day 1')
hold on
text(6,55,'Day 2')
hold on
text(10.5,55,'Day 3')
text(-1.8,30,{'T VOR';' If/s]'})
legend('Exp','Nve','Location',([0.8 0.83 .03 .02]))
legend('boxoff)
axis([0 13 0 cfl)
text(13.2,0,'0')
text(13.2,10,'0. 16')
text( 13.2,20,'0.32')
text(13.2,30,'0.48')
text(13.2,40,'0.64')
text(13.2,50,'0.80')
text( 13.2,60,'0.96')
axis([0 13 0 cfj)
text(14.3, 37,'Gain', 'rotation',-90)
title('Corrected Torsional Amplitude vs. Test')

for i=1:12
if phase_ctexp(i)<0,phasectexp(i)=phase ctexp(i)+360;end
end
for i=1:12
if phase_ctexp(i)>300,phase_ctexp(i)=phase ct exp(i)-360;end
end

for i=1:12
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if phasectnve(i)<0,phase_ctnve(i)=phase ct_nve(i)+360;end
end
for i=1:12
if phasectnve(i)>300,phase_ctnve(i)=phase ct nve(i)-360;end
end

subplot(2,1,2)
errorbar(tests,phasectexp,phase_exp_se(:,4),'o-','Color',[0.5 0.5 0.5])
hold on
errorbar(tests,phasectnve,phase_nve_se(:,4),'k:*')
hold on
line(X I1,Y 1,'Color',[0.7 0.7 0.7 ],'LineWidth', 1 ,'LineStyle',':')
line(X2,Y2,'Color',[0.7 0.7 0.7-1,'LineWidth', ,'LineStyle',':')
text(-2,0,{'Phase';' I[f'})
X 1=[4.5 4.5];
Y 1=[-25 25];
line(X1,Y 1,'Color',[0.7 0.7 0.7],'LineWidth',l,'LineStyle',':')
X2=[8.5 8.5];
Y2=[-25 25];
line(X2,Y2,'Color',[0.7 0.7 0.7 j,'LineWidth', 1,'LineStyle',':')
axis([0 13 -25 25])
title('Corrected Torsional Phase vs. Test')
xlabel('Test')

figure('Name','Light vs. Dark Uncorrected Horizontal Day','NumberTitle','off');
days=1:3;
subplot(2,1,1)
errorbar(days,cf*gain_light_day(:,1),cf*gain_light_day_se(:, 1),'o-','Color',[0.5 0.5 0.51)
hold on
errorbar(days,cf*gain_dark_day(:, 1 ),cf*gaindark_day_se(:,1),'k:*')
text(0.1,7.5,{'H VOR';' [f/s]'})
legend('Light','Dark','Location',(10.8 0.83 .03 .021))
legend('boxoff')
title('Uncorrected Horizontal Amplitude vs. Day')
axis([0.5 3.5 0 151)

for i=1:3
if phase_light_day(i, 1 )<0,phase_light_day(i, 1 )=phase_light_day(i, 1)+360;end
end
for i=1:3
if phase_light_day(i,1)>300,phase_light_day(i,1)=phase_light_day(i,1)-360;end
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end

for i=1:3
if phase_dark_day(i,1)<0,phase_dark_day(i,1)=phase_dark_day(i,1)+360;end
end
for i=1:3
if phase_dark_day(i, 1)>300,phase_dark_day(i,1)=phase_arkda ay(i,1)-360;end
end

subplot(2,1,2)
errorbar(days,phase_light_day(:, 1 ),phase_light_day_se(:, 1 ),'o-','Color',[0.5 0.5 0.5])
hold on
errorbar(days,phase_dark_day(:, 1),phase_dark_day_se(:, 1),'k: *')
title('Uncorrected Horizontal Phase vs. Day')
xlabel('Days')
text(0. 1,250,{'Phase';' If/sj'})
axis([0.5 3.5 150 3501)

%%%%%%%%

figure('Name','Light vs. Dark Uncorrected Torsional Day','NumberTitle','off');
days=1:3;
subplot(2,1,1)
errorbar(days,cf*gain-lightday(:,2),cf*gain_light-dayse(:,2),'o-','Color', [0.5 0.5 0.51)
hold on
errorbar(days,cf*gain_dark_day(:,2),cf*gain_dark_day_se(:,2),'k:*')
text(0.1,25,{'T VOR';' If/sI'})
legend('Light','Dark','Location',([0.81 0.78.03 .021))
legend('boxoff')
title('Uncorrected Torsional Amplitude vs. Day')
text(3.53,10,'0. 16')
text(3.53,15,'0.24')
text(3.53,20,'0.32')
text(3.53,25,'0.40')
text(3.53,30,'0.48')
text(3.53,35,'0.56')
text(3.53,40,'0.62')
text(3.8,29,'Gain', 'rotation',-90)
axis(10.5 3.5 10 40])

for i=1:3
if phase_light_day(i,2)<0,phase_light_day(i,2)=phase_light_day(i,2)+360;end
end
for i=1:3
if phase_light_day(i,2)>300,phase_light_day(i,2)=phase_light_day(i,2)-360;end
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end

for i= 1:3
if phase_dark_day(i,2)<0,phase_dark_day(i,2)=phase_dark_day(i,2)+360;end
end
for i=1:3
if phase_dark_day(i,2)>300,phase_dark_day(i,2)=phase_dark_day(i,2)-360;end
end

subplot(2,1,2)
errorbar(days,phase_light_day(:,2),phase_light_day_se(:,2),'o-','Color',[0.5 0.5 0.51)
hold on
errorbar(days,phase_dark_day(:,2),phase_dark_day_se(: ,2),'k: *')
title('Uncorrected Torsional Phase vs. Day')
xlabel('Days')
text(0. 1,2.5,{'Phase';' f/s]'})
axis([0.5 3.5 -5 101)

%%%%%%%

figure('Name','Light vs. Dark Corrected Horizontal Day','NumberTitle','off);
days=1:3;
subplot(2,1,1)
errorbar(days,cf*gain_lightday(:,3),cf*gain_lightday_se(:,3),'o-','Color', [0.5 0.5 0.5])
hold on
errorbar(days,cf*gain_dark_day(:,3),cf*gain_dark_day_se(:,3),'k:*')
text(0.1,7.5,('H VOR';' If/s]'})
legend('Light','Dark','Location',([0.8 0.83 .03 .02]))
legend('boxoff')
title('Corrected Horizontal Amplitude vs. Day')
axis([0.5 3.5 0 151)

for i=1:3
if phase_light_day(i,3)<0,phase_lightday(i,3)=phaselightday(i,3)+360;end
end
for i=1:3
if phase_lightday(i,3)>300,phase_light_day(i,3)=phase_light day(i,3)-360;end
end

for i=1:3
if phase_dark_day(i,3)<0,phase_dark_day(i,3)=phase _d day(i,3)+360;end
end
for i=1:3
if phasedarkday(i,3)>300,phase_dark_day(i,3)=phase dark day(i,3)-360;end
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end

subplot(2,1,2)
errorbar(days,phase_light_day(:,3),phase_light_day_se(:,3),'o-','Color',[0.5 0.5 0.51)
hold on
errorbar(days,phase_dark_day(:,3),phase_dark_day_se(:,3),'k:*')
title('Corrected Horizontal Phase vs. Day')
xlabel('Days')
text(0. 1,250,{'Phase';' Lf/s]'})
axis(10.5 3.5 150 350.1)

%%%%%%%

figure('Name','Light vs. Dark Corrected Torsional Day','NumberTitle','off');
days=1:3;
subplot(2,1,1)
errorbar(days,cf*gain_light_day(:,4),cf*gain_light_day_se(:,4),'o-','Color',[0.5 0.5 0.5])
hold on
errorbar(days,cf*gain_dark_day(:,4),cf*gain_dark_day_se(:,4),'k:*')
text(0.1,25,{'T VOR';' [f/s]'})
legend('Light','Dark','Location',([0.8 0.76 .03 .02]))
legend('boxoff)
title('Corrected Torsional Amplitude vs. Day')
text(3.53,10,'0. 16')
text(3.53,15,'0.24')
text(3.53,20,'0.32')
text(3.53,25,'0.40')
text(3.53,30,'0.48')
text(3.53,35,'0.56')
text(3.53,40,'0.62')
text(3.8,29,'Gain', 'rotation',-90)
axis([0.5 3.5 10 401)

for i=1:3
if phase_lightday(i,4)<0,phase_light_day(i,4)=phase_light_day(i,4)+360;end
end
for i=1:3
if phase_light_day(i,4)>300,phase_light_day(i,4)=phase_light_day(i,4)-360;end
end

for i=1:3
if phase_dark_day(i,4)<0,phase_dark_day(i,4)=phasedark_day(i,4)+360;end
end
for i=1:3
if phase_dark_day(i,4)>300,phase_dark_day(i,4)=phase_dark_day(i,4)-360;end
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end

subplot(2,1,2)
errorbar(days,phase_light_day(:,4),phase_lightday_se(:,4),'o-','Color',[0.5 0.5 0.51)
hold on
errorbar(days,phase_dark_day(:,4),phase darkday_se(:,4),'k: *')
title('Corrected Torsional Phase vs. Day')
xlabel('Days')
text(0. 1,2.5,{'Phase';' If/s1'})
axis([0.5 3.5 -5 101)

%%%%%%%

figure('Name','Experienced vs. Naive Uncorrected Horizontal Day','NumberTitle','off');
days=1:3;
subplot(2,1,1)
errorbar(days,cf*gain_exp_day(:, 1),cf*gain_exp_day_se(:, 1),'o-','Color',[0.5 0.5 0.5])
hold on
errorbar(days,cf*gainnveday(:, 1),cf*gain_nve_day_se(:, 1),'k: *')
text(0.1,7.5,{'H VOR';' [f/s]'})
legend('Exp','Naive','Location',([0.8 0.83 .03 .02]))
legend('boxoff')
title('Uncorrected Horizontal Amplitude vs. Day')
axis([0.5 3.5 0 151)

for i=1:3
if phase_exp_day(i, 1)<0,phase_exp_day(i, 1)=phase_exp_day(i, 1)+360;end
end
for i=1:3
if phase_exp_day(i, 1 )>300,phase_exp_day(i, 1 )=phase_exp_day(i, 1)-360;end
end

for i=1:3
if phase_nve_day(i, 1)<0,phase_nve_day(i,1)=phase_nve_day(i,1)+360;end
end
for i=1:3
if phase_nve_day(i, 1)>300,phase_nve_day(i, 1)=phase_nve_day(i,1)-360;end
end

subplot(2,1,2)
errorbar(days,phase_exp_day(:, 1 ),phase_exp_day_se(:, 1 ),'o-','Color',[0.5 0.5 0.51)
hold on
errorbar(days,phasenve_day(:, 1),phase_nve_day_se(:, 1),'k:*')
title('Uncorrected Horizontal Phase vs. Day')
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xlabel('Days')
text(0. 1,250,{'Phase';' [f/s]'})
axis(I0.5 3.5 150 350])

%%%%%%%%

figure('Name','Experienced vs. Naive Uncorrected Torsional Day','NumberTitle','off);
days=1:3;
subplot(2,1,1)
errorbar(days,cf*gain_exp_day(:,2),cf*gain_exp_day_se(:,2),'o-','Color', [0.5 0.5 0.51)
hold on
errorbar(days,cf*gain_nve_day(:,2),cf*gain_nve_day_se(:,2),'k:*')
text(0.1,25,{'T VOR';' If/s]'})
legend('Exp','Naive','Location',([0.8 0.67 .03 .02]))
legend('boxoff)
title('Uncorrected Torsional Amplitude vs. Day')
text(3.53,10,'0. 16')
text(3.53,15,'0.24')
text(3.53,20,'0.32')
text(3.53,25,'0.40')
text(3.53,30,'0.48')
text(3.53,35,'0.56')
text(3.53,40,'0.62')
text(3.8,29,'Gain', 'rotation',-90)
axis([0.5 3.5 10 401)

for i=1:3
if phase_exp_day(i,2)<0,phase_exp_day(i,2)=phase_exp_day(i,2)+360;end
end
for i=1:3
if phase_exp_day(i,2)>300,phase_exp_day(i,2)=phase_exp_day(i,2)-360;end
end

for i=1:3
if phase_nve_day(i,2)<0,phase_nve_day(i,2)=phase_nve_day(i,2)+360;end
end
for i=1:3
if phase_nve_day(i,2)>300,phase_nve_day(i,2)=phasenveday(i,2)-360;end
end

subplot(2,1,2)
errorbar(days,phase_exp_day(:,2),phase_exp-dayse(:,2),'o-','Color',[0.5 0.5 0.51)
hold on
errorbar(days,phase_nve_day(:,2),phase_nveday_se(:,2),'k:*')
title('Uncorrected Torsional Phase vs. Day')
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xlabel('Days')
text(0.1,2.5,{'Phase';' [J/s]'})
axis([0.5 3.5 -5 10])

%%%%%%%

figure('Name','Experienced vs. Naive Corrected Horizontal Day','NumberTitle','off);
days=1:3;
subplot(2,1,1)
errorbar(days,cf*gain_exp_day(:,3),cf*gain_exp_day_se(:,3),'o-','Color',[0.5 0.5 0.51)
hold on
errorbar(days,cf*gain_nve_day(:,3),cf*gain_nve_day_se(:,3),'k:*')
text(0.1,7.5,('H VOR';' If/s]'})
legend('Exp','Naive','Location',([0.8 0.83 .03 .021))
legend('boxoff )
title('Corrected Horizontal Amplitude vs. Day')
axis([0.5 3.5 0 15])

for i=1:3
if phase_exp_day(i,3)<0,phaseexpay(i)phaseday(i,3) +360;end
end
for i=1:3
if phase_exp_day(i,3)>300,phase_expday(i,3)=phase_exp_day(i,3)-360;end
end

for i=1:3
if phase_nve_day(i,3)<0,phasenveday(i,3)=phasenveday(i,3)+360;end
end
for i=1:3
if phase_nve_day(i,3)>300,phase_nve_day(i,3)=phasenve_day(i,3)-360;end
end

subplot(2,1,2)
errorbar(days,phase_expday(:,3),phase_exp_day_se(:,3),'o-','Color',[0.5 0.5 0.5])
hold on
errorbar(days,phase_nveday(:,3),phase_nveday se(:,3),'k:*')
title('Corrected Horizontal Phase vs. Day')
xlabel('Days')
text(0. 1,250,{'Phase';' [f/s]'})
axis([0.5 3.5 150 350])

%%%%%%%

figure('Name','Experienced vs. Naive Corrected Torsional Day','NumberTitle','off);
days= 1:3;
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subplot(2,1,1)
errorbar(days,cf*gain_exp_day(:,4),cf*gain_exp_day_se(:,4),'o-','Color',[0.5 0.5 0.51)
hold on
errorbar(days,cf*gainnve_day(:,4),cf*gain_nve_day_se(:,4),'k:*')
text(0.1,25,{'T VOR';' If/s]'})
legend('Exp','Naive','Location',([0.8 0.65 .03 .02]))
legend('boxoff)
title('Corrected Torsional Amplitude vs. Day')
text(3.53,10,'0.16')
text(3.53,15,'0.24')
text(3.53,20,'0.32')
text(3.53,25,'0.40')
text(3.53,30,'0.48')
text(3.53,35,'0.56')
text(3.53,40,'0.62')
text(3.8,29,'Gain', 'rotation',-90)
axis([0.5 3.5 10 401)

for i=1:3
if phase_exp_day(i,4)<0,phase_expday(i,4)=phase_exp_day(i,4)+360;end
end
for i=1:3
if phase_exp_day(i,4)>300,phase_exp_day(i,4)=phase_expday(i,4)-360;end
end

for i=1:3
if phase_nve_day(i,4)<0,phase_nve_day(i,4)=phase_nve_day(i,4)+360;end
end
for i=1:3
if phase_nve_day(i,4)>300,phase_nve_day(i,4)=phase_nve_day(i,4)-360;end
end

subplot(2,1,2)
errorbar(days,phase_exp_day(:,4),phase_expday_se(:,4),'o-','Color',[0.5 0.5 0.51)
hold on
errorbar(days,phase_nve_day(:,4),phase_nve_day_se(:,4),'k:*')
title('Corrected Torsional Phase vs. Day')
xlabel('Days')
text(0. 1,2.5,{'Phase';' if/si'})
axis([0.5 3.5 -5 101)

tests=1: 12;
subplot(4,1,1)
plot(tests,(abs(gainuh_light-gain_uh_dark))*cf)
axis([0 13 0 601)
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set(gca,'XTickMode','manual')
set(gca,'XTick',[])
set(gca,'YTickMode','manual')
set(gca,'YTick',[0 601)
ylabel('Difference')
xlabel('Tests')
title('UH Difference if/s] vs. Test')
subplot(4,1,2)
plot(tests,(abs(gainutlight-gain_ut_dark))*cf)
axis([0 13 0 60])
set(gca,'XTickMode','manual')
set(gca,'XTick',ll)
set(gca,'YTickMode','manual')
set(gca,'YTick',[0 601)
ylabel('UH Differences If/s]')
xlabel('Tests')
ylabel('Difference')
title('UT Difference If/s] vs. Test')
subplot(4,1,3)
plot(tests,(abs(gain_ch_light-gain_ch_dark))*cf)
axis([0 13 0 60])
set(gca,'XTickMode','manual')
set(gca,'XTick',[l)
set(gca,'YTickMode','manual')
set(gca,'YTick',[0 60])
ylabel('UH Differences If/sj')
xlabel('Tests')
ylabel('Difference')
title('CH Difference If/si vs. Test')
subplot(4,1,4)
plot(tests,(abs(gainctlight-gain_ct_dark))*cf)
axis(I0 13 0 60])
set(gca,'XTickMode','manual')
set(gca,'XTick',[ll)
set(gca,'YTickMode','manual')
set(gca,'YTick',[0 601)
ylabel('UH Differences If/sl')
xlabel('Tests')
ylabel('Difference')
title('CT Difference Uf/s] vs. Test')

figure('Name','Regression Lines','NumberTitle','off);
tests= 1:12;
errorbar(tests,cf*gainut_dark,cf*gain_dark_se(:,2),'k:*')
hold on
x= 1:4;
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plot(x,(-5.5646*x)+42.9009)
hold on
x=4:5;
plot(x,(15.6400*x)-40.5584)
hold on
x=5:8;
plot(x,(-0.5056*x)+40. 1457)
hold on
x=8:9;
plot(x,(0.4997*x)+31.2956)
hold on
x=9: 12;
plot(x,(-1.9192*x)+53.6474)
ylabel('Uncorrected Torsional Amplitude')
xlabel('Tests')
legend('Actual Dark','Fitted Dark')
legend('boxoff')
axis(I[0 13 0 601)

figure('Name','Beginning vs. End Trends','NumberTitle','off');
tests=l 1 121;

subplot(2,2,1)
plot(tests,gain_uh_light(tests)*cf,'--','Color',[0.5 0.5 0.51)
hold on
plot(tests,gain_uh_dark(tests)*cf,'k-.')
hold on
plot(tests,gain_uh_exp(tests)*cf,'Color',[0.5 0.5 0.51)
hold on
plot(tests,gain_uh_nve(tests)*cf,'k:')
legend('Light','Dark','Exp','Nve');legend('boxoff)
axis([0 13 0 151)
set(gca,'XTickMode','manual')
set(gca,'XTick',Il 121)
text
title('Unorrected Horizontal')
ylabel('Amplitude')

subplot(2,2,2)
plot(tests,gain_ch_light(tests)*cf,'--','Color',[0.5 0.5 0.51)
hold on
plot(tests,gain_ch_dark(tests)*cf,'k-.')
hold on
plot(tests,gain_ch_exp(tests)*cf,'Color',[0.5 0.5 0.51)
hold on
plot(tests,gain_ch_nve(tests)*cf,'k:')
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axis([0 13 0 15])
set(gca,'XTickMode','manual')
set(gca,'XTick',[1 12])
title('Corrected Horizontal')
ylabel('Amplitude')

subplot(2,2,3)

plot(tests,gainutlight(tests)*cf,'--','Color',[0.5 0.5 0.5])
hold on
plot(tests,gain_ut_dark(tests)*cf,'k-.')
hold on
plot(tests,gainut_exp(tests)*cf,'Color',[0.5 0.5 0.51)
hold on
plot(tests,gain_ut_nve(tests)*cf,'k:')
axis([0 13 0 40])
set(gca,'XTickMode','manual')
set(gca,'XTick',[1 12])
title('Uncorrected Torsional')
ylabel('Amplitude')

subplot(2,2,4)
plot(tests,gainctlight(tests)*cf,'--','Color',[0.5 0.5 0.51)
hold on
plot(tests,gain ctdark(tests)*cf,'k-.')
hold on
plot(tests,gainct_exp(tests)*cf,'Color',10.5 0.5 0.5])
hold on
plot(tests,gain ct_nve(tests)*cf,'k:')
axis([O 13 0 401)
set(gca,'XTickMode','manual')
set(gca,'XTick', 1 121])
title('Corrected Torsional')
ylabel('Amplitude')

end
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Somatosensory Bar Plots

clear all

load /Volumes/Untitled/Motion_Experience/SSBar_Excel/SSBar3 .mat

cd /Volumes/Untitled/Analysis_Programs/

q=input('Show graphs? [Y/N]:','s');

%RPO=subject 1, AAR=subject 2, DMM=subject 3, FK=subject 4, MM=SUbject 5,
%JK=subject 6 SZ=subject 7, RCT=subject 8

%y_complex_all(subject,days,tests,movements,: 1 or 2)
%1 equals bar, 2=device

%Calculates the non-nan length of each MOVEMENT, e.g. calculates the number
%of used cycles in the MOVEMENT
for subject=1:8

for days= 1:3
for tests= 1:4

for movements= 1:2
new_length(subject,days,tests,movements)= 10-

length(find(isnan(y_complex_all(subject,days,tests,movements,:, 1))));
end

end
end

end

%Calculates the average complex value for each MOVEMENT
for subject=1:8

for days= 1:3
for tests= 1:4

for movements= 1:2
average_bar(subject,((days-1)*8)+((tests-

1 )*2)+movements)=nansum(squeeze(y_comple xall (subject,days,tests,movements,:, 1 )))/
new_length(subject,days,tests,movements);

average_device(subject,((days- 1)*8)+((tests-
1)*2)+movements)=nansum(squeeze(yc(omplexal (subject,daystests,movements,:,2)))/
new_length(subject,days,tests,movements);

end
end

end
end
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%Andrew,Jen,Suzanne
for subject=1:8

for movements= 1:2:23

complex_bar(subject,round(movements/2))=((average_bar(subject,movements)/average_
device(subject,movements))+(average_bar(subject,movements+ 1)/averagedevice(subjec
t,movements+l)))/2;

end
end

complex_bar(4,6)=average_bar(4,11)/average_device(4,11);
complex_bar(4,12)=average_bar(4,24)/average_device(4,24);
complex_bar(5,9)=average_bar(5,17)/average_device(5,17);
complex_bar(7,6)=average_bar(7,11)/average_device(7,11);

%Calculates light/dark, exp/naive gain, phase, amp for each TEST
for tests=1:12

gain-bar_light(tests)=abs((complexbar(3,tests)+complexbar(4,tests)+complex-bar(5,te
sts)+complex_bar(6,tests))/4);

phase_bar_light(tests)= 180/pi*angle((complex_bar(3,tests)+complexbar(4,tests)+compl
ex_bar(5,tests)+complex_bar(6,tests))/4);

gain-bar_exp(tests)=abs((complexbar(3,tests)+complex_bar(4,tests)+complexbar(1,tes
ts)+complex_bar(2,tests))/4);

phase_bar_exp(tests)= 1 80/pi*angle((complex_bar(3,tests)+complex_bar(4,tests)+comple
x_bar(1,tests)+complex_bar(2,tests))/4);

if tests== 12

gain_bar_dark(tests)=abs((complex_bar( 1 ,tests)+complex_bar(2,tests)+complex_bar(8,te
sts))/3);

phase_bar_dark(tests)= 180/pi *angle((complex_bar( 1,tests)+complex_bar(2,tests)+compl
ex_bar(8,tests))/3);
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gainbarnve(tests)=abs((complexbar(8,tests)+complexbar(5,tests)+complex-bar(6,tes
ts))/3);

phase_barnve(tests)= 1 80/pi*angle((complex_bar(8,tests)+complex_bar(5,tests)+comple
x_bar(6,tests))/3);

else

gainbardark(tests)=abs((complex-bar( ,tests)+complexbar(2,tests)+complexbar(7,te
sts)+complex_bar(8,tests))/4);

phase_bar_dark(tests)= 180/pi *angle((complex bar(1,tests)+complex_bar(2,tests)+compl
ex_bar(7,tests)+complex_bar(8,tests))/4);

gain_bar_n ve(tests)=abs((complex_bar(7,tests)+complex_bar(8,tests)+complex_bar(5,tes
ts)+complex_bar(6,tests))/4);

phase_bar_nve(tests)= 1 80/pi *angle((complex_bar(7,tests)+complex_bar(8,tests)+comple
x_bar(5,tests)+complex_bar(6,tests))/4);

end
end

%Light Standard Error
for tests= 1:12

A_real= [real(complex_bar(3,tests)),real(complex_bar(4,tests)),real(complex_bar(5,tests))
,real(complex_bar(6,tests)) I;

A_imag= imag(complex_bar(3 ,tests)),imag(complex_bar(4,tests)),imag(complexbar(5,t
ests)),imag(complex_bar(6,tests)) I;

A_complex = complex(A_real, A_imag);
A_mean = mean(A_complex, 2);
A_amp = abs(A_mean);

A_ph = 180/pi*atan2(imag(A_mean),real(A_mean));
cd /Volumes/Untitled/Analysis_Programs/
display = 0; % 1:display, O:no
e = []1; % e = [I: standard error, e = 1: standard deviation
A_std = f_covellips_wg(A_complex,e,display);

gain_light_se(tests) = A_std(1);
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phase_light_se(tests) = A_std(2) * 180/pi;
end

%Dark Standard Error
for tests= 1:12

if tests== 12

A_real= [real(complex_bar( 1,tests)),real(complexbar(2,tests)),real(complex_bar(8,tests))
1;

A_imag=[imag(complexbar( ,tests)),imag(complexbar(2,tests)),imag(complex-bar(8,t
ests))];

else

A_real= [real(complex_bar( 1 ,tests)),real(complex_bar(2,tests)),real(complex_bar(7,tests))
,real(complex_bar(8,tests))];

A_imag=[imag(complex_bar(l,tests)),imag(complex-bar(2,tests)),imag(complex-bar(7,t
ests)),imag(complex_bar(8,tests))l;

end
A_complex = complex(A_real, A_imag);
A_mean = mean(Acomplex, 2);
A_amp = abs(A_mean);

A_ph = 180/pi*atan2(imag(A_mean),real(A_mean));
cd /Volumes/Untitled/Analysis_Programs/
display = 0; % 1:display, 0:no
e = L[; % e = []: standard error, e = 1: standard deviation
A_std = f_covellips_wg(A_complex,e,display);

gain_dark_se(tests) = A_std(1);
phase_dark_se(tests) = A_std(2) * 180/pi;

end

%Exp Standard Error
for tests=1:12

A_real=[real(complexbar(3,tests)),real(complexbar(4,tests)),real(complexbar( ,tests))
,real(complex_bar(2,tests)) i;

A_imag=i mag(complex_bar(3,tests)),imag(complex_bar(4,tests)),imag(complex_bar( 1 ,t
ests)),imag(complex_bar(2,tests)) ;
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A_complex = complex(A_real, A_imag);
A_mean = mean(A_complex, 2);
A_amp = abs(A_mean);

A_ph = 180/pi*atan2(imag(A_mean),real(A_mean));
cd /Volumes/Untitled/Analysis_Programs/
display = 0; % 1:display, 0:no
e = []; % e = [1: standard error, e = 1: standard deviation
A_std = f_covellips_wg(A_complex,e,display);

gain_exp_se(tests) = A_std(1);
phase_exp_se(tests) = A_std(2) * 180/pi;

end

%Naive Standard Error
for tests=1: 12

if tests== 12

A_real= [real(complex_bar(8,tests)),real(complex_bar(5,tests)),real(complex_bar(6,tests))
I;

A_imag=magag(complexbar(8,tests)),imag(complexbar(5,tests)),imag(complexbar(6,t
ests))1];

else

A_real= [real(complex_bar(7,tests)),real( complex_bar(8,tests)),real(complex_bar(5,tests))
,real(complex_bar(6,tests))];

A_imag=[imag(complexbar(7,tests)),imag(complex-bar(8,tests)),imag(complex-bar(5,t
ests)),imag(complex_bar(6,tests)) ];

end
A_complex = complex(A_real, A_imag);
A_mean = mean(A_complex, 2);
A_amp = abs(A_mean);

fprintf('%d %f\n',tests,A_amp-gain_bar_nve(tests))

A_ph = 180/pi*atan2(imag(A_mean),real(A_mean));
cd /Volumes/Untitled/Analysis_Programs/
display = 0; % 1:display, 0:no
e = []; % e = []: standard error, e = 1: standard deviation
A_std = f_covellips_wg(A_complex,e,display);
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gain_nve_se(tests) = A_std(1);
phasenve_se(tests) = A_std(2) * 180/pi;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for days=1:3
for tests= 1:4

one(tests,days)=complex_bar(1,((days- 1)*4)+tests);
two(tests,days)=complex_bar(2,((days- 1)*4)+tests);
three(tests,days)=complex_bar(3,((days- 1)*4)+tests);
four(tests,days)=complex_bar(4,((days- 1)*4)+tests);
five(tests,days)=complex_bar(5,((days- 1)*4)+tests);
six(tests,days)=complex_bar(6,((days- 1)*4)+tests);
seven(tests,days)=complex_bar(7,((days-1)*4)+tests);
eight(tests,days)=complex_bar(8,((days- 1)*4)+tests);

end
end

for days= 1:3

gain-lightday(days)=abs((nansum(three(:,days))+nansum(four(:,days))+nansum(five(:,d
ays))+nansum(six(:,days)))/16);

phase_lightday(days)= 1 80/pi*angle((nansum(three(:,days))+nansum(four(:,days))+nans
um(five(:,days))+nansum(six(:,days)))/16);

gainexpday(days)=abs((nansum(three(:,days))+nansum(four(:,days))+nansum(one(:,da
ys))+nansum(two(:,days)))/16);

phase_exp_ay(days)= 1 80/pi*angle((nansum(three(: ,days))+nansum(four(:,days))+nansu
m(one(:,days))+nansum(two(:,days)))/16);

if days==3

gain-dark_day(days)=abs((nansum(one(:,days))+nansum(two(:,days))+nansum(seven(1:
3,days))+nansum(eight(:,days)))/15);

phase_dark_day(days)= 180/pi*angle((nansum(one(:,days))+nansum(two(:,days))+nansu
m(seven(1: 3,days))+nansum(eight(:,days)))/15);
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gainnve-_day(days)=abs((nansum(seven(1: 3,days))+nansum(eight(: ,days))+nansum(five
(:,days))+nansum(six(:,days)))/ 15);

phase_nve_day(days)=1 80/pi*angle((nansum(seven(1:3,days))+nansum(eight(:,days))+n
ansum(five(: ,days))+nansum(six(: ,days)))/15);

else

gain_darkday(days)=abs((nansum(one(: ,days))+nansum(two(:,days))+nansum(seven(:,d
ays))+nansum(eight(:,days)))/ 16);

phase_arkdayrk_(days)=1 80/pi *angle((nansum(one(:,days))+nansum(two(:,days))+nansu
m(seven(:,days))+nansum(eight(:,days)))/16);

gain_nve_day(days)=abs((nansum(seven(:,days))+nansum(eight(:,days))+nansum(five(:,
days))+nansum(six(:,days)))/16);

phasenveday(days)=I 80/pi*angle((nansum(seven(: ,days))+nansum(eight(:,days))+nans
um(five(:,days))+nansum(six(:,days)))/32);

end
end

%Light Standard Error

for days=1:3

A_real=I real(three(:,days))',real(four(:,days))',real(five(:,days))',real(six(:,days))'];

A_imag=[imag(three(:,days))',imag(four(:,days))',imag(five(:,days))',imag(six(: ,days))'];

A_complex = complex(A_real, A_imag);
A_mean = mean(A_complex, 2);
A_amp = abs(A_mean);
A_ph = 180/pi*atan2(imag(A_mean),real(A_mean));
cd /Volumes/Untitled/Analysis_Programs/
display = 0; % 1:display, 0:no
e = []; % e = []: standard error, e = 1: standard deviation
A_std = f_covellips_wg(A_complex,e,display);

gain_light_day_se(days) = A_std(1);
phase_light_day_se(days) = A_std(2) * 180/pi;

148



end

%Dark Standard Error

for days=1:3
if days==3
A_real= [real(one(:,days))',real(two(:,days))',real (seven(1:3,days))',real(eight(:,days))'];

A_imag=[imag(one(:,days))',imag(two(:,days))',imag(seven(1:3,days))',imag(eight(:,days
))'T;

else
Areal=[real(one(:,days))',real(two(:,days))',real(seven(:,days))',real(eight(:,days))'I;

A_imag=[imag(one(:,days))',imag(two(:,days))',imag(seven(:,days))',imag(eight(:,days))' I

end
A_complex = complex(A_real, A_imag);
A_mean = mean(A_complex, 2);
A_amp = abs(A_mean);
A_ph = 180/pi*atan2(imag(A_mean),real(A_mean));
cd /Volumes/Untitled/Analysis_Programs/
display =0; % l:display, 0:no
e = []; % e = []: standard error, e = 1: standard deviation
A_std = f_covellipswg(A_complex,e,display);

gain_dark_day_se(days) = A_std(1);
phase_dark_day_se(days) = A_std(2) * 180/pi;

end

%Exp Standard Error

for days=1:3

A_real=Ireal(one(:,days))',real(two(:,days))',real(three(:,days))',real(four(:,days))' I;

A_imag=[imag(one(:,days))',imag(two(:,days))',imag(three(:,days))',imag(four(:,days))'J;

A_complex = complex(A_real, A_imag);
A_mean = mean(A_complex, 2);
A_amp = abs(A_mean);
A_ph = 180/pi*atan2(imag(A_mean),real(A_mean));
cd /Volumes/Untitled/Analysis_Programs/
display = 0; % l:display, 0:no
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e = 1]; % e = [L: standard error, e = 1: standard deviation
A_std = f_covellips_wg(A_complex,e,display);

gain_exp_day_se(days) = A_std(1);
phase_exp_dayse(days) = A_std(2) * 180/pi;

end

%Naive Standard Error

for days=1:3
if days==3
A_real=[real(five(:,days))',real(six(:,days))',real(seven( 1:3,days))',real(eight(:,days))'];

A_imag=[imag(five(:,days))',imag(six(:,days))',imag(seven(1:3,days))',imag(eight(:,days)
)'T;

else
A_real=I real(five(:,days))',real(six(:,days))',real(seven(:,days))',real(eight(:,days))'];

A_imag=Iimag(five(:,days))',imag(six(:,days))',imag(seven(:,days))',imag(eight(:,days))'];
end
A_complex = complex(A_real, A_imag);
A_mean = mean(A_complex, 2);
A_amp = abs(A_mean);
A_ph = 180/pi*atan2(imag(A_mean),real(A_mean));
cd /Volumes/Untitled/Analysis_Programs/
display = 0; % 1:display, 0:no
e = [I; % e = []: standard error, e = 1: standard deviation
A_std = f_covellips_wg(A_complex,e,display);

gain_nve_day_se(days) = A_std(1);
phase_nve_day_se(days) = A_std(2) * 180/pi;

end

if q=='Y'
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figure('Name','Light vs. Dark SS Bar','NumberTitle','off');
subplot(2,1,1)
tests=1: 12;
errorbar(tests,gain_barlight,gain_light_se,'o-','Color',[0.5 0.5 0.5])
hold on
errorbar(tests,gain_bardark,gain_dark_se,'k:*')
legend('Light','Dark','Location',([0.21 0.82.03 .02]))
legend('boxoff)
X 1=[4.5 4.5];
Y 1=[0 2.5]1;
line(X1,Y 1,'Color',10.7 0.7 0.71,'LineWidth',l,'LineStyle',':')
X2=1[8.5 8.51;
Y2=[0 2.5 1;
line(X2,Y2,'Color',[0.7 0.7 0.7],'LineWidth',l,'LineStyle',':')
text(2,2.2,'Day 1')
hold on
text(6,2.2,'Day 2')
hold on
text(10.5,2.2,'Day 3')
ylabel('SS Bar Gain')
axis(I0 13 0 2.51)
title('SS Bar Gain vs. Test')

for i=1:12
if phase_barlight(i)<0,phase_baright(i)=phasebarlight(i)+360;end
end
for i=1:12
if phase_bardark(i)<0,phase_bardark(i)=phasebardark(i)+360;end
end

subplot(2,1,2)
errorbar(tests,phase bar light,phase_li htse,'o-','Color',[0.5 0.5 0.5])
hold on
errorbar(tests,phase_bar_dark,phase_dark_se,'k:*')
hold on
line(X 1,Y 1,'Color',[0.7 0.7 0.7 j,'LineWidth', 1,'LineStyle',':')
line(X2,Y2,'Color',[0.7 0.7 0.7J,'LineWidth', ,'LineStyle',':')
ylabel('SS Bar Phase')
X 1=[4.5 4.5 1;
Y 1=-10 301;
line(X 1,Y 1,'Color',10.7 0.7 0.7 j,'LineWidth', 1,'LineStyle',':')
X2=18.5 8.5];
Y2=I-10 30];
line(X2,Y2,'Color',[0.7 0.7 0.7],'LineWidth', 1,'LineStyle',':')
xlabel('Tests')
axis(I0 13 0 301)
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figure('Name','Exp vs. Nve SS Bar','NumberTitle','off');
subplot(2,1,1)
errorbar(tests,gain_bar_exp,gain_exp_se,'o-','Color',[0.5 0.5 0.5])
hold on
errorbar(tests,gain_bar_nve,gain_nve_se,'k:*')
legend('Exp','Nve','Location',(10.8 0.83 .03 .02]))
legend('boxoff')
X 1=[4.5 4.5 1;
Y 1=[0 2.51;
line(X1,Y1,'Color',[0.7 0.7 0.71,'LineWidth',l,'LineStyle',':')
X2=18.5 8.5 1;
Y2=[0 2.51;
line(X2,Y2,'Color',[0.7 0.7 0.7 1,'LineWidth',l ,'LineStyle',':')
text(2,2.2,'Day 1')
hold on
text(6,2.2,'Day 2')
hold on
text(10.5,2.2,'Day 3')
ylabel('SS Bar Gain')
axis([0 13 0 2.51)
title('SS Bar Gain vs. Test')

for i=1:12
if phase_bar_exp(i)<0,phase_bar_exp(i)=phasebarexp(i)+360;end
end
for i=1:12
if phase_barnve(i)<0,phase_barnve(i)=phase_barnve(i)+360;end
end

subplot(2,1,2)
errorbar(tests,phase_bar_exp,phase_exp_se,'o-','Color',[0.5 0.5 0.51)
hold on
errorbar(tests+0. 1,phase_bar_nve,phase_nve_se,'k:*')
hold on
line(X1,Y1,'Color',[0.7 0.7 0.7],'LineWidth',1,'LineStyle',':')
line(X2,Y2,'Color',[0.7 0.7 0.7 ],'LineWidth', 1,'LineStyle',':')
ylabel('SS Bar Phase')
X1=14.5 4.5];
Y 1=[-10 301;
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line(X1,Y 1,'Color',[0.7 0.7 0.7],'LineWidth',l,'LineStyle',':')
X2=[8.5 8.5];
Y2=[-10 30];
line(X2,Y2,'Color',[0.7 0.7 0.7j,'LineWidth',1,'LineStyle',':')
xlabel('Tests')
axis([0 13 0 301)

% figure('Name','Gains','NumberTitle','off');
% subplot(2,1,1)
% errorbar(tests,gain_barlight,gain_light_se,'o-','Color',[0.5 0.5 0.5])
% hold on
% errorbar(tests,gain_bar_dark,gain_dark_se,'k:*')
% legend('Light','Dark')
% legend('boxoff)

% subplot(2,1,2)
% errorbar(tests,gain_bar exp,gain_exp_se,'o-','Color',[0.5 0.5 0.51)
% hold on
% errorbar(tests,gain_bar_nve,gain_nve_se,'k:*')
% legend('Exp','Nve')
% legend('boxoff')

figure('Name','Light vs. Dark SS Bar Day','NumberTitle','off);
days= 1:3;
subplot(2,1,1)
errorbar(days,gain_light_day,gain_light_dayse,'o-','Color',[0.5 0.5 0.5])
hold on
errorbar(days,gain_dark_day,gain_dark_day_se,'k:*')
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text(0.1,0.75,{' SS Bar';'Gain [fl/s'})
legend('Light','Dark','Location',([0.23 0.86 .03 .021))
legend('boxoff')
title('SS Bar Gain vs. Day')
axis([0.5 3.5 0 2.5])

for i=1:3
if phase_light_day(i)<O,phase_light_day(i)=phase_light day(i)+360;end
end
for i= 1:3
if phaselight_day(i)>300,phase_lightday(i)=phase_lightday(i)-360;end
end

for i=1:3
if phase_dark_day(i)<0,phase_dark_day(i)=phasedark_day(i)+360;end
end
for i=1:3
if phase_dark_day(i)>300,phase_dark_day(i)=phasedark_day(i)-360;end
end

subplot(2,1,2)
errorbar(days,phase_light_day,phase_light dayse,'o-','Color',[0.5 0.5 0.51)
hold on
errorbar(days,phase_dark_day,phase_dark_dayse,'k:*')
title('SS Bar Phase vs. Day')
xlabel('Days')
text(0. 1,20,{'Phase';' Ln'})
axis(10.5 3.5 0 301)

figure('Name','Experienced vs. Naive SS Bar Day','NumberTitle','off);
days=1:3;
subplot(2,1,1)
errorbar(days,gain_exp_day,gain_exp_day_se,'o-','Color',[0.5 0.5 0.51)
hold on
errorbar(days,gain_nveday,gain_nve_day_se,'k:*')
text(0.1,0.75,{' SS Bar';'Gain IS/sl'})
legend('Exp','Naive','Location',([0.23 0.83 .03 .02]))
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legend('boxoff)
title('SS Bar Gain vs. Day')
axis([0.5 3.5 0 2.5])

for i=1:3
if phase_exp_day(i)<0,phase_exp_day(i)=phase_exp_day(i)+360;end
end
for i=1:3
if phase_exp_day(i)>300,phase_exp_day(i)=phaseexp_day(i)-360;end
end

for i=1:3
if phase_nve_day(i)<0,phase_nve_day(i)=phasenveday(i)+360;end
end
for i=1:3
if phase_nve_day(i)>300,phase_nve_day(i)=phasenveday(i)-360;end
end

subplot(2,1,2)
errorbar(days,phase_exp_day,phase_exp_dayse,'o-','Color',[0.5 0.5 0.5])
hold on
errorbar(days,phase_nve_day,phase_nve_day_se,'k:*')
title('SS Bar Phase vs. Day')
xlabel('Days')
text(0. 1,20,{'Phase';' ILf'})
axis([0.5 3.5 0 30.1)

%%%%%%%%%%%%%%%%%%%

figure('Name','Start vs. End Trends','NumberTitle','off');
tests=[1 121;
errorbar(tests,gain_barlight(tests),gain_light_se(tests))
plot(tests,gain_bar_light(tests),'--','Color',[0.5 0.5 0.5])
hold on
plot(tests,gain_bar_dark(tests),'k-.')
hold on
plot(tests,gain_bar_exp(tests),'Color',I0.5 0.5 0.5])
hold on
plot(tests,gain_bar_nve(tests),'k:')
hold on
axis([0 13 0 1])
legend('Light','Dark','Exp','Nve','Location',('best'));legend('boxoff)
set(gca,'XTickMode','manual')
set(gca,'XTick',[1 1211)
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text
xlabel('Tests')
ylabel('Gain')
title('SS Bar vs. Test')

figure('Name','Start vs. End Trends','NumberTitle','off);
tests=[1 12];
errorbar(tests,gain bar_light(tests),gainlightse(tests),'--','Color',10.5 0.5 0.51)
hold on
errorbar(tests,gain_bardark(tests),gain_darkse(tests),'k-.')
hold on
errorbar(tests,gain_barexp(tests),gain_exp_se(tests),'Color',[0.5 0.5 0.51)
hold on
errorbar(tests,gain_bar_nve(tests),gain_nvese(tests),'k:')
hold on
axis([0 13 0 11)
legend('Light','Dark','Exp','Nve','Location',('best'));legend('boxoff')
set(gca,'XTickMode','manual')
set(gca,'XTick',[l 121)
text
xlabel('Tests')
ylabel('Gain')
title('SS Bar vs. Test')
end

%Looks at the individual cycles to identify 'dirty' values

% for subject=7;
% for days=3;
% for tests=4;
% for movements= 1:2;
% figure(subject)
% subplot(6,4,movements+ ((tests-1)*2) + ((days-1)*8))
% plot(squeeze(y_complex_all(subject,days,tests,movements,:, 1 )),'+')
% hold on
% plot(average_bar(subject,((days- 1)*8)+((tests-1)*2)+movements),'r+')
% end
% end
% end
% end
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%Stats

for subject=1:8
for tests=1:12

total_bar(((subject-1 )* 12)+tests, 1 )=real(complex_bar(subject,tests));
total_bar(((subject-1 )* 12)+tests,2)=imag(complex_bar(subject,tests));

end
end

%Compares Experienced and Naive, Light vs. Dark
for z=84:95

total_bar(z, 1)=total_bar(z+ 1, 1);
total_bar(z,2)=total_bar(z+ 1,2);

end

total_bar_final( 1:95,1)=total_bar(1:95,1);
total_bar_final(1:95,2)=total_bar(l :95,2);

grouping 1(1: 24)={'Dark'};
groupingl (25:72)={'Light'};
grouping 1(73:96)={'Dark'};

grouping2(1:48)={'Experienced'};
grouping2(49:96)={'Naive'};

all=[ 1:961;
erase=[84];

grouping 1 =grouping 1 (setxor(all,erase));
grouping2=grouping2(setxor(all,erase));

[d,p,stats I=manova 1 (total_bar_final,grouping 1)
[d,p,stats]=manova 1 l(total_bar_final,grouping2)% Questionable

plot(total_bar_final(1:48),'g+')

junk=abs(complex(total_bar_final(:, 1 ),total_bar_final(:,2)));
junk2= 180/pi*angle(complex(total_barfinal(:, 1),total_bar_final(:,2)));

%First vs. Last Total
individ_bar=[complex_bar( 1,1),complex_bar(2,1 ),complex_bar(3,1 ),complex_bar(4,1 ),co
mplex_bar(5,1 ),complex_bar(6,1 ),complex_bar(7,1 ),complex_bar(8, 1),complex_bar( 1,12
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),complex_bar(2,12),complex_bar(3,12),complex_bar(4,12),complex_bar(5,12),complex
_bar(6,12),complex_bar(7,12),complex_bar(8,12)I;

for z=1:length(individ_bar)
individual_stats_bar(z, 1)=real(individ_bar(z));
individual_stats_bar(z,2)=imag(individ_bar(z));

end

individualgrouping(1: 8)={'first'};
individual_grouping(9:16)={'last'};

I d,p,stats]=manova 1 (individual_stats_bar,individual grouping)

%First vs. Last Light
all=[1: 161;
erase=[1 2 7 8 9 10 15 16];

individ_bar_demo=individ_bar(setxor(all,erase));

clear z
for z=1:length(individ_bar_demo)

individ_bar_light(z, 1 )=real(individ_bar_demo(z));
individ_barlight(z,2)=imag(individ_bar_demo(z));

end

individual_light(1:4)={'first'};
individual_light(5:8)={'last'};

Id,p,stats =manova 1 (individ_barlight,individual_light)

%First vs. Last Dark
all=[1:161;
erase=[3 4 5 6 11 12 13 141;

individ_bardemo=individ_bar(setxor(all,erase));

clear z
for z=1:length(individ_bar_demo)

individ_bar_dark(z, 1)=real(individ_bar_demo(z));
individ_bar_dark(z,2)=imag(individ_bar_demo(z));

end

individual_dark(l:4)={'first'};
individual_dark(5:8)={'last'};
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[d,p,stats]=manoval (individ_bardark,individual_dark)

%First vs. Last Experienced
all=[1:16];
erase=[5 6 7 8 13 14 15 16];

individ_bar_demo=individ_bar(setxor(all,erase));

clear z
for z= 1:length(individ_bardemo)

individ_barexp(z,1)=real(individ_bar demo(z));
individ_bar exp(z,2)=imag(individ_bardemo(z));

end

individual_exp(l:4)={'first'};
individual_exp(5:8)={'last'};

[d,p,stats]=manoval (individbarexp,individual_exp)

%First vs. Last Naive
all=[1:161;
erase=[1 2 3 4 9 10 11 12];

individ_bar_demo=individ_bar(setxor(all,erase));

clear z
for z=1:length(individ_bar_demo)

individ_barnve(z, 1)=real(individ_bar demo(z));
individ_bar nve(z,2)=imag(individ_bardemo(z));

end

individual_nve(1:4)={'first'};
individual_nve(5:8)={'last'};

[d,p,stats]=manoval (individ_barnve,individual_nve)

%Light vs. Dark at start
junk=[complex_bar(3,1 ),complex_bar(4,1 ),complexbar(5,1,complexbar(5, 1),copear(, 1lex
_bar( 1,1),complex_bar(2,1 ),complex_bar(7,1 ),complexbar(8, 1)];

for q= 1:8
junkfinal(q, 1)=real(junk(q))
junk_final(q,2)=imag(junk(q))

end
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junk_grouping( 1:4)={'Light'}';
junk_grouping(5:8)={'Dark'}';

I[d,p,stats I=manova 1 (junk_final,junk_grouping)

%Light vs. Dark at end

junk=[complex_bar(3,12),complex_bar(4,12),complex_bar(5,12),complex_bar(6,12),com
plexbar(,2),co lex_bar(2,12),complex_bar(7,12),complex_bar(8,12)];

for q=1:8
junkfinal(q, 1)=real(junk(q))
junkfinal(q,2)=imag(junk(q))

end

junk_grouping( 1:4)={'Light'}';
junk_grouping(5:8)= 'Dark'}';

[d,p,stats]=manoval (junkfinal,junk_grouping)

for subjects=1:8
for tests=1:12

new junk(((subjects- 1 )* 12)+tests) =abs(complex_bar(subjects,tests));
end

end
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"Because it is there."

--George Mallory

"A fathom deep in sleep I lie
With old desires, restrained before,

To clamor lifeward with a cry,
As dark flies out the graying door;
And so in quest of creeds to share

I seek assertive day again...
But old monotony is there:
Endless avenues of rain."

--F. Scott Fitzgerald

"Quenton, you can do very nearly anything. Haven't you figured that out yet?"

--Bruce Denton

Lord knows I can't change.
Won't you fly high free bird?

--Lynard Skynard
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