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Abstract

Colloidal semiconductor nanocrystals or quantum dots have attracted much
attention recently with their unique optical properties. Here we present a novel approach
to synthesize ZnTe/ZnSe core/shell tunable quantum dots. Characterizations such as
transmission electron microscopy, wavelength dispersive X-ray spectroscopy, powder x-
ray diffraction are employed to give evidence for the core/shell structure. Absorption,
and photoluminescence spectra demonstrate the tunability of this ZnTe/ZnSe core/shell
system, and fluorescence lifetime decays suggest a core/shell structure is made.
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Chapter 1

General Introduction

1.1 Quantum Confinement and Optical Properties

Colloidal semiconductor nanocrystals or quantum dots (QDs) have attracted much

attention recently with their unique properties such as their size-tunable emission, their

continuous absorption profile to the blue of the band edge, and their stability against

photobleaching. These properties grant QDs promising applications in optoelectronics

and biology. 1-3 1 A quantum dot is a semiconductor core surrounded by a layer of organic

ligands (figure 1.1). The smallest QDs (< 1 nm in diameters) are nearly molecular (<100

atoms) whereas the largest QDs (>20 nm in size) can be composed of 100,000 atoms. An

example of the stacking of atoms in a QD is provided (figure 1.2). The optical properties

of QDs evolve dramatically with their size, an effect known as quantum confinement.

Figure 1.3 illustrates the effect of quantum confinement on electronic states going from

3D bulk materials to OD quantum dots. This size dependent effect was firstly observed

on 2D thin films of semiconductor materials (quantum wells) grown by molecular beam

epitaxy.[4, 51 The thickness of the thin film is comparable to the Bohr radius of the exciton

so that the exciton is confined, which modifies the density of states such that there are

fewer band edge states and the bandgap is shifted to the blue. Later studies led to 1D

quantum wires/rods and OD quantum dots. As the size of a QD is smaller than the

material's Bohr exciton radius, the dimensions of the crystal become so small that the

photoexcited carriers feel the boundary, causing the continuous density of states in the



bulk to collapse into discrete electronic states. QDs are considered "artificial atoms" for

precisely this reason. After a series of approximations, the quantum dot problem can be

reduced to the "Particle-In-a-Sphere" model. From this model, it is easy to deduce that

the more confined the carriers are, the higher the bandgap energy is, and correspondingly

the potential photoluminescence should blue-shift. A scheme is shown in Figure 1.4 to

illustrate the principle of size-dependent tunability. Figure 1.5 demonstrates the

tunability of absorption in the well-established CdSe quantum dot system. As the size

becomes bigger, the first absorption feature red-shifts. Note that the corresponding PL

follows the same trend in emission peak positions. The entire PL is largely tuned in the

visible window.

Figure 1.1 Cartoon of a colloidal quantum dot with a semiconductor nanocrystal core and
a passivating organic ligand shell. The core size usually ranges from 2-15 nm. Adapted
from Yen, B. K. Ph. D. Thesis, Massachusetts Institute of Technology, Cambridge, MA,
2007.
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Figure 1.2 High-resolution transmission electron microscope image of a CdSe
nanocrystal. The actual array of atoms can be seen (Adapted from J. J. Shiang, A. V.
Kadavanich, R. K. Grubbs, and A. P. Alivisatos, J. Phys. Chem. volume 99, page 17417,
1995).
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Figure 1.3 Illustration of quantum confinement going from 3D bulk semiconductor to 2D
quantum wells to 1D quantum wires/rods and finally to OD quantum dots, which are
quantum confined in all three dimensions and atomic like states result. Adapted from
Steckel, J. Ph. D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2006.
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Discrete Energy States
Figure 1.4 Schematic depiction of the size-tunability principle for quantum dots. The
splitting of states increases as the size decreases. Adapted from Yen, B. Ph. D. Thesis,
Massachusetts Institute of Technology, Cambridge, MA, 2007.
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Figure 1.5 Absorption spectra for a size series of CdSe nanocrystals ranging from 2 to 15
nm in diameter.

1.2 Review of Quantum Dot Preparations

Recently the "hot-injection" method is widely applied in QD synthesis. A batch

of QDs is prepared by rapidly injecting precursors into a hot solvent and organic ligand



system. The relatively high temperature (-300 C) ensures the decomposition of

precursors to form monomers, resulting in a burst in nucleation followed by a slower

growth on the existing nuclei as the concentration of monomers decreases rapidly and the

reactivity of the monomers is lower since a lower temperature is set for the growth. High

temperature annealing is also found to contribute to the removal of surface trap states.

With fewer surface trap states, the photoexcited carriers are less likely to fall into trap

states and have a higher possibility to take part in radiative recombination. Consequently,

PL intensity can be enhanced. A typical reaction set-up is shown in figure 1.6.

To achieve monodisperse nanocrystals, the growth kinetics is studied. The classic

nucleation and growth model can be applied to quantum dot colloidal synthesis.

Generally speaking, the formation of NCs can be divided into three stages. First, the

precursors quickly decompose to form reactive monomers. The monomer concentration

continues to increase until a critical supersaturation occurs which induces energetic

nucleation. This nucleation burst lowers the monomer concentration and partially

relieves the supersaturation. Meanwhile, the still high concentration ensures NC growth

onto the existing nuclei. Within a certain range, the growth is in the size focusing region

as smaller particles need less material to grow a shell whereas larger particles need more

materials to achieve a shell of the same thickness. When monomer concentration is

extremely low, as will surely happen when monomers are depleted from the reaction,

Oswald ripening happens. Small particles dissolve to compensate the growth of large

particles. At this point, the QD growth enters into the de-focusing region. In order to

make high-quality, monodisperse samples, QD growth is strategically controlled in the



growth-focusing region, by controlling the amount of precursors, the growth time, and

multiple injections to keep concentrations of monomers relatively high.

Ar

Cooling->

Heating
Mantle->/,

<-Syringe

<-Septum

Figure 1.6 Cartoon of a typical hot-injection set-up for CdSe quantum dot synthesis.
Precursor solution is swiftly injected into a three-neck-flask containing hot
Solvent / organic ligand system. Adapted from Murray, C. Thesis, Massachusetts
Institute of Technology, Cambridge, MA, 1995.

As the size of quantum dots is so small (2-15 nm), the surface to volume ratio is

high. Thus the properties of the surface play an important role in the quality of QD

samples. In particular, surface defects are known to trap photoexcited carriers.[6] To

achieve high quantum efficiency, various surface passivation schemes are used. First of



all, long annealing times are found to be helpful in enhancing PL intensity. We speculate

that annealing results in the rearranging of semiconductor material and organic ligands at

the surface which leads to a decreased number of surface trap sites. Consequently,

carriers are less likely to fall into those trap sites and more likely to undergo radiative

recombination. Second of all, inorganic shells are sometimes overcoated onto the

existing nanocrystal cores. This is found to passivate the surface and increase quantum

efficiency. Note that this inorganic shell process is particularly important for the

fabrication of quantum dot light emitting devices (QD-LEDs).

Separation of QDs from their original growth solution is often necessary for

future process. The established technique commonly used is repeated solvent/nonsolvent

extraction. Typically, addition of methanol induced flocculation of nanocrystals and

butanol was added to help mix the methanol and growth solution. Precipitated

nanocrystals were separated from the supernatant by centrifugation and redispersed in

hexane. Ethanol is found to be gentler than methanol, and therefore used when

nanocrystals lose fluorescence from the harsh purification from methanol. Acetone, an

alternative to methanol, is found to remove certain salts that methanol cannot remove.

This purification procedure is also used in size-selective precipitation, by gently adding a

limited amount of nonsolvent (methanol in most cases). Large particles precipitate first,

and thus nanocrystals can be roughly separated by their sizes.
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Chapter 2

Synthesis of ZnTe/ZnSe Core/Shell Quantum Dots

2.1 Type II Quantum Dots

In type-I core/shell structures the bandgap of the shell material is larger than that

of the core. The conduction and valence band offsets are such that the conduction band

of the shell is of higher energy than that of the core, while the valence band of the shell is

of lower energy than that of the core. This leads to an effective confinement of electrons

and holes in the core material. In type-II core/shell QDs, both the conduction and

valence bands of the core are lower in energy (or higher) than those of the shell,

consequently, one carrier is mostly confined to the core, while the other is mostly

confined to the shell. Recently, Kim et al. have reported the synthesis of CdTe/CdSe and

CdSe/ZnTe type-II heterostructures. EJ1 Absorption and emission wavelengths in the near-

IR were observed, which would not have been accessible with a single material. In

addition, owing to slow electron-hole recombination, extraordinarily long radiative

lifetimes have been found. Spatial separation of charge carriers might render type-II

quantum dots suitable for photovoltaic or photoconduction applications in which one of

the carriers is injected from the QDs into the matrix before recombination can occur.

Interesting new bandgap possibilities arise from engineering bandgaps between different

materials to form type-II quantum dots.



3.

Figure 2.1 Bulk conduction and valence band diagram of ZnTe and ZnSe
semiconductors.

2.2 Possibility of ZnTe/ZnSe type-II Quantum Dots

Figure 2.1 shows the band offsets for ZnTe and ZnSe bulk semiconductor

materials. It can be predicted from the diagram that in type II ZnTe/ZnSe core/shell QDs,

electrons should mainly be confined in the ZnSe shell whereas holes should mostly be

located in the ZnTe core. The recombination process involves electrons from the

conduction band in ZnSe and holes from the valence band in ZnTe, resulting in a smaller

energy bandgap than that of either ZnTe or ZnSe. In particular, the conduction band

offset of ZnSe (-3.4 eV) and the valence band offset of ZnTe (-5.1 eV) leads to a

projected bulk bandgap value of 1.7 eV for ZnTe/ZnSe core/shell type II QDs. Due to

quantum confinement, these novel ZnTe/ZnSe core/shell QDs can be potentially tuned to
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emit at energies greater than 1.7 eV, much like CdSe, whose bulk band gap is also 1.7

eV.[2]

2.3 Experimental

2.3.1 Chemicals

1-octadecene (ODE, 90%) was purchased from Sigma Aldrich. Oleylamine (OA,

80%-90%) was purchased from Acros Organics. Zinc acetate (99.6%) was purchased

from Mallinckrodt. Selenium powder (99.999%) and oleic acid (95%) were purchased

from Alfa. Di-ethyl-zinc (ZnEt2), tri-octyl-phosphine (TOP, 97%) and tellurium powder

(22 mesh) were purchased from Strem.

2.3.2 Stock Solutions

To prepare 0.1M zinc oleate solution as a shell precursor, 0.46 g zinc acetate was

mixed with 6.2 g oleic acid and 22.8 g ODE. The mixture was thoroughly degassed and

then heated up to 240"C until a clear yellow solution resulted. The solution was allowed

to cool down to room temperature and reheated until clear when in later use. 0.1M

TOPSe and TOPTe stock solutions were prepared by dissolving Se and Te powder

respectively in TOP at room temperature.

2.3.3 Synthesis of ZnTe/ZnSe Core/Shell QDs

All the operations were carried out using standard air free techniques unless stated

otherwise. Typically, a mixture of OA (0.8 g) and ODE (3 g) was put in a 50ml three-

neck-flask and heated to 110 C to degas for 1 hr. 12 mg ZnEt2 and 1 ml TOPTe was

swiftly injected into the flask at 285 C. The nanocrystals were allowed to grow at 270 IC



for 2 min. The solution was kept at 240 C for shell growth. The zinc precursor and the

selenium precursor were alternatively added into the flask, allowing 20 min between each

precursor to complete the reaction. The Te center-doped ZnSe dots (an extremely small

ZnTe core and thick ZnSe shell) were synthesized by substituting part of the tellurium

precursor with the selenium precursor and performing a co-injection under the same

reaction conditions as for the ZnTe core synthesis.

2.4 Results and Discussions

2.4.1 Choices of Materials

ZnEt 2 is much more reactive than other zinc sources, such as zinc acetate and zinc

oxide. Therefore, ZnEt2 can be reduced more easily to zinc atoms to form free zinc

atoms. Previous experiments employing zinc acetate or zinc stearate did not produce

high quality quantum dots. It is reported elsewhere that high quality ZnSe or ZnS QDs

are synthesized from zinc carboxyl precursors. [3 However, we could not reproduce that

protocol.

Oleylamine seems exchangeable with octadecylamine, as the PL properties with

these two amines are similar to one another. We favor oleylamine as a liquid precursor is

easier to handle and potentially can be used in a microfluidic system without much

modification to the recipe. Amines are an important type of ligand, and appear

irreplaceable. In control experiment, we explore other ligand system, such as using

phosphines (TOP), and we could not produce high quality colloidal quantum dots.

Zinc oleate is critical in terms of the photoluminescence of this system. It is

worth noting that no fluorescence is seen from bare ZnTe cores (sometimes a broad PL to

24



the red of the ZnTe bulk bandgap is seen and is attributed to deep trap emission) while

slight addition of zinc oleate induces bright band-edge emission. We ascribe this to the

gentle etching and modification of the surface by zinc oleate which results in a decreasing

number of surface traps. Consequently, the photoexcited carriers are less likely to fall

into those trap states and have a higher probability to undergo radiative recombination.

2.4.2 Successive Ion Layer Absorption and Reaction (SILAR)

io
Wavelength (nm)

Figure 2.2 Typical photoluminescence spectrum from non-SILAR method. Usually the
emission peak shape from non-SILAR method is asymmetric.

A mother batch of ZnTe core growth solution was separated into different flasks.

To each flask, various amounts of ZnSe shell material were added using the method of

successive ion layer absorption and reaction (SILAR). [4' 5] In a typical SILAR shell

growth procedure, zinc precursor corresponding to one hypothetical monolayer is first



added dropwise, and after sufficient annealing the same amount of selenium precursor is

added to form another hypothetical monolayer. The process is repeated in order to grow

a successively thicker ZnSe shell. The purpose of SILAR shell growth is mainly three

fold. First, it prevents independent nucleation of the shell material, in this case, the

formation of separate ZnSe nanocrystals. Second, the annealing in between alternative

shell materials (zinc and selenium precursors) allows sufficient time for one material to

react so that the chemical composition of the shell is not biased towards either material.

Third, the slow addition keeps precursor concentrations low and favors isotropic and

uniform growth that results in spherical dots and symmetric photoluminescence (PL)

spectra. In our experiments, a non-SILAR method (simultaneous addition of zinc and

selenium precursors) almost always gives asymmetric spectra with a long tail into the

bluer region than the PL maximal wavelength (see Figure 2.2).

2.4.3. Other reaction conditions

The high temperature for shell growth is not only helpful for uniform growth but

also necessary to activate the inert zinc oleate precursor. In this protocol, we needed

temperatures above 230 "C for QDs to exhibit PL.

Long annealing times allow materials to react completely and facilitate

rearrangement of the dot surface to minimize surface defects so that the PL intensity is

enhanced.

2.5 Conclusions

ZnTe/ZnSe core/shell quantum dots are synthesized in one-pot using the SILAR

method. This successfully incorporates tellurium into the ZnSe system. The choices of



materials, the reaction conditions, and the advantages of the SILAR method are

thoroughly discussed above.
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Chapter 3

Characterization

3.1 Transmission Electron Microscopy

3.1.1 Introduction

Transmission electron microscopy is an irreplaceable tool to characterize the

structure of nanocrystals. Lattice image contrast and Z contrast provide complimentary

information. Lattice imaging probes the crystalline core of particles with planes oriented

perpendicular to the electron beam; Z contrast refers to the diffuse scattering of the

electron beam being proportional to the atomic number (Z) of the element, and Z contrast

provides contrast in the disordered / misoriented regions.

3.1.2 Experimental

To analyze size and size distribution transmission electron microscopy (TEM)

was performed. Aliquots were taken from the growth solution. Addition of methanol

induced flocculation of nanocrystals and butanol was added to help mix methanol and the

growth solution. Precipitated nanocrystals were separated from the supernatant by

centrifugation and redispersed in hexane. This nanocrystal solution was drop cast onto

copper grids with carbon support by slow evaporation of solvent in air at room

temperature. TEM images were acquired using a JEOL 200CX operating at an

acceleration voltage of 200kV.



D,

Figure 3.1 Transmission electron microscope images of ZnTe core and ZnTe/ZnSe
core/shell QDs with varying shell thicknesses. A) ZnTe QDs with a diameter of 4.4 nm.
The shell thickness increases from B to F. B-D) ZnTe/ZnSe core/shell QDs with
diameters of 5.2±0.5 nm, 5.2±0.6 nm, and 5.7±0.7 nm respectively. E) A mixture of
spherical ZnTe/ZnSe core/shell QDs with particle size of 6.5±0.6 nm and prism-shaped
QDs with long axis of 9.2±0.9 nm and short axis of 5.8±0.7 nm. F) Prism-shaped QDs
with a long axis of 8.7±0.9 nm and a short axis of 5.97±0.8 nm.

3.1.3 Results and Discussions

Figure 3.1 presents transmission electron microscopy (TEM) images of ZnTe core

and ZnTe/ZnSe core/shell QDs of different shell thicknesses. Figure 3.1A shows ZnTe

cores of an average diameter of 4.4 nm with a size distribution of 13%. The average size

and size distribution are obtained by measuring 100 QDs in each sample. See Figure 3.2.

The ZnTe core growth is not a rapid process in the current reaction condition, which

provides control over the average core size. Figure 3.1B-F demonstrates the size

evolution and shape evolution of ZnTe/ZnSe core/shell nanocrystals with increasing



ZnSe shell materials and the QDs in Figure 3.1B-D are largely spherical. The QD size

changes from 4.4 nm (bare ZnTe core) to 5.7 nm while the size distribution remains

roughly at 13%. Figure 3.1E shows a mixture of spherical QDs (6.5 nm) and prism-

shaped QDs with long and short axis. These prismatic QDs dominate when more ZnSe

shell material is added (Figure 3.1F).
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Figure 3.2 Histograms from statistics of each TEM images in Figure 3.1. The average
size and size distribution is done by sampling 100 QDs for each sample.

3.2 Wavelength Dispersive X-ray Spectroscopy

3.2.1 Introduction

Wavelength Dispersive X-ray Spectroscopy (WDS) is a technique used in

elemental analysis. High energy electrons are focused onto the specimen and X-rays are

produced due to energy loss from inelastic collisions between electrons. Each element's

characteristic X-ray has a distinct wavelength, which requires adjusting the tilt of the

crystal in the spectrometer at a specific angle to properly diffract the X-ray. WDS

generally requires element be known and by counting the number of X-rays of a specific

wavelength, the atomic composition of the specimen can be probed.
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3.2.2 Experimental

Elemental composition data was obtained from Wavelength dispersive X-ray

spectroscopy (WDS) on a JOEL JXA-733 Superprobe. Methanol extraction and

centrifugation was repeated three times. Concentrated hexane solutions were drop cast

onto Si (100) wafers to form thick films of nanocrystals and solvent was allowed to

evaporate completely.

3.2.3 Results and Discussions

Wavelength dispersive X-ray spectroscopy (WDS) was performed to determine

the elemental composition of this series of QD samples. Table 1 reveals how the

composition changes with increasing shell thickness. With increasing shell thickness

from A to F, the number of selenium atoms gradually and steadily increases from 0% to

43% of the total number of atoms. Consequently, tellurium drops from 47% to 9% in

atomic composition, further demonstrating that the ZnSe shell is added onto the existing

bare ZnTe core. When we assume a ZnTe/ZnSe core/shell spherical structure with a

perfectly defined ZnTe/ZnSe interface and with each material retaining its own lattice

structure, the expected particle size can be calculated from relative selenium and

tellurium amounts. The corresponding sizes measured from TEM are listed for

comparison. For spherical QDs, the actual sizes are consistent with theoretical sizes

within the range of experimental error. This consistency supports that ZnTe/ZnSe

core/shell QDs are synthesized over a wide range of shell thicknesses.



expected actual
Zn% Se% Te% size (nm) size (nm)

A 53 0 47 --- 4.4

B 53 17 30 5.1 5.2

C 55 22 23 5.3 5.2

D 51 29 20 5.7 5.7

E 47 40 13 6.7 6.5[a]

F 48 43 9 7.4 - - -[b]

Table 1 The first three columns show elemental composition of ZnTe core and
ZnTe/ZnSe core/shell QDs of different shell thickness measured by wavelength
dispersive X-ray spectroscopy. Samples A-F correspond to the same A-F as in Figure 3.1.
The column showing expected size refers to size computed from the observed Se and Te
composition assuming spherical core/shell and the bulk lattice structure, as described in
the text. The actual size measured using TEM agrees within experimental uncertainty.

[a] Sample E is a mixture of spherical QDs of 6.5 nm and prism-shaped QDs. [b] As
sample F was mainly prism-shaped QDs, the actual size of the hypothetical spherical
counterpart lacked physical sense to consider and was not computed.

In all samples in this series, the number of zinc atoms consistently comprises of

about 50% of the total number of atoms. This is expected as the ZnTe core and the ZnSe

shell both have a 1:1 cation:anion ratio even though the zinc precursors are different for

core (ZnEt2) and shell (zinc oleate) growth. However, it is worth noting that the zinc

shell precursor (zinc oleate) is the limiting factor and the system has the tendency to

become selenium-rich. The high temperature and long time annealing between addition

of alternative shell materials (zinc and selenium precursors) allows sufficient time for one

35



material to react so that the chemical composition of the shell is not biased towards either

zinc or selenium material. On the other hand, there is a slight trend of zinc percentage

dropping from sample A to F which suggests that the reactivity of zinc precursor is still

limiting and the surface of the nanocrystals becomes slightly selenium-rich. The

irregular shapes with thicker shells may partially stem from this imbalance in chemical

composition.

3.3 Powder X-ray Diffraction

3.3.1 Introduction

X-ray scattering techniques reveal information about the crystallographic

structure of materials and thin films. These techniques are based on observing the

scattered intensity of an x-ray beam hitting a sample as a function of incident and

scattered angle, polarization, and wavelength or energy. Powder X-ray diffraction

(PXRD) is a technique used to characterize the crystallographic structure, crystallite size

(grain size), and preferred orientation in polycrystalline or powdered solid samples.

Powder diffraction is commonly used to identify unknown substances.

3.3.2 Experimental

Powder X-ray diffraction (PXRD) spectra were collected on a Rigaku Ru300 X-

ray diffractometer operating at 50 kV and 300 mA. Samples for PXRD were prepared

from filtering through a 0.02 um syringe filter and five-time methanol extraction to

remove excessive organic impurity and the concentrated hexane solutions (QDs in 3 ml

growth solution were redispersed into 0.3 ml hexane) were drop cast onto a zero



background scattering Si plate to form thick (-0.5 mm) films of nanocrystals. Samples

were measured in a 20 range from 15 to 60 degree.

3.3.3 Results and Discussions

C

C

20 30 40 50
20 (deg.)

Figure 3.3 X-ray diffraction patterns of ZnTe QDs and ZnTe/ZnSe core/shell QDs with
different shell thickness. The labels parallel those of the samples in Figure 3.1. For
reference, the marks on the bottom abscissa show the XRD peaks characteristic of bulk
ZnTe (zinc blende). The marks on the top abscissa show the XRD peaks characteristic of
bulk ZnSe (zinc blende).

Powder X-ray diffraction was used to determine the crystallographic properties of

the core/shell structures (Figure 3.3). As the shell thickness increases, the diffraction

peak position successively shifted from ZnTe (zinc blende) towards ZnSe (zinc blende).

While small nanocrystals give broad peaks in XRD patterns and therefore peaks are

harder to resolve than those of bulk materials, the high growth temperature (270 C for



core and 240 *C for shell) ensures crystallinity of these nanoparticles. Note that no

separate ZnSe nanocrystals are observed in XRD patterns, suggesting that the SILAR

method can suppress nucleation during shell growth. Finally, we attribute the broad

peaks centered around 20 degrees to organic residuals in the sample, as the same peaks

were observed for a control sample containing only the solvent system without

nanocrystals.

3.4 Absorption and Photoluminescence

3.4.1 Experimental

UV-Vis absorption and photoluminescence were measured on a Hewlett Packard

8453 spectrophotometer and an Ocean Optics USB4000 spectrometer.

3.4.2 Results and Discussions

We next demonstrated the absorption and corresponding photoluminescence (PL)

tunability for this series of ZnTe/ZnSe core/shell QDs. The band edge absorption feature

is discernable up to 4 MLs of ZnSe (e in Figure 3.4A) while the feature diminishes with

increasing shell thickness (f, g in Figure 3.4A). This is consistent with theoretical

prediction that type-II QDs have small absorbance near the band edge as spatial

separation of charge carriers leads to a decreased wave function overlap and thus a weak

oscillator strength.['1 The band edge absorption feature of the ZnTe/ZnSe core/shell QDs

red shifts from 420 nm (bare ZnTe core) to 515 nm (ZnTe core with 4 MLs of ZnSe shell)

as the shell grows thicker. Correspondingly, the PL of these ZnTe/ZnSe core/shell QDs

can range anywhere from 500 nm to 590 nm. When the shell thickness is less than 4

MLs, the typical Quantum Yield (QY) is 15%. It is interesting to note that initially

synthesized ZnTe cores exhibit no fluorescence, and that slight addition of zinc oleate
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shell precursor solution at high temperature gives rise to bright band edge

photoluminescence. We speculate that zinc oleate gently etches and therefore modifies

the surface so that the number of surface trap sites decreases. Consequently, charge

carriers are less likely to fall into trap states and have a higher probability of radiative

recombination. After overcoating with various thicknesses of ZnSe, these QDs have a

full width at half maximum (FWHM) of 25-35 nm when the emission wavelength is

shorter than 550 nm. A FWHM of less than 45 nm is obtained for redder QDs even when

TEM images revealed that QD shapes become more irregular. In this core/shell model

system, we only varied the shell thickness to achieve spectral tunability. It is expected

that the emission profile can be further red-shifted beyond 590 nm using larger ZnTe

cores having thick ZnSe shells.[21 Future experiments will be done to confirm this

prediction.
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Figure 3.4 A) UV-Vis absorption spectra of QDs formed by in this study. a) ZnTe bare
cores, 4.4 nm diameter. b) ZnTe/ZnSe QDs formed by co-injection as described in the
text. c-g) Spectra of ZnTe/ZnSe core/shell with the same 4.4 nm core and different shell
thickness. Spectra (c-g) correspond to samples B-F in Figure 3.1. B) Normalized room
temperature photoluminescence of ZnTe/ZnSe core/shell QDs. PL spectra (b-g)
correspond to absorption spectra in (A).



There is also a possibility to make alloyed instead of the proposed core/shell

structures under the following reaction conditions: (1) high reaction temperatures (-240

C), which increases mobility of the atoms, and (2) long annealing times between

monolayers, which gives atoms time to diffuse. Also, due to the nature of the one-pot

synthesis, the tellurium atoms left from the core growth can grow into the shell. For

ZnSel..Te. alloys in bulk, the bandgap evolution with composition exhibits a bowing

with the lowest point at ZnSeo.35Teo. 65 and two endpoints with higher bandgap values for

pure ZnTe and ZnSe.[3' In the synthesis we start from a ZnTe core and gradually add a

ZnSe shell. If alloying is occurring in this system, one would expect to see an initial red-

shift followed by a blue-shift as the composition of the nanocrystals goes from pure ZnTe

towards increasing ZnSe composition. However, as we add ZnSe shell precursors on

ZnTe cores of a certain size, these QDs have only a red shift (from 500 nm to 590 nm) in

PL peak position and blue-shifting is never observed even after the composition becomes

dominant in ZnSe (F in Table 1). In addition, the lowest bandgap achievable for an

alloyed structure in the bulk is 590 nm. It is expected that with quantum confinement

effects, the alloy model cannot red-shift the PL of QDs to 590 nm as we observe here

with ZnTe/ZnSe core/shell structures.

The PL from ZnTe/ZnSe core/shell QDs is quenched in air within a few minutes

even with thick ZnSe shells, whereas they are stable if kept under inert atmosphere,

which allows them to be potentially used in quantum dot light emitting devices (QD-

LEDs) where the QDs are isolated from the atmosphere.1 41 In addition, compared to the

size of green CdSe QDs (-3 nm in diameter), our green QDs are larger (>5nm in

diameter), which may lead to more efficient QD-LEDs due to their larger absorption



cross sections.[ 5] The air-stability can be improved by first removing excess tellurium via

precipitation and centrifugation under inert atomosphere, and then overcoating a

protective layer (such as ZnSe or ZnS) on the existing core/shell structure. [6' 7] These

overcoated dot solutions are stable in air for months. Note that the second ZnS (or ZnSe)

shell improved air-stability, but did not increase QY. We attribute the poor air stability to

the oxidation of tellurium,[8] which creates trap sites on the QD surface, whereas the

removal of excess tellurium minimizes the chance of it being incorporated during shell

growth, and the new protective shell layer acts as a barrier for the diffusion of oxygen

into the nanocrystal.

To access the PL spectral window below 500 nm, an extremely small ZnTe core

was attempted in an alternative synthesis. The PL from b in Figure 3.4B corresponds to

nanocrystals made by co-injection of zinc, tellurium, and selenium precursors

simultaneously. We speculate that upon injection ZnTe cores form rapidly and

preferentially due to the higher reactivity of Te with Zn to form the nuclei of small ZnTe

crystals.191 As the tellurium precursors are depleted, abundant selenium precursors

competitively grow onto the existing ZnTe cores. This gradient distribution effectively

produces a particular case of type II ZnTe/ZnSe core/shell QDs with extremely small

ZnTe cores. The fact that these QDs are stable in air (QY 15-20%) without any further

processing suggests that tellurium is fully incorporated inside the nanocrystals and not

located at the QD surface. A wide FWHM of -40 nm was observed for QDs made using

the co-injection method, compared to a FWHM of 25-35 nm for QDs synthesized using

the core/shell method. However, this large FWHM is expected, since precise control of

ZnTe core size in individual QDs is difficult to realize using the co-injection method.



Like bare ZnTe cores, the nanocrystals produced from co-injection do not show

fluorescence whereas slight addition of zinc oleate shell precursors at high temperature

induces bright PL. Preliminary results also show that variation in the tellurium to

selenium ratio for injection enables further tunability of the emission wavelength.

3.5 Fluorescence Lifetime Decay

3.5.1 Experimental

Photoluminescence decays were obtained by time correlated single photon

counting. Hexane solutions were excited with -50 ps 414 nm pulses at 2.5 Mhz from a

diode laser, and the emission was collected through a suitable spectral filter. Single

photons were detected with an avalanche photodiode module (Perkin Elmer) and their

arrival times were histogrammed with a PC card (PicoQuant Timeharp 200).

3.5.2 Results and Discussions

Fluorescence lifetime decays were measured in order to explore rates of exciton

recombination. Figure 3.5 shows this to be described by two processes: a fast

nonexponential stage followed by a slower decay. The former one dominates and is

attributed to non-radiative decay processes arising from surface defect states,[10] which is

consistent with the low QY observed for this sample (-12%). The slower exponential

component seemingly implies an exciton recombination lifetime of 52.5 ns but in fact this

number is a lower bound of the radiative fluorescence lifetime. The relatively long

lifetime (52.5 ns) suggests that electrons and holes are well separated spatially and

therefore need longer time to recombine than the type I counterparts, which typically

have lifetimes of around 10-20ns. 113 However, at the same time it is reasonable to
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postulate that the relatively thin ZnSe shell (-0.7 nm) on a large ZnTe core (4.4 nm) leads

to an incomplete spatial separation of charge carriers, [12] especially as electrons located in

the thin shell have higher mobility and more tendency to delocalize and tunnel into the

core.
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Figure 3.5 Fluorescence intensity plotted logarithmically against time lag for the same
sample as in Figure 3. D. The red curve, a fit to a single exponential in the range 77 to
340 ns, gives the lifetime of 52.5 ns. Inset: the same data (black line, data; red line,
fitting) plotted on linear axes, showing that the faster nonexponential process dominated.

On the other end, we observe lifetime values very close to one another in this

series of QD samples. We postulate that the difference of the thin ZnSe shell is

negligible on a large ZnTe core in terms of changing lifetimes.
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Chapter 4

Future Directions

As shown above, this ZnTe/ZnSe core/shell QD system is of potential interest,

both from the bandgap engineering point of view and the prospects of future technical

applications such as QD-LEDs.

Progress has been made, and a synthetic procedure is established. However, there

are also lots of promising future directions as we now discuss.

4.1 Formation of Zinc Oxide

We observed zinc oxide species when trying to get XRD patterns for ZnTe cores.

We speculate it was formed as a byproduct in the core synthesis scheme. Several XRD

experiments were done to test this hypothesis.

Our initial concern that the zinc fraction of QDs being oxidized in air when we

prepare and measure XRD samples does not find supports in the spectra we get. To

prevent oxidation in preparing and measuring core samples, nonsolvent (methanol)

precipitation and centrifugation and redispersion into solvent (hexane) was carefully

performed in inert atmosphere. The process was repeated more than three times for a

complete removal of residual organics. The highly concentrated QD solution was

dropcast onto a zero-background silicon plate, and the plate was sealed in a vial in inert

atmosphere. In addition, instead of the conventional metal lid on x-ray diffractometer,

we used a special set-up which allows us to flow nitrogen through the chamber where the

silicon plate sits. In this method, the only chance that the sample is exposed to air is



during the transfer of the plate from the sealed vial to the sample chamber, which is on

the order of several seconds. The fact that we still see zinc oxide diffraction patterns

leaves us only two possibilities: 1) The QD sample is extremely easy to be oxidized. 2)

Zinc oxide is formed in the core synthesis.

Ratio of precursor seems to suggest the latter. In a typical synthesis, Iml of 0.1 M

TOP-Te and 12 mg of ZnEt 2 are mixed and injected into the heated flask. While we have

a relatively precise control over the volume of TOP-Te solution, it is difficult to weigh

the exact amount of zinc precursor given the fluctuation of atmosphere pressure in the

glovebox and each drop of ZnEt 2 is roughly 3 mg. This effect of excess zinc precursor is

easily neglected as it does not affect the PL intensity or peak positions. In one

experiment, in order to test the effect of excess zinc precursor, we prepared two batches

of QDs in parallel, one with 12 mg ZnEt2 (A), the other with 29 mg (B), with all the rest

parameters the same within experimental error. Sample B shows the ZnO differaction

peaks in XRD spectrum whereas sample A lacks features of ZnO, even when we collect

the signals from sample A in air for one hour (Figure 4.1). This simple experiment

demonstrates that 1) ZnO is formed during the ZnTe core synthesis and 2) excess zinc

precursor makes the system more likely to produce ZnO.

We note that zinc oxide peaks are relatively narrow comparing to ZnTe core

signals. Knowing that larger particles give narrower peaks in XRD diffraction patterns,

we filter the solution through a 0.02 um membrane after the first cycle of

methanol/hexane extraction. No zinc oxide patterns are observed from the XRD spectra

we get this way, further demonstrating ZnO is a byproduct of ZnTe core synthesis, and

more importantly, can be easily removed from the system for future processing.



The studies on ZnO are of particular importance as we noticed sample A is much

more stable in air than sample B. Originally we ascribed the poor air stability of these

QDs to the oxidation of tellurium. 111 It is also reasonable to assume the air stability issue

partly arises from oxidation of zinc. What we have learned here is less amount of zinc

precursor is more favorable in terms of the air stability of this system.

Figure 4.1 XRD spectra of ZnTe cores. A is prepared from 12 mg ZnEt2 and B is
synthesized from 29 mg. The marks at the bottom abscissa are the diffraction patterns
correspond to bulk ZnO. While B shows diffraction patterns that are characteristic of
those of bulk ZnO, sample A prepared in the same condition except the amount of zinc
precursor exhibits no diffraction peaks corresponding to ZnO.

4.2 Optimization of Core Synthesis

Transmission electron microscope images show that the distribution of core size

is about 13% in a typical synthesis with a 1:1 zinc: tellurium precursor ratio. In the UV-



Vis absorption spectrum for this batch of cores, the band edge absorption is not

prominent as the feature is smeared out from the relatively wide size distribution.

We explored parameter space by varying the amount of tellurium precursor while

the amount of zinc precursor remained the same. Figure 4.2 shows that the optimal

condition for size distribution occurs around a 1:2 zinc:tellurium ratio, as we see the first

absorption peak which is not seen at other conditions. We believe this has a high

potential to become a robust protocol for high-quality ZnTe QD synthesis.
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Figure 4.2 Absorption of a series of ZnTe QDs with different zinc to tellurium precursor
ratio for injection when the amount of zinc precursor is fixed. A corresponds to 1:1.5
Zn:Te; B corresponds to 1:2 (Zn:Te) giving the most prominent peak feature that is not
seen elsewhere; C corresponds to 1:4 for Zn:Te.



However, this 1:2 zinc:tellurium raio is not an optimized reaction condition for

one-pot ZnTe/ZnSe core/shell QD synthesis. We noted in the following one-pot SILAR

overcoating that the PL intensity was weak and the appearance of PL was delayed. We

speculate that excess tellurium left in the pot can competitively grow into the ZnSe shell.

This is especially true for high grow temperatures (240 C), long annealing times, the

higher reactivity of tellurium than selenium, and the nature of a one-pot synthesis. A

proposed solution is to clean up the system before the ZnSe shell growth. This clean-up

can even potentially solve the tellurium oxidation problem, and will be promising if the

full width at half maximum (FWHM) is narrow, which is expected from a narrow size

distribution.

It is worth noting that while different ratios of precursors give different starting

point for the first absorption peak position; these positions can red-shift given longer core

growth time.

Multiple injections of precursors might also lead to narrower size distributions.

These reaction parameters have not been adjusted yet.

4.3 Potential Solutions to the Air Stability Issue

The PL of ZnTe/ZnSe core/shell QDs is found to be quenched within a few

minutes in air. From a chemical point of view, we speculate that oxidation of tellurium

creates trap states and photoexcited carriers have a higher probability of falling into trap

states instead of undergoing radiative recombination.

A proposed solution is to overcoat core/shell QDs with a protective layer (such as

ZnS or ZnSe). We find one-pot overcoating alleviates the PL quenching problem, but
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does not solve it. This implies that tellurium is at the surface of the nanocrystals. When

we consider the source of tellurium at surface, two possibilities need to be taken into

account: 1) excess tellurium left from the one-pot synthesis being incorporated into the

shell; 2) tellurium in the core region diffuses out to the surface. The fact that tellurium

atoms are big and should be well confined within their crystal lattice leads us to believe

that the first source is more likely.

In order to remove excess tellurium from the growth solution,

methanol/butanol/hexane extraction of growth solution is performed in inert atmosphere.

The QD solution in hexane is then transferred into a flask containing previously degassed

solvents (oleylamine and octadecene) at 60 C. The PL diminishes after a few minutes in

the flask and is not recovered after overcoating a layer of ZnSe or ZnS. However, slight

addition of zinc oleate to the flask before PL diminishes is found to keep the PL intensity

intact, even when the solution is heated up to 120 C. The details are not precisely

known. What we believe now is that the non-solvent extraction removes organic ligands

from the surface of the nanocrystals to the point that slight heating quenches the PL

completely. Addition of zinc oleate can fill the vacancies from the removed organic

ligands and passivate the surface of the nanocrystals.

After the PL is retained, two alternative ways to overcoat these ZnTe/ZnSe

core/shell dots are explored.12, 31 Both methods start with the same solvent system (1 ml

oleylamine and 3 ml octadecene) while they differ in the precursor choices and reaction

conditions. One method is to mix zinc oleate and TOP-S (1:1 in ratio) in TOP, and add to

the pot at a rate of 1 ml/hr at 190 C. A few hours' annealing after the complete addition

usually increases PL intensity. Another method is to mix ZnEt2 and (TMS)2S in TOP,
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and add to to the pot at a rate of 1 ml/hr at 150 C. The processed QDs are found to be

stable in air up to periods of months. Note the precursor pair is not exchangeable. In

different trials, we tested the combination of zinc oleate and (TMS)2S. The PL intensity

was found to be significantly enhanced at first, but quenched shortly afterwards. We

ascribe this to the much higher reactivity of (TMS)2S compared to zinc oleate and the

shell tends to become sulfur-rich. This imbalance in chemical composition likely

quenched the PL.

To be thorough, we also tested the air stability of QD powders after we perform

methanol extraction on these overcoated QDs. The PL of these QDs in solid form is

found to be quenched after a few minutes in air. If we redisperse these QDs in hexane

and add either zinc oleate or TOP, the PL can be retained for months.

In addition, a control experiment was done by adding Br2 in water on these

overcoated QDs. As a strong oxidant, Br2 should easily oxidize tellurium. In this

experiment, we observe immediate quench of PL, which suggests that oxidation of

tellurium is the cause of air stability issues.

Later TEM images show that for QDs fluoresce at wavelength 560 to 590nm, the

shape of the nanocrystals is not spherical. Instead, prism-shaped dots comprise a large

fraction of the sample. Bearing in mind the intrinsic lattice mismatch between ZnTe and

ZnSe (8%), we know it is difficult to grow thick shells even when one carefully uses high

growth temperatures and long annealing times. The problem might be worse with ZnS,

which has a even larger lattice mismatch with ZnTe. In our experiments, we start with

dots that show PL around 545 nm, which we now believe is roughly 4.4 nm in core size



and 0.7 nm in shell thickness (with an overall size of 5.8 nm). On the other hand, QDs

that show PL below 545 nm can be spherical. A proposed solution is to start with a

smaller ZnTe core, and a thinner ZnSe shell. In that case, with a new thick shell

overcoated on top of this core/shell construct, air stability issues might be finally resolved.

4.4 Further Tunability

As demonstrated earlier, these ZnTe/ZnSe core/shell QDs have PL from 480 nm

to 590 nm. According to quantum confinement effects, if we start with bigger ZnTe

cores, and grow thick shells on the existing cores, we should be able to tune the PL to the

red of 590 nm.[41
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Figure 4.3 XRD pattern from a sample made simultaneous co-injection of zinc, tellurium,
and selenium precursors. The marks on the bottom abscissa are peaks characteristic of
those for bulk ZnSe (zinc blende).



To access PL below 500 nm, we attempted the co-injection method. Preliminary

results show that by varying the tellurium to selenium ratio, the PL can be tuned from

430 nm to 500 nm. Some characterizations are done. Here we give an example where

we start with a 15:85 tellurium:selenium ratio for co-injection. Figure 4.3 is the XRD

pattern of the co-injection QDs. The peaks are slightly shifted from ZnSe (zinc blende)

towards ZnTe (zinc blende) while the sample largely exhibits the characteristic

diffraction pattern of ZnSe. This is expected as selenium dominates in precursor

composition. Wavelength dispersive x-ray spectroscopy shows the core composition

after the co-injection as Zn, 55%; Se, 42%; Te, 3%. We can see selenium is dominating

in the anion composition. TEM images reveal the size is about 3.7 nm (Figure 4.4). The

superlattice structure suggests that high crystallinity is achieved in this method. PL

lifetime decay was measured to further characterize these co-injection QDs. The lifetime

for this sample is about 50 ns (Figure 4.5). The relatively long lifetime suggests that

carriers are spatially separately even when the core is small.151



Figure 4.4 Transmission electron microscopy image of QDs produced by co-injection
method.

The system is potentially interesting not just because of its tunability, but also for

its air stability, and for high quantum yields. Samples prepared by the co-injection

method are stable in air without further processing. We believe tellurium atoms have a

high reactivity and bind to zinc atoms to form small cores before selenium atoms can do

so. As the tellurium precursor is depleted, selenium precursors and excess zinc

precursors grow onto existing ZnTe cores. This effectively creates a ZnTe/ZnSe

core/shell structure with an extremely small ZnTe core. Or this construct can be seen as

tellurium center-doped ZnSe QDs. Without tellurium on the surface of the nanocrystals,

the air stability issue is minimized. The quantum yield in the co-injection method is

typically around 25%, better than their core/shell counterpart (15%).

54



0.1

c 0.01

Time (ns)

Figure 4.5 fluorescence intensity decay plotted logarithmically against time for QD
samples produced in co-injection method. The lifetime measured is typically on a scale
of 50 ns.

A large FWHM (-40 nm) is observed for this co-injection QD sample whereas its

core/shell counterpart has a typical FWHM of 25 - 35 nm for PL below 550 nm. This

large FWHM is expected as the precise control over elemental distribution in individual

QDs is difficult to realize.

4.5 Conclusions

In summary, there are lots of important future directions arising from this ZnTe/ZnSe

core/shell system. For one thing, addressing the air stability issue, different reaction

schemes are proposed such as the precursor usage, the purification and overcoating

method. For the other, the co-injection method produce high-quality air-stable QDs and

these QDs can be tuned over a wider range by changing reaction parameters.
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Appendix I

As the successor of Brian Yen, I have also been working on the microfluidic reactor

project. There are mistakes made, experiences gained. I summarize them here for

possible future reference.

A great improvement is to employ compression parts, instead of the conventional tubing

and sealing method. Compression parts can stand high pressure, and are reusable so that

no more effort needs to be spent on sealing steps in fabrication once the reactor part is

done.

Details in fabrication

To speed up the process, there are a few steps we modified from Brian's standard

procedures.

1) No need to grow oxide in between each step.

Growing oxide in tube A2 generally takes - 8 hours, and the cleaning up in the

preparation stage is stringent and time-consuming. The procedure we start with including

growing oxide after each etching step, which is sometimes unnecessary. In the current

process flow, for each reactor, we only use tube A2 once, before we do the anodic

bonding. The reactors we fabricated this way are of high quality, and can withstand

pressures as high as 60 bar.

2) No need to bake wafers in between sides.

In most cases, double-side coating is necessary. The conventional procedure is to first

coat one side, bake for one hour, and then coat the other side, and bake again for one hour.

What we found feasible is to coat the first side, bake for 5-10 min (just to remove

solvent), then coat the other side, and bake for half an hour before UV exposure.

57



3) No need to immerse in acetone for 6 hour.

In STS silicon through-etching, we need to mount the silicon wafer to a quartz wafer

beforehand. After the process, a usual procedure is to immerse the wafer in acetone for

six hours to dissolve adhesive photoresist. Experimentally, we found sonicating the

wafer in acetone for 10 min is sufficient to separate the silicon wafer and quartz wafer,

and therefore greatly speed up the process.

4) Acid hood 2 is faster than acid hood 1.

When you can, get trained on acid hood 2 after you are qualified for acid hood 1. The

rate-limiting step in acid-hood is the cleaning up afterwards. Acid hood 2 has an

advantage in that.

5) Wait until helium leakage check is done on STS.

Obviously, I learned this from a previous mistake made. Helium leakage check is a

critical step in STS silicon etching. After this step, the plasma etching will start and go

on for a designated period of time so that you can go back to the wet-lab and do more

work. However, if for some reason, the leakage check is not able to complete, the whole

process is on hold. You come back five hours later, only to find your fabrication

schedule is messed up.

6) Booking equipment

Try to qualify as a 24 hour user. Besides that, EV1 is a heavily used apparatus. So when

planning the fabrication, try to find the slots for EV1, and work things around that.



Appendix II

A few interesting directions for in microfluidic reactors:

1) Heterogeneous structure.

One example is ZnTe/ZnSe core/shell tunable system. By feeding different amounts of

precursors or employing different residence times, one might be able to demonstrate in a

straightforward way the tunability of that system.

Grow rod-like shell structure. The essential idea of the design is to keep the

concentration high, and thus the growth becomes more anisotropic and less spherical. By

feeding precursors into side channel, one can easily maintain a high concentration. For a

model system of CdSe/CdS core/rod-like shell, once the condition is optimized in batch

mode, it should be easy to adapt into microfluidic reactors. A possible modification is to

grow an alloy shell to form CdSe/CdZnS particles.

2) Characterization of supercritical fluid.

Recently, we found supercritical hexane a suitable medium to grow CdSe quantum dots.

The product is of high quality with narrow size distribution. We need to design a model

reactor and find a suitable probe to characterize that system.

3) In-line monitoring system.

To build an in-line monitoring set-up is one of the goals in the future. With a rapid

detection of absorption and photoluminescence, the efficiency of screening over a wide

range of reaction parameter should be greatly increased.
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