
Analysis of Batching Strategies for Multi-Item
Production with Yield Uncertainty

by

Christopher Siow

B.S. Electrical Engineering and Computer Sciences
University of California at Berkeley, 2006

Submitted to the Sloan School of Management
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Operations Research
at the

Massachusetts Institute of Technology

February 2008

© 2008 Massachusetts Institute of Technology.
All rights reserved.

A uthor..
Operations Research Center

December 13, 2007

Certified by.........................

Accentined hv

Stephen C. Graves
Abraham J. Siegel Professor of Management Science

Thesis Supervisor

..

Cynthia Barnhart
Professor of Civil and Environmental Engineering, and Engineering Systems

Co-Director, Operations Research Center

ARCHIVES

OF TEOHNOLOOY

FEB 27 2008

LIBRARIES

p~VYV y........·

Analysis of Batching Strategies for Multi-Item
Production with Yield Uncertainty

by

Christopher Siow

Submitted to the Sloan School of Management
on December 13, 2007, in Partial Fulfillment of the

Requirements for the Degree of
Master of Science in Operations Research

ABSTRACT

In this thesis, we investigate the batch sizing problem for a custom-job production facility.
More specifically, given a production system that has been assigned several different
types of custom jobs, we try to derive batching policies to minimize the expected total
time that a job spends in the system. Custom-job production brings a host of challenges
that makes batch sizing very difficult - production can only begin when the order arrives,
the yield uncertainty probabilities are fairly large, and the production quantities are
typically small. Furthermore, deriving an optimal batch sizing policy is difficult due to
the heterogeneity of the job types; each job type has a different demand, batch setup time,
unit production rate, unit defective probability, and job arrival rate. In addition, further
complexity stems from the fact that the batch sizing decisions for each job type are
coupled, and cannot be made independently.

Given the difficulties in selecting the batch sizes, we propose an alternative batching
method that minimizes the system utilization instead of the expected total job time. The
main advantage of this approach is that is allows us to choose the batch size of each job
type individually. First, we model the system as an M/G/l queue, and obtain a closed-
form expression for the expected total job time when the demand is restricted to be a
single unit. Following which, we show empirically that the minimum utilization heuristic
attains near-optimal performance under the unit demand restriction. We then build on this
analysis, and extend the heuristic to the general case in which the demand of each job is
allowed to be more than a single unit. Finally, we use simulations to compare our
heuristic against other alternative batching policies, and the results indicate that our
heuristic is indeed an effective strategy.

Thesis Supervisor: Stephen C. Graves
Title: Abraham J. Siegel Professor of Management Science

(This Page Intentionally Left Blank)

Acknowledgements

First and foremost, I would like to express my heartfelt gratitude to my thesis advisor,

Professor Stephen Graves. Working with him on this project has been an extremely

enriching experience for me, and I want to thank him for being so enthusiastic in sharing

his wealth of knowledge. I really appreciate his invaluable insights when I was at the

crossroads of my research, and for his guidance in keeping me on the right track. His

advice was vital for the success of this project, and I am very fortunate to have had the

opportunity to learn from him.

Thanks to my friends from the ORC, especially Mo, Clay, Bryan, and Charles, for their

friendship and hospitality. It is really a pleasure and a privilege to have met every one

them, and my experience at MIT would certainly not be the same without them.

All my love goes to my family, without whom I would not be who I am today. It gives

me great comfort to know that I am constantly in their prayers. Their words of love and

encouragement mean so much to me and give me the strength to persevere. Most of all, I

want to thank them for taking pride in my achievements; it makes success so much

sweeter.

Last but not least, to my dearest Jean. All these years, it has been her unconditional love

and support that has kept me going. Thank you for being a part of my life and walking

this journey with me.

(This Page Intentionally Left Blank)

Contents

1. Introduction 15

1.1. Thesis M otivation .. 15

1.2. Thesis Objective ... 17

1.3. Literature Review .. 17

1.4. Thesis Outline ... 20

2. Analysis of the Multi-Product Production Process 23

2.1. Modeling of the Machine as a Queue with Feedback 23

2.2. Expected Total Time for Single-Item M/M/1 Queue 25

2.3. Expected Total Time for Single-Item M/G/1 Queue 29

2.4. Generalization of the Total Expected Time Formula for Multiple Jobs 30

3. Batching Strategy for Single-Item, Unit Demand Production Systems 35

3.1. Expected Total Time Formula 35

3.2. Lower and Upper Bounds .. 37

3.3. Bisection Line-Search Algorithm 39

3.4. Results and Observations .. 41

3.4.1. Effect of Setup Time r 42

3.4.2. Effect of Unit Production Time a 43

3.4.3. Effect of Unit Failure Probability 8? 44

3.4.4. Effect of Job Input Rate A 45

4. Batching Strategies for Multi-Item, Unit Demand Production Systems 47

4.1. Expected Total Time Formula 47

4.2. Batching Strategy using First-Order Optimality Conditions 50

4.3. Batching Strategy by Minimizing Utilization 53

4.3.1. Lower and Upper Bounds for M/D/i Queue 54

4.3.2. Observations on Lower and Upper Bounds 63

4.3.3. Minimize Utilization Heuristic 64

4.3.4. Performance of the Minimize Utilization Heuristic

5. Batching Strategy for Multi-Item, General Demand Production Systems

5.1. M inimize Utilization Heuristic

5.2. Performance of the Heuristic

5.3. Modified Minimize Utilization Heuristic

6. Conclusion

Appendix A

Lower and Upper Bounds on the Optimal Batch Size for Alternative Queueing

M odels

Appendix B

Lower and Upper Bounds, and Optimal Batch Sizes for Various Parameters...

Appendix C

... 65

71

... 72

... 76

... 81

89

93

... 93

97

.... 97

109

Test Results of Minimize Utilization Heuristic for Unit Demand

Appendix D

D.1 Test Results at

D.2 Test Results at

D.3 Test Results at

D.4 Test Results at

D.5 Test Results at

Appendix E

E.1 Test Results at

E.2 Test Results at

E.3 Test Results at

E.4 Test Results at

E.5 Test Results at

E.6 Test Results at

E.7 Test Results at

Ptest

Ptest

Ptest

Ptest

Ptest

Plest

Plest

Ptest

Plest

Ptest

Prtest

Plest

=0.5

= 0.6

= 0.7

= 0.8

= 0.9

= 0.1

= 0.2

= 0.3

= 0.4

= 0.5

= 0.6

= 0.7

E.8 Test Results at p,,,, = 0.8

............ 109

125

............ 125

............ 130

............ 135

............ 140

............ 145

151

............ 151

............ 154

............ 157

............ 160

............ 163

............ 166

............ 169

............ 172

E.9 Test Results at tes, = 0.9 ... 175

Bibliography 179

(This Page Intentionally Left Blank)

Representation of the Production System as a Queue with Feedback..

State Transition Diagram of the Steady-State M/M/1 Queue with

Feedback ..

Markov Chain Representing the Number of Prior Job Requests

Example of the Lower and Upper Bounds on n

Relationship between Expected Total Time and Batch Size

3.3 Expected Total Time as a Function of Batch Size for r = 0.3, 0.5, and

0.7.................................

3.4 Expected Total Time as a Function of Batch

and 0.06

3.5 Expected Total Time as a Function of Batch

0.6

3.6 Expected Total Time as a Function of Batch

1.25

4.1 Expected Total Time as a Function of Batch

......................... 42

Size for a = 0.02, 0.04,

......................... 43

Size for / = 0.2, 0.4 and

......................... 44

Size for A = 0.75, 1, and

......................... 4 5

Size for 2 Job Types 49

4.2 Contour Intervals of Expected Total Time for 2 Job Types

4.3 Single Stationary Point Exists for Yj

........ 49

........ 55

Single Stationary Point Exists for 2 (+ f)

Lower and Upper Bounds: r = 0.5, a = 0.04, and 8 = 0.4

Lower and Upper Bounds: r = 0.4, a = 0.125, and / = 0.7

Average Increase in Expected Total Time for Various Utilization Levels. ..

Performance of the Heuristic at Various Utilization Levels

Average Increase in Expected Job Time for Policies 1 and 2(c)

System Utilization as a Function of Weight Factor

59

List of Figures

2.1

2.2

2.3

3.1

3.2

.... 24

.... 26

.... 27

.... 38

.... 39

4.4

4.5

4.6

4.7

4.8

5.1

5.2

(This Page Intentionally Left Blank)

Variation of Optimal Batch Sizes with Change in Input Parameters

Input Parameters for Two Job Types

Performance of Minimize Utilization Heuristic

Example of the Dynamic Programming Table

Batch Sizing Results

Average Percentage Increase in Expected Job Time

Input Parameters for Ten Job Types

Average Percentage Change in Expected Job Time.............

List of Tables

3.1

4.1

4.2

5.1

5.2

5.3

5.4

5.5

....... 46

....... 48

....... 67

....... 75

....... 75

....... 79

....... 82

....... 85

(This Page Intentionally Left Blank)

Chapter 1

Introduction

1.1 Thesis Motivation

The issue of lot sizing is one that can be found in a myriad of industries, and the problem

of determining optimal batching policies generates much interest because it affects

throughput, production costs, and revenue. Consequently, a variety of lot sizing problems

has received widespread attention throughout the years. In this thesis, we consider one

such variant. While our analysis was originally aimed at microfabrication facilities that

manufacture custom-designed integrated circuit or Micro-Electrical-Mechanical-Systems

(MEMS) components, there certainly are other types of production facilities that fit our

problem description, and the analysis and results that are presented in the following

chapters will still be relevant.

The context is that of a custom-job production facility that receives job orders from

customers, and has to deliver the order by a set deadline. The jobs that these facilities

undertake are usually custom jobs that are subcontracted from other companies.

Frequently, the job order quantity is small, and the product required must be custom-

made to the customer requirements. As with almost all custom production facilities, yield

is never perfect, and there will be a certain fraction of defective units per production run.

The problem that the facility faces is thus to decide on the batch size to produce for each

job, so as to meet the deliverable deadline. In many aspects, the problem that this thesis

addresses is very different from other batch sizing problems in the following ways:

* The fact that the each job is unique emphasizes the time-sensitivity in delivering

the order. Since each custom MEMS product uses a custom blueprint, the number

of process steps, the types of process steps required, and even the length of each

process step will vary from product to product. This means that production can

only begin when a job actually arrives at the facility (make-to-order). In contrast,

mass production facilities for companies such as Dell are able to fabricate

components beforehand, due in part to the scale of the business, and also the fact

that these companies operate in an assemble-to-order or make-to-stock

environment.

* The order quantities for custom-job production are usually small, and frequently

in the range of between one and ten units. When the order quantity is small, yield

uncertainty has a very large effect on production planning and batch sizing

because the actual number of good units produced is very unpredictable. This is

evident if we consider a factory that produces common household products such

as diapers. The production quantities per order are usually very large, and on the

order of several thousands. As a result, even with yield uncertainty, the actual

realized yield is fairly predictable due to the law of large numbers.

* The yield uncertainty probabilities that we are dealing with can be fairly large.

This is simply a consequence of the custom fabrication of hi-tech components. In

the microfabrication industry, the yield is typically much lower than compared to

other industries due to the sensitive and difficult processing steps required. In

addition, since jobs are unique, there is no fixed production template to follow,

and this further drives down the yield.

The significance of all these differences is that these custom-job microfabrication

facilities are faced with the difficulty of managing a production process that has a highly

variable yield to satisfy an order within a tight deadline.

1.2 Thesis Objective

This thesis aims to develop a methodology for batch sizing to allow the before-mentioned

production facilities to complete a job order as quickly as possible so as to meet the

deadline. Apart from meeting the job deadlines, this would also allow the facility to

accept more jobs.

Instead of focusing on the entire production facility, we consider a single machine in the

facility. For instance, this single machine might be the bottleneck for the production

system. Alternatively, we could think of the single machine as a proxy for the entire

production line. Given a certain set of jobs that are assigned to the machine, we attempt

to derive an optimal batch sizing policy. We could evaluate the efficacy of a batch sizing

policy can be evaluated by several different standards; however, for this research the

criterion that we use to compare the performance of various policies is the expected total

time that a job would spend in the system.

In simpler cases where the algebra is tractable, we propose an algorithm to find the

optimal policy under such conditions. In more difficult cases, we offer a batch sizing

heuristic that minimizes the utilization of the machine. When compared to the true

optimal policies (in the cases when it is possible to derive them), and other alternative

strategies, we show that our heuristic performs very well.

1.3 Literature Review

The earliest papers written on batch sizing under yield uncertainty date back to the late

1950s. In all these papers, the aim is to derive the reject allowance - the extra quantity

processed to allow for possible defective units. Since then, the papers that are relevant to

this thesis can be broadly classified into three categories.

The first category consists of papers that are concerned with batch sizing decisions under

yield uncertainty for single product systems, and when only a single production run is

permitted. By considering the costs associated with overage and underage production,

Giffler [5] formulated the lot sizing problem as one of finding the optimal reject

allowance to minimize the expected costs. In essence, this was a marginal analysis in

which the reject allowance was selected to provide the optimal tradeoff between

overproduction, and failing to meet the demand. Shortly after, Levitan [12] provided

mathematical support for Giffler's results and gave sufficient conditions for the algorithm

to achieve optimality.

Although almost all the papers we reviewed used the minimization of costs (or

equivalently the maximization of savings) as their objectives in determining the batch

sizes, one can easily see how these analyses can be used when the objective is to

minimize the expected total time. In many references such as Bowman [1], Llewellyn

[14], and White [16], the cost associated with a batch is typically a fixed setup cost, as

well as variable production costs proportional to the batch size. This is entirely analogous

to the case when the time associated with producing a batch comprises a fixed setup time

and a variable time component. Therefore, the "cost" in these cases, is in terms of units of

time, rather than dollars. In this thesis, since we are primarily concerned with meeting a

deadline, minimizing a time objective is the approach we have adopted.

Like the first category that we have just discussed, the second category also consists of

papers that also analyze single-product systems with yield uncertainty. However, the

main difference is that multiple production runs are allowed. In 1957, Bowman and Fetter

[2] presented a heuristic to determine the lot size for a custom order. The analysis

performed is very similar to Giffler [5], and the same tradeoff model was used, only that

multiple runs are allowed.

Llewellyn [14] then used normal and Poisson approximations to the binomial yield

distribution to calculate reject allowances to ensure the satisfaction of the demand within

a specified probability. These approximations were made under the context that demand

was large (thus necessitating the use of approximations), and for a single production run.

He also considered models that allowed additional runs, but non-zero costs were only

assigned to the first few runs. Through use of an example, he concludes that the optimal

decision under these models does not change, so the effects from the second run onwards

(second-order effects) can be ignored. In this thesis, as in Goode and Saltzman [6], we do

not make the assumption that second-order effects can indeed be ignored, and associate

appropriate costs with every production run that is performed.

The analysis made by White [16] in 1965 is perhaps one of the closest to the problem

addressed by this thesis. The objective is to minimize the total expected setup and

variable production costs, and White presents a dynamic programming formulation of his

solution. However, it is not clear how this analysis could be extended to the multi-product

case, since batch sizing decisions among heterogeneous items will affect each other. This

work was further extended by Delfausse and Saltzman [4], who incorporated salvage

costs into the objective function.

More recently, Karmarkar [8] presented a method for obtaining the optimal batch size for

single-product systems with no yield uncertainty. He models the machine as an M/D/l

queue, and invokes first order optimality conditions to derive the best batch size. More

interestingly, unlike the earlier papers that dealt with a cost objective, Karmarkar focused

on minimizing the average time a job spends in a system.

Given the extensive literature on single-product production systems with yield

uncertainty, the last category of papers addresses the batch sizing problem for multi-

product systems when multiple production runs are allowed. While these papers seem to

provide a solution to our problem, we note that those we reviewed did not consider yield

uncertainty. Also, there are not many papers within this category. In the review of lot

sizing literature done by Yano and Lee [17], they state that relatively little work has been

done on multi-product systems. This is perhaps due to the difficulty involved in such

analysis, since there is a great interdependence in lot sizing decisions due to the

heterogeneity of the items (Karmarkar [8]).

There have been several papers that discuss the importance of minimizing delays and

queueing time in order to reduce production time. Some reiterate the fact that a large

percentage of lead times is due to queueing delays (Jbnsson and Silver [7]; Stalk [15]).

Others, like Buzacott and Shanthikumar [3], review several models for studying queueing

delays in production facilities. Nonetheless, these papers are concerned more with the

queueing delay per se, and the relationship between batching decisions and these delays

is not explored in depth.

With regard to the effect of batching strategies on delays, two papers offer an extension

to the work done by Karmarkar[8]. Karmarkar, Kekre and Kekre [9] extended the

analysis to multi-product systems with no yield uncertainty. Similarly, Kuik and

Tielemans [10] also propose a numerical method to solve for batch sizes that minimizes

the expected waiting time of a job in the queue, rather than its expected total time in the

system. However, as we have stated, these papers do not consider the effect of yield

uncertainty in the batch sizing strategies.

To summarize, our work differs from previous literature in the fact that we are trying to

combine the dual problems of batch sizing for multi-product systems and batch sizing

under yield uncertainty; furthermore, we do account for queueing effects, as they depend

on the choice of batch size. Through this thesis, we provide an analysis of these problems,

and propose some batch sizing policies.

1.4 Thesis Outline

The following chapter presents an analysis of the operation of the machine, as well as a

derivation of the expected total time formula using queueing theory. In Chapter 3, we

analyze the simplest possible scenario in which all the jobs have the same job parameters

(a single job type), and the demand for each job is a single unit. Under these assumptions,

we are able to derive an optimal batching policy. We then relax the job homogeneity

restriction in Chapter 4, and allowed the machine to handle different types of jobs; we

still assume that the demand for each job is a single unit. Here, we introduce our batch

sizing heuristic, and highlight its performance through a series of test cases. Next, we

present a dynamic programming implementation of our batch sizing heuristic in Chapter

5, which can be used to deal with the cases when demand is not restricted to a single unit.

Finally, we conclude with Chapter 6, and put forth some ideas for future work.

(This Page Intentionally Left Blank)

Chapter 2

Analysis of the Multi-Product
Production Process

To compare batching strategies, we will use as the criterion the expected total time that a

job would spend in the system under a certain policy. That is, the criterion is the expected

amount of time from the arrival instance of the job to the time when the system

completely satisfies the job demand. In this chapter, we first describe the queueing model

used to represent the production system. With the framework in place, we then obtain an

expression for the expected total time, which we will then seek to minimize through the

choice of batching policy in the following chapters.

2.1 Modeling of the Machine as a Queue with Feedback

Given the problem description, where a multi-product production system has to satisfy

demand from jobs of different types, it is natural to analyze the batching problem from a

queueing theory standpoint. We assume that the machine can process J kinds of

different products. As shown in Figure 2.1, job requests are submitted to the machine,

where they enter a single queue and await service. We assume that the the job arrival

process is Markovian in nature, which is not an unreasonable assumption if the arrivals

are due to many overlapping and uncoordinated product flows (Karmarkar [8]). The

queue is cleared in a first-come-first-serve discipline; a job request waits in the queue

until all the job requests that arrived before it have received service. Each job request of

type j is a demand for a certain number of items of that particular product. To satisfy

this demand, the machine will produce a batch of the product.

Figure 2.1: Representation of the Production System as a Queue with Feedback

However, due to yield uncertainty, the demand of the job request may not be satisfied by

a single batch even if the batch size is larger than the number of good units required. We

model the random yield for each unit in the batch as a Bernoulli process. In other words,

the number of good units that is obtained from a batch of size n is a Binomial random

variable with parameters n and p, where p represents the probability that a good unit is

produced.

In the event that demand is not satisfied, then the machine server continues producing

batches to satisfy the remaining demand of the current job request, before proceeding to

the next job request waiting in the queue. We assume that the machine can process at

most one batch at a time, and that the service time for the batch depends on the type of

job, and the size of the batch. For example, suppose a job arrives for which the initial

demand is 5 units, and the machine starts with a batch of size 8. If this initial batch were

to yield only 3 non-defective units, then the machine has to process a new batch to satisfy

the remaining 2 units of demand. The new batch need not have the same size as the initial

batch; for instance, we might decide to set the second batch to size 6 and hope that this

Machine

will yield at least 2 good units. This process continues until the demand for 5 units is

completely satisfied. The decisions that we are concerned with, are thus the batch sizes to

use when faced with different job types that require different demand amounts.

As described above, we assume that we always insert a job request with unfulfilled

demand to the front of the queue for "re-service" and continue to do so until all of the

demand for a job is satisfied. Under the assumption of job homogeneity, the expected

total time that a job spends in the system is not affected by the re-service discipline that is

adopted. In other words, if the machine handles only a single type of job, the position at

which we insert a "failed" job into the queue for re-service does not affect the expected

total job time. This is because the expected queue length does not change under various

re-service disciplines. Therefore by Little's Law [13], the expected total job time remains

invariant. However, when the machine is allowed to handle different types of jobs, then

the re-service discipline does affect the expected total job time. To keep the analysis

simple and tractable, we will henceforth make the assumption that a job that requires re-

service is inserted to the front of the queue until its demand is completely satisfied.

2.2 Expected Total Time for Single-Item M/M/1 Queue

The total amount of time, T, that a job spends in the system can be decomposed into two

parts - the amount of time that the job spends waiting in the queue, W, and its total

service time, S. We emphasize that it is important to distinguish between the total

service time S and the time required for a single service through the server X; because

there is yield uncertainty, the total service time will be the sum of a random number of

service times, corresponding to the number of batches that are needed before the job

requirements are met.

T=W+S

E[T] = E[W]+ E[S] (2.1)

Before analyzing multi-item queues with the complexity of general service times, we first

concentrate on the simple case where there is only a single job type, and the single

service time, X, follows an exponential distribution with a mean of I . For ease of

notation, we will let the service rate, 3-' = p . Also, we let y represent the probability

that a job has to undergo re-service, and thus rejoins the queue.

Although the exogenous job arrival rate to the queue is Poisson, the input rate cannot be

assumed to be Poisson due to the feedback from the server. However, we can

conceptualize each server as a machine without feedback, with the rate at which a job is

completed given as p(1- y) . The factor of (1- y) is due to the fact that the machine

processes jobs at a slower rate than the actual job service rate p , because of the

probability of re-service. This is illustrated in Figure 2.2, in which state 1 represents the

event that there are I jobs already in the machine (waiting in the queue and currently

being serviced).

2 1 2 3 s

P (1- y) P (1- y) P (1- y) P (1- y)

Figure 2.2: State Transition Diagram of the Steady-State M/M/1 Queue with Feedback

To obtain an expression for the expected waiting time, E[W], we have to find the steady-

state probability of every state 1. This is done by writing the steady-state balance

equations:

tA = r+I PO(1 - y) 1 = 0,1,2,... (2.2)

Together with the fact that the steady-state probabilities must sum to 1; E = 1, some
1=0

recursive substitution and algebra yields:

p /(1 - y) A (1- Y)
1 = 0,1,2,... (2.3)

Suppose a new job request arrives, joins the queue, and there are L prior jobs ahead of it

in the queue. We can model the number of job requests that have to receive service

before the new job as a Markov chain shown in Figure 2.3.

r r r r

Figure 2.3: Markov Chain Representing the Number of Prior Job Requests

Assuming that there are L jobs that will receive service before the newly-arrived job

request, then the expected waiting time until the new job receives service is then the

expected time to absorption from state L to state 0. If we let w, represent the expected

waiting time given that we are starting from state 1, we can write a series of recursive

formulas:

wO =0

l=1,2,3,...,Lw 1
w,=rm + -~ ,,

By recursive substitution, we can write a closed-form expression for w,

w, = (2.4)

Combining Equations 2.3 and 2.4, we can then calculate the expected waiting time

E[W]= r i,w,
l=0

E[W]W E

E[W] A (2.5)PO(1 - r)(,(1 - r) -2) (2.5)

We note that due to the assumption of exponential service times, the expected service

time of the job is equivalent to the expected waiting time if there is only one prior job;

E[S] = - . Therefore, summing the components of Equation 2.1, we can obtain

the expected total time as

l 1
E[T] +-p(- r)(Pu(1 -) -A) +P - 7)

1 X
E[T] (2.6)

2.3 Expected Total Time for Single-Item M/G/1 Queue

Although using the M/M/1 queue as a model for our production system yields

straightforward formulas, the assumption of exponential service times is restrictive since

we would like to be able to analyze systems with more general service distributions that

depend on the job type and batch size. Hence, we make the first relaxation of the model

and consider single-item production systems with general service times, and proceed with

an analysis along the same lines as Equation 2.1. We still assume that the job arrival

process if Markovian. The waiting time that a new job request experiences is the sum of

the service times of all the jobs that are already in the queue, and the residual service time

of the job that is being serviced. In this case, it is important to make this distinction

between the jobs that are already in the queue, and the job being serviced because we are

now not making the assumption that the service times are exponential. Thus, we cannot

exploit the memoryless property of the exponential service times, and the probability

density function (pdf) of the residual service time is generally not the same as the pdf of

the actual service time. Since the server is busy a fraction p of the time on average,

where p is the utilization, we can then write the following.

E[W] = E[L] x E[S] + pE[R] (2.7)

where L is the length of the queue, and R is the residual service time of the job being

serviced, conditioned on there being a job in service.

By considering the queue as a system by itself, we can apply Little's Law to obtain

E[L] = AE[W] (2.8)

Substituting Equation 2.8 into Equation 2.7,

E[W] = AE[W] x E[S] + pE[R]

E[W] = pE[W] + pE[R]

E[W] pE[R] (2.9)
i-p

To obtain the expected residual service time E[R], we observe that the arrival of the

most recent job is one of random incidence, and we wish to find the expectation of the

time left until the next job in the queue receives service. Larson and Odoni [11] provide a

complete derivation of the formula for E[R].

E[S2]E[R] E[S]
2E[S]

C2 +E[S]2
E[R] = s (2.10)

2E[S]

Finally, by substituting Equations 2.9 and 2.10 into Equation 2.1,

p E[S2]
E[T] = p E[S] + E[S] (2.11)

(1- p) 2E[S]

Equation 2.11 thus expresses the expected total time that a job spends in the machine as a

function of the first and second moments of S, the total service time. One may note that

the first term of the sum in Equation 2.11 is in fact the well-known Pollaczek-Khinchin

mean value formula.

2.4 Generalization of the Expected Total Time Formula
for Multiple Jobs

Although we derived Equation 2.12 in the context of a single-item production system, we

can modify it for the case of multiple job types. To obtain the expression for E[T] when

the system handles multiple job types, we simply have to let S represent the total service

time of an "average" job, and invoke the total expectation theorems. If we let Si

represent the total service time of a job of type j, we then get the following equations

E[S] = E[S,] x P(job arrival is type j) (2.12)

E[S 2] = E[S2]x P(job arrival is type j)
j=l

E[S 2] = + E[S,]2)x P(job arrival is type j) (2.13)
j=1

P(job arrival is type j) = (2.14)

Now consider a job request of job type j that has a demand for d good units, and the

production yield is uncertain. In this case, S1 is dependent on two factors:

1. The choice of batch sizes

2. The number of good units that is produced during each batch service

While it is possible to perform an analysis on S, in the case of arbitrary demand, this is

considerably more difficult due to the probabilistic nature of factor 2. In addition, since

the yield of a batch is modeled as a Binomial random variable, the number of good units

in a batch is also dependent on the batch size. With this yield uncertainty, the demand of

a job request may only be partially fulfilled during a particular service, and Si depends

not only on the initial batch size, but also on the subsequent batch sizes. The complexity

in considering all the possible combinations leads to difficulty in obtaining the moments

of S I. As a result, obtaining a closed-form expression for the expected total time for an

arbitrary demand is mathematically tedious.

However, suppose each job request requires only a single good unit. Then, the algebra is

significantly simplified since we know that as long as a batch yields at least 1 good unit,

the job request is satisfied. In other words, re-service is only required when the batch

yields no good units. With the unit demand assumption, we see that:

Sj = Xj,1 + Xj,2 +... + Xj,M

where X 1. is the time taken for the i'h service iteration of a job of type j, and M is a

geometric random variable representing the number of batch services before the unit

demand is satisfied. For a job of type j, we will define n, as the batch size to be used,

and fi as the probability that a defective unit is produced. We then have the following

results:

P(M = m) = (f•.)"-' (1- f "') m = 1,2,...

1
E[M] =

M2 fl

By the law of iterated expectations,

E[Sj] = E[Xj] x E[M]

E[Sj]- j
1-fl

j (2.15)

where 3j is the expected service time for one iteration of job j, using a batch size of n .

By the law of total variance,

2 2 jrIj,2ycrtr,20-2s• = 0-• E[M] + '2 E[X]

2 + _ 2 #fl;J)
1 fl? (1-f n)2 (2.16)

Combining Equations 2.12 through 2.16, the first and second moments of S are found as

E[S]= = LoZ1 ~ (2.17)

/ 2 ni j 2)

E[S2]= 1 1~) + (2.18)
;=-1 0 (- f) 2n

For multiple job types, the utilization is given by:

p = AE[S] (2.19)

Finally, the general expression for the expected total time that an average job spends in a

production system that handles multiple job types, each with unit demand, is obtained

from Equations 2.11, 2.17-2.19.

E[T] p E[S 2]E[T] -+ E[S](1- p) 2E[S]

E[T] E[+E[S]
2(1- AE[S])

J_ jxj (2.20)
j=1 -P j

E[T] =

j=1

(This Page Intentionally Left Blank)

Chapter 3

Batching Strategy for Single-
Item, Unit Demand Production
Systems

To gain some insight into the effect of batching policies on the expected total time, we

first concentrate on the simple case where machines only handle jobs of a single job type,

and the demand of each job is for a single good unit. With these simplifications, we are

able to obtain solutions analytically, and propose a method to search for the optimal batch

size. In addition, we also conduct several studies to observe how changes in the job

parameters affect the expected total time and the batch sizing decision.

3.1 Expected Total Time Formula

In the case when there is only a single type of job request arriving at our production

system, and there is unit demand, then we can reduce Equation 2.20 to the following

equation. We omit the subscript j because there is only one job type.

EI T- 2 _() (31E[T] = + (3.1)2 1-A 1 1-_"

To further simplify the analysis, we assume that once the batch size is fixed, then the

service time is deterministic. Thus, there is no variability associated with a single service

time (or = 0), and we are dealing with an M/D/1 queue. With deterministic service

times, we obtain

A (I X (I 6n) -
E[T] = + ---p (3.2)

2 _I- _ 15-E-T

Before we proceed to minimize the expected total time, we need to know how the single

service time depends on the batch size. We assume that the expected single service time

for a batch of size n is comprised of two parts. First, there is a fixed setup time r , which

is invariant of the batch size. Apart from a setup time, the service time also has a variable

component that grows linearly with the batch size n, each unit of which takes a units of

time on average to produce. Our model for the single service time of batch can then be

written as

x = r + na (3.3)

For example, in a MEMS microfabrication system, the setup time of a batch would

encompass tasks such as etching, and the growing of silicon dioxide in an oxidation

furnace. In industry, these are the process steps in which the entire batch of wafers is

processed at the same time. On the other hand, tasks such as probing and masking are

usually done individually, and thus contribute to the variable time component.

3.2 Upper and Lower Bounds

Since the batch sizes in any real system must be integers, we immediately see that this is

an integer optimization problem. However, the approach that we adopt to solve the

single-item unit demand problem is to relax the integrality constraint on the batch sizes,

and obtain the optimal non-integer batch size n^. Then, we will show how to obtain the

optimal integer batch size n', from n .

In order for the expected total time to be finite, the queuing system must be stable.

Mathematically, this implies that the utilization of the system must be strictly less than 1.

p<1

S+ n <1 (3.4)
(1-fin)

The effect of this utilization constraint is that it enforces upper and lower bounds on the

size of ^. This is illustrated in Figure 3.1, for an example with input parameters: r = 0.5,

a = 0.04, ,? = 0.4, and 2= 1. From the figure, we see that the lower bound on n is 0.83,

and the upper bound is 12.51.

1.8

1.6

1.4

1.2
o

.N

0.8

0.6

0.4

0.2

N

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Batch size

Figure 3.1: Example of the Lower and Upper Bounds on n
r = 0.5, a = 0.04, f = 0.4, and A = 1

Having defined the set of feasible batch sizes, we then examine the relationship between

the expected total time E[T], and batch size n (Figure 3.2). By using batch sizes that are

too small, there is a high probability that the demand for a job request will not be fulfilled

in a single service, and multiple re-services will be required. Thus, we incur multiple

setup times, which causes the total service time of a job to grow very large. However,

using large batch sizes is also unfavorable because there is a tendency to produce too

many units to satisfy the demand. Although the large batch size makes it highly likely

that a single service is sufficient, this drives up the variable time component excessively.

This effect is clearly observed in Figure 3.2.

I I I I J I I I I I I I

_ 171 · 1 · · · · · ·
I i t

20

D 15
E

0 10

x
w

5

n
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Batch size

Figure 3.2: Relationship between Expected Total Time and Batch Size
r = 0.5, a = 0.04, 8 = 0.4, and A =1

3.3 Bisection Line-Search Algorithm

From our experience with numerical examples, we observe that the expected total time

function is well-behaved. E[T], as a function of batch size, appears to be unimodal and

has only one minimum point. Therefore, we attempt to find the optimal non-integer batch

size by solving the first-order optimality conditions.

Using the substitutions I = and u = 1+ p", we rewrite Equation 3.2 as
(-fl ")

E[T] = 2(1- + + (3.5)

Taking the first derivative of E[T] with respect to n:

a dY a d
E[T]d au d+-E[T]-u

87 dn Bu dn

2 +U
E[T] = I-U+

2(1 As) 2 +

(r + na)ln(fl)fl" a

(1 -# " Y
- 2-)

2 (1 -,U)

d
d-u =1n(),"
dn

To solve the first-order optimality condition given in Equation 3.6, we can perform a

bisection line search. The algorithm is outlined as follows.

d
dE[T]dn

where

(3.6)

-

-s
dn

au
Su

Algorithm to solve single-item unit demand batching problem:

1. Determine the lower and upper bounds on n by solving the utilization constraint.
Let the lower and upper bounds be n, and n, respectively.

Denote E[T] as h(n), a function of the batch size.
h'(n) is the first derivative, and its value at any value of n can be calculated by
Equation 3.6

2. Let = n and compute h'(a)
2

If Ih'(E)I < 6, where e is some small user-defined constant (eg. 10)-6

Then STOP. Algorithm terminates, n = n.
Else,

If h'(n) < 0, then let n, =n

If h'(n) > 0, then let n, = n-

Go to step 2.

Since the batch sizes used in real-life production systems must be integer-valued (it

makes no sense to process a batch of size 3.42, for example), we then need a method of

obtaining the optimal integer batch size n* from n . This is easily done, since we have

observed that E[T] is unimodal, then we have that n* = [•] or l[i . Therefore, we

simply need to evaluate the value of E[T] at these two candidate batch sizes, and pick

the better one.

3.4 Results and Observations

Using the bisection line-search algorithm, we examine the change in optimal batch size

when we vary the input parameters of the job. Four studies were carried out, with each

study corresponding to changing a single input parameter.

The relationship between the expected total time and batch size for various test cases are

depicted in Figures 3.3-3.6. For each curve, its minimum point, and corresponding

optimal batch size Ti are indicated. These results can be seen from the figures, and are

also tabulated in Table 3.1.

5

e 4
E

0
3-

w 2

n
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Batch Size

r = 0.3 r=0.5 r = 0.7

Figure 3.3: Expected Total Time as a Function of Batch Size for z = 0.3, 0.5, and 0.7
Other input parameters: a = 0.04, fl = 0.4, and A = 1

3.4.1 Effect of Setup Time r

First, we note that increasing the setup time increases the expected total time for all

values of batch size. This is not surprising given that r is a fixed setup time that is

invariant of batch size. Next, we observe that a job type with a larger setup time will have

an optimal batch size that is no smaller than another job type with a smaller setup time.

This observation can be explained as such - if we incurred a larger fixed setup time per

batch, then it is beneficial to select larger batch sizes to try and reduce the number of re-

services.

3.5

3

E 2.5
i-

I 2

1.5
x

1

0.5

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Batch Size

-a = 0.02 a=0.04 a = 0.06

Figure 3.4: Expected Total Time as a Function of Batch Size for a = 0.02, 0.04, and 0.06
Other input parameters: r = 0.5, f8 = 0.4, and A = 1

3.4.2 Effect of Unit Production Time a

From Figure 3.4, we see that increasing the unit production time a has a greater effect in

increasing the expected total time when batch size is large. At small batch sizes, the

dominant factor in the service time is the setup time r, so the family of E[T] curves

appears very similar. In addition, a smaller a causes the optimal batch size to increase.

This is indicative of the fact that a smaller a allows the system to produce units at a

faster rate, and hence it allows the use of a larger batch size without excessively

increasing the service time.

4.5

4

3.5
ao
E
i~ 3

0
- 2.5

S2
x

1.5

1

0.5

n3

0 1 2 3 4 5 6 7 8 9 10 11 12
Batch Size

-p = 0.2 - P=0.4 P= 0.6

Figure 3.5: Expected Total Time as a Function of Batch Size for 6 = 0.2, 0.4, and 0.6
Other input parameters: r = 0.5, a = 0.04, and A = 1

3.4.3 Effect of Unit Failure Probability /

The effect of increasing the unit failure probability is to increase the optimal batch size.

This is obvious since a job with a higher failure rate would require more units on average

to satisfy its demand. Thus, we expect a larger optimal batch size so as to reduce the

number of re-services. In addition, we see that for larger batch sizes, the effect of 6 on

the expected total time is less pronounced. This is to be expected, since the probability of

getting at least one good unit in the first service gets close to I if a large batch size is used.

2.5

S2
E

1.5

X
W 1

0.5

n
0 1 2 3 4 5 6 7 8 9 10 11 12

Batch Size

2A = 0.75 . A=1 A = 1.25

Figure 3.6: Expected Total Time as a Function of Batch Size for A = 0.75, 1, and 1.25
Other input parameters: r = 0.5, a = 0.04, and / = 0.4

3.4.4 Effect of Job Input Rate A

With an increased job input rate, the system utilization increases. As a result, a job arrival

will have to spend more time waiting in the queue, thus leading to an increase in expected

total time. While the effect of setup time, unit production rate, and unit failure probability

are rather straightforward, we observe a surprising result in the test cases where we

varied the job input rate. In contrast to the other test cases, the optimal batch size does not

change much. A simple explanation for this is as such. The aim of the server is to

complete service of its current job as quickly as possible so as to provide service to the

next job waiting in the queue. The job input rate only affects the number of jobs waiting

in the queue. But regardless of the number of jobs in the queue, the aim of the server is

still the same - to satisfy the current job, and start on the next one. Hence, the optimal

batch size does not change much.

One interesting point to note is that the job input rate will have an effect on the batch size

in the event that it causes the utilization to exceed 1. If the job arrival rate was so high

such that the machine was operating extremely high (or unstable) utilization levels, then

the batch size may change to maintain the stability of the queue.

Table 3.1: Variation of Optimal Batch Sizes with Change in Input Parameters
r a h _

Base case 0.5 0.04 0.4 1 3.16
Varying r 0.3 0.04 0.4 1 2.71
(Figure 3.4) 0.7 0.04 0.4 1 3.38
Varying a 0.5 0.02 0.4 1 3.81
(Figure 3.5) 0.5 0.06 0.4 1 2.79
Varying 6 0.5 0.04 0.2 1 2.10
(Figure 3.6) 0.5 0.04 0.6 1 4.72

Varying 2 0.5 0.04 0.4 0.75 3.16
(Figure 3.7) 0.5 0.04 0.4 1.25 3.11

Chapter 4

Batching Strategies for Multi-
Item, Unit Demand Production
Systems

Now that we have obtained an optimal batching policy for the single-item, unit demand

case, we turn our attention to a more complex problem. In this chapter, we examine the

scenario where the demand of each job is still restricted to a single unit, but we now

allow the machine to handle multiple job types. As we will see, introducing job

heterogeneity makes the analysis slightly more complicated. Despite this, the bisection

line-search algorithm that was discussed in Chapter 3 can still be implemented after some

modifications. However, we require an alternative batching strategy because the bisection

line-search does not generalize well when each job is not restricted to a single unit of

demand. The second half of this chapter is thus concerned with deriving an alternative

strategy, and demonstrating its effectiveness.

4.1 Expected Total Time Formula

For a multi-item, unit demand production system, the expected total time function that we

are trying to minimize is given by Equation 2.20. In addition, we will make the same

assumptions as we did in Chapter 3. First, for each job type j, service times are

deterministic once the batch size n1 is fixed. Second, the service time is an affine

function of batch size. Our objective is to choose batch sizes to minimize the following:

E[T] = + (4.1)
i 2

where

X = rT + njaj

Following the analysis performed for single-item, unit demand systems, we try to extend

it to the multi-item case. One might intuitively expect that the multi-item expected total

time function is also unimodal like its single-item counterpart, however we are unable to

prove this.

Nevertheless, based on our experience with numerical examples, we expect that the

expected total time function is well-behaved. As an example, we plot in Figure 4.1 the

expected total time for a system that handles two different types of job requests. The

input parameters and their corresponding optimal non-integer batch sizes are recorded in

Table 4.1. We observe that the shape of the graph appears unimodal. In fact, the contour

intervals that can be seen in both Figures 4.1 and 4.2 provide evidence that the expected

total time function is convex in the batch sizes for this example.

Table 4.1: Input Parameters for Two Job Types
Ir a"i Pf A, ni,

Job Type 1 0.5 0.04 0.4 0.7 3.18
Job Type 2 0.3 0.02 0.6 0.5 5.11

5

4 4
E

0

10

10
9 10

Batch Size 1 u U
Batch Size 2

Figure 4.1: Expected Total Time as a Function of Batch Size for 2 Job Types

2 3 4 5 6 7 8 9 10
Batch Size 2

Figure 4.2: Contour Intervals of Expected Total Time for 2 Job Types

4.2 Batching
Conditions

Strategy using First-Order Optimality

Similar to the case for a single product with unit demand, we attempt to minimize E[T]

by satisfying the first order optimality conditions. Using the substitutions j = j

and u, = 1+ f+6j, we rewrite Equation 4.1 as

J

E[T] j=, + j_ (4.2)
2 t j=1 t

Then, taking the first derivative of E[T] with respect to nj , we obtain

d a d
E[T]= E[T] =dn1 87 dn3

a d+ -a E[T]- uaui dn

2- 2

= + is

1- AkSk 2 1-Ak +k
k=1 k=1

(j + njaj)ln(j)•.J

(1-,6j

ai

6j

E[T] = j

duj 2 1.1__k=1

where

(4.3)

a-E[T]

d _

dnj J

A -'! _--

dni

Solving for the solution to these J partial derivatives is difficult since the equations

J

cannot be solved independently. Observe that it is the utilization J-AkYk in the
k=1

denominators that causes the lot sizing decisions of different jobs to affect each other.

However, if we know the value of utilization beforehand, then the J first-order

optimality conditions are decoupled, and we can solve for the optimal batch size of each

job independently of the other jobs.

This observation suggests an iterative procedure for solving the first-order conditions. We

first define Ps to be our estimate of the actual system utilization Paat . Since P , is

a function of the batch sizes, we will not know its value until we have solved for the

batch sizes. However, we have also seen that to solve for the batch sizes, we require the

value of Paal to decouple the J first-order optimality conditions. The issue then, is that

we know neither to begin with. To circumvent this problem, we estimate Pacua, by Pgus

and solve for the batch sizes using the algorithm presented below. After this is done, we

use the batch sizes (that were obtained by making the assumption that p,, is indeed

correct) to calculate the realized system utilization P a, . If there is a discrepancy

between pg, and Pa , then we re-run the algorithm again with the revised value as

the new value for the estimate of the actual system utilization. This method of calibrating

the system utilization is done iteratively until pg,,,, and Pac,,i converge. A detailed step-

by-step description of the algorithm is presented next.

Algorithm to solve multi-item, unit demand batching problem:

1. Initialize Pg,,ess = 0 to start the algorithm.

2. Solve J first-order optimality conditions to obtain batch sizes, Wi,..., j,, for the value

of P,,,ess via a bisection line-search (Steps 2a and 2b).

For each job type j :
2a. Determine the lower and upper bounds on Wj by solving the utilization

rj +njla
constraint - ' = 1. This method is chosen because it provides us with a

convenient way of specifying a lower and upper limit on Wj for the bisection line-

search to work.
Let the lower and upper bounds be n, and n, respectively.

2b. Let = 2-n and compute g(ii) where

a d a d
g(n j)= E[T] -+- E[T] -uj- dn auj dn

J

and we substitute Pguess for Aksk , such that:
k=1

+ u2- 2
E[T]= - + 2. +1

a-J 1 - Pguess 2(1- Pguess)

d _ + naj)ln(,I)pf' aj
dn (: -;' -(f

au 2 1- pguess

d u (flj),8n
-- U · nC,)j
dn,

If jg(i)J < , where e is some small user-defined constant (eg. 10- 6)

Then STOP. Algorithm terminates.
Else,

If g(ij) < 0, then let ni = ii

If g(;i) > 0, then let nu = ni
Go to step 2b.

3. With the batch sizes obtained from Step 2, n,..., ~j, calculate the actual utilization.
J 3 + nna.

Pactual j nj

4. If Ipa - PgýeI < 6, where 6 is some small user-defined constant (eg. 10-)

Then STOP. Algorithm terminates, h, = n Vj= 1,...,J.

Else,
Let pgs = Patual
Go to Step 2.

Once we obtain the optimal non-integer batch sizes ij, we then need to obtain an integer

batch size nj. This can be done by a simple rounding heuristic, where we round hj to the

nearest integer. Alternatively, to find the optimal integer batch sizes requires solution of

an integer program, for instance by branch-and-bound.

4.3 Batching Strategy by Minimizing Utilization

To this point, the approach we have adopted to attain the optimal integer batch sizes is to

relax the integrality constraints on the batch sizes. However, such an approach, while

useful when faced with jobs with unit demand, would not work well when we generalize

the model to incorporate general demand. Also, from the analysis performed in the

previous section, we have also seen how batching decisions of one job type depend on the

batch choices of the other job types.

Although one job type's batch size has an impact on the delay of other jobs, we found

from numerical testing that the effect was not great. Hence, we present a heuristic in

which we decompose the J inter-dependent batching decisions into J independent ones.

This is first done by showing that for each job type j, there exist lower and upper bounds

on the optimal integer batch size n*. More importantly, these bounds are independent of

the input job parameters and the batch sizes of the other job types. Having reduced the

search range for n* , we then show how to select a batch size for job type j

independently of the other job types. The collection of these batch sizes then forms our

solution vector, which as we will show, performs extremely well as compared to the true

optimal solution vector.

4.3.1 Lower and Upper Bounds for M/D/1 Queue

We first define n1 to be the integer batch size that attains the minimum value of i .

Lemma 1: The expected total service time s, is unimodal and has only one minimum.

Proof.

Zj + nj~a

The first derivative of s, with respect to n, is

d - r +njaj)ln(,6j)/8' a,
-sj

= +
dni (I -'6.)2 (l-f :')

To obtain the stationary points, we set the first derivative to 0

S+ n aj)ln(f))/ +f a 0+ (,6= o

Sl-fi n(+ (1 - fl2 = 0
aC

' n, 1 I (4.4)
a+ ln()pj)

The LHS of Equation 4.4 has a value of - at n, = 0 whereas the RHS has a value of 0
a.i

at n, = 0. Looking at the LHS, it increases linearly with respect to n . On the other hand,

the RHS is an exponentially increasing function. Therefore, they must intersect at only

one point, which implies that the function Yj must have only one stationary point. An

example is shown in Figure 4.3.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Batch Size

Figure 4.3: Single Stationary Point Exists for -i
r = 0.5, a = 0.04, and 6/= 0.4

Since •j7, = 0o and s I= = oo, then the single stationary point must be a minimum. m

We can thus characterize the shape of Yj as such: The function first decreases

monotonically until it attains its minimum, and then increases monotonically.

SI I LE I I I I I I I I I - I I I I I

9
I/

I I I I I

Proposition 1: n* is a lower bound on the optimal integer batch size (n7) ofjob type j

Proof. Let s- be the value of ji attained when integer batch size n is used.

Alternatively, s- is the minimum value of Yj that can be attained for all possible integer

batch sizes.

By Lemma 1, we see that the value of j, evaluated at any integer batch sizes nj < n is

strictly larger than s- .

Also, since f"6' is decreasing with batch size, the value of f•j also increases as we

decrease the batch size from n*.

Consider the formula for E[T] given by Equation 4.2.

J

j=1

Consider also a solution vector [n , n2, ... ,nj,..., nj] as a candidate batching strategy to

minimize E[T]. Here, we select the batch size for some job type j to be n . The integer

batch sizes for the other job types need not be optimal in any way; the only restriction is

that this solution vector must not violate the utilization constraint.

Since we have established that ýj and f/' both increase as we select batch sizes smaller

than n , then we see that for all batch sizes n. < n. , the resulting solution vector

[n,,n2,..., nj , . . ., n] will either result in a larger value of E[T], or else be an infeasible

solution.

Since this argument holds for all job types, this guarantees us that for any job type j,

within the set of integer batch sizes ni _< n• , the minimum value of E[T] is attained

when n1 is used. This completes the proof that n* is a lower bound on n . 0

If we consider batch sizes larger than ný, then although the value of Yj increases, the

value of fJJ' will decrease. The only time we would consider choosing a batch size larger

-J
than n* is if the decrease in E[T] we obtain from the decrease in flf' is sufficient

enough to offset the increase in E[T] due to the increase in Yj. In fact, we find that ni is

very often the optimal integer batch size.

Two factors prevent us from increasing the batch size too much larger than n"

1. The increase in 7j. In E[T], any reduction in fl/' only affects the job type j, but

the increase in 9' affects all job types since it directly affects utilization.

2. fj'j decreases at a decreasing rate with increasing batch size. Thus, once the

batch size becomes too large, it will only have a marginal benefit in decreasing

fj' , and we receive diminishing returns.

To find an upper bound on the optimal integer batch size, we first define niJ to be the

integer batch size that attains the minimum value of 72 (1+,;'j). We then assert the

following:

Lemma 2: The function s72(1 +1 •j) is unimodal and has only one minimum.

Proof. The first derivative of j2 (1+ f') with respect to n, is

To obtain the stationary points, we set the first derivative to 0

+ j In(f,()fPl' a37.2I, 2j, (+ 237 + _(6,nj = 0

Iln(-)/ (.- +2(1+ 6,ni)ln(c,)/ +2(1+ '((6ý =0
si

ln(f,),"' + 3 n(,)l - 2a (;)

+nj + n(aj

2 a, n"'+3P,6n (4.5)

The intersection of the two sides of Equation 4.5 will determine the stationary points of

sj i +). The LHS of Equation 4.5 has a value of n(fp)rj at n. =0 whereas the
2a1

RHS has a value of 0 at n, = 0 . Looking at the LHS, it increases linearly with respect to

n, . On the other hand, the RHS is an exponentially increasing function. Therefore, they

must intersect at only one point, which implies that the function s-(1 + must have

only one stationary point. An example is shown in Figure 4.4.

Since 7j2 (1 + 'iJ n = o and 2 (i + ln = oo, then the single stationary point must

be a minimum. m

IZU

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Batch Size

Figure 4.4: Single Stationary Point Exists for ~ 2 +

r = 0.5, a = 0.04, and 8 = 0.4

Lemma 3: n-* is no smaller than n

Proof. From Lemma 1, we have determined the shape of - .

s 2 will thus have a similar shape as s-. More specifically, n* that obtains the minimum

--2
value of sj also attains the minimum value of s 2.

For integers smaller than n ,

-2
1. s~ increases

2. 1+ f;') increases

Therefore, the minimum value of s (I + cannot occur at any integer smaller than

nj.

This implies that the integer batch size n-* that attains the minimum value of o 2(1.•)

must be at least as large as n . u

Proposition 2: n- is an upper bound on the optimal integer batch size (n>) ofjob type j

Proof. We have shown from Lemma 2 that s 2(1 + f• is unimodal with a single

minimum; for integers larger than nli, the value of s 2 1 +) is larger.

Also, by Lemma 3, since n,- is no smaller than n*, this implies the value of ji increases

for integers larger than n. .

Consider the formula for E[T] given by Equation 4.2.

2--- (I+,J) 2

E[T]= + A
2(1 - Ai 3 7

Consider also a solution vector [n , n2 ,...,n.,.. n J] as a candidate batching strategy to

minimize E[T]. Here, we select the batch size for some job type j to be ni'. The integer

batch sizes for the other job types need not be optimal in any way; the only restriction is

that this solution vector must not violate the utilization constraint.

Since we have established that j and 2(1 1+ p1) both increase as we select larger batch

sizes than n *, then we see that for all batch sizes n > n~', the resulting solution vector

[n , n2 ... ,nj,. .. ,n] will either result in a larger value of E[T], or else be an infeasible

solution.

Since this argument holds for all job types, this guarantees us that for any job type j,

within the set of integer batch sizes nŽ 2 i n-, the minimum value of E[T] is attained

when i* is used. This completes the proof that n* is an upper bound on nj. 0

Corollary 1: If nf = i•i, then we have chosen the batch size for job type j optimally.

We have derived lower and upper bounds on the optimal batch sizes for our M/D/1

queueing model in this section. However, similar bounds can also be found for other

models. We demonstrate this for two examples - the M/M/1 model, and a modified

M/En/1 model - in Appendix A.

By examining the lower and upper bounds for the M/D/1 model, we make two very

important observations:

* While Propositions 1 and 2 provide bounds on the optimal integer batch size n>,

an interesting observation is that the bounds are independent of the job input rate

Aj. Although 2j must be taken into consideration when determining the optimal

batch size n;, the lower and upper bounds remain the same regardless of how Aj

varies.

* Throughout the thesis, we have made the assumption that the single service time

of any job is an affine function of the batch size. However, we are able to

generalize this assumption when obtaining the lower and upper bounds on n*. For

the bounds to remain valid, it is sufficient that E[Sj,] is unimodal, and has a

single minimum point.

Figures 4.5 and 4.6 illustrate the effect of the lower and upper bounds on the optimal

integer batch size for two sample job types with different parameters. Subplots 4.5(a) and

4.6(a) show how 3j varies with different choices of integer batch sizes, while Subplots

4.5(b) and 4.6(b) illustrate the relationship for ~I2(1 + •).

In the first example (Figure 4.5), we see that the lower bound on the optimal integer batch

size n* is 3. The upper bound, as seen from Subplot 4.5(b), is also 3. Therefore, we can

conclude that the optimal batch size is 3 (Corollary 1).

For the example illustrated in Figure 4.6, the lower bound as seen from Subplot 4.6(a) is

3, whereas the upper bound is 4. In this case, the optimal batch size is either 3 or 4, and

no other batch sizes need to be considered. Regardless of whether this job type is the only

job type handled by the machine, or this job type is part of a set of job types, this is

always true.

2345678
Batch Size

9 1(

0.9

0.7

0.6

0.5

SA
0 1

Figure 4.5: Lower and Upper Bounds: r = C

2 34 567 8 9
Batch Size

).5, a = 0.04, and 8 = 0.4

0.95

0.85

0.8

n 0 r6v.vv

1

(

0

0

0

0

0o
o
O i

x

x

x

x
xx X

I t · · I 1 . . t t . .) I I I I I I I

0.9(

-

-

-

E

' L"/

1.2

1234567
Batch Size

5.5

5

4.5(

O

O

0
O

0
O

2.5

8 9 10
.

Figure 4.6: Lower and Upper Bounds: r = 0

2345678910
Batch Size

.4, a = 0.125, and , = 0.7

4.3.2 Observations on Lower and Upper Bounds

Now that we have a method to obtain bounds on the optimal integer batch sizes of each

job type, we would like to examine the tightness of these bounds. We computed the

bounds on numerous job types, where a job type is a possible combination of the

following job parameters:

r = 0.5, 1, 1.5,..., 3

1
= 5, 6, 7,...,15

a

/ = 0.1, 0.2, 0.3,..., 0.9

Also, we calculated the optimal integer batch size assuming that the job type was the only

one being serviced by the machine. These results are found in Appendix B.

3.5

X

x x

X xK X

E

E

1 5R

From the results of the study, we make the following observations:

* The lower and upper bounds are rather tight bounds. From Appendix B, we

narrow the search range for the optimal integer batch size significantly.

* Increasing the setup time increases both the upper and lower bounds

* Increasing the service rate increases both the upper and lower bounds

* Increasing the failure probability increases both the upper and lower bounds

* Consider two job types with the same failure probability (I,8 = I).

o fl _2 -*
o If - , then n = n;, and * = n2 .

a1 a 2

oIf L > , then n > n, and n- 2 _- .

al a 2

o These observations can be proved by looking at Equations 4.4 and 4.5.

* If the machine handles only 1 type of job, then the optimal integer batch size n*

is frequently the lower bound n .

* The range between the lower and upper bounds increases with r, and dJ.

* The range between the lower and upper bounds decreases with a .

4.3.3 Minimizing Utilization Heuristic

While the optimal solution [n , n;,..., n*], is obtained by minimizing expected total time,

we propose a heuristic that minimizes utilization instead. For the multi-item production

J

system, the utilization is given as iA, . To minimize utilization, we can decompose
j=1

the problem into J smaller subproblems. For each subproblem, the objective is to find

the integer batch size that minimizes ~i From Section 4.3.1, we had defined this integer

batch size to be n , which by Proposition 1, is also the lower bound on n .

Therefore, instead of collectively solving for the optimal integer batch sizes

[n,n*,...,n* J, we solve for all the n* individually. The collection of n, forms our

heuristic solution vector [14,) ... ,)J]. The advantage of this approach is that whereas

determining the optimal batch sizes n* is difficult due to dependencies among job types,

our heuristic allows us to size each job type individually. Obtaining the heuristic batch

sizes is also easy, since we have shown that Yj is unimodal and thus the minimum n

can be found via a straightforward bisection line-search.

4.3.4 Performance of the Minimize Utilization Heuristic

By using the heuristic solution vector, we are essentially trading complexity for

optimality. In this section, we measure the performance of the heuristic solution as

compared to the optimal solution for the M/D/1 queuing model through a series of tests at

various utilization levels. The results are summarized in Table 4.2, and illustrated in

Figures 4.7 and 4.8. Figure 4.7 shows, at each utilization level, the average percentage

increase in expected total time (over 500 test cases) when we use the heuristic solution

instead of the optimal solution. Figure 4.8 provides another measure of performance by

plotting the percentages of test cases that showed no increase in expected total time

(heuristic solution is exactly the optimal solution), and the percentage of cases that

showed increases of less than 1% and 2%.

For each target level of utilization p,,, we randomly generate 500 test cases.

Test routine for each test case:

1. Each test case comprises 10 different job types, where the input parameters of
each job type are randomly chosen as follows:

ri uniformly chosen over [0,5]

- uniformly chosen over [0,20]

flj uniformly chosen over [0,1]

2i uniformly chosen over [0,1]

Although we don't need 2, to generate the solution vector for our heuristic, or to

obtain the lower and upper bounds on n , we do need 2j to compute the actual

n . We will need the actual optimal batch sizes to compare against the

performance of our heuristic batch sizes.

2. The specified level of utilization p,,,,, is calculated based on our heuristic

solution. Since our heuristic works to minimize utilization and is independent of
Aj, this provides us with a convenient method of controlling p. Having obtained

the minimum values of Yj, we multiply each Aj by a scaling factor, such that
J

j s1 Ptest
j=1

3. Obtain n. and i-* for each job type j. By Lemma 1 and 2, this can be done by

bisection line search.

4. Using the solution vector [n_, n2,...,nJ], we calculate the resultant expected total

time E[T] mi. ,,i using Equation 4.1. This is the solution we would obtain by using

the minimized utilization heuristic.

5. We perform an exhaustive search through all the possible combinations of integer
batch sizes in order to find [n*,n ,...,n] . The search space is significantly

pruned because we know n, must lie between n, and ii . Then, we calculate the

minimum expected total time E[T]I.

6. We calculate the percentage increase of E[T]m,in_,ti from E[T]* by obtaining the

E[T]min ,it -E[T]*value
E[T]"

For each utilization level, the values of average percentage increase over 500 test cases

are recorded in Table 4.2. The detailed test results are found in Appendix C.

Table 4.2: Performance of Minimizing Utilization Heuristic
Test Utilization Average Percentage of Percentage of Percentage of

P~r, percentage cases with no cases with cases with
increase in increase in increase less increase less
E[T] E[T] than 1% than 2%

0.1 0.06% 42.2% 99.6% 99.8%
0.2 0.17% 19.6% 97.2% 99.6%
0.3 0.30% 10.2% 96.4% 99.0%
0.4 0.37% 9.2% 93.0% 99.0%
0.5 0.46% 8.4% 89.4% 99.0%
0.55 0.51% 8.0% 86.6% 98.2%
0.6 0.57% 8.0% 83.8% 96.6%
0.65 0.59% 9.6% 82.8% 96.0%
0.66 0.59% 7.2% 84.4% 97.2%
0.67 0.58% 7.6% 82.8% 96.2%
0.68 0.61% 4.8% 82.4% 97.6%
0.69 0.60% 8.2% 84.6% 96.4%
0.7 0.61% 8.0% 85.0% 96.2%
0.71 0.60% 9.8% 82.0% 96.0%
0.72 0.58% 9.4% 85.0% 97.4%
0.73 0.54% 10.6% 83.4% 98.2%
0.74 0.52% 10.8% 85.6% 98.6%
0.75 0.51% 12.0% 87.8% 97.4%
0.8 0.49% 14.2% 88.8% 97.4%
0.85 0.45% 17.0% 91.4% 97.8%
0.9 0.37% 21.2% 93.8% 98.0%
0.91 0.33% 21.6% 94.4% 97.6%
0.92 0.34% 24.6% 94.2% 97.8%
0.93 0.31% 30.4% 94.0% 98.0%
0.94 0.27% 31.0% 96.8% 98.8%
0.95 0.19% 41.0% 96.8% 98.6%
0.96 0.14% 51.6% 98.4% 99.6%
0.97 0.12% 59.4% 98.2% 99.6%
0.98 0.09% 65.8% 98.6% 99.2%
0.99 0.05% 82.2% 99.2% 99.6%

~1 I
I

4

Ca,

0 3

2

1
I

X 10-3

x xx

x
x

• x
x

x

x

x

x

x

x

x

x

x

I I I I I I I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Utilization

Figure 4.7: Average Increase in Expected Total Time for Various Utilization Levels

From Figure 4.7, we observe that even in the worst case scenario (p z 0.7), the average

performance of our heuristic is still within 1% of the optimal. Not only does the heuristic

perform well on average, it also attains near-optimal performance for almost all the test

cases. From Figure 4.8, we see that in almost all the test cases, our heuristic performs

within 2% of the optimal solution. Also, even in the worst case, more than 80% of test

cases performed within 1%. This shows that the heuristic performs very well regardless

of the system utilization. The actual results of all 500 test cases at every target utilization

level can be found in Appendix C.

1

0.8

m 0.6
!)

a)

0.4

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Utilization

* no increase x less than 1% increase * less than 2% increase

Figure 4.8: Performance of the Heuristic at Various Utilization Levels

An interesting observation is that our heuristic performs very well at low levels of

utilization (Figure 4.7, p = 0.1 -0.4). This is due to the fact that at these low levels, the

system does not experience a large quantity of job traffic. As a result, most jobs that

arrive at the system will find the server empty, and thus not experience much waiting

time. This means that a large fraction of the expected total time that jobs spend in the

system can be attributed to the expected service time. Since our heuristic objective is to

minimize the service time of each job type, we expect that our heuristic performs well.

Another observation is that our heuristic performance improves at very high levels of

utilization (Figure 4.7, p = 0.8 - 0.99). High levels of utilization correspond to the server

being busy more of the time because job input rates are higher. One can visualize that

under these conditions, the number of possible solutions decreases because we have

fewer candidate solutions that violate the utilization constraint. In fact, our heuristic

solution, which minimizes utilization, will be the last solution to be pruned off as we

x XXX
x

x x

-

* *I~t ~i*I I I I I

increase the utilization level. In other words, if the heuristic solution is not feasible, then

minimizing expected total time is an infeasible problem. Since the solution space gets

smaller with increasing utilization, we expect that our heuristic solution is the optimal

solution more frequently. As alluded to by the discussion in Section 4.3.1, the tradeoff to

increase the expected total service time in order to reduce the variance of the service time

is extremely unfavorable at high utilizations. This explains why our heuristic performs

better at very high levels of utilization.

Chapter 5

Batching strategy for multi-item,
general demand production
systems

Unlike the previous chapters, we are now concerned with batching decisions when we

relax the unit demand constraint; that is, we no longer restrict the demand to be for one

unit, but it can be any positive integer. As we have seen in Chapter 4, optimal batch

sizing is very difficult even when we restrict the demand of each job to be one unit; we

had to rely on enumeration to obtain the optimal vector of batch sizes. Even though we

managed to reduce the search space by deriving lower and upper bounds on the optimal

batch size for every job type, enumeration, in general, is a very time-consuming method.

Under general demand conditions, deriving an optimal batching strategy is even more

difficult due to the following reasons. First, we do not have a closed-form expression for

the expected total job time E[T]. Furthermore, because the demand of a batch may only

be partially fulfilled after a single service, we are not only concerned with the initial

batch size, but also the subsequent batch sizes used for re-service. These reasons, coupled

with the fact that there are multiple job types, make both the derivation of an optimal

strategy very difficult, and an enumeration approach highly impractical. In this chapter,

we thus try to reduce the problem complexity, and propose some simpler, yet effective

heuristics. Since the minimize utilization heuristic was shown to perform very well in the

unit demand case, it is natural to explore how it will perform in this more general setting.

5.1 Minimize Utilization Heuristic

As we have shown, the minimize utilization heuristic aims to minimize the expected total

service time for every job request (7i). This means that even with general demand, we

can still size the batches for each job type individually. Recall that in the previous chapter,

we showed that when demand is restricted to a single unit, a bisection line-search can be

employed to obtain the batch size that minimizes 3j. However, this method will not work

with general demands. In this section, we demonstrate how to obtain the batch sizes via

dynamic programming (DP). For each of the J job types, we will use the same DP to

determine the batch sizes, so we will describe the procedure for the general job type. For

ease of notation, we have omitted the subscript j in our discussion. First, we make the

following definitions:

D the number of units demanded by the customer
N the initial batch size that the machine uses for the first service

We also introduce TD,N, defined as the expected total amount of time taken by the

machine to meet a job demand of D, given that the initial batch size used for the first

service is N. The minimum expected time required is denoted by TD. Mathematically,

Smmin T,N (5.1)

The choice, therefore, is to choose the optimal initial batch size, such that we attain TD. If

we define the optimal initial batch size as N*, then we have,

To. = T(5.2)
D,N D

The sequence of events for each job is as follows: the job arrives at the server, and the

machine processes a batch of some initial size to meet the job demand. Depending on the

outcome of the production, the demand is either fully or partially realized. If re-service is

required, the machine then needs to decide on the new batch size. This cycle of re-

services continues until the demand is met.

After the initial batch is processed, let the number of good units produced be denoted by

the random variable Y. Following our assumption of yield uncertainty, Y is a binomial

random variable, with parameters N, and 1- f. After observing the actual yield y, we

assume that we know the remaining minimum expected service time to satisfy the

outstanding demand. Using our previous definition (Equation 5.1), this quantity is TD-_y

We can therefore express N* as follows:

N' = arg minNýD {r+ Na + (1- T } (5.3)

Note that in our formulation, we only need to consider batch sizes N 2 D . The reasoning

for this is as such: If we choose an initial batch size N, < D, then we will certainly be

unable to satisfy the demand since Y < N, < D. Then, we will definitely require a second

batch of units of some size, N 2, to satisfy the D - Y units of unsatisfied demand. In this

case, if we had used an original batch size of N, + N 2, we would have reduced the total

time by r. Since this argument holds for any values of N, and N 2, we are always better

off selecting our initial batch size to be larger than D.

We also observe that TD-y = 0 for all y 2 D; then we can write Equation 5.3 in a more

concise form:

N* = argminND, {r + Na + Z• IN-(l p-)T_,) (5.4)
y=All that remains is to determine the values of for y <

All that remains is to determine the values of TD-y for y < D .

Our base case occurs when the remaining demand is for a single unit. After the initial

service time, the resultant demand after this service is either "1 or 0"; thus, we can write

the following recursion:

T,,N = r + Na + T,~, x Pr(Y = 0)

TI, = r + Na + T,N x P6N

T1,N (1- P N)= r + Na

r+Na
,N = + Na (5.5)

Given Equation 5.5, we can evaluate T,N for N = 1,2,...,N, x , where Nmx is some user-

defined "guess" of the largest possible batch size that would be required. A search can be

performed across all the calculated values of T,N to find T,'. From Equation 5.4 when

D = 2, we see that once TI is found, then we can write a closed-form expression for

T2,N similar to Equation 5.5. We can proceed in the same fashion for any amount of

demand.

In the general case for D units of demand, we have:

TD,N= + Na + TD,N x P(Y = 0) + Tl x P(Y = 1) +...+ T,* x P(Y = D - 1)

TD,N = + Na + TD,N X +f N _-)y N-YT*
y=1 l

D-.' INl
T (1 fN)= r +Na+ j(N (fp)YpN-yTT*

S+Na + (l(1 - P)Y p"N-y T

TDN = =1 (5.6)

To implement the dynamic programming method to find batch sizes for the minimum

utilization heuristic, we use the following table:

1

S2

CD-1

D

Batch Size
... D-1 D D+1

r1,l TI,2 . T1,D-I

-T2,2 ... T2,D-1

TD-1,D-1

T1,D

T2,D

TD-,D

TD,D

TD-1,D+1

TD,D+1

... Nm~.

TI,N.

T2,N

TD-1,Nm

TD,N.

The table is filled from the top row downwards. Once all the values in the row have been

computed, we search the row for the smallest value. The value of any entry in a particular

row is then a function of the optimal values of all the previous rows. We show results for

an example (r = 0.5, a = 0.126, /8 = 0.35, and D = 4) in the following two tables.

Table 5.1: Example of the Dynamic Programming Table
Batch Size

1 2 3 4 5 6 7 8 9 10
Demand 1 0.963 0.857 0.917 1.018 1.135 1.257 1.381 1.507 1.632 1.758

2 - 1.301 1.130 1.115 1.177 1.275 1.389 1.510 1.633 1.758
3 - - 1.592 1.415 1.346 1.362 1.431 1.529 1.642 1.762
4 - - - 1.857 1.694 1.593 1.568 1.605 1.681 1.782

Table 5.2: Batch Sizing Results
Demand Expected total time Batch size to use
1 0.8565 2
2 1.1154 4
3 1.3455 5
4 1.5683 7

Another advantage of using the table is that we can easily find the batch sizes to use at

every stage of re-service. Here, we start with an initial batch of 7 units. After the batch is

completed, the user can observe the number of good units produced, and the table

immediately allows the user to know what that next batch size should be. If, for example,

2 good units were produced after the first service, then the remaining demand is 2 and the

policy selects the next batch to be of size 4.

5.2 Performance of the Heuristic

Since we do not have lower and upper bounds on the optimal batch sizes, searching for

the optimal policy to determine the initial batch sizes for each job type is an extremely

difficult integer combinatorial problem. Also, because of yield uncertainty, the demand of

a batch may not be entirely fulfilled after a single service. As a result, the outstanding

demand necessitates yet another batch sizing decision. Immediately, one sees that even

for a single job type, there exist an extremely huge number of possible combinations of

initial and subsequent batch sizes. The difficulty of the problem is further augmented

because we.have multiple job types, and the batch sizing of one job type cannot be done

independently of others.

In addition, the fact that we do not have a closed-form expression for the expected total

time formula means that we have to rely on simulations to compare policies. Clearly, the

multitude of possible combinations, coupled with the requirement of simulations, makes

optimal batch sizing very computationally intensive, if not infeasible. Nevertheless, we

seek to compare the effectiveness of our heuristic against two other batching policies,

which at first glance, would be expected to work rather well.

The first is an "expected value" policy. Here, for each batch sizing decision, be it during

an initial service or a re-service, we set the batch size such that the expected number of

non-defective units produced from the batch is just sufficient to meet the demand.

Mathematically, for every job type j, the batch size used is

N D (5.7)

The second policy sizes the batches such that the probability of satisfying the demand

from the batch is at least some target probability Chr.hold. We will call this policy the

"threshold probability" policy. In other words, N is the minimum batch size such that,

(=D 1n - 3)m 2 Wthreshold (5.8)

When we test this policy, we need to specify the value of atWhrhold. It is not immediately

clear what the optimal value should be, therefore in our simulations, we use a trial and

error approach and test for values of chrhold over a certain range.

To compare the minimize utilization heuristic against the two alternatives, we ran 100

simulations each at various test utilization levels.

Test routine for each simulation:

1. Each simulation comprises 10 different job types, where the input parameters of
each job type are randomly chosen as such:

zj uniformly chosen over [0,1]

I uniformly chosen over [5,25]
aj

3j, uniformly chosen over [0.1,0.9]

2i uniformly chosen over [0,1]

D, uniformly chosen over [1,10]

2. The specified level of utilization p,, , is calculated based on our minimize
utilization heuristic solution. Since our heuristic works to minimize utilization and
is independent of Aj, this provides us with a convenient method of controlling p.
Using the DP described in the previous section, we are able to calculate the
minimum expected service time 3j for each job type j. Having obtained the

minimum values of j , we multiply each AZ by a scaling factor, such that
J

I j.s. Ptest -
j=1

3. We generate 500 job arrivals, where each job arrival has a probability of 1 of

being of type j. The arrival times of each job i (arrival _ time i) are recorded so
that we can calculate the total time that a job spends in the system.

4. For each job, we model the yield realization a priori, before we simulate any of
the policies. We do this so that each policy will experience the same yield
outcomes for each job. We create the yield realization via a binary string, which
we call a "good-bad" string. This string is essentially a string of '1's and 'O's, and
is used to model the yield uncertainty associated with the production of items. For
a job of particular job type j, we perform a series of coin flip experiments, where
we either obtain a non-defective unit with probability (i - P), or a defective unit

with probability 8j . Each trial models a unit that is produced by the machine, and

we perform sufficient trials until the demand is fully satisfied.

The reason why we need to decide on the realized yield before testing any of the
policies is to eliminate the randomness associated with the binomial yield
distribution. If this was not done, then a less optimal policy could in fact perform
better in the simulation simply due to the unpredictability of the yield.

5. Given the pre-determined "good-bad" binary strings for all 500 jobs, we then test
the various policies to determine their performance. We record the completion
times for each job i under each policy k (completion _ timei,k) are also recorded.

6. We calculate the total time that each job spends in the system.
total _ timei,k = (completion _ timei, - arrival _ time)

7. Then, we calculate the average time that a job spends in the system for policy k .
1 (50oo0

average timek = E total _ timeik
450 i=5

Note that here, we use the first 50 jobs to allow the system to attain steady-state,
and so have neglected the times for these jobs in the calculation.

8. To further eliminate any randomness due to the yield realization, for each
simulation of 500 job arrivals, we repeat Steps 3-6 an additional 49 times.
Essentially, this generates 50 sets of "good-bad" strings per simulation so that we
have a good mix of possible yield realizations to test the policies. Each set
consists 500 strings, with each string corresponding to the yield realization of that
particular job. The mean of the average job times over the 50 sets is then
considered to be the average job time of the simulation.

The test routine we have just described is for a single simulation. To fully test the policies

under a variety of job parameters, we perform 100 simulations, which would give a better

indication of policy efficiency. In other words, for a value of test utilization Pes,, we

repeat the test routine described above 100 times. For each simulation (test routine), we

calculate average _timek for the minimize utilization heuristic, the "expected value"

policy, as well as the "threshold probability" policy. We compared the performance of

the "expected value" policy and the "threshold probability" policy against that of the

minimize utilization heuristic at several test utilization levels, and the increase in average

job times are recorded in Table 5.3. The detailed test results at each test utilization level

can be found in Appendix D.

Table 5.3: Average Percentage Increase in Expected Job Time
Test Utilization Levels p,,es

0.5 0.6 0.7 0.8 0.9
Policy 1 5.32% 7.08% 8.13% 12.95% 22.39%
Policy 2(a)

threshold 6 8.49% 11.54% 14.12% 21.61% 37.17%mthreshold = 0.6
Policy 2(b)

hreshold 65 7.07% 9.47% 11.71% 18.50% 33.13%
Cothreshold = 0.65
Policy 2(c)

hreshold 0.7 7.08% 8.64% 11.20% 18.54% 33.00%
Wthreshold =0.7

Policy 2(d)
threshold -75 8.03% 9.10% 13.03% 22.88% 40.62%
threshold 0.75

Policy 2(e)
hrehold -0.8 10.73% 11.49% 17.39% 31.67% 58.20%
threshold=0.8

Policy 2(f)
heshold 0.85 15.53% 16.84% 26.19% 49.21% 92.66%
threshold 0.85

Policy 2(g)
threshold 9 24.88% 26.85% 44.20% 91.04% 169.66%

Cthreshold = 0.9
Policy 1 - "Expected value" policy
Policy 2 - "Threshold probability" policy

From the results, we also see that if the batch size has to be selected according to the

"threshold probability" policy, then the optimal value of othreshold is around 70% (Policy

2(c)). However, one should note that the performance of the "threshold probability"

policy is extremely sensitive to the selection of othreshold . Given the difficulty in selecting

the threshold probability, as well as the poor performance of this policy as seen from

Table 5.3, we would not advocate the adoption of the "threshold probability" policy. The

increase in performance of Policy 1 and 2(c) as compared to the minimize utilization

heuristic are plotted in Figure 5.1.

A '3r

a,
0Y)
M
Va)
aI-
a.

Utilization

Minimize
Utilization - - Policy 1 Policy 2(c)
Heuristic

Figure 5.1: Average Increase in Expected Job Time for Policies 1 and 2(c)

From Figure 5.1, it is evident that the minimize utilization heuristic performs better than

the alternative policies. The reason for this is because both the "expected value" and

"threshold probability" policies do not make use of all the job input parameters in

determining the batch size. While these alternative policies only require the demand and

failure probability information, the minimize utilization heuristic uses all the job

parameters to size the batches. Consequently, the batch sizes from the alternative policies

perform less well than those obtained via the minimum utilization heuristic.

Another observation is that production systems are more "forgiving" at low levels of

utilization, and non-optimal policies suffer a smaller increase in expected job time. This

is because at high utilization levels, jobs spend more time waiting for service, hence any

delay in service to the jobs earlier in the queue will cause a greater propagation of delay

up the queue. Therefore, the performance of non-optimal policies gets increasingly worse

as utilization goes up.

5.3 Modified Minimize Utilization Heuristic

In this section, we start with the solution obtained from our heuristic, and attempt to find

better policies by modifying the approach. The minimize utilization heuristic solves for

the batch sizes to J individual problems. For every job type j, we solve the following

minimization problem:

min s7Y

Instead of using the expected service time as the objective, we propose a modification

which, in addition, attempts to reduce the number of services of a batch. This revised

objective is driven by the aim to reduce the amount of setups required. Following the

notation in Chapter 2, we let the number of services required by a batch until its demand

is completely satisfied be denoted by the random variable M . Therefore, the new

optimization problem for each job type j is instead,

min, s-- + ^j E[M]

where i^ is a weight factor.

Alternatively, since each round of service incurs a setup time, then the problem can be

rewritten as

min,j + wiE[total setup time]

where the new weight factor wj = ^t/r.

To solve this optimization problem, observe that it is possible to leverage the dynamic

programming formulation in Section 5.1. Instead of using the setup time ri for the job

type j, we now use the weighted setup time (1+ wj j.

Immediately, we see that the minimize utilization heuristic that is detailed in Section 5.1

is a special case, where we set wi = 0 for all j. Also if we set w >> 1, then re-services

are extremely undesirable, since we incur very large setup time penalties. This will then

have the effect of selecting extremely large batch sizes in order to minimize the

probability of re-service. Therefore, the challenge is to select values of wj that will give

us better policies. However, the difficulty lies in selecting the appropriate weights, and

this is further complicated by the fact that wj need not be the same for every job type.

In the first round of analysis, we make the assumption that w, is the same across all the

job types. Therefore, we are searching for a single weight factor w. While we would like

to make the weight factor large, so as to drive down the number of services required, this

in turn will cause the system utilization of the system to increase, and lead to an increase

in the average job time. To see how the system utilization changes with respect to the

weight factor, we plot in Figure 5.2 an example in which 10 job types were used. The job

parameters for the 10 job types were randomly generated, and are recorded in Table 5.4.

Table 5.4: Input Parameters for Ten Job Types
Sj ai 1 2•jA D_ _

Job Type 1 0.9501 0.0577 0.1463 0.0021 9
Job Type 2 0.2311 0.0480 0.3823 0.1010 1
Job Type 3 0.6068 0.0427 0.7505 0.0602 7
Job Type 4 0.4860 0.0506 0.1079 0.1261 4
Job Type 5 0.8913 0.1173 0.2111 0.0631 9
Job Type 6 0.7621 0.0763 0.2622 0.0566 6
Job Type 7 0.4565 0.0422 0.2590 0.1145 8
Job Type 8 0.0185 0.0428 0.5830 0.0711 5
Job Type 9 0.8214 0.0757 0.3178 0.0274 4
Job Type 10 0.4447 0.0437 0.2591 0.0909 2

0.98

0.96

0.94

0.92

0.9

S0.88

0.86

0.84

0.82

nR
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Weight Factor

Figure 5.2: System Utilization as a Function of Weight Factor

From Figure 5.2, it would seem that utilization is linear with respect to the weight factor;

nevertheless, the relationship is not linear. We elaborate on this below.

From Equation 5.6, we have derived for all demand D, and batch sizes N 2 D

D-1 N
r +Na + (N(1 - f)Y N-YTy

y=1 Y
TD,N I N

If N* is indeed invariant of r , then the following argument holds:
1. We see that T,' is an affine function of r.

2. Observing TD,N for any demand D, we can see that if Tm, are affine functions

of r, for all m = 1,2,..., D- 1, then in fact TD, N is also an affine function of r . T

is simply equal to T,, evaluated at the optimal batch size, so it will also be an

affine function of r.
3. By induction, since T,* is an affine function of r, then so is TD for any value of

D.
4. T• being an affine function of r implies that it is an affine function of weight

factor also.
5. By repeating this induction argument for all job types, we then have that

utilization is perfectly linear with respect to the weight factor. (i.e. Figure 5.2
above will be a perfectly straight line)

In reality, N* is not invariant to r. This was observed in Chapter 3.4.1, where we

discovered that as r increases, N* increases so as to reduce the number of services. This

implies that the variable time component of T,,N (the time components that are affected

by the batch size) makes up a larger percentage of TD,. At larger values of r, the same

weight factor w results in a smaller increase in T,,N (and therefore also T;) as compared

to at smaller values of r. Therefore, Figure 5.2 is not perfectly linear, but is slightly

concave downward (the rate of change, or the second derivative is negative). However,

what we observe is that the curvature is very slight, and a linear approximation is actually

very accurate. It is this linear approximation that we will exploit when choosing the

weight factor w.

Our method of choosing w is as such: Given the test utilization level p,.,, let our guess

of the value of utilization of the system when the optimal policy is implemented be

Popt_guess. We emphasize that Pop,_ guesis simply a guess, and may not be accurate.

However, we are able to make reasonably good guesses from the results obtained in

Chapter 4, where we have seen that the optimal utilization is usually not much larger than

the minimum utilization. Using the straight-line approximation to the relationship

between the system utilization and the weight factor, we then calculate the corresponding

value of w.

For each test case we have two utilization levels - the test utilization level p,,,,, and our

guess of the optimal utilization level Pop,_,, . For each test combination of

,P,,, Popt ess), we run 100 simulations like those described in Section 5.2. We calculate

and record the average percentage change in expected job time with weighted setup times

compared to the minimize utilization heuristic. These results are reported in Table 5.5,

and can be interpreted as follows: a positive entry in the table indicates that the average

performance using weighted setup times is worse than when the original setup times

(minimize utilization heuristic) was used. Conversely, a negative entry indicates that the

average performance with weighted setup times is worse than that of the minimize

utilization heuristic. For example, at Ptes, = 0.6 , if we estimate the optimal system

utilization p,_,,guess to be 0.64, we achieve an expected job time that is 0.13% smaller on

average. The actual simulation results can be found in Appendix E.

Table 5.5: Average Percentage Change in Expected Job Time

Popt_guess -Ptest
0.01 0.02 0.03 0.04 0.05

p,, = 0.1 +0.16% +0.64% +1.18% +1.80% +2.45%

p,t, = 0.2 0.00% +0.13% +0.33% +0.56% +0.84%
p, = 0.3 -0.05% 0.00% +0.06% +0.25% +0.36%

pes = 0.4 -0.06% -0.08% -0.03% +0.05% +0.11%

pt, = 0.5 -0.06% -0.09% -0.06% -0.07% -0.02%

Pte,, = 0.6 -0.09% -0.08% -0.10% -0.13% -0.10%

Pes, = 0.7 -0.06% -0.11% -0.14% -0.09% -0.01%

Ptes, = 0.8 -0.06% -0.11% -0.08% -0.09% +0.04%

Ptest = 0.9 -0.08% -0.10% -0.13% 0.00% +0.11%

From Table 5.5, we see that at low values of system utilization (p = 0.1- 0.4), as well as

high values (p > 0.8), the best choice of utilization is frequently around the minimum

utilization. The reasons for this are very intuitive, and were already highlighted in Section

4.3.4. At low levels of utilization, the server is idle most of the time, so most jobs do not

spend much time waiting in the queue. Therefore, minimizing the service time, which is

equivalent to minimizing the utilization, is actually a very good heuristic. In fact, such an

approach seems to be optimal most of the time. At high utilizations, a slight increase in

utilization results in a very large increase in expected job time. Hence, the optimal

utilization level tends towards the minimum utilization.

It is at intermediate system utilization levels that we see a greater deviation from the

minimum utilization level. However, the key observation is that even in these cases

where there is more "freedom" in batch sizing, the performance of the DP policies that

use weighted setup times is not significantly better than the original minimize utilization

heuristic. From the simulation results, the largest improvement in policy performance that

we found is not even 1%; indeed it is much smaller. In addition, because we do not know

the true optimal utilization, the value of Popt _guess , and therefore the weight factor w, that

we use are at best, a good estimate. Given the difficulty in estimating the optimal

utilization, we conclude that we are not much better off by using weighted setup times in

the DP with a single weight factor w.

Alternatively, we consider the case where we can assign different weight factors wj to

the different job types. Similar to the case when we use the same weight factor w for all

the job types, we guess the optimal utilization level Popt gues . Therefore, the difference in

utilizations op,_ guess- Ptes), has to be divided among the J job types. We calculate the

increase in utilization attributed to job type j using the following formula:

Oopt_ guess - Ptest j' (5.9)

i=1

The intuition is that if, compared to other job types, job type j has a larger job arrival

rate, or a longer expected service time, then the system spends more time servicing these

type of jobs. Correspondingly, we should place more priority on reducing the number of

setups for these jobs. We then solve for the weight factors wj using Equation 5.9 and the

linear approximation relationship between utilization and w, . However, from our

simulations, we find that the performance when wj is different is even worse than when

we restrict wi to be the same for all job types. With this analysis, we conclude that our

minimize utilization heuristic works very well, and any marginal improvement that we

may obtain from modifying the solution is so insignificant that it is not worth the

computational effort and policy complexity.

(This Page Intentionally Left Blank)

Chapter 6

Conclusion

In this thesis, we have explored the batch sizing problem for a multi-item, general

demand production system with uncertain yield, where the objective is to minimize the

expected total time that a job spends in the system. To come up with an effective strategy,

we first analyzed the scenarios when the system only processes jobs that require a single

unit of demand. For these systems, we found that a bisection line-search algorithm was

effective in obtaining solutions. Such solutions are proven to be optimal for the single-

item, unit demand case, but can only be hypothesized to be optimal in the multi-item case.

In addition, we observed that while minimizing the system utilization may not be a

provably optimal batching strategy, such an approach performs very well with regard to

the multi-item batching problem. The main advantage of this minimum utilization

heuristic is that it decouples the interdependent batch sizing decisions such that we can

size each job type individually. Our simulation results have also shown that although we

are forsaking optimality for simplicity, the penalty (increase in expected job time) that is

incurred is very small.

As an extension to this work, one might consider the cost of overproduction in

determining a batching strategy. This may be an important concern, especially in the

custom-product microfabrication industry, since these hi-tech products may be very

expensive. Each excess item that is produced thus leads to significant loss in profit. For

instance, we might desire to minimize the expected overproduction subject to a constraint

on the expected job time. Here, we would model the time constraint by stating that the

expected job time E[T] must not exceed some threshold C. We discuss briefly two

approaches that could be adopted for the multi-item, unit demand case.

The first method that could be considered is a greedy heuristic. Here, we start out at a

feasible solution that satisfies the time constraint, and at every step, proceed to an

alternative feasible solution (if it exists) that yields the best local reduction in expected

overproduction. We outline the algorithm below:

Greedy Heuristic Algorithm:

1. Solve for the batch sizes either by using the bisection line-search algorithm, or the
minimize utilization heuristic presented in Chapter 4.

2. For each job type j, we calculate the improvement Ii obtained, given that we

decrease its batch size by 1.

- decrease in E[overproduction]
I = - increase in E[T]

3. Select the job type that gives us the largest value of I , and decrease its batch size by 1.

Obviously, two constraints must be satisfied at all times:
a) The batch size of every job type must be at least 1
b) By selecting the best job and decreasing its batch size, we must not violate the

time constraint (E[T] < C)
Repeat Steps 2-3 until no feasible job type remains (algorithm terminates).

There are several advantages in using this greedy heuristic. First, it is easy to implement.

Also, the resulting batch sizes obtained when the algorithm terminates are already

integer-valued, and can be used immediately as a feasible policy without the need for

branch-and-bound. However, the main disadvantage is that it is not guaranteed that the

algorithm will terminate at an optimal batching policy.

On the other hand, we can choose to solve a new optimization problem. With the

objective to minimize expected overproduction (E[overproduction]), our integer

optimization problem is then:

min E[overproduction]

s.t. E[T] < C

where we have denoted our variables as n* as a reminder that they must be integers.

To solve this problem, we first relax the integrality constraints on the variables to obtain

the following relaxed problem:

min E[overproduction]

s.t. E[T]< C

n. >1

We can show that for the unit demand case, for each job type j, its expected

overproduction is a convex function of n, . Therefore, since the total expected

overproduction is the sum of the J individual job type expected overproductions, it is

convex with respect to the batch sizes.

In order to solve this optimization problem, we will make the assumption that the

function E[T] is convex with respect to the batch sizes. In Chapters 2 and 3, we have

observed that the graphical plot of E[T] appears convex, although we were not able to

prove it mathematically.

By allowing the assumption that E[T] is convex, we then see that the optimization

problem is a constrained convex optimization problem. To solve this, we can take the

Lagrangian dual of the LP relaxed problem, and then implement a gradient method to

solve the dual. Alternatively, we can solve the relaxed problem directly by solving the

Karush-Kuhn-Tucker (KKT) conditions.

The advantage of this second approach is that we may obtain better batching policies than

compared to the greedy heuristic. However, there are several disadvantages to this

approach. The main disadvantage is that by relaxing the integrality constraints on the

batch sizes, we then need to use some rounding heuristic, or a branch-and-bound

algorithm to obtain feasible integer batch sizes. Another issue that has to be considered is

that we made the assumption that E[T] is indeed convex with respect to the batch sizes.

Finally, we wish to highlight the following concern that may limit the usefulness of the

two methods we have proposed. Although these two ideas can be adopted when we wish

to incorporate overproduction into batching strategies for the multi-item, unit demand

case, it is not immediately clear how to extend these methods to the cases when demand

is allowed to be arbitrary. This is because in both methods, it is necessary to know the

exact expression for the expected job time E[T]. As we have discussed in Chapter 2, this

is mathematically tedious to compute when faced with general demands.

Appendix A

Lower and Upper Bounds on the Optimal Batch Size for
Alternative Queueing Models

1. M/M/1
In this queueing model, the single service time X, is exponentially distributed with mean

I~. The variance of X, is thus xj-j and Equation 2.20 can be written as

(-l2 2 n
-1 • (1,- 21-f)

E[T]= Cn

J

2 1--2 1 gJ j=1 2
j==

J j=1JJ A.

E[T] = '+E' (A.1)2(n jj=1 A
j=1

Proposition 3: The lower and upper bounds on the optimal integer batch size (n;) ofjob

type j are exactly the same.

Proof. From Equation A.1, we see that to minimize E[T], we simply have to minimize
si . In terms of lower and upper bounds, this implies that they are exactly the same. .

An interesting point is that the mean service time xj is not required to be an affine
function of the batch size.

2. Modified M/E,/1 queue
In this model, the service time of each individual unit in a batch is exponentially
distributed with mean a . Also, we associate a fixed service time r, with every batch of

type j. Said differently, X, is a sum of n1 exponential random variables (n.' -order

Erlang) that is shifted by a positive constant r,. The mean and variance of X, are then,

Xj = v. + nja

2 2
=xj = nja,

The E[T] equation is thus expressed as

E[T] = + (A.2)

21- 1 i A jJ =1
j=1

Let n1 be the integer batch size that obtains minimizes s-
n 2

Let n2 be the integer batch size that minimizes na + +

Proposition 4: The lower bound on the optimal integer batch size (n*) is given by

min(n , n2). The upper bound is given by max(n,,, n2)

Proof. By Lemma 2, we have established that the function s (+ I•) is unimodal, and

has only 1 minimum point.
n .aj

We now show that the function -) is strictly increasing with batch size.

The first derivative is

d na. 2 1 n ln(flj)flj"
d , " -=a 2 + (A.3)

Sdn i I

It suffices to show that Equation A.3 is strictly positive for all positive batch sizes.

i n , In(fl)fi," > 0

(1- f.)+ n, ln(fij)flj > 0

1 > 8f -n J ln(flj)8fl

1 > 8fj (1- n, ln(Ij)) (A.4)

When n, = 0, then the RHS of Equation A.3 is exactly equal to 1. For positive batch

sizes, the RHS is strictly less than 1. This can be proved by showing that the derivative of
the RHS is strictly negative.

2

So, we know that + + (2(+ ,B8) is also unimodal, and has 1 minimum point.

Assume now that ni, n2

For any integers smaller than n1, 3j increases since n, is the integer that achieves the

minimum value by definition.

n 2a 2
Similarly, for any integers smaller than n,, (In j + 1+ 8) increases since the

function is unimodal, and ni i n2 by assumption.
Thus, we see that the value of E[T] (as given by Equation A.2), evaluated at any batch

size n < n1 is strictly smaller than the expected total time if we use n,. In this case, n, is
a lower bound on the optimal integer batch size.
In the event that n, n2,, it is easy to see by symmetry arguments that n2 is a lower
bound.
Therefore min(n , n2) is a lower bound on the optimal integer batch size.
The proof for the upper bound is very similar to the lower bound proof that we have just
presented. m

(This Page Intentionally Left Blank)

Appendix B

Lower and Upper Bounds,
Various Job Parameters

Q P lower
bound

5 0.1 1
5 0.2 1
5 0.3 2
5 0.4 2
5 0.5 2
5 0.6 3
5 0.7 3
5 0.8 4
5 0.9 6
6 0.1 1
6 0.2 1
6 0.3 2
6 0.4 2
6 0.5 2
6 0.6 3
6 0.7 3
6 0.8 4
6 0.9 7
7 0.1 1
7 0.2 1
7 0.3 2
7 0.4 2
7 0.5 2
7 0.6 3
7 0.7 4
7 0.8 5
7 0.9 7
8 0.1 1
8 0.2 1
8 0.3 2
8 0.4 2
8 0.5 2
8 0.6 3
8 0.7 4
8 0.8 5
8 0.9 8

and Optimal Batch Sizes

upper optimal

bound (min E[T])
1 1
2 1
2 2
2 2
3 2
3 3
4 3
5 4
8 6
1 1
2 1
2 2
2 2
3 2
3 3
4 3
6 4
9 7
1 1
2 1
2 2
2 2
3 2
3 3
4 4
6 5
9 7
1 1
2 2
2 2
2 2
3 3
4 3
5 4
6 5
10 8

for

0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

9
9
9
9
9
9
9
9
9

10
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13
13
14
14
14
14
14
14
14
14
14
15
15

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2

1
2
2
3
3
4
5
6
10
1
2
2
3
3
4
5
7
11
1
2
2
3
3
4
5
7
11
2
2
2
3
3
4
5
7
11
2
2
2
3
3
4
5
7
12
2
2
2
3
4
4
6
8
12
2
2

0.5
0.5
0.5
0.5
0.5
0.5
0.5

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4

10
10
10
10
10
11
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13
13
14
14
14
14
14
14
14
14
14
15
15
15
15
15
15
15
15
15
5
5
5
5
5
5

100

0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6

0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

101

1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1

102

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3

103

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5

0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5

104

2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5

0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7

105

2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

11
18
2
3
3
4
5
6
8
11
18
2
2
3
3
4
5
6
8
13
2
2
3
3
4
5
6
9
14
2
2
3
3
4
5
7
9

15
2
2
3
4
4
5
7
10
16
2
2
3
4
5
6
7
10
16

13
21
2
3
4
4
6
7
9
13
22
2
2
3
4
4
5
7
10
16
2
2
3
4
5
6
7
10
17
2
3
3
4
5
6
8
11
18
2
3
3
4
5
6
8
11
19
2
3
3
4
5
6
8
12
19

11
18
2
3
3
4
5
6
8
11
18
2
2
3
3
4
5
6
8

13
2
2
3
3
4
5
6
9
14
2
2
3
4
4
5
7
9
15
2
2
3
4
4
5
7
10
16
2
2
3
4
5
6
7
10
17

106

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

107

(This Page Intentionally Left Blank)

108

Appendix C

Test Results of Minimize Utilization Heuristic for Unit
Demand

1.03

.025

0 50 100 150 200 250 300
Test case

350 400 450 500

Figure C.1: Test Results at p = 0.1

109

1.02

1.015

1.01

1.005

1

I Iii ;-

,-

H U... i. I i . , :i . . -_ . .• : ., ..ft .. M,. ., .. ,. . •,. ,J N ..

_ · · · · · ·

E

E

I-

!

r

i~liii I IC1 CI.II 11,I1 ii iiil ,Rillllll JI.I

) 50 100 150 200 250 300 350 400 450
Test case

Figure C.2: Test Results at p = 0.2

500

0 50 100 150 200 250 300 350 400 450 5'00
Test case

Figure C.3: Test Results at p = 0.3

110

1.03

1.025

1.02

1.015

1.01

1.005

1

I.VU

.05

1.04

I I I

K1. IIII
T

-.4 UP T..- I -------------- M I i I ;, - k4;

1.0

1.0

1.0

3

2

1

r n~-I I I

-

-

,I
r i linII1~I il lliii ~el,1:I;1 BIR E IR

1.06

1.05

1.04

0)

- 1.03

a-

1.02

1.01

1

50 100 150 200 250 300 350 400 450 500
Test case

Figure C.4: Test Results at p = 0.4

.4 f'lO
I.08

1.07

1.06

1.05

, 1.04

CL
a-

1.03

1.02

1.01

1

111

0 50 100 150 200 250 300 350 400 450 500
Test case

Figure C.5: Test Results at p = 0.5

1.09

1.08

1.07

1.06

S 1.05
a)

n 1.04

1.03

1.02

1.01

1
0 50 100 150 200 250 300 350 400 450 500

Test case

Figure C.6: Test Results at p = 0.55

4 fo

0 50 100 150 200 250 300 350 400 450 500
Test case

Figure C.7: Test Results at p = 0.6

112

I .O

1.07

1.06

1.05
a)

c 1.04
a)

1.03

1.02

1.01

1

1

1.02

1.01

ii ii1 ;:ii iI

0 50 100 150 200 250 300 350
Test case

Figure C.8: Test Results at p = 0.65

400 450 500

0 50 100 150 200 250 300 350 400 450 500
Test case

Figure C.9: Test Results at p = 0.66

113

1.08

1.07

1.06

1.05

1.04

1.03

1.02

1.01

1

1.08

1.07

1.06

1.05

1.04

1.03

1.02

1.01

11

0 50 100 150 200 250 300 350
Test case

Figure C.10: Test Results at p = 0.67

400 450 500

I I I I i

50 100 150 200 250 300 350 400 450 500
Test case

Figure C. 11: Test Results at p = 0.68

114

1.06

1.05

1.04

1.03

1.02

1.01

1

1.08

1.07

1.06

1.05

1.04

1.03

1.02

IUI

1

!

1.1

1.08

U,

•, 1.06

a-

1.04

1.02

1

1.08

1.07

1.06

1.05
0)

= 1.04

a,

1.03

1.02

1.01

1
0 50 100 150 200 250 300 350 400 450 500

Test case

Figure C.13: Test Results at p = 0.7

115

1.12

0 50 100 150 200 250 300 350 400 450 500
Test case

Figure C.12: Test Results at p = 0.69

1.08

1.07

1.06

1.05

1.04

1.03

1.02

1.01

1

1.1

1.0E

1.0E

1.07

1.0(

1.05

1.0d

1.03

1.0;

1.0

0 50 100 150 200 250 300 350 400 450 500
Test case

Figure C.15: Test Results at p = 0.72

116

0 50 100 150 200 250 300 350 400 450 500
Test case

Figure C.14: Test Results at p = 0.71

1

j

j

i

i

1

i

I

0 50 100 150 200 250 300 350 400 450 500
Test case

Figure C.16: Test Results at p = 0.73

0 50 100 150 200 250 300 350 400 450 500
Test case

Figure C.17: Test Results at p = 0.74

117

1.08

1.07

1.06

1.05

1.04

1.03

1.02

1.01

1

1.12

1.1

1.08

1.06

1.04

.02

-

-

ivi

0 50 100 150 200 250 300 350
Test case

Figure C.18: Test Results at p = 0.75

400 450 500

0 50 100 150 200 250 300 350
Test case

Figure C.19: Test Results at p = 0.8

400 450 500

118

1.07

1.06

1.05

'D 1.04
(o

(u 1.03

1.02

1.01

1

I.UO

1.05

1.04

0)
0)

, 1.03

1.02

1.01

1

I.UI

1.06

1.05

& 1.04

1.03

1.02

1.01

1
0 50 100 150 200 250 300 350 400 450 500

Test case

Figure C.20: Test Results at p = 0.85

1.08

1.07

1.06

1.05 -

1.04 i

1.03 i

1.02i

1.01 I I i
I ij I

0 50 100 150 200 250 300 350 400 450 500
Test case

Figure C.21: Test Results at p = 0.9

119

4 t"• "7

0 50 100 150 200 250 300 350 400 450 500
Test case

Figure C.22: Test Results at p = 0.91

0 50 100 150 200 250 300 350 400 450 500
Test case

Figure C.23: Test Results at p = 0.92

120

1.07

1.06

1.05

1.04

1.03

1.02

1.01

I .Uf

1.06

1.05

1.04

1.03

1.02

1.01

1

r n-,

1

1.07

1.06

1.05

1.04

1.03

1.02

1.01

0 50 100 150 200 250 300 350 400 450 500
Test case

Figure C.24: Test Results at p = 0.93

.4 I.U1.0U

1.08

.07

.06

.05

.04

.03

.02

1.01

0 50 100 150 200 250 300 350 400 450 500
Test case

Figure C.25: Test Results at p = 0.94

121

K

I
I iiI.

ii iiiiir 1"Siiirrii ___sIi

l, iIi I.. iiiI lIIiLPI V I' I Ii

H
IL i 1 a!.I.I IJ O

. -i-i

-i

-i

-i

-i

-i

i i• I III I• .. , • qo i l
H a i Ni

Mi.

~L~

I I I I I I I I I

b

--

Sii
4_1

0 50 100 150 200 250 300 350 400 450 500
Test case

Figure C.26: Test Results at p = 0.95

L6 i --- 0, .,-i i• i!ii••• ,,!.. & .i.i ._•• •i& .* !, ,! •• •"I•• .,.••••
0 50 100 150 200 250 300 350 400 450 500

Test case

Figure C.27: Test Results at p = 0.96

122

1

1

)2

11

1.C

1.05

1.04

1.03

1.02

.01

1
1

Li

^ r

"' " '"; j!na i · : I liinn

I

6

-

E

II

II ~ A..i IA A'IIH~1k1 I&¶1 B i1 ' ' ' r1.I1Jlft1IkA!ihl !

0 50 100 150 200 250 300
Test case

Figure C.28: Test Results at p = 0.97

1.04

1.035

! '
i ! I..JL...li. i..l.! CJ.1.•L... L

II i

JUl-LI. ilL BJU.!1., [A_ i iil II.. *..ll..l Aill
0 50 100 150 200 250 300 350 400 450 500

Test case

Figure C.29: Test Results at p = 0.98

123

1.04

.035

.03

.025

1.02

.015

1.01

1.005

1I

-n

jI ' -i

I i I ~

360 400 450 500

.03

1.025

.02

1.015

.01

1.005

I I I I I I I I I

E

-

I

i-I i; IIII 11 i .r

!

I!

I II 111 .l It1 1

.A:.Al [][!•• ...:• _. :. :• . :.• • • .

I I I I I I II

,IJ. i! i A d J 1 A.i I A it [I tI t
I 111

J:::L ::: :::::i :.....L:. z:_A:: :: I'.";: :: : : nk::.::t. "- : ."" -

0 50 100 150 200 250 300 350 400 450 500
Test case

Figure C.30: Test Results at p = 0.99

124

1.08

.07

1.06

1.05

1.04

1.03

.02

1.01

1I

-

-

-

-

-- t T I--

1i' Ij

A i
• \ \i

IA

-r I I I A A I _

10 20 30 40 50 60 70 80 90 100
Test Case

Figure D. 1.1: Performance of Policy I against Minimize Utilization Heuristic

125

Appendix D

D.1 Test Results at pt, = 0.5

4t 'rl

1.05

I

i4

1 .25

r - T-

j!

;i

i i

a

I

II i

i i

I;i:
ii

-' "
j
': A·

1

1

a
i I;i
i

ii
i I

It:i;A -·i-j---

i I

i! i!

iii

II: ;- -- ,-r

10 20 30
-_- I I - -j

40 50 60 70
Test Case

80 90 100

Figure D.1.2: Performance of Policy 2(a) against Minimize Utilization Heuristic

1 A

.35

1.25

1.2

1.15

1.1

1.05

10 I I30 40 50 60 I I80 90 100

10 20 30 40 50 60 70 80 90 100
Test Case

Figure D. 1.3: Performance of Policy 2(b) against Minimize Utilization Heuristic

126

1.35

1.3

.25

1.2

15

1.1

1.05

1

I., r I I i i I r r i

-

-

-

h I;

'! "
i I

'

Ai! ii
ii i

V "

·i ii
i: i i

i---"------ i ~

I :
: : `i

-

-

I;

i:ii

: :

:

i i; V
i i

i (i
ii :i

i i: ir

i,

; i

'.: i
I i i

\i
r

i i

1.35

1.35

1.3

1.25

0c 1.2

1.15

1.1

1.05

1
10 20 30 40 50 60 70 80 90 100

Test Case

Figure D.1.4: Performance of Policy 2(c) against Minimize Utilization Heuristic

cc
0C

Q.a)

0 10 20 30 40 50 60 70 80 90 100
Test Case

Figure D. 1.5: Performance of Policy 2(d) against Minimize Utilization Heuristic

127

*1

10 20 30 40 50
Test Case

60 70 80 90 100

Figure D.1.6: Performance of Policy 2(e) against Minimize Utilization Heuristic

10 20 30 40 50 60 70 80 90 100
Test Case

Figure D. 1.7: Performance of Policy 2(f) against Minimize Utilization Heuristic

128

2.2

2

0 1.8

a)
1.6

1.4

1.2

1
10 20 30 40 50 60 70 80 90 100

Test Case

Figure D.1.8: Performance of Policy 2(g) against Minimize Utilization Heuristic

129

D.2 Test Results at p,,t = 0.6

ijii r;
ij i i i !, i

. ii ii i

_L --..---.-.---.... . . • I __ L_

10 20 30 40 50 60
Test Case

70 80

Figure D.2.1: Performance of Policy 1 against Minimize Utilization Heuristic

130

1.25

1.2

1.05

1

iii
i'
i i
i r

'' 11i ij il~

A i
"

i
i : i ; i
i ii I !\iI

i ii '
i I

i--i--1i i i ii

· '''
· I ''
i: ii i

ii ii
'i iiI ,
i
i,

90 100

it /'

i

!--·i
i

Ij
i i i
i ii
ii i!

i
·:

i ,'
:·

|

i!

1.4

1.35

1.3

1.25

1.2

1.15

1.1

1.05

1
10 20

Figure D.2.2: Performance

1.4

1.35

1.3

1.25

1.2

1.15

1.1

1.05

1

iI I 1 11, P l
j[A

I I I

30 40 50 60 70 80 90 100
Test Case

of Policy 2(a) against Minimize Utilization Heuristic

hA
i'Ii

1 1 it I i ' ''
ii I 1 is

it 1t1
.pJI - I - i..... -H --- c~ ··1···;·--~ i · ·-i·-·- ·A

10 20 30 40 50 60 70 80 90 100
Test Case

Figure D.2.3: Performance of Policy 2(b) against Minimize Utilization Heuristic

131

r ·

I

f

II

iii
i .

i: i \ i

iliii

10 20 30

/ii riii; : -;v ,,i
v \, j v~

1 a _ I [

40 50 60 70
Test Case

L I 1

80 90 100

Figure D.2.4: Performance of Policy 2(c) against Minimize Utilization Heuristic

-1 r-
1.45

1.4

35

1.3

.25

1.2

1.1

1.05

10 20 30 40 50 60 70 80 90 100
Test Case

Figure D.2.5: Performance of Policy 2(d) against Minimize Utilization Heuristic

132

1.45

1.4

1.35

1.3

.25

1.15

1.1

1.05

I I I I I I I I I

ii
i i

r. , i
ii ;i
ii

j i n

'
' i

f-:-~--Si-: i-i--
ii :!

i I

V

i. .

/t
"'

-

-

-

-

-

!i i

:, i , i ii
i i

ii r
i· ii

NO
r

1 I I

10 20 30 40 50 60 70 80 90 100
Test Case

Figure D.2.6: Performance of Policy 2(e) against Minimize Utilization Heuristic

10 20 30 40 50 60 70 80 90 100
Test Case

Figure D.2.7: Performance of Policy 2(f) against Minimize Utilization Heuristic

133

II

i I

II 2

10 20 30
I L1 1 I I l i f

40 50 60 70 80 90
Test Case

Figure D.2.8: Performance of Policy 2(g) against Minimize Utilization Heuristic

134

2.2

1.8

I / 1 1 I I I I I I

E

E

I
i

i
iii:
i i
i i

n
ii

ii

ii
: I

i

i i
:i

-- ·--

i
i\

D.3 Test Results at p,,, = 0.7

1.35

1.3

1.25

1.2

1.15

1.1

1.05

1
10 20 30 40 50 60 70 80 90 100

Test Case

Figure D.3.1: Performance of Policy 1 against Minimize Utilization Heuristic

135.

V 1

ii I 41 I i .

ii v iiI
ii '

II F iii , i • : v i• ii2 ,. i l i •
i: i i I ' Ii i ivh

!,ii I i rl i ' i :'
't ii i iil i ... • ' : " i '

: ' Eiii i
•

i di , ,

i i · · · t · i' fft.ii i i i - i• i] I I i • , i v : •i i i
t

ii i =j tt i ' /

v' i Ij i
SI I i i i If" i i, V i / i

10 20 30 40 50 60 70 80 90 100
Test Case

Figure D.3.2: Performance of Policy 2(a) against Minimize Utilization Heuristic

j i

,! iiIi II

I i'''

ii i
Si aiSi I Ii i I II I ifI

! I f ii ;l i i i it i i...!+ . . •i-----'---~---• ·I ··..... ... Iv L
i !-t Ii i i I = 1A i l. !! i:

i : i v i
-.- ': i ; ii ; i , •

\I iI~i i i· hi I iirrii•' '
' • I ii V

i i Ii -
i t

i fii " ! ! • i
:: i! : I:•i • i i i ii iI ii -•..i i.:,-- .•·- • i --·• ·-
ii I • ' / ! 4

=!i a i i , :! I .ii '' i ' i i ii I •
\ !i i i

i I 3 4 I I I I 1

10 20 30 40 50 60 70 80 90 100
Test Case

Figure D.3.3: Performance of Policy 2(b) against Minimize Utilization Heuristic

136

45

.35

1.3

.25

1.2

1.15

1.1

1.05

1.4

1.35

1.3

.25

1.2

15

1.1

1.05

E

E

Ail

E

1-

I

- iI

- F

*i I

I i

ri
i

;
r

i

ii
Ii

I f I I I

10 20 30 40 50 60 70 80 90 100
Test Case

Figure D.3.4: Performance of Policy 2(c) against Minimize Utilization Heuristic

ii

i

i ~ji I

; I

1 -i

i 1

;·

;'·

i 'i

i'
'i

i ;

i ·i
II i i
': i i

iii iii

i' i ·i
i

ii i F

-i

i
ii

I
ii
i: i :: i

i -

ii

-n

'-4

ffiffi I I I I

10 20 30 40 50 60 70 80 90 100
Test Case

Figure D.3.5: Performance of Policy 2(d) against Minimize Utilization Heuristic

137

.35

1.3

.25

1.1

1.05

1

.45

1.4

.35

.25

15

1.1

1.05

1

1.5 I I I I · ·

I

1

h

ii

Ij
i ii
i

i
ii I:
i i i I ii ir

" i ii
~ rii'

i- ~ · 1
ii

Y 1 Ii'i '
I ' ~ i /

Yii
I

-

-

s i is
i'

A

:i i

i

i

ii

I I I
E

I

i i

ii

r

j

i
i ,
I:
i·

i·:

E

ii

i i

i i

Bii j
i!1~

ii ii.li

: 1'' ; '
iii! iii:

i:
,ii

a
i ir i

,I i
i ,

rI

i

i i

1::

i

A
ii-i

:i y·i

j

j j
j i

ii
i ii

A I :
i'
'

ii ,i
rj i,

vi;

r

i·

[I

ii r
i i I

i :

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1
10 20

Figure D.3.6: Performance

a)

a)

30 40 50 60 70
Test Case

of Policy 2(e) against Minimize

80 90 100

Utilization Heuristic

10 20 30 40 50 60 70 80 90 100
Test Case

Figure D.3.7: Performance of Policy 2(f) against Minimize Utilization Heuristic

138

- I

ii

-H S' ii

I i i / ..,

i (I i I I

.. ! H

A i k

I II I ii I

I I I I I Ifl I f/i_A " C-I..S.....i

2

1.50),a-

10 20 30 40 50 60 70 80 90 100
Test Case

Figure D.3.8: Performance of Policy 2(g) against Minimize Utilization Heuristic

139

1 N t I 1
I i i F

SIii

Si ! •I Y !
I i ii 1i i ! i , I, i il

ii1',
" ~~~Ii i i• ,i iI

i i• I i i i i i I . f i I •
,i i • f ii i • !i r l i i i ,

<, • i !t tl ii iil 7 i ii '•• ••
i• l i t

i i • iii ii ,,,,

I I I I I I I I

iii.
I ii i

T i i t
Vj

'

l!ii
·i

i

i----!ii
I j

i i
i I

ii

J1_~~_.I I l J_ L I I 1

10 20 30 40 50 60 70 80 90
Test Case

Figure D.4. 1: Performance of Policy 1 against Minimize Utilization Heuristic

140

D.4 Test Results at p,test = 0.8

.45

1.4

1.35

1.25

1.15

1.1

1.05

H

100

I I

-

ij

i

i

i

'

E

1.2

1.1

I

10 20 30 40 50 60 70 80 90 100
Test Case

Figure D.4.2: Performance of Policy 2(a) against Minimize Utilization Heuristic

A

iiI' :i ;i i! . ii ii
i i ! • i

i ,• ii i i I

• i t i i iI] i •! \ • .4 I..

I I |

t
I .

Iti Iili
.. !i i

I n n ,"

i ii I\ "= "

i ' V ii i i i I, i

I I I

i i i j\ i I nJ
10 20 30 40 50 60 70 80 90 100

Test Case

Figure D.4.3: Performance of Policy 2(b) against Minimize Utilization Heuristic

141

1.6

1.5

1.3

E

ii

I

j

t------i--t
i i i

i ",i i
i;ii

S'4

/ i i
T ! i i

i"t ! I ! ' ! Ii :

S.i L • I I I

10 20 30 40 50 60 70
Test Case

KII

80 90 100

Figure D.4.4: Performance of Policy 2(c) against Minimize Utilization Heuristic

'i
j I
: i 1
i i

j
ii
:e

; i
\i

I i . *.

f-ii :i· 4/

10 20 30 40 50 60 70 80 90 100
Test Case

Figure D.4.5: Performance of Policy 2(d) against Minimize Utilization Heuristic

142

1.4

1.3

Z.Z

1.8

I I I I I I I I I

i i
ii
i:

........U •A" / i ii

v:

,,
-

-

'i
i '
i '
j

ii
I

ii

i i:

r

i

I i i
i: i

ii

; · i ",i; ·t

i i i i

i I I I

1.5

1
10 20 30 40 50 60 70 80 90 100

Test Case

Figure D.4.6: Performance of Policy 2(e) against Minimize Utilization Heuristic

3.5

2.5
ii

Ii 1

,

i

.ii. . .i iiii i , I i

I /"/ Ii

SiII

Si • ii ,
ii ii I

i ! ii :i\

v , i,
• i iiS \ i i/I ; I I

........ , 4 - Ii- i

.i ii i •I i1 VI I i* I* I

10 20 30 40 50 60 70 80 90 100
Test Case

Figure D.4.7: Performance of Policy 2(f) against Minimize Utilization Heuristic

143

1ii
I i
i

I i

I /

~i..l......' i

\i;
i i Y

I :I;
r

I I I I I I I I

a

ii
ii
ii

'iI '
i ;i i

I i I I I

II i

! ' i• ,• I i ii

SIi i • i
-I iII

6

5

()

d)

3

2

I ~ I ii ii*I I

i ,, i, ',. ii i ' i] I.• M i I i .., i 4
; j iI -!l

Y ii iJa • i• i i i \j i
d C'' I Vi i ',.' i

I I I I I I I I I

10 20 30 40 50 60 70 80 90 100
Test Case

Figure D.4.8: Performance of Policy 2(g) against Minimize Utilization Heuristic

144

* I il I \

i
Ii
i

D.5 Test Results at Ptes,, = 0.9

1.0

1.7

1.6

1.5
a)

g 1.4

1.3

1.2

1.1

1

I I I I I I

II ii: i/ i ' • "i •

.......... I........... 1 1
'j I.

.... I i
i

.i

, i i i [i r ••ii -;
'•• i i i~ ~ , ii .. .!..i=i i

I t i' I i I iii i• s "i ! g ;i i i
ri i iii• i ! ; i . ,i i'

LJ: / i " ii '" 'i7

I I i I I I ! I

10 20 30 40 50 60 70 80 90 100
Test Case

Figure D.5.1: Performance of Policy I against Minimize Utilization Heuristic

145

2.2

1.8

1.6

I I I I I I I~~7--~--

//

i

i i
I

i

ii ~
(i'

1 i

i i i ii Ai A ii"

i li i i i :i :,\ 1 i ,, ' ia i i i i~ i i
!ir ! ii i i •i V • •i ii ," : lj ii i/

10 20 30 40 I I 50 60 70

10 20 30 40 50 60 70
Test Case

Figure D.5.2: Performance of Policy 2(a) against Minimize Utilization Heuristic

1.9

1.2

ii
i

i '

'i

i/

i i

:i

,i

i '

i /

I

/i!\ i I i

: i

j i

I i

ii
i i

i I i
i
i 1 I

i

· ' '
i i
i :
· i '

i/ I
;i ·

1

ii

i i

I

Ij

i~~ri

10 20 30 40 50 I I I I

10 20 30 40 50 60 70 80 90 100
Test Case

Figure D.5.3: Performance of Policy 2(b) against Minimize Utilization Heuristic

146

100

Ii 1

-1i

E

S '!
• ii i i i
•, i i i i

:: ji , i •i ; '

k i ::, ir

'i ·:

I i , :

-

· '
· i

·i

i ·I

i i
E

2.2

2

® 1.8

ac
(1.6

1.4

1.2

4

10 20 30 40 50 60 70 80 90 100
Test Case

Figure D.5.4: Performance of Policy 2(c) against Minimize Utilization Heuristic

10 20 30 40 50
Test Case

60 70 80 90 100

Figure D.5.5: Performance of Policy 2(d) against Minimize Utilization Heuristic

147

ii

Ii

10 20 30 40 50 60 70 80 90 100
Test Case

Figure D.5.6: Performance of Policy 2(e) against Minimize Utilization Heuristic

It

I I

'I

SI I I I

10 20 30 40 50 60 70 80 90 100
Test Case

Figure D.5.7: Performance of Policy 2(f) against Minimize Utilization Heuristic

148

2.5

2

1.5

3.5

2.5

2

" itrk l i n
i !. •': •i i i!
i i i •s '' ;' , • i • '

•i i i
'7 >

1
i; ii
i i
i i

i 'c,
i i
i

.i i,
',/\ i

I I 1 I I

i

ii •

i iI.. .. .i

-f i ;t

t

1 ,

j /

ii i
'

: i

V

i i Ti

i i iI i

ij ;·ii

... .i .. .

77 i

ci)

0)

a)

10 20 30 40 50 60 70 80 90 100
10 20 30 40 50 60 70 80 90 100

Test Case

Figure D.5.8: Performance of Policy 2(g) against Minimize Utilization Heuristic

149

(This Page Intentionally Left Blank)

150

Appendix E

E.1 Test Results at p,, =0.1

4 nn7

a)0)

a)

a)IU
0-

10 20 30 40 50 60 70 80 90 100
Test Case

Figure E.1.1: Performance of Modified Heuristic at Pop_,, = 0.11

151

i'i i !
.A~~~~ ~~ '!A i•iifi

! i \i iJ iii •" '
]~~ ~ ~ ! ! i i "

,,' i i i i i!

i' r i I I: ii r ?i ii 'i i;
i i' i' i,

'i " '!

ii ii

10 20 30 40 50 60 70 80 90 100
Test Case

Figure E. 1.2: Performance of Modified Heuristic at Popt g,,es = 0.12

i

ii

i i i ii

ii

i i

i , i

10 20 30 40 50 60
Test Case

70 80 90 100

Figure E. 1.3: Performance of Modified Heuristic at Pop,, gues = 0.13

152

1.02

.015

1.01

1.005

Sq995

1.035

1.03

1.025

.02

1.015

1.01

1.005

I

I I I I I 1 r I

I I I I t I t

R 'Iii 'i
i I i

:i
ii ,i i i

i a
! ji

ii ·
I~ :i;

., i T' h :: ·
: i ii i

i: ~ r
i! i, I \'
e i ' i

!/

I I I I I I I I II

.·--v

i,i·i iii '
i

:~:

: i '

i i
i

h i:: :
--ii i-'i

i :
I i

i·;---i
ii ·

i ; i
I:

i/l

i,
ii 'I

ii
ii

i

L • __

10 20 30 40 50 60 70 80 90 100
Test Case

Figure E.1.4: Performance of Modified Heuristic at Pop_ g,, = 0.14

10 20 30 40 50 60 70 80 90 100
Test Case

Figure E.1.5: Performance of Modified Heuristic at Ppt,,_s = 0.15

153

4 It•rJI €

1 ~n

E.2 Test Results at Ptes, = 0.2

1.003

1.002

1.001

0.999

0.998

0.9 97

i I I I I

- ji J I IIi' i i . . i ii ,i

iIi
10 20 30 40 50 60 70 80 90 100

Test Case

Figure E.2.1: Performance of Modified Heuristic at Pop,_ ,, = 0.21

154

--- : '
i; 1 i

iv

I i j I iiI ·i"

0.999

0.998

1.007

1.006

1.005

1.004

1.003

1.002

1.001

1

0.999

0.998

I I I I I I I I

10 20 30 40 50 60 70 80 90 100
Test Case

Figure E.2.2: Performance of Modified Heuristic at Popt _guess = 0.22

1.012

1.01

.008

.006

.004

1.002

1

0.998

SI I I F

i i

A

A W ii

I' ~i n

i I

i i i:
i!

:I :i

FI I
i ii

i i i , A

•: i i i l i ij i '

I

ii ii

1.

'

I

j i ii i:
ii Ij

:i i.

: i

i : i
I

·' i
i

10 20 30 40 50 60 70 80 90 100
Test Case

Figure E.2.3: Performance of Modified Heuristic at Pop,g,, = 0.23

155

I

I

I

E

-

-

SN

i,
i

•i i i ii ii

•i ~ i ii

! ! i i• i i
A ~ !1 !..... ii i ...

;! i ii
Ii r

I I I

10 20 30 40 50 60 70 80 90 100
Test Case

Figure E.2.4: Performance of Modified Heuristic at Popt gess = 0.24

I T I I - - -

i'!

i i l •
• i i ii~ I i

S ii: •

I / !
• i iii l i i '

Si/ ' ! i iii '

i i

. iij

I. I. . . I L , I I I ,

10 20 30 40 50 60 70 80 90 10
Test Case

Figure E.2.5: Performance of Modified Heuristic at Popgess = 0.25

156

0

1.02

1.015

.01

1.005

1

0.995

.4 fl'$
r

.018

.016

1.014

1.012

.01

1.008

.006

.004

1.002

I i i I I I I I I j

" i !

i !

t'' t ;'

i :
i

ii

i. :

!',I

ii

! i
; i

a
ii
i i
: i
I
;in tii

'ii iii

ii i i ii; i/
i;

i r
ir

iii
\-ii -iii i: i

: i
i

:f
1

1.0V

ii

'
ii

ii
;,11

i.
i!

,Ii
i i
;-t

i I

i~i

I ;

)i

ii .~

i ii
_i

; ·. i

E.3 Test Results at p,,,, = 0.3

I.0U02

1.002

1.0015

1.001

0 1.0005

1

" 0.9995

0.999

0.9985

0.998

S09975
10 20 30 40 50 60 70 80 90 100

Test Case

Figure E.3.1: Performance of Modified Heuristic at p 0_= = 0.31

157

* rr~rrr

:i
''

i ii
: i: i A ii'i ''i iIi i i i: 1i; ii

ii
(i ~I i W ~ i i i r i i ii i i

ii ;I ' i 1
iii i !; !·· ii i!
ii ii i i i iI; ii i ~i : i
ii i!! ;i

ir ii ii
i: i! : i i i I ii

i ii ·I i i
ii ii

: i! ii i;
ij i i:

I i i
'i i
i; '' i i

i I
ii
ii

ii ! ! •

c. _.......... i'+• .L.

f i . i i •l Ij I i' !

! ii i! ti

ii !

10 20 30 40 50 60 70 80 90 100
Test Case

Figure E.3.2: Performance of Modified Heuristic at Pop _ge,, = 0.32

1 T - -T---7

I " +I l ..

I,, i/ ,+ :+ ii,, , : I. i, i i 7 ',, (i ii' : t i• i~ i
•'<•~~~ · ? i i! i> i

t: i{ :i +i! i ,st

.... · i

,. i '
I I [I I I i I

10 20 30 40 50 60 70 80 90 1C
Test Case

Figure E.3.3: Performance of Modified Heuristic at p,_, ess = 0.33

158

1.005

.004

1.003

1.002

1.001

0.999

0.998

0 QQ997

li

- i ,i
t , ii i
ii i i t

v ii , ti·

7 ii:i i 'I/ ! i:

I 0nno1.006

1.006

.004

1.002

1

0.998

n QQ

tt' ii
ii 1 i I I I ii 'i ill B iii: i i I 1

n

E

v.vv|

-

-

B''I '
'i!'i ' "" 'i i

i : i
I i

I i i
ii
I!

+' i:i

~

,- i
'i

i . i ! i

.

0

10 20 30 40 50 60 70 80 90 100
Test Case

Figure E.3.4: Performance of Modified Heuristic at Pop,_g = 0.34

1.01

10 20 30 40 50 60
Test Case

70 80 90 100

Figure E.3.5: Performance of Modified Heuristic at Po,_guess = 0.35

159

(U

2 1.0c

a.

0.99

•1 £t4

099

E.4 Test Results at pe,, = 0.4

1.003

1.002

1.001

1

0.999

0.998

0.997

0.996

i I
•i i ' i

i i i

iiii i i i ji i i" i , !i w , i ii i• ',j/; ;; ' ' I· i i i i i i i

ii ! i •
t f s , • 'k i i

7 7 " 'i, i,
i ft/:

Ir4,ii i;'

i i i
i 7

10 20 30 40 50 60 70 80 90 100
Test Case

Figure E.4.1: Performance of Modified Heuristic at Pop,_ ges = 0.41

160

I 1 I I I I I 1 I

i ijj

;''
1

i:
ii

.L.i.~iir----------

i ;;
I

ii i
i i'

i i

E

I f I I I I I I I I

1.004

1.002

1

C)
0

D 0.998

a.

0.996

0.994

0 099
10 20 30 40 50 60 70 80 90 100

Test Case

Figure E.4.2: Performance of Modified Heuristic at p, _, = 0.42

4 nn'
I. UU

1.002

1.001

1

5 0.999

0.998

0.997

0.996

n 00o

161

I I I I I I I

i -M Aii i ,, I
I•i i- l II

II I. l"'ii,
SI I -T f 1,4.. i ii ii i . i

f I i i I. i " A I ," I
Ii I~ I ,II I i i

i i ~ b ! tT T :! I.

ii 1'1*II ij I~ i
II~ Ilj I•,~ I ii i i=; s! i=.' ,, i i i

: I 'I ii
111 i iil I

ii Ii II ' i

II

--
I [I Ii I ! I 1- i;iir

10 20 30 40 50 60 70 80 90 100
Test Case

Figure E.4.3: Performance of Modified Heuristic at p, P , = 0.43

II

i i
i Ai iiiI ;
:i i;ii
i i

i. i!

i L

i li

ii
! ,. ii i~ i , ii i •i ' i i i i ,, ' I •/i i iil i ii i• " r ii

I I I I I I I

10 20 30 40 50 60 70 80 90 100
Test Case

Figure E.4.4: Performance of Modified Heuristic at Popt,,guess = 0.44

i i
,•~~i i! i i;

i l , " ii i • i i•i ii i' 1
" 'i I i I

,i , i ii

I I I I I I

10 20 30 40 50 60 70 80 90 100
Test Case

Figure E.4.5: Performance of Modified Heuristic at Po g,,ess = 0.45

162

1.01

.008

.006

.004

1.002

1

0.998

n OQ

1.

1.

V IZ

1.01

008

00611.vv

1.004

.002

0

0.998

0.996

r) QQA

' ii i i i\ i I " i ' f I ii ii i i

I"J i
ii iiI I

-

-

-

-

'i

i I
iii iiI''
'
i'

1: ~
ii I
i' i i
:i i

i ;;
i

i j
i i
i i

ii
i
I

1 i
ii ii
; i : ij

v.uuv

------- - ---- ---

-1

, ~~ ~ I

·

- ii I'
ii!i i; :i: :
ii I '

i i i i

ii :iii~ Ib~i

'
ii iu

i i
i i ' iI i : i

i; t i L

.· U

E.5 Test Results at p,,te = 0.5

I.U3O

1.002

1.001

1

a.
0.998

0.997

0.996

0 QQ!r5

10 20 30 40 50 60 70 80 90 100
Test Case

Figure E.5.1: Performance of Modified Heuristic at p0 _ ,, = 0.51

163

A nn~3

1.003

1.002

1.001

1

0.999

0.998

0.997

0.996

10 20 30 40 50 60 70 80 90 100
Test Case

Figure E.5.2: Performance of Modified Heuristic at p,,_,pgues

1.008

1.006

1 rnA

.002

0.998

0.996

0.994

= 0.52

i : ~

'' \i
i ~

:

·i"- i::T
i;

:·

I j
i

i.i.~-i...

i/ i
i.

10 20 30 40 50 60 70 80 90 100
Test Case

Figure E.5.3: Performance of Modified Heuristic at Popt guess = 0.53

164

0995r""'•
.

~

E

. - J

il r.,

4 •ii-: .

i - 1
i ii

ii

i i

r i!iii-ii
ii I
II

: :
ii

j i

1.012

1.01

1.008

1.006

1.004

1.002

1

0.998

0.996

0.994

n 099

10 20 30 40 50 60 70 80 90 10
Test Case

Figure E.5.4: Performance of Modified Heuristic at p ,_,e= 0.54

I.UU0

0.995

0.99

0

ii::
i i

jVI

iF~i----L+--
i

i n
i :

i

I I I I I

60 70 80 90 10010 20 30 40 50
Test Case

Figure E.5.5: Performance of Modified Heuristic at Pop,gess = 0.55

165

1 I I 1 1 1 1 I :

i i

ij ;

I i

* nr\~
r - -- r-

E.6 Test Results at Ptest = 0.6

1.003

1.002

1.001

1

0.999

0.998

0.997

0.996

0.995

0.994

0.993
10 20 30 40 50 60 70 80 90 100

Test Case

Figure E.6.1: Performance of Modified Heuristic at p _,, = 0.61

166

1.008

1.006

1.004

1.002

1

0.998

0.996

0.994

0.992

Test Case

Figure E.6.2: Performance of Modified Heuristic at Pop,_ = 0.62

I I I 1 1 1 1

I ii ,I'

ii iV.A i iI

" ii '' I ' I I i

ii " ! !/ i! , /

, / 1 ii I / '!
.1 *i I r ~ i'

ii I j

V !ii ii '" r i I v iii I IISi i•i " i i Jii i iI-
- i

10 20 30 40 50 60 70 80 90 100

167

10 20 30 40 50 60 70 80 90 100

U -J
.A I

-4- -j

SII ' i "

I I I I I I I I

1.00

1.00

1.00

6

4

2

0.998

0.996

0.994

0.992

I\

i
I r
i

i i

SIl

Test Case

Figure E.6.3: Performance of Modified Heuristic at Pop,,_,, = 0.63

I i

1.005

I

0.995

0.99

r I I I F

III, ; ,, f

i 111 • • I FlJi i ,, i] i ii •, ' ,
!i i i:i i •] ; . ! ! i,i i ! , : ¢

e' ~ i i -iii i'i I l " . i / I i • i

' : i F "10 20 30 40 58 9STs i t Cai, i.i ii ; ;i: ii "

I I i I i I t i10 20 3 0 5 0 7 0 9 0
ii~ ~ ~ Ts Case ii III

Figure E.6.4: Performance of Modified Heuristic at Ppt_guess = 0.64

10 20 30 40 50 60 70 80 90 100

1.01

1.005

1

0.995

0.99

0.985

Test Case

Figure E.6.5: Performance of Modified Heuristic at Popgss = 0.65

168

i
h, ii

,i

ii ii
I! ii

I i
: i i

i ij ii
ii 1: i

i i

E.7 Test Results at ptest =0.7

1.01

1.008 -

1.006[

1.004

1.002

0.998

0.996; I

0.994-

0.992 -!

0.99
10 20 30 40 50 60 70 80 90 100

Test Case

Figure E.7.1: Performance of Modified Heuristic at pP, Pue = 0.71

169

10 20 30 40 50 60 70 80 90
Test Case

.7.2: Performance of Modified Heuristic at p, , = 0.72

10 20 30 40 50 60 70 80 90

170

1.01

1.008

1.006

1.004

1.002

1

0.998

0.996

0.994

0.992

0.99

Figure E

S I I I I I I I

a!

4T i

IHI
iii /I•, ii

i fi i i , it
iif

\J i~ I .I

I i i it i i i !! t 7 i .
Ir I 'i ' i i i ii ,• " i! ?i

ii i I I• I t I" ' " i - --l... .. ii ti·1H ii °

[j i i
Si I I I I I Ii IifY d I I' V

Test Case

Figure E.7.3: Performance of Modified Heuristic at Poper = 0.73

-- -- -- -- -- -- --

1.015

1.01

1.005 -i

j , i

SI I i i

0.995 -

0.99

0.985i I I
10 20 30 40 50 60 70 80 90 100

Test Case

Figure E.7.4: Performance of Modified Heuristic at Pp guess = 0.74
'4 A4 i

I .V I

1.01

.005
F FI F

I F

'x /'"..
i "ii

V'

i , FI i ! i ii ., ii
/ ! :•:• i ,f

i ' 'F',l~ F.FiF
F F i F i

F i " F ';

F ', 'FI! i i i, i'ii

10 20 30 40 50 60 70 80 90 100
Test Case

Figure E.7.5: Performance of Modified Heuristic at op, _,, = 0.75

171

0.995

0.99

0.985

I I I I I I I I I

E

j
A

i

6
i;;'

i_..ij.-iri it·-·-----·-
ii

!:i

i
i

ii : j

i'

I I I i I I I I I I

4A

-H i -' A - I I .,, .. i .-I -
J - .\ • i I'

i! i
'

i i I

i I

I I I I I I I

10 20 30 40 50 60 70 80 90 100

Test Case

Figure E.8.1: Performance of Modified Heuristic at p_,,, = 0.81

172

E.8 Test Results at p,,, = 0.8

1.008

1.006

1.004

1.002

0

0.998

0.996

0.994

0.992

0.99

1.015

1.01

1.005

0.995

0.99

0985
10 20 30 40 50 60 70 80 90 100

Test Case

Figure E.8.2: Performance of Modified Heuristic at p ,_ ,, = 0.82

1.015

.01

1.005

0

0.995

0.99

n ORA;

I I I I I I I I

{ii

ii A

,- i i

A I'

I" I jm I ! i

i A I• ! ! "

ii n i • ;i ii " i ' ii i i" I
- ! 14ý 4i i

Ihv
HHiii!i i i i

A I I I I IA A A

10 20 30 40 50
Test Case

60 70 80 90 100

Figure E.8.3: Performance of Modified Heuristic at P,_,s = 0.83

173

v,

v.v

I

I.U Ii

10 20 30 40 50 60 70 80 90 100
Test Case

Figure E.8.4: Performance of Modified Heuristic at Poptguess = 0.84

1.015-

1.01 -

-1
.
T

-1

F i I I F I I - - -I
10 20 30 40 50 60 70 80 90 100

Test Case

Figure E.8.5: Performance of Modified Heuristic at Popt ,,guess = 0.85

174

4 l4*e

.01

1.005

.995

0.99

Q985R

0

0

.005

1

0.995

0.99

0.985

I I

4'4 j I;

Fi I

ii F I i 4

i i
i i

i? i,
i
ii
i:
I

,i

: 1:
i ii
i i 6 i i

ii ii

i, ii iii~

-- ii!

i' ;j i
5

1.
i \

iii

; i

i i
' i

d i..-ti
~~r~~7~7~t-'?

,-i

i

i i

i i

i i

t-

i

I

E.9 Test Results at p,,,, = 0.9

1.01

1.005

1

0.995

0.99

0.985
10 20 30 40 50 60 70 80 90 100

Test Case

Figure E.9.1: Performance of Modified Heuristic at p,,P_ , = 0.91

175

d a 11ii
:i

I I I i I I i

.i " " A, A
S "iI

--· ·1 ·!! - -,i-i-i •i ./ .
•

, 4 ' i i r• ii E , , :
i. '· '' ' ' i 'i

.. - .. , ii V " ' i Ii*•i i i i. .
Ii : i I iii I i! i !i!¢i i] iiI i ii j i r i

•I II I
I

!I!

1.015

1.01

1.005

0.995

0.99

0.985

I I
i ,
i i

v "ii A . iII_I i i AII' 4 V:I ' I i t ., Ii ; i i ', i, •• /"/, i ii i ii" , I ,.i " .I .
' : I ' I • I I It

. . .I .- i\ : , • • =
•i' I ii i: I l ! i ii i !

i • • •
i

•" Il •, • -

I I "I I I I i I i

10 20 30 40 50 60 70 80 90 100
Test Case

Figure E.9.2: Performance of Modified Heuristic at p,, ,, = 0.92

'4 n4~Iu e
I.0 1

1.01

1.005

1

0.995

0.99

0.985

0.98

0.975

0.97

0965~r

176

10 20 30 40 50 60 70 80 90 100
Test Case

Figure E.9.3: Performance of Modified Heuristic at p _,, = 0.93

v.vvv

1.015

.01

1.005

0.995

0.99

0.985

0.98
10 20 30 40 50 60 70 80 90 100

Test Case

Figure E.9.4: Performance of Modified Heuristic at Pop,,_ = 0.94

4 n'1'r I

1.03

1.025

1.02

1.015

1.01

1.005

1

0.995

0.99

0.985
10 20 30 40 50 60 70 80 90 100

Test Case

Figure E.9.5: Performance of Modified Heuristic at P op, guess = 0.95

177

: ii i i

i~ iii i 1, liii,• i t

ii i,
I' ;' 'i ',i i i ;i t i ii i fi! i' f i- i I ! i i i i i i\ [\

" ! i : J !i: "? i i= } ! ! " i ::
4 -

jI ~ I i II ri
I ' Iiii i !!!iil ii:i!i iii r · ;i ! i I ,ii i "i <i~ ii I J :i l . .

!i ii i i •
I;~ ~ ~ ~ , i ' I i

ii

II~j l I I I

(This Page Intentionally Left Blank)

178

Bibliography

[1] Bowman, E. H., 1955. Using Statistical Tools to Set a Reject Allowance. NACA

Bulletin 36(10), 1334-1342.

[2] Bowman, E. H., and Fetter, R. B., 1957. Analysis for Production Management.

Richard D. Irwin, Inc., Homewood, Illinois.

[3] Buzacott, J. A., and Shanthikumar, J. G., 1993. Stochastic Models of

Manufacturing Systems. Prentice Hall, Englewood Cliffs, NJ.

[4] Delfausse, J., and Stalzman, S., 1966. Values for Optimum Reject Allowances.

Naval Research Logistics Quarterly 13(2), 147-157.

[5] Giffler, B., 1960. Determining an Optimal Reject Allowance. Naval Research

Logistics Quarterly 7(2), 201-206.

[6] Goode, H. P., and Staltzman, S., 1961. Computing Optimum Shrinkage

Allowances of Small Order Sizes. Journal ofIndustrial Engineering 12(1), 57-61.

[7] J6nsson, H., and Silver, E. A., 1985. Impact of Processing and Queueing Times

on Order Quantities. Material Flow 2, 221-230.

[8] Karmarkar, U. S., 1987. Lot Sizes, Lead Times and In-Process Inventories.

Management Science 33(3). 409-418.

179

[9] Karmarkar, U. S., Kekre, S., and Kekre, S., 1983. Multi-item Lot Sizing and Lead

Times. Graduate School of Management Working Paper No. QM8325. University

of Rochester, 1983.

[10] Kuik, R., and Tielemans, P., 1998. Analysis of Expected Queueing Delays for

Decision Making in Production Planning. European Journal of Operational

Research 110, 658-681.

[11] Larson, R. C., and Odoni, A. R., 1981. Logistical and Transportation Planning

Methods. Prentice-Hall, NJ.

[12] Levitan, R. E., 1960. The Optimum Reject Allowance Problem. Management

Science 6, 172-186.

[13] Little, J. D. C., 1960. A Proof for the Queuing Formula: L = 2W. Operations

Research 9, 383-387.

[14] Llewellyn, R. W., 1959. Order Sizes of Job Lot Manufacturing. Journal of

Industrial Engineering 10(3), 176-180.

[15] Stalk, G., 1988. Time - The Next Source of Competitive Advantage. Harvard

Business Review 66(4), 41-51.

[16] White, D. J., 1965. Dynamic Programming and Systems of Uncertain Duration.

Management Science 12, 37-67.

[17] Yano, C. A., and Lee, H. L., 1995. Lot Sizing with Random Yields: A Review.

Operations Research 43(2), 311-334.

180

