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Abstract

Current trends in flexible space structures often place many flexible modes of the
spacecraft inside the bandwidth of active controllers required to meet pointing and align-
ment requirements. To properly design these structures, the presence of active control
must be taken into account. The current approach to this problem has been to optimize
the structure and the control of the system simultaneously. However, this methodology
suffers from the fact that numerical optimization provides the engineer with very little
insight into the problem. This insight is crucial in the early stages of design of the
controlled structure. Even in cases where numerical optimization is to be used, it is
necessary to have a basic understanding of the problem in order to properly select the
design variables.

This work seeks to rectify this problem. Five mechanisms for improving the perfor-
mance of a controlled structure were identified. These were disturbability, controllability,
observability, open-loop dynamics, and robustness. These terms described the infuence
of the disturbance on the system, the influence of the control on the system, the influence
of the system on the performance output, the effects of natural frequency and damping,
and the effects of poor modelling.

A series of simple problems were solved which show how the relative improtance of
each of these quantities changes as the problem definition changes for different types
of disturbances, performance outputs and control levels. The analysis leads to a set of
design rules which should be useful in preliminary design. The gradients are found for
arbitrary systems and are broken down into subgradients so that the relative importance
of the five mechanisms can be tracked in more complex system optimizations. The design
rules, in conjunction with the insight obtained from the subgradients are used to interpret
optimization results in this thesis and other research.

Thesis Supervisors: Edward F. Crawley, Sc.D. David W. Miller, Ph.D.
Professor of Research Associate
Aeronautics and Astronautics Dept. of Aeronautics and Astronautics
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Chapter 1

Introduction to Controlled

Structure Optimization

Lately, there has been a great deal of interest in methodologies which can be used to

design the structural and control subsystems of large space structures simultaneously.

Traditionally, the design of these subsystems has been performed separately, with the

control design occurring long after the structural design has been completed. This

method worked quite well when structures were smaller and relatively stiff. Most, if not

all, of the flexible modes of these spacecraft were well outside of the bandwidth of the

controller, hence the structure and control design did not dramatically interact.

Many proposed spacecraft do not have this property. Some of the most notorious

of these are the great observatories [1]. These are the successors of Hubble. They are

large spacecraft (, 10 - 100m) which must support one or more telescopes or radio

antennae. The large size of these structures coupled with constraints on weight due to

launch capabilities gives them very low fundamental frequencies (< 1.0Hz). Increasingly

precise pointing and alignment requirements demand large control bandwidths. The net

result is that many structural modes lie inside the control bandwidth and hence must

be controlled.

This ties the control design so intimately to the structural design, that it is not at all



clear what makes up a good controlled structure. One is faced with either designing the

structure to meet design objectives directly, or designing it to increase the effectiveness

of the control system. Often, it will be impossible to follow both of these approaches si-

multaneously and the optimal controlled structure will represent a compromise between

the two. The first obvious step toward alleviating this problem is to use a computer

to search over some space of control and structural designs for an optimal controlled

structure. This is known as controlled structure optimization. There have been many

investigations into this problem recently. Numerous formulations and solutions of the

controlled structure problem have been suggested. Unfortunately, even when the prob-

lem is well posed, and the solution is very efficient, the answer to even the simplest

problems often defies physical understanding.

This understanding of the results of optimization is critical. In the preliminary design

of a structure, there are so many decisions to be made that the use of a computer program

for optimization would be infeasible. Numeric optimization requires that the problem be

fairly narrowly defined. In defining such a problem, certain basic assumptions must be

made which, once made, are no longer subject to scrutiny under the context of a control

structures optimization problem. The design process must be sufficiently advanced, that

the bulk of engineering decisions remaining are basically the sizing and positioning of

structural and control elements. A computer program can tell you where the best place

to put an actuator is, or how large to make the battens in a truss, but you cannot ask

it to design an optimal spacecraft.

The main goal of this thesis is to gain insight into what features of a controlled struc-

ture should drive its design. The approach taken here begins with the formulation and

solution of the dynamic performance costs associated with some very simple controlled

structures. Detailed analysis of the solutions to these problems will give insight into

the controlled structure problem which can be applied very early in the design process.

Ultimately, one would like to use this insight as a guide throughout most of the design

of a controlled structure. Numerical optimization would then be used only in the very



last stages of design to obtain the last bit of performance possible.

The remainder of this chapter is composed of two sections. The first reviews and

organizes the literature on controlled structure optimization. The second examines some

of the optimal designs obtained by other researchers in their examples and several pos-

sible mechanisms by which these designs improve the performance of the system will be

suggested. This will provide a starting point for the work conducted in later chapters.

Chapter Two goes on to a more rigorous definition of the controlled structure prob-

lems to be discussed, and gives formulae necessary for the evaluation of the cost and its

gradient for a given design vector. Chapter Three introduces the concept of the typical

section, a very simple controlled structure, and uses it to examine some fundamental

issues in control/structure interaction. Design rules of thumb suitable for use in pre-

liminary design are formulated based on the typical sections. Chapter Four presents a

beam model which will be used to validate the design rules from Chapter Three. Also in

Chapter Four, issues which the typical sections could not address (such as the interaction

of several modes with a controller) will be investigated.

1.1 Literature Review

The purpose of the literature review is three-fold. First, it is intended to acquaint the

reader with the work that has preceded this thesis and organize it into a useful form.

Second, it will provide the basis for the selection of the problem formulations used in the

rest of this thesis. There are many problem formulations, and it would be prohibitive to

study all of them. And third, it will show the necessity for this work.

Before continuing, it is necessary to make some definitions. This will simplify the

ensuing discussion. In all of the work covered here, the plant is always assumed to be a

finite dimensional, linear, time-invariant structure. At least some of the design variables

are structural parameters and will therefore affect not only the closed loop, but also the

open loop dynamics of the system. The equation of motion for the structure can therefore



always be expressed as:

M(a)i(t) + D(a)i(t) + K(a)r(t) = F(a)u(t) + v(t) (1.1)

where a is a vector of design parameters, r(t) is a vector of physical or modal dis-

placements, u(t) is a vector of control forces, and v(t) is a vector of disturbance forces

which may or may not be included in the problem. Often, it is simpler to express these

equations in state space form:

(0 I r(t) 0 0

1F(t) -M-1K -M-1D i (t) M-1F v(t)
(t) A(a) x(t) B(a)

(1.2)
In some formulations, the controller must rely on sensors for knowledge of the system:

y(t) = C(a)z(t) + w(t) (1.3)

where w(t) is noise which might corrupt the sensor output.

The open loop eigenvalues, A91, and eigenvectors, 0o1, are the solutions of the equa-

tion:

A0o' = Ao10" (1.4)

For convenience, it will be assumed that eigenvalues are always ordered by increasing

magnitude. In instances where the controller is static feedback of the sensed output (i.e.

u = -CQy), the closed loop eigenvalues and eigenvectors are the solutions of:

[A - BCC] ~k1'= -A'I

(1.5)
Act

where CQ is the matrix of feedback gains. Any eigenvalue can be expressed as the sum

of a real and imaginary part:

A, = cx + iw, (1.6)



where i = VC- and the damping ratio is defined to be:

(1.7)

With these definitions, it is now possible to look at some of the work done in controlled

structure optimization.

There are three basic stages in the controlled structure optimization problem. First,

one must clearly define the problem requiring optimization. Second, the problem must

be solved. And third, the solution should be analyzed to verify that it is a reasonable

design, and also to find ways of changing the problem formulation to get better designs.

These three stages will be addressed one at a time in the ensuing sections.

1.1.1 Problem Formulations

Any optimization problem will have three basic components-a design vector, a cost, and

constraints. The design vector in controlled structure optimizations includes structural

and control parameters which can be varied during the design process. The structural

parameters can be anything including, but not limited to, structural dimensions, actua-

tor/sensor placement, and non-structural masses. The control parameters can be such

things as the gains in direct output feedback, or weighting values used in the cost to

compute LQR/LQG control. The problem is greatly simplified if it is assumed that the

design variable can be varied continuously. Although, one can think of design variables

which can only take on integer values (such as the number of sensors and/or actuators

used by the controller), their inclusion is beyond the scope of this thesis. The reader is

referred to work done by Sepulveda and Schmidt [2] for a treatment of these types of

design variables.

The cost is a function which maps every allowable design vector to a real number:

the cost. The cost indicates the "goodness" of a design. By convention, lower values of

the cost indicate better designs. The goal of the optimization is to find a design vector

which minimizes this cost.



The constraints define the space of allowable designs. Basically, there are two types.

The first types of constraints are side bounds on the elements of the design vector.

a< < a .i _a< (1.8)

This prevents obtaining impossible or unrealistic solutions. Any designs that are not

within these limits are usually meaningless. For example, if one of the structural pa-

rameters is the magnitude of a lumped mass, it would be important to place a lower

bound on it to prevent attempts at evaluating designs with negative mass. Because this

type of constraint is placed on individual elements of the design vector directly, it can

be thought of as a low level constraint. This type of constraint is present in all of the

examples in the next section, but it will only be mentioned when it is of significance.

The other types of constraints are higher level constraints on the design vector as a

whole and have the form:

f(a) < fu (1.9)

where f(a) is another cost. Such a constraint may be used to keep the total mass of

the system below some level. Designs which violate this constraint are not necessarily

impossible, instead, they simply don't satisfy some design requirement. In Reference [3],

it is shown that if a* is the design which optimizes the problem:

Minimize fi(a)

with constraints fi(a) < fi i = 2, 3,... (1.10)

then there exists some set of weighting parameters ci such that a* also optimizes the

combined cost :

f(a) = > cif,(a) (1.11)

This indicates that constraining costs or forming new cost functionals which are a

weighted sum of others are equivalent ways of dealing with competing objectives. For

the remainder of this discussion, no distinction will be made between the two.



In the field of controlled structures, there seems to be at least one problem formu-

lation for each researcher. However, the problem formulations all have the same basic

structure. They are composed of five parts-the structure definition, the control defi-

nition, the disturbance, static performance metrics, and dynamic performance metrics.

With the exception of the structure definition, there are only a handful of choices used

for these parts. The next sections address these parts individually and discuss how they

appear in the literature.

Structure Definition

The structure definition is a description of the structure and its associated structural

design variables. There is not a great deal to be said about the structural definition at

this point. Naturally, every problem formulation that uses a different structure will have

a different structure definition. Some of the most popular structures used as examples

in the literature however are beams or simple trusses. These are systems that are

just complex enough to demonstrate various optimization formulations and algorithms.

The structural parameters varied in the optimization procedures are almost universally

related to the sizing and placement of structural elements and control actuators and

sensors.

Disturbances

The disturbance is what creates the need for a control system. There are four disturbance

types which appear in the literature. The first is a simple prescribed initial condition of

the system.

z(O, a) = zX(a) (1.12)

For this type of disturbance, one goal of the control system would be to bring the state

of the system to zero. The initial condition, xo(a),can be a function of the design vector.

This happens most commonly when the initial condition is a displacement of the system



resulting from the application of a prescribed loading against its stiffness:

ro(a) = K-1(a)fo (1.13)

Recall that xT = [ro i T] Initial conditions dependent on the design vector are used by

Belvin and Park, Salame et. al., and Miller and Shim [4-8].

A second type of disturbance is also specified as an initial displacement, except that

it is usually independent of the design vector. This is when the desire is to execute a

slew maneuver. The object is to move the system from some prespecified initial state to

a prespecified final state. Typically, the initial state is a rigid body displacement of the

system, and the desired final state is simply zero. These kinds of problems are examined

by Hale et. al. and Messac et. al. [9-11].

The third type of disturbance used is zero-mean Gaussian White Noise. In these

problems, use is made of the disturbance vector v(t) in Equation 1.2. The covariance of

the disturbance vector is given by:

E [v(t)v(r)T] = V(a)S(t - -) (1.14)

where 6 is the Dirac-delta function. This type of disturbance is used most often with

LQR/LQG controllers.

The last type of disturbance is a prespecified, time-varying disturbance force. This

type of disturbance has been suggested in two forms. The first form assumes that the

disturbance is a sum of harmonics:

v(t) = Z)visin(Qit + 0i) (1.15)

This is what is used by Thomas, Lust, and Schmit [12]. The other form of time varying

disturbance is the set of forces that would be exerted on a body if a slew were to be

performed using a bang-bang controller for the rigid body modes.

v 0< t<<
v(t) =2 (1.16)



Table 1.1: Research Into Controlled Structure Optimization
Static Dynamic Solution

Reference Disturbance Metric Metric Control Method

Table 1.1 lists the papers covered in this chapter, and indicates which types of distur-

bances were used. Also listed are the static metrics, dynamic metrics, control definitions

and solution methods used. The purpose of this table is to give the reader an overview

of what type of work has been done in this field. It is clear from this table, that a great

deal of work has been done in defining different types of controlled structures problems

and developing algorithms for their solution.



Control Definition

The control definition is a description of the type of control that is to be used on the plant.

There are four types which are commonly used. The first type is the Linear Quadratic

Regulator or Linear Quadratic Gaussian (LQR/LQG). For deterministic disturbances,

the control must be LQR. In that case, the control specification is simply: "select the

control u(t) such that the cost,

J, = Q j o xj + (' (t)Q(t) + uT(t)Ru(t)) dt (1.17)

is minimized". The matrices, Q and Qf, must be symmetric and positive semidefinite,

while the matrix R must be symmetric and positive definite. The infinite horizon LQR

control minimizes the cost functional:

J= 00 ( t)QXy(t) + UT(t)Ru(t)) dt (1.18)

If the disturbance is Gaussian White Noise, then the cost to be minimized by the control

is:

J = lim E [T(t)Qt) + uT(t)R~(t)] (1.19)
Determining the control for this problem is identical to the infinite horizon LQR problem

above, when the full state is available to compute the control. The chief difference

between the solutions obtained for the finite and infinite horizon LQR is that if the

control is expressed as a gain matrix multiplying the state vector,

u(t) = -Ce(t)x(t) (1.20)

then the feedback matrix Cc(t) is constant for the infinite horizon LQR, and time-

varying for the finite horizon problem. These types of controllers are very popular

because modern control theory makes the computation of the multi-input, multi-output

(MIMO) optimal control relatively easy, especially in the infinite horizon problem. In

this case, the control gains are static and can be found from the solution of an algebraic

Ricatti equation.



LQG control is used when the disturbance is Gaussian White Noise and the only

knowledge the controller has about the system comes from sensors which are also cor-

rupted by Gaussian White Noise. The goal of the controller is still to optimize the cost

for the stochastic LQR given above (Equation 1.19). This type of control is considered

by Milman et. al. and Salama et. al. [3,5] , but it is never actually used in an example.

The next type of controller is direct output feedback. The control law is simply a

constant feedback gain matrix which multiplies the output vector:

u(t) = -Coy(t) (1.21)

where the gains in the control matrix C, are included as design variables.

This type of controller is used most often when the goal of optimization is to reduce

some performance metric other than those used for the LQR/LQG controllers. (e.g.

Reference [13]) In those cases, one cannot use modern control theory to efficiently com-

pute the optimal control gains. Placing the control gains in the design vector permits

the optimal feedback to be computed numerically.

Similar to direct output feedback is filtered output feedback. In this case, the control

law is described by the state space equation:

i(t) = Acz(t) + Bcy(t)

u(t) = CQz(t) (1.22)

where the order of the control state space equation is less than or equal to that of the

structural state space equation. One would like to include all of the elements of the

control matrices as design variables. However, it has been shown that there are an

infinite number of combinations of control gains which will produce controllers with the

same dynamic response. Hence, there are often an infinite number of optimal controllers.

Slater [14] gives a method where the number of degrees of freedom one has in controller

selection is sufficiently reduced, that the expression for any controller is unique.

The last type of controller is a special case of the direct output feedback and filtered

output feedback controllers. It is called positive real feedback. Stated simply, positive



real feedback controllers are either dynamic or static controllers which are defined to be

incapable of adding energy to the system. The simplest example of this type of controller

is collocated velocity feedback. The advantage of these controllers is that no matter how

poorly the dynamics of the system have been modelled, these controllers cannot destabi-

lize it. Hence, they are very robust. The down side of their use is that positive-realness

represents an additional constraint on the controller, hence they may not be as efficient

as optimal LQR/LQG. In other words, without the positive-real constraint, optimal

LQR/LQG will find the control which will produce the absolute minimum performance

cost. Because this controller gives the greatest reduction in the performance cost, any

constraints which force one to use a different controller by definition cannot give the

same reduction. The fifth column of Table 1.1 shows how these various controllers are

used in the literature.

Static Metric

The static metric is one of the types of costs used in the literature. Its chief characteristic

is that its computation is based solely on quantities which do not depend on the dynamic

behavior of the structure and controller. By far, the most common static metric is the

mass of the system. This is a natural choice due to the cost (in dollars) of boosting

mass into orbit. Constraining or including this metric in the cost will limit the overall

mass of the optimal structure. A subset of these designs are constant mass designs.

This constraint is practical for systems affiliated with a dedicated launcher with a fixed

payload capacity.

Another static metric used is the Frobenius norm of the feedback gain matrix:

J = tr {CTRCC) (1.23)

where the gain matrix, Cc must be constant, and the weighting matrix, R must be

symmetric and positive definite. A more massive or stiffer structure will usually require

larger control forces to meet dynamic requirements. Hence larger structures will need



larger control gains. Therefore, this metric also tends to limit the mass and/or stiffness

of the structure.

The last static metric considered is the static deflection due to some prescribed

loading:

J = cTK-1f (1.24)

where f is the load vector and c is a vector which maps the static deformation shape

onto an output. Unlike the previous two cases, this type of metric will prevent the design

of structures which are too flimsy to satisfy mission requirements.

The appearance of the three static metrics in the literature is shown in the third

column of Table 1.1.

Dynamic Metric

Just as the static metric measures static quantities in the system, the dynamic metric

is a measure of the dynamic behavior. These are quantities which depend on the time

response of the controlled structure to one of the disturbances mentioned above.

The simplest dynamic metrics are those which are based on the closed loop eigen-

values of the system. Basically, there are only three of this type which appear in the

literature.

J = -w.l

j = ci

J3 = -(CC1 (1.25)

The negative signs are placed on J1 and J3 by convention to convert maximization of

frequency or damping ratio into a minimization problem. The attractive feature of

formulations of this type is that the disturbance does not need to be defined explicitly.

Also, this tends to be one of the least expensive dynamic metrics to compute. As an

example, computation of quadratic performance metrics (see below) will at best require

the eigenvalue decomposition of a Hamiltonian matrix of order 2n (where n is the size



of the state vector). The above costs however only require the eigenvalue decomposition

of a matrix of half that order.

The next dynamic metric does require a disturbance. It is the quadratic performance

metric, and it has three basic forms-two which are used with displacement and slew

disturbances:

J = zXQ X + ff (XT X + UTRu) dt

J = xQX + (Ru) dt (1.26)

and one which is used with Gaussian White Noise disturbances:

J = lim E [TQ + TRu] (1.27)

These metrics are identical to the costs used for the LQR/LQG controllers. It is impor-

tant to understand that in this context, minimizing these costs is a global objective of

the optimization. Both the structure and the control are designed to minimize this met-

ric. When these costs appeared in the previous section for the LQR/LQG controllers,

they were a local objective which the control had to minimize for a given structure.

There was no requirement that this be the actual dynamic performance objective for

the controlled structure. In fact, there are quite a few papers where the local objective

used to design the control is not the same as the global objective used for the overall

design of the controlled structure [7,8, 15-22].

The last dynamic metric considers the maximum absolute value of some output of

the system:

J = max CT z tl (1.28)

where c is a vector which maps the state onto the output. This type of metric is used

exclusively with time-varying deterministic disturbances in the literature (Table 1.1).

It is now necessary to state on which problem formulations this work will focus. It

would be prohibitive to examine the results obtained from every problem formulation.

Also, some problem formulations do not capture all of the facets of the design problem.



Consider the formulations which use the eigenvalues of the closed loop system as the only

performance metric. These formulations pay good attention to the temporal behavior

of a system, but they completely ignore the spatial behavior. Tailoring the eigenvec-

tors of a system can be very important for minimizing the effects of disturbances on

performance or improving the performance of the controller. The importance of this

is stressed by Messac et. al. [11], and is demonstrated in an example of theirs which

reappears below. Miller and Shim [6] also note the dependence of many optimal designs

on the disturbances. This implies that the computational efficiency gained by using only

eigenvalue-based dynamic metrics comes at a high price precisely because the influence

of eigenvectors and disturbances was sacrificed.

The quadratic costs are very popular in control theory simply because they can be

efficiently optimized. Although they do not always reflect, exactly, the quantities of

interest in the problem (e.g. maximum controller output), one can usually obtain a

system with the desired behavior by adjusting the penalty matrices. For this reason,

quadratic costs can be a very good approximation. If one thinks of the controlled

structure optimization as an extension of optimal control theory to include structural

parameters as well as control gains, then it makes little sense to further complicate

the problem by doing away with a cost which simplifies control design. The remainder

of this work will deal exclusively with this as a dynamic metric. Also, only initial

displacement and stochastic disturbances will be considered because optimal control

theory was formulated around these.

Along similar lines, the only static metric used will be system mass. This has the

dual advantage that it is one of the main quantities of interest in spacecraft design, and

it can usually be expressed as a weighted sum of the structural parameters. This will

be very useful for numeric optimizations which will have to be performed.



1.1.2 Solution Methods

Once one has the problem defined, the next step is to solve it. This is usually ac-

complished through the use of a computer program. The purpose of this section is to

acquaint the reader with some of the numerical techniques which are being used in op-

timizing controlled structures. Table 1.1 shows some of the different methods used by

other researchers.

By far the most popular techniques use gradient optimization. This method uses the

gradient of the cost to find successively better designs. This gradient is either computed

analytically, or numerically using finite difference techniques. There are a great many

gradient-based optimization algorithms including Newton's method, modified Newton's

method, Quasi-Newton methods, and conjugate gradient methods. The reader is re-

ferred to reference [36] for a good description of these algorithms.

Multi-level decomposition seeks to reduce the computational effort required for opti-

mization by the use of several sub-optimizations. These sub-optimizations iterate over

the design variables to find a design which optimizes some internal criterion. For ex-

ample, one choice of sub-optimization objectives might be to increase the fundamental

frequency of a structure. Several of these sub-optimizations are performed simultane-

ously each using a different subset of the design variables. At a higher level, there is

an algorithm which coordinates the sub-optimizations to find the optimal design. This

parallel processing can be performed on several processors at once, and hence can sig-

nificantly reduce solution time.

Often, to reduce the computational effort, the costs and local constraints are lin-

earized. This approximate system is then optimized with an additional constraint on

how "far" the new design can be from the old one. The linearizations are recomputed

at the new design and the process is repeated. This method limits the number of times

computationally expensive non-linear functions must be evaluated and is known as se-

quential approximation.



Sometimes when there are only one or two parameters, one can adopt a brute force

approach. The idea is to compute the cost for a grid of points inside the design space.

The values of the cost form a curve if only one design parameter is used, and a surface

if two are used. It is then trivial to pick the minimum off of the curve or surface by

inspection. The advantage of this somewhat computationally expensive technique is

that in addition to obtaining an optimal solution, one gains knowledge of the behavior

of the cost over the design space.

1.1.3 Result Analysis

By far, the most common conclusion reached in the current literature on controlled

structure optimization is that the methods employed do in fact produce optimal struc-

tures for the problems defined. Where some space is devoted to discussing results, there

are rarely enough examples worked out to state anything conclusive. Given the current

state of controlled structure optimization, this is to be expected. The majority of the

effort in the controlled structure community has been devoted to stating the problem

and solving it. These are formidable tasks. Only now is this field sufficiently mature

that it is possible to start the exhaustive analysis which will be necessary to gain insight

into the solutions.

The remainder of this thesis is directed at attempting to understand some of the

results of controlled structure optimization. This chapter concludes by establishing a

firm starting point through detailed analysis of examples which exist in the literature.

The next section is a discussion of some of the approaches one can use in improving

the performance of a controlled structure. The emphasis is on various techniques for

physically accomplishing some of these approaches. Examples used by several researchers

in controlled structure optimization are presented and their solutions analyzed. The idea

is to note how these approaches appear in the solutions of these problems.



1.2 The Approaches to Improved Performance

There are two steps in solving the controlled structure problem. The first step is to

determine what the important features of the problem are and how they should be

changed to improve performance. The second step is to determine how these changes

might be accomplished through changes in the physical design. To date, both of these

steps have been combined into a single optimization step, thus sacrificing insight into

the problem. The first part of this section begins to address the "what" of the problem.

In subsequent subsections, various examples are presented which hint at the "how" of

the problem.

There are five natural ways one can improve the performance of a controlled structure.

Simply put, one can reduce the effect of the disturbance on the system, decrease the effect

of the system on the output, increase the effect of the control on the system, improve the

dynamic response of the open loop system, or increase the robustness of the closed loop

system. For convenience, these methods of improving controlled performance will be

called: reduction of structural disturbability, reduction of output observability, increase

of controllability, improvement of open loop response, and improvement of robustness.

These approaches are shown at the top of Table 1.2. The columns of the table list some

specific techniques with which these goals might be accomplished. In other words, the

top row lists what should be done while the subsequent rows indicate how it might be

done.

Disturbability can be reduced in a number of ways. The most obvious is to simply

remove the disturbance. For example, if there is an antenna on the spacecraft which must

be slewed to maintain communications, then the motion of that antenna can introduce

disturbances into the structure at inopportune times. One might consider doing away

completely with the slewing antenna if it is feasible (e.g. replace it with a phased array).

If removal of the noise source is prohibitive (if not impossible) then the next thing

one might try is actively or passively isolating the disturbance from the structure. If



Table 1.2: Approaches to Improving Controlled Structure Performance

Reduce Reduce Observ- Increase Improve Open- Increase Robust-
Disturbability ability Controllability Loop Response ness

Remove
disturbance

Active isolation Active isolation Use area-averaging
sensors

Passive isolation Passive isolation Remove damping Add damping Add damping

IncreaseStiffen ap between mod-
system against dis- Soften system Stiffen system elled and unmod-
turbance forces elled frequencies

Position nodes of
Position nodes near Position nodes near Position anti-nodes unmodele modes
disturbances output point near actuators / near actuators /

sensors

Position Position
Position distur- Position output actuators / sensors
bances near nodes point near nodes near anti-nodes near nodes of un-near anti-nodes modelled modesmodelled modes

the disturbance cannot be removed, and isolation is not an option (e.g. it would make

little sense to isolate the attitude control system from the structure inside the attitude

control band) then the only recourse in disturbance reduction lies in modifying the

structure directly. The idea here is to either move the disturbance to places where the

structure has little motion or move places where there is little motion to the disturbance

locations. For broad band disturbances, the former will be very difficult to accomplish.

In a structure with many modes, nodes will be scattered all over, and points where many

modes have nodes will be rare. However, it is possible to design a structure in such a

way that this does in fact happen. An example of how this might be accomplished is to

place lumped masses at the point where the disturbance enters the structure. Nodes of

all of the modes of the structure will move toward these points.

One special type of disturbance on the structure is the control actuators themselves.

The controller can disturb modes which initially had no error while trying to correct

errors in other modes. The most notable example of this occurs in slew maneuvers. In

these cases, the disturbance is basically an initial displacement of a rigid body mode

from some desired final state. The control forces required to correct this error will excite



the initially quiet flexible modes. One approach to fixing this problem are to attempt

to make the flexible modes as uncontrollable as possible in the same way one would

attempt to make them undisturbable. Another approach is to shape the commands to

the actuators in such a way that the slew is accomplished while putting a minimum

amount of energy into the flexible modes (Reference [37]).

These same tricks work in reverse for observability if the goal is to reduce the motion

of the structure at isolated points (e.g. pathlength control used in interferometry only

cares about the positions of mirrors in the light path).

To improve the controllability of a structure, one would like to move the sensors and

actuators of the control system to positions where the structure has the most motion

or vice verse. This would work well if the overall goal were to quiet the structure.

Another thing one might try is to place the control where the disturbance enters the

structure or where the motion of the structure needs to be reduced. This would ensure

that the modes that were the most strongly controlled were also the most disturbable

or observable. Finally, to maximize the controllability of a structure, one would like

to make it as soft and underdamped as possible. This will reduce the amount of force

needed by the actuators to move the structure. It is of interest to note that the changes

suggested here for improving controllability are exactly the opposite of those used to

decrease disturbability. The reason is that for the former, one is attempting to make the

structure more sensitive to an applied control load, while for the latter, one is attempting

to make it less sensitive to an applied disturbance load.

Primarily, the control system is employed to close the gap between the performance of

the open loop system and the desired performance of the closed loop system. Naturally,

improving the open loop response of the system will narrow the gap and simplify the

problem. Basically, the idea is to add stiffness to the open loop system to make it faster,

and damping to reduce ringing.

The last area one might aim at in improving controlled structure performance is

robustness. First and foremost, one of the best ways of improving the robustness of a



structure is to add damping. This has been shown to make the system less sensitive

to parametric uncertainty, and also reduce the possibility of destabilizing modes which

were not modelled in the control design. There will always be some of these as most

structures have an infinite number of modes.

The next thing one might try is to make the unmodelled modes as uncontrollable,

undisturbable, and unobservable as possible using the methods mentioned above. This

will essentially decouple the modelled from the unmodelled system. A novel approach

to this has been suggested by Collins [38]. Instead of being placed at a point, the

sensor is distributed over a portion of the structure. It is possible to design these area-

averaging sensors in such a way that they are inherently less sensitive to the higher

frequency, unmodelled modes without sacrificing phase margin in the transition regime

and therefore performance in the controlled regime.

Still another approach might be to specify that a portion of the control system be

positive real. As mentioned before, this kind of control is very robust. In many respects,

one can think of it as "electric damping" since it is theoretically possible to implement

these designs passively.

The next section presents some examples used in the literature along with their

solutions and some of the more interesting conclusions of their creators. Where necessary,

further analysis of the problem is performed to help clarify the solution. This author

then adds his own insights into the problem.

1.2.1 Example 1: Cantilevered beam of Belvin and Park

Belvin and Park [4] work out an example on an idealized beam (Figure 1.1). The beam

is cantilevered at the root and pinned at the tip. The beam consists of ten Timoshenko

beam elements of equal length and width. The design parameters in this problem are

the thicknesses of the elements. There are five transverse force actuators located at the

positions shown in the figure, and the control is full state feedback.
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Figure 1.1: Cantilevered-Pinned Beam used by Belvin and Park

The disturbance is an initial velocity and displacement error corresponding to the

peak response due to a step force given by:

f = M1/2T- (1.29)

where T is the mass normalized modal transformation matrix and - is an arbitrarily

selected vector of ones. Thus, the disturbance force effects all modes of the system

equally.

The design goal is to minimize the quadratic cost:

j= O XQ + UTRu) dt (1.30)

with the state and control penalty matrices selected to penalize the system energy and

static control work.

Q= -K 0 R = FTK-1F (1.31)
0 7÷M

where F is the control input matrix. The constants y, and -y are arbitrary in this

problem. The mass of the system is held fixed, and all of the element thicknesses are

allowed to vary under the constraint that they remain above a small, non-zero, minimum

value.



The lower part of Figure 1.1 shows the optimum design found for this problem which

was found to be independent of -y, and y,:. The distribution of material is strikingly

similar to what one would expect the bending strain distribution to be for the first mode

of the uniform beam. Belvin and Park were actually able to prove that for this problem

formulation, the cost is inversely proportional to the cube of the natural frequency of

the first mode when the number of actuators is equal to the number of modes retained

in the design model. Clearly, this inverse cube relationship prefers stiffening of the first

mode over all other mechanisms for improving controlled performance. This type of

answer is very encouraging. One would like to have the cost associated with a mode

of the structure go down as the frequency of the mode goes up. This will allow one to

truncate the plant model with good confidence because the higher frequency modes will

not participate very strongly in the cost.

In Table 1.2, there were two approaches which could involve the technique of stiff-

ening the system. The first is to stiffen the system against the disturbance. In their

work, Belvin and Park show that the peak response used as the initial condition was

inversely proportional to the stiffness of the system. This means that the influence of the

disturbance in the cost in inversely proportional to the fourth power of the frequency.

It is clear from this that the the stiffening in this example is, in fact, needed to reduce

the disturbability.

1.2.2 Example 2: Truss example of Miller and Shim

A truss example appears in the work done by Miller and Shim [6]. Their structure is

a ten bar, two-dimensional truss (Figure 1.2). The truss members are modelled as bar

elements with pinned joints, and the design variables are their cross-sectional areas.

There are lumped masses located at each node. These masses are fixed and are large

enough that the mass of the rest of the structure can be ignored in the dynamic response.

There are four actuators, one at each free node, capable of exerting vertical forces. The

control is full state feedback.
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Figure 1.2: Ten bar truss used by Miller and Shim

The objective of the control and structural design is to minimize the cost:

J = q1W + q2 j0 (xTQx + UTRu) dt (1.32)

where W is the weight of the structure, and the state and control penalty matrices

penalize system energy and static control work.

0 M

The weighting parameters ql and q2 were selected to achieve a "sufficient" reduction

in the dynamic performance cost and weight in the structure from a nominal, uniform

structure.

The initial conditions for this problem correspond to the static deflection of the

truss due to a prescribed loading which was instantaneously removed. Two cases were

examined. In the first case, the loading was an equal upward force at each free node of

the truss. In the second case, the loading was again equal forces at each node, but the

loading at the inner two nodes was downward and not upward. The first loading was

selected to excite primarily the first mode of the structure, while the second was selected

to excite the second mode.

The free structural parameters in this problem are the cross sectional areas of the

members. Figures 1.3 and 1.4 show the optimal cross sectional areas obtained by Miller
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Figure 1.4: Optimal design for load case 2

and Shim for the two static load cases. Notice that in their optimal design for the

second load case, there is a significant amount of material in the battens (members 2

and 5). Because these would normally be low stain areas for the problem described, it

was decided to redo the optimizations for both load cases. The results obtained by this

author are compared to those of Miller and Shim in Figures 1.5 and 1.6. There is close

agreement between the designs obtained by Miller and Shim and those obtained here for

the first load case. In the second design, it was found that the cross sectional areas of

the battens went to the minimum side constraints. Miller and Shim reported that they

were having difficulty with the penalty functions used to meet the constraints. Most

likely, this was the source of the discrepancy.

T *-* 1
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Although Miller and Shim do not go into it, there is a very interesting explanation

for why the designs obtained are optimal. Because of the size of the lumped masses

at the nodes, increasing member size does very little to change the mass matrix, hence

the purpose of added material in this problem is to stiffen the system. As mentioned

above, one might stiffen the system to speed up the open loop dynamics or reduce the

sensitivity of the system to the disturbance forces. Included in Figures 1.5 and 1.6 are

the strains induced in the members of a uniform structure due to the static loadings

and also due the the first and second mode shapes. Remember, the first load case was

selected by Miller and Shim to excite the first mode, while the second was selected to

excite the second mode.

Comparison of the first optimal design with the static and modal strains is incon-

clusive. There is good agreement for all three. In the second case, the modal strain is

much larger than the static strain in members 9 and 10 and smaller in members 4 and

6. The optimal design, however, agrees very closely with the static strain, hence one

can be reasonably certain that the goal of stiffening the system is solely an attempt at

reducing the influence of the disturbance.

1.2.3 Example 3: Beam example of Onoda and Haftka

Onoda and Haftka [23-26] use a beam-like structure to demonstrate their optimization

algorithm. The upper part of Figure 1.7 shows a depiction of their structure. The

disturbance is assumed to be a stochastic force acting along the entire length of the

structure:

p(x, t) = /3(x/L)f,(t) -L < x < L (1.34)

where f,(t) is Gaussian White Noise. Because this disturbance is asymmetric and it

is correlated over the entire length of the structure, only the asymmetric modes of this

symmetric structure need to be considered. A Bernoulli-Euler beam consisting of five

finite elements used in their analysis is shown in the lower part of the figure.
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Figure 1.7: Beam-like spacecraft of Onoda and Haftka

Two types of controllers were used-direct output feedback and full state feedback.

However, attention here will be restricted to the full state feedback case as the output

feedback case did not produce any designs significantly different from the full state

feedback case.

The design variables were the cross-sectional areas of the finite elements and the

position of a torque actuator. The stiffness and mass of each element is assumed to be

proportional to its area.

The design objective in this case was to minimize a weighted sum of the the mass of

the structure and the control effort:

J = qi W + q2  u2dt (1.35)

The weighting parameters qi and q2 were selected according to assumptions regarding

the mass of the controller as a function of the control effort.

The performance of the system was constrained:

jP = f XTqxdt <• J (1.36)

The matrix Q was selected to penalize the mean square displacement along the beam:

xTQx - y'dx (1.37)

where y is the vertical displacement of the beam as a function of the spatial coordinate

X.
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Figure 1.8: Optimal designs for Haftka and Onoda's beam problem.

Figure 1.8 shows the two types of optimal designs found by Onoda and Haftka. The

first one corresponds to the case when Ju had a modest value (Expensive control). The

similarity between this shape and the strain distribution for the first mode of this system

makes it clear that the objective is simply to stiffen the first mode. The shape of the

disturbance is identical to the mode shape for the rigid body mode and hence, it will

be orthogonal to the other modes. Hence, the stiffening of the first mode is not meant

to reduce the influence of the external disturbance. Instead however, it appears that its

purpose is to keep the actuator from disturbing this mode as it attempts to correct the

error induced in the first mode. As JIA is made smaller (tighter constraint on controlled

performance) the shape approaches the second one shown in the figure. Onoda and

Haftka suggest that placing mass at the end is an attempt to reduce the disturbability

of the system, as this is where the disturbance is largest. This surmise is most likely

correct, as the system has little strain at that point, and therefore, it cannot be there

for stiffening.

1.2.4 Example 4: Compression rod example of Messac et. al.

Messac, Truner, and Soosaar [11] use a finite element rod (Figure 1.9) as an example of

controlled structure optimization where the disturbance is a slew maneuver. The rod is

composed of twenty rod finite elements of equal length. The structural design variables

are the cross-sectional areas of the elements. In one case, an extra lumped mass was

included at the right end of the rod. In the other case, this mass was omitted.

The actuator in this problem is a force actuator at the left end of the rod which

acts along the rod's axis. The goal is to translate the rod from an initial rigid body
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Figure 1.9: Compression rod of Messac et.al.

displacement, to a final displacement of zero. The cost for this problem was:

J = x SX + tf (QX + U2) dt (1.38)

where xf is the state vector at time t = tf and the matrices Q and S are selected to

penalize the sum of the squares of the nodal displacements. Also, S was selected to be

approximately nine orders of magnitude larger than Q to ensure that the final error was

very small.

The control u(t) is always optimal. Note that because the cost functional is over a

finite time, the control cannot be expressed as a time-invariant gain matrix multiplying

the state. However, optimal control theory does make it possible to compute the control

and evaluate the cost for any reasonable vector of structural parameters.

The structural design parameters in this problem were the cross sectional areas of

the finite elements, and the total mass of the structure was held constant. Two different

designs were obtained without and with the tip mass (Figure 1.10). In both, the first

modal frequency was substantially increased. However, the two designs seem to be mirror

images of each other. Messac et al provide a good explanation for the optimal design

without the tip mass. Figure 1.11 shows the displacement eigenvectors for the optimal

bar and a uniform bar of equal mass. The displacement in the first four flexible modes

at the actuator has been substantially decreased. In this slew maneuver, the initial

displacement is all in the rigid body mode. The flexible modes are initially undisturbed.
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Figure 1.10: Optimal designs for compression rod

As the controller acts to correct this, it will cause disturbances in the other modes which

will have to be controlled out. Reducing the displacement in the first four flexible modes

at the actuator will reduce this. Messac et al point out that it is this type of improvement

that eigenvalue optimization will miss.

This same argument can be applied to the case with the tip mass to show that the

goal is to make the flexible modes more controllable.

1.2.5 Example 5: Cantilevered beam example of Milman et.

al.

Milman, Salama, Scheid, Bruna, and Gibson use several examples to illustrated their ho-

motopy algorithm. The first consists of a cantilevered beam composed of three Bernoulli-

Euler finite elements (Figure 1.12). Each element has a circular cross section, and the

structural variables are the cross-sectional area of each element. The control is full state

feedback acting through a transverse force actuator located at the tip of the beam. The

disturbance acting on the system is a pressure wave modelled as three uncorrelated force

impulses located at the free nodes of the beam.

The design goal is to find a combination of structural parameters which will optimize

a composite cost function based on the structural mass and the performance of the

Wit tD as
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Second mode eigenvectors
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Third mode eigenvectors

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fourth mode eigenvectors

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 1.11: Eigenvectors and eigenvalues for the uniform and optimal compression rods (no
tip mass).
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Figure 1.12: Cantilevered beam of Milman et.al

system when LQR control is used:

JA = (1 - A)J +J
3

J, = - pliA1
i=1

Jc = (rTQ,r + +TQ,ý + uTRu)dt (1.39)

where li, Aj, and p are the length, cross-sectional area and density of element i, and r,

r, and u are the displacement, velocity, and control vectors for the system.

The matrices Q, and Q, are arbitrarily defined to be 100K, and 100M respectively,

where M and K are the mass and stiffness matrices of the system. This type of state

weighting penalizes the total energy in the system. The matrix, R, weights the control

effort and is defined to be 10- 4.

The parameter, A, was varied form zero to unity and the composite cost, JA, was

optimized at each point. This generates the family of designs which represent optimal

trade-offs between performance and mass.

The same basic shape was obtained for all values of A. The top half of Figure 1.13

depicts the optimal design for the structure with a mass of 466 kg (A = .99). Milman

et. al. reason that the control force at the tip of the beam makes the closed loop modes

similar to those of a cantilevered-pinned beam. The similarity between their optimal

design and the first strain mode shape of a cantilevered-pinned beam leads them to
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Figure 1.13: Optimal designs for beam problem

conclude that the algorithm is stiffening the first closed loop mode of the system. The

author repeated this optimization with an eighteen element beam and allowed lumped

masses at the free nodes. The result is also shown in the figure. The lumped masses are

all set to zero, and the structure is largest where one would expect the greatest strain

for the first closed loop mode, hence this would seem to confirm their conclusion.

There is another interpretation of these results however. Basically, one section of the

beam is being stiffened while another section near the root of the beam is being softened.

It is entirely possible that this design is a compromise between enhanced controllability

and reduced disturbability. The softening at the root will provide a sort of hinge. This

will give the controller better authority over all of the modes. On the other hand, raising

the stiffness of the beam away from the root (where there is no disturbance) will reduce

disturbability.

1.2.6 Example 6: Hub-beam example of Milman et. al.

Another example consists of a rigid hub with a flexible appendage (Figure 1.14). The

appendage is a three-finite element Bernoulli-Euler beam. Each element has a rectangu-

lar cross section and all of the elements are assumed to have an equal width. The design

variables in this problem are the nodal depths of the elements at the four nodes. The

depth of each element varies linearly from one end to the other (unlike in the previous
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Figure 1.14: Hub-beam model of Milman et. al.
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Figure 1.15: Optimal designs for a light beam (Assmall).

case where it was held constant). The controller is full state feedback through a torque

actuator located at the hub, and the disturbance is a transverse impulse at the tip of the

beam. The design objective is to minimize the cost as in the previous example, except

that the state penalty matrix is redefined to penalize tip displacement.

The optimal shapes for low and high values of A were strikingly different in this

problem (Figures 1.15 and 1.16). Milman et al. suggest that the buildup of material

at the center of the beam for low values of A is an attempt to stiffen it, and the buildup

of mass at the end for high values of A is an attempt to provide an inertial force to

counteract the disturbance. Unfortunately, this model is too coarse to leave these as

much mores than suspicions. This author repeated these optimizations with an eight

element beam and also included lumped masses at each free node. The sizes of these

masses were included as design variables. These designs are also shown in the figures.
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Figure 1.16: Optimal designs for a heavy beam (Alarge).

Instead of being different, the designs for the larger models are similar. All but the

tip lumped mass are set to zero, and the beam elements are clearly being adjusted to

stiffen the first mode of the system. The difference between the shapes of the thickness

distributions can be accounted for. For small values of A, the optimal beam is very light

compared to the inertia of the hub. The beam acts clamped at that end. This causes

more strain at the root hence more material is placed there. As A is increased, the hub

inertia becomes less compared to the inertia of the beam. The hub end begins to look

pinned instead of clamped. Material is moved from the root toward the center of the

beam as the relative strain at the hub goes down.

The major difference between the two designs is the amount of effort spent dimin-

ishing the disturbance versus stiffening the system. This problem would be a good

candidate for multilevel decomposition. The upper level design variable could be the

size of the tip mass and the amount of mass available to stiffen the first mode. The

lower level design problem would be to stiffen the first mode given the tip mass and the

amount of material for stiffening.

1.3 Summary

This chapter reviewed various approaches to the controlled structure optimization prob-

lem. It was found that the problem formulations used most frequently could be divided

,,,,



into five separate parts: a structural model, a control model, disturbances, static met-

rics, and dynamic metrics. These were discussed separately. As a compromise between

using a realistic problem formulation and keeping cost computations low, it was decided

to limit further discussion to linear structures with optimal controllers and either initial

condition or white noise disturbances. Similarly, the static metric was selected to be the

mass of the system, and the dynamic metric was chosen to be the standard quadratic

costs used in LQR/LQG formulations. A brief summary of the solution techniques used

to solve these problems was then given.

It was noted that numeric optimization can be used only on very narrowly defined

problems. The need for insight into what makes an optimal controlled structure was dis-

cussed. This insight is indispensable in the preliminary design of the controlled structure

because it is this insight that allows the numerical problem to be properly defined. Cur-

rently the best source for this insight lies in the examples worked out in the literature.

Several of the more illustrative of these were presented along with some interesting spec-

ulations about how a structure should be modified to improve controlled performance.

These examples however are too sparse to give more than glimpses into the controlled

structure problem. The conclusions reached are very example-specific and cannot be

generalized with confidence. The work in this thesis approaches this dilemma in two

ways. First, in Chapter Three, typical sections are used to obtain fundamental relation-

ships between the performance costs and modal parameters for a single mode system.

Also, a two mode system is used to investigate the need for damping when unmodelled

modes are present. Chapter Four uses a beam problem to expand this investigation.

Solution of several optimization problems with different types of disturbances, weight-

ing matrices, and boundary conditions will give confidence in generalizing the results

from the typical sections to higher order systems. Use of the beam will also permit

investigation of issues which are difficult to investigate on simple systems, such as the

effect of several modes interacting with a controller, and the relative benefit of adding

damping, mass, or stiffness to the structure.



Before continuing however, Chapter Two rigorously defines the controlled structure

optimization problem. Algebraic formulae for the cost functionals and gradients are

presented. Also, a special form of the gradient is developed which can give useful insight

into how a change in the structure can physically affect the performance.



Chapter 2

Definition of Controlled Structure

Problem, Cost, and Associated

Gradients

Chapter Three will conclude with some rules of thumb for the design of controlled

structures. These rules are based on analysis of some very rudimentary systems. It is

hoped that the behavior of the typical sections will be sufficiently similar to the behavior

of much more complicated systems to make these rules useful in preliminary design.

To demonstrate their validity, it is necessary to optimize a more complex controlled

structure. Comparing the results of optimization on this system with those predicted

by the design rules will find flaws in the design rules and/or give confidence in their use.

In particular, the typical sections are good for studying the temporal behavior, but one

would also like to understand the spatial behavior of the problem.

Furthermore, study of how the control design and structural design interact on a more

complex system is desireable for another reason. It makes it possible to study some of

the tradeoffs involved in adjusting modal properties such as stiffness, controllability, or

disturbability. In the typical section problems, the means by which modal parameters

might be adjusted and the relative cost for their adjustment are ignored. A change in a



physical structure will generally influence all of the modal parameters of all of the modes

to some degree. A model based on this structure will show how some parameters must

be improved at the expense of others when optimization is performed.

Chapter Four describes a two dimensional Bernoulli-Euler beam and optimizes it for

several different problem formulations. This model represents a good tradeoff between

simplicity (for making analysis more tractable) and complexity (for verifying design

rules). Unfortunately, this system is too large to compute performance costs in closed

form. This will be true of any system which has more than one or two modes, because

computing the optimal control will require a solution of polynomial equations with order

greater than five. In general, these equations do not have analytical solutions.

The only alternative is to perform the optimizations numerically. Numeric opti-

mization requires a precisely defined set of design variables and costs. The goal of this

chapter is to present the definitions for the controlled structures problems which will

be dealt with in the remainder of this thesis. There are two major parts. The first

gives detailed formulations for several different types of controlled structure problems.

Costs are given for open loop response of a system, response of a perfectly modelled

system with LQR/LQG control, and response of a system with LQR/LQG control and

unmodelled dynamics. The next part of the chapter gives a method for computing the

gradients of these costs . Also, a special form of the gradient is developed which is

useful in understanding what is physically being done to a controlled structure through

optimization.

2.1 Problem Formulation

Every optimization problem has three basic components; a design vector, a cost, and

constraints. The design vector consists of the real valued structural and control param-

eters which can be varied to obtain an optimal design. In a well defined problem, these

elements can be varied independently. As an example, in the beam problem to come in



Chapter Four, one might choose as design parameters the thicknesses of the beam at

several points. The design vector a would then be:

S= " (2.1)

where ti through t, correspond to the thicknesses at n points on the beam.

The cost maps the design vector onto the real axis in the form of a scalar cost for a

specified domain of allowable designs, D:

J() : a -+, Va D, J(a)> 0 (2.2)

This cost measures the "goodness" of a design. Better designs will yield lower values of

the cost. Hence, the optimization problem consists of finding a design inside the domain

of the design vector defined by the constraints which minimizes the cost.

The domain of the design vector is defined by the constraints. In general, these can

be nonlinear, however, in this thesis, only the linear case is considered:

D ={aE : Aa - b, > 0} (2.3)

Each column of A, and each element of b, correspond to a single linear constraint.

There are methods for handling linear constraints which cannot be used in the nonlinear

case, which greatly simplify analysis. Linear constraints appear frequently in controlled

structure problems. For example, it would be impossible for the beam thicknesses in

the design vector described above to be negative. In that case, the constraint matrices

would be:

A, = Inx b, = Onxi (2.4)

Where Inxn is the identity matrix of order n and Onx1 is a column of n zeros.

In a controlled structure problem, the cost is often expressed as a weighted sum of a

structural cost, J., and a control cost, Jr [3]:

J(a) = (1 - A)J,(a) + AJc(a) 0 < A < 1 (2.5)



The control cost penalizes motion of the system and the control effort expended to

minimize that motion. The structural cost penalizes the structural parameters and is

usually related to the total mass of the structure. Designs found by optimizing J(a) with

values of A near zero will yield light structures with poor controlled performance, and

optimized A near unity will yield heavy structures with better controlled performance.

Define a* as the familiy of designs generated by optimizing the above cost for all

values of the weighting parameter A.

a* = {ao : J(ao) = min J(a) VA : 0 < A < 1} (2.6)
aED

This design family represents all of the optimum tradeoffs between structural weight and

performance. A typical design strategy would be to generate this family of designs, and

then select the one which best met the design criteria. It can be shown that this same

design family can be generated by constraining the structural cost and optimizing the

performance cost [3]:

a*= {ao : Jc(ao) = inf Jc(a) VJ* : 0 <_ J*} (2.7)
aED,J.(a)<_J.*

or, constraining the performance cost and optimizing the structural cost:

a* = {ao : J,(ao) = inf J,(a) VJ• : 0 < J,} (2.8)
aED,J,(a)<J*(

Hence, these three problem formulations are equivalent. However, a formulation where

one prespecifies the maximum structural or performance cost has the advantage that

both of these quantities have more physical significance than the weighting paramter A.

The disadvantage is that constraining the performance or structural cost can result in a

non-linear constraint. Methods for treating non-linear constraints tend to be extremely

expensive computationally [36], hence the unconstrained formulation is preferred when

one is interested in the solution of the most general controlled structure problems.

If, however, the structural cost consists of only structural mass, and if the design

parameters are selected carefully, then it is possible to state the structural cost as a



weighted sum of the design parameters. In this case, a constraint on the structural

cost would be linear, and would not cause any great computational burden. This will

always be the case for the problems discussed in the next chapter, and the optimization

problems considered will be assumed to have the structure of Equation 2.7.

All of the systems to be discussed here are linear time invariant and can be described

by a state space equation:

i,(t) = Ax(t) + Bu(t) + v(t) (2.9)

where x(t) is a state vector for the system, u(t) is the control vector and v(t) is a

disturbance vector. The performance cost for optimal control problems involving systems

like this have two basic forms. The first assumes that there is no disturbance (v(t) = 0)

and the system has some initial state, x(O) which may be deterministic or stochastic:

J, = E [/ T(t)Qx(t) + UT(t)Ru(t)} dt] E [x(O)XT(O) = S (2.10)

The matrices Q and R are constant (for a given design vector) and symmetric. They

penalize the state of the system and the control effort respectively. The second form of

the problem assumes that the disturbance is Gaussian White Noise:

J = mE [xT(t)Qx(t) + uT(t)Ru(t)] E [v(t)vT(r)] = S6(t - r) (2.11)

It is a property of linear, time-invariant systems that if the transfer function from the

state to the control can also be expressed as a linear, time-invariant system, and if the

matrices S in Equations 2.10 and 2.11 are numerically identical, then the costs J1 and

J2 are equal [39]. For the remainder of this chapter, only the stochastic performance

cost J2 will be explicitly stated, and it will be implicit that the results obtained will also

be valid for the cost J1 .

To summarize, the controlled structure optimization problem will be to find the

design vector ao which minimizes the cost, Jr(a), subject to a set of linear constraints.

J,(ao) = inf J:(a), D = a : ATa - b, , 0} (2.12)
a6ED



It is assumed that a constraint on the structural cost has been included in D, and

the performance cost is defined in terms of the steady state response of the system to

Gaussian White Noise. The rest of this section presents some specific controlled structure

problems often encountered and their associated costs.

2.1.1 Open loop optimization

The simplest controlled structure optimization problem occurs when there is no con-

troller present at all. The primary reason for this type of optimization is that the

optimal cost represents an upper bound on the cost when a controller is included in

the problem. The addition of control should not impair performance. If the problem is

redone with a controller in place, then by comparing the resulting performance with the

optimum open loop performance, the benefit of adding active control will be apparent.

This is important for preliminary design when one needs to know if the benefit gained

from the controller justifies its implementation.

If the system is linear, time-invariant, its equations of motion can be expressed by a

state space equation:

i A(t) = A(a)x(t) + v(t) E [v(t)vT(r)] = S(a)6(t - r) (2.13)

and the open loop performance cost is:

J(a) = lim E [xT(t)Q(a)x(t)] (2.14)

This problem has a simple solution [39]. If the open loop system is stable, then the

cost can be readily computed through the solution of a Lyapunov Equation.

J(a) = tr{PS(a)} L = PA(a) + AT(a)P + Q(a) = 0 (2.15)

where the subscript c on the control cost has been dropped.

Note that in this problem, the dynamic feedback matrix, the disturbance matrix, and

the state penalty matrix are all functions of the design vector. This is the most general



statement of the problem. Throughout this section, it wll be assumed that all system

matrices and penalty matrices are functions of the design vector. Specific examples of

how the design vector can influence these matrices are given in Chapter Four.

2.1.2 LQR optimization

If a system has an active controller, then its equation of motion can be written as:

+(t) = A(a)x(t) + B(a)u(t) + v(t) E [v(t)vT(r)] = S(a)6(t - -) (2.16)

where u is a control vector. The cost is augmented to include a penalty on the control

effort.

J(a) = lim [xT(t)Q(a)x(t) + uT(t)R(a)u(t)] (2.17)

If the matrix R(a) is positive definite, and the matrix Q(a) is positive semi-definite, and

all modes are controllable from the actuators and observeable from the sensors, then

there exists a control law which will give the optimal performance for a given design

vector. The solution is known as the Optimal Linear Quadratic Regulator (LQR). If P

is the solution of the Ricatti Equation:

L = PA(a) + AT(a)P + Q(a) - PB(a)R-'(a)BT (a)P = 0 (2.18)

then the optimal control and corresponding optimal cost are:

u(t) = -R-l(a)BT(a)Px(t) J(a) = tr{PS(a)} (2.19)

Generally, it will be impossible to implement this type of control. The full or exact

state is not usually available for computation of the control. Instead, knowledge of the

state is obtained through an estimator driven by sensors which can be corrupted by

noise. Furthermore, there will always be some disagreement between the model of the

system and the actual system. Hence, the control law above will be sub-optimal and the

actual performance cost may be higher.



This type of analysis is useful, however, because it does generally predict a lower

bound on the performance cost of the system. For all other controllers, the performance

cost will lie somewhere between the cost for this system and the cost for the open

loop system. The remainder of this section gives some methods for computing the

performance cost when the measurements and/or models are imperfect.

2.1.3 LQG Optimization

When the state vector is not available for computation of the control, then one must

rely on sensors which measure a subset of the states. The system is described by the

equation:

i(t) = A(a)x(t) + B(a)u(t) + v(t) E [v(t)vT(7)] = S(a)S(t - r) (2.20)
y(t) = C(a)x(t) + w(t) E [w(t)wT(r)] = W(a)8(t - 7)

where the vector y represents the output of the sensors, and the vector w represents

noise in the sensor output. If the performance cost is still given by Equation 2.17, and

the sensor noise is modelled as Gaussian White Noise, then one has the Linear Quadratic

Gaussian problem (LQG). The optimal control law can be expressed as the output of a

linear system driven by the output of the sensors. If P1 and P2 are the solutions of the

Ricatti Equations:

L, = PA(a) + AT(a)Pi + Q(a) - PiB(a)R-'(a)BT (a)P 1 = 0

L2 = P2AT(a) + A(a)P2 + S(a) - P2CT(a)W-'(a)C(a)P2 = 0 (2.21)

then the optimal controller is:

c(•t) = (A - BR-1BTP1 - P2C'W--c)z(t) + P2CTW-l(t)

u(t) = -R-1BTPiX(t) (2.22)

and the corresponding optimal cost is:

J(a) = tr [P1S + P2P1BR-1BTP1 ] (2.23)



Note that the system and penalty matrices are no longer being expressed explicitly as

functions of the design vector. This was done for clarity, as the equations in the following

sections become somewhat more complicated.

2.1.4 Imperfectly modelled systems

In the previous cases, the equations of motion are assumed to capture the dynamics of the

physical system perfectly. Unfortunately, this is rarely the case and the control system

must be designed with stability and performance robustness in mind. Traditionally, the

approach to this problem has been to use two models of the system - a design model

and cost:

Xd(t) = AdXd(t) + Bdu(t) + Vd(t) E [vd(t)vT()] = Sd(t 2.24)
(2.24)

y(t) = Cd d(t) +Wd(t) E wd(t)w T(r) = Wd6(t - 7)

(2.25)Jd(a) = [x (t)QdXd(t) + uT(t)Rdu(t)]

and an evaluation model and cost:

z,(t) = A,e,(t) + B,u(t) + v(t) E [v,(t)T()] = S,6(t- ) 2.26)(2.26)
y(t) = Ce,(t), + we(t) E [We(t)wT(7)] = We,(t - 7)

J(a) = limr [xT(t)QeXe(t) + UT(t)Reu(t)] (2.27)

The control system is designed based on the design model, but the evaluation model

represents the dynamics of the actual system better than the design model (but still not

perfectly). The evaluation model can include parameter errors, or unmodelled dynamics.

In the work done in Chapter Three, only the effect of unmodelled modes is considered.

The definitions and cost presented here, however would not change if other modelling

errors were used. If the performance and stability of the evaluation model with the

controller from the design model is satisfactory, then the controller is considered robust

enough to work on the actual system.

Because the controller for the design model will be suboptimal for the evalution

model, the LQR and LQG controllers are of diminished importance. However, they



do have the property that as the design model becomes more similar to the evaluation

model, these controllers approach the optimum. In this thesis, these will be the only type

of controllers considered, even though there are more robust controllers which might be

used in practice.

If the evaluation model has noise free sensors (w, = 0), the number of sensors is

equal to the number of states in the design model, and all modes of the design model

are observable, then the state of the design model can be reconstructed statically from

the outputs and an LQR controller can be used. If P1 is the solution of the Ricatti

Equation:

L, = PlAd + A'P 1 + Qd - PlBdRa  BTpl = 0 (2.28)

Then the control law based on the sensor output is:

u(t) = -Rd • BTpCdj 1y(t) (2.29)

Impinging this control on the evaluation model produces the closed loop system:

~i,(t) = Aiz(t) + ve(t) A , - A, - B,Rd'BjTp 1C;1C, (2.30)

The LQR and LQG solutions will produce controllers which are guaranteed to sta-

bilize the design model. However, there are no such guarantees about stabilizing the

evaluation model. Therefore, it is necessary to check if the eigenvalues for the above

closed loop system all lie in the left half plane. Unless this is true, the system is unsta-

ble. This is an extremely undesireable feature, and the cost associated with such designs

should be defined to be infinite. If the closed loop evaluation model is stable however,

then the cost for the LQR problem can be found from the associated Lyapunov equation:

J(a) = tr{P2 S}

L2 = P2Acj + AP2 + Qc = 0

Qc =- QGe + cT/cTP BdR1ReR 'BTPrc•lC (2.31)Yts d 1 V d 1Lld d'd



Similarly for the LQG problem, if P1 and P2 are the solutions of the equations:

L = PAd + ApP + Qd- PlBdR a BP1 = 0

L2 = P2AT + AdP 2 + Sd - P2 CdTW•CdP 2 = 0 (2.32)

then the optimum controller based on the design model is given by:

:i(t) = Aczx(t) + Bcy(t)

u(t) = -Coxc(t) (2.33)

B = P2 CTW" -1 Cc - R-1B T P1  Ac = Ad - BdCc - BcCd

The equation of motion for the closed loop system which results when this controller is

used on the evaluation model is:

[ic(t)
Se(t) + (2.34)

Ac, vcl

If the above system is stable, then the performance cost for the evaluation model is

found from the solution of the following Lyapunov equation:

La= P3AcI + AjP3 + Qc = 0 J(a) = tr{P3 Sci}

Qe ] SO Se 0 (2.35)
0 CTR,C 0 B WB T

These are all of the costs which will be needed in Chapter Four. While there are an

infinite number of other performance metrics one might use in evaluating a controlled

structure, these costs are representative of what is most commonly used.

All of these costs have the same basic form. First, one must solve one or several Lya-

punov and/or Ricatti equations, and then combine the solutions to find a performance

cost. Efficient numerical algorithms already exist for solving these equations and they

will not be discussed here. When it is necessary to solve these equations in Chapter

Four, the MATLAB subroutines LQR and LYAP [40] will be used.



The performance costs have been defined in a manner such that they can be readily

calculated for a given design vector. It is now possible to use a computer program

which searches over the domain of allowable designs for an optimum design. The next

section develops the equations necessary to find the gradients of these functions. This

will facilitate numeric optimization.

2.2 Gradients

The search for the optimum of a multivariate function can be greatly aided by the avail-

ability of the gradient of the function. The decision to use the gradient in a numerical

search is motivated by the complexity of the equations one must solve to compute it.

All of the costs in the previous section have a gradient which can be computed with

approximately the same effort needed to evaluate the cost itself. This gives a good

savings over the effort required to compute the gradient numerically using a finite dif-

ference approach. This section uses Lagrange Multiplier methods to find expressions

for these gradients. This technique for finding the gradients in these problems was used

by Milman et.al. [3] for perfectly modelled systems with LQR/LQG controllers and is

presented here. This work extends the technique to the imperfectly modelled cases.

2.2.1 Lagrange multipliers

All of the functions of the previous section could be expressed in the form:

J(a) = F(a, P, P2 , . . .) (2.36)

subject to the constraints:

Li(a,P1,P2,...)= O, L 2(a,P1,P2,...)= 0,... (2.37)

where all of the constraints are symmetric, matrix equations. It is possible to obtain

equations which can be solved to find the gradient of J using the method of Lagrange



Multipliers. First, the functions and constraints are assembled into a single expression,

J*, called the Lagrangian.

J*= F(a, P1, P2 ,...) + tr {HiLi(a, P1,P 2,.. .)} + tr {H 2L 2 (a, P P2,... )} +... (2.38)

The matrices Hi are symmetric and are called the Lagrange Multiplier Matrices.

It can be shown that the derivative of the cost J with respect to a parameter ai is

the same as the derivative of the Lagrangian when the matrices Pi and Hi are selected

so as to make the derivative of the Lagrangian with respect to these matrices equal to

zero.

= J(2.39)
cti acii 8a * _ _* ej* _, -* , 0

Setting the derivative of the Lagrangian with respect to the matrices Hi to zero simply

recovers the constraint equations. These are Lyapunov and Ricatti equations for which

numeric solution techniques exist. Zeroing the derivative of the Lagrangian with respect

to the matrices Pi produces another set of matrix equations. It turns out that for the

problem formulations under consideration, these equations are Lyapunov equations and

can be used to solve for the Lagrange Multiplier Matrices, Hi. Once the matrices Pi

and Hi have been computed, it is then a simple excercise to compute the derivative of

the performance cost with respect to the parameter ai from Equation 2.39. The next

section shows how this technique can be applied to the problem formulations defined

above.

2.2.2 Gradients for specific problems

For the open loop optimization problem, there was only one constraint equation (Equa-

tion 2.15). Therefore, the Lagrangian becomes:

J* = tr {PS} + tr {H(PA + ATp + Q)} (2.40)

The matrix P has already been computed for the function evaluation. Therefore it is

only necessary to compute the matrix H. This is doned by setting the derivative of this



expression with respect to P to zero:

SJ*
S= HAT + AH + S = 0 (2.41)

oP

This is a Lyapunov equation which can be solved to find H. The gradient of the function

is then given by:

trpJ aS ( OA aA T  Q
= tr P as +tr H P + P+ Q(2.42)

where P and H are are found from Equations 2.15 and 2.41. One of these scalar

equations must be solved for each parameter in the design vector to obtain the entire

gradient.

The LQR problem uses the same function as the open loop problem, but it uses

a Ricatti equation constraint (Equation 2.18). This gives the Lagrangian a slightly

different form. Substituting Equation 2.18 into Equation 2.38 gives:

J* = tr {PS} + tr {HPA + HATp + HQ - HPBR-1BTP} (2.43)

Setting the derivative with respect to P to zero yields:

a J*
= HAIT + A ci H + S = 0

Ac - A- BR-1BTP (2.44)

This is another Lyapunov Equation in H. The gradient of the performance cost is:

Jas P / aA aAT  aQ a T
aaa=aj +t-r P + tr H P+ -- P (BR-'B (2.45)

Equation 2.41 for the open loop case, and 2.44 for the closed loop case can be recognized

as the Lyapunov equations which must be solved to compute the covariance of the state

of the system. This makes the Lagrange Multiplier Matrices also the state covariance

matrices in these problems.



For the LQG problem, there are two constraint equations (Equations 2.21). Com-

bining these into the Lagrangian gives:

J* = tr{PiS + P2PiBR-1BTPI}

+ tr H{ P1A + H1 ATp1 + H1 Q - H 1PIBR-'BTP}

+ tr H 2P2AT + H2AP 2 + H2S - H2P2CTW-CP2} (2.46)

Taking the derivative of this expression with respect to P1 and P2:

8 J*
SH 1 Arg + AregH + S+ P2P 1BR-BT + BR-1BTPP 2 = 0

8 J* - H 2AT t + AetH 2 + P1BR-1BTPI = 0 (2.47)

A,,t A- P2 CTW-1C Arg - A- BR-1B TP1

The matrices Areg and Aest represent the dynamics of the closed-loop regulator and

estimator respectively. The Lagrange Multiplier matrices can be seen to represent the

closed loop covariance matrices for the regulator and estimator. These equations can be

solved for H1 and H2 which are needed in computing the gradient:

S= tr Pas + tr P2P1  (BR-1BT)Pj
ri aA 8Aa ai a

+ tr Hg Px a+ P + HQ- P ( BR-'BT d Pl

+ trH2 P2 + A P2 + - P2 d CW- ) 2 (2.48)

For the poorly modelled LQR and LQG problems, things become somewhat more

complicated. For the LQR problem, there are two constraint equations - one Lyapunov,
and one Ricatti. Assembling these and the cost into a Lagrangian gives:

J* = tr {SP21
tr HP AdS H1ATP I + H0_d - Hl P BdR BT'P

+ tr H2P2Ac + H2A TP2 + H2QC) (2.49)



Taking derivatives with respect to P 2 and P1 gives Lyapunov equations for H2 and H1.

O J*

aP2
SJ*

PP1

Areg

= H2A T + AciH2 + S = 0

= H1AT + AregH 1

- (BdRdlB eP 2 H2CTC-T + C/lCH2P2BeRLB T )

+ O e C dC P Bd 1p

+ BdR Rd ReR' B Tp CCe0H2CTC T = 0 (2.50)
SAd - BdR 1B Tp

Notice that the Lyapunov Equation for H1 is a function of H 2, hence these two equations

are coupled. However, H 1 does not appear in the equation for H 2, and it is possible to

solve for H2 and then H, using standard techniques. Once both have been computed,

the gradient can be found.

= tr{ sP2

+ tr H- PpaAd +

+ tr H2 P2 • +D
Ba( 09a
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80,

DQd
+ d
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aQci)

+ CTCT RTP1 ReRCR1B TP I a (2.51)

For the LQG case, the Lagrangian involves three constraints (Equations 2.32 and 2.35).

J* = tr {P 3Si}

+ tr {HPiAd+ H1A Tp + HlQd- HlPlBd RdlBTP1}

+ tr {H 2P2A T + H2 AdP2 + H2Sd - I 2P2Ca Tw'CdP2•

+tr H3 P3Acj + H3A TP 3 + H 3Qci

aJ

daci

aQd
Oai

a d (BeR' BT) P1Cj'Ce - (-1cBd) PBac, i C41 c
(Ce CI) PBdRd Re Rd BdT P /Q1Ce

S(BdR 'RT R 'Bd• P•• j1ClCe
oLl d /ru

(2.52)



The matrix H3 can be obtained by solving the Lyapunov equation that results from

zeroing the derivative with respect to P3 .

8 J*
= H3AT + AclH3 + Sc = 0 (2.53)

For the equations to compute H 1 and H2, it is useful to subdivide the matrices H 3 and

H/-31
H3 = H 32

H33

S= 31P3= (2.54)

where H31 and P3 1 are square matrices of the same order as Ae, and H33 and P33 are

square matrices of the same order as Ad. Plugging these expressions into Equation 2.52

and taking the derivatives with respect to P1 and P2 gives Lyapunov Equations which

can be solved for H 1 and H2 .

O J*
- HiA,, + AregHi + H33PlBdR-1ReR'B T + BdR'ReRBp~PH 33rgd d Ud Uid d Bd T11H33

H33 ]

O J*

OP2

P3
B,B T

BdB Td
-[ BdBT BdB T ] P3

H32

H33

=0 (2.55)

H2Ae.t + AT.lH2 + P33 P2CdTWd 1WWd 1CdP2 + P2CdT VW eWVdC dP2P33

+ [ CIT -CTCd] P3

- Ad-BdRd~Bp4P P Aest =- Ad - P2CTW 1 Cd

It is now possible to compute the gradient of the performance cost.
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An interesting feature of the gradients for these problems is the amount of computa-

tional effort involved in their calculation. In each case, one has to solve one additional

Lyapunov equation for each Ricatti or Lyapunov equation required to evalute the cost.

Then, a scalar derivative equation must be solved for each design parameter to obtain

the derivative of the cost with respect to that parameter. In most cases, the bulk of the

computational effort is involved in solving the Lyapunov and Ricatti Equations, hence it

takes approximately twice as much effort to compute the cost and gradient as it does to

compute the cost alone. This computational efficiency favors using minimization algo-

rithms which make direct use of the gradient. To obtain the same information contained

in the gradient, one would have to evaluate the function once for every design variable.

The gradient equations thus far have been treated as a necessity for numerical op-

timization, and in there present form, they do not convey very much insight into the

problem. However, it should be noted that the gradient equation for the perfectly mod-

elled LQR problem has a tantalizing form. Basically, this gradient has four components:

Component 1: J,,1 = tr H ( + P

Component 2 : J,t,2 = tr {Pa

Compenent 3: Ja,3 = tr {H a

Compenent 4 Ja, 4 = -tr HP • BR-1BT) P (2.58)

In Chapter Four, knowledge gained from the typical sections will be used to perform

a coordinate transformation which will make these quantities agree exactly with four

of the five features of the system one might change to improve performance; open loop

dyanmics, disturbability, observability, and controllability; respectively.



This completes the toolbox of mathematics and theory which is necessary for op-

timization. The only thing required to successfully optimize the problems in the next

chapters numerically is an algorithm. In this work, numeric optimizations were per-

formed using the CONSTR subroutine in the MATLAB optimization toolbox (Refer-

ence [41]). This is a program which performs constrained optimization using a Sequential

Quadratic Programming (SQP) method and the BFGS Hessian updating formula.



Chapter 3

Typical Sections

Controlled structure optimization is plagued by a high degree of complexity. A linearly

elastic structure can be modelled as a large number of independent modes, the behavior

of which are fairly easy to analyze. Unfortunately, the addition of control to this system

couples these modes (especially at high control levels) and obscures the relationship

between changes in the structure and changes in close-loop performance. A small change

in a structure changes the open loop dynamics and the manner in which the controller

and disturbances influence the system. The tradeoffs which must be made among these

in designing a good structure can be very subtle.

The current approach to this problem has been a brute force attack where all of the

design degrees of freedom are given to a computer program which employs a numerical

algorithm to search for an optimal design. This method yields correct results, but it

suffers from two problems. The computer program cannot tell one why a design is

optimal, and the results are often difficult to interpret. Secondly, although the design is

optimal for the defined problem, it does not suggest changes in the structure outside of

the defined design space which might go a long way toward improving performance.

One solution to this problem is to use controlled structure typical sections. The

phrase "typical section" was coined in aeroelasticity. The aeroelastic behavior of a three

dimensional aircraft wing is extremely complex and also defies attempts at detailed



analysis. A typical section refers to a two dimensinal model of a section of a wing whose

behavior is typical of the wing as a whole. Detailed analysis of this section is much

easier, yet it can yield results which give insight into the behavior of the entire wing.

This thesis defines the typical section for a controlled structure to be a simple one or

two mode spring-mass-dashpot system and its associated controller. These very simple

systems capture many of the important features of any controlled structure problem.

This simplicity, however, does come at a cost. The simplicity of the aeroelastic typical

section was attained by ignoring three-dimensional effects. The simplicity of the single

mode controlled structure typical section is attained by ignoring the effects of coupling

between modes. In cases were this coupling is of secondary importance, this typical

section will be a good predictors of which types of designs will be optimal in more

complex systems. The two mode typical section only starts to address the modal coupling

case.

The next section defines four representative types of controlled structure problems.

The different types of problems are distinguished by their disturbance and their control

objective as reflected by the state penalty used in the quadratic cost functional for the

problem. This will organize the discussion of results for typical sections analyzed in

subsequent sections of this chapter.

The passive elements of a single mass typical section are manipulated to optimize

open loop performance and optimal LQR performance. It is possible in these two cases to

obtain a closed form expression for the performance cost of this system. The functional

dependence of these expressions on the passive parameters will then be explored for each

of the four types of controlled structure problems. In the following section, a two mass

typical section is presented. This model will be used to explore the effects of attempting

to control a system using a controller based on a reduce order design model.

Throughout this chapter, general conclusions will be reached concerning the typical

sections. These conclusions will be stated succinctly as "design rules of thumb." At the

the end of the chapter, these design rules will be discussed, with particular emphasis on



how they might apply to more realistic systems and how they correspond to the results

in Chapter one.

3.1 Classification of controlled structure problems

In the previous chapter, there were three matrices of special importance associated with

the LQR controlled structure. These were the state penalty matrix, Q, the disturbance

matrix, S, and the control penalty matrix, R. These three matrices, along with the

matrices describing the open-loop dynamics and controllability of the system (A and

B), uniquely determine the control law and controlled performance cost of the system.

It would be prohibitive to consider every possible form these matrices might take for

even a simple system. Fortunately, there are only a few basic forms of penalty matrices

and disturbances commonly used with flexible structures. The most frequently used and

realistic of these will be used to establish a small set of controlled structure problems.

The discussion of the typical sections in the later sections will be mercifully abbreviated

by limiting it to these cases.

Before continuing with this discussion, it is convenient to restate the equations of

motion in several forms along with some important equations and relationships. First,

all structures will be assumed to have the following matrix equation of motion:

Mi + Ci + Kr = Fu (3.1)

where r is always a vector of physical displacements in the system. Often, this equation

will be used in its state space form:

r0 I 0
+ u

- M-1K -M-1C : M-1F (3.2)

A x B

There are two formulations of the LQR problem. The first is known as the deter-

ministic problem. For this formulation, it is assumed that with the exception of the



forces which produce initial displacements and velocities in the system, there are no

other disturbances. The optimal control minimizes the cost functional:

J = E [j1 (Xt(t)QX(t) + UT(t)uRU(t))] (3.3)

In this formulation, the covariance of the initial state is required to compute the perfor-

mance cost. This is captured in the disturbance matrix, S:

S = E [(0)T(0)] (3.4)

Note that the use of the word deterministic in this problem refers to the fact that

once the initial state is specified, the response of the system for all succeeding time is

deterministic. In cases where the initial state is also deterministic, the expectations

(E[])in the above equations can be dropped.

The second LQR problem formulation is known as the stochastic problem and as-

sumes that all of the disturbances can be assembled into a single vector of zero-mean,

Gaussian white-noise. The optimal control is then selected to minimize the cost func-

tional:

J = limE [T(t)Qx(t) + UT(t)Ru(t)] (3.5)

The disturbance matrix, S, now represents the covariance of the white noise process.

SS(t - r) = E [v(t)vT(r)] (3.6)

where the equation of motion has been augmented to include the disturbance vector, v.

xi = Ax + Bu + v (3.7)

Occasionally, it will be useful to express some relationships in modal form. Modal

coordinates, q are mapped onto the physical coordinates, r, by the mass normalized

modal transformation matrix, T, which diagonalizes both the mass and stiffness matrix

of the system:

r = Tq TTMT = I TTKT = w2 =A (3.8)



Matrices which have been transformed to the modal form will be designated by a sub-

script q. Thus, Mq would simply be the identity matrix, I. With these expressions in

mind, it is now possible to proceed with categorizing the problem formulations.

3.1.1 State penalties

The state penalty matrix Q is required by LQR theory to be symmetric and positive

semidefinite. If a structure has n states, then one has n(n + 1)/2 degrees of freedom

available in selecting the state penalty matrix. In practice, these degrees of freedom are

never used. Instead, various methods are used to reduce the problem of choosing many

values in a matrix to the selection of a handful of parameters. One keeps adjusting these

parameters and evaluating the performance of the resulting closed loop system until a

controller is obtained which meets the design specifications. This iteration is necessary

for design specifications which cannot be expressed quadratically (e.g. maximum bounds

on displacements). Ideally, one would like the number of free parameters to be small to

simplify the iteration process.

One way of reducing the specification of the state penalty matrix down to two pa-

rameters is to penalize a weighted sum of the potential and kinetic energy of the system.

Q= yKK 7MM (3.9)
0 -uM

For the purposes of this thesis, this will be called the energy penalty method. The

parameter K• weights the potential energy in the system and is adjusted to produce a

design with a sufficiently rapid response. The parameter -M weights the kinetic energy

in the system and is adjusted to ensure that the system has acceptable levels of active

damping.

This type of penalty is attractive for several reasons. First, there is good physical

understanding of what this matrix is penalizing: energy. Second, this matrix has an



interesting form when converted into modal form:

QKTTKT 0 7KA 0
Q, = - (3.10)

0 ymTT MT 0 uMI

There is no coupling of the open loop modes through the performance output. This

will tend to make the typical section results more reliable when generalized to larger

systems. Also, when the number of modes is equal to the number of actuators, all modes

are indendently controllable, and the control penalty matrix is selected to penalize static

work done by the controller:

R = BTK-1B (3.11)

then it is possible to solve for the optimal control law and cost in closed form regardless

of the size of the system [4].

There are several drawbacks to this type of penalty. First, motion everywhere on the

structure is penalized. This includes portions of the structure whose motion is irrelevant

to the design objectives. A second problem is that the penalty on a mode of the structure

is proportional to the square of its natural frequency. This means that higher frequency

modes will be penalized to a greater degree. This is fine if the actual performance

objective is to minimize energy. However, if one really is seeking to reduce amplitude,

then systems optimized with this performance metric will have unneeded amounts of

control in the higher frequency modes.

Both of these problems can be fixed by using a displacement penalty method. Typ-

ically, one is only concerned with the motion of a select number of points. The vector

which describes the motion of these points will be called the output vector, e. The

physical coordinates are mapped to the output vector by the matrix, N.

e = Nr (3.12)

The state penalty matrix is arranged to penalize displacements in the output vector:

eTQe = xTQx =- Q = = (3.13)
0 0



The parameters to be adjusted are contained in the output weighting matrix, Q,. Usually

the output weighting matrix is assumed to be diagonal. One advantage of this type of

penalty is that if one of the outputs is too large, then one only needs to increase the

corresponding diagonal element of Q, on the next iteration. Also, this penalty matrix is

free of the arbitrary frequency weighting introduced by using the energy penalty matrix.

However, this penalty matrix will not in general have the diagonalizing property of the

energy penalty matrix.

These two types of state penalties, energy and displacement, will be the representa-

tive control objectives used in the four typical section problem classifications.

3.1.2 Disturbances

Modelling the disturbances correctly is not very important in optimal LQR theory. This

is because the optimal control law for a given structure is independent of where and

how the disturbances enter the structure. The optimal structure, on the other hand,

does depend on the nature of the disturbances. Hence greater care must be taken to

ensure that these disturbances are modelled realistically. Almost all disturbances in

disturbances can usually be shown to originate from external forces or torques. The

approach here will be to ultimately specify the disturbance environment for each case

as a function of the covariance of some vector of disturbance forces.

For the deterministic LQR problem, the disturbance is an initial state of the system.

There are two cases to consider - initial displacement disturbances and initial velocity

disturbances.

For the initial displacement disturbance, it is tempting to arbitrarily specify the

covariance of the initial displacement, and leave it independent of the design of the

structure. However, a more realistic approach is to assume the initial displacement

comes about due to some initial static load on the system, vo, whose covariance is



specified [6]:

r(O) = K-'Gvo E [VOV] = v

The matrix G maps the disturbance forces onto the physical coordinates in the same

way that the matrix F maps the control forces as in Equation 3.1. The dependence of

the displacement on the stiffness, K captures the effect that stiffer systems should be

inherently less sensitive to disturbances. The disturbance matrix for this case is simply:

S[E [r(0)rT(0)] E [r(O)>T(0)]] K- GVGTK-' 0

E[i(O)rT(O) E[f(O)iT(O)]0 0
For similar reasons, an initial velocity disturbance should be specified

imparted to the system by an impulse vector vo with covariance V.

'(O) = M-1Gv
0 0

S =
0 M-'GVGTM - 1

(3.15)

as the velocity

(3.16)

Moving on to the stochastic LQR problem, one assumes that the white noise distur-

bance is a vector of forces acting on the system through the matrix, G.

Mi + Ci + Kr = Fu + Gv E [v(t)vT(t)] = V6(t - 7r)

In state space form, this equation becomes:

r 0 1 r 0 0
+ U + v[ -M-1K -M-1C [ M-1F M-1G

The disturbance matrix can again be specified in terms of the covariance of

bance.
[ 0

0 M-1GVGTM - 1 I 8(t - )

(3.18)

'the distur-

(3.19)

These are all of the types of disturbances which will be considered in the ensuing

sections. However, notice that the disturbance matrices for the impulse and the white

noise disturbances are identical. This allows a simplification to be made. Instead of

(3.14)

(3.17)

)



three types of disturbances, there are really only two. Define a displacement disturbance

to be the initial displacement due to a static load, and define a velocity disturbance to

mean either the impulsive disturbance or the white noise disturbance. For the rest of

this work, disturbances will be described by these terms.

3.1.3 Control penalty matrices

All of the typical sections presented will have only one actuator. Hence, the control

penalty matrix will simply be a scalar. In systems with more actuators, one would

attempt to find ways of reducing the problem of selecting a control penalty matrix in a

manner similar to that used on the state penalty matrix. For the purpose of the typical

sections, this is not necessary, and the control penalty in Equation 3.5 will be left as a

simple scalar:

R = P2  (3.20)

The preceeding discussion is not meant to be an exhaustive description of all possible

penalty matrices and disturbance environments. Rather, it is intended to present a

representative sampling of how these matrices are used.

In the previous discussion, two types of state penalty, two types of disturbances, and

one type of control penalty were presented. This leaves four possible permutations which

should be considered. These permutations will be known as the "type" of the controlled

structure problem. The four types are arbitrarily defined as:

* Type I: Energy penalty with velocity disturbance

* Type II: Displacement penalty with velocity disturbance

* Type III: Energy penalty with displacement disturbance

* Type IV: Displacement penalty with displacement disturbance



It is helpful to visualize an example for each of these types of problem. A case where the

Type I problem might come up is in a flexible space structure where the objective of the

control is just vibration suppression and the disturbances are modelled stochastically.

If the goal of the control is to reduce the motion of specific points on the structure,

then the displacement penalty should be used and one would have the Type II problem.

One might need this type of control in interferometry where it is important to control

the mounting points for the optics. One is likely to use a displacement disturbance in

a slew maneuver where the goal is to translate the system from some initial state to a

desired final state. If many points need to be controlled, such as the surface of a slewing

antenna, then the energy penalty might be used and one would have a Type III problem.

If, on the other hand one is only interested in one or two points, (such as the end effector

on a robotic arm), then a displacment penalty should be used and the problem would

be Type IV.

The next sections will use these problem types to guide their discussion of the typical

sections.

3.2 Single Mass Typical Section

As mentioned before, any linear structure can be modelled as a collection of indepen-

dent modes. The goal of this first typical section is to study how the controller and a

single mode of a structure interact, and also how changes in the structure can improve

controlled and uncontrolled performance.

Consider the equation of motion for the iuh mode of a structure which has a single

actuator. This equation can be written:

4i + 2(i4i + Wi qi= f (3.21)

where wi is the natural frequency of the mode, C( is the modal damping, and f; corre-



Table 3.1: Analogy between typical section paramters and methods for improving controlled
performance

sponds to the degree to which the actuator influences the ith mode.

fi = TTF (3.22)

Let the vector Ti be the ith column of the mass normalized modal transformation matrix

T. The influence of the disturbance on the mode, and the influence of the mode on the

output, e (if a displacement penalty is used) are expressed by:

gi = TTG ni = TiN (3.23)

Notice that all but one of the mechanisms to improve controlled performance mentioned

in chapter one (increase controllability, decrease disturbability, decrease observability,

change open loop dyanamics) now correspond roughly to scalar quantities. (Table 3.1)

The above equations of motion and parameters describe a system consisting of a

single mass, spring, dashpot, and some assorted influence parameters. Figure 3.1 shows

just such a system. For clarity, the subscripts denoting the ith mode have been dropped.

This system has the advantage that there is good physical understanding of all of the

parameters.

This simple system will be examined under two separate types of control architectures

- open loop, and optimal LQR. The desire is to examine how the sensitivity of the cost

to different modal parameters changes as the controller changes. For this analysis, it is

Modal parameter Mechanism

f Controllability

g Disturbability

n Observability

(, w Open Loop Dynamics



Figure 3.1: Single mass typical section: m = 1, k = w 2 , c = 2Cw

useful to recast the equations of motion in modal form.

0 = 1 q + u e= n 0)
q' -w 2 -2(w q f

i A x B C X
(3.24)

3.2.1 Open Loop Performance

The simplest approach one might use in obtaining a desired dynamic response from a

system is to design the system in such a way that it meets the design requirements

without the addition of active control. This approach has the advantages that such a

design is very robust (no chance of destabilization) and reliable (no control system to

fail). The reasonsthat active control is used at all is that, if done correctly, it allows one

to obtain performance that would be impossible to realize passively..

The analysis of the single mass typical section starts with the computation of its

open loop performance. This is done for three reasons. First, it establishes the worst

performance that the controlled system can have. It is assumed that the addition of

control always improves performance. Second, it establishes an initial performance cost

which can be compared to the performance cost for the controlled system. This will give

a measure of the benefit attained by using the controller. Finally, comparison of this

case with the controlled case in the next section will allow one to distinguish how the



designs for the controlled and uncontrolled sturctures should differ.

The performance costs for all four of the problem types defined above can be com-

puted simultaneously. The state penalty matrix and disturbance matrix are arbitrarily

defined as:

Q = qd S = (3.25)

The open loop performance cost can be computed in terms of the scalar parameters qd,

q,, Sd, and s,,. Later, appropriate expressions can be substituted for these parameters

to obtain the performance cost for the four types of problems.

The goal of optimization is to minimize the cost functional:

J = E [' (XT Qx) dt]

or J = lim E [x T Q] (3.26)

Equation 2.15 gives the algebraic solution of this cost functional and can be solved

in closed form to compute the open loop performance cost for the single mass typical

section:

J = Sd qd -(+ +qv +) sv (qd +qv1w 4(w 4C 4(w+ 4(w
J = Jd+Jv (3.27)

The cost has been split into two components - one due to displacement disturbances,

and one due to velocity disturbances.

The discussion now turns to the form of this cost for the four types of defined prob-

lems.

Type I: Energy penalty with velocity disturbance

For Type I performance, the penalty and disturbance parameters have the form:

qd = 7KK = yKw2  qv = --MM = -YM Sd = 0 s, = M-1GTVGM-1 = Vg 2

(3.28)



With these substitutions, the open loop performance cost becomes:

J = V (7K M) (3.29)4(w
The above equation confirms what one would expect for this system, namely that increas-

ing the natural frequency or the damping, or decreasing the impact of the disturbance on

the mode will improve the open loop performance. However, it is interesting to examine

how these changes improve performance. Figure 3.2 shows three sets of plots of the

response of this typical section. The top group of plots show the displacement of the

mass, q as a function of time. The second group of plots depicts the time history of the

potential energy output variable (wq)2 . The lower group of plots show the time history

of the kinetic energy output variable, 42 Each group of plots consists of four curves. The

solid lines in each group represent the response of a nominal system with w = 1, C = .1,

and g = 1. The remaining curves depict the change in the reponse which is incurred by

increasing or decreasing these values.

The purpose of these plots is to demonstrate the manner in which varying the passive

parameters changes the performance of the system. It can be seen in the modal response

plot that increasing the damping ratio decreases the time constant for the system. This

attenuates the initial error more rapidly, thus reducing the cost as Equation 3.29 indi-

cates.

Increasing the frequency also decreases the time constant and there fore improves

performance in the same way as damping. However, notice that the increase frequency

in the modal response plot has actually decreased amplitude of the modal response,

but in the energy output plots, this decrease dissappears. This is because increasing

the freqency in this system makes the system less sensitive to the disturbances (thus

decreasing the modal response), but the use of an energy penalty causes the increased

frequency to make the ouput more sensitive to the modal response (thus increasing the

energy outputs). These two effects exactly cancel each other in this problem.

Finally, Figure 3.2 shows that decreasing the disturbability simply decreases the

modal response.
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It is tempting to look at Equation 3.29 and claim that "This system is most sensitive

to changes in disturbability" due to the proportionality to the square of g. Unfortunately,

there is simply not enough information to justify this claim. For example, if it is possible

to change the damping in this system with an extremely small change in the structure

compared to what it would take to effect a similar change in the disturbability, then one

could just as easily claim that "This system is most sensitive to changes in damping".

What is unknown is the cost of an incremental chang in damping or disturbability. For

the most part, claims like this will have to be postponed until one is discussing a physical

system (as in chapter four).

A great deal of use will be made of the derivatives of the costs for the typical sections.

However, it is more useful to normalize the derivative by the function value itself:

Jc = a (3.30)

where a is some paramter in the cost. This quantity is sometimes called the normalized

sensitivity, but here it will be abbreviated to sensitivity.

There are basically two uses for the sensitivities of these costs to changes in modal

parameters. The first use concerns the sign of the sensitivity. Regardless of how much

one might need to change the structure, Equation 3.29 shows that increasing the modal

frequency or damping decreases the cost (negative sensitivity), and increasing the dis-

turbability has an opposite effect (positive sensitivity). The other use of these sensitiv-

ities will be observations about how they change relative to one another as the problem

type or control architecture is changed. This will provide clues about how the design of

a structure should change.

Type II: Displacement penalty with velocity disturbance

The penalty and disturbance parameters have the following form for Type II perfor-

mance:

qd = qen q, = 0 Sd = 0 Sv = Vg2 (3.31)
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Figure 3.3: Outputs for open loop response of Type II problem. Nominal system: w = 1,
C = .1, g = 1, V = 1, n = 1, q, = 1.

where q, is the scalar which weights the displacement output e. Substituting these into

Equation 3.27 gives an open loop performance cost for this problem type.

J = V qg2n2 (3.32)
4(w 3

There are two differences between this expression and the cost for the Type I prob-

lem (Equation 3.29). The first is the presence of the additional modal parameter, n,

and the second is the increased sensitivity of the cost to changes in the natural fre-

quency. The senstivity of the cost to modal damping or disturbability has not changed.

Figure 3.3 shows time histories of the displacement output variable, e, for a nominal

system, (g = w = n = 1, ( = .1) and also for changes in the modal parameters. The

modal displacement for this system is identical to that of the Type I problem. Notice

that changing the influence of the disturbance on the mode, g, or the influence of the

mode on the output n have an identical result. As will be shown later, this is only



true for the open loop case. In the LQR controlled case, changing the observability will

change the control gain matrix, and, therefore, the closed loop dyanmics.

Figure 3.3 also illustrates why this system is more sensitive to frequency. The dis-

placement penalty does not give a higher cost to higher frequency modes. Hence the

advantage of a reduced modal response due to increasing the natural freqency of the

section is not cancelled by increasing displacement penalty as it was with the energy

penalty.

Type III: Energy penalty with displacement disturbance

When the parameters for energy penalty with displacement disturbance are used:

2

qd = 7KW 2 qv = M Sd = K-IGVGTK - 1 = V s, = 0 (3.33)

one obtains the following cost for the Type III system with open loop performance:

J = V (K (+ + M (3.34)

The sensitivity of this cost to disturbability is identical to the previous two cases. In

fact, this will be true for all of the problem types and levels of control. This is because

the disturbance influence parameter, g, prefilters the disturbance before the control can

influence it.

Figure 3.4 shows the modal displacement and outputs for an example of this problem.

Again, increasing the frequency attenuates the initial response of the system. However,

the effect is greater than it was for the velocity disturbance. The frequency penalty

incurred by using the energy penalty is insufficient to cancel this effect, as it was for

the Type I problem. This accounts for the higher sensitivity to frequency for using the

displacement disturbance.

The influence of damping in this problem is substantially different. Equation 3.34

suggests that large amounts of damping can actually inhibit performance if the potential

energy penalty (TK) is used. The performance cost can be minimized with respect to
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the damping ratio to find an optimal damping ratio:

V J g 7K+ TM

(p = 1 1 (3.35)
2 'TK

Figure 3.5 shows a plot of this optimal damping versus the ratio 7YM/YK. If there

is no penalty on the kinetic energy (i-y = 0), then the optimal damping is 50%. The

optimal value of damping increases monotonically to infinity as the kinetic energy penalty

is increased compared to the potential energy penalty. The reason'for this is that

large amounts of damping make the system sluggish. Sluggishness is good from the

perspective of controlling velocity, but it tends to increase the amount of time for which

a displacement error exists. This is illustrated by Figure 3.6 which shows the modal

response of a typical section with 10%, 50%, and 90% critical damping. The ringing

or sluggish decay of the initial displacement error increases the cost for low and high

damping levels respectively.

Type IV: Displacement penalty with displacement disturbance

The disturbance and penalty parameters for the Type IV problem are:

q 2 = qen 2  q, = 0 Sd = V W s = 0 (3.36)qd~qe q~ S
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Figure 3.6: Modal response for typical section with displacement disturbance for varying
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These give rise to an open loop performance cost of:

J = V n (+ -) (3.37)

for this typical section. This is identical to the potential energy portion of the Type III

cost with the exception that the sensitivity to the frequency has been increased by a

power of two and the term n2 now appears in the cost. An identical effect was noted

in comparing the Type II cost with the Type I cost. Hence there is really nothing new

encountered in this problem other than the fact that the optimal damping level is always

50% (no penalty on velocity).

Conclusions and design rules for open loop typical sections

In the open loop problem, there are several modal parameters which one could imagine

changing in a real structure to improve open loop performance. These were the natural

frequency, w, the damping ratio, (, the impact of a disturbance on the mode, g, and

the influence of the mode on the performance output, n. Table 3.2 summarizes the

relationships between the performance cost and these parameters for the four defined

problem types.

Several conclusions can be made concerning the role of the modal parameters in these

costs. First of all, it can be seen that the parameters g, and n seem to play identical

I\ I I I . i. I



Table 3.2: Open Loop Performance of Single Mass Typical Section

Velocity disturbance Displacement disturbance

Energy I: J = V-•2 (_n + "YM) III: Jd = V (7K M

Displacement: Jd (
II: J, = Vq,4• IV: Ja = V q e + 4

Penalty

roles. In fact, the only difference between these two in the open loop cost is that g

scales the disturbance as it enters the system, and n scales the output as it leaves the

system. The problem type has no influence on how the cost behaves with respect to

these parameters. These points can be combined to yield the first design rule.

Design rule 1 Disturbance and output isolation reap similar benefits for all of the prob-

lem types.

The next design rule concerns the role of damping in open loop performance. Notice

that in those cases where the optimal damping for the system is infinite (Type I, Type

II, and Type III when only kinetic energy penalty is used), the sensitivity of the cost

with respect to the damping is the same. Furthermore, in cases where optimal damping

does exist, the optimal damping is at least 50% when there is no penalty on velocity,

and increases to infinity as the velocity penalty is increased relative to the displacement

penalty. This is restated in the following design rule:

Design rule 2 When a displacement penalty is used in the presence of a displacment

disuturbance, there exists a finite amount of damping which will give the optimal per-

formance. Otherwise, increased damping always give the same benefit for all problem

types.

The most complex parameter in this problem is frequency. Whereas the other pa-

rameters influence the performance costs in a relatively simple manner, there are three

ways in which the frequency can influence the cost.



The most obvious way that changes in frequency influence the cost is by changing

the speed of the open loop response. This effect is present in all of the problem types.

It was noted for the Type I problem that this was the only significant manner in which

the frequency influenced the cost. (There were two other ways in which the cost was

influenced by the frequency, but they cancelled each other.) Hence, the sensitivity of the

cost to frequency due to this effect is the same as the sensitivity of the cost to frequency

in the Type I problem.

Design rule 3 Increasing the natural frequency for a constant damping ratio decreases

the time constant in the open loop problem. The performance cost is inversely propor-

tional to frequency due to this effect for all of the defined problem types.

The next way that frequency can influence the performance cost was encountered

with the energy penalties. It was remarked before that for a given modal amplitude,

both the potential energy and the kinetic energy were proprotional to the square of the

natural frequency. Hence, changes in frequency also affect the observability in these

types of problems.

Design rule 4 In open loop problems which penalize the potential and kinetic energy of

the system, increasing the frequency increases the observability in the system. For this

effect, the cost is proportional to the square of the frequency.

Finally, frequency affects the disturbability of the system. For the displacement

disturbance, this influence is obvious, because the disturbance matrix was inversely

proportional to the fourth power of the frequency (Equation 3.36). This effect is slightly

more subtle when a velocity disturbance is used, however. In that case, the disturbance

matrix is independent of the frequency (Equation 3.28). However, as was noted in the

Type I and Type III problem, the modal response does seem to be inversely proportional

to the frequency. This effect is even more clearly illustrated by Figure 3.7, which is

the modal response of two systems with different natural frequencies and no damping.

Because the cost is proportional to the square of the modal response, one can conclude
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Figure 3.7: Modal response for open loop system with velocity disturbance, V = 1, g = 1

that the cost is inversely proportional to the square of the frequency for this effect.

These relationships between the frequency and the disturbability are summarized in the

following design rule:

Design rule 5 Increasing the frequency of a mode decreases its disturbability in all of

the problem types. In problems which use a displacement disturbance, the cost is inversely

proportional to the fourth power of the frequency, and in problems which use a velocity

disturbance, the cost is inversely proportional to the square of the frequency due to this

effect.

Change of variable

The parameters for the typical section were selected based on a desire to have each one

correspond to a single method of improving performance. This desire was illustrated

in Table 3.1. Unfortunately, the design rules above show that these parameters do not

correspond directly to disturbability, observability, and the open loop time constant. In

particular, it was shown that frequency was involved in all of these phenomena, and not

just the open loop time constant. From the viewpoint of gaining physical insight into

the behavior of controlled structures, this is not a desirable feature.

The expressions in Table 3.2 show how the overall frequency participates in the cost.

This is acceptable in the typical section where there is really only one way to change



stiffness. However, in a real structure, this is not the case. Recall that in the truss

example of Miller and Shim (Example 3), it was shown that the stiffening used to make

the structure less disturbable was distinctly different from the stiffening one would use

to merely shift modal frequencies.

A natural solution to this problem is to absorb frequency into variables which are

related directly to the concepts of observability, controllability, and disturbability. Any

remaining appearances of frequency in performance costs will then reflect the role of

the open loop time constant in the problem. This is easily accomplished by normalizing

velocity in Equation 3.24 by frequency:

d q 0 1 q + 0
dt 4 -W2 -2(w q f

d q 0 w q + 0
dt w1 - -2(@ w L

X = AX + Bu (3.38)

The state penalty and disturbance matrices must be transformed to reflect this

change of variable.

* Displacement Penalty

Q = 2 q O] n 2qe 0 (3.39)
0 0 0 0

* Energy Penalty

S 7K0 2  0 K 2  0
Q= KW 2  = MW2  (3.40)

0 YM 0 YMt 2

* Displacement Disturbance

V O] 0[ V ] 0S= 4' = ' (3.41)
0 0 0 0



* Velocity Disturbance

S == -S = S (3.42)
0 Vg 0 V]

The disturbance and penalty matrices now have a dependence on frequency that was

suggested by the design rules. Notice also that the control matrix, B, also has a frequency

dependence. This reflects the fact that a control force on a mode has a larger effect if

the mode is softer. These matrices suggest the definition of some new variables.

* Disturbability

displacement disturbance
g = '(3.43){( velocity disturbance

* Observability

nAd = displacement penalty.Nd = (3.44){ /-KW energy penalty

0 displacement penalty
=; (3.45)

SV--MW energy penalty

* Controllability

S= Z- (3.46)

These variables correspond directly to disturbability, controllability, and observability.

Using these parameters in the expressions in Table 3.2, one can see that the four problem

types now become two problem types - velocity disturbance and displacement distur-

bance (Table 3.3). The cost for both cases is proportional to response time. This agrees

with the design rules.

This concludes the analysis of the open loop behavior of the typical section. In the

next section, the performance costs for both of these problem types will be computed

in closed form for the case when optimal LQR control is used. By observing how the

senstivities change due to the addition of control, one can infer in what ways the open

loop design should differ from the closed loop designs for a controlled structure.



Table 3.3: Open Loop Performance of Single Mass Typical Section

Velocity disturbance Displacement disturbance

JA= (.Nji V) -2L (n+2 (4C2 + 1) 2 )

3.2.2 Optimal LQR Performance

The control case most often examined in controlled structure problems is the optimal

LQR. An analysis of this type assumes that the full state of the system is available for

computing the control forces, and also that the system is perfectly modelled. Unfortu-

nately, this is rarely the case. Information of the state is obtained through a limited

number of sensors which are often corrupted by noise and no model is ever perfect.

However, the advantage of computing the performance cost for this type of controller is

that it places a lower bound on the performance cost for all possible controllers. One

can think of the the optimal design for an open loop plant and the optimal design for an

LQR controlled plant as marking extremes. The optimal designs for the system under

any type of control must in a sense "lie" somewhere between these two extremes.

The object of optimization is to minimize the cost functional:

J = E[ (XTQX + p2'U2) dt]

or J = lim E [XTQX + p2u2] (3.47)
t---Ioo

where the disturbances are the same as in the previous section. The equations to solve

for the performance cost and control gains were given in chapter two. (Equations 2.18

and 2.19). For the typical section, these equations can be solved in closed form to yield:

* Optimal Control: u = -C, (d -

C = y + 1 - 1 4C(2 +0,+ 2 - 2I- 2(1 (3.48)

* Performance Cost

J = WSd +~'+ + -I-2--2(
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The paramters Pd and 8,, have special significance. They determine the position of

the closed loop poles measured relative to the position of the open loop poles in the S-

plane. This is illustrated by figure 3.8 which shows the closed loop poles for two systems.

Both plants are undamped and identical with the exception that the natural frequencies

of the two differ by a factor of two. The points marked by 'x' in the figures correspond

to the root locus obtained by setting P,, to zero and varying Pd (displacment penalty),

and the points marked by 'o' correspond to the root locus obtained by setting Pd to zero

and varying P,, (velocity penalty). All other designs based upon a mix of these state

penalties lie to the left of these bands. The only difference between the plots for the two

different plants is the scaling of the axes.

The shapes of these root loci are common for LQR control. When no velocity penalty

is used (,S, = 0), the poles move out to 450 asymptotes as the penalty on displacement

is increased relative to the control penalty (increasing Pd). The control gains start out

as predominantly velocity feedback to move the poles away from the imaginary axis for

small values of Pd implying that the cost is more sensitive to damping thatn frequency

at low levels of control effort. More displacement feedback is required as Pd is increased
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Figure 3.9: Feedback gains for LQR control of single mass typical section: w = 1, ( = 0,
, = 0

(Figure 3.9). If only velocity is penalized, then the control only attempts to augment

the damping in the system. Hence, only velocity feedback is used and the poles move

around the perimeter of a circle centered on the origin.

The primary interest in the LQR typical section lies with the behavior of the cost.

Not surprisingly, this cost is significantly more complicated than it was in the open loop

case. To facilitate analysis, the study of the closed loop cost will be divided into three

sections. First, the role of damping will be addressed. Then, the behavior of the cost

for low levels of control (expensive control) will be examined. Finally, the behavior of

the cost for high levels of control (cheap control) will be studied.

The role of damping

To understand how the importance of damping changes when LQR control is added, it

is useful to compute the sensitivity of the performance cost to the damping ratio:

a0 -2 + 4( + 1 (4( + )- 1/ 2

Jd -2( + / + 1V/4(2 + )

S -2 + 4C (4( 2 + p)-1/2

J. -2( + +4(-2 +(5
p- p + 2,/l +l-2 (3.50)

displacement feedback
----- velocity feedback -----------------
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The quantity, /, has been used to simplify the above expressions. It is important to

note that p is monotonically increasing with both fd and 03,. Clearly, the sensitivity of

the cost to the damping ratio approaches zero as the level of control is increased. This

is illustrated using the performance cost for a velocity disturbance in figure 3.10. Notice

that regardless of the level of passive damping, the magnitude of the sensitivity always

decreases as the control level is increased. This leads to the following design rule:

Design rule 6 Decreasing the expense of using active control (increasing 0) decreases

the importance of passive damping to dynamci perforamnce.

Physically, this makes sense. A large value of 0 indicates that the control is being used

to drastically alter the dynamics of the system. The internal forces due to damping

become insignificant when compared to the control forces.

Another interesting feature of the damping appears when a displacement disturbance

is used with a displacement penalty. For the open loop case, it was found that this

combination led to a finite value of optimal damping. This is also true for the case of

LQR control:

= Jd+2 + P2 + 1+(4 2t + 3,2+ 2 2 -2 1/2 =0

tt= 4p2 (3.51)
4/d
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This function is shown plotted for various values of Pd and P,, in figure 3.11. Just as in

the open loop case, the optimal damping increases as the penalty on velocity is made

large relative to the penalty on displacement. An interesting feature of the optimal

damping, however, is that it decreases as the displacement penalty, ad is increased. This

decrease is necessary when control forces become larger. In that case, large amounts of

damping would cause the system to resist the efforts of the controller instead of aiding

them.

In the next two sections, the other parameters in the problem will be examined. This

analysis will be simplified if one assumption is made about the damping. In flexible space

structures, the largest level of passive damping one can hope to achieve is on the order

of 10%. For the rest of this chapter, it will be assumed that passive damping levels

exceeding this are impossible.



The behavior of the performance cost can be divided into two regimes - expensive

control and cheap control. In modern control theory, expensive control refers to cases

for the optimal LQR controller in which the penalty on control is much larger than the

penalty on the state. In terms of the variables defined above, expensive control should

correspond to small values of Pd and 3p. Conversely, cheap control refers to those cases

where the penalty on control is small compared to the state penalty (large fd or 3P,).

Expensive Control

Mathematically, expensive control is defined to be the case when Pd is less than unity.

0, could be included in this definition as well, but it is not necessary. If Pd is less than

unity, then the Binomial Expansion Theorem can be used to simplify the performance

cost.

d2 +2

J i = + 2 ( (( , +1 4+ / .+ 3 2C)

+ (, (42 + + 2( (3.52)

This equation is still slightly too complicated to be useful. However, it is apparent that

it can be simplified further by either assuming that the damping ratio is large or small

when compared to the quantity:

' = 2 ,,+ 2/ 8+1- 2 (3.53)

Heavy and light damping can be conveniently defined:

* Light damping ( < (

* Heavy damping ( > (



Notice that this is not an absolute measure, rather, the character of the damping (Light

or Heavy) is determined from its magnitude relative to the active damping induce by

the control.

If one has heavy damping, the Binomial Expansion Theorem can be exploited a

second time on the performance cost:

22 + f2
C > C 42 + 82 + 3 j-. 2( + Pd 4C

W2 NJ ( ' + 1S +d2 J = (C + + N- -
2 4(4C (4C 4C 4C)

Jd =( V (3.54)

This result is identical to the open loop performance. One can conclude that the bulk

of the dynamic performance in this case is being obtained passively.

Design rule 7 For a heavily damped (C > •), lightly controlled (Pd < 1) system, the

contribution of the control to improving performance is insignificant when compared to

the benefits of the passive damping..

Alternatively, if the damping is less than the critical level, it drops out of the cost

entirely, taking the natural frequency with it:

C«<CC = 4C- 2+ 832-- 2C

J •p~ •Afr2 + Pd#F +2

Jd V~V 2Ž

5vP2 W 12+3F 2  2

.v +
j , g Tp 2

Design rule 8 In a lightly damped system (C < C(), the benefits of the passive damping

and the natural frequency are insignificant when measured relative to the benefits derived

from the active control.

It is interesting to note that the cost takes identical forms for both the displacement

and the velocity disturbances. The reason for this is that a lightly controlled, lightly

(3.55)

(3.54)
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Figure 3.12: Modal response of single mass typical section due to displacment and velocity
disturbance: w = 1, ( = 0, Q = 1, F = 1, ./d = .1, AN' = 0.

damped system will have a highly oscillatory response. In such cases, the performance

is largely determined by the envelope function - the decaying exponential which bound

the sinusoidal response. The time constant for this exponential is simply the real part of

the closed loop poles. Figure 3.12 shows how the envelope functions are always identical

for a lightly damped, lightly controlled system with a displacement disturbance, and a

velocity disturbance, thus making the corresponding performance costs equal. Similar

arguments can be made for the similarity in the behavior of the cost with respect to the

displacement and velocity observability.

Design rule 9 For a lightly damped, lightly controlled system, the sensitivities of the

performance cost to observability, disturbability, frequency, and controllability are identi-

cal for a velocity and a displacement disturbance and a velocity and a displacement state

penalty.

The final feature of this cost to be observed concerns the sensitivity to observability.

This sensitivity has been reduced from the open loop case (VAd appears in the cost

instead of .Nd). This is because as the mode becomes more observable, the control effort

also increases, thus blunting its effect on the cost.

Design rule 10 The sensitivity to observability of a lightly controlled, lightly damped

structure is less than that of the same structure open loop.



In the next section, the behavior of the system as the displacement penalty, Pd

exceeds unity is explored.

Cheap Control

The analysis of the LQR controlled typical section now continues with the case of cheap

control which was defined in the previous section as occurring when the quantity Pd

is much greater than one. This could be extended to included the case for when 3,

becomes large, however, an examination of Equation 3.49 shows that large values of 0,

do not significantly alter the behavior of the performance cost (other than increasing

the critical damping value).

When Pd exceeds unity, the character of the equation does change, however:

Pd3l > ýPd+1 8d

0 2(Sdd V +d +Sv p +d) (3.56)

Breaking this case down into two subcases, consider first the instance when there is no

penalty on velocity (P, = 0).

gJd pATW g2iv - -' (3.57)

This is a surprising result. When one considers a displacement disturbance, moving from

expensive to cheap control increases the sensitivity of the cost to observability, decreases

the sensitivity to controllability, and introduces a negative sensitivity to frequency (in-

creasing frequency decreases the cost). For a velocity disturbance, the effect is exactly

the opposite - the sensitivity to observability decreases, the sensitivity to controlla-

bility increases, and a positive sensitivity to frequency is developed. Figure 3.13 helps

illustrate this effect. It shows two plots for the performance cost at varying natural

frequencies. One corresponds to a displacement disturbance, the other corresponds to a

velocity disturbance. At high frequencies, Pd becomes small (Equation 3.48) the cost is



Performance Cost

101

U

10
o

in-1
10-2 10-1 100 101 102

Frequency

Figure 3.13: LQR Performance Cost: A.d = 1, NA, = 0, 0 = 1, M = 1

insensitive to changes in frequency, as stated in design rule 8. However, as frequency is

decreased, its influences on the performance costs are exactly the opposite of each other.

The reason for these markedly different behaviors is due to the fact that at high levels

of control, it is the initial behavior of the system which dominates the performance cost.

Figure 3.14 shows the closed loop response of the typical section for a displacement

disturbance, a velocity disturbance, and different values of controllability, observability,

and frequency. The key difference between the two disturbance types lies in the peak

response. With the displacement disturbance, the peak modal response is at time t = 0.

The only way to reduce it is to reduce the observability, hence observablity's heightened

importance. (One could also change the disturbability, but the effect would not be any

different from the open loop case). The higher frequency helps by increasing the rate at

which the passive response would return the displacement to zero.

For the velocity disturbance, the effectiveness of the controller determines the peak

response, hence the increased role of controllability. As for the frequency, a slower

system gives the controller more time to act in reducing the peak, thus giving a benefit

to reducing the natural frequency.

Displacement Disturbance
---------- Velocity Disturbance

------ --- --

.- '°
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The above ideas and equations can be used to formulate the following design rules:

Design rule 11 For cheap control, the sensitivity of the cost to frequency is postive for

a velocity disturbance and negative for a displacement disturbance. In both cases, the

magnitude of the sensitivity is less than it would be in the open loop case.

Design rule 12 For cheap control, the sensitivity of the performance cost to observ-

ability for a displacement disturbance is greater than it was in the expensive control case

and less than it was in the expensive control case for a velocity disturbance.

Design rule 13 The sensitivity of the performance cost to controllability increases for

a velocity disturbance and decreases for a displacement disturbance in moving from the

expensive control case to the cheap control case.

The above analysis assumed that the velocity penalty was negligible when compared

to the displacement penalty. If the velocity control parameter is significantly larger than

the square root of the displacement control parameter, and the displacement control

parameter still exceeds unity, the following happens:

1 << Od << P =

Jd ~ Jv e Gph, (3.58)

For the velocity disturbance, the result is identical to the expensive control case. How-

ever, the result for the displacement disturbance is interesting. The control penalty and

the controllability have disappeared from the performance cost. The reason for this

is that even if the control penalty is zero, there is a non-zero performance cost asso-

ciated with the state penalty. Imagine what would have to happen to the system to

control displacement perfectly. From an initial displacement, the mass would have to be

translated to the origin instantaneously. Unfortunately, this would require an infinite

velocity, driving that portion of the cost to infinity. Similarly, an attempt to control

velocity perfectly from an initial displacement would require that the mass not move at



all, thus driving the displacement portion of the cost to infinity. The expression above

represents the best compromise one can hope to achieve.

The foregoing design rules cover almost everything one can learn about controlled

structure design from the single mass typical section. In a perfect world, it is all one

would need to intelligently design a controlled structure. Unfortunately, it is not a

perfect world. The next section explores the consequences of using optimal control on

a poorly modelled plant, and how adjustment of certain structural parameters can help

alleviate them.

3.3 Spillover Typical Section

The previous section showed how a controller can interact with a single mode of a

structure, and how it influenced the dynamic performance of the resulting system. It is

possible to use these results to predict in a broad way how the control will influence the

modelled modes in an actual, more complex stucture. These results cannot, however,

be applied to modes of the structure which exist, but were not included in the control

design. Most physical structures are built up of continuous elements such as the members

in a truss. The continuous nature of these elements makes it possible for the structure

to have an infinite number of modes.

Modern control theory requires a finite dimensional model for the design of the

controller. This forces the control designer to ignore all of the modes in a structure

above some arbitrary frequency. At best, the presence of unmodelled modes in the

structure will impair performance. At worst, they will be destabilized by the controller.

This class of problems has been dubbed with the name "Spillover." Referring to the

effects of the control spilling over into unmodelled modes.

One way to study some of the issues involved in the problem is to use the two mass

typical section shown in Figure 3.15. This simple system has only two modes. The mass

on the right is driven by a control force, u, and the position and velocity of the mass on



Figure 3.15: Two mass typical section

the left (r and r) are available for the computation of the control. The idea is to design

the controller using information about the first mode and then evaluate the performance

of the system resulting when one attempts to use the single mode controller to control

the two mode structure.

The equation of motion for this system can be written:

I +] cl + c2 -ck+k -k 2  ri 0
+ + = u

2 2 -c2 c1 + c2 T2 -k2 k1 + k2 r2 1

(3.59)

0 01 0 r'i

Transforming this system into modal coordinates yields:

rl [ 1 -1 qIl

r2 - 1 q2

q] 26Cwl q [ w + 2

q2 2(2W2 42 W2

I -1
0 0

qi

q2

41

q2

(3.60)

q ,J 1 2i
I - I

(3.61)
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A simplification may be made to this system by normalizing time by the fundamental

frequency.

7 = wit (3.62)

The equation of motion then becomes:

qj' 2(1 q~1[ q1 [1+ 1+=

q 2(2AA q' A q2 1
A= w2/w 1 1t u/w (

where prime (') denotes the derivative with respect to normalized time.

The number of parameters of interest in this problem has been reduced to three -

two damping ratios and the frequency ratio, A.

Recasting the equation of motion into state space form and normalizing velocities by

frequency yields the evaluation model which will be used in this problem:

q, 0 0 1 0 q, 0

d q2 0 0 0 A q2 0

q' -1 0 -2(1 0 q + 1

q'/A 0 -A 0 -2( 2A q'/A 1/A

Z, A, B,

F

L

q2

q'/A2z

(3.64)

The objective is to minimize

sured output, y, and the control

a weighted sum of the quadratic response of the mea-

effort, P.

J = E[ j (XTQ.X +p21L2 ) d]
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or J = limE XTQx + p2•1]

1 -1 0 0

-1 1 0 0
Qm = (3.65)

0 0 00

0 0 00

The control is to be designed with knowledge of only the first mode. An appropriate

design model is:

X = Amxm + BmjL y = Cmxm

m = Am = Bm = Cm = (3.66)
q1 -1 2(1 1- p 11 L 1

The appearance of the term (1 - -) in the control matrix for the design model, Bd, is

a static correction used to give the design model the same static gain as the evaluation

model. Figure 3.16 shows the frequency response of both the evaluation model and the

design model. It is clear that the design model captures the low frequency behavior of

the evaluation model perfectly.

The control is designed to optimize the performance of the design model and is

therefore the same as the LQR controller for the single mass typical section.

1 1
1 = -Bcz, Be = -BTp PAm + ATp + Q _ - PBmBTp = 0 (3.67)

P P

The matrix Qm is selected to penalize displacement of the single mode.

Normally, in a perfectly modelled system, the control penalty, p is chosen based upon

how much power is available for control, or the the maximum force or stroke the actuators

can exert. When there are unmodelled dynamics however, this parameter must be made

large enough to keep the control from destablising the system. This implies that if one

is not overly concerned with control expense, then a level of control penalty exists which

yields an optimal tradeoff between performance in the modelled modes and performance

degradation or instability in the unmodelled modes. To explore this effect, p is left as a

102
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Figure 3.17: Contour plots of log performance of spillover typical section problem.

free parameter and it is adjusted to optimize the performance of the evaluation model

with the design model controller in place.

It is desired to study the effect of (2 and A on this system. From the single mass

typical section, the influence of (1 is already known, therefore, setting this parameter

to zero will not hurt the analysis. To complete the formulation of the problem, two

disturbances will be considered - a velocity disturbance and a displacement disturbance.

Furthermore, it will be assumed that the disturbance only has significant energy in the

modelled mode. Hence the disturbance matrices are:

Sd =

1

0

0

0

S, =

0

0

1

0

(3.68)

This problem is too intractable to solve easily in closed form. It is necessary to resort

to numerical methods to determine how the frequency ratio and damping influence the

cost when the control penalty is optimized. The equations for algebraically computing

the cost and its gradient were given in the previous chapter (Equations 2.28, refeqbb,

refeqbc, and 2.58). These equations and the above definitions can be given to a computer

program which can pick the optimal p given A and (2. This was done for several values

of A and (2 for both disturbance types. The results are shown in Figure 3.17. The solid
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lines in both graphs are contour plots of the log of the performance cost plotted over

the log of the frequency and damping ratios. The numbers on the contours depict the

value of log(J) for that contour. The straightness and approximately equal spacing of

the contours suggest that the performance cost has the following form:

log(J) = ao + a, log(A) + a2 log(( 2 ) (3.69)

Using the method of least squares, it is possible to estimate the constants a0o, al, and a2.

Plugging these into the above equation and exponentiating both sides yields approximate

expressions for the displacement and velocity disturbance costs.

.7245 .4196
Jd .651 .786 J 1.93A2. 59  (3.70)

These two expressions can be interpreted to give the following design rules:

Design rule 14 The importance of damping in the unmodelled modes increases as one

moves from the open loop to the closed loop problems for a velocity disturbance and

decreases (albeit not to zero) for a displacement disturbance.

Design rule 15 In going from open to closed loop, the sensitivity of the performance

cost to the frequency of an unmodelled mode increases for a velocity disturbance and

decreases for a displacement disturbance.

Again, there are conflicting results for the two disturbance types. The velocity dis-

turbance cost has higher sensitivity to both frequency ratio and the damping ratio than

does the displacement disturbance cost. Figure 3.18 helps explain this. It shows the re-

sponse of the evaluation model to both disturance types for different values of A and (2.

In each case, the control penalty was adjusted to optimize the response to the particular

disturbance. Again, the distinguishing feature is the ability of the control to reduce the

peak response for the velocity disturbance and not for the displacement disturbance.

This favors stronger control in the velocity disturbance and hence increased robustness

in the unmodelled mode to allow it.

105



1 2 3 4 5 6
time

Resonse to displacement disturbance

V.

"----- nominal
. -------- lambda increased 33%

.................... zeta increased 33%
.

.... ..

-
0

time

Figure 3.18: Time response for two mass
A = 4, C2 = .3.

typical section with spillover. Nominal system:

106

0.4

0.3

0.2

0.1

0

-0 1

0.5

0

I I 1 I In
L



Table 3.4: Performance costs for the controlled structure typical sections

Control Disturbance Type
Type

Velocity Displacement
Open j ()Loop J• •--2 (X2 + AN r) J2 = ( ( 21+ 4¢) + N 2)
Loop 4Cw d Jd C

Expensive g2 p •

Control
Cheap Control g2p g2 3

Small FP J Jd

Cheap Controld - _____

Large 8, J
Spillover .420 .725
Control C. 2.59 Id = C.6 .7s

3.4 Conclusions and Summary

In this chapter, two very simple typical sections were defined. Quantities corresponding

to the concepts of controllability (7), disturbability (g), and observability (Nd and N,)

were developed. These quantities were used to compute the quadratic performance costs

in closed form for the cases of open loop control and optimal LQR control for a single

mode typical section, and numerically for a two mode typical section which used LQR

control based on a reduced design model. The expressions obtained for the different

problems are summarized in Table 3.4.

Based on the equations in this table, a series of design rules for controlled structures

were stated.

3.4.1 Design Rules for Typical Sections

Open loop design rules

Design rule 1 Disturbance and output isolation reap similar benefits for all of the prob-

lem types.
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Design rule 2 When a displacement penalty is used in the presence of a displacment

disuturbance, there exists a finite amount of damping which will give the optimal per-

formance. Otherwise, increased damping always give the same benefit for all problem

types.

Design rule 3 Increasing the natural frequency for a constant damping ratio decreases

the time constant in the open loop problem. The performance cost is inversely propor-

tional to frequency due to this effect for all of the defined problem types.

Design rule 4 In open loop problems which penalize the potential and kinetic energy of

the system, increasing the frequency increases the observability in the system. For this

effect, the cost is proportional to the square of the frequency.

Design rule 5 Increasing the frequency of a mode decreases its disturbability in all of

the problem types. In problems which use a displacement disturbance, the cost is inversely

proportional to the fourth power of the frequency, and in problems which use a velocity

disturbance, the cost is inversely proportional to the square of the frequency due to this

effect.

Closed loop, modelled modes

Design rule 6 Decreasing the expense of using active control (increasing 6) decreases

the importance of passive damping to dynamic performance.

Design rule 7 For a heavily damped (C >» (), lightly controlled (,ad < 1) system, the

contribution of the control to improving performance is insignificant when compared to

the benefits of the passive damping.

Design rule 8 In a lightly damped system (( << C), the benefits of the passive damping

and the natural frequency are insignificant when measured relative to the benefits derived

from the active control.
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Design rule 9 For a lightly damped, lightly controlled system, the sensitivities of the

performance cost to observability, disturbability, frequency, and controllability are identi-

cal for a velocity and a displacement disturbance and a velocity and a displacement state

penalty.

Design rule 10 The sensitivity to observability of a lightly controlled, lightly damped

structure is less than that of the same structure open loop.

Design rule 11 For cheap control, the sensitivity of the cost to frequency is postive for

a velocity disturbance and negative for a displacement disturbance. In both cases, the

magnitude of the sensitivity is less than it would be in the open loop case.

Design rule 12 For cheap control, the sensitivity of the performance cost to observ-

ability for a displacement disturbance is greater than it was in the expensive control case

and less than it was in the expensive control case for a velocity disturbance.

Design rule 13 The sensitivity of the performance cost to controllability increases for

a velocity disturbance and decreases by for a displacement disturbance in moving from

the expensive control case to the cheap control case.

Closed loop, unmodelled modes

Design rule 14 The importance of damping in the unmodelled modes increases as one

moves from the open loop to the closed loop problems for a velocity disturbance and

decreases (albeit not to zero) for a displacement disturbance.

Design rule 15 In going from open to closed loop, the sensitivity of the performance

cost to the frequency of an unmodelled mode increases for a velocity disturbance and

decreases for a displacement disturbance.
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Table 3.5: Ordering of sensitivities in typical section problems: Velocity disturbance and no
velocity penalty

Open Loop Expensive Control Cheap Control Unmodelled Mode

2. Disturbance 2. Disturbance 2. Disturbance 1. Frequency

2. Observability 4. Observability 3. Control 2. Disturbance

4. Frequency 4. Control 5. Observability 2. Damping

4. Damping 5. Frequency

Table 3.6: Ordering of sensitivities in typical section problems: Displacement disturbance
and no velocity penalty

Open Loop Expensive Control Cheap Control Unmodelled Mode

2. Disturbance 2. Disturbance 2. Disturbance 2. Disturbance

2. Observability 4. Observability 3. Observability 4. Frequency

4. Frequency 4. Control 5. Control 5. Damping

4. Dampingt 5. Frequency
tFinite values of optimal damping

The above design rules are rather cumbersome to use in practice. However, their content

can be transformed into a more concise format. The goal of the typical sections was

to determine which of the mechanisms for improving the controlled performance of a

structure was most likely to drive the design. In the absence of any other information,

Table 3.4 and the design rules suggest that a loose ordering can be applied to the

modal parameters in the problem, based on the magnitude of the exponent that appears

with that parameter in the cost. Tables 3.5 and 3.6 show what this ordering would

look like for a displacement penalty with a velocity disturbance and a displacement

disturbance, respectively. Each column of these tables corresponds to a different form

of control. Within each column, the disturabability, observability, controllability, open

loop frequency, and damping ratio are assigned numerical ranks, with lower ranks given
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to quantities to which the cost will be more sensitive. The rankings remain consistent

across columns and between the two tables. (e.g. A quantity with a rank of two in any

column of either table will tend to drive the cost as strongly as any other quantity in

the tables that also has a rank of two.) This faciliates understanding of how the roles

of these quantities change as the control or disturbance type is changed.

These tables must be used carefully, for they lack a great deal of information about

any particular controlled structure problem. If it was possible to vary any of the quan-

tities in the above tables with equal ease, and these quantities were all approximately

equal initially, then one could pick the quantity which drives the design directly off the

tables. For modelled modes, it would be disturbability, and for unmodelled modes, it

would be disturbability or frequency, depending on the problem type. Unfortunately, the

sensitivity of the quantities in Tables 3.5 and 3.6 to incremental changes in the design

are highly dependent on the particular problem. This information must be added to the

knowledge contained in the tables to correctly surmise the important parameters in the

problem.

A suitable design strategy based on this might go as follows. The designer is given

a set of design criterion that the controlled structure must meet. The first step in

this problem should be to determine a model for the disturbances. The type of these

disturbances, either velocity, or displacment, will determine which of the two tables

should be used in the preliminary design. Once this is done, the open-loop column

of the appropriate table and the designers knowledge of how changes in the structure

influence distubability, observabilility, frequency and damping should be employed in

an attempt to meet the design requirements passively. The reason for this is two-fold.

First, if the design requirements can be met passively, and the mass of the structure

can be kept to within allowable limits, then no control is needed and the preliminary

design is complete. If, on the other hand, this cannot be done, the need for the control is

justified. The second reason this passive analysis is useful is that if it turns out that the

control needs to produce a large amount of performance, then the effects of damping in
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the modelled modes can be dismissed. This statement is based on Design Rule 8 which

noted that the damping dissappeared from the cost once the control level became large

enough to produce significant gains in the performance.

The next step of the design process centers around a nominal structure. This is

the starting point for the design of the controlled structure. The control necessary

for the modelled modes of this system to meet the design requirements should then

be computed. The magnitude of the control effort (as reflected in the parameter /d),

determines whether the control for the modelled modes lies in the expensive or cheap

control columns of the tables.

At this point, the designer now has a good understanding of how the disturbability,

controllability, observability, and frequency in the modelled modes, and disturbability,

frequency and damping in the unmodelled modes influences the cost. If similar insight

can be obtained for how incremental changes in the structure affect these quantities,

then it is possible to formulate a good preliminary design of the controlled structure.

The catch in this problem lies in understanding the relationship between structural

parameters and modal quantities. This is not a trivial task. It will be a considerable

challenge to generate techniques for this part of the problem that can be applied to a

general controlled structure. In the following chapter, a detailed analysis is done for a

cantilevered beam. The analysis begins to address how modal quantities can be changed

in this particular structure. Some of the examples from Chaper One will be reexamined

with the knowledge gained from the typical sections in order to understand further how

the sensitivities of modal parameters to design changes can influence the design process.
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Chapter 4

Optimization and Analysis of a

Beam Model

While the conclusions of Chapter Three are accurate for very simple systems, there are

some facets of the controlled structure problem which the typical sections do not capture.

Among these are the effect of coupling between two or more modes. Ideally, one would

like to find some transformation of the state vector such that the state feedback matrix,

state penalty matrix, and disturbance matrix are all diagonalized simultaneously. Also,

there should be a transformation of the control vector such that each element of the

transformed control vector influences only one mode of the system, and the corresponding

control penalty matrix is also diagonal. In that case, the controlled structure problem

can be treated as a set of uncoupled modes working in parallel, and the performance

cost of the system is just the sum of the performance costs of the modes (Figure 4.1)

where the cost for each mode can be obtained directly from the equations developed in

Chapter Three. Hence all of the conclusions reached there would be valid.

Unfortunately, it is usually impossible to decouple the system completely. Diagonal-

izing the state feedback matrix and control penalty matrix will still leave modes coupled

through the disturbance, control, and performance output (Figure 4.2). Coupling here

means that there are off diagonal in these matrices. The equations for the single mode
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Figure 4.1: System with uncoupled modes

Figure 4.2: System with coupled modes
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typical section no longer provide exact solutions to this problem. The hope here is that

the typical sections emulate the dominant behavior of a controlled structure, and the

coupling effects are less significant. This would justify extrapolating the design rules

based on the typical sections to larger systems.

A second part of the controlled structure problem not well handled by the typical

sections are the relative costs and the means by which modal parameters can be varied.

The typical sections give a good idea of what types of changes should be made to improve

the controlled performance, but they do not indicate how these changes should be made

in terms of modifying physical structural parameters.

This chapter uses a Bernoulli-Euler beam model to help gain insight into these issues.

The first section gives a description of the model and discusses some of the actual issues

in the design of flexible space structures which this model confronts. The next section

concentrates on the problems surrounding the ideally modeled, undamped system. Vec-

tors which are analogous to the typical section sensitivities to frequency, controllability,

disturbability, and observability are developed for this model. It will be shown that the

magnitudes of these vectors behave exactly like the typical section sensitivities when

only one mode is used in the beam model, but cases differently, in some cases, when

more modes are used. The sources of these differences are discussed. Finally, the beam

model is optimized for both a displacement and a velocity disturbance, and different

values of control penalty. The results of this analysis and the typical section analysis are

then used to explain some of the results obtained in the optimization examples presented

in Chapter One.

4.1 Description of beam model

Figure 4.3 shows the clamped free beam to be analyzed in the succeeding sections. The

use of this model is motivated by the set of problems one might encounter in attempting

space-based, optical interferometry (ref [1]). One of the drivers in the design of these
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Figure 4.3: Cantilevered aluminim beam model. E = 73GPa, p = 2700kg/rn 3.

types of structures is the isolation of several siderostats or telescopes from disturbances

on the structure. Even tens of nanometers of motion of the structure at these points

can seriously degrade the imaging quality of the instrument. A further complication

is that the active controller for suppressing disturbances may not be collocated with

the mounting point for the siderostats or telescopes. The beam model was selected to

emulate both of these effects. The design goal is to suppress motion out at the tip of

the beam much as one might want to suppress the motion of the mounting point for

a telescope or siderostat out at the end of a space structure. The actuator is a torque

actuator located at the free node nearest the clamped end of the beam' which emulates

the effects of using an "active bay" in a truss structure. Such types of actuators need

to be located at the points of highest strain in the structure for them to be effective

hence the need to locate the actuator near the root. (Ref. []). The disturbance in this

problem is a transverse force introduced at the midpoint of the beam. This position

was selected primarily to avoid collocation of the disturbance with the actuator or the

performance output. This will make the results of the analysis less ambiguous. Two

types of distubances are considered in this problem. The first is the initial displace-

ment of the beam which results from a unit load applied at the midspan (displacement

disturbance). The second is an impulsive or stochastic load applied at the same point

(velocity disturbance). In the terminology of Chapter Three, the beam with the former
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disturbance constitutes a Type IV problem, while the beam with the latter disturbance

constitutes a Type II problem.

The main structure of the beam is made out of aluminum, and is modeled as eight

cubic finite elements. All of the elements have a width of 1 cm, and their thicknesses are

included as design variables. Lumped masses are placed at each free node of the beam.

The magnitudes of these masses are also included as design parameters. This type of

model is very similar to others used in the literature [3].

Before commencing with the analysis, some scaling and constraint issues should be

addressed. As mentioned before, the static metric in these problems will always be the

total mass of the system. The mass of the system is arbitrarily constrained to be less

than or equal to that of a uniform beam with a thickness of 1 cm and no lumped masses .

This type of constraint is consistent with the constraints which might be put on an actual

spacecraft where mass is limited by lauch capabilities. In all of the cases considered,

this constraint was always active at the end of optimization, hence what are really being

examined are constant mass designs. The arbitrary selection of the maximum allowable

mass is not a cause for concern. Increasing or decreasing this constant is equivalent to

changing only the time scale in the problem. (e.g. doubling the size of a uniform beam

changes its eigenvalues, but does not change its eigenvectors.)

The temptation with the design parameters is to leave them as the physical thick-

nesses of the beam elements and the magnitude of the lumped masses. However, in this

chapter, a great deal of attention will be paid to the gradient of the cost with respect

to these design variables. It is desireable that the magnitude of gradients in this prob-

lem somehow reflect the benefit of making changes to the structure. This requires that

changes in the structure be quantified. Because the materials budget in this example is

on mass, a natural way to quantify a change in the design is by how much mass has to be

moved from one point on the structure to another. Therefore the design variables should

be rescaled so that an equal change in any design variable implies an equal change in
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mass.

Beam element thickness tl = tiWbhPatl t (4.1)
S (.0lcm)wbh Pal .01cm

Lumped mass m = m)w (4.2)
(.01cm)MwbhPal

As a simplification, these design variables have also been normalized by the mass of a

beam element 1 cm thick.

For all problem types with the single mass typical section, it was found that passive

damping was unimportant in problems where the active control played a major role in

reducing the cost and robustness was not an issue. Because the analyses here do not

consider the effect of unmodelled modes in the cost, not including damping in the model

is justified.

This completes the definition of the physical model. In the next section, this model

is used to extend the treatment given to the LQR controlled, single mass typical section

to more general problems.

4.2 Analysis of LQR controlled, undamped system

The objective of this section is to explore how the controller influences the structural

design and draw parallels between results obtained here with those obtained for the

typical section. The analysis of the beam will naturally be more complicated than the

analysis of the typical sections. The following subsection defines several vectors which are

useful in understanding the problem and also the relative importance of disturbability,

controllability, observability, and open loop frequency in the optimization solution.

4.2.1 Definition of Subgradients and Subsensitivies

In Chapter Three, quantities were defined for a single mode system which corresponded

directly to the concepts of open loop dynamics, disturbability, controllability, and ob-

servability. For systems with more modes, it is again possible to define variables which
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capture these ideas. As in the typical section case, one begins by converting the system

to modal coordinates and normalizing the velocity of each mode by its natural frequency.

d r[ I r 0 [ I
dt -M-1K 0 F

r T 0 q
iL 0 TA 1/ 2  A-1/24

d q 0 A / 2  q + 0 u

dt A-1/2 L - 1/2  0 A-1/2q A-1/2 TTF

,q = Aqxq + Bqu (4.3)

The state penalty and disturbance matrices must be transformed to reflect the new

coordinates.

Qq = TTNNdT d T 0

0 A1/2TTN,ýN,TA' / 2

[A-1TTGdGTTA-1 0
0 A-1/2 TT vTTA-1/2

where Gd corresponds to displacement disturbances, and G, corresponds to velocity

disturbances. The matrices Aq, Bq,, Qq, and Sq reflect the effects of open loop dynamics,

controllability, observability, and disturbability in the problem. A further feature of this

diagonalization is that it makes truncation of the model very easy. Most of the analyses

of the beam will use models which use less than eight of the sixteen available modes.

The simplifies numeric computations which must be performed.

In Chapter Two, equations for computing the performance cost and gradient for the

case of LQR control with a perfectly modeled plant were presented. The gradient in

particular is of special interest here. Recall that if P and H are the solutions of the

Ricatti and Lyapunov equations:

PAq + ATp + Qq- PBqR -'B T P = 0

H (A, - BqR'BTP ) + (A, - B,R'B P) H + S, = 0 (4.5)
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then the gradient can be expressed by the sequence of expressions:

fJ OS ( A 8Aq OA 8Q ( -iT\V
= tr P +HP + yP + BP aBR-B,)P (4.6)aai aa; Baa 8ai aai Baa

where ai is the ith element of the design vector, a.

This gradient can be divided into four subgradients, each of which represents changes

in the cost due solely to one of the four basic mechanisms for improving performance

discussed here.

* Frequency Subgradient
(J 1 ) trH (OAq OA T

) =tr H }P - P + (4.7)
Bai 6ai

* Disturbability Subgradient

(Ja, ) t = tr } (4.8)

* Observability Subgradient

(6Js)i = tr {HQ• (4.9)

* Controllability Subgradient

(Jcon)i = -tr {HP• (BR-R1B) P} (4.10)

The goal of optimization is to minimize the cost function, hence it is the negatives

of these subgradients which will be of interest because they indicate directions which

lead to reduced cost. The negative of a subgradient represents the best direction (in the

design space) to move from a given design if the only changes induced in the system

are due to the mechanism with which the subgradient corresponds. For example, if the

controllability, observability, and open loop dynamics could somehow be held constant,

then the disturbability subgradient would be the best direction to move in reducing the

cost.
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Often one is interested in a design which lies against one or more design constraints

(In fact, this will always be the case here. In the rest of this chapter, all of the designs

to be considered will lie against the maximum mass constraint). Unfortunately, the

negative of the gradient, or one of its subgradients can cross the constraint and design

changes of this nature are not of interest as they lie outside of the design space. For

example, it would not be surprising to find that the negative of the gradient almost

always suggests design changes which increase the mass of the structure. If the mass of

the structure is already at the maximum allowed value, then the design changes that

are really of interest are those that conserve mass.

The solution to this problem is to project the gradient and subgradients onto any

offending constraints. There are standard techniques for accomplishing this [36] and

therefore they will not be discussed here. For the rest of this work, it can be assumed

that gradients and subgradients have been projected wherever necessary.

In Chapter Three, a great deal of use was made of the normalized sensitivity of the

cost. This is simply the derivative of the cost with respect to some modal parameter

normalized by the cost. This normalization will be used again here. The subsensitivity

vectors are defined here to be the subgradients of the performance cost normalized by

the performance cost.

It is important to note that the subsensitivity vectors contain more information than

the sensitivities did in the typical section problems. For example if the system had a

single mode then the disturbance subsensitivity vector would be:

6Jd;, J "•Od a ' (4.11)
J J Oa

This vector is made up of two factors. The first captures changes in the cost due to

changes in the disturbability, while the second captures changes in the disturbability

due to changes in the design vector. Hence, in addition to the effects of coupling, the

means by which physical design parameters influence modal parameters will have a

significant effect in the analysis. The subsensitivity vectors can now be employed in
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analyzing the undamped beam model for the case of LQR control based on a perfect

model.

4.2.2 Analysis of the Beam Model

Any structural design needs a starting point. In this case, the initial design of the beam

is arbitrarily defined to be a uniform beam with all of the element thicknesses set to 1

cm and all of the lumped mass magnitudes set to zero. Notice, that this design has the

maxium allowable mass. As stated before, the performance output in this problem is

the displacement of the tip, hence Nd is set to penalize the displacement of the tip of

the beam, and N,, is set to zero. Because there is only one actuator in this problem, the

control penalty matrix is a scalar just as it was in the typical section case.

* Control penalty R = p2

Figures 4.4 and 4.5 are plots of the magnitudes of the subsensitivity vectors for the

uniform beam when only one mode is used in the model. They show how the magnitudes

of the four subsensitivity vectors vary with control penalty for both a displacement and

a velocity disturbance. Note that the left sides of the plots correspond to cheap control

while the right sides show the expensive control case. The vertical lines in the plots

represent the point at which the quantity:

Pd = N T2  (4.12)

for the first mode is equal to unity. In the typical section, this point was defined to

separate the cheap control case from the expensive control case. For this model, it is

clear that betad = 1 again marks the point at which the character of this controlled

structure begins to change.

Because the system has only one mode and hence is identical to the single mass typical

section, it is not surprising that the sensitivities behave exactly as the typical section

predicted (Table 3.4). The magnitude of the open loop frequency subsensitivity vector
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Subsensitivities for displacement disturbance, one mode
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goes to zero for expensive control and the magnitude of the disturbance subsensitivity

vector remains independent of the control effort for both disturbance types. For the

displacement disturbance, cheap control sees an increase in the observability sensitivity

by a factor of two and a decrease in the control sensitivity by a factor of two over

expensive control. For the velocity disturbance, the trend is exactly the opposite. All

of this was predicted by the design rules.

Things change however when the number of modes in the model is increased. Fig-

ures 4.6 and 4.7 show the sensitivities when the number of modes included in the model

is increased to four. In addition to the point where Pd crosses unity for the first mode

(A), the points at which Pd crosses unity for the next three modes are also shown (B,

C, and D, respectively).

The four mode and single mode cases have similar observability and control sub-

sensitivity vectors for expensive control indicating that the addition of modes does not

significantly alter the solution for the open-loop or lightly controlled cases. However,

there are two major differences which are apparent for the cheap control case. For the

displacement disturbance, the magnitude of the control subsensitivity vector for cheap

control is lower than expected in the four mode case, but it still decreases from expen-

sive to cheap control is the same. For the velocity disturbance, the magnitude of the

observability subsensitivity vector is markedly larger for the four mode case than it was

in the single mode case for cheap control. Now, instead of decreasing for the cheap

control case, as it did for the single mode case, it increases. A detailed investigation of

the source of these differences is beyond the scope of this thesis and will be left for future

work. However, it is interesting to note that the largest differences are associated with

the controllability and observability and manifest themselves at higher levels of control.

This would suggest that the culprit here is coupling of the modes through the controller

and not through the disturbance or output observability which are open loop matrices.

Although the magnitudes of the sensitivities leave some questions, their shapes are

predictable. Figures 4.8 and 4.9 show graphical depictions of the negatives of the
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Subsensitivities for displacement disturbance, four modes
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subsensitivity vectors for both disturbance types at a control penalty level of p = 0.001.

These figures represent directions for which the portions of the cost due to controllability,

observability, disturbability, and open loop frequency are decreasing locally. They do

not represent optimal designs. Instead they are the best directions on one should move

from the uniform beam to reach the optimal design. The dashed lines in the figures

represent the changes in the thicknesses of the beam elements, and the narrow bars

represent changes in the lumped mass magnitudes. The subsensitivity vectors for lesser

values of control penalty were not found to have differing magnitudes as indicated in

Figures 4.4, 4.5, 4.6, and 4.7, but similar shapes.

The negative of the frequency subsensitivity vector has two distinctly different char-

acters for the two disturbance types. The changes favored for the displacement distur-

bance move material from the low strain areas at the tip of the beam to the higher strain

areas at the root. Clearly, these changes are aimed at increasing frequency. The changes

favored for the velocity disturbance are exactly the opposite, suggesting an attempt to

lower the natural frequencies of the beam. Both of these results are in agreement with

what was seen in Table 3.4. There, higher frequencies were desired with the displacement

disturbance to reduce the time for which the initial error existed, and lower frequencies

were desired with the velocity disturbance to give the controller more time to reduce the

peak response.

The disturbance subsensitivity vectors are very similar for both of the disturbances.

It is interesting to note that the key to reducing the disturbability in this problem lies

in stiffening the structure in such a way that it opposes the motion of the point where

the disturbance enters the structure at x = .5.

The observability subsensitivity vector indicates that mass should be moved out

toward the tip of the beam. Notice that this subsensitivity vector makes the greatest

use of the lumped masses by placing a large one at the tip of the beam. Concentrations of

mass at any point in a system will tend to draw the nodes of the system's eigenvectors

toward that point. Thus, this will tend to reduce the motion at that point. This is
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an interesting result when contrasted with how disturbability is reduced in this system.

Basically, there are two funadamental methods on can use to reduce the eigenvectors of a

system-by adding mass and by adding stiffness. The chief difference between these two

is that adding stiffness to reduce the eigenvectors of a system will also tend to increase

its eigenvalues, while adding mass for the same purpose will decrease the eigenvalues.

Observability, as defined in Chapter Three, has no dependence on frequency, therefore,

the most effiecient means of reducing the eigenvector at the output should be exploited.

In this problem, that means adding mass. On the other hand, disturbability is increased

by decreasing natural frequency, hence this favors adding stiffness to reduce motion at

the disturbance input.

Finally, it is clear that the control subsensitivity vector indicates a substantial reduc-

tion of material at the root of the beam would improve controllability. This produces a

sort of "hinge" at the root. Physically, the reason for this hinge is to remove stiffness in

the system which would directly oppose actuation.

Figures 4.10 and 4.11 show the results of optimizing this system for both disturbance

types and for an expensive control case (p = 10-3) and cheap control case (p = 10-7).

The optimal designs for the displacement disturbance represent a compromise between

controllability and disturbability. As predicted by the subsensitivity vector magnitude

plots (Figures 4.4 and 4.6), the "hinge" which aids controllability and is present in the

expensive control design, disappears in the cheap control case as the magnitude of the

control subsensitivity vector decreases relative to the magnitude of the disturbance sub-

sensitivity vector. For the velocity disturbance, this compromise between control and

disturbance is also apparent. However, decreasing the control penalty has the oppo-

site effect. Instead of disappearing the hinge becomes much more pronounced. This

type of behavior is exactly in accordance with the predictions from the typical sections.

For cheap control, the system with the displacement disturbance should be made less

disturbable in order to reduce the initial error in the output. On the other hand, the

system with the velocity disturbance should be made more controllable to reduce the
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peak response.

Another striking feature of the velocity disturbance designs is the movement of mate-

rial from the beam elements outboard of the disturbance to the lumped masses outboard

of the disturbance. This is something that one would not expect from looking at the

magnitudes of the subsensitivity vectors. In Figure 4.7 the magnitude of the observ-

ability subsensitivity vector is substantially lower than the magnitudes of the control

and disturbance subsensitivity vectors. The reason that observability plays a role in

the optimal design can be accounted for in the shapes of the subsensitivity vectors.

The observability sensitivity has a great deal of its magnitude at the tip of the beam,

whereas the bulk of the control and disturbance subsensitivity vectors are located fur-

ther inboard. The reason that this effect appears for the velocity disturbance and not

the displacement disturbance is that the disturbance subsensitivity vector (which favors

less lumped mass at the tip) has a lesser magnitude for the velocity disturbance.

Finally, it is important to note that the open loop frequencies of the system do not

seem to play a role in any of the optimal designs. This does not mean that open loop

frequency is unimportant. Instead, it means that the only important effects of open loop

frequency in this problem are in how it influences controllabiltiy and observabiliyt. This

was predicted by the typical sections for the expensive control case where the open loop

dynamics dropped out of the cost entirely. However, what the typical sections could not

predict was the small size of the frequency subgradient relative to the overall gradient

for the cheap control case. In future work, it might be useful to determine if this is a

general feature of the controlled structure problem.

The conclusions from the analysis of the beam model can be summarized as follows:

* A good design of the beam model had to balance three things, controllability,

disturbability, and observability. The open loop frequencies were found to have a

small influence on the cost for cheap control and to have no influence at all for

expensive control.
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* All designs showed a compromise between controllability and disturbability. To

make the system more controllable, it was found that one should make the root

of the beam as flexible as possible, while to make the beam less disturbable, one

should make the root as stiff as possible. Clearly, these two design approaches

were diametrically opposed.

* The optimal design for the displacement disturbance favored an decrease in dis-

turbability over an increase in controllability as the control penalty was decreased

in order to reduce the initial error. On the other hand, the optimal design for the

velocity disturbance favored an increase in controllability over a decrease in dis-

turbability as the control penalty was decreased in order to permit the controller

to reduce the peak response. Both of these trends were predicted by the typical

sections.

* In the velocity disturbance case, the observability subgradient was sufficiently large

to drive the design toward reducing the motion of the tip of the beam. This was

accomplished simply by placing mass at that location. It was determined that a

similar technique could not be used to reduce disturbability due to the sensitivity

of disturbability to frequency in this example.

* The effects of coupling in the controlled structure problem are most pronounced

at high levels of control and seem to have the greatest effect on the importances

ofobservability for the velocity disturbance case and controllability for the displace-

ment disturbance case. In particular, cheap control for the velocity disturbance

case favored an increase in the importance of reducing observability which was not

predicted by the typical sections.

This beam example represents a single point in the space of optimally controlled

structures. In the next section, the results obtained from the typical sections and this

example are applied to the examples of Chapter One. This should broaden the under-

standing of the controlled structure problem.
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4.2.3 Application of typical section and beam results to ex-

amples of Chapter One

In Chapter One several examples of controlled structure optimization were presented

along with an ad hoc interpretation of the results. It is now desirable to examine some

of these examples and note how the results of the typical section and beam analyses

change those interpretations.

Example 2: Truss example of Miller and Shim

In the truss examples of Miller and Shim, it was suggested that the optimal designs

were aimed at reducing the disturbability of the system. One can add a great deal

of conviction to this through a process of elimination. First of all, the performance

outputs in this problem were potential and kinetic energy. It was shown in Chapter

Three (Equation 3.10) that the same modal transformation which diagonalized the open

loop plant also diagonalizes the disturbance matrix in this problem with the observability

of each mode proportional to its natural frequency. Hence, changes in the observability

of this plant will focus on only changing the eigenvalues of the system and not the

eigenvectors. It therefore makes sense in this case to lump the benefits of changing

observability in this case with those of changing the frequency.

Similarly, there is one actuator at each node of this system. In order to significantly

alter the eigenvector portion of the controllability one would have to find design changes

which reduce the magnitude of the eigenvectors at all four of these points. This is so

difficult to accomplish that it is all but certain that changing the eigenvectors for this

purpose will be insignificant. Again, one is left with the frequency portion mechanism,

and hence it can be lumped with decreasing frequency to reduce observability and in-

creasing frequency to improve the open loop dynamics.

The net effect of the appearance of frequency in all of these terms is to reduce its

importance as a driver to the design. In some cases, higher frequencies would help, (e.g.
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for disurbability, and open loop dynamics), but in others, the higher frequencies are a

hindrance (e.g. controllability and observability). These benefits tend to cancel each

other. On the other hand, changes in the eigenvectors of this system influence only the

disturbability. Hence this system is designed to minimize disturbability.

Example 3: Beam Example of Onoda and Haftka

The beam example of Onada and Haftka used a Gaussian White Noise disturbance and a

state penalty matrix which penalized displacement of any point on the beam, hence this

was a Type II problem. In this example, one had an opportunity to see the designs for

both expensive and cheap control. In Chapter One, it was suggested that the expensive

control design (Figure 1.8) was an attempt to raise the natural frequencies of the flexible

modes in the system, however, it was not clear to what purpose these frequencies were

being increased.

The disturbance used in this example excites primarily the rigid body mode in the

beam, leaving the flexible modes undisturbed. This is possible because the disturbance

is a force distributed over the length of the beam. Unfortunately, the actuator which

must be used to control the rigid body mode is not distributed. Any actuation forces to

correct rigid body errors will introduce disturbances into the flexible modes. Therefore,

a useful way to view this problem is as two separate systems-the rigid body mode of

the beam being driven by the Gaussian White Noise, and the flexible modes of the beam

being driven by the rigid body control forces (Figure 4.12).

The rigid body system is fairly simple to analyze. The only thing that can be

done to change its characteristics is to change its rotary inertia. Increasing this would

make the rigid body mode less disturbable and observable, but also less controllable.

Looking at the cheap control column of Table 3.5 (13d is always infinite for a rigid body

mode because the frequency is zero), it can be seen that the advantage of decreasing

the disturbability and observability together will outweigh the effects of the decreasing

controllability. Therefore, a design directed at improving the rigid body characteristics
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Figure 4.12: Visualization of beam example of Haftka and Onoda as two coupled systems

should increase rotary inertia. This does not appear to be the case in the expensive

control solution, and one can conclude that it is the flexible characteristics of the beam

which are driving the design.

Observability of the flexible modes is not significant because displacement is penalized

everywhere on the beam. Furthermore, open loop frequency (outside of its effects on

the disturbability and controllability) does not enter the cost in the expensive control

case. Therefore, it is the controllability and observability of the flexible modes which

are important in this part of the design.

One can take advantage of the fact that the disturbance and the' control for the

flexible modes in the system originate from the same actuator. This means that the

controllability and disturbability of these modes always have equal values. In Table 3.4 it

is apparent that in all cases, the disturbance sensitivity outweighs the control sensitivity.

Hence, for expensive control, the performance of the flexible modes is improved by

decreasing their controllability/observability. This is clearly the goal of the optimal

design for the expensive control case in Figure 1.8.

For cheap control, however, the optimal design was radically different. Looking

at Table 3.4 it can be seen that the edge that disturbability has over controllability is

diminished by cheap control. The advantage of making the flexible modes less sensitive to

the actuator is reduced. The net result is that making the rigid body mode less sensitive
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Frequency Subsenstivity Vector: Milman Beam Problem0.15
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Figure 4.13: Frequency subsenstivity vector for beam problem of Milman et.al.: constant
mass design.

to the disturbance becomes a viable method for improving the performance. Therefore,

the optimal design places the bulk of the mass at the tip of the beam, maximizing its

rotary interia.

Example 5: Cantilevered Beam Example of Milman et.al.

In the cantilevered example used by Milman et. al., a rather complicated optimal shape

was found for the beam. The source of this shape is very easy to explain in terms of

subsensitivity vectors. Figure 4.13 shows the negative of the frequency subsensitivity

vector for a uniform cantilevered beam (projected onto constant mass). The similarity

between this shape and the optimal shape for the beam strongly suggests that the

frequency behavior is the driver in this design. The typical sections tell one that this

shape should be an attempt to lower the frequencies of critical modes in the system

because this problem uses a velocity disturbance.

This is a surprising result. The performance costs are always least sensitive to changes

in open loop frequency. In this example, it must be the case that the senstivities of

the frequencies to changes in the structure are very large when compared to similar

sensitivites for the controllability, observability, and observability, however, the reasons

for this are not clear, and a thorough investigation into the nature of this problem will
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have to be left for future work.

4.3 Summary

In this chapter, a beam model was presented and analyzed. For the most part, this model

verified the design rules for the typical sections with the exception of two important

differences noted in the plots of the subsensitivity vector magnitudes. These differences

are included in one final design rule:

Design rule 16 Coupling effects can cause the magnitudes of the sensitivities of the

performance cost to observability and controllability to deviate from the exact values

predicted by the typical sections.

The beam examples of Onoda and Haftka and Milman et. al. and the truss example of

Miller and Shim were examined in light of the results from the typical sections and the

beam analysis. In both of these cases, it was found that the behavior of these systems

was explainable in terms of the design rules presented here.
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Chapter 5

Conclusions

5.1 Summary and Description of Prelimary Design

Process

In the design of a controlled structure, there are five basic qualities of the structure

which one must consider. These are observability, controllability, disturbability, open

loop frequency, and damping ratio. The sensitivities of the quadratic performance costs

to these quantities were computed for two typical sections. One of them was an optimally

controlled system consisting of a single spring, mass and dashpot. The other was a two

mass-spring-dashpot system, where the control was computed using only the first mode

(the spillover problem). One can apply a rank ordering to these sensitivities (with the

first representing the highest sensitivity). The ordering of these sensitivites for two

disturbance types and several types of control are shown in Tables 5.1 and 5.2. Similar

results were obtained for the expensive and cheap control cases of an undamped beam

model. With the exceptions of those items in the table marked by daggers, the results

were identical. Modal coupling in the cheap control case was probably responsible for

the discrepancies.

These results suggest a design strategy. To illustrate this strategy, two examples are
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Table 5.1: Ordering of sensitivities in typical section problems: Velocity disturbance and no
velocity penalty

Open Loop Expensive Control Cheap Control Unmodelled Mode

2. Disturbance 2. Disturbance 2. Disturbance 1. Frequency

2. Observability 4. Observability 3. Control t  2. Disturbance

4. Frequency 4. Control 5. Observabilityt 2. Damping

4. Damping 5. Frequency

tResults different in beam model

Table 5.2: Ordering of sensitivities in typical section problems: Displacement disturbance
and no velocity penalty

Open Loop Expensive Control Cheap Control Unmodelled Mode

2. Disturbance 2. Disturbance 2. Disturbance 2. Disturbance

2. Observability 4. Observability 3. Observability 4. Frequency

4. Frequency 4. Control 5. Controlt 5. Damping

4. Dampingt 5. Frequency

tResults different in beam model SFinite values of optimal damping

139



used-one is an example of a system which is subjected to velocity disturbances (ei-

ther stochastic or impulsive forces), the other is subjected to displacement disturbances

(initial displacements).

The velocity disturbance example is a space-based, optical interferometer. One of the

most demanding missions for future spacecraft is space based imaging interferometry.

In a nut shell, interferometry works by combining the starlight coming from several

widely spaced telescopes or mirrors located on the spacecraft. Key information is then

extracted from the resulting interference pattern. By combining the information from

interference patterns taken with the telescopes or mirrors in many different orientations,

it is possible to build up an extremely high resolution image. The major problem from

the view of the controlled structure designer is that in order for this to work, the light

paths from the telescopes or primary mirrors to the combining optics and the positions

of the telescopes or primary mirrors in inertial space must be controlled down to a

fraction of the wavelength of the light of the incoming image. This ensures interference

of the same wave front at the combining optics. For the optical range of light, this

means these relative distances must be controlled down to tens of nanometers. In the

terminology of this thesis, this is a system with a stochastic force (velocity) disturbance

and a displacment penalty. In Chapter Three, these qualities defined'a problem type

which was designated as Type II.

The displacement disturbance example will be the slew of a robotic arm. The task

is to start with the arm initially at rest, and then move the tip of the arm (sometimes

called the end effector) to some specified point in space. If the desired final position of

the arm is defined to be the zero state, then the objective of the control is to reject an

initial displacement. In this problem, only the position of the tip of the arm should be

penalized, hence the penalty type is also displacement. In the terminology of Chapter

Three, this would be a Type IV problem.

A controlled structure must be designed for two regimes-modelled modes and un-

modelled modes. The modelled modes are those modes which are used in the compu-
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tation of the control law and are generally the lower frequency modes in the structure.

The unmodelled modes are all of the other modes which must not be destabilized by the

control.

One of the results of the typical section analysis was that the usefulness of damping

and active control in the modelled modes of the structure were mutually exclusive. In

other words, when the control was large enough to reduce a significant portion of the

cost, the damping terms dropped out. The conclusion that can be reached from this is

that if control is needed, the presence or absence of damping in the modelled modes is

insignificant.

In the unmodelled modes, however, the damping is needed to keep the contribu-

tions of the unmodelled modes to the performance cost down. This brings up the first

important difference between the displacement and velocity disturbance problems. Al-

though both will require damping in the unmodelled modes, the interferometer will

require substantially more damping and higher frequencies in the unmodelled modes

than the robotic arm. The reason for this is that the control is emphasized more by

a velocity disturbance. This is due to the fact that the control can reduce the peak

response of a system due to a velocity disturbance, whereas, the same cannot be said

for a displacement disturbance.

The sensitivities of the the robotic arm and the interferometer should behave similarly

for the open loop design case and identically for the closed loop design case. The only

difference is with the damping. While damping in the interferometer always helps, there

is only a finite amount of damping which can be present in the joints of the robotic arm

before the damping hinders the control efforts.

In the controlled modes, both systems are most sensitive to disturbances. In the

instance of the interferometer, this means that persuing active or passive isolation of

disturbance sources might be worthwhile. The same would be true for the robotic

arm as well, however because the initial and final states are specified regardless of the

structural design, nothing can be done to reduce the disturbance, with the exception of
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perhaps input command shaping. Hence this will not drive the design of the structure

at all.

The observability and controllability share equal roles in both examples at low con-

trol levels. However, at high control levels, the sensitivity to control increases and the

sensitivity to observability decreases in the interferometer, and the opposite happens in

the robotic arm. This implies that at high control levels, effort is better spent designing

better actuators in the interferometer than it is in isolating telescope mounting points.

For the robotic arm, it would be more important to reduce observability, however, this

cannot be done for the same reasons that disturbability could not be reduced. Hence,

the controllability of the robotic arm is the first priority. This would favor as light a

design as possible to reduce the inertia of the arm, but as internally stiff as possible to

keep actuation from disturbing the flexible modes.

Finally, both of the designs are least sensitive to changes in frequency in the modelled

modes. This means that frequency will drive the design only when it is impossible or

extremely difficult to change controllability, observability, or disturbability. This will be

very likely for the robotic arm where it proved impossible to change its disturbability

or its observability, and less likely in the interferometer which gave a better selection of

design options.

To create preliminary designs for these two examples it will be necessary to under-

stand how specific changes in the structure will influence the modal parameters. One

way to gain this insight would be to compute the subsensitivity vectors for the structure

for one or more nominal designs.

5.2 Future Work

This thesis has begun to take a detailed look at the design of controlled structures,

however, much more needs to be done. The typical sections are very good at capturing

the temporal nature of the controlled structure problem but they do not capture the
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spatial nature of the problem. In other words, the typical sections show which features

(controllability, disturbability, observability and open loop frequency) are important in

the problem, but they do not suggest what types of physical changes should be made

to the structure to influence them. This is one area that future work must concentrate

on. It is imperative that one understand the relationship between the structure and

these variables in order to execute a good preliminary design. The work done here was

basically a confirmation that the results obtained by optimzation were indeed the correct

ones. However, more needs to be done to make this approach reliable when the optimal

design is not known a priori.

A second area to be expanded is the role of damping in the problem. Damping in

the modelled modes of a structure was not found to be of significance in this work.

On the other hand, it was found through a rather ad hoc treatment of a two mass

typical section that damping in the unmodelled modes is extremely important. While

the roles of disturbability, controllability, observability and open loop frequency were

verified through analysis of a beam model, this was not done for damping. Clearly this

should be done, and a more detailed analysis of the use of damping in general should

also be done.

Finally, this work considered a very particular class of controller, the Optimal Lin-

ear Quadratic Regulator (LQR). In practice this type of control is never implemented

because it is impossible to measure the state of a system directly, and its closest cousin,

LQG, is is not very robust. The effects of using more realistic types of controllers in the

problem needs to be investigated.
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