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Abstract

In this thesis we address the problem of determining in situ stress and fracture prop-
erties in reservoirs using borehole logs and surface seismic reflection data. The dis-
sertation covers four subtopics.

The first is the determination of horizontal stress magnitudes from measurements
in a borehole. Two types of data used are stress-induced rock failures in the bore-
hole, known as "breakouts," and the dispersions of polarized flexural waves which
propagate along the borehole. Traditionally these data are analyzed to derive stress
orientations but not magnitudes. To determine the magnitude of stresses directly
from breakouts, we use an iterative elastic modeling of stresses around the borehole
and Mohr-Coulomb failure criterion to match the borehole deformation. As a sec-
ond method we use dispersion curves of the two polarized flexural waves and their
crossover points. These methods are applied to data from a well in northeastern
Venezuela. The combination of these two techniques provides a complete profile of
stress as a function of depth since the first method is applied at the breakout depths
and the second is applied everywhere else in the borehole. Both borehole methods
agree in the estimation of stress orientation and magnitude. The maximum horizon-
tal stress is in the NNW-SSE direction, in agreement with a regional stress model
calculated from the relative motions of the Caribbean and South America plates. The
magnitudes of principal stresses are on average, SHmax ý 1.1Sv (Sv: vertical stress)
and Shmin " 0.9Sv (Shmin: minimum horizontal stress). This suggests strike-slip
faulting, consistent with earthquake mechanisms in the region.

The in situ stresses play an important role on determining the properties of frac-
tured formation. The azimuth of SHmax determines the preferred orientation of
open fractures. Surface seismic reflection data provide the means for detecting the
fractures. The second contribution of this thesis is developing a method to detect
discrete fractures, and to determine their orientation and average spacing. We devel-
oped a novel and practical technique, called the F-K method, based on the frequency-
wavenumber (f-k) domain analysis of seismic coda. The fractured medium targeted
in this study is a network of rather regularly spaced, parallel, sub-vertical fractures,



with dimensions similar to seismic wavelength. The seismic response of a fractured
medium is studied by finite difference numerical models for a variety of situations
where orientation, spacing, height, and fracture compliance are varied. In the direc-
tion normal to fractures, scattered waves propagate with slower apparent velocities
than waves propagating along the fractures. The orientation of fractures is well-
constrained from the azimuthal dependence of scattering. The spectral characteris-
tics (frequency, wavenumber and amplitude) of the backscattered waves are related to
fracture properties like spacing, compliance, and height. The dominant wavenumber
is very sensitive to fracture spacing.

We use the F-K method to analyze a data set from the Lynx Field in Canada.
Characterization of fracture properties in this field is important for development plans
to maximize the gas production. In the field data, the acquisition geometry results
in irregular fold, with under sampling of certain azimuths and offsets. We address
the acquisition footprint issue by controlling the azimuth binning of the data and
neglecting the low/irregular fold gathers in the fracture analysis. We also apply the
Scattering Index (SI) method (Willis et al., 2006) to the same data from the Lynx
Field. The SI method is a robust method to detect fractures and to provide fracture
orientations using multi-azimuth/multi-offset pre-stack data. In the realm of existing
3D seismic surveys, data with such acquisition characteristics are few. The fourth
contribution of this thesis is therefore the conception of a post-stack version of the
SI method that extends the scope of this method to practically every 3D seismic
surface data set. In this version, a scattering index is computed for a fully stacked
trace per CMP gather. As long as the bin contains traces parallel to the fracture
strike, the stacking process of all azimuths and offsets preserves the reverberating
character introduced by the fractures. The post-stack SI at a fractured location has
a large value in comparison to a non-fractured location. The variations of post-stack
SI values across the field reveal the distribution of highly fractured areas. Fracture
strike cannot be determined in this case because it does not include the azimuthal
behavior of the scattering. However, the results from the post-stack SI are helpful to
identify areas of interest to focus the more specialized scattering analysis methods.
We apply the F-K and SI methods to the Lynx Field seismic data and compare the
results. Since spatial resolution of the two methods are different we upscale the SI
maps to match the resolution of the F-K method. The combined analysis of the
Lynx Field indicates that the preferred fracture orientation is N400E, which agrees
with the regional stress field. The distribution of highly fractured regions appears to
be associated to the geological features, such as folds and faults. The average fracture
spacing, obtained by the F-K method shows that, in the Lynx Field, fracture spacing
decreases in the west side of the field where the structural dips are higher.
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Chapter 1

Introduction

Knowledge of the current stress state at depth is essential in several stages of the ex-

ploration, production, and development of hydrocarbon and water reservoirs. Stresses

in the lithosphere are responsible for the formation of geological structures, for ex-

ample, salt diapirism, folding and faulting; therefore, stresses control the formation

of the majority of hydrocarbon traps.

In particular, the stress field determines the geomechanical conditions of the reser-

voirs and the surrounding rock formations. As such, stress-strain information is crit-

ical to build and constrain geomechanical models of the reservoir evolution as it

is depleted (Sen and Settari, 2005; Hatchell and Bourne, 2005). During reservoir

drawdown the stress changes are due to variations of pore pressure that can lead to

deformations, often manifested in field subsidence by compaction (Barkved and Kris-

tiansen, 2005), or in an increase of microseismicity activity (Adushkin et al., 2000;

Sze, 2005).

Stress conditions must be considered in the drilling and completion plans with the

intention of avoiding wellbore and structures instability. Instability includes complete

well failures (e.g. casing deformation) (Frederick et al., 1988; Addis et al., 1993), un-

desired sand production (Acock et al., 2004), reservoir damage due to over estimations

of the drilling mud pressure (Charlez and Onaisi, 2001; Last, 2001), and blow-outs

due to unpredicted over pressurized zones (Sayers, 2006; Lee et al., 1999). Another

area in which the geomechanical integrity of reservoirs is of utmost importance is



CO 2 sequestration. It is necessary to properly estimate the minimum stress and the

fracture breakdown pressure to effectively inject the CO2 and avoid leaks from the

sequestration unit (Hawkes et al., 2005). Understanding the reservoir's geomechanics

is key to avoiding some of these hazards.

In situ stress also controls the availability of open fractures in the reservoir and the

extension, aperture, and direction of propagation of hydraulic fractures. Hydraulic

fractures are sometimes induced during enhanced recovery operations in the oil and

gas and geothermal industries (Willis et al., 2007; Haimson and Cornet, 2003; Li et al.,

1998). In some hydrocarbon reservoirs the presence of natural fractures can account

for all or most of the porosity and permeability. As a consequence, knowledge of

the existence of fractures improves estimates of reserves that may be decisive in the

categorization of the reservoir. A coherent picture of the stress field and the fractures

is critical not only in reservoir evaluation but also for planning the development of the

field more efficiently. The permeability anisotropy introduced by the fractures has

to be considered in well placement and infill drilling to optimally drain the reservoir

(Sayers, 2007).

These two applications (proper reservoir evaluation and optimization of drilling

paths) are specifically related to two fracture properties: the fracture intensity or

degree of fracturing, which determines the storage capacity of naturally fractured

reservoirs along with primary porosity (Aguilera, 1998); and the fractured orientation,

which dictates the preferred direction of fluid flow. Fracture spacing (or density) in

naturally fractured reservoirs is another relevant property. Typical calculations of

fracture permeability and porosity are both proportional to the ratio of the width

of the fractures to the distance between fractures (Nelson, 2001). Fracture spacing

also determines how quickly oil (or gas) moves from the matrix into the fractures and

enters the calculation of optimal drilling direction of slanted wells (Bratton et al.,

2006).



1.1 Objective and Approach

The objective of this research is to determine in situ stress and fracture properties

from a variety of geophysical data. We approach this problem in a practical fashion

looking into strategies and methodologies to characterize the stress state and the

fracture network in reservoirs. Characterization of in situ stress is understood here

as the quantitative description of principal stresses in terms of their magnitudes and

orientations. Similarly, the characterization of fractures has a wide scope involving

the detection of fractures and the quantitative estimation of fracture orientation, size,

spacing, intensity, aperture, compliance, fluid properties, and so forth.

The problem that we face in order to achieve this objective is mainly related to

resolution differences among the various types of data utilized, which range from

macroscopical failures and cracks around boreholes, to seismic scattering signals, to

stress distributions in extensive tectonic regions. Fracture or stress estimations from

borehole logs can be verified with core data or direct observations (e.g. image logs)

and experiments in the borehole environment (e.g. microfracturing, leak-off tests).

However, it is well known that the stress field, thus the fracture properties, change

with depth and spatially (Bruno and Winterstein, 1994). Therefore, we would like to

investigate lateral changes in the state of stress, away from the well. In order to accom-

plish this task, we complement the characterization of the stress field near boreholes

with the characterization of naturally fractured reservoirs using multi-offset/multi-

azimuth surface seismic data.

In this thesis an implicit reciprocity between the in situ stress and the fracture

system is assumed. This is a common assumption supported by experimental data

(Bourbie et al., 1987; Lo et al., 1986). Crampin et al. (1984) establishes that the

widespread anisotropy observed in the upper crust is largely caused by cracks aligned

by the stress field. Nelson (2001) discusses the interpretation of fracture system origins

based on the premise that the natural fracture pattern depicts the local state of stress

at the time of fracturing and, conversely, that any physical or mathematical model of

deformation that depicts stress or strain fields can by various levels of extrapolation



be used as a fracture distribution model.

The ideas developed in this thesis are applied to field data from two fractured

areas: The Macal Field in northeastern Venezuela and the Lynx Field in western

Canada. There are many similarities between these two fields. Both are located in

the foothills of mountain systems as part of foreland basins bounded by Thrust Belts.

In these areas, the crystalline basement and the geological structures are similar.

Tectonic processes have primarily reverse-faulted the sedimentary strata in both cases.

Both fields are relatively close to plate boundaries (120 Km in the Venezuelan case and

about 500 Km in the Canadian case). Both are onshore fields and the reservoir rocks

are sandstones. However, sandstones from the Naricual formation in Venezuela are

younger (Oligocene) than the Cadotte reservoir in Canada (Aptian-Albian) and they

are found at different depths (Naricual is deeper). In terms of the fluid type, Cadotte

(in the Lynx Field) is a tight-gas sandstone, whereas Naricual (in the exploratory

Macal Field) is expected to be an oil bearing sandstone.

1.2 Outline

The thesis is divided into 6 chapters.

Chapter 2 addresses the problem of extracting stress information from well data.

It is a study of in situ stress in northeastern Venezuela. In situ stress is characterized

in orientation and magnitude from two types of borehole data. The borehole mea-

surements are then compared with a regional model of stress distribution based on

the plate motions.

Chapter 3 addresses the problem of extracting fracture properties from seismic

data. Seismic scattering off discrete fracture networks is studied using numerical

models of wave propagation. A new methodology is proposed to detect and charac-

terize fractured reservoirs in terms of fracture orientation and spacing.

The ideas presented in chapter 3 are demonstrated by a field application to frac-

tured reservoirs in the Lynx Field which is described in chapter 4. A great part of

chapter 5 is dedicated to the important issue of pre-processing the seismic data in



order to separate fracture effects from fold artifacts. Seismic scattering methods used

to study fractured reservoirs are evaluated and compared in chapter 5.

1.3 The Stress Field

Within the lithosphere, the principal stress axes are, in general, oriented horizontally

and vertically (Zoback and Zoback, 1989). SHmax describes the maximum principal

horizontal stress and Shmin the minimum principal horizontal stress. The vertical

principal stress, Sv, is the stress induced by the weight of the overlying rock. Typically

in the Earth, the vertical stress is the greatest of the principal stresses, however, there

are some areas, particularly at plate boundaries, where tectonic processes take place

and one or both horizontal stresses can exceed the vertical (Zoback, 2007). The

relative values of stresses determines which kind of faults are more likely in a region:

in areas of normal faulting, Sv > SHmax > Shmin; in areas of strike slip faulting

SHmax > Sv > Shmin; and in areas of reverse faulting SHmax > Shmin > Sv

(Anderson, 1951).

1.4 Fracture Corridors

In this thesis we attempt to extract fracture properties from the scattered waves,

also known as coda waves, which are generated by fractures comparable in size to

the seismic wavelengths (Lynn, 2004a; Willis et al., 2006). In geology, such features

are known as fracture corridors. Fracture corridors are zones of fracture clustering

that consist of parallel, usually sub vertical fractures. In fracture corridors, joints

are typically spaced a few meters to hundreds of meters, and they can extend from

hundreds of meters to a few kilometers (Ozkaya et al., 2003). Such dimensions dis-

tinguish fracture corridors from the diffuse micro-fractures and from fault systems

which are in many cases structures of regional character. Fracture corridors provide

fluid flow paths; therefore, detecting their existence and extracting their properties is

relevant in the assessment of fractured reservoirs.



We shall frequently refer to fracture corridors throughout this thesis as fracture

systems, fracture networks, fracture sets, or multiple fracture sets.



Chapter 2

In Situ Stress from Borehole

Measurements and Plate Tectonic

Models

There are well established methods to measure the in situ stress field; among them,

overcoring, strain recovery methods, breakout analysis, extended leakoff tests, and

earthquake focal plane mechanisms (e.g. Ljunggren et al., 2003; Zoback et al., 1986).

Different evidence of stress can be found in well data. To determine stress orientation

from well data, caliper dipmeter and image logs record the deformed state of the

borehole and thus contain stress information (Moos and Zoback, 1990; Plumb and

Hickman, 1985). Borehole guided waves recorded in VSPs (Barton and Zoback, 1988)

and in sonic logging (Sinha and Kostek, 1996) have also been used successfully to

estimate stress directions. Few practical methods exist, however, to estimate stress

magnitudes from well data. Simple, but weak, assumptions are frequently made- for

example, horizontal stresses are considered equal and related to the vertical stress

by a function of Poisson's ratio. Such a relationship assumes that no deformations

take place in the horizontal plane. Hydrofracture experiments provide reliable stress

magnitudes as well as orientations, but this technique, being expensive and formation

damaging, must be limited to specific locations. Zoback et al. (1985) determined the

magnitude of horizontal principal stresses from measurements of the breakout shape



in borehole image logs. Estimations of stress magnitudes have also been attempted

from acoustic data. Huang (2003) implemented a multifrequency inversion of borehole

flexural and Stoneley wave dispersions based on a perturbation theoretical framework

(Sinha et al., 1994; Sinha and Kostek, 1996), and applied it to a particular log of slow

formations.

In this chapter, stress information (orientation and magnitude) around a bore-

hole is obtained independently from caliper data and cross-dipole well logs. Well

data comes from a location in Venezuela. Stress distribution is also obtained from

a regional scale model (section 2.4). First, the field data are presented and the rock

parameters, needed for the stress calculations, are derived in section 2.1. Following

this, the methodology applied to infer stress orientation and magnitudes where the

borehole is deformed is described (section 2.2). In section 2.3, we describe a second

method to determine stresses; this method is appropriate for the intervals where the

borehole is not deformed.

2.1 Field Data

A whole suite of logs at an inland borehole location of the Macal field in northeast

Venezuela is available for the present analysis. This field is in the Eastern Basin of

Venezuela, in the province known as the Maturin Subbasin. The well is on the north

flank at the foothills of the mountain ranges known as "Serrania Oriental del Interior"

(figure 2-1). The tectonically complex environment includes compressional structures

formed as a consequence of the still active oblique collision of the Caribbean and the

South American Plates. The location is affected by tectonic elements such as the

Pirital overthrust system (south) and the Urica system of ramps (west).

The four-arm dipmeter tool provides two perpendicular measurements of the bore-

hole diameter. One pair of arms align with the long axis and the other with the short

axis in the case of a borehole of non-circular cross section. The determination of

the azimuth of the elongated side is possible since the dipmeter includes a tool that

measures the sonde orientation with respect to magnetic North everywhere downhole.



Figure 2-2 shows two sections of the wellbore where conditions are different. Apart

from some rugosities and minor washouts, the borehole between 6500 and 8500 ft

can be considered stable, with no failures or "in gauge," its diameter being close to

the bit size (12.25 in). This is the type of section where the second method based

on the dispersion of cross-dipole waveforms, will be implemented. In contrast, on the

right of the same figure, two perpendicular diameters are shown between 9000 and

12000 ft. The borehole wall has washout areas and cavings. At some depths, one

diameter is significantly larger than the other, indicating that the borehole shape has

a certain ellipticity. We shall apply the method based on borehole deformation to

estimate stresses in sections with these characteristics.

The dipmeter tool rotates as it moves uphole, which is evident from the tool

orientation on the right of both intervals in figure 2-2. In the stable case, the tool

completes about four full rotations in 2000 ft, whereas in the second section it barely

rotates more than once over the same distance. The depth of the cavings into the

formation interrupts the normal tool rotation.

In the following calculations, several formation properties are required. For in-

stance, the model of in situ stress requires various inputs: elastic constants, pore

pressure, fluid pressure in the borehole, and rock compressive strength at every depth.

The dynamic elastic constants are derived from the P-wave velocity (Vp), shear wave

velocity (V,), and rock bulk density (p) using equations:

3V2 - 4V2
E = pV2  2 - 4V (2.1)-V2 - V2

2(V2 - V2)

where E and v refer to Young's modulus and Poisson's ratio respectively.

In the earth, rock deformation takes place under static conditions. Therefore,

static, rather than dynamic moduli are needed for the modeling. In order to obtain

static parameters from dynamic measurements, several empirical relationships, have

been reported. The static Young's modulus is calculated in this study using the

procedure in Fjaer (1999) developed for weak sandstones. On average, the static-



dynamic ratio is about 0.65 for these data.

The compressive strength (Co) can be computed from well logs using the Coates

and Denoo (1981) empirical relationship for consolidated rocks which is based on the

Mohr-Coulomb failure criterion:

cos9
Co = 50000EsK(0.008Vsh + 0.0045(1 - Vsh))1 _ (2.2)1 - sin0

where E8 and K, are the static Young's and bulk modulus, given in 106 psi, and

0 refers to the angle of internal friction which is a function of rock consolidation

(400 is suggested for sandstones). Vsh is the shale volume that can be computed

from the gamma ray log. In general, log-derived compressive strength would require

further calibration with core data. Static Young's modulus, Poisson's ratio, and rock

compressive strength are shown in figure 2-3.

The variation of pore pressure with depth is assumed equal to the hydrostatic

gradient (10 MPa/km), and the vertical stress is estimated from the integrated weight

of the overburden:

S= p(z)gdz (2.3)

Pore pressure, drilling mud pressure, and vertical stress are shown in figure 2-4.

Calculated properties at a few specific depths are extracted in table 2.1.

As input to the second method, cross-dipole data are necessary. Cross-dipole

acoustic information in this well is measured with the DSI1 tool. This type of acqui-

sition consists in alternating the firing of the upper and lower dipole sources, which

are oriented orthogonally, and also alternating the recording in the inline and crossline

receivers (figure 2-5). In this way, four sets of 8 traces each are generated: (1) up-

per dipole source-inline receivers, (2) lower dipole source-inline receivers, (3) upper

dipole source-crossline receivers, and (4) lower dipole source-crossline receivers. The

two middle sets are called the cross-components. The crossline receivers are oriented

parallel to the upper dipole source, whereas the inline receivers are oriented parallel

to the lower dipole source. The sampling interval is 40 psec, and the sources oper-

'Dipole Shear Sonic Imager, mark of Schlumberger



ate at low frequencies (with peak frequency around 2 kHz). The phase difference

introduced by the separation of the sources and the delay between firings is corrected

for in the field (B. Sinha - Schlumberger-Doll Research, personal communication).

The main borehole wave recorded at such frequencies and with this source symmetry

(dipole) is the flexural mode. This wave is dispersive at logging frequencies.

2.2 Method I: Borehole Deformations

In order to infer the stress field, the first method uses the observations of the borehole

cross-sectional area at every depth level. This information is obtained from standard

caliper tools, four- or three-arm dipmeter tools, or image logs. 2

The borehole can present instabilities as a consequence of one or several processes

acting together, such as chemical reactions between mud components and some for-

mation minerals; time-dependent changes in pore pressure; well deviation; high angle

of penetration relative to bedding dip; reinitiated fractures, and so forth. In particu-

lar, the wellbore can deform as a response to stress. These special deformations are

referred to as "breakouts" in the oil industry. Breakouts are localized compressive

shear failures.

Breakouts occur symmetrically (1800 apart), and at a consistent azimuth through-

out the well section corresponding to the minimum horizontal (principal) stress and

the maximum concentration of compressive stress near the borehole. Since the bore-

hole diameters and their orientation can be measured at every depth, these data

provide a means of estimating principal stress directions.

The occurrence of stress-induced failures around a borehole is explained in terms of

the hoop stress accumulation relative to the strength of the rock surrounding the well.

Stresses around a circular hole in a homogeneous, isotropic, elastic plate subjected to

maximum and minimum effective stresses in the far field and a fluid pressure in the

2Image logs provide a 360o ultrasonic or resistivity image of the borehole wall.



hole are given by:

1 R2  1
r (SHmax + Shmin)(1 - ) + (SHmax - Shmin)...

R 2  R4  APR2

... (1-4 2 +3 4 ) cos(20)+ R2

1 R2  1
= -(SHmax + Shmin)(1 + 7) - (SHmax - Shmin)... (2.4)

2 r 2
R 4  APR2

...(1 + 3R 4 ) cos(20 ) - 2

r r
1 R2  R4

TrO = - (SHmax + Shmin)(1 + 2 - 3 -) sin(20)
2 r 2  H

(Jaeger and Cook, 1979); where Yr is the radial stress, as is the circumferential stress,

Tr is the tangential shear stress, R is the radius of the hole, 0 is the azimuth measured

from the direction of SHmax, and AP is the difference between the fluid pressure

in the borehole and that in the formation (positive indicates excess pressure in the

borehole); SHmax and Shmin refer to the effective horizontal stresses, that is, the

stresses supported by rock and pore fluid.

Hoop stress is defined by equation 2.4 when r = R. Figure 2-6 shows the variation

of hoop stress as a function of azimuth for different values of SHmax and Shmin.

Hoop stresses are maximum at 900 and minimum at 0O:

aoo = 3Shmin - SHmax - AP

a9 0o = 3SHmax - Shmin - AP (2.5)

Failure occurs when the strength of the rock is exceeded by the concentrated stress.

For instance, if the rock had a strength Co = 150 MPa, as shown in figure 2-6, failure

around the borehole would be restricted to the angle ranges 0 = -45' to -90' and

450 to 900, given SHmax = 2.2 Sv and Shmin = 1.25 Sv. Not to have any failures

under this stress field, the rock has to have a compressive strength larger than 250

MPa. On the contrary, if it is as weak as 25 MPa, it will fail at all azimuths. The

function ao steepens as the difference between SHmax and Shmin becomes large.



2.2.1 In Situ Stress Elastic Model

Figure 2-6 suggests that borehole failures also contain information about the relative

magnitude of the stresses. Based on an elastic approach, we solve for the concentration

of stresses around the borehole and compare hoop stress values with rock strength.

Unless the rock column is being deformed by compaction, the deformations of

a borehole are confined to the horizontal plane, perpendicular to the borehole axis.

Such a case is represented in elasticity under the plane strain assumption where no

deformations take place in the z-direction (borehole axis), and the displacements in

x and y are only functions of x and y but not z (see appendix A).

An infinitely thin plate containing a circular hole and under plane strain represents

a borehole subjected to far field stresses. In the model, the particle displacements in

x and y (u and v) are computed at every point solving Navier's equations in static

equilibrium:

a au av a au av
S +[C• c- - C3( -- )] = 09X 9x By dy 9y 1X

a au av a au av
[C3( + )] -- [2 + C1 ] = 0 (2.6)

xr 0y x a y9 ax ay
a au av a au av

[C3 + - C2( + = 009y ay 8X az ax 9y
where body forces are disregarded, and cl, c2, and c3 are the only non-zero compo-

nents of the isotropic material constants tensor. In terms of Young's modulus and

Poisson's ratio:

E(1 - v)
(1 + v)(1 - 2v)

vE
C2 = (2.7)

(1 + v)(1 - 2v)
E

C3 = 2(1 + v)

Once the displacements are solved, the normal and shear strains in the x - y plane

are obtained by taking derivatives. To get stresses, strains and the stiffness matrix



are substituted into the linear elastic constitutive relation. Normal stresses in the

z-direction are not neglected; however, by Hooke's law shear stresses in the z-plane

vanish. The complete formulation of the governing equations modeled is presented in

appendix A.

A numerical solution of equations 2.6 at every point is found using a finite element

approximation (we use the commercial program Femlab by Comsol). Appendix B

explains the basics of the finite element method and the derivation of the finite element

equations solved in this model.

In the model, the radius of the undeformed borehole is chosen as that of the

actual well, 0.1556 m. The area is meshed with curved triangular elements that refine

towards the borehole wall. In order to obtain a stable solution, boundary conditions

must be imposed. The outer edges are considered fixed in the direction perpendicular

to the stress applied. At the same borders, forces per unit area representing the far

field stresses are specified, SHmax = Fx and Shmin = F,. Force per unit area

corresponding to the mud pressure is specified at the boundary of the hole (figure

2-7).

Stresses in porous media are dependent on fluid pressures in cracks and pores. To

take into account the presence of fluid, effective stresses are the actual magnitudes

sought. Effective stresses are related to total stresses through Terzaghi's law (Bourbie

et al., 1987); for example, the maximum horizontal effective stress is defined as:

SHmax = SH - aPp (2.8)

where SH represents the total stress, Pp is the pore pressure, and a is the Biot

constant taken as 1 hereinafter.

The modeling is performed at each depth level and iterated for different bound-

ary conditions (the far field stresses) until the hoop stress equals the rock strength

at a radial distance that coincides with the long radius of the borehole. Borehole

size is known from the 4-arm caliper measurement. Because there is a breakout at

the modeled depth, stresses are assumed to have exceeded the rock mechanical resis-



tance, leading to failure and resulting in an elongated borehole cross section. Hoop

stresses are expected to be different around the hole and maximum compressive in

the direction of the smallest stress acting in the far field.

Calculated stresses at every point in the region are related to cylindrical stresses

by the linear system (Huang et al., 2000):

1x _x
2  y2  -2xy [ r

Y x2 + y 2  2 2 2xy co (2.9)

rQxy Xy -xy x2 _ 2  TrO

A solution for displacements is obtained in cartesian coordinates and the analysis

of the hoop stress distribution requires a coordinate transformation. Hoop, radial,

tangential, and normal stress in the axial direction, are obtained solving system 2.9.

2.2.2 Results

Stress Directions

The field data are classified according to the borehole radius into sections where

the borehole is considered stable and intervals where it presents some instabilities

(i.e. one diameter is significantly larger than the bit size). In the latter case, the

orientation of the elongated size of the borehole is calculated from the dipmeter data.

After correcting by the magnetic declination and summing the contributions from

orientations separated 1800, a histogram of azimuths is plotted in figure 2-8. The

dominant azimuths are observed between 2500 and 260'. Since they are consistent on

the well section, the corresponding elongated borehole cross-sections are considered

breakouts.

At 10120 ft, for instance, the borehole has a breakout. The long diameter is 16

in whereas the minor axis length is about 13.5 in (bit size: 12.25 in). The larger

axis is at 253' with respect to the geographic north. Since breakouts align with the

minimum horizontal stress, Shmin is also oriented at 2530 azimuth. Thus, Shmin

strike is about ENE-WSW and SHmax is oriented NNW-SSE.



Stress Magnitudes

Following the procedure described, we solve for hoop stresses in the region around the

borehole for a range of combinations of maximum and minimum horizontal stresses.

The actual magnitudes of SHmax and Shmin acting on the far field are those that in-

duce the accumulation of hoop stresses greater than rock strength up to the deformed

borehole radius. The maximum horizontal stress magnitudes are varied between 0.8

S, and 1.5 S,. Shmin is increased from 0.6 S, to 1.45 S,.

For instance, boundary conditions of Shmin = 69.39 MPa and SHmax = 76.33

MPa are specified on the horizontal and vertical outer edges of a model that repre-

sents the formation at 10120 ft (parameters are specified in table 2.1). Calculated

hoop stresses are shown in figure 2-9. As expected, the maximum concentration of

stresses occurs at the azimuth of Shmin (north-south in the figure), the region that

undergoes compressive failure. Caliper data indicates that a breakout at this depth

increments the borehole radius in the direction of Shmin to about 0.204 m; that

is, about 5 cm larger than the nominal size. The short axis is approximately its

non-deformed length.

Resultant hoop stresses for such far field values are larger than the compressive

strength of the rock from the non-deformed borehole wall to a depth of about 5 cm into

the formation. Hoop stresses at the azimuth of SHmax are not enough to overcome

the strength of the rock, hence no failure is predicted at this location. Given that this

hoop stress distribution explains the observations at 10120 ft, the far field stresses

applied as boundary conditions are interpreted as the in situ horizontal stresses.

The vertical stress needs to be recomputed in order to take into account the normal

stress (equation ??). The new S, comes from the vertical stress calculated from the

overburden plus uz. In terms of the vertical stress, the relative magnitudes found at

10120 ft are SHmax ý 0.9893 S, and Shmin - 0.9134 S,.

The iterated modeling and analysis is performed every 10 ft in the breakout sec-

tions of the well. Depths where a combination of washouts and breakouts is suspected

are not modeled. Similarly, depths where the elongated size seems to be larger than



the maximum extension of the caliper tool are left out. Relative horizontal to vertical

stresses magnitudes are obtained and shown in figure 2-10. The maximum horizon-

tal stress varies between 0.91 and 1.1612 times the vertical stress, and the minimum

horizontal stress remains the smallest in the whole depth section, with values ranging

between 0.7781 and 1.0361 S,. These relative magnitudes indicate that the area is

under a combination of strike slip tectonics, in which the vertical is the intermediate

stress, and normal faulting, in which the vertical stress is the largest. Colmenares and

Zoback (2003) characterize northeastern South America with the same combination

of stress regimes.

2.3 Method II: Stress-induced Velocity Anisotropy

The second borehole method to obtain stress information is based on crossovers ob-

served in the dispersion of flexural waves as recorded in cross-dipole logs. The flexural

wave corresponds to the normal mode whose azimuthal order is 1, meaning that pres-

sures in the fluid and displacements in the solid change sign at 180' (Ellefsen, 1990).

For typical logging frequencies only the lower order radial modes are excited. The

flexural wave velocity approaches the formation shear wave velocity at low frequen-

cies and the compressional fluid velocity at the high frequency end (figure 2-11). This

wave does not possess a theoretical cutoff, but its excitation becomes extremely small

below a transition frequency leading to an effective cutoff; in practice this is at about

2 kHz.

Velocities in sedimentary rocks depend on the state of stress. They increase with

increasing effective pressures and the increment gradually becomes smaller. Such a

behavior is attributed to the increase of rigidity or stiffness of the rock matrix when

a hydrostatic compressive stress is applied.

The variations in velocity under a uniaxial stress depend on the direction of wave

propagation with respect to the direction of applied stress. Cracks, or any soft in-

clusion in the material that is preferentially aligned perpendicular to the direction of

the applied stress, close under low effective pressures and an uniaxial stress, while



cracks oriented parallel would open. As a consequence, the rock becomes stiffer in the

direction of the applied stress and waves propagating in this direction travel faster,

thus creating an anisotropic velocity field (Fjaer and Holt, 1994). Shear waves polar-

ize into a slow and a fast direction in the presence of an uniaxial compressive stress

with the fast shear wave polarization being parallel to the applied stress direction,

or equivalently, normal to the preferential orientation of fractures, pores, or grains

(figure 2-12). In the case of an homogeneous and intrinsically isotropic formation,

the elastic velocity anisotropy is attributed to the stress field (Winkler, 1997).

In the presence of a borehole, the stress distribution must adapt to the circular

boundary condition by deforming around it. The circumferential stress increases and

the maximum compressive stress concentrates in the direction where the far field

stress is less compressive. Therefore, the rock stiffness changes radially as well as

azimuthally, and elastic waves observe it. In particular, flexural waves, which travel

parallel to the borehole axis, split in the horizontal plane, and because these waves

are dispersive, they are sensitive to the radial change in properties (Winkler et al.,

1998). At low frequencies, flexural waves have long radial depth of investigation

and are not significantly affected by the stress-induced altered zone. As frequency

increases, flexural waves (and all surface modes) become localized at the borehole

wall; thus they are influenced by the near field stresses around the borehole. As a

result, the dispersion curves of flexural waves recorded by two perpendicular dipoles

are expected to cross at some frequency (figure 2-13).

An appropriate rotation of the cross dipole waveforms to the principal flexural

wave polarization maximizes the crossover and provides the angles to the fast and

slow direction. Knowing the orientation of the dipole, the direction of the maximum

horizontal stress is deduced. On the other hand, the difference in velocities at the far

field (low frequencies) in the two orthogonal directions can be compared to experi-

mental results in which shear velocity is measured as confining pressure is increased.

In such a way, assuming the vertical stress is the intermediate stress, the ratio of

the principal stresses is determined. Since the vertical stress is estimated from the

overburden, values of horizontal stress can be calculated.



Analysis of flexural wave crossover are performed in locations where the borehole

is stressed but not deformed. Crossovers are indicators of stress induced anisotropy

dominating over other sources of anisotropy.

2.3.1 Results

Stress Directions

Due to the tool rotation on its way uphole, cross-dipole data need to be rotated

at each depth in order to align the dipole's orientation with the principal axes of

anisotropy. Figure 2-13 and 2-14 show some example depths where crossovers are

observed. At these depths, the stress concentration has not exceeded the strength

of the rock. As a consequence, the borehole is stable in the sense that its original

radius is preserved. Since stress has not been released, waves in the surrounding

rock propagate with different velocities depending on the polarization direction with

respect to the orientation of minimum and maximum horizontal stresses. At these

levels we are unable to apply the first method to estimate stresses since no failure

is taking place; however, the crossover on the dispersion of flexural waves contains

information about the principal stress directions, as explained before.

For instance, at 6700 ft the crossline component is oriented in such a way that the

low frequency flexural wave arrives earlier (or travels faster) than the flexural wave

polarized in the orientation of the upper dipole source (top left plot in figure 2-14).

The upper dipole source is oriented at 550 azimuth; hence, the lower dipole is at 145'.

Before rotating the data we already know that the maximum stress direction should

not be oriented more than 900 apart from the actual position of the tool, otherwise

the upper dipole would have registered the fast component at low frequencies, and

this is not the case. Therefore, the fast direction must be limited to the range between

55' and 235' azimuth.

The dispersion curves after rotating the data using a method that minimizes the

energy on the waveforms recorded by the cross-components are also shown in figure



2-14 (bottom left).3 For the data at 6700 ft, the angle of the fast orientation is

about 320. Adding this value to the tool orientation indicates that the direction of

the maximum far field stress is 1770 (or 3570) azimuth.

The same analysis was performed at several other depths. The maximum stress

orientations obtained with this technique vary in the range between 334 and 14 de-

grees azimuth. Figure 2-15 shows minimum horizontal stress azimuth at some depths

derived from both borehole methods. Mean values agree to within 10 degrees. We con-

clude that maximum horizontal stress runs approximately NNW-SSE, hence Shmin

lies in the east-west direction.

Stress Magnitudes

The situation of one stress orientation being dominant in the Earth can be compared

to laboratory experiments where rock samples are submitted to different confining

pressures. For instance, Lo et al. (1986) measured ultrasonic P, SH, and SV wave

velocities in sample rocks of a typical granite, shale, and sandstone, while varying

the confining pressure from 5 to 100 MPa. The experiments were performed for

several directions of wave propagation. For Berea sandstone, velocities were measured

parallel, perpendicular, and at an oblique direction with respect to bedding. Samples

were not saturated. The results suggest that Berea sandstone is transversely isotropic

and therefore satisfies the condition of isotropicity required by the stress-induced

anisotropy method. Figure 2-16 shows two orthogonal shear wave velocities reported

in Lo et al. (1986) corresponding to a perpendicular direction of propagation with

respect to bedding planes. We based our next calculations on the experimental results

presented in figure 2-16.

The estimation of stress magnitudes from the cross-dipole data begins by measur-

ing flexural wave velocity anisotropy at low frequencies, that is, prior to the crossover

occurrence and where energy content peaks. Table 2.2 lists mud pressure values,

anisotropy percentages and differences between fast and slow velocity observed at

some depths.
3 Coded by Dr. Beltram Nolte and Dr. Xiaojun Huang while at ERL, MIT.



We proceed by calculating the velocity corresponding to where confining and

mud pressure are equal according to the experiments on Berea sandstone. Such

pair velocity-stress represents the intermediate stress conditions, or in this case, the

vertical stress close to the borehole. The difference in velocity measured from the

orthogonal flexural waves is centered at these coordinates in the velocity-stress plane

for the Berea sandstone and the corresponding limiting stresses are estimated. Fi-

nally, ratios between maximum and minimum stress with respect to confining pressure

are calculated. We assume these ratios to be similar to the relative magnitudes of

principal in situ stresses.

To exemplify the procedure, let us take the case depth at 6700 ft. Mud pres-

sure is 20 MPa and Berea sandstone shows a shear velocity of 2480 m/s at this

confining pressure. The anisotropy measured on the rotated cross-dipole data, as

shown in figure 2-14, is 22 m/s (at around 2 kHz, the peak frequency). This differ-

ence between fast and slow velocities translates into the velocity range 2469 to 2491

m/s for the experimental results. Confining pressures of 19.09 and 21.4 MPa are

predicted for these velocities and by taking their ratio with the mud pressure, we

obtain Shmax/Sv = 1.07 and Shmin/Sv = 0.9545. Figure 2-17 shows the results at

this and other depths. SHmax/Sv ratios vary between 1.07 and 1.2962. Shmin/Sv

ranges between 0.7788 and 0.9545. Mean values estimated are SHmax/Sv = 1.1663

and Shmin/Sv = 0.8602. With an estimation of overburden, absolute values of hori-

zontal stress can be calculated. The combined results of methods I and II are shown

in figure 2-18.

2.4 Regional Stress Model

To investigate whether the direction of the principal stresses derived from the in situ

measurements correspond to the regional tectonic stress field, an intraplate stress dis-

tribution is calculated. Only tractions at plate boundaries are considered. Therefore,

the model is purely kinematic and largely simplified by assuming constant velocities

along main boundary segments. The results (displayed in figures 2-22 and 2-23) agree



with the orientation of the in situ stresses obtained.

In order to determine the regional stress directions, a finite element solution is

computed for a model representing the relative motion between the Caribbean and

South American plates. The process is similar to the one described in section 2.2.1

except that a plane stress approximation of the elasticity equations is assumed (see

appendix A).

The plates' geometry is obtained from digital maps4 corresponding to the model

NUVEL-1A (DeMets et al., 1994). Figure 2-19 shows the model features and the

location of the well. In the same figure we have shown a map of the main tectonic

plates in the area of study. As observed, the model geometry represents fairly the

dimensions and location of the Caribbean and South American plates. Figure 2-20

depicts the finite element mesh which refines toward the boundary Caribbean-South

America.

Displacement conditions are imposed in all boundaries by solving differential equa-

tions of the form:
Bu = U (2.10)
at

where u is the displacement vector. U represents East and North components of the

velocity, assumed constant along the particular boundary (figure 2-21). Plate veloc-

ity can be obtained from global models describing the motion of a certain number of

assumed-rigid plates. These global models are in general based on the geomagnetic

reversal time scale, transform fault azimuths, earthquake slip vectors and, more re-

cently, on space geodetic measurements. In table 2.3 we have listed the East and North

velocities corresponding to plate boundary coordinates from the center of the model

edges, numbered as shown in figure 2-19. For comparison, Euler vectors from three

different global models were used in the velocity calculations: NUVEL-1A (DeMets

et al., 1994, 1990); REVEL (Sella, 2002); and the 2004 version of GSRM5 (Kreemer

et al., 2003). Edge 11, representing the limit between the South America and North

America plates is left fixed (zero displacement condition). Figure 2-22 shows the

4 http://jules.unavco.org/GMT/
5Global Strain Rate Map, http://gsrm.unavco.org/intro/



velocities from REVEL specified at the model boundaries.

At the well site the maximum compressive principal stress is oriented 33 degrees

west of north if REVEL velocities are imposed (figure 2-22). NUVEL-1A velocities

give an azimuth of 2.5 degrees for the SHmax direction while GSRM velocities, being

similar to REVEL, result in an orientation of 36 degrees west of north. The solution

is not sensitive to conditions imposed on edges far from the well, but it is highly

sensitive to the relative velocity of the Caribbean and Nazca plates. The relative

motion between the Caribbean and South America plate fits poorly with NUVEL-

1A and other models (Weber et al., 2001). However, recent GPS measurements

(Perez et al., 2001) suggest that along the San Sebastian - El Pilar fault system, the

Caribbean plate moves at a rate of 20.5 + 2 mm/yr with an azimuth of N84+2°E.

Such velocity is similar to the one assigned as the boundary condition according to

the models REVEL and GSRM. In general, NUVEL-1A velocities at edges 5, 9 and

10 are about 50% slower than the other two more recent models, which incorporate

present day rates in contrast to NUVEL-1A that averages motion over 3 million years.

Increasing the Caribbean plate velocity relative to fixed South America has the effect

of rotating the maximum stress to the west.

Nazca's velocity relative to stable South America is overestimated by approxi-

mately 15% in NUVEL-1A with respect to REVEL and GSRM. This difference has

been interpreted as a deceleration in the convergence Nazca-South America, prob-

ably related to the Andes growth initiated about 20 Ma (Norabuena et al., 1999).

Unlike the Caribbean-South America boundary zone that is characterized by a pre-

dominantly strike-slip motion, the Nazca plate subducts beneath South America.

Moreover, it has been observed that site velocities decrease from the interior of the

Nazca plate to the interior of South America (Norabuena et al., 1998) indicating that

only a percentage of the plate velocity measured at GPS stations on the Nazca plate

should be associated with the continental deformation. Norabuena et al. (1998) esti-

mate that about 50% of the overall convergence is accumulated on the locked plate

interface squeezing South America and released in earthquakes. Another 20%, i.e. 12

to 15 mm/yr, is related to crustal shortening forming the Andes. The remaining 30%



of the net convergence is associated with stable sliding of the Nazca plate.

A decrease in the velocity at the boundary Nazca-South America in our model

also rotates the direction of principal maximum stress towards the west. For instance,

a 50% decrease of REVEL velocities on edges 4 and 7 (Nazca-South America bound-

aries), rotates the orientation of maximum stress 12' counterclockwise with respect to

the orientation found previously. Therefore, SHmax azimuth falls within the range

315-327 °. Similarly, reducing GSRM model velocities yields SHmax azimuth be-

tween 314-324'. A corresponding 3190 azimuth is obtained when half of the velocity

predicted by NUVEL-1A is assigned to the Nazca-South America boundaries (figure

2-23).

In comparison with the principal stresses direction estimated from well-bore break-

outs and acoustic data, the regional model provides consistent results, that is, SHmax

is oriented NNW-SSE (figure 2-23). Combining both borehole methods, SHmax az-

imuth is observed at 3450 and this is about 20' away from the most likely direction

found with the global models. Stress orientation calculated mostly from focal mech-

anisms is available at the World Stress Map (Reinecker et al., 2005). Data corre-

sponding to events close to the well location are also indicated in figure 2-23 where

it is observed that the average SHmax azimuth estimated with this method is about

3300. Figure 2-24 shows other stress measurements in the region of our well reported

in the World Stress Map.

2.5 Summary

The orientation of horizontal principal stresses at a well location in northeastern

Venezuela has been obtained by a combination of breakout analysis and flexural wave

crossovers, and from regional stress models calculated from plate motions. Borehole

methods give the maximum horizontal stress direction to be slightly west of north.

Specifically, breakouts indicate that SHmax is oriented at 345±+5 azimuth (measured

clockwise from North), whereas the range derived from crossdipole data rotation is

wider, between 334 and 140.



One of the main advantages of doing this kind of integrated data analysis is that

flexural waves can provide stress information in those places where breakouts do not

occur. Maximum stress direction from regional stress models ranges from 3140 to

2.50 azimuth, depending on plate motion constraints. The regional stress model is

most sensitive to the velocities of the Nazca Plate and of the Caribbean Plate. In

conclusion, all methods suggest that SHmax is oriented NNW-SSE, approximately

perpendicular to El Pilar fault. Yale (2003) relates velocity anisotropy to the dif-

ferential horizontal stress. According to this paper the anisotropy we observed, in

average 3.4%, would classify this area as one of high differential horizontal stress. In

regions of high differential horizontal stress small scale faulting affects the regional

trends only in an area within a few hundred meters of the fault which would explain

the consistency found in the orientation of stresses.

The magnitudes of horizontal stresses obtained by modeling stress distributions

around the borehole and matching the static deformed state suggest that the interme-

diate stress is the vertical. Stress ratios determined by comparing velocity anisotropy

with stress differences in experiments on Berea sandstone confirm that horizontal

maximum stress and minimum stress magnitudes are about 1.1 and 0.9 times the

vertical stress, respectively.



Table 2.1: Formation parameters at various depths. Static Young's modulus (E,) is
in GPa; pore (Pp) and mud pressure (Pmud), vertical stress (S,), and strength (Co)
units are MPa. Rmax refers to the maximum borehole radius in meters and v to
Poisson's ratio.

Depth[ft] E, v ] Co Pp Pmud S, Rma
5610 24.33 0.32 40.85 17.11 16.84 39.8 0.18073
5815 33.03 0.2296 45.91 17.74 17.45 36.03 0.1594
6700 38.21 0.2107 75.45 20.44 20 42.89 0.1619
7100 44.59 0.1839 78.28 21.66 21.68 45.97 0.1652
7510 32.64 0.248 61.5 22.91 22.81 54.2 0.1715
8680 32.24 0.2781 66.26 26.47 26.02 58.19 0.1593
8760 39.57 0.233 52.44 26.72 26.26 58.81 0.18013
9330 42.95 0.128 65 28.46 28.43 68.13 0.18784
10120 29.55 0.31 57.03 30.87 31.02 69.4 0.20399
10980 31.69 0.266 55.05 33.49 33.42 80.75 0.25899
11700 43.12 0.182 61.98 35.69 35.58 81.75 0.23847
12130 38.23 0.29 86.28 36.89 36.99 89.64 0.20259
12750 33.98 0.2524 55.05 38.89 4099 89.88 0.1604

Table 2.2: Velocity anisotropy at the far field and mud pressure (MPa) at some
crossover depths

Depth[ft] Anisotropy % AV, m/s Pmud
5815 2.78 56 17.45
6115 1.86 44 18.56
6490 2.44 44 19.72
6700 0.897 22 20

6772.5 2.89 80 20.39
7000 5.12 99 21.37
7100 3.41 89 21.68
7445 10.44 255 22.62
7500 4.43 99 22.78
8000 1.5 36 24.35
8120 4.78 117 24.82
8280 2.51 66 25.18
8680 2.45 47 26.02
12750 2.46 49 40.99



Edge # Description REVEL N REVEL E GSRM N GSRM E NUVEL-1A N NUVEL-1A E
1 CA-CO 72.69 32.4 72.69 32.4 70.95 37.54
2 CA-NA 5.04 18.45 5.1 18.01 1.84 11.27
3 CA-NZ 12.52 28.67 10.26 29.07 14.09 47.05
4 NZ-SA (north) 14.06 66 12.82 63.74 16.76 76.93
5 CA-SA (west) -2.27 21.63 -0.8 20.97 -1.87 14.15
6 SA-AN (west) 1.97 18.68 0.09 16.53 1.05 20.38
7 NZ-SA (south) 11.53 69.15 10.56 65.51 14.16 78.32
8 SA-ST 2.48 15.45 4.47 4.35 2.6 4.98
9 CA-SA (central) 0.71 20.04 1.84 19.56 0.3 13

10 CA-SA (east) 2.17 18.33 3.13 18.05 1.37 11.78
12 SA-AF (north) -1.96 -25.43 -1.75 -26.03 -1.5 -28.35
13 SA-AN (southeast) -2.35 -12.43 0.8 -12.38 -0.66 -15.88
14 SA-AF (northeast) -4.23 -27.66 -3.73 -28.01 -4.06 -30.88
15 SA-AF (southeast) -6.53 -29.83 -5.74 -29.32 -6.69 -33.52
16 SA-AF (southeast) -7.52 -27.18 -6.62 -26.32 -7.85 -30.68
17 SA-AF (northeast) -6.64 -29.83 -5.84 -29.75 -6.82 -33.41

Table 2.3: North and East plate velocities and boundary conditions used in the regional stress models. All velocities are in
mm/yr. CA: Caribbean, CO: Cocos, NA: North America, NZ: Nazca, SA: South America, AN: Antarctic, ST: Scotia, AF:
Africa
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Figure 2-4: Vertical stress computed from the weight of the overburden (in black).
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drilling mud pressure (blue); and the lithostatic gradient of 25 MPa/Km (green).
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Figure 2-13: Example depths where crossovers in the dispersion curves of dipole data
are observed. Black plus signs are used for the dispersion obtained from the inline
component (xx). Blue dots correspond to the crossline component (yy). The flexural
dispersion curves are expected to cross at some frequency when an anisotropic stress
field is superimposed on an isotropic or weakly anisotropic rock formation. As indi-
cated on the 7000 ft dispersion plot (top right), the shear-wave component polarized
parallel to the maximum stress direction is the fastest at low frequencies. In this case,
the crossline component is aligned parallel to the maximum stress direction. At high
frequencies, hoop stresses are more compressive 900 away, which is the polarization
direction of the inline component (xx), thus becoming the fastest.

62

2R80l

2800

2600

2400

S2200

3 2000

1800

1600

18 1.9 2 2.1
frequency [kHz]

7100 ft

22 23

3200

3000

2800

2600

2400

2200

2000

1800

1600

1

-.- g ------- i-
------ ---- ----------- ----------- ---------- -----------

----..e- ---1" !i N .......
---------;--. .-. -- -- --- .---------- ........
........... ........... ----------- ...........

........... ----------- ----------- ........... ---------....

.---------------------------------- ----------- ------------ ------------ ----------- ---- --
-- ---r -----------r..--------- I ------- --- -----------

VHH1

fi •D/ i i i i |

----- -...

......... .. ....... ........... .. ..... ....- -------- -- ----- ------ --------------

--------- --------------------------- ------- ---------

-------------------------- ---- ----- - ---

, A-- A l

14UU --

m

811 ft 7000 ft

m

66



Amplitude spectra xx component

6700 ft (rotated)

23 24

It

S

S

Figure 2-14: Processing results at 6700 ft, a depth where a crossover of the inline
and crossline components is observed (top left). At the bottom left, the inline and
crossline dispersion curves of the flexural mode are rotated the to the principal axes
of stress anisotropy. The effectiveness of the rotation can be verified in the lower
right plot where the cross-component (xy) is plotted before (black) and after rotation

(red). Energy of the flexural wave is minimized in all receiver signals. The velocity
anisotropy is measured at peak frequency which is around 2 kHz as indicated by the
frequency spectrum of the inline component (xx) in the figure at the top right.
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Figure 2-15: Shmin azimuths obtained from cross-dipole data rotation (magenta).
The orientations computed from breakouts are displayed with blue stars. Shmin
direction is well constrained from these two measurements to be around 2600, giving
a dominant strike E10N-WO10S.
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S-wave velocities in Borea sandstone (Lo et al.,1986)
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Figure 2-16: Shear wave velocities with increasing confining pressures measured per-
pendicularly to bedding planes in Berea sandstone at two orthogonal transducers.
Data from Lo et al. (1986).
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Stress ratios from method II
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Figure 2-17: Ratios of maximum (green) and minimum (blue) stress to vertical stress
estimated from stress-induced velocity anisotropy at crossover depths. Experimental
data used as base of comparisons are elastic velocities of Berea sandstone reported in
Lo et al. (1986).
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Figure 2-18: Principal stresses magnitudes vs. depth. Vertical stress is plotted in
black. Horizontal stresses derived from the elastic model are shown in red (maximum)
and blue dots (minimum). Equivalent results from shear velocity anisotropy are
plotted with plus signs.
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Figure 2-19: Geometry of the regional stress model. The model is a 2D (map view)
representation of the Caribbean and South America plates. The well location and
the numbering of the model boundaries are indicated.
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Figure 2-20: Finite element mesh of the regional stress model.
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Figure 2-21: Boundary conditions corresponding to velocities from the global model
REVEL. Arrows' length is proportional to velocity magnitude at the plate boundary
location. The surface plot shows total displacement. Units are 1010 mm.
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Figure 2-22: Principal stresses direction around the well location for REVEL velocities
imposed at the model boundaries. Red arrows represent maximum horizontal stress.
Minimum stress orientation is indicated in gray.
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Figure 2-23: SHmax direction. Breakout data (BO) indicate that SHrnax azimuth
is in the range 340-350'. SHmax azimuth obtained from crossovers (XO) is between
334 and 14'. Maximum stress orientation according to the regional stress models are
indicated in blue. The western limit of the three models correspond to results when
Nazca's velocity is reduced in 50%. NUVEL-1A, REVEL and GSRM velocities give
SHmax azimuth ranges of 319-2.5', 315-327' and 314-324' respectively. In green,
a range of SHmax azimuths obtained from focal mechanisms (FMS) in the World
Stress Map (304-357').
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Chapter 3

Analysis of Seismic Scattering to

Estimate Reservoir Fracture

Properties

This chapter reports some of the results of our recent research in characterizing frac-

tured reservoirs using surface seismic data.

The detection of reservoir fractures using seismic methods has been traditionally

based on effective medium theories that assume fractures in a rock mass are much

smaller than the wavelengths, and their effects are distributed throughout the bulk.

Nowadays well-developed techniques to characterize fractured reservoirs include the

processing of converted waves, AVOA analyses of P wave, NMO ellipticity, and others

(e.g. Perez et al., 1999; Lynn, 2004a,b; Ata and Michelena, 1995). In these techniques,

the medium, composed of rock and fractures, is described by an equivalent anisotropic

medium. Therefore, effective medium approaches are convenient to study the seismic

response of microcracks.

Another approach consists of accounting for the fractures as discrete inclusions in

the medium. Discrete approaches are valid in the limit where the seismic wavelength

is comparable to the fracture dimensions. The normal resolution of seismic waves at

depths of common reservoirs is 20-100 Hz which corresponds to wavelengths on the

order of 10 to 300 m for typical rock velocities. Therefore, discrete approaches are



convenient to study the seismic response of large joints (macrofractures) and fracture

corridors.

Numerous modeling (e.g. Groenenboom and Falk, 2000; Nihei et al., 2002; Yi

et al., 1998; Vlastos et al., 2003; Willis et al., 2006) and laboratory experiments

(e.g. Pyrak-Nolte et al., 1987; Xian et al., 2001; Nihei et al., 1999; Pyrak-Nolte and

Roy, 2000; Pyrak-Nolte et al., 1990; Hsu and Schoenberg, 1993; Groenenboom and

Falk, 2000) have been done in order to understand the seismic response of discrete

fractures. These studies have significantly increased our knowledge about the wave

propagation phenomena developed around a single fracture and multiple sets of frac-

tures. The wave phenomena that take place in these situations have been revealed as

a combination of seismic scattering and wave guiding.

In 3D models of multiple sets of fractures, the waves generated by the fractures

appear as coda waves (Willis et al., 2006; Vlastos et al., 2003; Nakagawa et al.,

2003). In standard signal processing, coda waves are often considered noise. However,

the apparent noise is indeed a complicated effect of the presence of fractures in the

wave paths. As such, it contains valuable information about the fracture geometry

and properties. In order to extract some of this fracture information from the coda

waves, Willis et al. (2006) presents a practical methodology, called the Scattering

Index method. To our knowledge, this is the only method that exists heretofore to

systematically detect fracture corridors and estimate their preferred orientation from

3D field data. The SI method is explained in section 3.6.

In this chapter, we develop another methodology to characterize fracture corri-

dors. The proposed method, called the F-K method, estimates the mean spacing and

orientation of fracture corridors from the spectral response of coda waves. Details of

the F-K method are presented in section 3.4; and both methods, (F-K and SI), are

applied to a field dataset in chapter 5.

Various numerical models containing vertical periodic fractures are also discussed

throughout this chapter. The numerical simulations serve for three purposes: (1)

to demonstrate the general wavefield that develops around multiple parallel discrete

fractures (section 3.2), (2) to study the characteristics of the fracture signals in the



frequency-wavenumber domain (section 3.3), and (3) to understand the sensitivity

of these fracture signals to different fracture properties (section 3.5). The follow-

ing section, (section 3.1), explains the theoretical framework and modeling approach

adopted in these numerical experiments.

3.1 The Discrete Fracture Model

In order to find wave solutions when elastic media are in contact, different boundary

conditions can be imposed on the tractions and displacement field, depending on

the particular wave phenomenon under study. Free surfaces and welded contacts are

examples of these boundary conditions. Discrete fractures embedded in a rock mass

can be explicitly expressed using a special boundary condition, known as the linear slip

condition (Schoenberg, 1980). Unlike perfectly bonded interfaces (welded), the linear

slip condition is considered an imperfect bonding condition because displacement

across the surface is not continuous. Instead, the displacement jump (Au) across

the interface is linearly related to the traction (T) through the fracture stiffness (K)

(Schoenberg, 1980):

7 = Knu (3.1)

The linear slip model is also referred as the displacement-discontinuity model.

This model predicts velocity, amplitude, and phase differences measured when seis-

mic waves propagate through fractured samples (Pyrak-Nolte et al., 1987; Hsu and

Schoenberg, 1993). The matching of the experimental observations is attained be-

cause the displacement-discontinuity theory predicts a frequency dependent seismic

response. In other words, the effective velocity of the rock plus fractures, as well as

the reflection and transmission coefficients, are function of frequency. These quan-

tities are also dependent on the contrast of fracture stiffness to medium impedance

and on the fracture length or number of fractures per unit length (Schoenberg, 1980;

Pyrak-Nolte et al., 1987; Pyrak-Nolte, 1996).

In order to describe fractured media using the linear slip deformation model,

Schoenberg and Sayers (1995) develop an effective medium theory in which the effec-



tive compliance of a fractured rock is expressed as the sum of the unfractured rock

compliance, plus an excess compliance per each set of aligned fractures. When the

fractures are planar and parallel, the components of the fracture system compliance

tensor are related to jump discontinuities in the displacements. If the set of fractures

is rotationally invariant, the compliance is only a function of its shear and normal

components. In the presence of just one set of fractures in an isotropic background,

the medium becomes transversely isotropic with its symmetry axis perpendicular to

the fractures. In this case only five parameters are needed to define the effective

medium: the Lame parameters of the host rock (A and p) and the two fracture

compliances. Fracture normal and tangential compliance can be calculated experi-

mentally (Hsu and Schoenberg, 1993) or related to microstructural parameters like

crack aspect ratio, density, and saturation (Liu et al., 2000; Schoenberg and Douma,

1988).

The displacement-discontinuity theory has been used to examine the properties

of guided waves between two parallel fractures (Nihei et al., 1994, 1999; Xian et al.,

2001; Pyrak-Nolte and Roy, 2000) and to build models of wave propagation in the

presence of multiple parallel fracture sets. The simulations of fracture scattering

assume different numerical techniques, including the pseudospectral method (Vlastos

et al., 2003), a hybrid method combining the finite element and plane wave methods

(Nakagawa et al., 2003), and finite differences (Yi et al., 1997, 1998; Daley et al., 2002;

Nihei et al., 2002; Willis et al., 2006). In particular, implementation of the linear

slip model in finite differences is simplified using the Coates and Schoenberg method

(Coates and Schoenberg, 1995), in which all grid cells containing the fracture interface

are replaced by grid cells with modified properties estimated with the homogenous

equivalent medium discussed above. The resulting line of grid cells represents a

layer whose width corresponds to the size of the grid cell and whose elastic stiffness

is replaced by some appropriate anisotropic stiffness that try to mimic the same

scattering behavior of the linear-slip interface.



3.2 Modeling of Wave Propagation Through Frac-

ture Corridors

We are interested in studying the effects of fracture corridors on the seismic wave

propagation. In this section, fracture scattering is analyzed through synthetic models

generated with the ERL's in-house seismic modeling code (ERLSMP).' ERLSMP is

a 3D elastic and anisotropic finite-difference code. It is based on a velocity-stress

formulation of the wave equation which is discretized in a standard staggered grid.

The approximation uses an explicit operator, 4th order in space and 2nd order in

time (Krasovec et al., 2003).

Discrete fracture zones are modeled following the Coates and Schoenberg's ap-

proach (Coates and Schoenberg, 1995). As explained above, this approach allows

the implementation of discrete fractures in a finite difference numerical framework.

Fractures of negligible thickness relative to the seismic wavelengths are represented

by assigning an effective anisotropic stiffness tensor to one or several cells in the finite

difference grid. Grid size is 5 m for all the models discussed hereinafter.

The Coates and Schoenberg's method is a simplifying approach to model the

very complicated wave propagation that takes place around a real fracture, including

reflection, transmission, and diffraction of body waves and of guided waves. This

approach attempts to model the gross effects of these phenomena but will not match

all of them. For instance, a Rayleigh wave, propagating mainly along the fracture

surface, re-diffractions of this wave at the tips of the fracture, and a slow channel wave

propagating in the fluid inside the fracture have all been identified in other numerical

experiments using a different modeling approach (Groenenboom and Falk, 2000). The

slow channel wave cannot be modeled using Coates and Schoenberg's method because

fractures are represented by interfaces with a vanishing width. Typical roughness of

the fracture surfaces and presence of cementation material, among others, would

increase the complexity of the propagation phenomena even more.

'Earth Resources Laboratory Seismic Modeling Project



3.2.1 1-Fracture 2D Model

In order to explain the first order effects of fracture corridors on the seismic wave

propagation, we start with a relatively simple 2D model shown in figure 3-1. The

model consists of three isotropic horizontal layers with typical sedimentary rock ve-

locities and densities listed in table 3.1. The middle layer contains a vertical fracture

simulated by an anisotropic medium with horizontal symmetry (HTI). It is one col-

umn of single grid cells as tall as the layer thickness (200 m). The velocities of the

fractured layer are plotted as a function of incident angle in figure 3-2. As it can be

seen in this figure, the P-wave velocity of the fractured zone in the layer is slower than

the P-wave velocity of the background at all incident angles. The fractured medium

supports two shear waves with orthogonal particle motions and velocities that also

vary with the angle of incidence. The anisotropic elastic coefficients assigned to the

fractured zone are equivalent to having fractures with normal and tangential compli-

ances of 4 x 10'Pa/m.

A point source is located at the center of the model, close to the surface. The

source is represented by a Ricker wavelet with center frequency 40 Hz. Two compo-

nent (x,z) and pressure receivers are located every 5 m on both sides of the source.

The vertical component (velocity) recorded is shown on the leftmost panel in figure

3-3. The divergence and curl components of the modeled data are also shown. By

plotting the divergence and curl, we split the compressional and shear energy received

at the surface. The equivalent shot records obtained from the same model but without

the fracture are shown for comparison in figure 3-4. All the records in these figures

were muted to remove the direct arrivals.

The most prominent waves generated by the horizontal interfaces are denoted by

the following numbers on the non-fractured model records in figure 3-4:

1. The P wave reflected from the top of the second layer (PP). This wave arrives

at around 0.11 s at zero offset.

2. The converted shear wave at the top of the second layer (PS). This wave arrives

at around 0.15 s at zero offset.



3. The P wave reflected from the bottom of the second layer as a P wave (PPPP).

This wave is recorded at zero offset at around 0.21 s.

4. The waves transmitted into the second layer as P (or S) and reflected at the

bottom of the second layer as S (or P). On the way up, they are transmitted

into the first layer as P waves (PPSP and PSPP). Because they travel as the

slower shear wave one way in the middle layer, they are slightly delayed with

respect to the PPPP wave (0.25 s).

5. The wave traveling as a P wave until it converts to S as it re-enters the top layer

(PPPS). It arrives at about 0.26 s at zero offset. This wave is received at the

surface as a shear wave and therefore it has a strong curl component, similarly

to the PS wave.

6. The wave traveling as only P wave in the first layer and as only S wave in the

second layer (PSSP). It arrives at around 0.28 s.

7. The waves transmitted into the second layer as P (or S) and reflected at the

bottom of the second layer as S (or P). On the way up, they are transmitted

into the first layer as S waves (PPSS and PSPS). These waves are also better

observed in the curl component. Their arrival time is approximately 0.29 s at

zero offset.

8. The P wave generated at the source point is transmitted as a shear wave into

the second layer. It propagates the rest of the way as a shear wave and therefore

is the slowest, arriving at approximately 0.32 s (PSSS).

Figure 3-5 shows the seismograms obtained by taking the difference between the

data from the fractured and non-fractured models. The pressure component has been

included in this figure to ease the identification of pure compressional events. Since

the waves enumerated before are common to the fractured and non-fractured models,

they are absent in the difference records shown in figure 3-5. The most prominent

waves generated by the fracture are identified in these difference records:



1. The P wave diffracted as P at the top tip of the fracture (PdP).

2. The P wave diffracted as S at the top tip of the fracture (PdS).

3. The P wave transmitted as P into the second layer and diffracted as P at the

bottom tip of the fracture (PPdPP).

4. The P wave reflected at the bottom of the second layer from the incident

Rayleigh wave propagating along the fracture (PRPP).

5. The P wave transmitted as P (or S) into the second layer, diffracted as S (or

P) at the bottom tip of the fracture, and transmitted as P back into the first

layer (PPdSP and PSdPP).

6. The P wave diffracted at the bottom tip of the fracture and transmitted as S

wave into the first layer (PPdPS).

7. The P wave transmitted as P (or S) into the second layer, diffracted as S (or P)

at the bottom tip of the fracture and transmitted as S back into the first layer

(PPdSS and PSdPS).

It is clear from the divergence and curl panels that the energy received at the

surface is a combination of compressional and shear motion. Some of the waves have

been singly and multiply converted into shear energy. These conversions occur both at

the fracture tips and wall. Additional modeling results (e.g., using fracture tips only)

show that the fracture wall induces significant changes in the amplitude, polarization

and moveout of these events. To visualize the propagation of the Rayleigh and PdS

waves, figure 3-6 shows snapshots of the curl component at 125, 150, 175 and 200

ms. The different snapshots are independently scaled to track the wavefronts as they

become progressively weaker. We also observe in these snapshots the propagation of

the conversions P to S at the top and bottom of the second layer (PS and PPS). The

PSdS or PPdS waves (shear or P-wave diffracted as shear) at the bottom tip of the

fracture is hardly noticeable at 175 ms. At 200 ms, some of the Rayleigh energy

reflected as shear wave at the bottom of the second layer (PRS) appears very weakly.



3.2.2 2-Fracture 2D Model

We add another fracture to the previous model as despicted in figure 3-7. The record

on the left in figure 3-8 shows the corresponding modeled vertical component (Vz).

The propagation of waves is more complex in this case due to interference between the

scattering from both fractures. The record on the middle is the trace by trace differ-

ence of the 1-fracture model from the 2-fracture model. It shows only the scattering

energy caused by the second fracture. For convenience, the 1-fracture Vz difference

of figure 3-5 has been reproduce here. As expected we see that much of the newly

scattered energy appears shifted to the right. However, additional significant energy

is present which comes from multiple bounces between the two fractures.

3.2.3 N-Fracture 2D Model

We continue adding fractures to the same model as shown in figure 3-9. The Vz

data for the multiple parallel fracture model, shown in figure 3-10, are characterized

by numerous forward and backscattered events composed of both, P and S scattered

energy. This scattered energy appears immediately after the P reflection from the top

of the fractured layer and extends for the rest of the recorded time. This perturbs

the arrivals reflected from the layer below.

3.2.4 N-Fracture 3D Model

The previous models are 2D, thus the propagation of waves is constrained to the x-z

plane, containing the source and receivers. However, geometrical spreading is different

in 2D and in 3D, and the waves identified above are expected to have complex trav-

elpaths in the 3D space. Therefore, in order to describe the propagation of scattered

waves from fracture corridors in the x-y-z plane, we build a 3D model as illustrated

in figure 3-11. This 3D model consists of 5 horizontal, isotropic, layers in which the

three layers in the middle have the same elastic properties as the 2D models. The

velocities and densities of the layers are listed in table 3.2. The third layer simulates

a reservoir with vertically aligned fractures, regularly spaced every 35 m, that extend



to the edges of the model and through the reservoir thickness (200 rn).

A shot record is obtained from a point source in one corner of the model, and

three-component receivers every 5 m in the x-y plane. The source is again modeled

as a 40 Hz Ricker wavelet, hence wavelengths in the reservoir layer are approximately

100 m for the P wave (Ap) and 59 rn for the S wave (As). The dimensions of the

multiple fracture set are similar to the dominant seismic wavelengths. The fracture

vertical height is 2Ap, the horizontal length is about 10Ap and the spacing is about

Ap/3. The fracture channels are long enough to act as wave guides and, as in the

multiple fracture 2D model, the spacing between fractures is such that seismic waves

are expected to scatter.

Figures 3-12 to 3-15 show snapshots at 125, 175, 225, 275 ms in the x-z plane

(left) and in the y-z plane (right). After 125 ms the energy propagating from the

point source reaches the second layer. At this early time, the P-wave reflected and

transmitted at the top of the second layer look the same in both planes since the

wavefront has not hit the fractured layer. Waves continue to propagate and by 175

ms, energy transmitted into the third layer starts to be scattered by the fractures.

At this time, the interference of the fracture scattering with the main P-wavefront

is evident in the x-z plane but not so noticeable in the y-z plane. At 225 ms, when

the converted wavefront enters the fractured layer, the scattering becomes obvious in

both planes. However, the character of this scattered energy is different in several

ways:

* In the y-z plane, the scattered waves propagate behind the main wavefronts

whereas in the x-z plane such wavefronts interfere with the diffraction tails at

the fracture locations.

* Scattered waves in the y-z plane preserve the hyperbolic character of the incident

waves, whereas in the x-z plane forward and backscattered waves have an almost

linear character.

* Consequently, in the y-z plane, the P-reflection from the bottom of the layer is

barely identifiable whereas in the x-z plane is completely masked by the fracture



scattering.

In the snapshots at 275 ms the P, PS, and previously diffracted waves continue to

scatter into the medium below and above the fractures.

To illustrate the scattering characteristics at intermediate azimuths, the data are

sorted into 10-degree azimuthal gathers. Figure 3-16 shows schematically the conven-

tion used to sort the data into azimuthal gathers: the direction normal to fractures

corresponds to the 00 azimuth whereas the direction parallel to fractures corresponds

to the 900 azimuth. The vertical component, at every azimuth, is shown in figures

3-17 and 3-18. As a reference, the first record in figure 3-17 corresponds to the same

model but without fractures. A mute function was applied to all azimuthal gathers

to remove the direct arrival. The P reflections generated at zero offset from the top of

the second layer, the top and base of the reservoir, and the top of the fifth layer, arrive

at about 170, 290, 395 and 500 ms, respectively. There is a strong arrival at about

220 ms which corresponds to the converted S wave from the top of the second layer.

All these arrivals are identifiable irrespective of the acquisition orientation, however,

the fractures introduce significant energy that obscures the last two reflectors. The

character of this energy varies progressively with azimuth, exhibiting reverse moveout

at 0' and changing with azimuth until it displays similar moveout to the primaries in

the direction of the fractures (900). At 900, the energy trapped between the fracture

system is received multiple times at the surface.

3.3 Spectral Character of the Fracture Scattering

In the previous section we described the differences in the seismic response of the

modeled data as the azimuth of propagation varies with respect to the fracture ori-

entation. It was established in figures 3-17 and 3-18 that as the observation plane

becomes oriented normal to fracture strike, the coda contains strong backscattered

energy.

Back or side scattered energy is conventionally treated in seismic processing as

unwanted coherent noise. In field records, it is common to observe backscattered



components of guided (Scholte) waves when the ocean bottom presents irregularities

or due for example to sea-bottom pipelines (Yilmaz, 2001). In land data, ground

roll may exhibit a backscattered component as well due to near surface irregularities.

In these cases, the irregularities act as point scatterers. Filters in the frequency-

wavenumber domain have proven successful in attenuating the effects of scatterers,

because the scattered energy moveout is different that the primary reflection moveout

and thus they separate in the f-k space. This allows dip filtering in the f-k space to

be effective.

The scattering characteristics of parallel fractures are somewhat different to the

examples above because fractures are not entirely random features. Instead they tend

to occur as part of regular fracture sets with a certain preferred orientation, similar

length, rather constant spacing and are usually confined to particular mechanical

rock units. The wavelengths scattered by discrete fractures are similar not only to

the individual fracture geometry but also to that of the fracture system.

Figure 3-19 shows the f-k spectrum of some of the azimuthal gathers of the 3D

model described in the previous section. The one on the left corresponds to the no

fractures case. The one in the middle is the f-k spectrum of the data collected at

O0 or normal to the fractures. The one on the far right corresponds to the spectrum

of the data collected at the 90' azimuth or, in other words, parallel to the fractures'

strike.

First we identify how the main events in the time-offset space map into the

frequency-wavenumber domain:

1. Reflections (hyperbolas) at near offsets, are almost flat or of infinite appar-

ent velocity. Such signals map onto the zero wavenumber axis. As the offset

increases, reflectors become curved towards positive (later) time, and so their

energy map to the positive wavenumber plane.

2. Residuals of the direct arrivals, mute artifacts, mode conversions, and tails of

hyperbolas at large offsets (all of which have a linear positive moveout in the

time-offset space) transform in the positive wavenumber plane also as linear



events. Since the velocities of these events are relatively slow, spatial aliasing

could occur in the form of wrap around into the negative wavenumber plane.

Some wrap-around artifacts can be reduced by padding with zeros before the

Fourier transform is applied.

By comparison with the no fractures case, we then identify the changes in the

f-k domain introduced by the presence of fractures, as well as the sensitivity to

orientation:

3. Parallel to fracture strike, the number of coherent reflections in the time domain

below the P-P reflector associated to the top of the reservoir has increased

significantly. This results in an increased number of events close to the zero

wavenumber axis. Since these events have similar moveout (positive) to the

primaries, they are indistinguishable from the primary energy.

4. Normal to fracture strike, the backscattered energy shows reverse linear moveout

in the time-offset space. In the f-k domain, this energy maps in the negative

wave number plane which is key in our analysis. The forward scattered signal

from the fractures maps into the positive wave number quadrant, with the

slowest velocity, and is smeared out (4a in figure 3-19).

3.4 The F-K Method

At this point we have shown that the fracture scattering, in either time-offset or

frequency-wavenumber domain, exhibits different character depending on the angle

between the fracture direction and the source-receiver orientation. The comparison of

the spectra in the normal and parallel directions reveals that the character differences

are distinct and separable in the frequency-wavenumber domain. This suggests that it

is possible to discriminate fracture orientation by recognizing the fracture scattering

characteristics in the Fourier domain.

In this section, the previous observations are developed into a methodology to

extract properties of reservoir fracture corridors. The proposed strategy could be



easily incorporated in the processing sequence of surface seismic data at a very early

stage since it is applied to field SHOT records. The F-K method consists of two

steps: first, the preferred fracture orientation is identified, and then, fracture spacing

is estimated. The fracture scattering can also be isolated with the F-K method. As a

consequence, it is possible that fracture properties other than orientation and spacing

could also be extracted, for instance, fracture aperture and stiffness. However, this is

out of the scope of this thesis.

3.4.1 Determining Fracture Orientation

Figure 3-20 shows the f-k spectrum of the 100 azimuthal gathers from the 3D model

in which fractures are spaced 35 m. Unlike the spectra in figure 3-19, the 2D Fourier

transforms are computed here in a window in time and offset indicated at the bottom

right corner of figure 3-20. The window starts after the reflector associated with

the top of the resevoir (the 3rd layer in our model) and extends for approximately

300 ms. The time window includes the reservoir and the long coda introduced by

the fractures that interferes with the reflections coming from layers below. Data

windowing is necessary to isolate the main signal related to the fractured level from

overlying formations that in a field data case might contain other scatterers. Offsets

are windowed between 0 and about 300 m in order to neglect conversions observed

at far offsets, direct arrivals, and mute artifacts.

In the figure, we can observe how the frequency-wavenumber spectra change in

the intermediate azimuths between the normal and the parallel to fracture direc-

tions. At 00, the spectral energy is spread out in the frequency-wavenumber plane.

Some energy, falling close to the zero wavenumber axis, at this and other azimuths,

corresponds to the near offset reflectors from the bottom of the 3rd and 4th layers.

This energy does not change with azimuth since the layers are flat and isotropic. As

the azimuth increases, the energy in both positive and negative wavenumber quad-

rants moves towards the zero wavenumber axis until, at 90' all the significant energy

is concentrated at this axis. As observed in the time gathers, the fracture signals

become "flatter" as the azimuth becomes aligned with the fracture strike. In the



f-k space, "flatter" means the signal has no periodicity in space and therefore the

moveout velocity tends toward infinity. Note that as the azimuth increases the dom-

inant wavenumbers of the fracture signals change significantly whereas the frequency

bandwidth and peaks remain almost constant.

A methodology to characterize the fracture energy can be based upon this ob-

servation that the backscattered energy appears isolated and detectable in the neg-

ative wavenumber quadrant. Thus, to determine fracture orientation, we define the

backscattered energy (Es,,tt) as the sum of the square of the amplitudes in the neg-

ative wave number quadrant:

-ko

Escatt =- A 2  (3.2)
-kN

where kN refers to the Nyquist wave number and ko is chosen so that energy falling

onto the k = 0 axis is not included in the sum. This value is in practice required

to be greater than zero given the intrinsic resolution of the Fourier transform of

band-limited signals.

Escatt is computed at each azimuth. The preferred orientation of fractures is

derived by comparing the backscattered energy at different azimuths as shown by the

red line in the left plot of figure 3-21. In this case, ko is chosen as indicated by the

white dash line in the spectrum on the right of the same figure. As expected, Escat

(red line) maximizes when the orientation is perpendicular to fracture strike (0O)

and minimizes in the parallel direction (900). Escatt decreases rapidly at intermediate

azimuths and at a slower rate as the azimuth approaches the parallel to fracture strike

direction.

3.4.2 Fracture Spacing Determination

A regular fracture spacing of multiple fracture or joint sets, like in fracture corridors,

generates multiple scattered events that are received at the surface in a characteristic

fashion. At 0O, normal to the fracture strike, a strong component of this characteristic

fracture signal appears as back-scattered. The multiple backscattered events at this



azimuth have the slowest negative velocity or, in other words, the largest negative dip

in the time-offset domain. The periodicity of the backscattering in space and time

introduces a high energy peak in the negative wavenumber-positive frequency space.

Moreover, the fracture backscattering is the only signal from the fractures that is

conveniently separated from the primaries and other fracture signals in the f-k space.

Another advantage of analyzing fracture signals in the f-k domain is the ability

to determine the nominal spacing between fractures. Once the direction normal to

fractures is identified as explained above, fracture spacing (D) is estimated from the

spectral components of the backscattered energy at this azimuth. Fracture spacing is

obtained by taking one-half of the inverse of the dominant wave number (k) or, alter-

natively, estimating the characteristic apparent velocity of the backscattered events

(V) and their dominant frequency (f), then:

1V 1 1D = (3.3)2 f 2 |k|

The spectrum of the windowed 00 azimuthal gather is shown on the right of figure

3-21 where the high energy peak associated to the fracture backscattering is clearly

observed at 57.6 Hz and -0.0143 1/m. The velocity of any event can be estimated

in the f-k spectrum from the slope of a line connecting the event with the origin

(0,0). In this case, the backscattering apparent velocity is estimated to be -4040 m/s.

Substituting these values in equation 3.3 results in an estimation of fracture spacing

of 35.1 m. The fracture spacing in the model is 35 m.

A similar relationship between fracture spacing and frequency was observed by Rao

et al. (2005), who analyzed the spectral notches of transfer functions extracted from

azimuthal stacks. Equation 3.3 was derived from the analysis of synthetic data from

this model and others in which fracture spacing was varied (see section 3.5). However,

the relationship found between spacing and wavenumber agrees with Bragg's law. The

spacing between planes in a crystal atomic lattice (d) is related to the wavelength (A)



of X-rays and the angle between the incident and scattered rays (0) by:

nA = 2dsinO (3.4)

where n is and integer.2 Bragg's law (equation 3.4) expresses the condition to have

constructive interference of electromagnetic waves which results in a diffraction pat-

tern useful to study crystal structures. Bragg's law applies as well to radio waves and

acoustic waves. For example, an interesting application of Bragg's scattering theory

to ocean waves is discussed in Naciri and Mei (1988). In this civil engineering appli-

cation, breakwaters are designed according to Bragg's law to better control currents

and mitigate storms damaging to drilling sea platforms.

3.4.3 Extraction of Fracture Signals

The backscattered signal can be isolated from the rest by designing reject-pass filters

in the f-k space. Once the wave field exclusively related to fractures is extracted,

the estimation of fracture properties should be largely simplified. The windowed shot

record oriented at 0O (left record) is next filtered as shown in figure 3-22. An f-k

filter is implemented such that signal falling into the negative wavenumber quadrant

is passed, while positive wavenumber signals are rejected (amplitudes in the positive

wavenumber quadrant are zeroed out and the resultant f-k spectrum is inverse trans-

formed.) The resulting filtered (middle) record in figure 3-22 shows that the filter has

effectively removed the forward propagating energy which boosts the signal directly

related to the fractures. In practical applications, a data cube of backscattered signal

could be generated for all azimuths.

3.5 Other Modeling Studies

In this section we evaluate the performance of the F-K method when the fracture

properties are different from the idealized situation of the 3D 5-layer model discussed

2http://www-outreach.phy.cam.ac.uk/camphy/xraydiffraction/



above. For convenience, we will refer to this model as the control model hereinafter.

In particular, we aim to investigate the sensitivity of the fracture scattering signal to

changes in fracture height, fracture compliance, and fracture spacing. We carry out

this sensitivity study by modeling different fracture properties and then applying the

F-K methodology to the modeled data.

3.5.1 Fracture Height

First, we look into the problem of reservoir thickness. Many reservoirs are often thin

in comparison to the seismic wavelengths. In these situations, the top and bottom

interfaces of the reservoir layer may not be resolved by the seismic frequencies at the

depth of the reservoir. Traditionally, the seismic response of thin beds is examined

through tuning effects and bright spots, and several methods have been proposed to

quatify the thickness (Widess, 1973; Partyka et al., 1999). Assuming the fractures

are confined to the reservoir layer, reservoir thickness determines the fracture vertical

length or height. We showed in the previous section that the fracture scattering signal

in our models is composed of the contributions from the energy diffracted from the

tips, energy propagating along the fracture interface and energy guided between the

fracture planes. Therefore, we expect to observe variations in the character of the

fracture signal when this fracture dimension is varied.

Figure 3-23 shows the Vz data gathered at the normal and parallel direction of

four models. The basic geometry and the velocities and densities of these models are

exactly as the control model of figure 3-11 and table 3.2. In particular, these models

and the control model have in common the fracture spacing (35 m) and the material

properties of the fracture zones (fracture stiffness is 4 x 10OPa/m for all cases). What

changes between the cases is the thickness of the third layer, or the fracture vertical

length. It is reduced progressively from 100 m to 10 m as illustrated by the x-z plane

views of each model at the top of figure 3-23. In terms of the P wavelength (A), the

fracture height shrinks from left to right, from A to A/10. In the control model the

fractures were as tall as 2A.

The reflector associated with the bottom of the reservoir arrives sooner as the



thickness of this layer is reduced. The top and bottom reflector cannot be distin-

guished visually when the thickness is 25 m or less (A/4 and A/10 cases). The fracture

scattering signal is attenuated as the thickness is reduced; however, it is strong enough

to still be noticeable in the thin-bed cases. In figure 3-23, the amplitude attenuation

is better appreciated when the 100 m and 10 m cases are compared, especially at the

900 azimuthal gathers. The previous observations suggest that even in cases where

the fractured reservoir layer is below seismic resolution, fractures at the seismic scale

may be detectable. The scattered and primary wave fields are fundamentally different

and, as such, are sensitive in a different way to the layer thickness. The amount of

scattered energy is directly related to the presence of the multiple fracture system

that causes constructive interference of the propagated waves. The reduction of frac-

ture length results in an attenuation of the scattered energy, basically because the

fractures are not long enough to support the guided waves. However, in the thin-bed

cases the compliance contrast between the fracture zones and the background medium

still accounts for the strong diffracted energy.

Moreover, figure 3-23 shows that the azimuthal characteristics of the scattering

are similar regardless of the fracture vertical length. Following the F-K technique we

compute the backscattered energy (equation 3.2) for all cases and compare the results

with the control model in the left plot of figure 3-24. In this figure, backscattered

energy functions are labeled in terms of A. The behavior of the backscattered energy

function is similar for all thickness models and, as expected, Escatt decays as the

angle of acquisition becomes oriented with the fractures strike. The determination of

fracture orientation with the F-K method seems insensitive to the fracture height, or

reservoir thickness, under the conditions of the numerical experiments analyzed here.

The graph on the right of figure 3-24 shows the variation of spectral amplitude of

the backscattered waves as a function of azimuth and fracture height. This spectral

amplitude corresponds to the amplitude of the highest energy peak in the negative

wavenumber interval of the f-k spectrum computed at every azimuth. Because the

scattered fracture energy is dominantly backscattered at 0', the backscattered spectral

amplitude maximizes at this angle. At 900, most of the fracture energy is forward



scattered. The contrast between the amount of backscattered energy at 0 and 900

decreases as the fracture height is reduced. In the 10 m thickness case the maximum

backscattered amplitude is about 30% weaker than in the thick-200 m model. The

measured amplitude differences depend upon the time window input selected for the

f-k analysis. This is because the interference of the scattered energy changes due to

the time shift associated with the reduced thickness of the layer with fractures and the

smaller amount of scattered energy (figure 3-23). Although figure 3-24 only compares

the backscattering amplitude, the forward scattered fracture signal is expected to be

attenuated as the thickness decreases judging from the character of the data parallel

to fractures in figure 3-23.

Determination of fracture spacing following the F-K methodology is carried out

in figure 3-25 where the f-k spectrum of gathers perpendicular to fracture strike

are analyzed. The time-offset window extracted for the 2D Fourier transformation

is indicated on the control model data on the top right corner of the figure. The

maximum energy in the negative wavenumber interval is found at the f-k values

indicated with the white plus (+) symbols. All the spectra are normalized to the

amplitude of the backscattered waves in the control case which is the highest amongst

all the different thickness models. Normalizing the spectra in this way reveals the

attenuation of the fracture signals in the thin-bed models with respect to the thick-

bed ones. The f-k values of the backscattered component picked on the spectra are

compared at the bottom right figure. The characteristic frequency and wavenumber

of the fracture backscattering are not sensitive to the fracture vertical length. This is

very fortunate because the determination of fracture spacing is accurate in all cases

modeled.

3.5.2 Fracture Compliance

Fracture compliance depends on numerous factors including: the probing seismic

wavelengths (frequency), the fracture size (aperture, welded contact area, spacing,

length), the elastic properties of the rock matrix and of the fluid inside the fractures,

and the role of cementation and stress as a function of depth and geological time.



Worthington (2007) discusses that the lack of macrofracture compliance experimental

data is in part due to the complex interdependence of these factors. The same author

compiled the few laboratory and field data of fracture compliance found in the current

published literature and observed an approximate linear dependence between fracture

compliance and fracture dimension scale. According to this linear approximation

fractures on the scale of seismic wavelengths (tens of meters) would have compliances

on the order of 10-10 - 10-gm/Pa; however, Worthington (2007) argues that it has

not been proved conclusively that any macrofracture exists below the surface with

such high values of compliance.

The fracture stiffness chosen for the control model and the variable fracture height

models, discussed above, was 4 x 10'Pa/m, which is near the high limit of realistic

fracture compliance detectable with a reflection seismic experiment. However, Daley

et al. (2002) developed a conceptual model, based on lab scale observations, to cal-

culate the average stiffness of a fracture represented by a series of void spaces. These

authors, as well as Willis et al. (2006), assigned a stiffness of 8 x 0lPa/m to discrete

fracture models similar to ours. Such a high compliance would represent a gas-filled

fracture with a large crack aspect ratio.

We build a model using this fracture compliance and compare the data with

the control case (lower compliance) in figure 3-26. These two models have identical

fracture spacing (35 m). The model dimensions and the rock properties of the 5

layers are also the same. The velocities as a function of incidence angle for the

high compliant fracture material were depicted in figure 3-2 (right). The effect of

increasing the fracture compliance is evident in the gathers. In both azimuths, the

fracture scattering is considerably stronger for the larger compliance case, to the point

that the reflectors from the bottom of the 3rd and 4th layer are barely recognized in

the high compliance modeled data. The azimuthal differences in character seem to be

preserved. This is confirmed in figure 3-27 where the backscattered energy is plotted

as a function of azimuth and fracture stiffness at the top left graph. The results of

analyzing another model with a slightly higher compliance (Z = 3 x 109Pa/m) than

in the control case are also included. The backscattered energy maximizes at the



normal to fracture orientation and minimizes in the parallel direction. This allows the

fracture orientation to be determined irrespective of the fracture compliance chosen

in the model. However, the strength of the backscattering signal depends upon the

fracture compliance as illustrated on the top right plot in the same figure. When the

fractures are one order of magnitude stiffer the maximum backscattering amplitude

is only about 70% of the value obtained in the compliant model.

Next we consider the sensitivity of the F-K method to the location and size of the

analysis window. The lower plots in figure 3-27 show the backscattered energy and

backscattered amplitude as a function of azimuth for the same models but computed

in a shorter data window. Both windows of analysis are indicated on the gathers at 00

in figure 3-28. The red window is a long window of about 300 ms; the yellow window

is a short window between the reflectors associated to the fractured layer. Figure 3-27

reveals that the backscattering behavior with orientation is pretty much unaffected

by the window length. On the other hand, the differences in amplitude observed as a

function of fracture compliance are greater when the analysis uses the short window

near the fractured layer. The drop in amplitude with increasing stiffness, at 0O, is

now around 50%.

The f-k spectra of the two compliance models are presented in figure 3-28. The

top row of plots corresponds to the highly compliant (Z = 8 x 0lPa/m) fractured

model, whereas the bottom row panels depict the data and f-k analyses of the control

model. The 2D Fourier spectra for all cases exhibit distinct energy peaks at the

negative wavenumber interval. The spectral energy for the low compliant control

model is weaker. When the analysis is constrained to a small window in the reservoir,

the spectrum contains fewer events and picking of the dominant backscattered signal

is simplified. The frequency-wavenumber pairs picked for all cases are compared in

figure 3-29. The results for the long window are shown on the left. It is obvious that

the frequency component of the backscattering is the most affected by the window

length. Frequency increases as the window is shortened. The wavenumber component

however is a great estimator of the fracture spacing since it is almost insensitive to the

time window length or to the fracture compliance. The fracture spacing is estimated



with equation 3.3.

3.5.3 Fracture Spacing

Fractures in layered sedimentary rocks are often periodically distributed with spacing

linearly related to the thickness of the fracture layer (Bai and Pollard, 2000). Typical

ratios of fracture spacing to layer thickness have been estimated mainly from outcrops

(e.g. Narr and Suppe, 1991; Ortega et al., 2006), and predicted by recent numerical

models that correlate the fracture spacing to stress transitions determined by the

layer thickness (Bai and Pollard, 2000). In these studies it has been suggested that

fracture spacing to layer thickness ratio varies between 0.8 and 1.2. If we assume this

range of ratios in our models, including the thin-bed models discussed above, fracture

spacing should be chosen between 8 and 160 m.

Willis et al. (2006) presented a fracture analysis of a series of models in which

fracture spacing was varied. The fracture spacings modeled were 10 m, 25 m, 35

m, 50 m, 100 m, and, a pseudo-Gaussian distribution with mean spacing 35 m and

standard deviation 10 m. The model of fractures spaced 10 m was found to be

below the scattering limit. The source was modeled as a Ricker wavelet with a center

frequency 40 Hz. The velocities, densities, and dimensions of the layers and fractures

in these models are consistent with the highly compliant fractured model discussed

in the previous section. The normal and tangential stiffness assigned to the fractured

zones are 8 x 0lPa/m.

We use the same models from Willis et al. (2006) to study the sensitivity of the

spectral characteristics of the fracture signals to different fracture spacings. Figure 3-

30 shows the data collected at 0' and 900 for the 25 m, pseudo-Gaussian distribution,

50 m, and 100 m spacing models. The schematics of every model are shown in

the top row of the figure. As illustrated in the x-z view of the models, fracture

spacing increases from left to right. The character of the scattering recorded at 00

changes significantly with fracture spacing. Firstly, we note the relative attenuation

of amplitudes in the 25 m model case. Secondly, the diffracted (back and forward

scattered) waves appear more closely spaced in the time-offset domain for the 25 m



model than for the 100 m model. The primary reflections from the bottom of the 3rd

and 4th layers are less continuous in the pseudo-Gaussian and 50 m models than in

the 25 m or 100 m models. This suggests that the strength of the fracture scattering

signal may not depend linearly with fracture spacing as it did with fracture height or

compliance. The differences in character of the fracture scattering between the 0 and

90' orientations are evident in all cases.

The backscattered energy function is maximized when the orientation is perpen-

dicular to fracture strike. Such behavior is consistent in all modeled cases where we

have varied the fracture spacing (left plot in figure 3-31). Comparing the backscat-

tered amplitudes as a function of azimuth and fracture spacing (right plot in figure

3-31) we observe two effects: (1) it seems that the backscattered energy is more

attenuated as the fracture spacing decreases; however, the 100 m case does not fit

this tendency probably because of resolution limitations of the f-k transform as the

wavenumber approaches zero; (2) the contrast between the amount of backscattered

signal at 0 and 90 degrees seems to increase with fracture spacing (except for the

100 m model case), thus increasing the accuracy in the determination of fracture

orientation and spacing.

Figure 3-32 shows the spectral analysis to estimate the fracture spacing. We

have computed the f-k spectrum of the 0' data in the same short window inside the

reservoir for all cases. The 35 m fracture spacing case was presented in figure 3-28.

The distribution of energy in the f-k space changes with fracture spacing. The spectra

are normalized by the maximum amplitude which is found in the 50 m spacing case.

A maximum energy peak focuses in the negative wavenumber interval in all models.

The frequency-wavenumber component of this energy is indicated in the spectra and

re-plotted on the left bottom graph for all cases. As fracture spacing increases, the

backscattered signal contains lower frequency-wavenumber components and therefore

the fracture spacing can be recovered from the peak wavenumber in every case.

In the normal plane, the number of peaks in the spectrum increases with fracture

spacing. This is better appreciated when longer windows are input in the analysis as

illustrated in figure 3-33. In this figure, we compare only the 25 m, 50 m, and 100 m



spectra. The window of analysis was indicated in red in figure 3-28. In this window

as well the 50 m modeled data contains the highest amplitude; hence the other two

spectra are normalized to this maximum. Extending the window length has the effect

of lowering the dominant frequency of the backscattered waves. As a consequence, the

frequency-wavenumber band is insufficient to resolve the fracture spacing of 100 m.

Instead, energy in the negative wavenumber interval peaks at an aliased frequency-

wavenumber (white plus sign on the 100 m spectrum). Coincidentally, the maximum

energy occurs at a wavenumber corresponding to a fracture spacing of about 35 m.

Two other peaks can be distinguished in the 100 m case (magenta plus signs). These

lower energy peaks correspond to half (50 m) and one quarter (25 m) of the nominal

fracture spacing in the model and are associated to higher order periods. The 25 m

wavenumber component can also be observed in the 50 m case spectrum (magenta plus

sign). However, the backscattered dominant frequency-wavenumber in this case is

within the resolution band and therefore the fracture spacing is estimated accurately.

The analysis of modeled data suggests that the backscattered signal exhibits lower

frequency-wave number when the spacing is larger whereas fracture vertical length

or stiffness has little effect on the spectral components. Peak frequency decreases

as the window of analysis is extended or shifted in time, but peak wavenumber re-

mains constant. Models with different fracture stiffness show that the more compliant

the fractures are the more the fracture signals interfere with the reflections and con-

versions from the interfaces. An increase of fracture stiffness decreases the spectral

amplitudes of backscattered waves. There is a range of fracture spacings (35-50 m)

which produce significant scattered energy whereas spacings smaller and larger than

these dimensions appear to dampen the amount of scattering. Shortening the verti-

cal length of the fractures (the thickness of the fractured bed) causes backscattered

amplitudes to drop. The effects of fractures on the seismic spectral response are

azimuthally dependent and stronger in the direction normal to fractures where prop-

erties can be conveniently estimated.



3.6 The Scattering Index Method

The Scattering Index (SI) method is another way of processing scattered signals (or

coda waves) to derive fracture properties. The SI method is a novel concept developed

in the Earth Resources Laboratory at MIT in the recent years (Willis et al., 2003,

2004b,a, 2006; Burns et al., 2007). The Scattering Index method has been tested

on synthetic 3D data generated with finite difference approximations, and it has

been applied successfully to field data where independent information about fractures

exists (Willis et al., 2006; Grandi et al., 2006). As the F-K method, determination

of fracture distribution and orientations using the Scattering Index method is based

on the principle that fractures of dimensions similar to dominant seismic wavelengths

scatter energy. Such signals have different characteristics depending on the angle of

observation.

During the course of processing, coda waves stack constructively when the ac-

quisition direction is parallel to fractures and stack destructively normal to fractures.

Figure 3-34a shows the azimuthal stacks obtained processing the data from the control

model. The azimuthal gathers were shown in figures 3-17 and 3-18. The azimuthal

stacks are very similar at early times, before the reflection from the top of the fractured

layer that arrives at about 0.25 s. At later times, the stacked scattered energy ap-

pears differently with azimuth. In the direction normal to fracture strike, the stacked

scattering is very weak and clearly overpowered by the primaries. The azimuthal

stack at this azimuth is practically identical to the no-fracture case. In the direction

parallel to fracture strike, most of the signals generated by the fractures have similar

moveout to the primary reflections. As a result, the scattering stacks constructively

and appears with significant amplitude at this azimuth. The SI method measures

these differences in scattering coherence captured by the stacked traces at different

directions.

The Scattering Index analysis consists of two steps. In the first step, transfer

functions for each azimuthal stack of the fractured zone are obtained. Upper and

lower wavelets are extracted from zones above and below the reservoir level in each



stacked azimuth. For the modeled data, we choose the upper and lower windows

as depicted in figure 3-34a. Then, a transfer function is derived by deconvolving

the upper wavelet from the lower wavelet. The corresponding transfer functions for

the control model are shown in figure 3-34b. They exhibit the same attributes as

the stacked coda waves: they reverberate and are less temporally compact in the

direction parallel to fracture corridors.

The second step consists of the calculation of the scattering indices. The scattering

index, SI, is a number that measures the amount of ringing in the transfer function.

It is defined in Willis et al. (2006), as:

m

SI = Itli" (3.5)
i=O

where i is the time lag, ti is the transfer function amplitude at lag i (in the time

domain), m is a lag at which there is no more significant energy in the transfer

function, and n is an exponent, generally taken as one.

Because this expression gives greater weight to larger lags, the more the transfer

function reverberates, the larger the value of SI, thus SI is expected to be the largest

parallel to fractures. We compute scattering indices for the modeled data and display

the results as a function of azimuth in figure 3-34c. The scattering index increases

very rapidly as the azimuth becomes oriented with the fracture strike.

Since the method looks for differences in the wavelet as a function of depth (or

time down the trace), it is intrinsically insensitive to overprinting. In other words, the

stationarity of the signal is only assumed along the time window of analysis. Given

a 3D seismic set with a full range of azimuths, the particular characteristics of the

transfer functions and the comparison of azimuthal scattering indices would allow

the identification of fractured areas and the determination of fracture strike at the

reservoir level.

Application of the SI method requires the selection of several parameters, includ-

ing:

1. The maximum offset input in the stacking process. In general, widening the



range of offsets has the effect of making the SI response sharper, that is, it

increases the difference between maximum and minimum SI.

2. The horizon time associated with the upper boundary of the fractured level.

Since usually some structure is present, a seismic interpretation is required for

field data processing.

3. The time windows to extract input and output wavelets, defined around the

horizon time. In general, as the windows become more localized around the

fractured level, the difference between the scattering indices in the parallel and

normal direction increases.

4. A pre-whitening or noise level to stabilize the Wiener deconvolution (Yilmnaz,

2001). The transfer functions in figure 3-34b were computed with an implemen-

tation of the Wiener deconvolution. In practice, any type of deconvolution could

be used.3 This parameter is established by evaluating the decay of amplitudes

with lag in the transfer functions.

5. The maximum lag to take into account for the calculation of SI, m in equation

3.5, which is decided according to the transfer function behavior as a function

of lag.

As far as the sensitivity of the SI method to variations in the fracture properties,

figure 3-35 shows a comparison of the SI analysis of the models discussed in section

3.5. The parameters used in the SI calculations are the same in all cases. The

maximum offset stacked is 500 m and the time windows to extract input and output

wavelets are chosen as indicated in figure 3-34a.

Figure 3-35a depicts the scattering index as a function of azimuth obtained from

the models in which the fracture height is varied. The orientation of the fractures

can be detected with accuracy in all cases because the scattering index attains a clear
3 The original SI algorithm and codes to compute transfer functions and scattering indices were

written by Mark E. Willis in Fortran 77. I optimized these codes by substituting the linear inversion
with an implementation of the Levinson recursion algorithm (Press et al., 1999; Claerbout, 1985;
Robinson and Treitel, 1980). The new version is about 8 times faster.
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maximum at the azimuth parallel to fracture strike. When the scattering indices are

normalized as in the figure, the scattering amplitude dependence on fracture height

is revealed. As the fracture height increases the parallel to normal scattering index

ratio increases.

The SI method is also evaluated in cases where the compliance of the fractures

is higher than in the control model (figure 3-35b). The parallel to normal scattering

index ratio slightly increases with stiffness. The differences between the low and high

compliance models are greater as the quality of the stack decreases (less traces are

stacked) and as the windows of analysis are shortened (not shown).

Figure 3-35c shows the SI as a function of azimuth and fracture spacing taken from

Willis et al. (2006). Note that the convention for azimuths was different in that study,

such that the normal direction is rotated 900 with respect to our convention. The

orientation of fractures is predicted by the SI method in all the models independently

of the fracture spacing. The 35 m spacing model has the largest scattering index

parallel to fracture direction suggesting that this fracture spacing is tuned to the

seismic wavelengths (Willis et al., 2006).

The numerical experiments demonstrate that the ringing signature of the fracture

scattering varies in moveout as a function of the angle between source-receiver line

and fracture plane. The amplitudes of the coda waves, translated into scattering

indices, are sensitive to: (1) the relationship between fracture spacing and dominant

seismic wavelength; (2) the compliance contrast between the fracture and surrounding

medium; and (3) the vertical extension of the fractures or reservoir thickness. The

coda energy has a moveout most similar to the primaries in the direction parallel to the

strike of fractures; therefore, it is enhanced by the stacking process. The amplitudes

of the coda waves are the largest when the wavelength is tuned to fracture spacing,

when fractures have high compliance, and when the reservoir is thicker.
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3.7 Summary

Based on numerical models of wave propagation through discrete fracture sets, we

studied the characteristics of the fracture scattering and derived a methodology to

estimate fracture orientation and spacing. We assumed that the multiple parallel

fractures are vertical, with a preferred orientation and rather regular spacing. The

signature of the fractures scattering changes with the angle between the acquisition

orientation and the fracture strike. The F-K method develops from the evidence

that backscattered seismic waves are generated from fracture systems. Backscattered

signals appear in the negative wavenumber-positive frequency quadrant of the f-k

spectrum, and as such, they can be isolated using f-k filters. In the f-k domain,

backscattered energy decreases as the observation angle becomes oriented with frac-

ture strike. Fracture spacing was found to be proportionally inverse to the dominant

wavenumber. The SI method was also applied to the same synthetic data. We an-

alyzed the sensitivity of these two methods to fracture compliance, thickness and

spacing.
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Table 3.1: Velocities and Densities of 1-Fracture, 2-Fracture and N-Fracture 2D Mod-
els. T: reservoir (2nd. layer) thickness,
tangential stiffness.

D: fracture spacing, Zn: normal stiffness, Zt:

Layer No. Vp [m/s] Vs [m/s] Density [g/cc]
1 3500 2060 2.25
2 4000 2353 2.3
3 3500 2060 2.25

fractures Zt = 4 x 10'Pa/m Zn = 4 x 109Pa/m 2.3
D = 100 m T = 200 m

Table 3.2: 3D Model velocities and densities. T: reservoir (3rd.
fracture spacing, Zn: normal stiffness, Zt: tangential stiffness.

layer) thickness, D:

Layer Vp [m/s] Vs [m/s] Density [g/cc]
1 3000 1765 2.2
2 3500 2060 2.25
3 4000 2353 2.3
4 3500 2060 2.25
5 4000 2353 2.3

fractures Zt = 4 x 109Pa/m Zn = 4 x 109Pa/m 2.3
D = 35 m T = 200 m
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Figure 3-1: 1-Fracture 2D Model Geometry.
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Figure 3-2: P-wave (top) and S-wave (bottom) velocities as a function of the angle of
incidence of the anisotropic fracture zones and the isotropic reservoir layer in the 2D
and 3D models discussed in section 3.2 (left). On the right, equivalent velocities for a
model in which fractures have a lower tangential and normal stiffness of 8 x 10 Pa/m

(section 3.5).
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Figure 3-3: Seismograms from the 1-fracture 2D model. From left to right: vertical

component (Vz), divergence and curl.
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Figure 3-4: Seismograms from the no-fracture 2D model. From left to right: vertical

component (Vz), divergence and curl. The numbered events are explained in the text.
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Figure 3-5: Seismograms obtained by substracting the no-fracture from the 1-fracture

2D modeled data. At the top: vertical component (Vz) (left) and pressure (right).

At the bottom: divergence (left) and curl (right). The numbered events are explained

in the text.
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Figure 3-6: Snapshots of the curl component from the 1-fracture 2D model. Model
interfaces are indicated with dashed black lines. PS: converted wave at the first
interface; PdS: shear diffracted wave from the top tip of the fracture; PPS: shear wave
reflected from the second interface; PPdS: shear diffracted wave from the bottom tip
of the fracture; PRS: shear-reflected wave from the incident Rayleigh wave at the
second interface.
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Figure 3-7: 2-Fracture 2D Model Geometry.
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Figure 3-8: Seismograms from the 2-fracture 2D model. All records show the vertical

component (Vz). The middle record was obtained substracting the no-fracture from

the 2-fracture modeled data (left). The right record corresponds to the difference

record between the 1-fracture and the no-fracture modeled data that is also shown in

figure 3-5.

108

400

|B
I I



lllmmll s *IIs•sames

400

500 1000
x [m]

Figure 3-9: N-fracture 2D model geometry.

0

Figure 3-10: Seismograms from the N-fracture 2D model. From left to right: vertical
component (Vz), pressure and curl.
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Figure 3-11: 3D Model Geometry. Fractures in the reservoir/middle layer are spaced
35 meters.
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Figure 3-12: Snapshots of the vertical component (Vz) at 125 ms in the x-z (left)
and y-z (right) plane. Data correspond to the 3D model with fracture spacing 35 m.

110



ITS no

NN

x [m]
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Figure 3-14: Snapshots of the vertical component (Vz) at 225 ms in the x-z (left)
and y-z (right) plane. Data correspond to the 3D model with fracture spacing 35 m.
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Figure 3-15: Snapshots of the vertical

and y-z (right) plane. Data correspond

900 11 strike
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component (Vz) at 275 ms in the x-z (left)

to the 3D model with fracture spacing 35 m.
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Figure 3-16: Map view of the top of the fractured layer in the 3D model with frac-

ture spacing 35 m. Modeled data were sorted into 10-degree azimuthal gathers as

indicated with the yellow lines. The azimuth numbering convention is also shown: 0'

corresponds to the direction perpendicular to fracture strike (90').
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Figure 3-17: Data from the 3D model sorted by azimuth every 100. The record at the
top left displays the no-fracture model data. All records show the vertical component
(Vz).
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Figure 3-18: Azimuthal gathers (450 to 900) from the 3D model.
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Figure 3-19: F-k spectra (top) of the modeled data (bottom). From left to right,
data from a model without fractures, data sorted in the direction normal to fracture
strike from the 3D model of figure 3-11 (fracture spacing is 35 m), and data sorted in
the azimuth parallel to fracture strike. Numbered events are explained in the text.
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Figure 3-20: {F-k spectra of the data from the 3D model. Azimuthal gathers are

depicted in figures 3-17 and 3-18. At the bottom rightmost figure the time-offset

window input to the analysis is indicated over the gather at 900.
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Figure 3-21: The normalized backscattered energy (E,,tt) is computed every 100
with equation 3.2 and plotted as a function of azimuth in the left figure (red). The
green curve corresponds to the forward scattered energy, computed in the positive
wavenumber interval. On the right, the f-k spectrum of the 0' gather (normal to frac-
ture strike). The energy maximum in the negative wavenumber interval is indicated
(white plus sign) as well as the value of ko chosen to compute Escatt (white dash line).
Fracture spacing is determined from the frequency-wavenumber values of the energy
peak through equation 3.3.
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Figure 3-22: Windowed synthetic shot records showing scattered energy (top row)
and their corresponding f-k spectra (bottom row). The first shot record (top left)
is for the 0' azimuth. The middle shot record is the result of f-k filtering the first
shot record to preserve only the backscattered energy. The right shot has had the
backscattered energy removed.
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Figure 3-23: Data at 0O (top) and 90' from models which vary the fracture layer
thickness. An x-z view of each 3D model is at the top most row. From left to right,
thickness is: 100 m, 50 m, 25 m, and 10 m. The rest of the model parameters are as
in table 3.2.
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Figure 3-24: On the left, backscattered energy plotted as a function of azimuth for
models in which the fracture height is reduced from 2A to A/10 or equivalently from
200 m to 10 m. On the right, the amplitude of the highest energy peak on the negative
wavenumber interval (backscattered amplitude) is plotted as a function of azimuth
for the same models).
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Figure 3-25: F-k spectra of the 0' gather from the different thickness models. From
the top left plot and clockwise: model with thickness 100 m, 50 m, 25 m and 10 m.
The window of data extracted for the analysis is indicated in red on the shot gather
at 00 of the control model. On the spectra, energy maxima are indicated with white
plus signs. At the bottom right, f-k components of all cases consistently estimate the
fracture spacing of 35 m with great accuracy and precision.
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Figure 3-26: Data at 00 (top) and 90' from models which vary the fracture compliance.
An x-z view of each 3D model is in the top row. From left to right, stiffness is: 8 x
0lPa/m and 4 x 109Pa/lm. The rest of the model parameters are as in table 3.2.
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Figure 3-27: In the left column, backscattered energy is plotted as a function of
azimuth for models in which the fracture stiffness is increased from 8 x 10sPa/m
to 4 x 109Pa/m. In the right column, the amplitude of the highest energy peak on
the negative wavenumber interval (backscattered amplitude) is plotted as a function
of azimuth for the same models. The top row uses a long analysis window and the
bottom row uses a short time window.
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Figure 3-28: F-k spectra of the 0' gathers from the different fracture compliance
models. In the top row, data and spectra computed in two different windows for
the highly compliant fractured model. In the bottom row, equivalent figures for the
control model (low compliance). The windows are indicated on the left gathers. The
middle panel shows the spectrum for the larger analysis window, while the right
panel shows the results for the smaller window. The energy maxima associated to
the fracture backscattered component are indicated with the white + symbols.
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Figure 3-29: F-k components of the energy peak for all fracture compliance models.
The left plot corresponds to the results from the long analysis. On the right, the
corresponding results when the input data window is shorter.
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Figure 3-30: Data at 0O (top) and 90' from models which vary the fracture spacing.
An x-z view of each 3D model is in the top row. From left to right, spacing is: 25
m, a pseudo-normal distribution with mean spacing 35 m and standard deviation 10
m, 50 m, and 100 m. Model parameters are as in table 3.2 except for the fracture
material whose normal and tangential stiffness are 8 x 10s Pa/m.
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Figure 3-31: On the left, backscattered energy plotted as a function of azimuth
for models in which the fracture spacing is reduced from 100 m to 25 m. On the
right, the amplitude of the highest energy peak on the negative wavenumber interval
(backscattered amplitude) is plotted as a function of azimuth for the same models.

127

-- d25
- d35

-...... ....... ....... ...... .. . . .d35-1 0
-- d50

- -i- dlOO

-··----- -- -- ------; -------;--- ... ... .. .. d10
---·-------------------- -· --·---- --- ---- --- --

r ....... r ----;---r------- r----- - -------- ------·

,......:...... .;... ----....... ...:.... -----
...... ----L ----L---- .... . I

I i
~~""! ~d=25m---·------ t--··------t------ t-d=35-10

L d=3510mm
...... . --------- -- -- =loom---

---------------·-- ----- --------------- ....... ..........

------~-------1---·---~------~-r

·-f----r----1--------------
0



'ol

LO Lto 0) CI 000 0....................................... ;...~~ .......~~.c..... _..... ..• ;...._------------_--•-------•

.... ...•..&,.----4:---s--.---------

(1)

o

oCN0

0

0

EZE3z

zr c (0 L) -bN
!zHI Aouenboj

04H Aaunben

P"U 'aUW=

Figure 3-32: F-k spectra of the 0' gather from different spacing models. From the
top left plot and clockwise the spacing is: 100 m, 50 m, a pseudo-normal distribution
with mean spacing 35 m and standard deviation 10 m, and 25 m. The window of
data extracted for the analysis is indicated in yellow on the shot gather at 00 of the 35
m fracture spacing model. On the spectra, energy maxima are indicated with white
plus signs. At the bottom right, the peak wavenumber is related to fracture spacing
though equation 3.3.
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Figure 3-33: F-k spectra of the 0' gather from the 25 m, 50 m, and 100 m fracture
spacing models. The analysis is performed in long time windows (indicated in red
in figure 3-28. On the spectra, energy maxima are indicated with white plus signs.
Other energy peaks are indicated with magenta plus signs. At the bottom, the peak
f-k values are extracted for all cases and compared to fracture spacing. In the 100
m fracture spacing model the F-K technique applied in the long window fails to
resolve without aliasing the dominant wavenumber and therefore it under estimates
the fracture spacing.
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Figure 3-35: Scattering index as a function of azimuth computed for the following
models: (a) models where fracture height is reduced from 2A (control model, in
blue) to 1/10A (10 m, in green); (b) models where fracture stiffness is reduced from
4xO19Pa/m (control model, in red) to 8xlOsPa/m (in blue); and (c) models where
fracture spacing is decreased from 100 m (black) to 25 m (green) (control case is in
blue). Figure (c) is modified from Willis et al. (2006).
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Chapter 4

The Lynx Field

The ideas and techniques developed in chapter 3 will be applied to a real reservoir

case in the following chapter. In the present chapter, background information about

the Lynx field is provided.

Knowledge of the geological setting is critical because it guides the fracture anal-

ysis. It also assists in evaluating the validity of the intrinsic assumptions of the

scattering methods when applied to a particular field case. Furthermore, rock type,

regional tectonics, and stress regime, among others, are key to interpreting the results

of chapter 5.

First, the geographical and geological location of the Lynx area is described fol-

lowed by a summary of the tectonic history and typical regional structures (section

4.2). Section 4.3 and 4.4 discuss petrophysical and stratigraphical data and the struc-

tural model of the Lynx field, respectively.

Section 4.5 collects information related to fractures in the Lynx field, either from

direct observations or inferred by previous studies. The production history of Lynx,

briefly described in section 4.6, clarifies the practical motivation to apply the fracture

scattering techniques in order to provide a fracture map of this gas field. Finally, the

current and past stress state in the Lynx and adjacent areas are discussed in section

4.7.
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4.1 Location

The Lynx field is located in southwest Canada, in the foothills of the Canadian Rocky

Mountains, in the Alberta Province, about 450 Km to the north of the city of Calgary

and to the northwest of Grande Cache (figure 4-1).

The Lynx field is also on the western edge of the Western Canadian Sedimentary

Basin (WCSB), specifically in the structural domain known as the Foothills. The

Foothills cover about 40,000 mi2 and are limited on the west by the Front Ranges

of the Rocky Mountains and on the east by the Plains domain (Newson, 2001). The

Plains sedimentary section extends east to igneous and metamorphic outcrops of the

Canadian Shield. To the west of the Foothills and the Rocky Mountains is the Rocky

Mountain Trench, a long valley that stretches from the US border to the Yukon (figure

4-2).

The Rocky Mountain trench separates the region of alloctonous rocks (plutonic,

volcanic, metamorphic and granitic) from the structured belt of the WCSB in the

east formed of folded and faulted sedimentary rocks (Wennekers, 2007a). To the

west of the trench are found numerous metal deposits, industrial minerals, and coal,

whereas the eastern area yields oil, natural gas, coal, potash, salt, gypsum, and other

non-metallic products.' The WCSB is one of the world's most prolific hydrocarbon

basins. In Alberta, natural gas production at the end of 2006 was about 130 tcf.

Another 100 tcf of gas (not including coal bed methane reserves), are estimated to

be still in place (Alberta Energy and Utilities Board, 2007). However, the structured

belt of the WCSB is also one of the most complex structures in the world and "future

exploration will only be successful when stress and strain are understood in this area"

(Wennekers, 2007a).

The Lynx field was discovered in 1963. With the exception of few wells (e.g. well

10-28), drilling activity and commercial gas production formally started in 1998. Until

today, well 6-18 has been the most prolific well in the Lynx field from the Cadotte

formation (Canadian Discovery Digest, 2004). Figure 4-3 gives an idea of the type

1http://atlas.nrcan.gc.ca
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of structures found at the reservoir level beyond the area of study, as well as the

relative location of several wells. The tectonics of the region have extensively folded

the southwest area, with the major axis of these folds being in the NW-SE direction.

The structural folding reduces and flattens smoothly into a vast plain towards the

East.

4.2 Tectonic History of the Western Canadian Sed-

imentary Basin

The WCSB is a foreland basin, and the adjacent Rocky Mountain Thrust and Fold

Belt is a transpressional accretionary prism. Subsidence and sediment accumulation

in the WCSB is linked to the origin and tectonic evolution of the Cordilleran orogenic

belt and thereby to the history of the tectonic interactions between the craton and the

adjacent plates. Next, a summary of such tectonic history is presented as described

in Price (1994), Monger and Price (2002) and Wennekers (2007a).

1000 Ma - 540 Ma: Rifting of Rodinia and Miogeocline Formation

In the Proterozoic, about 1000 Ma, all continents were amalgamated into a super-

continent called Rodinia. Rifting and drifting of Rodinia started about 750 Ma.

On the eastern limit of the rift along the large fragment, Laurentia, which included

present North America, a continental shelf-slope margin was completely formed by

the Early Cambrian (540 Ma). This margin eventually became the site of the present

Cordillera. The adjacent ocean basin, Panthalassa, was the ancestor of the Pacific

Ocean.

540 Ma - 175 Ma: From Passive Margin to Subduction to Collision

The passive intra-plate boundary evolved, first, into an inter-plate convergent margin

by the Middle Devonian (390 Ma), and second into a collision margin by the Early

Jurassic (175 Ma). At the time of subduction, there were chains of island arcs on the
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ancient Pacific plate that became large land masses as the plate moved, piling them

together. About 175 Ma, the first of such land masses, the Intermontane Terrane,

closed in on the North American Plate but, being too buoyant to be forced downward,

it was accreted to the edge of the continent. This started the collision and mountain

building period known as the Nevadan orogeny.

By that time, Panthalassa had expanded and all continental fragments had amal-

gamated again into another supercontinent, Pangea, in the opposite hemisphere.

Pangea's rifting, about 200 Ma, also contributed to the force driving the strong,

cold North American lithosphere to collide with the oceanic plate on the west. In

its movement, the North American Plate eventually overrode the trench and the

subduction zone.

175 Ma - 55 Ma: Front Ranges and Foreland Basin formation

Collision between the continental margin and the Intermontane Terrane led to the

development of the accretionary prism that evolved into the Rocky Mountain Thrust

and Fold Belt. The prism was formed by alloctonous rocks brought by the overriding

bodies and rocks scraped off the North American plate. Simultaneously, the initial

phase of subsidence of the foreland basin began about 160 Ma and is correlated with

the change in the style of deformation at the suture zone, from subduction to collision.

However, the main event responsible for the formation of the front ranges and the

subsidence of the foreland basin had taken place about 85 Ma (Late Cretaceous).

This episode is known as the Laramide orogeny, and it started after a second large

Terrane, the Insular Terrane, was accreted.2 The intense compressive force of this

collision folded and thrust faulted sedimentary rocks in the east to form the Rockies

and the Foothills. Isostatic flexure of the North American lithosphere under the

weight of the rocks that form the foreland thrust and belt completed the subsidence

of the foreland basin. After the Laramide orogeny, the new continental margin was

located about 500 Km oceanward with respect to the original margin.

Between Early Jurassic and Late Paleocene, the main forces acting on the accre-
2http://www. mountainnature.com/Geology/platetectonics.htm
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tionary prism and adjacent rocks were compressive, especially in the south, and of

right-lateral transpression (strike-slip) in the north. Because the collision was oblique,

numerous parallel and vertical strike slip faults broke the shield and the sedimentary

cover. While being deformed by shear forces, the shield was simultaneously hori-

zontally shortened (about 160 Km) by direct compression from the east, leading to

massive thrusts along which new rocks were ploughed and pushed up. This thrust

the sedimentary section to great heights.

Recent Tectonics

During the Eocene, displacement between North America and the accreted terranes

slowed down and finally ceased about 42 Ma. At this time, the deformation style

changed, becoming primarily transtensional in the north and extensional in the south.

As a consequence, subsidence of the foreland basin was followed by isostatic uplift

and erosion.

Today, the western margin of the North American Plate features convergent and

transform plate boundaries. From south to north, the boundary is first dominated

by transform faults, as the San Andreas Fault; then it is convergent in the Cascadian

subduction zone, west of which is the Juan de Fuca Plate. Moving north, the bound-

ary again becomes a transform margin at the latitudes of the Queen Charlotte fault,

west of which the Pacific Plate moves northward to descend below Alaska, along the

Aleutian subduction zone. On-going tectonic activity manifests in earthquakes and

volcanism along these boundaries (figure 4-4).

4.2.1 Regional Structures

Under such a complex stress environment, rocks were effectively shortened primarily

by two independent mechanisms. In some cases, rocks faulted and stacked on top

of each other to form structures in which the reservoir rock today is faulted repeat-

edly (fault bend folds). In other cases, horizontal compression created tight folds

associated with thrust fault detachment (Newson, 2001). Figure 4-5 shows figures
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of the geometry of these types of structures. In addition to classical compressional

structures, the high topographic elevations at Paleocene time, together with more

recent periods of glaciations, facilitated the formation of gravity sliding structures

(Wennekers, 2007a).

Plays in the Foothills are generally part of a thin-skinned thrust system in which

a basal thrust (decollement) branches into more steeply dipping thrusts to form im-

bricate fans (Newson, 2001; McMechan, 1999). In the basin, sediments came from

the erosion of igneous-metamorphic rocks of the Canadian shield on the east, but in

post-Triassic time a second source of sediments emerged on the west from the up-

lifted rocks (Wennekers, 2007a). Consequently, older strata in the sedimentary cover

(Cambrian to Triassic) comprises primarily carbonates or sandstones, whereas the

younger strata (Late Jurassic to Tertiary) comprises thick sandstone, siltstone, shale,

and coal units separated by marine shale units. These shale units form multiple lev-

els of detachment, and in between, a series of tectonic wedges have been interpreted

(McMechan, 1999). Depending on the competence of the sandstones separated by

these detachments, folds and faults develop, sometimes giving place to triangle zones.

In the structured belt, rollovers/leading edges of thrusts and folds are the main

drilling targets. In these structures, reservoir rock is often fractured, with curvatures

and relative age determining the availability of open fractures. In typical thrust-

belt anticlines, because of the way the fold develops, the reservoir rock is generally

fractured in multiple assemblages related to the structural position within the fold

(figure 4-6). Strike-slip faults parallel with structure trends and at angles to them

also add fractures and enhance reservoir quality (Wennekers, 2007b). Predicting the

occurrence of such fractures is considered a difficult task in structural geology (Wen-

nekers, 2007a). The role of fractures is also difficult to assess. In general, rocks with

moderate to poor matrix become good producers, and fields in which the matrix is

good may be negatively affected by fractures (Newson, 2001).
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4.3 Stratigraphy and Petrophysics of the Lynx Field

The main reservoir unit in the Lynx field is the Cadotte Member of the Peace River

Formation. Cadotte is a tight-gas sandstone of early Cretaceous age, at a depth of 3

Km (1.9 s). Mud logs and FTIR" analyses of cores show a composition dominated

by a quartz pebble conglomerate with abundant chert (20-30%) and minor clays,

carbonates, and siderite. Cadotte was deposited in a marine shoreline environment

and exhibits an overall coarsening upward in gamma ray logs and cores, from fine

grained to conglomerates, indicating a local regressive pulse. It is in this conglomerate

section that Cadotte is believed to be most prolific (Canadian Discovery Digest, 2004).

In the overburden, immediately above Cadotte, lies uncomformably the Paddy

Member whose lithology varies greatly in the area, including clastics, coals, and car-

bonates (figure 4-7). The contact Paddy-Cadotte is an erosional surface indicative of

a transgression or sea-level raise (Sen et al., 2007). Paddy is overlain by the shales

of the Shaftesbury Formation. Overlying this thick shale succession (more than 200

m), is the Dunvegan Formation, another prospective sandstone. The formation below

Cadotte, Harmon, consists of interbedded silts and shales (Canadian Discovery Di-

gest, 2004). Below Harmon is the Falher Formation consisting of coal bearing sands

and shales. Figure 4-8 shows that the transition Paddy-Cadotte is easily identified in

gamma ray logs. There, Cadotte's gamma ray reading is about 300 API, typical of its

conglomerate or very clean sand face. The lithological distinction between Cadotte

and Harmon is less sharp in the gamma ray logs due to the gradual decrease in grain

size within Cadotte. Cadotte's thickness across the area ranges from 20 to 40 m with

the shallower 15 to 20 m usually related to the coarse upper shore face (Canadian

Discovery Digest, 2004).

VeritasDGC did a petrophysical analysis of Cadotte using well and mud logs from

8 wells (6-18, 6-9, 10-22, 10-28, 9-16, 9-17, 11-7 and 3-19) and core data from 2 wells

(6-18 and 6-9; see figure 4-3 for wells' location). Figure 4-10 shows the distribution

of P-wave log velocities at the Cadotte's depth interval for 5 of these wells. Cadotte

3 FTIR: Fourier Transform Infrarred spectroscopy
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is a fast formation with P-wave velocities varying in a wide range, from well to

well, between 4000 and 6600 m/s. Such a range may be related to composition

or pore geometry variability due, for example, to presence of microcracks (personal

communication with Tad Smith- VeritasDGC). Paddy, on the other hand, is a soft

low velocity formation. As observed in the plot on the right of figure 4-10, there

is a large acoustic impedance contrast between Paddy and Cadotte. In this figure,

acoustic impedance log for each well was computed from density and velocity logs and

shifted to match Cadotte's top depth in all wells. In general, Cadotte's impedance is

about 30% greater than the background shales (Shaftesbury).

Figure 4-9 shows that Cadotte's sandstone is tightly cemented with matrix porosi-

ties below 10%. Permeability is estimated in average around 0.1 md. The lowest water

saturations observed are 20%, and possibly lower, due to the high content of chert that

can cause overestimations (personal communication with Tad Smith- VeritasDGC).

Such low saturations are typical of tight-gas sandstones.

Lynx's plays are considered both structural and stratigraphic. As mentioned,

Cadotte's conglomerates (upper shore lithofacies) are related to productivity but the

structural position of this face seems to control its local suitability as a reservoir

(Canadian Discovery Digest, 2004).

4.4 Seismic Structural Interpretation

More locally, the Lynx field is located in what is known as the Kakwa area. This area

is located to the east of the Muskeg Thrust which is the eastern limit of significant

deformation (Sen et al., 2007). The Muskeg Thrust is a continuous west verging

thrust in the Alberta Foothills. East of this thrust, folds and faults are laterally

discontinuous (McMechan, 1999).

In the study area, the structural front manifests as a mixture of folds and thrusts

primarily west-verging. As in other areas of the Foothills, the main driver of the deep

structures (Paleozoic-Triassic carbonates) is thrust faulting. In the Upper Cretaceous

formations, lithology changes to clastic systems dominated by sandstones and shales.
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In here, commonly, folding happens. The variations in style are due to the large

mechanical differences between sections (personal communication with Dean Sinnot

and Mark Skoko, ConocoPhilllips).

A series of imbricate thrust faults have been proposed to explain Cadotte's eleva-

tion changes across the area, which deepens towards the northeast (figure 4-18). In

figure 4-18 one west verging NW-SE trending thrust is located south of well 11-07.

Two other thrusts, or alternatively box folds without thrust faults, could be inter-

preted to be located between wells 6-18 and 9-17, and at the location of well 5-21

(Canadian Discovery Digest, 2004).

Figure 4-11 shows seismic interpreted horizons corresponding to the top of the

main formations over an unmigrated seismic section from the survey area. Figures 4-

12, 4-13, 4-14 and 4-15 depict maps of the interpreted horizons. These interpretations

were provided by ConocoPhillips. In general, NW-SE fold structures dominate the

southwest area. Some reverse faults are interpreted parallel to the trend of the folds

as shown in figures 4-16 and 4-17. Lynx's faults are believed to be purely reverse

without a strike-slip component, at least at a local scale. Shortening along strike

happens mostly through faults en 'chelon (personal communication with Mark Skoko,

ConocoPhillips).

The rock matrix at the main reservoirs in Lynx (Cadotte and Dunvegan) is of

variable quality and, in general, fractures are believed to act as main fluid conduits

because rocks are tight-gas sandstones, of extremely poor porosity and permeability.

In principle this is the reason why structure is believed to be so important (to provide

the fractures), however performance has been somewhat random. Flush production is

very common with some wells depleting very fast, e.g. in one year the production rate

typically decreases 3 to 4 times (pers. comm. Dean Sinnot- ConocoPhillips). This is

in part the motivation to look for a structural model that consistently predicts the

fractures.
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4.5 Evidence of Fractures

Gas production in Lynx is believed to be largely controlled by fractures. Evidence

of fractures in the region comes from outcrops and well data. VeritasDGC observed

fractures in cores and thin sections from two wells (6-18 and 6-9), and interpreted

them indirectly from resistivity and image logs in 5 wells (10-22, 11-7, 6-9, 3-19, and

6-18) and a dipole sonic log at well 11-07.

In Lynx, multiple fracture sets of variable scales and potentially different orien-

tations are observed. VeritasDGC classifies them into three categories: large scale,

small scale and micro scale. The definition of large scale fractures depends on their

identification in image logs and possible separation of shallow and deep resistivity

curves, which is typically considered an indication of high permeability. Large frac-

tures are not generally seen in cores although rubble zones might be associated to

these types of fractures or fault zones.

These fractures were not observed in the overburden but are present at Cadotte

and formations below. For instance, figure 4-19 shows a section of the Cadotte level

and below in the image log of well 6-18 where several large fractures are identified.

The resistivity logs exhibit separation of the curves at the corresponding depths.

Separation of resistivity curves was also observed at other wells and in the Falher

zone (Sen et al., 2007).

Fracture densities estimated in the reservoir from images logs are indicated in table

4.1. Breakouts were also observed in image logs. The stress information obtained from

breakouts is discussed at the end of this chapter.

Considering Lynx's velocity anisotropy, the dipole sonic log at well 11-07 agrees

with image logs in that the overburden is not fractured with the exception of the

Dunvegan formation where shear wave splitting is observed (figure 4-22). Anisotropy

at Dunvegan is estimated around 10% while for Cadotte and below, anisotropy was

somewhat lower, around 300 m/s or 6-9%. The Cadotte in this well shows fractures

in the image log and separation of long and short resistivity curves (pers. comm.

Tad Smith VeritasDGC). The formation below Cadotte, Harmon-Falher, shows great
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anisotropy, sometimes as high as 15%.

Small scale fractures are believed to be natural although they may not contribute

to flow. They are not necessarily seen in image logs but are identifiable at the core

scale. A photograph of the core taken in well 6-9 is shown in figure 4-20 to exemplify

the scale of these fractures. Stylolites and cementation are frequent in Lynx's core

samples.

Cracks at the micro scale are not observable in cores or resolved by image logs.

They are identified as discontinuities between grains observed in thin sections and

SEM images. 4 Figure 4-21 shows an example from well 6-9. Cracks observed in

Lynx's thin sections and SEM images are randomly distributed. The importance of

microcracks rises when trying to explain the large variability of compressional veloc-

ities measured at Cadotte. Initially, velocity variations are ascribed to variations in

porosity or composition, but in Lynx no correlation was found between P-wave veloc-

ity and porosity (either from logs or ultrasonic measurements in cores; pers. comm.

with Tad Smith from VeritasDGC). Other possible causes could be differences in the

relative angle of the wells with respect to fracturing or variations in the degree of frac-

turing at Cadotte. Modeling Cadotte as a pure quartz rock with 6% matrix porosity

and 1% crack porosity, and assuming an effective medium theory (Kuster-Toks6z),

VeritasDGC reproduced the velocity differences. Then, computing the difference at

each well between a non-cracked modeled velocity and the real log, they obtained a

potential indicator of crack concentration. Correlation between such an indicator and

production at wells was good (table 4.1).

AVO feasibility studies carried out by ConocoPhillips suggest that although around

10% of anisotropy (HTI) could give rise to significant changes in AVO gradient, bed

thickness needs to be at least 25 m to be resolved. Cadotte's thickness may prevent

reliable fracture detection with an AVO technique (pers. comm. with Ethan Nowak-

ConocoPhillips). Nevertheless, the final AVOA study detected an anomaly to the

southwest of the survey area, approximately around well 9-17 (pers. comm. with

Doug Foster- ConocoPhillips). Sen et al. (2007) show that the AVOA response at

4Scanning Electron Microscope
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the top of the Falher Formation is unusual because of transmission effects through

the shallower anisotropic Cadotte and possibly due to the presence of multiple non

orthogonal vertical fractures.

4.6 Production History

In naturally fractured reservoirs low porosities are unrelated to production since per-

meability depends on the degree of fracturing and in some instances fracturing is even

more intense in intervals of low porosities (Aguilera, 1998). There is no indication

that Cadotte's thickness is related to low productivity or lack of fractures. On the

contrary, outcrop and production data have historically shown that joint and fracture

spacing is proportional to bed thickness in sedimentary rocks (Aguilera, 1998; Narr

and Suppe, 1991).

In fractured reservoirs, productivity is expected to be maximized according to well

placement relative to fractures. For instance, Nelson (2001) ranked optimum drilling

paths in typical fractured asymmetric folds according to the possibility of intercepting

the major number of fractures (figure 4-23). It is suggested that directional wells in

flank positions (backlimb, forelimb) can produce better oil and gas rates than in the

hinge.

In Lynx, the lack of correlation between high productivity and position drilled on

the structure is puzzling. Successful well placement relative to structure is compli-

cated by the fact that the reservoir thickness for most of the area is below seismic

resolution and impedance contrast is weak in many areas. Notwithstanding, the in-

terpreted structures have been drilled at their crestal position (well 9-17), on the

frontlimb (wells 6-18 and 6-9), backside (wells 9-16, 3-19, 11-07 and 5-21) and on the

low curvature side (wells 10-28 and 10-22).

In terms of initial production, well 6-18 is the most successful (IP=12.12 mmcf/d;

see table 4.1). This well produced in a 2-year period about 5 bcf of gas (Canadian

Discovery Digest, 2004). Despite its trajectory being similar to well 6-18, well 6-9

did not do so well (IP=0.35 mmcf/d). According to the most accepted structural
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model of the area, well 6-18 lies close to a structural rollover where fracturing would

typically enhance reservoir quality (Canadian Discovery Digest, 2004). Such assertion

is partly supported by the observation of fractures in cores and image logs in well

6-18 as described in section 4.5.

Wells 9-16, 9-17 and 3-19 are good producers with IP of 10.85, 9.75 and 3.32

mmcf/d respectively, but well 11-07 also aiming to cross fractures in the backlimb,

produced minor gas (IP=0.14 mmc f/d). Well 10-22 had geomechanical problems and

became a minor gas producer with an IP of 0.2 mmcf/d. It currently produces from

Dunvegan. Well 5-21 was abandoned since it did not find Cadotte.

10-28 was one of the first wells, drilled about 20 years ago. Although it crosses

Cadotte, it produces only from Dunvegan. It is believed to produce from fractures and

matrix (pers. comm. with Dean Sinnot- ConocoPhillips). It has produced 20 bcf of

gas and today's rate is still 1 mmcf/d (Canadian Discovery Digest, 2004, average rate

of 11.4 mmcf/d until October 2004). Under the assumption that natural fractures

in this field are primarily vertical, vertical wells do not stand the same probability

of success than directional wells; however 10-28 has been a successful producer from

Dunvegan.

Production from fractured reservoirs is not only optimized by well position relative

to structure. The completion method, degree of mineralization of the fractures, and

current stress regime which defines the aperture of fractures are also key factors to

consider. Particularly, we believe that stress controls the distribution of open large

scale fractures or joints that have the greatest impact in enhancing fluid flow. This

thesis intends to determine orientation distribution and spacing of large fractures in

Lynx. It contributes to the understanding of the variation of stress across this area

and hopes to increase the probability of success of future prospects.

4.7 In-Situ and Regional Stress

The general assumption that one principal stress is vertical and the other two are

horizontal is valid in the WCSB where topography is relatively low. Even at the
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edge of the Foothills, where some relief may exist, the deflection of stress axes will be

minimal below a few hundred meters (Bell et al., 1994).

In recent years, there has been an increased interest in mapping in-situ stress

in the WCSB and particularly in the Alberta Province. Such an interest is mainly

related to experimental evidence that minimum in-situ stress magnitude could be a

meaningful indicator of coal bed methane permeability (Bell, 2006, e.g). Knowledge

of in-situ stress in coal beds is also desirable to better plan and control activities of

C0 2 sequestration either for environmental benefit or to enhance methane recovery

(Hawkes et al., 2005).

As a consequence, a great number of stress measurements exist today in the basin.

Contemporary stress orientation has been determined primarily through well break-

outs and less often using other techniques such as overcoring, induced fractures and

anelastic strain recovery. Horizontal in-situ stress magnitudes, on the other hand,

are generally more difficult to measure and therefore data are less available. Only

overcoring, micro and mini fracture tests are considered accurate methods to obtain

minimum stress magnitude. However, several methods to estimate it from leak-off

tests and fracture breakdown pressures have been applied in the WCSB increasing

considerably the dataset of stress magnitudes in this area.

Maximum Horizontal Stress Orientation

The first compilation of stress data was presented by Bell and Babcock (1986). Most

of the orientation estimations in this compilation are derived from well breakouts (154

locations). Stress orientation in another 7 locations was derived from other methods.

Stress magnitudes (SHmax, Shmin and Sv) were obtained in 9 locations. The

majority of the estimations in the 1986 dataset has been incorporated, verified and

ranked in the most recent version of the World Stress Map (WSM) (Reinecker et al.,

2005). SHmax azimuth derived from focal mechanisms of few earthquakes are added

in the WSM database. In 1994, a second compilation of stress data was published

(Bell et al., 1994) adding 21 stress orientation data points from well breakouts and

increasing the locations with control of stress magnitude to 62. More recently, Bell and
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Bachu (2003) reported 10 new breakout locations. The additional stress orientation

information, not included in the WSM database, is integrated and mapped in figure

4-24 by means of the software CASMI provided by the World Stress Map Project

(Reinecker et al., 2005). Additional data points are reproduced in table 4.2.

As illustrated in figure 4-24, the NE-SW trend of the maximum horizontal stress,

perpendicular to the Mesozoic deformation front, is very persistent. Breakout data

also indicate that there is little variation of this orientation with depth, rock type

or age (Bell et al., 1994). Open tectonic fractures in Lynx are therefore expected to

bear this NE-SW trend, in other words, fractures sub-parallel to SHmax are expected

to be more resistant to closure. In fact, dominant fracture axis in Cretaceous coal

seams in Alberta measured in shallow coal mines gives orientation aligned within 20

degrees of the trajectories of SHmax (Bell and Bachu, 2003). In other places of the

Foothills, however, exceptions of this trend have been observed with open fractures

running parallel to fold axes (NW-SE) (Bell et al., 1994).

In the Lynx field, breakouts were observed in image logs at wells 3-19, 10-22, 6-09,

6-18, and 11-07, indicating that the horizontal stresses are unequal also in this zone of

the Foothills. The orientation of SHmax, inferred from well breakouts is consistent

at NE-SW and NNE-SSW (figure 4-25). Maximum horizontal stress orientation from

the wells in Lynx are also included in table 4.2 and in figure 4-24.

Vertical Stress

Numerous density logs in the area have been analyzed and there is a good agreement

in that the gradient of vertical stress for Cretaceous rocks varies between 23-24.7

kPa/m in the Foothills and is around 20.1 kPa/m closer to the Canadian shield to

the northeast (Bell and Bachu, 2003; Hawkes et al., 2005). Figure 4-26 shows the

calculation of vertical stress from the density log of a particular well in Lynx (well

9-16). Extrapolation of the density trend to the surface is necessary because these

logs are rarely run in the whole well section. Consequently, estimations of vertical

stress will vary depending on the way this extrapolation is done.

At Cadotte's depth, Sv gradient in well 9-16 is about 24.3 kPa/m. Sv magnitude
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at Cadotte in this well varies between 64.7 and 67.9 MPa depending on the choice of

density at the surface. Comparing the vertical stress estimations of 5 wells in Lynx

(table 4.3), the average vertical stress gradient is 24 kPa/m- similar to the rest of the

Foothills and close to the lithostatic gradient (1 psi/ft). Sv magnitude at Cadotte

varies among Lynx's wells between 64.7 and 83 MPa.

Minimum and Maximum Stress Magnitudes

Few measurements of fracture closure pressure exists in the area but they have been

integrated with adjusted leak-off and fracture breakdown stress tests to provide es-

timations of Shmin. Comparisons with the vertical stress show that the minimum

in-situ stress is horizontal for most of the WCSB (Bell, 2006). Exceptions are re-

ported at shallow depths (above 600 m), for example in northeastern Alberta, and in

the Wapiti area in the Foothills (southeast of Lynx) where Sv is the smallest stress

or is very close to Shmin (Bell et al., 1994).

Based on the premise that Shmin is the minimum stress in central and southern

Alberta, comprehensive maps of Shmin gradient and magnitude, at specific formation

depths, have been compiled. Bell and Bachu (2003) found gradients of Shmin between

15 and 20 kPa/m for Upper Cretaceous-Tertiary rocks, and similar (13-20 kPa/m) for

a Lower Cretaceous formation. Bell (2006) mapped Shmin for the Upper Cretaceous

'Bell River' formation where gradient varies between 12 and 22 kPa/m. Hawkes

et al. (2005) included stress information inferred in acid-gas injection sites in Alberta

and obtained average Shmin gradients of 17 kPa/m at shallow depths and about 13

kPa/m below 1000 m.

The definition of a unique stress regime in WCSB is difficult given the lack of

maximum horizontal stress measurements. Based on few direct measurements in

shallow sites and rough estimations from hydraulic fracturing tests, Bell and Babcock

(1986) distinguish three regimes according to depth: a thrust regime with SHmax

the greatest stress and Sv the minimum stress above 350 m; a strike slip regime

with Sv the intermediate stress between 350 and 2500 m; and a normal fault regime

with Sv the greatest stress below 2500 m. The same paper gives an example of a

148



Falher sandstone around 2050 m (in a location southeast of Lynx), that shows a ratio

SHmax/Shmin of 1.6 with Shmin about 40 MPa, Sv about 51 MPa, and pore

pressure of 15.2 MPa. In general, a SHmax/Shmin ratio between 1.3 and 1.6 is

suggested above 2500 m or so. Bell et al. (1994) prefer to divide the regime type

according to regions in the WCSB and assign a strike slip regime to the deep western

flank (close to Lynx), and a normal fault regime to the east basin in Saskatchewan.

Hawkes et al. (2005) states that the intermediate stress in the basin is SHmax and

the difference between Shmin and Sv is in average 30% at depth.

Although most of the fields in the Foothills share similar tectonic origin and the

forces responsible for the formation of major structures were of regional scale, ex-

trapolating the studies described above to infer in-situ stress in other areas has to be

carried out carefully. There are practically no data points of minimum stress gradi-

ent west of the Laramide deformation front and therefore the validity of the reported

gradients at the exact location of Lynx (practically on that edge), is questionable.

Local differences are bound to exist primarily because of overburden changes along

and across the belt and basin, i.e., reservoir depth changes. Perturbation of the re-

gional stress field is also likely to occur in fields undergoing production where pressure

conditions are changing.

No measurement or estimation of horizontal stress magnitudes has been published

for the Lynx field. However, the high vertical stress gradient at Cadotte's depth

obtained from Lynx's well logs, suggests that also in this field Sv should be the

greatest principal stress, therefore SHmax is likely to be the intermediate stress.

The most important implication of the stress regime for the fracture characterization

discussed in next chapter is that giving the strong indication that Shmin is the

minimum stress at reservoir depths in Lynx, fractures are expected to be vertical and

therefore comply with this constraint imposed by the fracture scattering methods

applied here. Only at shallow depths of the WCSB, where the minimum stress may

be vertical, fractures would be horizontal.
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Paleostresses

With the emplacement of the alloctonon in the west, the maximum stress in the

Rocky Mountains, Foothills, and probably in the basin, was horizontal, parallel to

bedding, at the time of collision, i.e., thrust faulting stress regime (Newson, 2001).

Since the topography was at least 3 miles higher than today, overburden pressures are

believed to have been also higher. This is supported by anomalously high velocities

of shale sections in some areas of the Foothills in comparison to their counterparts in

the Plains which give rise to overpressured zones (Wennekers, 2007a). These zones

are interpreted as areas where the column has not had enough time to structurally

relax.

Whether stresses have changed in the geological history of the basin is addressed

in several papers. Bell and Babcock (1986) note the similarity between the principal

stress orientations in the basin and the direction of overthrust faulting in the Foothills

and Rocky Mountains, and interpret that SHmax has been NE-SW for at least 100

million years, since the Laramide orogeny. Regarding the lateral variations of the

vertical and minimum stresses observed, Bell and Bachu (2003) argue that these are

a reflection of the level of tectonic stress caused by past orogenic processes. Vertical

stress gradient and magnitude decrease away from the edge of the Foothills to the

east, consistent with the model of the foreland basin loading from the west. Shmin

stress gradient exhibits some lineaments parallel to the Rocky Mountain front.

4.8 Summary

The Lynx field is located in the foothills of the Canadian Rocky Mountains, a clas-

sic foreland fold-thrust belt. Tectonics have reshaped this area extensively. The

Laramide orogeny in the late Mesozoic was defining in the formation of the Front

Ranges and the Foothills. Such a complex tectonic environment gave rise to fold and

thrust structures like imbricate thrusts, detachment folds and duplexes. In Lynx,

structures are primarily of the fault-bend-fold type. Folds and reverse faults trending

NW-SE have been interpreted to the southwest of the area of study. In these folds,
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intense fracturing develops as evidenced in cores and well logs. Structures in Lynx

seem to be fractured at different scales. However, prediction of the fractured areas to

optimize production and development of this field has been difficult. Well breakouts

are also observed in Lynx's wells. Inferred orientation of SHmax coincides with re-

gional in-situ stress estimations collected across western Canada. High vertical stress

gradients obtained from density logs in Lynx suggest that Sv is the largest princi-

pal stress, in agreement with other areas of the Foothills. As a consequence, open

fractures are expected to be vertical at reservoir depths and preferentially oriented

NE-SW, that is, parallel to SHmax.
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WELL IP [mmcf/d] FD background [#/m] FD enhanced [#/m] FD productive [#/m] Crack indicator [%]

6-18 12.12 0.17 0.19 0.23 NA

9-17 10.85 NA NA NA 13.9

9-16 9.75 NA NA NA 11.8

3-19 3.32 1.17 none 0.32 18.2

6-9 0.35 0.7 0.04 0.11 13.7

10-22 0.2 2.28 1.4 0.14 NA

11-7 0.14 2.11 0.29 0.18 5.7

Table 4.1: Initial Production (IP), density of fractures interpreted in image logs (FD) and indicator of crack intensity obtained

by VeritasDGC in Lynx's wells. Classification of fractures as productive enhanced or background follows an internal criteria;

loosely speaking, productive refers to fractures coincident with gas shows and/or drilling mud losses; enhanced refers to fractures

aligned with regional maximum stress and therefore prone to be open; and background corresponds to fractures at high angles

to the maximum stress direction, hence, prone to closure (pers. comm. Ethan Nowak- ConocoPhillips).



WELL/Location LON [deg.] LAT [deg.] SHmax Azimuth [deg.] Type Source
01-04-05-9W2 -101.151 49.351 36.2 BO [1]
09-13-05-13W2 -103.622 49.388 37.4 BO [1]
13-15-05-25W2 -105.298 49.391 136.5 BO [1]

C3-05-066-10W2 -103.327 49.442 121 BO [1]
10-11-10-17W4 -112.204 9.81 154.5 BO [1]
13-25-10-16W4 -112.057 49.857 158.4 BO [1]
08-02-11-16W4 -112.078 49.879 145.5 BO [1]
09-01-12-29W4 -113.83 49.97 146.6 BO [1]
14-36-12-18W4 -112.339 50.047 167.3 BO [1]
07-35-18-21W4 -112.786 50.563 178.23 BO [1]
06-11-19-3W4 -110.391 50.593 152.8 BO [1]
16-10-21-3W4 -110.331 50.774 165.6 BO [1]
8-11-36-21W4 -112.888 52.077 153.7 BO [1]

06-25-40-14W5 -115.888 52.47 157.4 BO [1]
06-36-49-23W5 -117.235 53.267 137.1 BO [1]
14-22-50-11W4 -111.532 53.332 146.4 BO [1]
11-28-55-6W4 -110.838 53.783 146.3 BO [1]

14-09-58-24W4 -113.515 54.005 148.3 BO [1]
06-13-63-8W4 -110.79 54.449 141.8 BO [1]
06-27-65-5W4 -110.676 54.653 144.8 BO [1]
2B-11-67-8W6 -119.097 54.779 134 BO [1]
2B-14-67-8W6 -119.097 54.797 131 BO [1]

10A-03-73-23W6 -110.835 55.296 131.1 BO [1]
13-26-80-22W4 -113.343 55.969 139.5 BO [1]
07-24-83-7W4 -110.989 56.213 123.5 BO [1]
10-23-83-7W4 -110.989 56.213 150 BO [1]

07-18-109-7W6 -119.154 58.463 13 BO [1]
B-45-A-94-P-14 -121.059 59.785 149 BO [1]
CANMORE -115.351 51.072 60.5 OC [2]
KIPP MINE -112.977 49.768 80 OC [2]
3-8-12-12W2 -103.611 49.977 70.5 HF [1]

2B-11-67-8W6 -103.383 54.779 37.7 SEVERAL [1]
C9-12-6-11W2 -103.383 49.491 59 ANEL.STRAIN [1]
10-28-28-24W3 -109.316 51.426 52 MICROSEIS [1]
12-21-34-28W4 -113.923 51.935 48 BO [3]
16-23-62-20W5 -116.879 54.383 57.1 BO [3]
06-08-29-24W4 -113.348 51.465 40.2 BO [3]
02-29-20-20W4 -112.737 50.719 55.2 BO [3]
07-26-21-11W4 -111.421 50.81 40.1 BO [3]
05-22-59-04W4 -110.527 54.113 42 BO [3]
02-29-59-22W5 -117.26 54.124 45.2 BO [3]
06-28-68-24W5 -117.601 54.914 26.8 BO [3]
06-22-69-06W6 -118.83 54.987 33.4 BO [3]
04-36-69-11W5 -115.549 55.012 26.4 BO [3]
11-07-61-9W6 -119.346 54.259 25 BO Lynx-COP
6-18-61-9W6 -119.341 54.274 45 BO Lynx-COP
6-09-61-9W6 -119.291 54.259 30 BO Lynx-COP
3-19-61-9W6 -119.342 54.285 10 BO Lynx-COP

10-22-61-9W6 -119.259 54.298 28 BO Lynx-COP

Table 4.2: Maximum horizontal stress orientation in western Canada. Stress informa-
tion not incorporated in the World Stress Map (Reinecker et al., 2005). [1]: Bell et al.
(1994); [2]: Bell and Babcock (1986); [3]: Bell and Bachu (2003). Well identification
follows the Alberta Township System. BO: breakouts; HF: hydraulic fracture; OC:
overcoring.
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WELL Sv gradient [kPa/m] Sv [MPa]
3-19 24.3- 25 73.08 - 74.91
9-16 23.4- 24.5 64.7- 67.9
9-17 23.3- 24.5 65.8 -69.4
10-22 24- 24.9 80- 83
10-28 23 - 24.3 77.8 - 82.1

Table 4.3: Vertical stress in the Lynx Field. Minimum and maximum values corre-
spond to limiting density gradients used to extrapolate the density logs to the surface.
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Figure 4-1: Location of the Lynx field (from: http://atlas.nrcan.gc.ca/).
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Figure 4-2: Relief map of western Canada (from http://atlas.nrcan.gc.ca/). The
Lynx field is in the Foothills of the Canadian Rocky Mountains. In the inset figure,
Foothills' area is enclosed by blue dots, the Rocky Mountain Fold and Thrust Belt is
in red and the WCSB is in green. Inset figure is modified from Newson (2001).
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Figure 4-3: Structural time map of main reservoir in Lynx and well locations referred
in the text. Courtesy of Tad Smith (VeritasDGC).
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Figure 4-4: Western Canada seismicity (from http://atlas.nrcan.gc.ca/). In the inset

figure, tectonic and geology of the North American plate.
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Figure 4-5: Idealized fault-bend-fold structure (left) and detachment fold (right).

After van der Pluijm and Marshak (2004).
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Figure 4-6: Typical truncation anticline (top) and diagram of fold-related fracture

patterns (bottom). After Lewis and Couples (1993). Types 1 and 2 are normal to

layering. Type 3a is associated to layer elongation. Type 3b is associated to layer

contraction.
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Figure 4-10: On the left, P-wave velocity variation in the depth interval of the Cadotte

formation at 5 wells. On the right, acoustic impedance logs computed from density

and velocity logs and shifted to align all wells at Cadotte's depth. The color code is

as in the histograms on the left.
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Figure 4-11: Seismic inline 58 and interpreted horizons corresponding to the top of
formations: Dunvegan (green), Shaftesbury (yellow), Cadotte (red) and Falher (blue).

164



4

5E 6
EasWng [Km] 6

4 5gK
NOhlw n

1780

1760

1740

1720

17001

1680

1660

1640

1620

1600

1580

Figure 4-12: Time horizon at the top of the Dunvegan formation.

I.

5
Eassngs (K 6
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Figure 4-15: Time horizon at the top of the Falher formation.
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Figure 4-17: Interpreted faults over time horizon of the Cadotte.
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Figure 4-18: Schematic structural cross-section in Lynx. After Canadian Discovery
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Figure 4-19: Logs' section in well 6-18.
FMS (formation microscanner) image
(VeritasDGC).

From left to right: gamma ray, resistivity, and
around the Cadotte. Courtesy of Tad Smith
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Figure 4-20: Example of core samples taken in well 6-09.
(VeritasDGC).

Courtesy of Tad Smith

Figure 4-21: Scanning electron microscope (SEM) image of a rock sample from well
6-09. Courtesy of Tad Smith (VeritasDGC).
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Figure 4-22: Fast and slow shear wave velocity in well 11-07. Courtesy of Tad Smith

(VeritasDGC).
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Figure 4-23: Optimal well paths in fractured folds. After Nelson (2001).
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Figure 4-24: Orientation of maximum horizontal stress in the Western Canada Sedi-
mentary Basin and in the area of the Lynx field. This map is different from the current
World Stress Map because it includes more recently reported stress orientations in
the WCSB, and particularly in the Alberta Province.
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Figure 4-25: Breakout data in 5 wells of Lynx indicate the azimuth of Shmin. The
orientation of SHmax is inferred (red arrows).
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Chapter 5

Estimation of Fracture Properties

in the Lynx field

In this chapter, we analyze scattered energy from the Lynx field in the frequency-wave

number domain aiming to estimate the orientation and mean spacing of fracture cor-

ridors. In chapter 3, it was shown that waves propagating through fracture corridors

scatter energy. The orientation of shot records relative to fracture strike determines

the spectral character of these scattered waves. Based on those observations, the F-K

method was developed as a tool to estimate fracture parameters.

The present chapter evaluates the applicability of the F-K method to real reservoir

situations and assesses the limitations and advantages of the technique when applied

to field data. The exercise is in itself a method to better understand, adjust and

improve the F-K technique.

The Lynx field was amply described in chapter 4. In that chapter, it was estab-

lished that Lynx is a gas field in western Canada with a complex tectonic history

that resulted in the formation of fold and thrust structures. Production history, re-

gional stress field, reservoir rock properties, and direct evidence of fractures, from

petrophysical and surficial observations, indicate that future development of this field

depends on the possibility of obtaining a better image of primary fluid flow channels

and small faults which might be defining reservoir compartmentalization. Conven-

tional seismic data attributes have been of little help in the interpretation of minor
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faults and ultimately in the consistent prediction of successful well locations. The

mechanical behavior and the lithological composition of the main reservoirs, Cadotte

and Dunvegan, suggest that fracture corridors may be present in this field.

The F-K method makes use of surface seismic data, thus, appropriate pre-processing

is necessary and relevant. Such a task is challenged by the acquisition geometry of

seismic surveys, signal to noise ratio and presence of dipping structures. Section 5.1

details the processing sequence designed for Lynx's seismic data in preparation for

the fracture characterization. In this section, emphasis is placed on the treatment of

acquisition footprint because of its potential negative impact on the performance of

the fracture scattering methods here applied.

Section 5.2 is the core of this chapter since it presents the results obtained from

the F-K method, namely, fracture orientation and spacing of the main reservoirs of

the Lynx field. A measure of confidence in the results, as well as a potential tool to

derive relative stiffness based on spectral amplitudes are explained at the end of the

section.

The Scattering Index methodology (Willis et al., 2006) is also applied to the

same data, after creating appropriate azimuth stacks. A modified version of the

Scattering Index method is created and applied for the first time to a stacked volume

using all azimuths. These results are shown in section 5.3. The Scattering Index

technique has higher spatial resolution to map fracture distribution, intensity and

orientation, and therefore complements the spectral method. A comparison in terms

of fracture orientations and distribution derived from both methods is included in the

same section. Other practical aspects of the F-K and Scattering Index methods are

discussed in appendix C.

Finally, section 5.5 builds a case for the connection between the fracture esti-

mations and stress, and other information about fractures available in the area as

described in chapter 4. The in-situ stress values derived from well logs in the Lynx

field, and extracted from the World Stress Map and other reported studies of the

area, are utilized to partially validate our results and detect anomalous stress areas

which may be indicators of recent faulting or weak zones.
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5.1 Data Preparation for Fracture Analysis

The seismic data used in the present study were acquired in 2000 by VeritasDGC

and comprise about 110 Km 2 . The survey area covers the northeast part of the

Lynx field. Shot lines were oriented N420 W and receiver lines were oriented in the

perpendicular direction (figure 5-1). The orthogonal acquisition pattern produced a

relatively uniform azimuth distribution and high fold coverage at low and mid offsets.

Figure 5-2 depicts the survey's fold where each yellow dot represents one or more

traces recorded at the corresponding azimuth and offset. Receivers were spaced apart

in the field about 60 m, receiver lines were spaced around 400 m, and the shot lines

were about 480 m apart.

VeritasDGC processed these data in 2001 and the final migrated cubes were in-

terpreted by ConocoPhillips. The interpreted horizons guide the fracture analysis as

will be explained below. Later in 2004, VeritasDGC, ConocoPhillips, and ERL (Dr.

Mark Willis), worked together in designing a processing sequence appropriate for the

fracture analysis in this study. The accepted sequence included: gain recovery, co-

herent noise attenuation, surface consistent deconvolution, all statics, and azimuthal

anisotropic moveout.

Great care was taken to ensure that the scattered signals were preserved through-

out the preprocessing sequence. Bin borrowing, or flexing, which is a commonly used

process to artificially increase fold by borrowing traces from neighboring common

midpoint gathers, was not allowed during this stage. The use of trace mixing pro-

cesses was also limited. In particular, common multitrace filters and typical processes,

like migration, were left out because their effect on the scattering signal, which, while

not fully tested, is suspected of potentially reducing the scattered signal.

As a result, the seismic data for this study have an apparent lower signal to noise

ratio than the conventional final processed seismic data volume (see for example

the stack shown in figure 4-11). Thus, the methods applied in this study attempt to

extract fracture parameters from the portion of the signal that conventional processing

steps may suppress since they identify it as noise.
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The data were sorted into the CMP domain, for the SI method, and into the

SHOT domain, for the F-K method. Afterwards, each dataset is sorted into azimuthal

gathers. The azimuthal gathers are further stacked in the SI method. Sorting the data

appropriately is a key process to obtain reliable results. We next give the motivation

and details of the azimuthal sorting of the Lynx data as well as other characteristics

of the data.

5.1.1 Acquisition Footprint, Fold, and Azimuthal Binning

In general, no seismic survey produces perfectly homogeneous fold. For land surveys,

like this Lynx field survey, the fold homogeneity is additionally affected by skips and

offsets at rivers, towns, terrain accidents, and other obstacles that prevent a regular

deployment of sources and receivers. The finite length of the source and receiver

arrays makes the sampling of offsets and azimuths typically irregular. Geological

structures in the subsurface that are narrow with respect to cable length or have

a preferential strike, steeply dipping structure, and/or large velocity contrast (e.g.,

salt domes), can all affect the true, in contrast to nominal, azimuthal distribution

of offsets. This is caused by the resulting shadow zones in the path of propagated

waves. Even if locally the earth's surface is flat and the acquisition geometry is

perfectly regular, the distribution of sources and receivers may leave an imprint on

the data, known as acquisition footprint. This footprint degrades seismic quality, by

introducing bright spots (areas with good data quality) and dim spots (areas with

no data or low quality), especially at near offsets where it is most noticeable, and at

early times on the traces. This effect is usually easy to see on time slices (i.e. a 2D

display showing a single time sample for all traces) of the data volume.

The acquisition footprint of the data influences the performance of the F-K and

the SI methods. If a particular azimuth is under sampled by having low fold, the

amount of scattered energy may be over estimated. This is because the scattered

energy will not cancel out for the SI method or will be aliased for the F-K method.

Thus if there is a significant variation in fold, the change in the scattered energy

measured as a function of azimuth may not be representative of the actual scattered
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energy. Without some correction, the final fracture orientation maps may be biased

toward azimuths with lower fold.

Concerning the F-K method, irregular offset sampling could lead to aliasing of

forward and backscattered events as shown in figure 5-3. At the top left figure, the

SHOT gather in the direction normal to fractures has offsets sampled every 5 m.

The gather in the middle-column has a source-receiver distance which is not constant

thereby mimicking a case of low fold. The clear scattered events on the original

gather are distorted on the decimated gather. The lack of continuity observed on

the decimated data results in an aliased and complicated f-k spectrum which over

estimates the energy in positive wavenumbers and diffuses the energy in the negative

wavenumbers. Infilling the gather with blank traces (top right) to try to compensate

for the missing offsets, correctly positions each trace with its proper offset. However,

the resulting spectrum exhibits an interesting periodicity in the wavenumber direction

(lower right figure 5-3). This introduces more energy in both halves of the wavenumber

spectra which obscures the location and distribution of the actual scattered energy

(shown in the bottom left spectrum). Attempting to locate and characterize the

scattered energy in the low fold spectra would likely over estimate the amount of

energy for both positive and negative wavenumber spectra. Noise, present in field

data, would likely exacerbate this effect.

The SI method relies on the constructive stacking of scattered events parallel

to fractures and the destructive stacking in the normal direction. The amount of

scattered energy found by this method in the direction parallel to the fracture strike

is mostly insensitive to variations in fold. However, if the acquisition footprint reduces

the number of traces in the non-parallel azimuths, the scattered energy will not be

attenuated as much. This means that the amount of scattered energy measured in

the non-parallel directions will increase and thus will decrease the prominence of

the scattering index value in the parallel direction. In this case, it is likely that the

scattering index analysis would report little azimuth variation in scattered energy and

therefore, no detectable fractures. This is illustrated in figure 5-4. The top left panel

in figure 5-4 shows a synthetic gather with full fold in the normal direction. Below it
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is shown the scattering index for all azimuths. The top right panel shows the same

record which has been randomly decimated. Blank traces have been inserted into this

gather to preserve the offsets for the display, but were not used in the analysis. Below

it is shown the corresponding full analysis for all azimuths. Note that the scattering

index value for the parallel direction (900) has not changed, but all other azimuths

have larger values. Thus this CMP would have been labeled as having no significant

amount of fractures.

Another possibility might be for the fold to be low only in one azimuth. In this

case, since the scattered energy would not be attenuated, this azimuth might compete

with the actual parallel direction and show a possible secondary set of fractures at

the low fold azimuth, or an incorrect fracture azimuth in the worst case. That one

low fold azimuth might bias the resulting fracture maps toward this direction.

In field data, there is one more aspect to consider with respect to the variation in

fold affecting the SI method. Stacking of high fold data effectively attenuates random

noise. If the resultant fold in the azimuthal gathers is too low or if fold is too different

among gathers, random noise and not fracture scattering signals might dominate the

variation of scattering index with azimuth.

In Lynx, despite the large extent of the source and receiver arrays, angular fold is

not uniform. The most regular offset distribution occurs in the direction of the receiver

lines. The acquisition footprint is anticipated to affect the fracture analysis and,

therefore, a first step of the fracture study consists in binning the data appropriately.

In an ideal survey, the traces could be sorted into any number of azimuth ranges

and the fold and offset ranges would be uniform. However, for every actual field

data set we seek an optimal sorting of traces into azimuthal gathers which attempts

to maximize the resolution in azimuth while keeping the fold uniform and adequate.

Therefore, the factors to be determined are: (1) the minimum azimuth increment

which determines the angular resolution; (2) the minimum and maximum numbers of

traces in each azimuth gather which determines the variation in fold; (3) the distance

between traces in a gather which controls the sampling and aliasing of information

within each gather; and, (4) the amount of traces shared or borrowed between az-
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imuth ranges to equalize the fold. These requirements are interrelated. For instance,

choosing a specific azimuth increment sets the number of traces in a CMP or SHOT

azimuth gather. Limiting offsets within a range as required by both, the F-K and SI

method, further reduces this number. Azimuthal resolution of fracture orientation

often has to be sacrificed in order to obtain a more homogeneous offset distribution.

Azimuthal CMP Gathers

In order to get the optimal azimuth gathers for both the F-K and SI methods, the

SHOT records and CMP gathers of Lynx are analyzed separately. Starting with

the CMP gathers several combinations of azimuth increment and degrees of overlap

between azimuth sectors (or ranges) were tried, and the distribution of offsets and

the number of traces common in consecutive azimuthal gathers were checked in every

case. We define this process of gathering the traces into separate azimuth ranges as

"sectorization." Azimuth widths of 100, 150 and 200, were tested with no azimuthal

overlap and with respective overlaps of 100, 150 and 200. Another test of the 200

azimuth range was run for a 100 overlap. The white dots in figure 5-5 show the

CMP map locations that have at least 5 fold for all azimuthal components after

gathering into azimuths ranges of: 100 with an overlap of 100 (top left), 150 with

an overlap of 150 (top right), and 200 with an overlap of 200 (bottom). Decreasing

the azimuth increment reduces the number of CMPs in the survey that pass the test

of having relatively uniform fold characteristics for all azimuths. Of course, if more

traces are added by increasing the width of the overlapping area, the fold is increased

at the expense of trace mixing (borrowing) between the azimuth gathers. Tests of

the signal to noise after stacking suggested that a minimum fold of 5 is required to

obtain significant results. In several test locations, it was found that the level of noise

in stacks with less than 5 traces was too high to determine a preferential azimuth

of scattering or, in other words, to yield a significantly higher scattering index at a

particular azimuth with respect to the other azimuths.

In summary, to avoid possible acquisition footprint issues and insure the largest

possible area coverage, the optimal sorting of Lynx data was 200 wide azimuthal
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groups with an overlap of 200. This makes the total width of each azimuth gather to

be 400. The fracture analysis was carried out only in gathers where "full" azimuthal

fold was found; where full fold means that the resultant gather contains at least 5

traces between 0 and 4000 m. The offset distribution in each azimuthal gather was

checked for uniformity, neglecting those CMPs in which the required 5 traces are all

grouped at a particular offset interval or if the coverage of offsets is too different from

azimuth to azimuth. The process of fold regularization is illustrated in figure 5-6. The

folds of two CMP gathers (located in the survey as shown in the right panel of figure

5-7) are shown. The colored dots represent the azimuth-offset components of every

trace in the CMPs. CMP 1398 (in the top two panels) is at the edge of the survey

and therefore has very few traces with practically none recorded at azimuths greater

than 1000. In contrast, CMP 16155 (bottom two panels) is located in the center of

the survey and has a better coverage of offsets at all azimuths. The azimuthal binning

of CMP 1398 (top right) is unable to regularize the fold due to the lack of traces.

However, the azimuthal binning of CMP 16155 yields gathers with many more than

5 traces relatively which are very well distributed in the offset interval of interest.

Sorting the data in this way resulted in about 50% of the survey satisfying the

criteria above. Fracture calculations at those gathers are considered to be reliable and

free of footprint biases. However, the minimum 5 traces requirement can be relaxed

in order to extend the map area with information about fractures. For example, if

azimuthal gathers with at least 1 trace in all azimuths are accepted, the survey data

for SI analysis increases to about 75% of the original dataset (figure 5-9).

Azimuthal SHOT Records

The azimuthal sort of SHOT records was initially chosen to be the same as for the

CMP gathers: traces were grouped into 200 azimuth sectors with an overlap of 200.

However, this choice of azimuth increment may not be sufficient to obtain a wide

enough distribution of offsets in all the azimuthal gathers for most of the survey's

SHOT records.

The fold distribution of an example SHOT gather (22132) is shown in the upper
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panel of figure 5-8. Yellow dots indicate that the SHOT contains a trace recorded

at the corresponding offset and azimuth. Unlike the CMP gathers, sectorization in

this case includes the supplementary azimuths from 180 to 3600. The shot position

is shown on the map in figure 5-7. For offsets between 480 and 3000 m and at

2200 azimuth, this SHOT has about 4 times the fold found at 20 or 1000. The

fold distribution is obviously not uniform and even after sorting the data into 200

azimuthal records (middle panel), some azimuths appear much under sampled in

comparison to others (e.g. 1200 vs. 2200).

In addition, the distinction of forward and backscattered events in the F-K method

is directly affected by offset coverage and 5 traces (the requirement imposed on CMP

gathers) is too low of a requirement in the SHOT domain. I found that a minimum of

25 traces in each azimuthal component was the practical limit to make the f-k spec-

trum utilizable. Utilizable means that the f-k spectrum does not contain significant

spectral aliasing and extra smearing as it was described above.

In the SHOT domain, we limited the offset analysis window between 480 and

3000 m to avoid ground roll residuals at near offsets and converted waves at far

offsets. In order to gather at least 25 traces in this offset range, up to 4 neighboring

SHOT records had to be combined. Supershots were formed in this way. In figure

5-8 (bottom), it can be noted that the supershot formed combining SHOT 22132 and

neighbors has an improved fold in most of the azimuthal components. In the improved

azimuths the receiver distance has been regularized to 60 m. However, some azimuthal

components will not enter the fracture processing because they resulted with less than

25 traces or the offset differentials were too different from the nominal receiver spacing.

In the case of supershot 22132 the disregarded azimuths are 20' to 1200, and 1800.

A minimum of 10 out of 18 azimuthal gathers was required to process a particular

supershot. In total, 159 supershots passed the criteria. These constitute the input

data for the F-K analysis (figure 5-10).

The acquisition for Lynx is well tailored to the present study because it was

designed to have high fold multiazimuth data. In contrast, other surveys may not be

designed with this purpose and have unequal fold.
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5.1.2 Frequency Filter

The raw data features a non-flat amplitude spectrum. The observation is evident

in the SHOT record plotted in figure 5-11 where only 3 receiver lines are shown. A

band-pass zero-phase filter is applied to the raw data to attenuate frequencies below 5

Hz and above 55 Hz. Besides this, the pre-processed gathers were not treated before

entering the fracture analysis. As depicted in figure 5-11, low frequency ground roll

residuals and high-frequency noise have been attenuated after filtering.

5.2 Fracture-Oriented Processing: The F-K Method

The mechanics of the F-K technique to characterize fracture corridors was designed

and explained in chapter 3. In this section, the method is applied to the Lynx field to

demonstrate how the analysis is performed in practice. We will compare the extracted

fracture maps with the results of the SI method.

F-K analyses are performed in a time window for each azimuth record below

the interpreted horizons for Dunvegan and Cadotte. Time window for the analysis

extends about 0.45 s from the top of reservoirs Dunvegan and Cadotte (figure 5-12).

These two reservoirs are fairly close together and the respective analysis windows

overlap. It seems like it would be difficult to separate these two sets of scattering

signal. However, the moveout appears different and characteristic in each case (see

appendix C).

Data are also windowed in offset. Far offsets are omitted to avoid converted

waves, refractions and mute artifacts. Near offsets are also omitted because of likely

contamination with air waves and ground roll (figure C-1). The chosen offset window

spans between 480 m and 3000 m. Our analysis is limited to SHOT records that have

acceptable fold resulting in a total of 159 supershots as shown in the map of figure

5-10.

Following the procedure described in section 3.4 for determining fractures orien-

tation and spacing, 2D Fourier transforms are computed for 18 azimuthal gathers in

every supershot. This is performed for both Dunvegan and Cadotte levels.
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5.2.1 Determination of Fractures Orientation and Spacing

Once the data are in the frequency-wavenumber domain, one can proceed to detect

the direction normal to fractures. In the synthetic data analysis, such determina-

tion was based on the behavior of the sum of negative wavenumber energy with

azimuth (equation 3.2). The backscattered energy (Escatt) is expected to be maxi-

mized when data are collected perpendicularly to fracture strike. In the field data

case, the backscattered energy function was computed in two wavenumber intervals.

The first is a small interval that extends from the Nyquist value of -0.0083 1/m to

-0.0029 1/m. The second window is larger and extends between the Nyquist value

and -0.0017 1/m. The choice of these two windows is based upon the f-k resolution

which is discussed in appendix C.

Another metric to detect the direction normal to fractures is the maximum f-k

spectral amplitude, Aneg. This is the peak value in the frequency-wavenumber spec-

trum in the same wavenumber intervals as above (figure 5-14). Aneg is expected to be

the largest in the direction normal to fractures. It is easier to compare all azimuthal

maximum amplitudes if this quantity is normalized. Normalization can be done in

several ways; one possibility, for example, is to normalize between the maximum and

minimum of the maximum spectral amplitudes in the full f-k space of all azimuthal

spectra (Anorml, equation 5.1). Another normalization, Anorm2, is obtained simply

dividing by the maximum spectral amplitude of all azimuths (equation 5.2). Both

types of normalizations are useful in the final selection of the normal to fracture

direction as will be explained next.

Anegi - Amin
Anormli = Amax- Amin (5.1)Amax - Amin

AnegiAnorm2 = A- (5.2)Amax
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where,

Anegi = max(Ai-k° )

Amax = max(max(Ai kN)

Amin = min(max(AjkN))

A denotes spectral amplitude; the index i indicates the azimuth number, from 1 to

18; ko is either -0.0029 1/m, for the small range, or -0.0017 1/m for the large range;

and kN refers to the Nyquist wavenumber. In the first normalization scheme, Anorml

varies between -1 and 1. Large positive values indicate large relative backscattering.

Larger negative values indicate less scattering.

The determination of fracture orientation using the F-K method is implemented as

a three-step process: (1) identification of typical bounds; (2) automatic determination

of fracture orientation and spacing; and (3) quality control.

In the first step of the procedure the typical bounds of the backscattered f-k

response is determined at several test locations. Typical characteristics, such as, am-

plitudes, frequencies, and wavenumbers, of the backscattered waves are determined.

For Lynx data, I analyzed about 15% of the supershots in this step for each reservoir.

The peak frequency in the negative wavenumber interval ranged between 20 and 55

Hz. The backscattered waves typically had spectral amplitudes (Anorm2) higher

than 0.3.

Such typical bounds are utilized in the second step in which determination of

fracture orientation based on the backscattered energy function is performed auto-

matically to all input supershots. The azimuth at which the backscattered energy

function reaches a maximum is output as the initial estimate of the normal to the

fracture azimuth for the particular location.

Fracture Spacing

Identification of the backscattered events in the frequency-wavenumber domain in the

normal direction to fractures is followed by the computation of fracture spacing. The
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fracture spacing is related to the peak wavenumber by equation 3.3.

To exemplify the analysis, the typical procedure applied to a supershot's azimuthal

gathers at the Cadotte level is illustrated in figures 5-15 and 5-16. Supershot loca-

tions used in this example and others in this section are shown on the map in figure

5-13. At the top of figure 5-15, the variation of backscattered energy with azimuth in

both bounded regions is depicted. Despite the oscillation of the backscattered energy

function, a clear maximum is reached at 3000. At this azimuth the backscattered

waves have the lowest negative apparent velocity. In the middle and bottom plots,

Anorml and Anorm2 exhibit a similar behavior as the backscattered energy. With

either normalization, the global maximum also occurs at 3000. The maximum ampli-

tudes satisfy the two criteria: Anorml is greater than 0.3, and Anorm2 is positive.

All metrics indicate with relative high confidence that 3000 is the direction normal to

fractures and therefore the fracture strike is inferred to be 900 away, at 40'.

Figure 5-16 shows the azimuthal gathers at 3000, normal to fractures, and 400,

parallel to fractures, together with their corresponding f-k spectrum. In this example,

backscattered waves can be identified by direct inspection on the time-offset data.

Unlike the 3000 gather, the 400 gather exhibits only forward scattered events with

similar moveout to the strong reflector at approximately 2.025 s. Events in this gather

look flat because NMO has been applied (see appendix C for an explanation about

the effects of NMO on the F-K analysis). The differences in character between both

directions are more evident in the Fourier domain. As predicted by the models, energy

is more compact in the f-k space in the direction of fractures. The f-k spectrum of

the normal component of supershot 30136 has an energy maximum in the negative

wave number region at about 40 Hz and -0.0029 1/m, hence the estimated fracture

spacing is 172 m at this location.

Backscattered energy can be filtered out for further processing using a f-k pass-

reject filter, as shown in figure 5-17. The backscattered component identified in the

f-k spectrum of figure 5-16 has been filtered out (lower left) of the 3000 gather (top).

The difference of these two gathers corresponds to the forward scattered component

(lower right) which, as in the models, is less prominent.

187



In both horizons analyzed, Cadotte and Dunvegan, areas were found to be isotropic

or non-fractured. In these areas, energy in the negative wavenumber space is on the

order of the noise at all azimuths and there is not one direction where backscat-

tered waves are particularly dominant. As an example, figure 5-18 shows the varia-

tion of backscattered energy with azimuth for supershot 28129 at the Cadotte. Al-

though energy maximizes at 1400 and 3000, the peak amplitudes are very low, with

Anorm2 smaller than 0.3 and Anorml negative. The largest amplitude in the nega-

tive wavenumber range is found at 140' at 43 Hz and -0.0018 1/m which corresponds

to a fracture spacing of 280 m. Such a large fracture spacing is consistent with the

fact that the f-k response does not change significantly with azimuth. Cadotte is

not likely to be fractured at this location or if fractured, fractures should be sparse.

Figure 5-19 demonstrates the similarity of the spectral character of several azimuthal

gathers.

Quality Control

The third step of the F-K analysis is for quality control. Because the azimuthal

sorting was carried out in 18 sectors (200 each), covering 0 to 3600, it is possible

that the backscattered energy exhibit two peaks, ideally 1800 apart. In addition,

because the backscattered energy is computed in two bounded regions, sometimes

several local maxima are identified. In other words, backscattered energy can be

multi-peaked. Frequency and amplitude components are used to ultimately choose

the azimuth with the global maximum. Therefore, in the third step, every shot is

checked independently using the results from the second step as a guide, and adding

the maximum amplitude metric. For Lynx data, about 40% of the shots needed to

be repicked in the third iteration due to two main causes:

1. Noise in the data that made the automatic determination of fracture orientation

ambiguous. Some of the causes for this ambiguity are discussed in appendix C

with the most important one being the contamination with unmigrated diffrac-

tions given that the data were not migrated (section C.5).
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2. A frequency and/or amplitude component out of acceptable range. Acceptable

values are: Anorml should be positive and Anorm2 should be above 0.3; peak

frequency should be consistent with the trends observed in the locations around.

In these cases, the supplementary azimuth, or an azimuth 200 away, may exhibit

better frequency and amplitude values; thus, the azimuth corresponding to the

normal to fractures' direction is repicked.

Under the assumptions that only one fracture set with a predominant direction

exists, and that all azimuthal gathers have a similar signal to noise ratio, the backscat-

tered energy should in theory reach a maximum every 1800. This case is exemplified

in figure 5-20. At the location of supershot 34125, the energy function peaks at 1400

and again at 300-3200, which are 1800 away. These azimuths indicate the direction

normal to fractures. The middle plot shows the variation of maximum spectral am-

plitude normalized by the maximum of all azimuthal spectra in the full wavenumber

axis (Anorm2). Anorm2 at 140 and 3000, irrespective of the wavenumber range, is

larger than 0.3, however the lower plot shows that the 1400 peak amplitude is very

weak (negative Anorml).

In figure 5-21, the f-k spectrum of the azimuthal records at the normal and par-

allel direction are shown for the 34125 location. The f-k spectrum of the azimuth

normal to fractures of supershot 34125 exhibits an energy maximum in the negative

wavenumber axis at about 33 Hz and -0.0074 1/m, hence the estimated fracture

spacing is approximately 67 m at this location.

In some instances, when the backscattered energy function peaks at two azimuths,

the direction normal to fractures is decided based on the frequency trend. In figure

5-22, backscattered energy at the location of SHOT 34146 reaches a clear maximum

at 3400, however, the corresponding peak frequency at this azimuth is greater than 50

Hz whereas the backscattered component in locations around appear at much lower

frequencies. Supershot 34146 is located near the edge of the accepted fold region and,

in fact, only 15 out of 18 azimuthal gathers comply with the fold requirement, thus

the backscattered energy function has been interpolated at these angles. Perhaps

this is the reason why the backscattered component 1800 away, at 1200, fits better
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the behavior of frequency in this area. Such azimuth is chosen as the direction normal

to fractures in spite of it having a lower peak amplitude than the value at 3400. In

figure 5-23, it can be noted that the backscattered energy off the fracture corridors at

the location 34146 has a predominant frequency of 37 Hz and wavenumber -0.0081

1/m from which fracture spacing is estimated in 61 m.

Fractures Orientation and Spacing Maps

Determination of fracture orientation following the F-K technique is carried out for

all supershots. The results for the Cadotte and Dunvegan levels are presented in

figures 5-24 and 5-25. In these figures, fracture orientation is indicated with red

vectors whose length is proportional to peak amplitude normalized with equation 5.2.

At the Lynx field, the preferential fracture strike coincides approximately with the

regional maximum stress orientation, that is, in the N-E direction. In other words,

backscattered signals off fracture corridors in the reservoirs are stronger in the N-W

direction. Departures from this trend are more evident at the Dunvegan reservoir.

At the normal to fractures f-k spectrum, identification of the backscattered compo-

nent dominant wavenumber leads to estimation of fracture spacing. Values obtained

at all supershot locations are mapped in figures 5-26 and 5-27. At Cadotte, fracture

spacing is relatively regular across the western part of the survey, varying between 60

m and 120 m approximately. On the eastern part, fractures of seismic scale become

more sparse or non existent. This interpretation is consistent with the structural

behavior of Cadotte. Distribution of fractured areas at the Dunvegan is somewhat

different than at the Cadotte. Non-fractured areas (or less dense fractured areas) are

more extensive at the Dunvegan, probably because also at this formation, structure

is less steep. Areas with closer fractures are restricted to the most western and north-

ern region of the survey. Differences in fracture distribution in depth suggests that

fracture corridors mapped may be confined to each reservoir layer.
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Amplitude and Frequency Maps

The fracture spacing maps shown in figures 5-26 and 5-27 are derived from the peak

wavenumbers. Peak frequency and amplitude also carry useful information although

their interpretation in terms of fracture properties is less clear.

Already in figures 5-24 and 5-25 the amplitude dimension is exposed. Length of

quivers represents amplitude values and, in principle, might be used as a measure

of confidence in the results. The F-K method will be less accurate in estimating

fracture spacing and orientation from backscattered signals that are weak. Figures

5-28 and 5-29 show maps of peak amplitudes, Anorml, for Cadotte and Dunvegan.

Values have been clipped below zero to indicate areas with low amplitude in black.

High amplitude regions are shown in bright yellow. In these maps, the eastern region

of Cadotte and Dunvegan seem more prone to have lower amplitudes, as well as

the northern part of Dunvegan. The spatial trend suggests that amplitudes may

be indicative of geological features besides being useful to measure accuracy of the

results. In chapter 3, based on synthetic models, it was concluded that backscattered

signal amplitude is sensitive to fracture stiffness, thickness, and spacing; therefore, the

amplitude maps may be showing a combination of variations of these properties across

the Lynx field. According to these maps, more compliant fractures would be located

on the west whereas fractures on the east would be stiffer. Cadotte's thickness would

decrease towards the east. The relationship between fracture spacing and amplitude,

as explained in section 3.5, depends on the scattering resolution limit. At this point,

only a relative sense of stiffness or thickness variation can be provided. More research

is needed on this topic but the results are encouraging in that peak amplitude could

be a potential estimator of fracture stiffness and/or reservoir thickness.

Frequency maps at the Cadotte and Dunvegan level are depicted in figures 5-30

and 5-31. If it is assumed that all backscattering is being generated at the same for-

mation and it is only attributed to fracture corridors of varying spacing and stiffness,

backscattered waves' frequency is not expected to vary greatly spatially. Frequency

varies between 25 and 50 Hz and is, in general, lower at the Cadotte than at the Dun-

191



vegan. The modeling experiences described in chapter 3, suggest that frequency is not

sensitive to changes in stiffness or fracture vertical length. Frequency changes with

fracture spacing since it is related to the apparent velocity of backscattered waves.

However, comparison of these frequency maps with fracture spacing maps obtained

from peak wavenumbers hints about sensitivity differences between frequency and

wavenumber to detect fracture spacing.

5.3 Comparison with the Scattering Index Method

Another method to describe fractured reservoirs is the Scattering Index (SI) method.

The Scattering Index method was explained in section 3.6. A complete description of

this method and an application to a field dataset are presented in Willis et al. (2006).

The SI method produces maps at the reservoir level of scattered energy associated

to the presence of fracture corridors.

In this methodology, transfer functions of the fractured zone are estimated for a

number of azimuths. Transfer functions are computed in three steps: (1) extraction

of a wavelet from a time window above the reservoir; (2) extraction of a wavelet from

a time window below the reservoir; and (3) deconvolution of the upper wavelet from

the lower wavelet. Transfer functions reverberate and are less temporally compact in

the azimuth parallel to fractures. The scattering index is a number that measures

how much a transfer function oscillates. When compared azimuthally, the largest SI

value yields the direction of fractures.

The Scattering Index method is performed in the CMP domain as opposed to

the F-K method which is applied in the SHOT domain. Other practical differences

of the methods include the length of the analysis time window. In the SI method

the analysis is performed locally, around the horizon of interest, whereas in the F-

K method the input data correspond to the relatively long coda arriving after the

reflector generated by the top of the reservoir (figure 5-32).

In the computation of azimuthal stacks, offsets were limited between 0 and 4000 m.

This range is slightly larger than the offset interval analyzed with the F-K method.
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For the SI method, the data were sorted into azimuthal gathers every 200 with an

overlap of 200, as explained in section 5.1.

The Scattering Index method is applied to the Lynx field, post-stack and pre-

stack, and the results are compared with the F-K method. The post-stack data

are created by stacking all azimuthal stacks. In this case, only one trace per bin is

inverted. In contrast, in the pre-stack version of the SI method several azimuthal

stacks are treated per CMP or bin.

The Scattering Index method was applied to a total of four lithologic intervals:

Dunvegan, Shaftesbury, Cadotte and Falher. The limitations and advantages of both

methods are revised in section 5.4 in order to understand how these two techniques

should be integrated to provide a more complete picture of reservoir fractures.

5.3.1 SI Post-Stack: Fractures Distribution and Intensity

The impulse response of the fractured reservoir can be estimated for both pre-stack

and post-stack data. In all previous studies, the SI method has been applied to

azimuthally stacked data. In this thesis, we apply the Scattering Index concept for

the first time on post-stack data. The value of this approach is that it can be used as

an initial and quick evaluation of the intensity of fracturing in an interval of interest.

Practically any 3D seismic data volume could be processed with this technique. Once

the data are stacked, the azimuth information is lost and the method can only indicate

the relative amount of scattering from one location to the next. The detection of

fractured areas would depend on the azimuthal fold. If there is adequate fold in the

fracture direction, the scattered energy would remain in the final stack. If there is

not enough fold in the fracture strike azimuth, the final stack will not contain the

scattered energy; thus, fractures would be undetected.

Following the method, an input and output wavelet are computed in time windows

above and below the horizon interval. Figure 5-33 shows these time windows for the

Dunvegan, Shaftesbury, Cadotte, and Falher horizons plotted over the seismic section

of inline 64. Given the short traveltime difference between the reflectors, the analysis

windows overlap. Window lengths were selected after several tests performed for the
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Cadotte level.

Figures 5-34 to 5-37 show normalized scattering indices at the Dunvegan, Shaftes-

bury, Cadotte, and Falher levels computed post-stack. Each of these maps is normal-

ized independently so that differences in seismic trace amplitudes do not influence

their interpretation. Scattering Index values are shown in three colors: black, gray

and white. The cutoff levels for these three colors are indicated in the inset his-

tograms. High values of SI are rendered as black areas. These areas possibly contain

more intense fracturing. Alternatively, the fractures may be more tuned to seismic

wavelengths in these areas. White areas correspond to either low values of SI or low

fold areas that were left out of the analysis. Gray areas indicate intermediate values

of SI.

The distribution of zones of high scattering changes between the Dunvegan, Cadotte,

Shaftesbury, and Falher maps. The shallower, less folded formations (Dunvegan and

Shaftesbury) appear less fractured on the west side of the survey than in the center

and east parts. On the Cadotte and Falher maps greater scattering is shown on the

west side of the survey. The structural folding in this region is mostly confined to

the Cadotte. This is echoed by the intense fracturing observed on the SI map (figure

5-36).

As an example of the procedure, figure 5-38 shows a comparison of transfer func-

tions computed for all horizons at CMP 16525. The location of the CMP is shown

in figure 5-13. The transfer function associated with the Cadotte time level exhibits

amplitudes an order of magnitude larger but, more importantly, reverberates longer

in time than the corresponding transfer functions for Shaftesbury and Dunvegan. As

a consequence, the scattering index computed up to lag 0.4 ms using equation 3.5 is

0.6 for the Cadotte and around 0.1 for the upper horizons.
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5.3.2 SI Pre-Stack: Fractures Distribution, Intensity and

Orientation

In this section we apply the scattering index method to a collection of azimuth stacks

at each CMP. For the Lynx data set, 9 azimuth stacks were created as described above.

For every horizon and for every CMP bin, 9 transfer functions and the correspond-

ing 9 scattering indices are generated. These 9 SI values correspond to azimuthal

groups centered at 200, 40', 600, 80', 1000, 1200, 1400, 1600, and 1800 measured from

geographical North in a clockwise sense.

As an example, figure 5-39 shows the SI processing steps for CMP 10460 (whose

location is depicted in figure 5-13): (1) azimuthal stacks every 200 (top), (2) transfer

functions obtained from the SI analysis around Cadotte (middle), and (3) corre-

sponding scattering indices (bottom figure). For this CMP, the scattering index is

70% higher in the 400 azimuth than 90' away.

We determine the azimuth at which the scattering index has its maximum value

for each CMP bin location. We also compute the difference between the maximum

and minimum scattering index in the bin. Figures 5-40 to 5-43 show maps of the

direction with the maximum scattering index values for the Dunvegan, Shaftesbury,

Cadotte and Falher horizons. The colors indicate the extracted fracture azimuth

directions. White bins indicate that the scattering index is not particularly dominant

in any direction. For simplicity, only CMPS with maximum SI difference above a

certain threshold (red line on the inset histograms) are displayed. This threshold was

adjusted to test the match of the spatial correlation of high scattering regions in the

post-stack maps. White bins also correspond to CMPs that had less fold than what

was required (at least 5 traces with different offsets in all 9 azimuths).

A strong correlation is observed between these maps and their post-stack coun-

terparts. The distribution of areas of high scattering varies spatially and with depth

(or time). Similarly, the preferred orientation of fractures varies across the surveyed

area in the different formations. This suggests that the in-situ stress field is not

homogeneous or consistent with the regional stress field everywhere.
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Upscaled Maps

To more easily look for trends in the scattering index maps we upscale the results

in two ways: (1) grouping the extracted scattering index directions into larger, 450

bins, and (2) modal smoothing which assigns to each CMP the most common fracture

direction in a small area (120 m x 120 m) surrounding it.

The new maps are shown in figures 5-44 and 5-45 for the Dunvegan and Cadotte

levels respectively. The original maps had 9 fracture directions but after upscaling (by

grouping) there are only four directions: N-S (green), E-W (yellow), NE-SW (red) or

NW-SE (blue). In a similar way, the original maps showed directions for each CMP

but after the modal smoothing, only consistent directions in 4 times the original bin

size are preserved.

From these upscaled maps we see that at the Cadotte level, fracture strikes are

preferentially due North or North-East (green and red). Some other areas exhibit

fractures oriented normal to this N-NE predominant trend (yellow and blue). Frac-

ture strikes NW-SE are more common at the Dunvegan. At this shallower level,

orientations are in general less homogeneous than in the Cadotte unit. This suggests

that the difference between maximum and minimum horizontal stress may be less

pronounced in the overburden.

Fractures and Structure

An alternative way of displaying the SI results is shown using quivers in figures 5-46

and 5-47. Fracture orientations represented with vectors are superimposed on the

Dunvegan and Cadotte time topography along with faults interpreted from migrated

sections (provided by Dean Sinnott- ConocoPhillips). The length of each quiver

represents the scattering intensity. The direction of each quiver shows the fracture

strike.

These figures reveal NW-SE trending areas of intense fracturing interspaced by

quiet areas. The orientation of the highly fractured bands aligns with the main struc-

tural trends, i.e. fold axes and strike of faults. Some correlation between fault strike
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and fracture orientation can be found locally with directions parallel or orthogonal

to the NW-SE trend. The bands of intense fracturing and rapid variation of fracture

direction mapped with the SI method, could be used as a guide to interpret faults

and locate new prospects. Changes of fracture orientation are known to occur in the

proximity of faults or in places where the topography of the reservoir changes abruptly

(Yale, 2003). As discussed in chapter 4, the high resolution imaging of structures and

the interpretation of faults are complicated because Cadotte has weak reflectivity and

is thin (below seismic resolution).' Our results provide additional insight about the

structure and the stress field at the Cadotte and other horizons.

Histogram Maps and In Situ Stress

To simplify the identification of fracture trends, fracture orientations at the Cadotte

and Dunvegan are histogrammed in areas of 500 x 500 m and shown as rose diagrams

in figures 5-48 and 5-49. Only fracture directions (not intensity) are shown in this plot.

The histograms are useful to identify locations where the fracture or stress direction

is rotated from the regional stress direction expected for the area. For instance, in

these figures histograms have been plotted in red when the most frequent direction

is orthogonal to the regional SHmax, that is, between 1000 and 1400 azimuth. The

rose histogram type of plot will be especially useful to make comparisons with the

F-K results in the following section.

There are no acquisition footprint artifacts noticeable on these maps. The post-

stack results are also useful to test the performance of the data binning explained in

section 5.1. In a different experience applying the SI method to field data, it was

observed that strong footprint can contaminate the results (Grandi et al., 2006). In

that case, data re-sorting was not possible and geostatistical techniques were used

to filter the fracture maps. In this case, because great care was taken to assure

that CMPs/SHOTs analyzed had similar fold in azimuth and offset, SI maps do

not show acquisition geometry or binning print; on the contrary, the distribution of

1A discussion about the implications of Cadotte thickness for the fracture processing is presented
in appendix C
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high-fracture areas seems to be related to geological structures.

5.4 Integration of Fracture Information from the

SI and F-K Methods

In the integration of fracture descriptions obtained from the F-K and SI methods, the

issue of the difference in resolution needs to be considered. The SI method operates

in the CMP domain and in a time window around the reservoir. It measures fractures

in an area about the size of the bin (60 x 60 m for Lynx). The F-K method operates

in the SHOT domain and therefore probes reflection points covering multiple CMPs.

It is easier to compare the results of these methods if the SI method is upscaled to

the same resolution as the FK method.

An upscaled and histogrammed version of the SI fracture orientations found at

the Cadotte level is shown in figure 5-50. The blue rose diagrams were computed in a

radius of 500 m around the supershot locations to match the measurement resolution

of the F-K analyses. Figure 5-51 depicts fracture orientations obtained from both

methods at the Cadotte level. The red quivers show the orientation of fractures from

the F-K method, and the blue quivers show the upscaled equivalents from the SI

method. The blue SI quivers indicate the most frequent direction in the histograms

shown in figure 5-50.

We decompose this figure in three cases: (1) where the results are similar; (2)

where they are orthogonal; and (3) where the SI shows great variability in the local

region of the supershot point.

Figure 5-52 highlights the locations where both methods yield similar orientations.

Figure 5-53 highlights the locations where the SI method provides a distinct direction

that is orthogonal, or at a high angle, to the F-K result. Figure 5-54 highlights the

locations where the SI histogram shows great variability of fracture orientations not

matching the F-K orientation.

Local differences as in the latter case may be related to the sensitivity of the SI
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method to variations of fracture orientation that the F-K method misses given its

averaging effect. In the former situation, differences could be attributed to presence

of fractures in the overburden (see appendix C). Figures 5-55 and 5-56 show the

comparison of both methods at the Dunvegan level.

5.5 Fracture Corridors, Cracks, and Stress

We compare the fracture information here derived with other types of fracture and

stress data measured at 5 well locations of Lynx. In particular, we can compare our

results with: (1) image logs at wells 10-22 and 3-19; (2) VeritasDGC's crack indica-

tor calculated from wells 3-19, 9-16 and 9-17 (section 4.5); and (3) production data

available of wells 10-22, 3-19, 9-17, and 9-16 (section 4.6). The image logs contain

information about breakouts (SHmax azimuth can be inferred), and orientation and

density of cracks in the immediate vicinity of the borehole. The fracture and break-

out interpretations obtained from image logs were provided by ConocoPhillips. The

crack indicator is an estimation of crack concentration that may explain the velocity

differences of the Cadotte from well to well. This estimation was based on an effective

medium theory that assumes cracks are diluted in the rock. Our results using the

F-K and SI correspond to fractures at the seismic scale (fracture corridors). Table

5.1 summarizes all the information.

Only well 10-28 falls in the high-fold SI maps shown above. Well 10-28 is a

producer from Dunvegan. At this well, no image logs or cores are available. In order

to make comparisons with other wells that have additional information about fractures

we have to include lower fold bins. Figures 5-57 and 5-58 show color (smoothed) and

quiver maps for the Cadotte when the requirement of minimum fold is relaxed (shown

in figure 5-9). These maps provide information about fractures in a wider area of the

survey but its utilization is cautioned. With this more extensive covering, information

about fractures can be collected around wells 9-17, 9-16, 10-22, and 3-19. 3-19 is at

the farthest location with respect to the high fold area thus comparisons with data

from this well would be the least reliable. 10-22 is quite close to the high fold area.
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With the exception of well 10-28, all the wells are deviated (directional wells).

Given the strong scale differences among the data shown in table 5.1, we make

the following comparisons only in a qualitative sense:

* The SI and F-K method agree in their determinations of fracture orientation

at wells 10-28 and 10-22. The predominant orientation of cracks observed in

the image log of well 10-22 also agrees with the orientations derived with the

seismic methods. However, SHmax inferred from breakouts in this well (10-

22) is orthogonal to the orientation of fractures and cracks. In this case, the

fracture orientation matches the direction of the main axis of the folds (NW-

SE). The F-K method predicts a relative large fracture spacing at this location

(160 m) which may explain the relative low IP of this well and the relative low

fracture density measured from the image log (0.18 #/m). In addition, well

10-22 is deviated in the N-S direction which appears to be at an acute angle

with respect to the orientation of fractures. This well may have had a better

performace if it had crossed Cadotte in a NE-SW direction.

* The fracture directions derived from the scattering methods at the location

of well 9-16 are similar. At this location, fractures are oriented NNE-SSW

according to the SI, and NE-SW according to the F-K method. The initial

production of this well (9.75 mmcf/d) and the crack concentration (11.8%)

represent intermediate values with respect to the other wells. In the same way,

fracture spacing at this location which is about 100 m, corresponds to a relative

intermediate value as observed in the map of figure 5-26. This well may be

producing from the matrix since fractures are expected to run parallel to the

actual direction of the well which lowered the chance of crossing them.

* The SI and F-K methods disagree about the predominat orientation of fractures

at the locations of wells 3-19 and 9-17. SHmax azimuth is similar to the

orientation of fractures obtained with the F-K method at the location of well

3-19. However, the image log of this well suggests that cracks are oriented

similarly to the orientation of fractures obtained with the SI method. The
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disagreement between the fracture scattering methods and the observations in

well 3-19 may be related to the fold issues explained above. The disagreement

of the F-K and SI results in well 9-17 may be related to the proximity of a fault

(see figure 5-58). However, the location of well 9-17 shows a tight fracture set

(70 m fracture spacing) and in this case the initial production was much higher

(10.85 mmcf /d).

WELL 10-28 10-22 3-19 9-16 9-17
IP [mmcf/d] NA 0.2 3.32 9.75 10.85

FD (productive) [#/m] NA 0.18 0.32 NA NA
FO (productive) NA NW-SE WNW-ESE NA NA

Crack indicator [%] NA NA 18.2 11.8 13.9
SHmax (BO) NA NE-SW NNE-SSW NA NA

FO (SI) NE-SW NW-SE NW-SE NNE-SSW NW-SE
FO (F-K) NE-SW NW-SE NE-SW NE-SW NE-SW
FS [m] 66 160 64 100 70

Table 5.1: Orientation and spacing of fracture corridors, density and orientation of
cracks, and SHmax orientation in wells of Lynx. IP: Initial Production; FD (pro-
ductive): Fracture Density interpreted in image logs; FO (productive): Fracture Ori-
entation interpreted in image logs; Crack indicator: crack concentration percentage
obtained by VeritasDGC (section 4.5); SHmax (BO): azimuth of SHmax inferred
from breakouts (section 4.7); FO (SI): Fracture Orientation obtained with the SI
method; FO (F-K): Fracture Orientation obtained with the F-K method; FS: Frac-
ture Spacing obtained with the F-K method.

5.6 Summary

We applied two methods to describe fracture corridors in the Lynx field. In gen-

eral, fracture orientations obtained from the Scattering Index method and the F-K

analysis technique agree quite well across the survey. The dominant fracture direc-

tion coincides with the regional maximum horizontal stress orientation (NE-SW) and

departures from this trend have been identified as stress-perturbed areas, possibly

related to recent faulting or weak areas. Resolution of fracture orientation in the field

is limited to 200 due to data azimuth fold.
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Disagreements in fracture orientation obtained from both methods have been ex-

plained based on differences in resolution, the limitation of the F-K method to sep-

arate fracture response at the resevoir from the overburden, and differences in noise

sensitivity between the two techniques. The SI method provides a higher resolution

map showing local variations of fracture orientations. The spectral method comple-

ments the fracture description providing an estimation of fracture spacing. In Lynx,

the fracture processing results provide additional, more detailed information about

the reservoir to aid in its seismic interpretation.

The SI method can be applied post-stack to obtain a map of fracture distribution

or intensity of the reservoir. It is a quick tool to evaluate large survey areas and it

could be incorporated as a feasibility process in the regular data processing sequence

to early detect areas of interest. The more detailed fracture processing using the F-K

method and the pre-stack SI can then be applied to the highly fractured areas.

It has been found that relative fracture stiffness might be extracted from the spec-

tral amplitudes of backscattered waves but a quantitative estimation would require a

better understanding of attenuation phenomena in fractured media. It also remains

for future projects to study the effects on the scattering energy of specific seismic data

processes, as for example, seismic migration, and to develop an optimal processing

sequence that preserves scattering energy.
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Figure 5-1: Lynx field 3D seismic survey.
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Figure 5-2: Offset vs. azimuth fold of the Lynx field 3D seismic survey. Yellow marks
indicate that at the corresponding offset-azimuth value, fold is at least 1.
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Figure 5-3: At the top, synthetic azimuthal gathers for the 5-layer fractured model
described in section 3.2 at the direction normal to fractures. On the left, offsets in
the record are regularly spaced every 5 m. Offsets in the middle record have been
decimated irregularly. The shot record on the right have blank traces to fill up missing
offsets. The bottom row plots display corresponding f-k spectra.
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Figure 5-4: At the top, synthetic records of the 5-layer fractured model described in
section 3.2 normal to fractures. On the right, offset distribution is irregular. Other
azimuthal records have irregular fold as well (not shown). At the bottom, azimuthal
variation of scattering index for the respective cases. Scattering index should maxi-
mize at the fracture direction (90') in both cases, however fold irregularities challenge
the performance of the SI method.
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Figure 5-5: Lynx's data are sorted in azimuth in three different ways and coverage of
high-fold data is compared. At the top left, CMP locations with at least 5 traces in
each and all azimuthal gathers, formed every 100 with an overlap of 100, are plotted
in white. At the top right, the number of CMP locations with the same fold increases
when data are sorted into 15' azimuthal gathers. Better coverage of high-fold data is
obtained if data are sorted into 20' gathers with an overlap of 20' (bottom plot).
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Figure 5-6: Offset-azimuth fold of CMP 1398 (top left) and CMP 16155 (bottom left)
before and after regularization. CMP 1398 is on the edge of the survey and CMP
16155 is at the center as depicted in figure 5-7. Colored marks in all plots indicate
fold is 1. The fold plots on the right show fold distribution of the same CMPs after
sorting the data into 200 azimuthal gathers with an overlap of 20'.
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Figure 5-7: Supershot 22132 is formed by combining 4 shots around. Supershot 22132
is on the east of the survey (left plot). On the right, the location of CMPs 16155 and
1398 are highlighted over the CMP map of the Lynx survey.
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Figure 5-8: Fold Regularization of shot 22132. Yellow marks in all plots indicate
fold is 1. At the top, original offset-azimuth fold of shot 22132. Shot 22132 is
sorted in azimuthal records every 20' with an overlap of 20'. Fold after sectorization
is irregular (middle). At the bottom, offset-azimuth fold for the supershot formed
combining 22132 with neighbor shots to regularize the distribution of offsets at most
azimuths. Location of shot 22132 is indicated in figure 5-7.

210



3

2

1

0

-1
1 0 1 2 3 4 5 610

Etmkngs 1m0

Figure 5-9: CMP map of Lynx's survey (gray). CMPs with at least 1 trace in each and
all 20' azimuthal gathers are shown in red. Data processed with the SI technique are
shown in black corresponding to CMPs with at least 5 traces in all azimuthal gathers
(high-fold).
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Figure 5-10: Map of supershot locations (black stars) to be processed with the F-K
technique. One supershot is formed by combining approximately 4 shot records of
the original Lynx survey (red stars).
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Figure 5-11: Lynx's data are filtered in frequency before the fracture processing.
Three receiver lines of SHOT 34101's time-offset data are shown at the top (see
figure 5-13 for location). Note the high-frequency noise especially at later times. At
the bottom, high-frequencies have been filtered out. On the far right, the amplitude
spectrum of an example trace is shown before and after filtering.
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Figure 5-12: Time windows of F-K analysis for the Dunvegan (green) and Cadotte

(red) horizons.
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Figure 5-13: Supershot and CMP locations referred in the text.

C

u-

-• - W -4 -e U 1 4 0
Waver number [m] -3

0.9

0.8

0.71

0.6

Figure 5-14: Frequency, wavenumber, and amplitude bounds to search backscattered
waves in the f-k domain. Two intervals in the negative wave number interval are
investigated: a short range from the Nyquist wave number until to -0.0029 1/m and
a longer interval extending up to -0.0017 1/m.
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SUPERSHOT 30136
Backscattered Energy
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Figure 5-15: Supershot 30136 backscattered energy (top) and maximum amplitude
functions (middle plot Anorm2 and lower plot Anorml). Function values in short
wave number range are displayed in blue and in red for the long wave number range.
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SUPERSHOT 30136
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Figure 5-16: 300 and 40' azimuthal gathers (perpendicular and parallel to fracture
strike), at the location of supershot 30136. Cadotte's time and the window length
taken in the f-k analysis are indicated in red. Below, f-k spectra of the same gathers.
Amplitude has been normalized using equation 5.2. Peak amplitude picked as the
backscattered f-k component off fractures is indicated with a magenta (+) sign.
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SUPERSHOT 30136 3000

offset [ml

offset [m] offset [m]

Figure 5-17: A f-k pass-reject filter is applied to the time-offset 3000 azimuthal gather,
which corresponds to the direction normal to fracture strike at the location of super-
shot 30136. Negative f-k region is filtered out to isolate the backscattered component
(lower left) from the forward scattered waves (lower right).
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RSHOT 28129
Backscattered Energy
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Figure 5-18: At the top, backscattered energy function vs. azimuth computed for
supershot 28129 in the short wave number region (blue) and in the long wave number
region (red). At the middle and lower plots the variation of peak amplitude with
azimuth is shown after normalizing using equations 5.2 and 5.1.
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Figure 5-19: F-k amplitude spectra of azimuthal gathers of supershot 28129 computed
at Cadotte's level. Distribution of energy is very similar at all azimuths. A dim peak
amplitude in the negative wavenumber space is picked at 1400 (magenta + sign).
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ERSHOT 34126
Backscattered Energy

- +--------i ---+- +---- --- +---+---+- -- 4- -4----
S.... . i ... ... ..... . . . .................. .. -- ...........

-40 6 0 0 0 0 0 0 0 00 3

0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360
Azimuth [deg ]

Maximum Amplitude in Negative Wavenumber Range

nAn An an iA IflAn 4 tAn iAn iaon qrv vin iAn iAn oian iAnn in iA(1 n

Azimuth [deg.]

Maximum Amplitude in Negative Wavenumber Range

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360
Azimuth [deg.]

Figure 5-20: Backscattered energy vs. azimuth for supershot 34125 (top). Short wave
number region is plotted in blue and long wave number region in red. Middle and
lower plots correspond to the variation of peak amplitude in the negative wavenumber
regions with azimuth normalized in two different ways.
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SUPERSHOT 34126
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Figure 5-21: 300 and 40' azimuthal gathers, which correspond to the directions per-
pendicular and parallel to fracture strike at the location of supershot 34125. Cadotte's
time and the window length taken in the F-K analysis are indicated in red. Below, f-k
spectra of the same gathers. Amplitude has been normalized using equation 5.2. Peak
amplitude picked as the backscattered f-k component off fractures at this location is
indicated with a magenta (+) sign.
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SUPERSHOT 34146
Backscattered Energy

0 -8 . -. .... 4-....-.... i ------ --

0 2 sC------------ ----------- ---- ----- -- - ---
02 0.4... ---------------------

0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360
Azimuth [deg ]

Maximum Amplitude in Negative Wavenumber Range

0.8

< 0.6

04

0.2

Id

0.8

-06

0.2

0

) 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360
Azimuth [deg.]

Maximum Amplitude in Negative Wavenumber Range

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360
Azimuth [deg.]

Figure 5-22: At the top, backscattered energy function vs. azimuth computed for
supershot 34146 in the short wave number region (blue) and in the long wave number
region (red). At the middle and lower plots the variation of peak amplitude with
azimuth is shown after normalizing using equations 5.2 and 5.1.
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Figure 5-23: 120 and 200
to fracture strike) at the
length taken in the F-K
gathers. Amplitude has
as the backscattered f-k
magenta (+) sign.
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analysis are indicated in red. Below, f-k spectra of the same
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Figure 5-24: Fracture orientation map at the Cadotte from the F-K method. Super-
shot locations are indicated with black stars. Vector's length is proportional to peak
amplitude.
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Figure 5-25: Fracture orientation map at the Dunvegan from the F-K method. Su-
pershot locations are indicated with black stars. Vector's length is proportional to
peak amplitude.
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Figure 5-26: Fractu
are indicated with

250

150 L

100

05n
2 3 4 5 6 7 8 9

Eslings [K"l

Ire spacing map at the Cadotte (F-K method). Supershot locations
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Figure 5-27: Fracture spacing map at the Dunvegan (F-K method). Supershot loca-
tions are indicated with black stars.
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Figure 5-28: Amplitude map of
Amplitude has been normalized
with white stars.

backscattered
using equation

waves at the Cadotte (F-K method).
5.1. Supershot locations are indicated
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Figure 5-29: Amplitude map of backscattered waves at the Dunvegan (F-K method).
Amplitude has been normalized using equation 5.1. Supershot locations are indicated
with white stars.
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Figure 5-30: Frequency map of backscattered waves at
Supershot locations are indicated with white stars.
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Figure 5-31: Frequency map of backscattered waves
Supershot locations are indicated with white stars.
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Figure 5-32:
SI method.

Comparison between window length used for the F-K analysis and the
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Figure 5-33: Inline 64 of Lynx survey and seismic interpretation of time horizons
corresponding to the top of Dunvegan (upper left, green), Shaftesbury (upper right,
cyan), Cadotte (lower left, red) and Falher (lower right, blue). The time windows to
extract input and output wavelets for each horizon analyzed are indicated in white.
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Figure 5-34: Map of fracture distribution and intensity at Dunvegan. Black, gray
and white areas show decreasing levels of post-stack scattering indices following the
thresholds of SI values identified in the inset histogram.
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Figure 5-35: Map of fracture distribution and intensity at the level of the Shaftesbury
horizon obtained from the SI method post-stack. Black, gray and white areas show
decreasing levels of scattering indices following the thresholds indicated in the inset
histogram.
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Figure 5-36: Map of fracture distribution and intensity at Cadotte computed with
the SI method post-stack. In the inset, histogram of normalized scattering indices.
Red lines indicate thresholds used to distinguish levels of SI intensity in the map.
The level at lowest SI determines the transition between white and gray areas and
the level at largest SI marks the transition between gray and black areas.

I
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Figure 5-37: Map of fracture distribution and intensity at Falher. In the inset, his-
togram of normalized scattering indices computed post-stack. Red lines indicate
thresholds used to distinguish levels of SI intensity in the map. The lowest level
determines the transition between white and gray areas and the largest marks the
transition between gray and black areas.
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Figure 5-38: SI post-stack analysis of CMP 16525. At the top, the stacked trace
(all azimuths and offsets 0-4000 m) for this CMP and time location of horizons; at
the bottom, tranfer functions computed for the Dunvegan, Shaftesbury, Cadotte and
Falher time levels. Amplitude maxima and scattering indices are indicated.
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Figure 5-39: SI pre-stack analysis at CMP 10460 for the top of Cadotte: azimuthal
stacks every 20' (top), the time location of Cadotte and the start of the upper win-
dow and end of the lower window are indicated in red; azimuthal tranfer functions
(middle); corresponding scattering indices plotted as a function of angle (bottom).
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Figure 5-40: Map of fracture distribution, intensity and orientation at Dunvegan.
Colors represent azimuth of fracture strike measured as in the color scale. Colored
pixels indicate that maximum scattering index is above the threshold shown in the
histogram.
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Figure 5-41: Map of fracture distribution, intensity and orientation at Shaftesbury.
Red line indicates threshold used to highlight highest values of SI intensity in the
map. Colors represent azimuth of fracture strike measured as in the color scale.
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Figure 5-42: Map of fracture distribution, intensity and orientation at Cadotte. Colors
represent azimuth of fracture strike measured as in the color scale. The inset figure is
a histogram of the SI maximum differences normalized. Data have been thresholded
below the red line.
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Figure 5-43: Map of fracture distribution, intensity and orientation at Falher. Colors
represent azimuth of fracture strike measured as in the color scale. The inset figure is
a histogram of the SI maximum differences normalized. Data have been thresholded
below the red line.
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Figure 5-44: Map of fracture distribution, intensity and orientation at Dunvegan after
a smoothing filter. Colors represent most common azimuth of fracture strike in a bin
of 120 x 120 m. Intensity is displayed with grades of color following the thresholds
indicated on the SI histogram in the inset figure.
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Figure 5-45: Smoothed map of fracture distribution, intensity and orientation at
Cadotte. Colors represent most common azimuth of fracture strike in a bin of 120 x
120 m. Intensity is displayed with grades of color following the thresholds indicated
on the SI histogram in the inset figure.
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Figure 5-46: Map of fracture distribution, orientation and intensity obtained with the
SI method at the top of Dunvegan. Quivers' length represents the SI magnitude and
their orientation indicates fracture strike. Fracture information is plotted over the
horizon time topography and fault traces interpreted from seismic data. Data was
thresholded for scattering indices lower than 0.2.
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Figure 5-47: Map of fracture distribution, orientation and intensity obtained with
the SI method at the top of Cadotte. Quivers' length represents SI magnitude and
their orientation indicates fracture strike. Fracture information is plotted over the
horizon time topography and fault traces interpreted from seismic data. Data was
thresholded for scattering indices lower than 0.2.
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Figure 5-48: Fracture orientations obtained with the SI method at the Dunvegan.
Orientations are histogrammed in a radius of 500 m. Histograms are plotted in red
when the most frequent direction is 100-140', that is, orthogonal to the regional
Shmax.
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Figure 5-49: Fracture orientations obtained with the SI method at the Cadotte.
Orientations are histogrammed in a radius of 500 m. Histograms are plotted in red
when the most frequent direction is 100-140', that is, orthogonal to the regional
Shmax.
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Figure 5-50: Fracture orientations at the Cadotte from the SI method are upscaled
to match the resolution of the F-K method. Orientations are histogrammed in 500
m around the supershot locations.

i

Figure 5-51: Comparison of fracture orientations from the SI (blue) and the F-K
method (red) at the Cadotte. Fracture directions from the SI method correspond to
the most common orientation found in the histograms displayed in figure 5-50.
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Figure 5-52: Some of the locations where fracture orientation from the upscaled
SI method (blue histograms) coincide with the orientations obtained with the F-K
method (red quivers).
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Figure 5-53: Some of the locations where fracture orientation from the upscaled SI
method (blue histograms) do not coincide with the orientations obtained with the
F-K method (red quivers). Fracture strike estimated from both methods at these
locations are about 90' away.
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Figure 5-54: Some of the locations where fracture orientation from the upscaled SI
method (blue histograms) do not coincide with the orientations obtained with the
F-K method (red quivers), but fracture strike estimated from the SI method shows
significant variation in 500 m around the supershot locations.
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Figure 5-55: Fracture orientations at the Dunvegan from the SI method are upscaled
to match the resolution of the F-K method. Orientations are histogrammed in 500
m around the supershot locations
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Figure 5-56: Comparison of fracture orientations from the SI (blue) and the F-K
method (red) at the Dunvegan. Fracture directions from the SI method correspond
to the most common orientation found in the histograms displayed in figure 5-55.
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Figure 5-57: Map of fracture distribution, intensity and orientation at Cadotte with
colors representing azimuth of fracture strike and color grades the level of intensity
or magnitude of SI. The histogram in the inset shows these levels. Well locations are
indicated. Stars represent well location at Cadotte's depth and solid dots the surface
locations.
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Figure 5-58: Map of fracture distribution, intensity and orientation at Cadotte with
vectors representing SI intensity (length) and fracture strike (direction). Well loca-
tions are indicated with stars to represent location at Cadotte's depth, and solid dots,
the surface locations.
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Chapter 6

Conclusions

In this thesis we address the problem of determining in situ stress and fracture proper-

ties. The methods used include borehole breakouts, flexural wave crossovers, regional

kinematical models of stress distribution, and fracture analyses of seismic data. The

methods are based upon two fundamentally different aspects: (1) the scale of the

regions they describe and the resolution of the data type; and (2) the relationship

between the in situ stress field and the properties of fractures. For instance, the

anisotropy of flexural waves measured with cross-dipole logs in chapter 2 is induced

by the stress field. The direction of propagation of fast waves in the far field is in-

terpreted as the orientation of maximum horizontal stress. Whether this anisotropy

is associated with the presence of fractures or not has to be resolved through direct

observations, for example, in image logs. However, the techniques explored in that

chapter are able to tell, first, if the stress field anisotropy around the borehole is

strong enough to give place to fracturing, and second, which would be the preferen-

tial orientation of such fractures. This information, combined with knowledge of the

mechanical properties of the rocks around the well could then give a better diagno-

sis about the presence of fractures at different depths. Inference of regional fracture

properties from borehole data, however, suffers from the lack of sufficient coverage

(information) between wells. Moreover, it is desirable that fracture detection and

stress distribution be performed before drilling. Therefore, in chapters 3 and 5, the

problem of detecting and characterizing stress and fractures in the reservoir is ap-
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proached differently, that is, using surface seismic data. In this case, the reservoir

is assumed fractured and the distribution, orientation and spacing of these fractures

reveal the local variations of the stress field.

The work presented in this thesis lead us to the following conclusions:

* The agreement of the in-situ stress orientation determined with the borehole

methods strongly suggests that the integration of these techniques should be

used for practical applications. The orientation of the horizontal stresses at

a well location derived from flexural wave crossovers agrees with the orienta-

tion derived from breakouts observed at the borehole wall. This agreement

verifies that dipole logs are a record of the stress distribution around the well.

Moreover, the study suggests that the combined analysis of in situ stress from

dipmeter data and sonic data compensates the limitations of both methods.

The reliability of the dipmeter data is reduced if breakouts are present along

with other kinds of borehole instability that obscures the measurements (e.g.

washouts, key sets). The reliability of the sonic data is particularly reduced if

the formation is fast and strongly anisotropic. Combining both methods yields

a more complete depth profile of in situ stress since breakouts, or crossovers,

do not generally occur everywhere in the well section. Breakouts are indicators

of stress anisotropy after the rocks have failed, whereas crossovers reveal the

conditions of pre-failure stress.

* The agreement between borehole methods and the regional scale model implies

suitability of the regional model despite its simplifications. The orientation of

the horizontal stresses derived from well data at a particular intraplate location

agrees with models of stress distribution driven by the motion of the tectonic

plates around the region of the well. A range of possible SHmax azimuths is

obtained by varying the relative plate velocities according to different global

models of present-day plate motions. Although the stress model is a simplified

representation of the processes driving the interaction of plates, the plane elas-

ticity approximation and the pure kinematical approach seem to account for

246



the most important forces responsible to yield the stress field at a particular

orientation.

* The consistency across scales (of stress orientation) implies the strength of the

tectonic stress which in turn agrees with the stress magnitude estimations. The

agreement of the results from the regional scale stress model and the more

deterministic methods using borehole data suggests that the in situ stress in

the region of study is particularly consistent. This consistency may be related

to the fact that the location is near the plate boundary (approximately 120

Km). However, according to Yale (2003) this behavior is characteristic of areas

of high tectonic stress (high differential horizontal stress). Our estimations of

stress magnitudes support the interpretation of this region as an area of high

tectonic stress in which local variations with respect to the regional stress field

are not likely to occur (except maybe in the vicinity of faults). The consistency

across scales observed in northeast Venezuela has to be generalized carefully be-

cause other areas may feature a less anisotropic stress field. With each method,

stress orientations are determined within an uncertainty range. Breakouts yield

the most constrained results, followed by crossovers, then regional models, and

then earthquake focal mechanisms which give the least constrained stress ori-

entations. The uncertainty range for each method is related to the scale of the

measurement.

* Horizontal stress magnitudes can be estimated directly from the data without

assuming empirical models or conditions of isotropicity that are often unreal-

istic. Reasonable values of horizontal stress magnitudes can be estimated di-

rectly from the well logs in two ways: (1) comparing stress distribution around

the borehole (model) with the actual deformations (breakouts) observed at a

particular depth; and (2) comparing the anisotropy observed with laboratory

measurements of shear velocity in rock samples (ideally, from the formations

probed). These two, relatively simple, and independent procedures provide

well constrained magnitudes of Shmin and SHmax. In the case studied in
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chapter 2, estimations using both methodologies are consistent. The results

obtained with either approach are data-driven unlike commonly used empirical

relationships that depend on estimations of vertical stress, pore pressure, Pois-

son ratio, friction coefficient or assumptions of isotropicity that may not apply

here.

* Our discrete fracture modeling approach reproduces the first order effects of

seismic scale fractures on the propagation of waves. The numerical models

presented in this thesis and others (e.g. Willis et al., 2006; Daley et al., 2002;

Vlastos et al., 2003) simplify the wave phenomena that takes place in the pres-

ence of fractures with dimensions similar to the seismic wavelengths. The wave-

field generated by multiple fracture sets consists of a complicated interaction of

diffracted and guided waves. The discrete fracture modeling approach assumed

in this thesis (Coates and Schoenberg, 1995) appears to reproduce most of the

wave phenomena that have been observed in previous laboratory experiments

and analytical solutions. The reverberating tails of P and S waves (coda waves)

are recognized as scattering off the fractures. The amplitude of these waves can

be large enough to disrupt the primary reflected signals and thus be measurable.

* Analysis of our discrete fracture modeling results show that the fractures impart

distinct and identifiable spectral characteristics which can be used to extract

fracture properties. The spectral response of the fracture scattering changes

with azimuth. The azimuthal differences in the data spectrum are described in

terms of velocity and distribution of energy. Energy appears spread out (slower

velocities) in the f-k spectrum of a windowed gather in the direction normal

to fracture strike whereas it appears confined around small wavenumbers (fast

velocities) for records oriented with fracture strike. The azimuthal differences

are enhanced in the 2D Fourier domain, similarly to what happens when transfer

functions are computed from azimuthal stacks in the SI method. The main

advantage of the spectral domain is that it conveniently provides a way of

separating out signals exclusively related to fractures. The reason behind this is
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that unlike the primary energy, a large component of the fracture scattering (the

backscattered waves) maps to negative wavenumbers in the f-k spectrum. In

theory, the backscattered energy dominates the negative wavenumber-positive

frequency quadrant. In practice (chapter 5), noise, aliasing and unmigrated

diffraction tails from high-angle dipping structures can all reduce the effective

isolation of backscattered energy.

* We developed an effective new method to extract fracture properties- the F-K

method. Based on the spectral characteristics of the fracture scattering, we

propose two quantities (backscattered energy and maximum spectral amplitude

in the negative wavenumber domain) as discriminators of fracture orientation.

A simple relationship between dominant wavenumber and fracture spacing is

found. This is the F-K method, a new strategy to extract fracture properties

from seismic data. The application of the method to the Lynx field dataset

in chapter 5 has helped us to make the method practical and determine its

limitations and advantages upon field data.

* The sensitivity study shows that the backscattered dominant wavenumber,

backscattered energy, and maximum SI azimuth are robust. Spectral ampli-

tudes and SI values have a response tuned to thickness, spacing, and compliance

of the fractures. The model-based sensitivity of the scattering spectral response

(spectral amplitude, frequency and wavenumber), and scattering indices to frac-

ture properties (thickness, spacing and stiffness) provides a basis for confidence

in the robustness of the F-K and SI methods in a wide range of reservoir config-

urations. The study also opened up the possibility of extracting other fractures

properties, like stiffness and reservoir thickness, using the information contained

in the spectral amplitudes and in the relative values of scattering index. Frac-

tures in thin bed reservoirs and of low compliance contrast generate a reduced

fracture signal with respect to tall, highly-compliant fractures. Fracture spac-

ing has a tuning effect on the amplitudes. The amplitude reduction exhibits

itself as less energetic peaks in the f-k spectrum and decreases the maximum
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difference of scattering indices computed in each CMP bin. An important con-

clusion of this modeling study is that the backscattered energy is always the

largest perpendicularly to fracture strike. The dominant wavenumber is found

to be practically insensitive to fracture thickness or compliance. Similarly, the

SI reaches a maximum value parallel to fractures independent of the fracture

properties. In practice (chapter 5), we related the spectral amplitude variations

across the survey area to uncertainties in the F-K method, and to the intensity

of fracturing in the SI method.

* The uneven fold and acquisition footprint issues must be estimated and removed

from fracture analyses. The application of the F-K and SI methods to the field

data in chapter 5 reveals that irregular fold caused from the acquisition design

specifications creates missing traces within SHOT and/or CMP gathers and

an irregular number (including a complete omission) of traces in each azimuth

gather. If the fracture estimation is performed on data with irregular fold,

aliasing artifacts obscure the true fracture characteristics. The bias introduced

by this footprint can be remedied by treating early in the processing flow the

irregular fold issues. We proposed a homogenization of the fold which controls

trace mixing while keeping a reasonable azimuth resolution. Then, the recom-

mendation is to apply the fracture processing techniques only in gathers that

satisfy a minimum fold requirement. In this way, the resultant fracture maps

reflect only the reliable information without any fold biases.

* The SI method can be applied to (nearly) conventionally processed, post-stack

data. Heretofore, this method was only applicable to surveys designed to collect

high fold in many azimuths. Using the method on conventionally designed

surveys expands the number of 3D seismic surveys that can be used for fracture

analysis by this simple method. The SI method can be applied to post-stack

data (with no azimuthal differentiation) in order to obtain a map of fracture

distribution or fracture intensity in the reservoir. It is a quick tool to evaluate

large survey areas and it could be incorporated as a feasibility process in the
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regular data processing sequence for early possible detection of fractured areas

of interest. The more detailed fracture processing using the F-K method and

the pre-stack SI can then be applied as more complete data are acquired and

interest in the area warrants.

* The F-K and SI methods have different spatial resolutions and benefit from

being interpreted together. Application of the F-K and SI methods to the

Lynx data taught us that the resolution of these methods is different. The F-

K method yields smoother results due in part to the fact that the procedure

is applied in the SHOT domain. In general, it is advantageous that the F-K

method is applicable in the field geometry because very little other processing

may be necessary. However, unlike CMP gathers, the subsurface image points

vary from trace to trace in SHOT gathers. As a consequence, an intrinsic

assumption of the F-K method is that the fracture properties sought should be

relatively invariant in space and depth. The SI method has higher resolution

and allows the inversion of fracture properties at every CMP bin. In order to

compare the results of these two methods we had to deal with the resolution

differences. We upscaled the SI fracture orientation map. The orientation of

fractures determined from the F-K and the SI-upscaled methods is consistent.

Fractures appear to be aligned with the regional maximum stress SHmax. We

propose three possible causes for the local differences: (1) the higher resolution

of the SI method may be affected by smaller scale variations in ambient noise;

(2) fractures in the overburden are oriented differently than in the reservoir and

the F-K method may give a result which is overprinted by the shallower fracture

orientations; and/or (3) any minor faults present causing the local fracture

orientations to become erratic might not be resolved by the F-K method.

6.1 Contributions

In this thesis, a significant effort has been dedicated to develop practical methods to

determine stress magnitudes and fracture properties. We have often approached these

251



problems from a modeling viewpoint; however, all the research has been ultimately

tested in field data.

Efforts have been focused on four main aspects: (1) the determination of stress

magnitudes; (2) the integration of multiscale in situ stress information; (3) the un-

derstanding of the seismic wave propagation in fractured reservoirs; and (4) the de-

velopment of strategies to extract fracture properties from seismic data. The most

important contributions of this work are:

1. We derived two independent methodologies to determine horizontal stress mag-

nitudes from borehole data. These are particularly useful because methods to

obtain magnitudes of SHmax are scarce.

2. We developed the F-K method aiming to extract fracture properties from sur-

face seismic data. Extracting this fracture information from the coda waves is a

relatively new research area. The F-K method is a systematic way of detecting

fractures and estimating their orientation and mean spacing from 3D field data.

3. We proposed and tested the application of the SI method to post-stack data

to extend the practical applicability of the fracture scattering processing to

virtually all seismic surveys.

4. We recognized the effects of acquisition footprint on the fracture maps obtained

from the scattering processing and proposed a strategy to mitigate them.

6.2 Future Work

Certain processes taking place in the borehole environment are known to be transient,

like near-borehole fluid invasion, mudcake build-up, shales swelling, and fracture prop-

agation. Our modeling approach to estimate stress magnitudes strongly relies on the

assumption of linear elasticity, and the validity of a particular failure criterion (Mohr-

Coulomb). A generalization of the approach could be achieved building more realistic

constitutive equations into the calculation. Another way of determining stress mag-

nitudes could be carried out by matching the observed crossover frequency with the
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modeled response of a stressed medium. The crossover frequency is a function of the

radial distance at which the formation is undisturbed by the borehole presence under

a particular far field stress; thereby the thickness of such zone should be an indirect

measurement of the stress field intensity.

The characterization of fracture corridors can be further advanced in the following

directions:

* To extract other properties, e.g. fracture stiffness, from the scattering signal.

For this purpose, the spectral amplitude, the response at intermediate azimuths,

other recorded components, and other fracture waves like guided waves may be

analyzed. Transforms other than the Fourier transform (tau-p, Karhunen-Loeve

or eigenimages, wavelet transforms) may generate higher resolution maps and

perform better separations of the fracturing in the reservoir from the overbur-

den.

* To deepen our understanding of the wave interaction that takes place in fracture

systems. More realistic modeling techniques need to be developed, for example,

to take into account the role of fluids in the fractures. The modeling studies

have to be calibrated with laboratory experiments. Future models should also

simulate the behavior of multiple fracture sets with different orientations, and

fracturing of limited extension.

* To validate the information extracted about fractures. At this point the es-

timations of fractured properties from seismic data have only been validated

with well breakouts, image logs and resistivity logs. These data provide frac-

ture information in the near field of the borehole which is probably associated

with cracks at the subseismic scale. To supplement these analyses, the scatter-

ing extraction methods could be applied to borehole seismic data or crosswell

tomography surveys. The frequency of these types of data is higher than that

of surface seismic but the correlation with fractures at the seismic scale might

be more consistent.

Important questions remain to be addressed, particularly regarding the connection
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between fractures and in situ stress. For instance, can we be confident that the stresses

responsible for the fracturing in a reservoir correspond to the present-day stresses?
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Appendix A

Formulation of Stress-Strain

Problems

When a layer of rock, buried at certain depth, is subjected to a stress field, the

displacements and displacement gradients are sufficiently small for the theory of linear

elasticity to be valid. The equations of motion, or equilibrium, can be considered to

be satisfied in the undeformed reference configuration. We choose the Lagrangian

description of motion to express the global conservation laws. Because of the fixed

material viewpoint, the conservation of mass is automatically satisfied (Reddy, 1993).

Using conservation of momentum, the Cauchy's equations of motion are obtained

(Malvern, 1969). In vectorial notation,

Ou
VT + f =p-, (A.1)

where u is the velocity, p is the density of the material, f represents the body forces

per unit volume and T is the stress tensor:

ax Txy Txz

T y= U y Tyz (A.2)

STzx Tzy Oz

In the special case of static equilibrium, the acceleration 21is zero and equation
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A. 1 reduces to:

VT+f =0 (A.3)

In general, Tij = Tjj, and there are only six independent unknown stress com-

ponents instead of nine. However, the 3 equations A.1 are not enough to solve for

the stresses, and constitutive equations have to be used. The stress-strain relations

describe the ideal macroscopic behavior of the material under consideration. For an

ideal elastic solid, the constitutive equations are known as Hooke's law :

T = Cc, (A.4)

where C is a fourth-rank tensor and e is the strain tensor,

[z Yqxy Yz1

E= yyX Ey •z (A.5)

Lzz 'zy cz

In the most general case, C contains 81 elastic constants or modulii, however,

provided T and c are symmetric, C can be reduced to 36 constants.

By definition, the strains are related to the displacements, Ui = (u,v,w), as:

as. 72y 1(0u 0v
ex = a xy = d = a +

19X 1 y 2 2 _y ax

E ,= a = = + (A.6)

6z= - zX- 2 - +

For an elastic isotropic material, the coefficients of C can be expressed in terms

of only two elastic modulii. Usually, these are either the Lame constants, A and A,

the Young's modulus E and Poisson ratio v, or the bulk modulus K and the shear

modulus G. The bulk modulus is a measure of the fractional volume change when the

pressure is increased by bP. It is obtained through isotropic compression experiments.

Most frequently, uniaxial compression is simpler to perform, in which case, it is the
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Young's modulus that it is measured. By definition, E = azz/<zz. On the other

hand, the deformations that take place in the transverse direction are described by

the Poisson ratio: v = -cEyy/zz (Gueguen and Palciauskas, 1994).

Using the Young's modulus (E), and the Poisson's ration (u), Hooke's law reduces

x j (x + 1 (Ex + Ey + EY ));
S= (6 + _- (E x + E + Cz)) ;

Oy = ( + l+ 2

•z = •1+V (Ez + (x + C ))
1 v E)

Finally, substituting equation A.6 in A.7 and

placement equations of motion are obtained:

-VCVu = f

where,

E
rxy = 2(1 + v)7xy

E
Tyz = 2(1+v) 

Z
y

E
Tzx = 2(1 + vjzx

(A.7)

equation A.7 in A.3, Navier's dis-

(A.8)

C =

and A and i in terms

(A + 2y)

A

A

0

0

0

A

(A + 21a)

A

0

0

0

A

A

(A + 2p)
0

0

0

(A.9)

E and v are:

Ev

(1 + v)(1 - 2v)
E

2(1 + v)

(A.10)

Once the derivatives of the displacements have been obtained, all strain and stress

components can be derived.
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A.1 Plane Elasticity

The three-dimensional elasticity problem can be simplified under certain assumptions

concerning the loading. For example, if the body is a linear elastic solid whose

thickness is very large in comparison with the size of its cross-section, the problem

can be considered to be a plane strain problem. On the other hand, if the thickness is

small compared with the area of the cross-section, the problem can be approximate as

a plane stress problem. In both cases, the body forces, if any, cannot have components

in the z-direction and the applied boundary forces must be uniformily distributed

across the thickness. No loads can be applied on the parallel planes bounding the top

and bottom surfaces for the former approximation to be valid (Malvern, 1969).

In modeling the deformations around the borehole, plane strain is an appropri-

ate 2D approximation. Therefore, we assume no displacements take place in the

z-direction (borehole axis) and the displacements in x and y directions are functions

of x and y but not z. Then,

Ez = 7yz = yzx = 0 (A.11)

and in eq.A.8 u = (u, v) (only two dependent variables).

Therefore, the condition for plane strain is:

CEz = yz = zzx = 0 (A.12)

where Ez is the normal strain in the z-direction and -,z and 7zx are shear strains.

Before deriving the finite element model associated to this problem (appendix B),

it is useful to rewrite the governing equations under the assumptions of plane strain,

and the boundary conditions, using an appropriate notation. First, the equations of

motion,

+x + X = 0 (A.13)
Ox 0y

+ a• =0
Dx Dy
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ignoring any body forces and assuming the displacements are constants in time.

Then, we need constitutives relations. In this case (linear elasticity),

C11 C12 0 EX

y = c12 C22 0 1E] (A.14)

Uxy 0 0 c66 xy

where the matrix of elastic constants has been reduced first using the symmetry of the

stress and strain tensors, from 81 to 36 constants, further to 21 assuming a strain-

energy function exists (hence, cij = cji) (Malvern, 1969), and finally to 9, making

the material principal directions to coincide with the coordinate axes (x, y, z) used to

describe the problem. The latter correspond to a medium with 3 orthogonal planes

of symmetry, named orthotropic; an isotropic material is also orthotropic but the

opposite is not true.

The 4 constants different from zero in A.14 result from imposing the assumptions

of plane elasticity, however the distinction between one type or the other will be given

by the values these elastic constants take. For the plane strain case and an isotropic

material (constants reduce to 3, only 2 independents),

E(1- v)
C11 = C22 = C = (1 + )(1 - v) (A.15)(1 + v)(1 - 2v)

vE
C12 = C2

1 - v - 2v2

E
6 = 2(1+ v)

or, in terms of the Lame constants, A and p,

c, = A+21 a (A.16)

C2 = A

C3 = P1

Substituting A.14 in A.13 and using the definitions in A.6 one can obtain the
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actual equations being solved which are in terms of the displacement components u

and v:

02u 02U a2
- 1  - c3 - 2 + C3) = O (A.17)8 X2 a2 a

02v a2v a2u
-Ca - c1 - (C2 + C3) O

aX2 ay2 axay
In order to solve the problem numerically, boundary conditions have to be speci-

fied. In general, they can be expressed as (Reddy, 1993),

Natural Boundary Condtions, on F2:

au av Ou av
tx7 = -a Z -+ aO-xy# = (c + c2 )x + C3( )y (A.18)

au av au av
ty = xnx + yny y •- 3(-a + a )nX + (C2 (x + cl aVy)ny

Essential Boundary Conditions, on 1I:

u = u (A.19)

V = V

where rF and F2 refer to disjoint portions of the boundary that do not overlap (except

for a small number of discrete points). Fl and r2 together constitute the boundary

F of the whole region, and on each, normal vectors can have different directions. In

the natural boundary conditions, (n, ny) are the components (or direction cosines)

of the unit normal vector on the boundary F, (fi = ni + nyj = cos ai + sin aj). A

particular region border can be subdivided in as many boundaries as needed.
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Appendix B

Finite Element Formulation of

Stress-Strain Problems

This appendix includes a brief overview of the fundamental concepts and assumptions

of the finite element .method. Later, it presents the weak formulation and the finite

element model associated to the in situ stress modeling.

B.1 Finite Element Method

The finite element method is a special case of a class of numerical methods grouped

under the name of variational methods. In the solution of a differential equation by

a variational method, the equation is put into an equivalent weighted-integral form

and the approximate solution over the domain is assumed to be a linear combina-

tion of appropriately chosen approximation functions and undetermined coefficients.

These coefficients are calculated such that the integral statement is satisfied (Reddy,

1993). In general, all variational methods (Galerkin, Rayleigh-Ritz etc) are difficult

to implement because they do not provide a systematic procedure for the derivation

of the approximation functions.

To overcome this disadvantage, in the finite element method any geometrically

complex domain is represented as a collection of simpler subregions, called finite

elements, over which the solution can be assumed continuous and therefore, be rep-
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resented by a linear combination of, for example, algebraic polynomials. The con-

nection with the variational methods comes with the fact that the coefficients in

these algebraic relations are computed from satisfying the governing equations in a

weighted-integral sense over each element. The coefficients correspond to the values

of the approximate solution at the nodes.

The method involves three-step approximations: (1) the finite element discretiza-

tion of the domain; (2) the representation of the solution over each element as a

linear combination of nodal values and approximation functions; and (3) the element

equations assembled assuming continuity of the physical quantities.

The approximate solution in the finite element method is of the form:

N

UN Z C303 + 0b (B.1)
j=1

where cj are the coefficients and Oj the approximation functions, in this case, alge-

braic polynomials. N represents the number of terms taken in the approximation

and j its index. If the approximate solution B.1, is directly substituted into the

original differential equation, there may not be enough linearly independent algebraic

equations to derive cj, this is where the variational methods are needed.

Basically, the variational principles allow the construction of the weak form of

the given differential equation. A weak form is a weighted-integral statement of a

differential equation in which the differentiation is distributed among the dependent

variable and the weight function (Reddy, 1993). Furthermore, in this form, the natu-

ral boundary conditions are included, therefore the problem is reduced to require the

approximate solution to satisfy only the essential boundary conditions.

The main advantage of using the weak form is clear from its definition: if the dif-

ferentiation is distributed between the approximate solution and the weight function,

the resulting integral form will require weaker continuity conditions on the approxi-

mation functions.

To illustrate the construction of the weak form, we will make use of the generalized
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differential equation of one dependent and one independent variable:

d dud [a(dx] = q(x) (B.2)

for 0 < x < L, and subject to the boundary conditions:

u(0) = uo (B.3)[du
a dxIx=L=

a and q are functions of the coordinate x, and u0 and Qo are known values.

First, we rewrite B.2 in its weighted-integral sense:

w[- d(ax) - q] dx = 0 (B.4)

When u in this equation is replaced by B.1, the expression in the square brackets is not

zero, therefore, the form B.4 is a statement that the error due to the approximation

of the solution is zero in a weighted-integral sense.

Choosing N functions w allows to find N equations for cj. So far, w, the weight

functions, are required to be nonzero and integrables.

The trading of differentiability from the dependent variable to the weight function,

is only possible to perform if it leads to boundary terms physically meaningful (Reddy,

1993). For instance, in the case of displacements, it will be shown later that the

boundary terms represent the forces.

Integrating the first term of B.4 by parts leads to,

0 = (- a du - wq) dz - [wa d]L (B.5)o d x dx 0

Coefficients of the weight function and its derivatives in the boundary term are named

secondary variables and their specification on the boundaries constitute the natural

boundary conditions, as opposed to the weight function itself, (called primary vari-

able) whose specifications on the boundaries correspond to essential boundary con-
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ditions. Following these definitions and observing the boundary term in B.5, the

first equation in B.3 is of the essential type while the second boundary condition is a

natural one.

The boundary conditions B.3 are now imposed on the weak form resulting in,

_ = (dw du
0 = (a - wq) dx - w(L)Qo (B.6)o dx dx

which is the weak form equivalent to the original differential equation B.2 and the

bounday conditions B.3.

Once the weak form of the differential equation is built, the next step is to compute

the approximate solution over a typical finite element.There are several variational

methods depending on the choice of the integral statement and weight functions. In

the following, the Rayleigh-Ritz method will be used to find the approximate solution

on each finite element. The particularity of this method is that the choice of weight

functions is restricted to the approximation functions, that is, w = 0j.

Let us denote the finite element solution over element Q2e by Ue an algebraic

polynomial that is required to be: (1) complete, that is, it has to include all lower-

order terms up to the highest order used to capture all possible states (constant,

linear and so on); (2) continuous over the element and differentiable as required by

the weak form, in this case, at least once; (3) it should be an interpolant of the

primary variables at the nodes of the finite element.

The degree of the approximation is inversely related to the error in the approx-

imation. For the moment, let us assume a quadratic approximation of the form:

Ue(x) = a + bx + cx2  (B.7)

which requires three nodes in order to rewrite Ue in terms of the nodal values
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(ut, eu, u ). Thus,

u = Ue(x) = a + bxe + c(x,) 2  (B.8)

S= Ue(xe) = a + bx' + c(xe)2

u = Ue(x,) = a + bxe + c(xe)2

and the coefficients a, b, c can be obtained. Notice however, that these are not the

coefficients of the general approximate solution, they correspond to the solution over

the particular element e.

Solving for a, b and c and substituting in B.7:

3
Ue = (x)u• (B.9)

j=1

where je are the quadratic Lagrange interpolation functions (Reddy, 1993),

11 (_ + e3x + x 2 ) (B.10)
Ei=1 ai

e ee W eXe2

ie = (xe)- (Xe)2

riie= -(Xj_-X)k

the subscripts here permute in natural order: for i = 1, j = 2 k = 3; for i = 2, j = 3

k = 1, for i = 3, j = 1 k = 2.

The function 0' is equal to 1 at node i and zero at the other nodes.

Finally, the approximate solution over each element has to be substituted into the

weak form B.6 and following the Rayleigh-Ritz procedure, w is chosen as the functions

je. n (number of elements) equations are obtained which in matrix notation can be

written as

[Ke][ue] = [fe] + [Qe] (B.11)

where [Ke] is the coefficient matrix, (nxn), acting on u%, the nodal values; [fe] is
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a column vector of size nzl and [Q'] contains the former boundary term. For the

equation B.2,

K J (a d) dx (B.12)

fie jq) , dx
n

j=1

In the system B.11, there are 2n unknowns namely ur and Q'. The assembly of the

element equations, this is, collecting all the elements and taking into account the

common nodes between them, and the imposition of the boundary conditions, reduce

the number of unknowns to n as long as the problem is well-posed.

Equations B.11 describe the finite element model whose solution correspond to

the approximate solution in the global domain of the original equation.

B.2 The Weak Form

Following the procedure described in section B.1, the weak form of equations 2.6

subject to boundary conditions A.18 and A.19 is derived. As mentioned before, the

domain is discretized into finite elements. Next, we multiply each of the equations in

2.6 by a weight function, wl and w2 respectively, and integrate over the domain of

one element 1Q,

(w W1 12U 02U 8 2V V
I-c1  - C3 - (C2 + C3) dxdy = 0 (B.13)

2e (9X2 OY2 0xd19i,2- V a2v 12V + a2 ) dd ow2 -C 3 2 - Cl 2 - (C2 + C3) dxdy = 0
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Integrating by parts to trade the differentiation equally between the weight function

and the dependent variables,

[Ow1 l Ou v)+C l00=[ wl (c + c2 ) + C3ax ax ay By ay
au

- w 1 (ci-
Jre [ Ox

+ - dxdy

" v Cu +Ov )V+ c2 )x c3- + y ds (B.14)

w2,, OU Oav aw2 aU av[- (C2 + Cl ) + C3  - + dxdya By ax By az 1y ax I
• [ Ou v au av

- (c2 + cl )ny + )n ds
ire ax y 1y 8z ax

where ds is the arclength of an infinitesimal line element along the boundary. From

B. 13 to B. 14 each term was developed separetly and then common terms were grouped.

For instance, the first term f wl (- clý) dxdy can be rewritten as f wl dxdx

with F1 = -cl . By properties of the derivative of a sum:

((wiFi) dxdy = wl dxdy + wl aF dxdy
xz Ox j az

(B.15)

where the second

of B.13. Thus,

term in the RHS correspond to the first term in the first equation

OF1w-• dxdy = (wlFi) dxdy -
Ox 9x

Odwl
x F, dzdy

On the other hand, the volume integral in B.15 can be rewritten in terms of a surface

integral by the divergence theorem,

/ (w1lF1) dxdy = wiFnx ds (B.17)

hence,

SaF dxdy = wl F 1n ds - wl dxdy (B.18)
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The terms in square brackets in B. 14, corresponding to the boundary integrals, consti-

tute the second variables, while the weight functions wl and w2 are the first variations

of u and v respectively. Substituting the natural boundary conditions A.18 in B.14,

the final weak form is given by:

dw_ u _ v a wl u av~1
0 = (c au + 22 C3 ( dxdy- , ltx ds (B.19)

e 8 8ax ay ay ay ax
o Cl- + C3-- dxd- 2 tyds9e y ax ay 8X 09y ax r

B.3 Finite Element Model

The functions u and v in B.19 can be approximated over the domain of the element

SQ by the Lagrange family of interpolation fuctions, in particular for linear triangular

elements (Reddy, 1993):

3
u ZuOj (x,y) (B.20)

j=1

3

j=1

where j = 1, 2, 3 represents the node of the element. Any other element could have

been chosen here (n > 3), but these are the simplest ones. In this case, the problem

has two degrees of freedom per node (ue, vje) and a total of six nodal displacements

per element (fig. B-1).

Next, we substitute approximations B.20 in the weak form B.19. The weight

functions are chosen as 4. The resulting algebraic relations can be written in matrix

form as:

[11] [K12] e e [U [Fl]e (B.21)
[K12]T [K22 [V]e [F2]e

where

ij (c O + c3 ay ) dxdy (B.22)
ax 2x 2 y 68
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K12 = K 2 3 ) dxdy (B.23)
SOx y dy Ox

K 22 a· i aj a·i a'Oj ( O + cl ) dxdy (B.24)K Jkc30 x x y dy

and

Fi = f it. ds (B.25)

F2 = fity ds (B.26)

where tX and ty are the natural boundary conditions as for example in A. 18. Equations

B.21 are obtained for each element. Of has the form

1
• = 2A(a, + P( f + +/y) (B.27)

where Ae is the area of the triangular element.

In practice, a matrix of correspondence between the global and the local (each

element) nodes is built. This matrix determines the assembly of the final stiffness

matrix K and F. For instance, if the first global node corresponds to the first node

of element 1 and also the first node of element 2 (fig. B-2), K 11 = K1, + K121 where

the superscripts refer to the element number.

After assembly all the elements, the finite element model is complete:

[K ]= [ F] (B.28)

where [K] has size nxn with n the number of global nodes and [F] and [i] are vectors

of length 2n.

The solution of equations B.28 can be computed inverting the matrix [K] as long as

it is positive definite. Usually, the stiffness matrix does not have an inverse, however,

after imposing the essential conditions on u and v, some rows and columns of [K] can
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be "pinned" and the system is reduced to one with solution,

·] [ ·K* ] [F*] (B.29)

where the vector [u-*] contains the approximate solution of u and v at each global

node except those already specified from the essential boundary conditions. It has

then 2n - b unknowns with b the specified degrees of freedom.
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Figure B-I: The figure shows the notation used in system B.21 for one particular
triangular element. Modified from Reddy (1993)

glob
node

Figure B-2: Two elements of the discretization of Q whose first node coincide with
the global node 1, hence, both contribute to the assembled equation for this node
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Appendix C

Practical Aspects of the Fracture

Scattering Processing

In this appendix particular challenges of the Lynx field and practical aspects of the

F-K and SI methods are discussed. The methods need to be adjusted when applied

to field data because they are fundamentally different from the modeled data based

on which the methods were derived. Similarly, data manipulation is often required

to make them fit to be input in the fracture processing. Although most of the issues

concern typical seismic datasets acquired and processed with today standard tech-

nology, some of the limitations of the methods are specifically related to the Lynx

field.

C.1 Over and Under Printing

In the synthetic data of chapter 3 the choice of a time window was of little relevance

because fractures were modeled only in the "reservoir" layer. The definition of a

time window to perform the F-K analysis becomes more critical in field cases. If the

reservoir is not properly isolated, fracture-related signal may be contaminated with

the effects of near surface scatterers or overlying fractured layers of no interest (over

printing). Being a differential technique, the SI method is insensitive to fractures in

the overburden or in formations below the fractured reservoir.
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To test over printing effects in the F-K method we built and analyzed models

of two consecutive fractured layers with different fracture spacing. Orientations of

fractures in both layers were the same in one model and orthogonal in another model.

The results (not shown) suggest that the bias in the determination of fracture ori-

entation in the deeper layer depends on whether the fractures above are similarly

oriented or not. If fracture orientations across depth are different, some destructive

interference may occur; thus, normal and parallel orientations may become indis-

tinguishable. However, when fractures are oriented similarly in depth, the fracture

scattering changes as a function of time, in amplitude and moveout. These differences

appear to be sufficient to resolve the fracture orientation (and spacing) as long as the

analysis windows are selected close to each reservoir. If the analysis is localized in this

way, fracture scattering coming from each reservoir is dominant in the corresponding

window.

Fractures below the target reservoir (under printing) are less harmful to the F-

K method because their signals will be delayed with respect to the ones from the

reservoir.

C.2 Coherent and Random Noise

Ideally, coherent noise including ground roll, air phase, and side or backscattering due

to the presence of irregularities near the surface or other topographic features, are

removed previous to the fracture analysis. Residuals can be dangerous because linear

noise can map in the negative wavenumber space together with the backscattered

energy off the fractures. On the other hand, if noise removal filters are too strong,

fracture scattering signal may be damaged.

The first step in the F-K method consists on the definition of the time and offset

window in which the analysis will be carried out. Converted waves, mute artifacts,

and residuals of direct arrivals, control the far offset limit of the input data. In field

data, and especially in land data where ground roll is present, offsets have to be

limited also at the near field. This is the reason why f-k transforms of Lynx data are
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computed in the offset interval 480 m to 3000 m.

Figure C-1 shows an example of how the F-K method can be corrupted by the

ground roll. The analysis is performed in two offset windows: a long window including

the near offsets (cyan window and top f-k spectrum), and a shorter window exclud-

ing the near offsets (red window - bottom spectrum). High wavenumber components

of the ground roll are aliased in the first case mapping into the negative wavenum-

ber space along with other backscattered events. The wrapping adds energy to the

negative wavenumber quadrant, biasing the distribution of energy with azimuth ac-

cording not only to the presence of aligned fractures but to variations of ground roll

components with azimuth. At a particular azimuth, like the one in the figure, the

algorithm fails to detect the energy peak related to the backscattered waves from frac-

tures. Instead, maximum energy appears at a lower frequency and a small negative

wavenumber which corresponds to the ground roll backscattered component. Lim-

iting the offset window leaves out the ground roll and therefore only backscattered

signal from fractures dominates the negative wavenumber spectrum (bottom).

Random noise in the SHOT gathers could affect significantly the F-K analysis if

the noise has similar frequencies to the backscattered signal. For the SI method, non-

stationary noise can be harmful because it would not be deconvolved effectively thus

mixing with signal related to the presence of fractures. In general, the SI method is

expected to be more sensitive to noise than the F-K method because of resolution

differences between these two techniques. The averaging effect of analyzing fracture

properties in such an extensive area as the one covered by supershots, simultaneously

acts on the noise.

C.3 Wavenumber Resolution

The survey's receiver distance is the most critical parameter to decide whether the F-K

method is applicable or not to a particular dataset. In the best case scenario of regular

offset distribution in each azimuthal gather, receiver distance or offset sampling rate

determines the Nyquist wavenumber and therefore the minimum fracture spacing to
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be resolved without aliasing. If the fracture spacing is much less than the receiver

distance, the F-K method will not be able to detect it.

In Lynx, receivers were spaced 60 m. Such distance is characteristic in nowadays

surveys. The seismic frequency bandwidth at the reservoir level ranges between 20 and

50 Hz. This implies that dominant wavelengths are expected to be greater than 90 m,

hence recoverable fracture spacings will be tuned to such a value. Fracture corridors

with spacing less than 60 m are hard to recover since their signal will be aliased. If

fractures are separated slightly less than 60 m, the corresponding wavenumber will

be wrapped into the positive k-axis and therefore could become indistinguishable

from forward scattered events. If the fracture spacing is much less than 60 m the

corresponding wavenumber may fall again into the negative wavenumber space but

at an erroneous wavenumber-frequency component. In this case, the F-K method

will provide an inaccurate estimation of fracture spacing.

The resolution of large fracture spacing (in comparison to dominant wavelengths)

is also limited. As the wavenumber approaches zero (fracture spacing increases),

the bias of the F-K method increases (Dainty and Toks6z, 1990; Dainty and Harris,

1989). This happens because of the constant sampling in wavenumber and frequency

intrinsic to the Fourier transform. The 100 m fracture spacing model case in section

3.5 illustrates this problem.

C.4 NMO

Normal moveout has been applied to Lynx's data. NMO is necessary to stack the

CMP azimuthal gathers input to the SI method. NMO however, can introduce a

small bias to the F-K results.

Figure C-2 shows the effects of NMO on the F-K analysis. Synthetic data in this

figure correspond to the fracture model described in section 3.2.4. After NMO (top

right), backscattered waves appear with faster apparent velocities. In the Fourier

domain, this translates into a slight shift of the f-k peak energy of the backscattered

waves towards lower frequency-wavenumber. This causes a small over estimation of
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fracture spacing. NMO velocities are usually selected to correct primary events, but

if velocities are too large and forward scattering waves are over corrected, energy in

the negative wavenumber domain could be disrupted.

C.5 High-Angle Structures and Migration

The individual and collective effects on the scattering signal of certain filters and

processes need to be studied further. Since scattering energy is generally treated as

noise, applying certain processes can potentially attenuate it. However, not applying

such processes could also compromise the quality of the fracture analysis. For in-

stance, input data for our analysis were non-migrated thinking that migration could

potentially smear out the scattering energy.

In practice, however, we found that unmigrated diffractions introduce ambiguity

and make the F-K method unstable. As an example, figure C-3 shows the analysis

of SHOT 40122 to determine fracture orientation. The backscattered energy and

maximum amplitude functions peak at three azimuths: 1400, 2200, and 3200. Because

the 2200 response is the largest, the automatic F-K method picks this azimuth as

the direction normal to fractures. However, closer inspection of the time-offset data

(figure C-4) reveals that the negative wavenumber energy at this azimuthal gather is

not associated to fracture scattering but to unmigrated diffractions. The orientation

of fractures is repicked at this SHOT location to be orthogonal to the 1400 (or 3200)

azimuth.

Usually, and is the case of Lynx, seismic interpretation of main reflectors is carried

out on migrated sections, therefore some discrepancies exist between the migrated

picks and the time location of horizons, specially at places with prominent structural

features. At these areas, the unmigrated seismic section contains dipping reflectors

and diffractions.

For the SI method in particular, we wanted to understand the sensitivity of the re-

sults to uncertainties in the time position of the horizon analyzed. Besides migration,

uncertainties could be introduced by automatic picking programs. For this purpose,
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the horizon Falher was repicked on the stacked data (top figure C-5). In general, both

interpretations agree for most of the survey and, when different, the misfits are less

than 100 ms or 50 samples (lower figure C-5). The SI intensity map corresponding to

Falher when the analysis is done centered at the horizon picked on the stack is shown

in figure C-6. Comparing this result with that shown in figure 5-37, the scattering

distribution does not change significantly except maybe at the western and central

areas of the survey where the scattering signal is strong. These areas look better

defined when using the migrated horizon. This means that the method is robust to

horizon small shifts and increases our confidence about applying the method guided

by the migrated horizons even though the data are not.

In short, errors in the size and correct location of fractured areas identified with

the SI method are expected to occur if unmigrated data are the input for the analysis.

However, the comparison we made for Falher indicates that these errors are relatively

small if dips are moderate, as in Lynx. Fracture analysis with either the F-K or SI

method on unmigrated data provides a map that not necessarily reflex the correct

subsurface location of the fracture network. Re-mapping the results to the true

positions is not a trivial task.

C.6 Reservoir Thickness

One of the challenges that the Lynx field data imposes on the performance of the

fracture processing techniques is the thickness of the Cadotte reservoir. As explained

in section 4.3, Cadotte thickness varies between 10 and 35 m, thus below seismic

resolution for most of the survey area.

The question about how detectable fractures are in a thin bed was partly answered

through the models shown in section 3.5. In the same section, SI analyses are shown

to agree with the conclusion drawn from the spectral study, that is, the scattering

signal is somewhat reduced when imparted by fractures in a thin bed, but not enough

to not disrupt signals from later events and therefore be measurable. In the modeling

experiments, scattering index in the direction parallel to fractures decreases in about
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50% when the thickness is reduced by a factor of 20. In spite of this amplitude

attenuation, scattering energy is still significant when compared to the energy of

primaries and, more importantly, azimuthal differences in character are preserved.

Variations of Cadotte's thickness across the survey may have a stronger impact

on the fracture processing techniques than the issue of it being a thin bed. This is

especially the case for the SI method in which analysis windows are shorter. The

SI method is a deconvolution process in which the character of the transfer function

depends on the amount of scattering in an output window with respect to an input

window. Therefore, variations in the reverberating character of the transfer function

from one location to the next might be attributed to variations of thickness thus

becoming indistinguishable from changes in character due to variations in the intensity

of fracturing.

Considering Cadotte's thickness, the resolution power of the SI method to sepa-

rate the responses of Cadotte and Falher is questionable. Separation of long and short

resistivity curves, fracture observations in image logs, and velocity anisotropy logs,

suggest that Falher has a greater fracture density than Cadotte (personal commu-

nication with Tad Smith- VeritasDGC). Cadotte and Falher SI windows of analysis

overlap in about 120 out of 200 ms and indeed, fracture distribution obtained from

the post-stack SI at these two levels are similar, although scattering indices are in

general much lower for the Falher horizon. The pre-stack results for Cadotte and

Falher suggest that the SI method is resolving some differences in fracture proper-

ties between these two formations despite their proximity. Figure 5-43 indicates that

Falher's fracture orientations are often rotated with respect to the orientations found

above at the Cadotte level. Whether the scattering signal observed corresponds ex-

clusively to Cadotte or to a combination of fracture effects from Cadotte and Falher

is not certain at this point.

Another consequence of Cadotte's thickness concerns the imprecision in the inter-

pretation of the associated reflector. The results from both methods will not change

drastically if the analysis window is slightly shifted (less than the window length).
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Figure C-1: Ground roll backscattered component can affect the performance of the
F-K method by introducing undesired energy in the negative wavenumber interval.
On the left, a supershot gather shows strong ground roll at near offsets. If these
offsets are included in the transformation to the f-k domain, the F-K method will
fail to detect the fractures' backscattered waves (white plus sign- top right). Limiting
near offsets attenuates this noise spectral amplitude (bottom right).
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Figure C-2: Modeled shot record normal to fractures without (top left) and with NMO

(top right). On the bottom, corresponding f-k spectra. Peak wavenumber-frequency

in the negative wave number axis for each case is indicated, as well as the estimation

of fracture spacing. Data come from the 5-layer model with fractures every 35 m in

the 3rd. layer.
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Figure C-3: Supershot 40122 backscattered energy (top) and maximum amplitude
functions (middle plot Anorm2 and lower plot Anorml). Function values in short
wave number range are displayed in blue, and in red for the long wave number range.
Both functions peak at 140, 220 and 3200 azimuth.
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Figure C-4: 140 and 220' azimuthal gathers of supershot 40122. Although negative
wavenumber energy maximizes at 2200, this is not the direction normal to fractures
because energy is related to the presence of unmigrated diffractions in these data.
Instead, 140' is the direction normal to fractures and therefore 40 or 2200 is inferred
as the fracture orientation at this location. Peak amplitude picked by the F-K method
as the backscattered component off fractures is indicated with a magenta (+) sign for
the short wave number range and a black (+) sign for the long wave number interval.
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Figure C-6: SI post-stack map of fracture distribution and intensity at Falher fol-
lowing horizon picked on the stacked data. In the inset, histogram of normalized
scattering indices. Red lines indicate thresholds used to distinguish levels of SI in-
tensity in the map. The level at lowest SI determines the transition between white
and gray areas and the level at largest SI marks the transition between gray and
black areas.
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