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Abstract

A new approach is presented for analyzing compressor tip clearance flow. The basic
idea is that the clearance velocity field can be (approximately) decomposed into indepen-
dent through-flow and cross-flow, since chordwise pressure gradients are much smaller
than normal pressure gradients in the clearance region. As in the slender body approx-
imation in external aerodynamics, this description implies that the three-dimensional,
steady, clearance flow can be view as a two-dimensional, unsteady flow. Using this
approach, a similarity scaling for the cross-flow in the clearance region is developed and
a generalized description of the clearance vortex is derived. Calculations based on the
similarity scaling agree well with a wide range of experimental data in regard to flow
features such as cross-flow velocity field, static pressure field, and tip clearance vortex
trajectory. The scaling rules also provide a useful way of exploring the parametric de-
pendence of the vortex trajectory and strength for a given blade row. The emphasis
of the approach is on the vortical structures associated with the tip clearance because
this appears to be a dominant feature of the endwall flow; it is also shown that this
emphasis gives considerable physical insight into overall features seen in the data.

Based on the flow model, analytical expressions are derived for the decrease in overall
performance (efficiency, pressure rise, and torque) of a compressor due to clearance.
Similar expressions are also derived for a turbine. Calculations carried out agree well
with compressor and turbine data covering a broad range of flow coefficients, stage
loadings, and clearances.
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Nomenclature

a = speed of sound

b = span

beff = effective span, see Eq. (5.19)

bun = b - beff

c = chord

C, = specific heat or pressure coefficient

C; = pressure coefficient across blade row, see Eq. (G.9)

C, = axial velocity

erf = error function

E = kinetic energy of clearance flow per blade

F = complex velocity potential

Fb = force on a blade (per unit chord)

g = pitch

G = blade loading parameter; unity for linear loading distribution, see Chapter 5

h = blade thickness

ht = total enthalpy

H = passage height, b+ r

J = parameter defined in Eq. (4.14)

k = blade unloading parameter; see Eq. (5.23)

K = function defined in Eq. (4.13)

L = shaft power

rh- = leakage flow rate per blade



ri = through flow

k, = total leakage flow rate

M, = inlet relative Mach number

Mc = cross flow Mach number

NB = number of blades

p = static pressure

pt = total pressure

Q = complex velocity

r = radius

Tr = casing radius

rh = hub radius

rm = mean radius

rt = tip radius

R = radius of blade curvature

Re = Reynolds number

s = distance along camber line or streamwise distance

t = time

t* = similarity parameter; see Eq. (2.7)

Ttl = inlet total temperature

_ = average streamwise velocity

u' = streamwise velocity perturbation; see Eq. (2.1)

U0  = upstream velocity in a cross-flow plane

Ut = tip wheel speed

Um = mid-span wheel speed

v, w = cross-plane velocities in y, z directions

vc = average tangential velocity of clearance flow

1v = tangential velocity due to the relative endwall motion

V = velocity of " observer frame"



V, = inlet relative velocity

W = turbine work coefficient

X = axial coordinate

Y = tangential or cross-flow coordinates

yC, zC = coordinates of tip vortex core

y*, z* = non-dimensional coordinates of tip vortex core, yc/r, zc/7

y,, z, = coordinates of vorticity centroid

y;, z* = non-dimensional coordinates vorticity centroid, y,/r, z,/7

Y = abscissa on transformed plane, see Eq. (2.22)

z = spanwise coordinate

zb = coordinate of centroid of bound vorticity

Z, = H - z,

Z = ordinate on transformed plane

al = absolute inlet flow angle

0 = parameter defined in Eq. (2.17)

01 = relative inlet flow angle

/2 = relative exit flow angle

,M = vector mean flow angle

7 = stagger angle, or specific heat ratio, or vortex sheet strength

r = circulation

P* = non-dimensional circulation, see Eq. (2.10)

Fb = circulation of bound vortex sheet (blade)

r, = circulation of shed vortex sheet (tip clearance vortex)

6 = boundary layer thickness

6* = displacement thickness of a boundary layer

ACp = pressure coefficient ; AC, = Ap/(pV1
2/2)

ACp = average pressure coefficient ; ACp = Ap/(pV1
2 /2)

AE = change in kinetic energy of clearance flow



Ap = pressure difference across blade

Ap = average pressure difference across blade

Apt = total pressure rise of a rotor

E = coordinate along vortex sheet

e = thickness of shed vortex sheet

77c = compressor efficiency

r7t = turbine efficiency

0 = camber angle

A = shaft power coefficient , L/[ir(r2 - r2)pUt3]

A, = efficiency slope parameter, see Eq. (5.45)

AV, = loading slope parameter, see Eq. (5.46)

v = viscosity

= contraction factor, = ir/(7r + 2)

= transformed plane

?rt = turbine exit total to inlet total pressure ratio

7r, = compressor stage total pressure ratio

p = density

a = 2/•1

7 = clearance

= flow coefficient, C./Ut

01  = inlet flow coefficient

02 = exit flow coefficient

kcr = critical flow coefficient

= physical plane

S = velocity potential

= compressor loading coeff. , Apt/(pUt2)

= stream function

W = vorticity



Q = angular velocity

Subscripts

mean = value at mean radius

p = blade pressure surface

s = blade suction surface

Superscripts

* = non-dimensional characteristic parameter

0 = tip value



Chapter 1

Introduction

1.1 Introduction

There is little need to give a detailed background on the motivation for studying

flow in turbomachinery endwall regions. It is well known that: 1) knowledge of the

fluid mechanics of the endwall region is critical in developing accurate performance

prediction methods (see Koch and Smith, 1976, [27]; Ludwing, 1978, [36]; Wisler, 1985,

[60]; Senoo and Ishida, 1986, [48]; Cumpsty, 1989, [10] 1 ), and 2) in spite of over forty

years of research on the topic, the flow in this region is not very well understood. An

additional point is that, in much of the work that has been done, the problem has been

cast into one or another simplified models in which essential physical features were

suppressed, an example being the attacks on the problem from the standpoint of pitch

averaged boundary layer type equation (e.g., Balsa and Mellor, 1975, [3], De Ruyck and

Hirsch, 1980, [12]). Approaches of this sort avoided dealing with the complex endwall

flow structure by averaging, and thus aiming for a more global description, but there

has been little success in developing general predictive procedures along such lines. The

approach taken here is inherently different in that three-dimensionality, and the role of

the vortical structure associated with the tip clearance flow, are emphasized from the

outset.

1This reference also gives discussion of previous work on the topic.



There have been many studies of compressor tip clearance flows, but the analysis

carried out appear to fall into three main categories. The first is what might be termed

leakage models. In these, the clearance flow is regarded as a jet driven by the pressure

difference across a blade tip, with the kinetic energy of the jet subsequently lost through

mixing (Rains, 1954, [43]; Moore and Tilton, 1988, [39]). Description on this level can

give a useful measure of efficiency decrease due to tip clearance flow, but it provides no

information on the structure of the passage flow field.

A second main approach makes use of lifting line analysis (Lakshminarayana and

Horlock, 1965, [30]; Lakshminarayana, 1970, [29]) to compute the secondary velocity

flow field as well as a loss in efficiency stemming from the induced drag of the trailing

vortex system. A major drawback, however, is that empirical relations are needed (tip

vortex circulation and core size) to close the problem, and these are not universal.

The third category, which has appeared relatively recently, is numerical computation

of three-dimensional flow in a blade passage using the Reynolds-averaged Navier-Stokes

equations (Pouagare and Delaney, 1986, [42]; Hah, 1986, [19]; Dawes, 1987, [11]; Adam-

czyk et al, 1989, [2]; Crook, 1989, [9]; Adamczyk et al., 1990, [1]; Storer and Cumpsty,

1990, [53]). The present approach is different from all of the above, but it can be

regarded as a strongly complementary adjunct to the computational procedures. In

particular, a primary goal is to provide physical insights into the general parameters

of interest. In developing the approach, we have focussed on the structure of the vor-

ticity field in the blade passage. Doing this enables one to obtain a useful "skeleton"

to aid in inferring the behavior of a complex three-dimensional flow field (Perry and

Tan, 1980 [41]). Although, as will be described, the focus on vorticity can lead to a

rapid and simple approximate computational procedure, we emphasize that it is the

above-mentioned point, the possibility for enhancing physical insight, that is the main

factor in our adoption of this approach.



1.2 Literature Review and Discussions on Clear-
ance Flow Models

1.2.1 Background

Tip clearance flows can have a adverse effect on turbomachine performance and

account for a large fraction of endwall loss. Stall margin, efficiency, and pressure rise

decrease with increasing clearance as illustrated in Figure 1.1 (Ludwing, 1978, [36];

Wisler, 1985, [60]). In general, for one percent increase in clearance-to-span ratio, there

is a one to two percent decrease in the efficiency, two to four percent decrease in the

pressure rise, and three to six percent decrease in the stall margin.

There have been many experimental studies on clearance flow. However, the focus

has often been on the loss associated with the clearance flow, with little detailed data

available about the flow itself, so that many fluid mechanic features of the clearance

flow are still not clear.

As stated, there has been an abundance of analytical work on turbomachinery tip

clearance flows, falling into three main categories, which will be discussed in the follow-

ing sections.

1.2.2 Leakage Flow Approach

Rains (1954, [43]) presented one of the earliest studies of clearance flow. In his

analysis, the clearance flow is decomposed into a through flow and a two dimensional

jet in a direction normal to the through flow as shown in Figure 1.2. This decomposition

is justified by the fact that pressure gradients across the blade are much larger than

those along the blade. As a result, when the leakage flow is transported through the

clearance, the velocity along the blade is not appreciably altered compared to the change

of velocity normal to the blades.

To estimate the loss in efficiency due to the clearance flow, Rains (1954, [43]) as-



sumed that the flux of kinetic energy associated with the flow normal to the blade was

dissipated without recovery, and this assumption has since been used by many other

investigators. A simple model was also developed by Rains to account for losses as-

sociated with scraping vortices, which stem from the relative motion between endwall

boundary layer and blades. Clearance losses were found to vary almost linearly with

clearance.

Vavra (1960, [57]) proposed a modified leakage flow model. In this, a linear chordwise

blade loading is assumed instead of a uniform one as used by Rains and empirical

coefficients are included to correct leakage flow rate as well as viscous effects. However,

this does not change the basic parametric form presented by Rains.

A more recent leakage flow model was proposed by Senoo and Ishida (1986, [48]) for

predicting the efficiency drop due to clearance flow for axial and centrifugal compressors.

The problem is attacked in a different manner than in the previous two references. The

drag due to the leakage flow is first shown to be rih(V,- V,), where 7ih is the leakage flow

rate, and V, and V, are, respectively, the fluid velocity near suction side and pressure

side of the blade. The change in efficiency is then calculated from the drag forces. It

can be shown (see Senoo and Ishida, 1990, [47]) , however, that the loss in power due

to the drag forces is identical to the loss of kinetic energy associated with the clearance

flow as assumed by Rains (1954, [43]) and Vavra (1960, [57]), which will be discussed

in Chapter 5.

The approaches discussed so far are directed at compressors. There have also been

studies of the clearance loss for a turbine (see for example: Booth, 1985, [6], Farokhi,

1987, [16]), and Martinez-Sanchez and Gauthier, 1990, [37]). These studies are also

based on the leakage flow approach and hence will not be discussed in detail here.

However, it should be pointed out that these studies indicate the decrease in efficiency

varies more or less linearly with tip clearance as with compressor.

The leakage flow approaches give reasonable estimates of the efficiency reduction

due to clearance. However, no information on the vortical structure of clearance flow



field is available from this approach and, to examine the fluid mechanic features, one

has to resort to other approaches.

1.2.3 Lifting Line Approach

Unlike the leakage flow approach, methods using lifting line theory are able to give

the clearance loss and a description of the clearance flow field (Betz, 1926; Yokoyama,

1961, [61]; Lakshminarayana and Horlock, 1965, [30]; Lakshminarayana, 1970, [29]).

Two simple lifting line models are illustrated in Figure 1.3, and 1.4. In these,

the circulation is assumed constant along the blade span. Due to viscous forces in

the clearance region, only part of the circulation, which is obtained from an empirical

correlation, is shed off at the blade tip. The locations of the trailing tip vortices are

prescribed also. Induced drag due to the trailing vortices are then calculated and related

to total pressure losses and hence the efficiency reduction.

One deficiency with the lifting line models is that the locations of shed vortices have

to be prescribed in advance. In addition, the use of straight lines for the trailing tip

vortices is not really adequate because, as will be seen later, there is generally a change

in the slope of the vortex core trajectory near the trailing edge.

The empirical constants, which can vary considerably from geometry to geometry,

introduce uncertainties in the predictions as observed by Booth (1985, [6]) , Inoue,

Kuroumaru, and Fukuhara (1986, [24]), and Schmidt, Agnew, and Elder (1989, [45]).

For example, Schmidt, Agnew, and Elder (1989, [45]) report the empirical constant

".70" used in the loss prediction is not adequate and, based on their experimental

results, a constant of ".35" is recommended, which reduces the predicted loss by fifty

percent.

A more realistic lifting line model is shown in Figure 1.5 (Lakshminarayana, 1970,

[29]), in which the tip clearance vortex is modelled as a Rankine vortex with a finite

core rather than a line vortex as in the previous two cases. The core size and circulation

of the vortex, however, are again given by empirical correlations and the generality of



these is not clear. For example, the experiments of Sjolander and Amrud (1986, [49])

show that the vortex core size is only half of what predicted by the correlation used in

the analysis.

In summary, although the lifting line approach does provide an insight into the

passage flow field as well as an estimate of the loss in efficiency due to the clearance, it

needs knowledge about the clearance vortex as an input and thus has drawbacks as a

predictive tool.

1.2.4 Numerical Computation Approach

A recent approach for studying the clearance flow is the use of numerical computa-

tion (Pouagare and Delaney, 1986, [42]; Hah, 1986, [19]; Dawes, 1987, [11]; Adamczyk

et al, 1989, [2]; Crook, 1989, [9]; Adamczyk et al., 1990, [1]; Storer and Cumpsty, 1990,

[53]). This approach has been shown to be very useful in bringing out important fea-

tures of the clearance flow and in giving a better understanding of the complex endwall

flow. For example, it has been shown that: 1) the clearance flow is mainly inviscid, 2)

the relative motion between the endwall and the blade has little effect on compressor

clearance flow and 3) the clearance vortex may be the source of a large increase in

blockage associated with endwall stall (see Crook, 1989, [9]). These numerical compu-

tations are clearly extremely useful but it is time-consuming to study the parametric

dependence of the clearance flow field and the clearance loss, i.e. to develop guidelines

for a broad range of devices.

1.3 Research Questions

As a summary of the present state of knowledge, therefore, one can say, although

methods are now being developed to the clearance flow problems, there are still essential

fluid mechanic questions to be answered. From the above discussions, it is clear that,

although the clearance flow has been better understood over the past few years, the

picture is far from clear and there are still essential fluid mechanic questions remained
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to be answered. For example:

1. What parameters characterize the clearance flow?

2. What is the fluid mechanic behavior of the clearance vortex ?

3. How does clearance flow affect overall turbomachine performance (efficiency, pres-

sure rise, and shaft power)?

1.4 Present Approach and Contributions

The goal of this thesis is to develop a clearance flow model which contains the

essential features of the phenomenon, to guide interpretation of the experiments and

data, to understand parametric trends, and to attack the above research questions.

Our model, which is based on slender body type of thinking, is different from the

above-discussed approaches in that: 1) the three-dimensionality and the vortical struc-

ture of the clearance flow is emphasized from the outset, and 2) no empirical correlation

is needed to close the problem. The basic idea is that the clearance velocity field can

be (approximately) decomposed into independent through-flow and cross-flow, since

chordwise pressure gradients are much smaller than normal pressure gradients in the

clearance region as mentioned earlier. As in the slender body approximation in external

aerodynamics, this description implies that three-dimensional , steady, clearance flow

can be view as a two-dimensional, unsteady flow.

Using this approach, a similarity scaling for the clearance flow is developed and a

generalized description of the tip vortex trajectory is derived. The scaling rule also

provides a useful means to explore the parametric dependence of vortex trajectory and

strength for a given blade row. Calculations based on the similarity scaling agree well

with a wide range of experimental data in regard to flow features such as cross-flow

velocity field, static pressure field, and tip clearance vortex trajectory.

In addition, expressions are derived for the decrease in efficiency, loading, and shaft

power of a compressor due to clearance. This gives a new means of predicting the drop
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in pressure rise and power of a compressor due to the clearance, with no empiricism

involved in the description of the clearance flow. Calculations carried out agree well

with experimental results. Expressions are also derived for the decrease in efficiency

and work for a turbine; these calculations also compare well with several turbine data.

Finally, to justify the assumptions made in the modelling, analyses have been carried

out to show: 1) the clearance flows in compressors and fans are mainly inviscid and can

often be analyzed on an incompressible flow basis, and 2) in what circumstances the

relative endwall motion can have significant effects on the clearance flow.

The major contributions of this thesis can be summarized as follows.

* A new approach for analyzing the clearance flow is presented.

* A similarity scaling for the clearance flow is identified.

* A generalized description of the tip vortex trajectory is proposed

* The parametric dependence of the clearance vortex core trajectory is identified.

* The essential fluid mechanic features of the clearance vortex are brought out.

* Analytical expressions for the loss in efficiency as well as pressure rise and shaft

power due to clearance are presented for the first time.

1.5 Organization of the Thesis

The thesis is organized as follows: Chapter 2 presents the clearance flow model

and the similarity analysis. Also included are justifications of the inviscid assumption,

description of the computational scheme, calculation results, and available experimental

data to assess the model adequacy. Chapter 3 shows the clearance flow field inside and

downstream of a blade row. Several interesting features of the clearance flow are brought

out and physical explanations are given for the behavior. The parametric dependence



of the clearance vortex trajectory are also examined. Justifications of the assumptions

made in the modelling are given in Chapter 4. A method for predicting clearance

losses and decrease in work as a result of clearance, for both compressors and turbines,

is described in Chapter 5, which also gives calculation results and comparison with

experimental data. Chapter 6 presents conclusions and suggestions for future research.
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Chapter 2

Fluid Dynamic Model and
Similarity

2.1 Fluid Dynamic Model

The problem examined is the formation of a (tip clearance) vortex due to the flow

through the clearance in turbomachinery. Such vortices are clearly seen in experiments

(Herzig, Hansen, and Costello, 1953, [20]; Rains, 1954, [43]; Sjolander and Amrud, 1986,

[49]; Inoue, Kuroumaru, and Fukuhara, 1986, [24]; Dishart and Moore, 1989, [14]), as

well as in recent three-dimensional computations (Pouagare and Delaney, 1986, [42];

Adamczyk et al, 1989, [2]; Crook, 1989, [9]; Adamczyk et al., 1990, [1]). A critical

feature in the development of such structures is the roll-up process, which is a nonlinear

effect; this must be included in any realistic description of the endwall flow.

The flow of interest is three-dimensional and steady. As for slender bodies in external

aerodynamics, however, one can model it from the point of view of a two-dimensional,

but unsteady, flow. The central idea is that translation along the streamwise direction is

analogous to moving in time, i.e. an observer moving with (some average) streamwise

velocity is embedded in an unsteady flow field. This implies that the generation of

the tip clearance flow, and the roll-up, can thus be treated as an unsteady process in

successive cross-flow planes (planes normal to the blade camber). 1

1One condition to do this therefore is the existence of an identifiable appropriate translational
velocity for the observer frame. This will be commented on below.



To illustrate the idea in more detail, consider cross-flow planes A, B, C, and D at

different chordwise locations a, b, c, and d, respectively, as shown in Figure 2.1.

Location a is at the leading edge and d is at the trailing edge. At station a, the

tip clearance flow is initiated so that the flow in cross-flow plane A might be as shown

in the lower part of the figure. At subsequent stations through the blade passage, the

vortex sheet shed into the clearance will roll up so that other downstream cross-sections

might be as illustrated in planes B, C, and D.

The analogy proposed is that the flow pattern in different cross-flow planes is similar

to that in a two-dimensional unsteady flow. More specifically, the velocity in the four

cross-flow planes of the top part of Figure 2.1 is represented by the unsteady flow at

the four different times shown in the lower part of the figure. If this analogy holds, it

implies that evolution of the cross-plane flow structure (including tip clearance vortex

strength and position) at different streamwise locations is similar to that at different

times, when viewed from a moving reference frame. The transformation between time,

t, and streamwise location, s, is t = s/V(s) where V(s) is the velocity of the moving

frame.

A key argument for adoption of this (slender body type) approach to tip clearance

flow is based on the relative length scales in the streamwise and transverse directions.

For an inviscid flow, the relevant length scale in the two cross-flow directions will be

set by (the size of) the tip clearance, whereas the streamwise length scale is the chord.

For high performance turbomachines, the former is much smaller than the latter (gen-

erally the former is less than five percent, and sometimes less than one percent of the

latter). Because the pressure difference across the blade and along the blade are of the

same order of magnitude, the pressure gradients, and acceleration components, in the

transverse directions are much larger than those in the streamwise direction.

In addition to the arguments concerning pressure gradients, in order to use a slender

body type of approximation we must also be able to identify some (relatively uniform)

mean streamwise reference velocity. If so, we can write the streamwise velocity compo-



nents, u, as a passage average value plus a deviation from the average, i.e.

u(s, , z) = t(s) + u'(s, y, z) (2.1)

where s is measured along the blade camber, y is normal to the camber, z is along

the span, and we take u'/: <« 1. This strong inequality cannot be strictly true for

highly loaded blades if applied everywhere across a blade passage. Its use, however, is

appropriate here since the primary interest is in the local regions of the flow domain

where vorticity is shed and where roll-up occurs. Over such regions, the normalized

variation in streamwise velocity, u'/U, can, in fact, be small. As an example, if we take

the mean blade pressure difference Ap equal to 0.5 - pV,2/2, and say that the region of

interest is twenty five percent pitch, the magnitude of u'/u over this region is less than

0.1. Arguments of this type imply, and the subsequent comparison with data will show,

that the approximation u'/ <« 1 is indeed adequate for the present treatment.

Under the above two conditions, as shown in Appendix A, the (inviscid) equations

describing flow in the transverse, or cross flow, plane are decoupled from the equations

that describe flow in the streamwise direction. Within this approximation, s can be

regarded as the streamwise distance and V(s), the velocity of the moving frame, can be

taken as :. The relation between time and streamwise distance is thus

dt = -_ (2.2)

The cross-flow plane equations take the form (see Appendix A)

Ov awS+  O 0 (2.3)
Ly &z

Ov Ov Ov 1 p+  + w - (2.4)

Ow 9w Ow 1 p+ v-h + w -- a (2.5)at Yy 8z p(.z
which are the equations describing an inviscid two-dimensional unsteady flow.
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In the preceding discussions, the flow has been taken as inviscid. This point has

been examined in some detail by other investigators (e.g. Rains, 1954, [43]; Moore and

Tilton, 1988, [39]; Storer and Cumpsty, 1990, [53]). These studies show that, while

viscous effects do play a role, the dominant features of the flow due to tip clearance

are inviscid, and a useful description can be developed on this basis. A more detailed

discussion is given in Appendix B.

Three other approximations are also implicit in the analysis. The first is that the

effect of adjacent blades on the tip clearance flow is primarily important in setting up

the overall pressure difference profile, which drives the flow through the tip clearance,

rather than in determining the detailed structure of the tip flow. This implies that

the latter can be analyzed as an unsteady flow through a single blade with clearance,

rather than through an array of blades, if one uses the appropriate pressure difference.

In addition, we represent the blade by its camber only, with thickness neglected. As

implied by Moore and Tilton (1988, [39]), the treatment is thus restricted to situations

with thin blades (i.e. compressors) where the shear layer (vortex sheet) shed from the

pressure surface does not reattach within the tip clearance. Finally, as mentioned in

Appendix A, the blade camber is assumed such that the radius of curvature of the tip

section camber line is much larger than the chord; this is generally a good approximation

for compressors.

2.2 Similarity Analysis

We have so far described the basic framework of the approach (an unsteady two-

dimensional analysis of the velocity field on cross-flow planes) and the assumptions. We

now examine the consequences of this model. In particular, we show that a similarity

solution exists and that this implies a generalized vortex trajectory which is independent

of tip clearance. The geometry and nomenclature to be used are given in Figure 2.2,

which shows the blade and flow domain at an arbitrary cross-section location, with a

schematic of the tip vortex sheet roll-up. The notations used for the vortex trajectory
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is indicated in Figure 2.3. Two quantities that will be used in what follows are the

centroid of the shed vorticity, denoted by (y,, z,) and the center of the tip vortez core,

denoted by (y,, zC). This latter is defined as the centroid of the rolled-up part of the

vortex sheet.

Referring to Figure 2.2, we note that, in almost all practical situations, the blade

height (or blade span), b, is much larger than the tip clearance, r, since r/b , O(10-2).

Because of this, the ratio of height/clearance would be expected to affect the local flow

over the tip only slightly. If the blade span is not a significant parameter for the local

details of the flow in the tip clearance region, however, the only relevant length is the tip

clearance. The physical variables that characterize the problem are this tip clearance,

r, pressure difference, Ap , density, p, and time, t. Considering a time increment, dt (as

expressed in Eq. (2.2)), dimensional analysis shows that the only dimensionless variable

that can be formed using the four quantities has the form

dt* = dt A1p (2.6)
TV p

Eq. (2.6) defines a non-dimensional time increment in terms of local values of pres-

sure difference, density, and tip clearance. In the most general situation, these will vary

along the chord, but as will be seen later the use of an average loading, denoted as

Ap, gives good prediction of the tip vortex core trajectory. If the density and clearance

are also taken as constant, Eq. (2.6) can be integrated to give an expression for the

non-dimensional time corresponding to a given streamwise location:

t* = (2.7)

Two tip clearance flow fields will be similar if they correspond to the same t*. The

following non-dimensional quantities will thus all be functions of t* only 2:

•* - y  c -z
y , z - (2.8)

2It can be shown that z* approaches a constant when t* - oo (see Appendix C).



y - , zv z (2.9)
T T

r* I (2.10)

v w
v* w*- (2.11)

The distances y* (or z*) are measured between the center of the tip vortex and the

camber (or casing), and y* (or z*) is the distance between the centroid of the shed

vorticity and the camber (or casing), measured from the mean camber line, in the

direction of the local normal, as illustrated in Figures 2.2 and 2.3.

The pressure difference across the blade varies along the span but evaluation of the

loading at the mean radius appears to be adequate for good prediction of the tip vortex

core trajectory. The non-dimensional time, t*, can thus be estimated as:

t* t ( >')mean (2.12)
T P

where
fo* ds azt (2.13)

The combined Eqs. (2.12) and (2.13) can be written in terms of flow angles at the mean

radius using the expression for ideal pressure rise given in many texts (e.g. Horlock,

1973, [22]):

- c g(tan2 1 - tan /2)tc (2.14)r c tan fm

In Eq. (2.14), g is the blade spacing, c is the chord, P1 and 32 are the inlet and outlet

flow angles (see Figure 2.3), and Om refers to the vector mean velocity direction.

2.3 Computational Procedure

2.3.1 Introduction

The functional dependence of Eqs. (2.8) to (2.11) with respect to t*, as well as any

other information needed about the velocity or vorticity fields of the two-dimensional,
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unsteady flow, can be computed in a number of ways. That used here is a vortex

method. When applicable, these methods have the advantage that, if the location of

the vortex sheets are known, the velocities need to be calculated only on the sheets

at each time step, rather than in the entire flow. Many such methods are available; a

recent review of these is given by Sarpkaya (1989, [44]).

In essence, what is done is to track the vorticity shed (as a vortex sheet) from the tip

of the blade. The evolution (in particular the roll-up) of this vortex sheet in time pro-

vides, using the relation that has been developed between time and streamwise spatial

variable, the three-dimensional structure of the tip leakage vortex. In-depth discussions

of vortex methods are given, for example, in the papers by Leonard (1980, [35]) and

Sarpkaya (1989, [44]) but several points should be commented on. First, as noted by

Sarpkaya (1989, [44]), the fine structure of the computation depends critically on the

number of vortices used, the time stepping procedure, and the smoothing techniques

applied. More specially, although quantities such as the circulation and the position of

the centroid of vorticity (the sum and first moment of the shed vorticity) are essentially

invariant to the type of scheme used, the details of the shape of the rolled up vortex

sheet are sensitive to the above factors.

To assess the degree to which the results depend on the computational parameters,

we have carried out calculations using two different approaches, one involving a confor-

mal transformation of the flow domain (Evans and Bloor, 1977, [15]) and the other an

unsteady panel method. In the computations, several different time-stepping schemes,

as well as sub-stepping procedure, were examined with time steps (number of vortices)

and number of sub-steps varied by factors of ten. The results show that the circulation

and vorticity centroid are, as described by the above-mentioned review articles, not

sensitive to these variations. For example, there is less than a two percent difference in

the computed tip vortex position (yc) for a factor of ten in time step. In summary, the

central point is that the overall features of the vortical flow are of most interest here,

and these are not dependent on the details of the computational method.



2.3.2 Conformal Transformation Approach

We now discuss the conformal transformation approach. Point vortices are used to

simulate the shed vortex sheet. The flow domain in the physical plane (k plane), is

mapped into the upper half of the transformed plane (E plane) by a conformal transfor-

mation (Evans and Bloor, 1977, [15]) as illustrated in Figures 2.4 and 2.5. The mapping

is given by
H 2 :__

4= tanh_ 1  2 (2.15)

or

-=[1 + (12 - 1)tanh2 1/2 (2.16)

In this transformation
rb

3= csc - (2.17)
2H

correspond to the transformed points at infinity in the physical plane and are thus the

locations of a source and sink, respectively, in the transformed plane.

In Fig. 2.4, several locations of interest are indicated, i.e. al to a6 , as well as

their coordinates. The corresponding locations in the transformed plane, denoted by

uppercase, i.e. A1 to A6 , are given in Fig. 2.5. In particular, the blade tip, i = ib, is

mapped to E = 0, i.e. the origin of the transformed plane, and either side of the hub

of the blade, 4 = 0, is mapped to E = ±1.

The complex potential for the source and sink combination is

HUo  + )3F(E) = In (2.18)

where Uo0 is the uniform flow velocity in the cross flow plane as shown in Fig. 2.4.

Point vortices are introduced into the flow at each time step to simulate the vortex

shedding procedure. At a given time, tN, there are N vortices plus their images in the

flow and the complex potential takes the following form:

HUo +I i- N
F()= In I In. (2.19)

?r -p 27F j=1 j



where Ej and rj are, respectively, the location and circulation of the jth vortex and 'Sj

is the complex conjugate of 3E.

A vortex is shed at each time step to satisfy the Kutta condition at the blade tip.

The location and strength of the shed vortex are determined by the Kutta condition

and vorticity flux condition, as discussed below. The vortex is taken to be shed slightly

above the tip, at

tN+1 = i(b + ) (2.20)

with strength PN+1. The Kutta condition requires that the origin (E = 0) of the

transformed plane be a stagnation point. This gives

Y+1 + Z2+ 2UoH N jZjS= ++ -(U+1 + •) (2.21)
ZN+1 E WY± + Z?

where Yj, Zj are coordinates of the shed vortices, i.e.

6. = Yj + i Zj (2.22)

The rate at which vorticity is shed into the wake from the tip is given by

N+ = 1 Q(0)I2 (2.23)
At 2

evaluated at 4t = i(b+ e), where Q is complex velocity. This equation, together with Eq.

(2.21), determines the value of FN+i and the variable e at each time step. That is, the

Kutta condition and the rate of shedding are satisfied simultaneously at each calculation

step. The N + 1 vortices are then convected and, at (N + 2) At, a new vortex is again

introduced into the flow, with its location and strength determined by Eqs. (2.21) and

(2.23). The solution is advanced in time following the same procedure so the clearance

vortex and its flow field are known at every time step. Once the cross flow is known at

some general time t , the three-dimensional, steady, flow is then determined from the

correspondence between time t and axial location given by Eq. (2.13).

One point should be commented on regarding the convection velocity of the shed

vortices. The complex velocities in the physical and transformed plane are related by

dE
Q() = Q(E) - (2.24)
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where Q is the complex velocity. However, this is only true in the flow domain excluding

the shed vortices. To determine the convection velocities of the point vortices in the

physical plane, Routh's correction must be used (see Appendix D).

2.3.3 Panel Method

Calculations have also been carried out using a panel method approach. As illus-

trated in Fig. 2.6, the blade is replaced by a series of N (bound) discrete vortices with

strength 1i, i = 1, N, located at al,..., aN. The circles, denoted by bl,..., bN, are con-

trol points at which the boundary condition of zero normal velocity are to be applied.

The wall effect is taken into account by using series of image vortices in the z direction

so that the kinematic boundary conditions at the walls are automatically satisfied.

As in the conformal mapping approach, point vortices are introduced into the flow

at each time step to simulate the vortex shedding procedure. It is assumed that a vortex

with circulation To is shed slightly above the blade tip, at zo = b + e/2, where To and

e are unknowns to be determined.

There are N+2 unknowns in the problem, i.e. ro, r,... , FN, and e, and this requires

N+2 equations. The boundary condition requires zero normal velocity on the blade so

that one has

v = 0, at points bi,i = 1, N (2.25)

The Kutta condition requires

ro = (7y)tip At (2.26)

where (7y)t;, is the product of the average velocity [(w, + wp)/2] and the vorticity at

the blade tip and At is the time step.

In the actual situation the vorticity is shed continuously into the wake. This implies

that the length of the vortex segment which is shed from the tip in time interval At will

be (approximately) equal to :wAt. If this vortex segment is replaced by a point vortex,
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the vortex should be placed at the centroid of the vortex segment, so

e = (U),ip At (2.27)

Eqs. (2.25), (2.25) and (2.25) provide a set of N+2 equations (N linear and two nonlin-

ear) for the N+2 unknowns: ro, rl,..., Lrv, and e, and these can be solved numerically.

The relationship between pressure difference, bound circulation, and velocity can be

found in the following way. First, as shown in Fig. 2.7, the unsteady Bernoulli equation

can be applied between the blade hub (station 1) and tip (station 2),

-w1 V2 + W2 Pi aO2 V2 V+ W P2
t + 2 + + 2 (2.28)

Ot 2 p Ot 2 p

where Wp is the velocity potential. Similarly, applying the Bernoulli equation between

station 3 and 4, one has

_p 2 v 2 + wW84 v 2+ 7)4
aw3 + +W3  3 -= 4 + + 4 (2.29)
6t 2 p bt 2 p

From Eqs. (2.28) and (2.29) and knowing that vl, w1, v2, v3, V4, and w4 are all zero, and

P2 is equal to P3, we have

~91 804 pl p4 0 P2 803 w2 w2
-+  +- - - (2.30)

at t p p at at 2 2

i.e.
Ap p 4 p4 8~4 wI1 O02 9(P3 w w2 2.

S Pi -+ +- 3 (2.31)

p p p = t W + t 8t 2 2

The velocity potentials at the hub and tip are related by12
V2 = 1l + wpdz (2.32)

and

P3 = w4 + wdz (2.33)

where wp and w, are the velocity on the pressure and suction surface. From Eqs. (2.32)

and (2.33), one has

'P - W4 = W2 - •3 - (w, - w,)dz (2.34)
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i.e.

W1 - ýP4 = P2 - 3 - rb (2.35)

where 'b is the total bound circulation ( composed of the vortices rl to rn). This

can be differentiated and put into Eq. (2.31) to give the expression for the pressure

difference across the blade

Ap _ - P4 arb w2 3W
- - = t - 2 (2.36)

which can also be written as

Ap OrbP + (7 a)t, (2.37)
p 0at

Calculations showed that Ap/pUo2 remained almost constant with time t (difference

less than four percent), which is to be expected because the flow in the tip region will

not have a significant effect on the blade loading far away from the tip. This indicates

one can keep Uo constant to achieve the constant loading condition (Ap/p), discussed

in section 2.2, and this approximation is thus adopted in the calculation.

In summary, the bound and shed vortex sheet are represented by point vortices in

the panel method calculation. Location and strength of the shed vortex are solved

nonlinearly at each time step from the Kutta condition at the blade tip. The vortices

are continuously convected away and new shed vorticity is generated at each time step.

Euler forward , modified Euler forward, and Runge- Kutta time marching schemes

were used as well as sub-stepping to examined the effects of different schemes on the

solutions.

The time step and the number of sub-steppings have been varied by a factor of ten

and twenty, respectively, to see their effects on the solutions. The results show that,

although the vortex distribution changes, the centroids of the vortices are almost the

same for different time marching schemes and time steps used in the calculation. This

is can be seen from Fig. 2.8, which gives the vorticity centroid trajectory y* for all the

above-mentioned computation schemes. This indicates that although the details of the
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vortex sheet may change with different approaches the global features of the sheet (eg.

centroid) do not.

2.4 Similarity Results for Flow In The Blade Pas-
sage

Computations of coordinates of the centroid of vorticity, y,, and z,, are shown in

Fig. 2.9. The computations have been carried out assuming constant loading along

the blade. While this an oversimplification, computations with a varying Ap show

little difference from these results, at least for representative subsonic compressor blade

pressure distributions.

A quantity that is more relevant than the centroid of vorticity is the position of the

tip vortex, and the non-dimensional tip vortex center position, ye, is shown in Fig. 2.10.

Included in the figure is data from the different tip vortex experiments of Rains (1954,

[43]), Smith (1980, [50]), Johnson, (1985, [26]), Inoue and Kuroumaru (1988,[23]), and

Takata (1988,[56]). Compressor parameters for these tests are given in Table 2.1. Where

velocities were not measured directly in the experiments, the position of the tip vortex

is taken as either the center of the low total pressure region (Takata, Smith) 3 or the

center of the tip vortex cavitation (Rains). The convection time is calculated based on

mean axial velocity.

The experimental data covers a large range of clearances, loadings, and flow coeffi-

cients (see Table 2.1). The conditions include moderate loading with large tip clearance

(leading to generally low values of t*) as well as near-stall loadings with small clearance

(Smith (1980, [50]) (which lead to large t*) 4. The different vortex trajectories, how-

3There is some small error involved in doing this, as pointed out by Crook (1989, [9]) and by Lee
(1989, [34]). This, however, should be considerably less than the extent of the low total pressure region,
and hence (at a given location) small compared to the values of y, given in the figure.

4There are two sets of points plotted for the Smith (1980, [50]) compressor. The open symbols are
based solely on conditions at the midspan. This rotor has a very low hub/tip radius ratio (0.4) and
a consequent large twist, and it may be expected that midspan conditions do not adequately reflect
tip section performance for this configuration. To examine this, we have also considered data based
on the actual measurements of the "free stream" tip section pressure difference (at a location 33 tip
clearances, i.e. 0.33 chord, from the endwall). These points are plotted as solid symbols in the figure.
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Experiments Flow Coeff. (q) Clearance/Chord (%), r/c
Inoue and Kuroumaru .50 .85
Inoue and Kuroumaru .50 1.70
Inoue and Kuroumaru .50 2.55
Inoue and Kuroumaru .50 4.26
Rains .45 1.3
Rains .45 2.6
Rains .45 5.2
Takata .62 4.2
Takata .56 4.2
Takata .53 4.2
Takata .50 4.2
Johnson stator 4.0
Smith .29 1.0

Table 2.1: Experimental Data

ever, are well described by the single similarity solution curve, in agreement with the

dimensional analysis. In addition to providing a relevant dimensionless grouping, the

theory thus gives a good absolute prediction of tip vortex location, even when applied at

near-stall conditions. It can also be pointed out that the largest percentage deviations

from the theory are those for data near leading edges; for these the distance are small

and the experimental results, taken from publications, are difficult to read precisely.

An observation from Fig. 2.10 is that the generalized tip vortex trajectory is nearly

a straight line, which can be approximately represented by

y* = 0.46t* (2.38)

Taking the pressure difference to be given by its value at the midspan location yields

an approximate expression for the tip vortex trajectory as a function of axial position.

S= 0.46[ g(tan 1 - tan 2)]mean (2.39)
X C cos fl

If the mean flow parameters are known, one can estimate the tip vortex trajectory well

from Eq. (2.39). 5

5We also examined the vortex trajectory and the similarity scaling for the clearance flows based on
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Equations (2.38) or (2.39) show that y,, the (dimensional) locus of the tip vortex

trajectory on a constant radius surface, does not depend on clearance. Varying clearance

while keeping other parameters the same will not alter the projection of the tip vortex

trajectory on this surface although, as will be seen, it will alter the cross-flow pattern

6 (Dean, 1954, [13]; Inoue, Kuroumaru, and Fukuhara, 1986, [24]; and Zhang, 1988,

[62]). For example, the experimental result of Inoue, Kuroumaru, and Fukuhara (1986,

[24]) is given in Fig. 2.11. In the figure tip clearance flows of a rotor near the trailing

edge for various clearances (1mm , 2mm, 3mm, and 5mm) are shown. It is clear that

as clearance increases the clearance flow becomes much stronger. However, there is

little change in the tangential locations of the vortex cores (Ye) when the clearance is

increased by a factor of five.

2.5 Summary

A model for the clearance flow has been formulated, based on a slender body approx-

imation. The (three-dimensional) clearance is considered as a two-dimensional unsteady

flow so the clearance flow problem becomes a starting problem in the cross flow plane.

In the model the only length scale in the clearance region is the clearance so there

exists a similarity solution for the tip clearance flows, which is based on a normalized

time parameter t* . Based on this similarity, a generalized tip vortex trajectory is pro-

posed and shown to be in good agreement with available experimental data, indicating

that the behavior of the clearance flow is dominantly inviscid.

leakage flow approach, in which the clearance flow is regarded as a jet (see Appendix E). The analysis
shows that there is a similarity scaling for clearance flows and that the similarity parameter is identical
to the one given by Eq. (2.7). It also shows that y*/,t = /2/4 (about 0.354), which agree with the
value of .365 from the calculation.

6This result is obtained based on the above-discussed assumptions. In the actual situation, the
clearance does have a slight effect on the locus of the tip vortex trajectory. (Storer, comment on Chen
et. al., 1990, [8])
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Chapter 3

Applications of the Model

3.1 Introduction

In this chapter we interrogate the similarity analysis of Chapter 2 in more detail

to see how the cross-flow plane velocity field, the vortex trajectory downstream of the

passage, and the casing wall pressure distribution are affected by overall flow parameters

such as tip clearance and blade loading.

3.2 Flow Downstream of the Blade Row

The discussions so far has been of the vorticity and velocity field in the blade passage,

but the flow downstream of the blade row is also of interest. As illustrated in Figures 3.1

and 3.2, this can be calculated by representing the tip vortex as either a single vortex (in

line with the assumption made in the blade passage) or as an infinite periodic array of

line vortices 1, plus the images needed to satisfy the kinematic boundary conditions at

the wall. Formulas for the velocities associated with such array are given, for example,

by Lamb (1932, [33]). In line with the approximation made in the passage description,

the procedure is to apply such a description everywhere downstream of the cross-flow

'To some extent, the arguments made above that relate to only including the vorticity field of a
single passage , i.e. of using just an isolated vortex, still apply. However, the influence of the other
passages is stronger downstream of the trailing edge than in the passage, since the velocity field decay
is dipole-like rather than quadrapole-like.



plane corresponding to the blade trailing edge. The initial conditions for the compu-

tations in the downstream region are thus the computed vortex position and strength

from the passage tip clearance flow analysis at the trailing edge cross flow plane. As

will be seen in the following chapter, calculations showed little difference whether an

isolated vortex or a array of vortices was used downstream of the blade row although,

as one might expect, the induced velocity for the vortex array was slightly higher than

for an isolated vortex.

3.3 Velocity and Vorticity in the Exit Cross-Flow
Plane

Inoue, Kuroumaru, and Fukuhara (1986, [24]) have made detailed flow measure-

ments in an axial compressor rotor with various tip clearances and this provides in-

formation about the effect of tip clearance on leakage flow. Calculations have been

carried out based on the parameters used in the experiment. An example is given in

Fig. 3.3, which shows the configuration of the vortex sheet in the cross-flow plane pass-

ing through the trailing edge, for a clearance of 2.55 % of chord. Similar behavior is

seen at other clearances. The shed vorticity can be regarded as parceled into the tip

clearance vortex and an umbilical stretching form the blade tip to the vortex. Although

this structure is somewhat similar to that of the flow around a delta wing , there is an

important difference because of the presence (and proximity) of the wall and hence of

the image vortex system.

Figs. 3.4 and 3.5 presents the cross-flow plane velocity distribution at the cross flow

plane passing through trailing edge for four different clearances 0.85, 1.70, 2.55, and

4.26 percent of chord. The velocity vectors shown are normalized with blade tip speed

and reference velocity magnitudes are indicated in the figure. The spanwise extent of

the influence of the clearance flow is seen to increase as the tip clearance increases.

Fig. 3.6 show the clearance flows for various clearances (0.85, 1.70, 2.55, and 4.26
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percent of chord) in an axial plane 6.8 % downstream of the trailing edge. These can

be quantitatively compared with the experimental measurement of Inoue, Kuroumaru,

and Fukuhara (1986, [24]), which are shown in Fig. 3.7. Computed contours of exit

flow angle deviation at this axial plane for the different clearances are given in Figs.

3.8 - 3.11 and contours of pitch angles are given in Figs. 3.12 - 3.15. Numbers on the

contour plots indicate yaw or pitch angles in degree. Columns in the figures indicate

contour intervals. There is substantial underturning (roughly thirty degrees) near the

casing wall due to the clearance flow as well as changes in pitch angles of roughly ten

degrees. Although the "center of action" shifts with clearance, there is not much change

in the magnitudes of these two angles as clearance varies.

Computed and measured of yaw and pitch angle deviations and cross-flow velocity

are plotted in Fig. 3.16 for the 2.55 % case. It can be seen that the overall flow structure

is well captured by the computation.

It should be emphasized that other authors have shown that a good picture of the

cross-flow plane vorticity distribution yield reasonable estimates for the flow field. What

is different in the present comparison is that the only information used is midspan inlet

and exit flow angles, axial velocity parameter, and camber line. No empirical input is

given concerning vortex position and strength.

3.4 Vortex Core Trajectory

We now examine the vortex core trajectory, both in the passage and downstream.

As discussed previously, the flow downstream of the blade can be calculated either by

representing the tip vortex as a single vortex as in the blade passage, or as a periodic

infinite array of line vortices, plus the images needed to satisfy the kinematic boundary

condition at the wall. Calculations have been carried out using these two approaches.

Figs. 3.17 - 3.20 show the computed trajectories for different clearances using the

data of Inoue, Kuroumaru, and Fukuhara (1986, [24]) and Inoue and Kuroumaru (1988,

[23]). Figs. 3.17 and 3.18 are based on a single vortex downstream, whereas, Figs. 3.19
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and 3.20 are based on an infinite periodic array of line vortices.

The independence, of the trajectory within the passage, on clearance (as discussed

previously) can be seen in the figures, which encompass a factor of five in tip clearance.

In addition, in the single vortex approach, the tip vortex moves under the influence

of the induced velocity by its image only. With the vortex array, the induced velocity

from other vortices are in the direction of the motion and the array will move faster

than the single vortex; this can be seen from comparing , for example, Figs. 3.17 and

3.19. Although the vortex array method yields better agreement with the data than

the single vortex representation, the difference is small.

An evident feature of the trajectories is the change in slope at the exit cross-flow

plane. This can be explained with reference to the image system of the tip clearance

vortex, drawn schematically in Fig.3.21. The left-hand side of the figure shows a vor-

tex (a) near a blade, with the three images needed to satisfy the relevant kinematic

constraints (neglecting the non-zero velocity in the clearance region). On the right, the

vortex is shown in the region downstream of the blade, where there is only one image

vortex (b). The horizontal velocity of vortex a due to b alone is greater than that due to

b and c (d induces no horizontal velocity), so that the cross-flow plane velocity is larger

downstream of the blade. For constant axial velocity, the slope of the trajectory will

thus be larger in the downstream region. (There is also an effect due to the vorticity

in the umbilical sheet between blade tip and vortex, but this is small compared to that

associated with the image system.)

In the actual situation, there will not be a slope discontinuity since the influence of

the blade decays in a finite distance, rather than abruptly as in the model. However,

the change in the slope of the vortex trajectory can still be rather sharp, as seen in Fig.

3.22, which is a photograph of tip vortex cavitation in an axial flow pump run in water

(Rains, 1954, [43]). If the low pressure in the cavitation region is taken to correspond to

the vortex core: (1) comparison can be made with the theory (which is also plotted in

the figure) and the two agree well; and (2) the change in slope near the passage exit can



be noted. The change in slope has also been shown in recent numerical computational

results of Storer (1990, [52]).

We can also examine the radial motion of the tip vortex as in Fig. 3.23. The

calculations show that the tip vortex center initially moves away from the wall as it

travels from the leading edge the trailing edge, but downstream of the trailing edge,

the center of the vortex remains at a nearly constant radial locations. This can be

understood if we note that the centroid of the vorticity and the center of the vortex

are not very different and, within the description given by the model, the former will

remain at a constant radial location in the downstream region. This behavior can be

derived directly from the two statements of conservation of circulation and of impulse;

the derivation is given in Appendix F. The data is somewhat sparse but it appears to

bear out the idea of constant radial position.

3.5 Effect of Non-Constant Pressure Difference

To examine the influence of the assumption of constant pressure difference across

the blade on the result, calculations have been carried out using a representative com-

pressor pressure difference distribution (Cumpsty, 1989, [10]), shown in Fig. 3.24. The

calculated tip vortex center using this pressure distribution is given in Fig. 3.25, where

it is compared with the trajectory computed assuming a uniform pressure difference,

with the mean pressure coefficient the same in the two cases. It is seen that the detailed

blade pressure distribution has little effect on the evolution of the tip vortex. This im-

plies that the influence of blade loading on the trajectory is not a local effect but is

rather determined by the global blade row parameters, at least to the approximation

made here.

3.6 Endwall Static Pressure Field

Another quantity given by the theory is the variation in endwall pressure, which

was calculated from unsteady Euler equation. The two-dimensional unsteady model
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includes no description of the variation in pressure level along the blade, because it

deals only with the pressure difference. We therefore adopt the simplest hypothesis,

namely that pitch averaged static pressure rises linearly from leading edge to trailing

edge. The wall static pressure described is thus the predicted static pressure from the

unsteady analysis, referenced to this linear background increase. The computed endwall

static pressure is compared to the measurements in Fig. 3.26, which shows data from

Inoue and Kuroumaru (1988,[23]) for three different tip clearances. Two trends are

seen in the results. First, the magnitude of the trough in static pressure increases as

the clearance decreases, because the tip vortex is closer to the endwall. Second, the

location of the minimum static pressure tends to move downstream with increasing

clearance. These trends appear in both data and the analysis, and can also be seen

from the experimental result of Dean (1954, [13]).

3.7 Effect of Compressor Operating Point on Vor-
tex Position

Takata (1988, [56]) has examined the effect of operating point on vortex position

by measuring the trajectory of the low total pressure region in the rotor tip endwall

flow for different mass flows, from design point to stall. Calculations and data from

this configuration are shown in Figs. 3.27, 3.28, and 3.29 where the computed core

trajectory and the regions of lowest total pressure are indicated. As might be expected,

the tip vortex moves further from the suction surface as mass flow decreases because the

convection time and the shed vortex sheet strength both increase. The experimental

results here also show the change in slope of the tip vortex trajectory near the trailing

edge.

3.8 Applications to High Speed Machines

The analysis was formulated neglecting the effects of compressibility, and comparison

thus far has been with low speed compressor data. As is discussed in Appendix G,
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Cases % Design Speed Pressure Ratio
1 90 1.32
2 90 1.52
3 95 1.60
4 100 1.37
5 100 1.51

Table 3.1: High speed data

however, the compressibility effects in the clearance flow do not appear to be important

at least for a compressor. If so, the analysis can be applied to describe the behavior

of high speed machines. There are considerably fewer published endwall flow field

measurements for these devises, and we have found only one data set with enough

information so that comparison can be made. This is a transonic fan whose performance

was reported by Ware, Kobayashi, and Jachson (1973, [58]). The design speed was 489

m/s and the design pressure ratio was 1.5. Tip vortex trajectories were located using

holography. (In contrast to the low speed experiments, the trajectories could not be

directly inferred for the shapes of the isobars on the casing). Table 3.1 shows the flow

parameters for the available data.

In Fig. 3.30 the experimental tip vortex trajectories are plotted on the similarity

curve described in connection with Fig. 2.10. While the agreement may be surprising at

first, examination of the data in the report indicates that pressure differences across the

blades are such that the Mach numbers associated with the cross-flow plane velocities

are subsonic. Even for situations in which the relative Mach numbers are larger than

unity, therefore the basic ideas set forth concerning tip clearance vortex formation and

evolution still can be applied. (This is analogous to a highly swept delta wing where

the through flow can be supersonic, but the cross flow remains incompressible.)



3.9 Summary and Conclusions

Clearance flow in the blade passage as well as downstream of the blade trailing

edge has been investigated in this chapter. A parametric study has been carried out

to examine the effect of flow parameters such as tip clearance and operating point on

the velocity field, flow angle deviations, casing pressure distribution, and the vortex

core trajectory inside and downstream of blade passage. The effect of blade loading

distribution on the vortex core trajectory has also been examined.

The calculations carried out agree well with experimental results and several inter-

esting features of a clearance vortex have been brought out. First, there is a change

in the slope of the vortex center trajectory near the trailing edge due to the change of

kinematic boundary condition there. Second, as a result of conservation of circulation

and impulse, the tip vortex center stays at a constant radial location downstream of the

blade trailing edge. In addition, the tip vortex alters the pressure distribution on the

blade near the endwall region, especially that on the suction surface. As tip clearance

increases, the region of minimum pressure moves downstream and the magnitude of the

minimum pressure decreases. Finally, as one may expect, the tip vortex core moves

further away from the suction surface as mass flow decreases.

The analysis has also been applied to describe the vortex trajectory in a high speed

machine. The prediction agrees well with the experimental data, indicating the com-

pressibility effect in the clearance flow is not important. In addition, an expression for

the clearance flow Mach number is derived and this quantity is shown to be significantly

less than unity from many practical situations in fan and compressors.
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Figure 3.7: Clearance flow near a rotor trailing edge (Inoue, Kuroumaru, and Fukuhara,
1986)
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Figure 3.8: Computed exit flow angle deviation due to clearance flow; parameters based
on data of Inoue, Kuroumaru, and Fukuhara, 1986 (0 = 0.5, r/c = 0.85%)
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Figure 3.9: Computed exit flow angle deviation due to clearance flow; parameters based
on data of Inoue, Kuroumaru, and Fukuhara, 1986 (0 = 0.5, r/c = 1.70%)
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Figure 3.13: Computed exit pitch angles due to clearance flow; parameters based on
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Figure 3.20: Circumferential position of clearance vortex center (yc), data from Inoue,
Kuroumaru, and Fukuhara (1986) and Inoue and Kuroumaru (1988); 4 = 0.5, r/c =
2.55% and 4.26 % (Vortex array approach)
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Figure 3.22: Vortex trajectory shown by cavitation (data of Rains, 1954); solid line

shows calculations based on present theory, (a) r/c = 2.6%, (b) r/c = 5.2%
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Figure 3.24: Representative pressure distribution on compressor blade (Cun, psty, 1990)
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Figure 3.27: Effect of operating point on clearance vortex trajectory ; 0 = .62, r/c =
4.26% (data of Takata., 1988)
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Figure 3.28: Effect of operating point on clearance vortex trajectory ; = .53, 7/c =
4.26% (data of Takata, 1988)
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Chapter 4

Examination of the Assumptions in
the Flow Model

4.1 Effects of Classical Secondary Flow

The analysis presented neglects any effects due to what can be termed "classical

secondary flow", i.e. the cross-flow plane velocities associated with streamwise vorticity

due to inlet boundary layers. The implication is thus that the velocity field associated

with the tip clearance vortex dominates that due to classical secondary flow, and it is

appropriate to examine this assumption.

To do this, we have computed the secondary flow for the configuration of Inoue and

Kuroumaru (1988, [23]), using the measured inlet boundary layer profiles. The com-

putation procedure is straightforward and is given in Appendix H. The inlet boundary

layer is the same for all the different clearances, so that one figure represents all four

cases. The cross-flow velocity field at exit is plotted in Fig. 4.1 to the same scale as Fig.

3.4 and 3.5. Comparing the figures, the velocities associated with the clearance vortex

are much larger than those due to secondary flow. For example, the kinetic energy

associated with the secondary flow is only three percent of that associated with the

clearance flow for 7/c = 2.55 %. The clearance flow velocities dominate in this region

and hence the clearance loss is expected to be much higher than the loss associated with



the secondary flow. Similar conclusions have been made by Lakshminarayana, Sitaram,

and Zhang (1985, [32]) on a compressor rotor in which they found losses due to the

secondary flow and annulus-wall boundary layer were small compared to the tip leakage

loss.

Based on the data we have examined so far, this is generally true for rotor tip

clearance flow, which is the situation of greatest practical interest. When secondary

flows do become comparable with the clearance flows, as in many cascade experiments,

the predicted tip vortex core trajectories would need to be modified to include the

secondary flow effects.

The influence of secondary flow on the clearance vortex location can be seen from the

experimental results of Lakshminarayana and Horlock (1965, [30]). In the experiment,

a cascade with slotted blades was used to examine the effect of incoming velocity profile

on the clearance flow. The vorticity contours downstream for an uniform upstream flow

and a boundary layer type of inflow are given in Figs. 4.2 and 4.3, respectively. Two

points are noted from the figures. First, for the uniform inflow case, the vortex cores

are located at roughly the same distance from the suction surface for a six fold variation

in clearance. This reconfirms the conclusion of the similarity analysis, vortex pitchwise

location does not depend on the size of tip clearance, is a good approximation for the

actual flow. Second, with inlet boundary layer, the vortex cores are located at different

pitchwise locations and closer to the suction surface as a result of secondary flow effects.

There have been many experimental studies on clearance flow in cascades. However,

most of the studies are on turbines. They also provide little information on clearance

vortex trajectory in blade passage. A study on compressor cascade which provides all

the data needed for the vortex calculation and the measurements of vortex core has

been carried out by Dean (1954, [13]). Fig. 4.4 shows the calculated velocity field of

the clearance flow and the secondary flow associated with endwall boundary layer. The

magnitudes of the cross flow velocities are comparable so that secondary flow effects

need to be included to predict the clearance vortex trajectory.



The secondary flow effects were taken into account by calculating the secondary

flow velocity at the vortex core in the trailing edge cross-flow plane. This velocity is

then linearly interpolated from leading edge to trailing edge and added to the clearance

velocity at the vortex core. The calculated tip vortex trajectory including the secondary

flow effects is plotted in Fig. 4.5. Also shown in the figure is the vortex trajectory

without correction for the secondary flow effects as well as measurement of Dean (1954,

[13]). The corrected tip vortex trajectory is located closer to the suction surface and

gives better agreement with the experimental data. This shows that secondary flow

needs to be included to predict the vortex trajectory when it is comparable to clearance

flow.

4.2 Effect of Radial Non-Uniformities

The data shown have been for situations in which the incoming boundary layers

were relatively thin (except for the cascade results). More specifically, the axial velocity

profile has been such that the tip clearance vortex could be considered to be embedded

in a stream with velocity equal to the free stream evaluated at the midspan. There are

many situations in which this is not a valid approximation because the axial velocity

decreases substantially from the midspan station to the location of the vortex center.

It this occurs, the present analysis will be based on a convection time that is too

short and will give a value for distance of the vortex from the blade which is too small.

To examine this, calculation has been carried out based on the data from the experiment

of Lakshminarayana and Murthy (1988, [31]), in which detailed measurement of the flow

field in the tip region of a compressor rotor was carried out. It is found that, if one

makes a crude correction for this effect by using the measured inlet axial velocity at

the blade tip, the trajectory is well predicted (Fig. 4.6). In terms of the overall fluid

mechanics, the basic analytical framework is still valid, however one must account for

the mean flow non-uniformity.



4.3 Effects of Relative Wall Motion

4.3.1 Background

There is conflicting evidence in the literature regarding the influence of relative wall

motion, i.e. the motion between the endwall and blade tip, on the clearance flow. A

spinning disc experiment by Mayle and Metzger (1982, [38]) has indicated that there is

no measurable effect of the moving wall on the blade tip heat transfer coefficients for

a turbine, with speed ranging from 10 % to 100 % of the mean leakage flow velocity.

They also carried out a simple analysis which showed the effect of wall motion on the

heat transfer coefficients is small.

Morphis and Bindon (1988, [40]) examined the effect of wall motion on the blade

tip pressure distribution on an annular turbine cascade with a rotating casing. They

conclude that "the effect of relative motion did not have a significant effect on the blade

gap pressure distribution." For a compressor, the numerical results of Crook (1989, [9])

also show that wall motion has a negligible effect on the endwall flow.

On the other hand, flow visualization by Herzig, Hansen, and Costello (1953, [20])

suggests that, for a turbine cascade, the clearance flow decreases considerably when the

wall is moved at moderate speed and there is no clearance flow when the wall is moved

at high speed. Dean (1954, [13]) also noted the vortex core was moved away from the

suction surface of a compressor rig as the wall speed increases.

Graham (1985, [17]) carried out an experiment on a water turbine cascade, which

showed clearance flow was reduced and then stopped when wall speed was increased.

In summary, while some studies suggest that the influence of relative wall motion on

clearance flow can be neglected, a significant change in the behavior of clearance flow

due to wall motion has also been observed. It is thus of interest to assess when wall

motion can have a large effect on the clearance flow. Such an analysis is described in

the following section.



4.3.2 Approximate Analysis of the Effect of Wall Motion

We have carried out a simple analysis attempting to clarify the role of wall motion.

First we examine the effects of relative wall motion in a compressor. The fluid on the

wall is moving with tip speed Ut relative to the blade. This fluid motion can be treated

as the smoothing-out of a shear layer in a semi-infinite region with velocity Ut on the

wall as shown in Fig. 4.7. The transformation between time t and axial location x is

the same as discussed in Chapter 2. The induced velocity in the clearance region is

then

= 1 - erf( (4.1)
Ut vr4 -v

where v, is the velocity with wall motion, Ut is the relative rotational speed at tip, erf

is the error function, and v is the viscosity. Let the convection time be t,,, Eq. (4.1) is

written

S= 1 - erf( (4.2)

The clearance flow velocity can be written

_C - 0 __, (4.3)
Ut cos #1 2

so that the ratio of vw to the clearance velocity vc is

vW cos 01 2 7~v,,v s [1- erf( )] (4.4)

Eq. (4.4) can be simplified if the convection time t, is based on an average axial

velocity instead of the axial velocity in the endwall region. Under this approximation,

tn is given by 1 , i.e.
c cosy

t, cos (4.5)CW
and

c cos v V 2 (4.6)V t, = V c= cosy (4.6)C, c V C.
1The wall effects have been examined in some cascade experiments by rotating the endwall. In

these cases the convection time should be based on axial length of the rotating wall instead of the axial
chord, c cos7.



Note C,/V1 ~- cosy so that the above equation can be written

V tw 1 c2Vt 1 C (4.7)
72  Re 72

This can be put into Eq.(4.4) to give,

=W C[1- erf (j - )-e (4.8)

This shows that relative wall motion can have a significant effect on clearance flow for

a machine with small clearance and Reynolds number, and large flow coefficient.

We now examine the condition under which v, is an order of magnitude less than

vC, i.e. v,/v, - 0(10-1), so that the effects of relative wall motion on the clearance flow

can be neglected. First we note that in a turbomachine v,/Ut 0 O(1), which means

cos/ 2
S 0ac (1)

Therefore, for vw/vc < 0(10-1), it is necessary that

1- er f((V- ) < 0.1 (4.9)2c
This is satisfied if

_ '> 2.3 (4.10)
c

The order of magnitude analysis indicated that the wall effect will not be important

when v/R > 2.3. 2

The analysis discussed so far is directed at compressors. For a turbine, the flow due

to wall motion is regarded as a smoothing-out of a viscous layer between two parallel

walls: one moving with tip velocity Ut with the other held stationary (see Fig. 4.8)

since the thickness of a turbine blade is much larger than the clearance,

The velocity at the center of the gap , i.e. half clearance height from the endwall, is

vW 1 4 1 nmr2
- [1 - -sin - exp(-n 2 •'2v t 2/r2 )] (4.11)

Ut 2 n= n 2

2The analysis assumes the flow induced by the wall motion is laminar. If the flow is turbulent, the
results still apply except a turbulent viscosity has to be used instead of v.
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Experiments r/c(%) v,/v,(%) /~Re Comments
Inoue and Kuroumaru .85 1.2 4.1 Compressor rotor
Inoue and Kuroumaru 1.70 0.0 8.3 Compressor rotor
Inoue and Kuroumaru 2.55 0.0 12.4 Compressor rotor
Inoue and Kuroumaru 4.26 0.0 20.7 Compressor rotor
Morphis and Bindon 1.0 19.0 3.9 Turbine cascade
Morphis and Bindon 2.0 0.7 7.9 Turbine cascade
Morphis and Bindon 4.0 0.0 15.5 Turbine cascade
Herzig et al .94 - 1.5 Cascade
Graham 0.55 - 1.7 Turbine cascade
Graham 1.15 - 3.6 Turbine cascade
Graham 2.31 - 7.3 Turbine cascade

Table 4.1: Effects of relative wall motion

Substituting in v, from Eq.(4.3) and vt, from Eq.(4.7), one has

v _ cos #I r2
=C C K(e)

where
1 4 1 nirx

K(J) - [1-- - -n sin -exp(-n 2J)]
2 n 2

and
1 c2

Re 7 2

(4.12)

(4.13)

(4.14)

The function K(J) is given in Fig. 4.9. As in the compressor case, further simplification

of the results has been done to show that the wall effects will not be important if

(4.15)

Calculations have been carried out for several experiments: 1) Inoue, Kuroumaru,

and Fukuhara (1986, [24]), 2) Morphis and Bindon (1988, [40]), 3) Herzig, Hansen, and

Costello (1953, [20]), and 4) Graham (1985, [17]), and the results are given in Table

4.1.

For the compressor experiment of Inoue, Kuroumaru, and Fukuhara (1986, [24]) the

results indicate that the wall effect is negligible. For the turbine experiment of Morphis

R•e > 4.7



and Bindon (1988, [40]) the calculations suggest that the effect of wall motion on the

clearance flow is negligible, which agrees with the experimental observations.

On the other hand, the results indicate that the flow due to wall motion is compa-

rable to the clearance flow in the cascade experiment of Herzig, Hansen, and Costello

(1953, [20]) and turbine experiment of Graham (1985, [17]). The behavior of clearance

flow will therefore be modified by the wall motion for these two configurations, which

has also be observed from the experiments.

In summary, a simple approach has been described for assessing the significance

of relative wall motion on clearance flow in a turbomachine. Agreement between the

trends seen in calculation and experiment suggests that the simple analysis appears to

be useful in assessing the wall effect and provides a guideline on the adequacy of the

flow model as far as the wall motion is concerned.

4.4 Summary and Conclusions

This chapter presents several results:

* The secondary flow in a compressor rotor is in general small compared to the

clearance flow.

* For a cascade, the secondary flow may be important. If so, analysis of vortex

trajectory must take this into account.

* The local (tip) axial velocity should be used in calculating the convection time of

a tip vortex if there is a strong radial variation in axial velocity profile.

* A method is presented for studying the importance of wall motion on clearance

flow in a compressor as well as a turbine. It is concluded that, depending on

geometry, the wall motion can induce secondary flow comparable to the clearance

flow.
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EXIT SECONDARY FLOW DUE TO UPSTREAM VORTICITY
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Figure 4.1: "Classical" secondary flow due to inlet boundary layer (Inlet boundary layer
profile)
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Figure 4.2: Vorticity contours, data of Lakshminarayana and Horlock (1965) (Uniform
inflow)
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Figure 4.3: Vorticity contours, data of Lakshminarayana and Horlock (1965) (Boundary
layer type of inflow)

103



AXIRL VEL.

CLASSICRL SECONDARY FLOW

rO I
0.10 0.15 .20

Pitchwise Distance / Passage Height

Figure 4.4: Computed clearance and secondary flow velocities; parameters based on

data of Dean (1954)
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minarayana and Murthy (1988)
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Figure 4.9: Function K vs. J
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Chapter 5

Tip Clearance Losses

5.1 Introduction

Despite considerable work has been carried out on the topic of clearance losses, the

origin and parametric dependence of the loss are still not well understood. Although

many studies indicate that clearance loss varies linearly (or nearly linearly) with the

clearance, the mechanism postulated for the losses is different and different parametric

dependence of the losses thus also exist in the literature. For example the dependence

on blade pressure difference has been variously given as (Ap)3/2 (leakage flow approach),

(Ap)2 (lifting line approach), or (Ap) 1/2 (area ratio approach) 1.

The need to use empirical constants or correlations, which vary considerably from

geometry to geometry also, limits the usefulness of present approaches. Finally, existing

approaches emphasize the prediction of efficiency reduction due to clearance and little

attempt has been made to study how the clearance affects other performance parameters

such as shaft power.

The objectives of this chapter are then as follows:

* Presentation of a model for clearance losses and change in shaft power with clear-

ance, based on the ideas of Chapter 3.

* Identification of parametric trends of clearance loss.

'The area approach relates clearance loss to leakage flow area. It is assumed that the clearance loss
is proportional to the leakage flow and the proportionality constant is obtained from empirical data
(Stodola, 1924, Traupel 1958, and Bammert et al., 1968)(refer to Farokhi, 1987, [16]).
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* Examination of means to minimize clearance loss.

5.2 Compressor Tip Clearance Loss

5.2.1 Introduction

Based on the flow model, a method attempting to give a quantitative measure of

compressor tip clearance loss is described here. As in the leakage flow approach, we

assume that this kinetic energy is eventually lost without any recovery. From this

consideration, an expression for the clearance loss is derived.

The change in shaft power due to clearance is then derived from the flow model. This

combined with the clearance loss enables one to find the expressions for the decrease in

efficiency as well as total pressure rise due to clearance for a compressor. This is the

first time that a method attempting to predict the change in compressor performance

other than the efficiency due to clearance has been presented.

5.2.2 Effects of Clearance on Compressor Performance

We define a non-dimensional total pressure rise coefficient, denoted by '0, and a

shaft power coefficient, denoted by A, as follows:

Pt2 - Pt
= -(5.1)pU2/2

A L (5.2)pUtr(r2 - r2)/2

where Ptl and pt2 are, respectively, the total pressure at the inlet and exit of a compressor

rotor, and L is the shaft power to the rotor. For incompressible flow, the total to total

efficiency of the compressor rotor, denoted by 71c, is

So- 0 (5.3)

For small changes in 4 and A, the variation of efficiency with clearance under
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constant mass flow can be written as

--c - - A (5.4)

where A Ac/77c, AO/ , and AA/A are the change in efficiency, total pressure, and shaft

power coefficient, respectively, due to the change in tip clearance, Ar/r. The total

pressure coefficient variation, A0, consists of two parts: one from the change in tip

clearance loss (non-isentropic part); the other from the change in shaft power (isentropic

part) with clearance. One can therefore write

A =  + (5.5)

where A0 1 and A0 2 are, respectively, variations of total pressure coefficient from the

change in clearance loss and shaft power as a result of clearance variation. Assuming

losses other than the clearance loss remain constant as the clearance varies, we have,

from the conservation of energy, the change in power (AA) is equal to the change in

work done on the fluid (0 A0 2), i.e.

AAA = Ab2  (5.6)

Substituting Eqs. (5.5), (5.6), into Eq. (5.4), gives

-A =- + (1 - ) (5.7)

The expressions for the change in the total pressure rise, Al 1 and A0 2 , will be derived

in the next two sections.

5.2.3 Clearance Loss

To examine the loss in energy due to the clearance, we consider the clearance flow in

the cross flow plane as shown in Fig. 5.1. Because of flow unsteadiness, there is a total

pressure (and static pressure) change upstream to downstream. As described earlier,

the kinetic energy of clearance flow associated with the velocity components normal to
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the main stream, i.e. the kinetic energy associated with the cross flow, is taken to be

lost through mixing. The flux of mechanical energy in the cross flow per blade, denoted

by E, is

E =TE (Pta- Pb)7h d (5.8)
JLE p

where rh, is the leakage mass flow, and s is the streamwise coordinate. Because the

cross flow is uniform upstream and downstream, i.e. va = vb, as shown in the figure,

the total pressure difference is equal to the static pressure difference, i.e.

Pta - Ptb = Pa - Pb = Ap (5.9)

We define v, is the tangential velocity of the cross flow in the clearance region

averaged over clearance such that leakage mass flow is given by

phe = p v, 7 (5.10)

The vortex calculation (both conformal mapping and panel method) gives 2

A _ 1.0 (5.11)
PV2

From Eqs. (5.8) to (5.11), it can be shown

1 pC.3 7 TE
E = p AC 3 / 2 ds (5.12)

2V/2 cos 3 /31 JLE

The variation in the clearance loss E with clearance is then

AE = A1 x3A AC3 /2 ds (5.13)
2V2/ cos/3 1 LE

Note A- 1, discussed in the preceding section, is given by

NB AE
A7h=- hU2 (5.14)

where NB is number of blades and rh is the mass flow rate of the rotor. In general, the

blade loading varies along the chord so that AC, = AC,(s). If AC,(s) is prescribed,
2The vortex calculation gives the value of Ap/pv2 between 1.00 and 1.04 for the different compu-

tation schemes discussed in Chapter 2. We used Ap/pve = 1.0 in the loss calculation.
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A0 1 can be calculated from Eqs. (5.13) and (5.14). The form of A4'1/4' is

AVY1  4G 02 O 3/2 Ar
Scos 3 L P/2 (--) (5.15)5 0 Cos3 3 g A H

where G is a constant which depends on the loading distribution. For example, it equals

unity for a linear loading distribution and 5/(4V2) for a constant loading distribution.

AC, is the averaged blade loading at mid span and once it is given, A'1/4 can then be

computed from Eq. (5.15). If information about ACp is not available, an ideal loading

coefficient can be used:

g Cos2 1ACP = 2 C s (tan 31 - tan #2) (5.16)
c cos pm

Using Eq. (5.16) into Eq. (5.15) gives

A 1I 8V/2 G 2  co ((tanl) - tanfl2 a/ 2 Ar- =  - (a - ( - )3/2 ( ) (5.17)
5 4 c c cos 0m H

as an estimate for A0 1/4'. For the same total blade loading, A4 1/4' for a compressor

with constant chordwise blade loading distribution is about 12 % lower than for a

triangular one. This implies that, as far as clearance loss is concerned, the chordwise

blade loading distribution should be tailored such that it is as uniform as possible.

The loss of kinetic energy associated with the cross flow can be viewed as a mixing

loss, which is explained as follows. Consider a cross flow (with velocity v"), which

leaves the clearance region and enters the blade passage. The cross flow thus undergoes

a sudden expansion because the height of the cross flow passage changes from the

clearance r to the passage height H. The total pressure loss due to this expansion can2
be found to be (see Batchelor (1967, [4])) (1 - -)2 , which is approximately equal

2 2
to , and the loss due to the mixing is thus rh• , where rih is the clearance mass

2 2
flow. The mixing loss is therefore identical to the loss of the cross flow kinetic energy. 3

3There is also a mixing loss due to the difference in streamwise velocity in the clearance flow (Vp)
and main flow (V,) on the suction side, where Vp and V, are the free stream velocities at the pressure
side and suction side. However, it is small compared to the mixing loss in the cross flow. An indicator
of the magnitude of the loss of mixing out two streams is AV/V, where AV is the velocity difference
and V is the mean velocity of the two streams. If we take the mean blade pressure difference Ap equal
to 0.5 .pV,2/2, AV/V is 0.25 for the streamwise mixing; whereas AV/V is two for the cross-flow mixing.
The former mixing loss is small compared to the latter and can then be neglected.
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It should be pointed out that the above-discussed loss is based on a kinetic energy

consideration, i.e. the kinetic energy associated with the cross-flow is lost. The same

loss can also be obtained from a momentum consideration (see Senoo and Ishida, 1986,

[48]), which is discussed as follows. As clearance increases, there is a decrease in axial

momentum of the fluid and therefore a decrease in power due to flow leakage. Based on

this consideration, the decrease in efficiency with increasing clearance can be calculated.

The change in power can be shown equal to the kinetic energy associated with the cross

flow. A more detailed discussion in given in Appendix J (also see Senoo, 1990, [47] for

more details). In fact, one can show that the parametric dependence of the clearance

loss given by Eq. (5.15) is identical to that in Senoo (1986, [48]). The only difference is

that we use mid-span loading as the driving force of clearance flow and, therefore, have

different constants in the results.

5.2.4 Effect of Tip Clearance on Shaft Power

Consider the clearance flow on a cross flow plane. The blade is unloaded near the

tip as shown in Fig. 5.2. The force per unit chord length is given by

Fb = (pp - p,) dz (5.18)

where p, and p, are, respectively, the pressure on the pressure and suction surfaces.

It is useful to define an effective span, denoted by beff, and an unloading parameter,

denoted by bu, as follows:

Fb
be!! = (5.19)

= (.20)
bu, = b - bef f (5.20)
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where Ap is the mid-span blade loading. The shaft power can be written 4

L = A Ap beff((rh + b (5.21)

The change in shaft power with r is thus given by 5

AL Obf Ar (rh + b ef f ) + bef•  1 be AT) + H.O.T. (5.22)
R Ap Or7 2 2 Or

Note that, because r/b is of order 10-2, the only length scale in the cross flow plane

can be assumed to be clearance. The unloading parameter, b,,, will scale linearly with

r so that one can write

bu, = kr (5.23)

where k is an universal constant found to be 0.31 based on the spanwise loading distri-

bution from the vortex calculation. The change of effective span with clearance is

Obef f = -(1 + k) (5.24)
&r

A'02 can be calculated as follows. Note that from Eq. (5.3) and (5.6)

S  - AL (5.25)

This combined with Eqs. (5.21) , (5.22), and (5.24) gives, after some algebra,

-2 ( 1±+ k rt Ar Ar
= -( ) ( ) ( ) + ( )2 +... (5.26)V 77c rm b b

Substituting Eqs. (5.15) and (5.26) into Eqs. (5.7) and (5.5), the decrease in effi-

ciency, total pressure rise, and shaft power due to clearance variation, which is done at

constant flow coefficient, are found to be

4It is implied in the analysis that the blade loading is uniform from hub to tip as in a cascade. In
a compressor rotor, however, the blade loading will in general vary along the span. We have looked at
the effect of the spanwise loading distribution on the shaft power. We took a linear spanwise loading
distribution with the same midspan loading (and thus the same total force) as the one with the uniform
loading. The calculations carried out showed that the difference in the shaft power is only 8.3/3.7 %
if hub-to-tip ratio is 0.6/.8 .

5As the clearance varies the streamlines will shift along the span. However, it can be shown that

(see Appendix I) the change in the flow coefficient away from the gap is negligible and the midspan
flow coefficient can be treated as independent of clearance
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5 cos33(-1 ) + ) (1 + k) () ( ) (5.27)

An 4 G 02 co -. CP3/2 Ar 1 + k r Ar28A (- ) + ( ) (--) ( ) (5.28)
, 5 ' cosc3 / 3 g H ?i rm b5 0 COS3 1 g H ) 77 r. b

and
AA rt ArA= (1 + k) ()(-- (5.29)

These are the desired results. If ACp is not available, the ideal loading coefficient given

in Eq. (5.16) can be used and Eqs. (5.27) and (5.28) becomes

A77c 8v2 G 02 CO tan 1 - R r2 32 - +c k t (7A 8 G (-) ( tanf - tan/ 2 )3/2 ( ) (1 + k) ) (-77c 5 c c cos Pm H 71C rm b
(5.30)

and

AO _ 8V2 G2 C co  (tan /1 - tan #2 / Ar ,1 + k rt Ar
=- - (-) -( ) ) (-) ( ) (5.31)5 c c cos 3m H 77, rm b

The results show several interesting points. First, the decrease in efficiency, to-

tal pressure rise, and shaft power vary essentially linearly with clearance as shown in

Eqs. (5.27) , (5.28) and (5.29). In addition, recall that the first and second terms on

the right hand side of Eqs. (5.30) and (5.31) come , respectively, from the change in the

clearance loss and shaft power. Eq. (5.30) shows that the change in efficiency comes

mainly from the change in the clearance loss because 71, ~ 0(1) and the second term

on the right hand side of the equation is much less than the first term. The power

reduction leads to a substantial reduction of the pressure rise because the two terms on

the r.h.s. of Eq. (5.31) are of the same order of magnitude. As a result, the pressure

rise variation , AV/0, will be roughly twice as large as the efficiency variation, A77/71,.

Finally the change in efficiency and loading will be less for a compressor with a uniform

blade loading than the one with a linear loading.

It should be emphasized that the the results are obtained at constant flow coefficient.

Moreover, it is assumed that the losses other than the clearance loss remain constant
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as the clearance varies. This implies the results are to be applied at near design point

conditions. One then should be cautious if the results are applied away from the design

point where small change in the incidence angle due to the clearance variation may

result in a significant change in the losses. The blockage may also increase considerably

with clearance away from design point. The results shown in Eqs. (5.30) and (5.31) can

easily be extended to multistage compressors and will not be elaborated here.

5.2.5 Parametric Study of Clearance Loss

We now examine the parametric dependence of clearance loss. First an ideal total

pressure rise across a rotor, denoted by Apt, is written

Apt
= UmC,(tan g - tan p2) (5.32)P

where Um is the mid span wheel speed, and the pressure rise coefficient b can be written

as

= 2 rm (tan #1 - tan 32) (5.33)
rt

This combined with Eqs. (5.15) and (5.16) gives

COS1 m / 3/2 (5.34)
7 c cos c rm, H

This indicates that, for constant clearance-to-span ratio, a compressor with high

hub-to-tip ratio will have smaller loss in efficiency and pressure rise from flow leakage.

It also indicates that high solidity decreases the clearance loss. This may appear unrea-

sonable because high solidity means more blades and hence more opportunities for flow

leakage. However, it can be shown that the kinetic energy of a clearance flow decreases

as blade pitch becomes smaller.

Considering the total leakage flow, M/, and the associated total kinetic energy, Etotac,

one has from Eq. (5.10)

M• , NB v,
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and

Etotal NB v 3

,where NB is number of blades. Note that

1
NB -

g

and from Eq. (5.16), for constant inlet and exit flow angles,

one has

Mc (5.35)

and

Etotal ' / (5.36)

The analysis shows, although there is more flow leakage for a blade row with smaller

pitch, the associated kinetic energy loss is less. It should be pointed out that the analysis

assumed constant chord and flow angles as blade pitch varies.

5.2.6 Effects of Operating Point on Clearance Loss

Given geometric parameters such as r, g/c, and rl/rt, clearance loss will vary with

operating point. The flow coefficient, S,,, where minimum clearance loss takes place is

investigated here. The minimum clearance loss occurs when

d = 0 (5.37)

Differentiating Eq. (5.34) with respect to q shows that the minimum clearance loss 6

1 1 db d0m- +- + 3 tan3m = 0 (5.38)
d ido do

6One can show that this is the condition for minimum clearance loss in a compressor by taking the
second derivative of Eq. (5.34) with respect to 4.
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1
tanm = -(tan /1 + tan #2)2

(5.39)

Assuming constant exit flow angle, it can be shown that

d#/ 1 cos2 /m
d/3, 2 cos2 /3 1

(5.40)

Also from mid-span velocity diagram at the inlet as sketched in Fig. 5.3 one has

tan •, + tan a = 1 ( ) (5.41)

where al is the inlet absolute flow angle. Eq. (5.41) can be differentiated w.r.t. 0 to

give
dl _ C cos 2 ,1 rm

Putting this into Eq. (5.40) gives

dfm 1 cos2 #m rm
(-)

-• - 4) '

(5.42)

(5.43)

From Eqs. (5.38) and (5.43), the flow coefficient c,r for the minimum clearance loss is

given by the solution of

1 1 d 1
1 + 1( Icrcr 0 do

3 rm sin 2#m 0

4 rt Ocr

According to the analysis clearance loss will be smaller if design flow coefficients is

close to cr,. The optimum occurs when the two coefficients are identical.

5.2.7 Effects of Chordwise Loading Distribution on
ance Loss

As mentioned earlier, a blade row with a uniform (chordwise) blade loading distri-

bution will have smaller clearance loss than that with a linear one. We now examine

this a bit further.
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Experiments rh/rt Comments

1. Inoue et al. .50 .60 Isolated rotor
2. Wisler .41 .85 Four-stage compressor
3. Jefferson and Turner .86 .82 Eight-stage compressor
4. Spencer .25 .55 Pump

Table 5.1: Compressor experiments on effects of clearance on performance

The objective is to obtain a chordwise blade loading distribution that would have

a minimum clearance loss but under the constraint that total blade force remains con-

stant. The relevant mathematical problem is then to minimize the integral f Ap 3/2ds

under the constraint that J Ap(s)ds = constant. It can easily be shown from the cal-

culus of variations that a uniform loading distribution will have the minimum clearance

loss. Therefore the chordwise loading distribution in a turbomachine should be kept as

uniform as possible to alleviate the clearance loss.

5.2.8 Calculation Results and Discussions

We have derived the expressions for the change in compressor efficiency, total pres-

sure rise, and shaft power with clearance. Calculations have been carried out based on

the parameters at design flow coefficient in the experiment of Inoue et al. (1986,[24]),

Wisler (1984, [59]), Jefferson and Turner (1958, [25]), and Spencer (1956, [51]) (see

Table 5.1), and the results are discussed below.

First, detailed measurements for the clearance flow in an isolated rotor has been

carried out by Inoue et al. (1986,[24]). In the experiment the tip clearance was varied

from 0.5 mm to 5.0 mm by moving the casing. The performance of the rotor was

measured at five different clearances, i.e., 0.5 mm, 1.0 mm, 2.0 mm, 3.0 mm, and 5.0

nlm.
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In the calculation the baseline was taken to be the minimum clearance case (0.5

mm) at the design point, 0 = 0.50. The loss in performance with clearance were then

calculated from Eqs. (5.30) and (5.31) with G = 1. The computed reduction of efficiency

and loading coefficient with increasing clearance are plotted in Fig. 5.4 , which also

shows the experimental data.

Both the theory and the experiment indicate a linear relationship between the loss

and the clearance. The degradation of performance with clearance is substantial. One

percent increase in 7/H causes the efficiency to drop by about 1.3 % and the total

pressure rise by about 3 %. As point out earlier, the large decrease in total pressure

rise comes from the combination of an increase in the clearance loss and a decrease in

the shaft power.

Since the change of efficiency and loading vary almost linearly with clearance, it is

useful to define two slope parameters as follows:

A /H = (5.45)
Ac Ar/H

and

A0, / (5.46)
AAr/H

To calculate the slope parameters, the results from experiments and calculations

have been least-square fitted by straight lines, whose slopes are thus the slope param-

eters. The results from the theory and the experiment of Inoue et al. (1986,[24]) are

given in Table 5.2.

The theory has also been compared to other loss prediction correlations. As typical

of the above-discussed three different approaches, , we have compared our results with

the loss correlations of: 1) Rains (leakage flow approach), 2) Lakshminarayana (lifting

line approach), and 3) Robinson (area ratio approach). Computed efficiency variations

from the three correlations are shown in Fig. 5.5 as well as the present theory and the
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Experiments q Experiment Theory
A,7 AO Al, AO

1. Inoue et al. .50 1.32 2.86 1.34 3.10
2. Wisler .41 1.04 2.20 .98 2.45
3. Jefferson and Turner .86 3.10 4.90 2.63 4.07
4. Spencer .25 4.10 10.77 3.98 5.68

Table 5.2: Experimental and computed slope parameters

experimental data. The present theory and the Rains' correlation, which is similar to

the present theory, show good agreements with the data.

The second case examined is a four stage compressor experiment of Wisler (1984,

[59]) as indicated in Table 5.1. The compressor were tested at two values of clearances

to study the effect of clearance on the compressor overall performance.

The calculated decrease in efficiency and stage loading with clearance as well as

the measurements are shown in Fig. 5.6 and the slope parameters are given in Table

5.2. Again the baseline case was the smaller clearance at the design point. As in the

previous case there is a considerable performance penalty from flow leakage and the

total pressure rise variation is about twice as large as the efficiency variation.

The theory was also compared with the experimental results of an eight-stage com-

pressor, known as "Alice" (see Jefferson and Turner, 1958, [25]), as well as an axial-flow

propeller pump (Spencer, 1956, [51]); both at design conditions. Design flow coefficient

and hub-to-tip ratio of these two machines are given in Table 5.1 '. Fig. 5.7 shows the

computed and measured efficiency and pressure rise variation plotted against clearance

variation (Ar/H) for the Alice compressor. The influence of clearance on efficiency and

head coefficient in the axial pump are shown in Figs. 5.8 and 5.9. The slope parameters

of these two machines are given in Table 5.2. As in the previous two cases, there is

severe effect of clearance on the overall performance and the change in total pressure

rise is larger than the change in efficiency.

7The flow coefficient of Spencer pump, shown in Table 5.1, is the inlet and exit averaged flow
coefficient, because there is a considerable change in axial velocity due to a change in hub radius.
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The ratio of actual to predicted difference in efficiency and pressure rise versus

clearance for the four compressor cases are shown in Figure 5.10 and 5.11. The theory

agrees well with the experimental data for the two modern compressors (Inoue et al.

(1986,[24]) and Wilser (1984, [591)). There appears to be loss sources other than the

clearance loss in the Spencer pump because the agreement is poor. However, no enough

information is available from the experiment to assess the causes.

5.3 Turbine Tip Clearance Loss

5.3.1 Introduction

The reduction of efficiency and specific work of a turbine with increasing clearance

are investigated here. The analysis is similar to that for a compressor except the com-

pressibility effect in the through flow has to be included in calculating the blade loading

because main flow is often subsonic or transonic. Moreover, because blade thickness in

a turbine is generally larger than clearance, the clearance flow may reattach at blade

tip. The effects of the flow reattachment on leakage mass flow and losses are also ex-

amined. Calculation has been carried out at constant inlet to exit total pressure ratio

since most of the experimental data is obtained in this manner. The comparisons with

experiments are given and discussed.

5.3.2 Variation of Efficiency with Clearance

The efficiency of a turbine is defined as

L
7t = (5.47)

,where L is the shaft power, ih is the mass flow, htl is the total enthalpy at turbine inlet,

rt is the exit to inlet total pressure ratio, and 7 is the specific heat ratio. Following

the same analysis as for a compressor, the variation of efficiency with clearance for a

turbine under constant 7rt can be obtained. The derivation is given in Appendix K and
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only the result is shown here

Alt AW /8V AG cO (ArS W 5 B (-) (-) (5.48)
r77 W 5 B c H

where

A = {(tan 3 1 - a tan p 2)2 + [1 - X - a + (sec2 31- 2sec2 2 )]2 3 / 4

2W 1800 W/dir
B B t2 2 r2 (N/I l)

00/2

sin(O0 /2)

1 -1/

*yM12 COS2 31
and 00 is the tip camber angle, W is the specific work, q1 and 02 are the flow coefficients

at the inlet and exit, respectively, M1 is the inlet relative Mach number ,N is the

rotational speed, rpm, and 'cr is the squared ratio of critical velocity at turbine inlet

to critical velocity at U.S. standard sea-level temperature.

Two things should be pointed out here. First is that the exit flow angle, /2, is

defined positive for a compressor and negative for a turbine. Second is that in a turbine

the main flow is often subsonic or transonic so that compressibility has been taken into

account in deriving the blade loading. It can be shown that the parameter A reduces

to the incompressible form as M - 0, i.e.

A = (tan 81 - tan 2 ) 3/2

cos0"

It was assumed that the clearance flow is not re-attached at the blade tip. This

is believed to be true for most of the compressors because of relatively thin blades.

However, turbine blades normally have thickness larger than the clearance and the

clearance flow can reattach at the blade tip as discussed by Moore and Tilton (1988,

[39]). The reattachment of a clearance flow inside the gap can result in a larger clearance

loss, as discussed in Appendix L.
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Experiments No. of rh/rt 1/ irt No. of r's An
stages tested Exp Cal*

1 Kofskey and 2 .75 1.23 2 3.78 1.34
Nusbaum (1968)

2 Haas and Kofskey 1 .84 2.77 Many 1.94 1.75
(1979)

3 Szanca et al. 1 .85 1.80 3 1.57 1.43
(1974)

4 Holeski and 1 .60 1.48 4 2.94 1.84
Futral (1969)

Table 5.3: Tip clearance losses in Turbines (Experiments and Calculations)

5.3.3 Calculation Results and Discussions

Calculation has been carried out based on the parameters of four different turbines:

1) Kofskey and Nusbaum (1968, [28]), 2) Haas and Kofskey (1979, [18]), 3) Szanca et

al. (1974, [55]), and 4) Holeski and Futral (1969, [21]). The baseline case was again

the smallest clearance. The calculation results are given in Table 5.3 as well as in Figs.

5.12 to 5.15. Also shown is the experimental data for comparisons.

As can be seen from the figures, there appears to be a linear variation in the ef-

ficiency with clearance, similar to a compressor. The theory compares well with the

measurements of Haas and Kofskey (1979, [18]), and Szanca et al. (1974, [55]). How-
ever, comparison is not as good for the experiment of of Kofskey and Nusbaum (1968,

[28]), and Holeski and Futral (1969, [21]). One may suspect this is due to the viscous

effect because turbine pressure ratio is much higher in the former two experiments (1.80

and 2.77) than in the latter two (1.23 and 1.48). In order to examined this effect as well

as the effect due to wall motion, we have applied Eqs. (B.6) and (4.12) to the turbine

experiments and the results are tabulated in Table 5.4. Note that, in the experiment

of Haas and Kofskey (1979, [18]), there are more than ten clearances examined, from
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about two to five percent of passage height. For simplicity and without changing the

results, we have only chosen four representative clearances, i.e. r/H = 2 %, 3 %, 4 %,

and 5 %.

The result show that, for the experiment of Kofskey and Nusbaum (1968, [28]), the

velocities due to the relative wall motion are comparable to the clearance flow velocities

because of very low Reynolds number (about 8900). The wall motion can thus play

a role in the endwall flow. This is regarded as one possible reason that the theory

compares poorly with the experiment.

For the experiment of Holeski and Futral (1969, [21]), the calculation results indicate

that the effects of viscosity and relative wall motion are not significant and therefore

the error in the efficiency prediction is not due to these effects. However, we note this

turbine rotor has a relative low hub-to-tip radius ratio (0.6) and a consequent large

twist. Therefore, the midspan conditions may not reflect the tip section performance.

In particular, the inlet flow angle varies from positive 57.6 degrees at hub, to negative

2 degrees at mid-span, and to negative 55.4 degrees at tip, a total 113 degrees change

in the inlet flow angle. The use of mid-span conditions to calculate the clearance loss

is thus not appropriate here. We have calculated the efficiency loss using tip conditions

and the result, as shown in Fig. 5.15, gives a better comparison with the data.

We also note that, for the experiments of Haas and Kofskey (1979, [18]), and Szanca

et al. (1974,[55]), viscous effects and relative wall motion are found to be insignificant

from the analysis. Also the hub-to-tip radius ratios are relatively high (0.84 and 0.85).

All of these appear to contribute to the good comparisons.

Also shown in the table is the cross flow Mach number, M,, calculated from Eq. (G.8).

The results indicate that the compressibility effect on the clearance flow is not significant

for the cases examined.

As a summary, we plotted the ratio of actual to predicted difference in turbine

efficiency versus clearance for the four experiments and the results are given in Figure

5.16. The theory compares well with the data covering a large range of stage pressure
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Table 5.4: Effects of viscosity and wall motion in various experiments

ratio, hub-to-tip radius ratios, and clearances, and thus provides a useful means to

assess the clearance losses in both compressors and turbines.

5.4 Summary and Conclusions

Based on the flow model and the assumption that the kinetic energy associated

with the clearance flow is lost through mixing, analytical expressions have been derived

for the decrease in efficiency, total pressure rise, and shaft power due to clearance for

a compressor. Calculations have been carried out based on the parameters in four

different compressor experiments. The results also show that the loss increases almost

linearly with clearance and the fractional change in compressor total pressure rise is

about twice as large the efficiency variation.

Analysis has also been carried out to show that the clearance loss will be smaller if

the chordwise blade loading is kept as uniform as possible. An expression is also derived

for the flow coefficient at which clearance losses will be minimum for a given machine.

Expressions for the reduction of efficiency and specific work of a turbine due to
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Experiments r/H(%) 6*/7 (%) v,/ %) Mc rh/rt
Kofskey and Nusbaum 1.06 20.7 87.4 .17 .75
Kofskey and Nusbaum 2.47 8.9 51.4 .17 .75
Haas and Kofskey 2.0 14.0 19.5 .38 .84
Haas and Kofskey 3.0 9.3 3.6 .38 .84
Haas and Kofskey 4.0 7.0 0.4 .38 .84
Haas and Kofskey 5.0 5.6 0.0 .38 .84
Szanca et al. 2.3 7.7 1.2 .38 .85
Szanca et al. 3.3 5.3 0.0 .38 .85
Szanca et al. 6.7 2.6 0.0 .38 .85
Holeski and Futral 1.2 9.7 53.1 .31 .6
Holeski and Futral 3.1 3.8 0.9 .31 .6
Holeski and Futral 5.0 2.3 0.0 .31 .6
Holeski and Futral 8.0 1.5 0.0 .31 .6



clearance have also been derived. Calculations carried out agrees with experimental

results. Because of relative thick blades, the clearance flow in a turbine can reattach at

the blade tip and a simple analysis has been carried out to show that leakage flow and

clearance losses will be higher if the flow reattachment occurs.
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Figure 5.1: Clearance flow on a cross flow plane
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Figure 5.2: Schematic of blade tip unloading
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Figure 5.3: Mid-span velocity diagram at a rotor inlet
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Compressor rotor (0 = .5)

- Computed

- Computed

AT/H (%)

Figure 5.4: Effects of clearance on rotor efficiency and total pressure rise (Solid lines -
Calculation; Symbols - Experiment (Inoue et al., 1985))
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Figure 5.5: Variation of efficiency with clearance for different correlations. (Solid lines

- Predictions; Symbols - Experiment (Inoue et al., 1985))
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Four-stage compressor (0 = .41)
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5.6: Effects of clearance on compressor efficiency and total pressure rise (Solid
Calculation; Symbols - Experiment (Wisler, 1984))
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Eight-stage compressor (0 = .86)
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Figure 5.7: Effects of increased clearance on compressor efficiency and pressure rise
(Solid lines- Calculations; Symbols - Experiment (Jefferson and Turner, 1958))
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Axial-flow pump (
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Figure 5.8: Effects of clearance on pump efficiency (Solid line - Calculation; Symbols -
Experiment (Spencer, 1956))
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Axial-flow pump (€ = .25)
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Figure 5.9: Effects of clearance on pump head
Symbols - Experiment (Spencer, 1956))
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Figure 5.10: The ratio of actual to predicted difference in compressor efficiency versus
clearance
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Figure 5.11: The ratio of actual to predicted difference in compressor pressure rise
versus clearance
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Two-stage turbine, pressure ratio = 1.23

AT/H (%)

Figure 5.12: Effects of increased clearance on turbine efficiency (Solid line - Calculation;
Symbol - Experiment (Kofskey and Nusbaum, 1968))
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One-stage turbine, pressure ratio = 2.77

r/H (%)

Figure 5.13: Effects of increased clearance on turbine efficiency (Solid line - Calculation;
Symbols - Experiment (Haas and Kofskey, 1979))
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One-stage turbine, pressure ratio = 1.80

Ar/H (%)

Figure 5.14: Effects of increased clearance on turbine efficiency (Solid line - Calculation;

Symbols - Experiment (Szanca et al., 1974))
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One-stage turbine, pressure ratio = 1.48

AT/H (%)

Figure 5.15: Effects of increased clearance on turbine efficiency (Solid line - Calculations;

Symbols - Experiment (Holeski and Futral, 1968))
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Chapter 6

Summary and Conclusions

A new approach, based on an inviscid slender body approximation, has been pre-

sented for analyzing turbomachinery tip clearance flows. In developing the approach,

focus has been on the mechanism and structure of the vorticity field in the blade pas-

sage. This enables one to obtain a simple but useful description of the clearance flow

field. The analysis requires only mean blade flow angles and camber line as inputs, and

the calculations agree with a wide range of experimental data in regard to essential flow

features as well as overall performance.

The conclusions of this thesis are given below. They can be divided into three areas:

1) flow features, 2) tip clearance loss in a turbomachine, and 3) additional results.

Recommendations are also made for future work in the area of turbomachinery tip

clearance flow.

6.1 Flow Features

* There exists a similarity parameter, t*, defined as -t A, for clearance flows.

Two clearance flows will be similar if they correspond to the same t*.

* Following from this similarity, there is a generalized trajectory for the tip clearance

vortex, which can be applied to any compressor blading.
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* For a given machine the (x, 0) trajectory of the tip vortex core in the blade passage

is, to a good approximation, independent of the magnitude of the tip clearance.

* For large t*, the center of the tip clearance vortex approaches a constant radial

location.

* The clearance flow is driven by the blade pressure difference away form the clear-

ance region.

* The endwall static pressure distribution is modified by presence of the tip clear-

ance vortex and the minimum pressure decreases with increase in tip clearance.

* A change in the direction of the vortex trajectory occurs at the blade row trailing

edge.

* The centroid of vorticity in the vortex sheet shed from the blade tip remains at a

constant radial position downstream of the trailing.

Physical explanations are given for these flow features. Calculations carried out

based on the similarity analysis agree very well with experimental results.

6.2 Tip Clearance Losses in a Turbomachine

The present flow model enables one to compute the blade tip unloading and the

kinetic energy in the crossflow without any empiricism. If the assumption is made

that the crossflow kinetic energy cannot be recoverable as useful work, then analytical

expressions for the decrease in overall performance (efficiency, pressure rise, and work)

due to clearance can be obtained. This is the first time that a predictive method

for calculating the change in compressor performance other than the efficiency due to

clearance has been presented. Major conclusions from the investigation on the clearance

losses are
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* Clearance losses (efficiency and pressure rise) vary almost linearly with clearance.

* Decrease in compressor total pressure rise due to clearance is larger than (roughly

twice) the decrease in efficiency.

* Computed results using the present prediction scheme agree with available exper-

imental data. This implies that crossflow kinetic energy associated with the tip

clearance vortex gives a good measure of clearance losses.

6.3 Additional Results

The thesis also presents the following results:

* A simple analysis is presented to assess whether the clearance flow is inviscid.

The result indicates that the clearance flow can be viewed as inviscid for most of

the turbomachinery applications.

* The secondary flow in compressor rotors is in general small compared to the

clearance flow.

* The cross-flow due to clearance in a compressor may be treated as incompressible

even if the relative Mach number is transonic.

6.4 Recommendations

This study shows that emphasis on vortical structures associated with clearance is

well worthwhile in that such an approach gives considerable physical insight into the

overall flow features. The resulting model also appears to be useful in predicting losses

due to clearance. This suggests that the focus on vortical structures in clearance flows

is a fruitful line of endeavor. Because the clearance flow has a significant influence on

compressor performance and stall margin, the role it plays on: 1) limiting compressor

pressure rise capability, and 2) setting stall inception, should further be investigated,

with emphasis on the vortical structures.
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We believe that the area increase of the clearance vortex as it passes through the

blade passage may be the source of the blockage that limits the pressure rise of a

compressor. A preliminary study on this has been carried out (discussed in Appendix

M), using the simple model of a Rankine vortex in a diffuser. Calculations showed that

the pressure rise characteristic of the diffuser could peak over as a function of diffuser

area due to the rapid increase of the vortex area. This may indicate that the clearance

vortical structures play a key role in the compressor pressure rise capability. It would

be very useful to carry out an experiment based on the simple model; an experiment

to examine vortex/main stream pressure gradient interaction. This would help one to

understand parametric trends and flow features in a compressor since major elements

in the diffuser are also present in a compressor.

Numerical computations have been shown to be useful in bringing out important

features of the clearance flow (e.g. Crook, 1989, [9]; Adamczyk et al, 1989, [2]; Adam-

czyk et al., 1990, [1]; Storer and Cumpsty, 1990, [53]). Another avenue of research that

should be pursued is using this approach to examine how the vortical structures grow

in size as compressor loading increases and its influence on the compressor presure rise.

This could be done by using a Navier-Stokes solver to analyze the flow in a compressor

operating along a speed line from design point to peak pressure rise point. Such an

approach would shed some light on the source of blockage that limits the pressure rise.

Recent computations of Adamczyk imply that it is the area increase of the clearance

vortex as it passes though the blade row, not the endwall boundary layer, that is the

source of the blockage with stall.

Finally, we note that the current status of computer hardware and numerical schemes

for turbomachinery flow does not allow one to predict detailed flow features associated

with stall onset and compressor operation in rotating stall. For instance, rotating stall

often occurs on a length scale much larger than a blade pitch while current calculations

are confined to flow in a single blade passage. It would thus also be desirable to develop

a means for predicting the stability of the steady, three-dimensional flow (based on
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numerical computation results) at compressor operating point near the peak pressure

rise to address fluid dynamical issues associated with the stall inception. One could then

examine the stability of the clearance vortex at the stall inception to gain an insight

into links between the compressor stall and (clearance) vortex breakdown.
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Appendix A

The Equations of Motion for
Clearance Flows

For inviscid, three-dimensional, steady, incompressible flows, the equations of mass

and momentum conservations in curvilinear coordinates are given, respectively, by

R au Ov v Ow
R+yOs y R +y Oz

R Ou Ou Ou uv R 1 Op715 + vT + w +
R+y- s Oy W z R+y R+ypOs

R Ov Ov Ov u 2  1 ap
- u--·c- + v·- + w-- - ---- =--

R+y as Ty Oz R+y p dy
R Ow Ow Ow 1 1p

--- u-- + v- + w- = --
R+y Us + y + z pz

where s is measured along th camber, y is measured normal to th camber, and z is

measure along the span. R(s) is the radius of curvature of a blade camber line.

The streamwise component of velocity u can be written as

u(s, y, z) = W(s) + u'(s, y, z),

where It(s) is the through flow velocity. As discussed in chapter two, we assumed that

u'(s, y, z) < 1•ii(s)

149



the governing equations then become

R du-i Ov v Ow
R +ds d 9y R +y Oz

R du- Ou' au' iv R 1 Op

R +y ds ay &z R+y R+yp Os

R _Ov + 9v Ov U2 1ap

R + y •s Oy + z R+y p py

R Ow Ow 9w 1 apn-- + v + w-5- = -
R+y as By 8z p z

For the clearance flow, the characteristic length in the s direction is the chord length

c. We take that in the y and z directions at some multiple of the clearance, r. In

compressor and fan applications, r/c is of the order 10-2, and the chord is generally

much less than the radius of curvature R(s). The dominant terms in the equations of

motion are thus

Bv Ow+ = 0 (A.1)
ay az

Ov Ov Ov 1 p
+ v + w- = --- (A.2)Tt Ty Tz p Oy

Ow Ow Ow 1 ap
-t V + w-- = p z (A.3)

Ud- *- (A.4)
Uds p as

where we have made the substitution ds = idt. Equations (A.1), (A.2), and (A.3)

are the governing equations of a two-dimensional unsteady (cross) flow, and Eq. (A.4)

is the equation for the through flow. The clearance flow can then be decoupled into

cross-flow and through flow.
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Appendix B

Inviscid Nature of Clearance Flows

B.1 Previous Studies and Background

Clearance flow has been examined by many investigators and the results have indi-

cated that the clearance flow may be regarded as primarily inviscid, inside and outside

the gap except for very tight clearance. Rains (1954, [43]), based on his experimental

results, suggested a simple correlation to predict the importance of viscous forces in

the clearance flow and concludes that "the frictional resistance to flow through the tip

clearance was found to be small for the dimensions that are ordinarily mechanically

feasible."

Booth, Dodge , and Hepworth (1982, [7]) calculated the leakage mass flow in a

turbine using a slow-flow approximation that is similar to thin-film lubrication theory.

The predicted leakage flow was approximately half of the turbine through flow for one

percent clearance-to-chord ratio, which is not realistic. The leakage flow was then

assumed inviscid and calculations showed that the leakage flow was approximately two

percent of the through flow. Therefore, they concluded that the leakage flow could be

regarded as inviscid. To examine this further, experiments were conducted on a series

of three water flow rigs and the results supported the conclusion.

The results of Sjolander and Amrud (1986, [49]), and Moore and Tilton (1988, [39])

on turbine cascades, and Storer and Cumpsty (1990, [53]) on a compressor cascade have
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also supported the inviscid nature of the clearance flow.

We have assessed the inviscid nature of the clearance using a simple analysis based

on the relative length scales of clearance and boundary layer thickness; this is described

in the following section.

B.2 Simple Analysis

One can argue that viscous effects will not be important if the thickness of the

tangential boundary layer in the clearance region, as shown by the shaded region in

Figure B.1, is much smaller than the clearance. As concluded by many investigators

(see Senoo, 1958, [46]; Belik, 1977, [5]; Graham, 1985, [17]; Moore and Tilton, 1988,

[39]), the boundary layer in the gap is laminar in nature. A conservative estimate for the

thickness of the boundary layer in the gap region is thus approximately the thickness

of a laminar boundary layer over a flat plate. (The favorable pressure gradient in the

gap region will tend to make the boundary layer thinner than that for a flat plate.)

Based on this approximation, the displacement thickness, at a distance y from the gap

entrance, can be written (to one significant figure) as:

* = 2 r (B.1)

where vc is the clearance flow velocity. At the gap exit, the displacement thickness is

6* = 21 -h- (B.2)
V v.

where h is the blade thickness. This can be written as

* 2 Ivh v V1 rc 2h
6* v- = 2 ,- - (B.3)

We define a blade loading coefficient as

ap
A =V/2 (B.4)P V12/2
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where Ap is the pressure difference across blade and V1 is the inlet relative velocity.

From the above definition and Eq. (5.11), we have

=V- Ac 
(B.5)

V1  2

Eq. (B.3) then becomes

* 2 2 c h
_ - 2C - - (B.6)

The clearance flow is mainly inviscid if

2 2ch
<c 1 (B.7)

More precisely, the viscous effects will not be significant if the boundary layer thickness

is, say, an order of magnitude less than the clearance,

2 2 c h
Inviscid : - < 0.1 (B.8)

and the viscous effects will be dominant if the two are of the same order of magnitudes,

i.e.
2 2 c h _

Viscous :- 1 (B.9)

For a modern compressor, Re 5 - 106, AC, _ .5, h/c ~ .05, and the calculated

5*/7 from Eq. (B.7) is roughly ten percent for a clearance to chord ratio of one percent.

The clearance flow in a compressor can be regarded as mainly inviscid.

We now compare our results to Rains' correlation. Based on his experimental stud-

ies, Rains (1954, [43]) presented a semi-empirical correlation criterion for the effects of

viscosity on clearance flow in a turbomachine. This can be written as:

1 ch
Inviscid: - - .09

Re cr(

Viscous : - > .41

Applying Eqs. (B.8) and (B.9) based on the parameters used in the experiment, the

results were found to be
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1 ch
Inviscid : - <-K .03

lch
Viscous : - > .26

These agree with the experimental results of Rains, although the former is bit more

conservative than the latter.

In summary, a simple analysis has been carried out to assess whether viscous effects

are important in the clearance flow. The results show that the clearance flow is basically

inviscid and this is supported by many other investigations. The theory also gives similar

results to those of Rains, which is a special case of the analysis.
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Figure B.1: Schematic of a boundary layer in clearance region
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Appendix C

Radial Motion of Tip Vortex
Center for Large t*

We now examine the radial motion of the center of a clearance vortex inside blade

passage when t* > 1. Consider the clearance vortex shed from blade tip as illustration

in Fig. C.1. Also shown in the figure is the image of the clearance vortex needed to

satisfy the kinematic boundary conditions at the wall. The magnitude of Kelvin impulse

of this vortex pair plus the bound vortex sheet, i.e. the blade, is given by:

I = 2p 7 z dz + 2p 7 z de (C.1)

where H is passage height, y is strength of the vortex sheets, and e is the intrinsic

coordinate along the shed vortex sheet. Eq. (C.1) can be written as

I = 2p(rb + r. z,) (C.2)

where rb and r, are, respectively, the circulation of the bound and shed vortex sheet,

and zb, and z, are, respectively, the centroid of vorticity of the bound and shed vortex

sheet. Note that z, = H - z,.

Since the rate of change of the Kelvin impulse is equal to the force exerted on the

flow, differentiating Eq. (C.2) with respect to time t gives:

d(rbZb) d(r. z.) Fb (C.3)+ (C.3)dt dt p

where Fb is the total force on the blade (per unit chord).
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The radial motion of the shed vortex centroid (z,) for large t* is now examined. For

t* > 1, Fb and Zb can be treated as constants so that Eq. (C.3) becomes:

d(r,z, ) Fb
S - (C.4)dt p

and also from Eq. (2.37)

p = (y-w)i, = Const. (C.5)
where - is the strength of the bound vortex sheet and W is the average velocity, both

evaluated at blade tip. In addition, the rate of the change of the shed circulation

remains constant for t* > 1, i.e.

dr

Integrating this gives

. = =(-yw)tip t + CO (C.7)

,where C, is an integration constant. Substituting Eqs. (C.6) and (C.7) into Eq. (C.4)

one has

z, + [t + fb (C.8)
p(7(It)tip

From Eqs. (5.19) , (5.20), (5.23), and (C.5), it is found that

dzsz, + (t + C2) = H - (1 + k)-r (C.9)

where, for simplicity, we have made the following substitution:

C CC

We note that, under the approximations made in getting Eqs. (C.9), the result will be

only qualitative rather than quantitative. However, it is sufficient for the purpose of

this study. Eq. (C.9), a simple first order differential equation, can easily be solved and

the result is found to be
C3z~ = 1 + k + C (C.10)

157t* +
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where C3 andC 4 are constants. For t* > 1, we have

z ~ Const. (C.11)

This is the desired result, which indicates that the centroid of the shed vortex sheet

stays (approximately) at a constant radial location when t* > 1. This conclusion is

also true for the centroid of the vortex core since the two have the same functional

dependence on time t*.
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Figure C.1: Illustration of a vortex sheet and its image in a blade passage
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Appendix D

Convection Velocity of A Point
Vortex - Routh's Correction

Consider a point vortex located at to in the physical plane and Eo in the transformed

plane. The conformal transformation can be written as

(D.1)

The induced (complex) velocity at the vortex (0o) in the physical plane is

dF(4)
Q(Oo)= [ -d4t

iro
27 (q - 0o)

(D.2)

, evaluated at •i = 40, where F is the complex potential of the flow. In = plane, the

complex potential can be written as

iro
F(E) = F'(E) + - lIn(= - Eo)

2x
(D.3)

, where F' is complex potential of the flow excluding the point vortex. Differentiating

the complex potential, one has

(D.4)dF(4O) dF(E) dE
db dE dk

From Eqs. (D.3) and (D.4), one has

dF(4) dF'(E) iro dE
r+

2 (, (- o) de
(D.5)
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Since the vortex induced no velocity at its center, the complex velocity of the vortex in

the transformed plane is

dF'(E)
Q(o) = d'(D.6)

Substituting Eqs. (D.5) and (D.6) into (D.2), one has

dE iFo 1 dE 1

Q(o) = Q() + - _ ) (D.7)

evaluated at (4 = •o and E = Eo The first term on the right hand side of Eq. (D.7)

represents a direct transformation of the complex velocity of a vortex in the - (trans-

formed) plane to the 4 (physical) plane and the second term is a correction, called

Routh's rule, to account for singular behavior of the velocity of a point vortex due to

conformal mapping. To calculate the correction, one can expand

dE 1 d2E
- (4 - o)+ ( -4+o)2 (D.8)d- 2 dQ•2

The correction term is then

iro d2E dE
Sd /  (D.9)4ir dC2 d4
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Appendix E

Leakage Flow Approach

E.1 Vortex Trajectory and Similarity Scaling

Clearance flow was examined by Rains (1954, [43]) based on a leakage flow approach,

which is discussed in the text. We now use this approach to examine the behavior of

clearance flow and compare the results to the vortex calculation.

It is assumed that main stream velocities on suction side and pressure side of a

blade are given by V1 + u' and V1 - u', respectively, as shown in the upper part of

Fig. E.1, where V1 is the relative inlet velocity and u' is the velocity perturbation in

the streamwise direction. Because clearance flow induces a velocity vt' normal to the

pressure side velocity, V1 - u', resultant velocity of the clearance flow is thus the vector

sum of these two velocities. On the suction side, because total and static pressure in

the clearance flow are identical to those in the main stream, the clearance flow velocity

has a magnitude equal to V1 + u' and an angle 3 with the main stream, which is shown

in the lower part of the figure. Rains (1954, [431) showed

tan V (E.1)
2 2 V,

1Note that vt is the jet velocity and is different from ve, which is the tangential component of cross
flow velocity averaged over clearance.
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A vortex sheet is thus shed off at the tip. The convection velocity of the vortex

sheet, denoted by Vm, is the vector mean velocity of the clearance flow velocity and the

suction side velocity as shown in the lower part of the figure. At time t the vortex sheet

thus moves a distance equal to Vm sin (f/2) t normal to the blade, and the centroid

of the vortex sheet thus moves half of that distance, i.e.

1 f
y, = V, sin - t (E.2)2 2

which can also be written as:
)t

•= - t (E.3)
4

Because vt = 2Ap/p, one has

y , = t (E.4)
Y 4 V  p

Dividing this by clearance r, it can be shown that

y= = - t~' 0.354 t* (E.5)

Two flow features are noted from the analysis. First the vortex trajectory does not

vary with clearance as indicated in Eq. (E.4), as concluded from the vortex calculation.

In addition, as shown in Eq. (E.5), there exists a similarity parameter t* for the clearance

flow and the non-dimensional vortex location y* depends only this similarity parameter,

as concluded from the similarity analysis in Chapter 2. The leakage flow analysis also

shows that the ratio of y*/t* is about .354, which agrees well with the value (.365) from

the vortex calculation.

Downstream of the trailing edge, there is no vorticity shed off at the tip and the
Vt

vortex sheet and its centroid thus move with the same velocity . Since the cross-flow
2

plane velocity of the centroid downstream of the trailing edge is twice as much as that

in blade passage, there will be a change in the vortex core trajectory at the trailing

edge, which agrees with the results in Chapter 3.
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E.2 Leakage Flow Rate

Clearance mass flow mh, is given by Eq. (5.10)

,ne = p vC 7 (E.6)

where vc is the tangential component of cross flow velocity averaged over clearance.

Based on the leakage flow approach, it can be shown that

vc = P - p (E.7)

7r
where ( is the contraction factor equal to ---- , pi is the static pressure on the pressure

x+2

surface away from tip, and p2 is the static pressure at the vena contracta, which are

shown in Fig. E.2, so that

v_ - 0.86 P1 - P2 (E.8)
P

From the vortex calculation,
p - P3vC e_ 1.0 (E.9)

P

where p3 is the static pressure on the suction surface away from the tip as shown in the

figure.
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Figure E.1: Schematic of clearance flow (Leakage flow model)
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Figure E.2: Illustration of a clearance jet in a cross flow plane
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Appendix F

Radial Motion of Tip Vortex After
Trailing Edge

Consider a number of point vortices moving by their own induced velocities in a

channel as shown in Fig. F.1. This can be represented by a vortex system and its

appropriate images as given in Fig. F.2. Specifying the situation to be periodic with

period 2H, we examine only the vortices which lie between z = +H.

The Kelvin impulse of a vortex pair is given by

Ii = pridi (F.1)

where ri is the circulation of the point vortex and di is the distance between the centers

of the vortex pair. The impulse of the N vortex pairs between z = ±H is:

N

I= i p r d, (F.2)
i=1

There is no force on the vortices so that the total impulse is constant. Also in the region

downstream of the trailing edge, the total circulation (of the vortices between z = o

and z = H) is conserved, i.e.

N

r = r r, = Cont. (F.3)
i=1

Combining Eq. (F.2) and (F.3), we have

F = Const. = d (F.4)
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Since d = 2z,, the centroid of the vortices , zC, remains at a fixed radial distance from

the wall.

The conclusion also holds for a vortex sheet. The derivation is similar and the result

fEna z y dEfd = Const.
f - 7 de

(F.5)

where 7 = strength of the vortex sheet, and c is the intrinsic coordinate along the sheet.
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Figure F.1: A number of vortices in a channel
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Figure F.2: Vortices and their images
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Appendix G

Cross Flow Plane Mach Number

We now examine the cross flow Mach number as a means of assessing whether

compressibility effect would be expected to be important. Consider the clearance flow

of a rotor with mid-span relative inlet velocity, V1, and Mach number, M1 . The cross

flow Mach number, denoted by M,, is

MC = (G.1)
a2

where vc is the cross-flow velocity in the clearance and a is the speed of sound. This

can be written
_2 V2 2aVM? =a (G.2)

M1 al ac

From conservation of energy,

7-1 -1
a2 + 1-[(Vi + u') 2 + v2] = a + ~~ V '  (G.3)

where u' is the velocity perturbation in the streamwise direction and - is the specific

heat ratio. The above equation can be written as:
2  -1 u' 2

=- 1- VMzf() (G.4)
a, 2 1

From Eqs. (G.2) and (G.4), the cross flow Mach number is found to be, after neglecting

higher order terms,

M = EM 2  (G.5)
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For the clearance flow, one has, from Eq. (5.11),

= v2 (G.6)
P

,where Ap is the mid-span blade loading. Note the blade loading coefficient is defined

as

ACP = (G.7)p V12/2
From Eqs. (G.5), and (G.6) and (G.7), the clearance flow Mach number becomes:

Mc P )1/2  (G.8)
M - 2

For a subsonic compressor, ACp is in general less than 0.5 and M1 is less than unity so

that Mc < 0.5. A clearance flow can be treated as incompressible.

The cross flow Mach number in a supersonic stage is also of interest based on data

from a highly loaded transonic stage (see Sulam, Keenan, and Flynn, [54]). Tip speed

of the rotor is 1600 ft/sec with constant spanwise total pressure ratio of 2.0. Relative

inlet Mach numbers are 1.6 at the tip and supersonic over nearly the entire span.

We have calculated ACp based on the experimental results and the cross flow Mach

numbers from Eq. (G.8). The results showed that the cross-flow Mach numbers were

less than 0.57 from design point up to before stall at design speed. This indicates

that the compressibility effect may not be important even for transonic and supersonic

compressors.

To study the compressibility effect a bit further, the cross flow Mach number is

related to the stage pressure ratio because it is more available than the blade loading

coefficient ACp. First, define a pressure rise coefficient of a rotor as:

C* = p - (G.9)pV12 /2

where pi and P2 are, respectively, the inlet and exit static pressure of the rotor.

Eq. (G.9) can be written as

P2 = 1 + 7  C* (G.10)
P 1 2
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Assume the same pressure ratio holds for the stator, the stage static pressure ratio is

pi 2

,where p3 is the stator exit static pressure. The stage total pressure ratio, 7r,, is

Pt3 P3 1 + -1 M1 abs )/(1))

Pti P1 1 + 2 3abs

where Mlaba is the rotor inlet absolute Mach number and M3ab, is the stator exit

absolute Mach number. For repeating stages, Mlabs -- M3abs, it then follows that

p3 (G.13)
Pl

Note that even when, say, Mlab, = 0.6 and M3ab, = 0.5, the error in Eq. (G.13) is less

then 10 %. Substituting Eq. (G.11) into (G.13) gives

, = (1 + • *)2 (G.14)

or, after rearranging,

S= 2 (- - 1) (G.15)

From Eqs. (G.8) and (G.15) the cross flow Mach number takes the following form:

M • - 1 ACp (G.16)

For most modern compressors, C, lies between 0.3 and .45 (Wisler, 1985, [60]). There-

fore AC, and C* are about the same values and Eq. (G.16) can be simplified as:

Mf - 1 (G.17)

The cross flow Mach number can be computed once the stage pressure is known.

Calculation has been carried out for both fan and core compressor stages of current air-

craft engines such as J79, E3 , F100, etc. The computed clearance flow Mach numbers

are shown in Fig. G.1 for fans and Fig. G.2 for compressors. From the figures, the

computed clearance flow Mach numbers are less than 0.5 for fans and 0.4 for compres-

sors. The results thus indicate that the compressibility effect will not be significant in

both fans and compressors.
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Figure G.1: Computed clearance flow Mach number - Fans
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Appendix H

Effects of Secondary Flow

Consider the upstream vorticity due to inlet casing boundary layer as shown in

Figure H.1. The exit streamwise vorticity w,2 consists of two parts. The first part is

from the inlet streamwise vorticity W,2 and is given by

- V2  cos(f80)(
s2 --W.• V = -1 co() (H.1)

The second part is from turning of the inlet normal vorticity wl and is given approxi-

mately by

w" = 200 wg (H.2)

,where 00 is camber angle. The total streamwise vorticity at the exit is thus given by

' " o(0) )(200° - i (H(3))
W,2 = W,2 + w"2 = W cos() (20 - s()) (H.3)

and the governing equation of the secondary flow at the exit is

V2Ip = - w,2 (H.4)

where T is the stream function. This equation was solved by a finite-difference analogue

with a well known successive over relaxation (SOR) scheme. The details of the method

is then omitted here.
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Appendix I

Midspan Flow Perturbations due
to Clearance

The effect of clearance on the spanwise mass flow redistribution is examined. An

analysis based on lifting line consideration has been carried out. It shows that, away

from the clearance region, the flow perturbations due to clearance are small and hence

the flow coefficient and the loss at midspan can be treated as constant, i.e. indepentent

of clearance.

1.1 Lifting Line Consideration

As stated, we examine the flow perturbations using a lifting line approach. First

consider a cascade of blades with span b, pitch s circulation P, and tip clearance r,

replaced by a series of bound and trailing tip vortices. The perturbations to the flow

along the lifting lines for this vortex system, shown in Fig. 1.1, was examined by

Lakshminarayana and Horlock (1965, [30]) and the result is

r coth 2(7rz/s) - 1

4s coth(wrz/s) + coth(27rr/s)

where AV is the velocity perturbation and z is the spanwise distance measured from

blade tip. The ratio of the velocity perturbation inside clearance region, say z = -7,,
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to that at mid span, say z = s/2, can be found from Eq. (I.1) to be

AVmidspan coth2(ir/2) - 1 coth(-irr/s) + coth(27rr/s)
() (I.2)

AVendwall coth 2 ( rr/s) - 1 coth(7r/2) + coth(2irr/s)

Using Taylor's expansion, after some algebra, one has

AVmid,pan sinh2 (7rr/s) (1.3)
AV,endall sinh 2 (r /2)

i.e.

~( ) (1.4)
AVendwall (

Since r/s is of order 10- 2 , one can thus conclude that the mass flow (and the loss) at

midspan can be treated as constant and independent of clearance.

1.2 Actuator Disc Approximation

It is of interest to see what happens to the previous results if s -+ 0, i.e. in the limit

of actuator disc approximation. In this approximation, the number of blades increases

so that s -+ 0, with c/s = const. The lift lines stack to form vortex sheets with strength

y. The velocity perturbation in the endwall region is then given by

AV = 7, Y " -
8

so the axial velocity perturbation in the endwall region is of order

(ACW)endwall F -

For constant mass flow, the change in averaged axial velocity outside the gap is

Fsr
(ACr.)midspan s

s bs

i.e.
rr

(ACW)midspan Fsb

so that

AVmidspan 7 7I I ~ ( g) ~ (-) (1.5)AVendwall b 1
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which is different from the previous result. Note that F - c C, one has

(AC )midspan C
_( ) (1.6)Om ab6
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To infinity

To infinity

Figure 1.1: Schematic of vortex system in a casacde (from Lakshminarayana and Horlock

(1965))
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Appendix J

Energy and Momentum Views of
Clearance Losses

Consider free stream and leakage flow on the suction side of a blade as shown in

Fig. J.1. With clearance, the flow in the clearance region has velocity V,, same as

the free stream velocity on the suction side, but with different direction. In this case,

total mechanical energy, and mechanical energy and momentum associated with the

streamwise and crossflow velocity are

V2
* Total M.E.: (rh + rh ) -

2

1/12 V2p
* Streamwise M.E.: rh -- + rh• -

2 2

V2
* Crossflow M.E.: rh, C

2

* Streamwise Mom. rhV, rh+ V,

* Crossflow Mom. rhV,

where rh is the free stream mass flow, rhi is the leakage flow, V, and V, are the suction

side and pressure side velocity, and V, is the crossflow velocity.

Without clearance, as shown in Fig. J.2, the flow in the previous clearance region

(shaded area) and free stream have the same velocity, both in magnitude and direction

so that
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* Total M.E.: (rh + ie)n2
2

V2
* Streamwise M.E.: (,h. + rhc)

2

* Crossflow M.E. : zero

* Streamwise Mom. (rh + 7rh)V,

* Crossflow Mom. zero

The momentum view of Senoo considers the change in the streamwise momentum

between these two cases, i.e. rm(V, - V,) and the resulting change in work (i.e. loss) is

thus given by

rh.c(Vs - Vp)Vmean

where Vea,, is an averaged streamwise velocity. Since the streamwise component of

velocity in the clearance flow changes from V, (zero clearance) to V, (with clearance),

the average velocity is then (V, + Vp)/2 and the work difference is then

V2 _ Vr2
2

The energy view considers the loss as the change in the crossflow energy between

these two cases, i.e.

V2
2

But

the momentum and the energy view thus give the same loss.

In the momentum a.pproach, the loss is assumed to be the difference in streamwise

kinetic energy, whereas it is the difference in crossflow energy in the energy approach.

Since the total energy remains the same , these two approaches will give the same

results.
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One can also look at the change in the cross flow momentum, which is

nic(Vc)Vmean

where 1 ,,ean is an averaged crossflow velocity. Since the crossflow component of velocity

in the clearance flow changes from zero (zero clearance) to V, (with clearance), the

average velocity is then Vc/2 and the work difference in the crossflow with and without

clearance is
V2

2

which is identical to the results based on the energy view, i.e. the momentum and

energy view points to the crossflow give the same loss as they should.
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Figure J.1: Schematic of fluid velocity on blade suction side with clearance

185

Inlet

V1
vBlade

Blade

.- Clearance

Exit

V2



Suction side

Vs

panwise

Streamwise

Crossflow direction

Figure J.2: Schematic of fluid velocity on blade suction side without clearance
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Appendix K

Derivation of Efficiency Reduction
due to Clearance in A Turbine

The efficiency of a turbine is given by

(K.1)
7hCPTt l[1 - rt(Y- 1)/'Y]

, which can be written as

77t - rn(L(lrt,,r, 7h(7rt, r))

Under constant 7rt, one has

1 OL
L |,, Ar

1 07t
-I,- Ar

M 87 (K.2)

From conservation of energy,

nCpTtl(1 - R-rt ) = L + Losses (K.3)

Differentiating this w.r.t. the clearance,r, gives

dL a ( )/  OLosses
97-t r 7rt (ITtI,(1 - - jr (K.4)

Assuming the change in total losses with clearance is from the change in the clearance

loss only, it is found that

OLosses
Or I= IrBr7 ' (2H

+Uw ~rt+ 2-I,,,)2H &r
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7It =

Arlt

(K.5)



,where

II= 8 AGG C 2 ()J

Putting Eqs. (K.4) and (K.5) into Eq. (K.2), the result is written

Al 1 - 7t 1 rbn

77t r7t rh Or
Ar II rh 2 Ar

2L H-
r 1lOmh

+ |ihOr' AT)H+ 87 )H m 0-r
The variation of efficiency with clearance can be obtained. Neglecting higher order

terms, the result takes the form

8/2 AG Ct= ( ( )5 B CmI
m (cM H (K.7)
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Appendix L

Effect of Flow Reattachment on
Clearance Loss

L.1 Non-Reattached Clearance Flow

Consider a clearance flow in a cross flow plane as illustrated in Fig. L.1. At the gap

exit one has

(L.1)P2 = po - pv2

and the leakage mass flow

c,1 = ý7Tpv 2 (L.2)

, where po is the static pressure at mid span near pressure surface, P2 is the static

pressure at the tip of suction surface, and ý is the contraction factor given by

(L.3)
7r + 2

If the leakage jet is fully mixed at station 3 as shown in the figure, the decrease of total

pressure can be found to be

and the loss of flux of energy is

Apt = 1pv2(1
2 S )2H

- 1rpv3(1
2 2AE 1 = mil

(L.4)

Apt

P
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From Eqs. (L.1) and (L.5), one has

AE, = 1 2 (po - P2) ]3/2 ( 1 - (L.6)
2 P H

L.2 Reattached Clearance Flow

We now examine the mixing losses for a reattached clearance flow. Assuming after

the vena contracta the clearance jet re-attaches at blade tip and is fully mixed out

before leaving the gap as indicated in Fig. L.2, the mixing losses occurred inside the

gap can be calculated as follows.

Between station 0 and 1 the flow is inviscid so that

1 2
Pi = Po - 2pv1  (L.7)

Because of mixing in the gap, the static pressure at the exit is

P2 = 1 pvl(1 -t) (L.8)

Putting Eq. (L.7) into Eq. (L.8) , the result takes the following form:

= 1 2 (po - Pt)v x1 - P= (L.9)
V1 ý-2(+ 2± p

The leakage mass flow can be written

1 2 (po - P2) (L.10)
rhit2 = PR (L.10)1 - 2( + 2(2 P

The loss of total pressure due to mixing inside the gap is

1 22
Ptl - Pt2 = 2PVl(1 - 0)2 (L.11)

To calculate the mixing losses outside the gap, it is assumed that the uniform flow

at the gap exit is mixed out again downstream, say at station 3, as shown in Fig. L.2.

The total pressure loss due to the latter mixing is

1 7
Pt2 - Pt3 = 2pVU(1 - _) 2  (L.12)
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The overall loss in total pressure can be written

Ptl - Pt3 = P2l[( - -) + (1 (L.13)

and

1 p[2(po - P2) 3/2(1 - ý)2 + 2(1 -r/H) 2
AE 2 = -(P[ ] (L.14)2 p (1 - 2( + 2(2)3/2

The change in leakage mass flow and mixing losses from the flow reattachment can

now be determined. Assuming the driving force of the clearance flow, Po - P2, is the

same in both cases, one can obtain

hec2 1
(L.15)

and

AE2  (1 - ()2+ ±2(1 - 7/H)2
AE, (1 - (r/H)2(1 - 2( + 2(2)3/2 (L.16)

Substituting in ( from Eq. (L.3) and neglecting r/H, one has

- A "-2 1.38 (L.17)
m,2 AE 1

The leakage mass flow and mixing losses are thus about 38 % larger due to the flow

reattachment.
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Figure L.1: A non-reattached clearance flow on a cross flow plane
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Appendix M

Effect of Rankine Vortex on
Pressure Rise in A Diffuser

The purpose of this study is to provide physical insight into how the pressure rise

will be affected by the presence of a (clearance) vortex and to understand parametric

trends as well.

The fluid mechanic model used consists of an axial flow with swirl through a cylin-

drical tube, which undergoes an area change, as illustrated in Fig. M.1. The flow is

assumed inviscid and axisymmetric throughout. In addition, swirl distribution of the

fluid is taken as solid body rotation from centerline to some radius (inner flow) and as

free vortex flow from that radius to the wall (outer flow) with no discontinuity at the

interface. The inner flow is a vortex tube , which can be termed as a Rankine vortex.

Upstream of the transition, axial velocities in the inner and outer flows are assumed uni-

form, however, the two velocities can be different. Finally, radial component of velocity

is assumed zero upstream and downstream of the transition.

The flow upstream is then given by:

u= U1, v= r ,w = 0; 0<r<r 1 ; (M.1)

9 r2
U=1U3, V , w- = 0; rlr < r 3  (M.2)

where u, v, and w are, respectively, the axial, tangential, and radial components of the
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velocity, U1 and U3s are constants, rl is the radius of the vortex tube, r3 is the radius of

the wall upstream, and 0 is a constant.

On the downstream side, the axial velocity is uniform outside the vortex tube. How-

ever, it will vary with radius inside the vortex tube, as illustrated in the figure. This

non-uniformity in the axial velocity profile has been examined and explained by Batch-

elor (1967, [4]) and the explanation is given briefly as follows. Due to the area change,

there is a change in the shape of the vortex-lines (in the vortex tube) downstream,

which induces a azimuthal component of vorticity and therefore a non-uniform axial

velocity in the vortex downstream. The axial velocity is minimum at the axis, as shown

in the figure. The flow downstream can be shown to be

u(r) k'r r2 Jo(k'r)=1 + -- (L- 1) , w = 0; 0 < r r< 2 (M.3)U, 2 r 2 J (k'r2)

U-U4, v= , w-0; r 2  rr 4  (M.4)

where U1 = 4 is a constant, k' = 2ft/U1, Jo and J1 are Bessel functions, and r 2 and

r4 are, respectively, the radius of the vortex tube and the wall, downstream. The flow

downstream will be determined if area ratio r4/rg is given. The unknowns are U4

and r2, which can be determined from two constraints: 1) the conservation of mass

flow between the wall and the interface , and 2) same total pressure difference at the

interface upstream and downstream, i.e. ptl - Pt3 = Pt2 - pt4.

For a vortex tube with area rl /r2 = 0.3, and the same axial velocity as the outer

flow, i.e. U1 = Us, the calculated pressure rise at the wall between the upstream and

downstream side against the area ratio r2/r2 is given in Fig. M.2 for four different

values of inlet swirl, i.e. .25, .5, .75 ,and 1.0. The pressure rise is normalized by ipUl

and the inlet swirl is defined as v(rl)/U3 . Also shown in the figure (solid line) is the

pressure rise in an ideal diffuser, i.e. a diffuser without any inlet swirl.

Several interesting features of the flow can be seen from the figure. First, the

existence of a Rankine vortex can greatly affect the behavior of the pressure rise char-
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acteristics of the diffuser. It will reduce the pressure rise: the stronger the swirl is,

the smaller the pressure rise at wall becomes. This behavior can be explained in terms

of radial shift of the interface with swirl. Consider the case in which there is no swirl

and U1 = U3 so that the axial velocity downstream is uniform from the axis to the

wall. The interface is located at a radius rl, upstream, and is located at a radius, say

r*, downstream. With swirl, due to the above-discussed non-uniformity in the axial

velocity downstream, the axial velocity right below the interface would be higher than

that right above it if the interface were still located at r*. Since the total pressure is

constant along the interface, this means the static pressure right below the interface

would be higher than that right above it. To balance the pressure difference, the in-

terface downstream has to move radially outwards. As a consequence, the pressure rise

on the wall will be smaller than the zero swirl case. In addition, the non-uniformity

becomes much more severe as swirl increases so that the interface moves further away

from the axis and the pressure rise at wall becomes smaller, as can be seen from the

figure.

A more striking feature of the flow is that the pressure rise initially increase with the

area ratio. However, it reaches a maximum at a critical area ratio and then starts to fall

off with an increase in area ratio 1. This peaking-over phenomenon is a consequence of

the above-discussed increasing vortex area with swirl on the downstream side, which can

be seen in Fig. M.3. Plotted in the figure are the normalized radius of the wall (r4/r 1 )

and the interface (r2/rl) as well as the (normalized) area between them, (r2 - rj)/r2, as

a function of the area ratio. The result shows that, because of an considerable increase

in the size of the vortex tube downstream, the area of the outer flow, although initially

increases with the area ratio, gets to a maximum and then decreases with increasing

area ratio. The static pressure rise on the wall thus peaks over as seen in Fig. M.2.

In addition, since the vortex tube downstream grows with the swirl, the wall pressure

rise peaks over at a smaller area ratio as the inlet swirl becomes stronger. Static pressure

1For the smallest swirl, v(r1 )/U3 = .25, the critical area is roughly 8.0 so that the peak-over behavior
can not be seen in the figure.
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rise at the interface is given in Fig. M.4 , which shows similar behavior.

It should be pointed out that the calculation has been carried out up a cut-off

area ratio at which reversed flow start to exist on the axis, where the minimum axial

velocity takes place. The solution is no longer valid and the vortex tube may break

down before the area ratio reaches the cut-off value. The vortex breakdown is a very

complex phenomenon, which is still not well understood, and will not be discussed here.

For reference, the calculated axial velocities on the axis for the various values of swirl

(.25,.50,.75, and 1.0) are shown in Fig. M.5 with r2 /r - 0.3 and U1 = U3 .

To see the effect of the size of the vortex tube on the wall pressure rise, calculation

has been carried out for four different values of r 2 /r 2 , i.e. 0.1, 0.3, 0.5, and 0.9, with

constant swirl v(rT)/U3 = 1 and U1/U3 = 1. The calculation results show that the

pressure rise peaks over at a smaller area ratio for a smaller vortex size, which can be

seen in Fig. M.6. The results also show that the pressure rise capability increases with

cross-section area of the vortex.

We have also examined the effect of different axial velocities in the inner and outer

flows on the wall pressure rise. Fig. M.7 shows the result for U1/U 3 = .9, 1.0, and 1.1.

It indicates that, for a given area ratio, the axial velocity defect in the vortex tube will

reduce the wall pressure rise. In addition, the pressure rise ends at a smaller area ratio

for smaller U1 at which reversed flow occurs earlier. So far, the most interesting results

of the calculation is that the pressure rise can peak over with a Rankine vortex in a

diffuser. Other features that are of interest are that the axial velocity in the vortex

becomes smaller as the area ratio increases, becoming zero at the cutoff area ratio and

that, as with a simple wake flow, an axial velocity defect in the vortex degrades the

pressure rise capability.

As mentioned in the beginning of the analysis, the purpose of the effort is to provide

physical insight into how the pressure rise in a compressor would be affected by the

presence of a (clearance) vortex and to understand parametric trends. Suggestions

from this study for a compressor can be summarized as follows:
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* The clearance vortex can play a large role in the pressure rise of a compressor.

* As flow coefficient decreases, the clearance vortex grows both in size and strength

(circulation) and, as a consequence, the pressure rise will be smaller.

* The peaking-over of the compressor characteristic may be due to not only the

viscous effect, i.e. the growth in the endwall boundary layers, but also a invis-

cid phenomenon, i.e. due to the interaction between the clearance vortex and

surrounding flow.

* Vortex breakdown may play a role in the discontinuity in a compressor pressure

rise characteristics, i.e. the stall phenomenon.
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Center Line

Figure M.1: A Rankine vortex in a diffuser with swirl
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Solid line : no swirl

,v(r)/U3 = 1

1.0 1.2 1.4 1.6 1.8 2.0 2.2

Area Ratio r 2 /r 2

Figure M.2: Wall pressure rise vs. area ratio for different values of swirl
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r2 /r2 = 0.3

Effective free stream area

Wall r4

Vortex tube r 2
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Figure M.3: Radius of a vortex tube and area of outer flow vs. area ratio
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Area Ratio /r2 2Figure M.4: Interface pressure rise vs. area ratio for different values of swirl3

Figure M.4: Interface pressure rise vs. area ratio for different values of swirl
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Figure M.5: Center-line axial velocity vs. area ratio for different values of swirl
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Solid line : no swirl

1 = .9

0.5

1.0 1.1 1.2 1.3 1.4 1.5

Area Ratio r 2 /r2

Figure M.6: Wall pressure rise vs. area ratio for different values of vortex size
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Figure M.7: Effect of axial velocity defect on pressure rise

205

q

C

0)

(12
0)

I



Bibliography

[1] Adamczyk, J.J., Celestina, M.L., and Greitzer, E.M.. The Role of Tip Clearance
in High-Speed Fan Stall. to appear, 1990.

[2] Adamczyk, J.J., et al. Simulation of Three-Dimensional Viscous Flow Within a
Multistage Turbine. ASME Papre No. 89-GT-152, 1989.

[3] Balsa, T.F., and Mellor, G.L. The Simulation of Azial Compressor Performance
Using an Annulus Wall Boundary Layer Theory. J. of Engineering for Power, Vol.
97, pp.305-318, 1975.

[4] Batchelor, G.K. An Introduction to Fluid Mechanics. Cambridge University Press,
1967.

[5] Belik, L. Three Dimensional and Relaminarization Effects in Turbine Blade Cas-
cade - An Experimental Study. Proceedings of 1977 Joint JSME/ASME Gas Tur-
bine Congress, pp. 310-310, 1977.

[6] Booth, T.C. Importance of Tip Clearance Flows in Turbine Design. Von Karman
Institute Lecture Series 1985-05 on Tip Clearance Effects in Azial Turbomachinery,
1985.

[7] Booth, T.C., Dodge, P.R., and Hepworth H.K. Rotor-Tip Leakage : Part 1-Basic
Methodology. ASME Transactions, J. of Engineering for Power, V104, 1982.

[8] Chen, G.T., Greitzer, E.M., Tan, C.S., and Marble, F.E. . Similarity Analysis of
Compressor Tip Clearance Flow Structure. ASME Paper 90-GT-153, 1990.

[9] Crook, A.J. Numerical Investigation of Endwall/Casing Treatment Flow Phenom-
ena. M.S. Thesis, Department of Aeronautics and Astronautics, MIT, 1989.

[10] Cumpsty, N.A. Compressor Aerodynamics. Longman Scientific and Technical
Publications, 1989.

[11] Dawes, W.N. A Numerical Analysis of the Three-Dimensional Viscous Flow in
a Transonic Compressor Rotor and Comparison With Experiment. ASME J. of
Turbomachinery, Vol. 109, pp. 83-90, 1987.

206



[12] De Ruyck, J., and Hirch, C. Investigation of an Axial Compressor End-Wall

Boundary Layer Prediction Method. ASME Paper No. 80-GT-53, 1980.

[13] Dean, R.C. Jr. The Influence of Tip Clearance on Boundary-Layer Flow in a

Rectilinear Cascade. MIT, Gas Turbine Lab., Report No. 27-3, 1954.

[14] Dishart, P.T., and Moore, J. . Tip Leakage Losses in a linear Turbine Cascade.

ASME No. 89-GT-56, 1985.

[15] Evans, R.A., and Bloor, M.I.G. The Starting Mechanism of Wave-Induced Flow

Through a Sharp-Edged Orifice. J. Fluid Mechanics, Vol. 82, 1977.

[16] Farokhi, S. Analysis of Rotor Tip Clearance Loss in Axial-Flow Turbines. J.

Propulsion Vol. 4, No. 5, 1987.

[17] Graham, J.A.H. Investigation of a Tip Clearance Cascade in a Water Analogy Rig.

ASME Paper No 85-IGT-65, 1985.

[18] Haas, J.E., and Kofskey, M.G. Effect of Rotor Tip Clearance and Configuration

on Overall Performance of A 12.77-Centimeter Tip Diameter Axial-Flow Turbine.

ASME Paper No. 79-GT-42, 1979.

[19] Hah, C. A Numerical Modelling of Endwall and Tip Clearance Flow of an Isolated

Compressor Rotor. ASME J. Eng. for Power, Vol. 108, pp. 15-21, 1986.

[20] Herzig, H.Z., Hansen, A.G., and Costello, G.R. A Visualization Study Secondary
Flow in Cascade. NACA Report 1163, 1953.

[21] Holeski, D.E., and Futral, S.M. Effect of Rotor Tip Clearance on The Performance

of a 5-inch Single-Stage Axial-Flow Turbine. NASA TM X-1757, 1969.

[22] Horlock, J.H. Axial Flow Compressors. Robert E. Krieger Publishing Company,
Huntington, New York, 1973.

[23] Inoue, M., and Kuroumaru, M. Structure of Tip Clearance Flow in an Isolated

Axial Compressor Rotor. ASME Paper No 88-GT-251, 1988.

[24] Inoue, M., Kuroumaru, M., and Fukuhara, M. Behavior of Tip Leakage Flow
Behind an Axial Compressor Rotor. ASME Journal of Engineering for Gas Turbines

and Power, Vol. 108, pp. 7-13, 1986.

[25] Jefferson, J.L., and Turner, R.C. Some Shrounding and Tip Clearance Effects in

Axial Flow Compressors. International Ship Building Research Progress, Vol 5, No
42, 1958.

207



[26] Johnson, M.C. The Effects of Hub Treatment on Compressor Endwall Flowfields.
M.S. Thesis, Department of Aeronautics and Astronautics, MIT, 1985.

[27] Kock, C.C., and Smith, L.H. Jr. Loss Sources and Magnitude in Axial-Flow Com-
pressors. ASME J. of Eng. for Power, Vol. 98, pp. 411- 424, 1976.

[28] Kofskey, M.G., and Nusbaum, W.J. Performance Evaluation of A Two-Stage
Axial-Flow Turbine for Two Values of Tip Clearance. NASA TN D-4388, 1968.

[29] Lakshminarayana, B. Method for Predicting the Tip Clearance Effects in Axial
Flow Turbomachinery,. ASME Journal of Basic Engineering, Vol. D92, pp. 467-
482, 1970.

[30] Lakshminarayana, B., and Horlock, J.H. Leakage and Secondary Flows in Com-
pressor Cascades. ARC R & M No. 3483, 1965.

[31] Lakshminarayana, B., and Murthy, K.N.S. Laser-Doppler Velocimeter Measure-
ment of Annulus Wall Boundary Development in a Compressor Rotor. Journal of
Turbomachinery, Vol. 110, pp.377-385, 1988.

[32] Lakshminarayana, B., Sitaram, N., and Zhang, J. End- Wall and Profile Losses in
a Low-Speed Azial Flow Compressor Rotor. ASME Paper No. 85-GT-174, 1985.

[33] Lamb, H. Hydrodynamics. 6th Edition, Dover Publications, New York, 1932.

[34] Lee, N.K.W. Private Communication, 1989.

[35] Leonard, A. Vortex Methods for Flow Simulation. J. Computational Physics, Vol.
37, pp. 289-335, 1980.

[36] Ludwing, L.P. Gas Path Sealing in Turbine Engines. AGARD Conference Pro-
ceedings No. 237 on Seal Technology in Gas Turbines Engines, 1978.

[37] Martinez-Sanchez, M., and Gauthier, R.P. Blade Scale Effects of Tip Leakage. Gas
Turbine Lab. Report No. 202, MIT, 1990.

[38] Mayle, R.E., and Metzger, D.E. Heat Transfer at The Tip of An Unshrouded
Turbine Blade. Heat Transfer, Munich, Vol. 3, 1982.

[39] Moore, J., and Tilton, J.S. Tip Leakage Flow in a Linear Turbine Cascade,. ASME
J. Turbomachinery, Vol.110, pp. 301-309, 1988.

[40] Morphis, G., and Bindon, J.P. The Effects of Relative Motion, Blade Edge Ra-
dius and Gap Size on the Blade Tip Pressure Distribution in an Annular Turbine
Cascade With Clearance. ASME Paper No 88-GT-256, 1988.

208



[41] Perry, A.E., and Tan, D.K.M. Simple Three-Dimensional Vortex Motions in Co-
Flowing Jets. J. of Fluid Mechanics, Vol. 141, pp. 19 7-23 1, 1980.

[42] Pouagare, M., and Delaney, R.A. Study of 3-D Viscous Flows in Axial Compressor
Cascade Including Tip Leakage Effects Using a Simple Based Algorithm. ASME J.
of Turbomachinery, Vol. 108, pp. 51-58, 1986.

[43] Rains D.A. Tip Clearance Flow in Axial Flow Compressors and Pumps. California
Institute of Technology, Hydrodynamics and Mechanical Engineering Laboratories
Report, No.5, 1954.

[44] Sarpkaya, T. Computational Methods With Vortices - The 1988 Freeman Scholar
Lecture. J. of Fluids Engineering, Vol. 111, pp. 5-52, 1989.

[45] Schmidt, M.J.P., Agnew, B., and Elder, R.L. Tip Clearance Flows - Part Two,
Study of Various Models and Comparison with Test Results. AIAA, ISABE 87-
7035, 1987.

[46] Senoo, Y. The Boundary Layer on the Endwall of a Turbine Nozzle Cascade.
ASME Journal of Engineering for Power, Vol. 80., 1958.

[47] Senoo, Y. Mechanics on the Tip Clearance Loss of Impeller Blades. ASME Paper
No. 90-GT-37, 1990.

[48] Senoo, Y., and Ishida, M. Pressure Loss Due to the Tip Clearance of Impeller
Blades in Centrifugal and Axial Blowers. ASME Journal of Engineering for Gas
Turbine and Power, Vol. 108, pp. 3 2-3 7 , 1986.

[49] Sjolander, S.A., and Amrud, K.K. Effects of Tip Clearance on Blade Loading in a
Planer Cascade of Turbine Blades. ASME Paper 86-GT-245, 1986.

[50] Smith, G.D.J. Casing Treatment in Azial Compressors. Ph.D. Thesis, Engineering
Department, University of Cambridge, 1980.

[51] Spencer, E.A. The Performance of an Azial Flow Pump. Proceedings of the
Institute of Mechanical Engineers, Vol. 170, No. 25, 1956.

[52] Storer, J.A. personal communication, 1990.

[53] Storer, J.A., and Cumpsty, N.A. Tip Leakage FLow in Axial Compressors. pre-
sented at 1990 ASME Gas Turbine Conference, 1990.

[54] Sulam, D.H., Keenan, M.J., and Flynn, J.T. Single-Stage Evaluation of Highly-
Loaded High-Mach Number Compressor Stages, Part two: Data and Performance
Multiple-Circular-Arc Rotor. NASA CR-72694 (or PWA-3772).

209



[55] Szanca, E.M., Bebning, F.P., and Scbum, H.J. Research Turbine for High-
Temperature Core Engine Application, Part Two - Effect of Rotor Tip Clearance

on Overall Performance. NASA TN D-7639, 1974.

[56] Takata, H. Personal Communication, 1988.

[57] Vavra, M.H. Aerothermodynamics and Flow in Turbomachines. John Wiley, Inc.,
1960.

[58] Ware, T.C., Kobayashi, R.J., and Jackson, R.J. High-Tip Speed, Low Loading
Transonic Fan Stage, Part Two: Final Report. NASA CR-121263, 1973.

[59] Wisler, D.C. Loss Reduction in Axial-Flow Compressors Through Low-Speed Model

Testing. ASME Paper 84-GT-184, 1984.

[60] Wisler, D.C. Aerodynamic Effects of Tip Clearance, Shrouds, Leakage Flow, Casing

Treatment and Trenching in Compressor Design. Von Karman Institute Lecture

Series 1985-05 on Tip Clearance Effects in Axial Turbomachinery, 1985.

[61] Yokoyama, E. Comparative Study of Tip Clearance Effects in Compressor and

Turbines. Gas Turbine Lab. Report No. 63, MIT, 1961.

[62] Zhang, J. An Experimental, Analytical, and Computational Investigation of Tur-

bomachinery Rotor Flow Fields. Ph.D. Thesis, Department of Aeronautical Engi-

neering, Pennsylvania State University, 1988.

210


