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Abstract:

Thermoelectrics are gaining significant amounts of attention considering their relevance today in

the areas of sustainable energy generation and energy efficiency. In this thesis, the thermoelectric

properties of bulk Silicon were modeled using ab initio density functional theory methods to

determine the Si band structure. Specifically, three different models for determining the Seebeck

coefficient - Parabolic Bands, Boltzmann's theory, and the 'Pudding Mold' approximation to

Boltzmann's theory - were studied in depth and compared with experimental values. Here we

show first principles calculations to yield Seebeck coefficients for n-type Silicon to be on the

order of 300 gtV/K at -300 K, and -500 gtV/K at 300 K for the Parabolic Bands and Boltzmann

approach, respectively. While the 'Pudding Mold' Theory failed in its approximations of the

Seebeck coefficients, the calculations using the other two theories were found to agree closely

with experimentally determined Seebeck coefficients.
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I. Introduction:

The search for sustainable energy sources and a solution to the international energy dilemma

have become some of the greatest concerns regarding our future. Global economic,

environmental, and social pressures are pushing us to change how we harness and utilize vital

energy, and these pressures will increase over the next few decades as we expand to an estimated

population of ten billion people by mid-century [1]. Environmental impacts of global warming

and climate change are already affecting living species, increasing the urgency with which these

solutions need to be delivered [2]. With electricity generation projected to double by 2030, there

exists a huge gap in generating capacity that needs to be filled. Moreover, the issue of climate

change has become a real and very significant concern, with greenhouse gas emissions

increasing and the Earth's average temperature having increased more than a degree in the last

100 years [3].

A useful method to contribute to the sustainable generation movement is the use of

thermoelectric generators to utilize waste heat in various situations, including automobiles,

homes, as well as manufacturing & industrial processes. Thermoelectrics are devices that use

temperature gradients to generate electricity, or alternatively transport heat when an electrical

current is run through them. The field of thermoelectric materials has recently received

significantly more attention as efforts are being made to improve automobile fuel efficiency by

replacing alternators with thermoelectric generators, for example [4]. However, for

thermoelectric devices to reach their full potential, novel materials need to be developed that

allow for higher performance, lighter weight thermoelectric devices.
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In this thesis project, three different approaches used to calculate the Seebeck coefficient - a key

factor in optimizing thermoelectric materials performance - were evaluated using first principles

Density Functional Theory. The goal of this thesis is to understand from a theoretical perspective

the important properties for thermoelectric energy conversion and how they are determined.

II. Motivation

Silicon was chosen as a material to model due to its widespread usage in electronic and

integrated circuit applications. As a result, despite its high thermal conductivity, the fact that

processing of silicon is a simple, reproducible, well established technology makes it useful for

low power systems [5]. Recently, low dimensional silicon nanowires have been touted as

potential new thermoelectric materials with lowered thermal conductivities and higher figures of

merit [6]. Crystalline silicon assumes a diamond cubic crystal structure with two atoms in each

of the unit cell and four symmetrically placed covalent bonds. As a result, each silicon unit cell

has 8 valence electrons. The silicon band gap has been experimentally determined and accepted

to be 1.12 eV [7].

Figure I: The first Brillouin zone for diamond structure silicon - the Wigner-Seitz cell for the reciprocal
lattice. The depiction on the right shows the periodicity of the silicon Brillouin zone cells. Figure adapted
from [8].



Page 6 of 28

III.Background:

In a thermoelectric material, free carriers in the material carry both charge and heat. An applied

temperature gradient causes charged carriers in the material, electrons and holes, to diffuse across

the temperature gradient, giving rise to an electric potential. This is known as the Seebeck effect.

The thermopower, or Seebeck coefficient, is given by the ratio of potential gradient to temperature

gradient. The ideal thermoelectric material would have a large thermopower, a low thermal

conductivity, and a high electrical conductivity. Materials development focuses on increasing

values ofzT, the thermoelectric figure of merit, to increase the overall conversion efficiencies.

a2 T
ZT -

pK

In this equation, a is the Seebeck coefficient in V/K, T is temperature in K, p is the electrical

resistivity, and K is the thermal conductivity. Each of these parameters is dependent on

interconnected material properties, which makes it difficult to optimize zT in a material. Values

of zT W 1 are considered to be good and attaining values of zT -3-4 is considered a key step for

thermoelectrics to compete as a power generation medium [6].

The four main variables that need to be engineered in thermoelectric materials are the carrier

concentrations, the effective mass, as well as the electronic and lattice thermal conductivities. To

maximize the voltage generated by a temperature gradient, one needs to maximize the number of

carriers using only one type of charge. Good thermoelectric materials are often heavily doped

semiconductors with a carrier concentration between 1019 and 1021 cm-3. Effective mass of the

charge carrier provides another conflict as large effective masses produce high thermopower but

low electrical conductivity [9]. Thus, a balance must be obtained between maximizing effective
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mass and carrier mobilities. Thermal conductivity manifests itself in two ways in thermoelectric

materials, with electrons and holes transporting heat as well as phonons traveling through the

lattice. Good thermoelectric materials must scatter phonons without disrupting electrical

conductivity. Unfortunately, an offset due to thermal conductivity exists due to its direct relation

to the electronic conductivity as per the Wiedemann-Franz Law [10].

IV. Computational Methods - Density Functional Theory:

a. Background:

The Schrodinger Equation defines a relation for which all the information of a system of N

electrons is stored within the wave function, Y. Whether a system is an atom, a solid, or a

molecule depends only on the external potential, v(r). For systems with more than two electrons

- a many body problem - the Schrodinger equation can not be solved analytically.

N [ ( v(r)) + U(rirj) W(rr ... ,) = E (rr 2 ... -)

Computational requirements to solve the Schrodinger equation for an N electron system scale

with NAN to represent W in k-space, which is far beyond any practical computing capabilities.

As a result, there have been many attempts to reduce the computational intensity of these

calculations using different approximations and assumptions.

Density Functional Theory (DFT) allows the mapping of the many-body problem with

interacting electrons to a single body problem, assuming electrons don't interact, and using the

particle density as the key variable [11]. In using DFT, the complicated many body electronic
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wave-function is substituted by the simpler electronic density, overcoming the fundamental

limitations in dealing with many electron systems. The Hohenberg-Kohn Theorem asserts that an

external potential uniquely determines the ground state charge density, and the charge density

uniquely determines the external potential.

n(r) <=, T(ri,r2 ..,rV ) <-e v(r)

All effects of exchange and correlation are included in a term in the total energy functional. The

Generalized Gradient Approximation (GGA) uses the local charge density at a given point but

also takes into account the gradient of the charge density when approximating the exchange-

correlation energy [12]. Minimizing the total energy functional leads to a set of Schrodinger-like

equations with an explicit effective potential known as the Kohn-Sham equations. The Kohn-

Sham equations provide a practical way to approximate the density functional for real systems

[12].

b. Implementation:

In practice, pseudopotentials are used to reduce computational intensity by assuming that

electrons in the inner atomic shells are so tightly bound that they are not perturbed by the

external environment. The Kohn-Sham equations are solved numerically by representing the

electronic wave-functions as a linear combination of a set of plane wave basis functions [13].

The use of plane wave basis sets allows the wave function to be expressed in terms of reciprocal

space vectors within the 1st Brillouin zone of the periodic cell - now the Brillouin zone just

needs to be sampled at a defined set of k-points and the Kohn-Sham equations solved.



Page 9 of 28

The algorithm for implementing DFT to determine the charge density is as follows [14]. First,

we take initial guesses for n' (r), nt(r) and use that to calculate the effective potential. Once the

effective potential is determined the electron density is recalculated and tested using criteria for

convergence. This process occurs iteratively until the convergence criterion is satisfied.

V. Calculations:

All calculations were done using Plane Wave Self-Consistent Field (PWscf), an open source

computer code for electronic structure calculations within DFT. For the bulk silicon sample, a

self-consistent calculation was first performed to determine the ground state charge density. The

Brillouin zone was sampled at 256 k-points using an 8x8x8 k-point mesh, which was determined

to be sufficient for convergence of the ground state charge density.

Once the ground state charge density had been determined, a non-self consistent field calculation

(NSCF) was performed to determine the band structure of the bulk Si in the first Brillouin zone.

The NSCF calculation required a much finer grid of k-points to be used to accurately

approximate the band energies and shape across the reciprocal lattice space. As a result, a

50x50x50 k-point mesh was used to survey the Brillouin zone in steps of 0.02. The

pseudopotential used for both calculations was the Perdew-Burke-Enzerhof exchange

correlational functional (GGA), with a nonlinear core correction and the Vanderbilt ultrasoft

potential to ensure smooth transition of wave function at the core radius. All post-processing of

the output band energies was done using MATLAB software. The data was stored and the

algorithms to calculate each of the properties were written and implemented entirely within

MATLAB.
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VI. Results and Discussion:

a. Part 1: Validation of Theory

Here we will present the results obtained from post-processing of the PWscf output for the band

energies and use the relevant information to perform calculations. The resulting band energies

for each of the first eight energy bands in the 1st Brillouin zone for bulk silicon were output by

PWscf for each of the k-points sampled.

Figure 2: Band diagram across the 1't BZ for bulk Si, as calculated using PWscf. The higher and lower energy
red bands correspond to the lowest conduction and highest valence bands, respectively. It is observed that the
valence band maximum occurs at gamma point, where the conduction band minimum occurs at
-0.84*(2*pi/a0) [a.u] in the bl reciprocal lattice direction. The plot of the Brillouin zone corresponds to the A-
line, which is marked by the red line in the figure on the right. Adapted from [8].

Semiconductor band structures are difficult to describe with an analytical formula. The plot is

drawn for energy values along particular edges of the irreducible wedge of the Brillouin zone,

with the energy dispersion along a straight line form the point F to point X. The band gap of Si

was calculated to be 0.54 eV, which is slightly more than a 50% error from the experimentally

determined band gap of 1.12 eV. DFT is known for its error in calculating band gaps in

materials. For the conduction band, the minima lie on the <100> direction and occur roughly

85% of the way to the 1st Brillouin zone boundary.
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The next step was to calculate the curvature of the valence and conduction bands at the band

extrema, to determine the electron and hole effective mass tensors and ratios. The effective mass

is a key property in solid state physics and for thermoelectric, as larger effective masses produce

larger thermopowers but compromise electrical conductivity [6]. From a thermoelectric

standpoint, it is important to use materials that optimize the effective mass with regard to both of

the measurements. From the band structure, the effective mass tensor and ratios are expressed as

M Wmak aak. m, h2ak ak,)

where m, is the rest electron mass, and ka is the band curvature for a given a and f

direction. The band curvature was approximated using finite differences and the Central

Difference Theorem, which allowed the determination of the effective masses at the valence

band maximum (holes) and conduction band minimum (electrons). The tensors were

diagonalized to yield the effective masses in the three principal directions, m'xx,

m*yy, & m'zz-

m */m at
Valence band maximum

-0.2658 0 0
0 -0.2658 0
0 0 -0.2658

m */m at
Conduction band minimum
0.9667 0 0
0 0.1936 0
0 0 0.1936

Tables 1 & 2: Diagonalized effective mass tensors for the valence and conductions bands (holes and
electrons). These are found to agree with experimental DFT values for silicon extremely well, with m" for
holes calculated to be 0.26 and m" for electrons calculated to be 0.96 (longitudinal) and 0.16 (transverse) [15].

Despite the relative coarseness of the k-point mesh used for these calculations, we observe

effective mass values extremely close to those calculated previously using DFT as well as
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experimental values for the electron effective mass ratios - 0.9163 (longitudinal) and 0.1905

(transverse) [16]. The symmetry of the effective mass tensor across gamma is attributed to the

crystal symmetry in the x-, y-, and z- directions of reciprocal lattice space whereas the

asymmetry in the electron effective mass tensor is explained by the variation in the conduction

band curvature in different axes directions in k-space. As a result, the anisotropy of the effective

mass with respect to crystal orientation can play a large role in maximizing the thermopower in

silicon.

The intrinsic carrier concentrations and temperature dependence were calculated as a validation

check to verify the model's capability to describe experimental values that are well known in the

field. The Fermi function,

1
f(E1(k)) + exp (((E(k) - A))/ k T)

which describes the probability of occupation of a certain temperature, was summed over all of

the k-points in the 1st Brillouin zone for each band to determine the occupation levels. The

gamma energy of the valence band was taken to be the reference Fermi level for all hole

concentration calculations, while the minimum of the conduction band was used as the reference

level for electron concentrations. For the hole concentration calculations, the number of holes in

the lower four bands was equal to the difference between the number of electrons expected to

occupy the first four energy bands of Si - 8 - and the number of electrons calculated to be in

each band for a given temperature.

k, k. kk
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Every point on each band (every n,k), was summed for its contribution to the total electron and

hole concentration since it was observed that bands 2, 3, 4 were all degenerate at the Gamma

point and thus had to be accounted for in each of the calculations.

Figure 3: Electron and Hole concentrations varying temperature from 200 to 700 K.

These numbers were found to be in general agreement with previous calculations, which have

been previously calculated for electrons for chemical potential at the conduction band minimum

to be 3.2x1019 cm-3 [17]. Using PWscf results were found to be very close, as electron carrier

concentrations of 4x 1019 cm-3 were calculated for 300 K. Likewise, for hole carrier

concentrations the calculated values also were on the same order of magnitude with those

observed in the literature, 1.8x1019 cm3 [17]. Carrier concentrations on the order of 1018 - 1021

in thermoelectric materials have been found to optimize both the electrical conductivity and

thermal conductivities [6]. The errors associated with these calculations are can be attributed to

the sparseness of the k-point mesh used, which resulted in crude approximations of the Fermi

function and undervalued the carrier concentrations at each temperature.
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Additionally, the relationships between the carrier concentrations and chemical potential were

plotted, and it was observed that shifting the chemical potential slightly into the band gap

resulted in lower occupations for both electrons and holes.

Figure 4: Electron and Hole concentrations vs. steps in the chemical potential. It is observed that increases in
the chemical potential resulted in higher concentrations for electrons and lower concentrations for holes.

Figure 4 shows how the carrier concentrations varied with an energy step from the valence band

maximum and conduction band minimum for holes and electrons, respectively. For higher values

of the chemical potential the carrier concentrations for electrons are seen to increase as the Fermi

function overlaps with a larger portion of the electron density of states. On the other hand, here it

is observed that increasing the chemical potential results in decreasing hole concentrations due to

a decrease in the overlap between the Fermi function and hole density of states.

To calculate the conductivity tensor, calculations were performed using the equation [10]

g ( (IT f(e(k))=o (r(k)) = ez TrQ(k)) v.(k) v0(k) dkxdkydk,

1 •s(k)
where r is the relaxation time & v. and vr are the velocities given by k The relaxation

time was assumed to be constant at 10-14 s [18] and the velocities were calculated using finite
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differences between band energies at each k-point. is the derivative of the Fermi

function, expressed analytically as

a(k) f(A(k)) =
-exp ((s(k)-0)/kB T)

kg T (1+exp ((s(k)-A)IkB T))2

Conductivity calculations for the holes were summed over all the occupied bands at each point in

the k-point mesh. To determine the relationship between the conductivity and the carrier

concentrations, the carrier concentration was calculated using different Fermi Energies at a given

temperature, and the Fermi Energy was shifted by an energy step, 8 for multiple values.

Similarly, the conductivities were calculated by varying the Fermi Energy with the same-energy

step and 6 was used to parameterize the relationship between the conductivity tensor and the

hole carrier concentration.

10
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'0 1010

- r
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10 10 10 10
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Figure 5: Plots of conductivity vs. concentration for holes and temperature show how conductivity increases
in value with larger T and concentrations.
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Figure 6: Plots of conductivity vs. concentration for electrons and temperature show how conductivity
increases in magnitude with larger T and concentrations.

These results agree with experimental tests and validate the methods used thus far. As a result of

increased carrier concentrations and mobilities in experiment, resistivity was experimentally

observed to decrease with carrier concentration in accordance with the results [7]. Similarly,

increasing temperatures corresponded to higher conductivities, which is indicative of higher

concentrations of charge carriers at higher T as a result of the smoothing of the Fermi function.

Conductivities for Si have been observed to vary with carrier concentration from 10-3 1/Ohm*m

to 10-5 l/Ohm*m [5].

b. Part 2: Comparison of Different Models

i. Parabolic Bands

The conductivities, carrier concentrations, and relations defined in the previous section were

applied to test the predictions of three different models for the thermopower. The first one used

nearly free electron theory, approximating the electrons in the Si crystal as independent, and

assumes that near the valence and conduction band extrema the bands can be modeled as

parabolic [10]. In common cubic semiconductors, the bands can be approximated as
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h mk k2 mk2
E(k)= rut + - -* + M

which describes a band with ellipsoidal constant energy surfaces [8]. This yields an expression

for the Seebeck coefficient, a, as

k 2 J2 /87Fk 2k (n '3
a - hm*T 3 )

predicting a linear dependence on the temperature and inverse carrier concentration dependence

[19]. Similar to the conductivity calculations, the factor associated with scattering distance (and

scattering time) was assumed to be unity [20]. Using the respective carrier concentrations and

effective masses for holes and electrons, the n-type and p-type Seebeck coefficients were

calculated with respect to two parameters - varying the temperature and the intrinsic carrier

concentration.

Figure 7: p-type Seebeck coefficient vs. hole concentration and temperature using the Parabolic Bands model.
In the left figure the Seebeck coefficient is seen to decrease in magnitude with higher concentrations at fixed
temperature. In the right figure, the Seebeck coefficient is plotted with temperature and corresponding
carrier concentration. As the carrier concentration increases exponentially while a is linear with respect to T,
the Seebeck coefficient decreases with temperature.
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Figure 8: n-type Seebeck coefficient vs. electron concentration and temperature using the Parabolic Bands
model.

The calculated results for the thermopower with respect to the temperature and concentration

showed the expected trends from the Seebeck equation shown above. At the carrier concentration

of 1018 cm 3 for temperature of 300 K, the Seebeck coefficient for n-type silicon is observed to be

on the order of -300 g1V/K. These were compared to be in close agreement with degenerate n-

type Si of similar carrier concentration at 300 K [21]. The Seebeck coefficient showed a complex

relation with temperature. While the equation for the Seebeck coefficient has a direct

temperature dependence, the plots show decreasing values of the Seebeck coefficient with

increasing temperature. As temperature increases, the carrier concentration increases

exponentially but the Seebeck coefficient is proportional to Tn-2/3, so a net decrease is expected.

This is confirmed by the shape of the graphs of the n- and p-type Seebeck coefficients with

respect to the associated carrier concentrations.

These graphs did not completely agree with experimental results, however. Experimental data

showed a drop-off, or peak, at 670 K corresponding to the transition between extrinsic and

intrinsic carriers [22]. At that point the Fermi function is smoothed to the point where intrinsic

carriers are the dominant charge carrying mechanism, which corresponds to a decrease in the
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Seebeck coefficient. In the case of parabolic bands plots, which only account for intrinsic

carriers, the increasing intrinsic carrier concentration with higher temperatures corresponds

directly with the decrease in Seebeck coefficient since these are the only charge carriers and

there are no dopants or other extrinsic carriers modeled.

ii. Boltzmann Approach - Full Theory

The Boltzmann equation approach to thermopower calculates the Seebeck coefficient as

1S= -K ,K,
eT

where K., is given by

Kn = T (k)(k)()v(k) (k) (e(k) -
k

Again, a constant relaxation time was assumed - which allows the relaxation time to be pulled

out of the sum and to cancel in the quotient of K - iK1 . The temperature and carrier concentration

dependence of the n- and p-type Seebeck coefficients are plotted in Figures 9 and 10 for holes

and electrons, respectively. It is difficult to predict the temperature dependence prior to

simulation, as the inverse temperature factor in the denominator is complicated by the

temperature dependence of the Fermi function and its derivative.
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Figure 9: p-type Seebeck vs. hole concentration
in the thermopower are observed with increasing

and temperature using the Boltzmann approach. Decreases
carrier concentration and temperature.
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Figure 10: n-type Seebeck vs. electron concentration and temperature using the Boltzmann approach.
Decreases in the thermopower are observed with increasing carrier concentration and temperature

The data for the Seebeck coefficients show similar trends observed using the parabolic bands

approximation, and in the Full Theory calculations the n-type data follow more closely in

magnitude with those observed in Geballe and Hull [21]. Figure 10 shows the n-type Seebeck

coefficients to vary between -400 and -700 tV/K, whereas Geballe and Hull observe

experimentally for n-type silicon a variation in the Seebeck coefficient from -600 to -750 jiV/K

in the range of 300-700 K.
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iii. Pudding Mold Model:

Lastly, we examine the validity of the Pudding Mold approximation to Boltzmann transport

theory applied to bulk silicon. Kuroki et. al. proposed the "Pudding Mold" model as a means to

model materials with a particular shape associated with the band dispersion [23]. Taking the

assumption that these bands are shaped more like a "pudding mold" than a quadratic (contrary to

the Parabolic Bands approximation), the Seebeck coefficient can be approximated by only

considering the states with energies within kT from the chemical potential. For the bulk silicon

calculations, the reference chemical potential was approximated to be at the valence band

maximum for p-type and at the conduction band minimum for n-type and calculations are carried

out for T = 300 K.

I : '1
S "pudding mold" I

-kBT
-kBT

k k

Figure 7: Describes the shape of a "pudding mold" material in contrast with a metal whose bands are
effectively parabolic at the extrema. Due to the localized areas of high curvature in the pudding mold model,
the states within that energy range contribute significantly more to the electrical and thermoelectric materials
properties. Figure adapted from [20].

As shown in Figure 7, the states within O(kT) of the Fermi Energy contribute disproportionately

more to the electronic transport properties due to the large variation in curvature and band

velocity around that energy. Kuroki et. al. approximate this contribution as

K-- (V, +V 2) K-kBT '(VA 2 -v 2 )
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where .' implies a summation over all the states in the range of Ie(k) - EI < ~kT , and

vA & v are the typical velocities for the energy states above and below the fermi Energy. Using

these conditions, the relationships for holes and electrons between the Seebeck coefficient vs.

carrier concentration and the Seebeck coefficient vs. temperature were calculated and shown in

Figures 11 and 12 below.

Figure 11: p-type Seebeck vs. hole concentration and temperature using the pudding mold approximation to
the Boltzmann approach. Decreases in the Seebeck coefficient are observed with increasing carrier
concentration, while the Seebeck coefficient increases in magnitude with increasing temperature.
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Figure 12: n-type Seebeck vs. electron concentration and temperature using the pudding mold approximation
to the Boltzmann approach. Decreases in the Seebeck coefficient are observed with increasing carrier
concentration, while the Seebeck coefficient increases in magnitude with increasing temperature.

While the plots of the Seebeck coefficient against the carrier concentrations for holes and
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of the Seebeck coefficient are much smaller than those observed experimentally by Geballe and

Hull. Additionally, the jagged nature of the plots against both carrier concentrations and

temperature for both electrons and holes is a limitation of the model when applied to a k-point

mesh of insufficient density, since there is a huge variation in the number of states that are

calculated when the step across the Brillouin zone is 0.02. Due to the the large step size between

each point on the band, the sum of the velocities above and below the Fermi energy varied

significantly with each step, resulting in deviations from the expected smooth relation between

the two parameters. It is important to note that the calculation of the Seebeck coefficient vs. p-

type carrier concentration curve involved a parameterization of the carrier concentration and

Seebeck coefficient with chemical potential, and subsequently plotting the relation between the

Seebeck coefficient and hole carrier concentration. As a result of the chemical potential being at

the valence band maximum, the carrier concentration did not vary over as large of a range.

However, the plots for both n- and p-type Seebeck coefficients against temperature did not

reflect the previously observed trends using the Parabolic Bands model and the Full Theory. The

limitation of this model is that it approximates K1 as the difference in band velocities squared

between those states above and below the chemical potential within a given energy range. This

does not explicitly take into account the changes in occupation as a result of increasing

temperature, which calculations using both of the other models did. Increasing the temperature

increased the size of the range where values would be accepted to contribute to the Seebeck

approximation. While this implicitly selects states within a certain energy range of the chemical

potential, it does not account at all for the changes in occupation, which is why the plots against

temperature exhibit increases in the magnitude of the Seebeck coefficient with temperature.
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c. Part 3: Error Analysis:

A major source for the errors in magnitude in this thesis was the result of the coarseness of the k-

point mesh used to approximate the band structure. The mesh of equally spaced steps in the first

Brillouin zone of reciprocal lattice space of 0.02 did not afford the type of precision necessary

for accuracy of calculations that depend on the order 10-5, such as calculating the number of

electrons and holes in each band. Two areas where the k-point mesh density considerations

adversely affected the calculation precision were in determining the number of electrons in each

of the occupied bands as well as taking the Fermi function derivative in the conductivity

calculations. In the calculations over the number of occupied bands, the total number of electrons

in each band was calculated by summing the Fermi function valued at each k-point for each of

the occupied bands and normalizing this number by the total number of k-points used in the

calculation.

22 1
kx  , k, ks  kx  k,

For a sparse k-point mesh, the number of electrons calculated using this method will have

significant error due to the small number of values contributing to the sum. For steps of 0.02

across the 1st Brillouin zone, the error associated with this did result in variations in the carrier

concentration (and subsequently Seebeck coefficient) calculations.

Additionally, errors due to the density of the k-point mesh were also observed when writing the

algorithm for the conductivity calculations. Conductivity was calculated as sum over all the

bands and k-points of the product of the group velocities and the Fermi function derivative. The

analytical derivative of the Fermi function was shown earlier was found to have serious errors
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associated with it. Integration of the Fermi function derivative should yield the Fermi function -

or probability of a state being occupied - valued at a particular energy. For many different

energies, the integral value of the Fermi function derivative were values greater than one, which

is unphysical. The root cause of this was an excessively large step between any two given points

on the k-point mesh, so the numerical approximation to the integral was often significantly

overvalued.

As a result, a major reason why these calculations all displayed the correct general trends but

often had large percentage errors was the density of the k-point mesh used for the band structure

calculations. As is the problem in computational materials science, there is always a trade off

between efficiency and accuracy. The results obtained in this project here are significant enough

to explain the physical phenomena that are occurring but need to be redone for a more accurate

band structure calculation to get more precise numbers.

VII. Conclusion:

In this thesis project, the band structure and thermoelectric properties of silicon were calculated

using first principles Density Functional Theory. Three different models for the Seebeck

coefficient were examined closely and compared with experimental values in literature. The data

and calculations showed that the general trends were satisfied for both the Parabolic Band and

Boltzmann Approach, but many discrepancies were observed when comparing the n- and p-type

Seebeck coefficients calculated using the "Pudding Mold" approximation to the Boltzmann

Theory with those observed experimentally.
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The Boltzmann approach yielded the most accurate calculation of the Seebeck coefficient vs.

carrier concentrations, while the Parabolic Bands approximation did as well. Using the Parabolic

Bands the values calculated were on the same order of magnitude as those experimentally

observed but were somewhat smaller, owed partially due to miscalculated carrier concentrations

again as a result of the k-point mesh density. However, the "Pudding Mold" approximation also

showed jagged graphs due to its inability to extract general trends from k-point grids that were

insufficiently dense. Furthermore, the model is limited in its applicability because it would not

explicitly account for changes in the occupation. The Parabolic Band and Pudding Mold

approximations are effectively opposite in their approaches, as one attempts to model the bands

at their extrema as parabolic while the other - the 'Pudding Mold' approach - assumes the

valence and conduction bands are effectively flat at their extrema.

A more thorough study of these models and how these models vary quantitatively can be

undertaken but would require significantly more computational time and a denser grid of k-

points to accurately reflect the band structure of these materials. Additionally, further studies

could be pursued to examine the electronic structure of strained silicon grown on SiGe to gain

insight into the electronic structure and fundamental mechanisms behind the favorable electronic

properties attributed to strained Si [24].
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