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Abstract

Percolation is an important phenomenon that dramatically affects the properties of
many multi-phase materials. As such, significant prior work has been done to investi-
gate the percolation threshold and critical scaling exponents of randomly assembled
composites. However many materials are non-random as a result of correlations that
are introduced during processing. This work seeks to address this case by studying
the percolation behavior of diffusionally evolved two phase systems. Specifically, the
values of the percolation threshold and critical exponents v, 3, and 7 are presented
for two dimensional systems evolved through spinodal decomposition and nucleation
and growth.
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Chapter 1

Introduction

Materials design is an important and effective method of surmounting the technologi-

cal challenges of the 21st century. Microstructural engineering of multi-phase systems

is becoming an increasingly common method of developing new materials to meet spe-

cific needs. In order for a microstructural engineer to effectively design materials it

is essential to understand how changes in material composition affect microstructure,

and in turn material properties.

This makes understanding the percolation transition in multi-phase systems very

important for microstructural engineering because properties often transition rapidly

around the percolation threshold. For example, consider the case of a two phase

system where one phase is highly conductive and the other is significantly less so. As

the phase fraction of the conductive phase increases across the percolation threshold

the conductivity of the sample will increase dramatically with a small change in the

phase fraction of the conductive phase [7, 10]. Many other properties in multi-phase

systems exhibit similar sharp transitions around the percolation threshold.

A great deal of work has been done to study the percolation behavior of a variety

of both continuum and lattice systems. Both site and bond percolation on a two

dimensional square lattice, the Bethe lattice, and several lattices of higher dimension

are well understood [11]. In addition continuum percolation of randomly placed discs

with both a single radius and a distribution of radii, along with the three dimensional

extension to spheres, is well studied [2, 6, 4, 13, 8]. While these cases provide useful



analogs for the microstructures of some materials, and a great deal has been learned

from them about percolation behavior in general, they are all essentially random.

That is, they do not account for the effects of physical phase correlations that are the

result of microstructural evolution.

The goal of this work is to study the percolation behavior of diffusionally evolved

systems in order to address the effects of the resulting physical phase correlations.

Specifically two dimensional, two phase systems created through spinodal decompo-

sition and nucleation and growth are discussed. While some simplifying assumptions

are made, for example that the free energies are isotropic, the use of microstructural

evolution simulations instead of simple random placement should more accurately

reflect the behavior of many multi-phase materials.



Chapter 2

Theoretical Background

2.1 Phase Field Modeling

Phase field modeling involves the use of time evolution equations for conserved and

non-conserved order parameters in combination with a free energy function to produce

simulations displaying behavior often observed in microstructural evolution [9]. As

the nature of the specific free energy function used will depend on the behavior that

one is interested in simulating, the time evolution equations for conserved and non-

conserved order parameters are the heart of the phase field method.

The evolution of a conserved order parameter, c, is governed by the Cahn-Hilliard

equation:

S= M V 20F 24 c (2.1)at I Oc C

where Mc is a positive kinetic coefficient, F is the free energy function, and cc is a

parameter determining the energy penalty due to concentration gradients [1]. Non-

conserved order parameter evolution is described by the Allen-Cahn equation:

4--[ = - OF 2 ] (2.2)

where ?p is the order parameter, MV is a positive kinetic coefficient, F is the free

energy function, and fe is a parameter affecting interface width [14].



In this work the phase field method is used to simulate two types of microstruc-

tural evolution, spinodal decomposition and nucleation and growth. The specific free

energy models used for each case are detailed in the following sections.

2.1.1 Spinodal Decomposition

In order to simulate spinodal decomposition a single conserved order parameter, cb,

representing the concentration of one component in a two component system with a

dual well free energy function may be used. One such free energy function is:[9]

16Fm•
F(Cb) = Fma 4 [(Cb - C,)(Cb - Cp)] 2  (2.3)

(c 3 - ca)

This free energy function, plotted in Figure 2-1, has stable concentrations at c, and

cy, and spinodal decomposition will be observed in the region where 2 <0. Differ-

entiating twice gives:

&2 F 16Fn ( 2
(,= 1 • )4[12cb - 12cb(cc + co) + 2(c. + 4ccp + c )]

2cb (CP - C.)9

Setting = O and solving for cb yields:

ca + cC 3(c2 - 2c2c ) + c )

2 6

Therefore using c, = 0.119 and cp = 0.881 spinodal decomposition will occur for

0.28 < cb < 0.72. This range is sufficiently wide to use this free energy function to

determine the percolation threshold for spinodal decomposition.

2.1.2 Nucleation and Growth

Simulating nucleation and growth is more complex than spinodal decomposition since

any simple dual well free energy function will exhibit spinodal decomposition for some

range of compositions. In order to allow the simulation of nucleation and growth for

any initial composition a second non-conserved order parameter, b, is used. 4 rep-
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Figure 2-1: Dual well free energy function from Equation (2.3), with stable concen-
trations c, = 0.119 and cp = 0.881

resents the phase of the system at a given point. Additionally, a new free energy

function, dependent on both cb and 0 is needed. One such model for a binary eutec-

tic system is proposed by Wheeler, McFadden and Boettinger [1]. The simulations

performed in this work are based on a simplified version of their eutectic model II.

Specifically, the dimensionless, symmetrical version of the model is used, with the

additional assumptions that the system is isothermal and solid at all times. This

dramatically reduces the complexity of the problem by eliminating the need for a

third order parameter, as well as thermal effects.

The free energy function is constructed by assuming that the pure a and 3 phases

have ideal solution free energy densities and calculating the total system free energy

by taking weighted contributions of each pure free energy based on the value of i.

The bulk Helmholtz free energy density is given by [1]:

f(T, c,4 ) = h (0)f'(T, c) + (1 - h(,))f (T, c) + ~WFpo 2(1 - 2

where h(b) = 7P2(3 - 20i). Assuming that the phase diagram is symmetric about

c = , the a and /3 phases have the same melting point in their pure forms, and21
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Figure 2-2: Free energy function described in Equation (2.4)

making all constants dimensionless yields [1]:

f(To, c, 4) =o + 9(4) + toI(c) + L(To - 1)[h(4)c + (1 - h(4))(1 - c)]

+ L(TrTo)[h(0)(1 - c) + (1 - h(0))c] (2.4)

where To, 1f4, fo, and i are dimensionless parameters, 7 is a constant greater than

1 related to the degree of undercooling, g()) = 2(1 -_ )2, and I(c) = cln(c) + (1 -

c) In(1 - c).

A plot of the free energy function is included in Figure 2-2. It exhibits minima at

(? = 0, c = c,) and ( c = 1, c c) as expected. The stable concentrations of the a

and 3 phases can be determined by finding the minima of f(c, 0) when V = 0 and

= 1 respectively . The first derivative of f(c, 4) with respect to the concentration

is given by:

S-oln - + [2h(o) - 1][LTo(1 - 7)]Oc 1 - c

setting this equal to 0 and solving yields:

e(1-2h(k))L(1-r)
C 1 + e(1-2h(O))L(1-r)

1

;~~""~::::::.~~~';"""~'.~;;~-~ 5



Given that h(O)= 0 and h(1)= 1:

eL(1-)
Ca= (2.5)1 + eL(1-) (2.5)

c e = (2.6)
1 + eL(1-r)

2.2 Percolation Theory

The central focus of percolation theory is the study of cluster formations in a system,

and the characterization of the properties of the clusters that exist in a given system.

Traditionally most work on percolation has studied random percolation, and that case

is sufficient to develop the basic theory that is then applied to more complex systems;

therefore the remainder of this section will focus on random percolation. Specifically

it will address random percolation on a two dimensional square lattice with a fraction

p of occupied sites, that is every site on the lattice has probability p of being occupied

and 1 - p of being unoccupied. Two sites on the lattice are considered to be part of

the same cluster if and only if they are connected to one another by a path moving

only on other occupied sites, and only from one site to its nearest neighbors [11]. A

cluster is said to percolate if a path can be traced from one side of the system to the

other while only touching sites that are part of that cluster.

The first quantity of interest in percolation theory is known as the percolation

threshold, Pc. It is defined as the value of p such that a percolating cluster is never

found in an infinite system for p < pc, and at least one is always found for p Ž pc

[11]. A number of other quantities diverge as p - Pc, exhibiting similar behavior to

many material properties around thermal phase transitions [11].



2.2.1 Critical Exponents and Universality

The behavior of many quantities that diverge near the percolation threshold can be

modelled with a simple power law of the form:

X oc Ip - pb (2.7)

where X is the quantity of interest, and b is a critical exponent [8]. One such quantity

is the mean cluster size, S, which is defined as:

S = n (2.8)
Es ns

where n, is the number of clusters of size s per lattice site [8]. It is logical that the

mean cluster size grows rapidly as p approaches Pc, since at Pc there is at least one

infinite cluster, therefore very slightly below Pc there should be a number of very large,

but finite clusters, and the farther below pc the smaller the clusters in the system are

likely to be. As p --4 P, S scales according to [11]:

S c pP - pdc-7 (2.9)

The second such quantity of interest in this work is the strength of the infinite (or

largest for p < p,) cluster, P. P is defined as the fraction of sites belonging to the

largest cluster in the system and approaches 0 as p - Pc according to the power law

[11]:

P oc p - pcI (2.10)

Possibly the most interesting thing about the critical exponents is the phenomenon

of universality. Previous studies suggest that the critical exponents depend solely on

the dimensionality of the system in question [11]. For example, the same critical expo-

nents are observed for square, triangular, and honeycomb lattices in two dimensions.

Additionally, work done on continuum percolation suggests that two dimensional

models of randomly placed discs belong to the same universality class as random



lattice percolation [2]. Therefore one of the main goals of this work is to determine

whether diffusionally evolved systems also belong to the same universality class, or

if there is a change in the underlying physics that results in different values for the

critical exponents.

2.2.2 Finite Size Scaling

Thus far the question of how to obtain reliable estimates for p,, as well as the critical

exponents has not been addressed. The definitions in the previous section are all

applicable to systems of infinite size; unfortunately it is impossible to simulate a

system of infinite size in order to determine Pc, 1, and -y. In order to accurately

estimate these values one must investigate their scaling with system size, L.

In order to study critical behavior around the percolation threshold an accurate

estimate of Pc is essential. Therefore the first question that must be addressed is

how to determine pc from simulations of finite systems. To accomplish this consider

the probability of finding a spanning cluster in a system, II. For an infinite system

HI = 1 for p _ pc, and I = 0 for p < pc. However in a finite system it is easy to

imagine a spanning cluster existing for values of p that are significantly lower than

Pc, and similarly that it is possible for a spanning cluster to not be present for p > p,.

In general II(p, L) is expected be close to 0 for small values of p, and increase to

approach 1 for large values of p, with the width of this transition being a function of

L. As L -+ oc a plot of H(p, L) will approach a step function at pc [11]. An example

plot of H vs. p for two systems with L < oo and one at L = oo is presented in Figure

2-3 to illustrate the convergence of II(p, L) to a step function at Pc. Now define an

effective percolation threshold pf as the value of p where II = 1 for a given L (note

that the specific value of H used to define peff is unimportant, any value between 0

and 1 is sufficient). Since 1I approaches a step function as L --+ co it is necessary that

Pf -- Pc. It turns out that p~f scales with system size according to:

pf - Pc oc L (2.11)



Figure 2-3: Example scaling of H(p, L) as system size increases to oo.

where v is a third critical exponent [11]. Unfortunately, without prior knowledge of

v this relation cannot be used directly to estimate Pc.

Now consider how II(p, L) approaches a step function as L is increased. Specifi-

cally, consider the scaling of the percolation transition width, A, with L. As with pc'

the specific definition of A used is unimportant as the scaling behavior remains the

same, so for example the width of p that it takes for II to increase from 0.1 to 0.9,

or 0.2 to 0.8, or some other convenient measure of the transition width may be used.

The scaling behavior of A(L) is described by [11]:

--1

A(L) cc LV (2.12)

Since both A(L) and gp scale according to power laws with the same critical exponent

the following relation is used to estimate pc:

p c(L) - pc cc A(L) (2.13)

Pc is determined by extrapolating the value of pe' to A(L) = 0, which corresponds to

the thermodynamic limit of HI being a step function [11].

Similar finite size scaling techniques can be applied to P(p, L) and S(p, L) to

determine the values of the critical exponents related to each based on simulations at



various L. Specifically the scaling of P and S with L at p = Pc is given by [8]:

P(pC, L) oc L-' (2.14)

S(p, L) ac L (2.15)

therefore 3 and y can be determined from double logarithmic plots of P(pe, L) and

S(pc, L) respectively.

2.2.3 Effects of Physical Correlations

Relatively little work has been done to study percolation in cases where there are

correlations between particle's locations. However, many physical systems exhibit

significant physical correlations due to diffusional effects, attractive or repulsive po-

tentials between particles, and a variety of other factors. Therefore it is important

to consider how these correlations could affect the percolation threshold and critical

scaling exponents.

For example, consider a system of discs with uniform radius that interact through

a Lennard-Jones potential of the form:

V(r) = [(4E 2- (s)] (2.16)

where r is the radius between particles and a controls the location of the potential

minimum, ro [5]. If ro is larger than the disc radius then the discs will resist overlap-

ping. This should lead to a noticeable increase in the percolation threshold relative

to randomly placed discs. However, if ro is less than the disc radius the particles

are more likely to coalesce into clusters. This should lower the percolation threshold.

The presence of short range correlations like the Lennard-Jones potential can alter a

system's p,, however the system still belongs to the same universality class as random

systems because the correlations disappear when the system is viewed on a sufficiently

large length scale. In order for a system to belong to a different universality class, and

therefore exhibit different critical exponents there must be some long range correla-



tions that have not previously been considered. This makes the observed difference

between the critical exponents in this work and the expected values unexpected and

exciting.



Chapter 3

Simulation Methods

3.1 Phase Field Method

3.1.1 Time Evolution

In order to use the phase field method to produce useful simulations it is necessary to

discretize the governing equations in both time and space so that they may be solved

numerically. For the purposes of this discussion the case of spinodal decomposition

will be addressed. The methodology is the same for nucleation and growth, but the

algebra is more complicated and both order parameters are updated based on their

respective governing equations at each time step.

By differentiating Equation (2.3) and plugging the result into the Cahn-Hilliard

equation (2.1), we obtain:

Oc m 2-= M V 2 [ F' (c - co)(c- cp)(2c - cp - ) -6~ 4 C
&t (cp - c.)4I V
Oc 32FV= M [2 V2 C3 - 3(c, + c) • + ( + 4cc3 + ) V2 C] - ME• V4 C
Ot (cp - ca),

First, we treat the space discretization by letting c be a vector defined at points on a

grid mx, with i = 1... N, and Ax = xj 1+ - xi. The Laplacian operator at xi is then

approximated by:
d2c Yi+1 - 2y2 + yi-1
dx2 •, Ax2



Assuming periodic boundary conditions, this can be applied to the entire vector c as

a matrix operator:

d2C 1
dX2 ýX2

-2 1 0

1 -2 1 0

0 1 -2 1

0 1 -2

For shorthand:
d2 c 1d2 - D2 c

where D2 is the matrix operator. This method can be extended to calculate the

Laplacian in two dimensions by using D2 = D2 + D2'.

The time discretization is performed by approximating:

Oc c.+1 - c.
Satn At

Applying these to the time evolution equation yields:

32F_, [2 D2

D22

- McCc A4 Cn+1

- 3(co + c) -D c2AX2 Cn+ (cc + 4c•cp + C) 24c

The final term on the right hand side uses cn+1 instead of cn to allow for larger stable

values of At. Separating the cn+l terms to the left hand side, and cn terms to the

right hand side gives:

1 1+
MCC2AtD22)

C AZ4 Cn+

32Fma,c+MAt (cA - co)
SD2 .D2  D2
S2 c - 3(co + c);2c + (c + 4c~cP + c) A2 1

Cn+1 - Cn

At



Let:

LHS= (1±M n AtD22)LH S= 1 + M,62 Ax 4

RHS = c + MAt (c32F-c) 4 2 c - 1( Cp 2 (c2 + 4cccp + c) ,) D2

c+l = LHS-'RHS

Solving this equation to determine the new value of c at every time step would require

inverting the matrix LHS, which can be computationally intensive. In order to reduce

the computational intensity a Discrete Fourier Transform (DFT) is used to solve the

matrix equation.

The DFT operates on a series of complex numbers zo... XN transforming them

to another series of complex numbers Xo ... XN by [12]:

N-1

Xk xnei kn k = 0...N-1 (3.1)
n=0

Applying the DFT to a vector x yields a second vector X, so the DFT can be con-

sidered a matrix such that X = .Fx, where cF has the form:

0 * 0  0* 1  0*(N-1)
WN N WN

0*1 1*1 1*(N-1)
WN WN WN

0*(N-1) 1*(N-1) (N-1)(N-1)
N N N

-2sri
WN = e N

Therefore the k th row of F is k = , ,e N ,... (N-1)k . The transpose

of the vectors Fk are eigenvalues of the D2 Laplacian operator such that D2 .1k =

AkA7k and Ak = 2 cos k - 2. Since D2 is symmetric Fk D2 = Ak.Fk and Y D2 = AY

where A is a diagonal matrix whose diagonal elements are the eigenvalues Ak.

Now apply the DFT to the equation for the time evolution of c. First the left



hand side:

'(1+ AtD22

1 + Mcc• Az c( Ax4

C+'2€ Ax4  cn+

Cn+1 -- FCn+1l

Next do the same to the right hand side:

32MF, D2 D2  D2
S c+MA (c 2Fm- c) 4 2 D2 C - 3(c. + C+) 2 -- 2 + (c2 + 4ccD + c2) D2•

(Co +ca) 4  c AX2  AX2 C c a AX2 Cn

32Fmax A A A
c + McAt (ca - c)4 2 A - 3(c. + c) -2 + (c + 4cac + c) A2 C

Solving:

M= (+M AtA2> 
-1

32Fm~a A A A
c + McAt (cp - [c)4 2 -c - 3(ca + cp) A c; + C 4CaCpI C 2Cn

Since A is a diagonal matrix this can be separated into k separate equations each of

which is easily solved, eliminating the need for solving a large matrix equation. Once

c + is computed cn+l is computed using the inverse DFT, c•+1 = " ca+.

The simplest extension of this method to two dimensions involves adding D2

to its transpose matrix to account for the additional dimension. This matrix has

eigenvalues:
2irj 2irkAj,k = 2(cos 2rj cos - 2)

However using this finite difference approximation ignores contributions at 450 angles

to the axes, and results in visible anisotropy in simulation results. To eliminate this



anisotropy a filter of the form:

S-4(a + y) y

is used [3]. The finite difference matrix for this filter has eigenvalues:

-2 c 2j 2rk 4 2) 2rk
Aj,k = (cos(Ž) * cos( ) - 1 + (co cos( - 23 Nx Ny ) 3 Nx Ny

The functions that control the time evolution of the system for spinodal decompo-

sition and nucleation and growth are binaryalloy3Dfftchonly(), and binaryalloy3Dfft()

respectively. Both are included in their entirety in the file phasefield3D.cpp in Ap-

pendix A.

3.1.2 Initial Conditions

Now that we have addressed the method for solving the time evolution equations

the initial conditions for the simulations must be specified. For the case of spinodal

decomposition the value of the concentration matrix at each grid point is set to

ci, = co ±+ where co is the average initial concentration determined by the desired

final phase fraction of the 3 phase, and 6 is a random number on the order of 10-

added so that there is some noise in the system. The value of co is computed for each

simulation using the lever rule and the desired final phase fraction of 3, po . It is

given by:

co = c, + P, (c' - c,) (3.2)

where ca and cp are the stable concentrations of the a and 3 phases. The code

performing this initialization is in the function fftgrid3D::initializeValueWithNoise()

in the file fftgrid3D.cpp in Appendix A.

The initial conditions for the nucleation and growth simulations are somewhat

more complicated. Rather than starting with the entire system centered around



a given concentration with some added noise, it begins as mainly a phase, with

randomly placed nuclei of the 3 phase. In order to ensure that the system reaches

the desired fraction of / phase at equilibrium, the average initial concentration of

the system must still be co as described in Equation (3.2). In order to accomplish

this a second parameter is used in the initialization of the nucleation and growth

simulations, pO'. It determines the initial fraction of the system that is covered by

nuclei of the )3 phase according to po = p'Poo.

The algorithm for initializing the system to meet these criteria is as follows. First

the number of nuclei to be placed is determined based on the calculated value of po.

It is given by:

Nnudei = p0N N,
S

where Nx and N, are the dimensions of the system and s is the size of each indi-

vidual nucleus. Now, knowing the desired average concentration of the system the

concentration of component B outside of the nuclei can be calculated:

e NNyCO - NnuceiSCP
S NN, - NnucleiS

Once this is computed the value of c at every grid point is set to cds and V is set

to 0.01 at every grid point. The nuclei are then placed by selecting a random grid

location as the center, checking that there would be no overlap with nearby nuclei,

and setting ci,, = c, and i4,j = 0.99 for all grid locations with radius r of the center

location. This process is repeated until all Nn,dei are placed. The code used to

perform this initialization is in the function fftgrid3D::initializeNuclei(, in the file

fftgrid3D.cpp in Appendix A

3.1.3 Parameter Values

A number of dimensionless parameters are used in the free energy models for both

spinodal decomposition and nucleation and growth. Additional parameters governing

the kinetics of the system are included in the Cahn-Hilliard and Allen-Cahn equations.



The values of all parameters used in this work are listed in Table 3.1.

Table 3.1: Model Parameters for Spinodal Decomposition and Nucleation and Growth
Spinodal Decomposition

0.00001
0.001
N/A
1.0

0.881
0.119
0.015
N/A
N/A
N/A
N/A
N/A

Nucleation and Growth
0.001

0.0001
1.0

N/A
N/A
N/A
0.005
0.005
10.0
20.0
0.4
1.1

3.2 Cluster Counting

In order to analyze the data from the phase field simulations and study percolation

behavior, it is necessary to have an efficient algorithm for marking clusters in the

system. The primary difficulty in finding such an algorithm is easily illustrated with a

simple example. Consider the lattice depicted below, where an x signifies an occupied

space:

X X X X

Traversing the array from left to right, then top to bottom the first site we encounter

is occupied so is labelled 1, the next site is unoccupied so is labelled 0, the third

site is occupied and gets labelled 2, the fourth site is labelled 0, and the fifth 3. No

problems so far. On the second line the first two sites are occupied and connected

to the cluster labelled 1 on the first line, so they are both labelled 1, but now at the

third site of the second line there is a problem. This site is connected on the left to

dt
MC

Fmp
Ca
cO
cc

Wo
L
to
T



the cluster labelled 1, and above to the cluster labelled 2.

1 2 3

11? x

The most important part of a cluster counting algorithm is how it deals with this

case. It is obvious that the clusters previously labelled 1 and 2 are in fact a single

cluster so how should all of the sites labelled 2 be relabelled? A similar problem arises

when the algorithm reaches the bottom right site of this example matrix as cluster

3 now joins the single large cluster. A naive algorithm would simply start over from

the beginning and relabel every 2 as a 1 when it first encounters the situation, but

that is extremely inefficient. One solution to this problem which allows for counting

clusters in O(N) time instead of the O(N 2) time that the naive algorithm takes is

the Hoshen-Kopelmann algorithm [11].

The Hoshen-Kopelmann algorithm works by maintaining a list of incorrect labels

along with what label each "bad" label should have. This is managed by maintaining

an array whose length is the number of labels in use, call it L. Each L(i) stores the

correct label for label i, thus if L(i) = i i is a proper label. Each time two previously

marked clusters are found to connnect L is updated to reflect that. In the example

above when the algorithm reaches the third site in the second row it would label that

site 1 and set L(2) = 1. Then when it reached the final site in the lattice it would

label it 1 and set L(3) = 1. Then a second traversal of the array is sufficient to label

each site properly by relabelling based on the values of L(i).

Once the system is labelled, it is trivial to determine whether or not a spanning

cluster is present. Simply compare the list of clusters present in the top row to those in

the bottom row, and if a cluster appears in both lists then it is a spanning cluster. For

the simulations in this work only systems with clusters spanning both top to bottom

and left to right were considered to have percolated. To confirm whether or not a

cluster spanning top to bottom also spans left to right simply check whether any sites

in the leftmost and rightmost columns are occupied with that cluster label. The code



implementing the Hoshen-Kopelmann algorithm is included in the file fftgrid3D.cpp

in Appendix A.

An alternative, and more elegant, solution to marking clusters also exists. This

recursive solution marks an entire cluster at a time, and by repeatedly applying it

until no unlabelled occupied sites exist every cluster can be marked while only visiting

each site in the lattice once. The recursive method for labelling a cluster is as follows.

First check that the current site is occupied and has not yet been labelled. If it is

unoccupied then return. If it is occupied then label it and proceed to call the function

with each of its neighbors as the site to be checked. Pseudocode for a function that

uses this algorithm is below, although it doesn't account for boundary conditions.

void burnandlight(int **data, int i, int j, int label) {

if(data[i][j] != 1)

//this site is either unoccupied, or has already been marked with

//this label

return;

//label this site

data[i][j] = label;

//mark all neighboring sites

burnandlight (data, i+l1,j , label);

burnandlight(data ,i -1,j , label);

burnandlight(data, i , j+l,label);

burnandlight(data , i , j -1,label);

I

While this algorithm should have the same algorithmic complexity as the Hoshen-

Kopelmann algorithm some scaling problems can occur due to its recursive nature.

Every additional site in a cluster leads to four additional function calls and their

associated memory overhead. Figure 3-1 plots the time required to mark the clusters

in a system versus the fraction of unoccupied sites. In order to avoid any potential

scaling problems the Hoshen-Kopelmann method was used during all simulations in

this work.

The other relevant statistics used in this work are the power of the infinite, or in

the case of finite size systems, the largest cluster, P(p, L) and the square of the mean



Computation Time versus Log Cluster Size (Data Sets 64x64, 96x96, .--, 256x256)
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Figure 3-1: CPU time to mark clusters vs. fraction of unoccupied sites for systems
of size L=64, 96, ... , 256

cluster size, S(p, L). To calculate these values for a system that has had its clusters

marked an array N of length L, where L is the number of unique clusters, is created.

N(i) stores the number of sites in the cluster labelled i, and is calculated by traversing

the system and incrementing N(i) every time a site labelled i is encountered. The

value of P(p, L) is then given by (N(i) , and S(p, L) is given by:

L-1

S =L- 1N(i) 2

i=l

this assumes that N(i) is sorted in ascending order so that the size of the largest

cluster is stored in N(L) and is not included in the sum.

3.3 Methodology

In order to accurately estimate Pc and the critical exponents a large number of simula-

tions must be run for various values of p and L. The first step is to estimate Pc by gen-

erating II(p, L) curves for several different system sizes. For both spinodal decomposi-

1{}

u
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tion and nucleation and growth system sizes of L = 64, 96, 128, 192, 256, 384, and 512.

For each system size simulations were run at values of p~, spanning the percolation

transition in increments of Ap, = 0.01. In order to obtain a useful estimate of

fI(p, L) for each data point between 60 and 250 simulations were performed, with

larger systems having fewer simulations per point due to the longer time for a sim-

ulation to run to completion. Upon calculation of Pc from this data additional sets

of 90 to 250 simulations were run at p = pc and the same range of L to provide the

data to calculate p and -y.



Chapter 4

Results and Discussion

4.1 Simulations of Microstructural Evolution with

Combined Growth and Coarsening.

Time lapse images of two sample systems are presented in Figure 4-1. Parts (a)

through (e) depict the evolution of a spinodally decomposed system with p, = 0.5.

The system starts at a uniform, unstable composition at t = 0 then decomposes

into two phases with compositions ca and cq in (b) - (d). As expected for spinodal

decomposition the width of each phase exhibits a characteristic length scale [9]. Some

coarsening of the microstructure is evident between (d) and (e). Parts (f) - (j) show

the evolution of a system that underwent nucleation and growth with pm, = 0.63.

Critical nuclei are visible in (f). These nuclei draw in solute from the surrounding

area to grow, creating a depletion region that is visible during the initial growth

phase, as in (g). After the initial growth phase the microstructure coarsens, as seen

from (h) - (j).

4.2 Percolation Threshold

Figure 4.2 contains plots of the percolation probability vs. equilibrium volume frac-

tion of .) phase for systems of various sizes evolved by spinodal decomposition and



Figure 4-1: Sample simulation results for spinodal decomposition (a-e) and nucleation

and growth (f-j). The spinodal decomposition images are for a system with p,oo = 0.5,
taken at t=0, 750, 1500, 10000, and 20000 time steps. The nucleation and growth

images are for a system with po, = 0.63 taken at t=0, 5000, 10000, 15000, and 20000

time steps.

nucleation and growth. The decrease in percolation transition width as system size

increases is quite apparent from these plots. By fitting each set of data with the

empirical equation:
1 erf I

2

we obtain values for pXf(L) and A(L), allowing Pc to be estimated using Equation

(2.13).

(a) Spinodal Decomposition

(a) Spinodal Decomposition (b) Nucleation and Growth

Figure 4-2: Plot of the probability of percolation II versus equilibrium phase fraction
of 3 phase, p~,. Curves are plotted for multiple system sizes to illustrate the shrinking
transition width as the size of the system is increased.
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The fitted values of p' (L) and A(L) are plotted in Figure 4-3. The value of

pc in the infinite limit of A = 0 is extrapolated from the y intercept of a linear

regression on this data. This yields Pc = 0.4985 ± 0.0064 for spinodally decomposed

systems, and pc = 0.6612± 0.0031 for systems that underwent nucleation and growth.

In comparison the percolation threshold for a randomly assigned square lattice is

0.53

0.52

0.51

1oe 0.5

0.49

0.48

nA7
.

0 0.005 0.01 0.01 3

li

A A

(a) Spinodal Decomposition (b) Nucleation and Growth

Figure 4-3: Plot of the effective percolation threshold, p versus the width of the
percolation transition A.

Pc = 0.592746 [11]. Continuum percolation of overlapping discs exhibits a threshold

Pc = 0.6764 ± 0.0009 when the discs have a uniform radius, and pc = 0.6860 ± 0.0012

for discs with a distribution of radii [2].

Due to the nature of spinodal decomposition it is unsurprising that it exhibits the

lowest percolation threshold of all the mentioned cases. Spinodally decomposed mi-

crostructures are self similar, and tend to form highly connected networks. Therefore

a spanning cluster is more likely to form at a lower phase fraction than for a random

square lattice, or randomly distributed discs. The observed percolation threshold for

systems evolved through nucleation and growth is significantly higher than that of

both spinodal decomposition and the random square lattice. This can be explained

by the presence of the depletion region that forms around a nucleus as it grows. As

two growing nuclei get closer to one another their depletion regions will impinge,

and the lack of solute slows the growth of the nuclei towards one another therefore

reducing the chance that they coalesce into a single particle. The observed decrease

in percolation threshold compared to the continuum case of randomly placed discs

= 0.4985 ± 0.0064

· · · · 1



can be explained by a driving force for nearby nuclei to coalesce that is not present

for random placement. This driving force is due to the reduction in total surface area

that occurs when nearby nuclei join to form a single larger particle.

4.3 Critical Exponents

4.3.1 v Estimation

The value of the critical exponent v is estimated based on the scaling behavior of p ff

with system size as described in Equation (2.11). Since p exhibits power law scaling

with system size the value of v is calculated from the slope of the best fit to a double

logarithmic plot of the data. This is shown in Figure 4-4. From these data we obtain

an estimate v = 0.9 i 0.5 for spinodal decomposition, and v = 1.3 ± 0.2 for nucleation

and growth. The value for nucleation and growth does not differ significantly from

the exact value v = 4/3 [11]. However, the estimate for spinodal decomposition is

quite different than expected with 4/3 falling at the far edge of the error range.

a.

a.
~.U

10
3

S L L

(a) Spinodal Decomposition (b) Nucleation and Growth

Figure 4-4: Graphical determination of the exponent v from the log-log plot of p0 -Pc
versus the system size L.

4.3.2 )3 Estimation

/3 is estimated from the scaling behavior of the strength of the infinite cluster at

the percolation threshold, P(pc, L). For finite systems the fraction of sites in the



largest cluster is used since there is no infinite cluster. According to Equation(2.14),

P(Pc, L) follows a power law, so 3 is estimated from the slope of a double logarithmic

plot of P(pe, L) vs. L. This plot is presented in Figure 4-5. Since the slope, m, of

the best fit line should equal the exponent of the power law P = -my. This yields

2 - 0.218 ± 0.063 spinodal decomposition and 2 = 0.192 ± 0.033 for nucleation and

growth. Using the estimates of v obtained in Section 4.3.1 gives /3 = 0.21 ± 0.13

for spinodal decomposition , and 3 = 0.250 ± 0.058 for nucleation and growth. Both

results differ from the expected value of P = = 0.1389 for two dimensional systems,

and the difference is statistically significant at a 95% confidence level for the case of

nucleation and growth.[11]. This suggests that both spinodal decomposition and

nucleation and growth belong to a different universality class than all previously

addressed two dimensional percolation problems.

a4
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(a) Spinodal Decomposition (b) Nucleation and Growth

Figure 4-5: Graphical determination of the exponent 3 from the log-log plot of
P(pc, L) versus the system size L.

4.3.3 y Estimation

Similarly to v and 3, the value of y is best estimated from a double logarithmic plot

of a quantity that exhibits power law scaling with system size. That quantity is the

mean cluster size S(pe, L). According to Equation (2.15), the slope of the double

logarithmic plot should be 2, therefore y = mv. From the data plotted in Figure

4-6 we obtain 2 = 2.101 ± 0.093 for spinodal decomposition, and 2 = 2.368 ± 0.049

for nucleation and growth. Using the estimates of v from Section 4.3.1 to solve for -y



gives y = 2.0 + 1.1 for spinodal decomposition and y = 3.08 ± 0.48 for nucleation and

growth. The expected value for a two dimensional system is y = 3 = 2.3889. As was

the case with the estimates of p for both spinodal decomposition and nucleation and

growth, the estimates of y for both differ from the expected value, with the difference

being statistically significant for the case of nucleation and growth. This provides

further evidence that the underlying physics of these cases is more complex than for

the simpler random percolation problems that were studied previously.

(a) Spinodal Decomposition

Figure 4-6: Graphical determination
versus the system size L.

(b) Nucleation and Growth

of the exponent y from the log-log plot of S(pc, L)

slope - 2.37
7=3.08

.... |



Chapter 5

Conclusion

Physical phase correlations introduced as a result of diffusion moderated microstruc-

tural evolution appear to significantly alter the underlying physics of percolation in

comparison to other two dimensional systems. The shifted values of Pc for spinodal

decomposition and nucleation and growth are logically explained based on the nature

of their microstructural evolution. However, the observed differences in the critical

exponents 3 and y are somewhat surprising considering the previously posited phe-

nomenon of universality. While the errors are relatively large, the major source is the

error in the estimate of v and the estimates of - and 2 are more precise and still dif-

fer from the expected values for two dimensional systems. These results suggest that

diffusionally evolved systems like those examined in this work belong to a different

universality class than other two dimensional percolation problems.



Appendix A

Simulation Code

A.1 fftgrid3D.h

#ifndef -FFTGRID3D.IH

2 #define -FFTGRID3D-HL

#include <fstream >

#include <iostream>

#include <math.h>

7 #include <fftw3.h>

#include "sse2 .h"

#include " sse3 .h"

using narnespace std;

12 I/These macros are not used in the operators because having to do 2 multiplies

//and 2 adds to calculate the index is really slow.

#define gridLoop3D(grid) for (int i=O; i<(grid).getDimension(1); ++i) for (int j=O; j

<(grid). getDimension(2); +•-j) for (int k=O; k<(grid).getDimension(3); ++-k)

#define rowmajindex k+N3*(j+N2*i)

17 #define X-DIM 1

#define Y.DIM 2

#define Z-DIM 3

#define XYPLANE 8

#define XZPLANE 9

22 #define YZYPLANE 10

class fftgrid3D{

//define some operators

inline friend fftgrid3D operator+(const fftgrid3D&,const fftgrid3D&);



27 inline friend fftgrid3D operator-(const

inline friend fftgrid3D operator*(const

inline friend fftgrid3D operator/(const

inline friend fftgrid3D operator*(const

inline friend fftgrid3D operator*(const

32 inline friend fftgrid3D operator/(const

inline friend fftgrid3D operator+(const

inline friend fftgrid3D operator+(const

inline friend fftgrid3D operator-(const

inline friend fftgrid3D operator-(const

37 public:

fftgrid3D(int,int,int, double=0);

fftgrid3D&,const fftgrid3D&);

fftgrid3D&,const fftgrid3D&);

fftgrid3D&,const fftgrid3D&);

fftgrid3D&,const double);

double, const fftgrid3D&);

fftgrid3D&,const double);

fftgrid3D&,const double);

double, const fftgrid3D&);

fftgrid3D&,const double);

double, const fftgrid3D&);

fftgrid3D(char*, double=0, int=0, int=0, int=0, int=0, int=0, int=0);

fftgrid3D(const fftgrid3D&);

-fftgrid3D (void) ;

42 void initializeValueWithNoise (double);

void initializeNuclei(double,double,double,int,fftgrid3D*);

int hoshenKopelman (double);

double volumeFraction (double);

void writeToFile(char*);

47 void writeToFileComplex(char*);

fftw.complex* getGrid(){return grid;};

fftw.complex * getGrid () const{return grid;};

inline int getDimension(int n){int dim=0; switch (n){case X-DIM: dim=N1; break;

case Y-DIM: dim=N2; break; case ZJDIM: dim=N3; break; case 4: dim=NkLorig;

break; case 5: dim=N2.orig; break; case 6: dim=N3.orig; break;}; return(dim);}

inline double* operator()(int,int,int);

52 inline double* operator()(int,int,int) const; //for access only

inline void operator=(const double);

inline void operator=(const fftgrid3D&);

inline void operator=(fftw.complex *);

void naturallog ();

57 fftgrid3D fft ();

fftgrid3D ifft ();

protected:

void allocate(int,int,int);

62 int N1;

int N2;
int N3;
fftw.plan plan-for;

fftw.plan planrev;

67 fftw.complex* grid;

double* grid-result;

fftw-complex* grid-result2;



static int fftw.init _threads-called;

void init.fftw();

72 void cleanupfftw() ;

/* Ninc variables are used to keep track of the initial size of the grid

* that was read from the input file. warnedrange and warned-bndry are used

* to insure that particular warning messages are only displayed once to

77 * avoid filling output files with error messages.

private:

int N1-orig;

int N2-orig;

82 int N3_orig;

int warned-range;

int warned-bndry;

1;
87 1/

/I

void fftgrid3D::operator=(const double value){

int max = N1*N2*N3;

for(int i=0; i<max; ++i) {

grid[i][0] = value;

92 grid[i][1] = 0;

//
void fftgrid3D:: operator=(const fftgrid3D &rhs){

97 memcpy( grid , rhs. getGrid () , sizeof( fftw.complex ) *N1*N2*N3);

}
//
void fftgrid3D::operator=(fftw.complex *rhs){

memcpy( grid , rhs , sizeof(fftw.complex ) *N1*N2*N3);

102 }
1/
//This function provides access to elements

double* fftgrid3D ::operator()(int i, int j,

return (double*) grid [rowmajindex ];

107 1

double* fftgrid3D ::operator()(int i , int j,

return (double*) grid [rowmajindex];

in the grid

int k){

int k) const {

//This function adds two grids together

fftgrid3D operator+(const fftgrid3D &lhs,const fftgrid3D &rhs) {

};
Q'T / /



//should check that dimensions of this and rhs are the same

fftgrid3D answer(lhs);

117 fftw.complex *Ig, *rg, *ag;

Ig = lhs.getGrid();

rg = rhs.getGrid();

ag = answer.getGrid();

int max = answer. getDimension (X-DIM) *answer. getDimension (YDIM) *answer. getDimension

(ZDIM);

122 for(int i=0;i<max;++i) {

#ifdef -- SSE2__

sseAdd((double*)Ig[i], (double*)rg[i], (double*)ag[i]) ;

#else

ag[ij[0] = lg[ij[0] + rg[i][0];

127 agl[i[1] = Ig[i][11 + rg[i][1);

#endif

}
return answer;

}
132

//subtracts 2 grids

fftgrid3D operator-(const fftgrid3D &lhs,const fftgrid3D &rhs) {

//should check that dimensions of this and rhs are the same

fftgrid3D answer(lhs);

137 fftw-complex *lg, *rg, *ag;

Ig = Ihs.getGrid ();

rg = rhs.getGrid();

ag = answer. getGrid();

int max = answer. getDimension (X.DIM) *answer. getDimension (Y.DIM) *answer. getDimension

(Z.DIM);

142 for(int i=0;i<max;++i) {

#ifdef __SSE2_-

sseSub((double*)Igjij, (double*)rg[i], (double*)ag[i]);

#else

ag[i][O] = Igli][O] - rg[i][0);

147 ag[ij[1] = Ig[ii[1] - rg[i][1];

#endif

return answer;

}
152

//This function multiplies 2 grids element by element

fftgrid3D operator*(const fftgrid3D &lhs,const fftgrid3D &rhs) {

//should check dimensions

fftgrid3D answer(lhs);

157 fftw-complex *lg, *rg, *ag;



Ig = lhs.getGrid();

rg = rhs.getGrid();

ag = answer. getGrid();

int max = answer. getDimension (X.DIM) *answer. getDimension(Y.DIM) *answer. getDimension

(Z.DIM);

162 for(int i=0;i<max;++i) {

#ifdef __SSE3--

sse3ComplexMult((double*) lg [i ] , (double*)rg( ii, (double*)ag[ ii);

#elif defined (_SSE2__)

sseComplexMult ((double*) Ig [i], (double*)rg ii ], (double*)ag[ i]);

167 #else

ag[i][01 = lg[i [0]*rg[i][O]-lg[i [1]*rg[i][1];

ag[i][1] = Ig[i [01]*rg[i[ll]-lg[ij[1]*rg[i][0];

iendif

}
172 return answer;

}

fftgrid3D operator/(const fftgrid3D &lhs,const fftgrid3D &rhs) {

fftgrid3D answer(lhs);

177 fftw.complex *Ig, *rg, *ag;

Ig = lhs.getGrid();

rg = rhs.getGrid ();

ag = answer.getGrid();

int max = answer .getDimension (X-DIM) *answer. getDimension (Y-DIM) *answer. getDimension

(ZDIM) ;

182 for(int i=0;i<max;++i) {

#ifdef __SSE3_.

sse3ComplexDiv ((double*) Ig [i], (double*)rg [i], (double*)ag [i]);

#elif defined(--SSE2--)

sseComplexDiv((double*)lg[i], (double*)rg[i], (double*)ag[i]) ;

187 #else

double a = Ig [ i ][0];

double b = Ig[i][1];

double c = rg[i][0];

double d = rgi] [1];

192 double denom = c*c + d*d;

ag[i][0] = (a*c + b*d)/denom;

ag[i][1] = (b*c - a*d)/denom;

#endif

}
197 return answer;

}

//These functions multiply every value in a grid by a constant



fftgrid3D operator*(const fftgrid3D &lhs,const double rhs) {

202 fftgrid3D answer(lhs);

fftw.complex *lg, *ag;

Ig = ]hs.getGrid ();

ag = answer.getGrid();

int max = answer. getDimension (X.DIM) *answer. getDimension (YDIM) *answer. getDimension

(ZDIM);

207 for(int i=0;i<max;++i) {

#ifdef __SSE2__

sseComplexConstMult ((double*) Ig [i], rhs, (double*) ag [ i ]);

#else

ag[ij[0] = Ig[i][0]*rhs;

212 ag[ i [1] = Ig [ i j [1]*rhs;

#endif

}
return answer;

}
217

fftgrid3D operator*(const double lhs ,const fftgrid3D &rhs) {

return rhs*lhs;

222 fftgrid3D operator/(const fftgrid3D &lhs, const double rhs) {

fftgrid3D answer(lhs);

fftw-complex *lg, *ag;

Ig = lhs.getGrid();

ag = answer.getGrid();

227 int max = answer .getDimension (X.DIM) *answer. getDimension (Y.DIM) *answer. getDimension

(Z.DIM) ;

for(int i=0;i<max;++i) {

#ifdef -_SSE2__

sseComplexConstDiv ((double*) Ig [i], rhs, (double*) ag [i]);

#else

232 ag[i][01 = IgIi][0]/rhs;

ag[i][1] = Ig[i][l]/rhs;

#endif

}
return answer;

237 }

//These functions add a constant to every value in a grid

fftgrid3D operator+(const fftgrid3D &lhs, const double rhs) {

fftgrid3D answer(lhs);

242 fftw-complex *lg, *ag;

Ig = lhs.getGrid();



ag = answer.getGrid() ;

int max = answer. getDimension (X-DIM)*answer. getDimension (Y.DIM) *answer . getDimension

(ZDIM) ;

for(int i=O;i<mnax;++i) {

247 ag[i][0] = lg[il[0l+rhs;

ag[i][1] = Ig[i][l];

}
return answer;

252

fftgrid3D operator+(const double lhs,const fftgrid3D &rhs) {

return rhs+lhs;

257 //These functions subtract a constant from every value in a grid

fftgrid3D operator-(const fftgrid3D &lhs, const double rhs) {

fftgrid3D answer(lhs);

fftw-complex *lg, *ag;

Ig = Ihs.getGrid();

262 ag = answer.getGrid();

int max = answer. getDimension (X-DIM) *answer . getDimension (YDIM) *answer. getDimension

(ZDIM) ;
for(int i=O;i<max;++i) {

ag[ij[0] = Ig[ij[O]-rhs;

ag[ii[l] = Ig[il[l];

267 }
return answer;

}
fftgrid3D operator-(const double lhs,const fftgrid3D &rhs) {

fftgrid3D answer(rhs);

272 fftw.complex *rg, *ag;

rg = rhs.getGrid();

ag = answer. getGrid();

int max = answer. get Dimension (X.DIM) *answer. getDimension (Y-DIM) *answer . getDimension

(Z.DIM) ;

for(int i=O;i<max;++i) {

277 ag[i][0o = lhs - rg[i][0];

agi]j[1] = -1*rg[iJ[1];

return answer;

282

#undef rowmajindex

#endif



A.2 fftgrid3D.cpp

1 #include "fftgrid3D .h"

int fftgrid3D:: fftwinitthreadscalled = 0;

//Grid macros

6 //
#define gridLoop for(int i=O; i<N1; ++i) for (int j=0; j<N2; ++j) for (int k=0; k<N3;

++k)

#define sq(x) ((x)*(x))

#define cube(x) ((x)*sq(x))

#define PI 3.14159265

11

//
fftgrid3D:: fftgrid3D(int nl, int n2, int n3, double initialVal) {

if (! fftw.init -threads.called) {

fftw init-threads ();

16 fftw.plan-with.nthreads (2);

fftw winit t hreads.called ++;

//Initialize default values for variables

Nlorig=0;

21 N2-orig=0;

N3-orig=O;

warned.range=0;

warned.bndry=0;

26 N1=nl;

N2=n2;

N3=n3;

//Allocate space for the grid

31 allocate (N1,N2,N3);

grid-result = NULL;

grid-result2 = NULL;

plan-for = NULL;

plan-rev = NULL;

36 (*this)=initialVal;

I

//This function allows a fftgrid3D object to be read from a file

fftgrid3D:: fftgrid3D(char *file , double initialVal , int nl-inc, int n2_inc, int

n3.inc, int nl-offset, int n2_offset, int n3-offset){

41 if(! fftw-init-threads-called ) {



fftw init -threads () ;

fftw.planwith nthreads (2);

fftw init threads called++;

46

cout <<file <<endl ;

ifstream inFile(file , ios::in);

inFile >> N1 >> N2 >> N3;

51 //Increase the dimensions by nl-inc, n2-inc, n3-inc

N1+=n i-inc;

N2i-=n2-inc;

N3+-=n3-inc;

56 allocate (N1,N2,N3);

grid result = NULL;

grid-result2 = NULL;

plan-for = NULL;

plan-rev = NULL;

61 (*this)=initialVal;

//Save the dimensions of the original array loaded from the file + offset

N 1 orig=Nl-n 1 .inc+n 1 _offset;

N2_orig=N2-n2_inc+n2-offset;

66 N3-orig=N3-n3_inc+n3-offset;

char temp;

//Read in the grid from file handle

for (int i=nl-offset; i<NL-orig; -H-i)

71 for (int j=n2_offset; j<N2-orig; ++j)

for(int k=n3.offset; k<N3.orig; ++k) {

inFile >> (*this)(i,j,k)[O0] >> (*this)(i,j,k)[1>>temp>>temp;

}
inFile. close ();

76

fftgrid3D:: fftgrid3D(const fftgrid3D& tocopy){

if (I fftw.init-threads-called) {

81 fftw-init.threads () ;

fftw-plan.with_nthreads (2);

fftw init threads -called++;

N1=tocopy.N1;

86 N2=tocopy.N2;



N3=tocopy .N3;

NLIorig=tocopy. N1 orig;

N2.orig=tocopy. N2.orig;

N3.orig=tocopy. N3_orig;

91 warned-range=0;

warned-bndry=0;

//Allocate space for the grid

allocate (N1,N2,N3);

96 grid-result = NULL;

grid-result2 = NULL;

plan-for = NULL;

plan-rev = NULL;

}
101 //

fftgrid3D ::- fftgrid3D (void){

fftwfree (grid) ;

fftw.free (grid -result) ;

fftw.free (grid result2);

106 cleanup-fftw() ;

grid=NULL;

grid -result=NULL;

grid-result 2=NULL;

111 //

void fftgrid3D:: initializeValueWithNoise(double val) {

srand ((unsigned) time (NULL)) ;

double offset;

gridLoop {
116 offset = ((double)rand() /((double)RANDJVIAX+1.0)) *(2) -1;

offset /= 1000;

(*this)(i,j,k) [0] = val + offset;

(* this) (i ,j ,k) [1]=0;

121 )

void fftgrid3D:: initializeNuclei(double p-inf, double p0_inf, double c-gamma,int r,

fftgrid3D *phi) {

I/Note: This will only actually work for 2D grids (N3=1) right now

//Will work on extending to 3D later

126 double cO = 1 - c.gamma + pinf*(2*cgamma-l);

//determine # of squares covered by a critical nucleus to get c.else

int count = 0;

for(int i=0;i<=2*r;++i) {

for(int j=O;j<=2*r;++j) {



131 if((sq(i-r)+sq(j-r)) <= sq(r))

++count;

//calculate the initial fraction of the grid that should be covered with nuclei

136 //calculate the number of nuclei needed to cover that amount

int numnuclei = (int) round(pO_inf* pinf*N1*N2/count);

//calculate the concentration the rest of the system should be at to get

//overall concentration cO

double c else = (N1*N2*cO-numnuclei *count*cgamma) /(N1*N2-numnuclei * count) ;

141 7/set the system to that concentration

(*this) = c-else;

//Insert Nuclei so that none of them overlap and they can cross the borders

7/of the grid

146 int nfailed = 0, nplaced = 0;

int rowstart, colstart , xO, yO, it , jt , occupied;

7/seed random number generator

srand (time (NULL));

while(nplaced < numnuclei) {

151 //rowstart and colstart represent the top left corner of the square that

//encloses the circular nucleus

rowstart = (int) ((N1-1)*((double) rand() /((double) (RAND.MAX)+(double) (1))));

colstart = (int) ((N2-1)*((double) rand() /((double) (RANDIAX) +(double) (1))));

//(xO,yO) is the position of the center square of the nucleus

156 xO = rowstart + r;

yO = colstart + r;

//loop over the squares where the nucleus would be to make sure none are

//already occupied

161 occupied = 0;

for(int i=rowstart -1;i<=(rowstart+2*r+l);++i) {

it = i; //use a fake index to deal with boundaries

if(it <0)

it+=N1;

166 if(it>=N1)

it-=N1 ;

for(int j=colstart -1;j<=(colstart+2*r+1);++j) {

jt = j;

if(jt <0)

171 jt+=N2;

if (jt>=N2)

jt-=N2;

if((sq(i-x0) + sq(j-y0)) <= sq(r+l)) {

if((*this)(it ,jt ,0)[0 == c.gamma) {



176 occupied = 1;

break;

)

181 if (occupied = 1)

break;

//if none of the squares were occupied then actually place the nucleus

186 if(occupied = 1) {

++nfailed;

continue;

I
for(int i=rowstart;i<=rowstart+2*r;++i) {

191 it = i;

if (it <0)

it+-N1;

if (it >--N1)

it -=N1 ;

196 for(int j=colstart ;j<=colstart+2*r;++j) {

jt = j;

if(jt <0)

j t+=-N2;

if (jt >=N2)

201 j t -=N2;

if((sq(i-x0) + sq(j-y0)) <= sq(r)) {

(*this)(it ,jt ,0) [0] = c.gamma;

(*this)(it ,jt ,0) [1] = 0;

(*phi)(it ,jt,0)[0] = 0.99;

206 (*phi)(it ,jt ,0) [1] = 0;

++nplaced;

211 )

//

* Uses the Hoshen-Kopelmann algorithm to count clusters and determine

216 * whether or not a phase has percolated. If (*this)(i,j,k) > threshold it is

* counted as part of the percolating phase. Returns 1 if the system has

* percolated, 0 if it has not.

int fftgrid3D ::hoshenKopelman (double threshold) {



221 int maxsize = N1*N2;

int *badlabels-new int [maxsize/2];

for(int p = 0; p<maxsize/2; -+-p)

badlabels [p]=p;

int *temp;

226 temp = new int[maxsize]; //store in row-maj

int up, left , curlabel=1;

for(int i=0; i < maxsize; ++i) {

if(grid[i][0] > threshold) {

if(i < N2) //top row in row major order

231 up = 0;

else

up = temp[i-N2);

if(!(iN2)) //left column

left = 0;

else

left = temp[i-1];

switch(!!up + !I left) {

case 0: //new cluster

temp[i] = curlabel;

curlabel = curlabel+1;

break;

case 1: //connected either

temp[i] = max(up,left);

break;

case 2: //connected both t

//need to fix this

int q=up,r=up,s;

while(badlabels q] != q)

q = badlabels [q];

while(badlabels [Ir] != r)

s = badlabels [r];

badlabels [r] = q;

r = s;

int xl = q;

q=left;

r=left;

while(badlabels [q] != q)

q = badlabels [q ];

while(badlabels [r] != r) {

s = badlabels [r];

jor order

to the left or above

o the left and above

{



266 badlabels [r] = q;

r - 8;

}
int yl = q;

271 badlabels [xl] = yl;

temp[i] = yl;

break;

}
} else {

276 temp[i] = 0;

}

//now replace any bad labels

281 int n;

for(int i=0;i<maxsize;++i) {
if(temp(i] == 0)

continue;

else {

286 n=badlabels (temp [ i]];

while(n!= temp[ i]) {

temp [ i ] = n;

n = badlabels [n];

}
291

//determine if there is a cluster percolating from top to bottom

int isperc = 0, inflabel = -1;

296 for(int i=0; i<N2;++i) {

for(int j=0O;j<N2;++j) {

if((temp[i] = temp[N2*(N1-1)+j]) & temp i != 0) {

inflabel = temp[i];

break;

301 }
}
if(inflabel!=-1)

break;

}
306 //see if it all reaches left to right

int right = 0;

left = 0;

for(int i=l;i<N1-1;++i) {

if(temp[N2*i] = inflabel)



left = 1:

if(temp[N2*i+N2-1] = inflabel)

right = 1;

if(left = 1 && right = 1)

316 isperc = 1;

delete[] badlabels;

delete [] temp;

badlabels = NULL;

321 temp = NULL;

return isperc;

}

double fftgrid3D:: volumeFraction (double threshold) {

int num=0, max-=N1*N2*N3;

for(int i=O; i<max; 4-+i)

if(grid[i][0] >= threshold)

4num ;

return (double)num/(( double)max);

I)I

void fftgrid3D:: writeToFileComplex(char * file ){

//For 2D write entire row on one line

336 //3D writes entire plane on one line

//i.e. line breaks only when row counter is updated

//Comma separated

ofstream outFile(file);

outFile << N1 << "," << N2 << "," << N3 << endl;

346

351

for (int i=O; i<N1; i++){

for (int j=0; j<N2; j++){

for (int k=O; k<N3; k++) {

//TODO: Have this work properly when imaginary part = 0

outFile << (*this)(i ,j ,k) [0];

if((*this)(i ,j ,k) j1] > 0)

outFile<<"+";

outFile << (*this)(i ,j ,k) [1] << "i";

if((N2-1) != j)

outFile<<" ,";

outFile << endl;



356 outFile. close ();

}

void fftgrid3D:: writeToFile(char *file){

//For 2D write entire row on one line

361 //3D writes entire plane on one line

//i.e. line breaks only when row counter is updated

//Comma separated

ofstream outFile(file);

outFile << N1 << "." << N2 << "." << N3 << endl;

366

for (int i=O; i<N1; i++){

for (int j=O; j<N2; j++){

for (int k=O; k<N3; k++) {

outFile << (* this) (i ,j ,k) 10]<< '';

371 }

outFile << endl;

I
outFile. close();

376 }

void fftgrid3D:: allocate(int NI, int N2, int N3){

grid = (fftw-complex *) fftw-malloc (sizeof(fftw.complex)*Nl*N2*N3);

}
381 //

void fftgrid3D:: naturallog() {

double mod, arg ,max=N1*N2*N3;

for(int i=O; i<max; ++i) {

#ifdef __SSE3__

386 sse3ComplexMagnitude( grid [ i ] , &mnod);

#else

mod = sqrt(sq(grid[iJ[0]) + sq(grid [i [1]));

#endif

arg = atan(grid[i][11/grid [i][0]);

391 grid[ij[0] = log(mod);

grid[i][1] = arg;

//
396 void fftgrid3D:: init.fftw() {

if(1 = N3) {

gridresult = (double*) fftwmalloc (sizeof(double) *N1*N2);

grid.result2 = (fftw-complex *) fftw-malloc (sizeof(fftw-complex )*N1*(N2/2+1));

plan-for = fftw plan-dft-r2c.2d (N1,N2, grid-result ,grid-result2 ,FFIWVMEASURE);



401 plan-rev = fftw.plan-dft.c2r.2d(N1,N2, grid-result2 ,grid-result ,FFITNWMEASURE);

} else {

grid result = (double*) fftw.malloc (sizeof(double) *N1*N2*N3);

grid _result2 = (fftw-complex*)fftwmalloc(sizeof(fftw.complex)*N1*N2*(N3/2+1));

plan-for = fftw.plan.dftr2c.3d (N1,N2,N3, grid-result , grid-result2 ,FFITWMVEASURE);

406 plan.rev = fftw.plan.dft.c2r_3d (N1,N2,N3, grid.result2 ,grid.result ,FFITWMEASURE);

}
}
//
void fftgrid3D::cleanup-fftw() {

411 fftw-destroy.plan (plan-for) ;

fftw. destroy.plan (plan-rev) ;

fftgrid3D fftgrid3D ::fft () {

416 //Allocate grid-result iff fft () is actually called, and only once

//add padding to do in place transform

//Only create plans if we are actual transforming this instance

// and only create plans once per instance

if(!plan-for II !grid-result) //redundant since both are inited in same place

421 init-fftw () ;

fftgrid3D answer(N1,N2,N3);

//populate grid.result

int max = N1*N2*N3;

for(int i=0; i<max; ++i) {

426 grid-result[i] = grid[ij[0];

I
fftw.execute( plan-for) ;

//Store computed transform values in answer

int jmax,kmax,index;

431 if(1==N3) {

jmax = (N2/2+1);

kmax = N3;

} else {

jmax = N2;

436 kmax = (N3/2+1);

}
max = N1*jmax*kmax;

fftw.complex *answergrid = answer. getGrid();

int i=0,j=0;

441 for(int a=0;a<max;++a) {

index = j+N2*i;

answergrid[index]J0] = grid.result2[a][0];

answergrid[index][1] = grid-result2[aj[1];

-- j ;



446 if(j>=jmax) {

++i ; j =0;

}
}
return answer;

451 }

fftgrid3D fftgrid3D :: ifft () {

//Allocate grid-result iff fft () is actually called, and only once

//Only create plans if we are actually transforming this instance

456 // and only create plans once per instance

if (! plan-rev I !grid-result)

init-fftw ();

fftgrid3D answer(N1,N2,N3);

int i=0,j=0,max,jmax,kmax, index;

461 i f(1==N3) {

jmax = (N2/2+1);

kmax = N3;

} else {

jmax = N2;

466 kmax = (N3/2+1);

}
max = N1*jmax*kmax;

for(int a=0;a<max;++a) {

index = (j+N2*i);

471 grid-result2 [a] [0) = grid[index] [0;

grid_result2 [a][1] = grid [index] [1];

++j ;

if(j>=jmax) {

++i; j =0;

476 }

}
fftw execute(plan_rev) ;

max = N1*N2*N3;

fftwcomplex *answergrid = answer. getGrid();

481 for(int i=0;i<max;++i)

answergrid [i ][01 = grid-result [i];

answer = answer/max; //normalize the inverse transform

return answer;

}



A.3 sse2.h

#ifndef SSE2_H

#define SSE2.H

#ifdef __SSE2__

5 #include <emmintrin.h>

//fftwumalloc automatically aligns data properly so easy to use SSE operations

extern inline void sseAdd(double *Ihs, double *rhs, double *result) {

register -- m128d I, r, res;

10 1 = -mm-load-pd ( lhs);

r = -mm-load-pd(rhs);

res = _mm.add-pd(l,r);

_mm-store-pd (result , res);

15

extern inline void sseSub(double *Ihs, double *rhs, double *result) {

register -- m128d I, r, res;

I = -mm-load.pd(lhs);

r = _mm-load-pd(rhs);

20 res = nmm.sub.pd(l,r);

-mm-store-pd (result , res);

I

extern inline void sseComplexConstMult(double *lhs ,double rhs ,double * result) {

25 register __m128d I, r, res;

I = -mm-load.pd(lhs);

r = .mm-setl-pd(rhs);

res = -mm.mul-pd(l,r);

-mm-store-pd (result , res);

30

extern inline void sseComplexMult (double *lhs, double *rhs, double *result) {

register .. m128d 1, r, templ, temp2, swapr, res;

I = -mm-load-pd(lhs);//10,11

35 r = -mm-load-pd(rhs); //rO, rl

swapr = -mm-shuffle-pd(r,r ,_MM-SHUFFLE2(0,1)) ;//rl, rO

templ = xnm-mul-pd(l,r);//l1*rO,11*rl

temp2 = .mm-mul-pd(l,swapr);//lO*rl, ll*rO

1 = .mm.shuffle-pd(templ, temp2, .MM-SHUFFLE2(0,0));//lO*rO,10*rl

40 r = -mm.shuffle-pd(templ, temp2, -MMILSHUFFLE2(1,1)) ;//ll*rl, 1*rO

res = -mm-sub.pd(1,r);

-mm-store-pd (result , res);

I



45 extern inline void sseComplexConstDiv(double *lhs ,double rhs,double *result) {

register --m128d l,r,res;

I = -mmload-pd(lhs);

r = -mm-setl-pd(rhs);

res = _mm-div.pd(l ,r);

50 -mm-store-pd (result , res);

}

extern inline void sseComplexDiv(double *lhs, double *rhs, double *result) {

register -- m128d i, r, denom, templ, swapl, temp3, res;

55 1 = -mm.load-pd(lhs);

swapl = -mm-shuffle-pd(1,1, -MMSHUFFLE2(0,1));

r = mmJload-pd(rhs);

denom = nmm.mul-pd(r,r); //c*c, d*d

templ = nmmnmul.pd(l,r); //a*c, b*d

60 temp3 = _mmxmulpd(swapl,r); //b*c, a*d

I = -mm-shuffle-pd(denom, templ, -MM-SHUFFLE2(0,0)); //c*c, a*c

r = -mm-shuffle-pd (denomn, templ, -MMSHUFFLE2(1,1)); //d*d, b*d

denom = -mm-add-pd(l,r); //c*c+d*d, a*c+b*d

templ = -mm-shuffle-pd (denom, denom, .MMSHUFFLE2(1,1) ); //a*c+b*d, a*c+b* d

65 denom = _mm.shuffle-pd (denom, denom, MMSHUFFLE2(0 ,0)) ;//c*c+d*d, c*c+d*d

swapl = -mm.shuffle-pd (temp3,temp3, .MMSHUFFLE2(0,0)) ;//b*c, b* c

temp3 = -mm-shuffle-pd (temp3,temp3, JMMSHUFFLE2(1,1));//a*d, a*d

I = -mm-sub-pd(swapl, temp3) ;//b*c-a*d, b. c-ac d

templ = -mm-shuffle-pd(templ, I, .MM.SHUFFLE2(1,0)) ;//a*c+b*d,b*c-a*d

70 res = .mm.div.pd(templ,denom);

_mmstore-pd (result , res);

}
#endif //--SSE£2-

#endif //SSE-_H



A.4 sse3.h

1 #ifndef SSE3_H

#define SSE3.H

#ifdef -- SSE3__

#include <pmmintrin.h>

6 extern inline void sse3ComplexMult(double *lhs, double *rhs, double *result) {

register __m128d i, r, swapr, templ, temp2, res;

I = _mm-load-pd(lhs);//1O, 11

r = -mm-load-pd(rhs);//rO, rl

swapr = -mm.shuffle-pd(r,r ,-MMSHUFFLE2(0,1));//rl, rO

11 templ = -mm-mul-pd(l,r);//10*rO,ll*rl

temp2 = mmmul-pd(1 ,swapr) ;//10*rl, 11 * rO

res = .mm hsub.pd(templ ,temp2) ;//10*rO-11*rl , 10rl-ll*rO

-mm-store.pd (result , res);

16

extern inline void sse3ComplexDiv(double *Ihs, double *rhs, double *result) {

register -- m128d I, r, swapl , templ, temp2, denom, res;

I = .mm-load-pd(lhs);//a,b

swapl = _mm.shuffle-pd (, 1 ,vMM.SHUFFLE2(0,1)); //b,a

21 r= -mm-load-pd(rhs);//c,d

templ = -mmnul-pd(l ,r);//a*c, b*d

temp2 = -mm-mul-pd(swapl, r); //b*c, a* d

I = -mm-mul-pd(r, r) ;//c* c, d* d

denom = -mm-hadd-pd(l , 1) ;//c* c+d* d, c* c+d d

26 1 = .mm.shuffle-pd (templ ,temp2 ,MMSHUFFLE2(0,0));//a*c, b*c

r = _mm shuffle-pd (templ, temp2 ,.MM-SHUFFLE2(1,1)) ;//b*d, a*d

templ = -mm.addsub-pd ( , r); //a* c+b*d, b* c-a* d

res = _mm-divpd(templ ,denom);

.mm-store-pd (result , res);

31 1

extern inline void sse3ComplexMagnitude(double *val, double *result) {

register _.m128d v, temp, res;

v = -mm-load.pd(val) ;//vO, v1

36 temp = v;

v = -mm-mul-pd(v,temp) ;//vO* vO, vl*vl

res = -mm-hadd-pd (v, v) ;//vO* vO+vl vl , vO* vO+vl * vl

res = -mm.sqrt-pd(res);//get the sqrt

_mm.store-sd (result , res);

41 1
#endif

#endif



A.5 phasefield3D.h

#ifndef -PHASEFIELD3DH_

2 #define _PHASEFIELD3DH-

#include <iostream>

#include <complex>

#include "grid3D.h"

7 #include "fftgrid3D .h"

#include "macros3D.h"

using namespace std;

//Function definitions

//
12 double binaryalloy3Dfft(fftgrid3D*,fftgrid3D*,double,int,int,double,char*,bool);

double binary alloy3Ddfft-chonly (fftgrid 3D * ,double, int , int, double, char*, bool);

#endif



A.6 phasefield3D.cpp

1 #include "phasefield3D.h"

//This function solves coupled cahn-hilliard and allen-cahn to simulate a

//binary system. Uses a semi-implicit method and FFT instead of Forward Euler

6 double binary_alloy3Dfft(fftgrid3D* phi, fftgrid3D* c,double h, int iterations, int

outputevery ,double p-inf, char *dirname, bool stoponperc) {

double result = -1.0;

char outfile [128];

//define constants (same as values I have been using in MATLAB)

outputevery=50;

11 iterations =40000;

double dt = 0.001;

double m.phi = 1.;

double w.phi = 10.;

double m-c = 0.0001;

16 double eps-phi = 0.005;

double eps.c = 0.005;

double L = 20.;

double TO = 0.4;

double tau = 1.1;

21

//define Laplacian eigenvalue matrix

//*** Only set up for 2D right now

fftgrid3D Leig(*phi);

double kx, ky;

26 int Nx = Leig. getDimension (XDIM) ,Ny-Leig. getDimension (Y.DIM);

int Nz = Leig.getDimension(ZDIM);

gridLoop3D (Leig) {

kx = 2.0*PI*(double) i/(double)Nx;

ky = 2.0* PI *(double) j /(double)Ny;

31 Leig(i,j,k) [0] = 2./3.*(cos(kx)*cos(ky)-1) + 4./3.*(cos(kx)+cos(ky)-2);

Leig(i,j,k) [1] = 0.;

//define some dummy variables to make later lines shorter

36 double duml = m-phi*sq(epsphi)*dt/sq(h);

double dum2 = mphi*wphi*dt;

double dum3 = L*TO*(1.-tau)*dt;

double dum4 = m_c*sq(epsc)*dt/(sq(h)*sq(h));

fftgrid3D dum5 = Leig*(m.c*TO*dt/sq(h));

41 fftgrid3D dum6 = (m.c*dum3/sq(h))*Leig;

dum6(0,0,0) [0] = 0.0; //ugly hack that might work



dum6(0,0,0) [11 = 0.0;

//define LHS terms of solved allen-cahn and cahn-hilliard

46 fftgrid3D phiJlhs = 1.0 - duml*Leig;

fftgrid3D clhs = 1.0 + dum4*sq(Leig);

//Perform initial transform

fftgrid3D phi2(*phi) ,phi3(*phi) ,phi4(*phi),phi5(*phi),c2(*c);

51 fftgrid3D phihat (* phi) , phi2.hat (phi2) ,phi3.hat (phi3) ,phi4-hat (phi4);

fftgrid3D phi5.hat(phi5) , c.hat(*c) ,c2-hat(c2);

phihat = phi->fft ();

c-hat = c->fft ();

//Begin iterating

56 for (int n=0; n<iterations+l1; n++){

//Write output, if necessary

if (!(n%outputevery)){

sprintf(outfile ,"%s/step_.%6.6i . phi" ,dirname,n);

cout << "writing-output:-" << outfile << endl;

61 cout << phi->volumeFraction (0.5) << endl;

phi->writeToFile( outfile);

sprintf (outfile ,"%s/step.%6.6i .c" ,dirname ,n);

c->writeToFile(outfile);

66 }

phi2 = sq(*phi);

phi3 = (*phi)*phi2;

phi4 = (*c)*(*phi) - (*c)*phi2;

phi5 = (*phi) - phi2;

71 c2 = (*c) / (1.0 - (*c));

c2. naturallog () ;

phi2.hat = phi2. fft ();

phi3.hat = phi3. fft ();

phi4-hat = phi4. fft ();

76 phi5-hat = phi5. fft ();

c2-hat = c2. fft () ;

//Calculate the new phi-hat , c-hat

phi-hat = -dum2/2.0*phi-hat + 3.0*dum2/2.0*phi2_hat - dum2*phi3_hat

81 -12.0*m-phi*dum33*phi4_hat + 6.0* nmphi*dum3*phi5-hat + phi-hat;

chat = dum5*c2.hat + 6.0*dum6*phi2_hat - 4.0*dum6*phi3_hat + c.hat;

chat = c.hat/c-lhs;

86 (*c) = c-hat.ifft();



phihat = phihat/philhs;

(*phi) = phi_hat . ifft ();

91 if(stoponperc && phi->hoshenKopelman(0.5)) {

//System has percolated, set perctime and break

result = dt*n;

break;

}
96 if(phi->volumeFraction (0.5) >= 0.99*pinf) {

/lNot going to percolate, break

break;

}

101 //End iterating

i/Save final system state

sprintf(outfile ,"%s/final _step .phi" ,dirname);

phi->writeToFile(outfile);

sprintf(outfile ,"%s/finalstep .c",dirname);

106 c->writeToFile(outfile);

return result;

111 double binary.alloy3D-fft-chonly(fftgrid3D* c,double h, int iterations, int

outputevery ,double p.inf, char *dirname, bool stoponperc) {

//debug line

double result = -1.0;

char outfile [128];

//define constants (same as values I have been using in MATLAB)

116 outputevery=50;

iterations =20000;

double dt = 0.00001;

double m_c = 0.001;

double epsc = 0.015;

121 double fhommax = 1;

double cbeta = 0.880797077978;

double beta-threshold = 0.85* c-beta;

double c.alpha = 1-c-beta;

126 //define Laplacian eigenvalue matrix

//***Only set up for 2D right now

fftgrid3D Leig(*c);

double kx,ky;

int Nx = Leig. getDimension (XJDIM) ,Ny=Leig. getDimension (Y.DIM);

131 int Nz = Leig.getDimension (Z-DIM) ;



gridLoop3D (Leig) {

kx = 2.0*PI*(double) i/(double)Nx;

ky = 2.0*PI *(double) j /(double)Ny;

Leig(i,j,k) [0] = 2./3.*(cos(kx)*cos(ky)-1) + 4./3.*(cos(kx)+cos(ky)-2);

136 Leig(i,j ,k)[1] = 0.;

}

//define some dummy variables to make later lines shorter

double duml = 32*fhommax/sq (sq (cbeta-c alpha));

141 fftgrid3D dum2 = 2/sq(h)*Leig;

fftgrid3D dum3 = 3*(c-alpha+cbeta)/sq(h)*Leig;

fftgrid3D dum4 = (sq(c-alpha)+4* calpha*c-beta+sq(c-beta))/sq(h)*Leig;

double dum5 = mc*sq(epsc)*dt/sq(sq(h));

146 //define LHS terms of solved allen-cahn and cahn-hilliard

fftgrid3D clhs = 1.0 + dum5*sq(Leig);

//Perform initial transform

fftgrid3D c2(*c) ,c3(*c);

151 fftgrid3D c-hat(*c),c2_hat(c2), c3hat(c3);

c_hat = c->fft();

//Begin iterating

for (int n=0; n<iterations+l; n++){

//Write output, if necessary

156 if (!(n%outputevery)) {

sprintf(outfile ,"%s/step%6.6i .phi" ,dirname,n);

cout << "writing-output:-" << outfile << endl;

cout << c->volumeFraction (betathreshold) << endl;

161 sprintf(outfile ,"%s/step %6.6i.c" ,dirname,n);

c->writeToFile(out file);

}
c2 = sq(*c);

c3 = (*c)*c2;

166 c2_hat = c2.fft () ;

c3_hat = c3.fft ();

//Calculate the new c-hat

chat = c-hat + mc*duml*dt*(dum2*c3_hat - dum3*c2-hat + dum4*c-hat);

171 chat = c_hat/clhs;

(*c) = c.hat.ifft ();

if(stoponperc && c->hoshenKopelman(beta-threshold)) {

//System has percolated , set perctime and break

176 result = dt*n;



break;

}
if (c->volumeFraction (beta-threshold) >= 0.99* pinf) {

7/Not going to percolate, break

181 break;

}
}
//End iterating

//Save final system state

186 sprintf(outfile ,"%s/finalstep .c" ,dirname);

c->writeToFile( outfile);

return result;

}



A.7 main.cpp

1 #include <iostream>

#include <unistd .h>

#include "grid3D .h"

#include " phasefield3D .h"

using narnespace std;

6

int main(int argc, char *argv[]){

//Use constant h so that the system is actually larger for larger N

double h=1./256.;

11 int iterations=40000;

int outputEvery=50;

//create variables with default values, parse cmd line options

//for actual values to use

int N = 32;

16 double p-inf = 0.6;

double pO0inf = 0.1;

char *dirname = "output";

char* filename = new char [128];

int spinodal = 0;

21 //grid3D* initial-condition, *initial-phi, *initial-c;

fftgrid3D *initial-phi.fft=NULL, *initial c.fft=NUIL;

int option-char;

// Handle command line options

26 bool inputFileSupplied=false;

while ((option.char = getopt(argc, argv, "f:-N:-d:-p:-i:.s:-h")) != -1)

switch (option.char){

case 'f': {

inputFileSupplied=true;

31 filenamne=optarg;

char *cfile , *phifile;

cfile = new char[strlen(filename)+2);

phifile = new char[strlen (filename) +4];

strcpy(cfile , filename);

36 strcpy (phifile , filename);

strcat(cfile ,".c");

strcat (phifile ,".phi");

initial.c.fft = new fftgrid3D(cfile);

initial-phi-fft = new fftgrid3D(phifile);

41 delete cfile;

delete phifile;

break;



}
case 'N':

46 N = atoi(optarg);

break;

case 'd':

dirname = optarg;

break;

51 case 'p':

pinf = atof(optarg);

break;

case 'i':

p0-inf = atof(optarg);

56 break;

case 's':

spinodal = atoi(optarg);

break;

case 'h':

61 cout << "-f-filename-\n\

-- initial -phi-loaded.-from-filename. phi , -initial _c from-filename.c\n\

-N.\n\

---initial -system-size\n\

-d\n\

66 ... directory .to.-save-output.into\n\

-p\n\
.-- value-for-pinf\n\

--i\n\

.- value -for.p0 in f\n\

71 -s\n\

... Run-the -spinodal -decomposition. (CG-Honly) -version .\n\

-h\n\

.-- Display-this -help-message.\n";

exit (0);

76 break;

I

if (! inputFileSupplied){

cout << "No-input file -supplied!" << endl;

81 if (! spinodal) {

//L- 20, tau=1.1

//cgamma=-exp(-L(1- tau))/(1+exp(-L*(1- tau)))

double c.gamma = 0.880797077978;

int radius = 2;

86 initialphi-fft = new fftgrid3D(N,N,1);

initial-c-fft = new fftgrid3D(N,N,1);

*initial-phi-fft = 0.01;



initial_cfft ->initializeNuclei (pinf , pO-inf ,c.gamma, radius ,initialphi_fft);

} else {

91 double c.beta=0.880797077978;

double calpha=1.0-cbeta;

double c_0 = c_alpha+p-inf*(cbeta-c alpha);

initialcfft = new fftgrid3D(N,N,1);

initial _c fft ->initializeValueWithNoise (c0);

96

double perctime = -1.0;

if (! spinodal)

101 perctime = binary-alloy3D-fft ( initial phi-fft , initial-c-fft ,h, iterations,

outputEvery , pinf, dirname , false) ;

else

perctime = binaryalloy3Dfft.chonly(initial_c_fft ,h, iterations ,outputEvery,pinf

,dirname, false);

cout<<perctime<<endl;

delete filename;

106 if( initial-phi-fft)

delete initialphifft;

if( initialc fft )

delete initialcfft;

initial-phi-fft = NULL;

111 initialcfft = NULL;

return 0;

}
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