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ABSTRACT

Meiosis is the cell division by which gametes are produced. Meiotic
chromosome segregation differs from Mitotic segregation in that one DNA
replication phase is followed by two chromosome segregation phases. This
allows generation of haploid products from a diploid precursor cell and depends
on a number of cellular specializations that allow completion of a reductional
segregation phase, in which homologous chromosomes segregate apart. I have
investigated several mechanisms that contribute to meiotic segregation,
including stepwise loss of meiotic cohesion, proper prophase progression and
homolog pairing. I have found that stepwise cohesion loss is regulated by
multiple mechanisms, including bulk phosphorylation of the meiotic cohesin
Rec8. I also find that homolog linkage resulting from recombination regulates
stepwise cohesion loss. Additionally, I present data that Rec8 plays an
additional cellular role that is separable from its function as a cohesin. Rec8 is
important for assembly of the Synaptonemal Complex (SC) and meiotic
prophase progression. Like Rec8's cohesin role, this prophase role appears to
be influenced by Rec8 phosphorylation. Finally, I present a basic
characterization of the process of homolog pairing in early meiosis. I find that
pairing is independent of DNA replication, but depends on cohesins, actin
filaments, SC components and DSBs.

Thesis Supervisor: Angelika Amon
Title: Professor of Biology
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Chapter 1:

Introduction



Abstract

In meiosis, chromosomes undergo two rounds of chromosome

segregation with no intervening DNA replication step. This variation from mitotic

segregation, in which DNA replication and chromosome segregation alternate,

requires meiotic specializations including attachment of homologs through

recombination, coorientation of sister kinetechores, and differential regulation of

the meiotic cohesin Rec8 at the two meiotic divisions. The remarkable

conservation of meiotic mechanisms has allowed rapid progress in meiosis

research. Many significant mysteries remain, however, including how

homologous chromosomes find each other in early prophase. Addressing these

and other questions, will likely be important to better understand human

conditions based on meiotic defects, such as aneuploidy and infertility. This

thesis describes work towards understanding mechanisms of meiotic

chromosome segregation. I will describe characterization of the multiple roles of

the meiotic cohesin Rec8 and its phosphorylation in meiotic progression, as well

as a basic characterization of the mechanism by which homologs pair in

prophase.



Why meiose?

An important property of life is the ability to reproduce. Countless early

life-like forms likely perished without passing along their newly evolved

characteristics. A breakthrough in the evolution of life came when cells gained

the ability to divide clonally through a process that has presumably been

modified over generations to become mitosis. Mitosis allows single-celled

organisms to reproduce asexually and allows multi-cellular organisms to

develop complex body plans. For cells to divide mitotically they must first

replicate their DNA, then segregate.this genetic matter to create two cells with

identical DNA content to each other and the precursor cell. Due to impressive

efforts by numerous investigators, we now understand much of how these

cellular goals are achieved on a molecular level and ongoing research continues

to illuminate elegant mechanisms by which mitotsis is performed accurately.

Mitosis is not, however, the only mechanism developed by organisms to

pass on their genetic information. The likely later-evolved and less studied

process of meiosis allows for sexual reproduction, such that organisms can

pass on their genetic information while simultaneously creating new genetic

combinations and potentially increasingly robust or specialized offspring.

Meiosis is the process by which a single cell divides to form products with

identical amounts of DNA to each other, but a halved genome with respect to

the (generally) diploid precursor cell. Meiotic products, called gametes in

complex organisms, are not necessarily genetically identical. Two gametes,



frequently from different parental organisms, can thus fuse to produce unique

offspring with a unique genetic makeup. Meiosis is therefore not just an

alternative mechanism by which organisms can reproduce, it is a process

central to modem biological diversity.

Based on the many conserved factors and mechanisms between meiotic

and mitotic events, meiosis almost certainly evolved as a modified mitotic

division. To halve the genome in meiosis, one DNA replication phase is followed

by two DNA segregation phases, rather than the single segregation step seen in

mitosis (Figure 1). Achieving two stages of DNA segregation involves a number

of meiotic specializations, which will be discussed in detail here. First, however,

we will take a walk through meiosis, touching on major events that occur as

cells execute the meiotic program and highlighting the importance of regulation

of meiotic timing and order (Marston and Amon 2004).



Figure 1
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Figure 1: Mitotic versus Meiotic Segregation
Mitotic cells undergo a single round of DNA replication (1 a) followed by a single
round of chromosome segregation (2a). Meiotic cells also undergo one round of
DNA replication (1 b), but this is followed by two rounds of chromosome
segregation (2b, 3b). At Meiosis I (2b), linked homologous chromosomes
segregate apart in a reductional segregation. In Meiosis II (3b), sister chromatids
segregate in an equational division much like that seen in meiosis (2b). There is no
intervening DNA replication round between MI and MII so that meiosis creates
four haploid products from one diploid progenitor. Note that this figure only
follows one pair of homologs for simplicity, with the "dad chromosome" in yellow
and the "mom chromosome" in blue (Marston and Amon 2004).

(9



A walk through meiosis in budding yeast

Entry into meiosis and DNA replication

Meiotic mechanisms are highly conserved throughout nature. For the

introduction to meiosis presented here, I will focus primarily on meiosis in the

budding yeast Saccharomyces cervisiae, as this organism is highly tractable for

genetic and molecular studies and is the organism in which I have performed my

thesis work. From my work and the investigations of many other investigators,

the meiotic program of S. cerevisiae has now been relatively well studied,

providing a coherent framework upon which to base future studies.

Meiosis in diploid S. cerevisiae cells is initiated upon nitrogen starvation

and lack of a fermentable carbon source. Primary regulation occurs at the

transcriptional level with the presence of both a and oc mating types, the

absence of nitrogen and a fermentable carbon source all feeding in to

transcriptional regulation of the master regulator of meiosis, IME1 (Inducer of

Meiosis 1). Imel is itself a transcription factor that is responsible for activating a

number of early meiotic genes including factors required for DNA replication and

prophase events (Kassir, Adir et al. 2003).

Meiotic DNA replication occurs shortly following meiotic initiation. The

mechanism of meiotic replication appears to be very similar to mitotic

replication. The ORC (Origin Recognition Complex) binds origins of DNA

replication and recruits a number of factors including. Cdc6 (Cell Division Cycle



6) and MCM (Mini Chromosome Maintenance) hexamers, which act as the

replication helicases. These factors together form the pre-Replicative Complex

(pre-RC). CDK (Cyclin Dependent Kinase) activity, specifically through CDK

association with B-type cyclins Clb5 and Clb6, activates origins, resulting in the

initiation of DNA replication. Newly created sister chromatids are immediately

tethered to each other through establishment of sister chromatid cohesion by

the cohesin complex (Dirick, Goetsch et al. 1998; Stuart and Wittenberg 1998;

Smith, Penkner et al. 2001).

The cohesin complex consists of four core subunits. Three of these

components- Smcl (Structural Mainenance of Chromosomes 1), Smc3, Scc3

(Sister Chromatid Cohesion 3)- are identical in mitotic and meiotic cohesin, while

one component- Sccl in mitosis- is replaced by Rec8 (Recombination factor 8)

in meiosis. The cohesin complex forms a ring-like structure that seems to be

loaded onto a given genome region as that region is replicating (Figure 2)

(Uhlmann 2003). It has been shown that a factor required for establishment of

cohesion, Ecol (Establishment of cohesion 1) interacts with the replication

machinery including DNA polymerase, indicating that cohesin is loaded in

conjunction with DNA replication (Ivanov, Schleiffer et al. 2002; Skibbens,

Maradeo et al. 2007). Interestingly, whereas cohesin loading appears to depend

on the DNA replication machinery, the efficiency of replication also appears to

depend on the presence of Rec8, indicating some mechanistic interdependence

between these two processes (Cha, Weiner et al. 2000). The method by which

this newly-loaded cohesin holds sisters together is the subject of some



controversy. Based on studies to date, it is not clear whether a cohesin ring

envelopes both sister chromatids or whether each sister is encircled by a single

cohesin ring at a given site, and then two cohesin rings click together to create

cohesion (Huang, Milutinovich et al. 2005; Ivanov and Nasmyth 2005; Nasmyth

2005; Nasmyth and Haering 2005). In either case, the establishment of sister

chromatid cohesion is, along with DNA replication, a similarly vital event in

meiotic and mitotic S phase.

Meiotic S-phase versus mitotic S-phase

It has been shown that cells utilize largely similar origins, the same core

replication factors, and that replication itself occurs at a similar rate in both

mitosis and meiosis. Paradoxically, studies show that meiotic S-phase lasts

approximately twice as long as mitotic S phase in every organism examined

thus far (Forsburg 2002). Therefore, it seems likely that there are meiotic

replication specializations that have not yet been explained. One difference

between meiotic and mitotic DNA replication is based on CIb specificity. In

mitosis, cells can replicate relatively normally even in the absence of the so-

called S-phase cyclins, CIb5 and Clb6. It appears that other cyclins are capable

of activating pre-RCs in conjunction with CDK under these circumstances

(Schwob and Nasmyth 1993). In contrast, meiotic cells do not undergo DNA

replication in the absence of CIb5 and Clb6 (Smith, Penkner et al. 2001). The

reason for this meiotic variation is unclear, although recent work shows other

cases of increased cyclin specificity in meiosis relative to mitosis (Carlile and



Amon 2008). It is possible that S. cerevisiae cells have evolved and retained so

many cyclins (six of the B-type alone) simply for use in the complex meiotic

program, while in mitosis these extra cyclins provide little advantage. It is also

possible that the lower nutrient levels in meiotic cells compared to mitotic cells

precludes expression of other B-type cyclins in S-phase and also slows down

S-phase events.

Alternatively, it has been hypothesized that meiotic cells spend more time

in S-phase than mitotic cells in order to set up later meiotic prophase

events(Forsburg 2002). In support of this theory, it has been demonstrated that

recombination initiation through formation of double-strand DNA breaks (DSBs)

is tightly correlated to replication timing. A series of elegant experiments by

Borde and colleagues show that DSBs form in a certain genome region

approximately 2 hours after that region has undergone DNA replication. Local

delays in replication result in proportional local delays in DSB formation. Thus, it

has been suggested that a checkpoint response is set up during meiotic S-

phase such that DSBs do not form before a region has undergone replication

(Borde, Goldman et al. 2000). It is not entirely clear why such a checkpoint

would be necessary, as meiotic chromosomes preferentially repair DSBs from

their homolog rather than their sister chromatid, but it seems likely that

chromosome structure is important for proper completion of complex prophase

events such as recombination, and that S-phase events, particularly

establishment of sister-chromatid cohesion, are important for setting up some

elements of this structure. Additionally, replication would be significantly more



difficult for cells if a DNA region already had DSBs present as the replication fork

moved through that particular region.
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Figure 2: Mitotic versus meiotic cohesin
Cohesin is a ring-shaped complex consisting of four core proteins. Smcl, Smc3
and Scc3 are part of both the mitotic and meiotic cohesin complex, while Sccl is
replaced by Rec8 in meiosis. It is unclear whether the cohesin ring loops around
both sisters together, or whether two cohesins, each surrounding a sister,
dimerize to create cohesion. Cleavage of Sccl in mitosis and Rec8 in meiosis
releases sister chromatid cohesion.

Adapted from (Uhlmann 2003)
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Meiotic prophase

The majority of early meiosis research has focused heavily on prophase

chromosome structure. This is largely a result of the exquisite and well-

conserved series of microscopically-visible changes that prophase

chromosomes undergo, combined with the limited genetic, biochemical and

molecular tools available to researchers until the last few decades.

Chromosomes in early prophase are in a largely uncompacted stage, possibly

as a result of chromatin disruption during DNA replication. As cells progress

through prophase, chromosomes increase their compaction in cytologically

distinct stages. Description of these stages- leptotene, zygotene, pachytene,

diplotene, and diakenesis- served as the basis for much early understanding of

meiotic prophase (Figure 3) (Zickler and Kleckner 1998). Indeed, with modem

techniques, it can be shown that cytological prophase stages correlate closely

with core prophase events, such as pairing, recombination and synaptonemal

complex (SC) formation. SC formation, in particular has been well correlated

with chromosome condensation (Figure 3) (Zickler and Kleckner 1999;

Henderson and Keeney 2004; Storlazzi, Tesse et al. 2008). The formation of

Axial Elements (AEs, also called Lateral Elements or LEs) that assemble along

chromosomes as an early step in SC formation serve as a scaffold for the

condensing meiotic DNA. AEs are composed of a number of proteins, including

Rec8 and the early meiotic protein Hop1 (Homolog pairing 1). Transverse

elements (TEs) then join the AEs of homologous chromosomes to form mature



SC. A major component of TEs is the coiled coil protein Zip1, named for its

ability to "zip up" homologs during mid to late prophase. Zip1 is initially present

in an extra-DAPI cluster called a Polycomplex (PC). Zip1 then associates in foci

on chromosomes and eventually forms visible ribbons as it zips AEs together.

The SC is thought to stabilize homologous chromosomes as they undergo the

complex process of recombination. Following recombination, in late prophase,

Zip1 ribbons disappear from chromosomes so that homologs can more

efficiently segregate at anaphase I. The function of the SC is not well elucidated

despite volumes of research on the topic. Interestingly, the SC structure is

extremely well conserved between species, though there is minimal sequence

conservation of SC proteins. The model most consistent with the current

literature suggests that Zip1 helps stabilize condensing chromosomes and

recombination intermediates (Page and Hawley 2004; Revenkova and

Jessberger 2006). It is unclear, however, whether the dramatic changes seen in

prophase chromosome structure are the cause of or rather just visual

manifestations of core prophase events such as pairing and recombination,

which, as will be discussed in some detail later, are essential to enable proper

meiotic segregation.



Figure 3
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Figure 3: Meiotic entry, S-phase and prophase events
Upon Nitrogen starvation and the absence of a fermentable Carbon source, S.
cerevisiae enter the meiotic program. Meiotic DNA replication utilizes B-type
cyclins Clb5 and CIb6 to initiate DNA replication. Following S phase, meiotic cells
enter prophase. Prophase includes number of cytologically defined stages
including leptotene, zygotene and pachytene. Diplotene and diakineses follow
pachytene, but are not included in this diagram. The meiotic events occuring
during each stage are noted in the blue boxes above the meiotic stage names. At
the bottom of the figure is a schematic of chromosome structure and SC
asssembly at the different stages of prophase. Lateral elements (LEs), including
Hop1 assemble onto chromosomes first to form axes. These LEs are connected
by the coiled-coil protein Zip1, which stabilizes both homolog axes by "zipping"
them together.
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Figure 4: Prophase events
Another schematic of prophase events is shown above, highlighting the
importance of the Recombination checkpoint in regulating passage out of meiotic
prophase and into segregation phases.-
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Late prophase checkpoint control

Following a number of complex prophase events, homologous

chromosomes are linked at the DNA level as a result of recombination, as well

as through cohesin linking sister chromatids (Figure 4). Successful completion of

this structure appears to be the major goal of meiotic prophase, after which cells

are prepared to enter the meiotic divisions. Prophase exit, much like meiotic

entry, is primarily regulated at the transcriptional level, with the transcription

factor Ndt80 (Non-diTyrosine 80, note that diTyrosine is a component of mature

spore walls) serving as the central regulator. Ndt80 activates expression of the

so-called middle meiotic genes, which include factors important for

chromosome segregation such as Clbl, CIb3 and CIb4 and higher levels of

Ndt80 itself (Benjamin, Zhang et al. 2003). In addition to being regulated

transcriptionally, phosphorylation of Ndt80 and stability of an inhibitory partner

protein, Sum1 (Suppressor of marl-1, an allele of SIR2), are controlled by a

degenerate network known as the pachytene or recombination checkpoint. This

checkpoint also controls CDK activity through activation of the CDK inhibitor

Swel (Saccharomyces Weel). The presence of recombination or SC

intermediates, such as single-stranded DNA, act as signals that are transduced

to result in lower levels of Ndt80 phosphorylation and increased stability of

Sumi and Swel. The end result of incomplete recombination or SC formation is

the inhibition of Ndt80 and failure of cells to express middle meiotic genes. Cells

thus remain in the pachytene stage of late prophase until inhibitory signals



cease to exist or until cells manage to adapt to the checkpoint and bypass its

inhibitory effects. One factor important for adaptation is the proline isomerase

Fpr3 (FK506-Sensitive Proline Rotamase), which appears to act through

inhibition of checkpoint factors following exposure of cells to persistent

recombination intermediates (Xu, Ajimura et al. 1995; Pierce, Benjamin et al.

2003; Hochwagen, Tham et al. 2005; Hochwagen and Amon 2006).

Meiosis I chromosome segregation

Pachytene is the point of maximal chromosome condensation and

homolog interaction. As cells progress out of pachytene upon satisfaction of the

recombination checkpoint, the final step of recombination repair is completed

and the SC is disassembled (Zickler and Kleckner 1999; Page and Hawley

2004). Atttached homologs, called bivalents, are now ready to align at the center

of the nucleus for Meiosis I segregation. Homologous kinetechores are each

attached to a microtubule from an opposing spindle pole body (SPB) through a

"search and capture" mechanism similar to that used in mitosis. We will discuss

later how Meiosis I kinetechore-microtubule attachment is unique, with the

primary difference being the coorientation of sister kinetechores, meaning that

sister kinetechores do not attach to microtubules emanating from opposing

spindle pole bodies as is the case for mitosis and Meiosis II, but to microtubules

emanating from the same spindle pole. Once the two homologs of each bivalent



are successfully attached to opposing SPBs, cells are ready to undergo the

metaphase I to anaphase I transition (Marston and Amon 2004). Achievement of

correct attachment for each bivalent is a difficult process, however, and is thus

monitored by a surveillance mechanism known as the spindle assembly

checkpoint. The meiotic spindle assembly checkpoint appears to function in a

manner similar to its mitotic version. The most downstream effect of this

checkpoint is through control of cohesin cleavage. Cells that are not prepared to

undergo the metaphase I to anaphase I transition do not activate the anaphase

promoting complex, also called the cyclosome (APC/C). The APC is a ubiquitin

ligase complex that mediates degradation of Securin (Pdsl in S. cerevisiae).

Securin is the inhibitor of the protease Separase (Espl in S.cerevisiae), which is

responsible for cleaving Rec8 in meiosis and Sccl in mitosis (Figure 5). Rec8

cleavage releases the cohesin complex from chromosomes and allows

separation of sister chromatids. Until Separase is activated, cohesin holds

bivalents together, counteracting spindle forces. Satisfaction of the spindle

checkpoint at Meiosis I causes specific cleavage of cohesin complexes located

along chromosome arms. This cleavage allows newly-recombined homologs to

move to opposite ends of the nucleus in a reductional division at anaphase I,

while remaining centromere-proximal cohesin keeps sisters from separating in

Meiosis I (Shonn, McCarroll et al. 2000; Craig and Choo 2005). The basis for this

differential cohesin cleavage will be discussed in detail in upcoming sections.



After homologs segregate reductionally at anaphase 1, the spindle

disassembles and cells enter a brief prophase II prior to assembly of the

metaphase II spindle. In mitotic divisions, a segregation phase must be followed

by a round of DNA replication before chromosomes can segregate again. This is

not the case in meiosis. The mechanisms by which meiotic cells avoid an

intervening DNA replication stage between Meiosis I and Meiosis II is not clear,

but evidence points to an intermediate level of CDK activity between the meiotic

segregation stages, such that CDK activity is too high to allow reassembly of the

pre-RC, but low enough that spindle disassembly can occur. This hypothesis,

though supported by some work in Xenopus laevis extracts, has yet to be

vigorously tested in vivo in any organism (Nasheuer, Smith et al. 2002; Marston

and Amon 2004).

Meiosis II chromsome segregation

At metaphase II, chromosomes again align at the nuclear center,

stretched between two SPBs by opposing kinetechore-microtubule

attachments. The major difference between the situation in Meiosis I, however,

is that now individual homologs align with sister chromatids attached to

opposite SPBs in what is termed "sister chromatid biorientation". This type of

attachment is also seen in mitosis at the metaphase to anaphase transition

(Marston and Amon 2004).



As we saw in Meiosis I, Meiosis II segregation is controlled by the spindle

assembly checkpoint, whose action has been investigated thoroughly in mitosis.

This checkpoint senses unoccupied kinetechores or lack of tension between

each kinetechore and its attached SPB. When such "stop" signals are no longer

present, the APC is again activated, allowing degradation of Securin, activation

of Separase, and cleavage of the remaining Rec8 (Figure 5). This results in

equational chromosome segregation, such that sister chromatids end up at

opposite poles, and a tetranucleate structure is visible, with each nuclear lobe

holding half the genetic content of the original meiotic cell. Nuclei separate as

spore walls are assembled by a number of factors activated in a late meiotic

transcriptional program. Complete sporulation results in tetrads, structures in

which four spores, each with 1N DNA content, are packaged together. These

spores can be released from their surrounding membrane and each can be

propagated as a haploid, or two spores of opposite mating type may fuse to

form another diploid that can propogate mitotically or undergo another round of

meiosis (Marston and Amon 2004).
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Figure 5: Meiotic spindle assembly checkpoint
The spindle assembly checkpoint acts at both the metaphase I to anaphase I
transition and the metaphase II to anaphase II transition to ensure that
chroosomes are not segregated until they are correctly attached to the MI or MII
spindle. Most of the details have been studied in mitosis, but appear to hold true
in meiosis as well. Presence of an unattached kinetchore or lack of tension at the
metaphase spindle causes inhibition of the APC/C. This level of control prevents
degradation of Securin, the inhibitory partner of Separase. Once chromosomes
are properly attached to the metaphase I or metaphase II spindle, the APC/C is
activated, Securin is degraded by the proteasome and Separase is active to
cleave Rec8 and release cohesin from chromosome arms at Meiosis I and
centromeres at Meiosis II.
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Meiotic specializations

In the preceding walk through meiosis, I focused on what was happening

to chromosomes, but did not discuss how the chromosomes were sorted in the

manner described. If we think of meiosis as an extended, modified mitosis-like

process, then we can identify meiotic specializations that allow a more complex

chromosome dance than that seen in mitosis. The three major specializations

responsible are homolog association and attachment, sister chromatid

coorientation, and stepwise loss of cohesion (Lee and Amon 2001; Marston and

Amon 2004). I will now discuss the importance of each of these processes and

mechanisms involved as understood thus far.

Mitosis is essentially a cycle of duplication and sorting. Cells double their

genetic content and then must make sure that this content is divided in such a

way that each resultant cell gets exactly one copy of each homolog. This is

achieved through attachment of newly formed sister chromatids, central

positioning of attached sisters, and a spindle that pulls one sister of each

homolog to a given pole. If we think of mitosis as a repeating "copy, attach,

position, pull" cycle, the last three steps comprise the sorting mechanism. This

is more accurately represented by "copy, attachst,,r, positions•,•r', pullsmtr". The

order here is important. Sisters cannot be positioned on the spindle until they

are created and attached, and cannot be pulled apart until they are positioned to

create tension to do the pulling.



Meiosis, where the resultant cells need exactly one copy of each

homolog pair, can then be similarly described as such: "copy, attachstersp,

attachhomoIgs, positionhomobgs, PUllhomolgs, positioniter~, pullsiters". With this notation,

it is clear that meiosis has three basic steps that are unique and therefore

require unique mechanisms to achieve. The "attachhomolo" step is achieved

through pairing and recombination, the "positionhomos," step is achieved through

sister chromatid coorientation, and the "pullhomogs" step occurs properly as a

result of stepwise loss of cohesion. Again, order is important here. Homologs

must be attached in prophase before they can be positioned and pulled in

Meiosis I. I will start by discussing this first unique meiotic step.



Figure 6

DNA
replication

Pairing

Figure 6: The pairing problem
In this shematic, we see 16 pairs of scattered homologs as is the case in S.
cerevisiae prior to DNA replication. Following DNA replication, pairing is initiated
by unknown mechanisms. Along with chromosome condensation and linking of
homologs through recombination, pairing is essential to allow alignment of
chromosomes at the metaphase I plate and proper Meiosis I chromosome
segregation.



Meiotic chromosome pairing

Attachment of homologs is necessary to provide a counter-force to the

Meiosis I spindle force on homolog pairs. Although I introduce this as merely a

complementary process to sister attachment, it is much more difficult to

accomplish. Attachment of sisters through sister chromatid cohesion is

mechanistically linked to the creation of sisters by DNA replication. As homolog

pairs are not created together, however, a similar mechanism is not possible.

Therefore, cells complete a remarkably elegant series of events throughout

meiotic prophase in order to achieve homolog linkage. Homolog pairs, with one

"mom homolog" and one "dad homolog" for each chromosome of the genome,

are initially distributed in the nucleus in a relatively random fashion. Prior to

attachment, therefore, these homologs must be aligned in a process known as

"chromosome pairing" (Figure 6). Pairing is one of the great accomplishments of

biology and yet very poorly understood on a mechanistic level. Sometime

between the completion of DNA replication and linkage of homologs, in a

process that occurs with reproducible timing in all meiotic organisms, paired

homologs emerge from the relatively disorganized mass of DNA present in the

early meiotic nucleus (McKee 2004). This task is particularly astounding in

complex organisms, such as humans, with enormous genomes and large tracts

of repetitive regions. Nevertheless, cells of all organisms can correctly determine



which chromosomes are homologous and position these chromosomes next to

one another.

How do they do it? Unfortunately, pairing mechanism is the biggest

remaining meiotic mystery. The little that we understand about pairing has

emerged recently and is woefully incomplete. A major reason for the lack of

progress in meiotic pairing research is likely due to temporal and apparently

mechanistic linkage between pairing and recombination. Recombination, the

process by which homologs are physically attached and by which genetic

diversity is generated, cannot progress until homologs are proximal. The first

step of recombination, DSB formation, is also necessary for pairing to occur

(Zickler and Kleckner 1998; Whitby 2005; Keeney and Neale 2006). Therefore it

seems that pairing and recombination are partially interdependent, making them

difficult to mechanistically differentiate.

Recombination has been successfully studied on a mechanistic level,

likely due to the presence of stable intermediates and DNA-DNA interactions

that result in often unique DNA products (Whitby 2005). Pairing interactions may

not involve DNA-DNA interactions, and certainly do not alone result in unique

DNA products. Therefore mechanism must be examined live or in a cytological

population study with frequent timepoints. Both of these types of experiments

can be performed now, but were not accessible until recently, whereas the

studies of DNA structure and DNA sequence in meiotic products that have

served as the basis for recombination research have been possible for decades.



One major area of progress in pairing research lies in a type of

segregation that is independent of recombination. This is termed "distributive

segregation" and appears to be present in many organisms, and is even the

norm in a few cases. This phenomenon in yeast was first conclusively shown by

Dawson and colleagues through clever experiments using homeologous

chromosomes. This group constructed diploid S. cerevisiae strains with only a

single copy of chromosome 5. In place of the missing homolog, Dawson and

colleagues substituted the homeologous chromosome from the closely related

S. carlsbergensis. These two yeast strains are too highly divergent to undergo

recombination, yet surprisingly, S. cerevisiae chromosome 5 segregated to the

opposite pole from S. carlsbergensis chromosome 5 over 90% of the time

(Maxfield Boumil, Kemp et al. 2003). This result is not what one would expect if,

as discussed above, homololgous chromosomes must be attached in a bivalent

structure to segregate to opposite poles in Meiosis I. This phenomenon of

recombination-independent Meiosis I segregation appears to represent a

cellular backup mechanism. Distributive segregation allows even homologs that

have failed to recombine properly a chance to segregate normally. It is

additionally possible that distributive segregation represents an ancestral

meiotic mechanism that was replaced in most instances by the more efficient

recombination-based homolog segregation mechanism seen widely today.

The mechanism responsible for distributive segregation is likely based on

a phenomenon described recently by Roeder and colleagues. This group found



that in early prophase, localization of the centromere-assciated SIC

(synaptonemal initiation complex) reveals 16 discrete foci. This pattern of

localization is unexpected as diploid yeast contain 32 homologs in 16 homolog

pairs. As homologs are not yet paired in early prophase, it is strange that only 16

centromere foci are visible. Roeder and colleagues went on to show that each

focus represents two centromeres and that these couplings are dynamic and

largely non-homologous (Tsubouchi and Roeder 2005). Thus it appears that in

early prophase, before pairing is underway, cells are testing partners by coming

together at centromeres, then reiteratively switching partners. It is likely that in

Dawson's homeologous chromosome experiments, the divergent chromosomes

ended up coupled to each other when the other correct pairs had aligned, thus

allowing the positioning of homeologous chromosomes opposite each other in

Meiosis I, and resultant proper segregation.

The centromere coupling mechanism in S. cerevisiae is probably an early

step in the complete pairing mechanism. In Drosophila melanogaster, however,

a similar mechanism appears to be solely responsible for pairing of homologs in

males and pairing of chromosome IV in all flies. Male D. melanogaster do not

undergo meiotic recombination. Additionally, chromosome IV, the smallest of D.

melanogaster chromosomes, does not undergo meiotic recombination in either

sex. Nevertheless, D. melanogaster properly segregate their chromosomes at

meiosis I with an equivalent degree of accuracy seen in more conventional

meloses. This occurrence appears to be the result of tight association of



Drosophila chromosomes at distinct heterochromatic regions (Hiraoka,

Dernburg et al. 1993; Fung, Marshall et al. 1998). These "pairing regions" appear

to mediate homolog recognition and are responsible for proper meiosis I

segregation. S. cerevisiae do not have classical heterochromatin. Centromeres,

however, show some similar characteristics to heterochromatin of other

organisms. Thus it is possible that early meiotic centromere coupling in budding

yeast is mechanistically related to heterochromatin-mediated pairing in flies.

Further support for the role of chromatin structure in pairing comes from

studies in wheat. Wheat, as is true of many well-studied plant models, is

polyploid. Hexaploid wheat consists of three distinct, but closely related

genomes. Polyploidy presents an extra layer of difficulty for cells hoping to pair

homologous chromosomes. The Ph 1 wheat locus represents the first pairing

mutant identified in any organism. This locus has been shown to be necessary

to favor pairing of homologs over homeologs. Recent molecular characterization

of Phl shows it to be important for regulating chromatin structure during pairing,

drawing interesting parallels to Drosophila pairing and S. cerevisiae centromere

coupling (Griffiths, Sharp et al. 2006).

While chromatin status and heterochromatic regions are likely to be

important for pairing, it is almost certain that other mechanisms also contribute.

This is especially likely when one considers both ends of the spectrum with

regard to chromatin complexity. Budding yeast lie at one extreme, with much

smaller chromatin variations than more complex organisms. They do not contain



DNA methylation, an important component of heterochromatin structure, and

have relatively simple centromeres and telomeres. Nevertheless, budding yeast

are able to pair chromosomes effectively. At the end of the spectrum are

humans and plants. The human genome is rife with heterochromatin, consisting

of massive centromeric regions and huge areas of repetitive DNA. Even so, the

human chromosomes are paired efficiently and accurately during meiosis. Many

plant species show even higher levels of heterochromatin and more repetitive

DNA than the human genome. The lily, for example, has a genome 40 times the

size of humans, with 99% consisting of transposable elements . Additionally,

while the Ph locus is important to prevent homeologous pairing in wheat, it is

not needed for homologous or homeologous chromosomes to align. Thus

chromatin status probably plays a role in initial chromosome sorting, but is likely

not responsible for the sequence-specific mechanisms that achieve normal

pairing in most organisms.

Meiotic Recombination

While very little is known of how homologs pair, a wealth of literature

exists on the mechanism of homolog attachment through recombination. Early

in prophase, meiotic cells initiate a large number of breaks throughout their

genome. A subset of these breaks, which total 200 to 300, will serve as

substrates for crossover recombination. The remaining breaks will have to be



repaired through a mechanism that does result in linkages between homologs or

crossover products. DSBs are initiated by the topoisomerase Spol 1

(Sporulation factor 11) with assistance of a large complex of supporting

proteins. Absence of any one of the over a dozen proteins in this DSB initiation

complex will result in an inability to create breaks. In general, DSBs are

distributed randomly throughout the genome. There are "hotspots" that

experience a higher break frequency than average and "coldspots" that

experience a lower break frequency than average, but the variation is relatively

mild. Hotspot regions generally lie in intergenic promoter regions and mid-arm

along chromosomes, wheras the major coldspot exists near the rDNA region on

chromosome 12 (Keeney 2001; Martini and Keeney 2002; Keeney and Neale

2006; Blitzblau, Bell et al. 2007; Buhler, Borde et al. 2007).

Once DSBs are initiated by Spol 1, DNA ends are resected in order to

leave single-stranded 3' overhangs. It is not clear how resection occurs, but it

appears that the MRX complex (consisting of Mrel 1, Rad50 and Xrsl) is

involved. This complex is also known to be important for DNA damage repair in

mitosis, as is true of a number of meiotic recombination factors. Meiotic

recombination can thus be thought of as a complex DNA repair mechanism with

several competing pathways. Newly resected 3' overhangs are coated by RPA

(Replication Protein A), which along with Rad51 (Radiation sensitive factor 51),

Dmcl (Disrupted meiotic cDNA 1) and other factors mediates invasion of dsDNA

by 3' overhang. Invasion occurs preferentially on the chromosome homologous



to the broken ends rather than the sister chromatid. This is the opposite of the

situation seen in mitotic DNA repair and is likely due to involvement of meiosis-

specific repair factors, such as Dmcl. Stable strand invasion results in

replication from the free 3' invading end using the homolog as a template. This

causes greater stabilization of the annealed intermediate and fills in some of the

gap created by DSB formation and resection. The steps that follow this initial

strand invasion have only recently been clarified (Whitby 2005).

The basic DSB model for recombination outlined by Szostak (Figure 7)

has been widely regarded for decades as the definitive model of meiotic

recombination. This model proposes that following DSB formation, resection,

and strand invasion, the second ssDNA 3' end is "captured" by annealing to the

closely positioned homologous single-stranded homologous sequence exposed

by the movement of the replication fork from the first 3' end (also called branch

migration). Both ends continue to synthesize DNA to fill their gaps, until the four

free ends became repaired through ligation, creating the famous "double

Holliday Junction" (dHJ), which must then be cut and repaired again to separate

the four tangled DNA strands. Szostak proposed that dHJs could be cut in two

ways, with one resulting in flanking DNA sequences in their original

conformation (non-crossovers) and the other resulting in flanking sequences

from different original homologs now joined in the same DNA strand (crossovers)

(Whitby 2005).



Despite the elegance of the later stages of this model, recent work

indicates that it is not complete. One requirement of the Szostak model is that

an increase in non-crossovers would result in a decrease in crossovers and visa

versa. Recently, however, mutants were identified that showed specific

decreases in crossover formation, but no corresponding change in non-

crossovers. These crossover-specific factors, called Zmms (named after

founding members Zip1, Zip2, Zip3, Mer3, and Msh5), interestingly encompass

members of the aforementioned synaptonemal initiation complex that is

apparently important for early pairing, providing another link between

chromosome pairing and recombination (Allers and Lichten 2001; Borner,

Kleckner et al. 2004; Lynn, Soucek et al. 2007). New models based on this and

other data support a more complex model than Szostak envisioned. This model

(Figure 8) includes three possible destinies for a DSB. The break can proceed by

a pathway that looks very much like the Szostak model, except where a dHJ

can only be resolved one way, into a crossover product. The second pathway

proposes capture of the second 3' end following replication from the first 3' end

and branch migration, but no new replication from captured end. This

mechanism results in two single HJ (sHJ), which can be cut and repaired to

produce exclusively crossover products. The resolvase responsible for cutting

sHJs in the second pathway has been identified as Mus81 (MMS and UV

Sensitive factor 81). No resolvase has yet been identified to cut dHJs in the first

pathway, though this is an extremely active area of research. The third and final

pathway that a DSB can follow begins like the first dHJ route, but after strand



invasion and some replication of the 3' overhang with the homologous template,

the two homologs will dissociate. The originally unbroken homolog will require

no repair while the non-invading 3' overhang will anneal to the newly replicated

segment of the invading 3' overhang to create a gapped duplex that simply

requires further replication and ligation. This third pathway results exclusively in

non-crossover products (Whitby 2005).

Despite the apparent complexity of this new model, it has several simple

and important implications. Firstly, the model suggests that the decision of a

DSB to become a crossover or non-crossover product is made early in

prophase, not at the point of dHJ resolution, as was previously thought. The

basis for this designation has long been of interest given its relationship to a

process known as "crossover interference". Crossover products result in a

physical structure at the site of exchange known as a chiasma. Chiasmata are

cytologically visible in most organisms and early observation revealed that each

pair of homologs generally shows one chiasma per chromosome arm regardless

of chromosome size. Additionally, chiasmata are almost never observed near

centromeres or telomeres, despite the generally random nature of DSB

formation. It seemed unlikely based on these observations, that DSBs were

randomly designated to a crossover or non-crossover path. Instead, it seemed

that approximately one DSB per chromosome must become a crossover and

that the remaining DSBs are funneled into non-crossover fates. The early timing

of this designation suggested by the modified DSB recombination model has led



researchers to reevaluate possible mechanisms for crossover interference. For

example, it was widely believed that mature SC mediated interference, but as

SC is assembled after the designation appears to occur, this is no longer a likely

explanation. A current interference model, proposed by Kleckner, hypothesizes

that a DSB that goes to the primary Zmm-dependent crossover pathway in

budding yeast causes a release of chromosome axis stress, pushing nearby

DSBs to resolve as non-crossovers (Allers and Lichten 2001; Kleckner 2006).

Another important result of the modified DSB recombination model is the

ability to explain inter-organism recombination variations. Many organisms, such

as budding yeast and humans show crossover interference. Fission yeast,

however, do not show interference. It is now thought that the Zmm pathway

experiences interference, while the Mus81-dependent sHJ pathway does not. It

is believed that organisms with no or little crossover interference create

crossovers primarily through the sHJ pathway, while organisms with interference

use primarily the Zmm-dependent crossover pathway. This discovery has

helped to tie together meiotic research from a variety or organisms (Whitby

2005).

Why do meiotic cells make so many DSBs? In S. cerevisiae, only a third

of DSBs become chiasmata, so why do cells risk so much DNA damage and

take so much energy to repair breaks that do not assist in chromosome

segregation? Non-crossover products, while useless for chiasmata formation,

do increase genetic diversity as a result of gap formation and repair from of a



non-isogenic homolog. The creation of genetic diversity is, of course, thought to

be a major reason for the existence of meiosis so non-crossovers could exist as

purely an evolutionary tool. It is also likely, however, that early steps in strand-

invasion contribute to the pairing of homologs. In support of this possibility,

Spol and Dmcl are important for proper chromosome pairing (see Chapter 4).

This area requires additional research and may shed significant light on the

mystery of pairing.
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Figure 7: Szostak DSB recombination model
This model of meiotic recombination proposes that
DSBs initiate recombination (2). Broken ends are
resected (3) leading to 3' overhangs, which invade
the homolog and use this sequence as a template
to repair through DNA replication (4, 5). Continuing
replication causes displacement of the opposite
homolog strand into a D-loop structure. This
expanding D-loop can capture the other broken 3'
end (6) to allow repair by replication of this end as
well (7). Ligation produces a double Holliday
Junction structure (8a, 8b), which can be resolved
in one of two ways. One mode of resolution, leads
to non-crossover products (9a), while the other
leads to crossover products (9b). The basic
principles of this model still hold, but it is now
believed that dHJ always result in crossover
products.
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*am/ ~ m

-I 4-

-----

G~ inmm~rb4Zrm

- m m-zzQ
-II· m~-·rI

Figure 8: Current DSB model for recombination pathways
See text for an explanation of the three modes of DSB repair thought to function during
meiosis. Note that the a and b pathways produce crossover products, while the c pathway
produces noncrossover products. S. cerevisiae generate crossovers primarily through the
interference-generating pathway a, while S. pombe rely almost exclusively on pathway b,
which does not show crossover interference. The majority of DSBs in most organisms are
repaired through pathway c.

Adapted from (Whitbv 2005)
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Sister kinetechore coorientation

Proper pairing and recombination result in bivalents that are capable of

opposing spindle tension at Meiosis I through generation of chiasmata.

Chiasmata alone, however, do not allow homologs to segregate at the

metaphase I to anaphase I transition. For each homolog to segregate apart, its

sister kinetechores must also be coordinated to move together to the same

pole. If sister kinetechores attached to opposite SPBs in Meiosis I, as they do in

mitosis and Meiosis II, tension would be generated at metaphase I, but

chromosomes would not be able to move apart (Figure 9). All four sisters would

remain in the center of the nucleus, with centromeric cohesion opposing spindle

forces, a situation that does not occur in a normal meiosis. How then is this

sister chromatid coorientation achieved?

A major breakthrough in the understanding of coorientation came with the

identification of three proteins: Maml (Monopolar Attachment during Melosis 1),

Lrs4 (Loss of rDNA Silencing 4), and Csml (Chromosome Segregation in

Meiosis 1) that associate into the so-called "monopolin complex" and are

responsible for proper meiotic chromosome segregation (Toth, Rabitsch et al.

2000; Rabitsch, Petronczki et al. 2003; Marston and Amon 2004). Monopolins

associate with kinetechores in Meiosis I, but not Meiosis II, and their localization

appears to depend on the Polo kinase, Cdc5 (Lee and Amon 2003). Proper



maintanance of monopolins at kinetechores through Meiosis I depends on the

meiosis-specific factor Spol3 (Katis, Matos et al. 2004; Lee, Kiburz et al. 2004).

Work by Monje-Casas, Prabhu and colleagues has shown high Cdc5 and Maml

expression to be sufficient for sister kinetechore coorientation in mitosis, where

such orientation normally does not occur. Additionally this group found that

Maml physically holds sister centromeres together in a cohesin-independent

fashion (Monje-Casas, Prabhu et al. 2007). Electron microscopy indicates that

only one microtubule mediates attachment of each homolog to the Meiosis I

spindle (Winey, Morgan et al. 2005), but it is not clear whether two sister

kinetechores are fused to create a single functional kinetechore or whether the

kinetechore of one sister is blocked from association with microtubules. The

mechanism of action of monopolins is also unclear, although it has been shown

to depend on the Casein Kinase Hrr25 (Homologous Recombinational Repair

factor 25). Association of Hrr25 with Maml, as well as its kinase activity, is

necessary for its role in coorientation (Petronczki, Matos et al. 2006). The

involvement of Hrr25 in coorientation of sister kinetechores is particularly

interesting as Casein Kinases appear to play a similar role in other organisms,

including S. pombe. Interestingly, in S. pombe, sister kinetechore coorientation

appears to be linked to cohesion regulation, as Rec8 plays an important role in

both processes (Watanabe 2006).
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Figure 9: Tension-generating kinetechore orientations at MI
Meiotic cells require a mechanism to coorient sister chromatids prior to Meiosis I chromosome
segregation. Shown above in columns are the four possible ways that independent sister
kinetechores could attach to the metaphase I spindle to generate tension. Note that only the left-
most situation, where sister kinetechores are cooriented, allows Meiosis I chromosome
segregation. All other possibilities result in one or both homologs remaining suspended at the
metaphase I plate. Note that progression from prophase I to anaphase I proceeds downward from
the top of the page for each possible attachment scheme. Arrowheads indicate direction of
kinetechore orientation.
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Step-wise loss of cohesion

The final meiotic specialization that allows reductional Meiosis I

segregation is the step-wise loss of the cohesin complex. It has been stated in

previous sections that arm cohesins are cleaved at anaphase I, and centromere-

proximal cohesins are cleaved at anaphase II (Figures 10, 11) (Lee and Amon

2001; Marston and Amon 2004). How does the cell differentially regulate these

two cohesin populations? The cohesin complex contains the same core proteins

at chromosome arms and centromeres and in both cohesin populations, Rec8 is

cleaved by Separase. Nevertheless, approximately 50 kilobases of Rec8 around

each centromere are protected from cleavage at anaphase I (Kiburz, Reynolds et

al. 2005).

Several factors have been identified as important for step-wise loss of

cohesion. Spol3, mentioned above as important for sister coorientation, is also

involved in protection of centromeric Rec8 during Meiosis I, as spo 13 cells

show increased sister separation at Meiosis I (Lee, Amon et al. 2002; Shonn,

McCarroll et al. 2002). A factor first identified in D. melanogaster, called MEI-

S332, has recently been identified in other organisms as well (Kerrebrock,

Moore et al. 1995; Katis, Galova et al. 2004; Kitajima, Kawashima et al. 2004;

Marston, Tham et al. 2004; Rabitsch, Gregan et al. 2004; Hamant,

Golubovskaya et al. 2005; Riedel, Katis et al. 2006; Tang, Shu et al. 2006). Sgol



(Shugoshin, meaning "guardian spirit" in Japanese) is essential for maintanance

of centromeric Rec8 beyond anaphase I and is functionally widely conserved

(Kitajima, Kawashima et al. 2004). Moreover, Sgol associates precisely with the

50 kilobase protected region of Rec8 near centromeres and appears to act

partially through recruitment of PP2A phosphatase to centromere-proximal

cohesin ( Katis et al. 2006; Tang, Shu et al. 2006; (Kiburz, Reynolds et al. 2005)).

This finding is intriguing in light of evidence that Rec8 is highly phosphorylated

and that such phosphorylation may promote its cleavage. Depletion of Cdc5

results in hypo-phosphorylated Rec8 and a delay in Rec8 cleavage (Lee and

Amon 2003). It is attractive to hypothesize that Sgol acts through

dephosphorylation of centromeric Rec8, thus inhibiting cleavage specifically in

this region. The actual situation is likely more complex than this simple model

suggests and will be discussed in depth in Chapter II (Figure 12).

Conclusions on the role of specialized meiotic mechanisms

Meiotic reductional segregation is a challenge for cells set up to divide

mitotically. Cells have met this challenge, however, through a remarkable set of

adaptations. The ability to link homologs and thus create tension at metaphase

I, the ability to coorient sister kinetechores, forcing sisters to segregate together

at anaphase I, and the ability to remove cohesins in stages to provide and

release tension between homologs at Meiosis I and sisters at Meiosis II, are all



necessary for the completion of a reductional and then equational round of

segregation. These two rounds of segregation allow creation of haploid gametes

through meiosis (Lee and Amon 2001). All three of these specializations are

present in some form in every meiotic organism. There are a number of

differences in how meiosis is achieved throughout nature, however. I have thus

far focused on meiosis in S. cerevisiae, with only brief commentary on the

situation in other organisms. I will now discuss some important differences in

meiosis in organisms more complex than budding yeast.
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Figure 10: Arm cohesin loss at MI
Chromosomes entering meiosis undergo DNA replication, during which Rec8-containing

cohesin is laid down along the length of chromosomes (1). During prophase, homologs

undergo recombination, linking homolog pairs into bivalents by chiasmata (2). As

chromosomes undergo the metaphase I to anaphase I transition (3), loss of cohesin through

proteolytic cleavage by Separase of Rec8 that is distal to chiasmata allows release of

homogs from the bivalent structure, and segregation to opposite spindle poles (4, 5, 6). Note

that centromere-proximal cohesin is still necessary to hold sister chromatids together. Also

note that for simplicity, only a single homolog pair is represented here.
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Figure 11: Centromere-proximal
cohesin loss at MII
Following Meiosis I chromosome
segregation, chromosomes align
on the Meiosis II spindle, now
with sister chromatids oriented to
segregate apart (7). Loss of
remaining cohesin (8) through
proteolytic cleavage by Separase,
allows sisters to segregate to
opposite poles and the generation
of balanced tetranucleates with
half the genetic content of the
starting meiotic cell. Note that
only one homolog pair is shown
here for simplicity
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Figure 12
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Figure 12: Mechanisms of step-wise cohesin removal
Step-wise removal of Rec8 as is seen in meiosis appears to be generated by two
mechanisms. Mechanism 1 protects centromeric Rec8 from cleavage until
Meiosis II. This appears to be the mode of action of Sgol as well as Spol3, to a
lesser degree. Mechanism 2 promotes specific cleavage of arm cohesin. This
mechanism could support data that Cdc5 depletion causes a delay in Rec8
cleavage and metaphase I arrest. It is most likely, based on all available data, that
the actual regulation of Rec8 cleavage is more like mechanism 3 above, where
both centromere protection of cohesin and arm promotion of cohesin cleavage
contribute to its step-wise loss.
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Meiosis in complex eukaryotes

Homolog linkage, sister kinetechore coorientation at Meiosis I, and step-

wise loss of cohesion are all essential to proper meiotic chromosome

segregation. These three meiotic specializations differ greatly, however, in the

level of conservation of mechanisms underlying each process. Recombination

mechanisms allowing homolog linkage are extremely well-conserved, with some

variations in which crossover recombination pathway is utilized more between

different organisms. Cellular regulation responsible for step-wise cohesion loss

is also quite well-conserved, with Sgol playing a central role in many organisms

examined to date.

Complex organisms often contain additional cohesion regulation through

increased cohesin complex variants and additional steps of regulation to be

discussed below, but the basic mechanism by which different cohesin pools are

cleaved at Meiosis I versus Meiosis II appear to be similar to the situation in

budding yeast. Sister kinetechore coorientation in Meiosis I appears to be the

least mechanistically conserved of the three specializations that have been

discussed here. Monopolins have not been identified yet in organisms other

than yeast and may not exist. This difference may be based on the huge

variability in centromere and kinetechore structure and size in different

organisms. Probably as a result of larger centromeres, kinetechores, and



chromosomes, organisms that are more complex than budding yeast require

many more microtubules to achieve chromosome segregation than the single

microtubule that is apparently capable of mediating chromosome segregation in

S. cerevisiae. These complex organisms thus likely regulate sister kinetechore

coorientation in ways that are different than those used in budding yeast, where

each kinetechore mediates attachment to a single microtubule in Meiosis I and

Meiosis II.

It is not yet clear how yeast cells control sister kinetechore coorientation.

This process is even less understood in more complex organisms. There are

aspects of meiosis in complex eukaryotes, however, that are clearly regulated

differently than is the case for budding yeast. Some of this variation appears to

be based on size, as S. cerevisiae cells contain a relatively small genome,

partitioned into small chromosomes. Human chromosomes range from 51 to

245 Megabases, while the largest budding yeast chromosome is only 1.5

Megabases in length. Large chromosomes require additional condensation to

progress through meiosis without tangling DNA in the process. This additional

condensation is probably the basis for an additional level of cohesin regulation

in complex eukaryotes.

These organisms show not only the step-wise loss of cohesion, which we

have just discussed, but also a large-scale removal of cohesion during

prophase. This cohesin removal accounts for around 90% of the total meiotic

cohesin removal and is independent of Rec8 cleavage, but dependent on Polo



kinase. It is likely that as complex eukaryotic chromosomes condense during

meiosis, they must remove some of their cohesin packaging in order to achieve

the extremely high levels of compaction seen in late prophase (Sumara,

Vorlaufer et al. 2002; Weitzer and Uhlmann 2002). It is additionally possible that

the majority of cohesin is removed in prophase to expedite the meiotic divisions.

The large amount of cohesin used in early prophase to maintain large

chromosomes in a decondensed structure, and possibly assist prophase

progression, might be too much for Separase to cleave in an efficient fashion. A

similar prophase cohesin removal has recently been described in yeast, as well,

but appears to operate on a much smaller scale, with only a fraction of Rec8

removed prior to meiotic divisions (Yu and Koshland 2005).

Aside from chromosome size, yeast differ from complex eukaryotes in

being single-celled. Multi-cellular organisms must coordinate meiosis with the

development of the rest of the animal, and must also put greater care into

gamete quality. A single yeast cell can result in production of millions of meiotic

offspring in a short time frame. Animals, however, may produce only one or a

few offspring in their lifetimes, so it is important for these offspring to be of high

fitness. Additionally, the relatively large number of genes in complex eukaryotes

create more opportunities for meiotic and mitotic mistakes. Complex eukaryotes

counter these gamete quality concerns through variations in the checkpoints

seen in budding yeast. Mammalian cells appear to have more checkpoints than

S. cerevisiae, with additional control in late prophase. More importantly,



however, defective mammalian meiotic cells do not generally arrest for a period

and then adapt to the defect and proceed, as is the case in budding yeast. A

major output of mammalian meiotic checkpoints is apoptosis. Strangely, this

apoptotic control appears more stringent in male mice than female mice. This

results in females producing larger numbers of aneuploid gametes than males,

though it is not clear if this same reasoning holds for humans (Morelli and Cohen

2005; Cohen, Pollack et al. 2006; Pacchierotti, Adler et al. 2007).

In humans, a larger contribution to aneuploid gametes in females appears

to result from a developmental characteristic of oogenesis. Human females

begin gametogenesis during early development. Oocytes are not used, however,

until puberty. This means that many gametes in women remain arrested in the

diplotene stage of late prophase for decades before ovulation and activation by

sperm fusion. The rate of aneuploidy in oocytes increases dramatically with

maternal age, leading many to speculate that the prophase arrest experienced

by oocytes is only sustainable effectively for a limited time. This argument

makes sense as chromosomes have already undergone recombination and are

arrested with cohesin and chiasmata holding bivalents together. This arrest is

after the mass removal of cohesin from chromosomes, so it is attractive to

speculate that slow dissociation of the remaining cohesins from chromosome

arms over time results in unstable bivalents and missegregation in aged

oocytes. This model is consistent with the observation that most chromosome

missegregation in older mothers occurs in Meiosis I and that missegregation



occurs preferentially between homologs with a more distal chiasma and thus

less cohesion holding homologs together (Lenzi, Smith et al. 2005; Morelli and

Cohen 2005; Cohen, Pollack et al. 2006; Pacchierotti, Adler et al. 2007).

Conclusion and perspectives

There has been tremendous progress in meiotic research over the last

several years. We now understand much of the basis for the key processes of

recombination, coorientation, and step-wise loss of cohesion. S. cerevisiae have

served as an excellent model for understanding meiotic mechanism. Almost

every major breakthrough in meiosis research has, at least in part, depended on

the genetic and molecular tractability of budding yeast. These discoveries have

helped form a framework from which to ask more complex questions about

meiotic mechanism. How do chromosomes pair? How is cohesin regulation

achieved in meiosis? How are prophase events coordinated? Questions such as

these have been of great interest to me in my graduate research.

I will discuss my work towards answering such questions in later

chapters. Namely, I have identified Rec8 phosphorylation sites and found that

phosphorylation at these sites plays a role in promoting preferential cleavage of

arm cohesin at Meiosis I. I have also investigated the role of Rec8 in prophase

progression and found that phosphorylation of Rec8 is important for SC

formation and that this role is separable from the role of Rec8 in sister chromatid



cohesion. I have additionally studied the properties of homolog pairing in

prophase and have performed an initial characterization of this process.

Meiotic research holds great promise for understanding infertility and

aneuploidy-based disease states. Aneuploidy results in spontaneous abortion in

an estimated 35% of human embryos. Additionally, 0.3% of human newborns

are aneuploid, mostly due to trisomy 21, better known as Down's syndrome

(Hassold and Hunt 2001; Hunt and Hassold 2002; Hunt and Hassold 2008).

Additionally, with age of pregnancy increasing in the U.S., infertility is becoming

a major area of concern for many couples. It is of significant interest, then, to

better understand the mechanisms by which chromosomes complete the

complex dance underlying meiosis.
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Abstract

Meiosis is a specialized cell division in which a single round of DNA replication is

followed by two consecutive chromosome segregation phases. The step-wise

loss of cohesins, protein complexes that hold sister chromatids together, is

essential for the two chromosome segregation phases to occur (Marston and

Amon 2004). Loss of cohesins from chromosome arms is essential for

homologous chromosomes to segregate during meiosis I. Retention of cohesins

around centromeres until meiosis II is required for the accurate segregation of

sister chromatids during meiosis II. Here we show that phosphorylation of the

cohesin subunit Rec8 contributes to cohesin removal from chromosomes. Cells

carrying versions of Rec8 in which phosphorylation sites are mutated to

residues that can no longer be phosphorylated are delayed in cohesin removal.

Furthermore, Rec8 is phosphorylated on S521 on chromosome arms but not

around centromeres during meiosis I, implicating phosphorylation of Rec8 in

regulating the stepwise loss of cohesins from chromosomes. Finally, we show

that meiotic recombination functions together with Rec8 phosphorylation and

Sgol to bring about the stepwise loss of cohesins from chromosomes and thus

the establishment of the meiotic chromosome segregation pattern.



Introduction

Gamete formation relies on meiosis, a specialized cell cycle. During the meiotic

cell cycle, DNA replication is followed by two rounds of chromosome

segregation, in which homologs segregate during the first division and sister

chromatids are partitioned in the second. Critical to the faithful execution of this

specialized chromosome segregation pattem is the way in which cohesin

complexes, which hold sister chromatids together, are lost from chromosomes

(Marston and Amon 2004). Unlike in mitosis during which cohesins are removed

along the entire length of chromosomes at the metaphase - anaphase transition,

cohesins are lost from meiotic chromosomes in a stepwise manner. Loss of

cohesins from chromosome arms allows the segregation of homologous

chromosomes during meiosis I because it causes the resolution of meiotic

recombination events, which hold homologous chromosomes together prior to

anaphase I (Buonomo, Rabitsch et al. 2003). Maintenance of cohesins around

centromeres beyond anaphase I and cohesin removal at the metaphase II -

anaphase II transition are essential for accurate segregation of sister chromatids

during meiosis II. Several factors have been identified that are required for

maintaining cohesins around centromeres during meiosis I: Mei-S332/Sgol,

which localizes to regions around centromeres (Kerrebrock, Moore et al. 1995;

Tang, Bickel et al. 1998; Katis, Galova et al. 2004; Kitajima, Kawashima et al.

2004; Marston, Tham et al. 2004), the spindle checkpoint component

Bubl(Kitajima, Kawashima et al. 2004; Tang, Sun et al. 2004; Kiburz, Reynolds

et al. 2005; Kitajima, Hauf et al. 2005), the kinetochore proteins Im13 and Chl4

70



(Marston, Tham et al. 2004), and the meiosis-specific protein Spol3 (Lee, Amon

et al. 2002; Shonn, McCarroll et al. 2002; Katis, Matos et al. 2004). The

mechanisms whereby these proteins prevent cohesin removal around

centromeres during meiosis I are not understood.

Cohesins are removed from chromosomes by a protease known as Separase

(Espl in yeast). After the ubiquitin-dependent destruction of its inhibitory subunit

Securin (Pdsl in yeast) mediated by the Anaphase Promoting

Complex/Cyclosome (APC/C), Separase cleaves a subunit of the cohesin

complex, Sccl/Mcdl during mitosis or the meiosis-specific variant Rec8 during

meiosis, allowing for anaphase chromosome movement to occur (Nasmyth and

Haering 2005). In meiosis, it has recently been shown that the polo kinase Cdc5

contributes to cohesin removal that is cleavage-independent and occurs during

prophase (Yu and Koshland 2005). The protein kinase also plays a role in

promoting cleavage by Separase during mitosis as well as meiosis (Alexandru,

Uhlmann et al. 2001) (Lee and Amon 2003) (Clyne, Katis et al. 2003).

Furthermore, during meiosis, phopshorylation of the cohesin subunit Rec8 is

significantly decreased in the absence of Cdc5 (Lee and Amon 2003), raising the

possibility that Rec8 phosphorylation is important for the protein's cleavage and

thus anaphase I onset.



Results

Mapping Rec8 phosphorylation sites

To determine the importance of Rec8 phosphorylation in cohesin cleavage we

mapped the phosphorylation sites of Rec8. We isolated endogenous Rec8 from

cells arrested in metaphase I either by depletion of the APC/C activator Cdc20

(Lee and Amon; Lee and Amon 2003) or by expression of a non-degradable

version of Pdsl from the meiosis-specific DMC1 promoter (pDMC1-PDSldBA,

see Materials and Methods). In both arrests, Rec8 is highly phosphorylated (data

not shown). We also isolated Rec8 from cells arrested in metaphase I due to the

depletion of Cdc5 to be able to identify the phosphorylation sites whose

phosphorylation depended on Cdc5. Rec8 isolated from the three arrests was

resolved by SDS-PAGE gel and subjected to in-gel digest with either trypsin or

chymotrypsin followed by LC-MS/MS to identify phosphorylation sites (an

example MS/MS spectrum is shown in Figure 1). The procedure was performed

several times until subsequent analyses did not yield additional phosphorylation

sites. This analysis covered 66 percent of Rec8 obtained from PdsldBA

expressing cells, 77 percent of Rec8 obtained from Cdc20-depleted cells, and

65 percent of Rec8 obtained from Cdc5-depleted cells (Figure 2A-C). The overall

coverage of Rec8 from arrests in which Rec8 is phosphorylated was 85 percent.

Selected regions (Figure 2A - C) were not amenable to gel-digest LC-MS/MS

analysis, most likely due to incompatibility with reverse-phase liquid



chromatography (peptides which were too hydrophilic or too hydrophobic) or

poor peptide fragmentation resulting in low-quality MS/MS spectra.



Figure 1: Example of a MS/MS spectrum.
MS/MS spectrum resulting from isolation and fragmentation of the quadruply-
charged precursor ion of the doubly phosphorylated peptide
KYKGLpTpTVWLLSALGNSIVK on a quadruple time-of-flight mass
spectrometer. Sequence coverage generated by singly-charged y-type
fragment ions enables confident identification of the peptide.
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Figure 2: Coverage of the Rec8 in the various cells cycle arrest.
(A - C) Rec8 protein sequence with sequences covered in the mass-
spectrometry analyses shown in red. (A) shows the coverage of Rec8 in Cdc20-
depleted cells (A5441), (B) shows coverage in cells expressing PdsldbA
(A10925) and (C) shows coverage in Cdc5-depleted cells (A9858). For each
condition, gel digestion and MS analyses was performed with both
chymotrypsin and trypsin in separate analyses. The coverage map is a
summation of the peptides from both types of enzymatic digestion. Peptides
identified by LC-MS/MS analysis, MASCOT database search, and manual
sequence confirmation are indicated in bold red, phosphorylation sites are
indicated by blue italics. In almost all cases, sufficient fragmentation information
was available to unambiguously assign specific sites of phosphorylation. Sites,
which could not be unambiguously localized have been indicated by lower case.

(D) Migration of Rec8 mutants in SDS Page: cells were harvested and lysed for
Western blot analysis from wild type (A1972), pCLB2-CDC5 (A6143), rec8-17A
(A14750) and rec8-29A (A14872) cells, resolved by SDS PAGE and visualized
using an anti-HA antibody.
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Our mass spectrometry analyses identified a total of 24 phosphorylation

sites. Mutation of these sites to alanines led to progressive loss of Rec8

phosphorylation as judged by the loss of slower migrating forms of Rec8 on

SDS -PAGE (Figure 2D), which have been shown to be due to phosphorylation

(Lee and Amon 2003). The identity of these phosphorylation sites is shown in

Table 2. Seven sites (Y14, T18, T19, S314, S494, S521, S522) were found to be

phosphorylated in Cdc5-depleted cells and either in Cdc20-depleted cells or

PdsldBA-expressing cells. Six other sites were found to be phosphorylated in

either Cdc20-depleted cells or PdsldBA expressing cells, but the sites were not

covered in the mass-spectrometry analysis of Rec8 obtained from Cdc5-

depleted cells. Eleven sites (S136, T173, S179, S197, S199, S215, S386, S387,

S410, S465, S466) were phosphorylated in Rec8 obtained either from Cdc20-

depleted cells, PdsldBA-expressing cells, or both, but not from Cdc5-depleted

cells. This indicates that phosphorylation of these 11 sites is Cdc5-dependent

and raises the possibility that these sites are phosphorylated by Cdc5 in vivo. 10

of the 11 sites phosphorylated in a Cdc5-dependent manner were serines (Table

2). All 11 sites contain at least one asparagine (one site contained a glutamine) in

the -3 to -1 region. In all instances, the aspargine is preceded byeither a serine,

aspartic acid or glutamic acids within three amino acids. Furthermore, a polar

amino acid is found at position +4 in all sites. Thus, Cdc5-dependent

phosphorylation sites are defined by the motif S/E/D - X-2 - N(Q) - XO-2 - Sp (Tp)



-X,-n, where n represents a polar amino acid (Table 1). We also noticed other

features that, though not present in all sites, appear enriched in the area

surrounding the Cdc5-dependent phosphorylation sites. First, an aliphatic amino

acid is frequently present in the +1 to +3 region, which has previously been

found to be a feature of sites phopshorylated by Cdc5 in vitro (Hu and Elledge

2002; Shou, Azzam et al. 2002). Also the asparagine is often preceded by a

leucine (or isoleucine) within three amino acids. With this description of Cdc5-

dependent phosphorylation sites in hand it will perhaps be possible to identify

Cdc5 target sites using computational approaches.



Table 1
CDC5-dependent phosphorylation sites

Consensus that fits 11/11 sites: S/E/D - XO-2 - N(Q) - XO-2 - Sp(Tp) - X3 -

Amino acids with similar biochemical properties were grouped together:
N/Q: purple
E/D: green
S/T surrounding the phosphorylated residue: yellow
L/I/V: blue
7t: polar amino acids

· ·



Table 2: Cdc5 independent phosphorylation sites:
pDMC1-

pCLB2-CDC20 PDSldbA pCLB2-CDC5 rec8-
Residue arrest arrest arrest rec8-6A rec8-11A sa rec8-17A rec8-21A rec8-24A rec8-29A

Y14 N NC Y x x

T18 N N Y x x x

T19 N N Y x x x

S314 Y Y Y x x x x x
S494 Y NC Y x x x

S521 Y Y Y x x x x x x
$522 Y Y Y x x x x x

Cdc5 dependent phosphorylation sites:
pDMC1-

pCLB2-CDC20 PDSldbA pCLB2-CDC5
Residue arrest arrest arrest rec8-6A rec8-11A ec8-psa rec8-17A rec8-21A rec8-24A rec8-29A

S136 N Y N x x x x x x
T173 Y N N x x x x x x x
S179 Y Y N x x x x x
S197 Y Y N x x x x x x x
S199 N Y N x x x x x x

S215 N Y N x x x x x

S386 Y Y N x x x x x x x

S387 Y Y N x x x x x x x
S410 N Y N x x x x x
S465 Y NC N x x x x x
S466 Y NC N x x x x x

N: Not identified as phosphorylated



Y: Identified as phosphorylated
NC: Not covered
x: Denotes sites mutated in various mutants

Phosphorylations sites not covered in the CZX22-CAC5 arrest that fit the Cdc5 consensus:
pDMC1-

pCLB2-CDC20 PDSldbA pCLB2-CDCS
Residue arrest arrest arrest rec8-6A rec8-11A rec8-psa rec8-17A rec8-21A rec8-24A rec8-29A

T249 Y NC NC x x x x x
S285 Y N NC x x x x

S421 NC Y NC x x x

Phosphorylations sites not covered in the #CZS2-CAC5 arrest that do not fit the Cdc5 consensus:
pDMC1-

pCLB2-CDC20 PDSldbA pCLB2-CDCS
Residue arrest arrest arrest rec8-6A rec8-11A rec8-psa rec8-17A rec8-21A rec8-24A rec8-29A

S245 Y NC NC x x x x x x

T291** Y N NC

S292 Y N NC x x

Putative Cdc5 phosphorylation sites in regions of Rec8 not covered by any mass-spectrometry analysis:***
pDMC1-

pCLB2-CDC20 PDSldbA pCLB2-CDCS
Residue arrest arrest arrest rec8-6A rec8-11A rec8-psa rec8-1 7A rec8-21A rec8-24A rec8-29A

S125 NC NC NC x
T126 NC NC NC x
S224 NC NC NC x

S404 NC NC* NC* x

S425 NC NC* NC x

S552 NC NC NC x x



*Covered in late round while manuscript in preparation. Only non-phosphorylated peptide identified.
**Identified in late round while manuscript in preparation.
***Selected based on general similarity to Cdc5-dependent sites identified in early mass spectrometry rounds.



Investigating the functional significance of Rec8 phosphorylation

A defect in cohesin removal is expected to interfere with entry into anaphase I

(Buonomo, Clyne et al. 2000). To determine the importance of Rec8

phosphorylation in cohesin removal we mutated the phosphorylated sites within

Rec8 to amino acids that can no longer be phosphorylated. Mutation of

individual phosphorylation sites to alanine did not affect sporulation efficiency

(data not shown). Thus, owing to the large number of phosphorylation sites

within Rec8 we mutated several phosphorylation sites simultaneously and

examined the phenotypes of a select number of REC8 mutants. The order in

which phosphorylation sites were mutated was determined by the order in which

the sites were identified in the mass-spectrometry analyses. Figure 3A shows

two examples of such an analysis. Cells carrying a version of REC8 that had six

(rec8-6A, Figure 3) or 11 sites (rec8-1 1A, Figure 3) mutated to alanine did not

exhibit a metaphase I delay but experienced a delay in prophase I (2 hours in

this experiment). Deletion of REC8 causes cell cycle arrest in prophase I due to

an inability to repair meiotic double strand breaks (Klein, Mahr et al. 1999).

Although spore viability was not significantly reduced in the mutants (Figure 3A),

the 2 hour prophase delay exhibited by the rec8-6A and rec8- 11A mutants

points towards these rec8 alleles not being fully functional. This result

additionally raises the possibility that phosphorylation of Rec8 is important for

the protein's prophase functions.

Next we examined the consequences of mutating the 11 residues, whose

phosphorylation was shown to depend on Cdc5 to alanine by our mass-



spectrometry analysis (rec8-psa). Cells expressing this allele neither exhibited a

prophase I delay nor a delay in metaphase I (Figure 3B) indicating that our

mass-spectrometry analysis did not identify all Cdc5-dependent

phosphorylation sites. This was not surprising given that the coverage in the

Cdc5-depletion arrest was only 65%. We therefore, in addition to the known

Cdc5-dependent sites (S136, T173, S179, S197, S199, S215, S386, S387, S410,

S465, S466), mutated sites found to be phosphorylated in the pCLB2-CDC20

and/or pCLB2-PDSldBA arrests but were not covered in the Cdc5-depletion

arrest (S245, T249, S285) as well as three Cdc5-independent sites (S314, S521,

S522) to alanine (rec8-17A, Figure 3). Cells expressing this REC8 mutant

exhibited a 1 hour prophase I delay. In addition, this mutant showed a

metaphase I delay (Figure 4A). Although the delay was not as dramatic as that

observed in cells expressing a non-cleavable version of Rec8 (compare Figure

4A and Figure 5A), this result indicates that expression of this mutant version of

REC8 interferes with the onset of anaphase I. Entry into anaphase II was only

slightly if at all delayed in the rec8-17A mutant (Figure 5B) suggesting that Rec8

phosphorylation is less important for this cell cycle transition. We also examined

mutants in which all phosphorylated serines and threonines, except two recently

identified sites (T291, S292), were mutated to alanine (rec8-21A; Figure 3) and

mutants that had additional putative Cdc5 phosphorylation sites mutated to

alanine that were not covered in any of the mass-spectrometry analyses (rec8-

24A, rec8-29A; Figure 3). Cells expressing Rec8-21A, Rec8-24A or Rec8-29A

appeared to be delayed in metaphase I though the extent of the delay was



difficult to assess owing to the severe prophase I delay exhibited by the mutants

(Figure 3C). We conclude that mutating Rec8's phosphorylation sites leads to

impairment in Rec8's prophase function and interferes with anaphase I entry.

Because the anaphase I entry delay was the least obscured by the prophase

delay in the rec8-17A mutant and because the mutant was likely to have most

Cdc5-dependent phosphorylation sites mutated to alanine, we analyzed this

mutant in more detail.



Figure 3: Mutation of the phosphorylation sites in Rec8 to alanine interferes
with progression through meiosis I.
Wild-type cells (A1972, A1656; closed diamonds) and cells expressing various
REC8 mutants (A: rec8-6A [A15042] open circles; rec8-11A [A15044] closed
circles; B: rec8-psa [A15364] closed triangles; C: rec8-21A [A14352] open
squares; rec8-24A [A14091] closed squares; rec8-29A [A14342] open diamonds)
were sporulated. Time points were taken at the indicated times to determine the
percentage of cells in prophase (left panel), of metaphase I cells (middle panel)
and of the sum of bi- and tetra-nucleate cells (right panel). The number in
brackets located next to the legend indicates the percentage of viable spores
derived from previous analysis for the given strains (n=1 76).
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Figure 5: Mutations in the phosphorylation or cleavage sites of Rec8
interferes with chromosome segregation.
(A) Wild type (A1972, closed diamonds) and cells expressing a non-cleavable
version of REC8 (REC8-NC, A13539, open triangles) were induced to sporulate.
At the indicated time the percentage of cells in prophase I (left panel), in
metaphase I (middle panel) and the sum of bi- and tetra-nucleate cells (right
panel) was determined.

(B) Wild type (A15086, closed diamonds) and rec8-17A mutant (A14750, closed
triangles) cells were induced to sporulate and the percentage of metaphase II
cells was determined at the indicated time.
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Investigating the role of Rec8 phosphorylation in anaphase I entry

To determine why rec8-17A mutants were delayed in anaphase I entry we first

examined whether the delay was due to stabilization of Pdsl. Analysis of Pdsl

by indirect in situ immunofluorescence revealed that rec8-17A cultures

contained a significant fraction of metaphase I cells lacking Pdsl (Figure 4C,

Figure 6A). This was not only apparent when Pdsl was analyzed in metaphase I

cells but also when all pre-anaphase I cells were examined (Figure 6B). A

population of pre-anaphase I cells lacking Pdsl staining persisted up to 7 hours

after entry into the meiotic cell cycle in rec8-17A mutant cells. We conclude that

the metaphase I delay observed in the rec8-17A mutant is at least in part due to

events occurring after the degradation of Pdsl.

To determine the effects of Rec8 phosphorylation on cohesin cleavage

we examined the accumulation of the C-terminal Rec8 cleavage product by

Western blot analysis. In wild-type cells, the C-terminal Rec8 cleavage product

accumulated 4 hours after transfer of cells into sporulation-inducing conditions

(Figure 4B). As expected the rec8-psa mutant did not exhibit a Rec8 cleavage

delay (Figure 7). In the rec8-17A mutant, the protein assembled onto

chromosomes normally as judged by Rec8 localization on chromosomes

spreads and by chromatin immunopreciptitation (ChlIP) analysis (Figure 4D, E)

but cleavage did not occur until 7 hours in rec8-17A mutants (Figure 4A, B). This

delay was only in part due to defects in prophase I. The prophase I delay

observed in the rec8-17A mutant was 90 minutes, whereas Rec8 cleavage was



delayed by 3 hours (Figure 4A, B). Our results indicate that cleavage of the rec8-

17A mutant protein is delayed not only due to the delays in prophase I but also

due to direct interference with events occurring after the degradation of Pdsl.

We conclude that phosphorylation of Rec8 is important for its timely cleavage.



Figure 4: Rec8 cleavage is delayed in rec8-17A cells.
(A, B) Wild type (A14655; diamonds) and rec8-17A mutant (A14746, triangles)
cells both carrying a REC8-HA fusion were induced to sporulate. Cells also
lacked the ubiquitn ligase UBR1 to facilitate detection of the Rec8 cleavage
product. At the indicated times the percentage of metaphase I cells (B, left
panel), of prophase (B, solid symbols) and the sum of bi- and tetra-nucleate
cells (B, open symbols) was determined. Rec8-3HA and Pgkl were analyzed by
Western blotting (A). Pgkl was used as a loading control in Western blots.
(C) Wild type (A14923) and rec8-17A mutant (A14861) cells both carrying a
PDS1-13MYC fusion were induced to sporulate. At the indicated times meiotic
progression was scored and Pdsl status was noted for all metaphase I cells.
(D) The localization of Rec8 is shown on chromosome spreads of wild-type cells
and rec8-17A mutants. Rec8 is shown in red, DNA in blue in the merge.

(E) Wild type REC8-3HA (A1972) and rec8-17A-3HA (A13559) were induced to
sporulate along with a wild type strain lacking the tagged REC8 allele (A4962).
Samples were taken for chromatin immunoprecipitation after 4 hours. PCR
analysis of immunoprecipitated samples (anti-HA), mock-treated samples
(MOCK), and input DNA (1:250) are shown along with a schematic diagram
indicating locations of chromosomes III primer sets. Cen3 corresponds to the
core centromere, Carcl and C191.5 correspond to cohesin-rich regions in the
pericentromere and arm, respectively, and C281 corresponds to an arm
sequence with which cohesin associates poorly.
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Figure 6: Metaphase I cells lacking Pdsl accumulate in rec8-17A mutants.
(A) Examples of metaphase I cells that contain Pdsl in the nucleus and
metaphase I cells that lack Pdsl. Pdsl is shown in red, microtubules in green
and DNA is shown in blue.

(B) Wild type (A14723) and rec8-17A mutant (A14861) cells both carrying a
PDS1-13MYC fusion were induced to sporulate. At the indicated times the
percentage of mononucleate cells lacking Pdsl (open diamonds), of
mononucleate cells that contain Pdsl (closed squares) were counted. In a
separate counts the percentage of metaphase I cells (closed diamonds) and the
percentage of the sum of bi- and tetranucleate was determined.
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Figure 7: Rec8 cleavage in the rec8-psa mutant
Wild type (A14655) and rec8-psa (A15364) mutant cells both carrying a REC8-
HA fusion and a deletion in UBRI were induced to sporulate. At the indicated
times, samples were taken for Western blot analysis and to determine meiotic
progression. Note progression through meiosis for this experiment is shown in
Figure 3B.
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Examining the impact of recombination on cohesin cleavage

We also examined the effects of eliminating meiotic recombination on rec8-17A

mutants. To prevent meiotic recombination we deleted SP01 1, a gene required

to form the recombination-initiating double strand breaks (Bergerat, de Massy et

al. 1997; Keeney, Giroux et al. 1997). Surprisingly, deletion of SP01 1 abolished

the delay in Rec8 observed in the rec8-17A mutant (Figure 8A). Furthermore, cell

cycle delays imposed by the rec8-17A mutant were also eliminated (Figure 8B).

Similar results were obtained when a catalytic dead version of SPO 11 (spoll-

Y135F) mutant was employed ((Keeney, Giroux et al. 1997), Figure 9) indicating

that Spol 1's recombination function rather than its role in premeiotic DNA

replication was responsible for this suppression. The fact that deletion of SPOi 1

allowed Rec8-17A-expressing cells to progress through meiosis I without a

delay was expected because abolishing recombination eliminates the need for

arm cohesion removal for progression through meiosis I. However, interference

with cohesin cleavage is expected to cause a delay in metaphase II in the

absence of recombination (Buonomo, Clyne et al. 2000), which was not the case

in the rec8-17A spo liA mutant (Figure 8B). Similar results were obtained in

rec8-29A spo 1 lA mutants (Figure 8A, B). These results indicate that in the

absence of recombination Rec8 phosphorylation is not as important for cohesin

removal as it is when recombination occurs.



Figure 8: Elimination of recombination abolishes the Rec8 cleavage delay in
rec8-17 and rec8-29A mutants due to retention of arm cohesion past
meiosis I in a MAD2-dependent mannner.
(A, B) spol 1A (A14755; diamonds), spol 1i rec8-17A (A14847, triangles) and

spo 14 A rec8-29A (A14872, circles) mutant cells both carrying a REC8-HA fusion
and a deletion in UBRI were induced to sporulate. At the indicated times the
percentage of metaphase II cells (B, left panel), of mononucleate (B, solid
symbols) and the sum of bi- and tetra-nucleate cells (B, open symbols) was
determined. Rec8-3HA and Pgkl were analyzed by Western blotting (A).

(C, D) spol 1d (A9498, closed circles), spo 11A pCLB2-SG01(A14938, squares)
and pCLB2-SGO1(Al 1251, open circles) cells carrying CEN5-GFP dots were
induced to sporulate. (C) At 12 hours samples were taken to determine GFP dot
segregation in tetrads. 100 cells were counted per strain per time point. (D) At
the indicated times samples were taken to determine the percentage of
metaphase II cells.

(E) spo 11 (A9498), spo 11A pCLB2-SGO1 (A14938), pCLB2-SGO 1(A11251),
spo 11 pCLB2-SGO1 mad2A (A15345) and pCLB2-SGO1 mad2A (A15344)
cells carrying CEN5-GFP dots were induced to sporulate. At 12 hours samples
were taken to determine GFP dot segregation in tetrads. Note that it has
previously been established that mad2A mutants to not show chromsome
segregation defects or kinetechore attachment defects in meiosis II (Shonn,
Murray et al.).
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Figure 9: Rec8-17A cleavage in cells expressing a catalytically dead version
of SPO 11.
spol A rec8-17A (A14847, triangles) and spol 1-Y135F rec8-17A (Al 5363,
circles) mutant cells both carrying a REC8-HA fusion and a deletion in UBR1
were induced to sporulate. At the indicated times samples were taken for
Western blot analysis (A) and to determine the percentage of prophase cells and
the sum of bi- and tetra-nucleate cells (B).
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Why does elimination of recombination suppress the cleavage defect

observed in rec8-17A mutants? In spoll and rec8-17A spol d mutants loss

of cohesins from chromosome arms and from centromeric regions occurs

almost simultaneously as evidenced by the absence of binucleate spo 11A or

rec8-17A spol 1A or rec8-29A spo 1A cells with cohesins concentrated around

centromeres (Figure 10A, C). In fact, the fraction of cells with only centromeric

cohesins is the same in spo 11i mutants as in spo 11i sgold double mutants

(Figure 10C). This finding raises the possibility that in the spo 11A mutant the

bulk of cohesin removal occurs during meiosis II. As during this division

phosphorylation appears less important for Rec8 cleavage (Figure 5B), the rec8-

17A mutant may no longer interfere with Rec8 cleavage. To test this hypothesis

we examined the effects deleting SPO 11 in Sgol-depleted cells (Sgol was

depleted during meiosis by replacing the SGO1 promoter with the CLB2

promoter, which is repressed during meiosis [pCLB2-SGO1 (Lee, Kiburz et al.

2004). In Sgol-depleted cells, the second meiotic division is random due to the

absence of any cohesion between sister chromatids. This phenotype can be

observed when cells carry a tandem array of tet operator sequences near the

centromere on one of the two homologs and also express a tet repressor GFP

fusion that binds to these repeats (heterozygous CEN5 GFP dots; (Toth,

Rabitsch et al. 2000)). 50 percent of tetrads will contain a GFP dot in only one of

the four spores and 50% of tetrads with contain a GFP signal in two of the four
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spores (Figure 8C, Figure 10D). Remarkably, spollA pCLB2-SGO1 mutants

segregate sister chromatids correctly in almost 90% of cells (Figure 8C).

Furthermore, deletion of SP01 1 restored metaphase II to Sgol-depleted cells

(Figure 8D, Figure 10E). Similar results were obtained with other recombination

mutants that abolished chiasma formation. Inactivation of Spol 1's catalytic

function (spo 11-YF mutant, (Keeney, Giroux et al. 1997)) and inhibition of strand

resection (rad50OS mutant, (Alani, Padmore et al. 1990)) also suppressed the

meiosis II mis-segregation that occurs in the absence of Sgol (Figure 11). This

observation together with the finding that chromosomes segregation was again

random in spo 11Ai pCLB2-SGO1 mad2A triple mutants (Figure 8E) provided

insight into why cohesin removal did not occur during meiosis I in the absence

of recombination: In the absence of linkages between homologs, chromosomes

fail to attach properly to the meiosis I spindle. This leads to the activation of the

spindle assembly checkpoint, which in turn prevents the removal of cohesins

from chromosomes. Cells nevertheless undergo anaphase I as chromosomes

lack the necessary linkages to prevent meiosis I spindle elongation (Shonn,

McCarroll et al. 2000; Shonn, Murray et al. 2003) and cells progress into meiosis

II. This results in metaphase II chromosomes with cohesins on chromosome

arms. These observations, together with the finding that Rec8 phosphorylation is

not important for Rec8 cleavage during meiosis II explains why elimination of

recombination abolishes the Rec8 cleavage delay in the rec8-17A mutant and

point to an essential role for recombination in establishing the step-wise loss of

cohesins from chromosomes.
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Figure 10: Deletion of SPOI rescues the Rec8 cleavage delay in rec8-17A
and rec8-29A mutants.
(A, B) spol • (A14755; open diamonds), spol lA rec8-1 7A (A14847, closed
triangles) and spol 1M rec8-29A (A14872, closed circles) mutant cells both
carrying a REC8-HA fusion and a deletion in UBR1 were induced to sporulate.
At the indicated times the percentage of metaphase II cells (A, right panel), of
prophase cells (B, left panel) and of sporulated cells (B, right panel) was
determined. The left panel in (A) shows the percentage of cells that exhibit
strong Rec8 staining all over spread chromosomes ("full rec8", solid bar), that
exhibit weak Rec8 staining all over chromosomes ("partial Rec8", grey bars)
and Rec8 only at centromeres ("centromeric Rec8", white bars). 180 cells were
counted per strain from a 6-hour time point

(C, D) Wild type (A2704, circles), spo 114, open squares and spo id pCLB-
SGO1 (A15023, closed squares)cells carrying a REC8-HA fusion were induced
to sporulate. Samples were taken at the indicated time points to determine Rec8
localization by immunofluorescence on chromosome spreads (C) and percent of
bi and tetra nucleate cells (D). 100 mononucleate and binucleate cells were
counted per strain per timepoint. Note that these samples were taken from the
time course shown in Figure 12C and D.

(E) Strains and experimental conditions are described in Figure 8C, D. spo il (
A9498, closed circles), spo 1 i pCLB2-SGOi(A14938, closed squares) and
pCLB2-SG01(A11251, open circles) cells carrying CEN5-GFP dots were
induced to sporulate. Samples were taken at the indicated time points to
determine the percentage of bi- and tetranucleate cells.
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Figure 11: Depletion of Sgol in spoll-Y135F and rad50OS mutants allows
proper meiosis II chromosome segregation in Sgol-depleted cells.
pCLB2-SGO 1(A11251), rad50OS (A15347), rad5OS pCLB2-SGO 1 ( A15366),
spol 1-Y135F (A15349) and spol 11-Y135F pCLB2-SGO1 (A15351) cells carrying
CEN5-GFP dots were induced to sporulate. At 12 hours samples were taken to
determine GFP dot segregation in tetrads. Note that pCLB2-SGO1 (Al 1251)
control strain is the same as shown in Figure 8E.
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Assessing the relationship between Sgo I and Rec8 phosphorylation

Proteins required to protect cohesins around centromeres from removal during

meiosis I could function by preventing Rec8 phosphorylation. Indeed two recent

studies show that Sgol recruits the protein phosphatase PP2A to chromosomes

(Riedel 2008; Kitajima 2008). If Sgol solely functioned to prevent centromeric

cohesin removal by preventing the phosphorylation of Rec8, inactivation of

SGO1 should not affect the phenotype exhibited by rec8-17A expressing cells.

Surprisingly, depletion of Sgol in Rec8-17A-expressing cells led to Rec8

cleavage, almost to the extent seen in wild-type cells and an elimination of the

metaphase I delay (Figure 12B, C, Figure 13A). This result suggests that SGO1

affects cohesin cleavage by means other than or in addition to preventing Rec8

phosphorylation. An alternative, though less likely, explanation for the wild-type

pattern of Rec8 cleavage and meiotic progression in the rec8-17A pCLB2-

SGO1 mutant is that our mass-spectrometry analysis missed key

phosphorylation sites, whose phosphorylation allow for highly efficient cleavage

of the Rec8-17A mutant protein only in the absence of SGO1. To distinguish

between these possibilities we examined Rec8 cleavage in cells depleted for

Cdc5. Cdc5 was depleted from meiotic cells by placing the gene under the

CLB2 promoter (pCLB2-CDC5(Lee and Amon 2003)). Cells also lacked SPO11

to avoid delays in Rec8 cleavage due to Cdc5's role in meiotic recombination

(Clyne, Katis et al. 2003). Rec8 cleavage was greatly delayed in spo lld pCLB2-

CDC5 cells (Figure 12C). Depletion of Sgol allowed Rec8 cleavage to occur
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more efficiently (Figure 12C). Furthermore, Rec8 was completely lost from

chromosomes in 30% of pCLB2-CDC5 pCLB2-SGO1 cells compared to in only

9%, of pCLB2-CDC5 cells 6 hours after transfer of cells into sporulation-

inducing conditions (Figure 14). Cells also underwent anaphase I spindle

elongation (Figure 12D, Figure 13B). To examine whether the observed spindle

elongation reflected chromosome segregation we examined the segregation of

CEN5 GFP dots. In metaphase I-arrested spol Ai pCLB2-CDC5 mutants, two

juxtaposed GFP dots are visible because sister kinetochores attach to opposite

poles rather than the same pole in meiosis I and the tension exerted by the

spindle leads to separation of CEN5 GFP dots (Clyne, Katis et al. 2003; Lee and

Amon 2003). In 50 percent of spol 1iA pCLB2-CDC5 pCLB2-SGO1, as well as

pCLB2-CDC5 pCLB2-SGO1 cells, the GFP dots were separated by at least 2

tm and often more (Figure 12E, Figure 13D) and anaphase I spindle elongation

occurred (Figure 13C). These results indicate that SGO1 affects cohesin

cleavage by means other than or in addition to preventing Rec8

phosphorylation.
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Figure 12: Depletion of Sgol partially alleviates the need for Rec8
phosphorylation and Cdc5 in Rec8 cleavage and anaphase I entry.
(A, B) Wild type (A15086, closed diamonds), rec8-17A (A14750, closed

triangles), pCLB2-SGO1 (A15085, open diamonds) and rec8-17A pCLB2-SGO1
(A15084, open triangles) were induced to sporulate. At the indicated times
samples were taken to determine the percentage of metaphase I cells (B, top
panel) and prophase I cells (A, bottom panel) and Rec8 protein by Western blot
analysis (B). Note that in this experiment the rec8-17A mutant did not exhibit a
prophase delay.

(C, D) spol 1A (A15022, open diamonds), spol lA pCLB2-CDC5 (A15025, closed
diamonds), and spol iM pCLB2-CDC5 pCLB2-SGO1 (A15000, closed circles)
cells were induced to sporulate. At the indicated times samples were taken to
determine the percentage of anaphase I cells (D) and Rec8 protein levels by
Western blot analysis (C).

(E) spo liM pCLB2-CDC5 (A14657, closed diamonds), pCLB2-CDC5 pCLB2-
SGO 1 (A14870, closed triangles), and spol 1 pCLB2-CDC5 pCLB2-SGO1
(A14776, closed circles) cells all carrying CEN5-GFP dots were induced to
sporulate. At the indicated times samples were taken to determine the
percentage of cells with GFP dots separated by at least 2 pm. 200 cells were
counted per strain per time point.
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Figure 13: Depletion of Sgol partially alleviates the need for Rec8
phosphorylation and Cdc5 in Rec8 cleavage and anaphase I entry.
(A) Wild type (A15086, closed diamonds), rec8-17A (A14750, closed triangles),
pCLB2-SGO 1 (A15085, open diamonds) and rec8-17A pCLB2-SGO1 (A15084,
open triangles) were induced to sporulate. At the indicated times samples were
taken to determine the percentage of metaphase II cells (left panel) and the sum
of bi- and tetranucleate cells (right panel).

(B) spol Mi (A15022, open diamonds), spo 1Mi pCLB2-CDC5 (A15025, closed
diamonds), and spol MI pCLB2-CDC5 pCLB2-SGO1 (A15000, closed circles)
cells were induced to sporulate. At the indicated times samples were taken to
determine the percentage of prophase cells (left panel) and the sum of bi- and
tetranucleate cells (right panel).

(C) spol 1 pCLB2-CDC5 (A14657, closed diamonds), pCLB2-CDC5 pCLB2-
SGO1 (A14870, closed triangles), and spol i1. pCLB2-CDC5 pCLB2-SGO1
(A14776, closed circles) cells all carrying CEN5-GFP dots were induced to
sporulate. At the indicated times samples were taken to determine the
percentage of anaphase I cells (left panel) and the sum of bi- and tetranucleate
cells (right panel).

(D) Examples of separated GFP dot in spo 1Mi pCLB2-CDC5 pCLB2-SGO1
(A14776) cells. GFP dots are shown in green, DNA in blue.
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Figure 14: Depletion of Sgol allows Rec8 removal from chromosomes in
Cdc5-depleted cells.
The cells analyzed in this figure were obtained from the time course shown in
Figure 12C and D.
(A) spol pCLB2-CDC5 and spol I l pCLB2-CDC5 pCLB2-SGO1 cells were
induced to sporulate. At the indicated times samples were taken and the
percentage of cells with Rec8 present at wild-type levels on all chromosomes
(black), with some Rec8 present on chromosomes (grey) or no Rec8 (white) on
chromosomes was determine on chromosome spreads.

(B) Examples of the categories of Rec8 staining on chromosomes. "Full"
represents wild-type levels of association of Rec8 with chromosomes. "Parital"
represents a small, but detectable amount of Rec8 on chromosomes and "none"
indicates no Rec8 staining on chromosomes. Rec8 is shown in red, DNA in blue.
We frequently observe large amounts of Rec8 concentrated between two DNA
masses (an example is shown in the right panel of "partial" category) in spol M
PCLB2-CDC5 pCLB2-SGO1 cells. The identity of the region where Rec8
remains associated with chromosomes in these cells is not known, but may,
based on their position between DAPI masses, represent telomeres.
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Analysis of phospho-Rec8 chromosome localization

Our data indicate that phosphorylation of Rec8 is important for the efficient

cleavage of Rec8. Next we wished to determine whether Rec8 phosphorylation

contributes to establishing the stepwise nature of this process. To this end we

raised two antibodies, one that specifically recognizes phosphorylated serine

136 and one that recognizes phospho serine 521 (Materials and Methods; Figure

15A, Figure 16A). As predicted by the mass-spectrometry analysis

phosphorylation of S136 is Cdc5-dependent, phosphorylation of S521 is Cdc5-

independent (Figure 15A, B; Figure 16B; Figure 8). The anti-phospho S136

antibody only recognized Rec8 on Western blots (Figure 15A, B, data not

shown). The anti phospho S521 antibody recognized phospho-S521 on Western

blots and chromosome spreads (Figure 15A - C) but failed to efficiently

precipitate Rec8 in chromatin immunoprecipiation assays (data not shown).

To determine whether Rec8 phosphorylation on S521 mirrored the

differential loss of arm and centromeric cohesins during meiosis I in that

phosphorylation occurred on chromosome arms prior to anaphase I but was

excluded from centromeric regions, we compared the distribution of a Rec8-

Myc fusion (total Rec8) with that of Rec8 recognized by the anti phospho S521

antibody. To identify centromeric regions, cells also contained a tagged version

of the kinetochore protein Ndcl 0. The Rec8-Myc signal appeared continuous

and was found in long stretches on chromosome spreads, presumably

representing chromosome axes. In contrast, the anti phospho S521 signal
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appeared fragmented (Figure 15D) and frequently did not overlap with the

Ndcl 0-Ha foci. Whereas the anti-Myc signal overlapped with an average of 9

(SD=1.8) out of an average of 15 Ndcl 0-Ha foci (SD=1.8) per cell (n=12), the anti

phospho S521 signal only co localized with an average of 4 (SD=1.2) out of 16

NdclO0 foci (SD=0.74) per cell (n=12; Figure 15E). Furthermore, the anti phospho

S521 signal was absent from chromosome spreads of binucleate (anaphase I -

metaphase II) cells (Figure 15D), when only centromeric cohesins are left on

chromosomes. Thus it appears that S521 phosphorylation is reduced or

perhaps even excluded from centromeric regions in pre-anaphase cells, but

present on chromosome arms. We do not know whether Rec8 is

phosphorylated prior to its removal in metaphase II. We have not detected an

anti phospho S521 signal in any binucleate cells. This result suggests that Rec8

phosphorylation on S521 is not a prerequisite for Rec8 removal during meiosis

II, which would be consistent with the observation that the rec8-17A mutant

does not exhibit a delay in metaphase II.
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Figure 16: Rec8 phosphorylation on S136 and S521 is regulated during
meiosis.
(A) The cells analyzed in this figure were obtained from the time course shown in
Figure 15A. Wild type (A1972, open symbols) and rec8-17A mutant (A13559,
closed symbols) cells were induced to sporulate and the percentage of
metaphase I cells (right panel) and the percentage of mononucleate and the sum
of bi and tetranucleate cells was determined at the indicated time.

(B) The cells analyzed in this figure were obtained from the time course shown in
Figure 15A. pCLB2-CDC20 (A5441, diamonds) and pCLB2-CDC5 (A9858,
circles) cells were induced to sporulate and the percentage of prophase and
metaphase I cells (right panel) was determined at the indicated time.
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Figure 15: Serine 521 phosphorylation is reduced around centromeres
during meiosis I.
(A) Wild type (A1972) cells and rec8-17A mutants (A13559) were induced to
sporulate. At the indicated times Rec8-HA was immunoprecipitated and
separated on SDS PAGE (Materials and Methods). Blots were then probed with
either anti HA-antibodies or anti phospho S136 (a-pS136) or anti phospho S521
a-pS521) antibodies.

(B) pCLB2-CDC20 (A5441) and pCLB2-CDC5 (A9858) cells were induced to
sporulate. At the indicated times Rec8-Myc was immunoprecipitated and
separated on SDS PAGE. Blots were then probed with either anti Myc-
antibodies or anti phospho S136 (a-pS136) or anti phospho S521 (a-pS521)
antibodies.

(C) Wild type (A14655) cells and rec8-17A mutants (A14746) were induced to
sporulate. After 4 hours cells were harvested and a-pS521 staining was
analyzed chromosome spreads. a-pS521 staining is shown in green and DNA in
blue.

(D, E) Wild-type cells carrying a REC8-MYC fusion and a NDC10-HA fusion
(A3640) were spread and the distribution of Rec8 was determined either using
an a-Myc or an a-pS521 antibodies. Examples of prophase and binucleate cells
are shown. Rec8 is shown in green, NdclO0 in red and DNA in blue. (E) shows
the number of Ndcl 0 foci overlapping with the a-Myc and a-pS521 staining. All
Ndcl 0 foci were scored for 12 cells per condition.
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Discussion

How are Sgol and Rec8 phosphorylation related?

Work by the Nasmyth and Watanabe groups indicates that Sgol recruits PP2A

to centromeric regions and this event is important for the step-wise loss of

cohesion from chromosomes (Nasmyth ; Watanabe).To determine whether

factors involved in bringing about the step-wise loss of cohesion participate in

establishing the pattern of S521 phosphorylation on chromosomes we examined

the phosphorylation status of S521 in prophase spreads of BUB1 deleted or

Sgol-depleted cells. Inactivation of neither gene lead to increased detection of

a phospho S521 signal around centromeres on chromosome spreads (data not

shown). This finding indicates that Sgoland Bubl either only regulate the

phosphorylation state of a subset of Rec8 phosphorylation sites or that they

affect cohesins at centromeric regions through means other than preventing

Rec8 phosphorylation. Several lines of evidence are consistent with the latter

idea. Inactivation of Sgol not only allowed efficient Rec8 cleavage and

anaphase I spindle elongation in the rec8-17A mutant but also in Cdc5-depleted

cells. It is possible that in the absence of Sgol, low levels of Cdc5 and other

protein kinases are now capable of bringing about cohesin removal. We

consider this possibility unlikely because both, sister chromatid separation and

spindle elongation occur with remarkable efficiency. We favor the idea that Sgol

affects the phosphorylation state of other cohesin subunits around centromeres

and/or affects Separase activity. The fact that depletion of Sgol allowed

complete cohesin removal in 30 percent of Cdc5-depleted cells furthermore
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raises the interesting possibility that Sgol not only regulates cohesins around

centromeres but also in a more global manner.

Bulk Rec8 phosphorylation promotes anaphase I entry

We have investigated how Rec8 phosphorylation affects cohesin removal and

meiotic chromosome segregation. This study not only produced the first in vivo-

derived consensus sequence for targets of Polo kinases but also provided

insights into how cohesin removal is regulated in meiosis. The finding that single

phosphorylation site mutants as well as mutants containing only a small number

(up to 11) of phosphorylation sites mutated to alanine did not interfere with the

metaphase - anaphase transition suggests that it is overall phosphorylation

rather than phosphorylation of a specific site that is important for Rec8

cleavage. Only when we mutated all Cdc5 phosphorylation sites identified in the

mass spectrometry analysis as well as potential Cdc5 phosphorylation sites

(rec8-17A mutant) did we begin to see a delay in Rec8 cleavage and anaphase I

onset. The delay in Rec8 cleavage we observed in the rec8-17A mutant was

significantly shorter than that observed in cells depleted for Cdc5. We believe

one or several of the following reasons to be responsible for this difference.

Cells depleted for Cdc5 exhibit a defect in Pdsl degradation, which delays Rec8

cleavage (Clyne, Katis et al. 2003). Second, additional Cdc5 phosphorylation

sites may exist that have not been identified by our mass-spectrometry analysis.

Finally, Cdc5 may have targets other than Rec8, whose phosphorylation is

important for Rec8 cleavage. Analysis of the rec8-17A mutants nevertheless
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implicates phosphorylation of Rec8 in cohesin removal. This finding together

with the observation that Rec8 phosphorylation is regulated in that

phosphorylation of at least S521 is reduced or absent around centromeres

during meiosis I, indicates that Rec8 phosphorylation contributes to the step-

wise loss of cohesins from chromosomes.

Recombination promotes step-wise loss of cohesion

Our results also revealed a previously unrecognized role for recombination in

establishing the step-wise loss of cohesion. Recombination establishes linkages

between homologs, which is essential for silencing of the spindle checkpoint

and thus the timely removal of cohesins from chromosome arms. In the absence

of recombination linkages between homologs are not forged and the spindle

assembly checkpoint is not silenced. As a result meiosis I cohesin removal is

disrupted. As meiotic progression continues due to meiotic cell cycle events

being uncoupled (Marston, Lee et al. 2003), meiosis II chromosomes are

generated with cohesins on chromosome arms. Thus recombination not only

ensures the correct attachment of bivalents to the meiosis I spindle but,

together with Rec8 phosphorylation and Sgol, establishes the stepwise loss of

cohesion, another key aspect or meiotic chromosome segergation.
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Materials and Methods

Strains and Plasmids:

The strains used in this study are all derivatives of SK1. The pCLB2-CDC20 and

pCLB2-CDC5 fusions and ubrlA::KanMX4 are described in (Lee and Amon

2003). The The pCLB2-SGO1 fusion is described in(Marston, Tham et al. 2004).

The pDMC1-PDSldbA construct was generated by cloning the DMC1 promoter

upstream of PDS1 lacking the destruction box (PDSldbA; (Cohen-Fix, Peters et

al. 1996; Shonn, McCarroll et al. 2000). The construct was integrated at the

DMC1 locus. REC8-3HA, GFP dots and spo 11::URA3 were described in (Klein,

Mahr et al. 1999). Pdsl-18Myc and rec8A::KanMX4 were described in (Toth,

Rabitsch et al. 2000).

pA498 was generated by cloning Rec8-3HA into Yiplacl28.

Sporulation conditions:

Cells were grown to saturation in YPD (YEP + 2% glucose) for 24 hours, diluted

into YPA (YEP + 2% KAc) at OD600 = 0.3 and grown overnight. Cells were then

washed with water and resuspended in SPO medium (0.3% KAc [pH = 7.0]) at

OD600 = 1.9 at 300C to induce sporulation.

Rec8 Phospho-site mutants:

Plasmids based on pA498 were mutated with Stratagene Quikchange kit and

then integrated at the REC8 locus into rec8A strain A3498. Single-copy insertion
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was verified by Southern blot analysis. All mutants contained a triple HA tag at

the C-terminus.

Western blot analysis:

Cells were harvested, incubated in 5% trichloroacetic acid (TCA) and lysed as

described in (Moll, Tebb et al. 1991). Immunoblots were performed as

described in (Cohen-Fix, Peters et al. 1996). Rec8-9Myc was detected using a

mouse anti-Myc antibody (Covance) at a 1:1000 dilution. Pgkl was detected

using a mouse anti-PGK1 antibody (Molecular Probes) at a 1:5000 dilution.

Rec8-HA was detected using a mouse anti-HA antibody (HA.11, Covance) at a

1:1000 dilution. Vphl was detected using a mouse antibody (Molecular Probes)

at a 1:2000 dilution. The secondary antibody used was a goat anti-mouse

antibody conjugated to horseradish peroxidase (HRP; Jackson

Immunoresearch) at a 1:2000 dilution.

Phospho-antibody Western blots:

Blots were blocked for 4 hr. at room temperature in 3.5% BSA in TBST, then

incubated with 1:500 rabbit phospho-antibody in 1%BSA, TBST and incubated

overnight at 40C. Blots wre washed five times with TBST and incubated with

goat anti-rabbit antibody conjugated to horseradish peroxidase (HRP; Jackson

Immunoresearch) at a 1:5000 dilution. Antibodies were custom-made by Abgent

Technologies against phospho-S521 and phospho-S136 Rec8 peptides using

peptide HTRNSTR(pS)SGFNEDIC and NGLNSNN(pS)IIGNKNNC, respecitvely.
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Chromatin Immunoprecipitation:

ChIP was performed as described in (Kiburz, Reynolds et al. 2005). Primer

sequences are available upon request.

Mass Spectrometry:

Rec8-Myc was Immunoprecipitated, run on a 6% Acrylamide gel and stained

with Colloidal blue staining kit (Invitrogen). Protein bands from each condition

were subjected to in-gel digestion using trypsin (Promega) (375 ng/band in 30

[L of 100 mM ammonium acetate) or chymotrypsin (Roche) (600 ng/band in 30

[tL of 100 mM ammonium acetate). Extracted peptides were dried to 1-2 [IL and

reconstituted in 0.1% acetic acid prior to loading on an Fe3"-charged IMAC

column. IMAC enrichment of phosphorylated peptides and LC-MS/MS analysis

on a QSTAR XL quadrupole time-of-flight mass spectrometer (Applied

Biosystems) was performed as described previously(Zhang, Wolf-Yadlin et al.

2005).

Immunoprecipitation:

Cells were harvested, incubated in 5% TCA, washed with acetone and dried

overnight. Pellets were then lysed in 50mMTris-Hcl pH7.5, 1mM EDTA, 15mM

PNP, 60mM Bgpp, 50mM DTT, 0.1mM NaVa, 1x complete protease inhibitors

solution (Roche) and glass beads in Biopulverizer (FastPrep). Samples were then
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boiled with 1% SDS, diluted 9-fold in NP40 buffer (150mM NaCI, 1%NP40 by

mass, 50mM Tris-HCI pH 7.5). Extracts were incubated for 1-2 hours at 4

degrees with 1:150 9E10 mouse anti-Myc antibody (Covance) or 1:150 HA.11

mouse anti-HA antibody (Covance). Extracts were then incubated ovemight at 4

degrees with 60 1l-120 ~l Protein G Sepharose beads (Pierce) per 2mL-15mL IP.

IPs were washed 2x with NP40 buffer, 1x NP40 buffer + 1% Bme, 2x NP40

buffer + 1% Bme + 2M Urea, 1x 10mM Tris-HCI pH7.5. Beads were

resuspended in 3x SDS Sample buffer and boiled.

Immunolocalization analysis on chromosome spreads:

Chromosomes were spread as described in (Nairz and Klein 1997). Rec8-Myc

was detected using rabbit anti-Myc antibodies (Gramsch) at a 1:150 dilution and

anti-rabbit FITC antibodies (Jackson Immunoresearch) at a 1:300 dilution.

Ndcl 0-6HA was detected using a mouse anti-HA antibody (Babco) at a 1:200

dilution and an anti-mouse Cy3 antibody at a 1:300 dilution. Rec8-HA was

detected using mouse anti-HA antibodies (Covance) at 1:500 and anti-mouse

Cy3 antibody at 1:200. Phospho-S521 Rec8 was detected using custom

antibody rb7064 at 1:250 and anti-rabbit FITC antibody at 1:250.

Whole cell immunofluorescence:

Indirect in situ immunofluorescence was carried out as described in (Visintin,

Craig et al. 1998). Rat anti-tubulin antibodies (Oxford Biotechnology) and anti-

rat FITC antibodies (Jackson Immunoresearch) were used at a 1:100 dilution.
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Pdsl-Myc was detected using a mouse anti-HA antibody (Covance) at a 1:250

dilution and an anti-mouse Cy3 secondary antibody (Jackson Immunoresearch)

at a 1:1000 dilution. Unless otherwise indicated, for all experiments 200 cells

were counted per strain per time-point.

We define metaphase I cells as cells with an undivided nucleus and a meiotic

spindle spanning the nucleus. We chose these two criteria and did not include

the state of Pdsl staining because cells could be arrested/present in metaphase

I because they have not yet degraded Pdsl (as is the case in checkpoint

arrested cells) or because they are defective in Rec8 cleavage after Pdsl has

been degraded (as is seen as in the rec8-17A mutant.
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Abstract:

In meiosis, chromosomes undergo two rounds of chromosome segregation. The

differences in Meiosis I and Meiosis II segregation are based on a number of

meiotic specializations, including differential regulation of the meiotic cohesin

Rec8 (Lee and Amon 2001). I find that Rec8 is additionally important to proper

formation of the Synaptonemal Complex (SC) and prophase progression. I show

that cohesion itself is not required for the prophase function of Rec8, but that

this role is regulated through Rec8 phosphorylation. I additionally show that

post-replicatively associated Rec8 is capable of supporting SC formation. I

conclude that Rec8 performs roles important to multiple meiotic stages, thus

ensuring order and directionality of the meiotic program.
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Introduction:

Meiosis is the well-conserved process by which diploid cells produce haploid

products; these products include eggs and sperm in multicellular organisms and

spores in the budding yeast Saccharomyces cerevisiae. This process is

essentially a modified mitotic cell cycle, with the most notable modification

being the presence of two chromosome segregation phases following only a

single DNA replication phase. The second segregation phase (MII), termed an

equational segregation, involves newly replicated sister chromatids segregating

from each other and is also the type of segregation that occurs in mitosis. In

contrast, the first segregation phase (MI), called a reductional segregation,

requires that homologous chromosomes segregate apart. For this to occur,

these homologs must first be aligned and then linked through recombination

(Lee and Amon 2001; Marston and Amon 2004). The process of recombination

is complex and partially dependent on stabilization of paired homologs by a

proteinaceous structure called the Synaptonemal Complex (SC) (Storlazzi, Tesse

et al. 2008).

In mitosis and meiosis, sister chromatids are held together by the cohesin

complex. This mitotic complex consists of four core proteins: Scc3, Smcl,

Smc3 and Sccl. The meiotic complex also contains the same basic proteins,

with the exception that Sccl replaced by the meiosis-specific cohesin, Rec8.

The cohesin complex is loaded onto chromosomes during DNA replication, such

that newly formed sister chromatids are immediately tethered to existing
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chromosomes (Forsburg 2002; Uhlmann 2003). At the end of meiotic prophase,

homologs are linked through DNA attachments as a result of recombination, as

well as cohesin linkages between sister chromatids. For this structure to

specifically release homologs for MI chromosome segregation, cohesions must

be removed along chromosome arms. Cohesins are maintained at centromeres,

as this allows sister chromatids to continue to associate until the metaphase II

to anaphase II transition. At this point, remaining cohesin is removed, allowing

the formation of four balanced gametes (Lee and Amon 2001; Marston and

Amon 2004).

The process by which cohesin is removed at the metaphase to anaphase

transitions is well studied. Satisfaction of the spindle checkpoint, through proper

chromosome attachment to the meiotic spindle causes activation of the

Separase protease through degradation of its partner inhibior, Securin, by the

APC/C (Anaphase promoting complex/Cyclosome). Active Separase cleaves

Rec8, causing removal of cohesin from chromosomes. This process appears to

occur through a largely identical mechanism in Meiosis I and Meiosis II.

Centromeric Rec8, however, is protected from cleavage at the metaphase I to

anaphase I transition by mechanisms that include association of centromeric

Rec8 with the protector protein Shugoshin (Sgol) and preferential

phosphorylation of arm cohesions (Shonn, McCarroll et al. 2000; Uhlmann 2003;

Katis, Matos et al. 2004; Kitajima, Kawashima et al. 2004; Marston, Tham et al.

2004; Rabitsch, Gregan et al. 2004; Brar, Kiburz et al. 2006).
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Though Rec8 has primarily been studied for its cohesin role at both

meiotic metaphase to anaphase transitions, it has been observed that cells

deleted for REC8 show a large defect in exit from prophase, long before cells

initiate the first chromosome segregation phase (Klein, Mahr et al. 1999). This

defect is dependent on the creation of DSBs by Spol l, supporting a possible

role for Rec8 in recombination. It is unclear, however, whether this role is simply

a manifestation of the inability to hold and release sister chromatids (the Rec8

cohesin function) or an alternative function of Rec8. We show that Rec8

performs two independent functions in meiosis. Rec8 is important for proper

assembly of the synaptonemal complex, and thus prophase progression, as well

as its more defined role in holding sister chromatids together from the time they

are replicated until the metaphase to anaphase transitions.

141



Results:

The role of Rec8 in SC formation

Because of its role as a core component of the meiotic cohesin complex, Rec8

plays a vital role in holding chromosomes together to ensure proper meiotic

chromosome segregation. This cohesive role of Rec8 provides tension between

attached homologs in metaphase I and sister chromatids in metaphase II that

counteracts spindle tension and allows proper positioning of chromosomes and

correct segregation at anaphase I and II (Marston and Amon 2004). It is not

surprising, therefore, that rec8A cells show significant meiotic defects and low

spore viability (Klein, Mahr et al. 1999). It is surprising, however, that rec8A cells

are substantially defective in prophase progression, as there is no established

reason that prophase cells should require sister chromatid cohesion. We sought

to determine how Rec8 might be involved in prophase events by examining

various cohesin-related mutants including mutations that prevented formation of

sister chromatids, mutations in cohesin components besides Rec8 and

mutations in factors known to be involved in cohesin function. Based on the

significant conservation of meiotic processes among organisms and the genetic

tractability of budding yeast, we chose to conduct our studies of Rec8 function

in Saccharomyces cerevisiae.

To begin our investigation of the role of Rec8 in prophase, we first

observed the formation of the SC, as assembly of this complex serves as a

major cytological marker for prophase progression (Revenkova and Jessberger
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2006). Following meiotic DNA replication, chromosomes initiate recombination

through DSBs and chromosomes (Zickler and Kleckner 1998; Keeney and Neale

2006) begin to condense. A driving force behind this condensation appears to

be Lateral Elements (LEs, also called Axial Elements or AEs) that assemble along

chromosomes and serve as a scaffold for the progressing meiotic DNA. LEs are

composed of a number of proteins, including Rec8 and the early meiotic protein

Hopl. Mature SC is then formed by the joining of the LEs of homologous

chromosomes through transverse elements (TEs). A major component of TEs is

the coiled coil protein Zip1 (Zickler and Kleckner 1998; Page and Hawley 2004).

We scored meiotic chromosome spreads with samples taken as cells

progressed through meiosis. Mononucleate cells were scored based on the

pattern of Zip1 staining, into four categories: none/PC, minimal, partial, and full

(Figure 1A). In wild-type cells, Zip1 is initially present in an extra-DAPI cluster

called a Polycomplex (PC). Zip1 then associates in foci on chromosomes and

eventually forms visible ribbons as it zips LEs together. Following

recombination, in late prophase, Zip1 ribbons disappear from chromosomes so

that homologs can more efficiently segregate at anaphase I (Figure 1 B, 1C;

(Page and Hawley 2004).

In spo 11A cells, very little SC was ever assembled, even by 8 hours

when 86% of cells had progressed past prophase (Figure 1C, Figure 2A). As

previously observed (Klein, Mahr et al. 1999), we found that Zip1 assembly in

cells deleted for REC8 was nearly as poor as that seen in spol I cells, with a

peak of assembled Zip1 of only 24% compared to 75% in wild-type cells (Figure
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1C). Based on these data, we conclude that either Rec8 or the presence of a

nearby sister chromatid appears to be essential for proper SC assembly.

To determine which of these cases is correct, we examined Zip1

assembly in a strain depleted meiotically for pre-RC component Cdc6 (cdc6-

mn). This strain does not undergo meiotic DNA replication, but otherwise

progresses through meiosis relatively normally (Hochwagen, Tham et al. 2005).

We found that cdc6-mn cells assemble Zip1 in a pattern nearly identical to wild-

type cells (Figure 1 C). These data indicate that the presence of a sister

chromatid is dispensible for proper SC formation. Additionally, cohesin-

functional Rec8 has been thought to depend on DNA replication (Forsburg 2002;

Uhlmann 2003). Our data indicate that Rec8 plays an important role in prophase

progression and that prophase-functional Rec8 is independent of DNA

replication. We wondered if the reason for the differential Zip1 assembly in

rec8A cells and cdc6-mn cells was due to interference of SC assembly by free

sister chromatids present in rec8 delete cells, but not those cells lacking Cdc6.

To address this concern, we looked at cdc6-mn rec8A double mutant cells. We

found that in these cells SC was assembled as poorly as in cells deleted for

REC8 (Figures 1C), indicating that the severe Zip1 assembly defect in rec8A

cells reflects a direct or indirect role for Rec8 protein in SC assembly, rather

than simply a need for properly tethered sister chromatids as the SC is formed.

We next examined Zip1 in a strain deleted for S-phase cyclins, CLB5 and

CLB6. This strain does not undergo meiotic DNA replication or DSB formation
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(Smith, Penkner et al. 2001) and these cells showed poor SC assembly, similar

to that seen in rec8A or spo 11A cells (Figure 1C). These data support the

importance of DSBs for SC formation and also indicate that this role is sister

chromatid-independent.

The data thus far suggested the importance of the cohesin Rec8 in SC

assembly, but not cohesion between sister chromatids. We wished to determine

whether another cohesin could substitute for Rec8 in this role, so we examined

cells in which Rec8's mitotic counterpart, Sccl, is expressed in place of Rec8 in

meiosis (pREC8-SCC1). These cells were unable to assemble Zip1 (Figure 1 D),

despite the ability of Sccl to substitute for Rec8 in its Meiosis I cohesin role (Lee

and Amon 2003). These data support the possibility that the cohesive and

prophase roles of Rec8 are separable. We next examined cells expressing only

an uncleavable version of Rec8 (rec8-N) (Buonomo, Clyne et al. 2000) and found

that these cells were able to assemble Zip1 properly (Figure 1D), indicating that

Rec8 cleavage, though essential for Meiosis I and Meiosis II chromosome

segregation, does not contribute to Rec8's role in promoting prophase events.

Since Rec8's cohesin role and prophase role appeared to have differing

requirements, we wished to determine whether Rec8's contribution to SC

assembly required other cohesin-related proteins. This has been suggested to

be the case, as fellow cohesin complex member Smc3 appears to associate

along with Rec8 in AEs (Klein, Mahr et al. 1999). In support of this model, we

found that cells meiotically-depleted for cohesin complex member Scc3 showed

severe defects in Zip1 assembly (Figure 1E), suggesting that Rec8's prophase
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function, like its later cohesin functions, is in the context of the cohesin complex.

In further support of this model, cells depleted for Ecol, an acetyl-transferase

required to load the cohesin complex onto chromosomes (Ivanov, Schleiffer et

al. 2002), also show a defect in Zip1 assembly (Figure 1E). This defect is less

than that seen in rec8A cells or Smc3-depleted cells, but this could be due to an

incomplete depletion of Ecol, judged by ability of cells to form a stable

metaphase I conformation (data not shown) indicating some level of functional

cohesion. Note that this is not the case in either rec8A cells or cells depleted for

Smc3 (data not shown).
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Figure 1: Rec8 and the cohesin complex is required for Zipi assembly, but
Rec8 cleavage and presence of a sister chromatid is not
(A) Examples of meiotic cells that are harvested with Zip1 staining assayed on
chromosome spreads. Cells carry a Rec8-3HA construct. a-Zipl is shown in
green, a-HA is shown in red, and DNA staining is shown in blue.

(B) Wild-type (A7097) cells were induced to sporulate. At the indicated times,
cells were harvested and chromosome spreads were assayed for Zip1 staining
according to the categores shown in (A). 100 mononucleate cells were counted
per strain per timepoint. Note that this data is also shown in (C).

(C) Wild-type (A7097, closed squares), spo Il1 (A8477, closed triangles), rec8A
A16664, closed circles), pSCC1-CDC6 (A15880, open squares), pSCC1-CDC6
rec8A (A17021, open triangles), and clb5A clb6A (A16113, open circles) were
induced to sporulate. At the indicated times, cells were harvested and
chromosome spreads were assayed for Zip1 staining. Note that cells were
scored as having SC if they showed partial or full SC according to the
categories shown in (A). 100 mononucleate cells were counted per strain per
timepoint. Note that meiotic progression of these strains is presented in Figure
2A.

(D) REC8-3HA (A13946, closed squares), pREC8-SCC1-3HA (A16132, closed
triangles), and REC8-N (A13539, closed circles) were induced to sporulate. At
the indicated times, cells were harvested and chromosome spreads were
assayed for Zipl staining. Note that cells were scored as having SC if they
showed partial or full SC according to the categories shown in (A). 100
mononucleate cells were counted per strain per timepoint. Note that meiotic
progression of these strains is presented in Figure 2B.

(E) Wild-type (A1972, closed squares), pCLB2-SCC3 (A20163, closed triangles),
and pCLB2-ECO1 (A20081, closed circles) were induced to sporulate. At the
indicated times, cells were harvested and chromosome spreads were assayed
for Zipl staining. Note that cells were scored as having SC if they showed
partial or full SC according to the categories shown in (A). 100 mononucleate
cells were counted per strain per timepoint. Note that meiotic progression of
these strains is presented in Figure 2C.
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Figure 2: Meiotic progression of strains in Figure 1
(A) Wild-type (A7097, closed squares), spo I l• (A8477, closed triangles), rec8A
A16664, closed circles), pSCC1-CDC6 (A15880, open squares), pSCC1-CDC6
rec8M (A17021, open triangles), and clb5A clb6.3 (A16113, open circles) were
induced to sporulate. At the indicated times, samples were taken and subjected
to a-tubulin IF to determine the percentage of cells with unassembled spindles.
200 cells were counted per strain per timepoint.

(B) REC8-3HA (A13946, closed squares), pREC8-SCC1-3HA (A16132, closed
triangles), and REC8-N (A13539, closed circles) were induced to sporulate. At
the indicated times, samples were taken and subjected to a-tubulin IF to
determine the percentage of cells with unassembled spindles. 200 cells were
counted per strain per timepoint.

(C) Wild-type (A1972, closed squares), pCLB2-SCC3 (A20163, closed triangles),
and pCLB2-ECO1 (A20081, closed circles) were induced to sporulate. At the
indicated times, samples were taken and subjected to ac-tubulin IF to determine
the percentage of cells with unassembled spindles. 200 cells were counted per
strain per timepoint.
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Our analysis thus far indicated a role for Rec8 in prophase distinct from

its well-defined role as a cohesin in Meiosis I and II. We wished to examine

additional Rec8 mutants to better understand how Rec8 might be contributing

to progression of prophase events. We previously generated a number of Rec8

mutants based on identified phospho-sites. We mutated various combinations

of phosphorylation sites to a non-phosphorylatable residue (Alanine) to examine

the importance of these sites to Rec8 cleavage and noted that 17 phospho-sites

had to be mutated at once for cells to delay Rec8 cleavage and accumulate in

Metaphase I. We also noted that this rec8-17A mutant showed a delay in

prophase exit that was dependent on Spol 1 and that smaller mutants (rec8-6A,

rec8-11A) showed a similar prophase delay, but no metaphase I accumulation.

A rec8-29A mutant showed a severe prophase delay that made it difficult to

assess metaphase I to anaphase I progression(Brar, Kiburz et al. 2006). These

mutants all expressed normal levels of Rec8 and mutant protein associated with

chromosomes normally as judged by immunofluorescence of chromosome

spreads (Brar, Kiburz et al. 2006).

We decided to look more closely at these Rec8 mutants with a focus on

their effects on prophase events. We found that Zip1 assembly was severely

defective in rec8-6A, rec8-17A and rec8-29A cells as judged by the ability of

cells to form partial or full Zip1 ribbons (Figure 3B). When we judged cells only

by ability to assemble full Zip1, we found an even more dramatic defect, with no

full SC observed in any of the three Rec8 phospho-mutants (Figure 3E).
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Figure 3: Rec8 phosphorylation contributes to SC assembly in a Cdc5-
independent manner
(A) Wild-type (A1972, closed squares), rec8A (A3528, closed triangles), rec8-29A
(A14385, closed circles), rec8-17A (A13535, open squares), rec8-6A (A15042,
open triangles), and pCLB2-CDC5 (A5844, open circles) cells were induced to
sporulate. At the indicated times, samples were taken and subjected to a-
tubulin Immunofluorescence (IF) to determine the percentage of cells with
unassembled spindles. 200 cells were counted per strain per timepoint.

(B) Wild-type (A1972, closed squares), rec8L (A3528, closed triangles), rec8-29A
(A14385, closed circles), rec8-17A (A13535, open squares), rec8-6A (A15042,
open triangles), and pCLB2-CDC5 (A5844, open circles) cells were induced to
sporulate. At the indicated times, cells were harvested and chromosome
spreads were assayed for Zipl staining. Note that cells were scored as having
SC if they showed partial or full SC according to the categories shown in Figure
1A. 100 mononucleate cells were counted per strain per timepoint.

(C) Wild-type (A14655, closed squares) and rec8-psa (A15364, closed triangles)
were induced to sporulate. At the indicated times, samples were taken and
subjected to a-tubulin IF to determine the percentage of cells with unassembled
spindles. 200 cells were counted per strain per timepoint.

(D) Wild-type (A14655, closed squares) and rec8-psa (A15364, closed triangles)
were induced to sporulate. At the indicated times, cells were harvested and
chromosome spreads were assayed for Zipl staining. Note that cells were
scored as having SC if they showed partial or full SC according to the
categories shown in Figure 1A. 100 mononucleate cells were counted per strain
per timepoint.

(E) Wild-type (A1972, closed squares), rec8A (A3528, closed triangles), rec8-29A
(A14385, closed circles), rec8-17A (A13535, open squares), rec8-6A (A15042,
open triangles), and pCLB2-CDC5 (A5844, open circles) cells were induced to
sporulate. At the indicated times, cells were harvested and chromosome
spreads were assayed for Zipl staining. Note that cells were scored for full SC
according to the categories shown in Figure 1A. 100 mononucleate cells were
counted per strain per timepoint. Note that this is the same data plotted in (B),
with only full SC charted here.

(F) Wild-type (A14655, closed squares) and rec8-psa (A15364, closed triangles)
were induced to sporulate.At the indicated times, cells were harvested and
chromosome spreads were assayed for Zipl staining. Note that cells were
scored for full SC according to the categories shown in Figure 1A. 100
mononucleate cells were counted per strain per timepoint. Note that this is the
same data plotted in (D), with only full SC charted here.
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We also examined LE formation in rec8-6A and rec8-17A mutants (Figure

4). When Hop1 staining was scored in a manner similar to the Zip1 assay

previously described, we saw no defect in LE assembly in rec8-6A or rec8-17A

cells, in contrast to rec8A cells, which assemble no substantial LEs as Rec8 is

an important structural component of these elements (Figure 4A, 4C). We thus

conclude that Rec8 phosphorylation appears to play a role in SC formation

subsequent to LE assembly.
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Figure 4: Lateral Element assembly is not defective in rec8-6A or rec8-17A
cells, though Transverse Element assembly is defective.
(A) Examples of meiotic cells that are harvested with Hop1 staining assayed on
chromosome spreads. Cells carry a Rec8-3HA construct. a-Hopl is shown in
green, a-HA is shown in red, and DNA staining is shown in blue.

(B) Wild-type (A7097, closed squares), rec8-6A (A15042, closed triangles), rec8-
17A (A13535, closed circles), and rec8A (A16664, open squares) cells were
induced to sporulate. At the indicated times, samples were taken and subjected
to a-tubulin IF to determine the percentage of cells with unassembled spindles.
200 cells were counted per strain per timepoint. Note that these data are from
the same experiment presented in Figure 1, so Wild-type and rec8A controls are
identical to those shown in Figure 1 C.

(C) Wild-type (A7097, closed squares), rec8-6A (A15042, closed triangles), rec8-
17A (A13535, closed circles), and rec8A (A16664, open squares) cells were
induced to sporulate. At the indicated times, cells were harvested and
chromosome spreads were assayed for Hopl staining. Note that cells were
scored as having LEs if they showed partial or full Hopl staining according to
the categories shown in Figure 4A. 100 mononucleate cells were counted per
strain per timepoint. Note that these data are from the same experiment
presented in Figure 1.

(D) Wild-type (A7097, closed squares), rec8-6A (A15042, closed triangles), rec8-
17A (A13535, closed circles), and rec8A (A16664, open squares) cells were
induced to sporulate. At the indicated times, cells were harvested and
chromosome spreads were assayed for Zipl staining. Note that cells were
scored as having SC if they showed partial or full SC according to the
categories shown in Figure 1A. 100 mononucleate cells were counted per strain
per timepoint. Note that these data are from the same experiment presented in
Figure 1.

(E) Wild-type (A7097, closed squares), rec8-6A (A15042, closed triangles), rec8-
17A (A13535, closed circles), and rec8/ (A16664, open squares) cells were
induced to sporulate. At the indicated times, cells were harvested and
chromosome spreads were assayed for Zipl staining. Note that cells were
scored for full SC according to the categories shown in Figure 1A. 100
mononucleate cells were counted per strain per timepoint. Note that this is the
same data plotted in (D), with only full SC charted here. Also note that these
data are from the same experiment presented in Figure 1.
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Rec8 phosphorylation and SC assembly

Through previous work, we showed that Rec8 is phosphorylated by the Polo

kinase Cdc5, as well as other unidentified kinases (Clyne, Katis et al. 2003; Lee

and Amon 2003; Brar, Kiburz et al. 2006). Cdc5 depleted cells have been shown

to exhibit a delay in exit from prophase (Clyne, Katis et al. 2003; Lee and Amon

2003), so we wished to determine whether Cdc5 phosphorylation contributed to

the prophase defect seen in our phospho-mutants. Surprisingly, this was not the

case. When we examined a mutant with all 11 identified Cdc5-dependent sites

on Rec8 mutated to alanine (rec8-psa; (Clyne, Katis et al. 2003; Lee and Amon

2003; Brar, Kiburz et al. 2006), we found no delay in prophase exit (Figure 3C).

We also found that these cells were capable of assembling Zip1 to wild-type

levels and could assemble full SC (Figures 3D, 3F). Strangely, these cells

actually appeared to have a defect in disassembly of the SC that we cannot

explain at this time (Figures 3D, 3F). It was possible that our inability to see

significant SC assembly defects based on Cdc5 phosphorylation of Rec8 was

simply due to sites that we missed in our initial phospho-mapping. To address

this concern, we examined SC formation in cells depleted for Cdc5. These cells

showed a mild delay in exit from prophase, but this did not appear to be due to

a defect in SC assembly, as cells depleted for Cdc5 were able to assemble SC

to normal levels (Figure 3A, 3B). Interestingly, like rec8-psa mutants, cells

depleted for Cdc5 also show persistent SC, indicative of a possible role for

Cdc5 phosphorlyation of Rec8 in SC disassembly. We therefore conclude that
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although Rec8 phosphorylation appears to play a role in assembly of SC, Cdc5-

dependent phosphorylation does not play a major role in this function.

We have attempted to identify the kinase responsible for the prophase

delay in these Rec8 phospho-mutants and have been thus far unsuccessful.

Thus far, we have excluded Cdc5, Cdc28, Ime2, Ipll, Mekl, Cdcl 5, Cdc7, Mecl

and Rad53 through either meiotic depletion or treatment of cells with specific

kinase inhibitors (data not shown), though we cannot exclude combinations of

the above kinases at this time. Indeed, while investigating a role for Rec8 in

prophase, we examined a number of different phospho-site mutants. We were

unable to identify any mutants with individual or fewer than 6 sites mutated

(rec8-6A) that showed a consistent prophase defect (data not shown), thus we

focused our attention on the mutants discussed here.

Given the large number of phospho-sites present on Rec8, it is possible

that multiple kinases act in concert to promote prophase progression. It is also

possible, however, that the prophase defects that we observe in specific Rec8

phospho-mutants are due to structural changes in the protein and not actually

phosphorylation events on the residues mutated. To address this issue, we

generated phospho-mimetic mutants. When all six alanines in the rec8-6A are

instead mutated to glutamates or aspartates (rec8-6E, rec8-6D), we see no Rec8

association on chromosomes (data not shown), indicating that these mutations

result in an unstable protein. The sole phospho-mimetic mutation that we were

able to generate that results in stable protein mutates Serine 521 to Aspartate

(rec8-S521D). Mutant cells with this residue mutated to an alanine (rec8-S521A)
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to render Rec8 non-phosphorylatable show a variable defect in SC formation.

These cells show a consistent defect when compared to wild-type cells, but the

degree of defect is highly variable (data not shown). Phospho-mimetics for this

site show a rescue of the prophase delay in rec8-S521A cells (Figure 5A). rec8-

S521D cells also show a full rescue of the SC assembly defect seen in rec8-

S521A cells (Figure 5B). These data support the role of phosphorylation in SC

assembly, though we believe that the variable defect seen in rec8-S521A cells

supports a model in which normally multiple Rec8 phosphorylation sites,

possibly phosphorylated by multiple kinases, act together responsible for

supporting Rec8's prophase function.
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Figure 5: A phosphomimetic Rec8 mutant can rescue the SC and prophase
defect in a phosphomutant.
(A) Wild-type (A20066, squares), rec8-S521A (A17011, triangles), and rec8-
S521D (A20076, circles) cells were induced to sporulate. At the indicated times,
samples were taken and subjected to a-tubulin IF to determine the percentage
of cells with unassembled spindles. 200 cells were counted per strain per
timepoint.

(B) Wild-type (A20066, squares), rec8-S521A (A17011, triangles), and rec8-
S521D (A20076, circles) cells were induced to sporulate. At the indicated times,
cells were harvested and chromosome spreads were assayed for Zip1 staining.
Note that cells were scored as having SC if they showed partial or full SC
according to the categories shown in Figure 1A. 100 mononucleate cells were
counted per strain per timepoint.
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The role of Rec8 in recombination progression

Proper progression through prophase largely depends on proper completion of

recombination (Hochwagen and Amon 2006). The importance of SC assembly to

prophase progression is still not entirely clear. Certain SC mutants show defects

in progression through prophase, but it has been speculated that the SC exists

to stabilize recombination intermediates, so it has been difficult to functionally

dissect SC assembly from recombination in their roles in prophase progression.

Having determined that Rec8 plays a role in SC assembly, we next sought to

examine whether Rec8 might also play a role in recombination. To this end, we

performed Southern blots designed to follow recombination status of the

HIS4/LEU2 locus (Hunter and Kleckner 2001). As previously described, we

found that cells deleted for REC8 showed normal appearance of DSBs, but a

delay in the appearance of mature recombination products compared to wild-

type cells (Figure 6A, C, E, Figure 7; (Klein, Mahr et al. 1999). The replacement of

REC8 by SCC1 was unable to rescue this recombination defect (Figure 6A, C, E,

Figure 7). As we have previously described, cdc6-mn cells show relatively

normal recombination progression with respect to DSBs and mature

recombination products (Figure 6A, C, E, Figure 7; (Hochwagen, Tham et al.

2005). Although rec8-6A cells show no detectable defect in DSB formation or

mature recombination product formation, rec8-29A cells make DSBs at normal

levels and with normal timing, but show a defect comparable to rec8A in the

appearance of mature recombination products (Figure 6A, C, E, Figure 7).
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Figure 6: rec8-6A cells show a primary defect in SC formation, while rec8-
29A cells have a recombination defect as well
(A) Wild-type (A1556), rec8A (Al 8933), pSCC1-CDC6 (A10912), pREC8-SCC1
(A16132), rec8-29A (A16997), and rec8-6A (A18936) cells were induced to
sporulate. At the indicated times, cells were harvested and assayed by Southern
blot for DSBs and recombination products at HIS4/LEU2. Meiotic progression
for strains in this experiment is presented in Figure 7.

(B) Wild-type (A1972, closed squares), meklA (A20156, closed triangles), rec8-
6A (A15042, closed circles), rec8-6A meklA (A20154, open squares), rec8-29A
(A14385, open triangles), and rec8-29A meklA (A20157, open circles) cells were
induced to sporulate. At the indicated times, samples were taken and subjected
to a-tubulin IF to determine the percentage of cells with unassembled spindles.
200 cells were counted per strain per timepoint. Note that these data are from
the same experiment as (D)

(C) Blots from (A) were subjected to densitometric analysis to quantitate the
intensity of the bands representing DSBs. Values were normalized to the
adjacent lane region for each strain and each timepoint.

(D) Wild-type (A1972, closed squares), pch2A (A21053, closed triangles), rec8-
6A (A15042, closed circles), rec8-6A pch2A (A20151, open squares), rec8-29A
(A14385, open triangles), and rec8-29A pch2_ (A20164, open circles) cells were
induced to sporulate. At the indicated times, samples were taken and subjected
to a-tubulin IF to determine the percentage of cells with unassembled spindles.
200 cells were counted per strain per timepoint. Note that these data are from
the same experiment as (B)

(E) Blots from (A) were subjected to densitometric analysis to quantitate the
intensity of the bands representing the upper recombinant band. Values were
normalized to the "Mom" parental band for each strain and each timepoint.
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Figure 7: Meiotic progression of strains in Figure 6A
Wild-type (A1556), rec8L (A18933), pSCC1-CDC6 (A10912), pREC8-SCC1

(A16132), rec8-29A (A16997), and rec8-6A (A18936) cells were induced to
sporulate. At the indicated times, samples were taken and subjected to a-
tubulin IF to determine the percentage of cells with unassembled spindles. 200
cells were counted per strain per timepoint.

166



A. Figure 7

0

o

(DEQ,c0

"a
E

c)
0

4)'E

4)oC6c(0i

Hours of sporulation



These data represent a qualitative difference between rec8-6A and rec8-

29A cells. It appears that Rec8-6A is capable of supporting normal

recombination, while Rec8-29A is not. Neither protein is capable of supporting

normal SC formation. To probe this relationship further, we looked at these two

mutants in two different recombination checkpoint-defective backgrounds. The

recombination checkpoint is a surveillance pathway at the end of the pachytene

stage of prophase that involves a rather complex and redundant set of proteins.

This checkpoint is dependent on DSB formation by Spol 1 and is thought to

sense the presence of incomplete recombination products or improper SC

(Hochwagen and Amon 2006). Mekl is a key kinase in this checkpoint. When we

deleted MEK1 in rec8-6A and rec8-29A cells, we found a rescue of the

prophase delays in both Rec8 mutants (Figure 6B).

Pch2 is a nucleolar protein, thought to be primarily responsible for

pachytene delays in response to SC defects, but its deletion is unable to rescue

delays due to recombination-based defects (San-Segundo and Roeder 1999;

Hochwagen and Amon 2006; Mitra and Roeder 2007). When PCH2 is deleted in

rec8-6A and rec8-29A cells, there is a rescue of the prophase delay in rec8-6A

cells, but only a partial rescue of the prophase exit delay seen in rec8-29A cells

(Figure 6D). This result is consistent with our observation that rec8-29A mutants

show recombination deficiencies in addition to SC formation defects, while the

prophase delay in rec8-6A cells is primarily due to problems assembling proper

SC. This finding is consistent with the observation that rec8-6A cells show a
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relatively high spore viability of 84%, compared to 68% in rec8-29A cells (Brar,

Kiburz et al. 2006). rec8A cells produce essentially no viable spores, but this is

likely due primarily to the lack of functional cohesion in these mutants resulting

in random chromosome segregation, rather than the relatively smaller role of

Rec8 in recombination progression.

Promotion of SC assembly by an artificially-induced Rec8 pool

Our data strongly suggest a prophase function for Rec8 distinct from its well-

characterized role in chromosome cohesion. Most notably, Rec8's role in

prophase progression is independent of DNA replication, though cohesins are

loaded onto sister chromatids during S phase. We wished to determine if Rec8

could associate with chromosomes and support SC assembly if supplied to

cells following DNA replication. We reasoned that mitotic cohesin can be loaded

onto chromosomes in a DSB-dependent, but replication-independent manner,

so perhaps this was also the case in meiosis (Strom, Lindroos et al. 2004; Unal,

Arbel-Eden et al. 2004). We constructed cells with P-estradiol (PE)-inducible

Rec8 in a spol 1 i background. Such cells were induced to enter meiosis in the

absence of BE and allowed to complete DNA replication. We then induced REC8

expression, initiated DSBs with 20 Krad y-irradiation (ylR), and assayed after

several hours for Zip1 assembly (Figure 8A). When cells were exposed to neither

PE nor ylR, no Zip1 ribbons were seen (Figure 8B, left-hand column). The same

is the case for cells irradiated, but not treated with PE, indicating again that in
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the absence of Rec8, cells do not efficiently assemble SC (Figure 8B, second

colum from the left). When we induced Rec8 in cells in the absence of DSBs, we

were able to observe a low level of Zip1 assembly (Figure 8B, third column from

the left). In contrast, when we exposed cells to both 1E and ylR, 35% of cells

were able to assemble SC (Figure 8B, right-most column). Immunofluorescence

of cells in which 1E was added revealed that, as expected, Rec8 expression was

induced in these cells and associated with chromosomes (Figure 8F). This was

not true of cells in which P3E was not added. Similarly, Rad51 foci, indicative of

DSBs in the process of repair (Whitby 2005), were present in irradiated cells but

not in non-irradiated cells (Figure 8F). We additionally performed this experiment

with an inducible, non-cleavable form of Rec8 (Rec8-N) as the only Rec8 source

and found that this version was also able to support some SC assembly in a

DSB-dependent manner (Figure 8E). These data indicate that functional Rec8

can be post-replicatively "activated" without cleavage.

Our experiments show that post-replicatively induced Rec8 can support

SC assembly in the presence of DSBs, but the quality and levels of SC achieved

were not as high as we had expected if post-replicative Rec8 was fully

functional for Zip1 assembly. We reasoned that it was possible that most cells

were not given wild-type conditions to complete SC assembly. The population

was likely asynchronous at the point at which Rec8 was induced and DSBs

were formed, and some cells may have been past the stage at which they are

able to assemble SC before entering the meiotic divisions. To address this

concern, we performed a similar experiment as described above, but with cells
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deleted for the transcription factor NDT80. Ndt80 is required for progression

from prophase into the meiotic divisions as the most downstream component of

the recombination checkpoint (Hochwagen and Amon 2006). The cells in this

experiment are blocked in late prophase at a stage when SC assembly, once

achieved, should be maintained. Under these conditions, 3E-treated, y-irradiated

cells assemble superior levels and quality of SC compared to non-arrested

conditions. 49% of these cells assemble Zip1 on chromosomes, as opposed to

only 10% in irradiated cells without Rec8 and 7% in non-irradiated cells with

Rec8 induced (Figure 8C). We found that these SC tracts were dependent on

the presence of stable Rec8, as isogenic cells that instead express a 1E-

inducible unstable Rec8 version that is rapidly degraded, achieve SC assembly

at much lower levels than those with wild-type Rec8 induced (Figure 8D). Even

in this case, however, some SC (15%) can be formed, and this level is

dependent again on both Rec8 expression and DSBs (Figure 8D).
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Figure 8: Post-replicative Rec8 is sufficient for SC assembly in the
presence of DSBs
(A) This is a schematic of the experimental scheme used in parts (B) - (E).
rec8::pGAL 1-REC8-3HA spo il GAL4-ER cells are induced to sporulate,
allowed 4.5 hours to complete DNA replication, then treated with 1 M P3-
Estradiol. Cells are allowed to sporulate for 1.5 hours, then y-irradiated with
20KRad to induce DSBs. Cells continue sporulation until 9 hours, when they are
harvested and assayed for a-Zipl and a-HA staining. A sample is also taken at
6.5 hours to assay for DSBs by a-Rad51 staining.

(B) Cells of the genotype described in (A) were induced to sporulate and treated
as described in (A). At 9 hours, cells with the indicated treatments were
harvested and chromosome spreads were assayed for Zip1 staining into the
categories shown in Figure 1A. 100 mononucleate cells were counted per strain
per timepoint.

(C) rec8::pGAL 1-REC8-3HA spo 1 l GAL4-ER ndt80O cells were induced to
sporulate and treated as described in (A). At 9 hours, cells with the indicated
treatments were harvested and chromosome spreads were assayed for Zip1
staining into the categories shown in Figure 1A. 100 mononucleate cells were
counted per strain per timepoint.

(D) rec8::pGAL1-REC8-3HA-degron spol i• GAL4-ER cells were induced to
sporulate and treated as described in (A). At 9 hours, cells with the indicated
treatments were harvested and chromosome spreads were assayed for Zip1
staining into the categories shown in Figure 1A. 100 mononucleate cells were
counted per strain per timepoint.

(E) rec8::pGAL 1-REC8-N-3HA spo 1 il GAL4-ER cells were induced to
sporulate and treated as described in (A). At 9 hours, cells with the indicated
treatments were harvested and chromosome spreads were assayed for Zip1
staining into the categories shown in Figure 1A. 100 mononucleate cells were
counted per strain per timepoint.

(F) These are examples of Rec8 and Rad51 staining in cells treated as described
in (A). At 6.5 hours, cells were harvested and chromosome spreads were stained
for Rec8, Rad51 and DNA. a-HA is shown in green, a-Rad51 is shown in red,
and DNA is shown in blue.
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Discusssion:

Rec8 promotes SC assembly in a manner independent of DNA replication

We have investigated the role that the meiotic cohesin Rec8 plays in prophase.

We have found that Rec8 promotes synaptonemal complex (SC) formation in a

manner that is independent of DNA replication. This is a surprising result, as

DNA replication has been shown to be required for generating cohesive function

of the cohesin complex (Forsburg 2002; Uhlmann 2003). It is also surprising that

a complex structure such as the SC can assemble normally in the absence of

sister chromatids. We and others find that the ability to properly assemble an

SC is dependent specifically on Rec8 (Klein, Mahr et al. 1999), as its mitotic

counterpart Sccl cannot support SC assembly when expressed in meiosis. We

also find that Rec8 promotes SC assembly in a manner that is independent of its

cleavage, as an uncleavable version of Rec8 can fully support SC assembly.

Despite these notable different requirements for Rec8's cohesive and SC

functions, we find that the fellow cohesin complex member, Scc3, is also

needed for SC assembly, suggesting strongly that Rec8 acts as part of the

cohesin complex for both functions identified.

Rec8 phosphorylation contributes to SC assembly

We further investigated the role of Rec8 phosphorylation in prophase Rec8

function. The phospho-mutant allele, rec8-6A shows separate effects on Rec8's
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functions. rec8-6A cells are capable of holding sister chromatids together, as

evidenced by the normal metaphase I in these cells, but the cells are delayed in

exit from prophase and show a correlative defect in Zip1 assembly compared to

wild-type cells. We find that rec8-6A cells do not exhibit a recombination defect,

though it is possible that such a defect exists, but is below the threshold of

detection of our assay. However, the fact that deletion of the "SC checkpoint"

component PCH2 rescues the prophase delay seen in rec8-6A cells, argues that

the defect in prophase progression in these cells may, in fact, be due entirely to

the importance of Rec8 to SC assembly.

Examination of rec8-29A similarly shows an SC assembly defect, but also

a defect in recombination progression similar to that seen in rec8A cells, despite

the previously-demonstrated presence of apparently stable, chromatin-

associated Rec8-29A protein (Brar, Kiburz et al. 2006). These data presents the

possibility that Rec8 and its phosphorylation is directly important for

recombination, SC, and its cohesive function (discussed in Brar 2006). Another

possibility, and the one that we favor, is that Rec8 phosphorylation is primarily

important for SC assembly in prophase, and that sufficiently large defects in SC

structure result in recombination defects. Thus, we suggest that the

recombination defect seen in rec8-29A cells is an indirect consequence of the

importance of SC for proper recombination.

In either case, the Rec8 phosphosite-mutants that we investigated are

defective in SC assembly and prophase progression. We show that this

phosphorylation is not dependent on Cdc5, despite other important roles for
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Cdc5 in prophase. Our attempts to identify the responsible kinase have been

unsuccessful thus far. Given the number of in vivo phosphosites present on

Rec8 and the fact that many site mutants present a prophase progression

defect (data not shown), we suspect that multiple kinases may be involved in

activating Rec8 for its role in prophase progression.

We recognize that it is possible that Rec8's role in SC assembly is simply

extremely sensitive to protein structure and that our Rec8 phosphosite-mutants

show prophase defects simply as a result of altered structure. This concern is

difficult to address, as no structure has been solved for Rec8. We believe that

this is not the case, however, for several reasons. First, we present the rec8-

S521D phospho-mimetic Rec8 mutant that rescues the prophase exit delay

seen in rec8-S521A mutants and also rescues the SC defect in this mutant.

Further, we find that Rec8 protein mutated on 11 Cdc5-dependent sites (rec8-

psa) does not exhibit a prophase progression delay or an inability to assemble

normal SC. These are the sites of phosphorylation that we know to be

dispensible for SC structure, based on the fact that cells depleted for Cdc5 still

support normal Zip1 assembly. It seems unlikely that so many other Rec8 site

mutants show defects, while this rather large mutant does not if SC assembly

depends simply on precise Rec8 structure (data not shown). Finally, the fact that

Zip1 assembly is normal in mutants lacking a sister chromatid suggests that SC

organization is not inherently dependent on precise chromosome structure and

that specific cues, such as phosphorylation, may drive its assembly rather than

gross chromosome conformational status.
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Rec8 as a regulator of meiotic order and directionality

Why would meiotic cells utilize one protein for several disparate functions? We

show that Rec8 is imperative for progression of meiotic cells out of prophase

due to its function in SC assembly. Rec8 has been studied primarily for its

cohesin function. In conjunction with the cohesin complex, Rec8 holds

recombined homologs together at metaphase I until satisfaction of the spindle

checkpoint activates specific cleavage of Rec8 along chromosome arms and

reductional segregation. Centromeric Rec8 is protected from cleavage, through

mechanisms that involve the protein Shugoshin (Sgol) and Rec8

phosphorylation status. Then, at the metaphase II to anaphase II transition,

remaining Rec8 is cleaved and sister chromatids segregate at metaphase II

(Marston and Amon 2004).

Rec8 thus provides three independent functions identified thus far. We

argue that this is an efficient way for cells to ensure directionality. Rec8 is

present as cells replicate to hold together newly formed sister chromatids. Then,

once sisters are attached, Rec8 assists in SC formation and prophase

progression. This link helps ensure that, under normal conditions, only cells that

have replicated can go on to the complicated series of prophase events that

result in linked homologs. The presence of Rec8 allows cells to progress to

meiotic divisions, at which point arm Rec8 is removed to allow the first meiotic

division to occur properly. Rec8 holds sisters together until anaphase II, thus
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assuring proper equational segregation at this division. We are unaware of any

other structural meiotic protein that is involved in regulating so many meiotic

steps. By requiring Rec8 for prophase progression, divisions can only occur in

cells with properly attached chromosomes. Further, the cell seems to use Rec8

for multiple functions through regulation at the level of phosphorylation by

multiple kinases. It appears from our studies that Rec8 phosphorylation

regulates prophase function and the ability to segregate homologs at meiosis I,

while keeping sisters attached until meiosis II. Interestingly, Rec8 has also been

shown to be important for timely completion of S-phase, though this role has

not been well-studied (Cha, Weiner et al. 2000).

REC8 is highly functionally conserved in most meiotic unicellular and

multicellular animals, including humans. In mammalian cells, the vast majority of

Rec8 cohesin complexes are removed from chromosomes in a cleavage-

independent manner prior to the first meiotic division (Sumara, Vorlaufer et al.

2002). It is thought that this eases the burden on Separase, such that meiotic

divisions can occur relatively rapidly once initiated. It is unclear, however, why

cells would waste so much energy to incorporate extra Rec8 onto chromosome

just to remove it shortly afterwards. Mutations in mammalian REC8 have also

been shown to result in prophase defects, indicating likely similar Rec8

prophase function as we observe in budding yeast (Xu, Beasley et al. 2005).

Perhaps the extra Rec8 in prophase that is removed independent of its cleavage

is used to assist in SC assembly and prophase progression. Once cells have

properly assembled SC, this extra population of Rec8 can be removed to allow
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more synchronous metaphase to anaphase transitions during the meiotic

divisions.

Our findings indicate that the prophase function of Rec8 is significantly

more sensitive to perturbation that Rec8's later cohesin roles. For example,

rec8-29A associates with chromosomes in patterns and at levels that are

comparable to wild-type cells, and sister chromatids do not separate

prematurely (data not shown), but these cells are exceedingly slow at

completing prophase. This observation, that cells require greater Rec8

"function" in prophase than during the divisions, is consistent with a speculative

model in which cells could require greater Rec8 levels in mammalian prophase

than for subsequent divisions. Weighing against this hypothesis, however, is our

observation that yeast cells with only a single copy of REC8 progress through

prophase normally (data not shown). An alternative hypothesis is that the large

number of DSBs initiated in prophase requires large amounts of Rec8 to

stabilize nearby DNA structure. This is consistent with the observation that

mitotic cells recruit cohesins to newly formed DSBs, as well as to other sites in

the genome, in response to DSB initiation (Strom, Lindroos et al. 2004; Unal,

Arbel-Eden et al. 2004; Unal, Heidinger-Pauli et al. 2007).

The phenomenon of prophase removal of Rec8 has also been recently

observed in budding yeast, although to a much lesser extent than that seen in

mammalian cells. As mammalian chromosomes are larger than those in yeast,

and undergo much greater compaction during prophase, it is possible that extra
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Rec8 simply helps these cells hold their broken, uncompacted chromosomes

together in early prophase and that this role is unnecessary in yeast.

It is interesting to consider the significance of meiotic prophase in human

female gametogenesis. In humans, oocytes are arrested in prophase for

decades. This correlates with a female-specific increase in aneuploid and

inviable gametes produced with age (Hassold and Hunt 2001; Hunt and Hassold

2002; Hunt and Hassold 2008). It is interesting to consider, then, the importance

of stable chromosome structure and cohesion in arrested oocytes. It is likely

that greater understanding of Rec8, which functions in both prophase

chromosome structure and cohesion, is highly relevant to better understanding

of the timely issue of human fertility.

We have shown that the cohesin Rec8 and its phosphorylation are

important for meiotic prophase progression. Rec8 allows proper assembly of

Zip1 to form transverse elements, completing SC formation. We find that the

role of Rec8 in SC formation is independent of DNA replication and Rec8

cleavage, and that we can generate a pool of Rec8 that is prophase-functional

in a DSB-dependent manner.
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Materials and Methods:

Strains and plasmids: All strains described are of the SK1 background of

Saccharomyces cerevisiae. Deletions have all been performed by one-step gene

replacement as described in (Longtine, McKenzie et al. 1998). Meiotic

depletions are achieved by one-step promoter replacement as described in (Lee

and Amon 2003; Hochwagen, Tham et al. 2005). Rec-N is described in

(Buonomo, Clyne et al. 2000). Unstable Rec8 was constructed using plasmid

AA624, by fusing Rec8 with UBI4 with the first ubiquitin separated by a Proline

to prevent cotranslational cleavage. Estrogen-inducible Rec8 was constructed

as used in (Carlile and Amon 2008). Rec8 phosphomutants are described in

(Brar, Kiburz et al. 2006), except rec8-S521A and rec8-S521D, which were

constructed with site-directed mutagenesis using Stratagene Quikchange kit

and plasmid AA498.

Synchronous meiosis: Cells were grown to saturation in YPD (YEP + 2%

glucose) for 24 hours, diluted into YPA (YEP + 2% KAc) at OD600 = 0.3 and

grown overnight. Cells were then washed with water and resuspended in SPO

medium (0.3% KAc [pH = 7.0]) at OD6oo = 1.9 at 300C to induce sporulation.

Irradiation: Irradiation was performed using 1 minute exposures on a

Gammacell 220E Cesium irradiator to yield 20 Krad.
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Southern blot analysis: Southern blot analysis was conducted as described by

(Hunter and Kleckner 2001). Blots were quantified using ImageQuant software

(Amersham Biosciences).

Meiotic spreads and immunofluorescence: Chromosome spreads and

immunofluorescence were performed as described in (Marston, Lee et al. 2003)

Rad51 was visualized with the (y-180) rabbit IgG (Santa Cruz) at 1:200 dilution.

Zip1 was visualized with a rabbit antibody that was a generous gift of S. Roeder

and F. Klein at 1:200 dilution. Hop1 was visualized with a rabbit antibody that

was a generous gift of S. Roeder at 1:200 dilution. Rec8-HA was visualized with

an HA.11 (16B12) mouse antibody (Covance) at 1:200 dilution.
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Abstract

The defining feature of meiosis is the creation of haploid gametes from a diploid

precursor cell. Achievement of this cellular goal requires a series of events

including segregation of homologs in a reductional division at Meiosis I and the

absence of a second DNA replication phase between Meiosis I and Meiosis II

(Marston and Amon 2004). Reductional segregation is unique to meiosis and

depends on the alignment of homologs in prophase through a poorly-

understood process called pairing. This chapter aims to increase understanding

of pairing mechanism through the examination of its relationship to other meiotic

processes and basic observation of chromosome pairing in live cells. Early

pairing stages depend on ATP and actin filaments, but not the cytological

structure known as the bouquet. Pairing is influenced by SC components

including Hop1, Zip1 and the meiotic cohesin Rec8, but does not depend on

DNA replication or the presence of a sister chromatid. Pairing depends heavily

on the presence of DSBs, though requires only a fraction of the normal number

of DSBs generated in early prophase. These studies help clarify the principles

behind meiotic pairing and provide a framework for delving into the details of

pairing mechanism.

188



Introduction

The importance of pairing to meiotic segregation

The meiotic cell cycle is a specialized set of nuclear divisions in which one DNA

replication phase is followed by two chromosome segregation phases. The

second meiotic division is similar to mitosis in that sister chromatids are

segregated apart. In contrast, during the first meiotic division homologous

chromosomes (homologs) segregate away from each other. This unique feature

of the meiotic cell cycle is conserved among eukaryotes and requires several

specializations including the pairing of homologous chromosomes in preparation

for recombination. Chiasmata, the physical manifestations of crossover

recombination, along with distal sister chromatid cohesion, provide the tension

necessary to align homologs at the metaphase I spindle and allow their

segregation to opposite poles at anaphase I. The proper completion of meiosis I

is necessary for balanced gamete formation (Lee and Amon 2001; Marston and

Amon 2004).

Pairing refers to the alignment of homologous chromosomes (Roeder

1995; Yamamoto and Hiraoka 2001; McKee 2004). This phenomenon is distinct

from the phenomenon of synapsis, which generally follows meiotic homologous

pairing and describes the zipping together of chromosomes by a tripartite

proteinaceous structure called the synaptonemal complex (SC). Although

synapsis is generally homologous, it is not restricted to homologs, and in certain

mutant backgrounds may be entirely non-homologous (Zickler and Kleckner
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1998). Both pairing and synapsis occur during the meiotic cell cycle, but pairing

is by definition homologous and thus plays a more essential role in proper

meiosis I homolog segregation.

Early meiotic events

Budding yeast cells can be induced to enter the meiotic cell cycle from

vegetative G1 phase by exposure to low nitrogen and carbon levels (Marston

and Amon 2004). A number of factors including S-phase cyclins Clb5 and Clb6,

along with the pre-Replicative Complex (pre-RC), act to initiate pre-meiotic DNA

replication (Forsburg 2002). Replication is followed shortly by the initiation of

early meiotic prophase events including homolog pairing and DNA double-

strand break (DSB) formation. DSBs are catalyzed by the topoisomerase Spol l

as the first step of homologous recombination (Keeney and Neale 2006).

Recombination and SC formation follow shortly and are generally complete by

the end of the pachytene stage of mid-prophase. At this point, a recombination

checkpoint, mediated through the transcription factor Ndt80, monitors the

presence of recombination intermediates. If none are present, Ndt80 is free to

activate transcription of genes required for progression into the meiotic divisions

(Hochwagen and Amon 2006).

Normal pairing behavior and introduction of a standard pairing assay

Homologous chromosomes begin the meiotic cell cycle at an intermediate level

of pairing that is thought to be based on the arrangement of chromosomes in
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the somatic nucleus. Pairing then decreases during meiotic DNA replication, is

regained shortly afterwards in the leptotene stage of prophase (see Chapter 1,

Figure 3 for a summary of prophase stages) and peaks at pachytene (Weiner

and Kleckner 1994; McKee 2004). The process of homolog pairing is not well-

understood, largely due to technical constraints of experimental approaches

available until recently.

To study pairing, I am using an in vivo GFP-tagging system in the

budding yeast S. cerevisiae (Figure 1). In this assay, a Tet operator (TetO) array

with approximately 250 TetO repeats is inserted at homologous sites in a diploid

cell. In this same cell, a Tet repressor (TetR)-green fluorescent protein (GFP)

fusion is expressed. In vivo, the TetR-GFP fusion protein binds the TetO arrays

and the two tagged sites are visible by microscopy as green dots (Straight,

Belmont et al. 1996; Michaelis, Ciosk et al. 1997). If the tagged chromosomes

are closely juxtaposed, only one dot will be discernable due to the proximity of

the two GFP signals. In contrast, if the homologs are not closely juxtaposed, two

distinct GFP dots will be distinguishable. By assessing the ratio of one versus

two dots visible at a particular time, one can determine the level of pairing at

that time point.

As a control for non-specific clustering of arrays, a strain with TetO arrays

at non-homologous chromosomal sites is also used in these experiments. The

traditional pairing assay involves cell lysis and surface spreading of nuclei

followed by fluorescence in situ hybridization (FISH) (Weiner and Kleckner 1994).

While FISH allows easy examination of a number of different chromosomal sites,
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spreads can disrupt loose chromosomal associations. Additionally, unlike the

GFP dot system, FISH does not allow for real-time evaluation of pairing

dynamics. For these reasons, the GFP dot assay may be a better system by

which to analyze pairing. This assay has caveats as well, however, including its

dependence on the resolution of light microscopy and some inherent instability

of the tandem TetO arrays.

The locations of the GFP dots used in this chapter are shown in Figure 2.

I have utilized strains with Tet Operator arrays at five different homologous sites,

including: the LEU2 locus (22 Kb from the centromere of Chromosome 3, or

CEN3), the LYS2 locus (232 KB from CEN2), the URA3 locus (36 Kb from CEN5),

CEN5, and 30 Kb from the telomere of Chromosome 5, or TEL5. This set of

strains allows for the comparison and contrast between different types of

chromosomal loci to better understand the rules that underly homolog pairing.

When not specifically discussed, experiments are performed with LYS2-

integrated Tet Operator arrays mid-arm on Chromosome 2, as this is likely the

site most representative of the genome as the whole.

Using these strains, I have determined that DSBs are essential for proper

pairing, that Synaptonemal Complex and cohesin components contribute to

proper pairing, and that actin filaments promote pairing. I have found that DNA

replication and telomere clustering are not important for proper pairing to occur.

I have also found some variations in pairing behavior based on chromosomal

location, although most chromosomal sites appear to pair with similar dynamics

and dependencies.
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Figure 1: An assay to monitor pairing in live cells

This figure represents the pairing assay used in this chapter. Homologous
chromosomal loci are tagged with tandem Tet Operator (TetO) sequences.
These cells also carry a fusion of Green Fluorescent Protein (GFP) and the Tet
Repressor (TetR). These constructs result in a green dot visible under
fluorescent microscopy at the site of TetO insertion. When homologous
chromosomes are paired, GFP dots are too close to distinguish by light
microscopy and appear as a single GFP dot. When homologs are unpaired, two
GFP dots are visible by fluorescent microscopy. The standard pairing assay
utilized here requires scoring 100 cells per strain per timepoint for the presence
of one versus two GFP dots. Examples of cells with one versus two GFP dots
are shown at the right of the figure. Only one pair of homologs (represented by
black lines within the cell) is shown here for simplicity. GFP dots are represented
by a green square on the black line. Frequently strains described in this chapter
are deleted for NDT80, the transcription factor responsible for progression out of
prophase. This deletion arrests cells at the pachytene stage of prophase, at the
point of maximal pairing to increase synchrony and ease comparison of various
strains.
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Figure 2: Loci assayed for pairing in this study
This figure is a schematic of the yeast genome, with the five loci assayed for
pairing in these studies denoted by green stars. The 16 yeast chromosomes are
represented by horizontal blue lines with circles marking their centromeres.
Chromosome 1 appears at the top of the figure, and the others are in numerical
order, with 16 at the bottom of the figure. For these studies, tandem TetO arrays
are inserted at the following sites:

-LYS2, mid-arm on chromosome 2
-LEU2, 22 Kb from the centromere of chromosome 3
-URA3, 36 Kb from the centromere of chromosome 5
-CEN5, adjacent to the centromere of chromosome 5
-TEL5, adjacent to the telomere of chromosome 5
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Results

Pairing at various chromosomal loci

Early meiotic cells display some residual somatic pairing which decreases

coincident with DNA replication. By population analysis, pairing increases as

cells progress through prophase, reaching a maximum as cells reach the

pachytene stage in late prophase. As meiosis displays inherent asynchrony by

population analysis, however, it can be difficult to compare pairing dynamics

between experiments and different mutant backgrounds. To more accurately

determine the ability of a given population of cells to pair, I thus examined

pairing at five loci using the strains deleted for NDT80 to arrest cells in

pachytene, the stage of maximal homolog pairing. These data are shown in

Figure 3. The pattern is essentially as described above at each locus, with

chromosomes showing a high level of somatic clustering, then dispersal and

reassociation specifically of homologous sites as cells progress into prophase.

Non-homologous GFP dot controls show somatic clustering as cells enter

meiosis, but progressive disassociation of GFP dots as cells meiose. Figure 3A

compares strains with various centromere proximal GFP dots. The timing of

pairing appears roughly similar in the three strains, but the LEU2 locus

undergoes significantly less dispersal of homologous sites early in meiosis. It is

not clear why this is the case. It is interesting to note, however, that the LEU2

locus is the site of one of the most active DSB hotspots in the S. cerevisiae

genome (Storlazzi, Xu et al. 1995; Blitzblau, Bell et al. 2007). It is possible that
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this distinction somehow alters the pairing dynamics at this site. Figure 3B

shows three different loci on Chromosome 5. Again, all three sites show similar

patterns of pairing, indicating no gross pairing difference between centromeres,

telomeres and centromere-proximal arm loci. This is, however, a population

assay, so it is possible that one site consistently pairs before another, but that

chromosomal "zipping" occurs too quickly to distinguish with this experiment

setup.
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Figure 3: Pairing progression at various chromosomal loci

(A) Wild-type cells deleted for NDT80 were induced to sporulate. The three blue
lines represent tandem TetO arrays inserted at three different loci, URA3 (dark
blue circles), TEL5 (bright blue circles) and CEN5 (light blue circles). Note that all
three strains are marked on chromosome 5. At the indicated times, samples
were taken and assayed for pairing. 100 cells were counted per strain per
timepoint. Non-homologous array strains are shown by open circles as a control
for array clustering.

(B) Wild-type cells deleted for NDT80 were induced to sporulate. The three blue
lines represent tandem TetO arrays inserted at three different loci, URA3 (dark
blue circles), LEU2 (darkest blue circles) and CEN5 (light blue circles). Note that
all three strains are marked at centromere-proximal sites. At the indicated times,
samples were taken and assayed for pairing. 100 cells were counted per strain
per timepoint. Non-homologous array strains are shown by open circles as a
control for array clustering. Note that (A) and (B) are data from the same
experiment.
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Figure 3
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The role of ATP in pairing

To begin to dissect the pairing mechanism, I wished to determine which basic

cellular and meiotic processes might contribute to homolog pairing. I first

examined the effects of ATP and cytoskeletal elements on pairing using the

standard live-cell GFP dot assay discussed above. To deplete cellular ATP

stores, I treated LYS2 GFP dot-marked cells with two concentrations of the

oxidative phosphorylation decoupler dinitrophenol (DNP) (Figure 4A). Untreated

cells show the standard pattern of homologous pairing, while treatment of cells

with 100M DNP at 1 hour in sporulation medium led to a delay of 1 hour in

pairing. Treatment at 1 hour in sporulation medium with 1mM DNP caused an

even greater delay in chromosome pairing. Treatment with 1mM DNP at 4.5

hours in sporulation medium, however, led to little defect in pairing, indicating

that initial pairing stages are more sensitive to cellular ATP status.

The role of actin filaments in pairing

It is not clear why ATP might be important for normal pairing, though it seems

reasonable that cytoskeletal dynamics could be needed for the dramatic

chromosome movements required to sort chromosomes into bivalent pairs. This

movement is most dramatic in Schizosaccharomyces Pombe, where the

prophase nucleus displays "horsetail" movement, with chromosomes anchored

together at their telomeres and swept repeatedly across the nuclear length

(Chikashige, Tsutsumi et al. 2006). This movement is dependent on cytoskeletal

201



components and has been shown to promote homolog pairing in fission yeast.

Similarly, in budding yeast, microtubules have been shown to be important for

pairing as treatment with the microtubule-destabilizing drug benomyl results in a

defect in meiotic pairing. Benomyl treatment also caused gross changes in gene

expression in meiotic cells, however, making it difficult to determine how directly

microtubules are involved in pairing mechanism (Hochwagen, Wrobel et al.

2005). I wished to determine whether actin might contribute to pairing. Towards

this end, I treated cells with the inhibitor of actin polymerization, Latrunculin A

(Figure 4B, 4C). Pairing in ndt8OA cells marked with GFP dots at the LYS2 locus

shows a significant dependence on actin filaments, with cells treated at 1 hour

in sporulation medium with 200tM Latrunculin A show an inability to achieve

wild-type levels of pairing seen in vehicle-treated control cells, even by 10 hours

in sporulation medium (Figure 4B). Interestingly, actin filament formation

appears to be important for early stages of pairing only, as cells treated with

Latrunculin A at 4 hours, at a point where most cells are generally in mid-

prophase, show no defect in pairing. Additionally, cells treated with Latrunculin

A at 8 hours are able to maintain pairing normally, indicating that actin filaments

are not required for pairing maintenance. The effects of Latrunculin A were also

examined at the centromere-proximal LEU2 locus with similar results (Figure

4C). Again, cells treated with 200tM Latrunculin A at 1 hour show a severe

pairing defect, while cells treated at 4 or 8 hours do not show any significant

defect in homolog pairing.
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Figure 4: ATP and actin filaments promote pairing
(A) Wild-type cells deleted for NDT80 and marked with homologous tandem
TetO arrays at LYS2 were induced to sporulate. Cells were treated, as described
in the legend, with either vehicle control at 1 hour into (black circles), 100ýM
dinitrophenol (DNP) at 1 hour (dark gray circles), 1mM DNP at 1 hour (light gray
circles), or imM DNP at 4.5 hours (green circles). At the indicated times,
samples were taken and assayed for pairing. 100 cells were counted per
treatment per timepoint.

(B) Wild-type cells deleted for NDT80 and marked with homologous tandem
TetO arrays at LYS2 were induced to sporulate. Cells were treated, as described
in the legend, with either vehicle control at 1 hour (black circles), 200pM
latrunculin A (latA) at 1 hour (gray circles), 200iM latA at 4 hours (pink circles) or
200tM latA at 8 hours (red circles). At the indicated times, samples were taken
and assayed for pairing. 100 cells were counted per treatment per timepoint.

(C) Wild-type cells deleted for NDT80 and marked with homologous tandem
TetO arrays at LEU2 were induced to sporulate. Cells were treated, as described
in the legend, with either vehicle control at 1 hour (black circles), 200iM
latrunculin A (latA) at 1 hour (gray circles), 200tM latA at 4 hours (pink circles) or
200ýM latA at 8 hours (red circles). At the indicated times, samples were taken
and assayed for pairing. 100 cells were counted per treatment per timepoint.
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Live analysis of pairing dynamics

The apparent roles of ATP, actin and microtubules in pairing suggest the

possibility of pairing regulation at the level of chromosome movement.

Therefore, I have undertaken some preliminary work on the dynamics of pairing

using live cell time-lapse microscopy. I have determined that a given pair of

homologous chromosomal loci show rapid and indirect motion with respect to

each other during the process of pairing. Successful "locking in" of a pairing

interaction is generally preceded by several transient interactions between the

sites over a period of 1-2 hours. In agreement with population timecourse

assays, no apparent difference in gross pairing movement patterns has been

seen between arm, telomere, or centromeric loci. An example of some frames

from these movies is shown in Figure 5. Live cell time-lapse microscopy will

likely be a powerful tool to dissect pairing movement, but these studies will need

to be expanded and combined with mathematical analysis.
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Figure 5: Homologous loci exhibit dynamic behavior in the process of pairing.
Homologous chromosomes are marked by Tet Operator array inserted at both
LYS2 loci. Cells are imaged by fluorescent time-lapse photography. Distances
between GFP dots were determined using Openlab software and are charted
above still images from a sample time-lapse movie.
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Pairing and the bouquet

In somatic cells and early meiotic cells, chromosomes are tethered to the

nuclear envelope through their telomeres. These telomeres are clustered

together to form a mop-like structure called a "bouquet". The bouquet is a

feature of early meiotic cells in many diverse organisms, though its function is

not clear (Zickler and Kleckner 1998; Trelles-Sticken, Loidl et al. 1999; Jin,

Fuchs et al. 2000). It has been suggested that the bouquet contributes to pairing

by setting up a primary level of chromosome organization such that homology

searches can occur in two dimensions rather than the three dimensions required

for completely randomly positioned chromosomes. I examined the possibility

that bouquet formation contributes to homolog pairing by examining

homologous LYS2 GFP dot association in strains deleted for NDJ1 (Non-

disjunction factor 1), a factor shown to be necessary for telomere clustering at

the bouquet stage (Rockmill and Roeder 1998; Trelles-Sticken, Dresser et al.

2000). ndjlA LYS2 GFP dot cells show only a mild delay in homolg pairing when

compared to wild-type cells. ndjlA cells with GFP dots at URA3 (Figure 6B)

show a larger pairing defect than those with LYS2 GFP dots (Figure 6A), but

chromosomes are still capable of pairing even in the absence of NDJ1,

indicating that bouquet formation is not necessary for homolog pairing to occur.
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Figure 6: Telomere clustering through bouquet formation does not
significantly contribute to pairing
(A) Wild-type (solid blue squares) or ndjlA (solid red squares) cells carrying
homologous tandem TetO arrays at LYS2 were induced to sporulate. At the
indicated times, samples were taken and assayed for pairing. 100 cells were
counted per strain per timepoint. Non-homologous array strains are shown by
open squares as a control for array clustering.

(B) Wild-type (solid blue squares) or ndjlL (solid orange squares) cells carrying
homologous tandem TetO arrays at URA3 were induced to sporulate. At the
indicated times, samples were taken and assayed for pairing. 100 cells were
counted per strain per timepoint. Non-homologous array strains are shown by
open squares as a control for array clustering.
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The influence of DSBs on pairing

One process that has been implicated in chromosome pairing is DSB formation,

the first step of recombination (Keeney and Neale 2006). It has been suggested

that the single-stranded DNA that results from resection of DSBs reiteratively

invades dsDNA in a search for homology and that this process is important for

pairing (McKee 2004). To assess the importance of DSB formation in pairing, I

utilized strains deleted for SP01 1. Spoll catalyzes DSBs through a

topoisomerase-like mechanism requiring Tyrosine 135 (Diaz, Alcid et al. 2002).

To determine the importance of Spol 1 protein and its catalytic ativity to pairing,

I examined GFP dot association in spo1 1A cells as well as spol -Y135F cells, in

which Spol 1's catalytic Tyrosine is mutated to Phenylalanine, thus rendering it

catalytically dead (Figure 7A).

Both spo 11A and spol 1-Y135F mutants show severe and equivalent

pairing defects at the LYS2 locus as well as the URA3 locus in ndt80A cells,

indicating that DSBs are essential to proper homolog pairing. Homologous GFP

dot association at late timepoints in spo 11 mutants was not as low as non-

homologous GFP dot association, however, suggesting that some basal level of

pairing may be independent of DSBs. When spo 114i cells were also deleted for

NDJ1, they showed no significant further decrease in pairing, although as spo 11

cells are already so severly pairing defective, the assay may not be sensitive

enough to detect further defect (Figure 8).
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As DSBs appeared to be essential for proper pairing, I wished to further

probe the relationship between these two processes. For this purpose, I utilized

a series of spoil alleles generated by Scott Keeney's lab that are defective in

DSB formation (Henderson and Keeney 2004). When examining pairing at the

LYS2 locus in ndt80A cells, I observed a binary effect on pairing with the series

of spo 11 hypomorphs (Figure 7B). In spoil cells with approximately 20% or

more of the normal level of DSBs, as measured by Southern blot at the LEU2

locus (Henderson and Keeney 2004), pairing appeared to occur at wild-type

levels (Figure 7B). In spol 1 cells with around 20% or fewer of the normal level of

DSBs, pairing was severely defective. This effect was less bimodal at LEU2, with

the same general trend as observed at the LYS2 locus (Figure 7C). Cells appear

to require approximately 40-50 DSBs (20% the normal 200-300 initiated per

meiosis (Hochwagen and Amon 2006)) to support normal pairing. Fewer DSBs

result in little or no pairing.

Given the significant importance of DSBs to pairing, I wished to

determine whether later recombination mutants showed similar defects.

Examination of cells deleted for meiotic strand invasion factor DMC1 revealed a

severe defect in homolog pairing in ndt80A cells with LEU2 GFP dots (Figure 9A)

and LYS2 GFP dots (Figure 9B), indicating a general importance for strand

invasion in the homology search.

211



Figure 7: DSB formation is required for pairing, but a fraction of wild-type
DSBs are sufficient for pairing
(A) All strains shown are deleted for NDT80. Wild-type cells with homologous
tandem TetO arrays at LYS2 (solid dark blue circles), wild-type cells with
homologous tandem TetO arrays at URA3 (solid light blue circles), spo 11id cells
with homologous tandem TetO arrays at LYS2 (solid light green circles), spo 1iA
cells with homologous tandem TetO arrays at URA3 (solid yellow circles),
spo 11-Y135F cells with homologous tandem TetO arrays at LYS2 (solid dark
green circles), spo 11-Y135F cells with homologous tandem TetO arrays at URA3
(solid orange circles), and wild-type cells with non-homologous tandem TetO
arrays were induced to sporulate. At the indicated times, samples were taken
and assayed for pairing. 200 cells were counted per strain per timepoint.

(B) All strains shown are deleted for NDT80. Wild-type cells with homologous
tandem TetO arrays at LYS2 (solid blue circles) and various spo 11 hypomorphic
alleles (red, orange and yellow circles) were induced to sporulate. At the
indicated times, samples were taken and assayed for pairing. 100 cells were
counted per strain per timepoint. Note that each spo 11 allele is described in the
figure key, with the percentage of wild-type DSBs noted in bold. Red lines
represent strains that make the most DSBs, while yellow represent strains that
make the least.

(C) All strains shown are deleted for NDT80. Wild-type cells with homologous
tandem TetO arrays at LEU2 (solid blue squares) and various spo 1t
hypomorphic alleles (red, orange and yellow squares) were induced to sporulate.
At the indicated times, samples were taken and assayed for pairing. 100 cells
were counted per strain per timepoint. Note that each spo 11 allele is described
in the figure key, with the percentage of wild-type DSBs noted in bold. Red lines
represent strains that make the most DSBs, while yellow represent strains that
make the least.
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Figure 7
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Figure 8: DSB and bouquet double mutants do not pair
All strains shown are deleted for NDT80 and carry homologous tandem TetO
arrays at URA3. Wild-type (solid black circles), ndjli (solid red circles), spo 1i 1
(solid blue circles) and ndjlA spol l. (solid purple circles) were induced to
sporulate. At the indicated times, samples were taken and assayed for pairing.
100 cells were counted per strain per timepoint. Wild-type cells with non-
homologous tandem TetO arrays were induced to sporulate in parallel and are
shown as open black circles.
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Figure 8
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Figure 9: Dmcl is required for proper pairing
(A) All strains shown are deleted for NDT80. Wild-type cells carrying
homologous tandem TetO arrays at LEU2 (solid black circles), dmcl, cells
carrying homologous tandem TetO arrays at LEU2 (green circles) and wild-type
cells carrying non-homologous tandem TetO arrays (open black circles) were
induced to sporulate. At the indicated times, samples were taken and assayed
for pairing. 100 cells were counted per strain per timepoint.

(B) All strains shown are deleted for NDT80. Wild-type cells carrying
homologous tandem TetO arrays at LYS2 (solid black squares), dmcl, rad5l1
cells carrying homologous tandem TetO arrays at LYS2 (yellow squares) and
wild-type cells carrying non-homologous tandem TetO arrays (open black
squares) were induced to sporulate. At the indicated times, samples were taken
and assayed for pairing. 100 cells were counted per strain per timepoint. Note
that Rad51 and Dmcl are partially redundant in their strand invasion role.
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Synaptonemal complex components and pairing

The SC assembles concomitant with recombination progression and is thought

to be important to stabilize homolog interactions. Early SC is composed of

lateral elements (LEs), consisting of components including Rec8 and Hopl. LEs

are then linked by transverse elements (TEs) through the coiled-coil protein Zip1

(Zickler and Kleckner 1998); (Page and Hawley 2004). We found Hop1 to be

essential for proper pairing at the LYS2 locus in ndt80A cells, while Zip1 is

unnecessary for pairing at this locus (Figure 10A). Zip1, however, is needed for

full pairing at the LEU2 locus (Figure 10B). Why is this the case? In addition to its

role in TE formation, Zip1 is part of the synaptonemal initiation complex (SIC)

that has been shown to mediate non-homologous centromere coupling

interactions in early prophase (Tsubouchi and Roeder 2005). As LEU2 is a

centromere-proximal locus, while LYS2 is centromere distal, it is possible that

this centromere coupling specifically contributes to homologous pairing at

centromeres. It will be important to examine the roles of other SIC and SC

components in pairing to clarify this issue.
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Figure 10: SC components contribute to pairing
(A) All strains shown are deleted for NDT80 and carry homologous tandem TetO
arrays at LYS2. Wild-type (solid black circles), zip 1A (solid dark gray circles) and
hoplA (solid light gray circles) were induced to sporulate. At the indicated times,
samples were taken and assayed for pairing. 100 cells were counted per strain
per timepoint. Wild-type cells with non-homologous tandem TetO arrays were
induced to sporulate in parallel and are shown as open black circles.

(B) All strains shown are deleted for NDT80 and carry homologous tandem TetO
arrays at LEU2. Wild-type (solid black squares) and zip 1A (solid gray squares)
were induced to sporulate. At the indicated times, samples were taken and
assayed for pairing. 100 cells were counted per strain per timepoint. Wild-type
cells with non-homologous tandem TetO arrays were induced to sporulate in
parallel and are shown as open black squares
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DNA replication and pairing

In addition to recombination, and SC formation, another major early meiotic

process is DNA replication. Meiotic DNA replication appears to utilize similar

replication factors and origins of replication to mitotic DNA replication, but

requires twice as much time to complete (Forsburg 2002). It has been suggested

that this additional time is used to set up prophase events, including DSB

formation.

I examined pairing ability of ndt80A cells carrying a meiosis-specific

depletion of the pre-RC component, Cdc6, by placement of CDC6 under the

mitosis-specific promoter for sister chromatid cohesion component,

SCC1/MCD1. This construct allows the strain to be maintained as mitotic

replication is unaffected, but Cdc6 is not expressed in meiotic S-phase, leading

to a block specifically in meiotic DNA replication (Hochwagen, Tham et al. 2005).

I found these pSCC1-CDC6 cells to have no obvious defect in pairing at either

LYS2 or URA3 despite undergoing no DNA replication (Figure 11). Surprisingly,

when I examined pairing in another replication-defective mutant, an ndt80A

strain also deleted for S-phase cyclins CLB5 and CLB6, I found cells also failed

to replicate, but showed a severe pairing defect at LYS2 and LEU2 (Figure 12).

Similarly, an ndt80A strain carrying an allele coding for a chemically-repressible

Cdc28 (Benjamin, Zhang et al. 2003), the primary S. cerevisiae CDK, shows a

defect in pairing at LYS2 that is dose-dependent with CDK inhibitor (Figurel3A).
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The defect in this strain, however, is mild compared to that seen in clb5Aclb6A

cells, likely due to incomplete inhibition of Cdc28. These experiments will need

to be expanded to clarify this discrepancy.

Why do clb5Aclb6A cells show a severe pairing defect, whereas pSCC1-

CDC6 cells pair normally? Neither strain undergoes DNA replication, so the

pSCC1-CDC6 result suggests that both the process of DNA replication and the

presence of a sister chromatid are dispensible for pairing. Recent work,

however, suggests that Clb5-CDKs are responsible for phosphorylating Mer2

(Meiotic Recombination factor 2), a protein required for DSB formation, on

Serine 30 (Henderson, Kee et al. 2006). mer2-S30A cells, in which this Serine is

mutated to a non-phosphorylatable residue (Alanine), show a dramatic defect in

pairing (Figure 13B), indicating that it is Clb5 and CIb6's roles in DSB formation,

rather than their more established roles in DNA replication, that contribute to

proper pairing. As expected based on this hypothesis,

clb5Aclb6Andt80Aspo 11A cells and clb5Aclb6Andt8OAspo 11-Y135F cells show

no additional pairing defect at LYS2, compared to clb5Aclb6Andt80A cells

(Figure 14A). The severe pairing defect in clb5Aclb6A or spol, cells alone,

however, could make an additive defect difficult to detect. We also find that

pSCC1-CDC6 spol 1i cells and pSCC1-CDC6 spol 1-Y135F cells mimic the

pairing defect seen in clb5Aclb6A strains at LYS2 (Figure 14B), supporting the

hypothesis that DSB formation, but not DNA replication or the presence of a

sister chromatid, is essential for meiotic pairing.
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Figure 11: Strains depleted for Cdc6 do not replicate, but are pairing
competent
(A) Wild-type (solid blue diamonds) or pSCC1-CDC6 (solid green diamonds)
cells carrying homologous tandem TetO arrays at LYS2 were induced to
sporulate. At the indicated times, samples were taken and assayed for pairing.
100 cells were counted per strain per timepoint. Non-homologous array strains
are shown by open diamonds as a control for array clustering.

(B) Wild-type cells were induced to sporulate. At the indicated times, samples
were taken and assayed for DNA content by flow cytometry. The x-axis
represents DNA content, y-axis represents number of cells and z-axis
represents hours of sporulation. These samples are from the same experiment
as (A).

(C) pSCC1-CDC6 cells were induced to sporulate. At the indicated times,
samples were taken and assayed for DNA content by flow cytometry. The x-axis
represents DNA content, y-axis represents number of cells and z-axis
represents hours of sporulation. These samples are from the same experiment
as (A).

(D) All strains shown are deleted for NDT80. Wild-type (solid blue circles) or
pSCC1-CDC6 (solid green circles) cells carrying homologous tandem TetO
arrays at URA3 were induced to sporulate. At the indicated times, samples were
taken and assayed for pairing. 100 cells were counted per strain per timepoint.
Non-homologous array strains are shown by open circles as a control for array
clustering.

(E) Wild-type cells were induced to sporulate. At the indicated times, samples
were taken and assayed for DNA content by flow cytometry. The x-axis
represents DNA content, y-axis represents number of cells and z-axis
represents hours of sporulation. These samples are from the same experiment
as (D).

(F) pSCC1-CDC6 cells were induced to sporulate. At the indicated times,
samples were taken and assayed for DNA content by flow cytometry. The x-axis
represents DNA content, y-axis represents number of cells and z-axis
represents hours of sporulation. These samples are from the same experiment
as (D).
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Figure 12: Strains deleted for CLB5 and CLB6 do not replicate and do not
pair
(A) All strains shown are deleted for NDT80. Wild-type (solid blue squares) or
clb5Aclb6A (solid green squares) cells carrying homologous tandem TetO arrays
at LYS2 were induced to sporulate. At the indicated times, samples were taken
and assayed for pairing. 100 cells were counted per strain per timepoint. Non-
homologous array strains are shown by open squares as a control for array
clustering.

(B) Wild-type cells were induced to sporulate. At the indicated times, samples
were taken and assayed for DNA content by flow cytometry. The x-axis
represents DNA content, y-axis represents number of cells and z-axis
represents hours of sporulation. These samples are from the same experiment
as (A).

(C) clb5Aclb6A cells were induced to sporulate. At the indicated times, samples
were taken and assayed for DNA content by flow cytometry. The x-axis
represents DNA content, y-axis represents number of cells and z-axis
represents hours of sporulation. These samples are from the same experiment
as (A).

(D) All strains shown are deleted for NDT80. Wild-type (solid blue diamonds) or
clb5Aclb6A (solid green diamonds) cells carrying homologous tandem TetO
arrays at LEU2 were induced to sporulate. At the indicated times, samples were
taken and assayed for pairing. 100 cells were counted per strain per timepoint.
Non-homologous array strains are shown by open diamonds as a control for
array clustering.

(E) Wild-type cells were induced to sporulate. At the indicated times, samples
were taken and assayed for DNA content by flow cytometry. The x-axis
represents DNA content, y-axis represents number of cells and z-axis
represents hours of sporulation. These samples are from the same experiment
as (D).

(F) clb5LAcb6A cells were induced to sporulate. At the indicated times, samples
were taken and assayed for DNA content by flow cytometry. The x-axis
represents DNA content, y-axis represents number of cells and z-axis
represents hours of sporulation. These samples are from the same experiment
as (D).
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Figure 13: Cdc28 activity and phosphorylation of the DSB initiating complex
factor Mer2 contribute to pairing through their roles in DSB initiation
(A) The strain shown is deleted for NDT80, carries tandem TetO arrays at URA3
and carries the analog sensitive allele of CDC28, cdc28-as. Cells treated at 1
hour with a vehicle control (black circles), cells treated at 1 hour with 0.5piM
cdc28-asl inhibitor 9 (dark gray circles), cells treated at 1 hour with 5tM cdc28-
as inhibitor 9 (light gray circles), cells treated at 4.5 hours with a vehicle control
(black squares), cells treated at 4.5 hours with 0.5[tM cdc28-asl inhibitor 9 (dark
gray squares) and cells treated at 4.5 hours with 5VM cdc28-asl inhibitor 9 (light
gray squares) were induced to sporulate. At the indicated times, samples were
taken and assayed for pairing. 100 cells were counted per treatment per
timepoint.

(B) All strains shown are deleted for NDT80. Wild-type cells carrying
homologous tandem TetO arrays at LYS2 (solid blue circles), mer2-S30A cells
carrying homologous tandem TetO arrays at LYS2 (solid red circles), and wild-
type cells carrying non-homologous tandem TetO arrays (open blue circles)
were induced to sporulate. At the indicated times, samples were taken and
assayed for pairing. 100 cells were counted per strain per timepoint.
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Figure 14: Eliminating DSBs eliminates pairing in replication defective
strains
(A) All strains shown are deleted for NDT80. Wild-type cells carrying tandem
TetO arrays at LYS2 (solid black circles), clb5L clb63 cells carrying tandem TetO
arrays at LYS2 (solid purple circles), clb5A clb6A spol 1., cells carrying tandem
TetO arrays at LYS2 (solid pink circles), and wild-type cells carrying non-
homologous tandem TetO arrays (open black circles) were induced to sporulate.
At the indicated times, samples were taken and assayed for pairing. 100 cells
were counted per strain per timepoint.

(B) Wild-type cells carrying tandem TetO arrays at LYS2 (solid black squares),
spo 1iML cells carrying tandem TetO arrays at LYS2 (solid green squares),
pSCC1-CDC6 spo il cells carrying tandem TetO arrays at LYS2 (solid blue
squares), and wild-type cells carrying non-homologous tandem TetO arrays
(open black squares) were induced to sporulate. At the indicated times, samples
were taken and assayed for pairing. 100 cells were counted per strain per
timepoint.
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The role of the meiotic cohesin Rec8 in pairing

It is somewhat surprising that cells are capable of pairing in the absence of a

sister chromatid, yet cannot pair normally in the absence of chromosome axes,

as mediated by LE formation and Hopl. The meiotic cohesin, Rec8, is also a

component of the LE that has been thought to depend on DNA replication for

loading onto chromatin and it's well-established cohesive role in the meiotic

divisions (Zickler and Kleckner 1998; Forsburg 2002). I wondered if cells deleted

for REC8 were capable of pairing normally. I observed that rec8A cells show a

locus-specific pairing defect. Pairing in rec8A ndt80A cells is extremely defective

at LYS2, but is nearly normal at LEU2 (Figure 15A). When I examine all five loci

for which we have GFP dots available, we find that rec8A ndt8OA cells are

capable of pairing relatively normally only at LEU2. Pairing at CEN5, TEL5,

URA3, and LYS2 is ablated in this background (Figure 15B).

Why Rec8 is needed for pairing at all sites examined besides LEU2 is not

clear, although, as shown in Figure 3 that LEU2 naturally shows higher pairing

than other loci and is very active for DSB formation. The relationship between

this abnormally high baseline pairing, DSB formation and Rec8 merits further

examination. Additionally, assessment of rec8A pairing at more loci would be

informative.
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Figure 15: rec8A cells show pairing defects at most loci examined
(A) All strains shown are deleted for NDT80. Wild-type cells with homologous
tandem TetO arrays at LEU2 (solid black squares), rec8A cells with homologous
tandem TetO arrays at LEU2 (solid dark blue squares), wild-type cells with
homologous tandem TetO arrays at LYS2 (solid gray squares), rec8A cells with
homologous tandem TetO arrays at LYS2 (solid lighter blue squares), wild-type
cells with non-homologous tandem TetO arrays (open black squares) and rec8A
cells with non-homologous tandem TetO arrays (open blue squares) were
induced to sporulate. At the indicated times, samples were taken and assayed
for pairing. 100 cells were counted per strain per timepoint.

(B) All strains shown are deleted for NDT80. Wild-type cells with homologous
tandem TetO arrays at TEL5 (solid black circles), wild-type cells with
homologous tandem TetO arrays at LEU2 (solid dark gray circles), wild-type
cells with homologous tandem TetO arrays at URA3 (solid medium gray circles),
wild-type cells with homologous tandem TetO arrays at CEN5 (solid light gray
circles), rec8A cells with homologous tandem TetO arrays at TEL5 (solid darkest
blue circles), rec8A cells with homologous tandem TetO arrays at LEU2 (solid
dark blue circles), rec8A cells with homologous tandem TetO arrays at URA3
(solid medium blue circles), rec8A cells with homologous tandem TetO arrays at
CEN5 (solid light blue circles), and wild-type cells with non-homologous tandem
TetO arrays (open black circles) were induced to sporulate. At the indicated
times, samples were taken and assayed for pairing. 100 cells were counted per
strain per timepoint.
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Examining the relationship between DNA replication, Rec8 and pairing

To better understand Rec8's role in pairing, I compared pairing in rec8A cells

with pSCC1-CDC6 cells. It is discussed in Chapter 3 that DNA replication is

required for Rec8's role in sister chromatid cohesion. DNA replication is not

required, however, for Rec8's role in SC assembly, and appears to also be

dispensible for homolog pairing. I wondered if rec8A cells might appear to be

defective in pairing due to the presence of "loose" sister chromatids in this

background, which would not be present in cells that don't undergo DNA

replication. To investigate this issue, I examined pairing in rec8A pSCC1-CDC6

ndt80A cells. I find that chromosomes in rec8A pSCC1-CDC6 ndt80A cells show

the same mild decrease in pairing seen in rec8A ndt8OA cells alone at LEU2

(Figure 16A), suggesting that this partial pairing defect is genuinely due to lack

of Rec8 rather than free sister chromatids.

The situation at LYS2 is slightly more complex. rec8A pSCC1-CDC6

ndt80A cells show a similar lack of pairing at early timepoints as seen in rec8A

ndt80A cells, but some pairing is recovered at later timepoints (Figure 16B).

Pairing at LYS2 in rec8A pSCC1-CDC6 ndt8OA cells does not recover to wild-

type levels, but this result indicates that some of the perceived defect in arm

pairing in cells lacking Rec8 is actually due to either loose sister chromatids

interfering with pairing establishment, or the inability to accurately count GFP

dots as separated sister chromatids (two GFP dots) look like separated
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homologs (two GFP dots). This may indicate that Rec8 does not actually

function to promote pairing in a locus-dependent manner and rather that Rec8 is

partially responsible for pairing at all chromosomal loci. This issue will require

further experiments to clarify.
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Figure 16: rec8A cells show a pairing defect that is independent of the
presence of sister chromatids
(A) All strains shown are deleted for NDT80 and carry homologous tandem TetO
arrays at LEU2. Wild-type (solid black circles), rec8A (solid blue circles), pSCC1-
CDC6 (solid red circles) and rec8A pSCC1-CDC6 (solid purple circles) were
induced to sporulate. At the indicated times, samples were taken and assayed
for pairing. 100 cells were counted per strain per timepoint. Wild-type cells with
non-homologous tandem TetO arrays (open black circles) and rec8A cells with
non-homologous tandem TetO arrays (open blue circles) were induced to
sporulate in parallel.

(B) All strains shown are deleted for NDT80 and carry homologous tandem TetO
arrays at LYS2. Wild-type (solid black squares), rec8A (solid blue squares),
pSCC1-CDC6 (solid red squares) and rec8A pSCC1-CDC6 (solid purple
squares) were induced to sporulate. At the indicated times, samples were taken
and assayed for pairing. 100 cells were counted per strain per timepoint. Wild-
type cells with non-homologous tandem TetO arrays (open black squares) and
rec8A cells with non-homologous tandem TetO arrays (open blue squares) were
induced to sporulate in parallel.
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Figure 16
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Genetic interactions between REC8 and ZIP1 in pairing

Of the mutants that I have discussed thus far, two showed locus-variable effects

on pairing. zip 1• cells paired normally at LYS2, but were defective in pairing at

LEU2. The reverse result was seen in rec8A cells. I sought to clarify these locus-

specific effects through double-mutant analysis. I find that deletion of REC8 in

zip lAndt80 cells results in a complete loss of pairing at the LYS2 locus (Figure

17B), indicating that genetically REC8 acts downstream or parallel to ZIP1 in its

pairing function at chromosome arms. I find that deletion of ZIP1 in rec8Andt80

A cells results in a defect slightly less than seen in rec8Andt80A cells and similar

to that seen in zip 1Andt80A cells alone (Figure 17A), indicating that ZIP1

genetically acts downstream of or in parallel to REC8 in its pairing function at

LEU2. Combining these results, it seems likely that, despite acting together to

promote SC formation, Zip1 and Rec8 act in parallel in their respective pairing

roles.
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Figure 17: Examination of the locus-specific genetic interactions of rec8A
and zip IA on pairing
(A) All strains shown are deleted for NDT80 and carry homologous tandem TetO
arrays at LEU2. Wild-type (solid black circles), rec8A (solid blue circles), zip l
(solid yellow circles) and rec8A zip iM (solid green circles) were induced to
sporulate. At the indicated times, samples were taken and assayed for pairing.
100 cells were counted per strain per timepoint. Wild-type cells with non-
homologous tandem TetO arrays (open black circles) and rec8A cells with non-
homologous tandem TetO arrays (open blue circles) were induced to sporulate
in parallel.

(B) All strains shown are deleted for NDT80 and carry homologous tandem TetO
arrays at LYS2. Wild-type (solid black squares), rec8LI (solid blue squares), zip iLM
(solid yellow squares) and rec8A zip id (solid green squares) were induced to
sporulate. At the indicated times, samples were taken and assayed for pairing.
100 cells were counted per strain per timepoint. Wild-type cells with non-
homologous tandem TetO arrays (open black squares) and rec8L cells with non-
homologous tandem TetO arrays (open blue squares) were induced to sporulate
in parallel.
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Figure 17
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Discussion

Pairing at diverse chromosomal sites: findings and future studies

Preliminary characterization of the pheonomenon of meiotic pairing has yielded

insight into connections between pairing and other early meiotic events. The five

loci examined by population assays appear to pair with similar timing, indicating

that chromosomes are not consistently "zipped up" from telomeres as has been

suggested in some organisms (McKee 2004). More conclusive proof of this

model may be obtained through the use of strains with multiple homologous

fluorescent dots in the same strain. My attempts to generate such strains have

been unsuccessful thus far, due to apparent instability of arrays other than the

Tet Operators used in these studies in our strain background, but the utility of

such strains merits further effort towards their construction.

Chromosome movement in pairing

The studies in this chapter additionally suggest that early pairing stages require

ATP and actin filaments, but do not require telomere clustering in the bouquet

formation. The basis for the requirements of ATP and actin filaments are not

clear. Examination of the pairing consequences in strains disrupted for actin

motor activity may clarify this requirement. Some preliminary time-lapse

microscopy indicates that Latrunculin A treatment disrupts chromosome motion,

while no mutants examined thus far share this phenotype (data not shown).

spol 1 mutants, in fact, while massively defective for successful pairing, do not
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show gross movement defects by live cell time-lapse microcopy, indicating that

control over chromosome movement is achieved through a mechanism that is

independent of DSBs and that perhaps chromosome movement and pairing

specificity are independently regulated to achieve meiotic pairing (data not

shown).

Dissecting the roles of cohesin and SC components in pairing

DNA replication and the presence of a sister chromatid are dispensible for

proper pairing, but the meiotic factor Rec8, best characterized for its role in

sister chromatid cohesion, also plays a role in pairing. Rec8 appears to

contribute to proper pairing at most loci, though is less important for pairing at

the LEU2 DSB hotspot. Characterization of more sites will be important to

determine the reason for the unusual pairing behavior at LEU2. Of the five loci

examined in this chapter, LEU2 is unusual not only in the mild pairing defect in

rec8A cells, but also the generally high level of pairing at this locus even in early

prophase. It will be important to assay other DSB hotspots for pairing behavior,

as well as other loci surrounding LEU2 on Chromosome 3 to determine the

reason for these variations.

Synaptonemal complex components Hop1 and Zip1 also appear to

contribute to successful pairing. These relationships require further study. Hop1

is, along with Rec8, a component of chromosome axes or LEs, structures

formed as chromosomes compact in prophase. Both Hop1 and Rec8 show

chromosome pairing defects. Utilization of various non-deletion mutants of
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these factors, as well as examination of the roles of Hop1 and Rec8 at additional

chromosomal loci will be helpful in this effort. Zipl, the major component of

transverse elements of the SC, appears to contribute to pairing in a locus-

specific manner. More precisely, Zip1 seems to promote pairing of a

centromere-proximal locus, while not contributing significantly to pairing of an

arm locus. It will be important to examine further examples of centromere-

proximal and centromere-distal sites to determine if this is indeed a general

pheonomenon. Further, if Zip1 is indeed important for centromere pairing

specifically, other components of the SIC centromere coupling complex such as

Zip2 and Zip3 should be examined for a potential role in pairing as well.

Time-lapse studies of chromosome movement during pairing

Movies generated by time-lapse microscopy of live meiotic cells represent a

powerful tool for dissecting pairing mechanism. Thus far I have performed only a

cursory analysis of such movies, but believe that this is an area of study that

could contribute valuable insight into processes involved in pairing.

Mathematical modeling of the paths followed by homologous loci as they pair

will be necessary to further these studies as preliminary analysis suggests

complex and indirect motion of homologs with respect to each other during this

process.
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DSBs and pairing: findings and future studies

The process examined thus far that appears to be most important to proper

completion of pairing is DSB formation. There has been a general belief that

DSBs contribute to meiotic pairing, but the extent of this contribution has been

controversial. My studies indicate DSBs to be essential to proper pairing. spo 11

mutants and other DSB-defective strains (such as clb5Aclb6A) show the largest

pairing defect of any strains examined here. Dissection of this role is difficult,

however, as cells initiate hundreds of DSBs early in meiosis and the position of

these DSBs is relatively random (Blitzblau, Bell et al. 2007). Thus for any single

live cell, it is difficult to know where DSBs exist and which might be contributing

to pairing.

These studies indicate that cells require only a fraction of the number of

DSBs that are normally formed to initiate recombination. The significance of this

finding is unclear. Do only a portion of DSBs contribute to homology search

normally? How might these DSBs be special? As mentioned above, spo l cells

are unable to achieve proper pairing, but by time-lapse microscopy,

homologous sites do not show any gross movement defects compared to wild-

type cells.

Taken together with the observations that strand-invasion of resected

DSBs in recombination generally involves only a few hundred nucleotides, and

the existence of repetitive DNA present in even the relatively simple budding

yeast genome, it seems likely that there are multiple steps to the pairing

process. In the first step, I propose that homologs are moved in proximity to
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each other by processes requiring actin filaments and ATP. The ability of

homologs to sort together is mysterious, but could involve the presence of

generally similar chromosomal structure rather than DNA-DNA interactions.

Once homologs have been sorted to the same region, strand invasion by newly

resected DSBs might assist in alignment and locking of paired homologs

together. The use of screens to identify factors that might contribute to the first,

sorting step of this pairing model will be invaluable. In the concluding chapter of

this thesis, I suggest two screens that might assist in this endeavor. I further

discuss in the next chapter a study to probe the relationship between a single

DSB and local and global pairing. The use of strains with one engineered DSB

and a variety of GFP marked homologous loci will be useful for these studies

(Neale, Ramachandran et al. 2002).

Conclusions and perspectives on pairing

Meiotic pairing is a process that I have found to be continuously fascinating and

intermittently frustrating throughout my graduate career. This is also the process

that I have worked on that I believe holds the most promise for discovery of

novel cellular mechanisms and a deeper understanding of meiosis as a whole.

Meiotic segregation is based on the ability of homologs to align, recombine, and

then segregate apart reductionally as occurs uniquely in Meiosis I. While huge

progress has been made in understanding recombination and Meiosis I

chromosome segregation, this first step of homolog alignment remains

remarkably mysterious. I have great hope that pairing mechanism will be
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deconstructed in the near future and that the studies discussed in this thesis will

be of some assistance to this goal.
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Materials and Methods:

Strains and Plasmids:

The strains used in this study are all derivatives of SK1. All deletions are

performed using one-step gene replacement (Longtine, McKenzie et al. 1998).

The GFP dots were described in (Straight, Belmont et al. 1996; Michaelis, Ciosk

et al. 1997; Klein, Mahr et al. 1999). pSCC1-CDC6 is described in (Hochwagen,

Tham et al. 2005). mer2-S30A is described in (Henderson, Kee et al. 2006) and

spoil hypomorphic alleles are described in (Henderson and Keeney 2004).

Sporulation conditions:

Cells were grown to saturation in YPD (YEP + 2% glucose) for 24 hours, diluted

into YPA (YEP + 2% KAc) at ODo0o = 0.3 and grown overnight. Cells were then

washed with water and resuspended in SPO medium (0.3% KAc [pH = 7.0]) at

OD600 = 1.9 at 300C to induce sporulation.

Pairing assay: This is diagrammed in Figure 1. Cells with homologous tandem

TetO arrays and carrying a TetR-GFP fusion protein are visualized in vivo with a

Zeiss Axioplan 2 microscope. The number of cells with one GFP dot (indicating

closely aligned homologs) versus two GFP dots (indicating distant homologs) is

used as a metric of pairing status.
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Flow cytometry: Flow cytometric analysis of total cellular DNA content was

performed as described in (Visintin et al., 1998).

Live cell microscopy: Cells are treated and imaged as described in (Nachman,

Regev et al. 2007).

248



References:

Benjamin, K. R., C. Zhang, et al. (2003). "Control of landmark events in meiosis
by the CDK Cdc28 and the meiosis-specific kinase Ime2." Genes Dev
17(12): 1524-39.

Blitzblau, H. G., G. W. Bell, et al. (2007). "Mapping of meiotic single-stranded
DNA reveals double-stranded-break hotspots near centromeres and
telomeres." Curr Biol 17(23): 2003-12.

Chikashige, Y., C. Tsutsumi, et al. (2006). "Meiotic proteins bqtl and bqt2 tether
telomeres to form the bouquet arrangement of chromosomes." Cell
125(1): 59-69.

Diaz, R. L., A. D. Alcid, et al. (2002). "Identification of residues in yeast Spol lp
critical for meiotic DNA double-strand break formation." Mol Cell Biol
22(4): 1106-15.

Forsburg, S. L. (2002). "Only connect: linking meiotic DNA replication to
chromosome dynamics." Mol Cell 9(4): 703-11.

Henderson, K. A., K. Kee, et al. (2006). "Cyclin-dependent kinase directly
regulates initiation of meiotic recombination." Cell 125(7): 1321-32.

Henderson, K. A. and S. Keeney (2004). "Tying synaptonemal complex initiation
to the formation and programmed repair of DNA double-strand breaks."
Proc Natl Acad Sci U S A 101(13): 4519-24.

Hochwagen, A. and A. Amon (2006). "Checking your breaks: surveillance
mechanisms of meiotic recombination." Curr Biol 16(6): R217-28.

Hochwagen, A., W. H. Tham, et al. (2005). "The FK506 binding protein Fpr3
counteracts protein phosphatase 1 to maintain meiotic recombination
checkpoint activity." Cell 122(6): 861-73.

Hochwagen, A., G. Wrobel, et al. (2005). "Novel response to microtubule
perturbation in meiosis." Mol Cell Biol 25(11): 4767-81.

Jin, Q. W., J. Fuchs, et al. (2000). "Centromere clustering is a major determinant
of yeast interphase nuclear organization." J Cell Sci 113 ( Pt 11): 1903-
12.

Keeney, S. and M. J. Neale (2006). "Initiation of meiotic recombination by
formation of DNA double-strand breaks: mechanism and regulation."
Biochem Soc Trans 34(Pt 4): 523-5.

Klein, F., P. Mahr, et al. (1999). "A central role for cohesins in sister chromatid
cohesion, formation of axial elements, and recombination during yeast
meiosis." Cell 98(1): 91-103.

Lee, B. and A. Amon (2001). "Meiosis: how to create a specialized cell cycle."
Curr ODin Cell Biol 13(6): 770-7.

Longtine, M. S., A. McKenzie, 3rd, et al. (1998). "Additional modules for versatile
and economical PCR-based gene deletion and modification in
Saccharomyces cerevisiae." Yeast 14(10): 953-61.

Marston, A. L. and A. Amon (2004). "Meiosis: cell-cycle controls shuffle and
deal." Nat Rev Mol Cell Biol 5(12): 983-97.

249



McKee, B. D. (2004). "Homologous pairing and chromosome dynamics in
meiosis and mitosis." Biochim Biophys Acta 1677(1-3): 165-80.

Michaelis, C., R. Ciosk, et al. (1997). "Cohesins: chromosomal proteins that
prevent premature separation of sister chromatids." Cell 91(1): 35-45.

Nachman, I., A. Regev, et al. (2007). "Dissecting timing variability in yeast
meiosis." Cell 131(3): 544-56.

Neale, M. J., M. Ramachandran, et al. (2002). "Wild-type levels of Spoll-
induced DSBs are required for normal single-strand resection during
meiosis." Mol Cell 9(4): 835-46.

Page, S. L. and R. S. Hawley (2004). "The genetics and molecular biology of the
synaptonemal complex." Annu Rev Cell Dev Biol 20: 525-58.

Rockmill, B. and G. S. Roeder (1998). "Telomere-mediated chromosome pairing
during meiosis in budding yeast." Genes Dev 12(16): 2574-86.

Roeder, G. S. (1995). "Sex and the single cell: meiosis in yeast." Proc Natl Acad
Sci U S A 92(23): 10450-6.

Storlazzi, A., L. Xu, et al. (1995). "Crossover and noncrossover recombination
during meiosis: timing and pathway relationships." Proc Natl Acad Sci U
S A 92(18): 8512-6.

Straight, A. F., A. S. Belmont, et al. (1996). "GFP tagging of budding yeast
chromosomes reveals that protein-protein interactions can mediate sister
chromatid cohesion." Curr Biol 6(12): 1599-608.

Trelles-Sticken, E., M. E. Dresser, et al. (2000). "Meiotic telomere protein Ndjl p
is required for meiosis-specific telomere distribution, bouquet formation
and efficient homologue pairing." J Cell Biol 151(1): 95-106.

Trelles-Sticken, E., J. Loidl, et al. (1999). "Bouquet formation in budding yeast:
initiation of recombination is not required for meiotic telomere clustering."
J Cell Sci 112 (Pt 5): 651-8.

Tsubouchi, T. and G. S. Roeder (2005). "A synaptonemal complex protein
promotes homology-independent centromere coupling." Science
308(5723): 870-3.

Weiner, B. M. and N. Kleckner (1994). "Chromosome pairing via multiple
interstitial interactions before and during meiosis in yeast." Cell 77(7):
977-91.

Yamamoto, A. and Y. Hiraoka (2001). "How do meiotic chromosomes meet their
homologous partners?: lessons from fission yeast." Bioessays 23(6): 526-
33.

Zickler, D. and N. Kleckner (1998). "The leptotene-zygotene transition of
meiosis." Annu Rev Genet 32: 619-97.

250



Chapter 5:

Discussion and Future Directions
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Recent developments in meiosis research

Meiosis research has advanced tremendously over the last several years,

largely based on mechanistic studies in budding and fission yeast. There is now

a general understanding of the regulation underlying step-wise loss of cohesion.

The identification of Sgol, the counterpart of D. melanogaster MEI-S332 in

yeast and humans has led to a model in which centromeric Rec8 is protected

from cleavage in Meiosis I (Katis, Galova et al. 2004; Kitajima, Kawashima et al.

2004; Marston, Tham et al. 2004; Rabitsch, Gregan et al. 2004). The Sgol-

dependent protected region has been determined to be approximately 50

kilobases surrounding each centromere, and this region appears to depend

solely on the presence of a core centromere sequence (Kiburz, Reynolds et al.

2005). At least a portion of Sgol's protective activity depends on its ability to

recruit the PP2A phosphatase to this centromere-proximal region (Kitajima,

Sakuno et al. 2006; Riedel, Katis et al. 2006; Tang, Shu et al. 2006).

Recent work has also provided greater understanding of prophase

events, including recombination mechanism, prophase chromosome dynamics

and the meiotic recombination checkpoint. For example, identification of the

Zmms aided in the understanding of the types of recombination pathways

present in prophase and clarified inaccuracies in the classic Szostak

recombination model (Bomer, Kleckner et al. 2004; Lynn, Soucek et al. 2007).

Identification of Mus81, the sHJ resolvase involved in one pathway of crossover
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recombination, was a major breakthrough in understanding of recombination

mechanism (Whitby 2005). Using advanced live-cell microscopy, work from

several groups has shown the importance of telomere tethering and

cytoskeleton to chromosome movement in meiotic prophase (M. Dresser and N.

Kleckner, personal communication; Nachman, Regev et al. 2007). Additionally,

details of recombination checkpoint signaling have been elucidated, including

identification of Fpr3, a factor involved in allowing cells to "cut their losses" and

adapt to this checkpoint under conditions of persistent damage (Hochwagen,

Tham et al. 2005; Hochwagen and Amon 2006).

Summary of key conclusions of this thesis

In my thesis work, I have aimed to contribute to the ongoing elucidation

of meiotic chromosome segregation mechanisms. Using S. cerevisiae, I have

worked to address several basic questions. What role does Rec8

phosphorylation play in stepwise loss of cohesion in meiosis? How does Rec8

function to promote prophase progression? How do homologs pair? I will now

summarize the results presented in this thesis that help clarify answers to these

questions.
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The roles of Rec8 phosphorylation and recombination in cohesin cleavage

The meiotic cohesin Rec8 has been reported to be heavily

phosphorylated, with at least a portion of this phosphorylation being dependent

on the Polo kinase Cdc5 (Lee and Amon 2003). We identified 25 in vivo Rec8

phospho-sites and determined 11 of these sites to be Cdc5-dependent. With

these sites, we were able to determine the first in vivo Cdc5 phosphorylation

motif. We find that Cdc5-dependent and non-Cdc5-dependent sites contribute

to the efficiency of Rec8 cleavage at Meiosis I. Mutation of 17 Rec8 phospho-

sites to Alanines results in a delay in the cleavage of Rec8 and accumulation of

cells in metaphase I, indicating that phosphorylation primes Rec8 for cleavage.

Mutation of fewer sites at once did not result in a metaphase I defect, indicating

that it is likely bulk phosphorylation rather than individual phospho-sites that is

important to promote Rec8 cleavage by Separase. Importantly, the cells that

accumulate in metaphase I are largely positive for Securin, indicating that the

defect is a direct result of a difficulty cleaving Rec8 and not in progression

through the metaphase I to anaphase I transition.

The defect in Rec8 cleavage in rec8-17A cells is dependent on

recombination initiation by Spol 1. We find that this is a result of the regulation

of arm cohesion loss in Meiosis I by recombination. It appears that homolog

linkage through recombination creates tension that is necessary for satisfaction

of the spindle checkpoint and cleavage of Rec8 in Meiosis I. In the absence of

254



recombination, all cohesin is removed in Meiosis II, where Rec8 cleavage is

independent of Rec8 phosphorylation status. We were able to show that

phosphorylation of Serine 521 is centromere-excluded at Meiosis Iland not

present at Meiosis II. This further supports the assertion that Meiosis I Rec8

cleavage (normally of arm cohesins only) is promoted by bulk phosphorylation,

but that Meiosis II Rec8 cleavage (normally of centromere-proximal cohesins) is

independent of phospho-status (See Figure 1 for a model).
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Figure 1

CdcS and
other
kinase(s)

= =1-1>BB

Figure 1: A model for stepwise loss of cohesion in meiosis
Rec8 is heavily phosphorylated by Cdc5 and other kinases at some point prior to
metaphase I. It is not clear whether centromere-proximal Rec8 cohesin
complexes are phsophorylated and then dephosphorylated by the action of Sgol
and PP2a or whether arms are preferentially phosphorylated. In either case, by
anaphase I, arm cohesins are phosphorylated. Separase is activated by a
satisfied spindle checkpoint that senses homolog attachment through chiasmata.
Separase preferentially cleaves phosphorylated arm cohesins at anaphase I,
while centromere-proximal cohesins are protected by Sgol. Sgol leaves
chromosomes prior to anaphase II, at which point Rec8 cleavage is no longer
influenced by its phosphorylation. The remaining cohesin is now removed by
Separase that is again activated by a satisfied spindle checkpoint.
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The role of Rec8 and its phosphorylation in prophase progression

Our work on the role of Rec8 phosphorylation in cohesin removal also

identified combinations of phospho-sites that, when mutated to Alanines,

resulted in prophase defects but no metaphase to anaphase transition defects.

Based on the separation of Rec8 function provided by these mutants, we

revisited the role of Rec8 in prophase, finding that this function of Rec8 is

independent of DNA replication, Cdc5 phosphorylation, and Rec8 cleavage. We

find that Rec8 protein and its phosphorylation contribute to assembly of the

transverse elements of the SC, but that Rec8 protein and not its phosphorylation

contribute to lateral element formation. We additionally determine that post-

replicatively associated Rec8 and DSB formation are together capable of

promoting SC assembly. We conclude that Rec8 performs functions at multiple

meiotic stages, thus promoting linkage and directionality of the meiotic program.

A basic characterization of meiotic pairing

A final series of studies discussed in this thesis concems the

phenomenon of homolog pairing in meiotic prophase. I performed a basic

characterization of pairing, finding the motion of pairing homologs to be
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complex, indirect, and dependent on the presence of actin filaments. We find

that pairing is an active process that is fully dependent on DSB formation,

though cells may pair normally with 20-30% of normal DSBs present. Pairing is

surprisingly independent of the presence of a sister chromatid or the process of

DNA replication, though cohesin and SC components do appear to be important

for this process.

Unanswered questions and future directions

Despite the recent significant progress in understanding cellular

mechanisms that contribute to meiotic chromosome segregation, there are still

many open questions. There exists a basic framework for understanding

stepwise loss of cohesion, but mechanistic understanding is still weak. This is

also the case for the regulation of sister coorientation, suppression of a second

S-phase between MI and Mil, and events that govern exit from the segregation

phases. As for prophase, many details of recombination mechanism have been

elucidated, but the question of coregulation of prophase processes remains

mysterious. How does a DSB get sorted into a specific recombination pathway?

How does the cell coordinate recombination and SC formation? What does the

SC do? The biggest mystery remaining to be addressed in meiotic research,

however, concerns pairing. How do cells effectively and reproducibly pair

homologous chromosomes? In the following sections, I will discuss some of

these open questions with a focus on approaches that may be useful to future

research in these areas.
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The mechanism of Sgol action in cohesin regulation

Stepwise loss of cohesion in meiosis has been an active area of research

for several years. The existence of MEI-S332 in Drosophila led many to

speculate on the existence of a MI protector of centromeric Rec8 in yeast and

other organisms before Sgol was identified by three groups in 2004 as playing

this role (Kerrebrock, Moore et al. 1995; Katis, Galova et al. 2004; Kitajima,

Kawashima et al. 2004; Marston, Tham et al. 2004; Rabitsch, Gregan et al.

2004). Subsequent research has shown Sgol to function partially through

recruitment of PP2A phosphatase to centromeric regions prior to MII (Kitajima,

Sakuno et al. 2006; Riedel, Katis et al. 2006; Tang, Shu et al. 2006). The extent

to which Sgol function is mediated by PP2A, however, is controversial. While

Riedel and colleagues find artifical tethering of PP2A to be sufficient for

essentially full Rec8 protection, Kitajima and colleagues found Sgol to have

protective activity that is independent of PP2A. My work is more consistent with

the findings of Kitajima. Based on several experiments, I believe that it is likely

that Sgol affects cohesin cleavage through mechanisms that are- independent

of PP2a. I will now discuss these experiments, propose a model for Sgol action,

and suggest strategies to better elucidate Sgol's mechanism in cohesion

regulation.
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Several experiments presented in Chapter 2 merit further discussion at

this point. First, I presented an experiment in which I examined chromosome

segregation in cells meiotically depleted for Cdc5 (pCLB2-CDC5) and also

deleted for SPO11 (Figure 3, Chapter 2). The rationale for this experiment was to

look at metaphase I-arrested chromosomes. SPO11 was deleted in order to

remove any defects caused by incomplete recombination seen in meiotic cdc5

mutants, in order to focus on chromosome segregation exclusively.

Homologous chromosomal loci were visualized with the Tet-GFP dot system

discussed previously with Tet Operators inserted on homologous chrosomes,

adjacent to the centromere of chromosome 5. These cells arrest in metaphase I

due partially to the inability to phosphorylate and cleave Rec8. I will discuss in

greater detail in a later section the basis for this conclusion and additional

functions of Cdc5 at the metaphase I to anaphase I transition.

pCLB2-CDC5 spollA cells show a lack of homolog segregation, as

judged by only a single GFP dot or two closely positioned GFP dots

representing adjacent homologs in 85% of cells after 10 hours in sporulation

conditions. In contrast, when isogenic cells were also meiotically depleted for

Sgol (pCLB2-SGO1), homologs were seen to segregate apart, as judged by

distant GFP dots in 51% of cells after 10 hours in sporulation conditions.

Correlating with this apparent chromosome segregation in pCLB2-CDC5

spo 1li pCLB2-SGO1 cells, anaphase I spindles were observed in these cells in

large numbers and cells achieved over 30% separated DAPI masses by 10
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hours compared to essentially no anaphase I spindles or separated DAPI

masses in pCLB2-CDC5 spo 11 A cells. Further, when these two strains were

assayed for Rec8 cleavage, the delay seen in pCLB2-CDC5 spo 114 cells

compared to spo 1 i cells is alleviated in pCLB2-CDC5 spol 1A pCLB2-SGO1

cells. Finally, when cells were spread and analyzed for Rec8 localization,

pCLB2-CDC5 spol 11 pCLB2-SGO1 cells showed an increased population with

no Rec8 visible on chromosomes compared to pCLB2-CDC5 spo 1 1A cells. It is

important to note that in pCLB2-CDC5 spo 1lA cells Rec8 remains fully present

along the length of the chromosomes and that chromosomes do not separate

even at late timepoints. This contrasts significantly with the case where these

cells are also depleted for Sgol, resulting in decreased Rec8 visible on

chromatin and substantial separation of chromosomes.

These results support a model in which Sgol regulates cleavage of arm

and centromeric Rec8. If Sgol were merely protecting cleavage of centromeric

Rec8, its removal might lead to separated centromeric GFP dots due to

premature centromeric Rec8 cleavage. This scenario could also yield early Rec8

cleavage by Western blot analysis, where the early population of cleavage

product seen in pCLB2-CDC5 spol 1A pCLB2-SGO1 cells solely represents

centromeric Rec8. A simple role of Sgol as a protector of centromeric Rec8

would not, however, yield fully separated DAPI masses in pCLB2-CDC5 spo 141A

pCLB2-SGO1 cells or an increase in the number of cells with no Rec8 on
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chromosomes when compared to pCLB2-CDC5 spo 11A cells. These two results

imply that Sgol regulates the removal of all Rec8 from chromosomes.

A second series of experiments further support a model in which Sgol

affects total cohesin cleavage. I described in Chapter 2 that cells in which 17 of

Rec8's phosphorylation sites are mutated to non-phosphorylatable residues

(rec8-17A) show a delay in Rec8 cleavage by Western blot analysis when

compared to wild-type cells. When rec8-17A cells are also depleted for Sgol,

however, this cleavage delay is rescued (Figure 3, Chapter 2). Additionally, the

metaphase I accumulation seen in rec8-17A cells is not present in rec8-17A

pCLB2-SGO1 cells. If Rec8 phosphorylation of arm cohesins promotes their

cleavage in Meiosis I, as is the model supported by significant data presented in

Chapter 2, and Sgol merely protects centromeric cohesin at Meiosis I, then

depletion of Sgol in a rec8-17A background should not rescue the metaphase I

delay in rec8-17A cells. These cells should still be unable to efficiently cleave

arm cohesins and should thus remain delayed in metaphase I. These data are

more consistent with a model in which Sgol regulates the cleavage of arm and

centromeric cohesin.

How might Sgol regulate all cohesin cleavage? To begin to answer this

question, it is useful to consider an experiment performed by Kiburz and

colleagues, who found that depletion of Sgol rescued the metaphase I arrest

seen in cells depleted for the APC/C subunit Cdc20. Cdc20 activates the APC to

degrade Securin and therefore activate Separase at the metaphase to anaphase
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transitions. Depletion of Cdc20 results in high levels of Securin, the absence of

Rec8 cleavage and metaphase I arrest. Additional depletion of Sgol results in

separated homologs, as judged by GFP dot analysis and the appearance of

anaphase I spindles. Securin levels, however, remain high in this strain (Kiburz,

Amon et al. 2008). Therefore, it appears that Sgol depletion rescues the

metaphase I arrest in Cdc20 cells at a step downstream of Securin inhibition of

Separase. These data would be consistent with models in which Sgol either

inhibits Separase in a Securin-independent manner or directly regulates the

"cleavability" of arm Rec8.

Which of these possibilities is more likely? A major reason that Sgol has

been thought to specifically regulate centromeric Rec8 is that centromeres are

the site of Sgol DNA localization (Katis, Galova et al. 2004; Kitajima, Kawashima

et al. 2004; Marston, Tham et al. 2004; Rabitsch, Gregan et al. 2004). In fact,

Sgol specifically colocalizes with the population of Rec8 that is maintained until

Meiosis II (Kiburz, Reynolds et al. 2005). Therefore, it seems unlikely that Sgol

could directly regulate arm Rec8. It is possible, however, that Sgol regulates

Separase activity through a mechanism yet to be determined. This is the model

that is most consistent with the body of data available on Sgol function. One

can imagine that Sgol results in modification of Separase such that Separase

preferentially cleaves phosphorylated Rec8, but is inhibited for cleavage of

hypo-phosphorylated Rec8. This would then result in protection of centromeric

Rec8 at Meiosis I. Sgol then leaves centromeres prior to metaphase II, at which
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time Separase can now cleave all remaining Rec8, regardless of

phosphorylation status.

Through such a mechanism, Sgol would act in two separate ways to

protect centromeric Rec8. It would recruit PP2a to keep centromeric Rec8 in a

hypo-phosphorylated state and enforce preferential cleavage of hyper-

phosphorylated (arm) Rec8. It is interesting to note that PP2a has been

suggested to have a role in regulation of mitotic exit, through both the MEN

(Mitotic Exit Network) and the FEAR (Cdc Fourteen Anaphase Release) network

(Wang and Ng 2006; Forester, Maddox et al. 2007). As Espl is a component of

the FEAR network (Stegmeier, Visintin et al. 2002), it is possible that PP2a is

involved in regulating Espl in this context as well, though the regulatory subunit

of PP2a used in enforcing Sgol activity is different than the subunit apparently

involved in mitotic exit.

In order to test this model for Sgol action, a number of experimental

strategies would be informative. The simplest mode in which Sgol might

regulate Separase would be through direct interaction. Co-immunoprecipitations

(Co-IPs) of these two proteins would support this model. Development of an in

vitro assay for Separase activity would also be useful in assessing the likelihood

of modification of Separase protease activity by Sgol. Additionally,

structure/function analysis of Sgol could aid in understanding the mechanism of

this protein. Thus far the majority of data regarding Sgol activity is genetic. Until

the above-described or other experiments are performed to gain better
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biochemical and molecular understanding of Sgol, it is difficult to confirm or

discard the model that I propose above for Sgol action.

Rec8 function

There are also still significant questions regarding the mechanisms by

which Rec8 functions. Presumably Rec8's role in prophase is related to its

status as a core component of chromosome axes and Lateral Elements (LEs).

The fact that Rec8 phosphorylation appears to contribute to SC assembly,

however, implies either that phosphorylation of Rec8 significantly alters the

structure of the protein and thus the proper structure of LEs, or that Rec8

phosphorylation is involved in signaling that contributes to SC assembly and

prophase progression. The fact that Hop1 appears to assemble normally in

Rec8 phospho-mutants that show significant prophase delays supports a

signaling role for some of these phosopho-sites, but much more analysis is

necessary to make a conclusive statement on the matter. Structural studies

could be very useful in understanding SC assembly in wild-type cells and

various rec8 mutant cells. Also, we do not yet know anything about the structure

of Rec8.

The vast majority of studies of Rec8 phosphorylation that are described in

this thesis involve analysis of multiple phospho-sites at once. This was done for

two chief reasons. Firstly, with one exception, the few cases in which single

265



Rec8 phospho-sites were analyzed resulted in no discernable mutant phenotype

by assays performed at that time. Additionally, the sheer number of in vivo

phospho-sites identified on Rec8 made a detailed analysis of all single and small

combinations of sites technically challenging. It would, however, be extremely

informative to perform such experiments in order to better understand the

mechanisms by which Rec8 phosphorylation influences its cleavage and

prophase role. Further, I have described experiments that suggest that although

Rec8 is heavily phosphorylated by Cdc5, this is likely not the only kinase

responsible for regulation of Rec8 cleavage and is probably not at all

responsible for regulation of Rec8's prophase role. Identification of the kinases

responsible for Rec8's non-Cdc5 phospho-sites would be extremely helpful in

further dissecting Rec8 regulation.

Cdc5 function at the metaphase I to anaphase I transition

While Rec8 is regulated by phosphorylation of kinases other than Cdc5,

Cdc5 is also important for phosphorylation of factors other than Rec8. Cdc5 has

been shown as important for resolution of dHJs to complete recombination and

is also a component of the FEAR network that regulates mitotic exit and also the

transition between meiotic divisions (Stegmeier, Visintin et al. 2002; Clyne, Katis

et al. 2003). I have performed recent experiments that suggest Cdc5 has

additional roles at the metaphase I to anaphase I transition. Work originally done
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by Lee and Amon showed that meiotic depletion of Cdc5 results in metaphase I-

arrested cells that are delayed in Rec8 cleavage. I have performed recent

experiments that suggest that even in the absence of Rec8, Cdc5-depleted cells

are still largely arrested in metaphase I (data not shown). Given the large number

of cellular roles already attributed to Cdc5 activity, it is not surprising that Cdc5

might perform multiple roles at the metaphase I to anaphase I transition.

Identifying these roles is challenging, however. Cdc5 is extremely promiscuous

in vitro, making much traditional biochemical analysis of Cdc5 function difficult.

The best way, then, to analyze Cdc5 cellular roles appears to be through well-

designed genetic experiments. It will be important to carefully determine

whether Securin is degraded in Cdc5-depleted, metaphase I-arrested cells to

better place Cdc5's role at the metaphase I to anaphase I transition in relation to

the spindle checkpoint. In vivo phosphorylation assays would also be very

informative, although strategies to perform such experiments are still in their

infancy.

The mechanism of meiotic pairing

Arguably the biggest challenge remaining in understanding basic meiotic

principles is to elucidate pairing mechanism. This is an area that has been of

major interest to me throughout my graduate career. I have worked to

characterize the phenomena involved in pairing, but there are many more
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experiments that should be done to elucidate the mechanisms behind pairing.

The most informative experiments at this point fall into three categories. First, a

well-designed screen should be able to identify pairing factors. Second, analysis

of meiotic chromosome movement and processes involved in this movement

would complement the third approach, which focuses on how DSBs promote

homolog interactions.

Using screens to elucidate pairing mechanism

I propose two screens as potentially useful to identify pairing factors. The

first screen is based on the concept that there are likely multiple levels of

chromosome recognition. Due to the importance of DSBs and strand invasion

factors to pairing, it seems that these early recombination steps are used to test

homologous sites before stable pairing is established. It seems unlikely,

however, that repeated, random invasion and searching for homologus

sequences to each resected DSB site is the only method by which homologs are

aligned.

One can imagine that it would be much simpler for cells to initially roughly

align homologous chromosomes and then simply use localized strand invasion

as a way of refining this alignment. This is especially true when one considers

that the yeast genome contains repetitive elements such as transposons that

would cause false alignment of homologs if local invasion were enough to lock

homologs together. Additionally, in the case of more complex eukaryotes, the
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sheer quantity of repetitive DNA would make homolog alignment based purely

on local homology untenable. Therefore, with the assumption that homologs are

first roughly aligned and then stabilized by invasion of resected DSB sites, a

screen based on inappropriate alignment and ectopic recombination could

identify factors involved in the first rough alignment,

For this approach (Figure 2), one would identify genes that when deleted

result in an increase in association (and thus recombination) of non-

homologously integrated heteroalleles of an auxotrophic marker. This

background could be crossed into each strain of the yeast non-essential

deletion collection. Complete strains could be induced to enter meiosis, allowed

to "pair" and undergo recombination, then returned to mitotic growth and

assessed for increased frequency of prototrophy for the given marker. It may be

additionally informative to perform a similar screen, but using mutagenesis of a

heteroallelic background as discussed above rather than systematic deletions of

non-essential genes. This approach would allow identification of essential

cellular components that may play a role in pairing. Using either mutagenesis or

the deletion collection library, this screen has several caveats, most importantly

its basis on the hypothesis that pairing is a chromosome-wide event rather than

the sum of numerous local interactions.

A less-biased screen involves introducing homologous GFP chromosome

tags into the approximately 4500 strains of the yeast non-essential deletion

library and arresting cells in prophase with deletion of NDT80. One could then

identify through microscopic screening and the pairing assay described in
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Chapter 4, Alternatively, as discussed above, it may be useful to perform an

unbiased screen using mutagenesis to create diverse mutant alleles, rather than

relying on deletions of non-essential genes exclusively to provide insight into

pairing mechanism.
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Figure 2

Low rate of growth on ADE-
medium following return to mitotic

growth following recombination
(RTO)

creased rate of growth on ADE-
medium following RTG

Figure 2: A screen to identify pairing factors
Cells containing heteroalleles of ADE2 are made to initiate meiosis, complete
recombination and are then returned to mitotic growth in rich medium lacking
Adenine. Cells will form colonies if they experience recombination between the
ade2 heteroalleles, creating a functional ADE2 gene and the ability to grow on
medium lacking Adenine. As the heteroalleles are at non-homologous genomic
sites, recombination between them is expected to be elevated in mutants that do
not, pair homologs correctly. Note that two pairs of homologs of different size are
shown above, with "mom chromosomes" in blue and "dad chromosomes" in
yellow.

M and 1 represent heteroalleles of auxotrophic marker (ADE2)
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Investigation of chromosome motion and the cytoskeleton in pairing

From preliminary experiments, it appears that F-actin and microtubules

play a role in pairing. Further characterization of these role, including

investigation of candidate motors and kinetechore/microtubule interactions

would be interesting to better understand how cytoskeletal elements influence

pairing. Additionally, chromosome movement during pairing can be studied in

more detail through expansion of preliminary live time-lapse microscopy

investigations to include modeling of chromosome paths as they pair as well as

comparison of these patterns at different chromosomal loci and under various

mutant and drug-treatment conditions. Understanding of movement speeds

and patterns may help elucidate the mechanisms responsible for these effects,

as well as characterize the steps at which various pairing-associated genes

might act.

Dissection of the relationship between DSBs and homolog pairing

Thus far, the single process that appears to most significantly contribute

to pairing is DSB formation. In order to understand the essential role that DSBs

play in allowing chromosomes to successfully align, utilization of strains carrying

various single engineered DSBs, homologous GFP dots, and catalytically-

inactive Spol 1 (Neale, Ramachandran et al. 2002) could be used to answer a

number of questions, including:
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i. Is pairing initiated near a DSB which then allows the rest of the

chromosome to "zip up" (Zipper model) or does creation of a DSB along

a chromosome somehow license homologs to align simultaneously along

their length (Snap model)?

ii. What are the positional effects of DSBs? Do centromere-

proximal, telomere-proximal and arm DSBs show different abilities to

induce pairing?

iii. Is there any global effect of a DSB on pairing? Does a break on

one chromosome influence pairing on another?

iv. Are certain chromosomal regions more receptive to pairing in

response to a DSB?

v. Does pairing occur in an "all or none" or graded fashion?

Using engineered breaks in simplified situations to answer these questions

would provide a more detailed dissection of the relationship between DSBs and

pairing and thus assist in constructing mechanistic models of the pairing

process.

Concluding thoughts

Meiosis remains an exciting field of study, with unique biological

problems that cells must solve in order to achieve the complex chromosomal

dance that results in gamete formation. Recent work has shed significant light

on mechanisms involved in meiosis, including notably recombination, step-wise
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cohesion loss and coorientation of sister kinetechores. Much more work is

needed to clarify these mechanisms, and to begin to address the more

mysterious meiotic process of pairing. The apparent conservation of meiotic

processes from yeast to plants to animals niakes the study of meiotic

mechanisms not only intellectually fascinating, but also potentially useful to the

understanding of human conditions including infertility and mental retardation.
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