
MODEL-BASED VISION NAVIGATION FOR A FREE-FLYING ROBOT

by

ALI J. AZARBAYEJANI

Scientiae Baccalaureus in Aeronautics and Astronautics,
Massachusetts Institute of Technology

(1988)

Submitted in Partial Fulfillment of the
Requirements for the Degrees of

SCIENTIAE MAGISTER IN AERONAUTICS AND ASTRONAUTICS

and

SCIENTIAE MAGISTER IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1991

© Massachusetts Institute of Technology, 1991. All rights reserved.

Author
S / / " " ' e' epartment of Aeronautics and Astronautics

/ Departmeht of Eletrical Engineering and Computer Science
. August 1991

Certified by

Certified by

Accepted b

Accepted 1

Professor Harold L. Alexander
Thesis Supervisor, Department of Aeronautics and Astronautics

ThssS$rvsr eati~lo roesrTms oaoNe

/ \ Professor Tombs Lozano-P6rez
/ Thesis Stervisor, Departmejof Elecical Engineerig and Computer Science

y ,- -

1>
/ .'Y ,""- /

Professor Harold Y. Wachman
Chairman, Department Graduate Committee
Department of Aeronautics and Astronautics

7 Professor Campbell L. Searle
Chair, Committee on Graduate Students

Department of Electrical Engineering and Computer Science

, sEP 4 1941
7"1, /~~T~

,J s2Pa

b y -. . . . I "..

."

by

"Ve-ri-tas"

- Motto, Harvard University

"One can have three principal objects in the study of truth: the first, to discover it when
one searches for it; the second, to prove it when one possesses it ; the last one, to

distinguish it from falsity when one examines it."

- Blaise Pascal

"The pursuit of truth and beauty is a sphere of activity in which
you are permitted to remain a child all of your life"

- Albert Einstein

"There are several 'macroscopic truths' which we state without proof prior to engaging
in geometrical/mathematical development of the subject matter. Four 'truths' are as

follows:..."

- J.J. and J.T.

"It is clear that..."

- A.A.

Model-based Vision Navigation for a Free-flying Robot.

Abstract.

Model-Based Vision Navigation for a Free-Flying Robot
by

Ali J. Azarbayejani

Submitted to the Department of Aeronautics and Astronautics
and to the Department of Electrical Engineering and Computer Science

on 31 July 1991 in partial fulfillment of the requirements
for the Degree of Scientiae Magister in Aeronautics and Astronautics

and the Degree of Scientiae Magister in Electrical Engineering and Computer Science

Abstract

This study describes a vision technique applicable to the navigation of free-flying space robots.
The technique is based on the recursive estimation framework of the extended Kalman filter. It
requires simple measurements to be taken from images of a known object in the environment.
Models of the object, the vision sensor, and the robot dynamics are used, along with the
measurements, to recursively compute optimal estimates of the robot position, orientation,
velocity, and angular velocity with respect to the object.

Unlike many artificial vision algorithms, this one is fundamentally dynamic, operating on a
perpetual sequence of images rather than a single image. Information from previous frames is used
to increase the efficiency of analyzing the current frame and the accuracy of the state estimate
produced from measurements taken on that frame. The technique is computationally efficient so
that it can be implemented in real-time on cheap existing hardware. The technique is also flexible
because the routines for parsing images are independent of the underlying recursive estimator. The
technique is extensible because new models and other sensor measurements can be incorporated.

Experimental results are presented to demonstrate the accuracy of the vision navigator under mild
and extreme conditions of uncertainty using computer simulated robot trajectories and image
measurements. Additional experimental results illustrate the navigator performance on a real
trajectory with measurements taken by digital image processing of video imagery of a navigation
target.

Thesis supervisor: Harold L. Alexander
Title: Bradley Career Development

Assistant Professor of Aeronautics and Astronautics

Thesis supervisor: TomAs Lozano-P6rez
Title: Associate Professor of Computer Science and Engineering

Model-based Vision Navigation for a Free-flying Robot.

Ir --v-

Acknowledgements.

Acknowledgements.
It's done. Even though this page is near the beginning of the document, it is actually the last page
written after seven long and arduous months of writing, revising, and reorganizing the thesis in
whole or in part, quite often in whole. Fortunately, normal grammar rules and writing style do not
apply on acknowledgement pages, so I can say anything I want here in any way I want. Let's
have some fun...

First, I would like to thank
Mom & Dad, to whom this

thesis is dedicated, for
providing me with all that I've

ever needed, particularly a
good education, never-ending

love and support, and
occasional money and

chocolate chip cookies.=:>

More directly related
to this thesis, I would
like to thank Professor
Dave Akin for hiring

me originally and
letting me return after
immediately taking a

year off to teach. The
SSL, and its first child
LSTAR, exist largely
because of Dave and

Thanks, of course, are most
deserved by my primary
advisor Professor Sandy

Alexander who allowed me
from the start to pursue this
crazy project, which looks
like it will end in success.

Together we struggled with
contracts, hardware,

software, and about ten or
twenty revisions of what has

Another reason for the most will remain exciting finally become a THESIS a
excellence of the LSTAR research environments hopefully soon will becom,
organization is of course because of for lots of time to an operational navigation
the boyz (and girlz) in the lab, come. Good luck system. LSTAR is a mosi
gradual students and UROPers Dave, Russ, Beth and excellent facility largely
alike. Thanks be to all those who others at UM. =- because of Sandy's persono
have made LSTAR such an exciting touch and commitment to
and enjoyable place to work the last couple years...to Kurt, who quality work. It will be a lo
designed and built a robot that they said could not possibly be built time before I see so much ol
in two years-the most excellent STARFISH behaves so well, I robot built with so much lac
actually think navigation is going to be eeasy...to Harald, who I of money. Onward to tota
now hand the vision baton to (remember, it's going to be autonomy (of the vehicle, th
easy)...to Matt, who, when he reads this, will correct the previous is).
clause ("to whom I now hand...")...to Michael, who has been
named the MVP for the last NBA season...to Michael, who still
owes us all a round because his pal's team won the NBA championship...and to Moonbeam and
Starlight and all the others who have worked so hard for so little pay and who cannot join us for
the round because they're too young. 4

nd

t

al

ng
fa
ck

at

Thanks to Professor TLP for taking the time to be my second thesis advisor-his excellent advice,
particularly to try the Kalman Filter, obviously had a large positive effect on the final results of this
project. Thanks to Professors Horn, Pentland, and Adelson, for whose classes I generated the
initial work that ended up being the foundation of this thesis. 4

Finally, special thanks to Jon Russell, Keith Briggs, and the Advanced Programs Group at Ford
Aerospace Corporation for their generous support which partially funded the LSTAR vision
navigation research. *

Model-based Vision Navigation for a Free-flying Robot.

r -4o1

Table of Contents.

Table of Contents.
Acknowledgements. ... 7
Table of Contents.. 9
Nomenclature .. 11

Conventions .. 11
List of sym bols .. 12

1. Introduction.*..............*........... 15
1.1 Background on Free-flying Robot Navigation 15
1.2 Overview of the Robot Vision Navigator. 17
1.3 Reader's Guide... 20

2. Background.. 21
2.1 The Extended Kalman Filter .. 21

2.1.1 The Discrete Kalman Filter .. 21
2.1.2 The Extended Kalman Filter......................... 26

2.2 Spatial Relationships and Notation...29
2.2.1 Reference Frames................................... 29
2.2.2 Reference Frame Relationships ..32
2.2.3 Unit Quaternions for Representing Rotation34

3. Recursive Estimator 39
3.1 Robot Vehicle Dynamics Model..40
3.2 M easurement M odel. .. 43

3.2.1 Camera Projection Model............... 44
3.2.2 Frame Transformation Operator.47

3.3 The Estimation Algorithm for Vision Navigation 49
3.3.1 Linearizing the Measurement Equation.............................51
3.3.2 State Estimation.................................. 57
3.3.3 State Prediction58
3.3.4 The Vision Navigation Recursive Estimator...........................59

4. Estimator Simulations ... 61
4.1 Hardware and software... 61
4.2 Experimental Procedure and Results.............................. 65

4.2.1 Tracking. ...66
4.2.1.1 Measurement Errors ..69
4.2.1.2 Dynamics Errors ..74
4.2.1.3 Measurement and Dynamics Errors 79

4.2.2 Convergence from Initial Prediction Errors. 85

Model-based Vision Navigation for a Free-flying Robot.

5. Image Sequence Processing ... 91
5.1 Digital Image Processing ... 92
5.2 The Experimental Navigation Target............................... 94
5.3 Image Processing Procedures. .. 96
5.4 Computational Efficiency Analysis. ... 99

6. Experiments on Real Imagery 10 1
6.1 Experimental Procedure .. 101
6.2 Results...108
6.3 Tuning the Filter.. 115

7. Conclusions. 1............ 119
7.1 Implementation Issues .. 119
7.2 Recommended Research .. 121

References. .. 125
Appendix A.

Quaternion- Mathematics.a....... 129
A.1 Quaternion Basics ... 129
A.2 Quaternion Algebra Properties ... 130
A.3 Representation of Rotation 133
A.4 Rotation Quaternions for Vehicle Dynamics....................................136
References...138

Appendix B.
Source Code .. 139

10

Nomenclature.

Nomenclature.

Conventions.

y plainface symbols are scalars;

x boldface lowercase symbols are vectors (of any dimension) or 3D points;

H boldface uppercase symbols are matrices;

Xnav' Pi normal subscripts serve to describe or index quantities;

P:f' Pi:f a colon subscript is a frame reference (point p in the "f" frame, pi in the "f" frame);

H(k), Hk "k" indexes a quantity to a particular time step, to + k At;

il boldface letters with hollow dots above are quaternions;

x underlined quaternions are vectors, i.e. have no scalar part;

tbc, tfb translation vectors between origins of frames (frame "b" to "c", frame "f" to "b");

fR rotation operator, from b-frame to f-frame; for vector x, x:f = fR[X:b];

lbc, 4fb rotation unit quaternions (ilbc : bR, ifb € bR);

script matrix - quatemion premultiplier matrix for Lbc, defined qbr = ;

Qf b script with bar - postmultiplier matrix for ifb, defined iifb = br;

Rb, Rb orthonormal rotation matrices (Rb cbR, ...)

solid dot above a vector or scalar means time derivative;

x, Pk+1 a tilde above designates a predicted quantity (vector or scalar);

f9, 1 k a caret above designates an estimated quantity (vector or scalar);

A
[n in isolated places, carets denote unit vectors; context should be clear,]

11

Model-based Vision Navigation for a Free-flying Robot

List of symbols.
tfb translation vector (3D) - position of robot w.r.t. fixed frame;

Ifb rotation unit quaternion - attitude of robot w.r.t. fixed frame;

Vfb translational velocity vector (3D) -athfat or fb;

ofb angular velocity vector (3D) - angular velocity of robot about body axes;

tfb:f

4fb
Xnav navigation state vector (13D) - Vfb:f

0 vector of small Euler angles (3D);

tfb:f

Xaux auxiliary state vector (12D) - Vfb:f
/•fb:b)

F force vector (3D) - applied forces on robot in fixed coordinates;

T torque vector (3D) - applied torques on robot in body coordinates;

u command vector (6D) - (7)

N number of point correspondences used in the vision processing;

Pi feature point (3D), indexed by i = 1...N;

Yi feature point image coordinates (2D), indexed by i = 1...N;

y measurement vector (2N-D) - image coordinates of N feature points *

,YN;

tbc translation vector (3D) - position of camera w.r.t. body frame;

(bc rotation unit quaternion - attitude of camera w.r.t. body frame;

12

Nomenclature.

Xcam camera state vector (13D) - .bc

Ifc rotation unit quaternion - attitude of camera w.r.t. fixed frame. c = tfbic;

K Kalman gain matrix;

P state error covariance matrix;

H measurement matrix;

Q dynamics noise covariance matrix;

R measurement noise covariance matrix;

f Effective focal length (principal distance) of the imager.

T : xnav(t), Xcam(t), p:f -- P:
Frame Transformation Relation, as a function of a feature point.

Ti : Xnav(t) -+ Pi:c
Frame Transformation for ith feature point, as function of the state.

C : Pi:c - Yi
Image projection relation.

hi = CTi

Measurement relation for the ith point, hi = cTi.

h = Measurement relation.

f : xnav(t), u(t) --+ inav(t)
Dynamics relation.

faux : aux(t), u(t) -- iaux(t)

Auxilliary dynamics equation, valid for small rotational states.

Model-based Vision Navigation for a Free-flying Robot

c-c-

Chapter 1. Introduction.

1. Introduction.

As the field of robotics matures, free-flying robots are increasingly studied for space and
underwater operations. Both autonomous free-flying robots and human-controlled teleoperated
robots have been proposed for a variety of tasks, from ocean exploration to space construction.
For most of the applications, it is necessary for the robot to interact with other objects in the
environment. Thus, it is crucial to have accurate information about the position and orientation of
the robot with respect to objects in the vicinity, whether that information is passed on to a human
operator or to an automatic control system.

This type of object-relative navigation for free-flying robots is the subject of this study. It is
proposed that an artificial vision system, consisting of a video camera mounted on the robot and
on-board digital computational hardware, can be used to perform such navigation efficiently and
accurately. The technique applies to a general navigation environment for a free-flying robot, with
the only stipulation being that there exists, visible to the camera on the robot, at least one
"navigation target" whose physical relationship to the external reference frame is known and is
available to the vision navigation system.

The robot vision navigator presented herein can perform this task in real time using current
technology. Consequently, this vision-based navigator can be presently built, tested, and perfected
in a relatively inexpensive submersible environment, developing it into a proven technology
available for use in space on a time scale consistent with the planned launching of the first free-
flying space robots.

1.1 Background on Free-flying Robot Navigation.

For over a decade, researchers at NASA, at the MIT Space Systems Laboratory (SSL), and
elsewhere have actively experimented with free-flying robots, particularly with regards to their
application to assembly, servicing, and repair tasks in space. Although no such robots have yet
been in earth orbit, free-flying submersible robots have been used under the sea for exploration and
in neutral buoyancy tanks for simulating future space robots. These include the JASON robot of
the Woods Hole Oceanographic Institute (WHOI), the BAT and MPOD robots of the MIT SSL,

15

Model-based Vision Navigation for a Free-flying Robot

and the recently developed STARFISH submersible of the MIT Laboratory for Space
Teleoperation and Robotics (LSTAR).1

Attempts to navigate these submersible free-flying robots, i.e. to determine their position and
orientation, have utilized various combinations of sensors. These include water pressure sensors
(for depth), inertial sensors (for local vertical and angular rates), side-scanning sonar (for nearby
obstacles), and acoustic triangulation networks (for absolute position and orientation with respect
to an external reference). One immediate drawback of all of these sensors, excepting inertial
angular rate sensing, is that they are specific to the submersible environment and not applicable to
space robots.

Proposed instruments for space robot navigation include radar, laser range finders, inertial
sensing, and fixed radio beacons. Radar or laser range finders can perform functions analogous to
sonar. Inertial angular rate sensing is still applicable and inertial accelerations can still be used, but
due to the zero-gravity environment in orbit, they would be used for measuring translational
accelerations rather than for measuring the gravity vector. Finally, radio beacons might perform a
function analogous to acoustic positioning, but they would provide a number of directions to
known locations rather than distances from known locations.

The underwater instruments are not directly transferable to space, and, conversely, the instruments
most commonly suggested for space navigation are not applicable for submersibles. This is a
legitimate concern because the most effective testbeds for free-flying space robots to date have been
submersible robots in neutral buoyancy tanks. It would be prudent to implement and verify the
functionality of space navigation systems on relatively inexpensive submersible robots before
launching them into space, especially when they function as part of automatic control systems.

In contrast to most other navigation sensors, optical sensing applies both underwater and in space.
Digitally-processed machine vision navigation is particularly attractive because it is potentially
fiighly flexible with respect to the kinds of environments it can handle. However, vision has rarely
been seriously considered for navigation because existing vision techniques are either too
computationally expensive for real-time operation or too inflexible. A successful approach to
vision navigation for free-flying robots must apply to a wide range of navigation environments at a
computational cost commensurate with the computing hardware likely to be available on relatively
small vehicles.

1JASON was used to explore the sunken Titanic deep under the Atlantic Ocean. BAT, MPOD, and, STARFISH are
intended to simulate space telerobots in neutral buoyancy tanks. BAT is the Beam Assembly Teleoperator which has
a manipulator and is controlled remotely by a human operator. MPOD is the Multimode Proximity Operations
Device and can be operated by an (underwater) astronaut onboard or by a remote human operator. (BAT, MPOD, and
SSL are now at University of Maryland, College Park.) STARFISH is the neutral buoyancy teleoperator research
platform of LSTAR at MIT.

16

Chapter 1. Introduction.

1.2 Overview of the Robot Vision Navigator.

Both computational efficiency and flexibility are addressed by the vision navigator developed
herein. The goals of this study include not only developing a machine vision technique applicable
to the general problem of close-range navigation of space and submersible free-flying robots, but
also ensuring that the technique can be implemented well within current technological limits
because the technique is intended for immediate operation on free-flying submersibles.

The role of the navigator in the motion control loop for a free-flying robot is illustrated in Figure
1.2-1. The output being controlled is the robot state, the static and dynamic spatial relationship
between the robot and its environment. The term "environment" refers to the external object-fixed
frame of reference. The navigator is the feedback element which provides measurements of the
robot state to the controller to facilitate closed-loop control of the robot.

Position
Attitude

Motor forces Translational Velocity
Motor torques Rotational Velocity

Commanded
Sh-y-

RUUEJL

State

Figure 1.2-1: The role of the navigator in the control loop.

Traditional navigators for many vehicles consist of instruments which directly measure the output
quantities of interest. This is very difficult for free-flying robots because they have no physical
contact with references in the environment. Rotational velocities (with respect to an inertial frame)
can be directly measured using rate gyros, but measurement of the other robot state quantities
requires some sort of communication with the surroundings.

A vision navigator accomplishes this by receiving images of the environment through the
navigation camera on the robot. This permits the robot to "see" its surroundings and deduce its
spatial relationship to the environment according to the way the features of the environment appear
in the view. The process mimics the way humans deduce by visual observation their spatial
relationship to objects.

17

Model-based Vision Navigation for a Free-flying Robot

However, a vision navigator need not, and with current technology cannot, interpret general scenes
in real time as humans do. Fortunately, simplifications are natural for the vision navigation
problem because most free-flying space robots and many submersible robots operate in known,
structured environments. This observation implies that physical models of objects in the
environment can be made available to the navigation system. Relevant physical models contain
spatial information regarding the three-dimensional (3D) structure of the environment, e.g.
locations of points on the objects relative to the environment-fixed reference frame. An extensive
physical model of an entire structure may be available, but it will be shown that only a simple
model describing the 3D locations of a few points is required.

Such models allow important information to be gained from simply identifying known points as
they appear in images. For each individual point, the corresponding image location depends upon
the spatial relationship of the the robot to the environment, the relationship of-the camera to the
robot, and the projection geometry of the camera. The latter two pieces of information can be
assumed known for a calibrated vision system. Thus, for a set of known 3D points, the
corresponding image locations are determined solely by the vehicle state and can therefore be used
to estimate the vehicle state. In fact, deducing robot state from the set of point correspondences
from a single image is a simple extension of the machine vision problem called exterior orientation,
the problem of finding camera orientation relative to the external world [HORN86].

However, since the vision navigation problem is dynamic and operates on a sequence of highly
correlated images rather than a series of independent single images, it is beneficial to use a dynamic
estimation technique capable of exploiting the evolving nature of the incoming data rather than
using traditional single-image machine vision techniques. Such a dynamic estimation technique,
namely the Kalman filter, is commonplace in the field of navigation for processing sensor
measurements which are taken periodically at discrete time intervals. The Kalman filter uses a
model of the measurement process to update the state estimate each time a measurement arrives and
uses a model of the vehicle dynamics to propagate the vehicle state between arrivals of
measurements.

It has been argued above that, for a set of 3D points in the environment, the set of corresponding
image locations depends solely on the state of the robot, and can therefore be treated as a set of
measurements of the robot state. With this interpretation, a sequence of images can produce a
sequence of image measurements which can be used in the Kalman filter framework for
dynamically estimating state. Hence, vision measurements can be used in the same way that
traditional navigation sensor measurements, such as gyro readings or range measurements, are
normally used for estimating vehicle state.

Model-based vision navigation founded on this concept requires three fundamental models and two
primary functional components. The models include a 3D spatial model of a navigation target in
the environment, a geometric model of the imaging system, and a dynamic model of the robot
vehicle dynamics. The functional components include an image sequence processing subsystem

18

Chapter 1. Introduction.

which locates and tracks known points in images, and a recursive estimation subsystem which
maintains an estimate of the vehicle state, incorporating image measurements when they arrive.

Figure 1.2-2 illustrates the functional architecture for such a vision navigator. An additional
feature of this approach, illustrated in the figure, is that the recursive estimator can provide state
predictions to the image sequence processor which can be used to enhance the efficiency of
searches for points in the images.

Image
Sequence

Imaging
System

Robot
State

Predictions
Image

Measurements

Robot Vision Navigator
Figure 1.2-2: Basic architecture of the robot vision navigator based on a Kalman filter recursive estimator and

model-based image processing.

This thesis presents the design and experimental evaluation of this type of vision navigator,
demonstrating its potential for great computational efficiency and flexibility. The recursive
estimator is developed first; its performance is evaluated by passing it simulated measurements that
are generated by applying a noise-corrupted measurement model to a simulated actual trajectory of
the robot. Various aspects of the estimator performance are evaluated by corrupting the
measurements, the vehicle dynamic model, and the initial state prediction with various levels of
errors. The image sequence processor is discussed afterwards; further experimental data results
from applying the estimation algorithm to actual measurements taken from real imagery by the
image sequence processor. A analysis of the applicability to real free-flying robots and related
problems concludes the study.

Robot
State Image

Sequence
Processor

Recursive
Estimator Robot

State
Estimates

LI
ImageSequence
Processor

Model-based Vision Navigation for a Free-flying Robot

1.3 Reader's Guide.
Robot vision navigation requires concepts from control theory, rigid body kinematics and
dynamics, optical sensing, and optimal estimation. Chapter 2 is devoted to summarizing the
required background concepts and developing a consistent notation which can be consistently
applied throughout the document. Specifically, the Extended Kalman filter (EKF) algorithm is
summarized and rigid body mechanics and dynamics are reviewed to the extent that they apply to
robot vision navigation. In the process of discussing these concepts, a consistent notation is
developed for describing spatial relationships and the quantities used in the EKF algorithm. The
notation can be referenced in the Nomenclature section at the beginning of the document.

Chapters 3 and 4 describe the estimation portion of the vision navigation system. Chapter 3
develops the measurement and dynamic models required for implementing an EKF estimator for
navigating a robot with vision measurements. The algorithm as it used for robot vision navigation
is detailed. Chapter 4 describes the computer implementation of the estimator and presents the
results of the simulation experiments.

Chapters 5 and 6 describe an image processing subsystem for obtaining the image
measurements required by the EKF. Chapter 5 describes an experimental environment and image
processing system. Chapter 6 presents the results of simulated trajectory estimations based on
measurements from real imagery processed by the experimental system.

Chapter 7 concludes the study by discussing the implications of, and new directions for, the
technology.

Appendix A describes the algebra of Hamilton's quaternion. The appendix is a short tutorial on
the basic concepts leading to the use of unit quaternions in rigid body kinematics. The appendix
contains information necessary for a reader to be comfortable with the mathematics appearing in
Chapter 3.

Appendix B contains the source code for the machine-independent portion of the computer
simulations. The code serves as documentation of the experimental process and also as a resource
for developing operational systems.

20

Chapter 2. Background.

2. Background.

Before commencing with the specifics of robot vision navigation, it is necessary to review the
Kalman Filter recursive estimation algorithm as it applies to the general case and to review general
concepts of 3D rigid body mechanics and dynamics.

2.1 The Extended Kalman Filter.

The Extended Kalman Filter (EKF) is based upon the Discrete Kalman Filter (DKF), an optimal
recursive estimation algorithm which applies to discrete-time systems with linear measurement
relations and linear state transition relations. The EKF extends the DKF to apply to systems with
nonlinear measurements and dynamics by linearizing the system around the estimated state at each
time step. This section motivates the EKF algorithm by first discussing the basic DKF algorithm
and then describing the nonlinear extensions that lead to the EKF.

2.1.1 The Discrete Kalman Filter

The DKF algorithm is used for recursively estimating the state of a discrete-time dynamic system
using state-dependent measurements which arrive at discrete time intervals. Each time step
marking the arrival of a measurement, the DKF updates the state estimate by combining the
measurement information with an internal prediction of the state. A dynamic model of the system
is used to update the state between measurements, providing the prediction of state at each time
step.

For performing the state estimation and prediction, the DKF requires a model describing the
dynamic behavior of the system and a measurement model describing the relationship between state
and measurements. The linear models are called the state equation and the measurement equation
and are of the form,

Xk+l = kXk +k (State Equation),

Yk = HkXk + 11 k (Measurement equation),

21

Model-based Vision Navigation for a Free-flying Robot

where

Xk is a sample of the state vector at the k0h time step,

Yk

Hk

is the state transition matrix from the k0h to (k+1)th time steps,

is a sample of zero-mean white noise at the kh time step, Qk = E[S1]
is a sample of the measurement vector at the k0h time step,

is the linear measurement matrix at the kth time step, and

is a sample of zero-mean white noise at the kth time step, and Rk = E[jkjk].

Often included in the state equation is an additional term describing the effect of control inputs on
the vehicle state. The input term is omitted in this discussion of the DKF because it is deterministic
and does not affect the estimation. The input does affect the propagation of state and can be
incorporated straightforwardly if it exists.

Figure 2.1-1 illustrates the basic functionality of the Kalman Filter algorithm. When measurements
arrive, the estimator uses the measurements, the measurement model, and state and error
covariance predictions from the last filter step to find a state estimate which minimizes expected
square error of the state. The state estimator also computes the corresponding error covariance
matrix. The predictor propagates the estimated state and covariance using the dynamic model,
resulting in the required prediction of the state vector and covariance for the next time step.

Measurements
Measurement Dynamics

Model Inputs Model
/TYT I\ /XTA f•\

(time step)

Figure 2.1-1: Kalman Filter loop.

22

Chapter 2. Background.

A
The symbol x represents an estimate of the state vector, i a state prediction. Notationally, this
convention of using carets (A) for estimated values (output of the estimator) and tildes (~) for
predictions (output of the predictor) shall hold for Kalman filter states and covariances.' Thus, the
matrix 0 represents the error covariance associated with the estimated state and P represents the
error covariance associated with the predicted state, i.e.

and

P = E[(x -)(x -)T].

The error covariance of the state is computed after each estimation step and each prediction step. It
effectively accumulates information about the estimation accuracy over all previous time steps.

In the estimator, the optimal estimate of state is computed via the state estimation equation,

=k = k + Kk(Yk- HkXk)'

where the Kalman gain matrix, K, for the current time step is computed

Kk = PkHk(HkkHk+Rk) - 1

The Kalman gain matrix blends state prediction with the measurement information to produce an
optimal state estimate. The reader is referred to [BROWN83] for a derivation of the Kalman gain
equation and the DKF equations which follow.

The error covariance for the estimated state is computed using the gain matrix K in conjunction
with the measurement model (H,R):

Ok = (I- KkHk) pk'

It is worthy to note that the value of (I - KH) at each time step has a norm between zero and
unity.2 Hence, the norm of the state error covariance always decreases when a measurement is
taken. Thus the DKF always perceives an improvement in its current estimate each time a
measurement is taken, even when the quality of the measurement is extremely poor.

1Carets are also used in a few places to denote unit vectors. The distinction should be clear from context.
2Although a significant amount of knowledge of linear algebra and normed spaces is required to make this argument
for the general matrix case, the argument can be simply followed by considering the 1D case in which all matrices
are scalars and the norm is absolute value.

23

Model-based Vision Navigation for a Free-flying Robot

The prediction portion of the DKF consists of propagating the state and covariance to the next time
step using the dynamics model, (D,Q). The equations are

Xk+1 = k lek

Pk+1 k k k Qk"

The state prediction equation above is the appropriate place for incorporating known inputs, if any.

Figure 2.1-2 summarizes the computational steps required for the DKF algorithm. The estimator
uses the measurements, the measurement model, and predictions from the previous time step to
generate estimates for the current time step. The predictor uses these estimates and the dynamics
model, with the known inputs u, if any, to generate predictions for the next time step.

Measurements

Y

Measurement
Model

(H, R)

4

Li

Inputs

U

Dynamics
Model

(b, Q)

State and
Covariance
Predictions

X

(time step)

Figure 2.1-2: The Discrete Kalman Filter loop with constituent equations.

The reader is once again referred to the abundant literature on Kalman filtering for a mathematical
proof of the optimality of the DKF. In lieu of reviewing well-documented mathematical
derivations, some qualitative observations are offered here which may provide insight into the
operation of the filter. First, note that for noiseless measurements, i.e. R = 0, and a simple
description of uncorrelated state error variances, P = od, the Kalman gain is

K = HT(HHT) -1

a pseudo-inverse for the measurement matrix H. Hence, in its simplest form, without the
weighting of R and P, K represents an inversion of the measurement operator.

24

State Estimator
-1

Kk =PkH H(kH +A
kk = k + Kk(y - Hkxk)

Pk = (I - KkHk) PkH

State Predictor

9k+1 = Ok *k

Pk+1 = k k Qk

|

f

tl

Chapter 2. Background.

Thus, the Kalman gain, computed with realistic values of R and P, behaves roughly like a
weighted inverse of H. The measurement noise covariance matrix R describes the level of random
noise present in the measurement equation, hence the quality or accuracy of the measurement
model. Likewise, the error covariance matrix P describes the predicted accuracy of the current
state prediction. The weighting characteristic of the gain matrix, then, reflects the a priori
confidence level in the measurement model and the current level of error in the state prediction.
The gain computation equation ensures that this weighting is optimal, producing a state estimate
with the lowest aggregate error variance.

The functionality of the gain matrix as inverse to the measurement matrix and as optimal weighting
appears in the state estimation equation:

(state estimate) = (state prediction) + (state correction)

- (state prediction) + (gain) (measurement error)
obtained from obtained from

internal dynamics
modelsensor input

The gain maps the measurement error to a state correction, thus performing a function which is
qualitatively inverse to the function performed by H. The weighting property of the gain matrix
serves to optimally blend the state information maintained internally via the dynamic model (the
state prediction) with the information gained from sensory input and the measurement model (the
state correction). Given the form of the state estimation equation, a simple qualitative analysis of
how the gain matrix weights the estimation is that "high" gains favor sensory input and "low"
gains favor the internal propagation of state based on the dynamics model. For the gain matrix,
"high" and "low" can be defined in terms of a matrix norm.

Using this insight, one should expect that the a priori confidence levels assigned to the dynamics
and measurement models, manifested in the covariance matrices Q and R, should affect the norm
of the gain appropriately. Indeed, the Kalman gain equation demonstates that an increasingly high
norm on R, representing an increasingly uncertain measurement model, decreases the norm of K,
thus reducing the influence of measurements on the state estimate. Likewise, an increasingly poor
dynamics model is characterized by an increasingly large norm on Q, which increases the norm of
P and K, thus reducing the influence of the internal state prediction in favor of the measurements.

25

Model-based Vision Navigation for a Free-flying Robot

2.1.2 The Extended Kalman Filter

The EKF shares the form and function of the DKF, but utilizes models that are nonlinear and
possibly continuous-time:

i(t) = f(x,u,t) + S(t)

y(t) = h(x,t) + Tl(t),

where

x is a state vector (unknown - to be estimated),

u is a control input vector driving the dynamics (known),

y is the measurement vector (obtained from sensors),
f(x,u,t) is a nonlinear function on vehicle state x and control vector u,
ý(t) is zero-mean Gaussian white noise driving the dynamics,
h(x,t) is a nonlinear function describing measurements y as a function of state,

11(t) is zero-mean Gaussian white noise driving the measurements.

The idea behind- the EKF is that if the current state prediction is reasonably accurate, a linearization
of the dynamics and measurement models around the current estimated state is an accurate
characterization of the system for sufficiently small perturbations of state. Under this condition,
the DKF state estimation process, operating on the linearized system, produces a near-optimal state
estimate. If, additionally, the time interval between measurements is sufficiently small, the
prediction for the next time step will be close to the actual state, thus satisfying the condition for a
successful linearization and state estimation at the next time step. The trajectory can be tracked in
this manner.

Conversely, of course, a poor initial state prediction can lead to subsequently worse predictions
and divergence of the estimated trajectory from the actual trajectory. Hence, conditions that are
generally required for successful implementation of an EKF include that a reasonably accurate state
prediction can be provided to initialize the filter and that the sampling interval is sufficiently small
so that perturbations of the actual state from the predicted state remain sufficiently small at each
time step.

The estimation process begins by expressing the true vehicle state as the current predicted state plus
a perturbation:

Xk = k + 8 Xk

26

Chapter 2. Background.

The measurement equation can then be expanded in a Taylor series about i k. Assuming that the

perturbation remains small, the measurement can be written as

Yk Yk + 8Yk h(fkt) + Syk -h(fkt) + [xh 8x(t)+tl(t)

k

by truncating the Taylor series expansion.

Cancellation leads to

SYk = HkXk + k

where

This linearized measurement equation can be used in the DKF framework for estimating the
optimal state perturbation 6x via the usual Kalman gain computation. Since the predicted values of
8x and 8y are zero, the state estimation equation is simply

x = K 8y.

The global state estimate results from combining the perturbation estimate with the nominal state as

or, after some substitutions and re-inserting the time index,

k Xk + Kk(Yk - h(fk,'t)).

A simple prediction of the next state results from assuming constant velocity over the time interval:

Xk+I = 4 + f(1kk, U,t) At,

This formula avoids the state-space linearization of the operator fO. (Of course, this propagation
equation still represents a linearization in time.) More sophisticated state propagation can be
performed using a multi-step numerical integration procedure and/or using stored values of
previous state estimates.

Propagation of the error covariance matrix is most conveniently performed using the state-space
linearization of the state equation. As above, let 8x represent a small deviation from the current
estimated state, so that

27

Model-based Vision Navigation for a Free-flying Robot

x = i+ Sx.

Applying this to the nonlinear state equation above yields

+(t) + x(t) = f(*+8x,u,t) + 4(t)

= f(It,u,t) + 8x(t) + (t)

which gives at the kth time step

bx(t) = Fk Sx(t) + 4(t)

with

Fk
FXlk,Uk

Forward Euler approximation of the derivative yields

8xk+1 (I + Fk At) SXk +(t) At

= k xk + k,
where the state transition matrix is computed

Ok = (I + Fk At).

The covariance is propagated as usual using

Pk+1 k= D k k + Qk'

where Qk = E[&ký[].

Figure 2.1-3 illustrates the EKF and the computations required for the estimation and prediction
steps. This recursive estimation framework is the basis for the vision navigation state estimator.

28

Chapter 2. Backgrouhd.

Measurement Dynamics
Model ModelMeasurements hpdu (ftsQ)

y (h, R) U

State and
Covariance
Predictions

Yx

P

-JI
II

(time step)

Figure 2.1-3: The Extended Kalman Filter algorithm.

2.2 Spatial Relationships and Notation.

To discuss vision navigation, it is necessary to describe the spatial relationship of the robot to the
environment. It is also necessary to consider the spatial relationship of the camera to both the
environment which it is viewing and the robot to which it is attached. It is necessary, therefore, to
develop an analytical language for discussing spatial relationships between rigid bodies.

2.2.1 Reference Frames

The three primary elements of vision navigation--the environment, the robot, and the vision
sensor--define three distinct rigid reference frames. They are henceforth denoted the "fixed
frame" (fixed to the navigation environment), the "body frame" (fixed to the robot), and the
"camera frame" (fixed to the vision sensor).- Figure 2.2-1 illustrates these frames for a submersible
robot in a neutral buoyancy tank. Because the robot moves in the environment and the camera may
be steerable, the spatial relationships between the reference frames are generally dynamic.

29

State Estimator

ahl
Hk = [J-

Kk =PH(HkPk+Rk-1

xA = Kk(Yk - h(iko)

k = (I - KkHk) Pk

State Predictor

xk+1 = 3k + f(Jk,u,t) At

Faf1
Fk = k, Uk

k = (I + Fk At)

Pk+l= OkBk (I T+ Qk

• Y | |

1W
-- Wý

1 Il

Model-based Vision Navigation for a Free-flying Robot

Figure 2.2-1: The three frames of reference required for robot vision navigation.

Each reference frame is defined by a Cartesian coordinate system with a right-handed set of axes
(X,Y,Z).

The camera frame axes (Xc,Yc,Zc) conform to conventions used in machine vision and image
processing. The origin is at the center of projection3 (COP) of the imager, usually physically
inside the camera lens. The Z&-axis is the optical axis and points from the COP out into the world,
as illustrated in Figure 2.2-1. Looking from the origin in the direction of the +Ze-axis, the Xe-axis
points to the right and the Yc-axis points down. The image plane is perpendicular to the optical
axis, parallel to the Xc-Yc plane. Imaging geometry is discussed further in Chapter 3.

The body axes (XbYb,Zb) conform to conventions for aircraft body axes. The origin is the center
of mass of the vehicle. The Xb-axis points forward, the Yb-axis points out along the right wing,
and the Zb-axis points down. Although free-flying robots are not required to have preferred
orientations, most submersible robots and many space robots will have nominal attitudes in which
the directions "down", "right", and "forward" are meaningful. If a robot does not have a preferred
orientation, any arbitrary assignment of axes can be used.

3The imaging geometry is defined in section 3.2.

30

Chapter 2. Background.

The coordinate axes for the fixed frame (Xf,Yf,Zf) can be oriented arbitrarily as well. However,
like the robots, the environment will often have a natural orientation. In these cases, it is sensible
to define the origin at some nominal hovering location of the robot, the Zf-axis pointing "down"
(usually along the gravity vector) from the origin, and the Xfaxis pointing toward the navigation
target. With this definition of axes, the body axes align with the fixed axes when the robot hovers
in an upright position at the reference location facing the target. This choice of axes allows the
navigation variables to describe physically meaningful quantities.

The three frames of reference provide three different spatial bases from which 3D points and
vectors can be specified. "Point" as used here is a physical location in space, a "vector" defines a
magnitude and direction in space. Once referenced to a frame, both points and vectors can be
specified using 3-vectors in the frame of reference. The notation used subsequently distinguishes
between physical 3D points or vectors and their mathematical representations as 3-vectors in the
various frames.4

For a physical point denoted p, the expression p:f denotes the 3-vector in the fixed frame that
extends from the fixed origin to p. Likewise, subscripts ":b" and ":c" reference the point p to the
body and camera frames, respectively. A 3D vector r is frame-referenced using the same type of
notation. The expressions r:f, r:b, and r:c denote the 3-vectors in each frame that have the
magnitude and direction of r.

Notationally, the colon before frame-reference subscripts is used to delineate between "descriptive"
or "index" subscripts and "frame-reference" subscripts. The former type of subscript is used for
identification as in the expression pi, which designates the ith point in some set of points, for
example. This point referenced to the fixed frame can be specified as the 3-vector pi:f.

To specify components of the 3-vector, the subscripts of the 3-vector plus a "1", "2", or "3" are
used. For example,

(Pi:fl' (Xf-component
P i:f = Pi:f2 = Yf-component

(Pi:f3) Zf-component)

Although the notation for 3-vectors and their components is lengthy, it is required for
systematically describing the large number of variables used in the mathematical models for vision
navigation.

4A 3-vector, as used in this document, is a mathematical element, an ordered set of 3 scalars called the components
of the 3-vector. Clearly, an unreferenced point or vector cannot have components and thus is not referred to as a 3-
vector. To refer to the physical element without committing to a particular mathematical reference, the terminology
"3D point" or "3D vector" is used.

31

Model-based Vision Navigation for a Free-flying Robot

2.2.2 Reference Frame Relationships

The spatial relationship of one reference frame to another can be described by a 3D translation and
a 3D rotation, each of which has three degrees of freedom (DOF). The translation between the
origin of any frame "a" to the origin of a frame "b" is designated by the 3D vector tab, the rotation
by a rotation operator "R.

The notation tab is reserved exclusively for specifying translation vectors between the origins of
two reference frames "a" and "b". The order of subscripts is important, with

tab = -tba

being the vector from the origin of "a" to the origin of "b".

The operator aR : 3 -_ ~ 3 maps r:b - r:a, i.e.

r, = *R(r),

where r is any 3D vector and "a" and "b" designate arbitrary reference frames.

The arrangement of the sub- and superscript on the rotation operator symbol determines the
direction of transformation. The mnemonic "cancelling" of the operand frame reference with the
operator subscript yields the superscript as the frame reference for the result. This prevents
confusion between the operator bR and its inverse bR-' = bR.

Together, the pair (tab,aR) is sufficient for describing the relationship between two frames through
the transformation P:b --- P:a as follows:

P:a = tab:a + bR(P:b) '

where p is some 3D point. The above equality is the basicframe transformation equation.

Figure 2.2-2 illustrates some key relationships of vision navigation. The origins of the reference
.frames are designated Of, Oh, and 0,. Under this notation, tfb = Ob - Of and so on. Also, for any
two reference frames "a" and "b", Oa:a = 0 (the zero vector) and Oab = tba:b.

32

Chapter 2. Background.

3D point
P

Fi
Fi

mera
une

Figure 2.2-2: Key relationships between reference frames and 3D points in the environment.

In the vision navigation problem, each vector (p-Of) is constant for a set of points and the other
three vectors are generally time-varying. The camera-body relationship (tbc,bR) is assumed
known. The fixed-body relationship (tfbbfR) represents the navigation parameters of interest.
Thus, navigation can be thought of as the process of estimating the vector tfb and the operator bfR.

The notion of estimating the position is straightforward because it is parameterized by the three
scalar elements of the translation vector tfb:f. In order to estimate the rotational orientation and use

it for attitude control, however, the rotation operator must likewise be parameterized.

The most common, and often useful, parameterization of the rotation operator consists of the nine
elements of a direction cosine matrix. The transformation

r:a = aR(r:b)

for vector r can be written

r:a = Rab r:b,

where Rab is a (3,3) orthonormal matrix, the direction cosine matrix. The rows of Rab are the unit
vectors along the axes of the "a" frame, expressed in the "b" frame. The nine parameters of Rab
are necessarily subject to six constraints, however, because 3D rotation has only three degrees of
freedom. Mathematically, the six constraints come from orthonormality of the matrix:
orthogonality provides three constraints, normality another three.

33

Model-based Vision Navigation for a Free-flying Robot

Although this parameterization provides a convenient tool for rotating vectors, it proves
cumbersome in both analytical and numerical manipulations, particularly of vehicle dynamics.
There are, in fact, many alternate parameterizations of rotation, all of which have their particular
strengths and weaknesses. The unit quaternion parameterization of the rotation operator, described
in the next section, has four parameters and one constraint and is used because of its analytic and
computational convenience.

2.2.3 Unit Quaternions for Representing Rotation

The unit quaternion representation of rotations is best characterized by its relationship to the
axis/angle representation of rotation. Any 3D frame rotation can be described as a single rotation
through an angle 0 about some axis A [HUGHES86, et al.]. The angle and axis comprise a four-
parameter description of the rotation with one constraint (the axis is a unit vector).

Each axis/angle pair (0,A) is associated with a single unit quaternion

S (qo0, q) = (cos , t sin0).

The unit quaternion and axis/angle representation are interchangeable because (0,A) -+ q is a
single-valued function and the reverse mapping q -. (0,A), (-0,-4) is double valued with both
values representing identical rotations. The quaternion representation is preferable for describing
rotations because it has a strict one-to-one correspondence with rotation operators.

As shown above, a quaternion is denoted by a boldface character with a hollow dot over it and
consists of a scalar part, qo, and a vector part, q. A more complete representation of the
quaternion is as an ordered set of four scalar parameters (q0,ql,q2,q3) where

qo = cos(0/2)

q = = If sin(0/2).
,q3)

Quaternions that represent rotation are unit quaternions satisfying the relationship

Il -4 q o + IlqI1 = q+ q+q2+q = 1.

Note that, like axis/angle representation, unit quaternions have four scalar parameters and one
constraint.

The rotation matrix, axis/angle, and unit quaternion are, of course, equivalent descriptors of the
rotation operator. The rotation matrix is a convenient computational tool for performing a single
transformation and is analytically interesting because of the various interpretations of its rows and

34

Chapter 2. BackgroiMnd.

columns in the context of linear algebra. The axis/angle representation is physically meaningful but
computationally clumsy and also suffers from the lack of a one-to-one correspondence with
rotation operators. The unit quaternion shares the physical insight of the axis/angle representation
and the computational convenience of the orthonormal rotation matrix because it is readily
transformed into either of the other two.

The unit quaternion has additional advantages over the orthonormal matrix which strongly favor its
use for processing rotational dynamics of free-flying robots and for similar applications. The
quaternion is more compact and has less constraints, it is more efficient for composing successive
rotations, and the numerical errors resulting from finite-precision arithmetic are more easily
compensated for. Salamin summarizes the comparison as follows:

For computation with rotations, quaternions offer the advantage of requiring only 4 numbers of storage,
compared to 9 numbers for orthogonal matrices. Composition of rotations requires 16 multiplications and

12 additions in quaternion representation, but 27 multiplications and 18 additions in matrix representation.

Rotating a vector, with the rotation matrix in hand, requires 9 multiplications and 6 additions. However, if

the matrix must be calculated from a quaternion, then this calculation needs 10 multiplications and 21

additions. The quaternion representation is more immune to accumulated computational error. A
quaternion which deviates from unicity can be fixed by q +- q/Iql, however a matrix which deviates from

orthogonality must be fixed by the more involved calculation R +- R(RTR) - 1/2, or some approximation

thereto. [SALAMIN79]

For these reasons, among others, the proposed robot vision navigator utilizes unit quaternions for
parameterizing all rotation operators. The notation qab shall be reserved for the unit quaternion
associated with the rotation operator 'R. Once again, the order of subscripts is important.

The components of a rotation quaternion shall inherit the double subscripts of the quaternion plus
an appropriate integer as follows:

qab = (qabO' qab) = (qabO' qabl' qab2' qab3)"

Appendix A defines the conjugate for unit quaternions as

4* (q0 , -q) = (qo,-91,-q2,-q3),

where the asterisk denotes conjugation.

For unit quatemions the conjugate and inverse are the same, and they both represent the physically
opposite rotation of the original quaternion, i.e.

qab q ab = ba"

35

Model-based Vision Navigation for a Free-flying Robot

That the conjugate qab represents the inverse rotation of q4~ is obvious from the definition of the
unit quaternion with respect to axis and angle of rotation. For any axis/angle pair, negating either
the angle or axis (but not both) represents the physically opposite rotation. Either negation
reverses the sign of the vector part, qab = A sin(0/2), and has no effect on the scalar part,.qib0.

In quaternion algebra, the rotation operation r:. = bR(r:b) is implemented through a pre-
multiplication by the rotation quaternion and a post-multiplication by its conjugate,

:a ab -:b ab ab r-:b qba'

where an underscored quaternion denotes a four-element form of the corresponding vector,

:a = [O,r:.] and i:b = [0,r:b],

which are (non-unit) quaternions with zero scalar part. The operation of quaternion multiplication
is described in Appendix A.

By forming the (4,4) pre- and post-multiplication matrices (Qab and Qab) for rotation qab, as
described in Appendix A, the rotation formula can be written

:a = Qb r:b qab

2 2 q)+ q - q2qo

2(q.q + q0o%)

2(qlq6 - qoq2)

Qab -):b= (0

2(qlq 2 - qo%)
2 2 - q2

(q- % + - q2)
2(q2q%+ q0q4)

OT 0

Rab)l(r:bJ

2(qq + qoq2)

2(qq%- qoq1)

(q q' + q2))

q2q +2 2

The (3,3) matrix Rab is the orthonormal direction cosine matrix associated with the rotation. Here
Salamin's claim that 10 multiplications and 21 additions are required to compute the elements of R
from the elements of l is readily apparent. The reverse transformation Rab • q is possible as well
but more complicated and is described in [SALAMIN79] and [HUGHES86].

In effect, using quaternion algebra to process a vector rotation amounts to generating-the direction
cosine matrix and performing the usual matrix multiplcation. For a single static rotation, then,

36

where

R ab

and

Chapter 2. Background.

there is no point in involving quaternions at all. The advantages of quaternions appear when
multiple rotations are processed together, as in rotational dynamics of the robot vehicle.

An example of the use of quaternions in rotational computations is the frame transformation
equation. Using the underscore notation pa = [O,p:a], the frame transformation equation for point
p can be re-written as the quaternion formula

P:a = lab:a + ab :b. ba*

The actual computation is performed by executing the transformation

4qab = Rab

and performing the matrix operation

P:a = tab:a + RabP:b*

A final issue of rotational representation is why an unconstrained three-parameter representation
should not be used for describing the 3DOFs of rotational orientation of a robot instead of the unit
quaternion (4 parameters, 1 constraint) or orthonormal matrix (9 parameters, 6 constraints).
Three-parameter representations for rotation do exist (Euler angles, Gibbs vector), but any set of
three parameters chosen to describe the three DOFs of rotation contains one or more geometrically
singular orientations somewhere in the rotation space [JUNKINS86].

Attitude control of free-flying robots requires a robust description of rotation across the entire
rotation space and therefore cannot rely on three-parameter rotational descriptions. The quaternion
representation lacks singularities (as do the rotation matrix and axis/angle representations).

However, a three-parameter rotational representation is completely appropriate for describing small
rotations from a nominal attitude because only a small portion of the rotation space is used
precluding the possibility of encountering a singularity. The discrete-time estimator developed in
Chapter 3 uses such a three-parameter representation for the small changes in rotation over a
sampling interval. The total rotational state of the vehicle, however, is always represented by a
unit quaternion.

37

Model-based Vision Navigation for a Free-flying Robot

page
not

used.•fl~t>

38

Chapter 3. Recursive Estimator.

3. Recursive Estimator.

Recursive estimation for vision navigation is based on the Extended Kalman Filter (EKF)
described in Chapter 2 where the dynamic model is for the motion of the robot vehicle with respect
to a fixed external frame and the measurements are image feature point locations provided by an
image sequence processor. The role of the estimator is illustrated in Figure 3.0-1, where the state
of the robot is designated xnav and the measurements y.

Image [k]
Imaging
System Image

Imageq
Sequence

X [k]
Robot
State

Predictions

y[k]
Image

Measurements

Robot Vision Navigator
Figure 3.0-1: The role of the recursive estimator in the vision navigator.

39

X(t)
nav

Robot
State

Image
Sequence
Processor

Recursive
Estimator

A
X [k]

nav

Robot
State

Estimates

N

Robot
State
Predictions

r ImageSequence
Processor

r

Model-based Vision Navigation for a Free-flying Robot

In order to use the EKF framework, it is first necessary to define the state vector x, the
measurement vector y, and the two functions f) and h() which define the dynamic and
measurement models. To this end, the first two sections of this chapter develop the models,
leading to description of the estimation algorithm for vision navigation in the final section.

3.1 Robot Vehicle Dynamics Model.

The motion control loop for free-flying robots is revisited in Figure 3.1-1, illustrating the input-
output structure of the dynamic process in the notation of the EKF. The robot dynamics are
mathematically modelled as a function mapping a control input trajectory u(t) and an initial state to
a state trajectory xnv(t).

X X

State

Figure 3.1-1: Robot motion control loop.

For free-flying robots, the control inputs are forces and torques generated by the vehicle's
thrusters. In general, the thrusts can be combined into a net force and net torque on the vehicle,
each of which has three degrees of freedom. The control vector is defined as

ua/7c~/ d f3
* bl

Sb2\:b0)

where f.t is the net force in the fixed frame and T.b is the net torque in the body frame. The force
and torque are referenced to fixed and body frames, respectively, for convenience in expressing the
vehicle equations of motion. In reality, forces and torques will probably both be known in the

40

Chapter 3. Recursive Estimator.

body frame and so the net force must be transformed into the fixed frame using the current
estimated orientation of the robot.'

The robot state vector is denoted Xnav, and contains variables describing the position, attitude,
translational velocity, and rotational velocity of the vehicle with respect to the environment. [The
subscript "nav" is used to delineate the navigation state vector from the slightly modified state
vector that shall be required for the estimator (x,,x) and the vector used to describe the state of the
camera relative to the robot (xa).]

As discussed in Chapter 2, the mathematical parameterizations of position and attitude are,
respectively, tfb:f and qf. The translation vector tfb:f is the vector from fixed origin to body origin
(center of mass of the robot) and the unit quaternion qfb represents the rotation operator mapping
vectors in the body frame to corresponding vectors in the fixed frame.

Translational velocity is defined by the vector Vfb as follows:

Vfb A dtfb
fb fb dt

The velocity is referenced to the fixed frame for navigation purposes, i.e. vfb:f is used.

Rotational velocity is referenced to the body frame and is notated Wfb:b. Unfortunately, Wfb:b is
not simply related to the quaternion as velocity is to the translation vector. However, it can be
shown [HUGHES86] that

fb 2-1 (q2 0 fb T) afb - qfb)
Wfb:b qfb0

where qfb = [qfbo,qfb] represents the fixed-body rotation.

Thus rotational velocity depends not only on the time derivative of the quaternion (defined in
Appendix A), but also on the value of the quaternion itself.

The navigation state vector is defined as follows:

1This is a source of error and possible divergence of the estimator because the state is not known exactly. However,
if the estimator is tracking properly, the state should always be close enough to eliminate drastic effects of this
uncertain transformation. The point in the estimation in which significant errors are most likely is at initialization.
This can be compensated for by allowing the estimator to converge at the intialization of the estimator before
powering the vehicle. More generally, the problem can be compensated for by adjusting the a priori dynamics noise
covariance matrix, Q, perhaps dynamically, to reflect the uncertainty.

41

Model-based Vision Navigation for a Free-flying Robot

tfb:f

qfbO
Xnav fb

Vfb:f

ý4fb:b)

Aiqp· \

tfb:f2
tfb:f3
qfbO
qfbl
qfb2
qfb3
vfb:fl
Vfb:f2
Vfb:f3
Wfb:bl
Wfb:b 2

Note that there is a single constraint on the thirteen-element navigation state vector, namely that the
sum of the squares of the four quaternion elements is equal to one. Hence, the state vector has
twelve degrees of freedom.

Under these definitions of u and xn,,, the EKF requires a state space model of the form

xnav = f(xnavu,t).

Such a model can be generated by applying Newtonian dynamics,
body. The result is

Xna v =

A \
rfb:f

Vfb:

f tb:b/

tb:t
1

- qfbWfb:b

1
1 f i

WjW bb bb
i i fb:b fb:bi

treating the vehicle as a rigid

where m is the mass of the vehicle, {fj) are forces acting on the vehicle (including 9), J is the
inertia tensor measured with respect to the body axes, and [ti) are torques acting on the vehicle
(including q). The relations

'fb:f ft'
fbO = fq
ifb

Vfb:f = fv' Sfb:b = f

apply.

42

lf!b

,

,Wfb:b3 /

A f(xnav,U,t),

(P 1km IwZ

Chapter 3. Recursive Esimator.

The expression for ft(xnav,u,t) comes from formulas for velocities. The expression for

fq(Xnav,u,t) is derived in Appendix A. The expressions for f, and fw come from Newtonian rigid
body dynamics and can be found in [MERIAM78].

3.2 Measurement Model.

As discussed in Chapter 1, the measurements of interest for vision navigation are a set of image
locations corresponding to a set of known 3D points in the environment. The points are known in
the sense that their coordinates in the fixed frame are known. Thus, the measurement model
assumes knowledge of a set

{Pi:f}, i = 1,...,N.

The measurements consist of the corresponding locations of these points in the image plane. For
each point pi, the corresponding measurement is defined as yi, a 2-vector describing the image
plane location at which pi appears.

The measurement vector is thus defined as

Y2

and has dimension 2N.

The measurement model required for the EKF is of the form

y = h(xnav,t),

where Xnav is the navigation state vector defined in the previous section.

However, to derive the measurement relation, it is convenient to break the operator h into
components, each corresponding to a single feature point. Thus

y0 h (x , t)
Y2 h2(xnav,t)

y h(xnav,t).

YN' hN(Xnavt)

43

Model-based Vision Navigation for a Free-flying Robot

It is sufficient to derive the general form of hi in terms of Pi since the structure of each component
is exactly the same, with pi as a parameter. With the general form of hi in hand, the measurement
model can be built from the set of components (hi) 1 l, where each component is generated by
applying the corresponding point from the set (pi:fdN) as a parameter.

The operator hi can be described as the composition of two basic operations: a frame
transformation and a 3D=-2D projection. The general frame transformation T maps the navigation
state and any point in the fixed frame to the corresponding point in the camera frame. The specific
frame transformation Ti has pi:f built in as a parameter and maps the navigation state to pi:c, i.e.

Pi:c = T(XnavqPi:f) = Ti(Xnav)*

The camera operator C projects the point onto the image plane, i.e.

Yi = C(pi:c)-

The combination of the two operators defines hi, i.e. hi = C-Ti or, equivalently,

Yi = hi(xnav) = C(Ti(xnav))"

Dependencies on time have been dropped for brevity. It is understood that the state and the frame
transformation are dynamic.

The following sections define C and Ti, thus implicitly defining hi and h. An explicit expression
for h including all of its scalar arguments and parameters is complex and not very helpful and
therefore omitted. However, the minute structure of hi is examined in great detail when
linearization of the measurement model is discussed in Section 3.3.

3.2.1 Camera Projection Model.

The camera projection operator C describes how a 3D point external to the camera comes to appear
at a particular location in the image. For vision navigation, the camera imaging geometry is
modelled as a point-projection operator, which is a good approximation to the actual imaging
geometry of most lensed cameras [HORN86]. It is based upon the pinhole model of a camera, in
which it is assumed that all light rays captured by the camera pass through a single point, the center
ofprojection (COP).

In a pinhole camera, the light rays enter a box through a small aperture in the front and strike a
photographic plate at the rear of the box, forming a 2D image, as depictfed in Figure 3.2-1. If the
hole is small enough, it approximates a point, the COP. The plane containing the rear surface of
the box where the image forms is the image plane. The line perpendicular to the image plane which
passes through the center of projection is the optical axis. The point where the optical axis pierces

44

Chapter 3. Recursive Estimator.

the image plane is called the principal point, and the distance along the optical axis between the
center of projection and the principal point is called the principal distance or effective focal length
of the imaging system.

Figure 3.2-1: Schematic of a pinhole camera, demonstrating the point-projection imaging model. This picture
represents a 2D slice of a pinhole camera.

Since the physical image formed by a pinhole camera is inverted, it is more convenient to consider
the geometrically equivalent point-projection geometry in which a virtual image plane is in front of
the center of projection, as shown in Figure 3.2-2. The virtual image which appears in a plane a
distance f in front of the COP is identical in dimension and content to the image formed on a
photographic plate a distance f behind the COP, except it is oriented in the same direction as the
scene, i.e. it is not inverted.

According to this model, the image from a vision sensor arises from the geometrical arrangement

depicted in Figure 3.2-2, based in the camera reference frame. As defined in §2.2, the COP is the
origin of the camera frame, the Zc-axis is the optical axis, and the image plane is parallel to the Xc-

Yc plane. The image plane is defined by the equation Zc = +f, where f is the principal distance of

the imaging system.

45

it

Model-based Vision Navigation for a Free-flying Robot

Principal Distance
(eff. focal length) Principal Point

Image Plane

Center of Pre
(origin)

(mint. opt. axis w/ image plane)

tical Axis
xis)

r rallic

Figure 3.2-2: The Camera Frame coordinate system.

The image coordinates which are the components of yi for a particular point pi are the Xc- and Yc-
coordinates of the intersection of the image plane and a ray from the COP to pi. Thus,

i: orizontal image coord (Xc-coord)

Yi ==I
i:2 vertical image coord (Yc-coord)

This geometry leads to the defining equation for the projection operator:

f (Pi:c•
Yi C(pi: Pc) i:3 Pi: 2 J

The equation is easily derived by considering similar triangles. The geometry governing the yi:2
variable is shown in Figure 3.2-3 below.

46

Chapter 3. Recursive Estimator.

i:c3

Image
Plane w

Cur Li c
I n

4 _i:c2

I1
r Yc

Figure 3.2-3: Similar triangles for deriving the projection equation.

3.2.2 Frame Transformation Operator.

For notational convenience the camera state vector, relating the camera and body frames, is defined
as follows:

bc:b'

Xcam = bcO
Qqbc

tbc:b2
tbc:b3
Aqbco
qbc1
qbc2
Qbc3

Although the camera is allowed to move between video frames, it is assumed that the camera is
stationary with respect to the vehicle when each frame is captured. Hence, no camera velocities are
considered and none appear in the camera state vector.2 Since the camera is mounted on the robot,
it is assumed that xcam can be accurately measured and provided to the navigator at any time.

The operator Ti depends upon xnav, xcm, and pi:f, but for estimation is considered a function only
of xnav since xcm and pi:f are precisely known at each time step. Later, the transformation will be
written as a function of both xnav and time, t, to indicate the possibly time-varying nature of xcm.

2This assumption may not be possible to meet for very robots which move very fast relative to frame rate.
However, motion in navigation images, caused by camera motion relative to the robot or-robot motion relative to
the scene, introduces many complicated issues. Most applications of free-flying robots involve remote, often
human-supervised, operation of relatively large vehicles with limited power supplies. As a result, they are likely to
move slowly compared to frame capture rate, reducing the problems associated with motion. Additionally, use of a
strobe and shuttering of the video sensor can virtually eliminate the remaining motion effects.

47

-IP.

I

Model-based Vision Navigation for a Free-flying Robot

The derivation of the frame transformation operator Ti proceeds using the basic frame
transformation introduced in §2.2. The following expressions use the orthonormal matrix form of
the rotation operator.

Pi:c = tcf:c + RcfPi:f

-tfc:c + RcfPi:f

-tfb:c- tbc:c + RcfPi:f

-Rcftfb:f- Rcbtbc:b + RcfPi:f

SRcf(Pi:f - fb:f) - Rcbtbc:b

= RcbRbf(Pi:f - tfb:f) - Rcbtbc:b

= RbRf (pi:f fb:f) - R-btbc:b

A Ti(xnav)

where xcam and pi:f are parameters of Ti.

The last defining equality depends on the fact that

X nav = qfb 4 Rf~b

and

Xcam qb =~ R-c.

Hence, Ti depends exclusively on independent variable xnav and parameters xcam and pi:f as
proposed.

To show explicit dependence on the navigation and camera state vectors, the rotation matrices can
be converted to quaternion form, yielding the quaternion algebraic formula

Pi:c = cf [Pi:f - fb:f] qfc - qcb tbc:b qbe

qbc 4b i:f - fb: fbbc - q bebc:b bc

The identities

qab = qba and q abqbc = (qac

48

Chapter 3. Recursive Estimator.

have been used in the last step.

An explicit expansion of this formula in terms of the scalar components of x,nv, xcm, and pi:f is
quite extensive and not particularly illuminating. It is also not required for numerical computations
because the equation can be linearized using the chain rule, as will be shown in the next section.

3.3 The Estimation Algorithm for Vision Navigation.
The robot vision navigation problem does not exactly conform to the structure required for
performing recursive estimation using the EKF because the 3DOF rotation is represented by a 4-
parameter quaternion which contains a constraint. If the EKF is used to estimate the 13D xna, it
will find an optimal state in 13-dimensional space. However, valid values of xnav exist only in a
12D subspace, the state space for the system. Estimation, therefore, should not take place on the
13D state vector.

Several approaches to solving the estimation problem were considered. The first of these is to
formulate a new algorithm analagous to the Kalman Filter which solves a constrained least squares
optimization rather than the unconstrained optimization of the original Kalman Filter. This route
was discarded in light of the success and relative simplicity of the alternatives.

The second approach uses the existing Kalman Filter algorithm and assumes that the 13D estimate
is not very far from the true optimal value in the 12D subspace. The state estimate could be
obtained by projecting the 13D estimate into state space by normalizing the quaternion. This
approach seems logical and was tested successfully in simulations.

The approach chosen for the final version of the vision navigator takes into account that the entire
system is already linearized at each step of the EKF. Since only small rotations are expected over
the course of a time step, there is no reason not to use a simple 3-parameter small-angle
representation of rotation for describing the correction rotation in the estimation equation and for
the propagated rotation in the state prediction equation.

The chosen angular representation is a set of Euler angles

03

where Oi represents a small rotation about the i h axis in the body frame. That is, 01 represents
rotation about the Xb-axis, 02 about the Yb-axis, and 03 about the Zb-axis.

49

Model-based Vision Navigation for a Free-flying Robot

The result is a 12D state vector that represents the state space for small rotational states. This new
state vector, xax, is used internally in the estimator. The modified dynamics model, valid only for
small rotations is

fb:f
Saux 4 f faux(Xaux,U,t)

Vfb:f f
Wfb:b (fw

The auxiliary state vector xaux is identical to the navigation state vector xnav except for the
description of rotation. The components ft, fv, and fw are also identical to those from the original
dynamics model. The function fC is defined by

fe =- Wfb:b*

Since the model is valid only for small rotations, the value for the Euler angles obtained by
integrating the function fax is valid only for small time intervals.

These Euler angles are used for representing the correction rotation in the estimator and for
representing the propagated rotation in the predictor. In both cases, the Euler angles can be
transformed into quaternions and composed with the nominal rotation quaternion to produce the
total rotation. To demonstrate this, the Euler angles can be interpreted as an axis/angle pair, i.e.

0 = itf = (angle) (axis)

where 0 is a small angle of rotation and d is a unit vector representing the axis of rotation.

The estimator uses a composite representation of rotation

4fb = qfb corr

where

4corr = (cos(0/2), sin(0/2) t)

for Euler angles Ait defined relative to the predicte state.

Likewise, the predictor uses the composite representation of rotation

A

qfb = fb step

50

Chapter 3. Recursive Estimator.

where

4 step = (cos(0/2), sin(0/2) i)

for Euler angles 4d defined relative to the estimated state. Figure 3.3-1 illustrates the composite
rotations used in the steps of the EKF for robot vision navigation.

A

State Estimator
ler angles -= corr

fb f fbcorrT

0 Bob 0q f

(time step)

Figure 3.3-1: The use of Euler angles and composite rotations in the estimation and prediction steps of
the robot vision navigator recursive estimator.

The remainder of this chapter describes the EKF-based recursive estimator for vision navigation.

3.3.1 Linearizing the Measurement Equation.

The measurement model for vision navigation was derived in Section 3.2. The measurement
equation,

y = h(tfb:f,qfb0,qfb,t) = r
,hN(tfb:,,qfoqfb,t) ,

consists of N single-point measurement equations,

Yi = hi(tfb:f,qfb0,qfb,t),

all of which are structurally identical.

The linearization with respect to the 12D auxiliary state vector results in a measurement matrix of
the form

State Predictor
Euler angles qstep

A step

qfb qfbqste
I I

Model-based Vision Navigation for a Free-flying Robot

[ý ah
H (k)

where the single-point linearizations Hik) have identical structures. Dropping the time-step index
(k) for brevity, the matrix H has dimension (2N,12) and each Hi has dimension (2,12). It is
sufficient to describe how to build Hi, because the procedure can be performed N times to generate
the entire H matrix.

To that end, consider the single-point measurement operator, defined in Section 3.2,

h i = C-Ti,'

the projection operator,

C (Pi:C) f (Pi:cl1

S Pi:c3 I.Pi:c2)

and the transformation operator, in matrix form,

Ti(Xnav) = R -c(Pi:f- tfb:f)- R betbc:b

Note that the transformation operator, and hence the measurement operator, depend only upon the
first six state variables of xaux, the elements of tfb:f and e. This is because the image from which
the measurements are taken is assumed to represent a single instant of time and thus the
measurements do not depend on translational or rotational velocity. The consequence fcr Hi is that
the last six columns are all zero, i.e.

. =[hi 1 = hi [ah ahi hlh]= "hi [hi 0h
H xest'i Lv7f ae 1

est

(2,12) (2,3) (2,3) (2,3) (2,3) (2,3) (2,3) (2,3) (2,3)

Thus each matrix Hi contains only two (2,3) matrices, [ahi/at] in the first three columns and
[ah/aO] in the fourth through sixth columns.

52

Chapter 3. Recursive Estimator.

First three columns.

The first matrix is relatively simple to compute. From the chain rule,

ah. a(C.Ti)
at,:, =

a(C.Ti) MT.

aTi at..

The definition of the projection operator reveals

(Tji'l"
• Ti:2 f

Ti TOTj j: 3
1l0lO)(100 f

TO + Ti:1)(0 0 -fi:3)

which leads to

Ti:l 3 /t f)
Ti:3 - , Ti: 3 fb:

f -(Ti:t
fb:f)T23 ý,,Ti:2/atfb:f

aTi:/atfb:ft

SaTi: •tfb:f

Ti:datfb:f

aT i
tfb-:f

which derives directly from the transformation equation, the first three columns of Hi can be
obtained by computing Ti(xnav) and Rf,. Figure 3.3-2 summarizes the computation of [ahi/atfb:f]
from the predicted navigation state.

Xnav

R = (RfbR

Ti(xn),v*

= Rfb

xcam = Rbc

bc)-T i

nav Ti(xnav)

aTi a(C.Ti)
3t, j at

Figure 33-2: Steps involved in computing the first three columns
measurement matrix hi.

[ahjat] of the

53

aT i

)hi
;tfb:f

Since

ahii

Ti: a T--..3

,Ti:2) Ti =

fc= -R ,

Model-based Vision Navigation for a Free-flying Robot

Second three columns.

Computation of the second three columns requires a similar formula, derived as above:

ahi (C*Ti) f HTi:/.eU (Ti:l O/
-= = Ti3 - _T :/DO

De D Ti3 ýaTi:2 :3 Ti:2 i:

The required computation of [dTi/a•] is more complex than the computation of [nTilat], requiring
either lengthy expansions of the rotation operations in terms of the angles, or repeated invocation
of the chain rule. Since the approaches are equivalent, the latter is used so that the problem can be
tackled in steps. It requires evaluation of

aT aT. aq af a
DO Df Dfb Dcorr D "
a@ aqf, aqf aqc a@

(3,4) (4,4) (4,4) (4,3)

The first matrix can be found from the transformation equation because Rfc depends upon qfc.
Specifically,

c(qic + ql- qc2- q23) 2(qflqfcc2- qfcoqfc3) 2(qfclqfc3 + tco4fc2)

S= R =| 2(qfcqfc2 + qfcqfc3) (cO - q2 c + q 2- qc3) 2(qfc2qfc3 - qcOqfcl) 2I

2(q 1qf3 - qfcqfc2) 2(qfc2qfe3 + qfqfcl) (c- c1 - 2+ q

Expanding the rotation matrix in terms of its columns,

R'f = Rcf (rcf rcf2 cf3),

the transformation equation yields

Ti(Xnav) = (rcfl rcf2 rcf3)(Pi:f -tfb:f) - R tbc:b

(Pi:fl-tfb:fl)rcfl + (Pi:f2-tfb:z)rcf2 + (Pi:-tf:)rc- R-tbc:b*

Note that the last term does not depend upon the auxiliary state vector and will dissappear under
differentiation.

It then follows that

=Ti ar arcf2 rc3
= (pi:fl-tfb:fl) C + (Pi:f2tfbaf2) + (Pi:3-tf:f)aqfc adf, asf Yf

54

Chapter 3. Recursive Esimator.

rf qfo cl -fc2 -qfc3
= 2(Pi:f-tfb:f) -qfc3 qfc2 qfcl -qfcO

qfc2 qfc3 qfco qfcl

qfc3

+ 2(i:2-tfb:f2) qfco

-qfcl

qfc2 qfcl qfco-

-qfcl qfc2 -qfc3

-qfco qfc3 qfc2)
-qfc2 qfc3

qfcl qfco

qfco -qfcl

-qfco qfcl

qfc3 qfc2

-qfc2 qfc3

which can be computed from the predicted state (t fb:f, qfb) and the camera state qbc along with the
known 3D coordinates of the feature point in the fixed frame, Pi:f.

The second and third matrices in the partial derivative chain are simply quaternion multiplication
matrices. Since (see Appendix A)

= qfbqbc = Qbqc O)

qbcO -qbc~

qbcl qbcO

qbc2 -qbc3

qbc3 qbc2

-qbc2 -qbc3
qbc3 -qbc2
qbcO qbcl

-qbc1 qbcO

where qbc bc

where qfb = Q7b

because

qfb = q fbqcorr

55

qfe

then

aqf

(qfb0)
qfbl

qfb32
ý%fb3

Likewise,

= Qbc

qfbaYq-- - Q fb

Model-based Vision Navigation for a Free-flying Robot

The matrix Q, is the postmultiplier matrix for aqb and Q-, is the premultiplier matrix for the
prediction of a•lf as defined in Appendix A.

Finally,

aq
000

1
200
2 •1

2
00 2

This comes directly from the definition of or,.
vector, gives

aq
ae

Since (A 06, where A A (nl,n2,n3) is a unit

2
a8 - +a (cos(•/2)

a8 (sin(0/2)6 a--e 01
-I

near 9 = 0.

The steps involved in linearization of the fourth through sixth rows of Hi are summarized in Figure
3.3-3 below.

56

im

(;

Chapter 3. Recursive Esimator.

Xnav

Xcam

ar
aqfc0 Dar

aqfc

ae
Dqcfb
acror

aqfb
aqfb

4qf

a4qf

aqbc

aqfb

aT.
aqfc

nav

'Tv
Ti(A-nav)l e

a qfc

aqfb

qcor

aT.
ae

(TAina
v)

a(C°Ti) ah.
ae ae

Figure 3.3-3: Steps toward computing the fourth through sixth columns of Hi.

The Hi matrix can be constructed from the calculations outlined here. Repeating the steps which
depend upon the particular feature point pi for i = 1...N yields the matrices H1,...,HN, which
collectively define the measurement matrix H for the current time step.

3.3.2 State Estimation.

The remainder of the state estimation follows the DKF framework, assuming the linearization is
valid for small deviations of state SXaux = Xaux -auxW. The gain is computed as usual:

K = HT(HPHT - R)-l.

The nonlinear measurement equation is used to compute the measurement estimate, which is in turn
used to compute the estimated auxiliary state vector:

. (ff b:f
^ A
Xaux -

V fb:f V fb:f

57

K(y - y).

Model-based Vision Navigation for a Free-flying Robot

The auxiliary state vector prediction x,,a consists of the state predictions for position, velocity, and
rotational velocity and 0 for the Euler angle prediction.

As discussed in the introduction to this section, the correction quaternion qcorr is computed from
the estimated angles 4 and composed with the predicted quaternion to update the estimated
quaternion.

The error covariance matrix representing the error covariances of the auxiliary state vector is
computed as usual:

= (I-KH)P'.

3.3.3 State Prediction.

The position, velocity, and rotational velocity are propagated as usual, using the nonlinear
dynamics model:

" (k+l) ^(k)) At A (k)
+ f Xav At

f(k+l) A(k) A (k) t
fb:f fb:f f(nav

"(k+l) - W(k) + f(A(k)) At.
fb:b - fb:b + f nav

The rotation is processed differently, since it makes no sense to add rotation quaternions. One way
of propagating the state is to consider the rotation

A (k)
(k) At = (k) A fb:b - (angle) (axis),fb:b A Wfb:bI A"()

fb:b

which represents the angle and axis of a rotation over the time interval, assuming a constant
rotational velocity equal to the estimated rotational velocity. Since it is in axis/angle form, this
rotation is easily expressed as a quaternion,

4lste p = (cos(angle)), sin((angle)).axis),

and then composed with the estimated rotation to yield the predicted rotation for the next time step3:

3Although this is an analytically sound way of describing the correction quaternion qstep, it is numerically poor
because the angles are small and vulnerable to quantization error. Note, in particular, that if the magnitude of the
angular velocity is zero, or very close, computation of the axis becomes undefined. Hence, in numerical

58

Chapter 3. Recursive Estimator.

4(k+l)Qf (k) tepqfb qstep*
The covariance is computed as usual, with the state transition matrix resulting from f.(), i.e.

(k+1) = 0 (k) (k) (k)+Q

where

(k) I+[UxAt
aux

3.3.4 The Vision Navigation Recursive Estimator.

The steps required for recursive estimation for the robot vision navigator are summarized in Figure
3.3-4 below.

The peculiarities of the vision navigation estimator include that the right half of the measurement
matrix H contains zero, H is computed two rows at a time, and both a global state vector xnav and
a state vector local to the current computation xa are maintained. Furthermore, in the updates and
prediction steps for the global state vector, rotations are composed rather than added. Otherwise,
the vision navigator estimator is a straightforward application of the EKF.

computations, the small angle approximation should
W -l-*/4, 01/2, 02/2, 03/2).

be made for the sine function yielding the unit quaternion

59

Model-based Vision Navigation for a Free-flying Robot

Measurements
Measurement

Model

(h, R)

State and
Covariance
Estimates

^navAp I

State and
Covariance
Predictions

Xnav

Figure 33-4: The recursive estimator for robot vision navigation. The steps involved in state estimation and
state prediction at each time step are summarized.

60

Inputsus
Dynamics

Model
(f, Q)

State Estimator
for i = 1...N:

Frhi r[h.1

H 1 ... H = H

K=PIHT(HPHH+R)
A A

x =X+K(y - h(xt))

Xa,, qf, x.,

#=(I-KH)P

State Predictor
A A

x = x + f (x,,u,t) At
A

x2, qf = x= M

F= aux,

c =(I+FAt)

P = 0 Q;I + Q

L_ IJ

(time step)

P

-II~

Chapter 4. Estimator Simulations.

4. Estimator Simulations.

Simulations of the recursive estimator are used to experimentally verify its performance under
various conditions of uncertainty in measurements, dynamics, and initial prediction.

A computer program generates an "actual trajectory" for a submersible free-flying robot by
applying a pre-selected set of forces and torques to a numerical dynamic model of the robot
vehicle. Various parameters of the dynamic model are perturbed from those used in generating the
actual trajectory to evaluate the effects of dynamics modelling errors. The program obtains
measurements by computing the geometrically correct measurements through the measurement
equation and perturbing them randomly, simulating noisy measurement data.

Two types of simulations are run: tracking and convergence. The tracking simulations begin with
the state initialized to the actual state, demonstrating the stability of tracking under the various
degrees of dynamics and measurement uncertainties. The convergence simulations begin with the
state initialized in error, illustrating the convergence of the estimated trajectory to the actual
trajectory.

This chapter describes the experimental procedure and the computer routines. Selected results are
presented which typify the performance observed over many simulations.

4.1 Hardware and software

The simulations were run on an Apple Macintosh IIx computer equipped with a Motorola 68030
microprocessor and a Motorola 68882 floating-point coprocessor operating at 16 MHz. Computer
code was compiled from source code written in the C programming language. The THINK C"
development environment accomodated inclusion of Macintosh ROM trap routines.

The computer code is not optimized for speed. It includes an extensive graphics output which
includes a "Camera View" window showing a simulated perspective view of the target plus an "X-
Y View" window and "Y-Z View" window which offer orthographic spatial views of the robot
actual state and the estimated state.

61

Model-based Vision Navigation for a Free-flying Robot

The orthographic views display the location and attitude of the body frame within the fixed frame
from a "bird's eye view" (looking at the XY Plane from above, i.e. along the +Z axis) and from a
view facing the target (looking at the YZ Plane from behind, i.e. along the +X axis). The robot
actual position is displayed as a triad of orthogonal axes representing the body frame axes. The
estimated position is displayed similarly, using a different color for the axes. The orthographic
views display orthographic projections of these triads in the appropriate planes as illustrated in
Figure 4.1-1.

The graphics display allows the user to monitor the performance of the filter as the estimation
trajectory unfolds. For convergence simulations, the initial estimated position begins in error (the
user chooses either a specified or random initial error) and the two sets of axis triads gradually
converge, illustrating the navigation estimate approaching the actual trajectory. For tracking
simulations, the two sets of axes remain more or less on top of one another.

Fixed Frame
Axes

Figure 4.1-1: Illustration of graphics display used to monitor progress of the EKF simulations. The Fixed
Frame Axes are labelled. The other orthogonal triads of line segments represent the location and attitude of the

Body Frame along the actual trajectory (bold triad) and the estimated trajectory (thin line triad) as orthographically
projected onto the XY and YZ Planes. When the state estimate is close enough to the actual state, the two triads

coincide. The black-and-white-squares geometrical figure is the experimental navigation target described in
Chapter 5 and the simulated navigation target for this simulation. In this picture, the state estimate (thin triad) is

in error-it is too low (+Z) and too far to the right (+Y).

Additional numerical information is displayed in the remaining areas of the computer VDT screen
to allow monitoring of particular dynamic values of the algorithm as it proceeds. For
documentation, the program features a data file option which saves the numerical values of all the
estimated and actual state values along the trajectory. The plots of "actual vs. estimated"
trajectories found in this chapter were made from these files.

62

Chapter 4. Estimator Simdations.

When the navigator is not running, the main program allows configuration of the parameters of the
algorithm and configuration of the program. The user can configure the program to add random
noise of several levels of variance to the measurements, to the dynamics, and to the initial
prediction. The user can also choose the number of time steps (each representing 1/30th sec.) in
the simulation, can choose among several pre-programmed trajectories, and can determine whether
the data is to be saved or not.

The following code segment constitutes the primary loop of the program when the robot vision
navigator simulation, "KalmanVision", is running. Ellipses "I" indicates ommissions in the code
listing; this is a skeleton of the program. Appendix B contains an extensive source code listing.

void kvKalmnan(int trajrrole)
{

/* Initialize Kalman Filter Values [f=>xp(O),Pp(O),....]
*/

kvInitVar (trajmnode);

for (kt=O,doneLoop=FALSE;kt<NSteps && donelop-=FAISE;kt++) { /* EF LCX.P */
Systemtask ();

/* Project image to get measurevent vector y [xa (tO) ==>y (tO) I
*/
kvPjctIm() ;

/* Run Kalman Filter locp [xp (t) ,Pp(tO) ,y(tO)->xe(tO),xp (tl),Pp (tl)]
*/
kvFilter() ;

/* Place Camera View, XY-Plane, and YZ-Plane graphics on screen
[y(tO) => Camera View

xa (tO) => Actual locations (green axes) in XY- and YZ-Planes
xe (tO) -- > Estimated locations (bl/pink/yel axes) in XY and YZ]

kvPlaceGrph ();

/* If •Afing, write data to file [xa(tO) ,ae(tO) -> FILE]
*/
if (storeFlag)

kvStore (fMN);

/* OCapute next simulation state vector xa (tl)
*/
kvNextState (kt);

At the beginning of each navigation sequence, the function kvInitVar () initializes the actual state
trajectory, the covariance matrices, and the predicted state vector. For tracking, the initial predicted
state is the same as the actual; for convergence, a random or prescribed error is added to each state

63

Model-based Vision Navigation for a Free-flying Robot

variable. The noise covariances for the dynamics model and the measurement model are prescribed
constants.

The function kvP j et Im () geometrically projects known 3D feature points of the navigation target
onto the image plane according to the camera model, filling the measurement vector ya [] with the
image coordinates. It adds random noise to these measurements if the option is selected by the
user. The feature points are the comers of the white squares for the experimental target, which is
the same one used for obtaining measurements from real imagery as described in Chapter 5. (In
the later experiments on real imagery, the program is altered so that kvP j ct Im () is replaced by the
function kvGetMeas (), which retrieves stored image measurements, filling the measurement
vector ya [] with actual measurements taken from real imagery.)

The function kvFilter () implements one step of the EKF procedure. It utilizes the measurement
vector, the predicted state vector, and the predicted error covariance matrix to produce the estimate
for the current time step and the predicted state vector and error covariance matrix for the next time
step. (Details of kvFilter () are discussed below.) The measurement vector ya.[] comes from
kvP j ct Im (). The predicted state vector xp [] and predicted error covariance matrix Pp [] [] for
time step kt are produced by kvFilter () from the previous time step kt-1. For kt=0O the
initialized versions of xp [i and Pp [] [] are used.

The function kvPlaceGrph () places the graphics on the screen representing the current actual and
estimated states; kvStore () writes the current estimated and actual state vectors to a file if the
option is selected; and kvNextState () generates the "actual" state vector xa [] for the next time
step by integrating the dynamics over a time step.

The main computational portion of the algorithm takes place in kvFilter () . The entire function is
listed below. It consists of function calls that implement the major steps of the EKF along with
symbolic comments which describe the input and output global variables used by the function.

The functionality is quite self-explanatory, although some symbols need clarification. The global
constant NKF refers to the number of feature points (N) used in the EKF. The array ptg contains
the 3D locations of the feature points (pi:f). The array stm[i [represents the state transition
matrix D. All other variables follow the notation used in the development, where the suffix "p"
indicates predicted values of x, y, or P (normally indicated by tildes "-"), the suffix "a" represents
actual values generated by the simulation, and the suffix "e" indicates estimated values (normally
indicated by carets ""').

For more details on the implementations of the EKF steps, see the C source code listed in
Appendix B.

64

Chapter 4. Estimator Simulations.

void kvFilter()
{

kvLinMas ; /* F,ptg => H */

kvGainO; /* Pp,HR => K */

kvPredeas ; /* - y */

kvEstState(); /* y, yp,IK, = e */

kvEstCov(; /* Pp, K,H,R -- Pe */

kvSIMO(); /* xe stm *

kvPredState(); /* e -> p *

kvPredCov(); /* Pe, stn,O - Pp */

Using N=4 feature points for measurement, the program can compute slightly more than one time
step per second. Discarding the graphics and data saving routines, the program can compute over
2.5 steps per second. Increase in performance to 3 or 4 steps per second appears to be achievable
by reprogramming with attention to optimization. The remaining factor of ten increase in speed
required to achieve 30 frames per second appears to be possible by transporting the code to a faster
dedicated processor system and further code optimization. Certainly special purpose architectures
can accomodate more than this quantity of computation at sufficient rates with the power of one or
two modern arithmetic processors.

4.2 Experimental Procedure and Results

The general goals of the experiments with this computer simulation include

(1) verification of the functionality of the EKF with the vision measurement equation,

(2) examination of the tracking performance of the estimator in the presence of measurement
noise and errors in the dynamic model, and

(3) examination of the convergence of the estimator from initial prediction errors.

The procedure for (1) involved implementing and debugging the computer code and using the
graphics display to verify tracking and convergence from initial errors. The procedure for (2) and
(3) included collecting trajectory data for a variety of system parameters and analyzing the
performance.

The tracking and convergence simulations were meant to expose the limits of noise, model
uncertainty, and initial condition errors that the system could withstand and still manage to track the

65

Model-based Vision Navigation for a Free-flying Robot

trajectory of the robot accurately. A positive result of the experiments was that no meaningful
limits exist for these quantities because the estimator was stable and convergent within an operating
envelope far exceeding what could be tolerated by other elements of the system.

For example, the system converged to the actual trajectory from an initial condition which had the
camera pointed nearly 90' away from the direction of the target The simulation succeeded because
its measurements are generated by geometric projection, but a real system could never tolerate such
an initial condition because the target would not appear in the image and no measurements could be
taken! Hence, the tolerance on initial conditions errors is not limited by the estimation, but by
other considerations.

Likewise, measurement noise was tested only to a certain extent. The system refused to fail
catastrophically for repeated simulations with measurement noises having amplitudes of ten pixels
or more. Estimation trajectories degraded progressively with higher levels of noise but remained
convergent and stable. Since measurements can typically be taken to subpixel accuracy, as will be
shown in Chapter 5, it is meaningless to simulate the navigator with ever increasing magnitudes of
noise beyond what is already unreasonable to expect.

Thus, the experimental results met and exceeded all requirements. Potential failures are not
expected from the estimation routine itself but rather from catastrophic errors in other parts of the
system. Failures occured only for unrealistic circumstances, such as the camera pointing away
from the target.

Hence, performance limits turn out not to be the issue. The important results include some
characterization of how the trajectory estimation degrades with increased uncertainty in the
measurements and models. The results that follow demonstrate the modest degradation of
accuracy with increased measurement and dynamics uncertainty. The results are presented in two
parts. First, pure tracking is demonstrated, with the state vector initialized to the actual state.
Next, the state vector is initialized with substantial errors to demonstrate the convergence of the
estimation to the actual trajectory.

4.2.1 Tracking.

Tracking experiments begin with the estimated state initialized to the actual state. The progress of
the estimated trajectory is monitored over several seconds (30 time steps per second) to get
qualitative and quantitative data on the ability of the estimator to track the trajectory.

The following sections illustrate the degradation of tracking as measurement and dynamics noise
are increased from zero to very large amounts. Section 4.2.1.1 shows the effect of raising
measurement noise in the absence of dynamics noise. Section 4.2.1.2 does the opposite,
increasing the dynamics noise at a constant measurement noise. The last section, §4.2.1.3,

66

Chapter 4. Estimator Simulations.

illustrates the typical performance of the estimator with a substantial level of both measurement and
dynamics noise.

The trajectory used in all the following simulations consists primarily of a forward velocity and a
rolling velocity. The robot starts to the left of center of the target with a positive yaw angle in a
position similar to the one depicted in Figure 4.1-1. A constant forward thrust and constant rolling
moment around the Xb-axis cause the robot to move toward the target and roll. The initial state and
the constant inputs used to generate the true trajectory are shown in the table of Figure 4.2.1-1.
The actual trajectory varies when dynamic "noise" is added.

State Variables
tfb:f 1
tfb:f2
tfb:f3
qfb0
qfbl

qfb2
qfb3

Vfb:fl
vfb:f2
vfb:f3

Wfb:bl
wfb:b2
wf-h.h-

Initial Condition
1.0
-1.7
0.35
0.9659
0.0
0.0
0.2588
0.2
0.1
0.0
0.8
0.0
0.0

m/s
m/s
m/s
rad/s
rad/s
rad/s

Control Inputs
:fln

F.f2
F.f3
T:b2

Tb2
T3

Figure 4.2.1-1: Initial conditions for trajectories used in tracking simulations.

For the simulation results presented in this section and the next, the various levels of random noise
added to the measurements are designated by the five measurement conditions MO...M4.
Condition MO designates no added noise; M1...M4 represent increasingly high levels of random
noise. The noise variances and corresponding pixel spread for uniform distributed random noise
are shown in Figure 4.2.1-2.

Measurement Variance Spread
Condition
MO 0 0 pixels
M1 0.0833 x 10-8 0.5

W2 1.3333 x 10-8 2
M3 8.3333 x 10-8 5
M4 33.3333 x 10-8 10

Figure 4.2.1-2: Definition of Measurement Conditions. Apply the
conversion factor 10,000 pixels/meter. The variance and spread refer to the

uniformly distributed random noise added to each measurement.

67

Value
50
20.
-15
50
0
0

N
N
N
N-m
N.m
N.m

Model-based Vision Navigation for a Free-flying Robot

Similarly, the dynamic modelling errors used in the simulations are designated using the
measurement conditions DO...D5. For each case, the internal dynamics model remains the same.
The actual dynamics are altered by adding some level of uniformly distributed random noise to the
accelerations and by utilizing parameters for the mass of the vehicle and drag coefficients that differ
from those in the internal model. Figure 4.2.1-3 shows the noise variance and spread in m/s2 of
the acceleration noise, the actual mass, and the actual drag coefficients. The latter two parameters
are expressed relative to M and C, the mass and coefficient of the internal model.

The condition DO represents a perfect model. Conditions D1...D4 represent dynamics models with
increasing acceleration noise, increased inertia, and increased drag. The last condition, D5, uses a
high level of noise but the inertia and drag assumed by the model are lower than the actual vehicle.

Dynamics Variance Spread Mass Drag
Condition (m/s2)_ Coefficients
DO 0 0 M C
D1 0.1 x 10-4 0.0055 M 2 C
D2 1.0 x 10-4 0.0173 2 M 8 C
D3 2.0 x 10-4 0.0245 3 M 18 C
D4 4.0 x 10-4 0.0346 4 M 32 C
D5 4.0 x 10-4 0.0346 0.25 M 0.125 C

Figure 4.2.1-3: Definition of Dynamics Conditions. The variance and spread refer to
uniformly distributed random noise added to modelled accelerations. The mass and drag

coefficients are those used as parameters in the dynamics model.

The following table indicates which conditions are active for the simulation results shown in this
section. The top row of the table are conditions used in the first section to demonstrate effects of
measurement noise alone. The remainder of the second column are conditions used to demonstrate
dynamics uncertainties alone. The remaining condition (M2,D5) is used in subsection 4.2.1.3 to
show tracking for all thirteen state variables. The measurement and dynamics conditions used for
each results are also listed at the top of each graph.

DO
D1
D2
D3
D4
D5

MO M1
--- Figure
--- Figure
-- - Figure

Figure
Figure

M2
4.2.1.1-1
4.2.1.2-1
4.2.1.2-2
4.2.1.2-3
4.2.1.2-4

M3 M4
Figure 4.2.1.1-2 Figure 4.2.1.1-3 Figure 4.2.1.1-4

Figure 4.2.1.3-1

68

L--

Chapter 4. Estimator Simulations.

4.2.1.1 Measurement Errors

Presentation of the results for measurement errors is intended to give the reader a feeling for the
effect of raising the level of measurement errors with everything else remaining constant.
Condition DO is used for the dynamics, meaning that the dynamic model is identical to the actual
dynamics of the robot. Hence, there should be no errors added by the predictions.

The following four figures depict the actual and estimated trajectories for two state variables, tfb:f
and its derivative vfb:fl. The other eleven trajectories are omitted for brevity. These two
trajectories are typical of the degradation of performance in the other variables. All thirteen state
variables trajectories are presented for the last simulation of Section 4.2.1.

In these simulations, four feature points are used. The measurement noise covariance matrix R is
set to reflect the amount of noise actually being added to the measurements. Specifically, the
covariance matrix is initialized to

R = a2 I

where the variance 02 is set to the same value of variance used in generating the noise. The
difference is that the noise added to the measurements are uniformly distributed and the estimator
assumes that they are Gaussian distributed.

The results show little degradation in tracking performance as the measurement noise is amplified.
Also, the position tracking is noticeably smoother than the velocity tracking.

(In the graphs of this chapter, an abbreviated notation is used for the state variables in which ti
replaces tfb:fi, qi replaces qfbi, vi replaces vfb:fi, and wi or oi replaces wfb:bi.)

69

Model-based Vision Navigation for a Free-flying Robot

Tracking Simulation
Conditions:

M1
DO

2

1.5

(02 = 0.0833 x 10-8, ±0.5 pixels uniformly distributed error)
(exact dynamic model)

- tl -act

d" t -eat

0 10 20 30 40 50 60 70 80 7-_h- .s-rSOGS

.25 -

0.2 "

0.15

01 .

05 -

_vl-act

Irv I -est

I i I I I i I I
0 10 20 30 40 50 60 70 so80 ' 7s

Figure 4.2.1.1-1: Simulated actual and estimated trajectories for state variables tfb:fl (meters) and vfb:fl
(meters/second) versus time step index.

70

I

--
o•a - -

him

Chapter 4. Estimator Simulations.

Tracking Simulation
Conditions:

M2
DO

2

1.5

(02 = 1.3333 x 10-8, +2 pixels uniformly distributed error)
(exact dynamic model)

[tl -act
ýtl -est

0 10 20 30 40 so50 60 70 80 __(•___

0.3 -

0.25 -

0.2 1

0.10.
0.05 -

--v -act

6v1 -est

I I I I I I I I
0 10 20 30 40 50 60 70 so 80 -MME .

Figure 4.2.1.1-2: Simulated actual and estimated trajectories for state variables tfb:fl (meters) and vfb:fl
(meters/second).

71

I

r.

r-

w

Model-based Vision Navigation for a Free-flying Robot

Tracking Simulation
Conditions:

M3 (02 = 8.3333 x 10-8, ±5 pixels uniformly distributed error)
D 0 (exact dynamic model)

2

1.5

0 10 20 30 40 50 so60 70 8so0 "M- S9,5

0.25 -

0.2 *

0.15IQ
0.1 -

.05 -

O 10 20 30 40 50 60 70 80o __-_ _ _S

Figure 4.2.1.1-3: Simulated actual and estimated trajectories for state variables tfb:fl (meters) and vfb:fl
(meters/second).

72

"ti-act

r t-est

vl1-act

v I -et

1 · · · ·

V.1 -

.

Chapter 4. Estimator Simulations.

Tracking Simulation
Conditions:

M4 (o2 = 33.3333 x 10-8, ±10 pixels uniformly distributed error)
D 0 (exact dynamic model)

2

S1.5
tl -act

tl -est

0 10 20 30 40 50 60 70 s80o -1. ' ,IF

0.3

0.25

0.2

15

0.1

.05

vl -act

"vI -est

-

.

0 10 20 30 40 50 60 70 80 iMiE

Figure 4.2.1.1-4: Simulated actual and estimated trajectories for state variables tfb:fl (meters) and vfb:fl
(meters/second).

73

.

m

-

-

4

Model-based Vision Navigation for a Free-flying Robot

4.2.1.2 Dynamics Errors

Similar data to those presented in the previous section appears in in the following four figures.
The dynamic condition is degraded from D1 to D4 and the measurement condition is Ml. Notice
that the actual trajectories get shallower as the condition is changed from D1 to D4 because of the
increased inertia and higher viscocity introduced.

As the actual dynamics move further away from the modelled dynamics, the velocity estimate
degrades so that it has error peaks of nearly 10 cm/s, but the position estimate remains within a
couple centimeters of the actual trajectory. This is partly because the measurements taken for
vision navigation give no direct information about velocities.

74

Chapter 4. Estimator Simulations.

Tracking Simulation
Conditions:

M1
D1

2

1.5

(0 2 = 0.0833 x 10-8, _+0.5pixels uniformly distributed error)
(02 = 0.1 x 10-4, Mact = Mmodel, Cact = 2 Cmodel)

- t1-act

i tI -0st

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 111• 'iV

-vl-act

or v 1 -est

O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 -TMf. -)

Figure 4.2.1.2-1: Simulated actual and estimated trajectories for state variables tfb:fl (meters) and vfb:fl
(meters/second).

75

0.3 -

0.25 -

0.2 "

0.15 .

0.1 -

0.05 -

-I L I ! I I I I · I I I I I· 1 · I I · · 1 1 · 1

1^
p,

L.

I-

· · · · · · · ·

Model-based Vision Navigation for a Free-flying Robot

Tracking Simulation
Conditions:

M1 (02 = 0.0833 x 10-8, +0.5 pixels uniformly distributed error)
D2 (0 2 = 1.0 x 10-4, Mat= 2 Mmodel, Cact = 8 Cmodel)

2

S1 .5

0 10 20 30 40 50 60 70 60 90 100 110 120 130 140

I
0.3

0.25

0.2

0.15

0.1

0.05

-tl -act
SlltI -e t

-vl-act

1iv I -est

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 -IME 1,P5

Figure 4.2.1.2-2: Simulated actual and estimated trajectories for state variables tfb:nf (meters) and vfb:fl
(meters/second).

76

Chapter 4. Estimator Simulations.

Tracking Simulation
Conditions:

M1
D3

2

1.5

(02 = 0.0833 x 10-8, ±0.5 pixels uniformly distributed error)
(02 = 2.0 x 10-4, Mact = 3 Mmodel, Cact = 18 Cmodel)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 t•-

0.3

0.25

0.2

0.15

0.1

0.05

0

Stl -act

-v1-act

v I -et

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 _IM_•_ _1

Figure 4.2.1.2-3: Simulated actual and estimated trajectories for state variables tfb:fl (meters) and vfb:fl
(meters/second).

77

Model-based Vision Navigation for a Free-flying Robot

Tracking Simulation
Conditions:

M1 (a2 = 0.0833 x 10-8, +0.5 pixels uniformly distributed error)
D4 (a 2 = 4.0 x 10-4 , Mact = 4 Mmodel, Cact = 32 Cmodel)

1.5 -

20 30 40 50 60 70 80 90 100 110 120 130 140 7tme -5ct,

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 "'T~ iE•P)

Figure 4.2.1.2-4: Simulated actual and estimated trajectories for state variables tfb:fl (meters) and vfb:f1
(meters/second).

78

[t1-ac t

tI -oat

0 10

1

0.3

0.25

0.2

0.15

0.1

0.05

0

2 -
r

-vI -act

1"v1 -est

Chapter 4. Estimator Simulations.

4.2.1.3 Measurement and Dynamics Errors

The last illustration of tracking performance demonstrates the performance of the estimator under
substantial uncertainty in both the measurements and the dynamics for all thirteen state variables.

The following figure shows the results of a simulation using measurment condition M1 and
dynamics condition D5. The measurement condition corresponds to errors as large as 2 pixels in
each coordinate of the measurements. The dynamics condition represents noisy accelerations and
an actual robot which is lighter and experiences less drag than the internal model suggests.

79

Model-based Vision Navigation for a Free-flying Robot

Tracking Simulation

M2 (0 2 = 1.3333 x 10-8, ±2 pixels uniformly distributed error)

D5 (y 2 = 4.0 x 10-4, Mact = 0.25 Mmodel, Cact = 0.125 Cmodel)

1 .

0 10 20 30 40 sO 0o 70 0o 90 100 110 120

0.5

0

0.5

-1

*1.5

-2

0.5

-0.5

0 10 20 30 40 sO sO 70 sO 90 100 110 120

"-mt3-act
dP t3-est

0 10 20 30 40 SO 60 70 s0 90 100 110 120

Figure 4.2.1.3-1(a,b,c): Simulated actual and estimated trajectories for state variables tfb:fl, tfb:f2, and tfb:f3
(meters).

80

7*LM~ ~ji~'34

TIM 4 aO

I t -act

""tI -eo t

t2-act
q t2-est

Chapter 4. Estimator Simulations.

... Tracking Simulation (M2,D5), continued - VELOCITY...

o.s M

0o

VI

0.5s

I ~ I I I I I l I I
0 10 20 30 40 SO 60 70 so 90 100 110 120

-tIME s!T
0 10 20 30 40 so0 60 70 80 90 100 110 120

I I I_ I I I

O 10 20 30 40 SO 60 70 60 90 100 110 120

tLM1 4-il

Figure 4.2.1.3-1(d,e,f): Simulated actual and estimated trajectories for state variables vfb:fl, Vfb:f4, and vfb:f3
(meters/second).

0

1

O

Il

.v1--ot

"vl-eat

hv2-act I

l v2-est

""v3-act

flv3-est

-M

T

Model-based Vision Navigation for a Free-flying Robot

... Tracking Simulation (M2,D5), continued - ATTITUDE...

0.5

0

-0.5

-1

1

0.5

0

-0.5

-1

" q0-act

AqO-est

-qI-act

"rql-est

-tlw c 5-1,a
0 10 20 30 40 50 60 70 80 90 100 110 120

Figure 4.2.1.3-1(g,h): Simulated actual and estimated trajectories for state variables qfbo and qfbl.

82

0 10 20 30 40 50 60 70 80 90 100 110 120

Chapter 4. Estimator Simuldations.

... Tracking Simulation (M2,D5), continued - ATTITUDE...

I -

0.5 -

-0.5 -

-1

0.5

-0.5 -

- q2-act

4 q2-est

0 10 20 30 40 50 60 70 80 90 100 110 120

q3-act

&q3-est

i I I I I I I I I I I I I--+ ims 5 5
0 10 20 30 40 50 60 70 80 90 100 110. 120

Figure 4.2.1.3-1(ij): Simulated actual and estimated trajectories for state variables qfb2, and qfb3.

83

out"

_

P

4

Model-based Vision Navigation for a Free-flying Robot

... Tracking Simulation '(M2,D5),continued - ANGULAR VELOCITY.

I I I I I I I I I I 1~A t~..'P(~4 - - - -- C ¶L t tl.'. J

0 10 20 30 40 50 60 70 60 90 100 110 120

- ar

O 10 20 30 40 0 60 70 O0 90 100 110 120

II&A

0 10 20 30 40 s0 60 70 80 90 100 110 120

- 53-eat

-rlMe SfrP5

Figure 4.2.1.3-1(k,l,m): Simulated actual and estimated trajectories for state variables wfb:bl, Wfb:b2 and
wfb:b3 (rad/sec).

84

0.5 -

u0.

NJ
Wi

N

-0.5

0.5

-0.5

- --- r r-- - -- Is -, - -- -- s

-o'wl-act

qwl -est

I w2-act
4*Pw2-est

- -

1 5

-4ft

Chapter 4. Estimator Simulations.

4.2.2 Convergence from Initial Prediction Errors.

In the previous section, the estimation trajectories began at the same state as the actual trajectory.
Those experiments were useful for visualizing the stability of the estimator under adverse
measurement and modelling conditions. This section presents the results of a typical simulation in
which the estimator begins in error.

All thirteen state variable trajectories are presented in the following figure. The conditions M2 and
D5 are used. The trajectories show good convergence in the position and attitude state variables
and convergent but noisy behavior in the velocity variables.

85

Model-based Vision Navigation for a Free-flying Robot

Convergence Simulation
M2 (02 = 1.3333 x 10-8, ±2 pixels uniformly distributed error)
D5 (y 2 = 4.0 x 10-4, Mmodel = 0.25 Mact, Cmodei = 0.125 Cact)

3

2.5

2

1.5

0 10 20 30 40 s0 60 70 80 90 100 110 120

0.5

0

-0.5

-1

-1.5

-2

0 10 20 30 40 50 60 70 80 90 100 110 120

0.5 .

I I I

0 10 20 30 40 50 60 70 80 90 100

Te S •eP
110 120

Figure 4.2.2-1(a,b,c): Simulated actual and estimated trajectories for state variables tfb:fl, tfb:f2 and tfb:f3
(meters).

86

-0.5

mt3-ct

iP t3-eat

_Vfmzlý~

I W l W M • W I m I

.. tl -act
"f tI -est

I t2-act

Nt2-eat

Chapter 4. Estimator Simulations.

... Convergence Simulation (M2,D5), continued - VELOCITY.

0.5

N1
* vl-ASt

Ckvl -est

0 10 20 30 40 SO 60 70 80 90 100 110 120

0

-0.5

-1

-1.5

0.5

1

-10.5

1.5

1

0.5

0

-0.5

0 10 20 30 40 50 60 70 80 90 100 110 120

Figure 4.2.2-1(d,e,f): Simulated actual and estimated trajectories for state variables vfb:fl, Vfb:f2 and vfb:f3
(meters/second).

87

0 10 20 30 40 50 so0 70 60 90 100 110 120

N

N

4

- v2-act

%2" v2-est

-ýI3-&Ct

Model-based Vision Navigation for a Free-flying Robot

... Convergence Simulation (M2,D5), continued - ATTITUDE.

1

0.5

0

-0.5

-1

0 10 20 30 40 50 60 70 80 90 100 110 120

0.5

0

qO-act

- q0-est

qI -act

1 eqi -est

0 10 20 30 40 50 60 70 80 90 100 110 120

Figure 4.2.2-1(g,h): Simulated actual and estimated trajectories for state variables qfbo and qfbl.

88

Chapter 4. Estimator Simulations.

... Convergence Simulation (M2,D5), continued - ATTITUDE...

0.5

0

-0.5

0.5

0

-0.5

.0 10 20 30 40 50 60 70 80 90 100 110 120

- q2-act

4 q2-est

- q3-act

41r q3-est

TIME:s TW5
0 10 20 30 40 50 60 70 80 90 100 110 120

Figure 4.2.2-1(ij): Simulated actual and estimated trajectories for state variables qfb2 and qfb3.

89

Model-based Vision Navigation for a Free-flying Robot

... Convergence Simulation (M2,D5), continued - ANGULAR VELOCITY.

1.5

0.5

0.5

-1

O 10 20 30 40 SO 60 70 80 90 100 110 120

2 .

1.5 -

1 -

0.5 -

0.5

-0.5

0 10 20 30 40 s0 60 70 80 90 100 110 120

0.5

-1

-1.5

2

-w3-act

qMw3-est

0 10 20 30 40 50 60 70 60 90 100 110 120

Figure 4.2.2-1(k,l,m): Simulated actual and estimated trajectories for state variables wfb:bl, Wfb:b2 and wfb:b3
(rad/sec).

90

C--r 3CLL~ L---wwwwwu

-

vlý

E "Wfwl-act
-Mwl -est

T~r e 6T05

w2-act
Sw2-est

Chapter 5. Image Sequence Processing.

5. Image Sequence Processing.

Obtaining image measurements for the EKF from a video sequence requires an image sequence
processor. Model-based image processing was chosen as the paradigm for vision navigation
because it is computationally efficient and because most projected applications take place in known
environments, allowing the required assumptions for model-based processing to be made.

Models of navigation targets allow image processing procedures to be built specifically for
efficiently parsing images of certain targets. This is because the image locations of important
features are predictable for known targets so the procedures can search for only the distinctive
features known to contain crucial information. The disadvantage is that certain procedures are
applicable only to specific targets and can not be used for parsing general images.

Thus, measurements are obtained efficiently at the expense of requiring separate image processing
functions for each navigation target. This is not an extremely high price to pay for efficiency,
however, as the image processing routines required for obtaining the EKF measurements can often
be very simple and compact, as shall be demonstrated in this chapter.

Note, however, that the given structure of the recursive estimator does not dictate any particular
approach to image processing. The EKF will accept the appropriate measurements whether they
are obtained from model-based target-specific image processing as suggested or if they are
obtained by applying shape-from-shading algorithms or even manual extraction of features by a
human operator, among many other possibilities. Only model-based target-specific image
processing is discussed because it is one of few techniques potentially efficient enough to be
implemented in real time with cheap, existing computational hardware.

The general approach of model-based processing is to use at each time step the 3D robot state
prediction from the estimator along with the camera projection model and the target model to
predict locations of relevant features in the current image. The portions of the image containing the
features are analyzed to obtain information leading to the required measurements.

91

Model-based Vision Navigation for a Free-flying Robot.

Such routines are understandably efficient because they waste no effort analyzing useless or overly
redundant data. They are also relatively robust because selectimg portions of the image known to
contain certain features reduces the possibility of false recognition and matching.

Since the routines used for one target are not generally applicable to other targets, this chapter can
only demonstrate the model-based image sequence processing approach by example. To that end,
the following sections describe an experimental target and the associated processes that are used to
parse images of the target. This system is used in Chapter 6 to obtain measurements from a video
sequence of the target.

5.1 Digital Image Processing.

Images are discussed in this chapter as if the image plane were a vertical wall and the image a
framed picture upon the wall or as if the image were appearing on a video monitor. Each image is
bounded by a rectangluar window frame with horizontal edges on the "top" and "bottom" and
vertical edges on the "left" and "right". The orientation of the camera reference frame is such that
the Ye-axis points vertically "down" from the center of the image window frame and the Xe-axis
points to the right. Thus the horizontal position of a location in the image is specified by the Xc
coordinate, the vertical position by the Ye coordinate. The relationship between the image window
frame and the camera reference frame is illustrated in Figure 5.1-1.

Ix o horizontal

Yo
YO

-~ xC

I Y

Figure 5.1-1: An image is described as a framed picture on a'vertical wall.

The physical image has two spatial dimensions and a temporal one. At any time t and any location
(x,y) in the image window frame, the brightness can be specified as I(x,y,t). But for processing

92

Image Window Frame

Chapter 5. Image Sequence Processing.

images with a computer, the brightness signal is discretized spatially and temporally and is
quantized. Temporal sampling produces a sequence of 2D images Ik(x,y) = I(x,y,to+kAt) where to
is an initial time, At is the sampling interval, and k is an integer in [0,1,...,oo). Spatial
discretization results in images Ik[m,n] = Ik(Xo+nAx, yo+mAy) where xo and Yo are respectively
the left and top boundary of the image window frame, Ax and Ay are the horizontal and vertical
separation between samples, and m and n are integers in [0,...,M] and [0,...,N] respectively.
Finally, quantization results in digital images

bk[m,n] =loo• =f r(

where Io is the "black level" of brightness, ATI is a quantum of irradiance, and floor() returns the
largest integer not greater than the argument. Additionally, bk[m,n] is usually represented by an 8-
bit number, i.e. an integer in [0,...,255], sofloor() must return 0 (zero) for negative results and
255 for results exceeding this maximum.

(columns)
n=0 1 2 N-1

(rows) - 1 4- Ax
m=O

1
2M

Ay

M-1

Figure 5.1-2: A digital image is a two-dimensional array of rectangular pixels arranged in rows and
columns.

Even though the picture is actually captured over a small time interval rather than at a single instant
of time and each pixel represents a small area rather a single point in the image, it is assumed that
the digital images processed for vision navigation arise from such idealized sampling and
quantization. The result is that each image in the sequence is treated as a two-dimensional array of
picture elements, or pixels, which each belong to a row and column in the array and can be
addressed this way. The arrangement of rectangular pixels in a digital image is illustrated in Figure
5.1-2.

93

Model-based Vision Navigation for a Free-flying Robot.

5.2 The Experimental Navigation Target

Designed navigation targets are useful for many applications of vision navigation, including the
intended application, submersible free-flying robots used in neutral-buoyancy tanks for simulating
space robots. When it is possible to place a navigation target in the environment ahead of time, the
target can be designed to make visibility and image parsing very simple, thus increase the speed
and reliability of the navigation.

The experimental navigation target discussed here is designed for the navigation experiments
described in the next chapter. Figure 5.2-1 shows a schematic view of the experimental navigation
target. It consists of a (130cm, 120cm) black base, four large 40 cm white squares in the same
plane as the base, and one central 20 cm white square which is raised from the base a distance of
25 cm. The target is mounted on a wall so that the large base is vertical and the central white
square protrudes horizontally into the room. Diagrams in Chapter 6 illustrate the positioning of the
target in the Simulation Room of the MIT LSTAR for actual imaging experiments.

The feature points on this target are the corners of the white squares. The number of feature points
is N = 20, although not all of them need to be used every time step. In fact, the target was
designed so that feature points are evenly distributed over the target. Since points at wide angles to
each other allow the best triangulation, it is desirable to use points near the outside of pictures. The
even distribution allows points to appear away from the center of the image for both close and
distant viewing of the target.

Other desirable properties of this target include that it contains high contrast and it consists of basic
geometric elements which allow high accuracy localization of the points. These properties enhance
the efficiency and accuracy of the image measurement process.

A disadvantage of this target is that it contains a 180' symmetry, that is it looks the same upside
down as it does right side up, for example. This is not a serious concern for vision navigation,
however, because the estimator should never be anywhere close to 90' in error from the actual
orientation, thus precluding any possible confusion.

94

Chapter 5. Image Sequence Processing.

liii 1.3m mI

0.4 m 0.1.5m. 0.2 m-II I I I

r

O.25 m

Figure 5.2-1: Experimental target configuration for testing of image processing routines. High
contrast and well-defined feature points allow for simple and efficient image processing. An

unfortunate oversight of this particular target design is that its symmetry does not allow unique
initial alignment. For tracking, this is not an issue.

95

1.2 m

--- i

r_

Model-based Vision Navigationfor a Free-flying Robot.

5.3 Image Processing Procedures.

The image processing task consists of finding the feature points in the image given a relatively
accurate initial prediction of the robot and camera states. For this target, this can be accomplished
by the following five steps:

(1) predict feature point locations in the image,

(2) use these predicted point locations to predict locations and orientations of the
quadrilateral edges and to localize search windows for each quadrilateral edge,

(3) within each search window, find several points on the quadrilateral edge,

(4) compute equations for the lines containing the quadrilateral edges by using a least
squares fit on the set of points found on that edge,

(5) intersect pairs of lines to locate the quadrilateral corners; these locations are the desired
measurements.

These steps use detailed information about the target so that images of it can be efficiently parsed to
obtain precise measurements of the image locations of the feature points. The following discussion
outlines in more detail how the low-level image processing is performed.

Since straight lines on the target appear as straight lines in the image and angles depend upon.
perspective, the navigation target will appear in images as a set of white quadrilaterals on a black
background. The locations of the corners, which are the desired measurements, are efficiently
found because of the geometric simplicity of the target. Each corner is the intersection of two lines
defined by adjacent sides of one of the quadrilaterals. Equations for the lines can be found by
regression if the locations of several points on the sides of the quadrilaterals can be found. Points
on the sides of the quadrilaterals are easily detected in the raw image data as sudden changes in
image brightness because the quadrilaterals are bright and the background dark. All that is needed
is a procedure for locating several points along each quadrilateral side.

A good state prediction for the robot is available, allowing the 3D feature points on the target to be
projected onto the image plane using the measurement equation:

3Y = h (inav,t).

The vector Y contains the predicted image locations for the twenty feature points. These predicted
comers can be used to localize the searches for the quadrilateral sides. Figure 5.3-1 illustrates how
the location of the quadrilateral sides are predicted from predicted point measurements.

96

Chapter 5. Image Sequence Processing.

Image
of

RVN
Experimental

Target

X Pedicted
Point
Feature

Predicted
Line
Feature

Figure 53-1: Using predicted feature points to localize line searches.

Figure 5.3-2 illustrates a localized search window used for seeking brightness discontinuities. The
method utilized in the experimental system is to search along paths in the image roughly orthogonal
to the predicted quadrilateral boundary. If the edge is roughly vertical, searches are carried out
horizontally and gradients are computed along the horizontal direction. To accommodate random
orientation of the quadrilateral edges, four possible search directions are available: north (vertical),
east (horizontal), north-east (diagonal up and right), and south-east (diagonal down and right).

At each point in the search path the 1D brightness gradient is computed along the search direction,
i.e. roughly orthogonal to the quadrilateral edge. A discrete approximation to the gradient is used.
The point along each search path which contains the gradient of maximum magnitude is postulated
to be on the quadrilateral boundary, as shown in Figure 5.3-2(b). The search window must be
large enough to allow search paths that cross the quadrilateral boundary in several locations,
spaced as far apart as possible. The window must also be small enough to guarantee that the
gradients occurring at quadrilatral boundaries have much higher magnitude than other local features
or noise.

97

Model-based Vision Navigation for a Free-flying Robot.

Edge Finding'

Figure 5.3-2: Using a localized search from a predicted line to find the sides of the squares.
Searches are conducted perpendicular to the predicted line.

There are several tradeoffs associated with this procedure. There is a tradeoff of accuracy versus
speed in the number of points found on each quadrilateral side. More points generally result in a
more accurate equation for the line, but each additional search for a point requires additional
computation to find gradients at points along the search path.

There is also a speed versus accuracy tradeoff in the choice of gradient operator. A large support
operator gives a good estimate of gradient but requires much computation. Since only the location
of the maximum gradient is sought, high accuracy is not very important. It is only important to be
accurate enough to ensure that magnitudes of gradients computed at image locations maintain their
relative order.

The five-cell support operator for gradient (scaled) shown in Figure 5.3-3 below accurately
computes the derivative of up to a fourth-order polynomial curve. Conveniently, this five-element
linear operator also requires zero real multiplications on a digital computer. One element is zero,
two more elements have magnitude one, and the remaining elements are powers of 2. On a digital
computer, the multiplication by ±8 can be done with shifts and the others are trivial, resulting in
efficient computation.

98

Chapter 5. Image Sequence Processing.

Forward Euler

Backward Euler

Centered Difference

Five cell support

Figure 5.3-3: Schematic representation of discrete gradient operators. For example, Forward Euler approximates
Vtx = ax(t)/at - [(-1) x(t) + (1) x(t+At)] (const.).

The speed versus accuracy tradeoffs were not investigated in this study because the total
processing time was dominated by transporting image data rather than actually processing it.

5.4 Computational Efficiency Analysis.

The set of processes outlined in the previous section does not represent a great deal of
computation. If k1 points per line are used in the linear regression and search paths are k2 pixels
long, then the image processor must compute k1k2 gradients, each of which require 4 adds and 2
shifts. Each line fit requires approximately 2kl+10 multiplications and each point intersection
takes about 5 multiplications. If there are N lines and N points to compute, the total computation
cost is (2kl + 15)N multiply operations, and 6k1k2N adds and shifts.

Typical parameters are k1 = 5, k2 = 15, and N = 20. This results in 500 multiply operations
per frame and less than 10,000 adds and shifts. Counting one FLOPS (FLoating point Operations
Per Second) as a multiply and add, or as five adds1, a computational rate of 72,000 FLOPS is
required to fully analyze 30 frames per second.

As a comparison, a typical way of finding the point features for a static image with no predicted
information might begin with computing the 2D gradient at each point. Using a comparable (5,5)
gradient operator on a (640,480) image, this requires over 230 million FLOPS of computation just
to find gradients. Further analysis of this information is required to find the features.

Another more efficient approach for this high contrast target might be to first threshold the image.
Just accessing each pixel in the image, however, requires on the order of one quarter million
memory reads at each frame.

1There are many way of defining FLOPS. On fixed point processors, floating point multiplication requires five to
fifty times the computation as one add or shift. On special purpose floating point processors multiplys can be done
in one machine cycle. This measure is typical of the way multiply and add operations are converted to FLOPS.

99

- 1 1

-1 1

-1 0 1

1 -8 0 8 -1

Model-based Vision Navigation for a Free-flying Robot.

These comparisons highlight the potential efficiency resulting from the recursive nature of the
processing and the existence of the target model. Recursive processing of images in a sequence
results in state predictions for each image which, coupled with the target model, allow predictions
of image content, particularly the location of important features. In this example, the only part of
the image that needs to be accessed are the small search windows localized about quadrilateral
edges. The speed of the technique does not depend upon how large the image is, only upon how
many points per quadrilateral edge are desired, how large the search windows are, and how
accurately the gradients are computed.

Appendix B contains the source code required for parsing images of the experimental target using
this technique.

100

Chapter 6. Experiments on Real Imagery.

6. Experiments on Real Imagery.

Experiments on real imagery combine the measurement procedure developed in Chapter 5 with the
estimator developed and tested in Chapters 3 and 4. An image sequence is parsed by an image
sequence processor, producing measurements of the locations of twenty points of a navigation
target. The target is the one described in Section 5.1 and the image sequence processor is based on
the procedures outlined in Section 5.2.

This chapter describes the experimental apparatus and procedure for obtaining measurements and
presents results of the trajectory estimation. The results are similar to those presented in Chapter 4
except that the measurements are obtained from real imagery rather than simulated.

6.1 Experimental Procedure

The experiments took place in the "Simulation Room", housed in the Laboratory for Space
Teleoperation and Robotics (LSTAR) at MIT. Figure 6.1-1 illustrates the layout of the Simulation
Room. A video camera mounts into a set of three gimbals which allow it to point in any direction
(although the range of motion is, as a practical matter, limited because of cable routing). The
gimbal set rides atop a pedastal which stands on the mobile platform. The platform translates in
two dimensions. The rail system can position the camera from the back wall (X-direction) in a
range of 70cm to nearly 5m and from each of the side walls (Y-direction) up to about 50cm from
each side of the room.

101

Model-based Vision Navigation for a Free-flying Robot.

Bird's Eye View

6.200 m

Figure 6.1-1: Simulation Room schematic. The 1.3m by 1.2m target hangs on the back wall. The X range of the
platform is about 4m and the Y range is 2.6m. The gimbals allow full 3DOF rotation of a camera. The control
station at the front of the roomcontains hardware for driving electric motor actuators for the platform closed-loop,

hardware for collecting video imagery, and hardware for communicating with an external Control.Station.

In this experiment, the platform alone is the "vehicle". The gimbals allows panning of the camera.
Figure 6.1-2 illustrates the three coordinate frames as they pertain to the experiment. The fixed
frame originates at the back corner of the room where the "left" and "back" walls intersect. The
height of the fixed origin from the floor coincides with the height of the center of the navigation

102

*

Chapter 6. Experiments on Real Imagery.

target The positive X direction is toward the back wall, the Y-axis points to the "right" side of the
room, and the Z-axis points down.

The body frame has its origin at the front-left comer of the motion platform (Figure 6.1-2), the Xb-
axis points "forward", i.e. toward the back wall, the Yb-axis points to the right, and the Zb-axis
points down. The camera frame has its origin in the center of the lens of the camera, the Z7-axis is
the optical axis, the Xe-axis points right, and the Yc-axis points down as usual.

Figure 6.1-2: The experimental setup consists of a camera on a tripod on a translating platform. The
platform moves in the Y (Fixed Frame) direction at constant velocity. The camera yaws as it translates (about

the Camera Frame Y-axis) to keep the target in view.

The experimental vehicle has only two possible degrees of freedom (X- and Y- translation). As
configured, the attitude of the robot has the body frame in perfect alignment with the fixed frame at
all times and at a constant height (Z). For the experiment, the trajectory is a simple constant Y-
velocity that takes the vehicle from the left side to the right side of the room. Thus all actual state
variables are constant except for the Y position, tfb:f2, which increases at a constant rate.

To ensure accurate trajectory data, the camera was moved one inch at a time across the floor with
one frame being captured and processed at each step. This simulates a 30 inch per second velocity
across the room. The camera was manually repointed at several locations along the trajectory. The
position and orientation of the camera with respect to the platform was measured at each repointing
for the purpose of updating xcam.

For the image sequence, the Y-rail assembly of the Simulation Room was positioned about 2.8m
from the back wall. Over the course of the 100-inch-long trajectory, which consists of 100 equally
spaced displacements, the camera has to be yawed left four times to keep the target completely in

103

1__ý
Cameral

Model-based Vision Navigation for a Free-flying Robot.

view. The simulated velocity vb:af is +30.0in/s (+0.762m/s), assuming that the time interval
between frames is the video frame interval, 1/30 1 sec.

The largest source of error expected in measuring the actual trajectory of the platform is
measurement of the camera state xcn since the angles were measured by hand. Another potential
source of error is the camera model since only a rough model exists. These errors were
communicated to the estimator via the R matrix. Estimation trajectories will be shown for various
values of R.

The following four tables, Figures 6.1-3 through 6.1-6, document, in order, the 3D feature point
locations in the Simulation Room fixed frame, the state variables of the actual trajectory as
measured directly in the Simulation Room, the command variables implied by the trajectory and the
model dynamics of a submersible robot, and the pointing characteristics of the camera along the
trajectory. The index k designates the time step, from 0 to 100.

104

Feature Point X Yf Zf

0 (Center Square) [ul cor] -0.3125 m 0.871 m -0.100m

1 [ur corner] -0.3125 1.071 -0.100

2 [Ir comer] -0.3125 1.064 0.100

3 [11 corner] -0.3125 0.864 0.100

4 (Upper Left Square) -0.075 0.316 -0.627

5 -0.075 0.716 -0.624

6 -0.067 0.711 -0.224

7 -0.067 0.311 -0.228

8 (Upper Right Square) -0.075 1.212 -0.629

9 -0.075 1.611 -0.628

10 -0.067 1.614 -0.228

11 -0.067 1.214 -0.229

12 (Lower Right Square) -0.058 1.213 0.172

13 -0.058 1.612 0.173

14 -0.050 1.613 0.572

15 -0.050 1.214 0.571

16 (Lower Left Square) -0.058 0.312 0.175

17 -0.058 0.710 0.175

18 -0.050 0.709 0.574

19 -0.050 0.311 0.575

Figure 6.1-3: Table of target feature point locations in the fixed frame.

105

Chapter 6. Experiments on Real Imagery.

Model-based Vision Navigation for a Free-flying Robot.

State variables Initial condition Trajectory

tfb:ft -2.78 m

tfb:f2 0.381 m + 0.762 k / 30

tfn.• 0.948 m ---

qfb0o

qfbl 0 ---

qfb2 0 ---

Vfb:fl 0

Vfb:f2 0.762 rn/s

Vfh.f 0 ---

Wfb:bl 0 ---

Wfb:b2 0

Figure 6.1-4: Table of state variables for actual trajectory. Index k
designates the index of the time step (k=0... 100).

106

Chapter 6. Experiments on Real Imagery.

Commands Initial Condition Trajectory

F.f1 0

F.f2 284.51556 N

0

bl 0 ---

Tb2 0

T:b3 0

Figure 6.1-5: Table of commands for actual trajectory. This force applied
to the model of the submersible robot balances the drag at a velocity of
0.762 m/s, the actual velocity of the real camera relative to the target.

k Wk ro ri r2 r3 thrl thc2 t

0-15 +6' cos(j/r2) 0 0 sin(yjf2) 7.6 cm 13.75 cm 90.55 cm

16-33 -30 " " " " 7.9 12.9 90.55

34-54 -12'" i " 7.6 12.2 90.55

55-84 -23" " " 7.8 11.1 90.55

85-100 -36* " 1__ " 7.8 10.6 90.45

Figure 6.1-6: Table of camera position and orientation with respect to the body frame for five
segments of the trajectory. The camera state vector xcam is updated four times throughout the trajectory

using these values. Index k designates the index of the time step (k=O... 100).

107

Model-based Vision Navigation for a Free-flying Robot.

6.2 Results

One full set of state variable trajectories is presented in Figure 6.2-1. Each state variable starts with
a random initial error to demonstrate the convergence of the estimation. Notice that this error is
quite significant in some state variables, far worse than should be reasonably expected from initial
manual alignment of the robot. In particular, the initial translation errors in the components of tfb:f
are 70 cm, 1.5 m, and 1.4 m respectively (initial tfb:f estimate: [-3.5m,1.9m,2.3m], initial tfb:f
actual: [-2.8m,0.4m,0.9m]), initial velocity errors reached 60 cm/s, and rotational velocity errors
began at nearly 30 deg/sec.

Note also that the "actual" trajectory is itself based on manual measurements and therefore some of
the "actual" state variables contain inaccuracies. The actual trajectories for vfb:fn, Vfb:f3, Wfb:bl,
wfb:b2, wfb:b3 are, in fact, exactly correct1 because the platform neither rotates nor moves at all in
the Zf or Xf directions. The inaccuracies that do exist should be relatively insignificant.

Figure 6.2-2 illustrates the pure tracking performance of the estimator on the same sequence of
measurements with no intial errors in the state predictions. That is, the state variables are initialized
to the "actual" state. Again, the actual state is measured also and may not represent the true state of
the robot any better than the estimated state. Only three state trajectories-tfb:fl, Vvb:f2, Wfb:b3-
are shown; these are typical of the other state trajectories.

1Except perhaps minute errors due to the Y and X tracks not being exactly orthogonal, the floor not being
orthogonal to the walls, the rotation of the earth not being exactly one rotation per day,...

108

Chapter 6. Experiments on Real Imagery.

St -actt
t tl-estI]It~

-2.4 7

-2.5

-2.6 -

-2.7 .

-2.8

-2.9

20 30 40 50 80 70 s0 90 1"•M5• - ,

10 20 30 40 s0 6o 70 80 90 1I-UV t I LV:

1.3

1.2

1.1

1

0.9

0.8

0 10 20 30 40 sO 60 70 80 90

Figure 6.2-1(a-c): Evolution of estimates of state elements (a) tfb:fl, (b) tfb:f2, and

the course of 100 time steps (3.3 seconds). The ordinate unit is meters.

-- t3- act

(c) t3-est

(c) tfb:f3 over

109

•3 w
0 10

2.5

2

1.8

0.5

0

0

i --"'---- ~I -----Y ------ -- -~---- ---

m

m II
I B m m

I I

a t2-act

IS t2-est

IM1~- /N hL

Model-based Vision Navigation for a Free-flying Robot.

0.98 -

0.96 -

0.94 -

0.92 -

0.9 -

0.04

0.02

0

-0.02

-0.04

-0.06

"qO-act

SqO-est

0 10 20 30 40 50 60 70 80 90

-ql-act

[q1-est

-rME? 5VN?
0 10 20 30 40 50 60 70 80 90

Figure 6.2-1 (d-e): Evolution of estimates of state elements (d) qfbo and (e) qfbl over

the course of 100 time steps (3.3 seconds).

110

"1 --- -r-----P- -- ------ ------------ Y------------ ------ ---- I--

I · I · · · · · ·
-

*

-

.

*

I r I , , , .

kbý~

Chapter 6. Experimnts on Real Imagery.

-q2-act

q2-est

0 10 20 30 40 50 60 70 80 90

"q3-act

rq3-est
C,::::

0 10 20 30 40 50 60 70 80 90

Figure 6.2-1 (f-g): Evolution of estimates of state elements (f) qfb2 and (g) qfb3 over

the course of 100 time steps (3.3 seconds). N

111

0.08 .

0.06 a

0.04 -

0.02 -

0

-0.02

0.02

0

-0.02

-0.04

-0.06

-0.08

. 1 _

-- I · F

w

).

I I I J41 " I i

Model-based Vision Navigation for a Free-flying Robot.

-0.2

-0.4

-0.6

-0.S

0 10 20 30 40 50 0 70 s 900

1-

0. -

0.6

0.4

0 10 20 30 40 s0 O0 70 60 90

.6

.4

.2

.2

.4

0 10 20 30 40 s0 s0 70 80 go

v3-aSt

TTiv- 5-5
"'MlS- iQSt

Figure 6.2-1 (h-j): Evolution of estimates of state elements (h) vfb:fl, (i) Vfb:f2, and (j) vtb:f3 over

the course of 100 time steps (3.3 seconds). The ordinate unit is meters/second.

112

Nj

0.2

0

0

0

-0.

-0.

W"v I-aaot

"vlv-est

I

-'v

Z~l

t
Iu

m

Mv2-act
ffv2-est

Chapter 6. Experiments on Real Imagery.

0 10 20 30 40 so 60 70 o0 900o -:ME 5~W~

N

-0.1

-0.2

-0.3

-0.4

0.3

0.2

0.1

0

-0.1

-0.2

I I I I I I I I I
0 10 20 30 40 sO 60 70 sO 90

* . . i I

I w3-acti

MPw3-est

-I .. JI= i J • .

0 10. 20 30 40 50 80 70 00 90

Figure 6.2-1 (k-m): Evolution of estimates of state elements (k) wfb:bl, (1) wfb:b2, and (m) Wfb:b3 over

the course of 100 time steps (3.3 seconds). The ordinate unit is radians/second.

113

0.4

0.3

0.2

0.1

0

-0.1

I

.

-

' wl
1-e

t

qld"w I -out

0,v. i Im

LW2-nat

C w2-est

Model-based Vision Navigation for a Free-flying Robot.

I I I I I I I

-2.5

-2.6

-2.7

-2.6

-2.9

0 10 20 30 40 s0 OO 70 80 90
Ici& 6MTý

LwS-est

i t i e
.-. . t..LM L -I t'

0 10 20 30 40 50 60 70 80 90

Figure 6.2-2(a-c): Estimates of (a) tl=tfb:fl, (b) v2=vfb:f 2 , and (c) W3=wfb:b3
with o2=10- 9 and no added initial error.

114

O 10 20 30 40 s0 60 70 60 90

1.2

1-

0.6

0.6

0.4I-

0.2

0.1

-0.1 -

-0.2

I

1

.

• T M M M a M a A i

'v2-aot

Pv2-est

4 a

- • ° mlp

I

dql
.

=

.

I.

I

'tl -aot

qCtl -est

Chapter 6. Experiments on Real Imagery.

6.3 Tuning the Filter.

For the data shown in Figure 6.2-1, the noise covariance used in the EKF is

R = E[TikkT] = (10-5) I

where I is the (40,40) identity matrix. This represents an particular level of uncertainty in the
measurement model.

The intended procedure for incorporating such uncertainty in the EKF is to establish ahead of time
what the expected uncertainty is. Uncertainties must be modelled as Gaussian distributed random
noise added to each of the measurements.

However, in practice, the level of uncertainty may not be known exactly, as is the case in this
experiment. The measurements themselves are taken to subpixel precision, but the camera model
is not known to great accuracy and there is doubt as to how accurately the camera state vector xcm
was measured. Since the expected errors are not readily quantifiable, the value of R is chosen
quite arbitrarily.

If the covariance is chosen too low, the estimator assumes it has a very good model and may
overreact to noisy measurements, resulting in a jumpy trajectory estimate. If the covariances are
chosen too high, the estimator will be assume the measurements are more noisy than they really are
ard will be sluggish in following quick changes in the trajectory.

The first attempt at estimating the trajectory was performed with R = (10-9) I, which was the
value used in the simulation experiments of Chapter 4. The data demonstrated a striking over-
reaction whenever xcam was changed, as shown in Figure 6.3-1. This indicates that the
measurements of the camera state were indeed very poor. Hence, the confidence level in the
measurement model needed to be altered to reflect the real levels of error present in the
measurements.

Toward this end, the estimation was run with several levels of measurement noise variance.
Defining R = o2I, the values &2 = 10" were used for n = ({ 1,3,5,7,9). The variance 0-2 = 10-5

was used to generate the trajectories in Figure 6.2-1. Figure 6.3-2 shows the estimated trajectory
for state variable wfb:b3 for the remaining four variances. Only this state variable is shown because
it is the one most affected by the change.

115

Model-based Vision Navigation for a Free-flying Robot.

0 10 20 30 40 50 60 70 80 90

ti-act

4" w3- est

0 10 20 30 40 s0 60 70 80 90

Figure 6.3-1(a-b): Estimates of state variables (a) tfb:fl and (b) O)fb:b3 with 2 = 10-9.

116

-2.4

-2.5

-2.6

-2.7

-2.8

-2.9

0.3

0.2

-0.2

Chapter 6. Experiments on Real Imagery.

F=3-rot
42PW3-as

-t;M~ •TES

I.w3-act

qkw3-est

I I I I I I I
0 10 20 30 40 50- 60 70 80 90

17-rme f5TP5

- - - - -

10 20 O 0 70 80 90

Figure 6.3-2 (a-c): State variable wfb:b3 for g2= (a) 10-9,(b) 10-7, and (c) 10- 3.

117

0.6 -

0.4

0.2

-0.2

0.2

o

-0.2

-0.4

-0.6 -

-0.8

r L I I__

Smw3-act

PW3-est

.

Jt

^^

Z

1
-- v -u - I

Model-based Vision Navigation for a Free-flying Robot.

10 20 30 40 50 60 90

TWm W-GtP

Figure 6.3-2(d): State variable wfb:b3 for 0 2= 10-1.

118

-0.2 .

-0.4 -

-0.8

-0.8

a

O.2 . .

L

Chapter 7. Conclusions.

7. Conclusions.

The experimental results of Chapters 4 and 6 have demonstrated the ability of the navigator to track
robot trajectories based on simulated and real measurements. The experiments prove the
functionality of the vision navigation technique. The remaining sections discuss implementation
issues associated with application of the technique to real free-flying robots and recommended
extensions of the navigator ideas to related problems.

7.1 Implementation Issues.

The vision navigator as developed and tested in the previous chapters can be implemented
immediately in its present form as a functional navigation system for free-flying robots. There are
several existing and potential limitations, however, which must be overcome for the system to
perform to its fullest.

The first of these is a potentially poor dynamic model. Only a few of the many possible
inaccuracies in the dynamic model were tested in the simulations. The reason for this is that it is
simply impossible to predict and systematically simulate every possible parameter of the dynamic
model which could be mis-modelled.

Dynamic modelling errors are particularly prone to occur for submersible free-flyers, which will be
the first free-flying vehicles to use this vision navigation system. The dynamics of these complex
robot vehicles in water are extremely intricate, involving nonlinearities and cross-coupling of
dynamics between various translational and rotational degrees of freedom. These effects are not
modelled in the simulations and probably cannot easily be modelled for real robots. If left
unmodelled, these unknown dynamics may cause failure of the estimator when used on a real
robot, particularly at high velocities. Hence, the navigator may be limited to low velocities until
accurate models of robot dynamics are available. The extent of the limitation posed by this
potential mis-modelling is unknown and can only be discovered through experimental trials with a
vision system on an operational vehicle. The dynamic modelling issues are not a great concern for
space robots because they do not share the complex drag environment of submersibles.

119

Model-based Vision Navigation for a Free-flying Robot.

Another potential dynamics-related problem occurs when the frame rate of the navigator is low
compared to the motion of the robot. In these cases, the simple propagation equation used in the
simulations may be unstable and lead to catastrophic prediction errors.

The simulations utilize a simple one-step state propagation which computes the state change
between the current time step and the next time step by assuming the current estimated velocity is
constant over the time interval. That is,

Axk = kkAt,

and

Xk+1 = Xk + Axk*

This works in the simulation because the time intervals are small compared to vehicle motion and
also because the actual dynamics propagation is generated the same way.

In real situations where the sampling rate is low, as will probably be the case in the first
implementations, a stable multistep numerical integration procedure, such as a high-order Runge-
Kutta method, is suggested for state propagation. However, even a stable numerical integration
technique cannot help if the dynamics model is sufficiently poor. The implied limitation, then, is
that the motion of the robot, both speeds and accelerations, must remain low relative to the
sampling rate of the navigator.

The second category of potential difficulties is associated with the mobile camera. Potential errors
in the measurement of x, were not considered in the development of the technique because it was
postulated that the camera state can be measured mechanically and thus should be quite accurate.
The results of the experiment of Chapter 6 demonstrate the adverse effects of a poorly calibrated
camera pointing mechnism and suggest that calibration is important for good results. The extent of
accuracy required in the calibration is an unexplored topic which must be addressed experimentally
for implementations utilizing mobile cameras.

A further concern, however, involves the control system and actuators which are responsible for
keeping the camera trained on the navigation target. This issue was not a topic of this study. It is
expected that the dynamics of the camera system in addition to the dynamics of the robot itself may
make it difficult to maintain a view of the target in a way such that reliable image processing can
take place. If there are significant errors in the camera pointing, the predictions of image content
may be sufficiently in error so that the image processor fails to obtain valid measurements. Once
again, the extent of this potential problem is unknown and must be determined through
experimental trials with an operational system. The implication for initial applications is that there

120

Chapter 7. Conclusions.

may be a limit to the complexity and velocity of the trajectories that the robot is allowed to follow.
A good first step for implementation is to use a fixed camera and simple trajectories.

The third and final category of performance limitations discussed here regards computational
hardware. The existing simulation software provides the speed for a sampling rate of
approximately two frames per second. This will allow only low bandwidth motion of the robot
and the use of simple navigation targets.

However, this performance level is achieved with non-optimized code and a general-purpose
computing architecture. The first step to increasing performance is optimizing the code for speed,
which may result in a ten to twenty percent improvement in efficiency. The second step is to move
to faster hardware, which may increase the performance by another ten to twenty percent. For a
serious performance increase, special purpose digitial video processing architectures are necessary.
The suggested architecture is one in which the arithmetic processor has immediate access to image
data so that large amounts of data do not need to be transported across general-purpose busses.
Appropriate hardware is currently commercially available which could conceivably allow thirty
frames per second processing for simple targets.

Better software and hardware is required for increasing frame rate, but it is also necessary for
accommodating increasingly high processing overhead that is required for fault-tolerant
performance. The current code for image processing associated with the experimental target is not
prepared to deal with the effects of extremely poor state predictions, a partially occluded target, or
other anomolies in the image sequence. Fault tolerant systems may have a processing overhead
that exceeds the processing actually dedicated to performing image processing. The implication is
that until fault-tolerant code can be accommodated by the computational system, initial applications
will only be capable of tracking simple movements and should probably be supervised by a human
operator.

A final comment on computational issues is that the processing required for the EKF will not vary
a great deal. The amount of processing performed by the EKF depends significantly only on the
number of measurements, which should not change much. The additional computational burden
associated with complex targets, complex movements, and fault-tolerance appears in the image
processing routines.

7.2 Recommended Research.

The existence of the EKF as a fundamental part of the vision navigator allows mariy extensions to
the basic technique. One of these is to use the EKF to simultaneously estimate state and particular
parameters of the system in the style of adaptive estimation. For example, aparameter associated
with the camera model or dynamics model may be known only approximately. By augmenting the
state vector with the parameter of interest, it can be estimated in an optimal way along with the

121

Model-based Vision Navigation for a Free-flying Robot.

navigation state. The measurement and dynamics operators hO and f() must be augmented
accordingly, but the added components of these operators are zero when the parameter of interest is
a constant.

This approach can potentially be used for refining the dynamics, measurement, or target model
simultaneously with estimating state. If the estimation is successful, the augmented state variables
representing constant parameters should more or less converge to the proper constant value, at
which point they can be removed from the state vector and treated as constant parameters of the
system.

Intuitively, however, there is no guarantee that the estimator will converge to constant values for
these parameters. Also intuitively, convergence of the estimation is probably a function of how
accurate the initial predictions of these parameters are. It is expected that there are limits to what
one can do with this type of augmentation, because each parameter augmented to the state vector
represents an overall loss of certainty in the models and an increase in fragility of the estimation
process.

Investigation of these concerns and the behavior of dynamic parameter estimation with augmented
systems is an exciting prospect for further research. The ultimate extension of this idea is to track a
constant set of feature points on a target object whose relationship to one another is unknown but
assumed rigid. The object-referenced coordinates of the points could be augmented to the state
vector and in this way the structure of the object and the motion of the robot could be
simultaneously obtained. In this way, the requirement of operating in a completely known
environment could be eliminated.

A second extension due to the EKF framework is the fusion of various additional sensors with the
vision measurements. Since the EKF is impartial to the source of its measurements, the
measurement vector could be augmented with as many additional navigation sensor measurements
as desired, including inertial measurements, range measurements, and depth measurements. The
measurement operator ho would require augmentation with the appropriate relations for each of the
additional measurements. The EKF would perform an optimal estimation based on all the available
inputs.

Of particular interest and importance is the combination of vision and inertial measurements. For
robot navigation they are extremely desirable measurements to use because they can be used both
in water and in space. Also, they are complementary because each excels where the other fails to
be effective. Vision measurements are generally poor for high bandwidth motion and high velocity
rotations because image processing cannot keep up with the scene changes, but inertial instruments
excel at measuring high accelerations and high angular velocities. Inertial navigation, on the other
hand, is poor at maintaining position and attitude measurements for long periods of time because
these are obtained by integration of the accelerations detected by the inertial instruments. Position

122

Chapter 7. Conclusions.

and attitudes obtained this way will accumulate error increasingly over time, but vision has been
shown to be excellent at providing accurate position and attitude estimates periodically, which can
be used to update the inertial estimates.

Hence, vision coupled with inertial instruments can be a powerful combination for navigation of
robots. The success with which humans and other animals utilize their own optical and vestibular
systems for orienting themselves is living testimony to the effectiveness of the pairing. This is a
research topic that can be undertaken even with the most primitive vision navigator in place because
poor and unreliable vision measurements have the most to gain from adding inertial information.

The remaining research recommendations extend beyond the realm of free-flying robots. Research
has already been suggested and is currently being pursued for using EKF-based vision navigation
for cars and for landing planes [DICKMANNS88] and for navigating helicopters1.

Additionally, research is currently taking place to apply a modified version of the vision navigation
technique to observing the motion of human heads from a stationary camera2. The implications of
successful implementation of this type of system is that the position and orientation of the head of a
human operator relative to a computer monitor can be instantly and passively obtained by the
computer. Such information is a useful user interface for such applications as interactive graphics
and virtual realities. Head tracking is typically provided to computers only by burdening the user
with bulky head gear.

The use of an augmented state vector, as discussed earlier in this section, for obtaining both
structure and motion of the head is a plausible problem because the general shape of human heads
is highly predictable. Information obtained by a computer in this way can be used for automatic
identification and recognition of people, among other things.

Other applications and extensions await discovery. The principal candidates for this technology are
those vision problems which are inherently dynamic and those involving observation of objects
which have inertia.

1Part of ongoing research, Prof. Chris Atkeson, Al Laboratory, MIT.

2Ongoing research, Ali J. Azarbayejani, Prof. Alex Pentland, Media Laboratory, MIT.

123

Model-based Vision Navigation for a Free-flying Robot.

r -zr -

124

References.

References.
Altman, Simon L., Rotations, Quaternions, and Double Groups, Clarendon Press, Oxford, 1986.

Atkins, Ella M., Design and Implementation of a Multiprocessor System for Positions and Attitude
Control of an Underwater Robotic Vehicle, S.M. Thesis, Department of Aeronautics and
Astronautics, MIT, May 1990.

Battin, Richard H. and Gerald M. Levine, Application of Kalman Filtering Techniques to the Apollo
Program, APOLLO Guidance, Navigation, and Control report E-2401, MIT Instrumentation
Laboratory, Cambridge, MA, April 1969.

Battin, Richard H., An Introduction to The Mathematics and Methods of Astrodynamics, American
Institute of Aeronautics and Astronautics, New York, NY, 1987.

Brown, Robert Grover, Random Signal Analysis and Kalman Filtering, John Wiley & Sons, New
York, 1983.

Craig, John J., Introduction to Robotics: Mechanics and Control, Second Edition, Addison-Wesley
Publishing Company, Reading, Massachusetts, 1989.

Dickmanns, Ernst Dieter and Volker Graefe, "Dynamic Monocular Machine Vision", Machine
Vision and Applications (1988),1:223-240.

Du Val, Patrick, Homographies, quaternions, and rotations, Oxford, Clarendon Press, 1964.

Fischer, Otto F., Universal Mechanics and Hamilton's Quaternions, Axion Institute, Stockholm,
1951.

Goldstein, S., ed., Modern Developments in Fluid Dynamics, Dover Publications, New York,
NY,1965.

Hamilton, Sir William Rowan, Elements of Quaternions, Second Edition, Volumes 1,2; Longmans,
Green, and Company, London, 1899 (1866).

Horn, Berthold K. P., "Closed-form solution of absolute orientation using unit quaternions",
Journal of the Optical Society of America, Vol. 4, April 1987, page 629.

Horn, Berthold Klaus Paul, Robot Vision, The MIT Press, Cambridge, MA, 1986.

Hughes, Peter C., Spacecraft Attitude Dynamics, John Wiley & Sons, New York, 1986.

Hurwitz, Adolf, Vorlesungen iber die Zahlentheorie der Quaternionen, Julius Springer, Berlin,
1919.

Junkins, John L. and Turner, James D., Optimal Spaceflight Rotational Maneuvers, Elsevier,
Amsterdam, 1986.

125

Model-based Vision Navigation for a Free-flying Robot.

Kane, Thomas R., Likins, Peter W., Levinson, David A., Spacecraft Dynamics, McGraw Hill
Book Company, New York, 1983.

Kelland, P. and Tait, P. G., Introduction to Quaternions: with numerous examples, Second
Edition, Macmillan and Company, London, 1882 (1873).

Kowalski, Karl G., Applications of a Three-Dimensional Position and Attitude Sensing System for
Neutral Buoyancy Space Simulation, S.M. Thesis, Department of Aeronautics and
Astronautics, MIT, October 1989.

McRuer, Duane, Irving Ashkenas, and Graham Dunstan, Aircraft Dynamics and Automatic
Control, Princeton University Press, Princeton, New Jersey, 1973.

Meriam, James L., Engineering Mechanics, v. 2. Dynamics, John Wiley & Sons, New York,
1978.

Molenbroek, P., Anwendung der Quaternionen auf die Geometrie, E. J. Brill, Leiden, 1893.

Nevins, J. L.; I. S. Johnson; and T. B. Sheridan, Man/Machine Allocation in the Apollo
Navigation, Guidance, and Control System, APOLLO Guidance, Navigation, and Control
report E-2305, MIT Instrumentation Laboratory, Cambridge, MA, July 1968.

Rowley, V. M., Effects of Stereovision and Graphics Overlay on a Teleoperator Docking Task,
S.M. Thesis, Department of Aeronautics and Astronautics, MIT, August, 1989.

Schmidt, George T. and Larry D. Brock, General Questions on Kalman Filtering in Navigation
Systems, APOLLO Guidance, Navigation, and Control report E-2406, MIT Instrumentation
Laboratory, Cambridge, MA, 1969.

Spofford, J. R., 3-D Position and Attitude Measurement for Underwater Vehicles, Space Systems
Laboratory Report #21-86, MIT, December 1986.

St. John-Olcayto, Ender, Machine Vision for Space Robotic Applications, S.M. Thesis, Department
of Aeronautics and Astronautics, MIT, May 1990.

Stanley, W. S., "Quaternion from Rotation Matrix", AIAA Journal of Guidance and Control, Vol.
1, No. 3, May 1978, pp. 223-224. [**transferred reference from JUNKINS86]

Tait, P. G., An Elementary Treatise on Quaternions, Third Edition [much enlarged], The University
Press, Cambridge University, Cambridge, 1890 (1873) (1867).

Tarrant, J. M., Attitude Control and Human Factors Issues in the Maneuvering of an Underwater
Space Simulation Vehicle, S.M. Thesis, Department of Aeronautics and Astronautics, MIT,
August 1987.

Thompson, William Tyrrell, Introduction to Space Dynamics, John Wiley & Sons Inc., New York,
1963 (1961).

Viggh, Herbert, Artificial Intelligence Applications in Teleoperated Robotic Assembly of the EASE
Space Structure, S.M. Thesis, Department of Aeronautics and Astronautics and Department of
Electrical Engineering and Computer Science, MIT, February 1988.

Vigneras, Arithmitique des Algtbres de Quaternions, Springer-Verlag, Berlin, 1980.

126

References.

Vyhnalek, G. G., A Digital Control System for an Underwater Space Simulation Vehicle using Rate
Gyro Feedback, S.M. thesis, Department of Aeronautics and Astronautics, MIT, June 1985.

Wertz, James R. ed.and Members of the Technical Staff, Attitude Systems Operation, Computer
Sciences Corporation, Spacecraft Attitude Determination and Control, D. Reidel Publishing
Company, Dordrecht, HOLLAND, 1985 (1978).

Wiesel, William E., Spaceflight Dynamics, McGraw Hill Book Company, New York, 1989.

127

Model-based Vision Navigation for a Free-flying Robot.

C -- /

128

Appendix A. Quaternion Mathematics.

Appendix A. Quaternion Mathematics.
This Appendix contains the relations required for the manipulations of quaternions in this
document. It is not a complete or rigorous treatment of quaternions or rotations. See the
references at the end of this appendix for various treatments.

A.1 Quaternion Basics

A quaternion is an ordered set of 4 scalar quantities. Alternately it can be thought of as a set
containing one scalar and one 3-vector. The quaternion can be written as a 4-vector with its
elements in order

S- q
q2 q

or as an ordered set

;q = (qoqlq 2 ,q 3) = (qo, q).

The first element, qgo, is the scalar part and the last three elements, ql, q2, and q3, form the
vector part. The quaternion itself is represented by a boldface character with a hollow circle
above.

Among alternative representations of quaternions is the "complex number with three imaginary
parts",

q = qo + i q, + j q2 + k q3

where the relations i2 = -1, j2 = -1, k2 = -1, ij = k, jk = i, ki = j, ji = -k, kj = -i, and ik = -j

apply1, or the sum of a scalar and a vector,

1The imaginary numbers i, j, and k are not to be confused with i, j, and k, often used to represent unit vectors in
Cartesian coordinates, although there is some relationship because the imaginary parts are normally considered the
components of a 3-vector.

129

Model-based Vision Navigation for a Free-flying Robot.

q = qo + q

where vector multiplication is non-commutative and defined by qr f qxr - q.r (note that the
product of two vectors is a quaternion, not a vector).

For both of these alternative representations, the element qo (the scalar part) can be referred to as
the "real" part and the remaining three elements or the vector (the vector part) comprise the
"imaginary" part. These "complex number" representations allow quaternion arithmetic to directly
follow from regular arithmetic operations. The multiplication formula discussed later, for example,
can be found directly using the defining relations for (i, j, k) above or the defining relation for
vector multiplication.

The dot product maps two quaternions to a scalar, similar to the usual vector dot product,

p '*q = Poqo+P'q

= Po0 o + P191 + P2q2 + P3q3 .

The magnitude of a quaternion is analagous to vector magnitude (Euclidean norm),

I11"2 =12

A unit quaternion has unity magnitude and can be used to represent rotation in 93 as shown in
§A.3.

Quaternions have conjugates, represented by a superscript asterisk:

q-q2

Note that, in analogy to conventional complex numbers, conjugation of a quaternion leaves the
scalar or "real" part intact and negates the vector or "imaginary" part.

A.2 Quaternion Algebra Properties

The operations of multiplication and scalar multiplication can be meaningfully defined for
the set of quaternions. Quaternion scalar multiplication maps a scalar and quaternion to a new
quaternion, 9t x.gt4 _ 9 4. This is similar to the operation of scalar multiplication in a regular
linear vector space:

130

Appendix A. Quaternion Mathematics.

(q0 aqo

392aq 3 }

where a E 91 and 4 e 914.

Quaternion multiplication maps two quaternions to a new quaternion: 9t 4 X 9t4 -4 914.

Multiplication is not commutative, and therefore the premultiplier and postmultiplier must be
distinguished. The quaternion multiplication is defined as follows:

Poqo-Plq1-P 2q 2-P 3q3 Po -P 1 -P2 3 qo
plq0+P0q1-P 3q2+P2 q 3 p1 P0 -P 3 P2 q1lA

P2qo+P 3q1+po0q2-Plq 3 P2 P3 Po -P1 92
,P3qo-P 2ql +Plq2+POq3 P3 -p 2 p1 Po 93

Equivalently,

(q0 -q -q2 -q 3) Po)

0 q 1 q0o 3 -q2 P1 .
q2 -q3 q0 q1 P2
q3 q2 -ql q0o P3

As demonstrated by the above expressions, quaternion multiplication can be converted into a
matrix-vector multiplication by forming a matrix from one of the multiplicands and a vector from
the other. If the matrix derives from the premultiplier, as does the matrix Pabove, it is called the
Quaternion Premultiplier Matrix2 for that quaternion. If the matrix derives from the
postmultiplier, as does the matrix Qabove, it is called the Quaternion Postmultiplier Matrix
for that quaternion.

The premultiplier matrix P and postmultiplier matrix P for a quaternion p are not the same.
(Otherwise multiplication would be commutative.) Specifically, Pvaries from Pin that the lower
right (3,3) submatrix of each is transposed from the other.

A useful property is that conjugating quatemions results in transposing the multiplier matrices.
That is, if q Q Q, then l* Q QT, qT.

2This terminology is specific to this document. The idea derives from Horn (J. Opt. Soc. Am. A, Vol. 4, No. 4,
1987, pg 629-642.) but he never gives the matrices names.

131

Model-based Vision Navigation for a Free-flying Robot.

The multiplier matrix for a multiplicand is meaningful because it is the partial derivative matrix of
the product with respect to the other multiplicand. That is, if " = p q, then the (4,4) partial
derivative matrix is

That is, the (ij)th element of Pis the partial derivative of the it element of r with respect to the jth
element of 4, dAr/qj. Similarly,

A compact analytical formula for the multiplication operation is

*i; = Poqo - P " 9
Poq + qp + p x q)

which is equivalent to the matrix equation above. This can be more useful when performing
analytical manipulations, whereas the other concept is more useful for performing numerical
calculations.

The quaternion algebra also has a multiplicative identity element, the identity quaternion,

It is easily seen from either the analytical multiplication formula or the matrix formula that e
satisfies the required property of an identity element, i.e. that eq = i and Cle = q for any
quaternion q.

Quaternions have inverses that satisfy q-1 = -lli = e. To find the inverse, notice that the
product of a quaternion with its conjugate is scalar, i.e. has zero vector part,

4 - ()0
Dividing the above equation by 4*l yields (1,0) on the right. Hence,

q*q

132

Appendix A. Quaternion Mathematics.

Note that, for the special case of unit quaternions, qh' = q*.

[If addition of quaternions is defined as termwise addition of the elements, as for regular vectors,
then the above properties make the set of all quaternions a noncommutative algebra with unit
element. The set of all (n,n) matrices is also such an algebra. The set of n-vectors is not an
algebra because there is no multiplication operation. Hence, many powerful properties of algebras
apply to the set of quaternions; this and the relation of quaternions to physical phenomena, like 3D
rotations, motivated Hamilton's intense interest in quaternions.]

A.3 Representation of Rotation

Sir Hamilton found many uses for quaternions in the analysis of physical problems. Unit
quaternions were found to be useful for representing the rotation of a 3-vector in 3D space.

Quaternions can be used to compute the vector x' which results from rotating x about some axis A
through an angle 0 in some 3D reference frame. Commonly, this rotation is computed by
multiplying the original vector by a (3,3) orthonormal direction cosine matrix:

x' = R x.

Alternately, Rodrigues's Formula provides a different representation of the relationship between
the new vector x' and the original vector x. Rodrigues's Formula describes the vector that results
from rotating the original vector through an angle 0 about the unit vector f:

x' = cos0 x + sin0 d x x + (1-cos0) (A * x) d.

To derive this, consider a vector x rotating about the axis A. The vector x consists of components
along A and perpendicular to it, as illustrated in Figure A.3-1. The components can be separated as

x = (x-.d) + (x - (x-)dA).

Only the second term is affected by the rotation about the axis A.

133

Model-based Vision Navigation for a Free-flying Robot.

A

Figure A.3-1: The components of x. The component along the axis of rotation is not affected by the rotation.

After a rotation through an angle 0, the second term becomes

(x - (x.it)A) cose + it x (x - (x.d)A) sin0.

The formula of Rodrigues results from re-combining this with the unchanged (x-id) to get
x'.[SALAMIN79]

Consider now the quaternion formula,

qxq

where q is a unit quaternion and! = (O,x) is underlined to stress that it is a pure vector, i.e. has
no scalar part. The product of the two quaternion multiplications is a quaternion with zero scalar
part and a vector part equal to

(q%-q-q) x + 2 qo qxx + 2 (q-x)q.

The substitutions

0
qo = cosw

and

.0q = smi t

yield Rodrigues's Formula for the vector part.

134

i
X*

Appendix A. Quatermion Mathematics.

Hence,

x ' q=.*

In this way, unit quaternions can be used to implement rotation of a vector. Specifically, the unit
quaternion

q = [cost , sinm]

imparts a rotation to the vector x according to the angle 0 and axis i.

The reverse transformation is

which results trivially from the forward transformation through premultiplication by q* and
postmultiplication by q.

Further perspective on the operation of rotation using unit quaternions results from expanding the
expression in terms of pre- and post-multiplier matrices. Using the properties of section A.2,

q i (* = (Q) q* = ,T .Qi

The matrix Z2 Qhas the form,

0 * 0 0

0 9 - q2 - q2) 2(q,q 2 - oq3) 2(qq 3 + qq2)

o 2(qq2 + %) - q + 2 _ q2) 2(qq 3 - qo)

0 2(q,q - %q2) 2(qq + qoq1) (q - q 2 + qq)

c~l OT}0 R
The lower right (3,3) matrix R is orthonormal and is in fact the familiar direction cosine matrix.
Regardless of the representation of rotation, then, the numerical operation of rotation is the same.

However, quaternions are preferable for some analytic manipulations, and for numerical
manipulations. [HORN87] and [SALAMIN79] both note that composition of rotations requires less
computation when quaternions are used in place of rotation matrices. And, perhaps more

135

Model-based Vision Navigation for a Free-flying Robot.

importantly, re-normalization of quaternions due to finite-precision calculations is trivial compared
to re-normalization of a rotation matrix.

Composition of rotations is important in many applications where rotations are used. To
illustrate how rotations are composed using unit quaternions, the property

p q4* =() ,

is useful. This relation can be verified from direct evaluation of the two sides.

Now let p describe x -+ x' and q describe x' -+ x". Then,

x =pxp

and

= qxq

where . = q p. Thus rotations are composed by multiplying the quaternions associated with each
rotation.

A.4 Rotation Quaternions for Vehicle Dynamics

For describing vehicle dynamics it is necessary to relate the rotational state, described by a
quaternion, to the rotational velocity of the vehicle.

Consider the use of a unit quaternion to represent the rotational state of a free-flying body with
respect to a some fixed reference. Define a body coordinate frame fixed to the body and a fixed
coordinate frame fixed to the reference. Designate the vector x expressed in the body frame as X:b
and in the fixed frame as x:f.

The quaternion qi describing attitude of the body obeys

x.:f = q x:bq

The time derivative of quaternions must be related to rotational velocity for dynamic
modelling using quaternions. Consider any fixed vector x stationary relative IQ the fixed frame.

136

Appendix A. Quaternion Mathematics.

If the body moves relative to the fixed frame, the vector will appear (from the body) to move an
equal magnitude in the opposite direction. Let

x.f = x in fixed coordinates (constant),

_) = x measured in body coordinates at time t, and

4l(t) = the rotational relationship of body to fixed frame at time t.

The rotation formula at time t is

:x. = q(t)xb q*(t).

This leads to

b• = * t :f qt).

at time t.

Now consider an instantaneous 3D rotational velocity w:b = Coo of the vehicle. The velocity is
expressed in the bdy frame. Consider a small time interval [t,t+At], during which the incremental
rotation of the vehicle can be approximated as rotation through an angle woAt about the axis A.
Equivalently, the rotation can be expressed by the unit quaternion

4 = (cos(cooAt/2), sin(ao)At/2)).

During this time interval the fixed vector x:b undergoes incremental rotation 8q*, i.e. rotation by
angle -woot about A, from the vehicle's standpoint. Hence,

S(t+t) = = 8 * (t) (t) q
-:b b f

But by definition,

(t+At) = q (t+At) X:f q(t+At).

Therefore,

i(t+At) = 4(t)4q.
The derivative of the quaternion follows straightforwardly:

qrn q(t+bAt)
dt Att-4 At

137

Model-based Vision Navigation for a Free-flying Robot.

Jim I-- S

Now as At - 0, the limits cos(woAt/2) - 1 and sin(o)oAt/2)-+ ooAt/2, yield

=L (qo(t) q(t)) (0, ((0oAt/2))
dt A At (qo\t)

= (q0o(t), q(t)) (0, l W:b)

S q(t)1 (qo(t)W'b + q()xw:b))= q(t)w :b 9 2 :

This derivative is useful for dynamics of flying bodies when the rotational velocity in the body
frame is known.

References

Battin, Richard H., An Introduction to The Mathematics and Methods of Astrodynamics, American
Institute of Aeronautics and Astronautics, New York, NY, 1987.

Horn, Berthold Klaus Paul, Robot Vision, The MIT Press, Cambridge, MA, 1986.

Horn, Berthold Klaus Paul, "Closed-form solution of absolute orientation using unit quaternions",
Journal of the Optical Society of America A, Vol. 4, No. 4, April 1987, page 629.

Hughes, Peter C., Spacecraft Attitude Dynamics, John Wiley & Sons, New York, 1986.

Salamin, E., "Application of quaternions to computation with rotations", Internal Report (Stanford
University, Stanford, California, 1979).

138

Appendix B. Source Code.

Appendix B. Source Code.
The following pages contain source code listings for the routines used on the Macintosh for the dynamic
simulations and on the Gateway2000 PC (IBM Clone) for image processing. The intent of this listing is to
document the details of the implementation of the vision navigator technique and to provide a reference for
future users of the programs in the laboratory. The machine specific user interface routines are mostly
omitted because they are not relevant to the subject matter of the thesis.

139

Model-based Vision Navigaion for a Free-flying Robot.

k2.h

KalmanVision Header File (kalmanVision)
Ali J. Azarbayejani
December 1990
C Copyright 1990. All rights reserved.

Contains constants related to the Extended Kalman Filter Loop.
The companion header file "kvPlus.h" includes all of the information
related to the Graphics Simulation.

#include <stdio.h>
#include <math.h>

Parameters

NFP
NKF
NM
NS
RS
DT

20
4
2*NKF
12
16
0.033

/* NUMBER OF FEATURE POINTS
/* NUMBER OF FPs USED IN EKF
/* NUMBER OF MEASUREMENTS
/* NUMBER OF KF STATE ELEMENTS
/* NUMBER OF RVN STATES
/* DISCRETE TIME STEP (SECONDS)

Camera Model

FL
PPM

0.1 /* PRINCIPAL DISTANCE (mm)
10000 /* PIXELS PER METER

VMODE 1
AMODE 2

Noise Function Constants

/* NOISE FUNCTIONS USE VARIANCE */
/* SPREAD */

Physical Constants

CF1
CF2
CF3
CFR
CFP
CFY
Ill
122
133
M

CFM1
CFM2
CFM3
CFRI1
CFPI2
CFYI3
12311
13112
11213
MlI
M2I
M3I

490
490
490
200
200
200
100
100
100
1000

(-0.98)
(-0.98)
(-0.98)
(-4)
(-4)
(-4)
0.0
0.0
0.0
0.001
0.001
0.001

/* kg/m
/* kg/m
/* kg/m
/* kg m^2
/* kg m^2
/* kg m^2
/* kg m^2
/* kg m^2
/* kg m^2
/* kg

/* m^-1
/* m^-1
/* m^-1
/*
/*
/*
/*
/*
/*
/* kg^-1
/* kg^-l
/* kg^-1

-2 * CF1 /
-2 * CF2 /
-2 * CF3 /
-2 * CFR /
-2 * CFP /
-2 * CFY /
(122 - 133)
(133 - Ill)
(Ill - 122)
1 /M
1 /M
1 /M

M
M
M
Ill
Ill
Ill
/
/
/

Ill
122
133

*1

*!

*1

*1
*1

140

#define
#define
#define
#define
#define
#define

#define
#define

#define
#define

/*
*/
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#de fine
#define
#define
#define
#define
#define
#define
#define
#define
#define

0.01
0.01
0.01

/* kg^-1 m^-2
/* kg^-1 m^-2
/* kg^-1 m^-2

1 / Ill
1 / 122
1 / 133

#define
#define
#define

/*
*/
void
void
void
void
void
void
void
void
void
void
double
void
void
double
void
void
void
void
void
void
void
void
void
void
void
void
void
double

External Variable Declarations - Kalman Filter variables

*xp;
**Pp;
*xe;

**Pe;
*ya;
*yp;
**HH;
**KK;
**STM;

**RR, **QQ;
*uu;
*xa;
**ptg;

*rq;
*tb;
*tc;

1*
1*

1*
1*
1*

/*

1*
1*
1*
1*
1*
1*
1*

State Vector prediction
Error Covariance Matrix prediction
State Vector estimate
Error Covariance Matrix estimate
Measurement Vector
Measurement Vector prediction
Measurement Matrix (linearized h)
Kalman Gain Matrix
State Transition Matrix
Noise Covariance Matrices
Command Vector
Actual State Vector
Scene pts, global coords
Body/Camera Rotation Quaternion
Body/Camera Translation (Body Frm)
Body/Camera Translation (Cam Frm)

141

IllI
1221
1331

Appendix B. Source Code.

Function Prototypes

kvLinMeas ();
kvGain() ;
kvPredMeas();
kvEstState() ;
kvEstCov() ;
kvSTM() ;
kvPredState();
kvPredCov() ;
ludcmp(double **,int,int *,double *);
lubksb(double **,int,int *,double *);
*vector(int);
nrerror(char *);
free vector(double *);
**matrix(int,int);
free matrix(double **);
kvInitVar(int);
kvNextState(int);
kvFilter();
kvPjctIm();
qLeft(double *,double **);
qRight(double *,double **);
qMult(double *,double *,double *);
qRotMat(double *,double **);
qCRotMat(double *,double **);
qConjugate(double *,double *);
qRotate(double *,double *,double *);
qNormalize(double *) ;
kvUnifNoise(char,double,double,double);

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double

Model-based Vision Navigation for a Free-flying Robot.

/* kvEstCov.c
Estimate Error Covariance Matrix (kalmanVision)
Ali J. Azarbayejani
December 1990
C Copyright 1990. All rights reserved.

*/
#include "k2.h"

void kvEstCov()
/* Pp "predicted error covariance matrix" [input]

K "Kalman Gain matrix" [input]
H "Linearized measurement matrix" [input]
Pe "estimated error covariance matrix at tO" [output]

This function computes Pe = (I-KH)Pp
*/

double **ml;
register double temp;
int i,j,k;

ml = matrix(NS,NS);

for(i=0;i<NS; i++)
for(j=0;j<NS;j++)

for(k=0,temp=0; k<NM;k++)
temp += KK[i][k]*HH[k][j];

ml[i] [j] = -temp;

for(i=0;i<NS;i++)
ml[i) [i] += 1;

for(i=0;i<NS;i++)
for(j=0;j<NS;j++) {

for (k=O,temp=0; k<NS;k++)
temp += ml[i][k]*Pp[k][j];

Pe[i] [j] = temp;

free matrix(ml);
I

142

Appendix B. Source Code.

/* kvEstState.c
Estimate State Vector (kalmanVision)
Ali J. Azarbayejani
December 1990
@ Copyright 1990. All rights reserved.

*/
#include "k2.h"
#include "k2Plus.h"

void kvEstState()
/* xp "predicted state vector for time tO" [input]

K "Kalman Gain matrix" (input]
y "actual measurement vector for time tO" [input]
yp "predicted measurement vector for time tO" [input]
xe "estimated state vector for time tO" [output]

This function computes xe = xp + K(y-yp)
*/
{

int i,j;
double *vl, *v2,b[4];
register'double temp,magq;

vl = vector(NM); v2 = vector(NS);

for (i=0; i<NM; i++)
vl[i] = ya[i] - yp[i];

for(i=0;i<NS;i++)
for (j=0, temp=0; j<NM;j++)

temp += KK[i][j]*vl[j];
v2[i] = temp;

for(i=0;i<NS;i++)
xe[i]=xp[i]+v2[i];

b[l] = xe[3]/2.0; b[2] = xe[4]/2.0; b[3] = xe[5]/2.0;
b[0] = sqrt(l - b[l]*b[l] + b[2]*b[2] + b[3]*b[3]);
qMult(xp+12,b,xe+12);

Normalize the quaternion
*!
qNormalize (xe+12);

/* ZERO THE EULER ANGLES ESTIMATE
The quaternion now holds the estimated rotational state

*/
xe[3]-0; xe[4]=0; xe[5]=0;

free_vector(vl); freevector(v2);

143

Model-based Vision Navigation for a Free-flying Robot.

kvFilter.c
Kalman Filtering for Vision Exterior Orientation
Ali J. Azarbayejani
December 1990
C Copyright 1990. All rights reserved.

#include "k2.h"

void kvFilter()
On Entry: xp p

Pp p
y p

During Execution:
yp p
H p
K p
stm p
R p
Q P

On Exit: xe p
Pe p
xp p
Pp p

oints
oints
oints

oints
*oints
oints
oints
oints
'oints
oints
'oints
oints
oints

"predicted state for time tO"
"predicted error covariance for time tO"
"measurement at time tO"

"predicted measurement at time tO"
"matrix of dh/dx for linearization of h(x) around xp"
"matrix of Kalman Gain for time tO"
"state transition matrix for tO --> tl"
"error covariance of measurement noise"
"error covariance of dynamics noise"
"estimated state for time tO"
"estimated error covariance for time tO"
"predicted state for time tl"
"predicted error covariance for time tl"

These are all external variables and are defined in "k2.h"

/* First, linearize measurement equation around predicted state at tO...
*/
kvLinMeas (); /* xp,NKF,ptg ==> H */

/* ...then compute Kalman gain using linearized H.
*/
kvGain(); /* Pp,H,R ==> K */

/* Predict the measurement at tO using predicted state xpO...
*/
kvPredMeas(); /* xp ==> yp *

/* ...then estimate the state at tO using K, ypO, and actual measurement...
-*/

kvEstState() ; /* y,yp,K,xp ==> xe */

/* ...and estimate the covariance matrix for tO.

/* Pp,K,H,R ==> Pe */

/* Compute the State Transition Matrix
*/
kvSTM();

/* ...and predict the state at tl...
*/kvredtate
kvPredState();

for projecting covariance...

/* xe ==> stm */

/* xe ==> xp */

/* ...and use STM to compute the error covariance matrix at tl.
*/
kvPredCov(); /* Pe,stm,Q ==> Pp */

I

144

/1

kvEstCov();

Appendix B. Souice Code.

/* kvGain.c
Compute Kalman Gain Matrix (kalmanVision)
Ali J. Azarbayejani
December 1990
0 Copyright 1990. All rights reserved.

*/
#include "k2.h"

void kvGain()
/* Pp "predicted error covariance for time tO" [input]

H "matrix of dh/dx at xp" [input]
R "error covariance of measurement noise" [input]
K "matrix of Kalman Gain for time tO" [output]

This function computes K = PH'(HPH' + R)^-1
*/
{

double **ml, * *m2, **m3;
int i,j,k;
register double sum;

ml = matrix(NS,NM); m2 = matrixINM,NM); m3 = matrix(NM,NM);

/* First, form product Pp H'...
*/
for(i=0;i<NS;i++)

for(j=0;j<NM;j++) {
for(k=0,sum=0;k<NS;k++)

sum += Pp[i] [k]*HH[j] (k];
ml[i][j] = sum;

}

/* ...then premultiply by H: H Pp H'...
*/
for(i=0;i<NM;i++)

for (j=O;j<NM;j++) {
for(k=0,sum=0;k<NS;k++)

sum += HH[i][k]*ml[k][j];
m2[i] [j] = sum;

/* ...then add R: H Pp H' + R and invert...
*/
for(i=O;i<NM;i++)

for(j=0;j<NM;j++)
m2[i][j] +- RR[i][j];

invmat (m2,NM, m3);

/* ...and, finally, premultiply by Pp H'.
*/
for(i=0; i<NS; i++)

for(j=O;j<NM;j++)
for(k=0,sum=0;k<NM;k++)

sum += ml[i] [k]*m3[k][j];
KK[i][j] = sum;

}
free_matrix(ml); free_matrix(m2); free_matrix(m3);

)

145

Model-based Vision Navigation for a Free-flying Robot.

/* kvInitProj.c
Initialize Variables (kalmanVision)
Ali J. Azarbayejani
December 1990
C Copyright 1990. All rights reserved.

*/
#include "k2.h"
#include "k2Plus.h"

#define PI 3.141592654

#define VART 0 /* Variance of translational velocities */
#define VARB 0 /* Variance of angular velocities */
#define VARV le-4 /* Variance of translational accelerations */
#define VARW le-4 /* Variance of rotational accelerations */
#define VARY le-8 /* Variance of pixel measurements */

void kvInitVar(trajmode)
/* xa "actual state vector" [output]

xp "predicted state vector" [output]
Pp "predicted error covariance matrix" [output]
QQ "dynamics noise covariance matrix" [output]
RR "measurement noise covariance matrix" [output]
HH "measurement matrix" [output]
rq "Camera/Body rotation quaternion" [output]
tb "Camera/Body translation (Body Frame)" [output]
tc "Camera/Body translation (Camera Frame)" [output]

*/
{

int i,j;
double ct2,st2,mag;
double th,wl,w2,w3;
double *dptr;
double r0,rl,r2,r3;
double cl,c2,c3;

/* SPECIFY ROTATIONAL IC FOR EACH TRAJECTORY (angle/axis)
*/
switch(trajmode) {

case xOnlyCmd: th=0.0; wl=1.0; w2=0.0; w3=0.0; break;
case yOnlyCmd: th=PI/6; wl=0.0; w2=0.0; w3=1.0; break;
case rOnlyCmd: th=7*PI/6; wl-5.0; w2-1.0; w3=(-1.0); break;
case wOnlyCmd: th=0.2*PI; wl=0.0; w2=0.0; w3=(-1.0); break;

)
/* COMPUTE THE QUATERNION
*/
mag = sqrt(wl*wl + w2*w2 + w3*w3);
if(fabs(mag) < le-20)

mag = 1.0;
th = 0.0;

ct2 = cos(th/2.0);
st2 = sin(th/2.0);
xa[12] = ct2;
xa[13] = st2*wl/mag;
xa[14] = st2*w2/mag;
xa[15] = st2*w3/mag;

146

Appendix B. Source Code.

/ * SPECIFY TRANS
*/
switch(trajmode) I

case xOnlyCmd:
xa[01] 0.0;
xa[6] = 1.0;
xa[9] = 0.0;
uu[O] = 60.0;
uu[31 = 0.0;
break;

case yOnlyCmd:
xa[0] = 1.0;
xa[6] = 0.2;
xa[9] = 0.8;
uu[0] = 50.0;
uu[3] = 50.0;
break;

case rOnlyCmd:
xa[0] = 2.0;
xa[6] = 0.0;
xa[9] = 0.0;
uu[0] = 0.0;
uu[31 = 0.0;
break;

case wOnlyCmd:
xa[01 =- 0.0;
xa[6] = 0.0;
xa[9] = 0.0;
uu[0] = 0.0;
uu[3] = 0.0;
break;

POS AND VEL, ROT VEL, AND CMD ICs FOR EACH TRAJ

xa[l] = 0.0;
xa[7] = 0.0;
xa[10] = 0.0;
uu[l] = 0.0;
uu[4] = 0.0;

xa(l] = (-1.7);
xa[71 = 0.1;
xa[10J] 0.0;
uu[l] = 20.0;
uu[4] = 0.0;

xa[ll] = (-1.0);
xa[7] = 0.0;
xa[10] = 0.0;
uu[l] = 0.0;
uu[4] = 0.0;

xall] = 0.0;
xa[71 = 0.0;
xa[10] = 0.0;
uu[1] = 0.0;
uu[41 = 0.0;

xa[2] = (-0.5);
xa[8] = 0.0;
xa[ll] f 0.0;
uu[2] = 0.0;
uu[51 = 0.0;

xa[2] - 0.35;
xa[8] = 0.0;
xa[11] = 0.0;
uu[2] = -15.0;
uu[S] = 0.0;

xa[2] = 0.25;
xa[8] = 0.0;
xa[11] = 0.0;
uu[2] = 0.0;
uu[5] = 0.0;

xa[2] = 0.0;
xa[8] - 0.0;
xa[11] = 0.5;
uu[2] = 0.0;
uu[5] = 40.0;

xa[3]=0; xa[4]=0; xa[51=0;

INITIALIZE xp: PREDICTED STATE VECTOR
*/
for(i=0;i<RS;i++)

xp[i] = xa[i];

ADD NOISE ONLY IF OPTION IS SELECTED
*/

/* if(iNoiseFlag)
for(i=0;i<RS;i++) {

register double AA;

AA = sqrt(3*varI);
if(i>5) (

if(i<9) AA *= 0.4;
else if(i<12) AA *= 0.3;
else AA *= 0.1;

xp[i] += kvUnifNoise(AMODE,0,0,AA);

qNormalize(xp+12);

Here is the code for implementing a manual controlled init cond error.
This is not the most elegant way to do multiple experiments.

147

1*!

1*

Model-based Vision Navigation for a Free-flying Robot.

if(iNoiseFlag) {
long level;

level = iNoiseFlag - iNoCmd;
xp[O0 += level*0.25; xp[l] += level*0.15;
xp[6] = 0.0; xp[7] = 0.0; xp[8] = 0.0;
xp[9] = 0.0; xp[10] = 0.0; xp[ll] = 0.0;
for(i=12;i<16;i++)

xp[i] += kvUnifNoise(AMODE,0,0,level*0.06);
qNormalize (xp+12);

xp[2] -= level*0.05;

/* INITIALIZE Pp: predicted error covariance matrix
*/
for(i=0; i<NS;i++)

for(j=0;j<NS;j++)
Pp[i][j] = 0.0;

/* INITIALIZE QQ: dynamics covariance matrix
*/
for(i=0;i<NS; i++)

for(j=0;j<NS;j++)
QQ[i][j] = 0.0;

for(i=0;i<3;i++)
QQ[i] [i] = VART;

for(i=3;i<6;i++)
QQ[i][i] = VARB;

for(i=6;i<9;i++)
QQ[i] [i] = varD;

for(i=9;i<12;i++)
QQ[i][i] = 5*varD;

/* INITIALIZE RR: measurement covariance matrix
*/
for(i=0;i<NM;i++)

for(j=0;j<NM;j++)
RR[i][j] = 0.0;

for(i=0;i<NM;i++)
RR[i] [i] = varY;

/* INITIALIZE HH: linearized measurement matrix
*/
for(i=0;i<NM;i++)

for(j=0;j<NS;j++)
HH[i [j] = 0.0;

/* INITIALIZE Camera/Body offset r quaternion

rq[03 = 1.0;
tb[O] = 0.0;

rq[l] = 0.0;
tb[l] 0.0;

rq[2] = 0.0;
tb[2] = (-0.3);

rq[3] = 0.0;

dptr = vector(4);
dptr[0]=rq[0] ;
for(i=1l;i<4;i++) dptr[i]=(-rq[i]);
qRotate (tb, dptr, tc);
free_vector(dptr);

148

Appendix B. Source Code.

/* PRINT LOOP MESSAGE (Macintosh II-specific code. ROM Traps required)

int myFont;

SetPort (wPtr [backW]);
GetFNum("\pTimes", &myFont) ;
TextFont (myFont); TextSize (10);
ForeColor (whiteColor);
MoveTo (20,240); DrawString("\pCmd-MouseClick aborts");
MoveTo (20,255); DrawString("\pMouseClick pauses/restarts");

149

Model-based Vision Navigation for a Free-flying Robot.

kvKalman.c
Run Discrete Simulation (kalmanVision)
Ali J. Azarbayejani
December 1990
O Copyright 1990. All rights reserved.

#include "k2.h"
#include "k2Plus.h"

void kvKalman(int trajmode)
/* IMPLEMENTS EXTENDED KALMAN FILTER FOR ROBOT VISION NAVIGATION
*/

int
EventRecord
WindowPtr
Boolean
OSErr
int

/*

*/
xp =

xe =

ya =
HH =
KK =
STM
RR =
uu =

rq =
tb =

/*
*/

kt;
theEvent,dummy;
whichWindow;
doneLoop;
theErr;
fRN;

Allocate buffers for double arrays:

vector(RS);
vector(RS) ;
vector(2*NFP) ;
matrix(NM,NS) ;
matrix(NS, NM);

= matrix(NS,NS);
matrix(NM, NM) ;
vector(6);
vector(4);
vector(3);

Pp = matrix(NS,NS);
Pe = matrix(NS,NS);
yp = vector(NM);

QQ = matrix(NS,NS);
xa = vector(RS);

tc = vector(3);

If SAVE option is selected, open file for data...

if(storeFlag) {
char
Point
SFReply
long
char

buf[256);
dlgLoc;
dlgRply;
cnt;
*theCName;

/* format buffer
/* ul corner of dlg
/* reply record
/* char counter
/* file name

dlgLoc.h = 265; dlgLoc.v = 25;
SFPutFile(dlgLoc, "\pSave DATA in:", "\pkvDATA", 0, &dlgRply);
if(!dlgRply.good) return;
if(theErr=Create(dlgRply.fName,dlgRply.vRefNum,'AliA','TEXT'))

nrerror("Create failed, dude...");
if(theErr=FSOpen(dlgRply.fName,dlgRply.vRefNum, &fRN))

nrerror("FSOpen error, dude...");
cnt=sprintf(buf,"tl-act,tl-est,t2-act,t2-est,t3-act,t3-est,");
cnt+=sprintf(buf+cnt,"vl-act,vl-est,v2-act,v2-est,v3-act,v3-est,");
cnt+=sprintf(buf+cnt, "wl-act,wl-est, w2-act,w2-est,w3-act,w3-est,");
cnt+=sprintf(buf+cnt,"q0-act,q0-est,ql-act,ql-est,q2-act,q2-est,q3-act,q3-

if(theErr=FSWrite(fRN,&cnt,buf))
nrerror("FSWrite error, dude...");

150

est\n")

Appendix B. Source Code.

Initialize Kalman Filter Values [==>xp(0),Pp(0),...]
*/
kvInitVar(trajmode);

for(kt=0O,doneLoop=FALSE;kt<NSteps && doneLoop==FALSE;kt++) { /* EKF LOOP */
SystemTask();

/* Project image to get measurement vector y [xa(t0)==>y(t0)]
*/
kvPjctIm();

/* Run Kalman Filter loop [xp(tO),Pp(tO),y(t0)==>xe(tO),xp(tl),Pp(tl)]
*/
kvFilter();

/* Place Camera View, XY-Plane, and YZ-Plane graphics on screen
[y(tO) ==> Camera View

xa(t0) ==> Actual locations (green axes) in XY- and YZ-Planes
xe(t0) ==> Estimated locations (bl/pink/yel axes) in XY and YZ]

*/
kvPlaceGrph() ;

char outString[50];
int myFont;

GetFNum("\pTimes", &myFont);
SetPort (wPtr [backW]);
sprintf(outString,"%3d",kt);
CtoPstr(outString);
TextSize(18); TextFont(myFont);
MoveTo(570,40); ForeColor(whiteColor); DrawString(outString);

/* If SAVEing, write data to file [xa(tO),xe(tO) ==> FILE]
*/
if (storeFlag)

kvStore (fRN);

/* Cmd-Click breaks the loop; Click alone stops/restarts
*/
if(GetNextEvent((mDownMasklupdateMask), &theEvent))

switch(theEvent.what)
case mouseDown:

if(!BitAnd(theEvent.modifiers,cmdKey)) {
while((!GetNextEvent(mDownMask,&theEvent)
SI (FindWindow (theEvent.where, &whichWindow) !=inContent)))

SystemTask();

else
doneLoop = TRUE;

break;
case updateEvt:

CheckUpdate(&dummy);
break;

/* Compute next simulation state vector xa(tl)
*/

151

Model-based Vision Navigation for a Free-flying Robot.

kvNextState (kt);

Free allocated buffers

free_vector(xp);
free vector(xe);
free_vector(ya);
free matrix(HH);
free matrix(KK);
freematrix(STM);
free matrix(RR) ;
freevector(uu);
freevector(xa);
free vector(tb);
free_vector(rq);

If SAVEing,

free_matrix(Pp);
free matrix(Pe);
free_vector(yp);

free matrix(QQ);

freevector(tc);

close file

if (storeFlag)
FSClose(fRN);

Explicitly erases loop message and updates background

Rect qRect;
SetPort(wPtr[backW]);
qRect - (*wPtr[backW]).portRect;
DrawPicture(wPicHndl[backW],&qRect);

152

Appendix B. Source Code.

S/*

*/
#include "k2.h"

kvLinMeas.c
Linearize Measurment Matrix (kalmanVision)
Ali J. Azarbayejani
December 1990
© Copyright 1990. All rights reserved.

void kvLinMeas()
/* xp points to "predicted state for time tO"

NKF is number of feature points
ptg array of global feature pt coords
H points to "measurement matrix"

double
double
double
double
double
register double
double -
int

*q, *s, *t;
pc[3] ,pc00,dt ([3];
s00, s01,s02,s03, sl, s12, s13,s22,s23,s33;
cl, c2, c3, c4, c5, c6, c7;
M1,M2,**M3, **M4,**rRMM;
temp;
*dp;
i,j,k,1;

M1 = matrix(3,3); M2 = matrix(3,4);
rRMM = matrix(4,4); s = vector(4);

M3 = matrix(3,4); M4 = matrix(4,3);

INITIALIZE VARIABLES...

q = xp+12; qMult (q, rq, s);

s00 = s[0]*s[0];

cl = s00-sll-s22-s33;
c2 = 2*s[0];

for(i=0;i<NKF;i++)

s01 = s[0]*s[l];
sll = s[l]*s[l];

s02 = s[0]*s(2];
s12 = s[l]*s[2];
s22 = s[2]*s[2];

s03 = s[0]*s[3];
s13 = s[l]*s[3];
s23 = s[2]*s[3];
s33 = s[3]*s[3];

/* FOR EACH FEATURE POINT */

INITIALIZE SOME COMBINATIONS

for(j=0;j<3;j++) dt[j] = ptg[i]
c3 = s[l]*dt(O] + s[2]*dt[l] +
c4 = s[0]*dt[O] + s[3]*dt[l) -
c5 = -s[3]*dt[0] + s[0]*dt[l] +
c6 = s[2]*dt[0] - s[l]*dt(l] +

[j] - t[j];
s[3]*dt[2];
s[2]*dt[2] ;
s[1]*dt 2];
s[0]*dt[2];

COMPUTE COORDINATES of pt i in cam coords at predicted state...

dp = vector(4);
qConjugate(s,dp);
qRotate(dt,dp,pc);
free_vector(dp);
for(j=0;j<3;j++) pc[j] -= tc[j];

pc00 = pc[0]*pc[0];

153

[input]
[input]
(input]
[output]

t = xp;

Model-based Vision Navigation for a Free-flying Robot.

FIND ap/kt (leftmost 2,3 submatrix of Hj)

dp = M1[0];
*dp++=(-s00-sll+s22+s33)
dp++= (2 (s03-s12));
dp++=(-2(s02+s13));

; *dp++=(-2*(s03+s12));
*dp++=(-s00+sll-s22+s33);
dp++(2 (s01-s23));

dp++=(2(s02-sl3));
dp++=(-2(s01+s23));
*dp=(-s00+s11+s22-s33);

for(j=0;j<3;j++) {
HH[2*i][j] = FL*(M1[1][j]*pc[0] - M1[0][j]*pc[1])/pc00;
HH[2*i+ll[j] = FL*(M1[2][j]*pc[0] - M1[0][j]*pc[2])/pc00;

}

/* FIND ap/•Q = [(p/as] [Es/Aq] [(q/al]
DO:

*/
dp = M2[0];
*dp++=c4;
*dp++=c5;
*dp++=c6;

M2 =
M3 =
M4 =
Ml =

(1/2) [(p/as]
M2 [as/aq]
(2) Caq/an]

M3 M4

(next 2,3 submatrix of HHj)

*dp++-c3; *dp++=(-s [2]*dt [0]+s [*dt [1l]-s[0]*dt[2) ;
*dp++=c6; *dp++=c3; *dp++=(-s[0]*dt[03-s[3]*dtl1]+s
*dp++=(s[3]*dt([0]-s[01*dt[l]-s[1].*dt[2]); *dp++=c4;

*dp++=c5;
[2]*dt[2]);
*dp++=c3;

qRight (rq, rRMM);
for(j-0;j<3;j++)

fort k=O;k<4;k++) {
for(l=0,temp=0;1<4;1++)

temp += M2[j] [l] * rRMM[l] [k];
M3[j][k) = temp;

dp = M4[0];
*dp++= (- q[l]) ;
*dp++=(q[O]);
*dp++= (q[3]);
*dp++=(-q [2]);

*dp++= (-q[3]);
*dp++= (q[2]);
*dp++-= (-q[l);
*dp++= (q[0]);

*dp++- (-q [2);
*dp++= (-q [3]);
*dp++= (q[0]);
*dp++= (q[1]);

for(j=0;j<3;j++)
for(k=0;k<3;k++) I

for (1=0, temp=0; 1<4;1++)
temp += M3[j][1] * M4[] [k];

M1[j] [k] = temp;

for(j=3;j<6;j++)
HH[2*i][j] = FL*(M1[1][j-3]*pc[0] - M1[0][j-3]*pc[l])/pc00;
HH[2*i+1][j] = FL*(M1[2][j-3]*pc[0] - M1[0][j-3]*pc[2])/pc00;

freematrix(M1);
free matrix(rRMM);

freematrix(M2);
free vector(s);

free_matrix(M3); free matrix(M4);

154

/*,
*1

Appendix B. Source Code.

1/* kvMatTools.c
Matrix Manipulation Tools (kalmanVision)
Ali J. Azarbayejani
December 1990
© Copyright 1990. All rights reserved.

This source code is derived from-"Numerical Recipes in C" by W. Press et al
and adapted for the Macintosh by Ali Azarbayejani. In particular, C indexing is

used
rather than the screwy "kind-of-Pascal-maybe-Fortran" indexing used in the book.
Also Macintosh trap routines are used rather than unix-style memory allocation.

! These functions will only run on a Macintosh !
*/
#include <math.h>
#include "k2.h"

#define TINY 1.0e-20

void ludcmp(double **a,int n,int *indx,double *d)
/* Performs LU Decomposition of matrix
*/

int i,imax,j,k;
double big,dum,sum,temp;
double *vv,*vector();
void nrerror(),free vector();

vv=vector (n);
*d=1.0;
for(i=0;i<n;i++) { /* over rows of the matrix */

big=0.0;
for(j=0;j<n;j++) /* over columns or elements of row i */

if((temp=fabs(a[i] [j])) > big) big=temp;
if(big == 0.0) nrerror("Singular matrix in routine LUDCMP");
/* No nonzero largest element */
vv[i)=1.0/big;

for(j=0;j<n;j++) { /* over columns of the matrix */
for(i=0;i<j;i++)

sum=a[i] [j];
for(k=0;k<i;k++) sum -= a[i][k]*a[k] [j];
a[i] [j]=sum;

big=0.0;
for(i=j;i<n;i++)

sum=a[i] [j];
for(k=0;k<j;k++)

sum -= a[i] [k]*a[k] [j];
a[i][j]=sum;
if((dum=vv[i]*fabs(sum)) >= big) {

big=dum;
imax=i;

if(j != imax) {
for(k=0;k<n;k++) {

155

Model-based Vision Navigation for a Free-flying Robot.

dum=a[imax] [k];
a[imax][k]=a[j][k];
a[j][k]dum;

*d= -(*d);
vv [imax] =vv j];

indx[j] =imax;
if(a[j][j] == 0.0) a[j][j] = TINY;
if(j != n-1) {

dum=l.0/(a[j][j]);
for(i=j+l;i<n;i++) a[i][j] *= dum;

)

freevector(vv);

void lubksb(double **a,int n,int *indx,double b[])
/* Performs Back-Substitution on LU-Decomposed matrix
*/
(

int i,ii=(-),ip,j;
double sum;

for(i=0;i<n;i++) {
ip=indx[i];
sum=b[ip];
b[ip]=b[i];
if(ii>=0)

for(j=ii;j<i;j++) sum -= a[i][j]*b[j];
else if(sum) ii=i;
b[i]=sum;

for(i=n-l;i>=O;i--) {
sum=b[i];
for(j=i+l;j<n;j++) sum -= a[i][j]*b[j];
b [i]=sum/a[i] [i];

}

void invmat(double **a,int n,double **b)
/* Inverts a matrix using LU-Decomposition and Back-substitution
*/
{

double d,*col;
int i,j,*indx;

col = vector(n);
if(!(indx = (int *) NewPtr(n*sizeof(int))))

nrerror("allocation of indx failure in invmat()");

ludcmp (a, n, indx, &d);
for(j=0;j<n;j++) {

for (i-0; i<n; i++)
coll[i=0.0;

col[j]=l.0;
lubksb(a,n,indx,col);
for(i=0;i<n;i++) b[i] [j]=col[i];

156

Appendix B. Source Code.

I
free vector(col);
DisposPtr((Ptr) indx);

double *vector(int n)
/* Allocates a double vector of length n
*/

double *v;

v = (double *) NewPtr(n*sizeof(double));
if(!v) nrerror("allocation failure in vector()");
return v;

void freevector(double *v)

DisposPtr((Ptr) v);

double **matrix(int r,int c)
/* Allocates a double matrix of size (r,c); r is the first index
*/

double *pl, **p2;
int i;

if(!(pl = (double *) NewPtr(r*c*sizeof(double))))
nrerror("allocation of data block failure in matrix()");

if(!(p2 = (double **) NewPtr(r*sizeof(double *))))
nrerror("allocation of ptr block failure in matrix()");

for(i=0;i<r;i++)
p2 [i]=pl+i*c;

return p2 ;

void freematrix(double **v)
{

DisposPtr((Ptr) *v);
DisposPtr((Ptr) v);

void nrerror(char error text[])
/* Error handler which exits gracefully
*/

EventRecord theEvent;

printf("%s\n",error_text);
while(!GetNextEvent(mDownMask,&theEvent));

/* exit(0);*/
)

157

Model-based Vision Navigation for a Free-flying Robot.

/* kvNextState.c
Compute Next State (kalmanVision)
Ali J. Azarbayejani
December 1990
C Copyright 1990. All rights reserved.

*1!
#include "k2.h"
#include "k2Plus.h"

void kvNextState(int k)
/* xa "actual state vector" [input,output]

This function computes next xa(next) = xa + f(xa,uu) At
*/

double *fptr,b[4];
double vl,v2,v3,wl,w2,w3;
double *ff;
int i;
double magq;

ff = vector(NS);

fptr = xa+6;
vl = *fptr++; v2 = *fptr++; v3 = *fptr++;
wl = *fptr++; w2. = *fptr++; w3 = *fptr;

/* NONLINEAR DYNAMIC EQUATIONS OF MOTION
*/
ff[0] = vl;
ff([] = v2;
ff[2] = v3;
ff(3] = wl;
ff[4] = w2;
ff[5] = w3;
ff[6] = 0.5*CFM1*fabs(vl)*vl + MlI*uu[0];
ff[7] = 0.5*CFM2*fabs(v2)*v2 + M2I*uu[l];
ff[8] = 0.5*CFM3*fabs(v3)*v3 + M3I*uu[2];
ff[9] = I23Il*w2*w3 + 0.5*CFRI1*fabs(wl)*wl + I11I*uu[3];
ff[10] = I31I2*w3*wl + 0.5*CFPI2*fabs(w2)*w2 + I22I*uu[4];
ff[11] = I12I3*wl*w2 + 0.5*CFYI3*fabs(w3)*w3 + I33I*uu[5];

/* ADD Low-Pass Filtered NOISE IF OPTION IS SELECTED

noise --->1 LPF I--->(+)--> ff
I I ^

ff
*/
if(dNoiseFlag) {

long level;

level = dNoiseFlag - dNoCmd;
ff[6] = CFM1/level*fabs(vl)*vl + MlI*uu[0]*level +

kvUnifNoise(VMODE,0,,varD,0);
ff[7] = CFM2/level*fabs(v2)*v2 + M2I*uu[0]*level +

kvUnifNoise (VMODE, 0,varD, 0);

158

Appendix B. Source Code.

ff[8] = CFM3/level*fabs(v3)*v3 + M3I*uu[2]*level +
kvUnifNoise(VMODE,0,varD,0);

ff[9] - CFRIl/level*fabs(wl)*wl + I11I*uu[3]*level +
kvUnifNoise(AMODE,0,0,0.05);

ff[10] = CFPI2/level*fabs(w2)*w2 + I22I*uu[4]*level +
kvUnifNoise(AMODE,0,0,0.05);

ff[ll] = CFYI3/level*fabs(w3)*w3 + I33I*uu[5]*level +
kvUnifNoise(AMODE,0,0,0.05);

}

for(i=0;i<NS; i++)
xa[i] += ff[i]*DT;

/* COMPUTE ROTATION QUATERNION
*/
b[0]=1; b[l]=xa[3]/2.0; b[2]=xa[4]/2.0; b[3]=xa[5]/2.0;
magq = sqrt(b[0]*b[0]+b[l1*b[l]*bl]+b(2]*+b[3]*b[3]);
for(i=0;i<4;i++) b[i] /= magq;

qMult (xa+12,b,xa+12);
magq = sqrt(xa[12]*xa[12]+xa[13]*xa[13]+xa[14]*xa[14]+xa[15]*xa[15]);
for(i=12;i<16;i++) xa[i] /= magq;

/* ZERO THE EULER ANGLES ESTIMATE
The quaternion now holds the estimated rotational state

*/
xa[3]=0; xa[4]=0; xa[5]=0;

free vector(ff);
}

159

Model-based Vision Navigation for a Free-flying Robot.

/* kvPjctIm.c
Project image to obtain measurement (kalmanVision)
Ali J. Azarbayejani
December 1990
C Copyright 1990. All rights reserved.

*/
#include "k2.h"
#include "k2Plus.h"

void kvPjctIm()
xa "actual state vector" [input]
y "measurement vector" [output]

*/

double s[4];
double dt[3],pc[31;
double *dptr;
int i,j;

qMult (xa+12, rq, s);

for(i=0;i<NFP;i++) { /* ALL FEATURE POINTS i=0..19 */
/* COMPUTE COORDINATES OF PT i IN CAM COORDS AT ACTUAL STATE...
*/
for(j=0;j<3;j++) dt[j] = ptg[il[j] - xa[j];
dptr = vector(4);
qConjugate (s, dptr);
qRotate(dt,dptr,pc);
freevector(dptr);
for(j=0;j<3;j++) pc[j] -= tc[j];

/* APPLY "PROJECTION EQUATION" TO GET PROJECTIONS IN IMAGE PLANE */
ya[2*i] = FL*pc[l]/pc[0];
ya[2*i+l] = FL*pc[2]/pc[0];

/* ADD MEASUREMENT NOISE IF OPTION IS SELECTED.
*/
if(mNoiseFlag) {

ya[2*i] += kvUnifNoise(VMODE,0,varY,0);
ya[2*i+l] += kvUnifNoise(VMODE,0,varY,0);

}

160

Appendix B. Source Code.

/* kvPredCov.c
Predict Error Covariance Matrix (kalmanVision)
Ali J. Azarbayejani
December 1990
© Copyright 1990. All rights reserved.

*/
#include "k2.h"

void kvPredCov()
/* Pe "estimated error covariance matrix at tO" [input]

stm "state transition matrix from tO to tl" [input]
Q "dynamic noise covariance matrix" [input]
Pp "predicted error covariance at time tl" [output]

This function computes Pp = S Pe S' + Q, where S=stm
*/
{'

double **ml,**m2,temp;
int i,j,k;

ml = matrix(NS,NS); m2 = matrix(NS,NS);

/* First find Pe S'...
*/
for(i=0;i<NS;i++)

for(j=0;j<NS;j++)
for(k=0,temp=0;k<NS;k++)

temp += Pe[i] [k]*STM[j] [k];
ml[i][j] = temp;

}
/* ...then premultiply by S: S Pe S'...
*/
for(i=0;i<NS;i++)

for(j=0;j<NS;j++) I
for(k=0,temp=0;k<NS;k++)

temp += STM[i][k]*ml[k][j];
m2[i][j] = temp;

/* ...and add Q.
*/
for(i=0;i<NS;i++)

for(j=0; j<NS;j++)
Pp[i] [j] = m2[i][j] + QQ[i] [j];

free matrix(ml); free matrix(m2);

161

Model-based Vision Navigation for a Free-flying Robot.

/* kvPredMeas.c
Predict Measurement Vector (kalmanVision)
Ali J. Azarbayejani
December 1990
0 Copyright 1990. All rights reserved.

*/
#include "k2.h"

void kvPredMeas()
/* xp "predicted state vector for time tO" [input]

rq "camera/body rotation quaternion" [input]
tc "camera/body translation (cam coords)" [input]
yp "predicted measurement vector for time tO" [output]

*/

double pc[3],dt[3];
double s[4],sc[4];
int i,j;

qMult (xp+12, rq, s) ;

for(i=0;i<NKF;i++) I
for(j=0;j<3;j++) dt[j] = ptg[i][j] - xp[j];
qConjugate(s, sc);
qRotate (dt, sc,pc);
for(j=0;j<3;j++) pc[j] -= tc[j];

yp[2*i] = FL*pc[l]/pc[O];
yp[2*i+l] = FL*pc[2]/pc[0];

)

162

Appendix B. Source Code.

/* kvPredState.c
Predict State Vector (kalmanVision)
Ali J. Azarbayejani
December 1990
© Copyright 1990. All rights reserved.

*/
#include "k2.h"

void kvPredState()
/* xe "estimated state vector at time tO" [input]

uu "command vector at time tO" [input]
xp "predicted state vector at time tl" [output]

This function computes xp = xe + f(xe,uu) At.
*/

double *fptr;
double v1,v2,v3,wl,w2,w3;
double *ff,b[4];
int i,j;
double magq;

ff = vector(NS);

fptr = xe + 6;
vl = *fptr++; v2 = *fptr++; v3 = *fptr++;
wl = *fptr++; w2 = *fptr++; w3 = *fptr;

/* USE NONLINEAR PROCESS FOR UPDATE
*/
ff[0] = vl;
ff([] = v2;
ff[2] = v3;
ff[3] = wl;
ff[4] = w2;
ff[5] = w3;
ff[6] = 0.5*CFM1*fabs(vl)*vl + MlI*uu[O];
ff[7] = 0.5*CFM2*fabs(v2)*v2 + M2I*uu[l];
ff[8] = 0.5*CFM3*fabs(v3)*v3 + M3I*uu[2];
ff[9] = I23Il*w2*w3 + 0.5*CFRI1*fabs(wl)*wl + I1I*uu[3);
ff[10] = I31I2*w3*wl + 0.5*CFPI2*fabs(w2)*w2 + I22I*uu[4];
ff[ll] = Ii2I3*wl*w2 + 0.5*CFYI3*fabs(w3)*w3 + I33I*uu[5];

for(i=0;i<NS;i++)
xp[i] = ff[i]*DT + xe[i];

/* COMPUTE ROTATION QUATERNION
*/
b[0]=1; b[l]=xp[3]/2.0; b[2]=xp[4]/2.0; b[3]=xp[51/2.0;
magq = sqrt(b[0]*b[0]+b[l]*b[l]* +b[2]b[2] +b[3]*b[3]);
for(i=0;i<4;i++) b[i] /= magq;
qMult (xe+12,b,xp+12);
magq = sqrt(xp[12]*xp[12]+xp[13]*xp[13]+xp[14]*xp[14]+xp[15]*xp[15]);
for(i=12;i<16;i++) xp[i] /= magq;
xp[3]=0; xp[4]=0; xp[5]=0;

freevector(ff);

163

Model-based Vision Navigation for a Free-flying Robot.

/* k2RandomTools.c
Random Number Tools (kalmanVision)
Ali J. Azarbayejani
January 1991
O Copyright 1991. All rights reserved.

! These functions will only run on a Macintosh !
*/
#include <math.h>

double kvUnifNoise(char mode,double mean,double var,double spread)
/*

I 1/2A

I I I

VARIANCE = 3 A^2

register double A,errFlt;
long errInt;

if(mode == 1) /* "mode" determines whether "var" or "spread" valid */
A = sqrt(3*var);

else if (mode ==- 2)
A = spread;

else A = 1; /* Default unit variance
*/
errInt = Random(); /* Macintosh Toolbox pseudorandomnumbergenerator
*/
errFlt - errInt; /* Automatic type conversion a la C
*/
errFlt *= A/32767.0; /* Normalization
*/
return (mean + errFlt);

164

I

Appendix B. Sourice Code.

kvSTM.c
Compute State Transition Matrix (kalmanVision)
Ali J. Azarbayejani
December 1990
© Copyright 1990. All rights reserved.

#include "k2.h"

void kvSTM()
/* xe "estimated state vector at time tO"

stm "state transition matrix from tO to tl"
[input]
[output]

This function computes S = (I + F At)

int i,j;
double qO,ql,q2,q3;
double vl,v2,v3;
double wl,w2,w3;
double *fptr;

fptr = xe+6;
vl = *fptr++;
wl = *fptr++;

v2 = *fptr++;
w2 = *fptr++;

v3 = *fptr++;
w3 = *fptr++;

for(i=0;i<NS; i++)
for(j=0;j<NS;j++)

STM[i][j] = 0.0;

STM[0][6] = 1;
STM[3] [9] = 1;

STM[1] [7] = 1;
STM[4] [10] = 1;

STM[6] [6] = CFM1*fabs(vl);
STM[7] [7] = CFM2*fabs(v2);
STM[8] [9] = CFM3*fabs(v3);

STM[9][9]=CFRI1*fabs (wl) ;
STM[10][9]=I31I2*w3;
STM[11] [9]=I12I3*w2;
STM[11] [11]=CFYI3*fabs(w3);

for(i=0; i<NS;i++)
for(j=0; j<NS;j++)

STM[i] [j] *= DT;

for(i=0;i<NS;i++)
STM[i] [i] += 1.0;

STM[2] [8] = 1;
STM[5] [11] = 1;

STM[9] [10]=I23Il*w3;
STM[10] [10]=CFPI2*fabs(w2);
STM[11] [10]=I2I3*wl;

STM[9] [11]=I23Il*w2;
STM[10] [11]=I31I2*wl;

165

Model-based Vision Navigationfor a Free-flying Robot.

k3QuatTools.c
Quaternion Tools (kalmanVision)
Ali J. Azarbayejani
January 1991
0 Copyright 1991. All rights reserved.

#include "k2.h"

void qLeft(double *q,double **qLMM)
/* COMPUTES LEFT QUATERNION MULTIPLICATION MATRIX

i.e. qr = Qr, Q is the qLMM, matrix operator if q premultiplies

double *dptr;

dptr = qLMM[O];
*dptr++ = q[O]; *dptr++ = (-q[l]);
*dptr++ = q[1]; *dptr++ = q[0];
*dptr++ = q[2]; *dptr++ - q[3];
*dptr++ = q[3]; *dptr++ = (-q[2]);

*dptr++ =
*dptr++ -
*dptr++ -
*dptr++ =

(-q[2]);
(-q[3]);
q[O];
q[l];

void qRight(double *q,double **qRMM)
/* COMPUTES RIGHT QUATERNION MULTIPLICATION MATRIX

i.e. rq = Qr, Q is the qRMM, matrix operator if q

double

*dptr++ = (-q[3]);
*dptr++ = q[2];
*dptr++ = (-q[1J);
*dptr++ = q[O];

postmultiplies

*dptr;

dptr = qRMM[0];
*dptr++ = q[O]; *dptr++ = (-q[l]);
*dptr++ = q[1]; *dptr++ = q[0];
*dptr++ = q[2]; *dptr++ = (-q[3]);
*dptr++ = q[3]; *dptr++ = q[2];

*dptr++ = (-q[2]);
*dptr++ = q[3];
*dptr++ = q[O];
*dptr++ = (-q[l]);

*dptr++ = (-q[3]);
*dptr++ = (-q[2]);
*dptr++ = q[l];
*dptr++ = q[0];

void qMult(double *q,double *r,double *s)
/* s=qr (quaternion multiplication)

q,r,s are 4-element arrays (quaternions)
CAN do in-place mult q = qr; CANNOT do in-place mult r=qr

double
register double
int

**qLMM;
temp;
i,j;

qLMM = matrix(4,4);

qLeft (q,qLMM);
for(i=0;i<4;i++) I

for(j=0,temp=0;j<4;j++)
temp += qLMM[i][j]*r[j];

s[i] = temp;

free matrix(qLMM);

166

Appendix B. Source Code.

void qRotMat(double *q,double **qRM)
/* COMPUTES ROTATION MATRIX FROM QUATERNION

qxq* = Mx, where q,x=quaternions, M-(4,4) matrix
M is qRM. Lower Right (3,3) of M is ortho rot matrix

*/
{

double **RMM,**LMM;
int i,j,k;
register double temp;

RMM = matrix(4,4); LMM = matrix(4,4);
qRight(q,RMM); qLeft(q,LMM);

for(i=0;i<4;i++)
for(j=0;j<4;j++) {

for(k=0,temp=0;k<4;k++)
temp += RMM[k] [i] * LMM[k][j];

qRM[i] [j]=temp;

free matrix(RMM); free matrix(LMM);

void qCRotMat(double *q,double **qCRM)
/* -COMPUTES CONJUGATE ROTATION MATRIX FROM QUATERNION

q*xq = Mx, where q,x=quaternions, M=(4,4) matrix
M is qCRM

*/

double **RMM,**LMM;
int i,j,k;
register double temp;

RMM = matrix(4,4); LMM = matrix(4,4);
qRight(q, RMM); qLeft(q,LMM);

for(i=0;i<4;i++)
for(j=0;j<4;j++) {

for(k=0,temp=0;k<4;k++)
temp += RMM[i] [k] * LMM[j][k];

qCRM[i] [j]=temp;

free matrix(RMM); free matrix(LMM);

167

Model-based Vision Navigation for a Free-flying Robot.

void qRotate(double *xv,double *q,double *yv)
/* ROTATES xv INTO yv USING QUATERNION q
*/
{

double **RM;
int i,j;
register double temp;

RM = matrix(4,4);
qRotMat (q, RM) ;
for(i=0;i<3;i++)

for(j=0,temp=0; j<3;j++)
temp += RM[i+] [j+l] * xv[j];

yv[i] = temp;

free matrix(RM);

void qConjugate(double *q,double *qc)
/* CONJUGATES q AND RETURNS IN qc
*/

qc[O] = q[0];
qc[11] = (-q[ll);
qc[2] = (-q[2]);
qc[31 = (-q[3]);

void qNormalize(double *q)
/* NORMALIZES q IN PLACE
*/

double magq;
int i;

magq = sqrt(q[0]*q[0] + q[l]*q[l] + q[2]*q[2] + q[3]*q[3]);
for(i=0;i<4;i++) q[i] /= magq;

I

168

Appendix B. Source Code.

/* CAMMOD.C
Ali J. Azarbayejani
© Copyright 1991, All Rights Reserved.

This is the user interface running under the QNX operating system
on the GATEWAY2000 i386 PC.

#include
#include
#include

#define
#define
#define
#define
#define

<stdio.h>
<math.h>
<dev.h>

topmode
datamode
filemode
lsqmode
ilsqmode

mtext0[80] = {"Data ","Files ","LSQ
mtextl[80] = {"n ", "h ", "q
mtext2[80] = ("Write ","Read ","List
mtext3[80] = ("New ","Main ",0);
mtext4[80] = {"New ","Main ",0};
mtextl0 [80] = { "1 ","2 ", "3 ", "4 ", "5

", "ILSQ ","Quit", 0);
", "r "i, "Main", O);
","Main ",0);

", 6 ", "7 ", "8 ", 9 ", "10", 0};

*menu [8];

void setup()

termclear(0);
menu[topmode] = mtext0;
menu[datamode] = mtextl;
menu[filemode] = mtext2;
menu[lsqmode] = mtext3;
menu[ilsqmode] = mtext4;
set_option(stdin,get_option(stdin) & -3);

char getchoice(mode)
int mode;

char *cp;

term boxfill(1,0,80,1,0x8100,0,Oxdb);
cp = term menu(1,0,menu[mode],menu[mode],0x9700,0,0x0009);
if(cp)

return(*cp);
else

return(0);

void showdata (n, h, q, r)
unsigned n;
double h,*q,*r;

int

term_printf(4,0,0x8400, "n: %10d mmts",n);

169

char
char
char
char
char
char

char

void

setup()

Model-based Vision Navigation for a Free-flying Robot.

term_printf(5,0,0x8400,"h: %10f mm",h);
for(i=0;i<10 && i<n;i++)

termprintf(4+i,25,0x8400,"q[%2d]= %10f mm,
rmm",i+l, q[i], i+l,r[i]);

r[%2d]= %10f

void modeData (np, hp, q, r)
unsigned *np;
double *hp,*q,*r;

char
int

c, *cp,done=0,in[20] ;

while(!done) {
term clear(0);
showdata (*np, *hp, q, r);
c = getchoice(datamode);
switch(c) {

case 'n':
term_input(4,0,in,15,"n: ",0x8300,0x20,0x8700);
*np = atoi(in);
break;

case 'h':
term_input(5,0,in,15,"h: ",0x8300,0x20,0x8700);
*hp = atof(in);
break;

case 'q':
cp - term_lmenu(4,23,mtext10,mtext10,0x9700,0,0x0009);

i = atoi(cp);
term_input(3+i,25,in,17, " q= ",0x8300,0x20,0x8700);
q[i-1] = atof(in);
break;

case 'r':
cp = termlmenu(4,49,mtextl0,mtextl0,0x9700,0,0x0009);

i = atoi(cp);
term_input(3+i,51,in,17,"
r[i-11 = atof(in);
break;

case 'M': case 'm':
done=1;
break;

r= ",0x8300,0x20,0x8700);

void modeFiler(np,hp,q, r)
unsigned *np;
double *hp,*q,*r;

char
int
unsigned
FILE

c,*cp,done=0,in[20],d;
i,j,test;
len;
*fp;

len = *np;
if(len > 10) len=10;

170

Appendix B. Source Code.

while(!done) {
term clear(0);
showdata (*np, *hp, q, r);
c - getchoice(filemode);
switch (c). {

case 'W': case 'w':
term_input(15,0,in,15,"Filename: ",0x8300,0x20,0x8700);
for(i=0,d= *in;i<8 && d!='\0' && d!='.';i++)

d= *(in+i+l);
strcpy(in+i,".adat");
if((fp=fopen(in,"w")) == 0)

exit(0);
fwrite(np,sizeof(unsigned), , fp);
fwrite(hp,sizeof(double), , ,fp);
fwrite (q, sizeof (double) , len, fp);
fwrite(r, sizeof(double),len,fp);
fclose(fp);
break;

case 'R': case 'r':
term_input(15,0,in,15,"Filename: ",0x8300,0x20,0x8700);
for(i=0,d= *in;i<8 && d!='\O' && d!='.';i++)

d= *(in+i+l);
strcpy(in+i,".adat");
if((fp=fopen(in,"r")) == 0)

term_printf(2,0,0x8500,"Cannot open file.");
break;

fread(np,sizeof(unsigned),1 , fp);
fread(hp,sizeof(double), , fp);
fread(q, sizeof(double), *np,fp);
fread(r,sizeof(double),*np,fp);
fclose(fp);
break;

case 'L': case '1':
break;

case 'M': case 'm':
done=1;
break;

}

void modeLSQ (np, hp, q, r, x)
unsigned *np;
double *hp, *q, *r, *x;

char c,*cp,done=0,in(20);
int i;
double dv, e, do21sq () ;

term clear(0);
while(!done) {

showdata (*np, *hp,q, r);
c = getchoice(lsqmode);
switch(c) {

case 'n': case 'N':
term box fill(7,0,19,5,0x8000,0,Oxdb);
term_input(7,0,in,15, "dv: ",0x8300,0x20,0x8700);

171

Model-based Vision Navigation for a Free-flying Robot.

dv = atof(in);
termprintf(7,0,0x8400,"dv: %10f mm",dv);
e - do2lsq(*np,*hp,q,r,dv,x);
term_printf(9,,0,x8700,"f: %10f mm",x[O]);
term_printf(10,0,0x8700,"dw: %10f mm",x[1]);
term printf(11,0,0x8700,"e: %,10f mm^4",e);
break;

case 'M': case 'm':
done=1;
term clear(0);
break;

double do2lsq(n,h,q,r,dv,x)
unsigned n;
double h, *q, *r, dv, *x;

double temp,c=h-dv,d,al,a2,a3,a4,yl,y2,det,e;
int i;

al = n*c*c;
for(i=0,a2=0;i<n;i++)

a2 += q[i];
a2 *= c;
a3 = a2;
for(i=0,a4=0;i<n;i++)

a4 += q[i]*q[i];
for(i=0,yl=0;i<n;i++)

yl += q[i]*r[i];
yl *= c;
for(i=0,y2=0;i<n;i++)

y2 += q[i]*q[i]*r[i];
x[0] = a4*yl - a2*y2;
x[1] = -a3*yl + al*y2;
det = al*a4 - a2*a3;
if(det == 0)

term_printf(0,0, 0x8500, "Zero Determinant");
return(0);

x[O] /= det; x[l] /= det;

d = x[0]*c;
for(i=0,e=0;i<n;i++)

temp = d + q[i]*x[l] - q[i]*r[i];
e += temp*temp;

return(e);

void modeILSQ()

while(getchoice(ilsqmode) != 'M');
}

172

Appendix B. Source Code.

main ()
{

int i;
char theChar,doneFlag;
double r[10],q[10],h,du,dv,dw,f;
unsigned n;
double x[2];

setup () ;
for(doneFlag=0;!doneFlag;)

theChar=getchoice(topmode);
switch (theChar) {

case 'd' : case 'D' :
modeData (&n, &h, q, r);
break;

case 'f': case 'F':
modeFiler (&n, &h, q, r);
break;

case I' : case 'L' :
modeLSQ (&n, &h, q, r, x);
break;

case 'i' : case 'I' :
modeILSQ() ;
break;

case 'q' : case 'Q' :
doneFlag=1;
break;

term clear(0);

173

Model-based Vision Navigation for a Free-flying Robot.

/* FUNC.C
Ali J. Azarbayejani
© Copyright 1991, All Rights Reserved.

Prototype of the image processor.
*/

#include <stdio.h>
#include <math.h>
#include <dev.h>
#include "ofglib.c"

#define topmode 0
#define datamode 1
#define filemode 2
#define extmode 3
#define data2mode 4
#define HOZO 0
#define VERT 1
#define QTY 20

char mtext0[80] = {"Data ","Files ","Ext ","Quit",0);
char mtext4[80] = {"X ","Y ",01;
char mtext3[80] = {"<Return> ",0);
char mtext2[80) = {"Write ","Read ","Main ",0);
char mtextl0[80] = ("1 ","2 ","13 ",1"4 ","5 ",I"6 ",1"7 ","8 ","9 ","10",

"11", "12", "13", "14", "15", "16", I "17", " 18", "19", "20", "Exit", 0) ;
char *menu[8];

void setup()
{

term clear(0);
menu[topmode] = mtext0;
menu[datamode] = mtextl0;
menu[data2mode] = mtext4;
menu[filemode] = mtext2;
menu[extmode] = mtext3;
set_option(stdin,get_option(stdin) & -3);

initSETUP();
initFRAME ();
initILUT();
initOLUT() ;

char getchoice(mode)
int mode;

char *cp;

term boxfill(1,0,80,1,0x8100,0,Oxdb);
cp = termmenu(1,0,menu[mode],menu[mode],0x9700,0,0x0009);
if(cp)

return(*cp);
else

return(0);
}

174

Appendix B. Source Code.

void showdata(qp, q)
double qp[2] [20],q[2] [20];

int i;

term cur(3,0); term clear(2);
for(i=0;i<20;i++)

termprintf(3+i,5,0x8400,"qp[%2d]= (%10f,%10f)",i+1,qp[O [i],qp[1] [i]);
for(i=0;i<20;i++)

term_printf(3+i,45,0x8500,"q[%2d]- (%10f,%10f)",i+l,q[0 [i],q[1][i]);

void modeData (qp, q)
double qp[2] [20],q[2] [20];

char c,*cp,done=0,in[20];
int i,j;

i= 0;
while(!done) {

term cur(3,0); term clear(2);
showdata(qp,q);
cp = term_lmenu(3,3,mtextl0,mtextl0+3*i,0x9700,0,0x0009);

termboxfill(3,0,5,20,0x8000,0,Oxdb);
term_printf(0,0,0x8700, "*cp = %x",*cp);
if(*cp == 'E')

done = 1;
else (

i = atoi(cp);
cp = term menu(2,14,mtext4,mtext4+12*j,0x9700,0,0x0009);
term box fill(2,0,80,1,0x8000,0,0Oxdb);
switch (*cp) {

case 'X': case 'x':
term input(2+i,14,in,9,">",0x8300, 0x20,0x8700);
qp[0] [i-l] = atof(in);
j=l;
i-=1;
break;

case 'Y': case 'y':
term input(2+i,25,in,9,">",0x8300,0x20,0x8700);
qp[l] [i-l] = atof(in);
j=0;
break;

175

Model-based Vision Navigation for a Free-flying Robot.

void modeFiler (qp, q)
double qp[2] [20],q[2] [20] ;
I

char c,*cp,done-0, in[20],d;
int i,j,test;
unsigned len;
FILE *fp;

while(!done) {
term clear(0);
showdata (qp, q);
c = getchoice(filemode);
switch(c) {

case 'W': case 'w':
term_input(15,0,in,15,"Filename: ",0x8300,0x20,0x8700);
for(i-0,d- *in;i<8 && d!i'\0' && d!- '.';i++)

d= *(in+i+l);
strcpy(in+i,".qdat");
if((fp=fopen(in,"w")) == 0)

exit(0);
fwrite(*qp, sizeof(double),40, fp);
fwrite(*q, sizeof(double),40, fp);
fclose(fp);
break;

case 'R': case 'r':
term_input(15, 0,in, 15,"Filename: ",0x8300,0x20,0x8700);
for(i=0,d= *in;i<8 && d!='\0' && d!='.';i++)

d= *(in+i+l);
strcpy(in+i," .qdat");
if((fp=fopen(in,"r")) == 0) {

term printf(2,0,0x8500,"Cannot open file.");
break;

fread(*qp,sizeof(double),40,fp);
fread(*q,sizeof(double),40, fp);
fclose(fp);
break;

case 'L': case '1':
break;

case 'M': case 'm':
done=1;
break;

176

Appendix B. Source Code.

void modelxt (qp, q)
double qp[2] [20],q[2] [20];
{

char dir[20],va[20];
int du[20],dv[20];
double 1[20][3],x[100],y[100];

int i,j,k,n,bx,by,area;
double x,y,pe[2],ratio,dx,dy,drx,dry;
unsigned u,v,ul,vl,po[2];
long rOx,rOy,rlx,rly;
/* ===== LINE DIRECTIONS and LENGTHS */
for(i=0;i<QTY;i++) {

du[i] = (dx = qp[0][(i+l)&3 + i&0xfffc] - qp[0][i]);
dv[i] = (dy = qp[l][(i+l)&3 + i&0xfffc] - qp[1] [i]);
if(dx < 0) dx=(-dx);
if(dy < 0) dy=(-dy);
if(dx > dy) dir[i] = HOZO;
else dir[i] = VERT;

/* -==== CORNER VALIDITY ===== */
for(i=0;i<QTY;i++)

va[i] = 0;
for(i=0;i<QTY;i++) {

int u,v;
u=q[0] [i]; v=q[1] [i];
if((u>50 && u<590) && (v>50 && v<430))

va[i] = 1;
va[(i-l)&3 + i&0xfffc] = 1;

for(i=0;i<QTY;i++) {

/* ==-== DRAW LINES on OFG ===== */
for(i=0;i<4;i++) {

u=qp[0] [i] ; v=qp[l] [i];
ul=qp[0][(i+l)&3]; vl=qp[ll[(i+l)&3];
olLine(u,v,ul,vl,0x0100);

getchoice (extmode);
for(i=0;i<4;i++) {

rOx = qp[0][i]; rOy = qp[l][i];
rlx = qp[0][(i+l)&3]; rly = qp[l][(i+l)&3];
dx = rlx - rOx;
dy = rly - rOy;
drx = dx; if(dy != 0) drx /= dy;
dry = dy; if(dx != 0) dry /= dx;
if(dx<0) dx=(-dx);
if(dy<0) dy=(-dy);
if(dy > dx) {n=dy; bx=l; by=0; dry=l; if(rly<r0y) r0y=rly;}
else {n=dx; bx=0; by=l; drx=l; if(rlx<r0x) r0x=rlx;}
for(j=15;j<n-15;j++){

po[0] = r0x+j*drx-15*bx; po[l] = r0y+j*dry-15*by;
edgeFind(po,pe,bx,by,30);
po[O] = pe[0]; po[l] = pell];
olBox(po[l],po[0],l,0x0800);}

177

Model-based Vision Navigation for a Free-flying Robot.

}
getchoice(extmode);
initFRAME();

void edgeFind(po,pe,du,dv,n)
double pe[2];
int po[2],du,dv,n;

unsigned *data,x,y;
int *t;
int i, j,dlen,mindex;
long max, grad;

/** Check boundaries etc... **/
/** Allocate buffer for image data... **/
dlen=n+4;
if((data = (unsigned *) malloc(dlen*sizeof(unsigned))) == 0)

exit (0);
/** Download image data from ofg... **/
for(i=O,x=po[O],y=po[l];i<dlen;i++,x+=du,y+=dv)

outWord(0xla,y); /* YPTR */
outWord(0xl8,x); /* XPTR */
data[i] = inWord(0xlc); /* Data Register */

for(i=0;i<dlen;i++)
data[i] = data[i]& Oxff;

term cur(3,0); term clear(2);
/*for(i=0;i<dlen;i++)

term_printf(i+3,0,0x8600,"%d: %6x",i+po[O],data[i]);*/
/** Scan with gradient finder, update max... **/
for (i=O,max=0,mindex=0;i<n;i++)

t= ((int *)data+i);
grad = t[O] - 8*t[l] + 8*t[3] - t[4];
term_printf(i+3,20,0x8300,"%ld",grad);
if(grad<0) grad = -grad;
if(grad>max)

max=grad;
mindex=i;

}

/** Return coordinates of optimum gradient... **/
cfree(data);
pe[0] = po[O] + mindex*du;
pe[l] = po[l] + mindex*dv;

178

Appendix B. Source Code.

void lineFind(x,y,n,dir,line)
double *x,*y,*line;
int n,dir;

double *u,*v,kll,k12,k21,k22,temp,det,al,a2,a3,atbl,atb2;
int i,j;

u=x; v=y;
if(dir == HOZO) {u=y; v=x;}
for(i=0,kll=0;i<n;i++) {

temp = *(u+i);
temp *= temp;
kll += temp;

for(i=0,kl2;i<n;i++)
k12 += *(u+i);

k21 = k12;
k22 = n;
det = kll*k22 - k12*k21;
if(det == 0) term_printf(0,0,0x8400,"Zero determinant");
for(i=0,atbl=0; i<n;i++)

atbl += u[i) * v[i];
for(i=0,atb2=0;i<n;i++)

atb2 += v(i];
al = (kll*atbl + k12*atb2) / det;
a3 = (k21*atbl + k22*atb2) / det;
a2 = I / sqrt(1 + al*al);
line[0]=al*a2; line[1]=a2; line[2]=a3*a2;
if(dir == VERT) {

line[1]=line[0]; line[0]=a2;

}

main()

int i,j;
char theChar,doneFlag;
double qp[2] [20],q[2] [20];
double x[2];

setup() ;
for(i=0;i<2;i++)

for(j=0;j<20; j++)
qp(i] [j] = 100*i+j;

for(doneFlag=0;!doneFlag;) {
term clear(0);
showdata(qp,q);
theChar=getchoice(topmode);
switch(theChar) (

case 'd': case 'D':
modeData (qp, q);
break;

case 'f': case 'F':
modeFiler(qp,q);
break;

case 'e': case 'E':
modeExt (qp,q);

179

Model-based Vision Navigation for a Free-flying Robot.

break;
case 'q' : case 'Q':

doneFlag=1;
break;

term clear(O);
I

180

Appendix B. Source Code.

/* OFGLIB.C
Ali J. Azarbayejani
@ Copyright 1991, All Rights Reserved.

*/
#include "ofgev.h"

#define BASE 0x0300

/*---*
/* I/O Functions */
/* ---

void outByte (a,d)
unsigned a, d;
{

oport - BASE + a;
odata - d & Ox00ff;
asm("mov dx,<oport>");
asm("mov ax,<odata>");
asm("b out [dx]");

void outWord (a, d)
unsigned a, d;

oport = BASE + a;
odata = d & Oxffff;
asm("mov dx,<oport>");
asm("mov ax,<odata>");
asm("w out [dx]");

unsigned int inByte(a)
unsigned a;

oport = BASE + a;
asm("mov dx,<oport>");
asm("b in [dx]");
asm("mov <odata>,ax");
return(odata & Oxff);

unsigned int inWord(a)
unsigned a;

oport = BASE + a;
asm("mov dx,<oport>");
asm("w in [dx]");
asm("mov <odata>,ax");
return(odata & Oxffff);}

181

Model-based Vision Navigation for a Free-flying Robot.

/*--*/
/* Initialization Functions */
--/

void initILUT()
{

int i;
/* y=x */

term_box_fill(23,0,80,1,0x8740,0,Oxdb);
termprintf(23,0,0xf540,"Initializing ILUT...");
outByte (0xc, 0);
for(i=0;i<256;i++)

outByte(0xd,i);

void initOLUT()
{

int b,c,i;

/* 0000 y=x
0001 Full G, zero RB
001X Full B, zero RG
OiXX Full RGB
1XXX Full R, zero GB

*/

/* BANK 0: y=x */
for(c=0;c<3;c++)

outByte(1,c);
for(i=0;i<256;i++)

outByte(2,i);
outByte(8,i);

}

for(c=0;c<3;c++)
for(b=1l;b<16;b++) {

outByte(1, (b<<4) Ic);
for(i=0;i<256;i++)

outByte(2,i);
outByte(8,0);

)

/* BANK 1: FULL SCALE GREEN */
outByte(1,0xll1);
for(i=0;i<256;i++) {

outByte(2,i);
outByte(8,0xff);

).

182

Appendix B. Source Code.

for(b=2;b<4;b++) {
outByte(1, (b<<4) 12);
for(i=0;i<256;i++)

outByte(2,i);
outByte(8,0xff);

for(c=0;c<3;c++)
for(b=4;b<8;b++) {

outByte(1, (b<<4) Ic);
for(i=0;i<256;i++) {

outByte (2, i);
outByte(8,0xd0);

/*

for(b=8;b<16;b++)
outByte(1,b<<4);
for(i=0;i<256;i++)

outByte (2, i);
outByte(8,0xff);

BANKS 2..3: FULL SCALE BLUE */

BANKS 4..7: OxdO SCALE WHITE

BANKS 8..15: FULL SCALE RED */

void initFRAME()
{

int i;
unsigned inByte();

Clear Overlay Memory

outWord(0x10,0x4040);
for(i=0;i<8;i++)

outWord(0x16,0x0000);
outWord(0x10,0x0000);
outByte(6,0x0) ;
outByte (7, 0x0) ;
outByte (0x04, 0x40);
while((inByte(4)>>6) != 0x00);
outByte(0x04,0x40);
while((inByte(4)>>6) != 0x00);
outWord(0x10,0x4040);
outWord(0x05,0x03);
outByte(4,0xcO);

/* PBCON: PB enable, Z-Mode */

/* PBUF: fill with 0000 */
/* PBCON: PB disable, Z-mode

/* Pan Register */
/* Scroll Register */

/* ACQ: clear mode */
/* wait until clear done

/* ACQ: clear mode */
/* wait until clear done

/* PBCON: PB enable, Z-mode */
/* PTRCON: auto step = 8 */

/* ACQ mode - GRAB */

183

Model-based Vision Navigation for a Free-flying Robot.

void initSETUP()
{

outByte (0,0x04);
outByte(Oxa, 0x02);
outByte (Oxc, 0x0);
outByte (Oxe, 0x0) ;
outByte (Oxc, 0x1);
outByte (Oxe, 0x20);
outByte (0xc, 0x2) ;
outByte(Oxe,0x90);
outWord(0x12, 0x0) ;
outWord(0x14, 0xff00);

Control Register */
Video Bus Control
ILUTA => ADC Ctrl Reg
ADC Ctrl Reg */
ILUTA => NREF Reg */
Negative Reference Reg
ILUTA => PREF Reg */
Positive Reference Reg
Host Mask Register */
Video Mask Register */

/*------------------------------ ------------------------------------ *•
/* Overlay Routines */
/*--*/
void olBox(row,col,size,val)
unsigned row, col,size,val;

int i,x,y;

outWord(0x10,0x4040);
outByte(0x05,0x07);
outWord(0x12,0xffff);
outWord(0xlc, 0);
outWord(0x12,0x00ff);
for(y=0;y<size;y++) (

outWord(0xla,y+row);
outWord(0x18,col);
for(x=0;x<size;x++)

outWord(0xlc,val);

outWord(0x12,0x0000);
outWord(0x10,0x4040);
outByte (0x05, 3) ;

/** PBCON: enable pb, zmode **/
/** PTRCTL: step 1 **/
/** HMASK: protect all **/
/** Data Port: clear PB **/
/** HMASK: protect image **/

/** YPTR **/
/** XPTR **/

/** Data Port **/

/** HMASK: unprotect image **/
/** PBCON: enable pb, zmode **/
/** PTRCTL: step 8 **/

-void olHseg(u,v,size,val)
unsigned u,v,size,val;

int x;

outWord(0xl0,0x4040);
outByte(0x05,0x07);
outWord(0x12,0x00ff);
outWord(0xla,v) ;
outWord(0x18,u);
for(x=0;x<size; x++)

outWord(0xlc,val);
outWord(0x12,0x0000);
outWord(0xl0,0x4040);
outByte(0x05,3) ;

PBCON: enable pb, zmode **/
PTRCTL: step 1 **/
HMASK: protect image **/
YPTR **/
XPTR **/

Data Port **/
HMASK: unprotect image **/
PBCON: enable pb, zmode **/
PTRCTL: step 8 **/

184

Appendix B. Source Code.

void olVseg (u,v,size, val)
unsigned u,v,size,val;

int

outWord(0xl0,0x4040);
outByte(0x05,0x07);
outWord(0x12,0x00ff);
for(y=0;y<size;y++) (

outWord(0xla,y+v);
outWord(0x18,u);
outWord(0xlc,val);

outWord(0x12,0x0000);
outWord(0xl0,0x4040);
outByte (0x05, 3) ;

/* PBCON: enable pb, zmode */
/* PTRCTL: step 1 */
/* HMASK: protect image

/* YPTR
/* XPTR
/* Data Port

/* HMASK: unprotect image */
/* PBCON: enable pb, zmode */
/* PTRCTL: step 8 */

void olLine(uO,vO,un,vn,vnval)
unsigned uO,vO,un,vn,val;

int
unsigned
double

n,k,uo,uf,dy;
temp;

x0,y0,xn,yn,m,m2,b;

/* pO always left of pn */
if(u0 > un)

{temp=un;un=uO;u0=temp;temp=vn;vn=v0;v0=temp;)
dy=1;
if(vn != vO)

xn=un; xO=uO; yn-vn; yO=v0;
if(yn < yO) dy = -1;
n = vn-v0;
if(n<0) n= -n;
m = (xn-xO)/(yn-yO);
-if(m<0) m= -m;
m2--m/2;
uo=u0; uf=(x0+m2);
olHseg(uo,v0,uf-uo+l,val);
for(k=1;k<n;k++) {

uo=uf; uf=(x0+m2+k*m);
olHseg (uo, v0+k*dy, uf-uo+l, val);

uo=uf;
olHseg(uo,vn,un-uo+l,val);

else {
olHseg(uO,v0,un-u0+1,val);

1-85

Model-based Vision Navigation for a Free-flying Robot.

/***/

/* snapper.c
for snapping images with the Imaging Technology OFG
Ali J. Azarbayejani
0 Copyright 1991, All Rights Reserved */

/***/

#include <stdio.h>
#define BASE 0x0300
#define GRAB 0
#define SNAP 1
#define QUIT 2

unsigned int oport, odata;

/***** Screen format Functions *****/

void scrSETUP()
{

term clear(0);
term box fill(2,0,80,4,0x8140,0,Oxdb);
termprintf(3,34,0x9540,"OFG Snapper");
termprintf(4,29,0x9540,"Ali Azar, August 1990");

void scrGRAB()
{

term_ box fill(6,0,80,1,0x8740, 0,xdb);
term_printf(6,0,0xf540,"(S)nap (E)dit ILUT (M)arker (Q)uit");
term_box_fill(23,0,80,1,0x8740,0,Oxdb);
termprintf(23,0,0xf540,"Grabbing...Enter S to snap:");

void scrSNAP()
{

term_box_fill(6,0,80,1,0x8740,0,Oxdb);
termprintf(6,0,0xf540,"(S)ave (G)rab (E)dit OLUTs (O)verlay (L)oad (H)ist

(Q)uit ");

void scrILUT()

termboxfill(6,0,80,1,0x8740,0,Oxdb);,
term printf(6,0,0xf540,"ILUT editor (E)scape");
term box fill(23,0,80,1,0x8740,0,Oxdb);
term_printf(23,0,0xf540, "Choose an ILUT to load:");

}

void scrMARK()
{

term box fill(6,0, 80,1,0x8740,0,Oxdb);
term_printf(6,0,0xf540, "Marker: (H)ozo (V)ert (E)scape");
term box fill(23,0,80,1,0x8740,0,0xdb);
term_printf(23,0,0xf540,"Choose horizontal or vertical marker:");

)

void scrHOZO()

termboxfill(6,0,80,1,0x8740,0,Oxdb);

186

Appendix B. Source Code.

term_printf(6,0,0xf540,"Hozo Marker: (N)ew (E)scape");
term_box_fill(23,0,80,1,0x8740,0,Oxdb);
termprintf(23,0,0xf540,"Choose row:");

void scrVERT()
{

termbox fill(6,0,80,1,0x8740,0,Oxdb);
termprintf(6,0,0xf540,"Vertical Marker: (N)ew (E)scape");
termbox fill(23,0, 80,1, 0x8740, 0, Oxdb);
termprintf(23,0,0xf540,"Choose column:");

I

void scrOLUT()
{

term_box_fill(6,0,80, 1,0x8740,0,xdb);
term_printf(6,0, 0xf540, "OLUT editor (E)scape");
term box fill(23,0,80,1,0x8740,0,Oxdb);
termprintf(23,0,0xf540,"Choose a color:");

void scrSAVE()
{

term_box_fill(6,0,80,1,0x8740,0,Oxdb);
term_printf(6,0,0xf540,"Save Editor");
term_box_fill(23,0,80,1, 0x8740, 0,0xdb);
term_printf(23,0,0xf540,"Name the image; to abort, enter <CANCEL> (minus)");

I

void scrOVERLAY()
(

term box fill(6,0,80,1,0x8740,0,0xdb);
term printf(6,0,0xf540,"(T)ext (G)raphics (E)scape");
term_box_fill(23,0,80,1,0x8740,0,Oxdb);
termprintf(23,0, 0xf540,"Add overlays:");

void scrLOAD()
{

term_boxfill(6,0,80,1,0x8740,0,Oxdb);
termprintf(6,0,0xf540, "Load Editor");
term_boxfill(23,0,80,1,0x8740,0,Oxdb);
term_printf(23,0,0xf540,"Choose an image:");

void scrHIST()

term_box_fill(6,0,80,1,0x8740,0,Oxdb);
termprintf(6,0,0xf540,"Histogram. (E)scape");
term_boxfill(23,0,80,1,0x8740,0,0xdb);
term_printf(23,0,0xf540, "Histogram.");

void scrQUIT()

term clear(0);
)

187

Model-based Vision Navigation for a Free-flying Robot.

/***** I/O Functions *****/

void outByte (a, d)

oport = BASE + a;
odata = d & Ox00ff;
asm("mov dx,<oport>");
asm("mov ax,<odata>");
asm("b out [dx]");

void outWord(a,d)

oport = BASE + a;
odata = d & Oxffff;
asm("mov dx, <oport>");
asm("mov ax,<odata>");
asm("w out [dx]");

unsigned int inByte (a)
{

oport = BASE + a;
asm("mov dx,<oport>");
asm("b in [dx]");
asm("mov <odata>,ax") ;
return(odata & Oxff);

unsigned int inWord(a)

oport = BASE + a;
asm("mov dx,<oport>");
asm("w in [dx]");
asm("mov <odata>,ax");
return(odata & Oxffff);

/***** Initialization Functions *****/

void initILUT()
{

int i;

term_box_fill(23,0,80,1,0x8740,0, Oxdb);
termjprintf(23,0,0xf540,"Initializing ILUT...");
outByte (0xc, 0);
for (i=0;i<256;i++)

outByte (0xd, i);

void initOLUT()

int b, c, i;

term_box_fill (23,0,80,, 0x8740,0,Oxdb);
termprintf(23,0,0xf540, "Initializing OLUT bank 0...");
for(c=0;c<3;c++) (

188

Appendix B. Source Code.

outByte(l,c); /* color c,bank 0 */
for(i=0;i<256;i++)

outByte (2, i);
outByte(8,i);

term box fill(23,0,80,1,0x8740,0,Oxdb);
termprintf(23,0,0xf540,"Initializing OLUT banks 1..15 to zero...");
for (c=0;c<3;c++)

for(b=1;b<16;b++) {
outByte(l,(b<<4) Ic); /* color c,bank b */
for(i=0;i<256;i++) .{

outByte(2, i);
outByte(8,0);

term boxfill(23,0, 80,1,0x8740,0,xdb);
termprintf(23,0,0xf540,"Initializing bitplane 8 to GREEN...");
outByte(l,0xll); /* color green=--l,bank 1 */
for(i=0;i<256;i++)

outByte(2,i);
outByte(8,0xff);

term box fill(23,0,80,1,0x8740,O,Oxdb);
term_printf(23,0,0xf540,"Initializing bitplane 9 to BLUE...");
for(b=2;b<4;b++) I

outByte(l, (b<<4) 2); /* color blue=2,bank b */
for(i=0;i<256;i++) {

outByte(2,i);
outByte(8, 0xff);

term box fill(23, 0,80,1,0x8740,0,Oxdb);
term_printf(23,0,0xf540,"Initializing bitplane 10 to WHITE...");
for(c=0;c<3;c++)

for(b=4;b<8;b++) {
outByte(l, (b<<4)Ic); /* color c,bank b */
for(i=0;i<256;i++)

outByte(2,i);
outByte(8,0xd0);

termboxfill(23,0,80,1,0x8740,0, xdb);
termprintf(23,0,0xf540,"Initializing bitplane 11 to RED...");
for(b=8;b<16;b++) {

outByte(l,b<<4); /* color blue=2,bank b */
for(i=0;i<256;i++) {

outByte(2,i);
outByte(8,0xff);

void initFRAME()
{

int i;
unsigned inByte() ;

189

Model-based Vision Navigation for a Free-flying Robot.

/** --------------------------------- Clear Overlay Memory ------ **/
outWord(0xl0,0x4040); /** PBCON: PB enable, Z-Mode **/
for(i=0;i<8;i++)

outWord(0x16,0x0000); /** PBUF: fill with 0000 **/
outWord(0xl0,0x0000); /** PBCON: PB disable, Z-mode **/
outWord(0x12,0x00ff); /** HMASK: protect b0-b7 **/
outByte(0x04,0x40); /** ACQ: clear-mode **/
while((inByte(0x4)>>6) != Ox00); /** wait until clear is done **/
outWord(0x12,0x0000); /** HMASK: unprotect **/
outWord(0x10,0x4040); /** PBCON: PB enable, Z-mode **/
outWord(0x05,0x03); /** PTRCON: auto step = 8 **/

void initSETUP()

scrSETUP();
outByte (0,0x04);
outByte(6, 0x0);
outByte (7, 0x0);
outByte (Oxa, 0x02);
outByte (Oxc, 0x0) ;
outByte (Oxe, OxO);
outByte (Oxc, 0xi);
outByte (Oxe, 0x0) ;
outByte (0xc, 0x2) ;
outByte(0xe,0xd8);
outWord(0xl0,0x4040);
outWord(0x12,0x0);
outWord(0x14,0 xff00);

/** Control Register **/
/** Pan Register **/
/** Scroll Register **/
/** Video Bus Control **/

/** ILUTA => ADC Ctrl Reg **/
/** ADC Ctrl Reg **/
/** ILUTA => NREF Reg **/
/** Negative Reference Reg **/
/** ILUTA => PREF Reg **/

/** Positive Reference Reg **/
/** Pixel Buffer Control **/

/** Host Mask Register **/
/** Video Mask Register **/

initILUT()O;
initOLUT();
initFRAME()O;

/***** Mode Handling Functions *****/
char modeGRAB()

int theChar;
char doneFlag=0,retval;
void modeILUT();
int testILUT(),testOLUT(),testSETUP(); /** DEBUG **/

outByte(4,0xcO);
scrGRAB();
while(!doneFlag) (

theChar = getchar();
switch(theChar) {

case 's':
doneFlag = 1;
retval = SNAP;
break;

case 'e':
modeILUT();
scrGRAB();
break;

case''m':
modeMARK() ;

190

initILUT () ;initOLUT () ;
initFRAME () ;

Appendix B. Source Code.

scrGRAB() ;
break;

case 'q' :
doneFlag = 1;
retval = QUIT;
break;

return retval;
return retval;

char modeSNAP ()

int
char
void

theChar,lfs;
doneFlag=0,retval;
modeSAVE() ,modeOLUT() ,modeOVERLAY() ;

for(lfs=0;!lfs;) /** Wait until last frame..
Ifs = (inByte(4)>>3)&l;

outByte(4,0x80); /** ...then issue snap cmd
scrSNAP ();
term box fill(23,0,80,1,0x8740,0,Oxdb);
term_printf (23,0, 0xf540,"Picture snapped.. .on display");
while (!doneFlag) {

theChar = getchar();
switch(theChar) {

case 's':
modeSAVE();
scrSNAP ();
break;

case 'g':
doneFlag = 1;
retval = GRAB;
break;

case 'e':
modeOLUT();
scrSNAP ();
break;

case 'o':
modeOVERLAY();
scrSNAP ();
break;

case 'l':
modeLOAD() ;
scrSNAP ();
break;

case 'h':
modeHIST();
scrSNAP ();
break;

case 'q':
doneFlag = 1;
retval = QUIT;
break;

**/

return retval;

191

Model-based Vision Navigation for a Free-flying Robot.

void modeILUT()
{

int theChar;
char doneFlag-0;

scrILUT() ;
while (!doneFlag) {

theChar = getchar();
switch (theChar) {

case 'e':
doneFlag = 1;
break;

)

void modeMARK()

int theChar;
char doneFlag=0;

scrMARK ();
while (!doneFlag) {

theChar = getchar();
switch(theChar) {

case 'h' :
modeHOZO () ;
scrMARK() ;
break;

case 'v':
modeVERT() ;
scrMARK() ;
break;

case 'e' :
doneFlag = 1;
break;

void modeHOZO()

int theChar;
char doneFlag=0;
char rownum[20];
int oldrow=0,newrow;

scrHOZO (;
while (!doneFlag) (

theChar = getchar();
switch (theChar) {

case 'n':
if (term_input (15, 10,rownum, 20, "Row number:", 0x8740, OxbO, 0x8340) !=0)

term box fill(15,0,80,1, 0,0x8040,0,xdb);
newrow = atoi(rownum);
termprintf(17,10,0x8740,"newrow = %10d",newrow);

192

Appendix B. Source Code.

if(newrow>=0 && newrow<511)
markRow (oldrow, 0);
markRow (newrow, 0x0200);
oldrow=newrow;

break;
case 'e':

markRow(oldrow,0);
doneFlag = 1;
break;

void modeVERT()

int theChar;
char doneFlag=0;
char colnum[20];
int oldcol=0,newcol;

scrVERT();
while(!doneFlag) {

theChar = getchar();
switch(theChar) {

case 'n':
if (term input (15, 10, colnum, 20, "Column

number:",0x8740,0xb0,0x8340)!=0) {
term box fill(15,0,80,1,0x8040,0,Oxdb);
newcol = atoi(colnum);
term_printf(17,10,0x8740,"newcol = %10d",newcol);
if(newcol>=0 && newcol<1024) {

markCol (oldcol, 0);
markCol(newcol,0x0200);
oldcol=newcol;

break;
case 'e':

markCol(oldcol,0);
doneFlag = 1;
break;

void markRow(row,value)
int row,value;

int i,x,y;

outWord(0x10,0x4040); /** PBCON: enable pb, zmode **/
for (i=0;i<8;i++)

outWord(0x16,value); /** Setup pixbuf **/
outWord(0xl0,0x0000); /** PBCON: protect pb, zmode **/
outWord(0x12,0x00ff); /** HMASK: protect image **/
for(y=row;y<row+64;y++)

193

Model-based Vision Navigation for a Free-flying Robot.

outWord(Oxla,y); /**
outWord(0x18,268); /**
for(x=268;x<332;x+=8)

outWord(0xlc, 0);

outWord(0x12,0x0000);
outWord(0xl0,0x4040);

YPTR **/
XPTR **/

/** Data Port **/

/** HMASK: unprotect image **/
/** PBCON: enable pb, zmode **/

void markCol(col,value)
int col,value;

int i,x,y;

outWord(0xl0,0x4040);
outByte(0x05, 0x07);
outWord(0x12,0x00ff);
for(y=246;y<310;y++) {

outWord(0xla,y);
outWord(0x18, col);
for(x=0;x<64;x++)

outWord(0xlc,value);

outWord(0x12,0x0000);
outWord(0xl0,0x4040);
outByte (0x05, 3) ;

/** PBCON: enable pb, zmode **/
/** PTRCTL: step 1 **/
/** HMASK: protect image **/

/** YPTR **/
/** XPTR **/

/** Data Port **/

/** HMASK: unprotect image **/
/** PBCON: enable pb, zmode **/
/** PTRCTL: step 8 **/

void modeOLUT()

theChar;
doneFlag=0;

scrOLUT() ;
while(!doneFlag) {

theChar = getchar();
switch(theChar) {

case 'e':
doneFlaa =
break;

void modeSAVE()

int
char
unsigned
unsigned
unsigned
long
FILE

int

char

theChar;
doneFlag=0,fnPtr [16];
x, y, s, i, d, size;
seg[41;
*p, temp;
j;
*fp;

scrSAVE();
termprintf(15,10,,0x8740,"8 legal characters only.");
if(term_input(14,10,fnPtr,15,"Image name:",0x8740,0xb0,0x8340) != 0)

term box fill(6, 0, 80,1, 0x8740, 0,0Oxdb);

194

int
char

Appendix B. Sourc'e Code.

termprintf(6,0,0xf540,"(S)ave (E)scape");
term box fill(14,10,70,2,0x8040,0,0xdb);
for(i-0,d-0;i<8 && !d;i++)

if(*(fnPtr+i) == '\0') { d=1; i--;)
strcpy(fnPtr+i, ".vid");
term_printf(14,10,0x8740,"Enter (S)ave to save image as '%s'",fnPtr);
term box fill(23,0,80,1,0x8740,0,Oxdb);

else {
termbox fill(23,0,80,1, 0x8740, 0, Oxdb);
termprintf(23,0,0xf540,"Image save ABORTED");
doneFlag - 1;

while(!doneFlag) {
theChar = getchar();
switch(theChar) {

case 'e':
doneFlag = 1;
break;

case 's':
/** ---------------------------------- Allocate Memory ---- **/
termprintf(16,10,0x8440,"Allocating segments...");
term box fill(23,0,80,1,0x87400,0,0xdb);
if((seg[0] = alloc_segment(0x1000)) == 0) (

term_printf(19,10,0xf540, "Memory segO FAILED");
break;

if((seg[1] = alloc_segment(0x1000)) == 0)
termprintf(20,10,0xf540, "Memory segl
break;

if((seg[2] = alloc_segment(0x1000)) == 0)
termprintf(21,10,0xf540, "Memory seg2
break;

if((seg[3] = alloc_segment(0x1000)) == 0)
termprintf(22, 10, 0xf540,"Memory seg3
break;

{
FAILED");

FAILED");

FAILED");

(inWord(0x16)&Oxff);

/** ------------------ ------------- Download Image
termprintf(17, 10,0x8440,"Downloading image...");
for(s=0;s<4;s++) (

set extra_segment(seg[s]);
p-0;
for(y-0;y<128;y++) (

outWord(0xla,128*s+y); /** Y pointer reg:
outWord(0xl8,64); /** X pointer reg:
for(x=0;x<64;x++) {

inWord(0xlc); /** read 8 pixs ii
for(i=0;i<8;i++)

@(p+512*y+8*x+i) = (unsigned char)

ister **/
ister **/

nto PB **/

/** ---------------------------------- Write file --------- **/
termyprintf(18,10,0x8440,"Writing file...");
if((fp = fopen(fnPtr,"w")) == 0) {

195

----- **/

I

Model-based Vision Navigation for a Free-flying Robot.

term_boxfill(23,0,80,1,0x8740,0,Oxdb);
term_printf(23,0,0xf540,"cannot open file '%s'",fnPtr);
break;

}
size = 512;
fput((char *) &size,2,fp);
for(s=0;s<4;s++) I

term printf(18,40,0x8440,"s=%d",s);
set_extra segment(seg[s]);
for(j=O;j<0xl0000;j++) (

temp - @((char *) j);
putc(temp,fp);

}

fclose(fp);
/** ---------------------------------- Clean up ----------- **/
for(s=0;s<4;s++)

free_segment(seg[s]);
term_box fill(23,0,80,1,0x8740,0,Oxdb);
term_printf(23,0,0xf540,"Image saved as '%s'",fnPtr);
doneFlag = 1;
break;

}
term_box_fill(14,10,70,6,0x8040,0,Oxdb);

void modeOVERLAY()

int theChar;
char doneFlag=0;

scrOVERLAY();
while(!doneFlag) (

theChar = getchar();
switch (theChar)

case 'e':
doneFlag - 1;
break;

void modeLOAD()

int theChar,rv,tint;
char doneFlag = O,fnPtr[20];
FILE *fp;
unsigned seg[4],size,x,y,s,i,d;
long j;
char temp,*p;

scrLOAD() ;
/** -------------------------------------- List legal files --- **/
term_printf(8,0,0x8540,"Image files:");
fp = fopen("/user/ali/ofg","rq");
dir_set_first(fp);
term_cur(9,0); term colour(0x87);

196

Appendix B. Source Code.

while(rv = dir next fname(fp,"*.vid",fnPtr))
if(rv==l)

tprintf("\t%s\n",fnPtr);
term colour(0x83);
/** -------------------------------------- Obtain choice ------ **/
if(term_input(7,10,fnPtr,15,"Image name:",0x8740,0xb0,0x8340) != 0) {

term box fill(7,O,80, 16,0x8040,0,Oxdb);
term box fill(6,0,80,1,0x8740,0,0xdb);
term_printf(6,0,0xf540,"(L)oad (E)scape");
term printf(14,10,0x8740,"Enter (L)oad to load image '%s'",fnPtr);
term boxfill(23,0,80,1,0x8740,0,Oxdb);

else {
term box fill(23,0,80,1,0x8740,0,0xdb);
term_printf(23,0,0xf540,"Image load ABORTED");
doneFlag = 1;

while(!doneFlag) {
theChar = getchar();
switch(theChar)

case 'e':
doneFlag = 1;
break;

case '1':
/** -------------------------- Validate selection - **/
term box fill(23,0,80,1,0x8740,0,0xdb);
if((fp = fopen(fnPtr,"r")) == 0) {

term_printf(23,0,0xf540,"File access failed.");
doneFlag = 1;
break;

/** -------------------------- Allocate buffers --- **/
term_printf(16,10,0x8440,"Allocating segments...");
if((seg[0] = allocsegment(0x1000)) == 0) {

term_printf(19,10,0xf540,"Memory segO FAILED");
break;

if((seg(l] = alloc_segment(0x1000)) == 0) {
termprintf(20,10,0xf540,"Memory segl FAILED");
break;

if((seg[2] = alloc_segment(0x1000)) == 0) {
term_printf(21,10,0xf540,"Memory seg2 FAILED");
break;

if((seg[3] = alloc_segment(0x1000)) == 0)
term_printf(22,10,0xf540,"Memory seg3 FAILED");
break;

/** -------------------------- Read file ---------- **/
termprintf(17,10,0x8440, "Reading file...");
fget((char *) &size,2,fp);
for(s=0;s<4;s++) {

term_printf (17, 40, 0x8440, "s=%d", s);
set_extra_segment(seg[s]);
for(j=0;j<0xl0000;j++) {

temp = getc(fp);
@((char *) j) = temp;

197

Model-based Vision Navigation for a Free-flying Robot.

fclose(fp);
/** -------------------------- Load frame buffer -- **/
term_printf(18,10,0x8440,"Uploading image...");
for(s=0;s<4;s++) {

set_extra_segment(seg[s]);
p=O;
for(y=0;y<128;y++) {

outWord(Oxla,128*s+y); /** Y pointer register
outWord(0x18,0); /** X pointer register
/*=== Clear Pixel Buffer ===*/
for(x=-0;x<8;x++) (

for(i=0;i<8;i++)
outWord(0x16,0); /** Pixel Buffer

outWord(0xlc,0); /** Data Port

pixs to Mem **/

/*=== Write data to pixel buffer in grps of 8
for(x=0;x<64;x++) I

for(i=0;i<7;i++)
outWord(0xl6,(int) @(p+512*y+8*x+i));

outWord(0xlc, (int) @(p+512*y+8*x+7));

==r=*/

/** write 8

for(x=-0;x<8;x++) I
for(i=0;i<8;i++)

outWord(0x16, 0);
outWord(0xlc,0);

/** ------------------------- Clean up ----------- **/
fclose(fp);
for(s=0;s<4;s++)

free_segment(seg[s]);
term_box_fill(23,0,80,1,0x8740,0,Oxdb);
termprintf(23,0,0xf540,"Image '%s' loaded.",fnPtr);
doneFlag = 1;
break;

}
termboxfill(7,0, 80,16,0x8040,0,0xdb);

void modeHIST()

int
char
unsigned
long
unsigned
unsigned char

theChar;
doneFlag=0;
x,y,i,n, level;
max,bin[64],total;
din;
d8b,joe,dsh;

scrHIST();
term_bar(22,9,1,16,16,x8740);
termbar(22,74, 1, 16,16 , 0x8740);
for(i=0;i<64;i++)

bin[i] = 0;

198

Appendix B. Source Code.

for(y=0;y<480;y+.+) (
outWord(0xla,y); /** Y PTR register **/
outWord(0x18,64); /** X PTR register **/
for(x-64;x<576;x+-8)

inWord(0xlc); /** DATA register: fill PBUF
for(i=0;i<8;i++)

++bin[((unsigned char) inWord(0x16)>>2) ;

for(i=0,max=0; i<64;i++)
if(bin[i]>max) max = bin[i];

for(n=ll;max>(((long) 1) <<n) ;n++);
termprintf(16,0,0x8540,"c=2^%d",n-4);
for(i=O;i<64;i++) (

level = bin[i]>>(n-5);
termbar(22,10+i,2,level,level,0x8140);

}
while(!doneFlag) {

theChar = getchar();
switch(theChar) {

case 'e':
doneFlag = 1;
break;

termbox fill(7,O0,80,16,0x8040,O,Oxdb);

/**/

/***** Debugging Routines *****/

int testILUT()

unsigned int joe, fails, i;

outByte(0xc,0);
for(i=0,fails=0;i<256;i++) {

joe = inByte(0xd);
if(joe != i)

fails++;

term_printf(8,0, 0x8740,"%d failures in ILUT",fails);
return fails;

testOLUT()

int b,c,i,stat[3] [16];
register int joe,dude,fail;

for(c=0,fail=0;c<3;c++) {
outByte(l,c);
for(i=0;i<256;i++)

outByte(2, i);
if(i != inByte(8))

fail++;

/* color c,bank 0 */

if(fail != 0)
stat[c] [0] = 2;

199

int

Model-based Vision Navigation for a Free-flying Robot.

else stat[c][0] = 3;

for (b=l;b<16;b++)
for(c=0,fail=0;c<3;c++)

outByte(l, (b<<4) Ic); /* color c,bank b */
outByte(2,0);
joe = inByte(8);
for(i-l;i<256;i++) {

outByte(2, i);
if(joe != inByte(8))

fail++;
)
if(fail != 0)

stat[c][b] = 2;
else if(joe == 0)

stat[c][b] = 0;
else stat[c] [b] = 1;

for (b=0;b<16;b++)
term printf(b+7,40,0x8740, "%10d%10d%10d",stat[0] [b] ,stat[l].[b] ,stat[2] [b]);

void testSETUP()
{

unsigned int i,reg[32];
unsigned int inByte(),inWord();

outByte(0x00,0x04);
term_printf(15,0,0x8440, "%x",.inByte (0xO));
for (i=0;i<16;i++)

reg[i] = inByte(i);
for(i=16;i<32;i+=2)

reg[i] = inWord(i);
for(i=0;i<16;i++)

termprintf(i+7,40,0x8740,"%x H",reg[i]);
for(i=0;i<8;i++)

termprintf(2*i+7,60,0x8740,"%x H",reg[i*2+16]);

main()
{

unsigned option_save;
char theChar;

initSETUP();
option_save = get option(stdin);
set_option(stdin,option_save & -3);
for(theChar=GRAB;theChar ! =QUIT;)

switch (theChar)
case GRAB:.

theChar = modeGRAB();
break;

case SNAP:
theChar = modeSNAP();
break;

}

scrQUIT() ;

200

