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ABSTRACT

Due to the difficulty in accurately measuring torsional eye movements, virtually no experiments
have studied the optokinetic responses to rolling visual fields in detail. This experiment had
three aims: (1) Evaluation of the slow phase velocity (SPV) and tonic eye deviation during
torsional optokinetic nystagmus (OKN); (2) Investigation of torsional optokinetic
afternystagmus (OKAN); and (3) Comparison of eye movements with visually induced
perception of self motion--roll vection.

Seven subjects were tested using a full field dome stimulus, covered inside with randomly
placed dots, which rotated about the visual axis. Eye torsion was measured using a highly
accurate magnetic search coil technique. Subjects were tested in erect and supine orientations
using both counterclockwise and clockwise stimuli at four speeds between 150/second and
600/second. Aftereffects following optokinetic stimulation were recorded under three visual
field conditions: in the light, in the dark with a fixation LED, and in complete darkness.

The SPV gain during OKN was shown to be quite low and highly variable, and to decrease
with increasing stimulus velocity. Contrary to prior expectations, the majority of subjects
demonstrated lower SPV gains supine than erect. This decline from erect to supine may have
resulted from habituation, as adaptive effects were observed over the course of each session.

Contrary to previous studies, mean eye position was found to deviate in the direction of the fast
phase during OKN. Tonic deviation increased with increasing SPV. While a single line
through the origin best related ocular deviation to SPV for supine runs, the linear fits were
translated in the direction of the slow phase for erect tests. The shift may have resulted from
static ocular counterrolling induced by a central recomputation of the gravity vector.

Time constants of SPV decay during OKAN were found to average 2.4 seconds. OKAN time
constants were shortened by both otolith suppression and visual information. The short time
constant of SPV decay indicates that velocity storage is generally underdeveloped for torsion in
human subjects.

Cross-correlation of roll vection with torsional SPV and eye position demonstrated that the
perceptual and eye movement processes are not closely linked. Consistently greater eye
deviation in the direction of the fast phase during vection indicated that vection and OKN may
share some basic mechanisms.

Thesis Supervisor: Laurence R. Young
Professor of Aeronautics and Astronautics
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1. INTRODUCTION

In 1820, Purkinje wrote that Gesichtstduschungen sind Sinneswahrheiten--visual

illusions reveal the truth about the senses. The illusions generated in man by large moving

visual displays, as well as the accompanying interactions with the vestibular and postural

control systems, remain active research topics today. Because these illusions generally result

from the action of biologically adaptive mechanisms exposed to novel sensory inputs, they

provide insight into the underlying neurologic organization. In turn, this basic research enables

understanding of effects ranging from disorientation in high-performance aircraft to illusions

and motion sickness in microgravity. Furthermore, appreciation of the functional capabilities

and limits of the sensorimotor apparatus permits optimization of man-machine interfaces in

areas such as visual displays, vehicle controls, and design of flight simulators.

The experiments detailed in this thesis deal specifically with the effects in humans of

wide field displays rotating about the visual axis. Such displays cause reflex eye movements,

known as torsional optokinetic nystagmus, which historically have proven difficult to measure

accurately at high sampling rates. Postural reactions, possibly related to a central recalculation

of the direction of the perceived gravity vector, result as well. Finally, the rotating visual field

induces perceptual illusions, including roll vection--a visually induced sensation of full body

rotation about the visual axis. Very little information has been collected to date on the

compensatory eye movements induced by rolling visual fields. Furthermore, the interactions

between reflexive responses and perceptual processes are not fully understood. The thesis

experiments described here address these issues.

1.1. Motivation for the Experiment

There existed three main motivations for the experiments described in this thesis. First,

the design was intended to allow adequate characterization of optokinetically induced torsional

eye movements. Next, the experiments were constructed to examine torsional optokinetic



aftemystagmus (OKAN). The final purpose of the study was to investigate possible

correlations between torsional eye movements and roll vection.

1.1.1. Characterization of Torsional Optokinetic Nystagmus (OKN)

Because of the difficulties inherent in recording torsional eye movements, very little

information exists on the properties of optokinetically induced torsion. At this time only three

studies of torsional optokinetic eye movements in humans have been reported which yielded

accurate measurements at high sampling rates. Although each of these experiments utilized a

variation of the magnetic search coil technique, two were quite limited in the amount of data

acquired and the scope of analysis performed, while the abstract describing the third study

yielded little insight.

The first study, by Collewijn et. al. (1985), included only two subjects who were

tested erect at stimulus rotation rates ranging from 1.20 to 300/sec. The average slow phase

velocity (SPV) gain of the resulting torsional OKN was 0.11 at the lowest stimulus speed, and

dropped to near 0.035 over the rest of the stimulus range. The calculated gain was highly

variable, and at all speeds the standard deviation of the gain exceeded the mean value. Part of

this variability was likely due to the grouping of results from both subjects and both rotation

directions. These tests indicated no prominent tonic deviation of the eye.

Malan (1985), who performed the second set of experiments, also tested only two

subjects. He recorded torsional OKN with the subjects in erect and supine positions at speeds

from 100 to 300/sec. Malan's results, which were taken from a very small sample of slow

phases, showed SPV gains considerably greater than those reported by Collewijn et. al. Malan

presented mean gains ranging from 0.07 to 0.23. The variability in Malan's SPV data appears

somewhat smaller than that seen by Collewijn, and he did not group results from different

subjects or stimulus rotation directions.

However, his results were complicated by his grouping of the gains calculated at all

stimulus speeds. Although he did plot mean SPVs against stimulus speed for each subject, the



data coordinates were not tabulated and values had to be estimated from the graphs. He

attempted no analysis of the dependence of SPV gain on stimulus rate. Also, Malan made no

comparisons between the SPV erect and supine, although the gains appeared to be somewhat

higher supine. Unfortunately, Malan presented no measures of the variability of his gain data,

and even cautioned against drawing any conclusions from such a small sample. He did report

that the eye appeared to be biased in the direction of the slow phase by approximately 2-30 for

the erect trials, although this estimate was probably based on visual inspection of stripchart

recordings. He observed no comparable tonic deviation for the supine condition.

The third study, by Morrow and Sharpe (1989), was published only in abstract form.

The authors tested 5 subjects using a full-field dome stimulus, and found a decrease in gain

from 0.23 ± 0.09 at 100/sec to 0.06 ± 0.03 at 800/sec. They also observed a variable

afternystagmus with an SPV decay time constant of 1.3 ± 1 sec. No differences were noted

between erect and supine conditions.

These three sets of experiments do provide an estimate of the strength of the torsional

optokinetic reflex. However, few conclusions can be drawn due to the small sample sizes,

grouping of data points, and lack of depth in the analysis. There are some notable differences

between the results of the three studies, both in gain values and observed tonic eye deviation.

Furthermore, comparisons are complicated by the fact that Malan's eye coil system allowed

only monocular observation of the rotating stimulus, while the method used by Collewijn et.

al. and Morrow and Sharpe permitted binocular viewing. Studies by Fox et. al. (1978), Wolfe

and Held (1979), Wolfe et. al. (1980), and Crites (1980) suggest a binocular contribution to

optokinetic nystagmus and ocular torsion.

One objective of the experiments performed for this thesis was a more comprehensive

analysis of the torsional slow phase behavior and tonic eye deviation during binocular

optokinetic stimulation. This required a subject sample larger than those included in the

previous studies. The experimental paradigm was developed to consider the possible effects of



stimulus rotation direction, rotation rate, and the orientation of the subject with respect to the

gravity vector. These three variables were deemed important for the following reasons:

*Individual directional asymmetries frequently appear in the psychophysical
responses to visual roll stimuli. (Dolezal and Held, 1975; cited in Henn et. al.,
1980)

*The SPV gain during horizontal OKN drops off at higher stimulus speeds in
humans (Dichgans et. al., 1973) and other species (Collewijn, 1981). A
similar saturation has been observed for torsional OKN in the rabbit
(Collewijn, 1972). However, the results of Morrow and Sharpe (1989)
included only 2 data points in describing the dependence of torsional SPV gain
on stimulus velocity.

*Otolith sensing of head tilt relative to the vertical is one cause of ocular
counterrolling (Miller, 1961). Studies in both yaw and pitch OKAN have
demonstrated decreases in SPV decay time constants for rotations about off-
vertical axes (Lafortune et. al., 1990; Cl6ment and Lathan, 1991). A study on
torsional OKN and OKAN in the monkey (Schiff et. al., 1986) demonstrated a
sharp suppression of both responses when the animal's orientation was
changed from supine to upright.

1.1.2 Human Torsional Optokinetic Afternystagmus

Data on the eye movement aftereffects of torsional optokinetic stimulation are virtually

nonexistent. Collewijn et. al. (1985) made no mention of recording eye movements after the

cessation of stimulus rotation. Malan (1985) noted that the eye generally took 20 t o 30

seconds to return gradually to the rest position after the stimulus rotation stopped, but did not

observe any afternystagmus. Two explanations for the failure of his stimulus to induce an

OKAN seem plausible. First, OKAN is typically a weak and variable response in humans;

Malan's small sample population did not preclude the existence of of torsional OKAN. In

addition, a stationary visual surround is known to suppress OKAN, resulting in a rapid

decrease in slow phase eye velocity (Cohen et. al., 1977). In Malan's experiment, the visual

stimulus was still illuminated after the rotation stopped.

Despite the lack of prior evidence for torsional OKAN, a few nystagmic beats were

occasionally observed after the stop of the rotating stimulus in preliminary tests for this thesis.

These trial experiments, which were run on one subject (M) and were conducted entirely in the

light, indicated the possible existence of torsional OKAN. Thus, the second main objective of



this study became an examination of the eye movements which occur following the removal of

the rotating stimulus.

Studies on yaw OKAN suggested two important effects which could be evaluated

within the framework of the experiments undertaken here. First, the possible suppression of

torsional OKAN by a stationary visual field could be investigated by recording eye movement

aftereffects both in the light and in darkness. Second, the influence of the relative direction of

the gravity vector on torsional OKAN could be tested by comparing erect and supine runs.

Several studies have demonstrated otolith involvement in regulation of the "velocity storage"

integrator responsible for OKAN. These include the depressed post-rotatory nystagmus

observed following longitudinal rotations about off-vertical axes and the "dumping" of central

velocity storage caused by head tilts after yaw rotation (reviewed by Benson, 1974). More

recently, Lafortune et. al. (1990) demonstrated that static tilts about the pitch axis produced a

significant reduction in the decay time constant of horizontal OKAN slow phase eye velocity.

Cl6ment and Lathan (1991) observed a similar reaction for roll tilts during pitch OKAN, while

Schiff et. al. (1986) found suppression of torsional OKAN in monkeys for roll stimuli about

off-vertical axes.

1.1.3. Possible Correlation of Eye Torsion and Roll Vection

Two main groups of studies have attempted to relate the torsional eye movements and

accompanying psychophysical responses induced by stimuli rotating about the visual axis. The

first set (Finke and Held, 1978; Wolfe and Held, 1979; Merker and Held, 1980) compared

visually induced tilt with ocular torsion measured using an afterimage method. The

investigators concluded that eye torsion and the psychophysical responses were controlled by

largely independent processes. However, the subjective afterimage technique has some critical

deficiencies (Howard and Evans, 1963) and has never been validated as an accurate measure of

ocular torsion. The efficacy of attempting to align a luminous rod with an afterimage during a



rapidly beating nystagmus seems dubious at best. An additional drawback to their method

involved the inability to measure eye torsion and the induced tilt response simultaneously.

The second group of experiments, conducted through the MIT Man-Vehicle

Laboratory, utilized the same rotating dome stimulus incorporated in this thesis. These tests

relied on an objective still photography method to record ocular counterrolling, and compared

eye torsion with the magnitude of roll vection. The extraction of torsion angles from the eye

photographs proved accurate to within 0.50. Unfortunately, the camera system limited the

sampling rate to 3 Hz.; while any truly tonic mean eye deviation could be measured with

reasonable accuracy, the nystagmic beating of the eye could not be captured. Likewise, the

low data rate prevented calculations of slow phase velocity.

Crites (1980) reported that "no direct correlation between vection and [the tonic portion

of] OCR could be found." Interestingly, the eye deviation measurements collected by Crites

demonstrated strong qualitative differences from those obtained in the afterimage experiments.

Young et. al. (1981) found that the average ocular torsion shifted in the direction of stimulus

rotation during periods of vection for some subjects, but concurred that ocular torsion and

visually induced tilt represented essentially independent processes. In contrast, Lichtenberg

(1979) suggested from unpublished experiments that a large torsional nystagmus occurred

during periods of roll vection, but was absent during vection "dropouts."

In all, the experiments relating psychophysical responses to torsional eye movements

have suffered from ocular torsion measurement techniques with questionable reliability and/or

low sampling frequencies. The conclusions of the various studies regarding the correlation of

the two phenomena also contain some unresolved contradictions. Furthermore, the torsional

slow phase velocity or SPV gain might conceivably provide a more reasonable parameter than

tonic deviation for comparison with roll vection, since vection describes a perceived rotation

rate.

The magnetic search coil system provides an ideal tool for accurate high sampling rate

measurement of torsional OKN simultaneous with subjective estimation of roll vection.



Although Collewijn (1985) stated that his stimulus induced a strong sense of vection, it

appeared that no measurements of vection were taken during his torsion experiments. Malan

(1985) did measure roll vection for his supine runs and visually induced tilt erect, but attempted

no systematic correlation of the psychophysical reactions with the torsional eye movements.

Thus, the final goal of the experiments reported here was to collect data on subjective roll

vection and investigate possible correlations in time with torsional eye position or slow phase

velocity.

1.2. Organization of the Thesis

Chapter II presents background information and pertinent previous research in the

following areas: (1) the sensory end organs, especially in the visual and vestibular systems;

(2) reflex eye movements induced by the visual and vestibular systems; (3) the psychophysical

effects of wide field moving displays; and (4) possible connections between the compensatory

eye movements and psychophysical responses. Chapter III is devoted to descriptions of the

experimental apparatus--the vection stimulus, the magnetic search coil system for measuring

eye movements, and the data acquisition equipment. Chapter IV describes the actual

experiment in detail. A review of the experimental protocol is followed by an overview of the

data analysis techniques.

The results of the study are presented in Chapter V. This chapter divides into three

sections: (1) a characterization of the slow phase eye velocities during torsional optokinetic

nystagmus; (2) an evaluation of torsional optokinetic after-nystagmus; and (3) an examination

of tonic eye deviation under optokinetic stimuli. Comparisons of torsional eye movements

with vection responses are dealt with in sections 1 (SPV vs. vection) and 3 (position vs.

vection). A discussion of the results in the context of past studies and proposed models of

visual-vestibular interaction follows each section. Chapter VI summarizes the conclusions and

presents suggestions for further study.



The Appendices contain important supplemental information, including COUHES

approval, subject consent documentation, and step-by-step descriptions of experimental

procedures. Raw data parameters for each trial, summaries of subject comments, and hard

copies of the computer programs used in the data analysis are presented as well.



2. BACKGROUND

2.1. Sensory End Organs

The sensory apparatus responsible for dynamic and static spatial orientation relies

mainly on visual, vestibular, and to a limited extent somatosensory and proprioceptive inputs.

The vestibular system encompasses the body's angular and linear accelerometers, while the

visual system is sensitive to a wide variety of moving and static stimuli Somatosensory and

proprioceptive signals provide more limited information regarding tactile cues and joint

positions.

2.1.1. The Vestibular System

The vestibular end organs, which provide the inertial guidance platform for the sensory

system, consist of the vestibular labyrinth in each inner ear. The semicircular canals act as

integrating angular accelerometers, while the otolith organs transduce linear acceleration.

2.1.1.1. The Semicircular Canals

The semicircular canals are three nearly orthogonal membranous rings filled with

endolymph, a fluid with properties similar to water. During head accelerations, the fluid is

displaced relative to the canal walls due to its inertia. In turn, the fluid distorts the cupula, a

gelatinous structure which obstructs fluid movement in the canal ampulla. Hair cells located in

the crista beneath the cupula transduce this deformation. An overdamped second order torsion

pendulum model provides a good first approximation to the semicircular canal dynamics

(Steinhausen, 1931). For the human canal, the model estimates the two time constants at

0.0025 sec. (resulting in endolymph velocity proportional to head acceleration in 5-10 ms) and

12 sec. (reflecting the slow decay of cupula displacement for constant head velocity). Because

the viscous drag of the canal walls on the endolymph is much greater than the restoring force

exerted by cupular displacement over the normal spectrum of head movements, head

accelerations are effectively integrated by the canal mechanics. Thus, the resulting primary



afferent discharges are roughly proportional to head angular velocity in the frequency range

from 0.1 to 1 Hz.

2.1.1.2. The Otolith Organs

The otolith organs are made up of two roughly orthogonal structures: the utricle and

the saccule. The dominant plane of the utricular macula is tilted approximately 250-300 back

from Reid's base line (Dai et. al., 1989), while the saccular macula lies largely in the saggital

plane. The maculae support fibro-gelatinous membranes containing otoconia--calcium

carbonate crystals with a density greater than the surrounding endolymph. Hair cells transduce

displacement of the otolithic membrane due to the component of the specific force (gravito-

inertial acceleration) vector lying in the dominant plane. Directional polarization of the hair

cells allows each organ to perform as a two dimensional linear accelerometer.

Although no differences between utricular and saccular afferent units were seen in the

monkey (Fernandez and Goldberg, 1976), only acceleration stimuli in the horizontal (utricular)

plane give repeatable results in humans, while the precise function of the sacculus remains

undetermined. The sensitivity of the otoliths to the specific force vector permits their operation

as graviceptors, effectively signalling head tilt with respect to the gravity vector. Because of

the geometry of the utricle, it becomes less sensitive to changes in the gravity vector with

increasing lateral head tilt, and is most sensitive when the head is pitched 250 forward, bringing

the dominant plane of the utricular macula approximately to the horizontal.

2.1.2. The Visual System

The separate visual functions of spatial orientation and object fixation and tracking,

with their differing sensory requirements, have prompted a distinction between "ambient" and

"focal" vision in primates (Held, 1970). Such a distinction may mirror functional divisions in

the anatomy and physiology of the retina. Certain aspects of oculomotor function are also

relevant. Eye movements in three dimensions, including ocular torsion, clearly depend on the

structure and performance of the oculomotor plant. Additionally, proper interpretation of



retinal information, influencing perception of spatial constancy and self motion, relies on

mechanisms for accurately sensing eye position and velocity.

2.1.2.1. The Primate Retina

As explained by "duplicity theory," primate vision divides functionally into two

different systems relying on distinct groups of photoreceptors. The rods provide great

sensitivity during low illumination, and subserve scotopic vision. Photopic vision, which

depends on the cones, allows high acuity at high light levels. The differing characteristics of

central and peripheral vision follow from the distribution of the two photoreceptor populations

across the retina. The majority of cones are concentrated in a central area about 5.20 in diameter

called the fovea. While the central island of the fovea contains no rods, the rod concentration

rises sharply outside the fovea and reaches a peak approximately 200 from the center. Further

into the periphery the rod density declines slowly.

Absolute threshold sensitivity of different parts of the retina correlates well with the

distribution of rods. Sensitivity peaks at 200 nasal and 300 temporal are close to the rod density

maxima. Likewise, the greatest acuity occurs at the highest cone concentration. Resolving

power decreases with decreasing illumination, reflecting the lower sensitivity of the cone

system. The tradeoff between sensitivity and acuity is mirrored in the spatial integration

capabilities of the rod and cone systems. As the stimulus size is increased, thresholds for

detection drop, indicating that spatial summation occurs. Ideal integration is more closely

achieved at low illumination levels; good acuity is sacrificed by the rod system to allow spatial

addition for higher sensitivity.

Another significant difference between rod and cone vision is seen in the critical fusion

frequency, at which two images presented sequentially in time can no longer be distinguished.

At high illumination levels, fusion at the fovea does not occur for presentation frequencies

below 50 Hz.; frequencies of 10 to 20 Hz. are sufficient to prevent flicker away from the fovea

or in dim light. Temporal integration is the functional inverse of the ability to resolve



successive stimuli. Part of the heightened sensitivity of the rod system is due to its high

capacity to integrate photons over time. In contrast, the poor temporal integration ability of the

cone system permits finer temporal resolution.

In many lower animals, such as the frog and pigeon, ganglion cells in the retina exhibit

complex receptive field behavior. The cells may respond to unidirectional motion, the

orientation of bars of light in the receptive field, or the number of edges within the field. In

contrast, primates and other higher animals exhibit relatively simple concentric receptive field

organization. Such animals rely on a highly developed visual cortex to perform much of the

processing related to motion and orientation (Dowling and Dubin, 1984).

2.1.2.2. The Oculomotor Plant

The globe of the eye within its orbit comprises a heavily overdamped system. The

main resistance to movement is generated by viscous rather than inertial forces. Six extraocular

muscles work in synergy to permit rotational eye movements with three degrees of freedom

(horizontal, vertical, and torsional). However, the muscles cannot be strictly grouped into

orthogonally oriented opposing pairs.

Typically, horizontal and vertical eye movements can reach 400-500 from the central rest

position. The torsional range is much smaller, measuring only about 300 peak to peak (Balliet

and Nakayama, 1978a). Torsion is probably limited by the mechanical properties of the

oculomotor system, as experiments in forced cycloduction pointed toward a "leash" effect at

approximately ±150 (Simonsz et. al., 1984).

With the exception of vergence movements, eye movements are generally conjugate and

obey Hering's Law of Equal Innervation. "Slow" eye movements include voluntary pursuit of

targets and the slow phases of vestibular and optokinetic nystagmus. "Fast" eye movements,

consisting of tracking saccades and fast phases of nystagmus, follow a stereotyped "main

sequence" relating size, duration and peak velocity. Overall, torsional saccades prove much

slower than horizontal saccades of the same magnitude. Horizontal saccades of 50 have peak



velocities of 180 0-2600/second, while the same size torsional saccades reach only 750/second

(Collewijn et. al., 1985).

2.1.2.3. Sources of Information about Eye Position and Velocity

Central representation of eye position and velocity in space requires a signal accurately

representing the position and velocity of the globe in the orbit. There exist two possible

sources for such information: proprioception or "inflow" and corollary discharge or "outflow"

(Figure 2.1). While vision provides information about movement of images on the retina, such

motion could result from changes in either eye or head position.

Efference copy or corollary discharge--the "outflow" hypothesized by Helmholz

(1866)--permits differentiation between the retinal displacements due to object motion and eye

movements through a comparison of the retinal signal and the corollary discharge. The

existence of such a corollary discharge has been demonstrated by paralysis experiments (Matin,

cited in Stark and Bridgeman, 1983) and by "eye press" studies (Stark and Bridgeman, 1983).

These experiments cause a dissociation of eye motion from the efferent commands to the

oculomotor muscles, resulting in an erroneous perception of visual world motion.

Leibowitz et. al. (1986) and Bridgeman (1986) have suggested that only activation of

the voluntary pursuit system generates a corollary discharge, producing a perception of object

motion. Eye movements caused by the compensatory stabilization system--VOR and OKN--

would not result in a corollary discharge. These investigators use the hypothesized dichotomy

between a phylogenetically "old" stabilization system and a "new" pursuit system evolved later

to explain several visual illusions, including the oculogyral illusion and concomitant motion of

an illuminated point perceived during head translations.

Sherrington (1918) proposed that proprioceptive "inflow" eye position signals subserve

discrimination between object motion and eye movement as causes of retinal motion. Because

no eye muscle stretch reflex has been found, and the extraocular muscles operate under an

unchanging load due to the symmetry of the nearly spherical globe, proprioception has been
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discounted as an important source of eye position information. However, sensory receptors

are incorporated in the eye muscles, including muscle spindles, Golgi tendon organs, and

palisade endings located at the musculotendonous junction. Data reviewed by Steinbach

(1987) indicate that proprioceptive inputs do exist and are probably necessary for the normal

development of binocular function. Based on this evidence, outflow or corollary discharge

probably provides instantaneous eye position readings while inflow serves as a slow calibrator

of eye position with time constants measured in days.

2.1.2.4. Measurement of Eye Movements

Evaluation of the functional properties and importance of torsional eye movements

requires a method of accurately recording the variety of movements which occur over a range

of stimulus conditions. This section is not meant as a comprehensive discussion of eye

movement measurement; Young and Sheena (1975) surveyed a wide variety of recording

techniques while Law (1991) provided a more complete summary of methods applicable to the

investigation of eye torsion. However, evaluation of the results from many previously

published experiments relevant to this thesis must take into account the limitations of the eye

movement methodologies employed: most often used were subjective afterimage alignment,

still photographs, and magnetic induction coils.

In subjective methods, the subject estimates the angular deviation of a line either by

direct inspection or alignment with an afterimage. The only advantages of subjective measures

are the relative simplicity of the instrumentation and the limited data processing requirements.

In contrast, a number of difficulties with subjective estimates have been documented by

Howard and Evans (1963) and Fluur (1974):

*Subjective techniques suffer from high variability--Fluur found an average
measurement dispersion of 4.70.

*These methods require the use of a visual stimulus. Visual stimuli are know to
induce eye torsion; Howard and Templeton (1964) observed torsional
nystagmus in response to a rotating luminous line.



*Unavoidably low sampling rates prevent measurement of rapid changes in
torsion, such as the nystagmus resulting from optokinetic stimuli.

*Variability in subjective judgment cannot be distinguished from fluctuations in
torsion.

*There exists no innate capability for validation of the measure; apparently no
validations using objective measures have been attempted.

*Eye torsion and perception of egocentric orientation cannot be recorded
simultaneously.

Still photography of the eye has been used in a number of studies to calculate torsion

from frame to frame by determining the change in position of iral, scleral, or contact lens

landmarks. Torsion measurements generally display a repeatability on the order of 0.50

(Crites, 1980), although Balliet and Nakayama (1978a) claimed a better resolution of ±5 arc

minutes. The main drawback of still photography is the low sampling rate (limited to about 3

Hz.), which precludes calculation of slow phase eye velocities. Unless specially marked

contact lenses are incorporated, the technique relies on highly resolvable eye landmarks. Thus,

some subjects may prove unsuitable for eye movement recording, and blinks interfere with data

collection in any case. Finally, extracting torsion records from the series of photographs is an

expensive, labor intensive, and time consuming process.

The magnetic induction eye coil method has produced by far the best eye torsion

measurements to date. (Robinson, 1963; Collewijn et. al., 1975). Coils of insulated magnet

wire can be permanently implanted in the eyes of laboratory animals using surgical techniques.

For human subjects, specially wrapped coils fixed within silicone rubber rings may be

temporarily mounted on the sclera. Oscillating magnetic fields generated about the subject's

head induce signals in the eye coil proportional to the angular deviation of the eye. The

capabilities of such a system are impressive. Eye torsion data is available in real time with

noise levels as low as 1 arc minute. Measurement bandwidths up to 530 Hz. permit very high

sampling rates using digital computer data acquisition. However, the search coil method does

have some drawbacks:

*The procedure is somewhat invasive, and requires the use of topical
anaesthesia.



*Test sessions are limited to 30 minutes in duration to avoid excessive irritation
of the eye.

*A small possibility of corneal abrasion exists. Furthermore, the suction which
causes the scleral ring to adhere to the eye contributes to a slight increase in
intraocular pressure.

*No intrinsic method of absolute torsional calibration exists for a Robinson-
style amplitude detection system (Robinson, 1963).



2.2. Reflex Visual Stabilization

The vestibulo-ocular reflex (VOR) and optokinetic nystagmus (OKN) together make up

a postural reflex designed to stabilize visual scenes on the retina during movements of the head

in space. At its most basic level the VOR relies on a phylogenetically old three-neuron arc

consisting of a semicircular canal afferent, a single interneuron and an eye motoneuron. OKN,

also referred to as the visual-ocular reflex, tracks large moving fields to augment visual

stabilization. Other inputs exert a comparatively minor influence on compensatory eye

movement. These include neck proprioception as well as aural (audiokinetic) and tactile

(haptokinetic) cues. Reflex compensation can generally be overridden by voluntary fixation

and target tracking eye movements.

Body or visual field rotations lasting longer than a few hundred milliseconds generate

nystagmic eye movements. The nystagmus consists of compensatory "slow phase" tracking

movements interspersed with oppositely directed saccadic "fast phases" which reset the eye

position. By convention, the direction of nystagmus refers to the direction of the fast phase.

The majority of research concerning compensatory eye movements relates to yaw rotations.

Since the the properties of reflexive horizontal movements are generally representative of

reflexive compensation about all three axes, yaw motion will be addressed first. The important

differences seen for vertical (pitch) and horizontal (roll) compensation will then be discussed,

as well as the need for three-dimensional representations to model adequately the visual-

vestibular and oculomotor interactions.

2.2.1. Horizontal (Yaw) Compensatory Eye Movements

2.2.1.1. The Vestibulo-Ocular Reflex (Henn et. al., 1980)

The VOR depends largely on semicircular canal inputs to generate eye movements

opposite to head rotations, keeping the visual axis stationary in space. Most natural head

movements lie in the frequency range above 0.5 Hz., within which compensatory eye

movements approach a gain of 1. Stabilization extends even into the higher frequency range



above 3 Hz. While the gain of the VOR for passive movements reaches a maximum of about

0.8, this value is brought near unity through the combined effects of high accelerations, otolith

stimulation, alertness, and neck reflexes.

In response to a rotational velocity step, eye slow phase velocity (SPV) rises abruptly

to stimulus velocity, plateaus at this peak value for several seconds, then decays slowly (Figure

2.2a). Neural activity in the vestibular nucleus represents an internal reconstruction of head

velocity. The dominant time constant of SPV decay (15-28 sec) in a range of species is quite

similar to vestibular nucleus time constants and appears considerably elongated compared to

decay times of end-organ afferent activity. If a step from a constant velocity to zero occurs

after the beginning of SPV decay, a post-rotatory nystagmus results in the direction opposite to

that seen during rotation. If the sudden stop takes place after the SPV has decayed completely

to zero, the post-rotatory eye movements approximately equal the per-rotatory response (Figure

2.2a).

The otolith organs also generate compensatory eye movements. During off-vertical

axis yaw rotation, SPV decays to a non-zero steady state value. A modulation phase-locked to

head orientation with respect to gravity appears superimposed on this tonic velocity component

(Benson, 1974). Raphan and Schnabolk (1988) postulate that the steady-state component is

generated by a centrally formed velocity estimate. The hypothesized central velocity

reconstruction derives from the moving pattern caused by sequential excitation of otolith

afferents with different polarization vectors exposed to the rotating gravity vector.

2.2.1.2. The Visual-Ocular Reflex and Optokinetic Nystagmus

Wide-field moving displays excite optokinetic eye movements which track visual field

motion. In the laboratory, optokinetic nystagmus (OKN) can be generated by drums with

various visual patterns rotating about the subject. (Figure 2.2b). Since opposite visual field

motion normally accompanies head rotations, OKN usually complements the VOR in

stabilizing images on the retina. As the VOR decays for extended rotations, OKN functions to
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Figure 2.2. Horizontal nystagmus in the monkey Induced by: [A] a velocity
step of platform rotation In the dark; [B] a step in surround motion; and [C] a
step of platform rotation in the light. For the same direction nystagmus
during OKN and platform rotation, opposite direction aftereffects are observed.
Following rotation In the light, the post-rotatory response was very slight.
(in Raphan et. al., 1979)

maintain compensatory eye movements beyond the limits of vestibular sensing. OKN

performs poorly for higher frequencies, but is superior to the VOR at low frequencies; when

both systerims are stimulated together the compensation gain curve remains flat and near unity

over a wider range of frequencies (Collewijn, 1981).

In animals with afoveate, laterally placed eyes (such as the rabbit), the gain of OKN is

near 0.8 up to about 200/s and drops off sharply above this speed. For stimuli above a few

deg/sec, OKN velocity builds up slowly to maximum over tens of seconds. OKN produced by

monocular stimuli is highly asymmetric, with a strong preference for fields moving in the

temporo-nasal direction. The lack of responsiveness to fields moving temporo-nasally permits

suppression of signals generated during forward translation. A horizontal "visual streak" on

the retina (subtending 1750 horizontally and 60 ° vertically) is the area most sensitive to



optokinetic stimuli. In such animals, OKN is produced subcortically in the pretectal nucleus of

the optic tract; decortication does not affect the optokinetic system (Collewijn, 1977).

In animals with foveas (primates), OKN gain remains high for much faster stimuli.

This is true to a lesser extent for animals with an area centralis, such as cats and dogs. In

primates, OKN demonstrates a fast rise upon stimulus onset; a slower rise to peak velocity

follows in monkeys. For animals with a fovea or area centralis, monocular OKN remains

generally symmetric. In foveate animals, OKN is probably generated by two processes. The

first is a postulated primitive, sub-cortical OKN ("slow" system) similar to the rabbit's,

supplemented by inputs fed through the visual cortex.

This old system is overlaid by a "fast," cortically controlled mechanism fed through the

cerebellum and pontine nuclei (reviewed by Howard and Simpson, 1989). The "fast"

mechanism is probably intimately related to the pursuit system, and presumably evolved to

meet the needs of binocular vision by stabilizing visual scenes lying only within the plane of

convergence It renders OKN bidirectional in each eye and increases OKN gain, especially for

high stimulus velocities (Howard and Simpson, 1989). The two systems have been

differentiated as "stier" (stare) and "schau" (look) nystagmus, or passive and active OKN

respectively (Ter Braak; cited in Collewijn, 1981). Passive subcortical OKN can best be

evoked in human subjects with the instruction "stare straight ahead at the stimulus," while

instructions such as "follow the stripes" or "count the stripes" are used when active cortical

OKN is desired. Active "look" OKN generally exhibits larger slow phase amplitudes and

lower beat frequencies than "stare" OKN (Yasui, 1974).

In accord with the binocular function ascribed to OKN in higher mammals, Fox et. al.

(1978) used random-element stereograms to demonstrate that purely stereoscopic contours

could produce OKN. They hypothesized that the slower beat frequency observed in

stereoscopic tracking compared with OKN from physical contours resulted from delays due to

cortical processing. Wolfe et. al. (1980) also found a binocular contribution to OKN in both

normal and stereoblind subjects using stroboscopic stimuli presented to the eyes individually.



In further studies, Howard and Gonzalez (1987) and Howard and Simpson (1989) found that

OKN gain is inversely related to the magnitude of binocular disparity.

Various lesion and ablation experiments have explored the neurological basis of OKN

in frontal eyed mammals, and support the existence of a primitive "slow" OKN mediated by the

pretectum upon which a phylogenetically newer cortical process has been overlaid.

Decortication in cats produces directional asymmetries similar to those in rabbits. Decorticate

dogs still demonstrate OKN but with a slower saturation velocity, and lose smooth pursuit

following cortical lesions. Lesion studies in monkeys provide further evidence for the

existence of subcortical OKN in primates (reviewed by Collewijn, 1981). Infant primates

(both monkeys and humans) exhibit directional asymmetries in monocular OKN for several

months following birth, while cats deprived of binocular vision during development also

demonstrate direction dependent OKN. Such asymmetries likely follow from slow

development of cortical mechanisms subserving stereopsis.

For primates, some disagreement exists as to whether OKN is generated primarily by

the central visual field or by peripheral stimuli. A study by Dichgans and colleagues (cited in

Henn et. al., 1980) demonstrated a strong increase in OKN velocity when the stimulus was

extended into the retinal periphery. However, for their narrower stimuli even relatively small

eye movements would have effectively moved the fovea away from the moving field.

Furthermore, the relative coarseness of the stimulus pattern probably resulted in significant

deterioration of the motion stimulus for smaller visual angles

Dubois and Collewijn (1979) utilized a servo-controlled projection system to stabilize

the projection area on a selected portion of the retina, effectively generating an open-loop OKN

response. They found that diminishing the stimulus diameter decreased the response gain only

moderately. However, deleting central portions of the stimulus caused a much more

pronounced decline, indicating that the fovea was more powerful for producing OKN than the

periphery. Dubois and Collewijn also found that peripheral stimulation elicited higher gains for

temporal rather than nasal stimulus motion, a tendency which probably assists foveation.



Howard and Ohmi (1984) confirmed the greater efficacy of the foveal area, showing that

occlusion of the central retina severely reduced OKN gain, but only for velocities above

300/sec.

In the monkey, horizontal OKN peak velocity increases with gain close to 1 up to

stimulus speeds of 1800/s. With the onset of field rotation, SPV rises quickly to approximately

60% of stimulus speed, followed by a gradual rise to peak velocity (Cohen et. al., 1977). The

gain in humans remains close to unity only up to speeds of 600 -900/sec. Furthermore, peak

velocity is generally achieved within the first slow phase, and no slow increase is seen except

in certain patients with malformed foveas (Cohen et. al., 1981).

2.2.1.3. Velocity Storage and Optokinetic Afternystagmus

The decay time constant of first-order semicircular canal afferent firing rates is

approximately 5 seconds, while the corresponding time constant in humans has been estimated

at 7-8 seconds from experiments in off-vertical axis rotation. For prolonged horizontal

rotations, vestibular nucleus firing rates in the monkey have considerably longer decay time

constants than end organ afferent rates. The decay of VOR slow phase eye velocity in

monkeys and humans also displays longer decay time constants. This elongation in time

constants is produced by a central "velocity storage" path, which has been modelled as a leaky

integrator. Velocity storage lengthens the VOR response following a step velocity stimulus,

producing a plateau where eye velocity closely matches the actual rotation rate. The VOR

response for low frequency stimuli is similarly augmented.

The optokinetic system also participates in the central storage of eye velocity (Figure

2.3). The direct, cortically controlled "fast" path is responsible for the rapid jump in OKN

velocity at the start of visual field rotation. In contrast, the "slow" subcortical OKN is

characterized by a gradual speed increase, generated through an eye velocity storage pathway.

A further consequence of this visually mediated velocity storage is the presence of an outlasting

nystagmus following the cessation of optokinetic stimuli. This aftereffect, called optokinetic
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Figure 2.3. One dimensional model of the VOR, OKN, and velocity storage
pathways. The model inputs are cupula deflection r, and visual surround
velocity ro; the output is eye velocity. In darkness, the switch L is open, and
the system is driven only by rv. Both vestibular and visual Inputs are
transmitted over direct pathways. Each input also feeds into the velocity
storage integrator. Closing the switch S invokes suppression of nystagmus by
fixation (in Raphan et. al., 1979).

after-nystagmus (OKAN), results from the slow discharge of the velocity storage integrator

when the stimulus ends (Figure 2.2b).

The indirect velocity storage path for OKN has the effect of producing a smooth

optokinetic response. Another functional purpose of velocity storage is to counteract

anticompensatory post-rotatory vestibular nystagmus following body rotation in the light.

After subject rotation in the light with a stationary visual field, post-rotatory nystagmus is

reduced by an amount comparable to the OKAN observed in the dark after pure surround

motion of equal velocity (Figure 2.2c). This dramatic reduction indicates an approximately

linear summation of vestibular postrotatory and visually induced OKAN eye velocity

components.



In the monkey, OKAN is related linearly to the prior stimulus velocity up to 900-

1200/sec, and peak OKAN SPV saturates at about 120 0/sec (Cohen et. al., 1977). The

charging time constant of velocity storage, calculated from the slow rise in OKN SPV,

measures approximately 3-5 sec. At OKAN onset, the SPV drops immediately by about 10-

20%, predicting a velocity storage gain of approximately 0.8. The velocity storage discharge

time constant in the monkey in considerably longer, as the OKAN SPV decays with a time

constant on the order of 10-30 sec.

In contrast to the monkey, velocity storage in humans appears to play a much more

limited role. Human OKN shows no slow rise in SPV--peak velocity is achieved within the

first slow phase. This immediate response upon stimulus onset indicates a gain in the direct

OKN pathway near unity for speeds up to 600 - 900 /sec in humans. The increased gain of the

"fast" component of OKN is accompanied by a decreased gain in the velocity storage pathway

compared with the monkey, evidenced by maximum OKAN velocities of 150-200/sec. As a

consequence, suppression of vestibular nystagmus following rotation in the light proves much

less prominent in humans. The low OKAN gain suggests a much weaker coupling of the

visual and vestibular systems than in the monkey (Cohen et. al., 1981).

Since human semicircular canal afferent dynamics or vestibular nucleus firing rates

cannot be directly measured, OKAN provides a quantification of velocity storage. Cohen et.

al. deduced a charging time constant of about 20 sec. and calculated a slightly longer OKAN

decay time constant near 25 sec. Lafortune et. al. (1986) found saturation of peak OKAN

velocity with 40 sec. of optokinetic stimulation, but proposed a somewhat longer charging time

constant of 47 sec. Jell et. al. (1984) fit a double exponential model to the OKAN decay of

SPV and found short and long time constants of approximately 1.2 and 49 sec.

OKAN also occurs when the eyes are kept stationary through fixation during stimulus

rotation, demonstrating that tracking eye movements are not necessary to charge velocity

storage. The cortical pathways are probably not responsible for velocity storage, since OKAN

from central 30' stimulation alone is weaker and less regular than OKAN from exclusive



peripheral stimulation. Following the decay of OKAN, a secondary after-nystagmus or

optokinetic after-after-nystagmus (OKAAN) may occur in the direction opposite to the initial

OKAN. This later response, caused by a different mechanism from velocity storage, probably

results from a central counterregulation to the main OKN effect during stimulation. Stronger

and longer lasting than OKAN, OKAAN can completely suppress the occurrence of primary

OKAN after continuous optokinetic stimulus durations of several minutes (Brandt et. al.,

1974).

2.2.2. Vertical (Pitch) Compensatory Eye Movements

The properties of the vertical VOR were tested in both monkeys (Matsuo and Cohen,

1984) and humans (Baloh et. al., 1983) by rotation about a vertical axis in the dark with the

head rolled 900 to the side. In both cases, the magnitude of the vertical VOR gain proved

comparable to the gain observed for passive horizontal rotations. In response to a velocity step

stimulus, monkey gains averaged 0.75 while humans displayed gains from 0.64 to 0.89. The

monkey gain responses were symmetric with regard to rotation direction, and Baloh et. al.

concluded that the vertical gains were symmetric in the majority of human subjects as well.

In contrast, distinct asymmetries were observed in the dynamic behavior of the vertical

VOR. In monkeys, vestibular nystagmus with upward slow phases had a decay time constant

of 15 sec. This value, close to estimates obtained for horizontal VOR, was nearly twice as

long as the 8 sec. time constant measured for downward slow phases. A similar but less

pronounced asymmetry pertained in humans: 8 sec. time constants were obtained for upward

slow phases, compared with 6.4 sec for downward slow phases. Horizontal time constants

averaging 17 sec were observed in the same human subjects. Consistent with the shortened

time constants for vertical nystagmus, the phase lead for vertical sinusoidal oscillations was

twice that seen in horizontal responses.

The asymmetry in vertical VOR time constants points to a much weaker influence of

velocity storage for compensatory downward slow phases. This direction dependent reduction



also manifests itself in the asymmetric pitch OKN induced in monkeys lying on their sides in

the 900 roll position. For upward slow phases, the gain approaches unity up to velocities of

600/sec, and SPV saturates at stimulus velocities near 100 0/sec. In contrast, downward slow

phases demonstrate gains near 1 only up to 400/sec, and eye velocity saturate for field rotation

rates of only 600/sec. Furthermore, the downward SPV is generally irregular. When the

animals were tested upright, upward slow phases took on the characteristics of downward

slow phase movements, with irregular velocities and diminished saturation speeds (Matsuo and

Cohen, 1984).

For erect human subjects, the upward slow phase gain proved comparable to horizontal

responses, but was approximately 0.15 higher than downward SPV gain (van den Berg and

Collewijn, 1988; Murasugi and Howard, 1989). Several researchers have postulated that the

upward preponderance in OKN probably developed in frontal-eyed animals to reduce the

influence of the predominantly downward optic flow encountered during forward locomotion

(Murasugi and Howard, 1989, among others). Paralleling the tendency toward similar upward

and downward OKN responses in upright monkeys, Cl6ment and Lathan (1991) found an

increased vertical response asymmetry in humans for the 900 roll position. Interestingly, they

also observed a clear asymmetry reversal in 2 of 6 subjects when tested in an inverted position.

In support of a gravitational origin for the up-down asymmetry, Cl6ment et. al. (1986) found a

reversal in OKN gain asymmetry during the first 3 days of exposure to microgravity in

spaceflight.

Like OKN, OKAN was asymmetric in monkeys lying in a 900 roll position. Upward

(slow phase down) OKAN appeared generally weak or absent, and saturated at 100/sec

(Matsuo and Cohen, 1984). The stronger downward OKAN displayed a gain of 0.7 and

increased peak velocity with stimulus speed up to a saturation velocity of 500-600/sec. The

OKAN asymmetry was also reflected in uneven suppression of post-rotatory nystagmus

following rotation in the light. While upward-beating nystagmus was cancelled or suppressed



following rotation, downward post-rotatory nystagmus showed no reduction. These results

indicate further that velocity storage contributes little in upward nystagmus (slow phase down).

Humans exhibited similar OKAN asymmetries to monkeys: for pitch OKN stimuli

with the head rolled 900 (Baloh et. al., 1983) or with the head erect (Murasugi and Howard,

1989), OKAN existed only in response to upward moving stimuli. Durations measured 3-25

sec. Murasugi and Howard (1989) investigated the source of the up-down asymmetry, and

found that for OKN stimulated exclusively by periphery, the asymmetry increased for 6 of 9

subjects. Conversely, center-only stimuli resulted in the disappearance of any upward

preponderance in OKN gain or asymmetry in OKAN. These results indicate that the

asymmetry exists in the slow OKN system, a conclusion consistent with the apparent lack of

velocity storage for upward OKN.

Head position with respect to gravity exerted a striking effect on downward OKAN in

monkeys. With the head upright, saturation velocities were lower and the SPV decayed much

more quickly. Likewise, Clement and Lathan (1991) discovered that the time constants of

OKAN with upward slow phases increased with increasing head tilt. These facts, taken in

conjuction with the difference in OKN asymmetry observed between subjects lying sideways

and sitting erect, demonstrate a powerful conditioning role of otolith activation on velocity

storage.

2.2.3. Torsional (Roll) Compensatory Eye Movements

For roll stimuli, both the otoliths and semicircular canals contribute to compensatory

torsional eye movements. Static tilts result in a small otolith-induced torsional response

directed in the sense opposite to head roll. This gain of this static counterroll generally reaches

about 0.10 of eye torsion per degree of head tilt in humans (Collewijn et. al. 1985; Diamond

and Markham, 1983), although Ferman et. al. (1987) found gains as high as 0.26.

To test the dynamic properties of the torsional VOR due to semicircular canal activation,

Seidman and Leigh (1989) rotated human subjects sitting erect in the dark for 1 minute with the



head tilted back, facing the ceiling. Using off velocity steps of 500/sec and 1000/sec, they

found a mean peak SPV gain of 0.47 and a decay time constant of 4.0 sec. Similar values

were found with the head tilted 900 toward the chest; the maximum gain was 0.37 and eye

velocity decayed with a time constant of 5.9 sec. These time constants suggest that the

duration of the post-rotational response was largely dictated by the mechanical properties of the

labyrinth (Figure 2.4).

Several investigators have measured the positional gain of the torsional VOR during

voluntary quasisinusoidal roll oscillations for upright subjects:

*Vi6ville and Masse (1987) found a dynamic OCR position gain of about 0.5
for ±200 head roll oscillations performed in the dark with a fixation point.
Gain increased with increasing frequency, ranging from 0.3 at 0.1 Hz to 0.7 at
1 Hz. Phase lag decreased with increasing frequency. With the head pitched
forward 900, the gain decreased by about 0.2 to 0.16 at 0.1 Hz. and 0.35 at
0.4 Hz., and a phase lead of about 200 was observed.

*Leigh et. al. (1989) tested torsional VOR during active head roll rotations in the
dark at approximately 0.5 Hz., observing gains with an average of 0.61. They
found a mean increase in VOR gain from 0.61 in the dark to 0.72 when
viewing a display fixed in space. When the visual stimulus was stationary with
respect to the subject, gains dropped to 0.46. However, they found relatively
weak optokinetic responses at this frequency, ranging between 0.05 and 0.12
for 2 subjects.

*Collewijn et. al. (1985) and Ferman et. al. (1987) observed frequency
dependent gains similar to the results of Vi6ville and Masse, with an increase
from 0.4 at 0.16 Hz. to 0.7 at 1.33 Hz. Collewijn's study confirmed the
earlier results of Petrov and Zenkin (1973), who measured a 10% VOR gain
increase from exposure to a stationary visual field.

These experiments revealed three main features of torsional VOR over the frequency range

examined: (1) VOR gain increased with increased oscillation frequency; (2) otolith stimulation

improved compensation; and (3) corroborating visual information increased the VOR gain.

The increased gain observed upon exposure to a fixed visual field presumably resulted

from a torsional optokinetic mechanism. Schiff et. al. (1986) found a strong roll OKN supine

and prone in monkeys, with saturation velocities from 400-600/s for full-field movement. The

OKN response displayed a small, rapid rise in SPV at onset followed by a slow rise to steady

state. However, when head orientation deviated more than 300 from supine, the peak OKN
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Figure 2.4. Post-rotational torsion responses to 100*/s off-velocity step
stimuli in man. Arrows indicate chair stop. [a.] Torsional post-rotatory
nystagmus after 1 minute rotation in darkness with face supine. [b.] Torsional
post-rotatory response following 1 minute rotation in light. Duration is
similar to (a), but response magnitude is less. [c.] Horizontal post-rotatory
nystagmus in the same subject. Response exhibits greater strength and
duration than torsion (in Seidman and Leigh, 1989).
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velocity declined sharply; torsional OKN fully upright proved weak and irregular. The

investigators concluded that no significant pathways for rapid torsional SPV changes existed

implying that the main roll OKN and OKAN processing most probably occurred through the

velocity storage mechanism.

Human OKN displayed considerably lower gains for torsion than for horizontal or

vertical movement. Collewijn et. al. (1985) tested 2 subjects sitting upright under binocular

viewing conditions with a rotating disk covered by a random dot pattern. The disk subtended

1000 of visual angle and had a central fixation point. SPV gains reached only 0.035 for speeds

from 60 - 300/sec. At the lowest stimulus speed of 1.20/s, the gains were highly variable and

sometimes even negative. No prominent tonic deviation of the eye was detected. Malan

(1985), who also reported on only two subjects, ran experiments in both the erect and supine

conditions. He found slightly higher gains ranging from 0.1 - 0.2 for speeds from 30 - 30 0/sec.

His stimulus, viewed monocularly, consisted of an optokinetic drum with a vegetable pattern

which covered the entire visual field. In addition to the nystagmic beating, visual inspection of

the eye torsion traces revealed a 2-30 offset from the rest position in the direction of the slow

phase for the upright trials. No such deviation for supine trials was reported.

Morrow and Sharpe (1989) conducted a considerably more complete study on 5 human

subjects in both erect and supine orientations. Unfortunately, only an abstract describing their

work was available in the literature. They made use of a striped, full-field drum stimulus

rotating at 100, 200, 400, and 800 /sec, and found a decrease in gain with increasing stimulus

velocity, from 0.28 ± 0.09 at 100/s to 0.06 ± 0.030 at 800/s. As with horizontal and vertical

optokinetic movements in humans, torsional OKN exhibited a rapid rise to plateau velocity--the

peak velocity was achieved within 500 ms. of stimulus onset. Peak SPV increased with

stimulus velocity, but saturated in the range from 2.50/sec to 8.10/sec. In contrast to the

monkey data, no OKN gain differences were observed between the erect and supine trials.

Published information on torsional OKAN is quite sparse, and exists only in abstract

format. The monkey study by Schiff et. al. (1986) revealed a strong OKAN in the supine and



prone positions which lasted up to several minutes in darkness. For tilts greater than 300 from

the horizontal, OKAN vanished. In humans, Seidman and Leigh (1989) found that the mean

post-rotatory nystagmus SPV gain fell from 0.47 after rotation in the dark to 0.34 following

rotation in the light, indicating an opposing velocity storage effect. The only additional human

data (Morrow and Sharpe, 1989) showed that OKAN was poorly developed and frequently

absent. When measurable, the SPV decay had a time constant of 1.3+1 sec. Unlike the

monkey tests, the human study revealed no significant differences between erect and supine

positions. This weak OKAN response, coupled with the extremely short post-rotatory

nystagmus time constants found by Seidman and Leigh (1989), indicated that roll velocity

storage is present only to a very limited extent. In comparison to the monkey, velocity storage

plays relatively little part in the human roll OKN system.

2.2.4. Three Dimensional Velocity Storage Representation

Considerable evidence suggests that central velocity storage is represented three-

dimensionally. Furthermore, the gravity vector assumes fundamental importance in imposing a

spatial reference when the velocity storage integrator generates compensatory eye movements.

In this manner, static tilt in pitch significantly shortened the yaw OKAN time constant in

humans (Lafortune et. al., 1990); similar strong effects of the gravity vector on velocity storage

have been demonstrated about the roll (Schiff et. al., 1986) and pitch axes (Matsuo and Cohen,

1984) in monkeys.

Along the same lines, Benson and Bodin (1966) found significantly faster post-rotatory

nystagmus decays for horizontal axis yaw rotation. Similar "dumping" of velocity storage

occurs for head tilts following yaw rotation. (Raphan et. al., 1981). This dumping of velocity

storage in the subject's horizontal plane derives in part from cross-coupling with the other

axes. Strong cross-coupling with the horizontal axis is seen for OKAN in both pitch (Cl6ment

and Lathan, 1991) and roll (Schiff et. al., 1986). Hain and Buettner (1990) measured time

constants of subject-horizontal and subject-vertical VOR during yaw rotation about axes tilted



with respect to the vertical. They found decreased time constants for VOR decay with respect

to the subject's horizontal, but the horizontal time constant with respect to space was not

significantly different from measurements during vertical-axis rotations.

Such experiments show that head-horizontal and head-vertical components can decay at

different rates. The similarity between cross-coupled time constants and decay rates observed

for pure roll and pitch OKAN suggests that cross-coupling is an intrinsic property of a 3-

dimensional velocity storage integrator. Cross-coupling acts as a gyroscopic mechanism,

maintaining the principal axis of storage along the spatial vertical. The otoliths serve to reorient

the velocity storage coordinate axes to remain coincident with those of the visual system for

off-vertical head positions (Raphan and Cohen, 1988).



2.3. Psychophysical Responses to Moving Visual Fields

As might be expected from the close coupling of the visual and vestibular systems in

the generation of compensatory eye movements, the visual system can also affect an observer's

perception of both static and dynamic orientation. Static tilted visual scenes are known to alter

subjective perception of the vertical (Witkin and Asch, 1948). More dramatic effects are

produced by moving visual scenes: subjects perceive both self motion and tonic orientational

bias.

2.3.1. Vection

A wide field, uniformly moving visual scene can induce a feeling of self-motion in the

opposite direction in a stationary observer. The visual scene itself appears to slow down and

even stop completely. This illusion occurs in response to such "natural" stimuli as waterfalls

or moving trains (Mach, 1875); Mach was the first to reproduce the effect in the laboratory.

This visually induced perception of self motion is termed "vection" (Tschermak, 1931).

Circularvection refers to a sensation of angular motion caused by a field rotation about the

subject. While circular vection is strongest for yaw rotations about a vertical axis, compelling

motion sensations can also be evoked in pitch and roll. Likewise, a visually induced feeling of

translation is known as linear vection.

This striking ability to induce motion perception by purely visual stimuli strongly

suggests the convergence of visual inputs on vestibular structures, to be evaluated in turn by

cortical areas nominally devoted to processing vestibular inputs (Dichgans and Brandt, 1978).

In fact, such visual-vestibular interaction mimicking semicircular canal activation has been

observed in the neuronal activity of several species. Large moving visual displays evoke

direction-specific modulation of the vestibular nerve in the goldfish; various authors have

observed similar modulation in the vestibular nuclei of the rabbit, guinea pig, cat, and monkey

due to rotating visual scenes. Visual-otolithic convergence has been found as well: in the cat,



vestibular nucleus neurons which respond to linear acceleration also display direction

dependent sensitivity to visual field translations (studies cited in Henn et. al., 1981).

2.3.1.1. Yaw Vection

Following the onset of constant velocity field rotation in the yaw plane, the subject

generally perceives surround motion. After several seconds, the surround appears to slow

down and vection is sensed. This onset latency is generally attributed to a lack of confirming

semicircular canal cues (Dichgans and Brandt, 1978). Onset latencies evidently depend little on

the stimulus velocity for step inputs (Dichgans and Brandt, 1974). The perceived vection

velocity equals stimulus velocity up to speeds of 900 - 1200/sec. Above 1200/s, vection velocity

lags stimulus velocity and does not increase for stimuli above 180 0/s (Brandt et. al., 1973).

Overall, the sensation of steady rotation proves indistinguishable from actual body rotation,

although no sensations of acceleration or deceleration are noted.

Further evidence of a visual-vestibular convergence is provided by "pseudo-Coriolis"

effects induced by roll or pitch head movements during yaw vection. Such tumbling

sensations cannot be distinguished from vestibular Coriolis effects arising from cross-coupled

accelerations during body rotations (Dichgans and Brandt, 1978). Apparently, visually

induced vestibular excitation combines with actual vestibular information generated by the head

movements. Vection aftereffects also occur, in accord with the storage of visual inputs through

central vestibular excitation. Switching off the stimulus illumination generally results in

outlasting vection in the same direction for up to 30 sec., averaging about 10 sec. (Dichgans

and Brandt, 1974). In contrast, presentation of a stationary surround causes immediate

reversal of vection direction (Dichgans and Brandt, 1978).

Simultaneous visual and vestibular stimuli interact in a non-linear fashion to produce a

combined motion sensation which is closer to the actual stimulus than the perception evoked by

either system alone. Melcher and Henn (1981) compared self-motion perception latencies for

different accelerations of both visual and vestibular stimuli. They found the shortest vection



latencies at visual field accelerations of about 50/sec 2. Up to this acceleration, all surround

movement created the perception of circular vection. In this low-acceleration range, vestibular

detection latencies were longer than visual latencies, or no motion detection occurred. For

higher surround accelerations, vection latency increased, until shorter vestibular latencies were

observed above 100/sec2. Rotation in light, resulting in a combined stimulus, produced the

shortest latencies and widest range for correct velocity estimation.

Experiments by Wong and Frost (1981) supported the notion that onset latencies

depended on the magnitude of visual-vestibular conflict. They found that corroborating

vestibular stimulation at the beginning of the optokinetic stimulus significantly shortened onset

latencies, although noncorroborating stimuli had little effect. In addition, asymmetric latencies

were found in patients with unilateral Miniere's disease, which produces decreased vestibular

sensitivity to rotation in one direction. The direction of asymmetry indicated shorter latencies

in the case of lesser intersensory conflict.

Young et. al. (1973) provided further evidence for suppression of one sensory

modality by other sources of conflicting information. Thresholds and detection times for

angular body acceleration were raised for stimuli opposite the direction of circular vection.

Rapidly occurring conflicts between visual and vestibular sensations, however, generally

resulted in a precipitous loss of vection. Such a replacement of visual dominance by vestibular

cues seems consistent with reliance on the vestibular system for stimuli of higher frequencies

and accelerations.

The perception of vection depended strongly on movement in the retinal periphery.

Thus, masking the central portion of a moving display up to 1200 of visual angle scarcely

weakened the vection response, while limiting the display to the central 300 produced a

perception of display motion only (Brandt et. al., 1973). A central stimulus moving opposite

to the peripheral field could weaken vection, but not to extent of reversal. In the presence of a

stationary periphery, central motion induced vection only when the center was more distant

than the surround (Howard et. al., 1987).



Vection perception changed little upon the reduction of luminance to levels barely

higher than the scotopic threshold, or the introduction of refractive errors above 16 diopters

(Leibowitz et. al., 1979). Although luminance and image sharpness are vital to focal vision,

these factors exert reduced influence in the retinal periphery . This dependence on the retinal

periphery for motion sensation agrees with the concept of two distinct modes for processing

visual information (Held, 1970; Leibowitz and Post, 1982). In this view, an "ambient" system

relies on the visual periphery for spatial orientation, while the "focal" system is dedicated to

visual tracking and object recognition.

Interestingly, vection has been induced in the central visual field for forward linear

vection (Andersen and Braunstein, 1985) and roll vection (Andersen and Dyre, 1987). Both

studies utilized a display with internal depth, created as a "volume" of points in a computer-

generated image. These studies suggested that ambient processing could also function in

central vision by taking advantage of internal display depth.

Several other studies have established the importance of depth cues in producing

vection. Visual scenes perceived to be in the background or most distant in depth dominate

self-motion perception. Brandt et. al. (1975) found that stationary contrasts in the background

of moving stimuli strongly inhibited vection, while similar contrasts in the foreground had only

a weak effect. Howard et. al. (1987) used monocular viewing of displays separated in depth to

eliminate the cue of binocular disparity. With this apparatus, occasional reversal of the

perceived depth order of the displays occurred. Vection was always controlled by the display

perceived to be most distant, even if it was actually nearer. Vection was not affected by plane

of focus or by which display was pursued or fixated. Such reliance on the visual background

and periphery for motion cues appears logical, since distant wide-field scenes would generally

not move with the observer.



2.3.1.2. Roll and Pitch Vection

Vection can also be induced about subject's pitch and roll axes by appropriate rotating

visual fields (Figure 2.5). The saturation velocities for vection about horizontal axes are

considerably lower than for comparable yaw stimuli. For roll and pitch vection, the response

strength increases up to field velocities of 400 - 600 /sec (Held et. al., 1974; Young et. al.,

1975). The response latency appears to decrease with increasing stimulus speed (Young et.

al., 1973; Young et. al., 1975), indicating that faster stimuli produce a more compelling

illusion of motion. As with yaw vection, peripheral stimuli prove dominant in roll and pitch

vection. The effect increases with both field size and with increasing retinal eccentricity of a

constant-area ring (Held et. al., 1974).

For visually induced rotation about earth-horizontal axes, the continuous rotation

sensation is accompanied by a paradoxical perception of constant tilt angle (Dichgans et. al.,

1972). The comparatively low saturation velocities and perception of constant angular

displacement probably result from inhibitory otolithic inputs (Dichgans et. al., 1972). Thus, a

sensation of full 3600 rotation in roll is often generated when subjects lie supine, so that the

vection axis aligns with the vertical and the otoliths provide no contradictory information

(Crites, 1980; Young et. al., 1983). In like manner, Howard and Cheung (1987) found

unimpeded vection in full circle for yaw, roll, and pitch vection whenever the vection axis was

vertical. For all conditions where the vection axis lay in the horizontal plane, only partial

rotation was experienced.

Studies of vection in bilaterally labyrinthine deficient subjects provide additional weight

for inhibition of vection through otolithic sensing of orientation with respect to gravity (Cheung

et. al. 1989). These tests showed that the labyrinthine deficient group experienced complete,

unambiguous self-rotation through an upside-down orientation for both roll and pitch stimuli.

In normal human subjects, short-term weightlessness made possible by NASA's KC-135

aircraft resulted in significantly shorter roll vection onset latencies (Young et. al., 1983).
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Figure 2.5. Schematic representation of reactions to field rotation about the
visual axis. The stimulus rotates clockwise (from this view); after a few
seconds, the subject begins to perceive counterclockwise self-rotation. Roll
vection is indicated by counterclockwise turn of the knob. The subject also
feels a counterclockwise tilt, resulting in a pseudo-vestibulocollic reflex
which causes clockwise head sway. Clockwise torsional optokinetic slow
phases follow the field rotation (adapted from Young et. al., 1986; Adams,
1991).



Experiments performed on the space shuttle also demonstrated reduced onset latencies

in microgravity (Young et. al., 1986). Furthermore, the astronauts displayed a greatly

increased propensity toward fully saturated vection during spaceflight, a condition which

occurred more rarely on the ground (Young and Shelhamer, 1990). These results indicated

that the brain placed greater reliance on visual cues for dynamic orientation in flight, while less

attention was paid to erroneous graviceptor inputs. The astronauts retained some carryover of

increased visual dominance for a few days postflight, including shortened latencies to vection

and greater static field effects for the rod-and-frame test (Young et. al., 1986). Further

evidence of otolith suppression will be discussed below with regard to a closely related

phenomenon, visually induced tilt.

Pitch vection exhibited a directional asymmetry (Young et. al., 1975; Howard and

Cheung, 1987). Forward pitch vection proved stronger than backward pitch sensations. The

asymmetry depended on the subject axes rather than gravitational orientation, since the same

effect obtained for inverted subjects. Many subjects also displayed directional asymmetries for

roll vection. However, no connection could be deduced between the directional dependence

and either handedness or eye dominance (Held et. al., 1975). Such roll asymmetries might

have related to vestibular imbalances which, although well compensated under normal

circumstances, became apparent under unusual stimulation.

2.3.2. Visually Induced Orientation Bias

A static tilted visual scene can bias an observer's judgment of the gravitational vertical

in the direction of field tilt. This effect can be produced by as simple a display as the "rod and

frame" (Witkins and Asch, 1948), in which the perceived orientation of a luminous rod is

influenced by tilting a surrounding luminous frame. Moving visual displays introduce similar

but much stronger tonic deviations in the perception of orientation.



2.3.2.1. Shift of the Subjective Straight Ahead

Rotary full-body acceleration about the yaw axis is known to displace a subject's

perception of the direction associated with "straight ahead." A purely egocentric definition, the

subjective straight ahead appears displaced in a direction opposite to the angular acceleration,

while a fixated point seems dislocated in the direction of acceleration so that it leads the subject.

Interestingly, circular vection also displaces the subjective straight ahead in the direction

opposite perceived motion, i.e. in the direction of visual field motion. This visual effect on the

judgment of "straight ahead" is dramatically illustrated when subjects are instructed to walk

straight forward while an optokinetic drum rotates about them--the subjects consistently deviate

in the direction of field rotation. The phenomenon appears closely related to yaw vection, and

like vection saturates at rotation rates near 1000/sec. (Dichgans and Brandt, 1978).

2.3.2.2. Central Recomputation of the Gravity Vector

Visual fields rotating about the roll and pitch axes also create an angular bias, this time

in the perception of the vertical (Dichgans et. al., 1972). Unlike the subjective straight ahead,

however, the vertical is not strictly egocentric since it is defined by the direction of the gravity

vector. A few seconds after onset of stimulus rotation about the line of sight, a vertical contrast

appears tilted in the direction opposite to field rotation. When instructed to set the contrast to

the perceived vertical, the subject rotates the line several degrees in the direction of field

rotation.

This illusion is closely linked to roll and pitch vection. During roll and pitch vection,

visually tilt increases with stimulus velocity, saturating at field rotation rates of 40*-600 /sec.

Maximum tilts found with the head erect average 150-250, but reach as high as 400-60o in some

subjects. (Dichgans et. al., 1972; Held et. al., 1974; Young et. al., 1975; Howard and

Cheung, 1989) As with pitch vection, Young et. al. (1975) observed an asymmetry for tilts

about the pitch axis: forward tilts were much larger than backward tilts. This asymmetry



appeared purely visual in origin, since the same asymmetry was observed with the subject

inverted.

However, the perceived tilts are not strictly visual effects. Instead, they provide

evidence for a central recalculation of the direction of gravity caused by visual field rotation.

Dichgans et. al. (1972) tested this hypothesis by placing subjects in a moving base flight

simulator. The subjects adjusted the position of the trainer to the subjective upright during the

vection stimulus. As before, the subject perceived body tilt opposite the stimulus rotation and

rotated the cab in the direction of field motion.

Like vection about the pitch and roll axes, visually induced tilt is apparently limited by

conflict with otolith information signalling a constant orientation with respect to the gravity

vector. Tests of roll and pitch vection were performed with the head rolled 900 to the side or

inverted. When the utricular otoliths lay in such unfavorable geometries, the investigators

observed heightened sensitivity to visually induced tilt. Pitching the head 250 forward to place

the utricles in the plane of maximum sensitivity produced a corresponding decline in induced

tilt (Young et. al., 1975; Dichgans et. al., 1974).

2.4. Possible Correspondence of Psychophysical Effects and Associated Eye
Movements

Two mechanisms involving the visual system have evolved to respond to large moving

visual displays: OKN helps to stabilize images on the retina, while the vection phenomenon

aids in the maintenance of a veridical perception of self motion. Both mechanisms interact

closely with the vestibular system and complement its performance. Although intracellular

neural recordings are inappropriate in humans, the neuronal convergence of the visual and

vestibular systems has been documented in many species including primates. It seems likely

that the motion perception functions rely on the some of the same neurological structures which

subserve the generation of compensatory eye movements.

On this basis, the possibility of a close correlation between the psychophysical effects

and compensatory eye movements associated with moving visual fields cannot be ruled out.



Indeed, in certain cases eye movements might generate perceptual responses. Likewise,

perceived self-motion might induce compensatory eye movements in a manner comparable to

the stimulation of the pursuit system by perceived object motion (Yasui and Young, 1975).

This section reviews the evidence both for and against a close linkage between eye movements

and perceptual effects and evaluates some published models of the interaction between the

visual, vestibular, and perception mechanisms.

2.4.1. Evidence for a Link between Eye Movements and Orientation
Perception

The evidence for close links between eye movements and perception of static or

dynamic self-orientation remains largely circumstantial. For instance, circular vection and

OKN share many attributes in common. Both phenomena exhibit saturation at velocities near

1200/sec., and have similar time courses for rise (about 5 sec.) and discharge (20 - 30 sec.)

(Brandt et. al., 1973). Schor et. al. (1984) examined smooth pursuit, OKN, and vection using

a yaw stimulus illuminated stroboscopically at different frequencies. The investigators

determined threshold illumination frequencies for perception of smooth continuous surround

motion. While smooth pursuit occurred at all strobe frequencies, vection, OKN, and OKAN

appeared only for frequencies above the smooth apparent motion threshold.

Furthermore, the perceptual and oculomotor aftereffects resulting from prolonged

exposure to optokinetic stimuli display a positive correlation. Brandt et. al. (1974) studied the

afternystagmus resulting from various durations of an optokinetic stimulus. The strength of

the positive phase of OKAN increased for durations of up to 1 minute. Longer durations

resulted in strengthening of the negative phase (OKAAN) antagonistic to the positive

afternystagmus. Following stimuli of 15 minutes, the positive phase was no longer observed,

and OKAAN began immediately when the lights were turned out. The direction of vection

aftereffects generally followed the time course of optomotor aftereffects quite closely.

Zee et. al. (1976) compared aftereffects between normal subjects and bilaterally

labyrinthine defective patients. Both normals and patients perceived vection during visual field



motion. Normals showed 20 - 50 sec. of OKAN and perceived up to 20 sec. of outlasting

vection. One patient had a remnant of OKAN lasting 4-7 sec., and experienced only 2-3 sec.

of continuing vection. The other two patients demonstrated an immediate negative

aftemystagmus (OKAAN); one of these felt a corresponding reversal of vection direction while

the other had no motion aftereffects.

These experiments provide evidence for a brainstem mechanism capable of generating

both self-motion sensation and the accompanying compensatory eye movements; normal

functioning requires the presence of intact labyrinths. Cohen et. al. (1977) postulated that

monitoring activity in the velocity storage integrators participated in the production of circular

vection. Such activity cannot be solely responsible for vection, however, since velocity

storage relies on a functioning peripheral vestibular system.

Brandt et. al. (1974) observed another correlation between perception and the

characteristics of eye movements during long duration exposure to yaw field rotation (Figure

2.6). Following several minutes of constant velocity drum rotation, the subject experienced a

slowing down in the perceived self-rotation velocity, with occasional reversals in vection

direction. Concurrent with the episodes of inverted self-motion perception, the average eye

position or Schlagfeld shifted from the direction of the fast phase toward the slow phase

direction. However, voluntary deviation of the Schlagfeld in the slow phase direction did not

produce vection reversal, and active attempts during reversal to move the average eye position

toward the fast phase direction did not destroy the illusion.

Vertical OKN and pitch vection share a directional asymmetry. However, this

connection seems rather tenuous. First, Clement and Lathan (1991) found evidence for

reversal of the OKN asymmetry when subjects were inverted. Pitch vection, in contrast,

generally exhibited a consistent asymmetry regardless of body orientation (Young et. al.,

1975). Howard and Cheung (1987) compared vertical OKN and visually induced pitch angle.

Although some of their subjects demonstrated opposite asymmetries in pitch perception, all

subjects displayed stronger OKN with upward slow phases when tested upright.
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Experiments performed by Balliet and Nakayama demonstrated a link between ocular

torsion and perceived orientation. In one test, the investigators compared eye torsion predicted

by Listing's Law with perception of the vertical (Nakayama and Balliet, 1977). According to

Listing's Law, the vertical meridian of the eye does not remain aligned with the vertical axis of

the head for oblique gaze positions. Eye torsion was measured for various gaze positions

using an afterimage technique; comparison with the values expected from Listing's Law

yielded a close fit (Figure 2.7a). For the same gaze deviations, subjects indicated the perceived

vertical using an adjustable luminous line. The subjective vertical was consistently deviated in

the same direction as eye torsion, although to a lesser extent (Figure 2.7b). The investigators

concluded that some extraretinal signal provided information about eye torsion, albeit with a

gain insufficient to ensure accurate perception of the vertical.

In further experiments, subjects were trained to make a repertoire of torsional voluntary

eye movements, including pursuit and saccadic tracking and fixations within a 300 range

(Balliet and Nakayama, 1978a). Eye torsion was documented using 16 mm. motion picture

films. The eye movements were not visually induced, as they could be performed without any

visual stimulus. During the training, subjects experienced a number of illusions including a

feeling that their heads and bodies were "rolling laterally." Motion sickness symptoms

consisting of nausea, headache and fatigue often accompanied these deviations in egocentric

orientation. Sensations of "body flotation" and rapid falling in the direction of cyclotorsion

also occurred.

To quantify the changes in perceived orientation induced by voluntary torsion, subjects

were instructed to indicate their perception of the vertical during voluntary torsional deviations

by pivoting a rod in the frontal plane (Balliet and Nakayama, 1978b). Subjects rotated their

eyes torsionally to match an afterimage to specified tilts of a real line. Measurements of the

perceived vertical were also taken with the head tilted to match the afterimage with the real line,

and with full body tilt in complete darkness.
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The tilted line alone in the absence of voluntary torsion was demonstrated to have

essentially no effect on the subjective vertical. In contrast, voluntary torsion, head tilts, and

body tilts induced marked deviations of the perceived vertical: the rod was adjusted away from

the vertical in a direction opposite eye tilt by nearly the same amount in all three conditions

(Figure 2.8). The researchers postulated a signal determining egocentric orientation which

overcompensated for eye tilt in space regardless of whether it resulted from voluntary torsion,

head tilt, or full body rotation.

2.4.2. Evidence Against a Link between Eye Movements and Orientation
Perception

Despite the observation that vestibular nucleus firing rates, self-motion perception, and

compensatory eye movements correlated closely under some conditions, several important

dissociations between optokinetic eye movements and psychophysical responses have been

documented.

*Brandt et. al. (1973) demonstrated the occurrence of saturated yaw vection for
angular velocities below 900/sec regardless of whether the subject fixated a
stationary point or allowed the eyes to pursue the field through OKN.

*OKN was most strongly induced by moving fields in the plane of binocular
convergence. Vection depended on the stimulus perceived as most distant,
regardless of the state of vergence. (Howard, 1990).

*Peripheral moving fields generated the strongest vection and visually induced
tilt (Brandt et. al., 1973; Held et. al., 1975). OKN gains were highest for
stimuli on the central part of the retina (Dubois and Collewijn, 1979).

*Vection and OKN slow phases can be generated in the same direction
simultaneously (compensatory eye movements would oppose head motion).
During conflicting central and peripheral optokinetic stimuli, OKN followed
the central stimulus while circular vection direction depended on motion in the
periphery (Brandt et. al., 1973).

These instances could be interpreted as the dominance of a cortically dependent "fast"

OKN system evolved to maintain stabilization of scenes under binocular viewing. Closely tied

to the pursuit eye movement system, the phylogenetically newer fast system could suppress or

override "slow" subcortical OKN which might otherwise be strongly linked to perceptual

responses. Since torsional smooth pursuit is underdeveloped or absent in most individuals
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(the subjects of Nakayama and Balliet required tens of hours of training over a period of

months), one might expect torsional eye movements and egocentric roll perception to display a

closer correlation.

It has been suggested that tonic eye deviation during roll vection might account for the

phenomenon of visually induced tilt. However, the size of the two effects differed by an order

of magnitude: torsion usually amounted to a few degrees while tilt could approach 600. A

series of experiments performed by Held, Wolfe, and colleagues indicated further dissociations

between eye torsion and perceptual effects. All of these experiments utilized an afterimage

technique to measure eye torsion; the severe deficiencies associated with this method should be

kept in mind.

Wolfe and Held (1979) examined a binocular contribution to eye torsion and

displacement of the vertical during optokinetic roll stimuli. The test was based on the

observation that tilt and torsion both increase with flash frequency for stroboscopic illumination

of a roll stimulus. Two stroboscopes were used to illuminate the stimulus pattern; one was

covered with a red filter while the other used a green filter. The subject viewed the pattern

through goggles with one red and one green lens, allowing stimulation of each eye

independently. The pattern could be illuminated by simultaneous flashes ("in phase" stimulus)

or by the strobes flashing at the same rate but 1800 out of phase ("cyclopean" stimulus--the

individual eyes still received the original flash rate, but stimulus frequency was effectively

doubled if binocular integration occurred).

Normal subjects demonstrated binocular summation for both eye torsion and visually

induced tilt, i.e. the cyclopean stimulus induced greater tilt and torsion than did the in phase

illumination. Stereoblind subjects also showed an increase in torsion under cyclopean

stimulation, but did not exhibit binocular summation for tilt (Figure 2.9). The investigators

concluded that the two effects depended in part on different binocular processes in normal

subjects. Stereodeficiency impaired the binocular mechanism for tilt but left the torsion process

unaffected.
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Merker and Held (1980) compared the influence of combined head tilt and visual roll

stimuli on eye torsion and induced tilt. Eye torsion due to field rotation appeared to sum

linearly with counterrolling from head tilt. Perceived tilt displayed a different and more

complex interaction between the two factors, providing evidence for independent processes

mediating torsion and tilt. Finke and Held (1978) measured eye torsion and visually induced

tilt during differing states of roll vection. In State 1, the subject felt body rotation, while State

2 was marked by perception of surround motion only.

Noting that State 1 induced larger tilts but evidenced a smaller amount of eye torsion,

Finke and Held argued for separate tilt and torsion processes (Figure 2.10). Their second

experiment contrasted the effect of the gravity vector on tilt and torsion. Subjects indicated
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Figure 2.10. Mean shifts in visually induced tilt and ocular torsion as a
function of vection state and subject orientation. State 1 = self-rotation; State
2 = surround rotation (in Finke and Held, 1978)

significantly greater tilt supine than erect, but showed little difference in torsion between the

two orientations. Since aligning the field rotation axis with gravity enhanced one effect but not

the other, the case for dissociation between eye torsion and visually induced tilt was

strengthened.

2.4.3. Models of Visual-Vestibular Interaction

Figure 2.11 presents in block diagram format the interaction of various elements which

underlie models of visual-vestibular interaction. Such models attempt to explain and predict the

compensatory eye movements and motion sensations resulting from a range of vestibular and

visual stimuli using physiologically plausible combinations of sensory inputs, internal feedback

signals, and central computation.

Two important blocks deal with internal models of plant dynamics and combination of

visual and vestibular signals. Internal models use prior knowledge of plant (head and body;

semicircular canal) dynamics to produce a best estimate of head or eye velocity; representations

may range from velocity storage integrators to actual realizations of dynamic equations
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Figure 2.11. General block diagram depicting arrangement of elements in models for eye movements and motion
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(Young, in Henn et. al., 1980).



incorporated into Kalman filter gains. Visual and vestibular signals must be combined to

evaluate head velocity; such a block could rely on simple linear summation or represent

complex nonlinear interactions.

Post et. al. (1986) and Wertheim (1990) have proposed models somewhat different

from each other, both of which explain many observed interactions between circular vection

and optokinetic nystagmus. These models also provide possible explanations for several

unusual visual effects, including the oculogyral illusion, center-surround induced motion, and

the Filehne illusion. Both models can be summarized by the representation in Figure 2.12.

According to Wertheim's model, a retinal slip signal is compared with a "reference"

signal to generate a perception of either visual field motion or stationarity. The reference signal

consists of a vestibular component, an efference copy representing all slow phase eye motion,

and an optokinetic component. Wertheim postulated that the optokinetic component was built

up slowly from the retinal slip signal, accounting for the slow onset and decay of vection. This

model had difficulty explaining how the optokinetic signal was built up when the eyes tracked

the stimulus during vection, since retinal slip was minimal in this case. Wertheim solved this

problem by proposing that retinal smear during the fast phase of OKN produced the necessary

optokinetic component. However, the phenomenon of saccadic suppression renders this

explanation rather unlikely.

For the model of Post et. al., the reference signal in Figure 2.12 would consist solely

of a corollary discharge component. They suggest that the compensatory eye movements of

VOR and OKN result from a phylogenetically "old" system which does not produce a corollary

discharge signal. Only pursuit eye movements, presumably evolved later, would contribute to

the reference signal. Since their model relies on cancellation of reflex eye movements by the

pursuit system during fixation conditions, a corollary discharge could result even in the

absence of manifest eye motion. This model adequately predicted perceived surround

stationarity during circular vection, independent of subject fixation or tracking eye movements.

However, it too had difficulty in explaining the gradual onset and decay perceived for vection.
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3. EXPERIMENTAL APPARATUS

3.1. Rotating Dome

The rotating dome stimulus incorporated in these experiments was originally

constructed by Troy Crites in preparation for the visual-vestibular interaction experiments

aboard the 1983 shuttle Spacelab- 1 mission, STS-9 (Crites, 1980). After refinement and

verification in a series of parabolic flight tests on NASA's KC-135 aircraft, the design formed

the basis for the domes used on that flight and subsequent Spacelab missions D-1 (61-A, 1985)

and SLS-1 (STS-40, 1991). The dome consisted of a cylindrical drum with one end open

(Figure 3.1). The subject viewed the interior of the drum with its center at eye level, so that the

drum rotated about the subject's line of sight. The dome measured 13.5" in depth and 17" in

diameter. When the subject's head was fixed in place by the dental biteboard mounted within

the dome, the distance from the subject's eyes to the rear of the dome measured approximately

12.5". The lateral distance from the eye to the wall of the drum was about 7.5". Thus, the

dome subtended a visual angle of 1950.

The pattern on the dome interior was made up of circular colored dots on a white

background. The dots were 0.75" diameterAvery labels distributed randomly at a density of

800/m2 to cover approximately 20% of the dome area. Six different colors were utilized: light

blue, dark blue, light green, dark green, fluorescent red, and dark red. Crites (1980) felt that

this pattern created the most compelling vection sensation of the 9 variations he tested. Brandt

et. al. (1975) found that visually induced tilt reached saturation when approximately 30% of the

visual field was moving, a value comparable to the dot concentration used here.

The rear of the dome shell contained a central hole 4" in diameter designed to

accommodate a camera lens and ring flash for recording eye position. However, eye

photographs were not needed for the current experiment, and stationary background visual

cues have been demonstrated to inhibit vection (Brandt et. al., 1975). The hole was
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Figure 3.1. Rotating dome. Upper schematics depict dome dimensions.
Lower photograph shows visual stimulus pattern, fixation point, and
biteboard position.



covered by a disk with the same dot pattern as the rest of the dome interior, providing uniform

rotation of the full visual field. A red LED was mounted at the center of the disk, coincident

with the dome rotation axis. This LED, which subtended a visual angle of 0.50, provided a

fixation point for the subject during the dome trials. A fixation point was necessary to avoid

induction of erroneous scleral coil torsion signals by oblique eye movements. The LED was

very dimly lit and was mounted within a black holder to prevent any illumination of the dome

interior during fixation periods in the dark. Power to the LED was provided by a 9 V battery

mounted on the back of the central disk.

3.1.1. Drive System

The rotating dome was driven by a DC electric motor with maximum ratings of 24 rpm

and 0.002 horsepower (Figure 3.2). The dome was linked to the motor with a toothed belt

incorporating a gear reduction ratio of 32:72. This arrangement provided a predicted maximum

dome speed of 640/sec. The dome speeds selected for the experiment ranged from 150 to

600/sec, although 4 trials for one subject were run at 720 /sec. A unidirectional 30V supply

provided power, so dome rotation direction was selected with a manual switch which reversed

the polarity of the output voltage to the motor. The data acquisition computer automatically

controlled dome speed by outputting a signal proportional to the required motor voltage. A

diagram of the dome driver circuitry is included in Appendix A.

An optical encoder linked to the dome motor provided a measure of dome rotation rate.

The encoder output a square wave consisting of 256 cycles per encoder axle revolution. The

linkage about the motor and encoder axles resulted in one encoder square wave half-cycle for

each 0.430 of dome rotation. Given a 200 Hz. sampling rate and the need for at least one

sample per half-cycle to adequately characterize the encoder signal, the encoder system could

function as as meter of rotation rate up to a theoretical maximum dome speed of 860/sec.

Figure 3.3 shows the dome speed variation over a typical 30 second trial duration for

trials at speeds from 150 to 600 /sec. Speeds were calculated at 1 second intervals by counting



Figure 3.2. Dome motor drive mechanism. The DC drive motor is
linked to the dome axle by a toothed belt. The black disk in the
foreground links the optical encoder to the drive motor via a narrow
band.
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the number of square wave half cycles recorded each second. These plots show that the speed

generally remained constant to within +0.430/sec, the resolution of the optical encoder system

based on a 1 second window. Since the desired stimulus constituted a velocity step, the

response time for attainment of the steady-state dome velocity became an issue. The velocity

rise time was determined by counting the number of samples recorded for each encoder half-

cycle. As the dome accelerated, the number of samples per half-cycle dropped to a fairly

steady value. By evaluating the time required to reach steady state, the rise time was almost

always found to measure less than 0.1 seconds. Figure 3.4 displays the number of samples

per cycle versus time for a typical 600/sec trial with a calculated response time of 0.065

seconds.

3.1.2. Dome Lighting

Crites (1980) found that 24 foot candle incandescent lighting gave good pattern

illumination while minimizing eyestrain. In the current experiments, two 1.9 W incandescent

bulbs provided illumination at approximately one half the power level (measured with a camera

lightmeter) used for the Spacelab stimulus. Subjects tested on both dome configurations

reported equally strong vection at the lower light intensity; Leibowitz et. al. (1979) found that

vection remained largely independent of changes in lighting even when illumination was

reduced to near the scotopic threshold. The bulbs were mounted at eye level on either side of

the subject's head approximately 2.25 inches from the inside wall of the dome, just outside the

dome mouth. The mount design shaded the subject's eyes from the direct glare of the lamps.

Since the experimental trial protocol required a period of complete darkness (other than

the LED fixation point), the room lights were turned off and the doors were closed for the

duration of the experiment. Dome illumination was controlled solely by the dome

lamps, which could be turned on and off using either a manual switch or a computer-controlled

relay. Although some small light leaks were present in the test room, the dome shell itself

occluded virtually all of the stray light. Subjects reported that even after dark-adapting for 1 - 2



minutes, nothing was visible within the visual field when the dome lights were off.

Furthermore, the fixation LED proved too dim to provide any illumination.

3.1.3. Biteboards

The subject's head was fixed within the dome by a dental biteboard. Each subject

constructed a personal custom-fit biteboard, which consisted of dental impression material

molded over a flight-reject biteboard blank designed for the Spacelab missions. The

impression material used was ExpressTM STD vinyl polysiloxane putty manufactured by 3M.

This two part (base/catalyst) putty required an oral setting time of 5 minutes, during which the

subject bit down continuously until the putty reached its final firmness. The biteboard was

mounted in a holder specially instrumented with strain gages to transduce neck torque exerted

by the subject.

3.1.4. Vection Measurement

Subjects indicated their vection sensations with a rotary joystick using a magnitude

estimation technique (Young et. al., 1986; Young and Shelhamer, 1990). The joystick (Figure

3.5) consisted of a spring-loaded knob mounted on the shaft of a potentiometer. The knob had

a central rest position and hard stops at deflection angles of ±450. When powered by a ±15 V

supply, the joystick output ranged from 0 V in the center to ±5 V at full deflection.

3.2. Scleral Search Coil Eye Movement Measurement System

Ocular torsion was measured using a magnetic induction method first described by

Robinson (1963). An oscillating magnetic field composed of both horizontal and vertical

components was induced about the subject's head, while a specially wound coil rested on the

sclera of the subject's eye. According to Faraday's law of induction, an electric potential was

induced in the eye coil proportional to the rate of change of magnetic flux across the coil.

Therefore, the oscillating signal induced in the scleral coil had an amplitude proportional to the

coil area lying perpendicular to the magnetic field. A phase-sensitive detector extracted only the



Figure 3.5. Rotary joystick used to signal estimated magnitude of
vection velocity scaled to dome rotation rate. Subject holds box in non-
dominant hand with the point on the knob directed downward.
Dominant hand is used to turn joystick knob.
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signals in synchronization with the driving frequency of the magnetic field, rejecting all random

and non-synchronous interference signals. The phase detector produced a DC voltage in

proportion to the area of the coil perpendicular to the field vector. The perpendicular area

depended on the sine of the torsion angle. No correction for this nonlinearity was required,

however, since the torsion angle measure in radians deviated from the sine of the angle by less

than 2% for angles below 200.

3.2.1. Magnetic Field Generation Coils

The magnetic field generator and phase detection electronics were purchased from

C-N-C Engineering (Seattle, Washington). Specifications on this equipment are included in

Law (1991). The field generation system consisted of two orthogonally mounted coil pairs.

Each coil measured 2 feet on each side, and was imbedded within a square wooden frame.

One pair lay in the horizontal plane, while the other was mounted vertically in the subject's

pitch plane; the set described the outline of a cube about the subject's head. The horizontal

coils produced a magnetic field with a vertical component at the center of the cube, while the

vertical pair generated a horizontal component in the subject's frontal plane. The peak magnetic

field strength generated at the cube center reached 0.3 gauss and 0.4 gauss for the horizontal

and vertical coils respectively.

To differentiate between the horizontal and vertical components, the two coil pairs were

driven at different frequencies between 60 kHz and 135 kHz, selected with a ratio of 3:2. The

coil pairs made up series resonant tuned circuits; for this particular coil system at resonance, the

horizontal and vertical pairs operated at respective frequencies of about 122 kHz and 83 kHz.

Peak to peak system noise typically fell below 1 arc minute given a measurement bandwidth of

530 Hz.

Dual Phase Detectors, one for the torsion channel and one for the horizontal/vertical

channel, broke down the eye coil signals into horizontal, vertical, and torsional eye position



components. Four main controls were used to adjust each Phase Detector during coil system

calibration:

1. Offset control: adjusted the zero of the scleral coil output to match the zero
degree eye position.

2. Gain control: adjusted the output gain to a nominal value of 2 V per 100 of
eye rotation.

3. Meter sensitivity switch: set the eye position indicator to either +±5 or ±500
full scale. The 50 range was used only for fine zero adjustment; all
measurements were conducted using the ±500 range.

4. 00 / 1800 switch: reversed the phase of the analog output signal.

3.2.2. Scleral Search Coil

The scleral coils used in these experiments were manufactured by Skalar Inc. of the

Netherlands, based on a design by Collewijn (1975). Each scleral ring, depicted schematically

in Figure 3.6a, contained two separate coils imbedded in silicone rubber. The coils employed

nine windings of 0.05 mm insulated copper wire. One coil was wound just within the outer

margin of the ring, and transduced horizontal and vertical eye position. The second coil,

designed to detect torsional movements, required a more complicated winding in which the

wire crossed between the inner and outer margins of the ring every 1800. The torsion coil had

a plane of symmetry defined by the diametrically opposed wire crossing points; the projection

of the coil onto this plane effectively produced a flattened vertical coil wound consistently in

one direction.

The silicone rubber ring (Figure 3.6b), which had an inner diameter of approximately

11.3 mm, rested completely on the sclera. The central hole was considerably larger than the

maximum pupil diameter, so vision was not obscured. The ring was aligned on the eye with

the coil leads exiting at the inner canthus. The concave inner surface had a radius of curvature

smaller than that of the globe of the eye. By pressing the coil down firmly to evacuate bubbles

and fluid from the space between the ring and the eye, a suction effect was created to fix the



a. Scleral coil winding schematic
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Figure 3.6. Scleral search coil. [a.] Diagram depicting winding scheme for
coils transducing horizontal/vertical (coil 1) and torsional (coil 2) eye
movements. Diagram on left is a frontal view; right picture shows side view of
effective coil area (in Robinson, 1963). [b.] Skalar scleral coil imbedded in
silicone rubber ring (in Ferman et. al., 1987).
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coil to the eye. This evacuation raised the intraocular pressure slightly to a level regarded as

"high normal."

Use of the scleral coil required prior numbing of the subject's eye with a topical

anaesthetic, proparacaine HCI 0.5% (brand name Ophthetic). The coil could remain in the eye

no longer than 30 minutes; further anaesthetic was administered as requested by the subject.

Hydrogen peroxide solution (H20 2 3%) provided a means of sterilizing the coil before use.

Sterile saline solution was used to rinse the hydrogen peroxide from the coil before insertion

into the eye.

3.2.3. Mounting the Field Coils and Dome

Optimal coil system performance required centering the subject's head within the field

generation coils. For proper presentation of the rotating stimulus, the dome shell had to project

through the front opening of the coil frame. Furthermore, this subject-dome-coil relationship

had to be preserved in both the erect and supine orientations.

For the upright runs (Figure 3.7a), the field coils were supported by two tables, one in

front of and one behind the subject. Neither table touched the subject. The dome was mounted

on an adjustable stand resting on the front table. With the coil and dome positions fixed, metal

plates and boards of the necessary thickness were placed beneath the subject's feet to permit a

comfortable erect stance with the head centered in the coils. The supine sessions incorporated

the chair from the MIT linear acceleration sled (Figure 3.7b), which was constructed and

described in detail by Law (1991). This chair was designed to accommodate the coil system,

and allowed the subject to lie supine with the coils mounted about the head. The relative

distance from the coil frame to the seat of the chair was adjustable for subjects of different

sizes. The dome support stand rested atop the wooden coil frame, suspending the dome shell

above the subject's head. Cushions raised the subject's head to the proper position within the

mouth of the dome.



b. Supine dome

Figure 3.7. Rotating dome and magnetic field coils in erect
and supine orientations. [a.] In the erect position, the coil
system rests on two tables, and the subject stands within
the coil frame. [b.] For the supine runs, the coils are
supported by the chair designed for the MIT linear
acceleration sled, and the subject lies in the chair.

a. Erect dome



3.3. Dome Controller and Data Acquisition Computer

A Macintosh computer running LabView software was used for both data acquisition

and control of stimulus presentation. The actual input/output interface utilized a 12 bit

MacAdios I/O board with a ±10 V range. Four signals (torsional eye position, joystick vection

indication, biteboard torque, and optical encoder output) were sampled at 200 Hz. Two output

channels were also utilized: one controlled the dome speed while the other turned the dome

lights on and off.

The LabView programs for the dome experiment were written by Nick Groleau.

Figure 3.8a shows the panel display for the virtual instrument Keoki.Thesis. The right half

of the panel allowed definition of the data sampling rate and trial duration, divided into pre-,

per-, and post-rotation segments. Before each run, the appropriate subject code letter and run

order number were also selected. Upon starting the program, the computer proceeded

automatically through the preselected trial sequence. Input and output signals were displayed

in real time inside the plot windows at the left. After each trial, the operator was given the

option of repeating the trial or saving the data and proceeding to the next trial. The panel

display for cread-cwrite Demo is presented in Figure 3.8b. This virtual instrument served

as a computerized stripchart recorder, allowing the operator to check the computer interface

with each of the input and output channels.

A stripchart recorder also plotted four channels of data, serving as a backup and quick

reference. The eye movements in all three planes (horizontal, vertical, and torsional) were

output. By recording the horizontal and vertical channels, it was possible to look for large

oblique eye movements which would have coupled with the torsional channel. The fourth

stripchart channel consisted of the joystick vection indication.
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4. THE EXPERIMENT

4.1. Experimental Design

This section describes the design of the experiment, guided by the stated objectives of

the study, which took place at three different levels: (1) organization of the runs for different

experimental conditions; (2) construction of test runs by selecting the number and order of

trials, as well as their stimulus speeds and directions; and (3) designation of the length of an

experimental trial, including pre-, per-, and post-stimulus-rotation periods. Selection of test

subjects followed the development of the experimental procedure. Relevant information

concerning each of the seven subjects is presented. Finally, the actual order of trials and runs

used for each subject is summarized, and all anomalies or deviations from the experimental

procedure are noted.

4.1.1. Definition of Experimental Paradigm

The objectives of the study called for comparison of optokinetically induced ocular

torsion erect and supine, as well as an examination of the effects of different visual fields on

OKAN. It was decided that each subject would take part in four experimental runs

representing the four possible combinations of the variables of interest (2 orientations, 2 post-

stimulus visual fields). To allow for a reasonable number of trials per run, the four runs were

split into two sessions of two runs each, and the sessions took place on different days. Two of

the runs had the subject standing erect, and in the other two the subject lay supine. Because of

the time consuming process involved in changing the experimental equipment setup between

orientations, both runs for a given orientation occurred within the same session. To avoid

continuous switching of the equipment orientation, all subjects were first tested erect. The

dome and coil system were then moved to the supine orientation, and all subjects were run

again in this position.

Within each session, the pre- and per-stimulus-rotation segments of each run were

identical. In contrast, the post-stimulus period in each run incorporated one of two different



visual fields. The initial design called for leaving the dome illuminated after the end of rotation

in half of the trials, providing a stationary visual field. In the other half, the dome lights would

be extinguished, leaving the subject in complete darkness except for a dim central LED fixation

point.

Subject M was tested in upright and supine orientations under these conditions. Visual

inspection of the optokinetic torsion traces revealed little difference between the aftereffects in

the light and dark. It was thought that the fixation LED might have inhibited afternystagmus,

even though it subtended only 0.50 of the subject's visual field and its radial symmetry

provided no orientation cues. For this reason, the trials with the post-stimulus segment in the

light were replaced with a condition of total darkness during the post-rotation period. Because

the fixation LED was no longer lit in these trials, the danger existed that measurements of eye

torsion would suffer contamination from coupling with large oblique eye movements. To

minimize this possibility, the subjects were instructed to fixate on an "imagined" central LED

during the period when aftereffects were measured.

Turning off the fixation LED involved turning on the room lights, unplugging the 9 V

battery which powered it, and ascertaining that the middle dome section and LED remained

centered about the dome rotation axis. Since the experiment time was strictly limited, the

decision was made to perform all the trials in the first run with the LED illuminated. Then the

LED would be unplugged, and the fixation LED would not be visible in the dark for the second

run. Because the fixation LED condition was always tested before the non-LED condition, and

erect tests always preceded supine tests, there was a risk that the influence of these two

variables might be confounded with any habituation or exposure-related effects. This

possibility will be discussed later in the context of the experimental results and the relevant

literature.

Having defined the experimental conditions, the next step in the design of the

experiment involved selecting the combination of stimulus rotation speeds which would

comprise a run. Ideally, the test speeds would cover a range likely to generate both strong



optokinetic and vection responses. Collewijn et. al. (1985) observed a largely constant

torsional SPV gain for stimulus speeds above 60/sec, while the psychophysical responses to

visual roll stimuli saturate at rates from 40 to 600/sec (Dichgans et. al., 1972). Based on these

figures, an initial decision was made to retain the stimulus speeds selected for the shuttle

Spacelab missions: 300, 450, and 60I/sec (Young et. al., 1986; Young and Shelhamer, 1990).

LabView software written by Nick Groleau for baseline data collection connected with the

Spacelab Life Sciences 1 shuttle mission was readily available; this program provided data

acquisition and control of the rotating stimulus for experimental runs of 6 trials (3 speeds, 2

directions). The stimulus control program provided for two different run sequences, in which

the order of the trials was randomized by rotation speed and direction. The randomized

presentation served two purposes: it (1) minimized confounding of legitimate directional or

speed dependencies with possible effects of presentation order, and (2) prevented the subject

from anticipating the trial order.

Two runs of six trials (lasting approximately 110 sec each, including pre- and post-

rotation recording intervals, for a total of 22 minutes) were completed for subject M in the

upright orientation using the speeds ±300, ±450, and +600/sec. Even with the 8 spare minutes,

the session lasted the entire allowable 30 minutes, demonstrating that a time "overhead" of

approximately 35% was needed to complete a two run protocol. Analysis of the OKN from

these runs indicated a saturation of the SPV at the two higher speeds. To characterize better the

speed dependence of the OKN SPV, two more trials at ±150/sec were added to each run for the

remainder of the experiment. The stimulus duration for each trial was reduced by 1/3 to 30

seconds to accommodate the increase in trials from 6 to 8 per run. Table 4.1 shows the 2

finalized run orders; the key to the trial letter codes is included.

The main constraint on the length of a session was determined by guidelines for use of

the scleral search coil. To avoid excessive irritation of the eye, the coil could remain in a

subject's eye for a maximum of 30 minutes. This hard limit created a clear tradeoff between



Trial 1 2 3 4 5 6 7 8 CW CCW
Run (+) (-)

1 E A F B H C D G 150/s A E
2 B HECAF DG 300/s B F

450/s C G
600/s D H

Table 4.1. The two randomized run orders of 8 trials (4 speeds,
2 directions) used for stimulus presentation. A key to trial letter
codes is included at right.

the length of an experimental trial and the number of trials which could take place in one

session. Observation of OKAN provided the driving criterion in selection of an appropriate

trial length. The duration of the stimulus rotation was chosen to allow for adequate charging of

the "velocity storage" integrator, which in turn would presumably generate a strong

afternystagmus.

Brandt et. al. (1974) found that the peak velocity of horizontal OKAN increased with

stimulus duration to a maximum obtained with a stimulus lasting about 60 seconds. Cohen et.

al. (1981) estimated the charging time constant of OKAN at 20 seconds, while Lafortune et. al.

(1986) proposed a value of approximately 49 seconds. The latter estimate seems quite high,

since the authors stated in the same paper that " 'saturation' levels for this parameter [the

'stored' velocity] were presumably attained by 40 sec." A tentative stimulus duration of 45

seconds was selected to permit maximal charging of velocity storage. This duration was

shortened to 30 seconds after the first session with subject M in order to allow an increase in

the number of trials per session from 12 to 16. Assuming a time constant of 20 seconds, this

stimulus duration would still allow charging of velocity storage to about 80% of saturation.

Next, the length of time post-stimulus for which eye movements would be sampled

was selected to enable observation of the major features of the aftereffects. Cohen et. al.

(1981) found a horizontal OKAN discharge time constant near 25 seconds; Jell et. al. (1984)



used a double exponential fit to their data and obtained a mean long time constant for OKAN

decay of 49 seconds. However, the torsion records accumulated by Malan (1985) indicated the

return of the eye to rest within 20 to 30 seconds; these results were corroborated by the author

in preliminary tests on subject M. Based on a horizontal OKAN decay time constant of 25

seconds and the available torsion data, a post-stimulus recording period of 30 seconds was

chosen.

Also, an interval of five seconds prior to the onset of stimulus rotation was established

to measure the baseline eye position. A total of 65 seconds of data were sampled per trial. The

computer needed approximately 20 seconds to save the data and set up for the next trial, giving

the subject some additional recovery time to relax between trials. The total minimum trial

length thus came to 85 seconds (Figure 4.1). A total of 16 trials per session (2 runs of 8 trials

each) resulted in 22.7 minutes dedicated solely to data acquisition and computer setup time,

leaving approximately 7 minutes (30%) leeway. In practice, the coil sessions virtually always

required the entire half hour.

In order to familiarize the subjects with the experiment, each subject completed a

training run before any eye movements were recorded. The run consisted of several trials prior

to coil insertion, with the intent of allowing the subject to become adept at indicating vection

with the the joystick and eliminating any learning effects during the actual data-taking runs.

With the exception of M, all subjects performed the training run at the beginning of the first

session (upright). Subject M, who had served several times as a test subject in the dome, did

not take part in a training run during any of the sessions recorded for this thesis.

4.1.2. Subject Selection

A sample population of 6 subjects was selected as a reasonable balance between the

desire for a large sample and the limited time and resources available for the study. The

subjects, 4 male and 2 female, were chosen from the students associated with the MIT Man-

Vehicle Laboratory. Because one subject (R) perceived almost no vection during his first
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Figure 4.1. Standard trial sequence of events.

experimental session, he was not tested again and a third female subject was added. The

subjects ranged from 19 to 26 years of age. Two of the subjects had taken part in a similar

rotating dome experiment about 18 months previously. Relevant information concerning each

of the subjects is listed in Table 4.2. The subject codes range from M through S because the

data acquisition software was designed for the SLS- 1 crewmembers designated in this fashion.

Subject M took part in all of the tests during the design definition phase. He was first run in

September 1990; the data from this session were not included in the thesis results due to a low

sampling rate of 25 Hz.

4.1.3. Summary of Individual Experimental Runs

The actual experimental runs performed by each subject are presented in Table 4.3.

Trials are designated by the letter codes defined earlier in Table 4.1 to denote the nominal dome

speed. Actual mean dome speeds for each trial are tabulated in Appendix D. The run series for

three subjects included some differences from the final experiment protocol. As explained

~xb.
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Eye Uncorrected Prior dome
Subject Sex Age Handedness dominance vision experience?

M M 23 right left yes
N F 21 right left 20/20 no
O M 26 right left no
P M 23/24 right right 20/20 yes
Q F 19 right left 20/241 no

20/35 r
R M 24 right left 20/20 no
S F 23 right right 20/200 no

Table 4.2. Summary of relevant subject information.

above, subject M's tests took place during the design definition phase of the experiment, and

therefore were somewhat different from those of the other subjects. Due to a computer

problem and time constraints, subject N's erect session included 12 trials in the fixation LED

condition and only 4 trials in complete darkness following stimulus rotation. The test battery

for subject O included two erect sessions over which 3 runs were performed. During his first

erect run, O developed severe motion sickness symptoms and the session was ended after that

run. During his second erect session O felt no motion sickness, and a run with the lights left

on following dome rotation was included rather than a repetition of the trials under the fixation

LED condition.

These subjects (M, N, and 0) represented the major deviations from the experimental

design. However, some minor differences were introduced by the propensity of the data

acquisition computer to "hang" or "crash" in the middle of a run. The dome controller was

programmed to step through 1 of 2 specific pseudorandom trial sequences for each run;

restarting the LabView program required starting from the beginning of one of the predefined

trial orders. Thus, computer difficulties created irregularities in the trial sequences for some

runs. These runs are marked in Table 4.3 by a 't' symbol at the trial after which the computer

crashed. Other trials, marked with an '*' in the table, represent cases where the dome lights

were inadvertently left on during the post-rotation phase of eye movement recording.



M 4/19/91 erecta dark; LED B G H C F D -- -

4/19/91 erect light B G H C F D -- --
5/3/91 supineb dark; LED G Gt G Et B F -- --
5/6/91 supine dark; LED A E F B D C H G
5/6/91 supine light A E F B H C D G

N 7/12/91 erect dark; LED E A F Bt E A F B
H C* D G -- -- -- --

7/12/91 erect dark; no LED B H E C -- ------..
7/18/91 supine dark; LED B H E C A F D* C
7/18/91 supine dark; no LED E A F* B H C D* G

O 7/12/91 erect dark; LED B H E C A F D
7/15/91 erect dark; no LED F D E C A B H G
7/15/91 erect light E A F B H C D G
7/19/91 supine dark; LED E A F Bt B H E C
7/19/91 supine dark; no LED A F D G B H E C

P 7/15/91 erect dark; LED B H E C A F D G
7/15/91 erect dark; no LED E A F B H C D G
7/23/91 supine dark; LED E At B H* E C A F
7/23/91 supine dark; no LED D G B H E C A F

Q 7/16/91 erect dark; LED E A F B H C D G
7/16/91 erect dark; no LED B H E C A F D G
7/19/91 supine dark; LED B H E C A F D G
7/19/91 supine dark; no LED E A F B H C D G

R 7/17/91 erect dark; LED iB 3H E sC [A tF sD eG
7/17/91 erect dark; no LED E A F B H C* D G

S 7/18/91 erect dark; LED E A F B H C D G
7/18/91 erect  dark; no LED B H E C A F D G
7/19/91 supine dark; LED B H E C A F D G
7/19/91 supine  dark; no LED E A F B H C D G

a Duration of dome rotation was 45 seconds for subject M erect. Dome rotation lasted 30 seconds for all other sessions.
b Dome rotation speeds for subject M supine were +210 , ±410, +560, and ±720/sec due to a calibration error.
* Dome lights inadvertently left on after dome stopped rotating.
t Computer crash caused irregularity in trial sequence.

Table 4.3. Run conditions and trial sequences for which eye
torsion was recorded.



4.2. Experimental Procedure

Each experimental session included four main phases. The first segment was devoted

to preparing the subject for the experiment. Second, the coil system was readied for collection

of eye movement data. The actual experimental runs and data collection made up the third

phase. Finally, the subject was debriefed following completion of the tests. Appendix B

contains detailed outlines of the protocol for each part of the session.

4.2.1. Subject Preparation

Since the erect and supine runs were identical except for subject orientation, most of the

subject preparation took place during the erect session, which was scheduled first. The session

began with a description to the subject of the nature of the experiment. The experimental

apparatus was shown to the subject, the test procedures were reviewed, and the subject's task

was explained. The function of the scleral search coil system was briefly described, and the

possible risks to the subject associated with use of the eye coil were clarified. The subject was

informed that the experiment would take place in two sessions on different days, and that he or

she could withdraw from the experiment at any time. The subject then signed a statement

agreeing to participate in the experiment as described. Copies of the human use applications

for the rotating dome experiment and the scleral coil system, as well as a sample informed

consent statement, are included in Appendix C.

Next, the experimental test apparatus was adjusted for the individual subject. First, the

subject made a personal biteboard to hold the head in place during the experiment.

Approximately 5 minutes were required for the dental impression compound to set. Then the

biteboard was fixed into the instrumented biteboard support contained within the dome shell.

At this point, the subject was positioned so that the eyes were close to the center of the field

generation coils and the subject was able to remain comfortable while biting on the biteboard.

When the apparatus was properly adjusted for the size of the subject, specific

instructions were given to the subject on how to perform the experimental trials. The rotary



joystick was given to the subject, who turned the knob to either side in order to determine its

range of motion. The subject was given roughly the following instructions:

Stand with your feet together at all times [erect runs only]. Before the
beginning of each trial, you will be instructed to fixate on the central LED at the
rear of the dome. Bite down on the biteboard hard enough to keep your head
from moving. You are to continue fixating on the LED during and after dome
rotation, until the operator instructs you to relax. For some of the trials, the
fixation LED will be turned off and you will be in complete darkness after the
dome rotation. At these times, imagine the central LED and try to fixate on this
point. When the operator instructs you to relax, you may stop fixating or close
your eyes. You may also let go of the biteboard. If you experience any
discomfort, eye irritation, or motion sickness symptoms, feel free to ask the
operator to stop the experiment at any time.

Hold the joystick box in your left hand [all subjects were right handed] with the
knob toward your body and the rod projecting from the knob pointed down, so
that the knob rotates about your body's roll axis. Turn the knob with your right
hand to indicate your feeling of subjective vection. Turn the knob in the
direction toward which you feel you are rotating; do not indicate the direction of
fied rotation. Scale your perceived velocity by the rotation rate of the dome, so
that you indicate your vection velocity as a percentage of the dome speed.
Thus, full deflection of the joystick means that you feel saturated vection--the
dome appears stationary while you have taken on its full rotation velocity.
Likewise, zero deflection means that you feel yourself stationary and sense only
the dome rotation. Remember to indicate your rotation rate and not your
perceived tilt angle. Stationary objects [primarily the biteboard holder] in your
field of view may appear to rotate with you during vection. You may use such
a perception as another cue about vection onset and magnitude. If you feel a
vection dropout--a period when your perception of self-motion stops--return the
joystick to the central zero position until vection returns. If you perceive any
outlasting self-rotation or reversal of self-rotation direction after the dome
rotation stops, indicate such vection aftereffects with the joystick.

After receiving these directions, the subject completed one training run before actually

being tested erect. The purpose of this run was to make sure the subject fully understood all of

the instructions and was comfortable with the proper use of the joystick. The joystick trace

was monitored, and questions were asked of the subjects between trials to ascertain that their

vection indications were consistent with their actual perceptions. Table 4.4 displays the

sequence of trials for each subject's training run. Subject M had been tested several times

previous to his data acquisition sessions, and did not require a training run.



Subject
N
O
P
Q
R
S

Training run trial #

1 2 3 4 5 6 7 8
B H E G A F D
B H A -- -- -- -- --

E A F B -- -- -- --

B H E C A F ----
E A F B H C D G
B H E C A F D G

Table 4.4. Training runs performed during test session upright
prior to data collection runs.

4.2.2. Coil System Preparation

The power to the coil system was turned on at least one half hour before use to allow

the electronics to warm up. After this settling time, the calibration jig was mounted within the

field coils and the scleral coil to be used was taped onto the calibration jig. The coil output was

zeroed, then calibrated for horizontal, vertical, and torsional rotations. The calibration device

was removed and the eye coil was placed in a sterilizing hydrogen peroxide solution (H202

3%) for at least 10 minutes prior to insertion in the subject's eye, then rinsed thoroughly with

sterile saline solution. When the subject was properly positioned within the field coils, the

subject's right eye was anesthetized using a topical 0.5% solution of proparacaine HC1 (brand

name Ophthetic®).

The search coil was inserted under the eyelids so that it rested on the sclera with the

leads exiting nasally. The lead wire was taped to the subject's forehead and cheek to prevent it

from interfering with vision. At this point a stopwatch timer was started to ensure the coil did

not remain in the subject's eye for longer than 30 minutes. Before starting the experiment, the

coil output was zeroed again in all three axes while the subject fixated on the central LED. If

necessary, the output was also zeroed between the two experimental runs. Additional

anaesthetic was provided upon request. When the tests were completed, the coil was

immediately removed from the eye and placed into a hydrogen peroxide bath. Drops of sterile



saline solution were dropped into the eye after coil extraction. None of the subjects complained

of any irritation other than dryness due to the anaesthetic.

4.2.3. Experimental Test Procedure

As described above, each session consisted of 2 runs of 8 trials each. The 2 runs were

identical except for the post-rotation phase. With the exceptions noted for subjects M and 0,

the first run utilized a central fixation LED during the post-rotation period; for the second run

the LED was extinguished. Except for the LED, this segment of each trial took place in

complete darkness. At the start of each run, the doors to the test room were closed and the

room lights were extinguished. The brightness of the computer monitor was lowered to the

minimum setting, and flashlights were used by the test operators. Flashlights were not used

during the post-rotation data collection period in darkness. A stripchart recorder was utilized

throughout both runs to provide a backup record of the subjective vection and eye movements

in three dimensions.

At the beginning of each trial, the dome lights were turned on and the subject was

instructed to fixate on the central LED. Five seconds of eye movement data were sampled prior

to the onset of dome rotation. The computer then initiated dome rotation at a constant speed for

30 seconds* , at which time it halted the dome rotation and extinguished the dome lights

simultaneously. The computer continued to sample data for 30 secondst after the lights were

turned off. When the program signalled the completion of data acquisition, the subject was

instructed to relax. The subject received approximately 20 seconds of rest between trials while

the computer stored the data and allocated memory for the next trial.

* The duration of dome rotation for subject M's erect trials was 45 seconds.
t For subject M's supine trials on 5/6/91, 30 seconds of post-rotation data were sampled but only the first 13.75
seconds were stored on disk due to a software bug.



4.2.4. Subject Debrief

Following removal of the scleral coil, the subject was asked a number of questions

regarding the qualitative nature of his or her self motion perceptions. Comments were

requested on the following:

*maximum amount of vection perceived; occurrence of saturated vection
*presence of paradoxical vection or perception of unambiguous 3600 rotation
*amount of body tilt perceived
*postural imbalance or body sway
*perceived directional asymmetries in vection magnitude
*dependence of vection magnitude on dome speed
*differences between quality of vection erect and supine [following supine runs]
'presence of visual or self-motion aftereffects following the end of dome
rotation

*motion sickness symptoms

The subject comments are summarized in Appendix E.

4.3. Data Analysis

Figure 4.2 contains an overview of the main elements in the data analysis pathway.

The LabView data acquisition program sampled 4 signals simultaneously and saved the time

series in four binary files per trial. These binary files were converted to MatLab variable

format using domeconvert, a C program written by M. D. Balkwill and modified slightly

by the author. The majority of the analysis was then performed using a number of MatLab

scripts. Printouts of the primary analysis programs and scripts are located in Appendix F.

Analysis of the data divided into three segments. The first step simply involved calculating the

dome speeds from the optical encoder output. By far the largest amount of processing time

was required by the second stage--analysis of the eye torsion. The third segment was devoted

to evaluation of the subjective vection responses.

4.3.1. Dome Speed Calculation

The optical encoder output a 5 volt square wave when the dome rotated. The pulse

width varied inversely with the dome speed. The dome rotation rate was calculated with the

script enc_speed, which counted the number of rising and falling edges within successive
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time windows. There existed an inherent tradeoff in the selection of the window length: a

shorter window improved the temporal resolution of the speed estimate but reduced the

resolution of the velocity calculation. The optical encoder axis was linked to the dome driver

motor with a belt such that each full revolution of the dome produced 309.82 cycles, giving a

factor of 0.43 degrees per edge. A 1 second window was selected for the speed calculation,

resulting in a resolution of 0.430/sec for a measurement rate of 1/sec. Thus, the worst-case

resolution equalled about 2.9% of the lowest dome speed utilized--15 0/sec.

4.3.2. Eye Movement Processing

The first and most time consuming step in the eye movement analysis was the

extraction of slow phase velocities from the position traces obtained using the scleral coils.

Calculating the slow phase velocity sequences effectively required removal of all fast phases of

nystagmus. This task was performed using NysA v. 1.4 (for Ny.tagmus Analysis), a set of

MatLab scripts designed and implemented at the MIT Man-Vehicle Laboratory by D. J. Merfeld

and M. D. Balkwill (Balkwill, 1991). First, the torsional eye position data was converted from

A/D units (2048 / 10 V) to degrees using scaledata. Next, the data was smoothed by the

condition script. The smoothing process utilized a predictive finite impulse response (FIR)-

median hybrid filter, described by Engelken and Stevens (1990). This filter modeled the

nystagmus signal as a piecewise continuous sequence of second order polynomials; its main

advantage lay in the preservation of the sharp transitions between slow and fast phases of

nystagmus.

The heart of the fast-phase removal algorithm was incorporated in the process script,

which implemented a version of the acceleration peak detection method used by Merfeld

(1990). Velocity and acceleration were obtained by twice differentiating the position series

with a Remez equal ripple filter made up of a first order derivative and low-pass filter. The

acceleration trace was scanned for values greater than a specified peak threshold; upon

detecting a peak the acceleration series was scanned backward and forward until values lower



than a second "end" threshold were detected. These values represented the beginning and end

of the fast phase; the slow phase velocity was interpolated across the gap using a zero-order

hold. The entire NysA procedure through this script was configured to run in batch mode.

The automated fast phase removal algorithm performed quite well for most trials, and

correctly detected approximately 90-95% of saccades. However, each trial had to be manually

edited to remove small undetected fast phases. Also, intensive manual editing was required for

a few trials with unusually high noise levels; in such cases the automated algorithm excised

large portions of the velocity trace. In the editspv script, the beginning and end points of

undetected saccades were selected by the operator. The velocity during the saccade was

replaced with a first order interpolation between the two endpoints. Manual editing completed

the computation of the slow phase velocity traces.

Mean and maximum slow phase eye velocities (during the duration of dome rotation

only), as well as mean and maximum SPV gains, were calculated for each trial in the script

spy_gain. The dependence of SPV gain on stimulus speed was modeled with a relationship

of the form

Gainspv = Go
jVcomer + 1

Vdome (4.1),

where Vdome was the dome rotation rate, Vcorner gave the "break" velocity, and Go represented

the SPV gain as the dome speed approached zero. This model was suggested by plots of SPV

gain versus stimulus speed for horizontal OKN in several species (Collewijn, 1981) and

torsional OKN in the rabbit (Collewijn and Noorduin, 1972). The torsional SPV gains

collected in this experiment were fit to the model in fit_gains. This script employed a Nelder-

Mead simplex algorithm for nonlinear optimization to minimize the norm of the error vector

between the model predictions and the actual data points.



After Jell et. al. (1984), the decay in slow phase eye velocity during OKAN was fit to a

double exponential of the form

SPVOKAN = Vshorte - t/ + Vionge -'I + Vbias, (4.2)

where 'l and 's represented the long and short decay time constants, and Vlong and Vshort were

the respective magnitudes of the decay terms. A constant term, Vbias, was included because

some subjects displayed a spontaneous directional drift in eye torsion. The fit was performed

by the script show_okan, which used the Nelder-Mead algorithm as well.

4.3.3. Analysis of Subjective Vection

The script plot_corr was used to evaluate the correlation between subjective self-

motion sensations and involuntary torsional eye movements. First, the eye position record was

low-pass filtered forward and backward using a 2 pole Butterworth filter with a comer

frequency of 0.5 Hz. The eye position, eye SPV, and vection time series were then decimated

by a factor of 20. The decimation routine first employed an 8th order Chebyshev type 1 low

pass filter with a break frequency of 5 Hz. Unbiased cross-correlation functions were

calculated between the decimated series for subjective vection and both torsional SPV and

torsional eye position. The time corresponding to the peak of the cross-correlation function

was stored for each correlation.

Parameters characterizing the vection for each trial were also extracted using the script

getvect. The three parameters of interest were vection onset latency, maximum vection, and

average vection. The onset latency was defined as the time at which vection reached and

maintained a specified threshold level for at least 0.5 seconds. Because there was a certain

amount of play in the joystick at its central position, the zero position was defined as the

halfway point between the two extreme positions (indicating saturated vection in either

direction). The onset thresholds were defined as 4% beyond the points at which a restoring

force could be felt from the spring-loaded knob. Thus, the thresholds for CCW and CW



vection became -10.4% and 4.8% respectively. Maximum vection for a trial was defined as the

maximum of the absolute value of the vection indications; average vection was simply the mean

of the vection indications taken over the duration of dome rotation.



5. RESULTS

5.1. Analysis of Slow Phase Eye Velocity during Torsional OKN

The functional characteristics of the smooth tracking eye movements observed during

torsional optokinetic stimulation were examined. This section presents an analysis of SPV

dependence on stimulus speed and direction, subject orientation, and repeated exposures.

Furthermore, the possibility of a link between roll vection and torsional SPV is explored.

5.1.1. Eye Movements Generated during Torsional Optokinetic Stimulation

The reflex eye movements produced by exposure to the rotating dome took the form of

torsional nystagmus, with slow phases in the direction of rotation and fast resetting phases in

the opposite direction (Figure 5.1; Figure 5.2a). The eye began following the dome's rotation

after a latency of approximately 150 - 250 ms., and reached a large fraction of the ultimate

maximum SPV within the first slow phase. The individual slow phases often exhibited a

concave shape, such that the eye velocity was highest at the beginning of a segment and

decreased toward the end.

In addition to the velocity decline within slow phases, the SPV varied considerably in

magnitude over the duration of a trial (Figure 5.2b), never achieving a true steady state. The

highest slow phase velocities observed were approximately 120 - 150/sec, and are listed by

subject in Table 5.1. The nystagmic beats were generally accompanied by a more tonic

torsional deviation of the eye. The direction and magnitude of this bias varied from subject to

subject. During OKN the maximum peak-to-peak range of motion was on the order of 120,

although the largest slow phases were almost always less than 70 (Table 5.1).

5.1.1.1. Relationship of SPV Gain to Stimulus Speed

Higher dome rotation rates produced higher SPVs (Figure 5.3). However, the increase

in SPV with increasing dome speed was less than linear. Mean SPV gain decreased with

increasing dome speed for the range of speeds tested (Figure 5.4). This decrease occurred



Torsional optokinetic nystagmus

-1 0 1 2 3 4 5 6
time (seconds)

Figure 5.1. Torsional optokinetic nystagmus (Subject P; 600/sec
CCW stimulus). Dome rotation begins at time 0.

Maximum SPV
(o/sec)

peak mean
(top 5)

13.6 12.5
10.9 9.2
15.8 13.2
13.0 11.8
8.0 6.8

11.9 11.1
20.8 16.7

Peak-to-peak
OKN range (0)
peak mean

(top 5)
9.2 8.5

12.1 10.4
11.8 11.0
14.3 12.0
12.0 10.1
10.3 9.2
13.7 11.2
m,

Peak slow-phase
magnitude (0)
peak mean

(top 5)
4.8 4.0
6.4 6.0
7.1 5.9
7.6 5.9
5.3 4.9
6.3 5.1
5.5 5.3

Table 5.1. Maximum OKN responses (SPV, torsional range,
slow-phase magnitude) by subject for roll stimuli from 150/sec -
60I/sec. Overall peaks and averages of the highest five samples
recorded are presented.
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a. Torsional optokinetic nystagmus
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time (seconds)
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b. Torsional slow phase velocity

-5 0 5 10 15 20 25 30 35 40 45
time (seconds)

Figure 5.2. Torsional optokinetic nystagmus and calculated slow
phase velocity. [a.] Torsional eye position. [b.] Torsional
SPV. Dome rotation begins at time 0 and ends at a time of 30
seconds.
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a. Erect dome: all subjects
Slow phase velocities

- --

.................................. ........ ._- ........... _- _ ....... __-- ..... -.. .I
,- - i i ... .i

-80 -60 -40 -20 0 20 40
dome rotation speed (deg/sec)

60 80

8

6

4

2

0

-2

-4

-6

b. Supine dome: all subjects
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Figure 5.3. Mean SPV for all subjects. [a.] Erect dome. [b.]
Supine dome. Each data point represents a single trial
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a. Erect dome: SPV gain
(all subjects)
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dome rotation speed (deg/sec)

b. Supine dome: SPV gain
(all subjects)

0 10 20 30 40 50 60 70 80
dome rotation speed (deg/sec)

Figure 5.4. Mean SPV gain for all subjects. [a.] Erect dome.
[b.] Supine dome. Data points indicate mean values ± 1 standard
deviation. Curve fits from Eq. 5.1, using parameters from Table
5.4.
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consistently for all subjects, regardless of subject posture or dome direction (Figure 5.5). The

magnitude of the decrease varied among subjects, as well as within a single subject's data set

for different directions and postures. For all subjects and conditions grouped, the average

decrease in gain was approximately 57%, from 0.15 at a dome speed of 150/s to 0.065 at 600/s.

When the subjects were taken individually and their gains grouped according to posture and

dome direction, the reductions in gain ranged from 21% to 76% (Table 5.2).

As described earlier, the SPV gains for each run were separated by dome direction and

fit to functions of the form shown in Eq. 1, where vcomer represents a "corner" rotation rate

similar to the corner frequency of a Bode plot and K provides an estimate of the OKN gain at

very low stimulus rates.

GsPv =  .K
jvdome +
Vcomer (5.1)

Average values of the parameters across all subjects, as well as parameter values calculated for

all subjects and runs grouped, are listed in Table 5.3. The parameters for the single run fits, as

well as for fits obtained by grouping each subject's runs according to posture, are presented in

Table 5.4. In the great majority of cases, these curves provided better fits than either linear or

exponential expressions. Overall, these fits indicated that the maximum gain likely to be

observed even at very low speeds is less than 0.3. Furthermore, OKN gain dropped off

sharply above a "corner" dome rotation rate of approximately 150 - 300 /sec.

5.1.1.2. Exposure-Related Effects on SPV Gain

For each subject, SPV gain appeared to decrease with increasing exposure to the dome

stimulus within a single experimental session. Unfortunately, this gain decrease could not be

tracked within an individual run, because each speed-direction combination was generally
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0.08

-80 -60 -40 -20 0 20 40 60 80
dome rotation speed (deg/sec; CW positive)
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dome rotation speed (deg/sec; CW positive)
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Figure 5.5. SPV gains erect and supine for individual subjects.
Curve fit parameters are listed in Table 5.3. [a.] Subject M.
[b.] Subject N. [c.] Subject O. [d.] Subject P.
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Figure 5.5. SPV gains erect and supine for individual subjects.
Curve fit parameters are listed in Table 5.3. [e.] Subject Q.
[f.] Subject R (erect only). [g.] Subject S.
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Subject CCW
or CW

M CCW
CW

N CCW
CW

0 CCW
CW

P CCW

Q CCW
CW

R CCW
CW

S CCW
CW

All
subjects both

. ..

mean gain mean gain gain ratio
150/sec 600/sec 600/s+150/s

0.081t 0.041t 0.51
0.125 0.062 0.50
0.145 0.054 0.37
0.140 0.045 0.32
0.115 0.031 0.27
0.076 0.033 0.44
0.189 0.075 0.40
0.133 0.060 0.45
0.090 0.055 0.48
0.070 0.055 0.79

-- - --

0.181 0.094 0.52
0.159 0.090 0.56

0.132 0.059 0.45

mean gain mean gain gain ratio
150/sec 60 I/sec 600/s+150 /s

0.056* 0.033 0.58
0.079 0.049 0.62
0.168 0.070 0.42
0.267 0.065 0.24-
0.160 0.053 0.33
0.161 0.080 0.50
0.234 0.081 0.34
0.130 0.065 0.50
0.098 0.043 0.44
0.115 0.056 0.48
0.241 0.111 0.46
0.155 0.079 0.51
0.230 0.113 0.49
0.245 0.104 0.42

0.181 0.072 0.40
if ~AOL.~

lne lowesL speed use in m me erect runs for suojen ivi was .3u /v e
tThe low and high speeds used in the supine runs for subject M were 210 /sec and 720/sec

Table 5.2. Mean gains for the highest and lowest speed stimuli,
separated by subject, orientation, and dome direction. Magnitude
of decrease in gain over speed range tested is indicated by the
ratio of fast-stimulus to slow-stimulus gains.

K

mean (subject fits) fit--all subjects, mean (subject fits) fit--all subjects,
I 1 st. dev. all trials + 1 st. dev. all trials

erect 0.24 + 0.15 0.23 21.7 + 8.2 17.92
Supine 0.17 + 0.09 0.16 i 28.8 _ 16.3 21.47

Table 5.3. Erect and supine gain-SPV
subjects grouped.

curve fit parameters for all
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a. Curve fit parameters for erect dome runs.

Subject Run #

M 1
2

N 1
2

0 1
2
3

P 1
2

Q 1
2

R 1
2

S 1
2

CCW dome
Sing e run
K

0.15 12.8
0.15 11.0
0.22 18.7
0.18 22.4
0.73 4.2
0.20 24.9
0.17 12.2
0.36 13.2
0.33 13.8
0.11 25.9
0.13 17.4
0.31 24.5
0.27 19.4
0.31 21.3
0.23 30.5

CW dome
Single runGrouped runs

K

0.15 12.0

0.21 19.6

0.22 15.1

0.35 13.5

0.12 21.8

0.29 22.2

0.27 24.8

I

b. Curve fit parameters for supine dome runs.
CCW dome CW dome

Single run Grouped runs Single run Grouped runs
Subject Run# K c K c K O K c

M 1 0.13 15.6 - - 0.22 20.6
2 0.09 46.7 0.11 75.1
3 0.12 24.1 0.10 26.3 1.08E+5 2.76E-5 0.15 29.6

N 1 0.15 26.2 0.21 15.8
2 9.98E+4 2.29E-5 0.35 7.0 0.21 12.6 0.20 14.9

O 1 0.21 12.9 0.11 25.0
2 6.77E+5 1.64E-6 1.21E+6 1.44E-6 0.07 69.2 0.08 42.6

P 1 0.25 17.7 0.16 18.7
2 0.30 11.6 0.28 13.6 0.22 12.3 0.18 16.1

Q 1 0.10 37.5 0.07 93.2
2 0.09 35.2 0.10 36.3 0.07 38.6 0.07 63.8

R ---..... R -- -- -- -- -- --- --- --- ---
S 1 0.22 28.5 0.21 35.8

2 0.19 25.1 0.21 26.8 0.14 46.5 0.18 39.5

Table 5.4. Parameters for curve fits relating SPV
velocity. Values are given for each dome run
grouped by subject. [a.] Erect dome. [b.] Supine

gain to dome
and for runs
dome.
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K

0.13 27.7
0.09 44.0
0.51 8.7
0.16 30.6
0.23 26.4
0.19 24.7
0.13 46.2
0.17 22.6
0.13 30.2
0.18 16.5
0.10 37.7
0.19 33.3
0.15 33.9
0.30 21.3
0.30 20.7

Grouped runs
K

0.11 34.7

0.70 5.8

0.18 30.4

0.15 26.0

0.14 22.9

0.17 33.5

0.30 21.0
- --

--



presented only once per run. Thus, the dependence of gain on dome speed as well as

directional asymmetries within subjects made within-run comparisons problematic. However,

a gross measure of this gain decrease was obtained by dividing the SPV gain obtained in the

second run by that obtained in the first for trials corresponding in speed and direction. On the

occasions where a certain speed and direction were repeated within a single run, the ratio of the

later gain to the earlier was calculated as well.

Figure 5.6 shows the mean of the ratios for each subject. In this figure, the values

obtained from both sessions (erect and supine) have been combined. The mean gain decrease

attributed to stimulus exposure ranges from 8% to over 30%. In Table 5.5, the statistics for

the gain ratios have been tabulated for the erect and supine cases separately, and the

percentages of comparisons giving ratios less than 1 (signifying a gain decrease over time)

have been included. In five of the six subjects tested both erect and supine, the gain decrease

was more pronounced supine. However, the difference was significant only for subject S (p <

0.05, independent samples t-test).

5.1.1.3. Directional Asymmetry in SPV Gain

Highly individual-specific directional asymmetries were observed in the OKN gain. In

order to quantify the asymmetries, ratios of mean SPV gain for trials of the same speed but

opposite direction were calculated. Thus, this procedure generally gave one ratio per dome

speed for each run. The logarithm of each ratio was taken to facilitate comparison of ratios

greater and less than one. Mean values for the erect and supine runs are presented in Figure

5.7.

Subjects M, P, and R showed very consistent asymmetries. Subject M exhibited

significantly higher SPV gains for CW dome rotation both erect (p = 0.001) and supine (p =

0.002). In contrast, subject P had a much stronger response for CCW rotation erect (p =

0.001) and supine (p = 0.003). Subject R's torsion also favored the CCW direction (p =

0.01), although data were taken only for the erect condition.
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Exposure effect on SPV gain

- ---1 1 .. ......I .............................I ..................

M N 0 P Q
subject

R S

Figure 5.6. Effect of repeated stimulus exposure on SPV gain.
Geometric mean of gain ratios (later / earlier trial) for each
subject (erect and supine runs combined). Error bars indicate +1
standard deviation of logarithms of gain ratios.

Mean ratio st. dev. % vals < 1
0.93 0.09 67
0.89 0.16 80
0.74 0.23 88
0.92 0.12 75
0.94 0.15 50
0.79 0.08 100
0.96 0.15 88

Mean ratio st. dev. % vals < 1
0.85 0.31 75
0.83 0.18 78

0.66* 0.22 100
0.93 0.11 80
0.87 0.15 88

0.80 0.11 100
*one comparison (ratio = 2.3) of the 10 was omitted from the
fell over 7 standard deviations from the mean

calculations as it

Table 5.5. Effect of stimulus exposure on SPV gain. Statistics
are for ratios of SPV gain calculated from corresponding trials
(later / earlier). Percentages denote number of comparisons with
results smaller than 1.
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Figure 5.7. Directional asymmetry in SPV gain. Plot shows
means of log(CW SPV / CCW SPV) for corresponding dome
speeds. Error bars indicate ±1 standard deviation of logarithms
of gain ratios.

Other subjects presented more ambiguous responses. When erect, subject N had

significantly higher gains for CW dome rotations (p = 0.01); the supine trials showed no

strong asymmetry. Subject Q, who also demonstrated markedly larger gains in the CW

direction for the erect runs (p = 0.084), actually had stronger OKN for CCW trials when

supine (not significant). Finally, neither O nor S had particularly asymmetric OKN.

The directional asymmetries in SPV gain could not be related to either handedness or

eye dominance. All of the subjects were right handed, yet not all subjects shared the same

direction asymmetry. Five of the subjects were left eye dominant; of these subjects, three

exhibited higher gains for CW rotation (M, N, 0), one had higher CCW gains (R), and one

exhibited opposite asymmetries erect and supine (Q). One of the two right eye dominant

subjects showed higher gains for CCW rotation (P), while the SPV gains for the other were

nearly symmetric (S).
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5.1.1.4. Effects of Orientation with Respect to Gravity on SPV Gain

In order to quantify the effects of subject posture (erect or supine) on SPV gain, the

ratio of gain erect to gain supine was calculated for trials corresponding in dome speed and

direction (Figure 5.8). Because of the decrease in gain seen between the first and second runs

within a session, a subject's first run erect was compared only with the first run supine, and

likewise for the second runs. Subjects M and O each had a third session consisting of one run;

such a run was compared with the first run from the session of the other postural orientation.

The logarithm of the gain ratio was used as the measure of asymmetry--positive values

indicated higher gains erect, while negative values were obtained for higher supine gains.

Table 5.6 presents significance levels by subject for the erect-supine gain comparison,

based on an ANOVA with three variables: stimulus speed, stimulus direction, and subject

orientation. Four of the six subjects tested both erect and supine (N, O, P, and S) had

significantly higher SPV gains erect than supine. In these subjects, the dependence of gain on

posture showed no clear relationship to either dome speed or direction, so all speeds and

directions were lumped together. For these subjects the gain increase erect ranged from 15% to

75%. In contrast, only subject M demonstrated consistently and significantly higher gains in

the supine position. On average, this subject's erect gains were 25% lower than corresponding

supine values. The SPV gains for the sixth subject, Q, were generally higher erect for CW

dome rotations, but the reverse held for CCW rotations. In subject Q's case, significant

interactions were observed between (1) posture and direction (p = 0.019), and (2) posture and

speed (p = 0.048).

5.1.2. Comparison of Torsional SPV and Psychophysical Responses

The possible relationship between the perceptual responses and the slow phase eye

velocities caused by the rolling visual field was investigated. In an attempt to compare directly

the SPV and vection responses, cross-correlations of the two time sequences were performed
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Figure 5.8. Comparison by subject of SPV gain erect vs. supine. Data
points represent the mean log (ratio of erect gain/supine gain). Positive
values indicate higher gain erect. Ratios were taken for trials
corresponding in speed and direction. Error bars represent ±1 sd. CW and
CCW results were grouped for all subjects but Q.

Posture Direction Speed
0.001 0.001 0.001
0.001 0.005 0.001
0.001 ns 0.001
0.001 0.001 0.001

ns ns 0.001
-- 0.05 0.005

0.001 ns 0.001

Significance level (p < ?)

Posture
Posture Posture Direction *direction

*direction *speed *speed *speed
ns ns ns ns

0.1 0.05 0.1 0.05
ns ns ns ns

0.05 ns 0.001 ns
0.05 0.05 ns ns

-- -- ns --
ns 0.1 ns ns

T able 5.6. Results of ANOVA on mean SPV gain for each subject.
Variables tested were postural orientation, rotation direction, and stimulus
velocity.
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for each trial. Comparing the traces only during the period of dome rotation was largely

unsuccessful, since the peaks in the cross-correlation function often were not sharp, and the

times of the peaks varied over a ±20 sec. range.

Cross-correlation of vection and SPV for entire trials, including periods before and

after dome rotation, yielded times associated with the correlation peaks which grouped much

more tightly. Unfortunately, a closer look revealed that the peaks in these cross-correlation

functions did not imply a strong correspondence between the SPV and joystick traces. Rather,

the timing of the peaks reflected the latency in vection onset relative to the immediate jump in

SPV at the start of dome rotation. Figure 5.9 depicts the relation between mean timing of the

cross-correlation peaks and mean onset times. Each data point represents a single subject; most

of the points lie almost precisely on a line with a slope of 1.

16

o
0 14

*00·
0 8

.i4

0 2 4 6 8 10 12
mean onset time (sec)

Figure 5.9. Mean time of SPV-vection cross-correlation peaks
shown against mean onset times. Each data point represents an
individual subject (correlations were not computed for subject R).
Positive times for peak correlation indicate that the vection
response is delayed with respect to the SPV trace.
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5.1.2.1. Comparison of Asymmetries in SPV and Vection Responses

Various parameters describing the OKN (mean SPV gain) and vection (onset latency,

maximum and average vection) were extracted from the time sequences recorded for each trial;

evaluation of their interrelationships provided an alternative to performing correlations of the

vection and SPV traces. However, simply comparing the OKN and vection parameters yielded

little information due to the complex dependence of both phenomena on dome speed and

direction. Instead, the directional asymmetries and postural differences in OKN and vection

were compared.

For each parameter, the directional asymmetry was represented by the ratio of the CW

value to the CCW value for trials of the same dome speed. Again, logs of the ratios were taken

to permit easier comparison of results above and below 1. Thus, a positive coordinate

indicated a larger value for the CW parameter of the CW-CCW pair. Comparisons are

presented for subjects M, N, and P, who demonstrated the most consistent directional

asymmetries in SPV gain. (Although subject R had a clear directional preponderance in OKN,

this subject's very limited sensation of vection prevented meaningful comparisons.) Figure

5.10 shows directional asymmetries in both average vection and onset time plotted against SPV

gain asymmetry.

Subjects M and N, who generated higher SPV gains for CW dome rotation, both

perceived stronger average vection for CW rotation as well. Although the onset times for

subject M indicated little difference due to direction, subject N's shorter vection onset latencies

for CW rotation were consistent with stronger vection for this direction. In contrast, subject P

consistently demonstrated higher OKN gains for CCW trials. However, like M and N, subject

P felt stronger average vection for CW rotations. Furthermore, the vection onset latencies

recorded by subject P were always shorter for the CW direction. In summary, two subjects

achieved enhanced vection for trials in the same direction that produced higher SPV gains,

while another reported the opposite: less vection for the direction associated with higher SPV

gain.
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a. Subject M: mean vection asymmetry
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Figure 5.10. Comparison of directional asymmetries in vection
and SPV gain. Plots [a], [c], and [e] show asymmetries in
average vection against asymmetries in SPV gain. Plots [b], [d],
and [f] show onset time asymmetries versus SPV gain
asymmetries. Positive values indicated larger CW results.
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A similar technique was employed to investigate the differences in vection and OKN

gain seen between the erect and supine trials. As with the directional asymmetries, subjects M,

N, and P demonstrated the clearest differences in vection strength between the two postural

conditions. For this comparison, the ratios of the erect parameters to the supine parameters

were computed for each trial matching in stimulus speed and direction. Figure 5.11 presents

the postural asymmetries in average vection and onset time for subjects M, N, and P. Again,

logarithms of the ratios were plotted; positive values indicate a greater parameter value erect.

Subjects N and P both exhibited consistently higher SPV gains erect. However, these

two subjects displayed opposite asymmetries in vection. While subject P perceived stronger

vection and indicated shorter onset times in the supine position, subject N's responses

demonstrated decreased self-rotation and extended onset latencies lying down. Furthermore,

subject M was the only subject to display an increase in SPV gain supine, but like N he

reported greater vection erect than supine. Interestingly, subject M's directional asymmetries

implied greater vection during trials with higher SPV gains, but his postural asymmetries

seemed to show the opposite relation.

5.1.2.2. Mean SPV Gain Across Vection State Transitions

Comparison of mean SPV during OKN periods with and without vection provided a

further means of testing whether or not vection and eye velocity were related. For each trial,

the mean SPV was calculated for periods during which the subject experienced vection (State

1). Another mean SPV value was calculated for the combined periods without vection (State 2,

comprising the time between stimulus onset and the beginning of vection, as well as vection

dropout intervals). A ratio of mean SPV in State 1 to the corresponding value in State 2 was

computed for each trial, providing a measure of the the difference in SPV magnitude between

the vection and no-vection states. Figure 5.12 shows the geometric means of the ratios

calculated for each subject.
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Figure 5.11. Comparison of postural asymmetries in vection and
SPV gain. Plots [a], [c], and [e] show asymmetries in average
vection against asymmetries in SPV gain. Plots [b], [d], and [f]
show onset time asymmetries versus SPV gain asymmetries.
Positive results indicated larger values erect.
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Figure 5.12. Mean ratios of OKN SPV in State 1 (vection) to
corresponding value in State 2 (no vection). Ratios greater than 1
indicate a tendency toward increased SPV during vection.

The mean ratios were significantly different from unity for 5 of the subjects, indicating

that OKN SPV was consistently higher in one of the two states for this group. However, the

state exhibiting higher SPVs was not uniform among these subjects. Three of the subjects

demonstrated higher SPVs during vection (p < 0.001 for M, P, S), while N (p < 0.001) and O
(p < 0.05) displayed decreased eye velocity during self-motion perception.
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5.2. Discussion of OKN SPV Characteristics

The overall OKN SPV gain results from the present study are plotted together with data

from other torsional OKN experiments in Figure 5.13. The most prominent characteristic of

torsional OKN is the low gain of the slow phase eye velocity response. The maximum SPV

gains observed in this study did not exceed 0.3, even at the slowest stimulus rate of 150/sec,

and on average dropped by a factor of two from the slowest stimuli employed to the fastest. In

comparison, yaw OKN in humans exhibits a gain near unity up to speeds of 600-900/sec.

Thus, it appears that torsional OKN is of secondary importance in stabilizing images on the

retina.

Ocular torsion is irrelevant in positioning the center of the fovea. In addition, Collewijn

et. al. (1988) cited evidence that retinal slip velocities of up to 2.50/sec in the fovea do not

appreciably decrease visual acuity. Visual fields rotating at 600/sec about the visual axis would

induce linear retinal slip velocities above 2.50/sec only at eccentricities greater than about 2.30,

an angle comparable to the foveal radius. Thus, even relatively high rates of visual field roll

may not contribute much to loss of acuity in foveal vision, rendering torsional OKN relatively

insignificant. While maintaining orientational stationarity of the retinal image is clearly

desirable, fast visual field rolling motion generally results from head rotations, which can

generate vestibularly induced eye torsion with gains above 0.7. These considerations appear to

account for the comparatively minor role played by torsional OKN.

5.2.1. Comparison with Prior Studies

The most complete prior study of torsional OKN was conducted by Morrow and

Sharpe (1989). Unfortunately, their abstract only stated the gains observed at their extreme

stimulus velocities (100/sec and 800/sec), which lie outside the stimulus range tested here.

Nonetheless, their reported values do fall quite near the gain curve suggested by the present

study (Figure 5.13).
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Figure 5.13. Comparison of SPV gains from present study with
prior torsional OKN studies.
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For the erect case, the average gains measured here were somewhat higher than those

observed by Malan (1985). However, his data points fall within the range of gain responses

observed in the present subjects, and information on the variance of his measurements was not

available. His slightly reduced gains may have resulted from the restriction to monocular

viewing by his eye coil device. A number of studies have reported a binocular contribution to

the generation of OKN (Fox et. al., 1978; Wolfe et. al., 1980; Howard and Gonzalez, 1987;

Howard and Simpson, 1989).

The OKN gains observed by Collewijn et. al. (1985) proved considerably lower than

the present findings. Their much smaller gains may have been due to the optokinetic stimulus

they employed, which consisted of a rotating disk subtending less than 1000 of visual angle.

Thus, a large proportion of the visual periphery was not stimulated in their experiment. While

stimulation of the central retina generates the strongest horizontal and vertical OKN, peripheral

motion may prove more important in the torsional case. Because the actual linear slip rate of

images on the retina is proportional to the eccentricity for torsional stimuli, objects in the

periphery move across the retina much faster than central objects rolling at the same rate.

5.2.2. Influence of gravitational orientation on torsional OKN

Of the six subjects tested both erect and supine, four demonstrated significantly lower

OKN SPV gains supine, while only one demonstrated a significant increase in SPV gain

supine. This surprising result ran contrary to prior expectations. Otolith information is known

to exert a strong conditioning effect on eye movements induced by various body and visual

field rotations about non-vertical axes. Schiff et. al. (1986) observed vigorous OKN for

monkeys lying supine and prone, but the OKN velocity dropped sharply when the monkeys

were tilted more than 300 from the horizontal. In addition, otolith stimulation has been shown

to suppress down-beating pitch OKN in monkeys (Matsuo and Cohen, 1984), with a less

pronounced effect in humans (Cl6ment and Lathan, 1991).
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On the basis of the demonstrated effects of otolithic inhibition, an increase in human

torsional OKN SPV gain from the erect to the supine orientation might have been expected.

Although Malan (1985) warned that no conclusions should be drawn from his SPV gain data

due to the small sample sizes, his results did indicate somewhat higher SPV gains in the supine

position. In contrast, Morrow and Sharpe (1989) found no differences between their erect and

supine data.

The ambiguity concerning effects of orientation with respect to gravity on torsional

OKN appears to signify that visual mechanisms are not as closely coupled to the vestibular

(otolithic) system in humans as they are in monkeys. Interestingly, C16ment and Lathan (1991)

reported large decreases in both horizontal and vertical OKN gains from an upright position to

a 900 roll orientation. They speculated that the global reductions in OKN gain resulted from

subject disorientation rather than a specific gravitational effect on OKN mechanisms.

5.2.3. Possible habituation of OKN SPV gain responses

Comparison of later trials to earlier trials within a test session demonstrated a decline in

SPV gain over the course of the session. While this effect may have resulted from subject

boredom or fatigue, the possibility exists that repeated exposure to the rotating dome caused

habituation to the stimulus and a concomitant reduction in SPV gain. Furthermore, the

hypothesized habituative effect may have carried over from the first to the second test session.

Since the supine session was conducted after the erect session for every subject, such

habituation could explain the observed decrease in SPV gain supine for 4 of the subjects.

Two of the subjects were tested in one orientation on two separate days: subject M

participated in two supine sessions, and subject O was tested erect on two occasions. By

comparing the second session to the first session in the same orientation, the possibility of

habituation could be examined without the complication of orientation influences. Ratios of

mean SPV gain were calculated by dividing the SPV gains found in the second session by the
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Figure 5.14. Comparison of SPV gains for runs in the same
orientation performed on different days (subject M supine; subject
P erect). Ratios of mean gain on day 2 to mean gain on day 1 are
plotted for corresponding trials. Dashed lines indicated geometric
means of ratios for each subject.

gains of the corresponding trials in the first session. Figure 5.14 shows the computed SPV

gain ratios for both subjects.

The ratios for subject M were uniformly greater than 1, indicating increased gains

during the second session. For subject P, however, the majority of the gain ratios were below

1, demonstrating a tendency toward reduced gains in the second session. The fact that M

showed consistently higher gains in his second session, combined with the observation that P

did not demonstrate a uniform decrease in SPV gain, may indicate that habituation to the

stimulus does not have an important effect from day to day.

On the other hand, the direction of the gain alteration from the first to the second

session of the same orientation is consistent with the change in gain from the erect (earlier)

session to the supine (later) session for each subject. Subject M was the only one to
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demonstrate higher gains supine, while P showed a decrease in supine gains which was shared

by the remaining subjects. Thus, the gain changes observed between the two consecutive

sessions for the same orientation might actually mirror opposite individual responses to

repeated stimulus exposures. Subject M's gains may increase with additional exposures, while

subject P (and others) may show a progressive decline in OKN gains associated with

habituation.

There exists little evidence in the literature to support the habituative decline of OKN

SPV gain upon repeated stimulus exposure. Kornhuber (cited in Miyoshi et. al., 1973) stated

that habituation of optokinetic nystagmus does not exist. In support, Miyoshi et. al. (1973)

found a "constant and definite increase of optokinetic response, interpreted as the result of a

positive learning process" when they repeated optokinetic trials on 15 subjects for 10

consecutive days.

5.2.4. Lack of correlation between vection and OKN SPV

All of the tests performed in this study failed to reveal a link between vection and the

slow phase eye velocity during OKN. Cross-correlations of vection and SPV yielded highly

variable and generally inconsistent results, while comparisons of asymmetries in vection and

SPV gain produced mutually contradictory patterns across the subject pool and even within a

single subject's data set. Finally, direct comparison of SPV magnitude during periods with

and without vection divided the subject population into two separate groups: one groups

evidenced higher SPVs during vection, while the other demonstrated lower SPVs during

periods of perceived self-rotation.

In all, these results point to a significant dissociation between optokinetic eye

movements and the perceptual processes subserving vection. Thus, this study adds additional

evidence to the many experiments which have rejected a close link between OKN and vection.

In the most dramatic of these earlier demonstrations, Brandt et. al. (1973) proved that

appropriate stimuli could even evoke horizontal OKN and yaw vection in opposite directions.
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5.3. Eye Movement Aftereffects Following Visual Field Roll Stimulation

In addition to the optokinetic responses observed during visual field rotation, a broad

range of eye movement aftereffects were recorded following the cessation of dome rotation.

These aftereffects varied from person to person, and depended on the experimental conditions

as well. Figure 5.15 shows examples of two different responses often seen after the dome

stopped. The upper plots show a distinct optokinetic after-nystagmus (OKAN), which

continued in the direction of the preceding OKN and had a slow phase component whose

velocity decayed over time. The lower panels demonstrate a smooth return of the eye back to a

rest position, during which no nystagmic beats occurred. Although an individual subject's eye

movement traces tended to conform to one or the other of these response types, all subjects did

demonstrate an after-nystagmus lasting for several beats in at least a few trials.

As described earlier, the slow phase velocity of the post-field-rotation response for each

trial was fitted to a double exponential function of the form

SPV (t) = Vse -t/a + Vie -/ ,i + Vbias, (5.2)

where 's and tl are the short and long decay time constants, and Vs and VI are the magnitudes

of the short and long components at t = 0. A constant term, Vbias, was included in the fit

because some subjects appeared to exhibit a slow, spontaneous torsional drift in one direction

which was interrupted by blinks or small saccades in the opposite direction. The fit parameters

for each trial are tabulated in Table 6 in Appendix D. Of the 207 trials for which reasonable fits

of this form could be determined, 109 (approximately 53%) were best approximated by a

combination of fast and slow exponential decays. In the remainder of the cases, the fits for the

two time constants converged to the same value.

Figure 5.16 shows frequency histograms of the fitted short and long time constants

when all trials were grouped. In both histograms, the time constants appear to fall into two
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Figure 5.15. Different types of post-rotation responses to
torsional optokinetic stimulation. Plots [a, b] show a true
torsional after-nystagmus and the associated SPV decay. In [c,
d], a smooth return of the eye to its rest position occured and no
nystagmus was present. The lights were turned off at time 0. In
the velocity plots [b, d] the solid lines represent fitted exponential
decays.
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Figure 5.16. Frequency histograms showing distribution of time constants
associated with OKAN SPV decay (double exponential fit). Plots [a, b] give
distribution of longer time constants; [c, d] contain distribution of shorter
time constants. Expanded views of the lower ranges in plots [a, b] are shown
in [c, d]. Dashed lines drawn in [c, d] indicate apparent separation of time
constants into two distinct groups at approximately 0.7 seconds.
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distinct groups, with the dividing line at approximately 0.7 seconds. ("Short" values appear in

the "long" time constant group, and vice versa, because of the overlap introduced by the cases

best fitted with single exponentials.) Thus, it appears that the post-stimulus response consisted

of two phases: (1) a rapid deceleration of the eye immediately following removal of the

stimulus, and (2) a slower decay of slow phase velocity which often took the form of a

nystagmus. For the 98 trials where a single exponential provided the best fit, one of the phases

predominated: the eye either came rapidly to a stop (49 cases) or the SPV decayed slowly

without an appreciable sharp decline when the dome stopped (49 cases).

When the calculated time constants were sorted into "short" (t < 0.7 sec.) and "long" (t

> 0.7 sec.) response categories, the median decay time constants were 0.28 sec. and 2.0 sec.,

respectively. The mean* short and long time constants for each subject are presented in Table

5.7. The mean ratio of the magnitude of the slow decay to the initial SPV at the time the dome

stops,

r=
V1 + Vs , (5.3)

is also tabulated in Table 5.7. This ratio is generally near 0.5, and provides a measure of the

strength of the slow response in relation to the magnitude of the OKN SPV during dome

rotation.

5.3.1. Characteristics of Slow SPV Decay during OKAN

In order to characterize the behavior of the slow OKAN SPV decay process, the long

decay time constants must be compared for different experimental conditions. However, for

some subjects a large percentage of the trials did not exhibit a slow velocity decay during

OKAN. Simply comparing the long time constants (t 2 0.7 sec.) across conditions does not

account for such "fast" velocity decay cases. To examine the processes underlying inhibition

* The geometric mean was used because all time constants are positive with a distribution skewed heavily
toward the low end of the range.
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Subject # trials

M 32
N 29
0 34
P 32
Q 32
R 16
S 32

tl (sec)
geom. st. dev.
mean log (tl)

1.78 0.26
2.49 0.22
2.96 0.31
2.89 0.27
1.93 0.20
3.62 0.41
2.28 0.35

Ts (sec)
geom. st. dev.
mean log (@s)

0.31 0.23
0.31 0.22
0.22 0.21
0.28 0.23
0.35 0.21
0.23 0.34
0.25 0.29

% trials

2120.7
S.

97
55
62
94
66
69
81

VI/Vo

geom. st. dev.
mean log(Vl/Vo)

0.51 0.35
0.38 0.41
0.38 0.39
0.48 0.23
0.61 0.26
0.42 0.29
0.43 0.31

Table 5.7. Characteristics of post-dome-rotation eye movements.
Geometric mean of short and long decay time constants. The
standard deviation of the logarithms of the time constants is given
as a measure of their variability. Also included is the percentage
of trials exhibiting a "slow" SPV decay, and the ratio of the
magnitude of the "slow" response (VI) to the initial post-stimulus
SPV. Again, the geometric mean of these ratios is given, along
with the standard deviation of the logarithm.

of the slow velocity decay, the distribution of trials lacking "long" time constants is presented

in Table 5.8. For each subject, the number of trials with time constants below 0.7 seconds is

shown according to dome direction, postural orientation, and post-field-rotation visual

surround.

As was done for SPV gain, the longer time constants were compared by direction and

by postural orientation. Also, the effect of the different visual field conditions during the post-

rotation period was examined. The non-normal distribution of the time constant values, as

seen above in the frequency histograms, complicated comparisons between sets of trials. First,

the velocity traces took the form of decaying exponentials, so all time constants were positive.

Furthermore, the time constants had a distribution skewed toward the low end. For these

reasons, the logarithms of the time constants were compared rather than the time constants

themselves, and the graphs of time constant comparisons present the geometric means

* The logarithm of the geometric mean is equal to the mean of the logarithms.
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# trials
Subject 1l<0.7 s.

M 1

N 13

0 13

P 2

Q 11

R 5

S 6

Directional
distribution

proportion proportion
of CCW of CW

0/18 1/14
0% 7%

10/13 3/16
77% 19%
3/15 10/19
20% 53%
0/16 2/16
0% 13%

7/16 4/16
44% 25%

1/8 4/8
13% 50%
1/16 5/16
6% 31%

Postural
distribution

proportion proportion
of erect of supine

0/12 1/20
0% 5%

9/15 4/14
60% 29%
7/19 6/15
37% 40%
1/16 1/16
6% 6%

8/16 3/16
50% 19%
5/16 --
31%
4/16 2/16
25% 13%

Visual field
distribution

proportion proportion
proportion in dark; in dark;
in light fixation no

fixation
0/13 1/19 --
0% 5%
1/4 10/17 2/8

25% 59% 25%
2/6 3/14 8/14

33% 21% 57%
-- 1/15 1/16

7% 6%
-- 7/16 4/16

44% 25%
-- 3/8 1/7

38% 14%
-- 2/16 4/16

13% 25%

Table 5.8. Distribution of trials lacking an outlasting "slow"
velocity decay during OKAN. Only trials which permitted
reasonable fits to the SPV decay were included. Frequency of
occurrence of "fast decay" trials is shown grouped by dome
rotation direction, subject postural orientation, and post-dome-
rotation visual field. Dashes indicate experimental conditions for
which no trials were performed.

(Figures 5.17 - 5.22). The error bars represent the exponentiation of values one standard

deviation on either side of the mean of the logarithms; they appear symmetric about the

geometric mean when the y-axis is drawn on a logarithmic scale.

5.3.1.1. OKAN Directional Asymmetries

First, CCW and CW trials were compared to test for directional asymmetry in the slow

decay of SPV during OKAN. Only trials with decay time constants longer than 0.7 seconds

were included in this comparison (Table 5.9a). Six of the subjects (N through S) exhibited

somewhat longer time constants for CCW dome rotations, but none of the six comparisons

proved statistically significant. (When these six were grouped together, the increase in time

constants for CCW rotations was significant, with p < 0.05.) In contrast, CW rotations
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induced slower SPV decays in only one individual subject (M), and the directional difference

was significant (p < 0.05). No consistent asymmetry for the subject population was indicated

when all subjects were grouped.

While the within-subject directional differences were largely insignificant for trials

exhibiting a slow decay, the proportion of trials actually resulting in such outlasting eye

movements was much more dependent on stimulus direction. As shown in Table 5.8, the trials

with OKAN time constants below 0.7 seconds were distributed quite unevenly by direction.

Subjects N and Q had a higher percentage of trials with slowly decaying SPVs for CW dome

rotations; CCW stimuli produced more instances of gradual velocity decay in subjects O, R,

and S.

When the comparison of long decay time constants was expanded to include the trials

with only a fast decay, the effect of the their asymmetric distribution became clear (Figure

5.17). Table 5.9b contains the new time constant statistics--four subjects in addition to M now

show significant directional asymmetries. The trend observed above earlier longer decay time

constants for CCW SPV in subjects O, P, R, and S became significant when all trials are

included. Of the five subjects with significant OKAN time constant asymmetries, three (M, P,

and R) demonstrated consistent and significant asymmetries in OKN SPV gain. In all three

cases, the stimulus direction producing higher SPV gain also resulted in elongated SPV decay

time constants.

5.3.1.2. Torsional OKAN Dependence on Postural Orientation

Table 5.10 contains geometric mean values of the long decay time constants for the

erect and supine runs grouped separately. In Table 5.10a, only the time constants

corresponding to slow SPV decays (t 2 0.7 sec.) were included in the calculations. Because

only one of the subjects displayed a pronounced directional asymmetry for this set of trials,

both stimulus directions were grouped. (Subject M showed no significant postural effects even

when the trials were separated by direction.) As with the directional comparisons on the slow
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a. Directional Comparison for Long Time Constants ('rl 2 0.7 sec. only)

Subject

M
N
O
P
Q
R
S

Allsubjects
Subs. N

through S

CCW rotation
geometric st. dev.
mean (11) log (ctl)

1.46 0.13
4.17 0.40
3.33 0.32
3.30 0.25
2.04 0.11
4.66 0.44
2.51 0.38
2.57 0.32

3.03 0.32

CW rotation
geometric st. dev.
mean (rl) log ('i1)

2.33 0.35
2.21 0.38
2.53 0.31
2.48 0.28
1.86 0.25
2.32 0.33
2.00 0.31
2.23 0.31

2.20 0.30

mean ratio p < ?
CW/CCW (t test)

1.60 0.05
0.53 ns
0.76 ns
0.75 ns
0.91 ns
0.50 ns
0.80 ns
0.87 ns

0.73 0.05

b. Directional Comparison for Longer Time Constants (includes li < 0.7 sec.)
CCW rotation CW rotation

Subject geometric st. dev. geometric st. dev. mean ratio p < ?
mean ('T) log ('I) mean (tI) log ('i) CW/CCW (ANOVA)

M 1.46 0.13 2.13 0.37 1.46 0.050
N 0.75 0.48 1.52 0.49 2.04 ns
O 2.09 0.51 0.78 0.55 0.37 0.005
P 3.30 0.25 1.84 0.44 0.56 0.100
Q 0.94 0.43 1.22 0.40 1.29 ns
R 3.49 0.54 0.96 0.47 0.28 0.050
S 2.21 0.43 1.03 0.56 0.47 0.050

Table 5.9. Directional comparison of slow
component of OKAN. [a.] Comparison using

velocity decay
only trials with

"long" decay time constants (' > 0.7 sec.) [b.] Comparison
using all trials, including those lacking a "slow" decay component
(, < 0.7 sec.)
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- CCW
OKAN directional asymmetry - - - - - cw

100

B- 10

1

0.1
M N 0 P Q R S

subject

Figure 5.17. Comparison of long time constants of OKAN SPV
decay for CCW and CW dome rotation. Geometric means are
plotted because the distribution of time constants is highly
skewed toward the low end. Differences are significant for: M (p
< 0.05); O (p < 0.005); P (p < 0.1); R (p < 0.05); S (p < 0.05).

decay time constants alone, the postural comparisons yielded ambiguous results. Although

significant differences between positions were found for two subjects, N had longer decay

time constants supine while P's SPV decay proved elongated for the erect runs. When the

subjects were grouped, the mean long time constants were identical in both orientations.

Table 5.8 also includes the breakdown by postural orientation of trials lacking a slow

SPV decay. Such trials occurred at least twice as often erect as they did supine for subjects N,

Q, and S. For the other subjects, trials missing long decay time constants occurred either

infrequently (M, P) or at approximately the same rate both erect and supine (subject O). The

longer time constants for all trials were included in the means calculated for Table 10b,

effectively accounting for the trials in which the slow decay response was completely inhibited.
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Subject

M
N
0
P
Q
S

All subjects
(except R)

a. long SPV decay only (tl > 0.7 sec)
Erect

Geometric st. dev.
mean (@i) log (tl)

2.00 0.31
1.44 0.15
2.79 0.35
3.60 0.25
1.81 0.25
2.02 0.37

2.34 0.32

Supine
Geometric st. dev.
mean (ti) log (Tl)

1.65 0.23
3.46 0.41
3.21 0.27
2.31 0.25
2.02 0.18
2.54 0.33

2.32 0.29

supine p = ?
erect (t test)

0.83 ns
2.41 0.05
1.15 ns
0.64 0.05
1.12 ns
1.26 ns

0.99 ns

b. all trials (including ci < 0.7 sec)
Erect Supine

Subject Geometric st. dev. Geometric st. dev. supine p =?
mean (1T) log (tl) mean ('C) log (tl) erect (t test)

M 2.00 0.31 1.57 0.24 0.79 ns
N 0.65 0.33 1.94 0.54 2.96 0.008
O 1.08 0.62 1.37 0.52 1.27 ns
P 2.95 0.42 2.006 0.32 0.70 ns
Q 0.71 0.47 1.60 0.27 2.25 0.01

S (CCW) 1.95 0.52 2.50 0.33 1.28 ns
S (CW) 0.59 0.60 1.81 0.42 3.08 0.08

All subjects
(except R) 1.19 0.53 1.75 0.38 1.47 0.01

Table 5.10. Long time constants of OKAN SPV decay: erect vs.
supine. [a.] includes only trials with tl > 0.7 sec. [b.] includes
all trials. The time constants for subject S have been subdivided
by dome rotation direction, because S has significant directional
asymmetries. (Although O and P also exhibit directional
asymmetries, neither displays significant postural effects when
the trials are separated by direction.)
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When the subjects were grouped together, their slow decay time constants were significantly

longer supine than erect (p = 0.01). The comparisons for three individuals--N, Q, and S--

showed significant differences: in each case the supine time constants were elongated with

respect to their counterparts erect (Figure 5.18).

As noted earlier, the proportion of subject S's trials lacking long decay responses was

much higher for CW dome rotations; the postural difference for this subject was significant

only for SPVs in the CW direction. Although subjects O and P also displayed marked

directional asymmetries, their postural comparisons revealed no significant results even when

separated by direction.

OKAN SPV: slow decay

1 0
I v

1-

V. I -

Postural effect
erect

-- - - - supineI I

- I II I I I -~-I
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M N 0 P Q S*

*The plot for subject S

subject

includes CW dome rotation trials only.

Figure 5.18. Long time constants of OKAN SPV decay for erect
and supine positions. Includes longer time constants from all
trials. Differences significant for N (p = 0.008), Q (p = 0.01),
S* (p = 0.08)
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5.3.1.3. Visual Field Effects on Slow OKAN Decay Process

The long time constant of SPV decay was compared for the different visual conditions

tested following the end of the dome rotation (Figure 5.19). Only trials displaying a slow

velocity decay (t > 0.7 sec) were included in this analysis. Table 5.11a compares the time

constants obtained in the darkness while the subject fixated on an "imagined" LED with those

realized when an actual fixation LED was in place. Half of the 6 subjects tested in these two

conditions demonstrated significant differences; all three of these (P, Q, S) had a slower SPV

decay when no visual information was present. Furthermore, a comparison for subjects N

through S combined indicated that the group exhibited a significantly slower velocity decay

without the fixation LED (p < 0.05).

.... ..... light
OKAN SPV: slow decay dark. fixation

10

biO·r1

1

subject

Figure 5.19. Time constants of slow OKAN SPV decay for
different post-rotation visual conditions: (1) in the light (full
visual field), (2) in the dark with a central LED fixation point,
and (3) in complete darkness; subject instructed to fixate on an
"imagined" LED. Includes only trials with long time constants
greater than 0.7 seconds.
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a. Comparison by post-rotation visual field: fixation vs. no fixation in
darkness

Subject

M
N
O0
P
Q
R
S

All subjects
(N - S)

Dark; fixation
geometric st. dev.
mean (qI) log (@i)

-- --

3.57 0.51
3.87 0.28
2.13 0.26
1.40 0.16
2.33 0.37
1.67 0.20

2.25 0.32

Dark; no fixation
geometric st. dev.
mean (@I) log (tl)

2.29 0.19
2.57 0.35
3.81 0.23
2.47 0.16
5.21 0.41
3.28 0.42

3.17 0.31

mean ratio p < ?
no fix./ fix. (t test)

-- --

0.64 ns
0.66 ns
1.79 0.01
1.76 0.005
2.23 ns
1.96 0.05

1.41 0.05

b. Comparison by post-rotation visual field: in light vs. fixation in darkness
Lights on Dark; fixation

Subject geometric st. dev. geometric st. dev. mean ratio p < ?
mean (Tl) log (Tl) mean (-I) log (lI) fix./ light (t test)

M 1.69 0.28 1.84 0.26 1.09 ns
N 1.26 0.06 3.57 0.51 2.84 ns*
0 1.75 0.24 3.87 0.28 2.22 0.05

All subjects
(M-O) 1.63 0.25 2.63 0.35 1.61 0.05

*For subject N, if inhomogeneous variances are assumed across the two conditions (light, darkness with fixation)
the difference is significant at p = 0.06.

Table 5.11. Comparison of slow OKAN SPV decay for different
post-dome-rotation visual field conditions. Results include trials
with Il l 0.7 seconds only. [a.] Decay time constants in
darkness: fixation LED vs. "imagined" fixation LED. [b.] Decay
time constants: in light vs. fixation LED in darkness.

Trials with the lights left on following dome rotation were available for three subjects:

M, N, and 0. The slow decay time constants from these trials were compared with the trials

utilizing a fixation LED in the dark (Table 5.11b). All three subjects displayed more slowly

decaying SPV in the dark, and the difference in time constants was significant for subject O.

(If inhomogeneous variances were assumed for subject N, that difference also proved

significant with p = 0.06.) Again, grouping these three subjects revealed significantly longer

time constants (p < 0.05) for the condition with less visual information (fixation in the dark).
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5.3.2. Characteristics of Fast SPV Decay Following End of Field Rotation

A systematic comparison of the short SPV decay time constants (ts), similar to the

analysis performed for the slower process of OKAN decay, was made across the set of

experimental conditions. Decay time constants shorter than 0.7 seconds were considered

representative of the "fast" segment of post-rotatory SPV decay; the following tests included

only trials exhibiting such a quick decline in velocity. Appropriate comparisons were made to

examine directional asymmetries, postural influences, and effects of the post-stimulus visual

field.

Figure 5.20 shows the short time constants grouped according to rotation direction.

The geometric means are tabulated in Table 5.12. Of the 7 subjects, all but R showed longer

time constants for CCW dome trials. Combining all the subjects revealed a significant

tendency toward elongated decays following CCW rotations for the group (p < 0.02). The

increase in the short time constants for CCW rotations was significant for two individuals: N

and S. This directional preponderance for the group mirrors the slight asymmetry seen in the

long decay time constants, where 6 of the 7 demonstrated slower decays for CCW trials (the

exception was M for the long OKAN time constants).

Comparisons of the fast SPV decay erect versus supine exposed the same trend

observed in the case of the slow decay time constants: the decay time constants were generally

longer with the subject supine (Figure 5.21). Table 5.13 displays the mean short time

constants according to orientation. In subjects O and P the increase in tau supine was

significant; the elongation supine was also significant for the group at the level p < 0.02. It is

important to note, however, that the apparent increase in slow decay time constants for supine

trials really resulted from more prevalent inhibition of the slow decay response erect. In

contrast, the magnitude of the fast time constant actually depended on subject orientation.

Although the makeup of the visual field after the dome stopped rotating appeared to

affect the short time constant of SPV decay for a number of the individual subjects (Figure

5.22), it was difficult to discern any consistent trends. Two of the subjects (Q and R)
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OKAN SPV: fast decay _ CCW

subject

Figure 5.20.
vs. CW dome
S (p < 0.1).

Short time constant of OKAN SPV decay: CCW
rotation. Differences significant for: N (p < 0.05);

Subject

M
N
O
P
Q
R
SS

All subjects

CCW rotation
geometric st. dev.
mean (ts) log (ts)

0.33 0.21
0.41 0.18
0.22 0.20
0.30 0.23
0.39 0.23
0.16 0.36
0.34 0.16
0.31 0.24

CW rotation
geometric st. dev.
mean (ts) log (rts)

0.29 0.27
0.22 0.19
0.22 0.23
0.27 0.24
0.30 0.19
0.30 0.30
0.21 0.33
0.25 0.26

mean ratio p < ?
CW/CCW (ANOVA)

0.90 ns
0.55 0.05
0.97 ns
0.90 ns
0.78 ns
1.81 ns
0.61 0.1
0.80 0.02*

*Probability p = 0.02 for all subjects combined was generated from independent samples t test.

Table 5.12.
direction.
only.

Comparison of short SPV decay time constants by
Includes trials with time constants below 0.7 sec.
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OKAN SPV: fast decay
Postural effect

I I I - - - - - supine

SOI I I
M N 0 P

subject

Figure 5.21. Short time constant of OKAN SPV decay grouped
according to erect and supine positions. Differences significant
for: O (p < 0.01), P (p < 0.05)

Subject

M
N
O
P
Q
S

All subjects
(except R)

Erect dome
geometric st. dev.
mean (cs) log (ts)

0.28 0.28
0.36 0.21
0.19 0.19
0.23 0.26
0.31 0.22
0.21 0.28

0.25 0.25

Supine dome
geometric st. dev.
mean (@s) log (@s)

0.34 0.19
0.28 0.23
0.28 0.21
0.36 0.14
0.41 0.21
0.29 0.30

0.31 0.22

mean ratio p < ?
supine/erect (ANOVA)

1.19 ns
0.78 ns
1.49 0.01
1.58 0.05
1.32 ns
1.35 ns

1.26 0.02*
*Probability p = 0.02 for all subjects combined was generated from independent samples t test.

Table 5.13. Comparison of short SPV decay time constants by
postural orientation. Includes trials with time constants below
0.7 sec. only.
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1-

0.1-

0.01-

.... .... light
OKAN SPV: fast decay - dark; fixation
Visual field effect - - - - - dark; no fixation

I I i II I I I

.I-
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.._T
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"7I
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I I I I

M N 0 P
I I I

Q R S*
subject

*The data points for subject S include CCW dome rotation trials only.

Figure 5.22. Short time constants of OKAN SPV decay for
different post-rotation visual conditions: (1) in the light (full
visual field), (2) in the dark with a central LED fixation point,
and (3) in complete darkness; subject instructed to fixate on an
"imagined" LED. Differences significant for: M (p < 0.1); O (p
< 0.005, between dark conditions); Q (p < 0.1); R (p < .05).

exhibited significantly longer time constants with the fixation LED present in the dark, while

two others (O and S) recorded the opposite behavior (Table 5.14a). Overall, the group tended

weakly toward longer time constants with the LED lit when the values for subjects N through S

were combined (p < 0.1). Of the 3 subjects who were also tested post-rotation in the light, 2

displayed faster SPV decays in the light than in the dark while the third showed no change.

The quicker decay in the light approached significance only for subject M (p < 0.1).
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a. Comparison by post-rotation visual field: fixation vs. no fixation in
darkness

Subject

M
N
0
P
Q
R

S (CCW)
S (CW)

All subjects
(N- S)

Dark; fixation
geometric st. dev.
mean (@s) log (ts)

-- --

0.35 0.24
0.18 0.19
0.31 0.21
0.42 0.17
0.34 0.22
0.29 0.13
0.27 0.31

0.30 0.24

Dark; no fixation
geometric st. dev.
mean (rs) log (ts)

-- ..

0.27 0.21
0.30 0.20
0.25 0.25
0.29 0.23
0.11 0.33
0.44 0.14
0.17 0.34

0.24 0.28

mean ratio p < ?
no fix./ fix. (ANOVA)

0.77 ns
1.63 0.005
0.80 ns
0.68 0.1
0.33 0.05
1.53 0.1*
0.61 ns

0.82 0.1*
*Probabilities p generated from independent samples t test..

b. Comparison by post-rotation visual field: in light vs. fixation in darkness
Lights on Dark; fixation

Subject geometric st. dev. geometric st. dev. mean ratio p < ?
mean (ts) log (ts) mean (ts) log (;s) fix./ light (ANOVA)

M 0.26 0.28 0.36 0.17 1.37 0.1
N 0.28 0.12 0.35 0.24 1.26 ns
O 0.18 0.16 0.18 0.19 1.02 ns

All subjects
(M -0) 0.24 0.23 0.28 0.25 1.17 ns

Table 5.14. Comparison of fast OKAN SPV decay for different
post-dome-rotation visual field conditions. Results include trials
with rs < 0.7 seconds only.
[a.] Decay time constants in darkness: fixation LED vs.
"imagined" fixation LED. Comparisons for subject S were
separated by rotation direction, because this subject demonstrated
a significant directional asymmetry. (Subject N also exhibited a
directional asymmetry, but showed no significant dependence on
visual field when the trials were grouped by direction.)
[b.] Decay time constants: in light vs. fixation LED in darkness.
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5.4. Discussion of Torsional Optokinetic Afternystagmus

The decay in SPV during OKAN consisted of two separate processes, each with a

characteristic time constant. The initial rapid drop in SPV, which had a time constant with a

geometric mean of 0.26 sec across all subjects, probably reflected the response of the "fast"

cortical OKN pathway upon cessation of the optokinetic stimulus. The slower decay in eye

velocity (characterized by a time constant with a geometric mean of 2.4 sec) was most likely

mediated through the "slow" velocity storage path.

The mean value of the torsional SPV long decay time constant--2.4 sec--was extremely

short compared to the 25 sec discharge time constant observed for horizontal OKAN in humans

(Cohen et. al., 1981). Likewise, durations of up to 25 sec have been reported for vertical

OKAN with slow phases upward. The comparatively fast decay in torsional OKAN, together

with the short 4.0 sec decay time constant for roll post-rotatory nystagmus and the weak and

variable nature of torsional OKN, indicates that velocity storage about the roll axis is extremely

underdeveloped in humans. This finding contrasts sharply with evidence that torsional OKN

in the monkey is mediated almost solely throught the velocity storage pathway, with no

significant pathways for rapid change in torsional SPV (Schiff et. al., 1986).

5.4.1. Gravitational Suppression of Velocity Storage in Torsion

Three subjects demonstrated significant decreases in mean OKAN long decay time

constants from the supine to the erect orientation. Furthermore, when all subjects were

grouped, the erect time constants were significantly shorter than the supine time constants.

These results implied suppression of torsional velocity storage activity by otolithic inputs.

Although Morrow and Sharpe (1989) did not find any differences between erect and supine

time constants, many experiments in humans and animals predict that velocity storage

suppression should occur in roll for erect subjects.

Lafortune et. al. (1990) showed that static tilts in pitch suppressed velocity storage for

yaw OKAN, leading to decreased decay time constants. Furthermore, pitch and roll rotations
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are comparable in the sense that both normally occur about earth-horizontal axes, bringing the

otolith organs into play. Roll of the head moves the utricular maculae out of their dominant

plane, resulting in increased decay time constants for vertical OKAN in both monkeys (Matsuo

and Cohen, 1984) and humans (Clement and Lathan, 1991).

By extension, moving the head to either the supine or prone position should increase

the decay time constants for torsional OKAN. Such an orientational dependence has been

observed for torsional OKAN in the monkey: Schiff et. al. (1986) found that tilting the head

more than 300 from the supine position nearly abolished the previously vigorous OKAN

response. All of these studies verified the attenuation of velocity storage about off-vertical axes

through the influence of the otoliths, supporting the notion that otolithic suppression accounted

for the reduced time constants in SPV decay observed for the erect runs.

5.4.2. Suppression of OKAN by Visual Information

All three subjects who underwent OKAN testing in the light exhibited shorter decay

time constants compared to the values obtained during OKAN in the dark with a fixation point.

The decrease in mean decay time constant during pattern illumination was significant for two

individuals, as well as for the three as a group. Similar "dumping" of velocity storage has been

studied more extensively for horizontal OKAN in humans and monkeys. Cohen et. al. (1981)

found that exposure of the subject to a stationary visual surround resulted in a loss of stored

activity combined with an attenuation of the response when compared with the control OKAN

response in the dark.

One important difference between the horizontal and torsional cases involved fixation

suppression. When the stationary surround was illuminated during horizontal OKAN in

humans, eye velocity declined rapidly to zero. If the lights were turned out before the velocity

storage was completely discharged, OKAN resumed, although with a lower velocity than

would be expected for the control case in the dark. However, in the torsional case OKAN SPV

declined at a faster rate in the light than in darkness, but did not drop immediately to zero with
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the lighted stationary surround. This difference from the horizontal case was probably due to

the absence of a well-developed fixation mechanism for torsion.

Interestingly, even the fixation LED alone contributed to suppression of velocity

storage. Although the round LED subtended only 0.5 degrees and provided no orientational

cues, 3 of the 6 subjects tested in complete darkness exhibited significantly longer decay time

constants when no visual information was present. The same effect also proved significant

when all subjects were grouped. Collewijn et. al. observed a somewhat similar phenomenon:

torsional VOR gains during head rotations in darkness increased significantly when the subject

viewed a fixation point projected by a helium-neon laser beam. Both observations indicated

that even small visual stimuli lacking features which could provide orientational information

had significant effects on reflexive compensatory eye movements.

5.4.3. Possible Effects of Habituation on OKAN

Since the supine runs always followed the erect runs, and runs in total darkness always

followed the runs with the fixation LED, the existence of exposure effects on OKAN might

generate questions concerning the actual origin of the changes in SPV decay time constants

observed for the supine and darkness conditions. Studies in monkeys indicated that repeated

exposures to optokinetic stimuli caused decreases in OKAN discharge time constants. Cohen

et. al. (1977) found that time constants became shorter with repeated testing over a 6 month

period. A possibly more relevant test by Skavenski et. al. demonstrated that 20 1-minute

exposures to a spinning drum reduced OKAN time constants by half.

These studies demonstrate habituative effects of OKN exposure, which cause a

decrease in the time constant of OKAN response. However, the later runs in the present study

(supine runs and runs in darkness) displayed increased time constants. Thus, the increase in

time constants seen in the supine orientation and in complete darkness cannot be attibuted to

habituation.

145



5.5. Deviation of Nystagmus Beating Field during Optokinetic Stimulation

During OKN, the mean eye position frequently deviated in the direction of the fast

phase of nystagmus. This tonic bias in the nystagmus beating field, or Schlagfeld, could

measure over 50 and appears clearly in the OKN in Figure 5.2. The amount of deviation

toward the fast phase direction generally increased with higher slow phase eye velocities. To

quantify the bias in the Schlagfeld, a measure of mean eye reset position was defined. After

Yasui (1974), the mean reset position for a single trial was calculated as the average of the final

positions of the individual fast phases during optokinetic stimulation. A mean reset value of

zero would therefore indicate that the fast phases brought the eye back to the central rest

position, while a value opposite in sign to the SPV would demonstrate a shift toward the fast

phase direction.

In Figures 5.23 - 5.29, mean reset positions are plotted against mean SPVs for each

trial. The supine and erect cases are shown separately by subject. For each orientation,

regression lines were fit to the data points using a least-squares technique. Separate fits were

computed for CCW and CW dome rotations. The calculated slopes and y-intercepts for each

orientation and rotation direction are presented by subject in Table 5.15. Of the 26 regression

lines, 24 exhibited negative slopes, indicating greater deviation in the fast phase direction with

increased SPV. The mean of the slopes for all subjects combined measured -0.92 O/('/sec) with

a standard deviation of 0.70.

For every individual subject, the slopes of the regression lines (in both orientations and

directions) were found not to be significantly different from each other based on 90%

confidence intervals. In the supine orientation, none of the subjects exhibited a significant

difference at the 90% level between the y-intercept values for CCW and CW rotations.

However, for 4 of the 7 subjects tested erect, significant differences were observed between

the intercepts calculated for the CCW and CW rotation directions. Furthermore, all subjects

had intercept shifts in the same direction erect: subtracting the CCW from the CW intercepts

yielded positive results. Three of the intercept differences were significant based on 95%
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s tfi of mean eye deviatio 
V

CCW rotation
slopeSubject

M
N
O
P
Q
R
S

intercept
1.14

-1.06
-0.11
-0.17
-1.45

-0.73

CW 
rotation

slope
-0.87
0.74

-1.27
-0.54
-1.63

-0.79

intercept
-0.02
-1.65
2.34
0.63
2.36

1.74

intercept
difference
CW -CCW

-1.16
-0.59
2.45
0.80
3.81

2.47

ns
ns
ns
ns
ns

ns

CCW and CW
grouped

slope
-1.20
0.08

-0.16
-0.80
-1.16

-0.78

intercept
1.23
0.07

-0.13
1.24
1.18

1.64

b. Erect dome: linear fits of mean eye deviation vs. mean SPV
intercept CCW and CW

CCW rotation CW rotation difference grouped
Subject slope intercept slope intercept CW- CCW p < ? slope intercept

M 0.45 2.75 -2.08 3.10 0.35 ns -1.05 0.17
N -0.39 -2.71 -1.06 5.05 7.76 ns 0.30 -0.40
O -1.39 -3.03 -0.98 3.93 6.06 0.05 -- --
P -1.51 -4.30 -1.06 3.02 7.32 0.10 -- --
Q -1.29 -3.00 -1.12 3.93 6.93 0.05 -- --
R -0.19 0.57 -0.21 1.39 0.82 ns -0.11 1.00
S -1.35 -3.07 -0.88 2.53 5.60 0.05 -- --

Table 5.15. Least squares linear regression fits to plots of mean
eye reset position vs. mean SPV. Separate fits were performed
for CCW and CW rotations. When fits were not significantly
different at 90% confidence levels, another fit was computed with
both directions grouped. [a.] Supine dome. [b.] Erect dome.

confidence intervals (subjects O, Q, and S), while one reached significance only at the 90%

level (subject P).

The differences in the y-intercepts erect demonstrated a consistent, direction-dependent

shift of the regression line in the corresponding slow phase direction going from the supine to

the erect orientation. The resulting discontinuity in the line relating reset position to SPV for

the erect case is evident in the plots for subjects N, O, P, Q, and S. For the cases (both erect

and supine) where the CCW and CW regression lines showed no significant differences in the

y-intercepts at a 90% confidence level, collective linear regressions were performed using the

combined results for both directions (Table 5.15).
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a. Subject M: erect dome

4)

0

4)f

-4 -2 0 2 4
mean SPV (deg/sec)

b. Subject M: supine dome

4)

0
.4-

4)

.4

-4 -2 0 2 4 6
mean SPV (deg/sec)

Figure 5.23. Subject M: Mean eye reset position vs. mean SPV.
[a.] Erect dome. [b.] Supine dome. No significant differences
between CCW and CW regression lines were observed for either
orientation, so fits are shown for both directions combined.
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a. Subject N: erect dome

-6 -4 -2 0 2
mean SPV (deg/sec)

b. Subject N: supine dome

S. ....................... ........................ ......................... .....................

y = 0.08x + 0.07t I . I . .. I.. ..i i •

-4 -2
mean SPV (deg/sec)

Figure 5.24. Subject N: Mean eye reset position vs. mean SPV.
[a.] Erect dome. Dashed lines indicate separate linear fits for
CCW and CW dome rotations. [b.] Supine dome. No significant
differences between CCW and CW regression lines were observed
for either orientation, so fits are shown for both directions
combined (solid lines).
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a. Subject O: erect dome

.. I .I . ..

y - -0.98x + 3.93. .........................
.......... .......... - .. . .........

-6 -4 -2 0 2
mean SPV (deg/sec)

b. Subject O: supine dome

-4 -2 0 2
mean SPV (deg/sec)

Figure 5.25. Subject O: Mean eye reset position vs. mean SPV.
[a.] Erect dome. Y-intercept values for the CCW and CW fits
were significantly different (p < 0.05). [b.] Supine dome. No
significant differences between CCW and CW regression lines
were observed, so a fit is shown for both directions combined.
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a. Subject P: erect dome

-6 -4 -2 0 2
mean SPV (deg/sec)

b. Subject P: supine dome

0

0,

0fj

-6 -4 -2 0 2
mean SPV (deg/sec)

4 6

Figure 5.26. Subject P: Mean eye reset position vs. mean SPV.
[a.] Erect dome. Y-intercept values for the CCW and CW fits
were significantly different (p < 0.1). [b.] Supine dome. No
significant differences between CCW and CW regression lines
were observed, so a fit is shown for both directions combined.
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a. Subject Q: erect dome

4)j

4)

-4 -3 -2 -1 0 1
mean SPV (deg/sec)

b. Subject Q:

Gn

24>.4)
4)

2 3 4

supine dome

-4 -3 -2 -1 0 1 2 3 4
mean SPV (deg/sec)

Figure 5.27. Subject Q: Mean eye reset position vs. mean SPV.
[a.] Erect dome. Y-intercept values for the CCW and CW fits
were significantly different (p < 0.05). [b.] Supine dome. No
significant differences between CCW and CW regression lines
were observed, so a fit is shown for both directions combined.
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Subject R: erect dome

E0

02l

-8 -6 -4 -2 0 2
mean SPV (deg/sec)

4 6 8

Figure 5.28. Subject R, erect dome: Mean eye reset position vs.
mean SPV. Dashed lines indicate separate linear fits for CCW
and CW dome rotations. No significant differences between CCW
and CW regression lines were observed, so a fit is shown for
both directions combined (solid line).
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a. Subject S: erect dome

-8 -6 -4 -2 0 2 4 6 8
mean SPV (deg/sec)

b. Subject S: supine dome

-8 -6 -4 -2 0 2
mean SPV (deg/sec)

4 6 8

Figure 5.29. Subject S: Mean eye reset position vs. mean SPV.
[a.] Erect dome. Y-intercept values for the CCW and CW fits
were significantly different (p < 0.05). [b.] Supine dome. No
significant differences between CCW and CW regression lines
were observed, so a fit is shown for both directions combined.
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5.5.1. Relationship of eye position at stimulus end to presence of slow SPV
decay

Sixty-two of the 218 trials did not exhibit a "slow" decay in eye SPV following the end

of visual field rotation. (The total of 62 included 51 trials for which il < 0.7 seconds, as well

as the 11 trials for which reasonable exponential fits were not obtained. The latter 11 generally

demonstrated an immediate reversal of SPV direction when the dome stopped.) Figure 5.30

shows the mean eye position at the end of dome rotation when the trials were grouped

according to the presence or absence of a "slow" SPV decay. Negative eye position indicates

deviation in the direction of the fast phase; positive positions correspond to deviations in the

slow phase direction.

For all subjects, the trials showing only a sharp deceleration of the eye (@l < 0.7)

exhibited a greater mean torsional deviation in the slow phase direction (Table 5.16). The

difference in mean eye deviation between the two groups proved significant at the 0.1 level or

higher for subjects N, P, Q, R and S. The tendency toward deviation in the fast phase

direction for trials with slow SPV decays was also significant (p < 0.001) when the results for

all subjects were grouped.

5.5.2. Relationship between Tonic Eye Deviation and Vection State

Attempts at computing cross-correlations between the eye position and vection traces

proved ineffective due to problems similar to those encountered with SPV correlations. Peaks

in the cross-correlation functions were generally not sharp, and the times associated with the

correlation peaks scattered widely in the range from -20 to +20 sec. For these reasons, the

occurrence of vection state changes was used to investigate the possible relationship between

vection and changes in mean eye position (after Finke and Held, 1978).

Perception of self-motion (roll vection) characterized State 1, while State 2 was defined

by the absence of vection, accompanied by a perception of pure dome rotation. State 2

included the period prior to vection onset, as well as segments of vection dropout. For each

trial, the mean eye position was calculated for the two states, and the difference in mean
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* Trials with slow SPV decay (tau 2 0.7 s)
* Trials lacking slow SPV decay (tau < 0.7 s)

- - -- - . -

M N O P Q R S
subject

Figure 5.30. Mean eye deviation at end
grouped according to presence or absence
(time constant longer than 0.7 seconds).
deviation in the slow phase direction.

of visual field rotation,
of a "slow" SPV decay
Positive values indicate

Subject # trials # trials
-,l<0.7 s.

M 34 3
N 32 16
0 40 19
P 32 2
Q 32 11
R 16 5
S 32 6

All
subjects 218 62

slow SPV decay
mean standard

deviation
-2.19 1.60
1.14 2.05

-0.35 1.75
-0.79 2.16
-1.68 3.27
-0.27 1.39
-3.11 2.54

-1.28 2.51

no slow decay
mean standard

deviation
-0.70 3.13
2.62 2.30
0.46 2.17
2.79 2.85
0.61 2.46
2.25 1.53

-0.42 1.87

1.12 2.44

mean p < ?
diff. (t test)

-1.49 ns
-1.49 0.10
-0.80 ns
-3.58 0.05
-2.29 0.10
-2.52 0.01
-2.69 0.05

-2.40 0.001

Table 5.16. Mean position of eye at time of dome stop, grouped
by presence or absence of slow decay (t > 0.7 s) of OKAN SPV.
Group lacking slow SPV decay includes trials for which no
reasonable fit to SPV was obtained. Probability (p) denotes
likelihood that two groups have same mean position at dome stop
(p < 0.1 indicates significant difference).
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position between State 1 and State 2 was computed. The difference was normalized by the
peak-to-peak position range reached during OKN within each trial, because the magnitude of
eye deviation depended on the SPV and by extension on dome speed.

Figure 5.31 displays the means of the normalized position differences (State 1 - State 2)
for each subject. Negative values indicate greater average deviation in the OKN fast phase
direction during episodes of vection (State 1). Six of the seven subjects exhibited a bias in
mean eye position toward the direction of the fast phase during vection; in four of these six the
difference between State 1 and State 2 proved significant at the 0.01 level or better (p < 0.01
for O and P; p < 0.001 for M and S). The difference was not significant for the one subject
(N) who displayed greater deviation in the fast phase direction during State 2.

e 8

0. .2

0.1

0

S-0.1

-0.2

0>I -0.3

J -0.4
M N O P Q R S

subject

Figure 5.31. Difference in mean normalized eye position between
vection (State 1) and no vection (State 2) conditions. Negative
values indicate greater deviation in the fast phase direction duringvection.
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5.6. Discussion of Mean Eye Position during Torsional OKN

During vestibular nystagmus, the amplitude and velocity of the slow phases increase

with increasing gaze eccentricity in the direction of the fast phase. Likewise, gaze in the slow

phase direction results in decreased amplitude and velocity. This phenomenon, first described

by Alexander in 1912, has become known as Alexander's Law (Doslak et. al., 1979). In

addition, Young found that the following velocity of OKN could be increased by diverting gaze

in the direction of the fast phase (in Henn et. al., 1980).

The nonlinear elastic properties of the oculomotor musculature and globe supporting

tissues provide one possible explanation for these empirical observations. The elastic nature of

the oculomotor plant may cause the eye to "spring" back at a higher velocity when a fast phase

resets the eye away from the central rest position. Many torsional slow phases are concave in

shape, with the highest velocity immediately following the fast phase and a gradual decline in

velocity thereafter (Figure 5.1). This observation, combined with the torsional "leash" effect

noted in forced cycloduction experiments (Simonsz et. al., 1984), provides some support for

the hypothesized mechanical origin of Alexander's Law.

5.6.1. Relationship of Tonic Eye Deviation to SPV

While oculomotor plant mechanics may impose a gaze dependence on smooth eye

velocity, such an effect seems unlikely to account for the results described in this thesis. Mean

eye reset position varied approximately linearly with mean SPV. The direct dependence of

mean torsional SPV on stimulus velocity implies that increased mean eye position deviations in

the direction of the fast phase resulted from increased SPV, rather than the reverse.

For horizontal eye movements, it appears that mean eye position tends toward the

direction of the fast phase of both vestibular and optokinetic nystagmus in a diverse array of

species including pikes, rabbits, monkeys, and humans (reviewed by Yasui, 1974). Yasui

found that the magnitude of the deviation in the fast phase direction increased linearly with
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increasing SPV. During horizontal OKN, he observed that the mean eye reset position

deviated between 0.50 and 0.750 in the fast phase direction for every degree per second of SPV.

A likely functional basis for the shift of eye position opposite the slow phase direction

involves the acquisition of new visual information. The compensatory eye movement reflexes

exist primary to stabilize visual images on the retina during head movements. During

horizontal or vertical head rotations, it would be advantageous to acquire the incoming visual

scene as quickly as possible, rather than tracking the part of the image leaving the field of view.

Clearly, such an argument becomes irrelevant for torsional rotations about the visual axis.

Nevertheless, considerable evidence demonstrates that the visual and vestibular systems rely on

a coupled three dimensional internal representation. Since eye torsion exists as part of a three

dimensional oculomotor mechanism rather than a separate entity, the tonic torsional deviation

during OKN probably results from the carryover of a process with important implications in

the other two axes.

Yasui (1974) proposed a model of nystagmus fast phase generation which produced the

appropriate deviation in mean eye position. In this model (Figure 5.32), fast phases are

generated on the basis of slow phase efferent information which leads the actual slow phase

eye movements slightly in time. This slow phase efference copy originates either in visual or

vestibular centers. Fast phases arise from an internal model which "simulates" nystagmus

based on efferent motor information. The internally simulated model resets itself to zero with

each fast phase. However, the transmission time delay to the eye causes a lag in the execution

of the actual slow phase, and the fast phase generation effectively relies on "future" eye

position. Thus, the true eye reset position deviates from the center toward the fast phase

direction. The magnitude of the deviation is proportional to the slow phase velocity, with

constant of proportionality equal to the proposed slow phase time lag.
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ror vestibular
nystagmus

Figure 5.32. Model of fast phase generation which produces
mean deviation in the direction of the fast phase (Yasui, 1974)

5.6.2. Consequences for Interpretation of Subjective Eye Torsion Measures

A number of experiments which incorporated a subjective afterimage method to

measure ocular torsion during roll OKN found a consistent deviation of mean eye position in

the slow phase direction for both erect and supine conditions (Finke and Held, 1978; Wolfe

and Held, 1979; Merker and Held, 1980). These results are contrary to the average shift in the

fast phase direction observed in most cases in the present experiment. The scleral coil

measurements appear not only to invalidate the afterimage technique as a measure of eye

torsion, but also to call into question the conclusions drawn by these authors regarding the

relationship between perception and eye movements.
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5.6.3. Effect of Subject Orientation on Tonic Eye Deviation

For the supine orientation, the line relating the eye reset position to SPV generally

passed through the origin. In contrast, the entire line shifted in the slow phase direction for the

erect runs. A possible explanation for this shift rests on the phenomenon of visually induced

tilt. Based on the perceived shift of the vertical during visual roll stimulation, Dichgans et. al.

(1972) hypothesized a central recalculation of the gravity vector based on visual information.

Since otolith-mediated static ocular counterrolling with a gain near 0.1 occurs in response to

real tilts with respect to gravity, a shift in the central representation of the gravity vector might

induce counterrolling as well.

The perceived tilt during roll vection occurs in the direction opposite field rotation, so

the projected counterroll would occur in the direction of field motion--the slow phase direction

of OKN. Counterroll due to perceived tilt might then sum with the deviation in the fast phase

direction, resulting in the shift toward the slow phase direction erect. The proposed tilt-

counterroll mechanism would be rendered inactive in the supine position because the gravity

vector coincides with the axis of field rotation.

Figure 5.33 depicts a block diagram formulation of the processes affecting the deviation

of mean eye position during torsional OKN. In the supine position, switch S is open, and the

nystagmus beating field shifts in the fast phase direction according to the Yasui's model. In the

erect position, switch S closes, and visually induced tilt produces a static ocular counterroll of

approximately one-tenth the perceived tilt. This counterroll--in the slow phase direction--adds

to the original shift in the fast phase direction. Since the visually induced tilt curve (Dichgans

et. al., 1972) is relatively flat over the range of stimulus velocities tested in this experiment, the
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Figure 5.33. Block diagram describing proposed shift of mean eye deviation erect based on static ocular counterrolling
resulting from a central recomputation of the gravity vector. In supine position, switch S Is open. Stimulus velocity
generates SPV, which in turn yields linear relation between mean deviation and SPV. In erect position, switch S closes.
Visually induced tilt results from a central recalculation of the gravity vector; the shift in the perceived gravity
reference causes static ocular counterrolling with an approximate gain of 0.1. The OCR effect adds to the prior mean eye
deviation, resulting in the observed shift of the deviation line in the slow phase direction.
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combined eye deviation presents as an apparent shift of the entire deviation line in the direction

of the slow phase.

Using an ocular counterrolling gain of 0.1 and a maximum visually induced tilt of 150

results in a shift of the line describing the SPV-deviation relation by only 1.50. In contrast,

changes in the intercept of up to 40 were observed when the present subjects reoriented from

supine to erect. While the model as presented predicts smaller shifts, some investigators have

found visually induced tilts in the range from 300-600 (Young et. al., 1975; Howard and

Cheung, 1988). Furthermore, Ferman et. al. (1987) recorded mean static ocular counterrolling

gains as high as 0.23. Incorporating these higher parameter values would result in predicted

shifts near the observed changes.

Interestingly, C16ment and Lathan (1991) observed changes in the mean "center of

interest" of pitch OKN when subjects went from erect to a 900 roll position. The authors

defined the center of interest (CI) as the midpoint of the fast phase. In the erect position, they

observed a mean CI of 120 down for upward stimuli, but only 00 - 30 up for downward field

motion. In the 900 roll position, the mean CI for upward slow phases was reduced to 60 down,

while the value jumped to 100 up for downward slow phases.

While these observations show that mean eye position shifts in the fast phase direction

in all three axes, explaining the vertical OKN results in a manner similar to the torsional case

requires an asymmetry between forward and backward visually induced pitch between. The

greatly reduced deviation in the fast phase direction for downward slow phases erect suggests

that backward visually induced tilt should be strong. Likewise, the absence of an increase in

fast phase direction bias going from erect to supine for upward slow phases argues for

relatively weak forward pitch.

Young et. al. (1975) found the opposite asymmetry in visually induced pitch: forward

tilt proved stronger than backward tilt. However, Howard and Cheung (1988) did observe

larger tilts backward than forward; the latter results are essential to the above interpretation.

The fact that the deviation in the fast phase direction for upward stimuli actually declined in the
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900 roll condition might be explained by the significantly lower OKN gains recorded in this

orientation.

5.6.4. Possible Confounding of Tonic Eye Deviation with Head Rotation

The dental biteboards employed in this experiment were intended to keep the subjects'

heads fixed in space, thereby preventing head movements which would be recorded as eye

torsion. However, it is conceivable that small head tilts may have occurred if the subjects did

not bite down firmly on the biteboard at all times. Since true head position was not recorded

during the tests, no conclusive statements can be made about the actual degree of head

stationarity during the experimental trials.

Pseudo-vestibulocollic righting reflexes would tend to produce head tilts in the same

direction as field rotation. Thus, head movements cannot account for the observed deviation of

the mean eye position in the fast phase direction (opposite dome rotation). However, the shifts

in the lines relating deviation to SPV (seen for the erect runs) are in the correct direction to be

explained by small, visually induced head tilts.

In an attempt to resolve this concern, the biteboard torque traces were examined in lieu

of actual head position records. However, the biteboard output does not provide a satisfactory

alternative for two reasons. First, the biteboard and holder are quite stiff, so even high torques

should result in very small head movements if the subjects bites down properly. Also, the

biteboard circuitry acts as a high-pass filter, so the biteboard signals provide at best a coarse

approximation to higher frequency head rolls.

Unfortunately, this cursory investigation proved inconclusive. The biteboard torque

did not appear to correlate well with eye position in the majority of cases, but a few trials

showed a fairly close correspondence between the two signals (Figure 5.34). While the

generally low correlation between neck torque and eye position argued against head tilt as an

explanation for the mean eye deviations observed here, such an effect could not be ruled out

completely.
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a. Eye position exhibits little correlation
with biteboard torque

0 5 10 15 20 25 30
time (seconds)

b. Apparent correlation between
and biteboard torque
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Figure 5.34. Eye reset position plotted together with biteboard
torque (Subject P). [a.] Eye position exhibits little correlation
with biteboard torque. [b.]. Apparent correlation between eye
position and biteboard torque.
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5.6.5. Mean Eye Position, Vection State, and Velocity Storage

Comparison of mean torsional eye position in periods with and without vection

revealed that the eye deviated further in the fast phase direction during vection than during

perception of pure surround motion. These results are consistent with the conclusion of Finke

and Held (1978) that greater torsion in the direction of the slow phase occurred when subjects

perceived no self-rotation.

Brandt et. al. (1974) observed a related phenomenon in extended duration horizontal

OKN studies. When subjects were exposed to optokinetic yaw stimuli for several minutes,

they experienced vection dropouts and even reversals in the direction of perceived self-rotation.

These episodes occurred simultaneously with shifts of the nystagmus beating field (or

Schlagfeld) from the direction of the fast phase toward the slow phase direction.

The apparent dependence of mean eye position on vection state during OKN may be

traced back to the postulated evolutionary advantage of the normal shift in the Schlagfeld

associated with optokinetic and vestibular nystagmus. During head movements, the organism

presumably needs to see the oncoming visual scene as quickly as possible. Thus, during

perceived self-motion--resulting either from head motion or vection--mean eye position should

be biased toward the fast phase direction. If, on the other hand, the subject perceives surround

motion, it may be more advantageous to track the moving images in the central visual field and

even to the limits of the slow phase direction. On this basis, the mean eye position during

OKN should not tend toward the fast phase direction in the absence of perceived self motion.

The contention that mean eye position during OKN depends on an internal

reconstruction of self motion is supported by the OKAN data collected in the present

experiment. When a slow decay in SPV occurred during OKAN, the eye position just prior to

stimulus offset was shown to lie further in the fast phase direction than for cases when the SPV

dropped rapidly to zero. This effect occurred uniformly across all subjects, and implied a
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connection between the activation of velocity storage (responsible for OKAN) and the mean

eye position during OKN.

Velocity storage is in essence a central reconstruction of head velocity based on

integration of visual and vestibular inputs. Thus, the proposed dependence of mean eye

position on the activation of velocity storage advances the notion that the shift of the Schlagfeld

toward the fast phase direction of nystagmus evolved to assist the acquisition of new visual

information during self motion. The observed correspondence between mean eye position and

vection state indicates that both OKN and vection rely on some of the same basic mechanisms.

Nevertheless, these and prior experiments have demonstrated conclusively that

important dissociations exist between compensatory eye movements and self-motion perception

under many circumstances. Brandt et. al. (1973) demonstrated that stimuli moving in opposite

directions could generate contrary OKN and vection responses. Likewise, the poor

correspondence between vection and either eye position or SPV, shown by the failed attempts

at cross-correlation in the present experiments, argues against a strong link between roll vection

and torsional OKN.
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6. CONCLUSIONS

A fairly large body of knowledge has been accumulated which describes the eye

movements and psychophysical effects associated with visual field rotations about the yaw and

pitch axes. Further experiments have yielded insight into the perceptual phenomena known as

roll vection and visually induced tilt. Until now, however, virtually no studies have been

undertaken to fully characterize the torsional eye movements associated with fields rotating

about the visual axis. The experiments described in this thesis were made possible by the

magnetic scleral search coil system at the MIT Man-Vehicle Laboratory, and provide a first step

toward filling this gap in the biomedical literature.

The present study had three central aims: (1) Characterization of the slow phase

velocity and tonic eye deviation properties during torsional OKN; (2) Investigation into the

existence of torsional OKAN; and (3) Clarification of the possible relationship between

torsional eye movements and roll vection. To meet these goals, 7 subjects were tested using a

rotating dome which presented a full-field pattern rolling about the visual axis. Torsional eye

movements and subjective vection were recorded in erect and supine orientations at four

stimulus speeds for CCW and CW dome rotations. Eye movement aftereffects following

torsional OKN were also measured under three visual field conditions: in the light with a

stationary visual field, in the dark with a central fixation point, and in complete darkness.

The slow phase eye velocity gain during torsional OKN was defined as the mean SPV

divided by the stimulus rate. Overall, the gain of torsional OKN was quite low compared to

horizontal and vertical gains. Furthermore, torsional SPV gain dropped sharply with

increasing stimulus velocity. Over the range tested, SPV gain averaged only 0.15 at a stimulus

velocity of 150/sec, and fell to 0.06 at 600/sec. Interestingly, higher SPV gains were measured

erect than supine for most subjects. Based on otolithic suppression of torsional OKN in the

monkey, increased gains were expected supine; only one of the subjects exhibited this
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predicted pattern. (Habituation to the optokinetic stimulus may have contributed to the

depressed SPV gains observed supine in the majority of subjects.)

In most subjects, the mean eye position during OKN deviated in the direction of the fast

phase. This finding is consistent with similar observations for horizontal and vertical

optokinetic and vestibular nystagmus in a range of species. However, previous experiments

using an unvalidated afterimage technique to measure ocular torsion reported uniform

deviations in the slow phase direction. The present results, obtained using more advanced

technology, may raise questions regarding the validity of the prior conclusions.

The magnitude of the torsional deviation in the fast phase direction increased with

increasing SPV. In the supine position, the relationship between position bias and SPV was

approximated by a single line through the origin. For the erect case, the slopes of the lines

describing the deviation-SPV relationship remained the same--the deviation of the reset position

in the direction of the fast phase still increased with increasing SPV. However, the entire lines

were translated, moving the y-intercepts in the direction of the slow phase. A model was

proposed which accounted for this effect using the phenomenon of visually induced tilt. Static

ocular counterrolling resulting from an internal recomputation of the gravity vector during

visual roll stimuli would produce eye torsion with the proper direction and magnitude to

explain the observed results.

The presence of torsional OKAN was demonstrated following the cessation of

optokinetic stimulation, although afternystagmus was quite variable and differed in quality

from subject to subject. The time constant describing the decay of slow phase velocity during

OKAN was quite short, averaging approximately 2.4 seconds. The short OKAN discharge

time constant, combined with the low gain and variability of torsional OKN, indicates that

velocity storage plays a relatively minor role about the roll axis. This contrasts with results

obtained in the monkey, which probably relies almost completely on the velocity storage

pathway in the generation of roll OKN.
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Torsional OKAN was suppressed by both gravitational and visual cues. Time

constants of SPV decay were somewhat shorter erect than supine. This observation is

consistent with the strong conditioning effect of otolith inputs on velocity storage about off-

vertical axes. Time constants were also shorter under stationary visual field conditions and

even in the presence of a round 0.50 fixation point. Similar "dumping" of velocity storage has

been reported for horizontal and vertical OKAN under conditions of fixation suppression.

Cross-correlations of roll vection with torsional eye position and SPV found no close

relationship between the time course of OKN and vection. Comparisons of asymmetries in

SPV gain with vection asymmetries also failed to establish a link between vection and SPV, as

did evaluations of SPV gain during periods with and without vection. Overall, these results

indicate that important dissociations exist between compensatory eye movements and

perceptual processes. OKN does not cause vection, while vection does not produce OKN.

However, significantly greater deviation of the eye in the direction of the fast phase of

OKN was observed during episodes of vection. This relationship of mean eye position to

vection state supports the hypothesis that the deviation of the eye in the fast phase direction

during OKN enables quick acquisition of the oncoming visual field during actual head

rotations. A further correspondence was found between velocity storage activation and

deviation in mean eye position. Together, these results indicate that both OKN and vection rely

to a certain extent on a centrally stored reconstruction of head velocity. Although

compensatory eye movements and self-motion perception appear to be mediated through

largely distinct processes, some of the same low-level mechanisms probably subserve both

phenomena.

6.1. Recommendations for further study

The scleral coil system makes possible a range of experiments on ocular torsion, while

the tests described here suggest several avenues for future study. One goal might encompass a

better description of the dynamic properties of torsional OKN. Only velocity step inputs were
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tested in this work; sinusoidal stimuli could provide a measure of the frequency response of the

torsional OKN system. Since voluntary ocular torsion has been demonstrated, it might be

interesting to try to improve OKN gain through extended training.

The dependence of torsional OKN on various properties of the visual stimulus should

be evaluated. Variables such as spatial frequency, contrast density, and stimulus area could be

studied. Another important question regards the portion of the visual field best suited to

producing torsional OKN. The central visual field has been shown to dominate horizontal and

vertical OKN. However, linear retinal slip velocity increases in proportion to eccentricity for

roll stimuli, so the periphery may be considerably more important in torsion. Along these

lines, a setup presenting oppositely rotating stimuli in the central and peripheral fields could be

adapted for torsion. It may be possible to induce opposing optokinetic and vection responses

in roll as well as in yaw.

Cortical binocular processes are important in generating horizontal and vertical OKN in

frontal eyed animals. The effects of binocular disparity, monocular viewing, or oppositely

directed displays to each eye could be tested. Some studies have shown that asymmetries in

ocular torsion between the two eyes may predict susceptibility to space motion sickness

(Diamond and Markham, 1990). Pending the development of an appropriate calibration

scheme, torsional disconjugacies could be investigated.

The intriguing conjecture that static ocular counterrolling may be caused solely by a

visually induced recomputation of the gravity vector must be further examined. At least one

subject should be retested using an additional coil taped to the forehead in order to eliminate the

possibility that head movements contributed to the effects reported here. As an extension, the

possible relationship between visually induced tilt and ocular torsion could be tested by having

subjects indicate the perceived vertical rather than vection magnitude.
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APPENDIX A: ROTATING DOME CIRCUITRY

This section contains the circuit diagram for the motor controller used to drive the

rotating dome. The circuit consisted of a times-three gain stage followed by a power booster.

A switch controlled the direction of dome rotation. The MacAdios D/A board provided the

input signal, while the output drove the DC dome motor.
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Figure A.1. Dome motor drive circuitry. Vin is output by the computer D/A board.
Vout leads to a double pole-double throw switch which controls the rotation
direction. The switched output voltage powers the drive motor.
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APPENDIX B: EXPERIMENTAL PROTOCOL

The protocol for an experimental rotating dome session is contained here. This

protocol details subject preparation, coil system setup and calibration, scleral coil insertion, and

the test procedure.
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ROTATING DOME/ SCLERAL SEARCH COIL PROTOCOL

I. Rotating Dome Setup

A. Have subject sign informed consent statement
B. Biteboard

1. Make subject biteboard from flight reject blank, 2 part dental compound
2. Insert biteboard in holder

C. Dome Height: adjust dome height to center of coil
D. Subject Height

1. Erect: using iron plates, step, etc., raise subject such that eye is level with
calibration washer

2. Supine: adjust height of coils relative to chair seat
E. Power

1. Motor (power supply on, highest voltage--28 V, switch on amp to center
position)

2. Lights
3. Biteboard/Joystick 15 V. brick power supply
4. Computer, LaCie drive
5. Stripchart recorder

F. Stripchart connections
1. Coil torsion channel
2. Coil horizontal channel
3. Coil vertical channel
4. Joystick

G. Signal Check (use LabView 'cread/cwrite demo', stripchart)
1. Motor (both directions)
2. Joystick
3. Biteboard

a. Zero biteboard no-torque signal
4. Optical encoder

II. Magnetic Coil System Setup

A. Interface connectors
1. BNCs to horizontal/vertical and torsion boxes
2. Female leads

a. Tape wires down to prevent loops, crossing, movement
b. Put leads under velcro

B. Insert calibration device
C. Torsion coil

1. Check resistance between torsion leads, horizontal/vertical leads--should be ~27
ohms

2. Plug in leads
a. "T" leads to blue female; others to white female
b. Replace velcro

3. Tape coil to calibration device
D. Electronics warmup

1. Turn coil system on
2. Wait 1/2 hour

E. Calibration
1. Adjust calibration device to zero (vertical, torsion)
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2. Zero torsion channel
a. Check torsion signal to Macintosh
b. On 5V scale, use offset knob to zero
c. If cannot zero, flip polarity switch, then try again

3. Adjust torsion gain
a. Use 50V scale
b. Turn calibration device ±10 deg, adjust gain for 2V = 100

4. Repeat (2, 3) for vertical channel
F. Sterilization

1. Remove coil from calibration device
2. Immerse coil completely in hydrogen peroxide
3. Remove calibration device
4. Allow coil to sit for 10 to 30 minutes

G. Reboot Macintosh, run LabView 'Keoki thesis'

III. Scleral Coil Insertion

A. Wash hands
B. Rinse coil

1. Remove from hydrogen peroxide
2. Rinse coil, wire, fingers with saline from large bottle
3. Place in saline solution

C. Anesthetize right eye
1. Place one drop "Ophthetic" anaesthetic on eye
2. Wait 1-2 minutes, insert a second drop
3. Dab closed eye with tissue to dry
4. Administer additional anesthetic as needed during experiment runs

D. Rinse coil
1. Use saline solution from disposable sterile bottles
2. Rinse coil, wire, fingers (hold coil in hand)

E. Insert coil
1. Use fingers to hold lids open
2. Place coil on eye
3. Turn coil so that lead comes out horizontally
4. Have subject close eye; press on lid to remove air bubbles trapped by coil

F. Start stopwatch (for checking against 1/2 hour limit on coil in eye)
G. Secure leads--tape to forehead, cheek, frame
H. Zero channels with subject on biteboard, looking at fixation point (do not adjust

gain settings)

IV. Dome Run (repeat steps for second run)

A. Turn off room lights
B. For post-rotation lights-out/LED run, plug in fixation LED battery
C. Dim computer screen
D. Select dome run subject code, run number
E. Give joystick to subject
F. Start stripchart (5 mm/s)
F. Run LabView 'Keoki Thesis'
G. Dome trial (repeat these steps for 8 trials total--2 directions, 4 speeds)

1. Move dome light switch to 'on' position
2. Select dome rotation direction (CW/CCW) with switch on amplifier box
3. Instruct subject to fixate on center LED (about 5-10 sec before start of dome

rotation)
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4. 5 sec pre-rotation sampling
5. 30 sec dome rotation (for runs requiring darkness when rotation stops, move

dome light switch to 'off position)
6. 30 sec post-rotation sampling (fixating in darkness, with LED, or with lights

on, depending on run condition)
7. Save trial, if data is good

V. Cleanup

A. Turn on room lights
B. Remove coil from subject's eye
C. Clean coil gently with hydrogen peroxide; immerse in hydrogen peroxide
D. Supply subject with eye drops (saline, sensitive eyes, etc.) if desired
E. Back up data
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APPENDIX C: HUMAN USE DOCUMENTATION

This appendix contains the COUHES human use applications for the rotating dome

experiment and the scleral coil system. A sample of the informed consent statement, signed by

each subject prior to testing, is included.

178



Application Number 1496

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Committee on the Use of Humans as Experimental Subjects

APPLICATION FOR APPROVAL TO USE HUMANS AS EXPERIMENTAL SUBJECTS

(This application form shall be used for submission to the Clinical
Research Center Policy Committee, if it is desired to use the facilities of
the Clinical Research Center.)

TITLE OF STUDY:

Rotating dome experiments

PRINCIPAL INVESTIGATOR: Dept. A&A
Room 37-207

L.R. Young Telephone 3-7759

ASSOCIATED INVESTIGATORS:

M. Shelhamer

FINANCIAL SUPPORT: (Research grant title, agency and .award number, if any.
If none, please give a brief statement of how proposal will be financed.)

NASA Contract NASW-3651, Vestibular Experiments in the German Spacelab

PURPOSE OF STUDY: (A concise statement of the background, nature and
reasons for the proposed study. Possible benefits to the subject and to
society must be considered by the committee in relation to the possible
risks to the subject.)

The purpose of this study is to explore the effect of visual stimulation on
the perception of orientation. A rotating dome has been designed to provide
such instrumentation and to measure both subjective perception of orienta-
tion and torque applied to a biteboard. Additionally, emg recordings of neck
muscle are taken to measure neck torque.

A randomized dot pattern which fills the subject's field of view and rotates
or translates uniformly will induce a sensation of self-motion after a cer-
tain period of time. This motion may be either continuous rotation (cir-
cularvection) or linear translation (linearvection). The literature on
these phenomena was reviewed in the following papers (Benson, A.J., (1975)
Handbook of Sensory Physiology Vol. VI, Vestibular System, H.H. Kornhuber,
Ed. Springer Verlag, Berlin; Berthoz, A., Pavard, B., and Young, L.R.,
(1975) "Perception of linear horizontal self-motion induced by peripheral
vision (linearvection). Basic characteristics of visual-vestibular inter-
actions", Exp. Brain Res. 23, 471-489; Brandt, Th., Wist, E., and Dichgans,
J., (1971) "Optisch induzierte pseudocoriolis effecte and circularvektion",
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Arch Psychiat Nervenkr 214:365-385; Dichgans, Held, R., Young, L.R. and
Brandt, Th., and Young, L.R., (1972) "Moving visual scenes influence the
apparent direction of gravity", Science 178:1217-1219). If circularvection
occurs about an axis other than one aligned with the gravitoinertial ver-
tical, a sensation of visually induced tilt is also found. The sensation is
a paradoxical one of continuous rotation accompanied by a steady state angle
of tilt. It is likely that the magnitude of the tilt and angular motion
sensation is limited by conflict between otolith and available tactile/pro-
prioceptive cues which do not confirm the visually indicated continuous
angular motion. This theory is supported by tests by Dichgans et al.
(Dichgans, J., Diener, H., and Brandt, Th. (1974) "Optokinetic graviceptive
interaction in different head positions", Acta Otolaryng. 78:391-398) and jy
Young et al. (Young, L.R., Oman, C.M., and Dichgans, J.(1975) "Influence of
head orientation on visually induced pitch and roll sensation", Aviat Space
& Environ Med 46:264-268) which show that the magnitude of visually induced
tilt is increased when the head is tilted to the side or inverted. Tests
involving rotations about the roll axis conducted with subjects lying supine
produce a steady state sensation of continuous roll veclocity with no limit-
ation on accumulation of roll angle, consistent with the notion that inhibi-
tory effects of the otoliths are eliminated. Tests on the KC-135 (Young,
L.R., Lichtenberg, B., Arrott, A., Crites, T., Oman, C. and Edelman, E.R.,
"Ocular torsion on earth and in weightlessness", Annals of the New York
Academy of Sciences 374:80-92, 1981) confirm that continuous unlimited roll
appears in weightlessness, and indicates that -- at least on very brief
exposure to zero-g -- tactile cues increase the latency of onset of rotation
sensation. Preliminary results from Spacelab-1 indicate that, as predicted,
onset to vection is decreased, sensations of continuous roll more easily
attained, and that the use of tactile cues is more inhibitory early in
flight than late. There are no benefits directly to the subject. Care has
been taken to ensure that there are no hazards to the subject. Possible
benefits to society include a better understanding of the nature of percep-
tion and possible insight into the causes of space motion sickness.

EXPERIMENTAL PROTOCOL: (An outline of the actual experiments to be
performed, including statements as to exact doses of drugs and chemicals to
be used, total quantity of blood samples to be drawn, nature of any special
diets, physical or emotional stress, protective measures, and so forth. The
procedure of social studies and psychological experiments also should be
explained in detail. If a questionnaire is involved, a copy should be
attached to each application copy. If oral or informal questions are to be
asked of subjects, an outline of the questions should be attached similarly.
Please attach an additional sheet if necessary. If a protocol incorporating
all of these points has already been prepared, it may be attached in lieu of
this statement.)

The rotating dome is essentially a shallow cylinder closed on one end, the
interior of which is covered with a random pattern of 3/4" colored dots. The
dome is designed to fill the positioned subject's field of view. An opening
at the center of the closed end is used for the video recording of eye move-
ments. The subject's head is kept positioned within the dome by a biteboard
firmly attached to the stationary frame of the dome. The subject is in-
structed to indicate his perception of self-rotation by means of a joystick
mounted on the dome frame. Data is recorded by a dedicated microcomputer
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system and video recorder. Three different rates of dome rotation are used
(30, 45, and 60 deg/sec), as well as clockwise and counterclockwise direc-
tions. A test session consists of two dome runs, each of which is six
minutes in length and contains all six stimulus conditions (3 speeds, 2
directions) and lasts approximately 45 minutes. Test sessions are done twice
- once for the upright dome and once for the supine dome protocols. During
the upright dome protocol, the subject stands erect before the dome, which
has been adjusted to match the height of the subject. During the supine
tests, the subject lies on his back beneath the dome, which is supported by
a sturdy frame.

Contact lenses (COUHES Application #621) will be used only with subjects Kho
will have been especially fitted and trained in their use by an optometrist
or ophthalmologist. These lenses will be marked with a star-burst/dot pat-
tern (presently thought to be the most useful pattern for analysis) by the
method developed by Dr. Leroy Meshel of the Narcissus Medical Foundation
using an FDA approved dye. The Foundation marked the lenses that were flown
on Spacelab-1 and used by the SL-1 crew pre, post, and during flight. Simi-
larly marked lenses have been used by over 5000 patients over the last six
years. The results from these patients shows that these lenses are as safe
as lenses that are unmarked. The markings on the lenses are primarily on
the iris and limbus areas and thus do not interfere significantly with
vision. Two sets of six lenses per crew member are needed for flight. Two
lenses for each eye are needed for the pre and postflight testing. Prep-
aration of these lenses involves only a brief measurement of curvature of
the surface of the eye, taking about five minutes. Once the lenses have been
fabricated, it is anticipated that about one to two hours per crewman will
be sufficient for training in their use.

Dome Protocol:

1. The subject is electroded. Four standard EMG electrodes are placed on
the subject's neck (two on each side on the sternocleidomastoideus muscle)
and a ground electrode is placed over the collarbone, after cleaning with an
alcohol swab (no scratches). (If contact lenses are being used, the sub-
ject places the lens in his eye and irrigates the eye with distilled water
to ensure lens adherence.)

2. The subject is positioned in the dome, using a specially prepared bite-
board which fits into an intrumented holder. The camera is focussed, elec-
trode leads attached, and the subject is reminded of the instructions con-
cerning the joystick.

3. Six one-minute runs at various combinations of the three dome speeds
(30, 45, and 60 deg) and the two directions (clockwise and counterclockwise)
are then performed under microprocessor control. A test conductor is
present at all times. The subject may egress the upright dome at any time.
The test conductor is available to assist subject egress from the supine
dome, if for any reason the subject wishes to discontinue the experiment.

4. The subject is given a few minutes to rest.

5. Step three is repeated using a different order of presentation.
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6. The subject's electrodes are removed and the skin is again wiped with an
alcohol swab to prevent any chance of irritation. (Subject removes contact
lens, if used.)

SPECIFIC QUESTIONS TO BE ANSWERED: Please answer all questions and indicate
NA where not applicable. Explain all positive answers.

How will subjects be obtained? Volunteers from the MIT community,
Spacelab crew members.

Will there be any remuneration? No

Number of subjects? Approximately 30

Expected duration of study for each subject? One hour

Where will study be performed? Building 37

Will drugs be used? No

Any Investigational New Drugs (IND)? No

Electrical stimulation? No

Radiation or radioactive materials? No

Special diets? No

Sleep deprivation? No

Humiliation, deception or invasion of privacy? No

Physical pain? No

Unusual physical or psychological stress? No

Will subject's anonymity be preserved? If so, how?
Yes. Subjects will be referred to only by codes.
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SUMMARIZE THE RISKS TO THE INDIVIDUAL SUBJECT AND POTENTIAL BENEFITS TO THE
INDIVIDUAL SUBJECT: (Please provide reprints for explanation of all effects
from use of a drug, chemical, or material not already approved by the Food
and Drug Administration for general use. Provide all necessary documenta-
tion if this application will include a request to use an Investigational
New Drug. Describe also any possible risk of invasion of privacy, embarrass-
ment or exposure of confidential data, and how the investigators propose to
deal with these risks.)

The following are seen as potential hazards:

Lenses may cause a slight mechanical irritation of the cornea and conjunc-
tiva associated with the lens insertion until the subjects are sufficiently
practiced in the technique. Lenses will be fit under the direction of an
ophthalmologist and the subjects will be instructed and aided in learning
the techniques associated with lens insertion. To avoid any contamination
of the pre and post flight lenses, which are reused, these lenses are
thoroughly cleansed and disinfected prior to each test session.The bite-
board, strain gauge bridge, and dome structure are electrically connected
(metal-to-metal joints). Thus, in the remote possibility that a strain
gauge connection fails and the 12 volt supply line comes into contact with
the biteboard, there will be no potential difference between the biteboard
and any other metal in contact with the subject. See hazard analysis,
attached. EMG measurements use standard electrodes (surface electrodes,
without needles) appropriately shielded.

DETECTION AND REPORTING OF HARMFUL EFFECTS: If applicable here, please des-
cribe what follow up efforts will be made to detect harm to subjects, and
how this committee will be kept informed.

Although no after effects are anticipated, subjects will be requested to
report any unusual effects to the experimenter. The committee will be in-
formed if this should occur.

183



INFORMED CONSENT MECHANISMS: The committee is mandated by the DHEW and
Institute regulations to require documentation of informed consent. Under
certain circumstances, the committee may waive documentation. The elements
of such informed consent are:

1. A fair explanation of the procedures to be followed and their pur-
poses, including identification of any procedures which are experimental.

2. A description of any attendant discomforts and risks reasonably to be
expected.

3. A description of any benefits reasonably to be expected.

4. A disclosure of any appropriate alternative procedures that might be
advantageous for the subject.

5. An offer to answer any inquiries concerning the procedures.

6. An instruction that the person is free to withdraw his consent and to
discontinue participation in the project or activity at any time without
prejudice to the subject.

7. There shall be no exculpatory language making the subject seem to
waive any rights.

These elements should be clearly stated in a document to be signed by the
subject or a legally authorized representative in the case of minors or
incompetent individuals. The material presented in such as document must be
in clear English, easily understandable to the least educated of subjects.
Diagrams or pictures may make such an exposition simpler to comprehend. The
committee may request, in special circumstances, that the subject be given a
copy of such as document for future reference. Similarly, the committee may
request in special circumstances a statement that the COUHES is accessible
to aggrieved subjects for the purpose of documenting adverse reactions or
grievances which may arise. In that case, the informed consent documents
should state the address and telephone number of this committee.If such a
formal written document is unreasonable, then the committee may accept oral
explanation to the subjects. This explanation must be validated by a docu-
ment stating that such a presentation has been made to the subject; this
document shall be signed by the subject or a legally authorized represent-
ative, by a responsible person making the explanation, and by an
auditor-witness not immediately associated with the experiment. In addi-
tion, the committee must approve a summary of what is to be told to each
subject; the summary statement must also be signed at the time of oral ex-
planation by the person obtaining the informed consent, and by the
auditor-witness who thus agrees that these elments of explanation were in-
deed stated to the subjects. The DHEW requires that copies of the proposed
validation document and the summary document be submitted to this commitee
with the original application; and that signed copies for each subject be
kept in the permanent files of the investigation (please see sample docu-
ments attached to the Informational Memorandum).The DHEW requires that
copies of all such documents signed by individuals referred to above be kept
in the permanent files of the investigation. This will include the standard
informed consent document referred to in Paragraph I above, as well as the
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oral validation document and the summary document referred to in paragraph
II. For further information regarding such documents, please see sample
documents attached to the Informational Memorandum.

In some situations, informed consent documentation will be unnecessary (use
of discarded blood or tissue samples, for instance); or self-defeating (cer-
tain psychological studies involving intentional deception); or impossible
(record searchs, use of stored data). In a case of any deception, debrief-
ing mechanisms must be acceptable before the aproval of an application may
be completed. The committee expects that the investigators will notify the
committee if any hazards develop in excess of those anticipated.
Informed consent document attached.

Principal Investigator Date

Department Head Date

Approved COUHES Date

For projects to be conducted under the auspices of the Clinical Research
Center
Clinical Research Center Policy Committee Date
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Protocol 1496

INFORMED CONSENT STATEMENT

Experiment description:

1. The subject is electroded. Four standard EMG electrodes are placed on
the subject's neck (two on each side on the sternocleidomastoideus muscle)
and a ground electrode is placed over the collarbone, after cleaning with an
alcohol swab. (If contact lenses are being used, the subject places the
lens in his eye and irrigates the eye with distilled water to ensure lens
adherence.)

2. The subject is positioned in the dome, using a specially prepared bite-
board which fits into an intrumented holder. The camera is focussed, elec-
trode leads attached, and the subject is reminded of the instructions con-
cerning the joystick.

3. Six one-minute runs at various combinations of the three dome speeds
(30, 45, and 60 deg) and the two directions (clockwise and counterclockwise)
are then performed under microprocessor control. A test conductor is
present at all times. The subject may egress the upright dome at any time.
The test conductor is available to assist subject egress from the supine
dome, if for any reason the subject wishes to discontinue the experiment.

4. The subject is given a few minutes to rest.

5. Step three is repeated using a different order of presentation.

6. The subject's electrodes are removed and the skin is again wiped with an
alcohol swab to prevent any chance of irritation. (Subject removes contact
lens, if used.)

Possible hazards: Lenses may cause a slight mechanical irritation of the
cornea and'conjunctiva associated with the lens insertion until the subjects
are sufficiently practiced in the technique. Lenses will be fit under the
direction of an ophthalmologist and the subjects will be instructed and
aided in learning the techniques associated with lens insertion. To avoid
any contamination of the pre and post flight lenses, which are reused, these
lenses are thoroughly cleansed and disinfected prior to each test session.
Consent: I understand that I will take part in an experiment to measure
the effects of visual stimulation on my perception of self-motion. During
this experiment, EMG electrodes will be placed on my neck and shoulder and I
will bite on a specially prepared biteboard while viewing a rotating visual
display. I understand that I will view the display while standing upright
and/or while lying on my back. I understand that I will be asked to indi-
cate my perception of self-rotation or tilt by means of a potentiometer
knob. I understand that I may become a bit disoriented by viewing the dis-
play.

I understand that I am free to ask questions at any time during the expe-
riment and that I am free to withdraw from participation at any time.
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In the unlikely event of physical injury resulting from participation in
this research, I understand that medical treatment will be available from
the MIT Medical Department, including first aid, emergency treatment and
follow-up care as needed, and that my insurance carrier may be billed for
the cost of such treatment. However, no compensation can be provided for
medical care apart from the foregoing. I further understand that making
such medical treatment available, or providing it, does not imply that such
injury is the investigator's fault. I also understand that by my participa-
tion in this study I am not waiving any of my legal rights.*

I understand that I may also contact the Chairman of the Committee on the
Use of Humans as Experimental Subjects, Dr. George Wolf (MIT 56-213, 253-
6781), if I feel I have been treated unfairly as a subject."

I agree to participate in this experiment.

Signed:

Date:

Witness:

*Further information may be obtained by calling the Institute's Insurance
and Legal Affairs Office at 253-2822.
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Application Number

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Committee on the Use of Humans as Experimental Subjects

APPLICATION FOR APPROVAL TO USE HUMANS AS EXPERIMENTAL SUBJECTS

PART I.

TITLE OF STUDY: Visual Vestibular Interaction

PRINCIPAL INVESTIGATOR: C.M. Oman, L.R. Young Dept. A&A
Room 37-211
Telephone 3-7508

ASSOCIATED INVESTIGATORS: Conrad Wall, Ph.D., Mass Eye and Ear Infirmary

Collaborating Institution(s), if applicable: Mass Eye and Ear Institute
(Please attach copies of approval documents or correspondence from
collaborating institution(s) where applicable.)

FINANCIAL SUPPORT: (Research grant title, agency and award number, if any.

If not applicable, please indicate how project will be financed.)

NASA Ames Research Center NAG2-445

PURPOSE OF STUDY: (Please provide a concise statement of the background,
nature and reasons for the proposed study.)

Human visual-vestibular interaction will be investigated by studying eye
movements and perception of self-motion. The experiments will emphasize
vertical eye movements and ocular torsion in conjunction with vertical
linearvection. Motions which stimulate the utricular or saccular otolith
organs will be combined with corresponding wide field motion displays
capable of producing optokinetic nystagmus and self-motion illusions. The
experiments utilize our linear acceleration sled.

This research concerns human visual vestibular interaction with emphasis
on stimulation in the vertical and longitudinal axes. The measurements
will be psychophysical estimates of vection and objective measurements of
ocular torsion and vertical eye movements. We will utilize our linear
"sled" to produce horizontal longitudinal linear acceleration for
comparison with horizontal lateral acceleration. Measurements of vertical
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eye movements for z-axis acceleration, in comparison with lateral eye
movements for y-axis acceleration, with and without confirming and
conflicting visual wide field stimuli, will be made in conjunction with
subjective estimations of self-motion. This set of experiments will
permit us to delineate between linear acceleration effects on eye
movements and affects on motion perception when the stimulus is primarily
along the presumed axis of sensitivity of the saccular otolith organ.

Part II.

EXPERIMENTAL PROTOCOL: Please provide an outline of the actual
experiments to be performed, including, where applicable, detailed
information as to exact dosages of drugs and chemicals to be used, total
quantity of blood samples to be drawn, nature of any special diets,
physical or emotional stress, and the appropriate protective measures you
are planning to take.

For applications in the social sciences, please provide a detailed
description of your proposed study, and include a copy of any
questionnaire you plan to incorporate into your project. If your study
involves interviews, please submit an outline indicating the types of
questions you will include.

If convenient, you may attach photocopies of material from previously-sub-
mitted proposals, etc.; however, please try to avoid submitting extraneous
material, such as grant applications in their entirety.

The ultimate goals of these experiments are to quantitatively describe the
transfer functions of both the utricular and saccular otolithic and opto-
kinetic torsion systems and to understand their interactions when
suppressive and conflicting visual/motion conditions are produced.

Torsion eye movements will be measured using the magnetic search coil
method described below. The coils used to generate the external magnetic
field will be mounted on the sled. He will wear either a commercial
Skalar lenses or the coil lenses described below. The subject will be
secured in the sled by shoulder and lap seatbelts and his head will be
held in position by a bite-bar and wood/foam head restraint. Sinusoidal
and step profiles will be the motion stimuli.

The proposed experiments on linear visual-vestibular interaction emphasize
the differences between Z-axis optokinetic and vestibular responses and
the corresponding Y-axis responses. For all of the experiments in the
series two kinds of measurements are taken: eye movements along the axis
of stimulation and subjective magnitude estimation of body velocity. The
experiments will begin with simple tests of pure optokinetic and pure
inertial stimuli, in Z and Y axes, followed by interactive experiments
with confirming and conflicting visual and vestibular stimuli.
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The principal motion stimulus will be provided by the MIT Sled, a rail
mounted linear acceleration cart designed by Lichtenberg (1979) and
modified by Loo (1980) and by Arrott (1982). In the most closely related
work, using measurements of motion perception and of eye movements, it was
employed for the normative studies supporting our Spacelab-1 pre and post
flight vestibular assessments, and in the lateral visual-vestibular
interaction perception experiments (Huang, 1983). The seat can be
positioned to allow X, Y or Z axis motion of the subject along the
horizontal rails. The cart is controlled by a pre-tensioned cable wound
around a pulley at one end and a winch at the other. Power is supplied
through a 3.5 hp DC permanent magnet torque motor controlled by a
pulse-width modulated velocity control. Sled motion as well as data
logging is under the control of a PDP 11/34 microcomputer and Lab
Peripheral System. An interactive FORTRAN program provides real time
control of cart motion profiles and provides supervisory control and one
level of safety devices (Arrott, 1985). A dedicated microcomputer (PC
type) will be programmed to take over this function. This should further
increase the reliability of the system. Current motion profiles provide
for single sinusoids, sum of sines, constant accelerations, subthreshold
positioning, frequency sweep, and subject control of cart velocity. The
envelope of sled motion is determined by its length (4.7 m), maximum
acceleration (0.8 g) and bandwidth (7 Hz,).

Visual stimulus for our visual-vestibular interaction experiments has, in
the past, been provided through a point-light source, moving film strip
system which reflected from a long mirror to a rear projection screen
attached to the sled cart (Huang, 1983). In order to provide a flexible
moving field linear display which could be mounted to the cart for z-axis
(subject supine) as well as y-axis acceleration, we recently developed a
new mechanical stimulator. This "window shade" device (Vargas, 1985)
provides computer controlled linear acceleration of a 47.5 x 47.5 cm
screen placed 47.5 cm from the subject, and will be our primary source for
optokinetic and linear VVI experiments in conjunction with the sled. A
drawing of the windowshade attachment is enclosed.

Eye movements will be measured both by means of the coil system and
standard electro-oculography, using our own dc-coupled, high input
impedance amplifiers and pregelled infant EOG electrodes. We record EOG
binocularly for horizontal eye movements and have determined that, for
normal subjects, vergence eye movements and lack of conjugate gaze is not
a problem. By using pre-experiment time for dark adaptation and electrode
stabilization, we can achieve stable recordings requiring only pre and
post-test calibration. Three distinct types of lateral or vertical eye
movements are encountered during linear body acceleration in the dark, as
opposed to the simple OKN seen for field motion. The eye movement pattern
may be nystagmoid, a smooth pendular response, or highly irregular. In
all cases the EOG records are inspected and then "desaccaded" by computer
(Massoumnia, 1983) to produce the cumulative slow phase eye position and
slow phase velocity (SPV).
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The scleral search coil method of measuring eye movements uses two sets of
coils. One or more pairs of transmitter coils surrounds the subject's
head and transmit an electromagnetic field that is designed to be uniform
in the area of the subject's eye. Another set of receiving coils is
temporarily attached to the subject's eye via a silastic rubber annulus
and move with the eye. Eye movements are detected and measured by
electrically comparing the received signals to the transmitted signals.
Properly selected combinations of coils allow for measurement of
horizontal, vertical, and torsional eye movement components. The scleral
search coil method will be the primary means to measure ocular torsion and
will also be useful in assessing vertical eye movements. The C&C search
coil system will be specifically designed for use with our sled. Phase
detector sensors will be provided to measure horizontal, vertical and
torsional eye movements simultaneously. The Skalar medical torsion coil
annulus may be used. The procedures recommended by Skalar Medical for
safe use and installation of the coil annulus will be followed. Care will
be taken to limit the time that the annulus is worn by the subject to a
maximum of 30 minutes. Since the coils are relatively expensive and can
be re-used, they will be disinfected and stored in accordance with the
Skalar Medical procedure. This procedure has been approved by the
National Institutes of Health and the Center for Disease Control. Subject
calibration for this system will be provided by a calibration fixture
which comes with the C&C search coil system.

The sequence of visual-vestibular interaction experiments begins with pure
visual (optokinetic) stimuli, comparing vertical eye movements and linear-
vection to lateral (horizontal) responses for subjects supine and erect.
The next step will be pure vestibular experiments on the sled, in
darkness, comparing z-axis to y-axis horizontal acceleration conditions.
Finally, visual and vestibular conditions will be combined by putting the
linear "window shade" on the sled.

For each condition there will be three basic stimulus profiles: steps of
constant velocity, sines of constant peak velocity covering the range of
frequencies, and pseudorandom sums of 25 sinusoids. Both the eye movement
and the subjective velocity measurements will be analyzed using linear
systems analysis techniques to extract the gain and phase of the response
velocity relative to the stimulus velocity. For the case of vertical
motions, particular attention will be paid to up-down asymmetries, which
will necessitate separate consideration of upward and downward phases of
eye and self-motion velocity indications. For the sines and pseudo-random
signals, we use FFT analysis of self velocity and cumulative slow phase
velocity to calculate the frequency response, harmonics, and remnant.

For these linear visual-vestibular interaction experiments, we plan to use
the same four combinations of stimuli which have proven effective in the
development of models for VVI about the angular axes. The first is the
countermotion (CON) condition, in which the visual field moves opposite to
the sled, at the same speed, so that it represents the fixed laboratory
environment and the optokinetic and vestibular drives are consistent. The
second condition is the fixed (FIX) visual field, which provides for
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visual suppression of vestibular nystagmus and inhibition of vection, but
which also promotes the oculogravic illusion. The third condition is
constant velocity (CV) field motion, independent of the sled motion. The
last condition is the dual random input stimulus in which independent
pseudorandom inputs of different frequency content are presented to the
sled motion drive and to the visual velocity drive to enable calculation
of the subject's dual input describing function (DIDF). This technique
has proven very valuable when used with closed loop velocity nulling by
the subject in yaw (Zacharias and Young, 1981, Huang and Young 1985a), but
has been difficult to implement for linear acceleration studies (Hiltner,
1983, Huang, 1983.)

For the static visual stimulation experiments, the subject's head will be
fixed by the helmet we also use in the sled experiments or the subject
will be provided with a personal biteboard. Following calibration with
fixed 15 degree targets the subject will be instructed to stare ahead to
generate "stare nystagmus" as opposed to tracking nystagmus. The vertical
EOG calibration problem will be dealt with by a separate investigation of
each subject in which voluntary fixation and vertical saccades will be
monitored by EOG and the coil system and the extent of the correction
noted. Pattern movements for constant velocity steps are anticipated to
be of 20 second durations at five' speeds in each direction,
logarithmically spaced between 1 cm/sec and 1 m/sec. Sines will also be
logarithmically spaced between 0.02 Hz and 2.0 Hz, with a peak velocity of
50 cm/sec. The pseudorandom signal will consist of 25 sines between 0.02
Hz and 1.25 Hz. The pure vestibular linear acceleration tests on the sled
will follow a similar pattern, limited only by the performance envelope of
the device. The sled has been safety rated up to 1.0 g's for subject
erect (y-axis) and subject supine (z-axis). The combined visual and
vestibular stimuli are conducted on the sled with the moving visual field
device attached.

The total number of subjects to be used in each test series depends, of
course, on the stability of the measurements and the inter-subject variab-
ility. Based upon our experience over the course of many years, we esti-
mate that at least six subjects will be required for each of the
subjective estimation tests, but that 10-15 subjects will be required to
obtain reliable patterns of linear acceleration induced eye movements.
Since so many of the tests involve comparison between conditions, subjects
will be selected from within the Laboratory's population of students and
staff, who will be willing to commit to a long duration study with
numerous retests over the course of several years. Order effects will be
taken into account in the experimental design for each comparison, such as
y-axis vs. z-axis.
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PART III. Please answer all questions and indicate NA where not
applicable. Positive answers should be briefly explained, with detailed
information included in Part II.

1. How will subjects be obtained? Word-of-mouth
Number of subjects needed? 20
Age(s) of subjects? > 18

2. Will subjects receive any payment or other compensation for
participation? Yes

3. Will your subjects be studied outside MIT premises? No.
If so, please indicate location.

4. Will the facilities of the Clinical Research Center be used? No.
If so, the approval of the CRC Policy Committee is also required.

For proposed investigations in social sciences, management, and other
non-biomedical areas, please continue with question 9.

5. Will drugs be used? No.
Any Investigational New Drugs (IND)?

6. Will radiation or radioactive materials be employed? No.
If so, your study must also be approved by the Committee on Radiation
Exposure to Human Subjects. Application forms are available from Mr.
Francis X. Masse, Radiation Protection Office, 20B-238, x3-2180 or
18-3212.

7. Will special diets be used? If so, please state proposed duration(s).
No.

8. Will subjects experience physical pain or stress? No.

9. Will a questionnaire be used? No.
If so, please attach a copy.

10. Are personal interviews involved? No.
If so, include an explanation in Part II and attach an outline.

11. Will subjects experience psychological stress? No.

12. Does this study involve planned deception of subjects? No.

13. Can information acquired through this investigation adversely
affect a subject's relationship with other individuals (e.g.
employee-supervisor, patient-physician, student-teacher, co-
worker, family relationships)? No.

14. Please explain how subject's anonymity will be protected and/or
confidentiality of data will be preserved.

Subjects will be referred to only by codes.
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PART IV.

A. Please summarize the risks to the individual subject, and the
benefits, if any; include any possible risk of invasion of
privacy, embarrassment or exposure of sensitive or confidential
data, and explain how you propose to deal with these risks.

Risks associated with the use of the Skalar search coil system: The
subject wears a very small coil that is completely imbedded in a
silicon rubber annulus and which is shaped to adhere to the limbus of the
eye. There is a 12.5 mm central hole in the annulus so that vision is
not occluded. The manufacturer of the annulus has developed procedures
for the safe insertion of the coil and also for cleaning, disinfecting
and storing the coils. These procedures will be adhered to in the
measurement protocol. Personnel who insert the coil will be approved in
writing by a collaborating ophthalmologist or doctor of optometry. A 30
minute guideline for maximum wearing of the search coil will be
adhered to as mentioned in the manufacturer's procedures.

Prior to insertion of the annulus, the eye will be briefly anes-
thetized by 1 or 2 drops of a topical ophthalmic anesthesia such as
Novosine (oxybuprocane 0.4%). The annulus will be removed from the
subject's eye in accordance with the recommended procedures. After
use, the annulus will be cleaned by, thorough rising in a stream of
lukewarm water and subsequently disinfected by immersion in fresh 3%
hydrogen peroxide for 10 minutes. This procedure is in agreement
with a recent guideline based on studies at the National Institutes
of Health and the Center for Disease Control. After the immersion,
there will be a second thorough rinsing with water and the device
will be air dried on tissue paper.

B. Detection and reporting of harmful effects: If applicable here,
please describe what follow up efforts will be made to detect
harm to subjects, and how this committee will be kept informed.

The probability of even a minor irritation to the eye is very low.
Investigators at other institutions (National Eye Institute, Johns
Hopkins University, UCLA) have found it to be less than one percent.
All subjects will be examined by an optometrist prior to participa-
ting in any experiments involoving lenses or annular rings.
In case of irritation, the subject's eye will be patched and treated
with an ophthalmologic topical antibiotic and then re-examined the
next day. The Committee will be informed in the event of any such
occurrences. These procedures have been carried out on 50-60
insertions of the lenses with subjects from Dr. Wall's laboratory
with only one case of minor irritation (see attached protocol from
MEEI).
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PART V.

INFORMED CONSENT MECHANISMS: The committee is mandated by the DHHS and
Institute regulations to require documentation of informed consent. Under
certain circumstances, the committee may waive documentation. The elements
of such informed consent are:

1. An instruction that the person is free to withdraw his/her
consent and to discontinue participation in the project or
activity at any time without prejudice to the subject.

2. A fair explanation of the procedures to be followed and their
purposes, including identification of any procedures which-are
experimental.

3. A description of any attendant discomforts and risks
reasonably to be expected.

4. A description of any benefits reasonably to be expected.

5. A disclosure of any appropriate alternative procedures that
might be advantageous for the subject.

6. An offer on the part of the investigator to answer any inqui-
ries concerning the procedures.

7. There shall be no exculpatory language making the subject seem
to waive any rights.

8. The following statement shall appear on all informed consent
documents, except that in certain cases of experiments in the
social sciences, management, or other non-biomedical discip-
lines, where it is clearly not applicable, it may be omitted.
COUHES, however, reserves the right to request that this para-
graph be included.

"In the unlikely event of physical injury resulting from participation in
this research, I understand that medical treatment will be available from
the MIT Medical Department, including first aid, emergency treatment and
follow-up care as needed, and that my insurance carrier may be billed for
the cost of such treatment. However, no compensation can be provided for
medical care apart from the foregoing. I further understand that making
such medical treatment available, or providing it, does not imply that such
injury is the investigator's fault. I also understand that by my participation
in this study I am not waiving any of my legal rights.

I understand that I may also contact the Chairman of the Committee on the
Use of Humans as Experimental Subjects (MIT, 253-6787), if I feel I have
been treated unfairly as a subject."

Consent forms in cooperating institutions must assure that the rights of
the subjects are protected at least to the same degree.

These elements should be clearly stated in a document to be signed by the
subject or a legally authorized representative in the case of minors or
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incompetent individuals. The material presented in such as document must
be in clear English, easily understandable to the least educated of sub-
jects. Diagrams or pictures may make such an exposition simpler to compre-
hend. Where minors are involved as subjects, due consideration should be
given to their capability to give consent. The Informed Consent document
should be signed by both the subject and parent and guardian wherever pos-
sible.

In the case of Questionnaires or Interviews, the Committee may decide that
a consent form is not required if the intent is merely to obtain the
requested information. However, it must be clear to the subject that:

- Participation is voluntary.

- The subject may decline to answer any questions.

The subject may decline further participation at any time without
prejudice.

- Confidentiality and/or anonymity are assured.

In addition:

No coercion to participate will be involved. For example,
handing out or collecting quxestionnaires personally may be so
interpreted.

The date collected will be reported in such a way that the
identity of individuals is protected.

Proper measures will be taken to safeguard the data.

Other examples of situations in which informed consent documentation is not
required include use of discarded blood, certain psychological studies
involving intentional deception or use of stored data. In a case of any
deception, debriefing mechanisms must be acceptable before the approval of
an application may be completed. The committee expects that the investigators
will notify the committee if any hazards develop in excess of those anticipated.

Principal Investigator Date

Department Head Date

Please return this application with 3 photocopies to COUHES Chairman, E23-
389, 253-6787
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INFORMED CONSENT STATEMENT

You have been asked to participate in an experiment aimed at better
understanding the visual, vestibular, and postural control systems. Your
participation is purely voluntary and you are free to withdraw at any time.
In the experiment, your entire visual field will be filled by a rotating
dome covered with dots. The experiment will be performed in either the
erect or supine position; your head will be fixed in place by a dental
biteboard. You will be asked to look at a moving visual display and to
indicate your perception of movement. At the end of the experiment, you
will be asked to discuss how you perceived various stages of the
experiment.

Please feel free to ask any questions you care to about the experiment.
While the dome is rotating, you may have the investigator stop it at any
time. If at any time you experience any discomfort or have any misgivings
about continuing the experiment, we ask that you tell us--we will stop the
test at any time you like.

Your eye movements will be measured using soft contact lens search coils,
the most accurate method available today. The cornea will be anesthetized
using eye drops. The anaesthetic used is proparacaine HC1. If you have
any allergies to this anaesthetic, you should withdraw from participation
in this experiment. The lens, in which a tiny search coil is embedded,
will be applied to your eye. This will be worn for no longer than thirty
minutes. Before application and after removal, your eyes will be examined
by an optometrist to rule out any possible corneal abrasion. There is a
less than one percent chance that the wearing of the soft contact lens may
cause a slight corneal abrasion. If this does occur, a prophylactic
antibiotic and covering will be applied overnight. Finally, we may also
record your eye movements using a small video camera with a low level light
source.

"In the unlikely event of injury resulting from participation in this
research, I understand that medical treatment will be available from the
MIT Medical Department, including first aid, emergency treatment and
follow-up care as needed, and that my insurance carrier may be billed for
the cost of such treatment. However, no compensation can be provided for
medical care apart from the foregoing. I further understand that making
such medical treatment available, or providing it, does not imply that such
injury is the investigator's fault. I also understand that by my
participation in this study I am not waiving any of my legal rights (for
more information, call the Institute's Insurance and Legal Affairs Office
at 253-2822). I understand that I may also contact the Chairman of the
Committee on the Use of Humans as Experimental Subjects, Dr. H. Walter
Jones (MIT E23-389, 253-6787), if I feel I have been treated unfairly as a
subject."

I have been informed as to the procedures and purpose of this experiment
and agree to participate.

Signed:

Date:

Witness:
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APPENDIX D: DATA PARAMETERS

The data parameters for each experimental trial are summarized in 7 tables:

1. Individual trial information

2. OKN SPV data

3. OKN SPV data: vection vs. no vection

4. Eye position data

5. Eye position data: vection vs. no vection

6. OKAN SPV: double exponential fits

7. Vection parameters

A plot of a typical vection response is included for each subject.
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Table D.1. Individual trial information. Trial presentation order for each
experimental run.

This table contains the following:

1. Subject: subject code letter (M - S)

2. Run #: run in order performed

3. Orientation: subject orientation (erect or supine)

4. Post-rotation condition: visual field presented following dome rotation
*LED--fixation point in darkness (designated as LED #1 and LED #2 if two such
runs were performed)

edark--complete darkness
*light--lighted dome provided a stationary visual field

5. Trial #: trial order with a single run

6. Dome direction: CW or CCW from subject's point of vies

8. Dome speed: negative values indicate CCW rotation
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Dome run information

Subject Run # Orientation Post-rotation Trial # Dome Dome
condition direction speed

deg/sec

Subject Run # Orientation Post-rotation Trial # Dome Dome
condition direction speed

deg/sec

M 1 erect LED 1 CW 30.0
M 1 erect LED 2 CCW -45.0
M 1 erect LED 3 CCW -60.0
M 1 erect LED 4 CW 45.0
M 1 erect LED 5 CCW -30.0
M 1 erect LED 6 CW 60.0
M 2 erect light 1 CW 30.0
M 2 erect light 2 CCW -45.0
M 2 erect light 3 CCW -60.0
M 2 erect light 4 CW 45.0
M 2 erect light 5 CCW -30.0
M 2 erect light 6 CW 60.0
M 3 supine LED #1 1 CCW -56.2
M 3 supine LED #1 2 CCW -56.2
M 3 supine LED #1 3 CCW -56.2
M 3 supine LED #1 4 CCW -21.2
M 3 supine LED #1 5 CW 41.5
M 3 supine LED #1 6 CCW -41.5
M 4 supine LED #2 1 CW 20.5
M 4 supine LED #2 2 CCW -21.2
M 4 supine LED #2 3 CCW -41.5
M 4 supine LED #2 4 CW 41.2
M 4 supine LED #2 5 CW 72.3
M 4 supine LED #2 6 CW 56.0
M 4 supine LED #2 7 CCW -72.7
M 4 supine LED #2 8 CCW -56.4
M 5 supine light 1 CW 21.4
M 5 supine light 2 CCW -21.7
M 5 supine light 3 CCW -42.0
M 5 supine light 4 CW 41.5
M 5 supine light 5 CCW -72.0
M 5 supine light 6 CW 55.7
M 5 supine light 7 CW 72.6
M 5 supine light 8 CCW -56.8
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Dome run information

Subject Run # Orientation Post-rotation Trial # Dome Dome
condition direction speed

.. , deg/sec

Subject Run # Orientation Post-rotation Trial # Dome Dome
condition direction speed

deg/sec

N 1 erect LED #1 1 CCW -14.5
N 1 erect LED #1 2 CW 13.9
N 1 erect LED #1 3 CCW -29.6
N 1 erect LED #1 4 CW 29.5
N 2 erect LED #2 1 CCW -14.4
N 2 erect LED #2 2 CW 14.4
N 2 erect LED #2 3 CCW -29.7
N 2 erect LED #2 4 CW 29.5
N 2 erect LED #2 5 CCW -59.5
N 2 erect light 6 CW 44.6
N 2 erect LED #2 7 CW 59.5
N 2 erect LED #2 8 CCW -45.2
N 3 erect dark 1 CW 29.8
N 3 erect dark 2 CCW -59.8
N 3 erect dark 3 CCW -14.8
N 3 erect dark 4 CW 44.8
N 4 supine LED 1 CW 30.1
N 4 supine LED 2 CCW -60.0
N 4 supine LED 3 CCW -15.5
N 4 supine LED 4 CW 45.4
N 4 supine LED 5 CW 15.4
N 4 supine LED 6 CCW -30.8
N 4 supine light 7 CW 60.2
N 4 supine LED 8 CW 45.8
N 5 supine dark 1 CCW -15.9
N 5 supine dark 2 CW 15.4
N 5 supine light 3 CCW -30.9
N 5 supine dark 4 CW 30.5
N 5 supine dark 5 CCW -60.2
N 5 supine dark 6 CW 45.7
N 5 supine light 7 CW 60.3
N 5 supine dark 8 CCW -46.1
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Dome run information

Subject Run # Orientation Post-rotation Trial # Dome Dome
condition direction speed

deg/sec

Subject Run # Orientation Post-rotation Trial # Dome Dome
condition direction speed

deg/sec

O 1 erect LED 1 CW 29.8
O 1 erect LED 2 CCW -59.6
0 1 erect LED 3 CCW -14.7
O 1 erect LED 4 CW 44.8
O 1 erect LED 5 CW 14.9
O 1 erect LED 6 CCW -30.0
O 1 erect LED 7 CW 59.8
O 1 erect LED 8 CCW -45.4
O 2 erect dark 1 CCW -29.3
O 2 erect dark 2 CW 59.2
O 2 erect dark 3 CCW -14.5
O 2 erect dark 4 CW 44.8
O 2 erect dark 5 CW 14.6
O 2 erect dark 6 CW 30.0
O 2 erect dark 7 CCW -59.8
O 2 erect dark 8 CCW -45.3
O 3 erect light 1 CCW -14.5
O 3 erect light 2 CW 14.2
O 3 erect light 3 CCW -29.8
0 3 erect light 4 CW 29.8
O 3 erect light 5 CCW -59.8
O 3 erect light 6 CW 44.8
O 3 erect light 7 CW 59.7
O 3 erect light 8 CCW -45.4
0 4 supine LED 1 CCW -15.3
O 4 supine LED 2 CW 15.3
O 4 supine LED 3 CCW -30.3
O 4 supine LED 4 CW 29.9
O 4 supine LED 5 CW 29.7
O 4 supine LED 6 CCW -59.8
O 4 supine LED 7 CCW -15.2
O 4 supine LED 8 CW 45.3
O 5 supine dark 1 CW 15.5
O 5 supine dark 2 CCW -30.5
O 5 supine dark 3 CW 60.0
O 5 supine dark 4 CCW -45.9
O 5 supine dark 5 CW 30.8
0 5 supine dark 6 CCW -60.4
O 5 supine dark 7 CCW -15.6
0 5 supine dark 8 CW 45.7
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Dome run information

Subject Run # Orientation Post-rotation Trial # Dome Dome
condition direction speed

deg/sec

Subject Run # Orientation Post-rotation Trial # Dome Dome
condition direction speed

deg/sec

P 1 erect LED 1 CW 29.5
P 1 erect LED 2 CCW -59.6
P 1 erect LED 3 CCW -14.6
P 1 erect LED 4 CW 44.8
P 1 erect LED 5 CW 14.8
P 1 erect LED 6 CCW -30.1
P 1 erect LED 7 CW 59.8
P 1 erect LED 8 CCW -45.4
P 2 erect dark 1 CCW -14.8
P 2 erect dark 2 CW 14.7
P 2 erect dark 3 CCW -30.2
P 2 erect dark 4 CW 30.0
P 2 erect dark 5 CCW -60.0
P 2 erect dark 6 CW 45.2
P 2 erect dark 7 CW 60.1
P 2 erect dark 8 CCW -45.5
P 3 supine LED 1 CCW -14.8
P 3 supine LED 2 CW 14.2
P 3 supine LED 3 CW 29.0
P 3 supine light 4 CCW -58.9
P 3 supine LED 5 CCW -14.8
P 3 supine LED 6 CW 44.2
P 3 supine LED 7 CW 14.7
P 3 supine LED 8 CCW -29.9
P 4 supine dark 1 CW 59.2
P 4 supine dark 2 CCW -45.1
P 4 supine dark 3 CW 29.8
P 4 supine dark 4 CCW -59.5
P 4 supine dark 5 CCW -15.1
P 4 supine dark 6 CW 44.8
P 4 supine dark 7 CW 15.2
P 4 supine dark 8 CCW -30.4
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Dome run information

Subject Run # Orientation Post-rotation Trial # Dome Dome
condition direction speed

deg/sec

Subject Run # Orientation Post-rotation Trial # Dome Dome
condition direction speed

Q 1 erect LED 1 CCW -14.5
Q 1 erect LED 2 CW 14.1
Q 1 erect LED 3 CCW -29.7
Q 1 erect LED 4 CW 29.6
Q 1 erect LED 5 CCW -59.8
Q 1 erect LED 6 CW 44.9
Q 1 erect LED 7 CW 59.9
Q 1 erect LED 8 CCW -45.4
Q 2 erect dark 1 CW 30.0
Q 2 erect dark 2 CCW -60.1
Q 2 erect dark 3 CCW -14.9
Q 2 erect dark 4 CW 44.9
Q 2 erect dark 5 CW 14.9
Q 2 erect dark 6 CCW -30.1
Q 2 erect dark 7 CW 60.0
Q 2 erect dark 8 CCW -45.7
Q 3 supine LED 1 CW 29.5
Q 3 supine LED 2 CCW -59.4
Q 3 supine LED 3 CCW -14.8
Q 3 supine LED 4 CW 44.6
Q 3 supine LED 5 CW 14.8
Q 3 supine LED 6 CCW -30.3
Q 3 supine LED 7 CW 59.7
Q 3 supine LED 8 CCW -45.5
Q 4 supine dark 1 CCW -15.3
Q 4 supine dark 2 CW 15.1
Q 4 supine dark 3 CCW -30.4
Q 4 supine dark 4 CW 29.7
Q 4 supine dark 5 CCW -59.9
Q 4 supine dark 6 CW 44.9
Q 4 supine dark 7 CW 60.0
Q 4 supine dark 8 CCW -45.8
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Dome run information

Subject Run # Orientation Post-rotation Trial # Dome Dome
condition direction speed

deg/sec

Subject Run # Orientation Post-rotation Trial # Dome Dome
condition direction speed

deg/sec

R 1 erect LED 1 CW 29.4
R 1 erect LED 2 CCW -59.7
R 1 erect LED 3 CCW -14.4
R 1 erect LED 4 CW 44.6
R 1 erect LED 5 CW 14.6
R 1 erect LED 6 CCW -30.2
R 1 erect LED 7 CW 59.7
R 1 erect LED 8 CCW -45.6
R 2 erect dark 1 CCW -14.9
R 2 erect dark 2 CW 14.5
R 2 erect dark 3 CCW -30.3
R 2 erect dark 4 CW 29.7
R 2 erect dark 5 CCW -60.1
R 2 erect iht 6 CW 44.9
R 2 erect dark 7 CW 60.1
R 2 erect dark 8 CCW -45.6
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Dome run information

Subject Run # Orientation Post-rotation Trial # Dome Dome
condition direction sped

deg/sec

Subject Run # Orientation Post-rotation Trial # Dome Dome
condition direction speed

deg/sec

S 1 erect LED 1 CCW -14.8
S 1 erect LED 2 CW 14.2
S 1 erect LED 3 CCW -29.9
S 1 erect LED 4 CW 29.4
S 1 erect LED 5 CCW -59.8
S 1 erect LED 6 CW 44.9
S 1 erect LED 7 CW 59.9
S 1 erect LED 8 CCW -45.6
S 2 erect dark 1 CW 30.0
S 2 erect dark 2 CCW -60.3
S 2 erect dark 3 CCW -15.1
S 2 erect dark 4 CW 45.2
S 2 erect dark 5 CW 15.0
S 2 erect dark 6 CCW -30.5
S 2 erect dark 7 CW 59.9
S 2 erect dark 8 CCW -45.8
S 3 supine LED 1 CW 29.7
S 3 supine LED 2 CCW -59.7
S 3 supine LED 3 CCW -15.2
S 3 supine LED 4 CW 45.0
S 3 supine LED 5 CW 15.3
S 3 supine LED 6 CCW -30.5
S 3 supine LED 7 CW 60.0
S 3 supine LED 8 CCW -45.7
S 4 supine dark 1 CCW -15.6
S 4 supine dark 2 CW 15.3
S 4 supine dark 3 CCW -30.6
S 4 supine dark 4 CW 30.1
S 4 supine dark 5 CCW -60.2
S 4 supine dark 6 CW 45.3
S 4 supine dark 7 CW 60.2
S 4 supine dark 8 CCW -46.0
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Table D.2. OKN SPV data. SPV and SPV gain parameters for each trial.

1. Max SPV: maximum SPV during dome rotation calculated using the mean SPV for
each individual slow phase.

2. Mean SPV: mean SPV calculated over entire period of dome rotation

3. St. dev. SPV: standard deviation of the SPV over period of dome rotation

4. Mean SPV gain: mean SPV gain calculated by dividing mean SPV by dome speed.

5. St. dev. SPV gain: standard deviation of SPV gain
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OKN SPV data

ubject Run # trial max. max. mean st. dev. mean st. dev.
SPV SPV gain SPV SPV SPV gain SPV gain

deg/sec deg/sec deg/sec

M 1 1 7.49 0.249 2.55 1.65 0.085 0.055
M 1 2 -4.88 0.109 -1.70 1.08 0.038 0.024
M 1 3 -4.88 0.082 -1.94 1.39 0.032 0.023
M 1 4 7.63 0.170 3.34 1.72 0.074 0.038
M 1 5 -4.87 0.162 -1.73 1.05 0.058 0.035
M 1 6 8.31 0.138 2.89 1.69 0.048 0.028
M 2 1 5.50 0.183 2.18 1.13 0.073 0.038
M 2 2 -4.02 0.089 -1.41 1.04 0.031 0.023
M 2 3 -6.29 0.105 -1.97 1.47 0.033 0.025
M 2 4 8.87 0.197 3.02 1.80 0.067 0.040
M 2 5 -3.29 0.110 -1.62 0.88 0.054 0.029
M 2 6 13.64 0.228 3.01 1.97 0.050 0.033
M 3 1 -3.93 0.070 -1.67 1.21 0.030 0.021
M 3 2 -6.91 0.123 -1.99 1.59 0.035 0.028
M 3 3 -6.89 0.123 -2.44 1.67 0.043 0.030
M 3 4 -4.55 0.214 -1.66 1.32 0.078 0.062
M 3 5 10.81 0.260 4.00 1.98 0.096 0.048
M 3 6 -4.88 0.118 -1.82 1.39 0.044 0.034
M 4 1 7.13 0.345 2.10 1.40 0.103 0.068
M 4 2 -5.48 0.260 -1.67 1.41 0.079 0.066
M 4 3 -6.50 0.158 -2.57 1.71 0.062 0.041
M 4 4 12.08 0.293 4.80 2.11 0.117 0.051
M 4 5 13.50 0.196 6.25 2.60 0.086 0.036
M 4 6 11.99 0.214 3.99 2.17 0.071 0.039
M 4 7 -9.66 0.140 -3.30 1.96 0.045 0.027
M 4 8 -8.14 0.144 -3.26 1.84 0.058 0.033
M 5 1 7.28 0.339 3.11 1.57 0.146 0.073
M 5 2 -5.16 0.239 -1.88 1.31 0.086 0.060
M 5 3 -8.08 0.192 -2.43 1.50 0.058 0.036
M 5 4 7.89 0.189 2.77 1.60 0.067 0.039
M 5 5 -7.40 0.099 -2.63 1.61 0.037 0.022
M 5 6 8.56 0.159 2.73 1.81 0.049 0.032
M 5 7 11.13 0.162 2.78 2.30 0.038 0.032
M 5 8 -5.86 0.102 -2.61 1.37 0.046 0.024
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OKN SPV data

ubject Run # trial max. max. mean st. dev. mean st. dev.
SPV SPV gain SPV SPV PV gain SPV gain

deg/sec deg/sec deg/sec

N 1 1 -5.68 0.389 -2.29 1.39 0.158 0.095
N 1 2 6.88 0.532 3.60 1.36 0.259 0.098
N 1 3 -6.17 0.208 -3.56 1.52 0.120 0.051
N 1 4 6.92 0.236 4.59 1.45 0.156 0.049
N 2 1 -6.26 0.428 -2.76 1.53 0.192 0.106
N 2 2 6.96 0.505 3.94 1.48 0.274 0.103
N 2 3 -8.33 0.281 -3.44 1.90 0.116 0.064
N 2 4 7.25 0.248 3.84 1.64 0.130 0.056
N 2 5 -8.53 0.153 -4.87 1.74 0.082 0.029
N 2 6 7.95 0.180 4.88 1.99 0.109 0.045
N 2 7 8.48 0.153 3.88 1.79 0.065 0.030
N 2 8 -6.16 0.136 -3.19 1.85 0.071 0.041
N 3 1 6.53 0.220 3.31 1.48 0.111 0.050
N 3 2 -9.14 0.164 -3.46 1.93 0.058 0.032
N 3 3 -4.56 0.311 -2.27 1.36 0.153 0.092
N 3 4 10.86 0.243 3.59 1.65 0.080 0.037
N 4 1 5.58 0.185 3.32 1.17 0.111 0.039
N 4 2 -8.74 0.157 -3.91 1.55 0.065 0.026
N 4 3 -4.88 0.315 -2.05 0.99 0.133 0.064
N 4 4 5.16 0.113 3.38 1.11 0.075 0.024
N 4 5 3.21 0.207 2.27 1.25 0.147 0.081
N 4 6 -6.38 0.206 -2.88 1.54 0.094 0.050
N 4 7 4.34 0.073 2.84 1.26 0.047 0.021
N 4 8 6.62 0.145 2.48 1.44 0.054 0.031
N 5 1 -4.46 0.280 -2.47 1.19 0.156 0.075
N 5 2 3.32 0.214 2.04 0.83 0.132 0.054
N 5 3 -3.34 0.107 -1.86 1.29 0.060 0.042
N 5 4 3.98 0.131 2.47 1.63 0.081 0.054
N 5 5 -5.25 0.087 -2.58 1.27 0.043 0.021
N 5 6 5.53 0.120 2.53 1.35 0.055 0.030
N 5 7 5.00 0.084 2.52 0.99 0.042 0.016
N 5 8 -3.46 0.074 -1.46 1.59 0.032 0.035
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OKN SPV data

ubject Run # trial max. max. mean st. dev. mean st. dev.
SPV SPV gain SPV SPV SPV gain SPV gain

deg/sec deg/sec deg/sec

O 1 1 8.57 0.284 4.30 1.95 0.144 0.065
O 1 2 -8.26 0.138 -5.01 2.20 0.084 0.037
O 1 3 -4.06 0.278 -3.00 1.74 0.205 0.118
O 1 4 14.17 0.314 5.53 2.51 0.123 0.056
O 1 5 6.86 0.497 2.99 1.98 0.201 0.133
O 1 6 -4.13 0.139 -2.56 1.65 0.085 0.055
O 1 7 10.11 0.169 5.41 2.74 0.091 0.046
O 1 8 -9.41 0.208 -2.87 1.99 0.063 0.044
O 2 1 -5.29 0.179 -4.13 1.20 0.141 0.041
O 2 2 7.55 0.140 4.29 1.52 0.072 0.026
O 2 3 -3.56 0.244 -2.38 1.09 0.164 0.075
O 2 4 7.01 0.167 4.29 1.53 0.096 0.034
O 2 5 4.31 0.323 2.39 1.41 0.163 0.097
O 2 6 9.16 0.308 3.39 1.60 0.113 0.053
O 2 7 -5.43 0.090 -3.80 1.10 0.064 0.018
O 2 8 -6.53 0.143 -4.20 1.49 0.093 0.033
O 3 1 -2.82 0.193 -1.60 2.41 0.110 0.166
O 3 2 5.79 0.408 1.71 1.79 0.120 0.126
O 3 3 -3.83 0.130 -1.63 2.87 0.055 0.096
O 3 4 12.89 0.441 3.11 3.32 0.104 0.111
O 3 5 -5.18 0.087 -2.43 3.48 0.041 0.058
O 3 6 9.53 0.211 4.05 3.59 0.090 0.080
O 3 7 15.78 0.263 4.57 3.62 0.077 0.061
O 3 8 -5.77 0.127 -2.24 3.31 0.049 0.073
O 4 1 -4.59 0.323 -2.87 0.91 0.187 0.059
O 4 2 2.98 0.198 1.32 0.98 0.087 0.064
O 4 3 -3.67 0.120 -2.63 0.80 0.087 0.026
O 4 4 5.17 0.180 2.47 1.21 0.083 0.040
O 4 5 5.42 0.188 2.09 1.38 0.070 0.047
O 4 6 -3.42 0.058 -2.17 0.94 0.036 0.016
O 4 7 -3.45 0.222 -1.26 0.71 0.083 0.047
O 4 8 9.41 0.206 1.72 1.95 0.038 0.043
O 5 1 2.24 0.153 0.99 0.91 0.064 0.059
O 5 2 -2.14 0.069 -0.82 0.78 0.027 0.025
O 5 3 7.11 0.118 1.99 1.44 0.033 0.024
O 5 4 -3.33 0.073 -0.97 1.13 0.021 0.025
O 5 5 4.62 0.151 1.80 1.15 0.059 0.037
O 5 6 -3.23 0.054 -1.60 0.93 0.026 0.015
O 5 7 -2.33 0.150 -1.17 0.71 0.075 0.046
O 5 8 6.97 0.152 4.03 1.43 0.088 0.031
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OKN SPV data

ubject Run # trial max. max. mean st. dev. mean st. dev.
SPV SPV gain SPV SPV SPV gain SPV gain

deg/sec deg/sec deg/sec

P 1 1 7.11 0.236 2.97 1.32 0.100 0.045
P 1 2 -9.00 0.150 -4.56 2.02 0.077 0.034
P 1 3 -7.87 0.538 -3.51 1.55 0.240 0.106
P 1 4 8.59 0.192 3.34 1.42 0.075 0.032
P 1 5 5.03 0.344 2.16 1.11 0.146 0.075
P 1 6 -9.71 0.327 -3.91 1.61 0.130 0.054
P 1 7 8.49 0.142 4.10 1.85 0.069 0.031
P 1 8 -11.91 0.263 -5.17 2.95 0.114 0.065
P 2 1 -8.00 0.546 -3.38 1.36 0.228 0.092
P 2 2 3.78 0.258 1.67 1.03 0.114 0.070
P 2 3 -11.41 0.379 -4.22 1.81 0.140 0.060
P 2 4 5.56 0.187 2.72 1.64 0.091 0.055
P 2 5 -12.20 0.202 -5.05 2.59 0.084 0.043
P 2 6 10.51 0.233 3.01 1.73 0.067 0.038
P 2 7 7.59 0.126 3.62 1.92 0.060 0.032
P 2 8 -9.66 0.213 -4.02 2.92 0.088 0.064
P 3 1 -8.52 0.566 -2.93 1.51 0.197 0.102
P 3 2 6.73 0.489 1.93 1.26 0.136 0.088
P 3 3 5.44 0.186 2.52 1.38 0.087 0.048
P 3 4 -9.29 0.157 -4.62 2.01 0.078 0.034
P 3 5 -7.74 0.529 -2.76 1.71 0.187 0.116
P 3 6 13.02 0.294 2.95 1.61 0.067 0.036
P 3 7 3.93 0.305 1.83 1.10 0.124 0.075
P 3 8 -8.14 0.270 -3.62 1.69 0.121 0.056
P 4 1 8.38 0.143 3.55 1.64 0.060 0.028
P 4 2 -8.69 0.193 -3.57 2.16 0.079 0.048
P 4 3 5.38 0.182 2.10 1.37 0.071 0.046
P 4 4 -10.44 0.176 -4.27 1.79 0.072 0.030
P 4 5 -8.11 0.538 -2.77 1.51 0.184 0.100
P 4 6 5.44 0.130 2.63 1.38 0.059 0.031
P 4 7 5.36 0.346 2.12 1.59 0.139 0.105
P 4 8 -5.60 0.188 -2.76 1.66 0.091 0.055
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OKN SPV data

ubject Run # trial max. max. mean st. dev. mean st. dev.
SPV SPV gain SPV S PV gain SPV ga

deg/sec deg/sec deg/sec

Q 1 1 -2.41 0.164 -1.35 1.28 0.093 0.088
Q 1 2 3.79 0.267 1.93 1.87 0.137 0.132
Q 1 3 -3.76 0.126 -2.20 1.61 0.074 0.054
Q 1 4 4.72 0.157 2.50 1.31 0.084 0.044
Q 1 5 -7.96 0.133 -2.53 1.47 0.042 0.025
Q 1 6 5.64 0.133 2.66 1.50 0.059 0.033
Q 1 7 6.79 0.113 3.22 2.11 0.054 0.035
Q 1 8 -4.21 0.093 -2.31 1.59 0.051 0.035
Q 2 1 6.35 0.213 2.12 2.85 0.070 0.095
Q 2 2 -4.93 0.082 -2.66 2.44 0.044 0.041
Q 2 3 -2.84 0.194 -1.53 2.71 0.103 0.182
Q 2 4 4.94 0.110 2.67 1.66 0.059 0.037
Q 2 5 2.90 0.198 1.38 0.95 0.093 0.064
Q 2 6 -2.86 0.094 -1.79 1.33 0.059 0.044
Q 2 7 5.39 0.090 3.44 1.81 0.057 0.030
Q 2 8 -4.77 0.106 -2.22 2.31 0.049 0.051
Q 3 1 4.83 0.168 2.20 0.96 0.075 0.033
Q 3 2 -5.68 0.096 -3.46 1.11 0.058 0.019
Q 3 3 -2.61 0.174 -1.37 0.72 0.093 0.048
Q 3 4 4.94 0.110 2.77 1.00 0.062 0.022
Q 3 5 3.43 0.242 0.97 0.75 0.066 0.051
Q 3 6 -4.62 0.153 -2.27 1.00 0.075 0.033
Q 3 7 6.87 0.115 3.52 1.28 0.059 0.021
Q 3 8 -4.53 0.099 -2.62 0.90 0.058 0.020
Q 4 1 -3.95 0.255 -1.32 0.66 0.086 0.043
Q 4 2 2.88 0.192 1.12 0.81 0.074 0.054
Q 4 3 -4.18 0.137 -2.07 0.83 0.068 0.027
Q 4 4 2.10 0.073 1.46 0.70 0.049 0.023
Q 4 5 -5.15 0.086 -3.10 1.02 0.052 0.017
Q 4 6 3.27 0.074 1.91 0.90 0.042 0.020
Q 4 7 5.78 0.096 3.06 1.09 0.051 0.018
Q 4 8 -4.03 0.088 -2.40 0.91 0.052 0.020
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OKN SPV data

ubject Run # trial max. max. mean st. dev. mean st. dev.
SPV PV gain SPV SPV SPV gain SPV gain

deg/sec deg/sec deg/sec

R 1 1 7.94 0.271 4.34 1.29 0.147 0.044
R 1 2 -11.93 0.199 -6.92 2.27 0.116 0.038
R 1 3 -7.49 0.528 -3.76 1.52 0.261 0.105
R 1 4 8.58 0.194 5.12 1.49 0.115 0.033
R 1 5 5.48 0.374 2.54 1.15 0.174 0.079
R 1 6 -10.97 0.365 -6.27 1.87 0.208 0.062
R 1 7 11.62 0.194 5.40 2.11 0.090 0.035
R 1 8 -11.10 0.244 -6.04 2.27 0.133 0.050
R 2 1 -7.28 0.497 -3.28 1.55 0.220 0.104
R 2 2 3.81 0.260 1.96 1.10 0.135 0.076
R 2 3 -7.20 0.235 -4.08 2.34 0.135 0.077
R 2 4 7.97 0.269 3.49 1.98 0.118 0.067
R 2 5 -9.70 0.162 -6.31 2.74 0.105 0.046
R 2 6 7.16 0.160 4.20 2.71 0.094 0.060
R 2 7 7.53 0.125 4.03 2.51 0.067 0.042
R 2 8 -7.72 0.171 -4.55 2.68 0.100 0.059
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OKN SPV data

subject Run # trial max. max. mean st. dev. mean st. dev.
SPSPVPV gain SPV SPV SPV gain SPV gain

deg/sec deg/sec deg/sec

S 1 1 -6.44 0.428 -3.68 2.87 0.249 0.194
S 1 2 7.49 0.527 3.58 2.71 0.251 0.190
S 1 3 -12.14 0.409 -6.06 3.76 0.202 0.126
S 1 4 9.76 0.333 5.41 3.53 0.184 0.120
S 1 5 -11.07 0.185 -6.84 3.33 0.114 0.056
S 1 6 9.96 0.220 5.48 3.47 0.122 0.077
S 1 7 13.15 0.219 6.26 3.54 0.104 0.059
S 1 8 -8.83 0.195 -4.51 3.49 0.099 0.077
S 2 1 9.79 0.324 4.99 1.64 0.166 0.055
S 2 2 -12.86 0.213 -6.67 2.16 0.111 0.036
S 2 3 -5.91 0.382 -3.17 1.83 0.210 0.121
S 2 4 20.66 0.457 5.31 3.72 0.117 0.082
S 2 5 6.91 0.446 3.60 3.31 0.239 0.220
S 2 6 -9.49 0.307 -4.81 3.63 0.158 0.119
S 2 7 14.16 0.237 6.20 3.03 0.103 0.051
S 2 8 -20.78 0.455 -5.80 3.37 0.127 0.074
S 3 1 10.24 0.345 5.50 1.72 0.185 0.058
S 3 2 -11.67 0.195 -6.44 2.03 0.108 0.034
S 3 3 -5.31 0.343 -2.95 1.00 0.194 0.066
S 3 4 14.15 0.314 6.35 1.75 0.141 0.039
S 3 5 7.46 0.495 2.85 1.31 0.187 0.085
S 3 6 -10.15 0.336 -4.37 1.59 0.143 0.052
S 3 7 10.55 0.175 5.37 2.02 0.090 0.034
S 3 8 -9.56 0.209 -4.82 1.83 0.105 0.040
S 4 1 -4.46 0.288 -2.59 0.95 0.167 0.061
S 4 2 7.79 0.503 2.00 1.16 0.131 0.076
S 4 3 -7.15 0.231 -3.56 1.62 0.116 0.053
S 4 4 10.99 0.360 4.12 1.72 0.137 0.057
S 4 5 -8.55 0.142 -4.76 1.71 0.079 0.028
S 4 6 10.06 0.221 4.25 1.98 0.094 0.044
S 4 7 13.83 0.230 5.35 2.29 0.089 0.038
S 4 8 -10.27 0.225 -4.32 1.64 0.094 0.036
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Table D.3. SPV data: vection vs. no vection

1. Mean SPV; state 1: mean SPV during total period of vection for each trial

2. St. dev. SPV; state 1: standard deviation of SPV during vection period

3. Mean SPV; state 2: mean SPV during total period without vection for each trial

4. St. dev. SPV; state 2: standard deviation of SPV during no-vection periods.

5. SPV ratio; st 1 / st 2: Ratio of mean SPV in state 1 (vection) to mean SPV in state 2
(no vection)
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SPV data: vection vs. no vection

Subject Run # Trial # mean st. dev. mean st. dev. SPV ratio
SPV SPV SPV SPV st l/st 2

state 1 state 1 state 2 state 2
(deg/s) (deg/s) (deg/s) (deg/s)

M 1 1 -- -- -- -- --

M 1 2 -1.82 1.06 -1.08 0.92 1.69
M 1 3 -2.19 1.13 -1.28 1.76 1.71
M 1 4 3.53 1.62 1.07 0.95 3.30
M 1 5 -1.82 1.02 -0.63 0.76 2.91
M 1 6 2.96 1.69 2.35 1.66 1.26
M 2 1 2.34 1.04 0.61 0.67 3.83
M 2 2 -1.48 1.02 -0.31 0.67 4.78
M 2 3 -2.09 1.44 -0.43 1.02 4.83
M 2 4 3.08 1.85 2.49 1.17 1.24
M 2 5 -1.65 0.85 -1.36 1.05 1.22
M 2 6 3.08 1.99 2.33 1.65 1.32
M 3 1 -1.78 1.13 -0.76 1.43 2.35
M 3 2 -2.17 1.60 -1.06 1.21 2.05
M 3 3 -2.64 1.55 -1.63 1.84 1.62
M 3 4 -1.87 1.18 -1.32 1.46 1.41
M 3 5 4.37 1.84 1.77 1.08 2.47
M 3 6 -2.06 1.39 -1.03 1.08 2.00
M 4 1 2.19 1.38 1.50 1.32 1.45
M 4 2 -1.91 1.34 -0.35 0.99 5.47
M 4 3 -2.85 1.60 -0.74 1.20 3.86
M 4 4 5.06 2.01 2.89 1.86 1.75
M 4 5 6.46 2.36 4.91 3.43 1.32
M 4 6 4.01 2.15 3.88 2.26 1.03
M 4 7 -3.46 1.82 -2.43 2.41 1.42
M 4 8 -3.30 1.75 -3.03 2.26 1.09
M 5 1 3.29 1.50 1.52 1.18 2.16
M 5 2 -1.99 1.30 -0.87 0.98 2.28
M 5 3 -2.38 1.45 -2.58 1.67 0.92
M 5 4 2.74 1.55 2.84 1.74 0.97
M 5 5 -2.61 1.59 -2.75 1.73 0.95
M 5 6 2.58 1.64 3.76 2.49 0.69
M 5 7 2.64 2.14 3.45 2.87 0.77
M 5 8 -2.83 1.23 -1.48 1.49 1.91
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SPV data: vection vs. no vection

Subject Run # Trial # mean st. dev. mean st. dev. SPV ratio
SPV SPV SPV SPV st 1 / st 2

state 1 state 1 state 2 state 2
(deg/s) (deg/s) (deg/s) (deg/s)

N 1 1 -1.95 1.39 -2.46 1.35 0.79
N 1 2 3.57 1.21 3.72 1.78 0.96
N 1 3 -3.61 1.42 -3.47 1.67 1.04
N 1 4 4.66 1.43 4.33 1.48 1.08
N 2 1 -2.70 1.52 -2.85 1.53 0.95
N 2 2 4.10 1.33 3.60 1.72 1.14
N 2 3 -3.37 1.94 -3.62 1.76 0.93
N 2 4 3.39 1.52 4.73 1.49 0.72
N 2 5 -4.83 1.70 -5.02 1.88 0.96
N 2 6 4.69 1.98 5.70 1.83 0.82
N 2 7 3.62 1.75 4.74 1.66 0.76
N 2 8 -2.92 1.84 -3.64 1.79 0.80
N 3 1 3.02 1.36 3.99 1.54 0.76
N 3 2 -3.39 1.81 -3.62 2.16 0.94
N 3 3 -2.27 1.20 -2.27 1.42 1.00
N 3 4 3.53 1.70 3.85 1.41 0.92
N 4 1 3.32 1.18 3.33 1.13 1.00
N 4 2 -3.79 1.50 -4.25 1.65 0.89
N 4 3 -- -- -- -- --
N 4 4 3.26 1.04 3.66 1.21 0.89
N 4 5 2.38 1.42 2.24 1.19 1.06
N 4 6 -2.57 1.48 -3.21 1.53 0.80
N 4 7 2.87 1.17 2.80 1.34 1.02
N 4 8 2.33 1.35 2.84 1.59 0.82
N 5 1 -- -- -- -- --

N 5 2 1.90 0.71 2.09 0.86 0.91
N 5 3 -1.36 1.17 -1.98 1.29 0.69
N 5 4 2.54 1.46 2.35 1.88 1.08
N 5 5 -2.31 1.15 -2.87 1.32 0.81
N 5 6 -- -- -- -- --

N 5 7 -- -- -- -- --

N 5 8 -0.88 2.12 -1.67 1.30 0.53
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SPV data: vection vs. no vection

Subject Run # Trial # mean SPV st. dev. mean SPV st. dev. SPV ratio
state 1 SPV state 2 SPV st 1 / st2
(deg/s) state 1 (deg/s) state 2

O 1 1 4.54 1.85 2.94 1.92 1.55
O 1 2 -5.09 2.19 -4.25 2.11 1.20
O 1 3 -3.08 1.67 -2.67 1.94 1.16
O 1 4 5.46 2.48 5.77 2.61 0.95
O 1 5 2.94 2.00 3.10 1.95 0.95
O 1 6 -2.56 1.55 -2.53 2.01 1.01
O 1 7 5.06 2.62 7.60 2.45 0.67
O 1 8 -2.83 2.05 -3.32 1.22 0.85
0 2 1 -4.17 1.10 -3.41 2.25 1.22
0 2 2 4.14 1.36 5.04 2.01 0.82
O 2 3 -2.42 1.02 -2.31 1.22 1.05
O 2 4 4.25 1.40 4.47 2.04 0.95
O 2 5 2.31 1.32 3.17 1.98 0.73
O 2 6 3.37 1.57 3.56 1.78 0.95
O 2 7 -3.83 1.05 -3.32 1.72 1.15
O 2 8 -4.16 1.41 -4.58 2.06 0.91
O 3 1 -1.59 2.46 -1.69 1.98 0.94
O 3 2 1.68 1.78 1.78 1.81 0.94
O 3 3 -1.74 2.87 -1.11 2.82 1.56
O 3 4 3.07 3.31 3.73 3.35 0.82
O 3 5 -2.99 3.39 -1.49 3.43 2.01
O 3 6 3.93 3.53 5.04 3.87 0.78
O 3 7 4.52 3.60 5.66 3.94 0.80
O 3 8 -2.34 3.32 -1.87 3.25 1.25
0 4 1 -2.87 0.85 -2.88 1.16 1.00
O 4 2 1.25 0.78 1.61 1.48 0.78
O 4 3 -2.59 0.74 -2.85 1.05 0.91
0 4 4 2.37 1.17 3.61 1.01 0.66
O 4 5 2.04 1.33 2.84 1.90 0.72
O 4 6 -2.17 0.91 -2.16 1.33 1.00
O 4 7 -1.15 0.68 -1.47 0.73 0.78
0 4 8 1.64 1.91 3.77 1.64 0.43
O 5 1 0.92 0.86 1.93 1.03 0.47
O 5 2 -0.75 0.75 -1.47 0.71 0.51
O 5 3 1.95 1.40 3.11 1.98 0.63
O 5 4 -0.95 1.16 -1.10 0.75 0.87
0 5 5 1.78 1.06 2.02 1.66 0.88
O 5 6 -1.53 0.93 -1.98 0.83 0.78
O 5 7 -1.17 0.68 -1.17 0.73 1.00
0 5 8 4.55 1.61 3.90 1.35 1.17
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SPV data: vection vs. no vection

Subject Run # Trial # mean st. dev. mean st. dev. SPV ratio
SPV SPV SPV SPV st 1 / st2

state 1 state 1 state 2 state 2
(deg/s) (deg/s) (deg/s) (deg/s)

P 1 1 2.94 1.25 3.11 1.62 0.95
P 1 2 -4.87 2.04 -3.85 1.77 1.27
P 1 3 -3.66 0.82 -3.49 1.60 1.05
P 1 4 3.36 1.37 3.23 1.64 1.04
P 1 5 2.36 1.13 1.71 0.89 1.38
P 1 6 -4.20 1.71 -3.33 1.20 1.26
P 1 7 4.29 1.85 3.31 1.61 1.29
P 1 8 -5.30 2.51 -5.04 3.35 1.05
P 2 1 -3.66 1.33 -3.19 1.35 1.15
P 2 2 1.80 1.02 1.09 0.87 1.66
P 2 3 -4.48 1.88 -3.49 1.31 1.28
P 2 4 2.92 1.67 1.94 1.27 1.50
P 2 5 -5.32 2.55 -3.77 2.39 1.41
P 2 6 3.02 1.71 2.94 1.90 1.03
P 2 7 3.62 1.95 3.56 1.54 1.02
P 2 8 -4.17 2.93 -3.74 2.88 1.12
P 3 1 -3.15 1.51 -2.31 1.32 1.37
P 3 2 2.04 1.26 1.43 1.09 1.43
P 3 3 2.59 1.39 1.75 1.10 1.48
P 3 4 -4.73 2.00 -3.02 1.19 1.57
P 3 5 -3.30 1.65 -2.26 1.61 1.46
P 3 6 2.96 1.65 2.86 1.09 1.04
P 3 7 1.88 1.04 1.65 1.28 1.13
P 3 8 -3.76 1.66 -2.58 1.51 1.45
P 4 1 3.57 1.63 2.72 1.84 1.31
P 4 2 -3.59 2.18 -3.37 2.00 1.07
P 4 3 2.25 1.32 1.15 1.27 1.96
P 4 4 -4.36 1.79 -3.19 1.41 1.37
P 4 5 -2.87 1.57 -2.62 1.40 1.10
P 4 6 2.64 1.36 2.52 1.63 1.05
P 4 7 2.16 1.55 1.79 1.95 1.20
P 4 8 -2.86 1.66 -2.21 1.57 1.30
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SPV data: vection vs. no vection

Subject Run # Trial # mean st. dev. mean st. dev. SPV ratio
SPV SPV SPV SPV st 1 / st2

state 1 state 1 state 2 state 2
S(degs) (deg/s) (deg/s) (deg/s)

Q 1 1 -1.37 1.28 -1.30 1.27 1.06
Q 1 2 1.91 1.83 2.10 2.10 0.91
Q 1 3 -2.21 1.60 -2.03 1.79 1.09
Q 1 4 2.47 1.26 2.72 1.66 0.91
Q 1 5 -2.51 1.42 -3.06 2.28 0.82
Q 1 6 2.61 1.45 3.13 1.80 0.84
Q 1 7 3.17 2.07 3.73 2.49 0.85
Q 1 8 -2.32 1.61 -2.22 1.46 1.05
Q 2 1 2.05 2.81 2.30 2.94 0.89
Q 2 2 -2.56 2.36 -3.86 3.00 0.66
Q 2 3 -1.52 2.61 -1.56 2.91 0.97
Q 2 4 2.65 1.63 2.94 2.16 0.90
Q 2 5 1.36 0.85 1.47 1.37 0.93
Q 2 6 -1.74 1.33 -2.28 1.28 0.76
Q 2 7 3.39 1.74 3.79 2.21 0.89
Q 2 8 -2.18 2.26 -2.58 2.74 0.84
Q 3 1 2.13 0.80 2.30 1.14 0.93
Q 3 2 -3.85 0.98 -2.79 0.99 1.38
Q 3 3 -1.71 0.66 -1.34 0.71 1.27
Q 3 4 2.81 0.93 2.52 1.36 1.12
Q 3 5 0.84 0.61 1.05 0.81 0.80
Q 3 6 -2.39 0.97 -1.34 0.71 1.78
Q 3 7 3.58 1.27 2.93 1.24 1.22
Q 3 8 -2.70 0.95 -2.50 0.80 1.08
Q 4 1 -1.47 0.70 -1.26 0.64 1.16
Q 4 2 1.38 0.67 1.02 0.84 1.35
Q 4 3 -2.31 0.87 -1.85 0.74 1.25
Q 4 4 1.46 0.68 1.43 0.77 1.02
Q 4 5 -3.16 0.99 -2.53 1.11 1.25
Q 4 6 1.94 0.89 1.72 0.93 1.13
Q 4 7 3.13 1.09 2.55 0.99 1.23
Q! 4 8 -2.44 0.88 -2.25 1.03 1.08
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SPV data: vection vs. no vection

Subject Run # Trial # mean st. dev. mean st. dev. SPV ratio
SPV SPV SPV SPV st 1 / st 2

state 1 state 1 state 2 state 2
(deg/s) (deg/s) (deg/s) (deg/s)

R 1 1 -- -- -- -- --

R 1 2 -7.34 2.25 -6.20 2.13 1.19
R 1 3 -3.99 1.46 -3.12 1.52 1.28
R 1 4 6.40 1.52 4.97 1.42 1.29
R 1 5 2.62 1.13 2.49 1.16 1.05
R 1 6 -6.56 1.65 -5.91 2.06 1.11
R 1 7 5.97 2.44 5.05 1.80 1.18
R 1 8 -5.49 2.11 -6.12 2.28 0.90
R 2 1 -- -- -- -- --
R 2 2 -- -- -- -- --
R 2 3 -- -- -- -- --
R 2 4 3.42 2.10 3.50 1.96 0.98
R 2 5 -- -- -- -- --
R 2 6 -- -- -- -- --
R 2 7 -- -- -- -- --
R 2 8 -- -- -- -- --
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SPV data: vection vs. no vection

Subject Run # Trial # mean st. dev. mean st. dev. SPV ratio
SPV SPV SPV SPV st 1 / st 2

state 1 state 1 state 2 state 2
(deg/s) (deg/s) (deg/s) (deg/s)

S 1 1 -3.80 2.88 -2.83 2.62 1.34
S 1 2 3.63 2.67 2.57 3.18 1.41
S 1 3 -6.31 3.68 -3.75 3.65 1.68
S 1 4 5.55 3.49 3.77 3.58 1.47
S 1 5 -6.92 3.29 -5.98 3.71 1.16
S 1 6 5.60 3.42 3.69 3.57 1.52
S 1 7 6.30 3.54 5.44 3.54 1.16
S 1 8 -4.64 3.47 -3.72 3.50 1.25
S 2 1 5.04 1.61 4.35 1.82 1.16
S 2 2 -6.74 2.16 -6.02 2.07 1.12
S 2 3 -3.19 1.83 -2.95 1.83 1.08
S 2 4 5.33 3.68 4.89 4.34 1.09
S 2 5 3.61 3.30 3.31 3.46 1.09
S 2 6 -4.81 3.61 -4.88 3.90 0.99
S 2 7 6.18 2.97 6.75 4.21 0.91
S 2 8 -5.80 3.33 -5.78 3.89 1.00
S 3 1 5.66 1.66 3.29 0.78 1.72
S 3 2 -6.47 1.92 -5.71 3.62 1.13
S 3 3 -3.00 0.95 -2.27 1.35 1.32
S 3 4 6.39 1.75 5.93 1.78 1.08
S 3 5 2.88 1.29 2.39 1.45 1.21
S 3 6 -4.44 1.56 -2.86 1.66 1.55
S 3 7 5.21 1.92 6.89 2.33 0.76
S 3 8 -4.89 1.78 -3.42 2.17 1.43
S 4 1 -2.63 0.93 -2.20 1.02 1.20
S 4 2 2.02 1.16 1.64 1.02 1.23
S 4 3 -3.59 1.61 -2.99 1.75 1.20
S 4 4 4.21 1.71 2.90 1.34 1.45
S 4 5 -4.78 1.65 -4.50 2.37 1.06
S 4 6 4.32 1.97 2.51 1.02 1.72
S 4 7 5.21 2.17 6.86 2.83 0.76
S 4 8 -4.37 1.61 -3.31 1.73 1.32
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Table D.4. Eye position data. Values for mean eye position and mean reset
position during OKN.

1. mean position: mean eye position during OKN

2. st. dev. position: standard deviation of eye position during OKN.

3. mean reset position: mean of eye positions at end of each fast phase during OKN.

4. st. dev. reset position: standard deviation of fast phase reset positions during OKN

5. deviation range: peak-to-peak eye position range during OKN

6. position at dome stop: eye position immediately prior to the stop of the dome
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Eye position data

5ubject Run # Trial # mean st. dev. mean st. dev. deviation position
position position reset reset range at dome

(deg) (deg) position position (deg) stop
(deg) (deg) (deg)

M 1 1 -0.65 1.03 -1.41 1.13 4.77 -1.65
M 1 2 0.79 0.94 1.52 0.93 5.76 -0.78
M 1 3 1.61 0.85 2.20 0.92 6.18 -0.26
M 1 4 -2.92 1.20 -3.67 1.15 6.88 -2.53
M 1 5 1.54 0.78 2.04 0.91 4.59 -0.99
M 1 6 -2.18 1.07 -2.98 1.04 7.50 0.37
M 2 1 -1.18 0.89 -1.81 0.82 5.76 -1.07
M 2 2 1.66 0.96 2.38 0.97 4.37 -0.77
M 2 3 1.02 1.10 1.82 1.17 5.83 -1.61
M 2 4 -2.63 1.27 -3.30 1.39 7.81 -1.69
M 2 5 1.46 0.62 1.88 0.65 3.76 -5.05
M 2 6 -2.85 1.30 -3.59 1.46 8.81 1.31
M 3 1 2.77 1.09 3.73 0.89 5.83 -2.79
M 3 2 3.75 1.66 4.89 1.58 8.57 -3.99
M 3 3 3.79 1.50 4.77 1.41 7.03 -2.58
M 3 4 2.71 1.07 3.39 1.03 5.54 -3.12
M 3 5 -4.47 1.88 -5.41 1.82 10.47 -5.00
M 3 6 3.25 1.28 3.90 1.08 5.66 -4.42
M 4 1 -1.17 1.01 -2.03 1.04 5.05 -0.06
M 4 2 2.10 0.92 2.79 0.87 5.42 -1.28
M 4 3 2.78 1.35 3.68 1.28 7.84 -2.34
M 4 4 -3.42 1.45 -4.28 1.27 8.47 -5.45
M 4 5 -4.25 1.47 -5.11 1.39 8.57 -3.31
M 4 6 -1.70 1.18 -2.53 1.21 7.45 -1.02
M 4 7 5.66 1.52 6.61 1.42 8.84 -4.10
M 4 8 4.30 1.25 5.03 1.20 7.84 -3.34
M 5 1 -2.55 1.02 -3.17 0.97 6.54 -1.88
M 5 2 2.24 0.86 2.66 0.80 5.20 -1.54
M 5 3 3.60 0.93 4.04 0.81 6.91 -2.86
M 5 4 -1.57 1.26 -2.19 1.11 7.10 -1.98
M 5 5 2.86 0.84 3.40 0.90 6.25 -2.99
M 5 6 -1.28 1.19 -1.65 1.25 6.45 -0.41
M 5 7 -1.15 1.63 -2.28 1.61 8.94 2.06
M 5 8 2.99 1.04 3.69 0.85 5.64 -2.95
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Eye position data

lubject Run # Trial # mean st. dev. mean st. dev. dviation position
position position reset reset range at dome

deg) (deg) position position (deg) stop
(deg) (deg) (deg)

N 1 1 -4.45 1.67 -2.81 1.55 8.35 5.59
N 1 2 2.22 1.73 1.13 1.61 9.50 1.02
N 1 3 -0.91 1.68 0.60 1.22 9.06 0.82
N 1 4 0.82 1.51 -0.43 1.31 8.57 1.68
N 2 1 -3.12 1.47 -1.84 1.33 8.42 0.55
N 2 2 0.91 1.32 -0.12 1.21 6.88 1.52
N 2 3 -3.69 1.78 -2.25 1.72 8.40 5.94
N 2 4 2.06 1.79 0.95 1.65 9.13 1.46
N 2 5 -2.50 1.64 -1.01 1.46 9.74 3.30
N 2 6 2.11 2.12 0.73 2.07 10.35 -1.93
N 2 7 2.96 1.95 1.67 1.67 10.60 2.01
N 2 8 -2.89 1.63 -1.49 1.43 7.57 1.75
N 3 1 3.59 2.09 2.67 2.12 10.06 3.94
N 3 2 -3.56 1.83 -2.11 1.77 12.33 2.69
N 3 3 -2.04 1.50 -0.79 1.27 7.10 -3.75
N 3 4 1.43 2.06 0.33 2.10 13.06 1.79
N 4 1 1.42 1.34 0.63 1.34 7.30 0.44
N 4 2 -0.36 1.30 0.93 0.93 6.81 1.68
N 4 3 -0.15 0.83 0.54 0.64 4.43 -0.50
N 4 4 1.04 1.20 0.36 1.23 6.49 1.57
N 4 5 0.25 0.82 -0.17 0.82 4.71 0.27
N 4 6 -1.23 1.11 -0.50 0.99 6.49 3.64
N 4 7 2.50 1.54 1.62 1.47 6.62 2.40
N 4 8 0.61 1.17 -0.07 1.09 7.30 3.53
N 5 1 -1.36 0.95 -0.70 0.90 5.88 -0.03
N 5 2 0.05 0.79 -0.40 0.66 5.00 0.87
N 5 3 -1.29 0.88 -0.82 0.87 5.18 0.50
N 5 4 0.73 1.06 0.14 1.03 6.20 -0.04
N 5 5 -1.24 1.25 -0.39 1.17 7.08 1.92
N 5 6 0.57 1.04 -0.06 0.93 4.90 7.99
N 5 7 1.57 1.86 0.69 1.72 9.54 2.94
N 5 8 -0.51 0.69 -0.07 0.69 4.17 4.61
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Eye position data

)ubject Run # Trial # mean st. dev. mean st. dev. deviation position
position position reset pos. reset pos. range at dome

(deg) (deg) (degg) top (deg)

O 1 1 1.64 1.79 0.71 1.69 11.21 0.72
0 1 2 2.82 1.55 3.67 1.48 8.98 0.31
O 1 3 0.66 1.91 1.49 1.70 9.40 -1.02
O 1 4 -0.55 1.87 -1.52 1.72 11.47 2.00
O 1 5 0.57 1.34 0.16 1.30 7.25 2.18
O 1 6 -0.13 1.47 0.66 1.20 8.47 4.10
O 1 7 -1.74 2.30 -2.64 2.32 12.06 0.35
O 1 8 3.00 1.28 3.57 1.30 7.59 -1.92
O 2 1 0.50 1.45 1.49 1.16 7.89 0.97
O 2 2 0.05 1.44 -0.50 1.30 9.99 0.38
O 2 3 -1.76 1.17 -1.12 0.95 6.54 0.19
O 2 4 1.00 1.73 0.39 1.74 9.28 0.42
O 2 5 2.95 1.65 2.57 1.66 10.30 -2.73
O 2 6 0.62 1.66 0.16 1.73 12.18 1.24
0 2 7 1.82 1.42 2.36 1.45 7.18 -5.39
O 2 8 2.77 1.77 3.52 1.85 10.40 1.90
O 3 1 -1.56 0.79 -1.25 0.72 4.88 2.33
O 3 2 2.22 0.99 1.93 1.01 5.30 -0.54
O 3 3 -0.33 1.25 0.09 1.18 5.76 2.44
O 3 4 0.68 0.92 0.21 0.94 5.98 0.17
O 3 5 -1.64 1.70 -0.94 1.66 6.49 -0.11
O 3 6 1.08 1.48 0.34 1.44 8.72 1.84
O 3 7 1.21 1.30 0.36 1.13 7.67 1.00
O 3 8 -0.68 1.03 -0.27 0.90 5.64 2.45
O 4 1 -0.59 0.84 -0.12 0.71 4.66 0.18
O 4 2 3.99 1.22 3.59 1.11 6.52 1.67
O 4 3 -0.11 0.75 0.28 0.72 4.15 -1.11
0 4 4 0.13 1.09 -0.32 1.00 6.37 -1.75
O 4 5 -0.31 1.13 -0.65 1.11 7.64 0.22
0 4 6 -0.01 0.76 0.38 0.76 4.37 -0.15
0 4 7 -1.12 0.56 -0.85 0.49 2.76 0.10
0 4 8 -0.73 2.02 -1.26 2.06 9.45 -4.03
O 5 1 1.06 0.62 0.87 0.53 4.20 -0.57
O 5 2 -0.33 0.63 -0.05 0.40 4.15 0.48
O 5 3 -1.35 1.99 -1.76 1.84 9.62 -1.03
O 5 4 1.26 0.95 1.35 0.92 3.83 -1.04
O 5 5 0.27 1.11 -0.30 0.80 6.84 -1.43
O 5 6 -1.24 1.05 -0.82 1.04 5.37 1.94
O 5 7 -0.90 0.71 -0.64 0.68 4.20 -0.45
0 5 8 -1.31 1.53 -2.23 1.29 9.13 -4.92
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Eye position data

ubject Run # Trial # mean st. dev. mean st. dev. deviation position
position position reset reset range at dome

(deg) (deg) position position (deg) stop
(deg) (deg) (deg)

P 1 1 1.77 1.34 0.85 1.16 6.47 4.81
P 1 2 0.53 2.04 1.89 1.80 10.69 -3.16
P 1 3 -0.84 1.96 0.20 1.91 9.94 -0.33
P 1 4 0.22 1.40 -0.84 1.43 8.28 1.28
P 1 5 1.96 0.93 1.46 1.14 5.79 2.02
P 1 6 0.17 1.50 1.15 1.42 10.11 -1.39
P 1 7 0.01 1.67 -1.03 1.60 8.94 -0.60
P 1 8 1.14 2.24 2.22 2.49 12.50 -0.72
P 2 1 0.03 1.43 0.90 1.36 9.59 0.41
P 2 2 1.77 0.94 1.10 0.90 6.62 2.91
P 2 3 1.79 1.88 2.84 1.93 11.96 -0.98
P 2 4 0.31 1.37 -0.67 1.27 6.88 1.43
P 2 5 3.46 2.51 4.64 2.53 14.48 -0.46
P 2 6 -0.03 1.57 -1.00 1.78 10.64 1.47
P 2 7 0.08 1.33 -0.81 1.33 8.96 -1.60
P 2 8 2.00 1.83 2.97 1.91 9.99 0.20
P 3 1 1.45 1.66 2.00 1.95 9.38 -1.56
P 3 2 0.14 1.01 -0.61 0.95 5.40 1.18
P 3 3 -0.14 1.22 -0.99 1.37 6.84 0.88
P 3 4 4.43 1.82 5.29 1.78 11.74 -5.86
P 3 5 3.02 1.77 3.50 1.84 9.69 -1.86
P 3 6 -0.44 1.14 -0.99 1.26 7.10 -1.81
P 3 7 -0.04 0.72 -0.44 0.78 4.00 0.20
P 3 8 3.15 1.50 3.94 1.56 9.20 -2.22
P 4 1 -0.97 1.24 -1.49 1.30 6.59 1.10
P 4 2 4.76 1.59 5.38 1.48 9.33 -4.66
P 4 3 -0.10 1.02 -0.63 1.11 5.05 0.32
P 4 4 4.07 1.72 4.68 1.85 10.42 -0.83
P 4 5 2.63 1.48 3.36 1.52 9.03 -4.61
P 4 6 0.17 0.92 -0.12 0.90 4.64 0.39
P 4 7 0.06 0.95 -0.31 0.91 5.98 0.77
P 4 8 2.78 1.53 3.27 1.64 9.18 -4.81
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Eye position data

ubject Run # Trial # mean st. dev. mean st. dev. deviation position
position position reset reset range at dome

(deg) (deg) position position (deg) stop
(deg) (deg) (deg)

Q 1 1 -1.77 0.73 -1.46 0.62 3.76 2.45
Q 1 2 1.88 1.78 1.26 1.77 8.18 0.57
Q 1 3 -0.07 1.14 0.47 1.19 5.79 0.13
Q 1 4 3.52 1.29 2.95 1.34 6.84 1.31
Q 1 5 -0.38 0.99 0.20 0.99 5.69 0.22
Q 1 6 2.32 1.26 1.90 1.20 9.81 2.55
Q 1 7 1.59 1.77 0.85 1.78 7.37 3.11
Q 1 8 -1.40 1.29 -0.87 1.38 7.93 -0.26
Q 2 1 2.16 1.45 1.69 1.37 8.11 4.54
Q 2 2 -0.53 1.02 0.12 1.00 5.57 -0.86
Q 2 3 -1.51 0.95 -1.20 0.98 4.49 1.88
Q 2 4 0.17 1.22 -0.38 1.34 5.98 -0.76
Q 2 5 2.16 0.87 1.89 0.83 4.91 2.54
Q 2 6 -0.83 1.00 -0.55 1.07 5.40 1.29
Q 2 7 -0.63 1.44 -1.10 1.49 7.40 0.66
Q 2 8 0.35 0.81 0.78 0.77 4.66 0.41
Q 3 1 1.39 1.02 0.88 1.17 7.79 -4.04
Q 3 2 4.62 2.35 4.87 2.51 10.03 -7.80
Q 3 3 1.01 0.84 1.28 0.81 5.32 -0.22
Q 3 4 -0.56 1.70 -1.01 1.68 8.35 -3.66
Q 3 5 1.65 0.73 1.44 0.78 3.32 2.37
Q 3 6 3.14 2.18 3.61 2.18 10.08 -7.60
Q 3 7 -3.21 2.01 -3.62 2.08 9.99 -2.49
Q 3 8 3.64 1.28 4.07 1.40 8.47 -3.27
Q 4 1 1.23 0.89 1.45 0.93 4.81 -3.58
Q 4 2 0.87 1.30 0.56 1.35 5.49 -0.47
Q 4 3 1.89 1.29 2.36 1.39 6.71 -1.38
Q 4 4 -0.52 0.72 -0.76 0.73 3.54 -0.24
Q 4 5 6.26 1.95 6.64 1.97 12.18 -6.12
Q 4 6 -2.58 1.51 -2.86 1.52 6.93 -4.44
Q 4 7 -2.96 1.90 -3.41 1.97 8.96 0.49
Q 4 8 4.80 1.42 5.17 1.48 8.50 -5.96
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Eye position data

ubject Run # Trial # mean st. dev. mean st. dev. deviation position
position position reset reset range at dome

(deg) (deg) position position (deg) stop
(deg) (deg) (deg)

R 1 1 1.99 0.95 1.42 0.92 5.68 2.42
R 1 2 -1.14 1.40 -0.11 1.21 8.86 1.02
R 1 3 -0.87 1.23 -0.08 1.16 8.03 1.03
R 1 4 1.41 1.17 0.55 1.01 6.76 1.07
R 1 5 2.21 1.14 1.63 1.09 7.15 1.01
R 1 6 1.36 1.58 2.19 1.56 8.98 -2.87
R 1 7 0.69 1.36 -0.23 1.35 9.11 1.04
R 1 8 1.72 1.38 2.60 1.28 8.45 -0.33
R 2 1 1.15 0.98 1.79 0.89 6.43 -0.81
R 2 2 1.02 0.85 0.56 0.85 5.17 0.25
R 2 3 0.99 1.04 1.62 1.06 5.54 -1.58
R 2 4 0.45 1.47 -0.18 1.65 8.45 0.54
R 2 5 2.17 1.76 3.24 1.52 10.31 0.88
R 2 6 0.89 1.11 0.27 1.20 5.41 1.99
R 2 7 1.81 1.76 0.60 1.46 9.37 4.78
R 2 8 0.64 1.17 1.23 1.17 5.48 -2.11
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Eye position data

ubject Run # Trial # mean st. dev. mean st. dev. deviation position
position position reset reset range at dome

(deg) (deg) position position (deg) stop
(deg) (deg) (deg)

S 1 1 1.28 1.05 1.76 1.07 6.13 -3.81
S 1 2 -0.07 1.09 -0.82 1.10 5.83 0.21
S 1 3 4.24 1.69 5.45 1.61 10.23 -6.97
S 1 4 -1.42 1.30 -2.22 1.24 7.96 0.28
S 1 5 6.20 1.65 7.27 1.46 10.52 -4.90
S 1 6 -1.20 1.33 -1.84 1.40 7.54 -0.50
S 1 7 -2.04 1.49 -2.88 1.48 8.94 -3.00
S 1 8 2.13 1.23 2.70 1.30 7.47 -3.05
S 2 1 -0.86 1.24 -1.63 1.11 8.42 -0.34
S 2 2 3.54 1.87 4.48 1.98 10.99 -4.31
S 2 3 0.42 1.08 1.10 1.07 5.83 -1.49
S 2 4 -1.69 1.39 -2.49 1.38 9.96 -2.50
S 2 5 0.06 1.20 -0.47 1.26 6.84 0.25
S 2 6 3.61 1.46 4.40 1.50 10.08 -5.41
S 2 7 -2.45 1.46 -3.12 1.61 9.59 0.55
S 2 8 3.52 1.46 4.42 1.45 8.74 -6.62
S 3 1 -2.03 1.38 -2.84 1.33 9.11 0.86
S 3 2 7.51 1.96 8.57 1.68 14.09 -8.42
S 3 3 3.01 1.12 3.62 1.02 7.54 -2.18
S 3 4 -2.56 1.40 -3.56 1.23 9.01 -2.03
S 3 5 0.14 0.85 -0.37 0.87 5.47 -0.75
S 3 6 4.43 1.28 5.19 1.25 9.20 -6.57
S 3 7 -1.56 1.43 -2.42 1.33 8.37 -1.56
S 3 8 4.44 1.49 5.35 1.38 10.57 -6.27
S 4 1 2.93 1.08 3.36 1.18 6.05 -2.01
S 4 2 0.40 0.69 0.03 0.70 4.20 1.09
S 4 3 2.99 1.03 3.65 0.97 7.01 -4.35
S 4 4 -0.84 1.22 -1.52 1.19 7.52 -1.45
S 4 5 4.75 1.50 5.59 1.39 10.01 -3.50
S 4 6 -0.96 1.21 -1.79 1.18 7.03 -3.18
S 4 7 -0.76 1.68 -1.76 1.44 11.52 1.36
S 4 8 2.73 1.16 3.58 1.14 7.45 -2.78
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Table D.5. Eye position data: vection vs. no vection. Eye position
parameters by vection state

1. mean position; state 1: mean eye position during total period of vection for each trial

2. st. dev. position; state 1: standard deviation of eye position during vection period

3. mean position; state 2: mean eye position during total period without vection

4. st. dev. position; state 2: standard deviation of eye position during no-vection
period

5. position difference; st 1 - st 2: difference in mean eye position between state 1
(vection) and state 2 (no vection)
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Eye position data: vection vs. no vection

Subject Run # Trial # mean st. dev. mean st. dev. position
position position position position difference

state 1 state 1 state 2 state 2 st 1 -st 2
(deg) (deg) (deg) (deg) (deg)

M 1 1 -- -- -- -- --
M 1 2 -0.92 0.93 -0.08 0.57 -0.83
M 1 3 -1.77 0.80 -1.18 0.81 -0.60
M 1 4 -3.09 1.08 -0.95 0.74 -2.14
M 1 5 -1.58 0.79 -1.03 0.36 -0.56
M 1 6 -2.32 0.95 -1.09 1.31 -1.23
M 2 1 -1.37 0.68 0.72 0.33 -2.08
M 2 2 -1.77 0.90 -0.11 0.11 -1.66
M 2 3 -1.14 1.04 0.49 0.55 -1.63
M 2 4 -2.71 1.28 -1.93 0.94 -0.78
M 2 5 -1.56 0.55 -0.73 0.63 -0.82
M 2 6 -2.89 1.31 -2.41 1.13 -0.48
M 3 1 -3.02 0.73 -0.71 1.30 -2.30
M 3 2 -4.14 1.49 -1.80 0.93 -2.34
M 3 3 -4.32 0.93 -1.72 1.53 -2.60
M 3 4 -3.01 0.84 -2.21 1.22 -0.80
M 3 5 -4.95 1.56 . -1.63 0.87 -3.32
M 3 6 -3.82 0.72 -1.36 0.84 -2.46
M 4 1 -1.29 0.97 -0.31 0.83 -0.99
M 4 2 -2.39 0.65 -0.51 0.39 -1.89
M 4 3 -3.11 1.11 -0.63 0.50 -2.48
M 4 4 -3.72 1.23 -1.30 1.09 -2.42
M 4 5 -4.43 1.25 -3.20 2.13 -1.22
M 4 6 -1.87 1.10 -0.87 1.22 -1.00
M 4 7 -6.11 0.96 -3.26 1.73 -2.85
M 4 8 -4.67 0.81 -2.41 1.44 -2.25
M 5 1 -2.74 0.84 -0.76 0.65 -1.98
M 5 2 -2.42 0.69 -0.55 0.44 -1.86
M 5 3 -3.91 0.56 -2.52 1.13 -1.39
M 5 4 -1.63 1.23 -1.38 1.31 -0.25
M 5 5 -2.99 0.71 -2.13 1.14 -0.86
M 5 6 -1.18 1.16 -2.01 1.11 0.83
M 5 7 -1.00 1.61 -1.86 1.54 0.86
M 5 8 -3.31 0.73 -1.31 0.78 -2.00
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Eye position data: vection vs. no vection

Subject Run # Trial # mean st. dev. mean st. dev. position
oposition psition position position difference

state 1 state 1 state 2 state 2 st 1 - st 2
) (g) (deg) (deg) (deg) (deg)

N 1 1 4.80 1.56 4.28 1.69 0.53
N 1 2 2.02 1.79 2.91 1.29 -0.89
N 1 3 0.57 1.48 1.57 1.85 -1.01
N 1 4 0.63 1.51 1.49 1.30 -0.86
N 2 1 3.16 1.57 3.04 1.30 0.12
N 2 2 0.68 1.32 1.42 1.15 -0.75
N 2 3 3.60 1.78 3.95 1.76 -0.35
N 2 4 2.42 1.90 1.36 1.31 1.06
N 2 5 2.48 1.73 2.61 1.22 -0.13
N 2 6 2.50 2.09 0.39 1.16 2.11
N 2 7 3.42 1.88 1.42 1.32 2.00
N 2 8 2.93 1.53 2.82 1.79 0.10
N 3 1 4.22 2.02 2.09 1.39 2.12
N 3 2 3.58 1.89 3.50 1.69 0.08
N 3 3 1.60 1.38 2.22 1.51 -0.62
N 3 4 1.54 2.20 0.93 1.16 0.61
N 4 1 1.56 1.43 0.95 0.84 0.60
N 4 2 0.33 1.30 0.46 1.27 -0.14
N 4 3 -- -- -- -- --

N 4 4 1.12 1.28 0.88 0.97 0.24
N 4 5 0.68 0.52 0.11 0.85 0.57
N 4 6 1.67 1.00 0.77 1.03 0.90
N 4 7 2.50 1.26 2.51 1.76 -0.01
N 4 8 0.92 1.11 -0.19 0.93 1.12
N 5 1 -- -- -- -- --

N 5 2 -0.14 0.78 0.12 0.78 -0.26
N 5 3 1.84 0.43 1.16 0.91 0.68
N 5 4 0.77 1.15 0.67 0.87 0.11
N 5 5 1.12 0.96 1.37 1.50 -0.25
N 5 6 -- -- -- -- --
N 5 7 -- -- -- -- --
N 5 8 0.93 0.60 0.37 0.65 0.57
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Eye position data: vection vs. no vection

Subject Run # Trial # mean pos. st. dev. mean pos. St. dev. position
state 1 position state 2 position difference
(deg) state 1 (de state 2 st 1 - st 2

O 1 1 1.46 1.79 2.68 1.38 -1.23
O 1 2 -3.04 1.39 -0.55 1.19 -2.49
O 1 3 -1.25 1.56 1.79 1.12 -3.04
O 1 4 -0.78 1.83 0.31 1.75 -1.10
O 1 5 0.43 1.39 0.88 1.16 -0.46
0 1 6 -0.09 1.31 1.04 1.71 -1.12
O 1 7 -1.62 2.12 -2.46 3.14 0.84
O 1 8 -3.12 1.26 -1.69 0.57 -1.43
0 2 1 -0.56 1.43 0.66 1.49 -1.22
O 2 2 -0.21 1.32 1.34 1.31 -1.55
O 2 3 1.99 1.21 1.28 0.93 0.71
O 2 4 0.75 1.68 2.19 1.43 -1.44
O 2 5 3.05 1.67 2.03 1.00 1.02
O 2 6 0.43 1.68 1.80 0.80 -1.37
O 2 7 -1.95 1.34 0.47 0.65 -2.42
O 2 8 -2.92 1.69 -1.45 1.87 -1.47
0 3 1 1.61 0.78 1.09 0.73 0.52
O 3 2 2.07 1.01 2.61 0.81 -0.55
O 3 3 0.00 0.96 1.86 1.30 -1.86
O 3 4 0.66 0.92 1.10 0.66 -0.44
O 3 5 0.63 0.94 3.32 1.30 -2.70
O 3 6 1.09 1.52 1.07 1.15 0.02
O. 3 7 1.18 1.28 2.02 1.36 -0.85
O 3 8 0.46 0.76 1.44 1.43 -0.98
O 4 1 0.39 0.70 1.61 0.76 -1.23
O 4 2 4.00 0.99 3.95 1.86 0.06
O 4 3 0.11 0.77 0.09 0.53 0.02
O 4 4 0.03 1.04 1.12 1.11 -1.08
O 4 5 -0.39 1.11 0.92 0.73 -1.30
O 4 6 -0.05 0.74 1.02 0.36 -1.07
O 4 7 0.90 0.43 1.55 0.54 -0.65
O 4 8 -0.77 2.05 0.05 1.09 -0.82
O 5 1 1.07 0.62 1.05 0.58 0.01
O 5 2 0.25 0.47 1.16 1.21 -0.91
O 5 3 -1.42 1.99 0.51 0.56 -1.93
O 5 4 -1.38 0.90 0.05 0.16 -1.43
O 5 5 0.05 0.91 1.96 1.07 -1.90
O 5 6 1.34 1.08 0.67 0.58 0.66
O 5 7 0.41 0.46 1.18 0.68 -0.77
O 5 8 -1.06 1.38 -1.37 1.56 0.31
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Eye position data: vection vs. no vection

Subject Run # Trial # mean st. dev. mean st. dev. position
position position position position difference

state I state 1 state 2 state 2 st 1 - st 2
(deg) (g) (deg) (deg) (deg)

P 1 1 1.87 1.41 1.23 0.63 0.64
P 1 2 -1.12 2.01 0.82 1.36 -1.94
P 1 3 -0.24 0.86 0.95 2.00 -1.18
P 1 4 0.05 1.38 1.02 1.20 -0.98
P 1 5 1.91 0.90 2.07 1.00 -0.17
P 1 6 -0.60 1.56 0.70 0.85 -1.30
P 1 7 -0.28 1.70 1.16 0.82 -1.43
P 1 8 -1.08 1.70 -1.19 2.69 0.11
P 2 1 -0.79 1.23 0.50 1.31 -1.29
P 2 2 1.79 0.99 1.66 0.66 0.14
P 2 3 -2.37 1.68 -0.16 1.37 -2.21
P 2 4 0.16 1.40 0.89 1.04 -0.73
P 2 5 -4.26 1.78 0.36 1.93 -4.62
P 2 6 -0.15 1.57 0.78 1.29 -0.93
P 2 7 0.01 1.36 0.86 0.62 -0.85
P 2 8 -2.46 1.67 -1.12 1.81 -1.33
P 3 1 -1.95 1.54 -0.05 1.11 -1.90
P 3 2 0.00 1.02 0.76 0.63 -0.76
P 3 3 -0.24 1.22 0.91 0.57 -1.15
P 3 4 -4.71 1.52 -0.49 0.85 -4.23
P 3 5 -4.08 1.51 -2.03 1.38 -2.05
P 3 6 -0.48 1.17 0.02 0.70 -0.51
P 3 7 -0.03 0.72 -0.08 0.73 0.05
P 3 8 -3.45 1.27 -0.89 1.20 -2.56
P 4 1 -1.02 1.22 0.63 0.51 -1.66
P 4 2 -5.09 1.23 -2.36 1.86 -2.73
P 4 3 -0.26 0.96 0.88 0.75 -1.14
P 4 4 -4.31 1.50 -1.09 1.36 -3.22
P 4 5 -3.09 1.41 -2.01 1.34 -1.08
P 4 6 0.15 0.90 0.45 1.08 -0.30
P 4 7 0.08 0.98 -0.10 0.60 0.17
P 4 8 -3.13 1.34 -0.99 1.17 -2.14
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Eye position data: vection vs. no vection

Subject Run # Trial # mean st. dev. mean st. dev. position
position position position position difference

state 1 state 1 state 2 state 2 st 1 -st 2
(deg) (deg) (deg) (deg) (deg)

Q 1 1 1.92 0.72 1.45 0.65 0.47
Q 1 2 2.14 1.68 -0.12 1.09 2.25
Q 1 3 0.11 1.15 -0.50 0.94 0.61
Q 1 4 3.57 1.33 3.10 0.78 0.47
Q 1 5 0.40 1.00 -0.09 0.64 0.49
Q 1 6 2.40 1.28 1.59 0.71 0.81
Q 1 7 1.63 1.83 1.12 0.81 0.51
Q 1 8 1.55 1.27 0.52 1.01 1.04
Q 2 1 2.60 1.19 0.92 1.41 1.67
Q 2 2 0.60 1.01 -0.38 0.66 0.98
Q 2 3 1.82 0.94 0.88 0.58 0.94
Q 2 4 0.17 1.25 0.17 0.60 0.00
Q 2 5 2.09 0.74 2.50 1.30 -0.41
Q 2 6 0.98 0.90 -0.80 0.51 1.79
Q 2 7 -0.87 1.31 1.33 0.83 -2.20
Q 2 8 -0.34 0.84 -0.46 0.37 0.11
Q 3 1 1.08 0.89 1.85 1.03 -0.77
Q 3 2 -6.13 1.30 -2.02 1.19 -4.11
Q 3 3 -0.69 0.54 -1.03 0.86 0.34
Q 3 4 -0.65 1.76 0.14 0.89 -0.79
Q 3 5 1.97 0.71 1.47 0.69 0.50
Q 3 6 -3.45 2.14 -0.94 0.57 -2.50
Q 3 7 -3.54 1.81 -0.02 0.50 -3.52
Q 3 8 -4.13 1.07 -2.88 1.21 -1.25
Q 4 1 -2.05 1.14 -0.94 0.54 -1.11
Q 4 2 -0.46 0.84 1.37 1.06 -1.84
Q 4 3 -2.89 1.05 -0.98 0.64 -1.91
Q 4 4 -0.51 0.73 -0.56 0.70 0.04
Q 4 5 -6.67 1.53 -2.50 1.34 -4.17
Q 4 6 -2.84 1.45 -1.15 0.94 -1.70
Q 4 7 -3.27 1.76 -0.86 1.38 -2.41
Q .4 8 -5.19 1.05 -3.01 1.49 -2.18
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Eye position data: vection vs. no vection

Subject Run # Trial # mean st. dev. mean st. dev. position
position position p tion position difference

state 1 state 1 state 2 state 2 st 1 - st 2
(deg) (deg) (deg) ( (deg) (deg)

R 1 1 -- -- -- -- --
R 1 2 1.04 1.46 1.31 1.26 -0.28
R 1 3 0.50 1.09 1.94 0.93 -1.44
R 1 4 1.40 1.31 1.41 1.15 -0.02
R 1 5 2.53 1.21 2.05 1.07 0.48
R 1 6 -2.18 1.23 -0.34 1.37 -1.83
R 1 7 0.17 1.53 1.02 1.14 -0.85
R 1 8 -1.75 0.85 -1.71 1.43 -0.04
R 2 1 -- -- -- -- --
R 2 2 -- -- -- -- --
R 2 3 -- -- -- -- --

R 2 4 0.68 1.08 0.42 1.51 0.27
R 2 5 -- -- -- -- --

R 2 6 -- -- -- -- --

R 2 7 -- -- -- -- --

R 2 8 -- -- -- -- --
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Eye position data: vection vs. no vection

Subject Run # Trial # mean st. dev. mean st. dev. position
position position position position difference

state 1 state 1 state 2 state 2 st 1 - st 2
(deg) (deg) (deg) (deg) (deg)

S 1 1 -1.47 0.87 0.13 1.15 -1.60
S 1 2 -0.12 1.08 0.86 0.82 -0.98
S 1 3 -4.52 1.48 -1.69 1.33 -2.84
S 1 4 -1.58 1.19 0.37 1.07 -1.95
S 1 5 -6.39 1.49 -3.94 1.76 -2.45
S 1 6 -1.35 1.23 0.98 0.51 -2.33
S 1 7 -2.13 1.47 -0.46 0.96 -1.67
S 1 8 -2.33 1.13 -0.94 1.12 -1.38
S 2 1 -0.88 1.26 -0.51 0.99 -0.37
S 2 2 -3.81 1.72 -1.07 1.27 -2.74
S 2 3 -0.46 1.10 0.12 0.44 -0.58
S 2 4 -1.83 1.25 1.26 0.82 -3.09
S 2 5 0.01 1.21 0.93 0.55 -0.92
S 2 6 -3.78 1.29 -0.86 1.40 -2.92
S 2 7 -2.55 1.38 0.02 1.19 -2.57
S 2 8 -3.73 1.22 -0.91 1.65 -2.82
S 3 1 -2.20 1.28 0.22 0.62 -2.41
S 3 2 -7.75 1.58 -2.54 2.67 -5.20
S 3 3 -3.14 0.99 -1.13 1.26 -2.00
S 3 4 -2.74 1.30 -0.59 0.95 -2.15
S 3 5 0.10 0.86 0.80 0.43 -0.70
S 3 6 -4.58 1.04 -1.05 1.50 -3.53
S 3 7 -1.65 1.40 -0.80 1.50 -0.85
S 3 8 -4.62 1.24 -0.96 1.76 -3.66
S 4 1 -3.14 0.86 -0.82 0.87 -2.32
S 4 2 0.40 0.71 0.30 0.28 0.10
S 4 3 -3.08 0.91 -1.05 1.40 -2.03
S 4 4 -0.97 1.15 0.98 0.61 -1.95
S 4 5 -4.98 1.18 -1.43 1.57 -3.56
S 4 6 -1.01 1.20 0.40 0.50 -1.41
S 4 7 -0.77 1.74 -0.66 0.87 -0.11
S 4 8 -2.82 1.09 -0.98 1.09 -1.84
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Table D.6. OKAN SPV: double exponential fits. A double exponential
function of the following form was fit to the SPV decay during OKAN:

SPV = vlong*exp(taujlong) + v_short*exp(taushort) + v_bias

1. v_long: magnitude of slow decay of OKAN SPV

2. tau long: time constant of slow decay of OKAN SPV

3. v_short: magnitude of fast decay of OKAN SPV

4. tau_short: time constant of fast decay of OKAN SPV

5. v_bias: bias or "drift" velocity seen regardless of stimulation. Generally quite close
to zero.
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OKAN SPV: double exponential fits

Subject Run # Trial # v long taujong v_short taushort v bias
(deg/sec) (sec) (deg/sec) (sec) (deg/sec)

M 1 1 3.37 1.34 1.93 0.27 0.08
M 1 2 -0.53 2.33 -1.74 0.39 0.14
M 1 3 -0.12 1.81 -1.20 0.42 0.14
M 1 4 0.36 7.28 3.50 0.95 0.03
M 1 5 -0.54 1.85 -0.76 1.85 0.13
M 1 6 0.63 8.98 1.53 0.61 -0.04
M 2 1 0.74 1.31 0.66 1.31 0.25
M 2 2 -1.62 1.33 -0.74 0.13 0.04
M 2 3 -0.53 0.83 -0.76 0.83 0.09
M 2 4 2.27 1.13 0.96 0.10 0.03
M 2 5 -0.53 2.48 -3.53 0.40 0.04
M 2 6 0.73 1.47 0.36 1.46 0.06
M 3 1 -2.09 1.31 -0.76 0.22 0.08
M 3 2 -2.38 1.40 -1.77 0.22 0.12
M 3 3 -1.58 1.31 -0.13 1.31 0.08
M 3 4 -1.27 1.43 -1.10 1.43 0.15
M 3 5 1.91 1.07 2.48 1.07 0.12
M 3 6 -2.24 1.61 -2.30 0.39 0.13
M 4 1 1.00 0.64 0.42 0.64 0.15
M 4 2 -0.87 1.16 -0.93 1.16 0.19
M 4 3 -1.23 1.10 -1.24 1.10 0.17
M 4 4 2.28 1.47 2.58 1.47 0.01
M 4 5 2.09 2.34 2.72 0.31 0.03
M 4 6 0.73 2.18 0.80 2.18 0.08
M 4 7 -- -- -- -- --
M 4 8 -1.16 1.51 -1.12 1.51 0.09
M 5 1 0.41 8.20 2.15 0.82 -0.09
M 5 2 -0.29 1.80 -2.15 0.63 0.02
M 5 3 -0.74 1.85 -0.99 1.84 0.35
M 5 4 2.55 1.14 1.09 0.23 0.07
M 5 5 -1.25 1.34 -2.30 0.43 0.06
M 5 6 0.44 4.32 1.57 0.25 -0.03
M 5 7 -- -- -- -- --
M 5 8 -1.01 0.90 -0.99 0.90 0.10
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OKAN SPV: double exponential fits

Subject Run # Trial # v_ long taulong v short tau_short v_bias
(deg/sec) (sec) (deg/sec) (sec) (deg/sec)

N 1 1 -1.59 0.63 -1.57 0.63 0.06
N 1 2 1.37 0.83 1.48 0.83 0.21
N 1 3 -2.03 0.69 -1.80 0.69 0.07
N 1 4 2.72 0.24 2.19 0.24 0.39
N 2 1 -2.43 0.66 -2.23 0.66 -0.04
N 2 2 0.79 2.05 0.63 2.05 0.26
N 2 3 -- -- -- -- --

N 2 4 2.22 0.40 0.69 0.40 0.33
N 2 5 -3.53 0.26 -3.43 0.26 0.21
N 2 6 2.92 1.19 2.81 1.19 0.19
N 2 7 2.26 0.29 2.33 0.29 0.17
N 2 8 -2.94 0.35 -3.75 0.35 0.45
N 3 1 1.83 1.25 1.92 1.25 0.19
N 3 2 -2.29 0.27 -1.72 0.27 0.29
N 3 3 -0.35 1.86 -3.46 0.40 0.16
N 3 4 1.39 1.88 2.55 0.16 0.40
N 4 1 1.68 0.84 1.66 0.82 0.04
N 4 2 -2.48 0.38 -2.52 0.38 0.17
N 4 3 -1.67 0.59 -1.68 0.59 0.11
N 4 4 0.14 4.83 3.70 0.33 0.11
N 4 5 0.54 6.92 1.09 0.22 0.09
N 4 6 -0.36 11.27 -0.82 0.36 0.17
N 4 7 1.54 1.15 0.64 0.21 0.20
N 4 8 0.35 13.83 1.45 0.08 0.05
N 5 1 -0.65 3.45 -2.28 0.18 0.52
N 5 2 1.45 2.31 1.83 0.21 0.30
N 5 3 -1.93 0.35 -1.89 0.35 0.09
N 5 4 0.78 4.17 0.17 4.16 0.30
N 5 5 -- -- -- -- --
N 5 6 -- -- -- -- --
N 5 7 1.23 1.46 2.33 0.29 0.16
N 5 8 -0.45 0.53 -0.47 0.53 0.03
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OKAN SPV: double exponential fits

Subject Run # Trial # vlong tauIong v.short tau_short v_bias
(deg/sec) (sec) (deg/sec) (sec) (deg/sec)

O 1 1 1.39 1.34 3.31 0.13 0.29
O 1 2 -2.75 0.20 -0.21 0.20 0.09
O 1 3 -0.82 3.60 -2.40 0.15 0.05
O 1 4 0.54 9.41 4.39 0.31 0.05
O 1 5 0.13 5.16 4.40 0.16 0.10
O 1 6 -- -- -- -- --
O 1 7 0.49 3.02 0.65 0.07 0.16
O 1 8 -- -- -- -- --
O 2 1 -0.51 10.09 -2.83 0.19 -0.14
O 2 2 0.44 0.19 2.34 0.19 0.15
O 2 3 -0.83 3.35 -1.31 0.41 -0.24
O 2 4 0.39 0.22 2.36 0.22 0.23
O 2 5 2.66 0.30 1.89 0.30 0.25
O 2 6 0.42 0.18 3.43 0.18 0.08
O 2 7 -2.05 1.01 -1.32 1.00 -0.63
O 2 8 -- -- -- -- --
O 3 1 -1.66 0.28 -1.93 0.28 0.43
O 3 2 1.46 0.94 1.41 0.94 0.12
O 3 3 -- -- -- -- --
O 3 4 1.01 1.89 2.80 0.11 0.14
O 3 5 -1.59 1.49 -4.08 0.20 0.34
O 3 6 0.91 0.17 1.57 0.17 0.34
O 3 7 1.19 3.50 2.13 0.78 0.17
O 3 8 -- -- -- -- --
O 4 1 -0.99 6.02 -3.32 0.14 -0.40
O 4 2 1.53 0.33 0.48 0.33 -0.24
O 4 3 -1.23 3.98 -1.78 0.20 0.13
O 4 4 0.91 1.66 0.83 1.66 -0.06
O 4 5 1.25 0.28 1.05 0.28 -0.04
O 4 6 -0.37 7.41 -0.62 0.19 0.04
O 4 7 -0.40 6.74 -0.13 0.17 0.04
O 4 8 1.17 2.11 2.22 0.26 0.12
O 5 1 0.27 0.28 0.53 0.28 0.31
O 5 2 -0.94 3.04 -0.62 3.04 0.61
O 5 3 2.16 0.35 0.78 0.35 0.00
O 5 4 -0.80 1.91 -0.93 1.91 -0.12
O 5 5 -- -- -- -- --
O 5 6 -0.98 0.62 -0.63 0.62 0.39
O 5 7 -0.52 1.47 -0.47 1.47 0.20
O 5 8 3.24 0.56 3.43 0.56 0.15
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OKAN SPV: double exponential fits

Subject Run # Trial # v long tau long v.short tau_short v_bias
(deg/sec) (sec) (deg/sec) (sec) (deg/sec)

P 1 1 1.76 0.15 0.80 0.15 -0.14
P 1 2 -3.71 1.65 -1.91 0.35 -0.17
P 1 3 -2.47 5.04 -1.85 0.19 -0.07
P 1 4 1.25 2.63 2.16 0.21 -0.21
P 1 5 0.64 8.58 1.42 0.44 -0.32
P 1 6 -2.22 3.00 -3.05 0.41 0.02
P 1 7 2.74 1.44 3.11 0.20 -0.14
P 1 8 -1.38 1.70 -2.07 1.70 -0.53
P 2 1 -1.79 4.46 -0.91 4.46 -0.25
P 2 2 0.34 3.17 2.43 0.00 -0.24
P 2 3 -2.04 10.31 -2.14 0.30 0.31
P 2 4 0.66 4.31 2.37 0.18 -0.11
P 2 5 -2.72 4.88 -1.18 0.08 -0.07
P 2 6 0.45 6.58 1.29 0.61 -0.12
P 2 7 1.52 2.60 3.20 0.12 0.37
P 2 8 -1.67 3.07 -1.84 3.07 0.05
P 3 1 -1.56 1.56 -2.64 0.56 0.00
P 3 2 0.62 1.15 0.41 1.06 -0.11
P 3 3 0.68 0.94 0.49 0.94 0.05
P 3 4 -2.42 3.27 -5.02 0.43 -0.11
P 3 5 -1.56 2.58 -1.89 0.34 0.10
P 3 6 1.02 2.29 1.25 2.29 -0.03
P 3 7 0.96 2.27 1.47 0.62 0.17
P 3 8 -2.94 1.23 -3.53 1.23 0.02
P 4 1 1.16 1.41 1.15 1.41 0.10
P 4 2 -1.91 6.45 -2.57 0.31 0.41
P 4 3 0.95 3.44 2.91 0.31 0.19
P 4 4 -1.01 4.60 -1.70 0.85 0.27
P 4 5 -2.64 2.84 -1.83 0.35 0.05
P 4 6 1.01 1.58 1.25 0.21 0.31
P 4 7 0.29 0.36 1.20 0.36 0.41
P 4 8 -1.83 4.93 -4.33 0.32 0.49
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OKAN SPV: double exponential fits

Subject Run # Trial # v long taujong vshort taunshort vbias
(deg/sec) (sec) (deg/sec) (sec) (deg/sec)

Q 1 1 -0.64 1.19 -0.70 1.19 -0.01
Q 1 2 1.24 0.77 1.34 0.77 -0.01
Q 1 3 -1.23 1.91 -1.24 0.63 0.05
Q 1 4 1.68 0.43 1.73 0.43 0.04
Q 1 5 -1.44 0.30 -1.02 0.30 -0.02
Q 1 6 0.92 0.31 2.09 0.31 -0.04
Q 1 7 2.40 0.20 0.63 0.20 -0.14
Q 1 8 -1.50 0.54 -1.53 0.54 -0.08
Q 2 1 0.07 5.12 0.06 4.97 0.22
Q 2 2 -0.56 2.12 -1.19 2.12 -0.32
Q 2 3 -0.20 0.27 -0.11 0.27 -0.50
Q 2 4 1.22 2.41 1.16 0.59 0.11
Q 2 5 0.32 2.03 2.09 0.19 -0.01
Q 2 6 -0.41 0.14 -1.25 0.14 -0.49
Q 2 7 1.52 1.22 1.18 0.00 0.02
Q 2 8 -1.58 0.22 -0.18 0.22 -0.44
Q 3 1 3.34 1.01 2.61 1.01 -0.07
Q 3 2 -1.47 1.96 -2.54 1.96 -0.07
Q 3 3 -0.62 0.61 -0.59 0.61 -0.13
Q 3 4 2.16 1.03 1.79 1.02 0.04
Q 3 5 0.65 0.48 0.57 0.48 -0.21
Q 3 6 -1.89 1.88 -1.98 1.88 -0.19
Q 3 7 1.17 1.45 1.61 1.45 -0.02
Q 3 8 -0.92 2.11 -1.79 0.53 -0.21
Q 4 1 -0.76 2.13 -0.94 2.13 -0.39
Q 4 2 1.68 2.11 0.38 2.11 -0.15
Q 4 3 -0.36 2.61 -0.60 2.15 -0.28
Q 4 4 1.42 4.10 0.72 0.20 -0.35
Q 4 5 -1.72 2.93 -2.11 0.40 -0.29
Q 4 6 1.36 1.82 1.52 1.42 -0.16
Q 4 7 0.90 3.05 4.14 0.23 -0.17
Q 4 8 -2.08 0.70 -1.98 0.70 -0.32
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OKAN SPV: double exponential fits

Subject Run # Trial # v long taulong v_short tau short v bias
(deg/sec) (sec) (deg/sec) (sec) (deg/sec)

R 1 1 1.85 0.65 2.41 0.65 -0.28
R 1 2 -2.97 0.46 -2.94 0.46 -0.18
R 1 3 -1.23 4.76 -2.77 0.22 0.02
R 1 4 1.85 0.36 2.22 0.36 -0.04
R 1 5 0.43 6.97 4.36 0.37 -0.09
R 1 6 -4.67 1.04 -1.89 0.15 -0.27
R 1 7 1.70 1.46 3.03 0.42 -0.12
R 1 8 -2.10 1.38 -1.78 1.38 0.06
R 2 1 -0.96 14.64 -1.13 14.63 -0.03
R 2 2 1.31 2.00 0.89 2.00 -0.35
R 2 3 -2.15 9.60 -4.51 0.04 0.18
R 2 4 1.28 1.44 1.69 0.20 -0.04
R 2 5 -1.50 10.02 -3.20 0.28 -0.10
R 2 6 1.42 0.37 1.75 0.37 -0.17
R 2 7 0.16 0.29 0.13 0.07 -0.20
R 2 8 -2.19 4.97 -2.43 0.11 -0.28
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OKAN SPV: double exponential fits

Subject Run # Trial # v long taujong v_short tau short v bias
(deg/sec) (sec) (deg/sec) (sec) (deg/sec)

S 1 1 -3.02 1.23 -2.80 1.23 0.21
S 1 2 1.08 1.08 0.77 1.08 0.31
S 1 3 -3.93 0.95 -4.78 0.95 0.11
S 1 4 0.90 2.85 3.69 0.14 -0.06
S 1 5 -3.95 1.27 -3.76 0.26 0.21
S 1 6 2.54 1.06 2.25 1.06 0.01
S 1 7 1.07 1.66 7.61 0.28 -0.09
S 1 8 -3.15 0.33 -3.09 0.33 0.13
S 2 1 2.28 1.31 3.86 0.18 -0.19
S 2 2 -2.18 1.13 -2.16 1.13 -0.13
S 2 3 -0.50 11.89 -0.93 11.87 0.20
S 2 4 3.17 0.23 2.99 0.23 -0.07
S 2 5 0.77 0.05 0.72 0.05 0.08
S 2 6 -2.68 7.35 -2.00 0.44 0.30
S 2 7 4.98 0.19 2.64 0.19 0.05
S 2 8 -1.60 4.34 -7.97 0.37 -0.05
S 3 1 2.13 0.64 1.70 0.64 -0.09
S 3 2 -5.05 1.31 -3.37 0.24 0.06
S 3 3 -0.94 3.97 -1.88 0.24 0.12
S 3 4 1.33 3.34 7.53 0.55 -0.05
S 3 5 2.46 1.83 2.62 0.11 -0.01
S 3 6 -2.45 2.40 -6.85 0.24 0.05
S 3 7 2.01 1.11 6.99 0.28 0.00
S 3 8 -4.17 1.95 -2.05 0.49 0.08
S 4 1 -0.96 1.58 -1.12 1.58 -0.16
S 4 2 0.56 12.32 1.39 0.08 -0.20
S 4 3 -2.52 1.70 -3.35 0.33 -0.02
S 4 4 1.68 2.04 1.46 0.13 0.01
S 4 5 -0.57 13.43 -4.47 0.69 0.40
S 4 6 1.78 1.74 2.27 0.24 0.07
S 4 7 2.41 0.61 2.44 0.61 0.06
S 4 8 -1.77 1.75 -1.76 1.75 0.05
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Table D.7. Vection parameters

1. time with vection: percent of dome rotation period during which vection was
perceived

2. onset time: time before a threshold vection level of 4% was achieved and
maintained for at least 0.5 second

3. max vection: maximum vection score recorded during each trial

4. ave vection: mean vection over entire period of dome rotation
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Vection parameters

Subject Run # Trial # time with onset time ax vection ve vection
vection (sec) (%) (%)

M 1 1 0.0
M 1 2 84.5 3.5 99.0 56.6
M 1 3 72.3 6.3 97.2 30.7
M 1 4 91.9 3.7 99.9 76.5
M 1 5 92.4 3.4 58.3 36.3
M 1 6 88.1 5.4 100.5 62.2
M 2 1 90.8 4.1 100.5 68.5
M 2 2 93.7 2.9 99.0 80.5
M 2 3 92.6 3.3 96.8 53.4
M 2 4 90.1 4.5 100.7 75.0
M 2 5 88.5 5.2 96.0 69.1
M 2 6 90.9 4.1 73.2 39.5
M 3 1 89.1 3.3 89.4 46.8
M 3 2 83.6 4.9 53.1 26.4
M 3 3 79.7 6.1 73.6 36.6
M 3 4 61.9 6.0 24.1 12.0
M 3 5 85.6 4.3 53.5 34.0
M 3 6 76.8 7.0 42.1 20.3
M 4 1 87.3 3.8 73.7 51.5
M 4 2 84.5 4.7 56.5 36.3
M 4 3 86.7 4.0 99.8 53.7
M 4 4 87.7 3.7 101.7 68.8
M 4 5 85.9 4.2 87.2 58.4
M 4 6 82.7 5.2 81.1 42.3
M 4 7 84.4 4.7 77.0 39.5
M 4 8 84.0 4.8 71.2 36.0
M 5 1 90.0 3.0 101.1 70.6
M 5 2 90.5 2.9 61.6 47.6
M 5 3 77.9 6.7 52.6 27.6
M 5 4 74.1 4.6 58.5 31.6
M 5 5 85.6 4.3 45.0 27.1
M 5 6 87.3 3.8 63.3 37.8
M 5 7 83.0 5.1 62.6 36.9
M 5 8 84.0 4.8 67.0 35.9
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Vection parameters

Subject Run # Trial # time with onset time ax vection ve vection
vection (sec) (%) (%)

(%)

N 1 1 33.4 20.0 10.9 2.0
N 1 2 77.9 6.7 34.5 16.6
N 1 3 65.8 10.3 24.8 11.8
N 1 4 78.3 6.5 46.3 30.1
N 2 1 62.4 11.3 19.9 10.1
N 2 2 68.3 9.5 25.6 16.4
N 2 3 74.3 7.7 19.1 12.8
N 2 4 65.9 10.2 19.8 13.2
N 2 5 78.8 6.4 25.3 15.5
N 2 6 81.8 5.5 38.4 23.3
N 2 7 77.1 6.9 27.6 18.9
N 2 8 62.3 10.8 6.5 2.8
N 3 1 70.4 8.9 22.4 15.6
N 3 2 69.A4 9.2 18.9 12.8
N 3 3 29.0 17.4 6.7 1.6
N 3 4 81.1 5.7 27.0 18.9
N 4 1 77.0 6.9 30.7 22.1
N 4 2 74.2 7.8 25.9 15.7
N 4 3 0.0 . 5.9 1.9
N 4 4 69.6 9.1 24.4 18.4
N 4 5 23.9 22.8 13.9 8.4
N 4 6 51.6 14.5 27.1 12.2
N 4 7 48.4 10.7 21.9 11.7
N 4 8 71.9 8.4 18.9 13.0
N 5 1 0.0 . 6.9 2.0
N 5 2 25.5 13.1 14.4 8.4
N 5 3 19.6 23.4 13.5 2.9
N 5 4 62.5 8.2 16.6 10.9
N 5 5 52.1 7.1 19.3 7.1
N 5 6 0.0 . 9.5 7.9
N 5 7 0.0 . 9.5 8.2
N 5 8 26.0 21.7 12.1 2.8
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Vection parameters

Subject Run # Trial # time with onset time iax vection ye vection
vection (sec) (%) (%)

(%)

O 1 1 85.1 4.5 101.1 61.9
O 1 2 91.2 2.7 99.6 49.1
O 1 3 80.6 5.8 99.3 66.5
O 1 4 79.2 6.3 51.9 38.2
O 1 5 68.1 9.6 99.8 50.3
O 1 6 80.4 5.1 54.2 37.2
O 1 7 86.1 4.2 66.7 51.9
O 1 8 91.6 2.5 68.3 45.5
O 2 1 95.0 1.5 54.4 40.3
O 2 2 83.5 5.0 43.3 33.1
O 2 3 67.2 9.9 99.2 50.7
O 2 4 83.0 5.1 38.8 26.1
O 2 5 90.9 2.8 100.3 58.6
O 2 6 86.1 4.2 37.0 25.3
O 2 7 94.5 1.7 99.6 86.3
O 2 8 89.8 2.4 26.3 19.9
O 3 1 90.1 3.0 65.1 48.6
O 3 2 72.8 8.2 101.4 53.1
O 3 3 82.2 1.9 70.3 42.1
O 3 4 94.9 1.5 40.8 33.5
O 3 5 62.5 1.1 76.4 23.9
O 3 6 89.1 3.3 56.7 33.4
O 3 7 95.8 1.3 57.5 39.8
O 3 8 78.2 4.0 70.7 32.5
O 4 1 83.9 4.8 88.1 58.5
O 4 2 79.1 6.3 102.3 69.1
O 4 3 86.6 4.0 69.3 45.6
O 4 4 91.3 2.6 57.5 33.3
O 4 5 93.8 1.9 89.2 52.5
O 4 6 94.6 1.6 60.8 48.0
O 4 7 66.0 10.2 46.9 17.6
O 4 8 96.1 1.2 84.9 55.5
O 5 1 93.1 2.1 58.2 28.8
O 5 2 90.9 1.8 30.5 23.2
O 5 3 96.6 1.0 88.9 48.1
O 5 4 91.9 2.4 66.0 33.5
O 5 5 88.5 3.5 38.5 22.4
O 5 6 85.8 4.3 28.1 19.6
O 5 7 36.3 19.1 18.3 6.5
O 5 8 19.6 4.3 27.4 6.0
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Vection parameters

Subject Run # Trial # time with onset time ax vection ve vection
vection (sec) (%) (%)

P 1 1 83.9 4.9 41.7 30.4
P 1 2 69.7 9.1 28.5 14.6
P 1 3 8.8 16.6 8.2 0.9
P 1 4 82.3 5.3 54.5 32.9
P 1 5 69.2 8.3 20.2 12.8
P 1 6 66.8 7.8 19.5 9.7
P 1 7 80.1 6.0 56.4 33.8
P 1 8 51.6 5.9 18.1 5.5
P 2 1 41.0 10.4 16.7 4.6
P 2 2 81.6 5.5 26.8 18.8
P 2 3 73.9 7.3 21.1 12.4
P 2 4 79.4 6.2 46.4 28.2
P 2 5 82.8 5.2 53.5 24.4
P 2 6 87.9 3.7 55.5 39.9
P 2 7 91.0 2.7 71.7 51.1
P 2 8 65.5 4.6 18.9 9.0
P 3 1 73.6 7.9 27.5 13.3
P 3 2 82.2 5.4 33.5 19.9
P 3 3 91.4 2.6 51.7 40.7
P 3 4 93.2 2.1 55.6 39.0
P 3 5 48.0 13.5 17.2 6.7
P 3 6 91.2 2.6 56.6 41.5
P 3 7 79.8 6.1 40.5 24.2
P 3 8 88.4 3.5 50.0 27.8
P 4 1 96.8 1.0 68.9 47.1
P 4 2 88.0 3.6 51.5 29.8
P 4 3 86.6 3.5 30.6 20.2
P 4 4 92.3 2.3 48.8 29.7
P 4 5 58.2 6.3 16.9 7.4
P 4 6 92.6 2.2 51.5 38.1
P 4 7 90.1 3.0 36.7 25.1
P 4 8 83.9 4.9 47.8 21.1
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Vection parameters

Subject Run # Trial # time with onset time ax vection ve vection
vection (sec) (%) (%)

Q 1 1 69.2 9.3 27.3 11.6
Q 1 2 88.7 3.4 100.7 50.3
Q 1 3 93.5 2.0 47.2 32.7
Q 1 4 89.5 3.2 54.0 33.9
Q 1 5 95.9 1.2 72.1 46.3
Q 1 6 90.5 2.9 63.1 44.2
Q 1 7 91.8 2.5 73.4 49.4
Q 1 8 84.8 3.8 47.8 20.7
Q 2 1 74.2 4.9 35.2 19.4
Q 2 2 92.6 2.2 86.9 61.9
Q 2 3 67.5 9.8 93.3 36.8
Q 2 4 94.4 1.7 54.3 41.3
Q 2 5 83.8 4.9 100.9 57.8
Q 2 6 91.5 2.6 61.4 40.1
Q 2 7 88.9 3.4 101.3 59.7
Q 2 8 90.3 2.9 87.5 63.7
Q 3 1 59.2 10.8 102.2 35.5
Q 3 2 63.2 11.1 95.6 36.1
Q 3 3 8.4 27.5 9.6 4.7
Q 3 4 87.8 3.7 86.6 49.4
Q 3 5 34.7 17.3 31.6 12.7
Q 3 6 87.9 3.6 90.1 42.6
Q 3 7 90.6 2.8 87.8 62.0
Q 3 8 61.1 11.7 49.4 22.7
Q 4 1 26.2 22.2 41.7 4.8
Q 4 2 27.6 21.7 66.5 18.0
Q 4 3 47.7 15.7 61.4 23.1
Q 4 4 81.3 5.6 54.7 35.0
Q 4 5 90.2 3.0 62.2 47.3
Q 4 6 84.8 4.6 95.8 59.5
Q 4 7 87.3 3.8 102.1 72.3

4 8 81.7 5.5 47.0 23.4
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Vection parameters

Subject Run # Trial # time with onset time ax vection Lve vection
vection (sec) (%) (%)

R 1 1 0.0 . 8.3 5.9
R 1 2 62.9 5.0 24.8 14.4
R 1 3 74.3 7.7 40.2 26.4
R 1 4 10.2 18.8 20.3 8.6
R 1 5 33.5 6.7 20.1 9.2
R 1 6 55.3 13.4 34.1 13.5
R 1 7 38.2 13.5 22.1 11.3
R 1 8 11.9 25.9 7.2 0.2
R 2 1 0.0 . 7.9 0.0
R 2 2 0.0 . 16.2 8.0
R 2 3 0.0 2.9 2.3
R 2 4 12.1 26.4 12.6 8.4
R 2 5 0.0 . 8.7 4.1
R 2 6 0.0 . 8.9 4.3
R 2 7 0.0 . 9.3 6.3
R 2 8 0.0 . 6.6 0.9

253



Vection parameters

Subject Run # Trial # time with onset time ax vectione vection
vection (sec) (%) (%)

S 1 1 87.8 3.7 99.2 67.6
S 1 2 95.2 1.5 102.1 82.5
S 1 3 90.2 3.0 67.9 52.9
S 1 4 92.0 2.4 101.1 76.2
S 1 5 92.0 2.4 27.5 18.6
S 1 6 93.5 2.0 63.2 50.3
S 1 7 94.7 1.6 57.7 44.1
S 1 8 85.9 4.2 49.1 22.0
S 2 1 93.3 2.0 86.4 67.5
S 2 2 90.2 3.0 95.2 73.4
S 2 3 93.6 1.9 99.3 77.7
S 2 4 95.4 1.4 75.0 63.8
S 2 5 95.3 1.4 101.5 86.6
S 2 6 94.3 1.7 53.0 41.4
S 2 7 96.1 1.2 50.1 40.0
S 2 8 92.5 2.3 69.9 44.6
S 3 1 93.3 2.0 67.7 55.4
S 3 2 95.6 1.3 50.0 43.5
S 3 3 93.5 2.0 99.6 85.4
S 3 4 91.6 2.5 52.8 42.9
S 3 5 94.5 1.7 102.8 89.8
S 3 6 95.6 1.3 56.8 48.3
S 3 7 90.4 0.8 60.5 48.9
S 3 8 95.1 1.5 56.4 47.4
S 4 1 91.2 2.7 99.2 70.9
S 4 2 94.8 1.6 80.3 64.4
S 4 3 95.4 1.4 39.0 28.4
S 4 4 93.3 2.0 85.8 62.8
S 4 5 93.4 2.0 55.3 35.5
S 4 6 95.8 1.3 50.2 47.0
S 4 7 91.3 2.6 81.4 72.4
S 4 8 95.1 1.5 61.6 48.7
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a. Subject M%: Supine dome, 560/sec CCW
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b. Subject N: Erect dome, 14*/sec CW
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d. Subject P: Erect dome, 450/see CCW
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Figure D.1. Typical vection responses for individual subjects.
[a.] Subject M. [b.] Subject N. [c.] Subject O. [d.] Subject P.
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e. Subject Q: Erect dome, 30 0 /sec CW
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f. Subject R: Erect dome, 60 0 /see CW
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Figure D.1. Typical vection responses (continued from previous
page). [e.] Subject Q. [f.] Subject R. [g.] Subject S
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APPENDIX E: SUBJECT COMMENTS

Following each test session, the subjects were asked to describe various aspects of their

perceptions during the rotating dome experiment. This section paraphrases the notes taken

during these subject debriefs.
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E.1. Subject N Comments

E.1.1. Erect Session

*CW trials produced stronger vection and greater perception of tile

*Vection was not saturated
-maximum vection achieved was approximately 70% for some CW trials

*Maximum perceived tilt was near 150

*No vection aftereffects were perceived following the end of dome rotation

*Visual aftereffects were limited to vague afterimages consisting of concentric rings

*Vection decreased during lapses of fixation on the central LED

*Some dropouts may have occurred following blinks

*No motion sickness symptoms were observed other than slight headache

'Subject was conscious of tilt through pressure on biteboard

E.1.2. Supine Session

*Vection much weaker supine

*Same afterimages--concentric circles expanding outward

'For trials with lights on immediately following dome rotation, center of dome
perceived to rotate slowly in direction counter to previous rotation. Visual sensation
lasted only about 2 sec.; no vection reversal perceived upon dome stop
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E.2. Subject O Comments

E.2.1. Erect Sessions

*During first run, motion sickness began about halfway through run. Reached
symptom level of 7 where 10 is vomiting.

-symptoms included nausea, excessive warmth, pallor

*Did get saturated vection on some of the slower trials; however, no "head over heels"
rotation

*Higher speeds were not "believable" in terms of vection illusion

MAfterimage perceived to continue rotating in direction of prior dome rotation; effect
mostly visual, since vection cuts out as soon as dome stops

*Fixation point perceived to drift around after about 20 sec. in darkness

*Dropouts occurred when "staring"

*Individual dots perceived as spinning during dome rotation

*Maximum tilt perceived was approximately 300.

E.2.2. Supine Session

*Surprised at how little vection was felt

*Never perceived saturated vection

'Slow trials produced slightly more vection

*More vection for CCW dome rotations

*LED perceived as drifting up after about 10 sec. in darkness; moved about 150 total
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E.3. Subject P Comments

E.3.1. Erect Session

*Felt strong vection at same time as strong neck torque against biteboard

*Faster trials produced stronger vection

eAt maximum, felt approximately 50% vection and 100 tilt

*Observed no afterimages or vection aftereffects

*Felt that CW runs might have caused slightly stronger vection

E.3.2. Supine Session

*Felt much less of a biteboard cue

eSometimes saw circular afterimage moving in the same direction as prior dome rotation

*Felt more vection and faster onset for CCW dome rotation

*Did not feel full 3600 continuous rotation

*Thought vection erect was stronger
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E.4. Subject Q Comments

E.4.1. Erect Session

*Had balance problem during later trials for segments in complete darkness

*On one trial, felt outlasting vection in both directions

eAfterimages perceived to rotate about once around

*Saturated vection perceived for CW dome rotation only; once on very slow trial

*Felt faster self-rotation for faster trials

*Felt some pitch forward (approximately 150)

*Spots appear to dots during stimulus rotation

E.4.2. Supine Session

*Felt that vection was more intense, as if being rotated on a turntable

*Only felt saturated vection on one trial

*Perceived swing outward of approximately 450

'More vection for CW dome rotations

*When lights go out, afterimage streaks appear to move opposite prior dome rotation.

'On 5 or 6 trials, perceived short period of self rotation after dome stop in direction
opposite to prior vection (about 1 revolution only)

'Felt combination of roll right and pitch back for two CCW trials.

261



E.5. Subject S Comments

E.5.1. Erect Session

eVection started almost immediately with dome rotation; stopped when lights went out

*Slight pulse of opposite vection when lights went out; stronger without LED fixation
point

*Vection generally constant except at high stimulus speeds

eSometimes felt as though laying on back and rotating through a full 3600. Vection
reached approximately 50%.

*No strong sensation of constant roll angle

*Felt greater postural instability in the dark

*Higher speeds were "almost nauseogenic"

*Stronger vection perceived for CW dome rotations

E.5.2. Supine Session

*Still perceived full 3600 rotation

*No directional asymmetries noted

'Vection approximately 50% regardless of dome speed

'Saturation occurred only on one slow trial

*Occasional dropouts during fast trials

*No aftereffects

*Much harder to fixate in dark; perceived strong upward drift of LED in dark

*Vection began immediately upon start of dome rotation
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APPENDIX F: DATA ANALYSIS PROGRAMS

This appendix contains the major programs used in the data reduction and analysis. With one

exception (dome_convert--a C program) the programs are all written in MatLab. A short

description of each program is given:

domeconvert:

enc_speed:

sac em:

spv_gain:

tor_pos:

fit_gains:

pole_fun:

showokan:

okanfun:

get_vect:

This C program loads binary data files saved by LabView and
convertes them into MatLab variable format.

MatLab script which calculates dome rotation rate from optical
encoder output

From edited SPV and raw velocity traces, determines saccade and
slow phase parameters, including end points, magnitudes, peak
velocities, and frequencies. Also generates cumulative slow phase
eye position traces

From edited SPV and sac_em output, calculates mean and maximum
SPV and SPV gain values for each trial

From raw eye position and sac_em output, calculates mean,
minimum, and maximum eye positions for each trial.

Fits mean SPV gains to function relating gain to stimulus velocity.
Actual function is of the form:

Gainspv Go +
jVomer +

Vdome

Implements function to be fit in fit-gains. In essence, generates
norm of error vector between actual data points and model
predictions generated by current best fit values

Fits OKAN SPV decay to double exponential model with constant
bias term. Model function is of the form

SPVoKAN = Vshorte - t + Vlonge" t•' + Vbias

Implements function to be fit in show_okan. Generates norm of
error vector between true SPV series and model predictions
generated by current best fit values

For each trial calculates onset and dropout times, as well as
maximum and average vection parameters
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plot_corr:

state_spv:

T 1mean:

T 2means:

T line conf:

For every trial, computes cross-correlation function between vection
and SPV and between vection and eye position. Plots all time series
and results of cross-correlations. Stores times of peaks in cross-
correlation functions

Makes comparisons of SPV magnitude and mean eye position based
on vection state. For SPVs, calculates ratio of mean SPV during
vection segments to mean SPV during periods without vection. For
eye position, calculates difference between mean positions during
times with and without vection, then scales difference by total
torsional range during trial

Compares population mean with null hypothesis using double sided
t-test. Returns probability that null hypothesis is correct.

Compares the means of two populations using a double sided t-test.
Returns probability that the two populations have the same mean.

Given a set of (x,y) coordinates, performs a linear regression fit and
generates a 90% or 95% confidence interval about the slope and the
y-intercept.
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dome_convert.c
This program was written by M. Dave Balkwill
Modified slightly for rotating dome use by Keoki Jackson

This program can convert binary data files saved by LabView into MatLab variable
files

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>

#include <unix.h>

#define FALSE 0
#define TRUE 1

#define MAX_LINE_LENGTH 81

#define BLOCK_SIZE 16384

#define MATLAB_NAME "info"

#define BAD_TYPE 0
#define DOUBLE_TYPE 1
#define FLOAT_TYPE 2
#define LONGTYPE 3
#define SHORTTYPE 4

#define MATLAB DOUBLE 1000
#define MATLABFLOAT 1010
#define MATLABLONG 1020
#define MATLAB_SHORT 1030

#define TORSIONAL_VAR "tor" /* channel 1 */
#define HORIZONTAL_VAR "hor" /* channel 2 */
#define VERTICAL_VAR "ver" /* channel 3 */
#define ACCELERATION_VAR "acc" /* channel 4 */

char *matvar_names[] = {
TORSIONAL_VAR, HORIZONTALVAR, VERTICAL_VAR, ACCELERATION_VAR

char run_code[MAX LINE_LENGTH];

char in_filename[MAX_LINE_LENGTH];
int in_fnamelen;
int in_handle;
FILE *infptr;
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char *in_buffer;
int in_bytes;

char out_filename[MAX_LINE_LENGTH];
int outhandle;
FILE *outfptr;
char *outbuffer,
int outbytes;

char interfilename[MAXLINELENGTH];
int inter_handle;
FILE *interfptr

typedef struct {
long type;
long mrows;
long ncols;
long imagf;
long namlen;
} Fmatrix;

Fmatrix F_out;
long mrows = OL;
long ncols = OL;

int sample_size[5] = { 0, 10, 4, 4, 2 );
int in_size, out size;
int intype, out-type;
int num_channels;
long total_bytes;

int save_intermediate = FALSE;

#define ALLOCATE_BUFFER(BUF) \
f\
(BUF) = malloc(BLOCKSIZE);\
if (!(BUF)) {\
printf("Out of memory on buffer allocation.\n");\
goto done;\

#define READ_BUFFER() \
in_bytes = read(in_handle,inbuffer,BLOCKSIZE);

#define WRITEBUFFER(NUM) \
write(out handle,outbuffer,NUM);

#define WRITE INTER(NUM) \
write(inter_handle,out_buffer,NUM);

char in_line[MAX_LINE LENGTH];
char matlab_name[MAXLINE_LENGTH];
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main()
{

int open_inputfileo, create_outputfile0, create_inter_file0, get-file_parameterso;
int specify_run();
long calculate_num samples0;
void write_matlab_header0, transfer_data0;

int i;

ALLOCATE_BUFFER(in_ buffer)
ALLOCATE_BUFFER(outbuffer)

while (specify_run() {

for (i = 1; i <= 6; i++) {

in_filename[in_fnamelen] = '0' + i;

if (open_inputfileO) {

if (create_outputfile0) {

if (getfileparameters(i)) (

/*
printf("input file = %s\n",in_filename);
printf("output file = %s\n",outfilename);
printf("input type = %d\n",injtype);
printf("ouput type = %d\n",outtype);
printf("number of channels = %d\n",ncols);
printf("matlab name = %s\n",matlab-name);*/

/*
if (save_intermediate) {

if (create_inter_file() {
mrows = calculate_num_samples0;
write_matlab_header0;
transferdata();

}

else {
*/

mrows = calculate_num_samples0;
write_matlab_header0;
transfer_data);

/*

*/

save_intermediate = FALSE;
I
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done:
close(inhandle);
close(outhandle);
close(inter_handle);

I

int specify_run()
{

int i,1;
int retval = TRUE;

printf("Enter input file name:");
gets(run_code);
1 = strlen(run_code);
in_fnamelen = 1;
/* while (1 != 6) { */

if (1 == 0) {
retval = FALSE;

/* break; */

/*
printf('NnInvalid file name -- enter only first six characters.\n");
printf("Enter input file name (6 character run code):");
gets(run_code);
1 = strlen(run_code);

} */

strcpy(infilename,runcode);
for (i = 0; i < (injfnamelen); i++) {

if ((infilename[i] >= 'a') && (infilename[i] <= 'z'))
in_filename[i] += 'A' - 'a';

I
/*strcat(in_filename,"C1.DAT"); */

retum(retval);

int open_inputfile()

int 1;
int retval = TRUE;

in_handle = open(in_filename,OQBINARYIO_RDONLY);
if (in_handle <= 0) {

printf("Input file %s is missing.\n",infilename);
retval = FALSE;

I
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return(retval);
I

int create_outputile()
{

int 1;
int retval = TRUE;

1= strlen(in_filename);
strcpy( (char *)out filename, (char *)in filename );
/*if (strncmp(".DAT",(char *)(&outfilename[1-4]),4))*/

strcat(outLfilename,".matlab");
/*else

outfilename[l-3]= 'M';*/
outfptr = fopen(out_filename,"rt");
if (outfptr) {

printf("Output file %s already exists. Overwrite (y/n) ?", outfilename);
gets(in.line);
if ((in_line[O] == 'y') II (inline[0] == 'Y')) {

printf("Overwriting %s.\n",outfilename);
fclose(outfptr);
outfptr = fopen(outfilename,"wt");

else {
printf("Aborting for this file.\n");
fclose(out fptr);
retval = FALSE;

else {
printf("Creating new output file %s.\n",outfilename);
outfptr = fopen(outfilename,"wt");

return(retval);

int create_inter_file()
{

int 1;
int retval = TRUE;

1 = strlen(in_filename);
strcpy( (char *)inter_filename, (char *)in_filename );
if (strncmp(".DAT",(char *)(&inter_filename[1-4]),4))

strcat(inter_filename,".nysa");
else (

inter_filename[l-3] = 'N';
inter_filename[l-2] = 'Y';
interfilename[l-1] = 'S';
I

interfptr = fopen(inter_filename,"rt");
if (inter_fptr) {

printf("NysA file %s already exists. Overwrite (y/n) ?", inter_filename);
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gets(in_jine);
if ((in_line[O] == 'y') II (in__ine[0] == 'Y')) {

printf("Overwriting %s.\n",interfilename);
fclose(interfptr);
inter_handle = open(inter_filename,O_BINARYIO_RDWR);
}

else (
printf("Aborting for this file.\n");
fclose(interfptr);
retval = FALSE;

else {
printf("Creating new NysA file %s.\n",inter_filename);
inter_handle = open(interfilename,O_BINARYIO_RDWRIO_CREAT);
}

return(retval);

int getfileparameters(index)
int index;
{

int get_buffertype();
int retval = TRUE;
int i, j;

in_type = get buffer_type("input");
injtype = 2;
if (in_type == BAD_TYPE) {

retval = FALSE;

else I
in_size = sample_size[intype];
outtype = get_buffertype("output");
outtype = 4;
if (outtype == BAD_TYPE) i

retval = FALSE;

else {
out_size = sample_size[out_type];

/* modified for Jock's special use -- assumes only one column of data per file *//*
printf("Enter number of data channels:");
gets(in_line);
sscanf(inline,"%d",&num_channels);

*/
num_channels = 1;
if (num_channels <= 0)

retval = FALSE;
else I

ncols = num_channels;
strcpy(matlab name,in_filename);
for (i-0; i<in fnamelen; i++) {
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matlab&name[i] += 'a' -'A';

/*
save_intermediate = (index > 2);

printf("Enter MatLab variable name:");
gets(in_line);
if (strlen(injine) == 0)

retval = FALSE;
else {

for (i = 0; in_line[i] <= ''; i++);
for (j = i; in_line]i > ''; j++)

matlab_name[j-i] = in_linell];
matlab_namelj-i] = ';
if (strcmp(matlab_nameH-IEOG_VAR) == 0)

save_intermediate = TRUE;
else if (strcmp(matlab_name,VEOG_VAR) = 0)

save_intermediate = TRUE;
}

*/

}

return(retval);
}

int get buffertype(io)
char *io;
{

int type;
/*

printf("Enter %s file type.\n",io);
printf(" 1: double\n");
printf(" 2: float\n");
printf(" 3: long\n");
printf(" 4: short\n");
gets(in_line);
sscanf(in_line,"%d",&type);
if ((type < 1) II (type > 4)) {

type = BAD_TYPE;
printf("Invalid %s file type. Aborting this file.n",io);

*/
/* modified for Jock's special use -- assumes I/O types are short two-byte integer */

type = 2;

return(type);
}

long calculate_numsamples()
{

long num = OL;
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do {
READ_BUFFER()
num += inbytes;
)

while (inbytes == BLOCKSIZE);
totalbytes = num;
num /= (ncols * in_size);
close(inhandle);
printf("Converting %ld samples.\n",num);
return(num);

I
void write_matlab_header(
{

switch (outtype) {
case DOUBLE_TYPE:

F_out.type = MATLAB_DOUBLE;
break;

case FLOAT_TYPE:
F out.type = MATLAB_FLOAT;
break;

case LONG_TYPE:
F_out.type = MATLAB_LONG;
break;

case SHORT_TYPE:
F out.type = MATLAB_SHORT;
break;

F_out.mrows = mrows;
F_out.ncols = ncols;
Fout.imagf = FALSE;

/* F_out.namlen = strlen(MATLAB_NAME) + 1;*/
/* allow user-specified matlab variable name */

F_out.namlen = strlen(matlab name) + 1;
fwrite( &F_out, sizeof(Fmatrix), 1, outfptr );

/* fwrite( MATLAB_NAME, sizeof(char), (int)F_out.namlen, out_fptr);*/
/* allow user-specified matlab variable name */

fwrite( matlab_name, sizeof(char), (int)F_out.namlen, outfptr);
fclose(outfptr);

void transfer_data()
{

void double_to_float(), double_to_long(), double_toshort();
void float_to_double(), floattolong(), float_to_short();
void longtodouble(), longtofloat(), longto short();
void shorttodouble(), short_to_float(), short_to_long();
void short_reverse(), long_reverse();

in_handle = open(in_filename,O_BINARYIO_RDONLY);
outhandle = open(outfilename,O_BINARYIO_RDWRIO_APPEND);
if (in_type == out-type) {

do {
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READ_BUFFER()
/* reverse order of bytes in a word for data ported from VAX -- mod. for JC */

if (in-type == SHORT_TYPE)
short_reverse();

else if (intype == LONG_TYPE)
longreverse();

WRITE_BUFFER(inbytes)
if (save_intermediate)

WRITE_INTER(inbytes)
I

while (inbytes = BLOCK_SIZE);
I

else {
switch (in_type) {
case DOUBLE TYPE:

switch (outtype) {
case FLOATTYPE:

double_to_float();
break;

case LONG_TYPE:
double_to_long();
break;

case SHORT_TYPE:
double_to_short0;
break;

case FLOAT_TYPE:
switch (outtype) {
case DOUBLETYPE:

float to double();
break;

case LONG_TYPE:
float to long();
break;

case SHORT_TYPE:
floattoshort();
break;

case LONG_TYPE:
switch (outtype) {
case DOUBLE_TYPE:

long_to_double();
break;

case FLOAT_TYPE:
long_to_float();
break;

case SHORT_TYPE:
longtoshort();
break;

I
case SHORTTYPE:

switch (outtype) {
case DOUBLE_TYPE:

short_to_double();
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break;
case FLOAT TYPE:

short_to_float();
break;

case LONGTYPE:
short_to_long();
break;

close(inhandle);
close(outhandle);

void short_reverseO
{

int i;

for (i = 0; i < in_bytes; i += 2) {
out_buffer[i] = inbuffer[i+ 1];

out_buffer[i+1] = in_buffer[i];

void long_reverse()
{

int i;

for (i = 0; i < in_bytes; i += 4) {
out_buffer[i] = in_buffer[i+3];
out_buffer[i+1] = in_buffer[i+2];
out_buffer[i+2] = inbuffer[i+1];
out_buffer[i+3] = in_buffer[i];

void double_to_float()

int i,j,k;
int ratio;
double *in;
float *out;
int in_samples, out_samples;
long remaining;

in = (double *)in_buffer;
out = (float *)outbuffer;
ratio = in_size / outsize;
in_samples = BLOCKSIZE / in_size;
out_samples = BLOCK_SIZE / out_size;
remaining = mrows * ncols;
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READBUFFER()
j =0;
k =0;
while (remaining) {

out[k] = in[j];
j++;
k++;
remaining--;
if (j == in_samples) {

READ_BUFFER()
j =0;

if (k == out_samples) (
WRITEBUFFER(BLOCK_SIZE)
k = 0;

if (k > 0)
WRITE_BUFFER(k * out_size)

void double_tolong()
{

int i,j,k;
int ratio;
double *in;
long *out;
int in_samples, outsamples;
long remaining;

in = (double *)in_buffer;
out = (long *)out buffer,
ratio = in_size / out size;
in_samples = BLOCK_SIZE / in_size;
out_samples = BLOCKSIZE / outsize;
remaining = mrows * ncols;

READ_BUFFER()
j =0;
k =0;
while (remaining) {

out[k] = in[j];
j++;
k++;
remaining--;
if (j == in_samples) {

READBUFFER()
j = 0;

if (k == out_samples) {
WRITE_BUFFER(BLOCK_SIZE)
k = 0;

I
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if (k > 0)
WRITE_BUFFER(k * outsize)

void double_to_short()
{

int i,j,k;
int ratio;
double *in;
short *out;
int insamples, out-samples;
long remaining;

in = (double *)in_buffer;
out = (short *)out-buffer;
ratio = in_size / outsize;
in_samples = BLOCKSIZE / in_size;
outsamples = BLOCK_SIZE / outsize;
remaining = mrows * ncols;

READ_BUFFER()
j =0;
k = 0;
while (remaining) {

out[k] = inlj];
j++;
k++;
remaining--;
if (j == in_samples) I

READ_BUFFER()
j =0;
}

if (k == outsamples) {
WRITEBUFFER(BLOCK_SIZE)
k = 0;

}
if (k > 0)

WRITE_BUFFER(k * out_size)

void floatto_long()

int i,j,k;
int ratio;
float *in;
long *out;
int in_samples, outsamples;
long remaining;

in = (float *)in_buffer;
out = (long *)outbuffer,
ratio = in_size / outsize;
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insamples = BLOCK_SIZE / in_size;
outsamples = BLOCK_SIZE / outsize;
remaining = mrows * ncols;

READ_BUFFER()
j = 0;
k =0;
while (remaining) {

out[k] = in[j];
j++;
k++;
remaining--;
if (j == in_samples) {

READ_BUFFER()
j =0;
I

if (k == out-samples) (
WRITEBUFFER(BLOCK_SIZE)
k = 0;

if (k > 0)
WRITE_BUFFER(k * out_size)

void floattoshort()
{

int i,j,k;
int ratio;
float *in;
short *out;
int in_samples, outsamples;
long remaining;

in = (float *)in_buffer;
out = (short *)outbuffer;
ratio = in_size / outsize;
in_samples = BLOCKSIZE / in_size;
outsamples = BLOCK_SIZE / outsize;
remaining = mrows * ncols;

READ_BUFFER()
j =0;
k = 0;
while (remaining) {

out[k] = in[j];
j++;
k++;
remaining--;
if (j == in_samples) {

READ_BUFFER()
j =0;

if (k == outsamples) {
WRITE_BUFFER(BLOCK_SIZE)
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k = 0;
}

if (k > 0)
WRITE_BUFFER(k * out_size)

I
void longtoshort()
{

int i,j,k;
int ratio;
long *in;
short *out;
int in_samples, outsamples;
long remaining;

in = (long *)in_buffer,
out = (short *)outbuffer;
ratio = in_size / out_size;
insamples = BLOCK_SIZE / in_size;
outsamples = BLOCKSIZE / outsize;
remaining = mrows * ncols;

READ_BUFFER()
j = 0;
k = 0;
while (remaining) {

out[k] = in[j];
j++;
k++;
remaining--;
if (j == in_samples) {

READ_BUFFER()
j = 0;

if (k == outsamples) {
WRITEBUFFER(BLOCKSIZE)
k =0;

if (k > 0)
WRITE_BUFFER(k * outsize)

void float_to_double(
{

int i,j,k;
int ratio;
float *in;
double *out;
int in_samples, outsamples;
long remaining;
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in = (float *)inbuffer,
out = (double *)outbuffer;
ratio = out_size / in_size;
in_samples = BLOCK_SIZE / in_size;
out_samples = BLOCK_SIZE / out_size;
remaining = mrows * ncols;

READ_BUFFER()
j =0;
k = 0;
while (remaining) {

out[k] = in[j];
j++;
k++;
remaining--;
if (j == insamples) {

READ_BUFFER()
j =0;

if (k == out_samples) {
WRITE_BUFFER(BLOCK_SIZE)
k = 0;

if (k > 0)
WRITE_BUFFER(k * outsize)

void long to_double()

int i,j,k;
int ratio;
long *in;
double *out;
int in_samples, outsamples;
long remaining;

in = (long *)inbuffer;
out = (double *)out-buffer;
ratio = out size / in size;
in_samples = BLOCK_SIZE / in_size;
outsamples = BLOCKSIZE / outsize;
remaining = mrows * ncols;

READ_BUFFER()
j =0;
k =0;
while (remaining) {

out[k] = inUl];
j++;
k++;
remaining--;
if (j == in_samples) {

READ_BUFFER()
j =0;

279



if (k = outsamples) (
WRITE_BUFFER(BLOCKSIZE)
k =0;

if (k > 0)
WRITE_BUFFER(k * outsize)

void long_to_float()
{

int i,j,k;
int ratio;
long *in;
float *out;
int in_samples, outsamples;
long remaining;

in = (long *)in_buffer;,
out = (float *)out-buffer,
ratio = outsize / insize;
in_samples = BLOCK_SIZE / in_size;
out_samples = BLOCKSIZE / outsize;
remaining = mrows * ncols;

READ_BUFFER()
j =0;
k = 0;
while (remaining) {

out[k] = inlj];
j++;
k++;
remaining--;
if (j == in_samples) {

READ BUFFER()
j =0;
}

if (k == out_samples) I
WRITE_BUFFER(BLOCK_SIZE)
k = 0;
}

}
if (k > 0)

WRITE_BUFFER(k * out_size)

void short_todouble()
{

int i,j,k;
int ratio;
short *in;
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double *out;
int insamples, outsamples;
long remaining;

in = (short *)inbuffer;
out = (double *)out buffer;
ratio = out_size / in_size;
in_samples = BLOCK_SIZE / insize;
out_samples = BLOCK_SIZE / outsize;
remaining = mrows * ncols;

READ_BUFFER()
j =0;
k =0;
while (remaining) {

out[k] = in[j];
j++;
k++;
remaining--;
if (j == in_samples) {

READ_BUFFER()
j =0;
}

if (k == outsamples) I
WRITE_BUFFER(BLOCKSIZE)
k = 0;

if (k > 0)
WRITE_BUFFER(k * outsize)

void shortto float()
{

int i,j,k;
int ratio;
short *in;
float *out;
int insamples, outsamples;
long remaining;

in = (short *)in_buffer;
out = (float *)outbuffer;
ratio = out size / insize;
insamples = BLOCKSIZE / in_size;
outsamples = BLOCK_SIZE / outsize;
remaining = mrows * ncols;

READ_BUFFER()
j =0;
k = 0;
while (remaining) {

out[k] = in[j];
j++;
k++;
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remaining--;
if (j == in_samples) (

READ_BUFFER()
j =0;
}

if (k == out.samples) {
WRITE_BUFFER(BLOCK_SIZE)
k = 0;
}

if (k > 0)
WRITE_BUFFER(k * outsize)

void short_tolong()
{

int i,j,k;
int ratio;
short *in;
long *out;
int insamples, out_samples;
long remaining;

in = (short *)inbuffer;
out = (long *)outbuffer;
ratio = outsize / insize;
in_samples = BLOCK_SIZE / in_size;
outsamples = BLOCKSIZE / outLsize;
remaining = mrows * ncols;

READ_BUFFER()
j =0;
k = 0;
while (remaining) {

out[k] = in[j];
j++;
k++;
remaining--;
if (j == insamples) {

READ_BUFFER()
j =0;
}

if (k == outsamples) {
WRITE_BUFFER(BLOCK_SIZE)
k = 0;

if (k > 0)
WRITE_BUFFER(k * outsize)

I
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%enc_speed

%counts edges of time encoder square wave output, then calculates dome speed by
%determining number of edges per time window

in_path = 'DKJ_Thesis 1:Thesis:P.SUPINE:P.supine_dark+nofix:';
numtrials = input('Enter number of trials: ');
for trl = 1:numtrials
run_code = int2str(trl);
%run_code = input('Enter trial number: ','s');
fname = ['RIGHT', run_code, '.matlab'];
eval (['load ', in_path, fname]);
eval (['sig = right', runcode, ';');
eval (['clear right', run_code]);

I = length(sig);
up = 0*ones(l,l);
down = up;
samp = 200;
bin = 200;
is = ceil(l/bin);
if (trl==l)

speed_up = 0*ones(ls,numtrials);
speeddown = speed_up;

end %if
on = (sig(l) > 600);

for i = 2:1
bin_num = floor((i-1)/bin) + 1;
if (on & (sig(i) < 200))

down(i) = 1;
on = 0;
speed_down(binnum,trl) = speed_down(bin_num,trl) + 1;

elseif ((-(on)) & (sig(i) > 600))
up(i) = 1;
on = 1;
speed_up(bin_num,trl) = speed_up(bin_num,trl) + 1;

end
end
end %for trl

mystery_fact = .945;
edge_deg = (360/256)*(1.935/1.487)*(32/72)/(bin/samp)/mystery_fact;
speed_up = speed_up*edge_deg;
speed_down = speeddown*edge-deg;
speed = (speedup + speed_down)/2;
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eval(['save ', in_path, 'speeds speedup speed_down speed']);
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v7o sacem
% find saccade frequency, size, max velocity
% also find saccade beginning and end points, slow phase magnitudes, mean velocites
% of individual slow phases
% generate cumulative slow phase eye position record
% uses diff_list to find location of events
% should probably use editspv to deselect non-saccade events
% and separate multiple saccades

%file_specs;
%data_path = 'DungBeetleMan!:Thesis:P.ERECT:P.erect_dark+fix:';
t=.005;
bin_size = 4;
%run_code = input('Enter run code: ','s');
%num_trials = input('Enter number of trials: ');
eval (['load ', nys_path, 'gains'])
num_trials = length(dome);
clear dome gain spy
cal = .0244;
%ans = input('Enter position file calibration: [def = .0224] ');
%if (isempty(ans) == 0)
% cal = ans;
%end

for trial = l:num_trials
run_code = int2str(trial);
disp (['Trial #', run_code]);
in_file = file_name(Pos 1File, run_code);
pos_var = file_name(Posl_Var, run_code);
eval (['load ', in_path, infile]);
eval (['pos = ', pos var, ';']);
%if sum (Pos l_Var ~= 'pos')
eval (['clear ', pos_var]);
clear pos_var
%end
cal = .0244;
%if ((subject == 'M') & (cond == 1) & (trial == 6))
% cal = .02441406;
%end %if
pos = pos*cal;
pos = condition (pos);

x = pos;
filtzero
vel = x;
clear x
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%in_file = file_name(VellFile, run code);
%eval (['load ', nys_path, in_file]);
%eval (['vel = ', Vell_Var, ';']);
%if sum (Vell_Var ~= 'vel')
% eval (['clear ', Vell Var]);
%end

infile = file_name(Editedl_File, runcode);
eval (['load ', nys_path, infile]);
eval (['spvy = ', EditedlVar, ';']);
if (length(Editedl_Var) ~= 3)

eval (['clear ', Editedl_Var]);
elseif sum (Editedl_Var -= 'spv')

eval (['clear ', Editedl_Var]);
end

1 = length(pos);
time = [O:t:t*(1-1)]';
sac_mag = 0*ones(l,l);
sac_vel = 0*ones(1,1);
sacdur = 0*ones(1,1);
sac_intl = 0*ones(l, 1);
sacfnl = 0*ones(l,1);
ind_sp = 0*ones(l,1);
ave_spv = O*ones(I,1);
sp_mag = O*ones(l,l);
l_fr = ceil(l*t/bin_size);
sac_freq = 0*ones(l_fr,1);
timefr = [bin_size:bin_size:l_fr*bin_size]';
cum = pos;

events = diff_list(vel,spv);
n = size(events);
n = n(l,l);

for i=l:n
x = events(i,1);
if (x == 0)

x= 1;
end %ifx
y = events(i,2);
if ((y-x)>1)

cum((x+1):(y-1)) = cum(x)*ones((y-x- 1),1);
end
if (y<l)

cum(y:l) = cum(y:l) - (pos(y) - pos(x));
end
samp_ev = round((x+y)/2);
sacmag(samp_ev) = pos(y) - pos(x);
sac_intl(sampev) = pos(x);
sacfnl(sampev) = pos(y);
sac_dur(sampev) = (y-x)*t;
peak_v = max(vel(x:y));
if (abs(min(vel(x:y))) > abs(peak_v))
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peakv = min(vel(x:y));
end
sac_vel(samp_ev) = peak_v;
time_ev = time(samp_ev);
bin_ev = floor(time_ev/bin_size) + 1;
sacfreq(bin_ev) = sac_freq(binev) + 1;
endsp = x;
if (i>1)

beg_sp = events((i-1),2);
samp_sp = round((begsp + end_sp)/2);
spmag(samp_sp) = pos(endsp)-pos(begsp);
ave_spv(samp_sp) = spmag(samp_sp)/(time(endsp)-time(begsp));
indsp(samp_sp) = 1;

elseif (end_sp > 1)
begsp = 1;
samp_sp = round((beg-sp + end_sp)/2);
sp_mag(sampsp) = pos(endsp)-pos(beg_sp);
ave_spv(sampsp) = sp_mag(samp_sp)/(time(end_sp)-time(beg_sp));
indsp(samp_sp) = 1;

end
end
if (y<l)

samp_sp = round((y+l)/2);
ave_spv(samp_sp) = (pos(1) - pos(y))/(time(l) - time(y));
ind_sp(samp_sp) = 1;

end

evindex = find(sac_dur);
sac_mag = sac_mag(ev_index);
sac_dur = sacdur(evindex);
sac_vel = sac_vel(ev_index);
sac_intl = sac_intl(ev_index);
sac_fnl = sac_fnl(evindex);
time_sac = time(ev_index);
ind_sp = find(ind_sp);
timesp = time(indsp);
ave_spv = ave_spv(indsp);
sp_mag = sp_mag(indsp);
ind_sp = find(ave_spv --= NaN);
time_sp = time_sp(indsp);
ave_spv = ave_spv(indsp);
spmag = spmag(indsp);
cum = decimate(cum,8);

out_path = [in_path, 'new_nysa:'];
eval(['save ', out_path, 'saccade', run_code, '.dat time_sac time_fr', ...

'sac_mag sacdur sac_vel sacfreq sacintl sac_fnl timesp',...
'avespv spmag']);

eval(['save ', out_path, 'tor', run_code, '.cum cum;']);
clear pos vel spy bin_ev time_ev peak_v sampev x y events ev_index
clear infile run_code ans l_fr n i
clear ind_sp begsp endsp sampsp time out_path
%break
end %for trial
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%clear specs
clear cal t bin_size
end
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%spv_gain
%calculates mean and max SPV values from edited SPV and 'sac_em' values
%also determines mean and max SPV gain values
%variables: dome = abs(dome speed)
% spy = (1) mean SPV during rotation

(2) max SPV from sac_em (ave_spv)
(3) max SPV from filtered edited SPV

% gain = spv/dome

file_specs
%data_path = 'DungBeetleMan!:Thesis:P.ERECT:P.erect_dark+fix:';
%speedpath = 'DungBeetleMan!:Thesis:N.ERECT:N.erect_dark+fix2:';
speed_path = data_path;
%num_trials = input('Enter number of trials: ');
num_trials = 8;
spy = 0*ones(num_trials,3);
gain = spy;
[b a] = chebyl(2,.5,.005);

for trial = l:num_trials
run_code = int2str(trial);
disp (['Trial #', run_code])
in_file = file_name(EditedlFile,run_code);
eval (['load ', data_.path, in file])
eval (['vel = ', Editedl_Var, ';'])
eval (['clear', Editedl Var])
in_file = ['saccade', run_code, '.dat'];
eval (['load ', datapath, injfile])
eval (['load ', speed_path, 'speeds'])

dome = mean(speed(7:35,:))';
spv(trial,l) = mean(vel(1001:7000));

gain(trial,l) = spv(trial,l)/dome(trial);
disp (' done 1')

ind = find(timesp < 35);
ind = find(time_sp(ind) > 5);
if (sign(spv(trial,1)) == 1)

max_spv = max(ave_spv(ind));
else

max_spv = min(ave_spv(ind));
end %if
ind = find(ave_spv == maxspv);
t_max = time_sp(ind(l));
if ((t_max < 5) I (t_max > 35))

disp ('Flag: time out of range')
end %if
spv(trial,2) = max_spv;
gain(trial,2) = max_spv/speed(ceil(t_max),trial);
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disp (' done 2')
filt_vel = filtfilt(b,a,vel);
ind = [1001:7000]';
if (sign(spv(trial,1)) == 1)

max_spv = max(filtvel(ind));
else

max_spv = min(filt_vel(ind));
end %if
ind = find(filtvel == maxspv);
t_max = ind(1)*.005;
if ((tmax < 5) I (tmax > 35))

disp ('Flag: time out of range')
end %if

spv(trial,3) = max_spvy;
gain(trial,3) = max_spv/speed(ceil(tLmax),trial);

disp (' done 3')
clear sac_freq sac_intl sac_fnl time_sac timesp time_fr ave_spv
clear sac_mag sacdur sac_vel speed speedup speeddown max_spv

clear t_max filt_vel vel
end %for trial

eval (['save', data_path, 'gains dome spy gain'])
clear_specs
clear data_path in_file run_code a b ind num_trials speed_path trial
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%tor_pos
%calculates eye position parameters from raw eye position (LEFT#)
% as well as from saccade data (saccade#)

%the variables are:
% ppp--contains mean eye position pre (1), per (2), post (3) dome
% rotation
% intl--eye position at beginning of saccade; contains mean (1),
% min (2), max (3)
%fnl--eye position at end of saccade; contains mean (1), min (2),
% max (3)

file_specs
cal = 50/2048;

%data_path = 'DungBeetleMan!:Thesis:P.ERECT:P.erect_dark+fix:';
%speed_path = 'DungBeetleMan!:Thesis:N.ERECT:N.erect_dark+fix2:';
%speed_path = datapath;
%num_trials = input('Enter number of trials: ');
%num_trials = 8;
%gain = spy;
%[b a] = chebyl(2,.5,.005);

eval (['load ', n_path, 'gains'])
num_trials = length(dome);
dome = dome.*sign(spv(:,l));
ppp = 0*ones(num_trials,3);
intl = 0*ones(num_trials,3);
fnl = intl;
clear spy gain
pre = pre*200;
per = pre + per*200;
%post = per + post*200;

for trial = l:num_trials
run_code = int2str(trial);
disp (['Trial #', run_code])
in_file = filename(Posl _File,run_code);
eval (['load ', data_path, infile])
in_var = filename(Pos l_Var,run_code);
eval (['tor = ', in_var, ';'])
tor = tor*cal;
post = length(tor);

disp ([' post =', int2str(post)])
eval (['clear ', in_var])
infile = ['saccade', run_code, '.dat'];
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eval (['load ', npath, infile])

ppp(trial,1) = mean(tor(1:pre));
ppp(trial,2) = mean(tor((pre+1):per));
ppp(trial,3) = mean(tor((per+600+1):post));
ind = find(timesac <= (per/200));
ind = find(time_sac(ind) > (pre/200));
intl(trial,1) = mean(sac_intl(ind));
intl(trial,2) = min(sac_intl(ind));
intl(trial,3) = max(sac_intl(ind));
fnl(trial,1) = mean(sacjfnl(ind));
fnl(trial,2) = min(sacfnl(ind));
fnl(trial,3) = max(sacfnl(ind));
clear sac_freq sac_intl sac_fnl time_sac time_sp time_fr ave_spv
clear sac_mag sac_dur sac_vel speed speed_up speed_ down maxspv

clear t_max filt_vel vel
end %for trial

eval (['save ', n_path, 'pos dome ppp intl fnl'])
clear_specs
clear data_path n_path in_file run_code ind num_trials trial in_var
clear pre per post cal tor
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%fit-gains
%fits mean SPV gain values extracted for each trial to a "first order lag" relating SPV gain
% to stimulus velocity
%the function to be fit is contained in the separate function module 'polefun'

global Data;
df = 1;
dfl = 2;
df2 = 3;
dnf = 4;
It = 5;

sub_list = ['MNOPQRS']';
num_subs = length(sub_list);
for sub = 1:num_subs
% hold off
% clg

subject = sub_list(sub);

pstr = 'ERECT';
cum_cond = [];
cum_dome = [];
cum_gain = [];
cond_list = [];
allpole = [];
CWpole = [];
CCW_pole = [];
allexp = [];
CWexp = [];
CCWexp = [I;
for cond = df:lt

path_specs
if (exist([nys_path, 'gains']) == 2)

eval (['load ', nys_path, 'gains'])
dome = dome.*sign(spv(:,l));
gain = abs(gain(:,l));
cum_dome = [cumdome; dome];
cum_gain = [cum_gain; gain];
cum_cond = [cum_cond; cond*ones(length(dome),1)];
neg_ind = find(dome < 0);
pos_ind = find(dome > 0);
x = abs(dome);
Data = [x gain];
k = [4 20];
k = fmins('polefun',k,.0001);
A = k(1) ./sqrt(k(2)A2 + x.A2);
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f = norm(A - Data(:,2))/length(A);
allpole = [allU_pole; [k(1)/k(2) k(2) f]];
x = abs(dome(posind));
Data = [x gain(pos_ind)];
k = [4 20];
k = fmins('polefun',k,.0001);
A = k(1) ./sqrt(k(2)A2 + x.A2);
f = norm(A - Data(:,2))/length(A);
CW_pole = [CW_pole; [k(1)/k(2) k(2) f]];
x = abs(dome(negind));
Data = [x gain(negind)];
k =[4 20];
k = fmins('polefun',k,.0001);
A = k(1) ./sqrt(k(2)A2 + x.A2);
f = norm(A - Data(:,2))/length(A);
CCW_pole = [CCW pole; [k(1)/k(2) k(2) f]];

x = abs(dome);
y = log(gain);
k = polyfit(x,y,1);
z = exp(polyval(k,x));
y = exp(y);
f = norm(z - y)/length(z);
all_exp = [all_exp; [k(1) exp(k(2)) f]];
x = abs(dome(pos ind));
y = log(gain(posind));
k = polyfit(x,y,1);
z = exp(polyval(k,x));
y = exp(y);
f = norm(z - y)/length(z);
CWexp = [CWexp; [k(1) exp(k(2)) f]];
x = abs(dome(neg_ind));
y = log(gain(negind));
k = polyfit(x,y,1);
z = exp(polyval(k,x));
y = exp(y);
f = norm(z - y)/length(z);
CCWexp = [CCW_exp; [k(1) exp(k(2)) f]];

condlist = [cond_list; cond];
end %if exist

end %for cond

negind = find(cum_dome < 0);
posind = find(cum_dome > 0);
Data = [abs(cum_dome) cum_gain];
x = Data(:,1);
k = [4 20];
k = fmins('polefun',k,.0001);
A = k(1) ./sqrt(k(2)A2 + x.A2);
f = norm(A - Data(:,2))/length(A);
er_allpole = [k(1)/k(2) k(2) fl;
Data = [abs(cum_dome(posind)) cum_gain(pos-ind)];
x = Data(:,1);
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k =[4 20];
k = fmins('polefun',k,.0001);
A = k(1) ./sqrt(k(2)A2 + x.A2);
f = norm(A - Data(:,2))/length(A);
er_CWpole = [k(1)/k(2) k(2) f];
Data = [abs(cum_dome(neg_ind)) cum_gain(neg_ind)];
x = Data(:,1);
k = [4 20];
k = fmins('polefun',k,.0001);
A = k(1) ./sqrt(k(2)A2 + x.A2);
f = norm(A - Data(:,2))/length(A);
er_CCW_pole = [k(1)/k(2) k(2) fl;

x = abs(cum_dome);
y = log(cum_gain);
k = polyfit(x,y,1);
z = exp(polyval(k,x));
y = exp(y);
f = norm(z - y)/length(z);
er_all_exp = [k(1) exp(k(2)) fJ;
x = abs(cumdome(pos_ind));
y = log(cum_gain(posind));
k = polyfit(x,y,1);
z = exp(polyval(k,x));
y = exp(y);
f = norm(z - y)/length(z);
er_CW_exp = [k(l) exp(k(2)) flJ;
x = abs(cum_dome(neg_ind));
y = log(cum_gain(neg_ind));
k = polyfit(x,y,1);
z = exp(polyval(k,x));
y = exp(y);
f = norm(z - y)/length(z);
er_CCW_exp = [k(1) exp(k(2)) fJ;
er_dome = cum_dome;
ergain = cum_gain;

% eval (['save ', pre_path, 'gain_fit er_all pole er_CW_pole er_CCW_pole ', ..
% 'er_all_exp er_CW exp er_CCW_exp cond_list all_pole CW_pole ', ...
% 'CCW_pole allexp CW_exp CCW_exp'])

num_conds = length(cond_list);
plotsym = ['*'; '+'; 'o'; 'x'];
dit = setstr(39); %" ' "
commandl = ['plot ('];
command2 = commandl;
command3 = commandl;
speed = [15:.5:60]';
if (subject == 'M')

speed = [30:.5:60]';
end %if
for i = 1:num_conds

cond = cond_list(i);
ind = find(cum_cond == cond);
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dome = cum_dome(ind);
gain = cum_.gain(ind);
i_str = int2str(i);
eval (['dome', istr,' = dome;'])
eval (['gain', i_str, ' = gain;'])
commandl = [commandl, 'dome', i_str, ', gain', istr, ',...

dit, plotsym(i), dit];
k = CW_pole(i,:);
y = k(1) ./sqrt(1 + (speed/k(2)).A2);

k = CWexp(i,:);
y = k(2)*exp(k(1)*speed);

eval (['y', ijstr, '= y;'])
command2 = [command2, 'speed', ', y', i_
k = CCW_pole(i,:);
z = k(1) ./sqrt(1 + (speed/k(2)).A2);
k = CCW_exp(i,:);

z = k(2)*exp(k(l)*speed);
eval (['z', i_str, ' = z;'])
command3 = [command3, '-speed', ', z', i
if (i ~= num_conds)

commandl= [commandl, ','];
command2 = [command2, ','];
command3 = [command3, ','];

end %if (i)
end %fori
commandl = [commandl, ')'];
command2 = [command2, ')'];
command3 = [command3, ')'];

subplot(222)
eval(commandl)
axis;
subplot(222)
eval(command2)
subplot(222)
eval(command3)
axis;
grid
title (['Erect fits (runs: [*]=1 [+]=2 [o]=3)'])
xlabel ('dome speed (deg/s)')
ylabel ('mean SPV gain')

str];

_str];

pstr = 'SUPINE';
cum_cond = [];
cum_dome = [];
cumgain = [];
cond_list = [];
allpole = [];
CW_pole = [];
CCW_pole = [];
all_exp = [];
CW_exp = [];
CCW_exp = [;
for cond = df:lt

path_specs
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if (exist([nys_path, 'gains']) == 2)
eval (['load ', nys_path, 'gains'])
dome = dome.*sign(spv(:,l));
gain = abs(gain(:,l));
cum_dome = [cumldome; dome];
cumgain = [cumgain; gain];
cum_cond = [cumn_cond; cond*ones(length(dome),l)];
negind = find(dome < 0);
pos_ind = find(dome > 0);
x = abs(dome);
Data = [x gain];
k = [1 1];
k = fmins('polefun',k,.0001);
A = k(1) ./sqrt(k(2)A2 + x.A2);
f = norm(A - Data(:,2))/length(A);
all_pole = [all_pole; [k(1)/k(2) k(2) fl];
x = abs(dome(pos_ind));
Data = [x gain(pos_ind)];
k = [4 20];
k = fmins('polefun',k,.0001);
A = k(1) ./sqrt(k(2)A2 + x.A2);
f = norm(A - Data(:,2))/length(A);
CW_pole = [CW_pole; [k(1)/k(2) k(2) f]];
x = abs(dome(negind));
Data = [x gain(negind)];
k= [1 1];
k = fmins('polefun',k,.0001);
A = k(1) ./sqrt(k(2)A2 + x.A2);
f = norm(A - Data(:,2))/length(A);
CCW_pole = [CCW_pole; [k(1)/k(2) k(2) f]];

x = abs(dome);
y = log(gain);
k = polyfit(x,y,1);
z = exp(polyval(k,x));
y = exp(y);
f = norm(z - y)/length(z);
allexp = [all_exp; [k(1) exp(k(2)) fi];
x = abs(dome(posind));
y = log(gain(posjind));
k = polyfit(x,y,1);
z = exp(polyval(k,x));
y = exp(y);
f = norm(z - y)/length(z);
CWexp = [CW_exp; [k(1) exp(k(2)) f]];
x = abs(dome(negind));
y = log(gain(negind));
k = polyfit(x,y,1);
z = exp(polyval(k,x));
y = exp(y);
f = norm(z - y)/length(z);
CCW_exp = [CCW_exp; [k(1) exp(k(2)) f]];

cond_list = [cond_list; cond];
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end %if exist
end %for cond

neg_ind = find(cum_dome < 0);
posind = find(cumdome > 0);
Data = [abs(cum_dome) cum_gain];
x = Data(:,1);
k =[1 1];
k = fmins('polefun',k,.0001);
A = k(1) ./sqrt(k(2)A2 + x.A2);
f = norm(A - Data(:,2))/length(A);
supall_pole = [k(1)/k(2) k(2) fl;
Data = [abs(cumdome(pos_ind)) cum_gain(pos_ind)];
x = Data(:,1);
k= [1 1];
k = fmins('polefun',k,.0001);
A = k(1) ./sqrt(k(2)A2 + x.A2);
f = norm(A - Data(:,2))/length(A);
supCWpole = [k(1)/k(2) k(2) fl;
Data = [abs(cum_dome(negind)) cum_gain(negind)];
x = Data(:,1);
k = [5 5];
k = fmins('polefun',k,.0001);
A = k(1) ./sqrt(k(2)^2 + x./2);
f = norm(A - Data(:,2))/length(A);
supCCW_pole = [k(1)/k(2) k(2) fJ;

x = abs(cum_dome);
y = log(cumgain);
k = polyfit(x,y,1);
z = exp(polyval(k,x));
y = exp(y);
f = norm(z - y)/length(z);
supall_exp = [k(1) exp(k(2)) fJ;
x = abs(cumdome(posind));
y = log(cumgain(pos_ind));
k = polyfit(x,y,1);
z = exp(polyval(k,x));
y = exp(y);
f = norm(z - y)/length(z);
sup_CW_exp = [k(1) exp(k(2)) fl;
x = abs(cum_dome(neg_ind));
y = log(cum_gain(neg_ind));
k = polyfit(x,y,1);
z = exp(polyval(k,x));
y = exp(y);
f = norm(z - y)/length(z);
sup_CCW_exp = [k(1) exp(k(2)) fl;
supdome = cum_dome;
supgain = cum_gain;

% eval (['save ', pre_path, 'gainfit supall_pole supCW_pole ',...
% 'sup_CCW_pole sup_allexp sup_CW_exp sup_CCW_exp condlist ',...
% 'all_pole CW_pole CCW_pole allexp CW_exp CCW_exp'])
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num_conds = length(cond_list);
plotsym = ['*'; '+'; 'o'; 'x'];
dit = setstr(39); %" ' "
commandl = ['plot ('];
command2 = commandl;
command3 = commandl;
speed = [15:.5:60]';
if (subject == 'M')

speed = [10:.5:80]';
end %if
for i = 1:num_conds

cond = cond_list(i);
ind = find(cumcond == cond);
dome = cum_dome(ind);
gain = cum_gain(ind);
i_str = int2str(i);

eval (['dome', i_str, '= dome;'])
eval (['gain', i_str, '= gain;'])
commandl = [commandl, 'dome', istr, ', gain', i_str,' '

dit, plot_sym(i), dit];
k = CW_pole(i,:);
y = k(1) ./sqrt(1 + (speed/k(2)).A2);

k = CW_exp(i,:);
y = k(2)*exp(k(1)*speed);

eval (['y', i_str, ' = y;'])
command2 = [command2, 'speed', ', y', istr];
k = CCW_pole(i,:);
z = k(1) ./sqrt(1 + (speed/k(2)).A2);
k = CCW_exp(i,:);

z = k(2)*exp(k(1)*speed);
eval (['z', i_str, ' = z;'])
command3 = [command3, '-speed', ', z', istr];
if (i -= num_conds)

commandl= [commandl, ','];
command2 = [command2, ','];
command3 = [command3, ','1;

end %if (i)
end %for i
commandl = [commandl, ')'];
command2 = [command2, ')'];
command3 = [command3, ')'];

subplot(224)
eval(commandl)
axis;
subplot(224)
eval(command2)
subplot(224)
eval(command3)
axis;
grid
title (['Supine fits (runs: [*]=1 [+]=2 [o]=3)'])
xlabel ('dome speed (deg/s)')
ylabel ('mean SPV gain')
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speed = [15:.5:60]';
if (subject == 'M')

speed = [20:.5:80]';
end %if
subplot(121)
plot(erdome,er_gain,'*',sup_dome,sup gain,'+')
axis;
k = er_CW.pole;
z = k(1) ./sqrt(1 + (speed/k(2)).A2);
subplot(121)
plot(speed,z)
k = er_CCW_pole;
z = k(1) ./sqrt(1 + (speed/k(2)).A2);
subplot(121)
plot(-speed,z)
k = sup_CW_pole;
z = k(1) ./sqrt(1 + (speed/k(2)).A2);
subplot(121)
plot(speed,z,'--g')
k = sup_CCW_pole;
z = k(1) ./sqrt(1 + (speed/k(2)).A2);
subplot (121)
plot(-speed,z,'--g')
axis;
grid
title (['Subject', subject, ': Erect and supine SPV gains'])
xlabel ('dome speed (deg/s)')

ylabel ('mean SPV gain [*, -]=erect [+, - -]=supine')

% prtsc
%break
end %for sub
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function f = polefun(k);

%polefun
%Data array contains stimulus velocity in column 1 (x) and mean SPV gain in column 2 (y)
%For parameters in k vector, generates a norm representative of the error between the model
% prediction and the actual data points
%Called by fit-gains

x = Data(:,l1);
y = Data(:,2);

A = k(1) ./sqrt(k(2)A2 + x.A2);

f = norm(A - y)/length(x);
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%showokan
%generates plot of after-nystagmus; both position and velocity
%fits double exponential (plus constant bias) to OKAN SPV time series
%calls function okan_fun, which implements double exponential

global Data steps breakflag
df= 1;
df1 = 2;
df2 = 3;
dnf = 4;
It = 5;

sub_list = '0';
posture = ['ERECT'; 'SUPINE'];
cond = df;
for sub = 1:length(sub_list)
subject = sub_list(sub);
for postnum = 1:1
pstr = posture(postnum,:);

pathspecs
if (exist([nys_path, 'pos']) == 2)
eval (['load ', nys_path, 'pos'])
num_trials = length(dome);
clear ppp intl fnl

cal = .0244;
post = 30;
extra = 5;
show = 30;
fitt = 20;
if ((subject == 'M') & ((postnum == 2) & ((cond == lt)1(cond == df2))))

post = 13.75;
show = 13.75;
fitt = 13.7;

end %if weird
delay = 0.0;
%start = 1; %input('Start with trial #: ');
%end_tr = num_trials
start = input('Which trial number? ');
end_tr = start;
for tr = start:end_tr

trial = int2str(tr);
eval (['load ', in_path, 'LEFT', trial, '.matlab']);
eval (['pos = left', trial, ';'])
eval (['clear left', trial])
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eval (['load ', nyspath, 'tor', trial, '.edited']);
vel = edited;
clear edited
eval (['load ', nys_path, 'tor', trial, '.cum']);

1 = length(pos);
pind = [(1 - (post + extra)*200 + 1):1]';
fit_vel = decimate(vel(p_ind), 20);
vel = decimate(vel(p_ind), 8);

td = [.04:.04:(post + extra)]' - extra;
t = [.005:.005:(post + extra)]' - extra;
tf = [.l:.1:(fitt + extra + delay)]' - extra;
fit ind = find (tf >= delay);
Data = [(tf(fitind) - delay) fitvel(fitind)];

% k = [sign(dome(tr)) -1 sign(dome(tr)) -1 0];
k = input ('Start iteration with? ');
k = [k(l) 1/k(2) k(3) l/k(4) k(5)];

steps = 0;
breakflag = 0;
[k, count] = fmins('okanfun', k)
x = tf(fitind) - delay;
fit_result = k(5) + k(l)*exp(k(2)*x) + k(3)*exp(k(4)*x);
pos = pos(p_ind)*cal;
1 = length(cum);
d_ind = [(1 - (post + extra)*25 + 1):I]';
cum = cum(d_ind);
cum = cum - cum(find(td == 0));
p_show = [1:(show + extra)*200]';
d_show = [1:(show + extra)*25]';
high = max(abs(vel(d_show)));
p_scl = high/max(abs(pos(p_show)));
c_scl = high/max(abs(cum(d_show)));
hold off
clg
plot(t(p_show),pos(p_show)*p_scl,td(d_show),cum(d_show)*c_scl, ...

td(d_show),vel(d_show),tf(fitind),fit result,'-r')
grid
ax = axis;
hold
plot ([0 0], ax([3 4]), '--r')
xt = ax(1) + (ax(2)-ax(1))/3;
y_range = ax(4)-ax(3);
yt = ax(3) + 4*y_range/5;
text(xt,(yt+ .05*y_range),['k = [',num2str(k(1)),' ',num2str(1/k(2)), '

num2str(k(3)), ' ', num2str(1/k(4)), ' ', num2str(k(5)), ']'])
text (xt, yt, ['count = ', num2str(count),' break =',

int2str(break_flag)]);
axis;
hold off
title (['Subject ', subject, ': ', pstr, ' '

cond_name(cond,[1 :cond_len(cond)]),' Trial #', trial,
speed = ', int2str(round(dome(tr))), ' deg/s'])

xlabel ('time (sec)')
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ylabel ('SPV (deg/s)')

if (exist([nys_path, 'vel_okanfit']) -= 2)
tr_list = tr;
brk_list = break_flag;
vel k = [k(1) l/k(2) k(3) 1/k(4) k(5)];

else
eval (['load ', nys_path, 'velokan_fit'])
ind = find(tr_list ~= tr);
tr_list = [trjist(ind); tr];
brk_list = [brk_list(ind); break flag];
veLk = [velk(ind,:); [k(1) 1/k(2) k(3) 1/k(4) k(5)]];
[tr_list, ind] = sort(trlist);
brklist = brk_list(ind);
vel_k = vel_k(ind,:);

end %if exist
eval (['save ', nys_path, 'vel_okanfit tr_list brk_list vel_k'])

% prtsc

% pause
end %for tr
end %if exist
end %for post_num
end %for sub
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function f = okanfun(k);

%okanfun
%implements double exponential (plus bias term) for OKAN SPV model fit
%called by show_okan
%generates error vector between actual SPV time series and current best model prediction
%also plots SPV and current fit every 50 iterations to check algorithm progress

x = Data(:,l);

y = Data(:,2);

A = k(5) + k(1)*exp(k(2)*x) + k(3)*exp(k(4)*x);

f = norm(A - y)/length(x);

steps = steps + 1;
if (((steps/50) - ceil(steps/50)) == 0)

steps
plot (x,y,x,A)
ax = axis;
xt = ax(1) + (ax(2)-ax(1))/3;
y_range = ax(4)-ax(3);
yt = ax(3) + 9*y_range/10;
text (xt,(yt+ .05*y_range),['k = [',num2str(k(1)),' ',num2str(k(2)), '

num2str(k(3)), ' ', num2str(k(4)), '', num2str(k(5)), ']'])
text (xt, yt, ['count = ', num2str(steps)]);
axis;

end %if

if (steps > 1200)
breakflag = 1;
f = 0.0;

end %if
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%get_vect

%given run path, calculates vection parameters for each trial: onset time(s), maximum and
% average vection, and dropout times if they exist

max_v - 4.78;
min_v = -4.95;
max_zero = -.045;
min_zero = -.395;
null = (max_v + minv)/2;
v2p = 100/(max_v - null);
da2v = 10/2048;
da2p = da2v*v2p;
pos_thr = (max_zero - null)*v2p + 4;
negthr = (min_zero - null)*v2p - 4;
break
path_specs
disp (in_path)
pre = 5*200;
if ((subject == 'M') & (pstr == 'ERECT))

per = pre + 45*200;
else

per = pre + 30*200;
end
on_dur = 0.5*200;
eval (['load ', nys_path, 'pos']);
clear ppp intl fnl
num_trials = length(dome);
first_on = -ones(num_trials,l);
max_vect = firston;
ave_vect = max vect;
onset = [];
dropout = [];

for trial = l:num_trials
tr = int2str(trial);
eval (['load ', in_path, 'JS', tr, '.matlab'])
var_name = ['js', tr];
eval (['js = ', varname, ';'])
eval (['clear ', var_name])
post = length(js);
vect = (js - null)*da2p;
dome_on = [(pre + 1):per]';
vect = vect(dome_on);
dur = length(vect);
drctn = sign(mean(vect) - minzero*v2p);
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max_vect(trial) = max(abs(vect));
ave_vect(trial) = abs(mean(vect));
old = 0;
leftover = vect;
vect_on = 0;
while (-isempty(leftover))

if (-vecton)
if (drctn > 0)

ind = find(leftover > posthr);
else

ind = find(leftover < negthr);
end

else
if (drctn > 0)

ind = find(leftover < pos_thr);
else

ind = find(leftover > negthr);
end

end
dur = length(leftover);
begin = find_start(ind,dur,on_dur);
if (begin > 0)

if (-vecton)
onset = [onset; [trial (begin+old)/2001];
vect_on = 1;

else
dropout = [dropout; [trial (begin+old)/200]];
vect_on = 0;

end %if ~-vect_on
if ((begin + on_dur) < dur)

leftover = leftover([(begin+on_dur):dur]);
old = old + begin + on_dur - 1;

else
leftover = [];

end %if
else

leftover = [];
end %if (begin > 0)

end %while (~-)
if (-isempty(onset))

ind = fmind(onset(:,1) == trial);
if (-isempty(ind))

firston(trial) = onset(ind(1),2);
end %if ~-isempty

end %if-isempty
end %for trial

eval (['save ', nyspath, 'vect_params onset first_on dropout ',...
'max_vect ave_vect dome']);
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%plot_corr
%computes unbiased cross-correlation functions between the vection trace and both eye
% position and SPV traces.
%plots eye position, SPV, and vection traces; plots results of cross-correlations
%stores times of peaks in cross-correlation functions

digits = [1:9]';
for i = 1:9

digits(i) = int2str(digits(i));
end %for
pos_cal = 50/2048;
js_cal = (10/2048)*(100/5);
[pb pal = butter(2,.005);
df = 1;
dfl = 2;
df2 =3;
dnf =4;
1 = 5;
condname = ['dark+fix ';

'dark+fixl ;
'dark+fix2';
'dark+nofix';
'light '];

cond_len = [8 9 9 10 5]';
nysa_cond = ['d+f '; 'd+fl'; 'd+f2'; 'd+nf; '1 '];
nysa_cond_len = [3 4 4 4 1]';

% **** set these parameters ****
date = '05-Sep-91';
subject = 'Q';
pstr = 'Sup';
cond = dnf;
pre = 5;
per = 35;
post = 65;
%post = 48.75;
%nulLind = []';
null_ind = [1:(pre*200)]';

erpath = ['DungBeetleMan!:Thesis:', subject, '.ERECT:', subject,...
'.erect_', condname(cond,[ l:condjlen(cond)]), ':'];

sup_path = ['DKJ_Thesisl:Thesis:', subject, '.SUPINE:', subject,...
'.supine_', cond_name(cond,[ 1:condlen(cond)]), ':'];

er_nys_path = [er_path, subject, '.e_', nysa_cond(cond, ...
[1 :nysacond_len(cond)]), '.nysa:'];
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sup_nys_path = [sup_path, subject, '.s_', nysa_cond(cond, ...
[1 :nysacondlen(cond)]), '.nysa:'];

in_path = sup_path;
nys-path = supnyspath;

eval (['load ', nyspath, 'pos'])
num_trials = length(dome);
clear intl fnl
first = pre/.1 + 1;
last = per/. 1;
dur = ceil((per - pre)* 10)/10;
if (exist([nys_path, 'eye_vect.corr']) ~= 2)

spvvect = 0*ones(num_trials,2);
pos vect = spv_vect;
eval (['save ', nys_path, 'eye_vect.corr spvvect pos_vect']);

else
eval (['load ', nys_path, 'eyevect.corr']);

end %if

trial = 1;
while (trial <= num_trials)

tr = int2str(trial);
fname = ['tor', tr, '.edited'];
vname = 'edited';
eval (['load ', nyspath, fname])
eval (['spv = ', vname, ';']);
eval (['clear ', vname])
spy = decimate(spv,20);
fname = ['JS', tr, '.matlab'];
vname = ['js', tr];
eval (['load ', inpath, fname])
eval (['js = ', vname, ';'])
eval (['clear ', vname])
t_max = ceil(length(js)*.005*10)/10;
t = [.l:.l:t_max]';
js =js*js_cal;
js = decimate (js,20);
scale = ceil(max(abs(spv)));
js_scl = js*scale/100;
spv_corrl = xcorr(spv([first:last]), jsscl([first:last]), 'unbiased');

spv_corrl = spv_corrl*sign(mean(spv_corrl));
t_corrl = [(.1 - dur):.l:(dur - .1)]';
tc_max1 = t_corrl (find(spv_corrl==max(spv_corrl)));
spv_vect (trial,1) = tc_maxl;
spv_corr2 = xcorr(spv, jsscl, 'unbiased');

spv_corr2 = spvcorr2*sign(mean(spv_corr2));
dur2 = ceil(post*10)/10;
t_corr2 = [(.1 - dur2):.1l:(dur2 - .1)]';
tc_max2 = tcorr2(find(spv_corr2==max(spv_corr2)));
spv_vect (trial,2) = tc_max2;
hold off

clg
subplot (221)
plot (t,[spv js_scl], [O;tmax], [scale scale]*sign(mean(js)), '--')
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xlabel ('time (sec)')
ylabel ('SPV & vection')
title(['Subj. ',subject,': ',pstr,',, ...

cond_name(cond,([1 :cond_len(cond)])), ...
Tr #', tr,' ', num2str(round(dome(trial))),

d/s'])
grid
subplot (222)
plot (tcorrl, spv_corrl, tcorr2, spv_corr2)
ax = axis;
subplot (222)
plot ([tc maxl tc_maxl]', ax([3 4])', [tc_max2 tcmax2]',...

ax([3 4])', '--')
title (date)
xlabel ('time (sec)')
ylabel ('X-corr: SPV, vection')
grid
axis;

fname = ['LEFT, tr, '.matlab'];
vname = ['left', tr];
eval (['load ', in_path, fname])
eval (['pos = ', vname, ';'])
eval (['clear ', vname])
pos = pos*pos_cal;
null = mean(pos(nullind));
pos = pos - null;
pos = filtfilt(pb,pa,pos);
pos = decimate(pos,20);
subplot (223)

scale = ceil(max(abs(pos)));
js_scl = js*scale/100;
plot (t, [pos js_scl],[0 tmax],[scale scale]*sign(mean(js)), '--')
xlabel ('time (sec)')
ylabel ('eye position & vection')

grid
%do correlation for whole trial

pos_corr2 = xcorr(pos,js_scl,'unbiased');
pos_corr2 = pos_corr2*sign(mean(pos_corr2));
dur2 = ceil(post*10)/10;
t_corr2 = [(.1 - dur2):.1:(dur2 - .1)]';
tc_max2 = tcorr2(find(pos_corr2==max(pos_corr2)));
pos_vect (trial,2) = tc_max2;

%do correlation for dome rotation segment only
ind = find(t <= per);
ind = find(t(ind) > pre);

pos_corrl = xcorr(pos(ind),js_scl(ind),'unbiased');
pos_corrl = pos_corrl*sign(mean(pos_corrl));
t_corrl = [(.1 - dur):.l:(dur - .1)]';
tc_max = t_corrl (find(pos_corrl ==max(pos_corrl)));
pos_vect (trial,l) = tc_maxl;
subplot (224)
plot (t_corrl,pos_corrl,t_corr2,pos_corr2)

ax = axis;
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subplot (224)
plot ([tc_maxl tc_maxl], ax([3 4]), '-', [tc_max2 tcmax2], ax([3 4]), '--')

xlabel ('approx. time (sec)')
ylabel ('X-corr: eye pos., vection')
grid
axis;
prtsc

% hold on
% subplot (111)
% title(['Subject ',subject,': ',pstr,', ',
% cond_name(cond,([1:cond_len(cond)])),'
% ' Trial #', tr,' ', num2str(round(dome(trial))), ...
% ' deg/sec'])

% title (['Trial #', tr,' Dome Speed: ',...
% int2str(round(dome(trial))),' deg/sec'])
% xlabel ('time (sec)')
% ylabel ('eye position (deg)')
% hold off
% [x,y,s] = ginput(1);

s = 13;
s = setstr(s);
a = find(digits==s);
if (-(isempty(a)))

if ((a <= num_trials) & (a > 0))
trial =a- 1;

else
trial= trial - 1;

end %if 2
end %if 1
if ((s =='b') & (trial > 1))

trial = trial - 1;
elseif (s == 'q')

trial = num_trials + 1;
else

trial = trial + 1;
end %if

end

eval (['save ', nyspath, 'eye_vect.corr spv_vect pos_vect'])
trials = [1:num_trials]';
hold off
clg
subplot (121)
plot (trials, spv_vect(:,l), '*', trials, spv_vect(:,2), '+')
ax = axis;
m = mean(spvvect);
subplot (121)
plot (ax([1 2]), [m(1) m(l)], '-', ax([1 2]), [m(2) m(2)], '--')
grid
title (['Subject ', subject, ': ', pstr, ' ', cond_name(cond,:)])
xlabel ('trial')
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ylabel ('peak correlation time--spv, vection (*=per; +=all)')
axis;
subplot (122)
plot(trials, pos_vect(:,l), '*', trials, pos_vect(:,2), '+')
ax = axis;
m = mean(posvect);
subplot (122)
plot (ax([1 2]), [m(1) m(1)], '-', ax([1 2]), [m(2) m(2)], '--')
grid
xlabel ('trial')
ylabel ('peak correlation time--position, vection (*--per; +=all)')
title (date)
axis;
prtsc
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%state_spv (based on getvect)

%given path, loads onsets and dropouts for each trial; calculates ratio of mean SPVs
% and difference in mean eye position for States 1 and 2
%State 1 = vection
%State 2 = no vection (before onset, during dropouts)

pos_cal = 50/2048;
pre = 5*200;
if ((subject == 'M') & (pstr(1:5) == 'ERECT))

per = pre + 45*200;
else

per = pre + 30*200;
end
on_dur = 0.5*200;
eval (['load ', nys_path, 'vectparams'])
clear maxvect ave_vect
num_trials = length(dome);
run_data = 0*ones(num_trials,20);

for trial = 1:num_trials
run_data(trial,l:5) = [abs(subject) p_num cond trial dome(trial)];
if (first_on (trial) > 0)

tr = int2str(trial);
eval (['load ', in_path, 'LEFT, tr, '.matlab'])
var_name = ['left', tr];
eval (['pos = ', var_name, ';'])
eval (['clear ', varname])
pos = pos*pos_cal;
post = length(pos);
if ((subject == 'M') & (pstr(1:5) == 'ERECT))

null = mean(pos([(post - pre + 1):post]));
else

null = mean(pos(l:pre));
end %if M ERECT
pos = pos - null;
eval (['load ', nys_path, 'tor', tr, '.edited'])
var_name = ['edited'];
eval (['spv = ', var_name, ';'])
eval (['clear', var name])
dome_on = [(pre + 1):per]';
pos = pos(dome_on);
spy = spv(dome on);
dur = length(pos);
drctn = sign(dome(trial));
pos = pos*drctn;
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ons = 200*onset(find(onset(:,1) = trial),2);
drops = [];
if ~isempty(dropout)

drops = 200*dropout(find(dropout(:,1) = trial),2);
end %if no dropouts

%state 1 == vection; state 2 -= no vection
num_ons = length(ons);
numdrops = length(drops);
sched = O*ones((num_ons + numdrops + 2),1);
sched(1) = 1;
s_ind = 2*[1:numons]';
sched(sind) = ons;
s_ind = 1 + 2*[1:num_drops]';
if num_drops>O

sched(sind) = drops;
end %if no drops
sched(length(sched)) = dur + 1;
s2_ind = [];
s lind = [];
while (length(sched) > 1)

s2_ind = [s2_ind; [sched(1):(sched(2) - 1)]'];
sched = sched(2:length(sched));
if (length(sched) > 1)

sl_ind = [sl_ind; [sched(1):(sched(2) - 1)]'];
sched = sched(2:length(sched));

end %if
end %while

pc_s1 = 100*length(sl_ind)/dur,
p = mean(pos);
pv = std(pos);
sl_p = mean(pos(slind));
sl_pv = std(pos(slind));
s2_p = mean(pos(s2_ind));
s2_pv = std(pos(s2_ind));
diffpl2 = slp - s2_p;
v = mean(spv);
vv = std(spv);
sl_v = mean(spv(sl_ind));
sl_vv = std(spv(sl_ind));
s2_v = mean(spv(s2_ind));
s2_vv = std(spv(s2_ind));
rat_v12 = sl_v/s2_v;

run_data(trial,6:20) = [pcsl p pv sl_p sl_pv s2_p s2_pv diff_pl2 ...
v vv sl_v sl_vv s2_v s2_vv rat_v12];

clear pos spy
end %if onset

end %for trial
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function [dev, thyp, df, prb] = Tlmean(Data, nullhyp, show)

%T_Imean
%Program written by Jock R. I. Christie in ongoing effort to make the world a better place
%Modified by Keoki Jackson

%Designed to test whether a population mean is significantly different from the "null
% hypothesis" value
%Takes a population column vector and a null hypothesis constant as inputs
%Returns the difference between the mean and the null hypothesis; also the t statistic,
% the degrees of freedom, and the probability that the null hypothesis is correct
%Returns probabilities at levels of 0.1, 0.05, 0.01, and 0.001

% SHOW = 'n' or SHOW = 'N' suppreses display statements.
% NOTE: These values for 2 sided test. See CRC (1983) p.547

prob = [0.100; 0.050; 0.010; 0.001];
if -isempty(Data)
x = Data(:,1);
n = length(x);
dev = mean(x) - null_hyp;
t_hyp = dev/(std(x)/sqrt(n));
df = n-1;

if ~exist('show')
show = 'n';

end

6.314,
2.920,
2.353,

2.132,
2.015,
1.943,
1.895,
1.860,
1.833,
1.812,
1.796,
1.782,

,1.771,
1.761,
1.753,
1.746,
1.740,

12.706, 63.65
t.303, 9.925,
3.182, 5.841,

2.776,
2.571, z
2.447,
2.365,
2.306,
2.262, 2
2.228,
2.201,
2.179,
2.160,
2.145,
2.131,
2.120,
2.110,

[.604,
.032,

3.707,
1.499,
1.355,
3.250,
3.169
3.106
3.055
3.012
2.977
2.947
2.921
2.898

7, 636.619];
31.598];
12.924];

8.610];
6.869];
5.959];
5.408];
5.041];
4.781];
,4.587];
,4.437];
,4.318];
,4.221];
,4.140];
,4.073];
,4.015];
,3.965];
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t(1,:)
t(2,:)
t(3,:)

t(4,:) =
t(5,:) =
t(6,:) =
t(7,:) =
t(8,:) =
t(9,:) =
t(10,:) =
t(11,:) =
t(12,:) =
t(13,:) =
t(14,:) =
t(15,:) =
t(16,:) =
t(17,:) =

1,
2,
3,

4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,



t(18,:)
t(19,:)
t(20,:)
t(21,:)
t(22,:)
t(23,:)
t(24,:)
t(25,:)
t(26,:)
t(27,:)
t(28,:)
t(29,:)
t(30,:)
t(31,:)
t(32,:)
t(33,:)

18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
40,
60,

= [120, 1.658,

1.734,
1.729,
1.725,
1.721,
1.717,
1.714,
1.711,
1.708,
1.706,
1.703,
1.701,
1.699,
1.697,
1.684,
1.671,

tinf = [1.645, 1.960, 2.576, 3.291];

if (df < 1)
fprintf(1nSorry you lose. Not enough Data.');

elseif (df >= 1)&(df <= 30)
z = t(df,2:5);

elseif (df > 30)&(df <= 120)
r = abs(t(:,1) - df);
p = min(fmind(r == min(r)));
if min(r) == 0

z = t(p,2:5);
else

if (df < t(p,1))
p = p-1;

end
z = t(p,2:5) + (df-t(p,1)) * (t(p+1,2:5) - t(p,2:5)) / (t(p+1,1) - t(p,1));

end
else

z = tinf;
end

p = max(find(z <= abs(thyp)));
prb = prob(p);

if (show == 'y')I(show == 'Y')
if isempty(p)

ps = 'ns';
else

ps = num2str(prb);
end %if isempty
disp(['t =', num2str(t_hyp),'

Sp =',ps])
end

df = ', int2str(df), ...

else %if isempty data
prb = 1;
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2.101, 2.878, 3.922];
2.093, 2.861, 3.883];
2.086, 2.845, 3.850];
2.080, 2.831, 3.819];
2.074, 2.819, 3.792];
2.069, 2.807, 3.767];
2.064, 2.797, 3.745];
2.060, 2.787, 3.725];
2.056, 2.779, 3.707];
2.052, 2.771, 3.690];
2.048, 2.763, 3.674];
2.045, 2.756, 3.659];
2.042, 2.750, 3.646];
2.021, 2.704, 3.551];
2.000, 2.660, 3.460];
1.980, 2.617, 3.373];



t_hyp = 0;
df = 0;

end %if isempty data
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function [md, t_m, df, prb] = T_2means(Datal, Data2, show)

%T_2means
%Program written by Jock R. I. Christie in ongoing effort to make the world a better place
%Modified by Keoki Jackson

%Designed to test whether a two population means are significantly different from each
% other using 2-sided t-test
%Takes two population column vectors as inputs
%Returns the mean difference; also the t statistic, the degrees of freedom, and the probability
% that the two populations means are the same
%Returns probabilities at levels of 0.1, 0.05, 0.01, and 0.001

% SHOW = 'n' or SHOW = 'N' suppreses display statements.
% NOTE: These values for 2 sided test. See CRC (1983) p.547

prob = [0.100; 0.050; 0.010; 0.001];
if -(isempty(Datal) I isempty(Data2))
ml = mean(Datal);
m2 = mean(Data2);
md = ml - m2;
n1 = length(Datal);
n2 = length(Data2);
df = nl + n2 - 2;
t_m = md/sqrt((sum((Datal - ml) .^ 2) + sum((Data2 - m2).^ A2)) *

(1/n1 + 1/n2) / df);

if -exist('show')
show = 'n';

end

t(1,:)= [ 1, 6.314, 12.706, 63.657, 636.619];
t(2,:) = [ 2, 2.920, 4.303, 9.925, 31.598];
t(3,:) = [ 3, 2.353, 3.182, 5.841, 12.924];

t(4,:) = [ 4, 2.132, 2.776, 4.604, 8.610];
t(5,:) = [ 5, 2.015, 2.571, 4.032, 6.869];
t(6,:) = [ 6, 1.943, 2.447, 3.707, 5.959];
t(7,:) = [ 7, 1.895, 2.365, 3.499, 5.408];
t(8,:) = [ 8, 1.860, 2.306, 3.355, 5.041];
t(9,:) = [ 9, 1.833, 2.262, 3.250, 4.781];
t(10,:) = [ 10, 1.812, 2.228, 3.169, 4.587];
t(11,:)[ = 11, 1.796, 2.201, 3.106, 4.437];
t(12,:) = [ 12, 1.782, 2.179, 3.055, 4.318];
t(13,:) = [13, 1.771, 2.160, 3.012, 4.221];
t(14,:) = [14, 1.761, 2.145, 2.977, 4.140];
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t(15,:) = [15, 1.753, 2.131, 2.947, 4.0731;
t(16,:)=[ 16, 1.746, 2.120, 2.921, 4.015];
t(17,:) = [ 17, 1.740, 2.110, 2.898, 3.965];
t(18,:) =[ 18, 1.734, 2.101, 2.878, 3.922];
t(19,:) = [19, 1.729, 2.093, 2.861, 3.883];
t(20,:) = [ 20, 1.725, 2.086, 2.845, 3.850];
t(21,:) = [21, 1.721, 2.080, 2.831, 3.819];
t(22,:) = [22, 1.717, 2.074, 2.819, 3.792];
t(23,:) = [ 23, 1.714, 2.069, 2.807, 3.767];
t(24,:) = [ 24, 1.711, 2.064, 2.797, 3.745];
t(25,:) = [25, 1.708, 2.060, 2.787, 3.725];
t(26,:) = [26, 1.706, 2.056, 2.779, 3.707];
t(27,:) = [27, 1.703, 2.052, 2.771, 3.690];
t(28,:) = [ 28, 1.701, 2.048, 2.763, 3.674];
t(29,:) = [ 29, 1.699, 2.045, 2.756, 3.659];
t(30,:) = [ 30, 1.697, 2.042, 2.750, 3.646];
t(31,:) = [ 40, 1.684, 2.021, 2.704, 3.551];
t(32,:) = [60, 1.671, 2.000, 2.660, 3.460];
t(33,:) = [120, 1.658, 1.980, 2.617, 3.373];

t_inf = [1.645, 1.960, 2.576, 3.291];

if (df < 1)
fprintf('\nSorry you lose. Not enough Data.');

elseif (df >= 1)&(df <= 30)
z = t(df,2:5);

elseif (df > 30)&(df <= 120)
r = abs(t(:,l) - df);
p = min(fmind(r == min(r)));
if min(r) == 0

z = t(p,2:5);
else

if (df < t(p,1))
p = p-l;

end
z = t(p,2:5) + (df-t(p,1)) * (t(p+1,2:5) - t(p,2:5)) / (t(p+1,1) - t(p,1));

end
else

z = tinf;
end

p = max(find(z <= abs(t_m)));
prb = prob(p);

if (show == 'y')I(show == 'Y')
if isempty(p)

ps = 'ns';
else

ps = num2str(prb);
end %if isempty
disp(['t = ', num2str(tb),' df = ', int2str(df),...

' p = ', ps])
end
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else %if isempty data
prb = 1;

tb = 0;
k = [0 0];
df = 0;

end %if isempty data
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function [k, confk, df] = T_line_conf(Data, show)

%T line_conf
%Program written by Jock R. I. Christie in ongoing effort to make the world a better place
%Modified by Keoki Jackson

%Performs a linear regression fit to array of x-y coordinates
%Generates 95% (or 90%) confidence intervals for slope and y-intercept of regression line
%Uses double-sided t-statistic
%Takes x-y array as input
%Returns the coefficients of the line fit; also the confidence interval and the degrees of %

freedom

% SHOW = 'n' or SHOW = 'N' suppreses display statements.
% NOTE: These values for 2 sided test. See CRC (1983) p.547

prob = [0.100; 0.050; 0.010; 0.001];
%confidence level = 0.05
c_level= 2;
if -isempty(Data)
x = Data(:,1);
y = Data(:,2);
k = polyfit(x,y,1);
a = k(2);
b = k(l);
yfit = polyval(k,x);
n = length(x);
se = norm(y - yfit)/sqrt(n-2);
c_a = (se*sqrt(1/n + (n*(mean(x)A2)/(n*sum(x .2) - (sum(x))A2))));
c_b = se/sqrt((n*sum(x .^ 2) - (sum(x))^2)/n);
t_a = a/(se*sqrt(1/n + (n*(mean(x)^2)/(n*sum(x .A2) - (sum(x))^2))));
t_b = (b/se)*sqrt((n*sum(x .^ 2) - (sum(x))^2)/n);
df = n-2;

if -exist('show')
show = 'n';

end

t(1,:) = [ 1, 6.314, 12.706, 63.657, 636.619];
t(2,:) = [ 2, 2.920, 4.303, 9.925, 31.598];
t(3,:) = [ 3, 2.353, 3.182, 5.841, 12.924];

t(4,:) = [ 4, 2.132, 2.776, 4.604, 8.610];
t(5,:) = [ 5, 2.015, 2.571, 4.032, 6.869];
t(6,:) = [ 6, 1.943, 2.447, 3.707, 5.959];
t(7,:) = [ 7, 1.895, 2.365, 3.499, 5.408];
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t(8,:) =
t(9,:)
t(10,:)
t(12,:)
t(12,:)
t(13,:)
t(14,:)
t(15,:)
t(16,:)
t(17,:)
t(18,:)
t(19,:)
t(20,:)
t(21,:)
t(22,:)
t(23,:)
t(24,:)
t(25,:)
t(26,:)
t(27,:)
t(28,:)
t(29,:)
t(30,:)
t(31,:)
t(32,:)
t(33,:)

t_inf = [1.645, 1.960, 2.576, 3.291];

if (df < 1)
fprintf(\nSorry you lose. Not enough Data.');

elseif (df >= 1)&(df <= 30)
z = t(df,2:5);

elseif (df > 30)&(df <= 120)
r = abs(t(:,l) - df);
p = min(fmind(r == min(r)));
if min(r) == 0

z = t(p,2:5);
else

if (df < t(p,1))
p = p-l;

end
z = t(p,2:5) + (df-t(p,1)) * (t(p+1,2:5) - t(p,2:5)) / (t(p+1,1) - t(p,1));

end
else

z = tinf;
end

t_a2 = z(c_level);
conf_a = t_a2*c_a;
conf_b = t_a2*c_b;
conf_k = [conf_b conf_a];
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[ 8, 1.860,
[ 9, 1.833,
[ 10, 1.812
[11, 1.796
[ 12, 1.782,
[ 13, 1.771
[ 14, 1.761,
[ 15, 1.753
[ 16, 1.746
[ 17, 1.740,
[ 18, 1.734
[ 19, 1.729
[ 20, 1.725
[ 21, 1.721,
S[22, 1.717.
[ 23, 1.714,
[24, 1.711,
[ 25, 1.708
[ 26, 1.706,
[ 27, 1.703,
[ 28, 1.701,
[29, 1.699
[ 30, 1.697,
[ 40, 1.684
[ 60, 1.671,
[120, 1.658

2.306, 3.355, 5.041];
2.262, 3.250, 4.781];
, 2.228, 3.169, 4.587];
, 2.201, 3.106, 4.437];
, 2.179, 3.055, 4.318];
, 2.160, 3.012, 4.221];
,2.145, 2.977, 4.140];
, 2.131, 2.947, 4.073];
, 2.120, 2.921, 4.015];
, 2.110, 2.898, 3.965];
, 2.101, 2.878, 3.922];
, 2.093, 2.861, 3.883];
, 2.086, 2.845, 3.850];
, 2.080, 2.831, 3.819];
, 2.074, 2.819, 3.792];
, 2.069, 2.807, 3.767];
, 2.064, 2.797, 3.745];
,2.060, 2.787, 3.725];
,2.056, 2.779, 3.707];
, 2.052, 2.771, 3.690];
, 2.048, 2.763, 3.674];
, 2.045, 2.756, 3.659];
, 2.042, 2.750, 3.646];
, 2.021, 2.704, 3.551];

2.000, 2.660, 3.460];
, 1.980, 2.617, 3.373];



if (show == 'y')l(show == 'Y')
if isempty(p)

ps = 'ns';
else

ps = num2str(prb);
end %if isempty
disp(['t = ', num2str(tLb),

e p = ', psi)
end

df = ', int2str(df), ...

else %if isempty data
prb = 1;

t b = 0;
k = [0 0];
df = 0;

end %if isempty data
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