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I. ABSTRACT

The present research project sought to eliminate low flow dynamic instability in a

family of low specific speed centrifugal pumps. More negative pump characteristic

slopes were known to be linked to improved stability, and were sought via

appropriate geometry modifications. In the past, the most common solution

adopted for improving the pump slope was that of increasing the impeller sweep

angle. This resulted in lower head rise at BEP and therefore required pump

resizing or a change in design speed.

The effect of a number of geometrical pump parameters on performance was

evaluated by means of a volute-impeller interaction code. In particular, larger

volutes were found to flatten the pump characteristic by increasing volute mixing

losses at the impeller-volute interface at low flow coefficient, and reducing them at

high flow coefficients. Following indications that characteristic slope depended on

volute tangential speed, a new volute configuration was devised, which obtained

most of the flattening through a higher rate of cross-sectional area increase

immediately after the tongue. The new pump characteristic was tested via a linear

system stability code and predicted to reduce significantly the area of unstable

operation.

The new volute design was subsequently implemented on a pump model facility

and tested. Experimental results confirmed that the proposed change improved the

stability of the system without resulting in significant performance reductions in

head rise at design point. The discrepancies between experimental and

computational results were analyzed. Conclusions for further design changes and

pump volute flow modeling techniques were drawn.
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1.0. INTRODUCTION

1.1.0. Statement of the Problem

The present research project addresses the problem of enabling a family of low

specific speed centrifugal pumps designed for aerospace applications to operate

stably at flow rates much lower than their best efficiency point. Typically,

pressure oscillations appear in these types of pumps at flow rates lower than about

30-50 percent of design. Very large, undamped oscillations often observed in

these cases are categorized as 'surge'. Surge propagates to the flow outside the

pump and represents a system phenomenon. In addition to loss of performance, it

can result in serious damage to the system and the pump itself. A more detailed

description of surge in centrifugal compressors is provided, e.g., by Van den

Braembussche [18].

Low specific speed pumps are capable of very high performance at relatively

reduced sizes, and are therefore attractive for aerospace propulsion applications

such as fuel systems. However, most mission requirements include very low

output regimes during cruise and approach to landing, which fall well within the

typical boundaries of unstable operation. This problem has traditionally been

solved by employing multiple pumps or by shunting most of the output around the

pump itself. Design trends, however, point to weight reductions for all components,

thus making multiple pump configurations less attractive. Simple, direct shunts

cannot be employed effectively at certain head and mass flow rate conditions due

to rapid heating of the fuel recirculated. The fuel must then be recirculated

through the tank, adding to the complexity and bulkiness of the system. This

leaves modifying the pump design in order to eliminate the cause of the oscillations

as the most attractive option. Changes in design can only come from a better

understanding of the flow behavior at low flow rates in the pumps under study.

This need was not addressed sufficiently in past research efforts to present a

viable and effective design solution.



1.2.0. Research Plan

The efforts described in this thesis cover the theoretical and computational aspects

of the third phase of the study of low flow instabilities in a family of centrifugal

pumps. The sponsors of the study were interested in extending the range of stable

operation for the family without sacrificing pressure rise or compromising on

dimensions or weight.

The first phase of the project focused on designing and building an experimental

facility for the study of instablity and performance in a centrifugal pump. A

computational performance predictor was also developed at this point in time,

which formed the foundation for the subsequent study of possible pump design

changes. The results of the first phase are summarized in Mr. Nicolas Goulet's

Master's thesis [24].

The second phase focused on understanding stability behavior in the pump under

study. This was done through flow visualization, pressure and flow measurement

techniques. At the same time, a computational algorithm for the prediction of

system behavior based on linearized stability theory was developed and

successfully compared to the observations. This algorithm was to be utilized later

in predicting the effect on stability of changes in performance appropriately

generated by design modifications. The results of the second phase are described

in Mr. Jeffrey Bons' Master's thesis [26].

The third phase focused on finding a relationship between flow behavior, pump

performance and system stability in order to develop a rationale for design

improvements. This required the gathering of evidence, which was done both

experimentally, by means of Laser Velocimetry measurements and local static

pressure measurements, and numerically, by means of the algorithms discussed

above. It also included the development of an effective design based on theoretical

deductions and computational predictions, which incorporated tradeoffs between

the different constraints; its implementation; and successful experimental testing.

It is the theoretical and computational aspects of this thrd phase which are the

subject of the present thesis. The experimental aspects of the third phase are



presented in Mr. Scott Sandler's 1992 M.S. Thesis. Experimental results were

utilized first in order to obtain indication as to the problem areas in the pump and

to verify the effectiveness of the computational models employed. They were also

necessary in order to assess the effect of the proposed design changes.

The entire study took place at the Gas Turbine Laboratory of the Massachusetts

Institute of Technology, under the direct supervision of first Dr. Belgacem Jaroux

and, subsequently, Prof. Jack L. Kerrebrock, over the period between Fall 1988 and

Spring 1992.

Performance and local pressure and velocity measurements were taken on a pump

facility constructed during the previous phases of the project. Both the facility and

the experimental apparatus will be described briefly in Chapter 3.0. The original

pump, whose characteristics were not disclosed, has been indicated in this study as

the High Pressure Unit (HPU). The simple term 'pump' was reserved for the model

facility constructed (Low Pressure Unit, or LPU) and studied at the Gas Turbine

Laboratory and all data quoted in this document refer to it.

1.3.0. Organization of Thesis

In the present section, the function and importance of each subsequent thesis

chapter is outlined.

* Chapter 2.0 provides an overview of the accomplishments of earlier

authors in the same field, or of those whose methods and findings are relevant to

this investigation. These can be divided into three categories: works on the

stability of pumping systems, works on the interaction between impeller and

volute in a centrifugal pump and works on the numerical analysis of centrifugal

compressor impeller and volute flow.

* Chapter 3.0 summarizes the features of the pump and measurement

apparatus that are relevant to the theoretical analysis and to its implementation.

The computational and other software tools used are also presented.



* Chapter 4.0 discusses the computational approach to pump performance

prediction and the computationally measured effect of some attempted operating

parameter changes and more radical design modifications.

* Chapter 5.0 discusses the numerical method used to predict instability

based on pump and system performance, and presents the effects on system

stability of the proposed changes in the linearized system stability description.

* Chapter 6.0 summarizes the aspects of implementing the proposed changes

on the experimental apparatus that are relevant to the theoretical analysis, and

outlines the results obtained as compared with those predicted by the models.

* Chapter 7.0 presents the conclusions reached, with respect to

improvements to both pump design and theoretical analysis methods. An

extension of the new design is proposed and discussed. Two recommendations for

better modeling of pump performance and flow behavior are also made and

discussed.



2.0. LITERATURE REVIEW

This research project sought to identify modifications to the geometry of a

centrifugal pump volute in order to reduce instability at low flow. As a result, it

was built upon the foundations laid by past work in two principal areas: the effect

of the interaction of volute and impeller geometry on pump performance, as

measured by head vs. flow rate and efficiency, and the stability of pumping

systems. The assumptions and results of previous works on computational flow

description in centrifugal pumps constituted a third subject relevant to the present

study. In fact, the predictions of the computational model representing the

interaction between volute and impeller did not agree completely with

experimental measurements, indicating that some of the assumptions made in

developing the model had to be verified and reformulated by means of a two-

dimensional representation of the flow in the volute.

The works pertinent to each of these three areas of pump engineering will be

presented separately in the following three paragraphs.

2.1.0. The Stability of Pumping Systems

A decrease in the absolute value of the slope of the pump characteristic curve had

been predicted by previous research to result in greater stability at the flow rates

involved. It was observed to do so in the present study. The effect of pump

geometry on the slope of the characteristic are discussed in the following section.

In 1980, Greitzer [16] analyzed the stability of a 'Basic Pumping System' consisting

of an active element (pump), a resistive element (throttle), inertial elements

(piping) and compliant elements (plenums) that are capable of storing energy

through compression. If we characterize the oscillatory response of the system as

e , then the exponent s must satisfy the equation



1 a• p &--
s2 + s[( T)-B(--)+[1- a--] = 0

B R (-)

(2.1.1)

from which it follows that the dynamic stability of this system depends on the

interrelationship of three factors: the slopes of the pump and throttle

characteristics and the parameter B, defined as

U V
B = Ua( )1/2

2a Ai L-
(2.1.2)

where U is the rotor speed, a is the speed of sound, V is the size of the plenum

volume, Ac is the compressor flow-through area and Lc is the effective length of the

compressor duct. B represents the ratio of inertia to compliance in the system. In

addition, dynamic instability can physically occur only at operating points where

the characteristic of the pump is positively sloped, causing mass and pressure

oscillations to be in phase and the net energy input to the fluid to be positive

[Fig.2.1.1].

The present pump rig is, in essence, a development of the 'Basic Pumping System'

concept. In 1989, Goulet [24] applied the above analysis to the present rig by

means of a linear computational model. In 1990, Bons [26] expanded the model to

account for a lag in the response of the pump, which effectively increases stability,

and variability of the pump wheel speed, which increases the effective inertia of

the system and increases stability as well.

2.2.0 Interaction Between Impeller and Volute

The importance of matching between impeller and volute geometry has been

recognized by authors in pump design since the nineteen thirties. Usually, the

shape of the impeller and volute are chosen in order to obtain the desired head and

flow rate at design conditions. For a pump of the kind analyzed in this study, in



proximity of the best efficiency point, the volute and impeller characteristics, i.e.

the relationships between head rise and flow rate in both these two pump

elements, in their simplest forms are:

H/ir = Ho - const, Q (impeller)

(2.2.1.a)

H = Q/const2  (volute)

(2.2.1.b)

In 1947, Anderson [2] suggested that the impeller head could be broken down into

head due to impact and head due to centrifugal pressures. By analyzing the

impeller velocity diagrams pertaining to the impact component, he concluded that

the area of the volute throat determined the point of best hydraulic efficiency of

the pump. Head predictions based on this theory displayed very good agreement

with measurements [2] [6]. The head at BEP was related to the parameter

Y = 0.95 nr D2 b2 sino A',

(2.2.2)

defined as the area ratio of the pump. In 1963, Worster, in analyzing pumps with

free-vortex volute designs [7], pointed out that the nondimensional flow rate and

head rise coordinates of the intersection point between the volute and impeller

characteristics

Ho
= 2 A1/2/D 2  A

In(1 + 2 Ai/2/D 2) +7 D2 b 2 tanp

(2.2.3.a)
Ho

In(1 + 2 A 1/ 2/D 2 ) A
1+ 2 A 1/2/D2  I D2 b2 tano

(2.2.3.b)

which determine the BEP location in the absence of losses, depended on the

parameter n D2 b2 tano A-', which is almost the same as Anderson's area ratio, and



on the ratio of the impeller outlet swirl velocity to the mean velocity in the volute

throat, which for a volute with rectangular cross-section and radial thickness B has

the form

2 A 12/D2
In(1 + 2 A1/ 2/D 2)

(2.2.4)

As will be mentioned in Section 4.4.0, one of the factors recognized by the present

study to affect the performance of the pump near and above design flow was the

difference between the tangential velocity at the impeller exit and the tangential

velocity in the volute throat for certain ranges of 0. In addition, Worster suggested

that the most important factor in determining the pump's specific speed is the ratio

of the square root of the volute throat area to the impeller diameter. Thus, a pump

with a larger throat area would have a higher specific speed.

Worster also analyzed variations in pump performance resulting from changes in a

number of geometrical parameters. In particular, the change in the operating point

head coefficient resulting from varying the number of blades by +_25 % was found to

be minimal. This resulted from the fact that the number of blades affects the

Busemann coefficient Ho, i.e. the shutoff head coefficient. In the present study, it

was found that altering the slip factor by the same amount across the flow

coefficient range resulted in a vertical shift of the volute local pressure profiles

[Fig.2.2.1], the pump pressure characteristic [Fig.2.2.2.i] and efficiency variation

with flow rate [Fig.2.2.2.ii]. Since the ideal impeller slip factor is directly related to

the impeller blade exit angle, these findings can be considered to be consistent.

Stepanoff [6] had predicted significant variations in design head and flow

coefficient to result from changes in impeller exit passage width [Fig.2.2.3].

Similarly, a significant change in characteristic shape was observed in the present

pump -when the impeller exit passage width parameter was corrected from

0.0127m to 0.0150m in the impeller-volute interaction code [Figs.2.2.4].



Worster derived the characteristic curves of a family of pumps obtained by

varying only volute throat areas. The shifting volute characteristic results in

flatter overall curves and larger BEP flow coefficient [Fig.2.2.5]. Finally, the

characteristic curve of a pump fitted with an Archimedean spiral volute was

measured and compared to that of the same pump fitted with a free vortex design

volute and three different tongue designs [Fig.2.2.6], showing in particular a

noticeable decrease in the slope of the characteristic curve. Measurements of

volute static pressure showed somewhat higher but not substantially different

circumferential pressure variations for the Archimedean spiral volute compared to

the free vortex spiral design [Figs.2.2.7]. Volute cross-sectional area rather than

the impeller's exit area was found by Worster to affect the BEP for low specific

speed pumps, such as the one presently studied. In fact, a flatter characteristic and

a much less significant outward shift of the BEP flow coefficient, with TIBEP roughly

constant, were also observed in the modified volute proposed for the present pump

presented in Section 4.5.0, which has in common with Worster's Archimedean

volute a rectangular cross-section and a rapid throat area expansion downstream of

the inlet. Finally, the shape of the tongue was found experimentally to result in a

horizontal shift of the efficiency curve, suggesting that it may be possible to offset

the effects of a different volute area profile on BEP by modifying the tongue. In

general, Worster found wide volutes to have 'both constructional and hydraulic

advantages'. In spite of this, most of the past design and research efforts to

improve performance have been directed at the impeller.

In 1980, Anderson [11] related the area ratio to the matching between impeller

exit and volute velocity. This suggested that improvements to the characteristic

slope could be produced by acting on the volute and impeller exit dimensions.

However, the impeller exit passage width cannot be varied along the

circumference, and the large head loss predicted in [11] [Fig.2.2.3] may therefore

not be avoidable. By contrast, the substantial slope variation in [7] was achieved at

the expense of a small BEP shift, resulting in limited head loss and no significant

efficiency penalty [Fig.2.2.6]. The observation was made that, in practice, specific

speed and area ratio were not strictly related and at any given specific speed,

pumps with varying area ratios could and had been made to date.



Schweiger [13] suggested that inaccurate theoretical prediction of pump behavior

at very low flow rates may be caused by swirl developing at the impeller inlet and

discharge. Experimentally, he found that extending the impeller blades into the

suction pipe increased Ho and the stability of the pump characteristic. Weissgerber

and Carter [14] compared performance predictions obtained with a computational

loss analysis procedure to measured values for six pumps with varying geometries.

They observed that the predicted performance values were substantially lower

than those measured at flow rates below 50% of design. Similarly, the present

computational prediction loses effectiveness at flow rates below 30% of design. The

comparison of experimentally derived and computationally predicted volute

pressure profiles for the present pump at low flow coefficients indicated that the

failure of the model to predict the strong tongue effect on the flow, which appeared

in the form of steep tangential pressure gradients just before the pump exit

[Figs.2.3.1], was one of the possible explanations for this discrepancy. Another

contributor was the inaccuracy in estimating the slip factor at low flow coefficient.

Weissgerber and Carter attributed the discrepancy of design point to two

phenomena: flow separation from the blade suction surface and recirculation

between the separated region and the outward jet flow near the blade trailing

edges. In the model, these two effects would be lumped into a corrected impeller

exit velocity component ratio and slip factor.

In 1986, Lorett and Gopalakrishnan [21] developed an analytical procedure

describing the effect of volute-impeller interaction on the volute flow at

circumferential steps around the impeller discharge. Contrary to previous models,

the impeller flow was assumed unsteady and dependent on the flow velocity in the

volute throat, which varies along the circumference, thus including the effect of

reverse flow and improving performance prediction at low flow performance. This

required a step by step calculation of the flow conditions in the volute throat and

impeller channel in discrete segments of the circumference, through a marching

solution of discretized continuity and momentum equations. This procedure is at

the basis of the computational code developed by Goulet in 1989 [24] for the

present project. Details of the model and the code are presented in Chapter 4.0 and

Appendix A.



2.3.0. Computational Flow Analysis

in Centrifugal Compressors and Pumps

The computational model adopted for predicting overall pump performance

proceeds by determining flow rate and head coefficients at discrete locations

around the volute. The predicted values for flow and head coefficient at these

locations showed some discrepancy with those obtained by Laser Velocimetry

[Figs.2.3.1], suggesting that some of the assumptions incorporated in the model be

reconsidered. In particular, the assumptions of impeller slip factor independent of

the volute angle and of zero-thickness volute were reevaluated. The assumptions

incorporated in the model are discussed further under Section 3.2.0.

2.3.1. The Assumption of Constant Slip Factor

In pump literature, the impeller slip factor is generally regarded as function of the

geometrical characteristics of the pump. A number of correlations on the blade

passage angle and impeller blade trailing edge angle, proposed by various authors,

were gathered and compared with experimental data by Wiesner in 1967 [8].

Possibly the simplest and most common of them is due to Busemann:

(sinl)1 /2

(2.3.1)

Eck's correlation accounts for the comparative length of the blade passage:

Cu ac 1
Cuth 2 cos(n/2- -)

Z (1 - D 1/D 2)

(2.3.2)

The above correlations and others due to Stodola, Stanitz, etc., predict slip factor

quite well near design conditions, but become significantly less effective at low or

high values. In 1967, Sakai and others [9] applied potential flow theory to the



impeller channel and corrected the boundary conditions by adopting an outer

boundary radius larger than R2 and dependent on the number of blades. Their

flow rate dependent slip factor correlated better with their experimental

measurements than the predictions by the above formulas. However, predictions

could not be obtained below 0.7 of design flow rate due to strong three-

dimensional effects in the volute channel. In 1974, Whitfield [10] analyzed the

interaction between jet and wake flows in separated impellers, characterized by

two different slip factors, and obtained a correlation between flow rate and overall

slip factor that improved the agreement with experimental results. In 1980,

Salemi and Di Matteo [12] analytically derived slip factor correction terms to

account for impeller wall friction forces and blockage due to low energy flow

accumulation on the blade suction surface. The resulting slip factor expression took

into account fluid properties and flow rate in addition to pump geometry and

showed good correlation with experimental values, particularly at flow rates near

40% of design. There have been no attempts to date to predict slip factor

variations with volute angle in pumps with asymmetric casing geometry, even

though an analysis of Miner's theoretical and experimental velocity measurements

on one such pump [23] [25] [27] revealed that slip factor values varied significantly

with 0 [Fig.2.3.2] The variations appeared to be more significant away from the

design operating point, partly explaining the reduced realism of a constant slip

factor approximation at low flow rates. Miner adopted a two-dimensional potential

flow model to the impeller and volute domain and successfully compared its

findings to laser velocimetry measurements at four discrete 'windows' around the

volute. The circumferential variations increased with distance from the operating

point, in agreement with the intuitive reasoning that circumferentially varying

flow conditions at off-design operation must influence flow behavior at the

impeller exit and the slip factor. A clear case of this principle is flow reversal. The

prediction of slip factor variation with 0 and its incorporation in the present study

are discussed in Section 4.1.0.



2.3.2 The Assumption of Zero-Thickness Volute and Instant Mixing

Laser velocimetry measurements at grid points covering most of the volute cross-

section in proximity of the tongue indicated that Cu3 varies substantially with

radius in the volute [29]. These variations are associated with mixing times of the

order of one half impeller rotation for the impeller and volute flow. This pointed

out the need for a computational performance predictor to account for radial

effects in the volute and their dependence on the design of the casing. The shape

of a recommended two-dimensional algorithm is discussed in detail under Section

7.3.2.

A large body of literature is available on the subject of two-dimensional flow

analysis in compressors and pumps. In 1944, Emmons applied the relaxation

method to the numerical solution of compressible flow problems in two dimensions

[1]. His indications were followed by Stanitz, who applied the technique to the

solution of the irrotationality condition in the blade passage and corresponding

volute segment for conical mixed-flow compressors in 1948 [3], and for centrifugal

straight-bladed compressors in 1949 [4]. Stanitz reproduced the strong flow

deceleration along the outer portion of the blade suction surface [Fig.2.3.3] and

related it to frequently observed separation phenomena. Indications were also

given for problems involving incompressible flow, and a coordinate transformation

reducing the actual real domain to a rectangle [Fig.2.3.4] was recommended when

using differently shaped blades such as logarithmic spirals. These indications were

followed in theoretical attempts made on the present pump to estimate the value

of slip factor from flow behavior near the blade in the impeller's rotating reference

frame. More recently, Miner [23] [25] applied two-dimensional, potential flow

analysis to the impeller and volute of a centrifugal pump and obtained excellent

agreement with laser velocimetry measurements at various radial stations in the

impeller.



3.0 RESEARCH FACILITIES

The present chapter reviews the aspects of the design, operation and

instrumentation of the research facilities that are relevant to the theoretical

investigation that is the subject of this thesis. Details of the computational

procedures and copies of the software used are provided in the appropriate

chapters and appendices.

3.1.0. The Experimental Apparatus

A pump loop was the experimental facility used in providing input to the

theoretical models and in verifying their predictions. The relevant characteristics of

this apparatus will be briefly presented in this section. The reader interested in a

more detailed description is invited to consult Mr. Bons's or Mr. Goulet's thesis [26]

[24].

3.1.1. Purpose

The experimental facility was designed for the purpose of testing a scale-up model

of the centrifugal pump of interest. The scaling included the change from fuel to

water as the working fluid. The test section was therefore represented by the

pump and diffuser [Fig.3.1.1]. These elements were constructed of transparent and

machinable plexiglass in order to allow for visual inspection, laser velocimetry

measurements and the installation of pressure tappings.

Since measuring and understanding the mechanism of low-flow dynamic instability

in the pump was of primary interest to the project, and the linear stability theory

of Section 2.1.0 [16] was to be applied and verified against the actual behavior of

this experimental facility, the pump loop was designed as a 'basic pumping system',

characterized by a certain amount of inertia and compliance [Fig.3.1.2]. The inertia

of the piping was determined by the linear dimensions and cross-sectional area



distributions of the pump and throttle legs. The compliance of an actual system

was simulated by including two large tanks, one in the pump leg and one in the

throttle leg, where energy could be stored through compression of air bags of

controlled volume [Fig.3.1.3]. This simulated the effect of such phenomena as

elasticity in the fuel system walls and in the fuel itself. Each air bag volume setting

would yield a different B parameter for the system and a different stability

response along the operating line.

The pump speed, another element found by Bons to be important in predicting

system stability at a particular point, could be varied continuously by means of an

electric motor directly connected to the shaft, and a throttle was included to adjust

the flow rate through the system to any desired value. The throttle consisted of

two servo-actuated valves in parallel with automated positioning to values

prescribed by a voltage signal. All the components of the loop could be accessed

and replaced easily, thus allowing for testing of redesigned components or changes

in the loop setup. A transfer system was built to store the entire water content of

the loop during frequent modifications.

3.1.2. Features

Since the pump model was scaled upwards from the original to allow for local

investigation of pressure and velocity distributions, its operating quantities had to

be sized in order to maintain a comparable specific speed. Design point quantities

are listed in Table 3.1.1 on the following page (in part from [26]).

The volute thickness in the original design was 0.867 in. just after the tongue and

increased more or less linearly up to 4.167 in. at 16.30 upstream of the tongue.

After this point, the outer volute wall departed tangentially to form a rectangular

cross-section inlet to a transition segment [Fig.4.4.4]. The cross-section at the

transition outlet was circular and had an area approximately 1.72 times as large as

that at its inlet. The circumferential profile of the volute radial thickness was an

essential factor in the prediction and improvement of pump performance near

shutoff. In the original design, as it was previously stated, the volute radial



thickness increased linearly with 0 between 0.867 in. and 4.167 in.; in the new

design proposed in order to increase stability the volute radial thickness increased

along two successive parabolic arcs between the same two end values [Fig.4.5.2].

Pump Features and Operating Parameters

Pump wheel speed

Impeller tip velocity

Pump specific speed

Impeller suction pipe diameter D1

Impeller diameter I3

Impeller discharge width b2

Impeller discharge blade angle 32

Total number of blades

Number of splitter blades

Wp -420 rpm

U -13.31 m/s

Ns -600

0.201 m (7.93 in)

0.610 m (24.0 in)

0.0150 m (0.590 in)

340

Z 8

Zb. 4

In the model pump, the volute was machined from of a single piece of plexiglass,

the volute backplate, which in the finally assembly was enclosed by and bolted to a

concentric cylindrical piece, the volute seal, inside which the transition element

was placed [Figs.3.1.1 and 6.1.1]. The purpose of the transition element was that of

changing the pump exit cross-section from rectangular to circular. The diffuser

section was bolted to the external volute casing, at the exit of the transition

element. This allowed easy access of instrumentation to the diffuser and transition.

It would also allow easier implementation of the recommendations made in Section

7.3.2, which included the removal of the diffuser and its replacement with a

straight pipe. The diameter of the discharge pipe was 8 inches.

The configuration described above was critical in approaching the problem of

modifying the volute shape without violating the constraints of the assembly.

More details on the solutions adopted appear in Chapter 6.0.

Table 3.1.1.



3.1.3. Instrumentation

Flow velocity measurements in the impeller were conducted using a Lexel Model

95 argon-ion laser [Fig.3.1.4]. Two beams, green and blue, were used to obtain

velocity measurements along two directions normal to each other. The setup

allowed the measurement of tangential and radial flow velocities along rectangular

grids of 21 evenly spaced locations inside the volute cross-section [Fig.3.1.5]. The

grids were located at regular angle intervals immediately upstream and

downstream of the volute tongue [Fig.3.1.6]. Due to the opacity of the impeller

shroud surface and the presence of steps on the upper volute wall in proximity of

the impeller exit, velocity measurements at radial locations closer to the impeller

exit boundary than 1/8 of the volute radial thickness, as well as at volute angles

less than 600 downstream of the tongue, were not attempted. In order to supply

information to the two-dimensional volute flow model proposed and discussed in

Section 7.3.2, an additional laser velocimetry series of measurements across the

operating flow coefficient range would have to be conducted at the volute-

transition boundary, between 90 and 150 downstream of the tongue and on its

outer side. Measurements at all the points on the cross-sectional grid were

obtained by acting on the control volume through a Model 9430 Position Controller

connected to a Model 9400 Mirror Mount Traverse System which enabled the

control volume to move in three spatial dimensions. The sequential scanning of

control volumes in the cross-sectional grid was software controlled and

programmed on the computer through a RS-232 interface.

The flow rate through the pump was monitored by means of a Yokogawa ADMAG

Series AM220 magnetic flow meter positioned in the pump discharge leg of the

piping system. The flow rate in the leakage path was measured with an Omega

FPM5300 turbine flow meter.

Steady-state static pressure measurements during the preliminary phase of the

project were conducted using water manometers connected to pressure tappings

positioned at regular intervals in the volute centerline and along the axial planes of

the suction pipe, transition and diffuser elements [Fig.3.1.7]. After the installation

of the modified volute, Validyne P305 differential pressure transducers replaced



the water manometers, which were employed to measure the water pressure

characteristics in the two plenums. The transducers were connected to a Model

DSS-48C7/Mk4 Double Scanivalve System, which could scan up to 8 ports/second.

The impeller wheel speed was measured by means of a Lebow 1604 Rotary

Transformer. Shaft torque data were obtained through a Lebow 1604 Torque

Sensor. Both instruments were connected to the data acquisition system through a

Lebow 7540 Strain Gage Indicator.

For more details on the istrumentation, the reader is advised to consult Mr. Scott

Sandler's Master's Degree thesis [29].

3.1.4. Data Acquisition

All the instruments used, except for the manometers, were connected to an IBM PC.

Signals from the Laser Velocimeter were processed by a TSI model 1990C Counter-

Type Signal Processor. The TSI Data Analysis Software provides laser velocimetry

data reduction on the PC. A Scanivalve Digital Interface Unit performed all the

required analog-to-digital conversions for the pressure transducer data. The Data

Translation DT2810 board performed all the required analog-to-digital conversions

for the flow rate, wheel speed and torque signals. Final data reduction and

presentation was done on a Macintosh SE.

3.2.0. The Computational Apparatus

All the software customized to this research was written in FORTRAN. It was
developed, tested and applied on the VAX network of the Gas Turbine Laboratory.
Versions of the software were developed for use on the project's own Macintosh SE.
Some software elements were developed independently on the MIT Project Athena
VAX and IBM network. Listings of some versions of the programs used appear in
the appendices to this document. Additional software for the data acquisition
system was either developed in Basic or prepackaged.



KaleidagraphTM 2.0 and ExcelTM 2.2 were employed on the Macintosh for the analysis

and representation of both computational and experimental data. This document

was produced using Macintosh Microsoft Word"T 4.0 for the written sections and

Kaleidagraph TM 2.0 for the graphs.



4.0 PREDICTION OF GEOMETRY EFFECTS ON CHARACTERISTIC

Improving low-flow stability in the pump system through a change in its

characteristic required an understanding of the relationship between the pump's

geometry parameters and the slope of the pressure curve at each operating point

by means of a computational model.

4.1.0. Computational Modeling of Pump Performance

In a pump of the type considered, the pressure field in the volute depends on the

flow velocity distribution along the impeller exit channel, which in turn depends on

the exit pressure profile and is therefore unsteady whenever the rotating impeller

encounters a circumferentially varying pressure field in the volute. Modeling the

mutual influences of impeller and volute is critical to accurate performance

prediction at all off-design flow coefficients and for all non free-vortex volute

designs, where the impeller exit pressure profile varies with volute angle. It was

therefore required of the present study. The need to incorporate the volute-

impeller interaction assumption into a reasonable prediction of radial thrust and

efficiency among other performance measurements led Lorett and Gopalakrishnan

in 1986 to develop the interaction model described in [21], of which the model

used in the present study is a second-generation derivative. Section 4.1.1 is

devoted to a succint description of Lorett and Gopalakrishnan's interaction model.

4.1.1. The Impeller-Volute Interaction Model

Prior to 1986, radial thrust and performance prediction models incorporated the

assumption of steady flow in the impeller channels, which was unrealistic at off-

design conditions. Lorett and Gopalakrishnan determined the pressure and exit

velocity distributions by dividing the volute channel and its impeller exit boundary

in a number N of discrete steps and solving discretized forms of the continuity,

momentum and Euler equations at each step. The solution required assuming



initial static pressure, tangential velocity and impeller exit meridional velocity

conditions at the volute inlet, then relaxing the velocity values found at the end of

the volute march in order to satisfy the energy equation at the boundary between

element N and element 1:

S= C + 2g (HsN - Hso)(1-C),

(4.1.1)

where C is a loss coefficient connected with the presence of the volute tongue, and

periodicity conditions for tangential velocity at the volute inlet:

CN = Co

(4.1.2)

As the model marches along the volute, the flow entering the volute from the

impeller exit boundary of element i [Fig.4.1.1] is

r D 2 b2
AQi = Cm2i NZ '

(4.1.3)

While continuity provides the volute tangential velocity at the exit of the element i:

Qi + AQi
Ai+1

(4.1.4)

The static pressure at the inlet to the following element i+1 is obtained from the

momentum equation

2 [QiCi + AQiCi - Qi+iCi+l]
H = H(Ai + - Hg (Ai + Ai.l)

(4.1.5)



Where the losses due to skin friction in the volute element i are represented by the

term

AHSf,' = 4 Lnsf-" Dh 2g

(4.1.6)

which includes the effect of volute cross-section geometry and flow velocity.

Finally, the exit velocity at the impeller exit in the following element is predicted

applying the Euler equation to the impeller channel when discharging into element

i+l:

2g sin21
Cm,i+l = Cmi + D, - D At (Hs - Hsm)i+l

(4.1.7)

where At represents the time interval required by an impeller angular location to

move from volute element i to element i+1:

60
At = RPM N Z

(4.1.8)

Lorett and Gopalakrishnan recognized that some assumptions incorporated in the

model were likely to result in prediction errors. In particular, they pointed to the

problems generated by: (1) neglecting the contribution by Cm2 to volute flow energy

as compared to C2, which should not be very significant at very low specific speeds;

(2) neglecting the upstream effect of the volute tongue, which is compensated by

adopting the energy equation as a closure condition; and (3) assuming attached

flow along the tongue walls. This last assumption was proven to be realistic in the

pump considered in this study, where no separation in the volute channel was

observed. In spite of the errors induced by the above simplifications, volute static

pressure and radial thrust predictions agreed with the experimental findings of

other authors [Fig.4.1.2]. Different assumptions for the Goulet model, and their

likely impact on performance prediction, are discussed in the following section.



4.1.2. The Goulet Version of the Model

The volute-impeller interaction model version developed initially for the present

project incorporated all the features of the original model, plus a leakage path from

the impeller shroud to the pump inlet. The volute was divided into 100

circumferential elements. The following assumptions were restated and applied:

1) No blade-to-blade variations in the impeller flow (actuator disk);

2) Negligible radial variations in volute pressure and velocity (infinitely

thin volute);

3) Complete mixing of impeller and volute flow momentum within each

cell;

4) Leakage flow rate parbolic with respect to volute static pressure:

Cmi = U (T• ;

(4.1.9)

5) Same swirl at leakage path inlet and volute: C,, = C;

6) No inlet swirl;

7) Constant slip factor a, the ratio between impeller exit real and

ideal relative tangential velocity.

Of these, assumptions (2), (3) and (7) were subsequently discussed and revised.

The details of these discussions appear in this chapter and Section 7.3.2.

The iteration progressed from the volute inlet to its exit and recirculation path as

in the original model. Initially, the conditions specified at the volute inlet were:

1) The pressure coefficient To;

2) The volute tangential velocity Co;

3) The impeller exit velocity Cm20.

The latter two, however, became relaxed as part of the convergence conditions

described in the previous section. The final set of predicted results, therefore,

included Co and Cm20 as determined for a specified volute inlet pressure coefficient,

impeller exit slip factor and pump geometry. Because of the behavior of the

impeller characteristic, however [Fig.4.1.3], for flow coefficients lower than BEP

there were two possible operating points corresponding to the same 'o, so care had



to be taken in selecting the appropriate Co and Cm2 0 guesses, and in mapping the

results.

The presence of leakage led to modified continuity and momentum equations

[Fig.4.1.1] across volute element i:

Cm2i Cmi
+ - 'i (+ N U - N U XI

(4.1.10)
4 C Cm2i Cu2i CImi Ci

" a + a 1 (NP NUP9+1U+ NU2 NU

(4.1.11)

The second closure condition was given by the conservation of total pressure across

the tongue:

Co = U ( 2 + (Ysmi - Ysi) (1 - ) )

(4.1.12)

where the effect of losses has been lumped into the tongue loss factor r.

The results obtained from the iteration included a number of overall pump

operating parameters:

1) Overall flow coefficient;

2) Overall pump head coefficient;

3) Overall hydraulic efficiency;

4) Flow angle of attack on volute tongue.

4.1.3. Upgrades and Modifications to the Model

The first test of the model in the form described in the previous section was

conducted by comparing the predicted volute static pressure profile distributions

with pressure data obtained by connecting manometers to pressure taps along the



centerline of the pump volute. The results of this comparison at four different

operating points are displayed in [Figs.2.3.1]. It became evident that the ability of

the model to predict local pressure behavior was adequate at flow coefficients near

design, but declined sharply for lower operating points. Overall pump

characteristic prediction was also less effective at low flow coefficents [Fig.4.1.4].

In particular, the sharp pressure increase in proximity of the volute tongue

observed experimentally was not predicted. This phenomenon was attributed to

sharp flow deflections due to the presence of the tongue, and the resulting marked

shifts of the stagnation streamline and location of the stagnation point on the

tongue at low flow coefficients [Fig.4.1.5], which could not be picked up by a one-

dimensional, radially-constant-property model. The inability to predict the near-

tongue head rise was connected to the overall pressure coefficient underprediction.

This was improved in part by correcting the model to reproduce the steep area

increase at the end of the volute resulting from the tangential departure of the

outer wall 16.30 before the cutwater.

Sandler's Laser velocimetry measurements in the volute cross-section showed large

radial variations in tangential flow speed from the inner to the outer boundary.

These, in combination with the large average circumferential velocity, indicated the

presence of strong radial pressure gradients, which would be responsible for

inaccuracies in the predicted profile. Namely, at every cell location the 'average'

cell static pressure, calculated from the equation of momentum in the volute, was

significantly different from that at the impeller exit. This affected the velocity

distribution in the impeller channel and at the volute-impeller interface. The

model was adjusted to account for this phenomenon, assuming of a linear radial

distribution of tangential speed. The results obtained by incorporating this

behavior were significantly different from those obtained with the original

assumption; the correspondence with the experimental results, however, was

significantly worse [Fig.4.1.6]. This indicated that radial variations had to be

accounted for in order to improve local prediction, but assumptions as to their

quantitative significance had to be derived either experimentally or with the help

of a two-dimensional code. The experimentally derived characteristic, however,

could be obtained from the result of the prediction that incorporated a linear radial

pressure profile, by adjusting it to account for appropriate slip factor variations



with flow coefficient [Figs.7.3.4 and 7.3.5]. More on two-dimensional radial velocity

and pressure distributions appears in Section 7.3.2 of this thesis, while the

combination of linear radial volute pressure profile and variable slip factor is

discussed in Section 7.3.3.

The assumption of constant slip factor a around the circumference and at all flow

coefficients was thought to be partly responsible for inaccuracies in the local and

overall performance predictions respectively. The code was therefore modified in

order to account for varying a along the T vs. Q characteristic. This required

modifying the theory of the code in order to adopt the definition of slip factor as

the ratio of the actual to ideal absolute impeller discharge tangential velocities,

Cu2 ac

Cu2 th

(4.1.13)

in order to compare the resulting distribution with those of other authors [9] [12].

However, the problem was that, while a depended on 4, the value of D was

determined for given volute inlet pressure coefficient ' (O)* and a values. This

would have required changing the algorithm and adding another layer of iteration.

Moreover, the a would have had to be adjusted according to a purely empirical

relationship derived for a different pump. It was therefore decided to obtain an

indication of the importance of a behavior with 4 by means of an inverse method.

A slip factor distribution accompanying flow rate was obtained by adjusting the a

input continuously, in order for the computationally predicted local characteristic

slope to converge to the experimentally determined characteristic slope at all flow

coefficients [Fig.4.1.7]. The a distribution found by means of this inverse method

was consistent with the observations of the other authors to which it was

compared, indicating that the dependence of slip factor on flow rate was

responsible for some of the inaccuracies in the overall prediction. The overall head

values measured experimentally, however, were too high to be matched by

appropriate slip factor choice with flow coefficient. Also, overall SF level appeared

similar enough to match the angle dependence patterns measured by Sandler and

Miner [Fig.4.1.8]. However, the presence of other effects prevented a more



quantitative determination of this dependence. Insufficient velocity data at volute

area locations made it impossible to derive a relationship between local values of

flow coefficient and other quantities, in particular the angular derivative of the

volute static pressure coefficient [Figs.4.1.9].

Modified versions of the code were also produced to include and model the effect

of a proposed bypass system between the pump exit channel and volute locations.

The distribution of the bypass and its cross-sectional area could be specified by the

user of the program, as could the exit angle in the bypass duct. The flow in the

bypass was assumed to be direct and driven by the pressure between the exit

channel and each of the volute locations specified. More on the intent of the

bypass system and its effect on performance is included under Section 4.3.0.

In different versions of the software, the model was modified to include variations

in a number of geometrical pump parameters such as impeller ideal discharge

angle, number of blades and the mobility of the flow in the leakage path. A

variable area multiplier (AM) for the volute cross-section, which could be

visualized as the ratio between the exit area of the new volute under consideration

and that of the original volute, was introduced in order to obtain quick estimates of

solution sensitivity to volute size. The sensitivity of the solution to frictional losses

in the volute, expressed by means of a variable numerical coefficient for the term

in the momentum equation, was included. Due to the spiral shape of the volute, the

shape of volute cells spaced at regular angle intervals varies from very elongated

at the volute inlet to very short near the exit. The possible effect of this distortion

on the results was investigated by introducing a variable number of volute cells in

the computation. The effects of all these changes on the characteristic slope were

determined and evaluated. The results for these analyses were included under

Section 4.2.0.



4.1.4. Recommendations for Future Upgrades

Understanding the behavior of slip factor around the impeller exit in a centrifugal

pump with a volute is a problem in itself. This problem has not been addressed

directly in the literature, although a strong variation in slip factor with angle,

particularly at off-design conditions, can be inferred from the data presented by

Miner [25]. In particular, a relationship should be obtained between the

circumferential behavior of a and that of other quantities, such as the pressure

coefficient and the local impeller exit flow coefficient. At this time, there appear to

be two ways to accomplish this:

1) A theoretical or numerical study of the flow in the impeller channel

accounting for flow conditions in the volute and the possibility of separation along

the suction side of the impeller blade. In this approach, an inviscid, potential flow

model in the impeller's reference frame would be used to determine the velocity

and pressure field acting on the boundary layer. It would be possible to adopt a

computer-based, faster version of the procedure described By Stanitz [4] and

mentioned in Section 2.3.2, in order to solve for the flow in the blade passage and

at its exit. The comparative length and difficulty of this approach discouraged the

focusing of this project toward its discussion and away from the goal of overall

system stability.

2) Experimental measurements of impeller exit tangential velocity, radial and

tangential pressure and velocity profiles in the volute at all angles and over the

whole pump operating range. A correlation between pressure profiles and

measured slip factor values was attempted for the pressure and velocity data

available [Figs.4.1.9]. Comparisons were made difficult by the limited number of

angles and flow coefficients for which measurements were available.

Even though the correlation between theory and experiment in his research was

excellent, Miner's velocity data locations were also too sparse to allow a meaningful

analysis, and did not include pressure measurements.

The inclusion of a slip factor variable with flow coefficient in the code should also

be considered. The main problem is that the input to the code is the volute inlet

pressure coefficient, to which corresponds an overall flow coefficient which



depends on the slip factor, as well as other quantities such as pump design, wheel

speed, etc.. The overall flow coefficient would then be used to determine the

correct value of slip factor. This results in the need for an iterative process which

would multiply several times the computation time currently required. The

modification to the code should therefore be designed to minimize the increase in

computation time. It seems that more success in matching prediction to observed

results through slip factor adjustment might be achieved by incorporating this

behavior in the code already modified to account for radial variations. More on the

results of this technique appears in Section 7.3.3.

The two-dimensional code described in Section 7.3.2 could be considered an

extension of the interactive model, since it would provide a more accurate estimate

of the exit static pressure driving the impeller flow.

4.2.0. Sensitivity of Prediction to Pump Geometrical Parameters

The volute characteristic curve obtained computationally for flow coefficient values

below 0.1, which was close to the BEP, is shown in Figs.4.2.1, 4.2.2 and 4.2.3. At

flow coefficient values below the BHP at 0.06, the slope of the volute characteristic

became positive, and remained so until shutoff. The value of this slope was

somewhat higher than measured by Goulet [24], but it remained close to his

computational estimate in spite of the larger impeller discharge area [Fig.2.2.4.i].

The ratio of the flow coefficient recirculated into the volute to that entering the

diffuser was largely the same for flow coefficients between 0.008 and 0.1

[Fig.4.2.4]. The aim of the efforts described in this section was to lower the curve

slope for .ov below 0.06 through appropriate modifications of the pump design and

working parameters. Several hypotheses were formulated and tested in the

attempt.

In summary, the predicted effect of modifying each of the following pump design

characteristics was modeled and analyzed:



1. The leakage path. This was done by assigning different values to the parabolic

leakage factor k specified in Goulet's version and by comparing the results of the

code in the full leakage and no leakage option.

2. The impact of frictional losses in the volute. This was accomplished by attaching

a user-specified sensitivity factor to the frictional loss term in the discretized

momentum equation included in the model.

3. Impeller exit blade angle. This was done by assigning a lower value to the exit

angle parameter 132 specified in Goulet's version of the model.

4. The volute cross-sectional area. This was done by including as user-specified

input a multiplier of the original area.

5. The number of blades and volute cells. This was done by including the number

of blades and volute cells in the range of input values.

6. The position of the tongue relative to the impeller exit boundary. This was done

by modifying the volute inlet cross-sectional area and, accordingly, the subsequent

area distribution in the model.

4.2.1. Hypotheses

The pressure rise between volute elements was predicted through the discretized

momentum equation at each cell i, corrected for leakage effects and skin friction:

4 C, Q Cm2i Cu2i Clmi Ci
i i ai + ai-li - Wi1 2 2N )

(4.2.1)

It was believed that varying some of the quantities involved in the relationship

would increase the influence of negatively sloping terms at low Dov, or could

otherwise affect differently the pressure buildup around the circumference at



different flow rates. Therefore, characteristic curves for varying quantities

involved in the momentum equation were derived, including in particular the

impeller exit blade angle 12. A sensitivity factor was also attached to the friction

loss term APTs.. in order to determine its influence on the results. The effect of a

volute configuration without a leakage path and the two associated momentum

equation components was compared to the original one.

Leakage flow momentum loss is also included in the momentum equation. In the

assumption of parabolic leakage flow rate, the meridional speed is related to

pressure differential at the ends of the path by:

Clm = U (AmI/k) 1/2

(4.2.2)

The effect of varied mobility of the leakage path flow was investigated by varying

the value of the leakage flow factor k and by eliminating leakage altogether.

In pump design situations, it is common to increase the back-sweep of the impeller

blades in order to obtain a more negatively-sloped overall characteristic. In the

present case, that would require a lower setting for 02*

It was also believed that momentum addition by the impeller to the flow already

in the volute might become too small as ov,, decreased. Consequently, a variable

area multiplier was introduced to evaluate the effect of smaller volute cross-

sectional areas on overall performance.

It was then argued that loss of momentum influx to the volute might be related to

backflow in the impeller. In order to make the impeller less sensitive to

backpressure, configurations with higher solidity were attempted. The presence of

backflow as evidenced by the behavior of the impeller exit radial velocity

component was also investigated, both computationally and experimentally.

Different distances between tongue and impeller exit were tried, which

corresponded to varying the radial thickness of the recirculation volute path.



Finally, it was argued that computational results may be affected by the mesh

choice made. As it was pointed out in the previous section, the original 100-cell

arrangement, cells immediately upstream of the tongue were small in cross-section

and very long, while those immediately downstream of it were very thin and wide.

4.2.2. Testing

The predicted slope at low flow rates was slightly higher for a configuration

without leakage path [Fig.4.2.5]. As can be seen from the volute element

momentum equation, the significance of the leakage momentum increased with

flow rate. Its removal caused therefore larger pressure recovery across the

element at higher flow rates. This indicated that acting on the shape and size of

the leakage path would not result in stability gains without power losses.

Increasing frictional losses improved the pressure curve slope. Unfortunately,

these losses were largely proportional to the square of the normalized volute

tangential speed, since at every volute cell i

ALi C,
Ts.f. i = (Ci) Dhi

(4.2.3)

and therefore increased with flow rate and resulted in the behavior shown in

Fig.4.2.6. Even though heavier losses could be accomplished through a different

cross-section shape and material finishing, they would have yielded lower BEP and

design head rises and were not therefore considered a viable solution.

Characteristic points were obtained for impeller speed as low as 8 m/s, and

impeller blade exit angle 32 lowered to 0.300 rad (17.2 deg.). Although the new

parameter 032 resulted in a lower slope for the characteristic at low flow, the

pressure rise at BEP was naturally affected by the decrease in exit speed

[Figs.4.2.7]. Compensating for the design head loss would have required increasing

the impeller wheel speed Increasing the exit back-sweep of the impeller blades is



often done in order to obtain a negative characteristic, however it must be

compensated by an increase inperipheral speed, which is not always desirable. The

model predicted the effect shown in Fig.4.2.8 for the original volute and Fig.4.4.8

for the modified volute: the speed at the impeller exit was somewhat lower,

compared to that in the volute, than in the original design. The difference

increased with flow rate due to the direction of the exiting flow relative to the

impeller. This fact resulted in a lower head recovery than in the original case. This

effect was superposed to the usual others described and caused the behavior seen

in Figs.4.2.7.

Characteristic points for volute area multipliers between 0.6 and 1.1 were derived

[Figs.4.2.1, 4.2.2 and 4.2.3]. A smaller area had the effect of producing a substantial

acceleration in the flow, that was then found to be linked to the higher slopes

observed. Details are provided in the following section.

The number of volute cells was varied between 33 and 500. The 33 cell

arrangement guaranteed the least cell deformation throughout the volute. It was

found that adopting new mesh selections with different numbers of cells did not

alter the pump characteristic prediction [Fig.4.2.9].

4.2.3. Comments

The rise in pressure was decomposed into a part dependent on the ratio between

flow coefficient and impeller blade exit angle, which is negligible at low (ov, and a

part dependent on the ratio between volute tangential speed and impeller tip

speed:

Tt = o - (t )2 2

(4.2.4)



The dependence of the last term on 4 in first approximation can be estimated:

C (D
A'

(4.2.5)

where A represents the cross-sectional area in the volute. The possible

characteristic curves in this approximation can be represented as a family defined

by several parameters: the slip factor a, the impeller exit blade angle 0,e, and the

inverse of the volute cross-secional area A. It is then evident that varying input

parameters will have the effect of shifting the characteristic from one curve of a

family dependent on the tangential velocity C parameter to another. The attempt

to reduce the curve slope by decreasing the volute cross-sectional area resulted in

somewhat higher C values at every flow coefficient and steeper characteristics. On

the contrary, increasing the back-sweep of the impeller blades implied having a

smaller Pe and, consequently, a larger influence of the inverse parabolic component.

This supported the argument that some improvement might result from adopting a

higher volute area immediately after the tongue, in order to slow down the volute

flow, while maintaining the same area at the exit. Doing so would in practice allow

the use of two different values of A depending on the operating point. At low flow,

most of the acceleration along the circumference due to mass conservation with D

takes place in the volute, and a larger cross-sectional area in the early volute

would result in a slower increase of C with D. Since at high flow coefficient a

greater increase in flow velocity takes place at the flow turning into the passage on

the outer side of the tongue, if the exit area is not varied, the relationship between

C and 4D would not be affected as significantly as in the the low-flow case by a

larger cross-sectional area in the early volute. However, it was apparent that a

tradeoff had to be established between low-flow stability, overall BHP pressure

rise and other considerations in selecting the design of the pump.

EFFECT OF PROPOSED PUMP MODIFICATIONS



4.3.0. Effect of a Tongue Bypass Device

4.3.1. Hypothesis

Two of the recognized factors affecting overall pump performance were the

asymmetry induced in the flowfield by the presence of the tongue and the drop in

momentum at low overall flow rates. A bypass system, which connected the

diffuser transition passage to the volute cells [Fig.4.3.1], was devised. This system

had the advantages of increasing momentum at selected points in the volute and

being able to be switched on and off. In its simplest form, it was pressure-driven,

thus having the disadvantage of decreasing influence on volute momentum with

flow coefficient. However, it was still thought to contribute toward a reduction of

the asimmetry of the volute area profile.

4.3.2. Implementation

The flow through the bypass was considered pressure-driven and parabolically

related to the pressure drop across it. The bypass flow speed was then given by

Cb = U (A/k) 2,

(4.3.1)

analogously to the flow in the impeller leakage path. Assuming no resistance to the

flow, the coefficient k was considered unity. The total flow through the bypass

depended on the cross-sectional area, which had to be selected. Injecting the

bypass flow into the volute had two consequences: increasing the amount of flow

through an additional term in the continuity equation, and increasing the pressure

coefficient through an additional term in the momentum equation. The latter effect

was expected to be much lower, especially at low 0ov, since bypass speed scaled

with pressure drop as indicated above. The condition that flow might travel from

the diffuser to the volute only, and not vice versa, was posed. This was expected to

improve performance at high flow coefficients.



The original bypass configuration had a single channel between the diffuser

transition and the volute section immediately after the tongue. This was later

expanded into channels connecting the diffuser transition with points in the volute

between 40 and 1790, spaced every 7'. This increased the bypass flow fraction

substantially without increasing cross-sectional areas. Flow coefficient profiles

with and without bypass at the same inlet pressure coefficient input value f*(O)

are compared in [Fig.4.3.2].

4.3.3. Results

The code was modified in order to model the effect of bypasses of the types

described, and calculations were performed at various flow coefficients as well as

various bypass areas Ab, bypass exit angles ye and blockage factors kb without

significant differences in performance. The effect of a bypass system, with linearly

increasing area over the whole circumference and a total area approximately 6

times as large as that of the previously tested configuration, was noticeable but

marginal [Fig.4.3.3]. The effect of changing the bypass exit angle was insignificant

[Fig.4.3.4].

It appeared that no noticeable benefit to low-flow performance resulted from

employing a bypass; it became possible, however, to model low flow performance

with very large volute cross-sectional areas, which were associated with very small

characteristic slopes and led to the new volute area design proposed. Results

indicated that a much flatter pump characteristic, with a comparable BEP head

coefficient rise could be obtained for a multiple of current volute area AM of 2.2

[Fig.4.3.5]. Divergence problems were observed for solutions tried on non-bypass

configurations at AMs comparably high. For the area increase proposed in the new

volute design, however, divergence of the solution did not occur and the bypass

was not adopted in predicting its performance.



4.4.0. Effects of Larger Volute Cross-Sections

A larger volute cross-sectional area was expected to result in lower volute

tangential speeds. Higher volute speeds were associated with higher overall flow

rates, while the impeller exit tangential velocity decreased due to the exit blade

orientation and was less sensitive to flow variations, as long as the wheel speed

was not varied. It was therefore predicted [Figs.4.4.1 and 4.4.2], and confirmed by

experimental observation, that exit velocities substantially lower than volute

speeds were associated with high flow coefficients in the original volute design.

Such differences were expected to translate into mixing losses directly related to

operating flow rate. In addition, the static pressure of the exit flow was predicted

to decrease as the component was accelerated by the oncoming flow.

At the same time, a larger volute design, incorporating both a steeper area profile

just downstream of the tongue and a larger exit area was predicted to yield

tangential impeller exit velocities consistently higher than those in the volute

[Fig.4.4.3]. The volute cross-section could be increased proportionally in order to

minimize mixing losses at higher flow coefficients. This was offered as an

explanation for the higher head coefficients predicted at high flows and the lower

ones at BHP. A flatter characteristic was predicted, consistently with the fact that

the variance of the impact of mixing losses with flow coefficient was reduced. This

meant that the flatter shape of the predicted characteristics was also consistent

with the smaller range of volute speeds over the entire range of flow coefficients

expected with a larger cross-section. This led to the proposed volute configuration

denoted as 10/1991 [Fig.4.4.4]. This geometry yielded the characteristic change of

Fig.4.4.5.

With this, however, several questions arose. First, the onset of instability moved

from 4=0.06 upwards, thus reducing the margin at the operating point. Given the

gain in head coefficient, however, it appeared that the operating point might also

be moved to the right as well, without affecting performance. In fact, the BEP itself

was expected to shift upwards, thus affecting the pump's specific speed and size

and making the benefits of the projected change debatable. Second, the realism of

the model was expected to decrease as the area of the volute increased. Adopting



larger areas might have required introducing radial variation of volute quantities

and the effect of different cross-sectional shapes. Third, it was unclear how such

an increase could be reproduced in the experimental setup without substantial

modifications to the existing structure.

4.5.0. Volute with High Initial Slope

In response to the three concerns above, it was fortunately found that expanding

the volute area in its first portion had an effect on velocity distribution and overall

performance similar to that obtained with the 10/1991 volute design, even though

the area at the exit of the volute did not increase [Figs.4.4.6 and 4.5.1]. An overall

characteristic curve, predicted for an area profile which increased up to about half

of the final area increase at about 500, is compared to that given by the original

and 10/1991 designs in Figs.4.5.2 and 4.4.4. In all cases, the predicted operating

point pressure coefficients were noticeably higher than in the base case, indicating

that considerably flatter characteristics could be obtained without modifying the

existing structure.

The steeply diverging volute walls required, however, posed the question of losses

due to separation. If the volute cross-section could be treated as a normal

diverging passage, there was little doubt that massive separation would occur, and

nullify the effect of the sudden area increase. Due to the presence of radial

velocity components from the impeller exit and strong vorticity in the cross-

sectional plane, however, the realism of the simple diverging passage assumption

was greatly reduced. In both proposed new geometries, the predicted pressure

gradients along the volute circumference, which could be associated with

separation, were not substantially different from those measured in the old volute

design, for which no separation was observed [Figs.4.5.3 and 4.4.7]. In the

modified pump, a strong circumferential vortex shed from the tongue along the

volute .wall, which would have effectively prevented any boundary layer

separation from occurring, was later observed.

It was decided to first examine the possibilities offered by a change in the

distribution of volute cross-sectional area without changing the exit area and,



consequently, without changing the BEP, BHP and specific speed of the pump. For

this purpose, the prediction code was modified to observe the effect of varying

area profiles on the predicted characteristic, while maintaining the exit area at the

tongue unchanged. The polar coordinates of a breakpoint in the volute area profile

were used as parameters in the search [Fig.4.5.4, 4.5.5 and 4.5.6]. The effect of a

number of break points of 2 or larger was investigated and found to be

insignificant. An effective tradeoff between performance improvement, model

realism and design practicality was reached with the configuration summarized in

Table 4.5.1 on the following page [Fig.4.5.2].

The above points were connected by means of two second-order curve fits, such

that (1) the slopes of both curves at the break points were the same, and (2) the

slope of the latter curve at the beginning of the straight volute wall section was

,ro. This led to the following radial area distribution:

A(N) = 0.00138 + { \A(-2.627 10-5 N2 + 5.255 104 N 0 _ N s

10,-3.552 10-7 N2 + 6.821 10-5 N + 1.981 10-3  10 _ N < 95)

(4.5.1)

which was implemented on the pump with the approach described under Chapter

6.0.



Table 4.5.1. Volute Parameters in Proposed Des

Angle [0] Cell Nr. Area [1

Immediately after tongue 0 0 0.0013
Profile break point 10 36 0.004(

Start of straight volute wall 344 95 0.0066

Immediately before tongue 360 100 0.0077

Pump exit at tongue 360 (100) 0.005z

* Same as in old design.

t Based on distance between volute wall and impeller tif

areas on both sides of the tongue
w



5.0 PREDICTION OF CHARACTERISTIC EFFECT ON STABILITY

The prediction of instability for the pump in its original and modified

configurations, and connected to the experimental loop apparatus, was based on the

Greitzer stability theory. As described in Section 2.1.0, the behavior of mass flow

and pressure perturbations in a pumping system composed of a compressor, a

throttle and other devices whose inertia and compliance can be estimated depends

on three factors: the local pump pressure characteristic slope, the local throttle

characteristic slope and the ratio of the system's inertia and compliance, or B

parameter. Thus stability is generally dependent on the operating point of the

system considered. However, a positive slope is required of the pump

characteristics, as was pointed out in the previous chapters.

5.1.0. The Determination of System Stability

In the present experimental setup, the compliance of the system was controlled by

varying the volume of air-filled air bags within the two plenum vessels. Once the

volume was fixed, the pump was started and the behavior of perturbations was

observed throughout the pump's operating range. The behavior of the pump was

represented in terms of a critical flow coefficient r,,, where the onset of instability

occurred, whose value depended on the setting on the plenum volume and,

consequently, on the B parameter. It is then proper to say that

=Dtr, = (Dtr (B)

(5.1.1)

In the linear analysis procedure, t,, was defined as the flow coefficient value at

which the eigenvalues of the system of four equations derived by Bons:



Momentum conservation in the piping ducts:

dmp AP
dt -L (Pig - Psm - APP -APL)

(5.1.2.a)

dmT AT

d t L= A (Pm -Plg -APT -ATL

(5.1.2.b)

Mass conservation in isentropically compressible plenums:

dPsm y Psm

dt p Vsm (fp- MT)

(5.1.2.c)
dP,_ g (T -fP)
dt p V, m

(5.1.2.d)

have zero real part. In the approximation of this linearization, instability is

identified by a positive real part for the eigenvalue, while the imaginary coefficient
represents the frequency of the unstable oscillations most. This can be shown to be

connected to the value of the B parameter [26]:

U
2 onst LpL

(5.1.3)

Since the boundary between stability and instability is not sharp under real-life

conditions, a semi-arbitrary criterion had to be established to identify the onset of
instability in experimental observations. t,,, was therefore defined as the flow

coefficient value at which the RMS amplitude of the pressure oscillations grew to
3% of the design pressure rise. This criterion was applied by Bons and adopted for
the sake of consistency in the work done by Sandler.

Both experimental observations and linear predictions showed the following two
facts [Fig.5.1.1]:



1) As the throttle flow coefficient was reduced, a first stability-instability

transition was encountered for certain plenum volume settings corresponding to B

parameter values above a certain critical threshold Bcr. Bcr was seen to depend on a

number of operating conditions, as described below.

2) As the throttle flow coefficient was reduced further, a second transition, from

unstable operation to stable operation, was encountered at very low flow

coefficients. The origin of this second transition was less clear than that of the first.

The best curve fits of experimental characteristic data, which were used for the

computational predictions as well, appeared to be fifth-order polynomials. These

curves displayed substantial flattening in proximity of shutoff. Since the margin of

uncertainty in steady-state measurements made at extremely low flow coefficients

was severely increased by ample pressure oscillations, it remained unclear how

real the effect was, considering also that predictions obtained using third- and even

second-order fits displayed a similar phenomenon.

The stability observations for the original pump design were conducted first by

Bons [26], who obtained satisfactory agreement between the predictions of the

linear theory and his experiments. Sandler's M.S. thesis [29] contains more detail

on the procedures followed in the measurements done in this stage of the project,

which was centered on the behavior of perturbations in the pump with a modified

volute.

The presence of the pump in the system had several effects. First, the wheel speed

fluctuated in response to mass and pressure variations, storing energy and adding

to the inertia of the system. This was more significant at higher speeds and

resulted in somewhat better stability. This could be seen in three ways: (1)

comparing the predicted instability boundary of a pump with fixed wheel speed

and that of a pump with variable wheel speed [Fig.5.1.2]; (2) comparing the

predicted stability boundaries of pump operation at different wheel speeds

[Fig.5.1.3]; and (3) comparing the measured stability boundaries of pump operation

at different wheel speeds [Fig.5.1.4]. The third set of observations had been

collected by Bons and corroborated the trends shown by the other two. An

element of difference was that actual stability performance at different speed was



affected not only by different B parameter corrections, but also by changing

characteristic shapes [Fig.5.1.5].

Second, due to the non-negligible linear dimensions of the compressor, a lag in the
response of the pump to changing conditions contributed to a delay in the onset of
instability. This lag time was defined by Bons as:

Lthr
= - L, Zlag

(5.1.4)

Where zag was a factor to be determined by the fit between predicted and
experimental data. Bons estimated Zag to be approximately 0.03. The effect of a
lag in the predicted response of the pump, and therefore its stability, for Zlag values

between 0.01 and 0.15 can be observed in Fig.5.1.6.

Third, the presence of the pump during operation affected the pressure in the

plenums, thereby reducing or increasing the effective volume of the air bags and
slightly varying B across the operating range. Even more significant than the
dependence on flow coefficient was the effect of a new pump configuration,
observed when the new volute was installed. This resulted in a different
relationship between the system characteristics and the B parameter for the new
pump, about which more is said in Chapter 6.0.

5.2.0. The Linear Stability Code

The code took as main input the following values: pump volute design, pump
speedline, volume setting of the pump and throttle plenums. The value of the lag
factor and the shutoff plenum pressures could be changed. It proceeded to
examine discrete operating points, corresponding to flow coefficients regularly
spaced every 0.001 between 0.001 and 0.07. For each of these operating points,
the local speedline slope for the appropriate design was determined from
relationships established as curve fits to either experimental or computational data.



It was also necessary to use curve fit relationships for the variation of impeller tip

speed with flow coefficient. The dependence of impeller tip speed on flow rate was

determined experimentally for each speedline considered. The throttle slope was

then estimated at the chosen operating point by subtracting the pressure loss in

the pump and throttle legs from the pump pressure rise. The actual plenum

volumes were corrected for the effect of pressure increments due to pump

operation. For every flow coefficient analyzed, the output would list the real and

imaginary part of the system eigenvalues and the B parameter corresponding to

that frequency of unstable oscillations. Please refer to Appendix B for details of

the code and the output.

5.3.0. Results

The predicted effect of the characteristic derived through the volute-impeller

interaction code for the new pump volute design was determined by introducing

the predicted characteristics for 100%, 80% and 60% of design speed, the speedlines

for which the wheel speed and plenum pressure dependence on the flow rate had

been already determined by Bons. For comparison, the effects of the predicted

characteristics for a pump fitted with the old volute configuration at 100%, 80% and

60% of design speed were introduced. Using the same experimentally derived

relationships between system parameters and B isolated the effect of the steady-

state characteristic slope. The predictions of the effect of the 10/1991 volute

configuration, with its much larger exit area and considerably flatter

characteristics, were also included for reference.

Third-order curve fits were adopted for the positively-sloped portion of the

characteristic, reflecting the smoothness of its shape as predicted by the interaction

code. By comparison, fifth-order fits were adopted in the prediction of stability for

the experimentally derived characteristics of Chapter 6.0, reflecting the roughness

and kinks in real-life pump behavior.

The results were shown in the form of stability maps, where the proper system

condition could be identified for each flow coefficient and B parameter value



[Figs.5.3.1]. The points on each curve were the critical instability inception flow

coefficients for that configuration and B. In the regions to the right of the curves,

the eigenvalues of the linearized system of Section 5.1.0 were positive, whereas

they were negative in the rest of the map.

Two important effects were predicted as a consequence of the characteristic slope

change caused by the modifications to the volute: a shift to the right of the

threshold B value and a smaller unstable flow range at each B higher than the

threshold value. This indicated a larger range of possible stable operation for the

pump and the system relative to the original volute design. The results confirmed

the expected benefits resulting from a pump with lower tangential speed in the

volute and suggested the convenience of implementing the proposed design on the

pump test apparatus. It was clear that this analysis simply confirmed that a flatter

characteristic, such as that predicted for the proposed volute design, would yield a

larger range of stable operation. The predicted effect of the proposed geometrical

changes on the characteristic had still to be verified experimentally as described in

the following chapter.



ett w t t e vo ute mod ed accord ng to spec cat ons, at 3, 5 and percent

of its design speed. Overall pressure measurements were defined as the

differences between the pressure measured at the last diffuser location and the

suction pipe location. Individual component performance was also estimated in

terms of the pressure rise difference between the ends of each component, as

described in Section 6.3.2.

6.0. NEW VOLUTE TESTING

6.1.0 Implementation of New Design

Keeping the transition inlet cross-sectional area and shape fixed avoided a number

of technical difficulties connected with the three-dimensional layout of the volute

backplate, transition and seal pieces. Some difficulties, however, remained. As can

be seen from Fig.6.1.1, the volute backplate and seal were bolted together through

the same circular steel ring along their respective outer and inner edges. The

length of the bolts was close to the uncarved thickness of the backplate. Expanding

the volute radial thickness in proximity of the transition would have therefore

interfered with this configuration and required drilling new holes. In addition, it

would have been necessary to redesign and rebuild the transition piece.

Changing the volute area distribution between the same end values limited the

scope of the hardware modifications to the volute backplate. The original volute

radial profile was carved on the inside of the backplate, so that additional

plexiglass had to be carved out in order to achieve the new profile desired. Since

the original pressure tappings were located along the radial centerline of the

previous volute, additional holes had to be drilled to house tappings along the new

centerline [Fig.6.1.2]. The pump was then cleaned, reassembled and readied by

Sandler for the measurements.

6.2.0 Testing Procedure

Overall pressure measurements were then conducted by Sandler on the pump, now
r,. -i h A . ..l ... .i C. •~ 0on 0



simply reflects the previous findings [Fig.6.3.2]. Data for other speedlines,

however, suggest that the new pump design interacts with the system so as to

yield a slightly different B parameter corresponding to a system configuration

[Figs.6.3.3 and 6.3.4], as described below. Since Bons's 80% speedline characteristic

equation appeared inconsistent with Sandler's values, Figs.6.3.3 and 6.3.4 were

included only with the intent of showing the difference between predictions based

on system parameters and B.

The new design resulted in a significantly smaller instability region [Fig.6.3.1] as

predicted by the linear stability code. In particular, the lowest B value for which

instability can occur shifted upward from about 0.260 to about 0.285 and the

higher critical flow coefficient shifted downward by about 0.007 above B=0.285. In

addition, the lower <Dcr shifted inward by about 0.003 and the area of the instability

region between B=0.260 and 0.500 decreased by more than 30% overall. These

results were in agreement with the predictions obtained using model-derived

overall pump characteristics.

The speed characteristic of the pump, which described the variation in impeller

wheel speed with flow rate, was a important factor in the determination of the B

parameter, particularly at low speedlines. The plenum pressure characteristics

exhibited similar variations for the original and the modified pump. Pressure

variations with the pump on, however, were consistently different across the whole

operating range. Specifically, the pressure rise in the small volume was larger, and

that in the large volute was smaller. The consequent reduction in compliance for

the small plenum resulted in lower B parameters for the new volute pump at the

same loop settings as in the stability prediction, and was expected to have the same

effect on experimental measurements with the plenums at least partially filled.

If one effect of the new pump design was that of lowering the B parameter for the

systems in which it is inserted, then there appeared to be an additional

independent benefit from adopting it. Since fuel systems are not defined in terms

of a B parameter but, similarly to the one considered in this study, in terms of

geometrical and material properties, applying a modified pump would improve the

response not only of the pump, but of the system as well. In order to establish



The speed characteristic, i.e. the wheel speed variation with flow rate, and the

pressure differences from pump off conditions for both plenums were also

recorded at that time. These additional data were used in predicting the

dependence of the critical flow coefficient on B through the linearized stability

theory, applied to experimentally derived data instead of predictions [Figs.6.3.1,

6.3.2, 6.3.3 and 6.3.4].

Subsequently, the behavior of the system was studied by Sandler across the

operating flow coefficient range of the pump. This was done by setting the air

plenums on a certain volume, and moving the throttle from design point down to

near shutoff. The amplitude of the pressure oscillations was recorded, and

whenever their RMS amplitude reached 3% of the design head rise value, surge was

detected, and the amplitude and frequency of the oscillations, as well as the

average flow rate were recorded and the B parameter estimated. This allowed for

the production of stability maps analogous to those presented in Chapter 5.0.

6.3.0. Results

6.3.1. Overall Performance

The predicted trend towards flatter characteristics with increasing volute cross-

sectional areas was confirmed by the experimental measurements [Figs.6.3.5]. In

terms of absolute results, as in the case of the old volute, the experiment showed

characteristic flatter curves than predicted.

The 50 percent speedline was the only one for which a direct stability comparison

with experimental results was possible. Pressure and speed characteristics for the

original volute were available. The plenum pressure characteristics, however, were

not, and the same characteristics were used in the new and the old case. While this

has no effect on the mapping of the critical flow coefficients versus system B

parameters [Fig.6.3.1], a comparison between the two designs on the effect of

plenum air volumes is impossible at 50% and the mapping versus Vsm values



this, however, the effect of the new pump on all the actual systems involved should

have been tested; moreover, pursuing this consideration would have been required

a study of the possible benefits to stability deriving from redesigning the fuel

system in order to obtain a lower B parameter, which was outside the scope of the

present work. These were the reasons why this aspect of the change in

performance was not discussed further. It was however believed to represent an

important area of investigation.

6.3.2 Individual Component Performance

The contributions of the various flow segments in the pump were estimated

separately by obtaining the difference between pressure transducer measurements

at the end and beginning of each segment [Fig.3.1.7]. The parts studied were:

Impeller: Normalized pressure value at VI

Volute: Normalized pressure difference V7-V1

Tongue: Normalized pressure difference TR1-V7

Diffuser: Normalized pressure difference YSEX-TR1

Several differences in the contributions of individual pump parts appeared

between the new volute pump and the old one [Figs.6.3.6, 6.3.7 and 6.3.8]. In

particular, the contribution of the tongue region appeared to be less sensitive to

operating point and displayed much smaller slopes in the low-flow region

[Figs.6.3.9 and 6.3.10].

In addition, it appeared that the diffuser was in both cases, and particularly for the

modified pump, the largest contributor to the positive slope of the characteristic at

low flow coefficient. This suggested that better stability behavior may be obtained

by eliminating the diffuser and increasing the volute exit area to coincide with the

diffuser area, or at least accomplishing part of the diffusion within the volute. The

advantage resides in the fact that while the head rise in the diffuser varied with

the square of the tangential flow velocity at the pump exit, the volute performance

would be more constant since, due to flow recirculation, the volute flow velocity



resulted less dependedent on flow coefficient. The discussion of this solution

appears in Section 7.3.1.

6.3.3 Volute Pressure Profiles

The observed volute static pressure variations were compared to the predictions

for the new volute near BEP [Fig.6.3.11]. The large gradient immediately after the

cutwater due to the rapid area expansion was effectively reproduced in the

computation. After the slope break point, the pressure increase continued at a

slower pace. In proximity of the tongue, the pressure trend reversed, possibly due

to accelerating flow in the nearly constant-area volute channel with additional flow

being injected by the impeller. There was a noticeable increase in static pressure

values in the last 15-20' before the exit tongue plane, which was related to a

combination of the effect of the diverging passage in the last 160 of the volute,

where the volute wall departed tangentially from its profile, and that of some flow

being turned away from the exit channel and slowed down at its inlet (this

operating flow coefficient is somewhat below the tongue design value).

The noticeable pressure decrease in the last fourth of the volute indicated that the

volute profile could be better optimized in order to avoid losing some of the

benefits of the steep area increase and obtain an even flatter pressure

characteristic curve.

6.3.4 Time Resolved Measurements

The critical pressure coefficients derived experimentally by Sandler on the new

volute design were compared to those measured by Bons on the original design

[Fig.6.3.12]. The area of instability appeared to have been significantly reduced,

with the greatest benefit taking place between B=0.3 and 0.5. The fact that Bcr

seemed lower for the new design was considered to be caused by lack of

measurements in lower B ranges by Bons at this speedline. Similar maps taken by

Bons at different speeds show the region of surge extending below B=0.25 [26]. If



that was the case, Bcr for the old design at 80% of design speed would correspond to

a cr, around 0.02. It appeared that the expectations set by the pump performance

predictions were met and exceeded.



7.0 CONCLUSIONS

The results of this work proved that pump system stability gains which would

have required compromising with performance requirements or operating limits

(such as pump speed) if addressed more traditionally, were achieved by an

innovative volute design. This has more general implications on the design of a

new pump that incorporates these findings and additional modifications along

trends pointed out in this study and discussed in this section.

7.1.0. Conclusions about Pump Stability and Pump Design

Current design resources exist to address virtually every aspect of pump

performance. On the other hand, every design choice results in enhancing some

performance parameters while sacrificing others. Choices in such cases are

therefore made on the basis of the application of the design rather than on general

pump theory guidelines, within the constraint imposed by the physics of the flow.

One example is the obvious restriction that the BEP head HBEP of a stable pump

must be lower than its shutoff head H0. The best performance by a stable pump

can therefore be obtained by designing it so as to obtain as flat an overall

characteristic as possible. Negative-sloped characteristics do not represent a

stability advantage per se, and do not maximize the performance that can be

obtained. It appears therefore that the changes suggested and tested result in

significant stability improvements at the limited performance cost of 1 to 2 percent

less BEP head. If the design point flow rate, as in this case, is higher than that at

BEP, there seems to be a performance advantage in the form of additional design

head rise that could be traded for a more negative characteristic.

In general, finding design changes that do not compromise on some parameters or

require variable geometry with flow rate depend on the knowledge of the changes

in flow behavior through the operating range of the pump. One example of this

principle is the rationale for the elimination of the diffuser described in Section

7.3.1: the pressure rise in a diffuser located at the exit of the compressor is higher
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at larger flow rates because most of the flow acceleration takes place at the flow

turning in proximity of the tongue [Fig.4.1.5]. As the flow rate decreases, due to

the flow turning, the tangential velocity in the volute becomes higher than that at

the pump exit, so that greater head can be obtained by diffusing the flow inside the

volute. Adopting a larger exit area throughout the volute and at the exit, therefore,

results in a flatter diffusion characteristic across the operating range. Performance

predictions for this design are shown in Section 7.3.1.

7.2.0. Discrepancies among Results

7.2.1. Compressor Characteristic Estimate

Even though the values predicted by the interactive code did not match those

measured experimentally, trends resulting from design changes were successfully

reproduced. This indicated that some mechanisms included in the model and on

which the changes were based, such as the mixing between the impeller and volute

jets, were significant in determining performance in the actual pump. Two sources

of discrepancy that were discussed but not corrected in the model, the slip factor

variation with flow rate and the nonuniformity of the radial speed profile, showed

potential for interesting predictability improvements, as discussed in Section 7.3.3.

7.2.2. Compressor Stability Determination

It is clear that feeding a simplified, linearized theory of stability with somewhat

uncertain local compressor characteristic slopes derived from curve fits of

experimental operating points, which themselves carried some uncertainty, had to

result in predictions with a significant degree of approximation. Additionally, the

criterion adopted to establish instability in under experimental conditions was not

consistent with that of the predictions. The present criterion, by which pressure

oscillations of RMS amplitude equal or greater than 3% of the BEP steady-state

value were categorized as 'surge', was adopted in order to perform a meaningful



comparison of the data obtained for the modified volute to those obtained for the

original. Within this context, the trends predicted were confirmed by the

measurements taken. In particular, there is a discrepancy of about 2% between the

predicted and measured threshold value of B, Bcri,. The discrepancy between the

values of the flow coefficient at which instability is first encountered,

corresponding to Bmrit, is much larger. The uncertainty in the prediction of the local

characteristic slope, more than the model, particularly at low flow coefficients, may

be responsible for a significant part of this discrepancy.

7.3.0. Recommendations for Further Work

7.3.1. On A Larger Volute, Diffuserless Configuration

The contributions of individual compressor components to the overall characteristic

in both the old and new volute design were presented and discussed in Section

6.3.2. From the measurements taken, it appeared that the diffuser was the largest

contributor to the positive slope of the characteristic. Its contribution derives from

the recovery property of the diffuser pipe. In general, the pressure recovery

across a pipe diffuser for an incompressible liquid is given by:

Ap = c, pC inlet

(7.3.1)

which, in the present case, can be written as

1 U2

pr = 2 2'= 2 Cinlet

(7.3.2)

Where the coefficient cpr, defined as the diffuser pressure recovery factor, is

function of diffuser geometry parameters, throat Mach and Reynolds numbers and



throat blockage. A discussion of diffuser preformance is given, for example, in [19].

The discussion of the variation of cpr for the present pump diffuser was done by

Goulet in [24]. Since the pressure recovery is proportional to the square of the inlet

velocity and the variation of cpr is approximately negative linear with 4, the

diffuser head coefficient rise contribution slope at constant wheel speed is positive,

as proven by the observations [Figs.6.3.9 and 6.3.10].

While eliminating a diffuser from the original or modified consideration would

result in a more stable characteristic, it would likely compromise the head rise at

BEP flows and higher [Fig.7.3.1]. It is possible, however, to increase the area of the

pump exit cross-section and accomplish the diffusion, at least in part, inside the

volute. This would have a dual effect:

1) the volute represents a longer, more slender diffuser with less blockage. This

would result in a higher c,, and more effective diffusion.

2) at low flow coefficient, the tangential velocity of the flow recirculating in the

volute becomes higher than that at the pump exit plane. Therefore, a higher head

rise at low flow coefficients can be obtained by diffusing the flow in the volute. As

the flow rate increases, the amount of flow turning into the exit passage, and the

consequent acceleration, increases. This acceleration takes place at the pump exit,

so that some of it can only be recovered by an external diffuser. The comparative

performance of the volute-diffuser with respect to an external diffuser, therefore,

is worse at high flow rates. This condition can be improved, however, by adopting

a larger pump exit cross-sectional area. The design head coefficient loss predicted

was only 3% for a pump with volute design analogous to the modified one and an

exit area equal to that at the original transition outlet, still considerably lower than

that at the diffuser exit [Fig.7.3.2]. The predicted stability benefits, which can be

inferred by the characteristic slope, were favorable and much more significant

[Fig.7.3.3]. The 'original' configuration used for comparison was the modified pump

version which had already shown a substantial stability improvement over the

'real' original configuration.

The actual performance benefits and tradeoffs resulting from the adption of a

similar configuration seemed worth investigatng by implementing it on the existing

Gas Turbine Lab pump testing facility or a similar one.

m



7.3.2. On a Two-Dimensional Volute Flow Model

Before the modified volute was tested, it was highly uncertain whether the

geometry trends predicted by the model would be reproduced on the real pump.

This was motivated by the significant discrepancies that were observed between

predicted and measured local and overall pressure values. At about the same time,

large radial variations in radial and tangential velocity in the volute were

measured by laser velocimetry [29]. The introduction of a radial pressure gradient

in the volute, based on a linear volute velocity distribution, did not improve the

predictive capabilities of the model [Fig.4.1.6], although it was later discovered that

the pump characteristic predicted by this version of the model could be adjusted to

that measured experimentally by varying the slip factor throughout the operating

range. By contrast, due to large differences in value, appropriate slip factor

variations with flow rate could only approximate the slope of the measured

characteristic. Since slip factor values would have had to exceed I over the whole

flow coefficient range, it was clear that slip factor alone was unable to explain the

discrepancies between overall performance measurements and predictions in the

radially constant volute velocity approximation.

The fact that introducing radial variation of volute velocity per se did not improve

the model prediction suggested that the distribution of velocity may be different

from linear. Laser velocimetry measurements obtained at grids were not

conclusive, since the profiles obtained changed substantially depending on throttle

flow rate, radial and axial location (height of the measurement). At the same time,

only a small number of grids were obtained in two short sections of the volute

[Fig.3.1.6], making it impossible to detect any trend along the volute, similarly to

what had happened with the slip factor. It was therefore thought that a two-

dimensional volute flow model would help determine the correct profiles at each

angular location and flow rate. Such a model, connected with the original

interactive procedure would provide a corrected estimate of the pump

performance.

Several clues pointed to possible characteristics for the model. First, Miner [23]

had indicated that the inviscid, potential and two-dimensional flow assumption



allowed simple and realistic velocity predictions that were confirmed by laser

velocimetry data. Second, it was indeed possible to attach the interactive model to

the volute model. In this configuration, the interactive model would provide the

velocity distributions Cm2(0) and Cu2(6) at the impeller exit boundary which would

allow the development of the solution in the interior of the volute domain. In turn,

the solution obtained in the volute would provide the velocity and pressure

profiles necessary in order to estimate more realistic static pressure values at the

impeller exit and revise the interactive determination of the impeller exit velocity

field. The convergence of these two algorithms to sufficiently stable velocity

profiles would indicate the presence of a solution, from which local and overall

pressure values could be derived.

Several questions were also formulated. First, the laser velocimetry measurements

detected significant axial variations in the radial velocity profiles. This tri-

dimensionality was largely due to the presence of the relatively narrow impeller

exit jet close to the centerline of the much higher volute passage, combined with

the two narrow leakage passages at the top and bottom of it. This interaction had

an effect in the form of two vortices that occupied the upper and lower portions of

the volute cross-section. It is therefore unclear whether sufficient accuracy could

be obtained by modeling only two-dimensional effects. Second, an understanding

of the flow behavior at the pump exit boundary, over the whole pump operating

flow coefficient range, is necessary to the correct implementation of the solution of

this elliptical problem. This would require either conducting a series of LDV

measurements at the transition inlet or experimenting with different velocity

profiles until a correspondence with the performance measurements is found.

Third, the computational time of the two iterations coupled together was estimated

to be of the order of several hours, compared with the time required, on the order

of one minute, by the interactive procedure. This suggested that solutions should

be developed in order to increase the speed of the computation or to improve

predictive capabilities by incorporating relevant flow properties within the

framework of the original interactive code. This constitutes the subject of Section

7.3.3.



7.3.3. On Radial Pressure Corrections Combined with Slip Factor Flow

Coefficient Variations

It was observed that it was possible to match the measured pump characteristic

with the predicted one by correcting the volute head coefficient with a radial

variation term and introducing a variation in impeller slip factor with flow rate.

The variation required could not be determined a priori, but could be derived from

the local shift required by the matching of the two curves. The slip factor variation

adopted to match the predicted characteristic slope in the constant volute velocity

approximation with that measured [Fig.4.1.7] was found to be consistent with the

behavior determined by other authors researching this subject [9] [10] [12].

The validity of the slip factor approach and its general applicability to different

designs had to be tested. This was done by comparing the slip factor distributions

with overall flow coefficient that were required by the matching for both the

original and modified volute designs [Fig.7.3.4 and 7.3.5]. It was unclear which

operating parameter was most closely related to slip factor.

Since the model accepted as input the head coefficient at the volute inlet, the slip

factor corresponding to each operating point and configuration had to be

determined iteratively: once the operating point corresponding to that pressure

input value was determined, the slip factor was adjusted according to the

dependency relation used, and the iteration series was repeated until convergence.

This requires a change in the model which should result in computations 10 to 100

times longer, depending on the accuracy sought. Most importantly, a sound

dependency relation between slip factor and some operating variable, such as the

overall flow coefficient or the impeller exit local flow coefficient, is necessary. The

latter variable choice, however, would require the introduction of a slip factor

variable with angle and the discussion of its implications with respect to local

pressure and volute velocity predictions.
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Predicted Effect of Impeller Exit Slip Factor
on Overall Pump Characteristic
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Predicted Effect of Impeller Exit Slip Factor
on Overall Pump Efficiency

0 0.02 0.04 0.06 0.08 0.1
(D [Orig.S FEffect. Eff.GRtt)

Fig.2.2.2.ii

0.8

0.6

0.4

0.2

n

S---a=0.9

- - a~=0.8
-- - - =0.7



F-

N

w

C-)U,

QUANTITY SCALE t

THIS CHART MAY ALSO BE REGARDED AS SHOWING
CHANGE OF PERFORMANCE FOR VARIOUS IMPELLER AREAS
IN THE SAME CASING

Fig.2.2.3

Effect of Impeller Exit Passage Width on BEP Operating Parameters
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Predicted Effect of Impeller Exit Passage Width
on Overall Pump Characteristic

Original Volute Design, 50% Speedline
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Predicted Effect of Impeller Exit Passage Width
on Overall Pump Efficiency

Original Volute Design, 50% Speedline
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Comparison between Experimental Results
and Computational Predictions of Volute Static Pressure Profiles
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Comparison between Experimental Measurements
and Computational Predictions of Volute Static Pressure Profiles

at Flow Coefficient 0.11256
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Local Volute Slip Factor Values
at 75% and 100% of Design Flow Coefficient

Derived from S.M.Miner's Laser Velocimetry Measurements
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Volute

Fig.3.1.1

Top View of Test Section Assembly and Component Identification

(from Goulet)
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Laser Velocimeter Optics Arrangement

- Receiving Optics

- Transmitting Optics
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Laser Velocimetry Radial Cross-Section Grid
Shape and Dimensions

Laser Velocimetry Radial Cross-Section Grid Shape and DimensionsFig.3.1.5



Volute Locations of LDV Grids

Angular Locations of Laser Velocimetry GridsFig.3.1.6



Original Volute Pressure Tap Locations

Impeller

Fig.3.1.7
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Comparison of Predicted and Measured Pump Characteristics
50% Speedline, Original Volute Design
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Overall Pump Characteristic
Effect of Correction for Radial Pressure Gradient

on Realism of Prediction
50% Speedline, Original Volute Design
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Slip Factor Characteristic
Obtained with Inverse Method

Fitting Overall Pressure Coefficient Values
To Experimental Measurements
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Comparison between Miner's and Sandler's Slip
Factor Predictions along Volute

for 100% and 75% of Design Flow
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Comparison of Local Values of Slip Factor and Static Pressure
Experimental Measurements in Pump with

Original Volute Design
50% Speedline
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Comparison of Local Values of Slip Factor and Static Pressure
Experimental Measurements in Pump with

Original Volute Design
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Comparison of Local Values of Slip Factor and Static Pressure
Experimental Measurements in Pump with
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Pump Characteristic
Comparison between Original Volute Area and
Volute with Original Area Multiple AM=0.6
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Pump Characteristic
Comparison between Original Volute Area and

Volute with Original Area Multiple AM=0.9
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Pump Characteristic
Comparison between Original Volute Area and

Volute with Original Area Multiple AM=1.1
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Overall Pump Characteristic
Effect of Removing the Impeller Shroud Leakage Path

Original Volute Design, 100% Speedline, Standard Input Values
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Pressure Coefficients and Overall Efficiencies
For Various Sensitivities of Skin Friction Term
Original Volute, 100% Speedline, Full Leakage

Data From PUMP65.EXE;1
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Pump Predicted Characteristics and Efficiency
Effect of a 0.300 rad Impeller Blade Angle

Original Angle 0.576 rad Shown for Comparison
Data from PUMP0713, Version H, 3/23/92, 50% Speedline

0 0.02 0.04 0.06 0.08 0.1 0.12
(D [11/91.BetabEff.50%.GRtt]

Fig.4.2.7.i

105

1 .,

1

0.8

0.6

0.4

0.2

n

.. ......................... ............. ........................................................ .. .......... ...... .... -o.....................

. . . . . . . . . .---.- -- -.- 0. 6 --

....... ................. ........................... ............................ 0 -0 .300 V

- V-- 0-0.3o00



Pump Predicted Characteristics and Efficiency
Effect of a 0.300 rad Impeller Blade Angle

Original Angle 0.576 rad Shown for Comparison
Data from PUMP0713, Version H, 3/23/92, 100% SpeedlineJ
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Pump Characteristic Points
Effect of Number of Discrete Volute Cells N

Original Design, 100% Speedline
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Pump Characteristic Points
Effect of Total Number of Impeller Blades Z

Original Design, 100% Speedline
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Volute Flow Coefficient Profiles
Multiple Bypass vs. No Bypass

at the Same Psi(O)* Input Value
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Effects of Different Bypass Configurations
Single Bypass: 1 Channel at 40 from Tongue

Multiple Bypass: 25 Channels Every 70 between 40 and 1790 from Tc
100-Cell Bypass: 100 Channels Every 3.50 from Tongue
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Pump Characteristic
Effect of Bypass Exit Angle

Multiple Bypass Configuration
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Overall Pump Characteristic
Effects of Bypass Configurations and Area Expansions
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Volute Tangential Speed Profiles (Dash)
vs. Impeller Exit Speed Tangential Component (Full)

Original Volute Area Distribution, AM=1.0, 50% Speed
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Volute Tangential Speed Profiles (Dash)
vs. Impeller Exit Speed Tangential Component (Full)

10/1991 Proposed Volute Area Distribution, AM=0.85, 50% Speed
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Steady-State Pump Characteristics
Comparison of Original and 10/91 Proposed Volute:

Predicted Results at 100% Speedline
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Volute Radial Thickness Profiles
Original and 10/1991 Proposed Configurations
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Volute Static Pressure Profiles
Effect of Flow Coefficient

10/91 Proposed Volute Design Prediction, 100% Speedline
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Volute Tangential Speed Profiles (Dash)
vs. Impeller Exit Speed Tangential Component (Full)

Effect of Impeller Exit Blade Angle at 0.300 rpd (standard 0.576 rad)
11/1991 New Volute Area Distribution, 50% Speed
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Volute Tangential Speed (C)
and Impeller Exit Tangential Component (Cu2)

Near BEP Flow Coefficient
11/1991 Modified Volute, 100% Speedline
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Volute Radial Thickness Profiles
Original and 11/1991 Modified Configurations
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Volute Static Pressure Profiles
Effect of Flow Coefficient

New Volute Design Prediction, 50% Speedline
Data from PUMP0713, Version F, 3/12/92
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Low-Flow Pump Characteristics
Effect of Volute Area Slope Transition Cell Number: N1

Original Code Volute Exit Area, 100% Speed, No Bypass
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Low-Flow Efficiency Curves
Effect of Volute Area Slope Transition Cell Number: N1

Original Code Volute Exit Area, 100% Speed, No Bypass
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Pump Characteristics
Sample Effect of H1 Volute Slope Transition Area H1

Volute Slope Transition Cell: N1=15
Multiple Bypass, Area AB=0.00001
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Critical Flow Coefficient vs. System B Parameter
Description of Pump Behavior

11/1991 Volute Area Distribution
100% Speedline, Zlag= 0 .0 3
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Critical Flow Coefficient vs. System B Parameter
Comparison of Predicted Fixed and Variable

Wheel Speed Effect on Stability
Original Volute, 100% Speedline, Zlag = 0.03
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Critical Flow Coefficient vs. System B Parameter
Comparison of Predicted Pump Wheel Speed

Effect on Stability, Original Volute
Zlag=0.03, J.P.Bons' Input Pump Characteristics
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Effect of Speedline on Positive Pump Characteristic Shape
Original Volute Design

J.P.Bons' Pump Characteristic Distributions

100% Speedline
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Critical Flow Coefficient vs. System B Parameter
Effect of Lag Coefficient Zlag

10/1991 Proposed Volute Pump Characteristic
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Critical Flow Coefficient vs. B Parameter
Base - 11/1991 - 10/1991 Case Volutes

100% Speedline, zlag=0.03
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Critical Flow Coefficient vs. System B Parameter
Base - 11/1991 - 10/1991 Case Volutes

80% Speedline, zlag= 0.03lag"
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Critical Flow Coefficient vs. System B Parameter
Base - 11/1991 - 10/1991 Case Volutes

60% Speedline, Zlag=O.03
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FLOW

Fig.6.1.1 Volute Backplate, Front Plate and Seal Arrangement

(from Goulet)
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Critical Flow Coefficient vs. System B Parameter
Prediction Based on Experimental Characteristics

for Both Original and New Volute Design
Zlag=0.03, Speedline=50%, Variable Speed
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Critical Flow Coefficient vs. Small Plenum Volume
Prediction Based on Experimental Characteristics

For Both Original and New Volute Design
Zlag=0.03, Speedline=50%, Variable Speed
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Critical Flow Coefficient vs. System B Parameter
Prediction Based on Experimental Characteristics

for Both Original and New Volute Design
zlag=0.03, Speedline=80%, Variable Speed

a Original Volute Design

* New Volute Design Proposed 11/1991
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Critical Flow Coefficient vs. Small Plenum Volume
Prediction Based on Experimental Characteristics

for Both Original and New Volute Design
z lag=0.03, Speedline=80%, Variable Speed
lag=

a Original Volute Design
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Steady-State Pump Characteristics
Comparison of Original and Modified Volute

Experimental Results at 23% Speedline
Head Rise Measured at Diffuser Exit (YSEX Tap)
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Steady-State Pump Characterisitcs
Comparison of Original and Modified Volute

Experimental Results at 50% Speedline
Head Rise Measured at Diffuser Exit (YSEX Tap)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

(D [vl/v2s50%char.ss.gr]
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Component Pressure Contributions
New Volute Design, 23% Speedline

Experimental Measurements
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Component Pressure Contributions
New Volute Design, 50% Speedline

Experimental Measurements
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Component Pressure Cintributions
Original Volute Design, 50% Speedline

Experimental Measurements
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Slope of Component Contributions
New Volute Design, 50% Speedline

Experimental Measurements
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Slope of Component Contributions
Original Volute Design, 50% Speedline

Experimental Measurements
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Mid-Thickness Volute Local Pressure Distribution
Modified Volute, 50% Speed, No Tongue Bypass

Flow Coefficient =0.110
Computational Prediction vs. Experimental Data
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Critical Flow Coefficient vs. System B Parameter
Experimentally Determined Instability Threshold

for Both Original and New Volute Design
Speedline=80%
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Local Pump Pressure Characteristics
AM=1.00; AB=0.00; 50% Speedline; N1=10
Data From PUMP0713, Version F, 3/13/92
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Local Volute Pressure Coefficient Prediction
AM=1.72; AB=0.00; 50% Speedline; N1=10
Data from PUMP0713, Version F, 3/12/92
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Critical Flow Coefficient vs. System B Parameter
11/91 Design: AM=1.00 vs.
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Slip Factor Variation Required by Matching
the Experimental Characteristic for the Original Volute Design

with its Computational Prediction
Corrected for Radial Pressure Gradient Effect

50% Speedline
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Slip Factor Variation Required by Matching
the Experimental Characteristic for the New Volute Design

with its Computational Prediction
Corrected for Radial Pressure Gradient Effect

50% Speedline

. . . . . . ...... ..... ...... .. ...

- Psi Experimental
/ -- -- Psi Prediction C

............................................ .......... ...................................................... R ad ia l P resssure
Slip Factor=0.9

S .- -+- - Slip Factor Value
Ai Matching Predict

Experimental Me
---- New Volute Desig

, . - -- -Slip Factor Value
. "Matching Predict

Experimental Me
,,, ... .... .., Original Volute Di

0 0 .

0.02 0.04 0.06 0.08

Data
orrected with
Gradient

Derived from
ions with
asurements
n
Derived from

ions with
asurements
esign

0.1

[Corrcts.New.GRtt]

Fig.7.3.5

157

1.;3

1.2

1.1

0.9

0.8

A



APPENDIX

PERFORMANCE PREI

158

I



A. 1. Code

The version shown on the following pages was denominated PUMP0713.F. This

version was developed in order to test the predicted effect on pump performance

of adopting a volute with exit area equivalent to that of the transition outlet in the

original design and of eliminating the diffuser.
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_DUB3:[USER.SCOTT.PUMP.PUMPMODEL.PUMP0713]FNOPSIE.FOR;4

***************************************************************************
* INTERACT VAX VERSION 7.13F - MARCH 12, 1992
**********************************************

* THIS VERSION IS DESIGNED TO DO A NUMBER OF THINGS:
* 0) INCORPORATE SCOTT'S EQUAL AREA AT 343 DEGREES REQUIREMENT
* 1) INCORPORATE A.WOO AND P.WESTHOFF SUGGESTIONS
* ABOUT CORRECTIONS TO SLIP FACTOR DEFINITION AND
* IMPELLER EXIT VELOCITY TRIANGLES
* 2):NO INCORPORATE RADIAL VARIATIONS OF VOLUTE PRESSURE FOR THE
* PURPOSE OF COMPUTING CORRECTED IMPELLER EXIT VELOCITY:
* DETERMINE AND USE THE PRESSURE COEFFICIENT AT IMPELLER
* EXIT IN ORDER TO IMPROVE IMPELLER-VOLUTE INTERACTION
* MODELING
* 3) PLOT LOCAL VOLUTE PRESSURE AND AREA DISTRIBUTIONS
* AT USER'S REQUEST
* 4) FIND BEST TRANSITION POINT BETWEEN TWO VOLUTE AREA SLOPES
* WHILE EXIT AREA IS MAINTAINED AT ORIGINAL VALUE
* 5) FIND SECOND-ORDER CURVE FITS FOR THAT TRANSITION POINT:
* y - AA1 nt2 + BB1 n + CC1; y(N)IF, y(N1)-F/2, y'(N)-=
* z - AA2 nt2 + BB82 n; z(e)-0, z(N1)-F/2, z'(Nl)-y'(N1)
* N1 IS NO. OF CELLS W/ HI AREA GROWTH (INPUT)
* N2 IS NO. OF CELLS W/ LO AREA GROWTH (N-N1)
* 6) DISPLAY CURVE FIT COEFFICIENTS
* 7) DISPLAY VARIABLES MORE RATIONALLY IN OUTPUT
***************************************************************************
* THE FOLLOWING ARE USER-SPECIFIED THROUGHOUT EXECUTION TIME:
* MULTIPLE BYPASS CELL DUCT AREA,AREA MULTIPLIER,VOLUTE AREA
* SLOPE TRANSITION CELL,. OF SPEED,LOCAL PSIV DISPLAY OPTION

* AUTOMATIC C(0), Cm2(0) GUESSING
* OVERALL PHI,OVERALL PSI,C(0),Cm2(0),EFFICIENCY SCREEN DISPLAY
* OUTPUT HEADER LISTS INPUT VALUES
**************************************************************************

REAL*8 LOSSF,F,FD,W,D2,B2,BETAB,BLB2,LP,PI,RIMPEX
REAL*8 LOSSFV.SIGMA,D1,REL,PHIDES,BETA
REAL*8 PHITPSIT.DELC,DELCM2,CTR,DT,U,ALPHA,PDELCM2.SGCM2
REAL*8 PHILT,PDELC,SGC,LAMBDA,DL,PSIS,COT,ONE,CP,EFF
REAL*8 AB,AM.UCOEF.CGUESS.CM2GUESS
REAL*8 AA1,BB1,CC1,AA2,BB2
REAL*8 BYGAMMA

INTEGER N,N1,N2,ND.LEAKCO,Z
INTEGER TEST.LEAKF,PLOCAL,ALOCAL,INDEX,COUNT
INTEGER BYPLOC,BYPCO

PARAMETER (D2=e.6096,B2=0.015,BLB2=1.6933.D1-0.2032,F=0.0054805413)
PARAMETER (LP=0.372872,PI=3.141592654.N=100,Z=8,BETAB=0.5759586532)
PARAMETER RIMPEX=12.0,BYGAMMA=0.785,BYPCO-1,FD=0.0052548282,ND=96)
PARAMETER LOSSFV=0.9,SIGMA=0.9,PHIDES=0.134,LEAKF-1,REL=0.004)
PARAMETER (LOSSF=0.5,LEAKCO=17000,W=0.0635)

REAL*8 A(0:1001),AREF(0:1001),DH(0:1001),C(0:1001),CM2(0:1000)
REAL*8 CU(0:1000).VR(0:1000),CLM(0:1000) CLU(0:1000),PHIV(0:1001)
REAL*8 PSIM(0:1000),PSIV(0:1001),DCM2(0:1000),DELPSIV(0:1000)
REAL*8 C2(8:1000),FLOW(1:15),VELD(0:1000,15),PRESD(0:1000,15)
REAL*8 CD e:1000,15),CL(0:1000.1:15) PSIE(0:1001),RMIDW(0:1001)
REAL*8 CB( :1001).CBM(0:1001),CBU(0:1001)

****************************************************************************

* ENTER USER-DEFINED PARAMETERS
***********************************************************************

50 WRITE(*,*)'DO YOU WANT LOCAL PRESSURE PLOTS? (YES: 0)'
READ(*.,*) PLOCAL
WRITE(*.*)'DO YOU WANT LOCAL VOLUTE AREA PLOTS? (YES: 0)'
READ(*,*) ALOCAL
WRITE(*,*)'BYPASS AREA VALUE:'
READ(*,*) AB
WRITE(*,*)'VOLUTE AREA MULTIPLIER:'
READ(*,*) AM
WRITE(*,*)'VOLUTE AREA TRANSITION CELL:'
READ(*,*) N1
WRITE(*,*)'FRACTION OF DESIGN SPEED:'
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_DUB3:[USER.SCOTT.PUMP.PUMPMODEL.PUMPO713]FNOPSIE.FOR;4

READ(*,*) UCOEF
WRITE(*,*)'FIRST C(O) GUESS:'
READ(*,*) CGUESS
WRITE(*,*)'FIRST Cm2(0) GUESS:'
READ(*,*) CMB2GUESS

* WRITE OUTPUT HEADER
*****++++***********+*S+********e******************************************

WRITE(15,*)' OUTPUT FROM PUMP VERSION 7.13F - 3/12/1992'
WRITE( 15,*)
WRITE(15,4060) AM,AB
WRITE(15,4061) UCOEF,N1
WRITE(15,*)' NI: CELL NUMBER WHERE A-A(O)=F/2'
WRITE(15,4062) N
WRITE(15,*) '

*S********+****+****+*****************+$************************

* INITIALIZE VARIABLES AND CURVE FIT COEFFICIENTS
* AT BEGINNING OF EXECUTION

AA1-FD/(2*(2*ND*N1-(ND**2)-(N1**2)))
BB1,-2*ND*AA1
CC1-FD+(ND**2)*AA1
AA2=(2*ND*N1*AA1+N *BB1-FD/2)/(N1**2)
BB2-2*ND*AA1+BB1-2*N1*AA2

WRITE(15,*)' CURVE FIT FUNCTIONS:'
WRITE (15,4070) AA2,BB2
WRITE (15,4080) AA1,BB1,CC1
WRITE(15,*)'

DELCM2-2
PDELCM2-0.1
PDELC-0.1
SGCM2-1
SGC-1
U-13.5*UCOEF

**************************************************************************
* INITIALIZE VARIABLES AT BEGINNING OF VOLUTE LOOP

100 WRITE(*,*)'ENTER TONGUE PRESSURE COEFFICIENT (0 TO QUIT).'
READ(.,*) PSIV(0)
IF(PSIV(0).LE.0) THEN

GOTO 5000
ENDIF

C(0)=CGUESS
CM2(0)=CM2GUESS
A(0)-0.00138

RMIDW(0)-628.•4*A(0)
AREF(0)-A(9)/(PI*D2*B2)
DH(0)-4*W*A(0)/(2*(A(0)+W**2))
DL-1.91511/N
DT-DL/U
COUNT=n
ONE-1.0
BETA-BETAB
N2-N-N1

500 PHIV(0)-C(0)*AREF(e)/U
CLM(e)-LEAKF*(U*DSQRT(PSIV(O)/LEAKCO))
CLU()=-cu(e)

***************************************************************************
* MARCH THROUGH THE VOLUTE LOOP

DO 1000**********************************************************************

DO 1000 I-e,N
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_DUB3:[USER.SCOTT.PUMP.PUMP_MODEL.PUMP0713]FNOPSIE.FOR;4

IF (I.LT.N1) THEN
A(I+1)-A(0)+AM*((I**2)*AA2+I*BB2)

ELSE IF (I.LT.ND) THEN
A(I+1)-A(O)+AM*((I**2)*AA1+I*BB1+CC1)

ELSE
A(I+1)-A(I)+AM*((F-FD)/(N-ND))

ENDIF

RMIDW( +1 )-628.04*A( +1)
AREF(I+1)-A(I+1)/(PI*D2*B2)
DH(I+1)=4*W*A( I+1)/(2*(A( +1 )+W2))

C2(I)=DSQRT(CM2( I) **2+(SIGMA*(U-(CM2( )/DTAN(BETA) ) )**2)
CU(I)SIGMA(U-CM2( I )/DTAN(BETA))
VR(I)=CM2( I)/DSIN(BETA)
PSIM(I)(2*CU( I )/)-((C2()/U)-((C2()/U)**2)+((BLB2CM2( I)/U)**2)-

/ (LOSSF•(VR(I)/U)**2)
CLM(I)=DSIGN(ONE,PSIV(I))*LEAKF*

/ (U*DSQRT(DABS(PSIV(I))/LEAKCO))
CLU(I)=CU(I)

CBM(I)=CB I)*DSIN(BYGAMMA)
CBU (I)-CB I) *DCOS(BYGAMMA)
PHIV(I+1)-PHIV(I )+(CM2(I)/(N*U))-(CLM(I)/(N*U))*BLB2+

/ (CB(I)/U)*(AB/(PI*D2*B2))

* Contribution of bypass to flow coefficient bypass exit

C(I+1)=U*(PHIV(I+1)/AREF( +1))

DELPSIV(I -PHIV(I)*C(I)/U
DELPSIV(I )-DELPSIV(I )-(PHIV(I+1)C(I+1)/U)
DELPSIV(I )DELPSIV I)+(CM2(I)*CU(I)/(N*U**2))
DELPSIV(I )DELPSIV(I -(BLB2*CLM(I)*CLU(I)/(N*U**2))
DELPSIV(I)-DELPSIV(I +(AB*CBM(I)*CBU(I)/(PI*D2*B2*U**2))

* Contribution of bypass to pressure coefficient at bypass exit

DELPSIV( I )-DELPSIV(I)*(4/(AREF(I)+AREF( +1)))
DELPSIV(I)-DELPSIV(I)-((LAMBDA(C(I),DH(I))*DL/DH(I))*

/ ((C(I)/U)**2))
PSIV(I+1)-PSIV( I )+DELPSIV(I)

* Correction of PSIV to find PSIE at impeller exit

PSIE(I+1)=PSIV( +1)-
/ ((C(I+1)/U)**2)*DLOG10(RMIDW(I+1)/RIMPEX)

ALPHA-(DT*DSIN(BETA)*U**2)/(2*LP)

* Here the correction is not included in the impeller response

DCM2(I)-ALPHA*(PSIM(I)-PSIV(I+1))
CM2(I+1)CM2(I )+DCM2(I)

1eee CONTINUE

* CALCULATE EFFECT OF BYPASS ON SPEED

PHIB-=
DO 1056 1-1,51.2

CB(I)-PSIV(N)-PSIV(I)
IF (CB(I).LT.0) THEN

CB(I)=-
ENDIF
CB(I)-DSIGN(PSIV(I),PSIV(N))*U*DSORT(CB(I)/BYPCO)
PHIB-PHIB+(CB( I)/U)AB/(PI D2*B2)

1e50 CONTINUE

* CALCULATE ERROR IN CLOSURE EQUATIONS

COT-C(e)
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A.2. Output

The output shown on the following page was produced by PUMP0713.F, shown and

described in the previous section of this Appendix. The major working parameters

of the simulation are presented in the header. The curve-fitted volute cross-

section area distibution is determined by specifying the slope break point location.

The area distribution at each cell is then shown once for that design choice. The

volute static pressure is shown at each cell for each operating point considered.
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DUB3: :[USER.SCOTT.PUMP.PUMP_MODEL.PUMPO713]FOR015.DAT; 1

OUTPUT FROM PUMP VERSION 7.13F - 3/12/1992

VOLUTE AREA MULTIPLE (AM):1.00- BYPASS AREA: 0.00000
SPEEDLINE:0.50PERCENT - SLOPE BREAKPOINT CELL: 10
NI: CELL NUMBER WHERE A-A(0)-F/2

CELL NUMBER WHERE A-A(0)-F (N):100

CURVE FIT FUNCTIONS:
FIRST CURVE FIT: a--.0000262741
SECOND CURVE FIT: o--.0000003552

PHI: 0.02881 PSI:
0.82000 0.82012
0.82000 0.87829
1.04762 1.04809

PHI: 0.03263 PSI:
0.8ee000 .80030
0.80000 0.86963
1.05023 1.05073

PHI: 0.03654 PSI:
0.78000 0.78044
0.78000 0.86204
1.05168 1.05221

PHI: 0.04058 PSI:
0.76000 0.76052
0.76000 0.85543
1.05197 1.05251

PHI: 0.04478 PSI:
0.74000 0.74050
0.74000 0.84983
1.05102 1.05154

PHI: 0.04919 PSI:
0.7200 0.72035
0.72000 e.84535
1.04868 1.04916

PHI: 0.05383 PSI:
0.70000 0.70002
0.70000 0.84209
1.04478 1.04518

PHI: 0.05877 PSI:
0.68000 0.67944
0.68000 0.84021
1.03905 1.03932

AREA VALUES: A(1
0.00138 0.00138
0.00138 0.00398
0.00662 0.00663

1.07265
0.84379
0.90362
1.04850

1.08134
0.82849
0.89799
1.05119

1.08960
0.81366
0.89329
1.05269

1.09748
0.79924
0.88946
1.05301

1.10496
0.78524
0.88650
1.05202

1.11201
0.77169
0.88447
1.04960

1.11859
0.75864
0.88343
1.04554

1.12460
0.74615
0.88349
1.03956

.9); A(O
0.00188
0.00453
0.00663

22-APR-1992 12:24 Page 1

b-0. 005254828
b-0.0000682076 c-0.0019808628

C(0): 1.52 Cm2(0): 0.11
0.85449 0.86075 0.86508
0.93265 0.96123 0.98710
1.04887 1.04919 1.04946

C(O): 1.65 Cm2(0): 0.12
0.84131 0.84883 0.85404
0.92949 0.95992 0.98711
1.05160 1.05196 1.05226

C(O): 1.79 Cm2(0): 0.14
0.82884 0.83776 0.84392
0.92697 0.95888 0.98702
1.05313 1.05351 1.05385

C(0): 1.93 Cm2(0): 0.16
0.81699 0.82744 0.83465
0.92504 0.95811 0.98686
1.05345 1.05385 1.05419

C(0): 2.07 Cm2(0): 0.18
0.80581 0.81792 0.82625
0.92369 0.95757 0.98658
1.05245 1.05284 1.05318

C(0): 2.21 Cm2(0): 0.21
0.79534 0.80927 0.81883
0.92296 0.95728 0.98620
1.04999 1.05034 1.05064

C(0): 2.37 Cm2(0): 0.24
0.78569 0.80160 0.81249
0.92287 0.95724 0.98568
1.04585 1.04612 1.04634

C(O): 2.52 Cm2(0): 0.28
0.77695 0.79505 0.80739
0.92346 0.95745 0.98501
1.03974 1.03988 1.03998

.90.10); A(91,100)
0.00233 0.00272 0.00306
0.00504 0.00548 0.00585
0.00663 0.00663 0.00663

PSI(O):0.8
0.86845
1.00906
1.05017

PSI(0):0.8
0.85807
1.00999
1.05313

PSI(0):0.7
0.84867
1.01051
1.05488

PSI(0):0.7
0.84018
1.01062
1.05540

PSI(0):0.7
0.83262
1.01029
1.05455

PSI(0):0.7:
0.82609
1.00952
1.05218

PSI(0):0.71
0.82072
1.00826
1.04804

PSI(e):0.6;
0.81666
1.00644
1.04182

0.00335
0.00615
0.00669

44.32
0.87379
1.03819
1.05143

46.66
0.86440
1.04028
1.05471

48.81
0.85606
1.04143
1.05679

50.82
0.84868
1.04166
1.05766

52.72
0.84230
1.04093
1.05716

54.54
0.83702
1.03917
1.05514

56.29
0.83296
1.03626
1.05133

58.00
0.83029
1.03205
1.04541

0.00377
0.00653
0.00680

0.87611
1.04710
1.05198

0.86711
1.04967
1.05542

0.85917
1.05110
1.05767

0.85221
1.05 38
1.05871

0.84626
1.05044
1.05840

0.84143
1.04815
1.05655

0.83782
1.04432
1.05292

0.83561
1.03872
1.04715

0.00390
0.00662
0.00686
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APPENDIX B:

LINEAR SYSTEM STABILITY PREDICTION CODE
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B.1. Code

The code shown on the following pages is the modified Version #8 of the code used

by Bons in order to assess the predictive capabilities of the linearized system

stability theory applied to the system under study. This and the previous version

were introduced to incorporate the effect of different pump designs and resulting

performance.
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* DYNAMIC SIMULATION OF THE MIT PUMP LOOP
* The MIT test facility is a closed loop consisting of 2 legs, one inlet plenum (#2,
* lg), and one discharge plenum (#1, sm).
* The four equations which define this system are: conservation of momentum in the
* pump and throttle legs, and conservation of mass in the two tanks (plenums).
* A fifth equation representing a time lag in pump pressure rise has been used as
* well. All five equations have been linearized by assuming only small perturbations
* about a known operating point.
* This program determines the instability point and frequency of unstable oscillations
* by calculating the system eigenvalues. It uses inputs corresponding to
* predetermined experimental conditions. The operating range from Phi = 0.001 to
* 0.07 is scanned.
* The original code was developed by N. Goulet for his Master's thesis. His
* program allowed for the use of multiple plenums. Subsequently, the code was
* modified by J.P.Bons to assume only two plenums, and to account for variations in
* impeller wheelspeed with mass flow and the pressure and volume adjustments of
* the air bags which occurred when the pump was turned on.

* VERSION #8 - 3/13/1992
* This updated version is the EIGHTH in a series by F.Ciacci. These versions
* were produced in order to test the effect on the whole system of changes in the
* structure and performance of the pump.

* Version #8 allowed one to compare:
* 1) eigenvalues for the original volute case AFTER THE APPROPRIATE
* CHANGES TO THE CODE AND THE DISTRIBUTION OF THE VOLUTE
* AREA WERE MADE
* 2) eigenvalues for the case of a pump with 11/1991 modified volute design:
* * DUAL PARABOLIC CURVE FIT of original inlet and exit areas
* * SLOPE BREAK POINT AT CELL NUMBER 10
* * NO TONGUE BYPASS system around tongue (ZERO AREA)
* * Configuration parameters: AB-0.0 AM=1.00 N= 10:
* 3) FOR THE 50% SPEEDLINE, eigenvalues for the following cases:
* * OLD: same as the 11/1991 modified volute design, AM=1.00
* * NEW: AM=1.72. The volute exit area is now about equal to the transition
* exit area. The diffuser has been elininated.
* All characteristic shapes for Cases (1) and (2) were determined experimentally.
* Those for Case (3) were both predicted computationally.

* The speedlines tested on the new volutewere not always the same as those tested on
* the old volute. These were 80%, 50% and 23%. Of these, only 80% could be
* compared including the effect of the actual plenum pressure characteristics
* measured by Bons. The remaining two, 50% and 23% could be compared only to
* the old volute data measured by Sandler and Wo, with the newly measured volute
* pressure characteristics, which are strictly valid only for the new volute design.
* Note that THE 50% CHARACTERISTIC WAS PREDICTED
* COMPUTATIONALLY, AND THE AM=1.0 SPEED AND PLENUM
* PRESSURE CHARACTERISTICS WERE USED WITH IT, so the accuracy of
* the prediction is doubly limited.
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* For the same reason, IMPELLER WHEEL SPEED CHARACTERISTICS for
* those speedlines WERE OBTAINED FROM EXPERIMENTAL DATA both in the
* new and old design cases. Please refer to the comments in the SLOPE
* subroutine.

* New variables are labeled with the prefix NW- RN-
* Speed variation with flow ARE accounted for in THIS version.
* A note: due to the choice of the normalizing factor for pressure coefficient, psi
* values in this code are 1/2 of those used in the volute/impeller interaction code and
* other applications.

PARAMETER (NMAX=2,NMAX2=5,GAMMA= 1.4)
PARAMETER (RO=1000,PI=3.14159,D2=.6096)
INTEGER N,Z,NSPDLN,NFILE,NWCHAR
REAL PSLOPE,TSLOPE,SPEED,PHI,PSI,INC,CSPD,ZLAG,DLAG
REAL

AREA(NMAX),VCOM(NMAX),PCOM(NMAX),LEN(NMAX),DYN(NMAX)
REAL

MATRIX(NMAX2,NMAX2),WR(NMAX2),WI(NMAX2),PDAMP(NMAX)
REAL

B(NMAX2),FREQ(NMAX2),UPAR(NMAX2),ZAPR(NMAX2),ZAPI(NMAX2)
REAL REDFREQ(NMAX2),SHFREQ,PSMI,PLGI,VSMI,VLGI
CHARACTER*1 CONF
CHARACTER*8 DATFIL
COMMON LEN(NMAX),AREA(NMAX),VCOM(NMAX),

/ PCOM(NMAX),MATRIX(NMAX2,NMAX2),
/ DYN(NMAX),PDAMP(NMAX),PSMI,PLGI,VSMI,VLGI

* DATA ACQUISITON
* The number of legs is set to N = 2, and the following parameters
* are defined:
* -DYN0, this is the dynamic head loss coefficient for each leg.
* -ZLAG, this is the correction term to the pressure lag time constant.
* -VCOMO, this is the air volume in each plenum [m3].
* -PCOMO, this is the pressure of the air volumes in each plenum [Pa].
* -AREAO, this is the reference area used for each leg [m].
* -LEN0, this is the lumped inertial length of each leg [m].

2 N=2
DYN(1) = 6
DYN(2) = 1.5
ZLAG = 0.03
AREA(2) = .0290
LEN(2) = 3.277
AREA(1) = .0572
LEN(1) = 41.92
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* These air volumes and pressures are as measured with the pump off. They will be
* adjusted later for the operating point of interest. #1 is the small plenum and #2 is
* the large.

3 VCOM(2) = .300
PCOM(1) = 1.427E5
PCOM(2) = 1.389E5
VCOM(2) = VCOM(2)*1000

* The program can be run without accounting for variations in impeller wheelspeed.
* If the constant speed value (CSPD) is set to zero, then the program assumes the
* speed does vary with massflow (for a given speedline). This is prompted for.

CSPD = 0.0

* If a data file is desired, set NFILE = 1. Important data is spooled to the screen so
* this is not always necessary. NFILE = 0 will bypass the datafile creation.

NFILE = 1

* Experimental curve fits for three different speedlines are available in the present
* version.

WRITE(9,*) 'ENTER THE TYPE OF SPEEDLINE BEING TESTED'
WRITE(9,*) '100% = 1, 80%=2, 60%=3, 50% = 4, 23% = 5'
READ(9,*) NSPDLN
WRITE(9,*) 'ENTER THE PUMP CONFIGURATION TESTED'
WRITE(9,*) 'BASE CASE: 0, NEW VOLUTE/BYPASS: 1'
READ(9,*) NWCHAR
WRITE(9,*) 'VOLUMES AS MEASURED WITH PUMP OFF'
WRITE(9,*) 'AIR VOLUME OF LARGE PLENUM (liters): ',VCOM(2)
WRITE(9,*) 'WHEEL SPEED IS A VARIABLE'
WRITE(9,*) 'ZLAG = ',ZLAG
WRITE(9,*) 'DO YOU WISH TO CHANGE ANY OF THESE (Y/N)?'
READ (9,1011) CONF
IF (CONF='N') GO TO 7
WRITE (9,*) 'ENTER PHASE LAG FACTOR, ZLAG'
READ (9,*)ZLAG
WRITE (9,*) 'ENTER CONSTANT WHEEL SPEED VALUE (m/s),

0=VARIABLE'
READ(9,*) CSPD
WRITE(9,*) 'ANY FURTHER CHANGES?'
READ (9,1011) CONF
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IF (CONF='N') GO TO 7
WRITE (9,*) 'ENTER LG PLENUM VOLUME (liters):'
READ (9,*)VCOM(2)
WRITE (9,*) 'ENTER SMALL PLENUM PRESSURE W PUMP OFF (Pa)'
READ(9,*)PCOM(1)
WRITE (9,*) 'ENTER LARGE PLENUM PRESSURE W PUMP OFF (Pa)'
READ(9,*)PCOM(2)

* Enter volume for pump leg (measured with pump off). Experimentally, this is one
* of the primary loop variables (wheelspeed being the other).

7 WRITE (9,*) 'ENTER SM PLENUM VOLUME (liters):'
READ (9,*) VCOM(1)
VCOM(1) = VCOM(1)/1000.0
VCOM(2) = VCOM(2)/1000.0

* The pump leg (NP) is #1 and the throttle leg is #2.

NP = 1
NT = 2

* A datafile can be generated containing the important program output for each run.

WRITE(9,*) 'DO YOU WANT A DATA FILE CREATED? (Y/N)'
READ (9,1011) CONF
IF (CONF='N') THEN

NFILE = 0
GOTO 10

ENDIF
WRITE(9,*)'ENTER FILE NAME FOR RESULTS'
READ(9,'(A8)') DATFIL
OPEN(UNIT=6,FILE=DATFIL,STATUS='NEW')
CALL HEADER (N,NSPDLN,NP,NT,ZLAG)
WRITE (6,*) ' '
WRITE (6,1028)

* TREATMENT
* The loop, #600, determines the system eigenvalues over the interval 0.001 to 0.07,
* stepping by 0.001. At each new operating point, the subroutine SLOPE is called to
* calculate the necessary phi-dependent parameters: Utip, psi, and dpsi/dphi. Then
* the subroutine STIFMATRIX assembles the 5x5 matrix elements.

10 WRITE(9,*) 'COMPUTING EIGENVALUES'

172



DO 600 PHI=0.001,0.07,0.001
CALL

SLOPE(PHI,PSI,PSLOPE,TSLOPE,SPEED,NS PDLN,NWCHAR,CSPD,DLAG)
CALL

STIFMATRIX(N,NSPDLN,PSLOPE,TSLOPE,SPEED,PHI,DLAG,ZLAG)

* The matrix is reduced to upper Hessenberg form using the subroutine ELMHES.
* Then the system eigenvalues are extracted by employing a QR algorithm
* (subroutine HQR).

N=NMAX2
CALL ELMHES(MATRIX,N,NMAX2)
CALL HQR(MATRIX,N,NMAX2,WR,WI)
N=2

* Now the program calculates the frequency of oscillation and the associated B
* parameter and spools the results to the screen (and to a datafile, if so requested).
* REDFREQ is the reduced frequency of the oscillation (normalized by the shaft
* frequency).

DO 12 I=1,NMAX2
IF (WI(I).NE.0) THEN

SHFREQ = SPEED/(PI*D2)
FREQ(I)=AB S(WI(I)/(2*PI))
REDFREQ(I) = (FREQ(I)/SHFREQ)*100.0
B(I)=SPEED/(2*FREQ(I)*LEN( 1))
UPAR(I)=(B(I)**2)*PSLOPE*TSLOPE

ELSE
B(I)=O
REDFREQ(I) =0
FREQ(I)=0
UPAR(I)=0

ENDIF
12 CONTINUE

DO 15 Z=1,NMAX2
ZAPI(Z)-0
ZAPR(Z)=0

15 CONTINUE
Z=1

* The program ignores the following eigenvalues:
* 1) Those which have very small ( <1E-8 ) real parts.
* 2) Those which are equal to other eigenvalues.
* 3) Those which have imaginary parts = 0.
* 4) Those with negative real parts.

173



* The others are spooled to the screen, along with the air volumes,
* pressures, and wheelspeed at each operating point.

DO 13 I=1,NMAX2
IF (((WI(I).EQ.0).AND. (WR(I).EQ.0)).OR.

/ (ABS(WR(I)).LE.1E-8)) GOTO 13
DO 16 J=1,Z

IF ((ABS(WI(I)).EQ.ABS(ZAPI(J)))
/ .AND.(WR(I).EQ.ZAPR(J))) GOTO 13

16 CONTINUE
IF (WI(I).EQ.0) GOTO13
IF (WR(I).GT.0) THEN

WRITE (9,1026)PHI,PSI,WI(I),WR(I)
/ ,REDFREQ(I),B(I),UPAR(I)

WRITE(9,1040) VCOM(1),PCOM(1),VCOM(2)
/ ,PCOM(2),SPEED

ENDIF
IF (NFILE.EQ. 1) THEN

WRITE (6,1026)PHI,PSI,WI(I),WR(I),REDFREQ(I)
/ ,B(I),UPAR(I)

ENDIF
Z=Z+1
ZAPI(Z)=WI(I)
ZAPR(Z)=WR(I)

13 CONTINUE

600 CONTINUE

* The program can now be terminated or continued with new initial values.

WRITE (9,1023)
READ (9,1011) CONF
IF (CONF='N') GO TO 3

* FORMAT statements and END

1011 FORMAT (A1)
1022 FORMAT (I2,5X, 1PE10.3,4X,1PE10.3,5X, 1PE10.3,5X

/ ,1PE10.3,5X,1PE10.3)
1023 FORMAT (/,'DO YOU WANT TO END (Y/N)?:')
1026 FORMAT (F4.3,X,F4.3,X,1PE10.3,X,1PE10.3,X, 1PE10.3

/ ,X,1PE10.3,X,1PE10.3)
1028 FORMAT (' PHI PSI WI WR

/ REDFREQ B PAR UPAR ')
1040 FORMAT (2X,F5.3,1X,F8.1,1X,F5.3,1X,F8.1,1X,F5.2)
200 END
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* SUBROUTINES

* The first subroutine, HEADER, writes the header for the present configuration in a
* datafile.

SUBROUTINE HEADER (N,NSPDLN,NP,NT,ZLAG)
PARAMETER (NMAX=2,NMAX2=5)
REAL AREA(NMAX),VCOM(NMAX),PCOM(NMAX),ZLAG
REAL MATRIX(NMAX,NMAX),DYN(NMAX)
COMMON LEN(NMAX),AREA(NMAX),VCOM(NMAX),

PCOM(NMAX),MATRIX(NMAX2,NMAX2),
DYN(NMAX),PDAMP(NMAX)

WRITE (6,2003)
WRITE (6,3002)VCOM(2),PCOM(2),ZLAG
WRITE (6,2005)

WRITE(6,3004) 1,LEN(1),AREA(1),DYN(1),
VCOM(1),PCOM(1)

WRITE (6,3005) 2,LEN(2),AREA(2),DYN(2)
WRITE (6,2006)
IF (NSPDLN.EQ.1) THEN

NSPD = 100
ELSEIF (NSPDLN.EQ.2) THEN

NSPD = 80
ELSEIF (NSPDLN.EQ.3) THEN

NSPD = 60
ELSEIF (NSPDLN.EQ.4) THEN

NSPD = 50
ELSE

NSPD = 23
ENDIF
WRITE (6,3006) NSPD,NP,NT

FORMAT (' PLENUM VOLUME (1) PLENUM PRESSURE(Pa)
PHASE LAG FACTOR')

FORMAT (' N LENGTH (m) REF. AREA (m2) LOSS
COMPL.VOL. (1) COMPL.PR. (Pa)')

FORMAT (' SPEED(%) PUMP LEG THROTTLE LEG')
FORMAT (6X,I2)
FORMAT (1X,1PE10.3,3X, 1PE10.3,3X,1PE5.3)
FORMAT (4X,1PE10.3)
FORMAT (I2,3X,1PE10.3,4X,1PE10.3,4X,1PE10.3,

6X,1PE10.3,8X,1PE 10.3)
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3005 FORMAT (I2,3X,1PE10.3,4X,1PE10.3,4X,1PE10.3)
3006 FORMAT (1PE10.3,4X,I2,14X,I2)

RETURN
END

* The subroutine SLOPE calculates the steady state operating point and the various
* damping coefficients. The pump and throttle slopes are also computed.

SUBROUTINE
SLOPE(PHI,PSI,PSLOPE,TSLOPE,SPEED,NSPDLN,NWCHAR,CSPD,

/ DLAG)
INTEGER NSPDLN,NWCHAR
REAL PHI,PSI,PSLOPE,TSLOPE,SPEED,DUDM,CSPD
PARAMETER (NMAX=2,NMAX2=5,RO=1000,PI=3.1415926)
PARAMETER (D2=0.6096,B2= 1.1 89E-2)
REAL LEN(NMAX),AREA(NMAX),DYN(NMAX),PDAMP(NMAX),DLAG
COMMON LEN(NMAX),AREA(NMAX),VCOM(NMAX),

/ PCOM(NMAX),MATRIX(NMAX2,NMAX2),
/ DYN(NMAX),PDAMP(NMAX)

* Each speedline has a corresponding equation for the pump performance
* characteristic. The pump wheelspeed and speed variation slope with mass flow
* (dU/dm), as well as the local pump characteristic slope (dpsi/dphi) are also
* determined.
* NOTE: OLD 100%SPDLN PSI IS GIVEN BY NRG CODE @ OLD VOLUTE
* PROFILE

* 100% Speedline, OLD design
* MEASURED

IF (NSPDLN.EQ.1 .AND. NWCHAR.EQ.0) THEN
PSI=PSI=0.5* (1.0794+3.1670*PHI-39.430*PHI**2+231.06*PHI**3)

IF (CSPD.EQ.0) THEN
SPEED = 13.812-3.4823*PHI+1.2017*PHI**2

DUDM = -1.116E-2
ELSE

SPEED = CSPD
DUDM = 0.0

ENDIF
PSLOPE=0.5*(3.1670-2*39.430*PHI+3*231.06*PHI**2)

* 100% Speedline, NEW design
* PREDICTED

ELSEIF (NSPDLN.EQ.1 .AND. NWCHAR.EQ.1) THEN
PSI=0.5*(0.98474+2.9702*PHI-2.8656*PHI**2-168.7 3*PHI**3)
IF (CSPD.EQ.0) THEN
SPEED = 13.812-3.4823*PHI+1.2017*PHI**2

DUDM = -1.116E-2
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ELSE
SPEED = CSPD
DUDM = 0.0

ENDIF
PSLOPE=0.5*(2.9702-2*2.8656*PHI-3* 168.73*PHI**2)

* 80% Speedline, OLD design
* MEASURED

ELSEIF (NSPDLN.EQ.2 .AND. NWCHAR.EQ.0) THEN
PSI=0.54291+1.0539*PHI+1.2051 *PHI**2-169.4*PHI**3

/ +1021.2*PHI**4-2056.4*PHI**5
IF (CSPD.EQ.0) THEN

SPEED = 10.876-0.80951*PHI-6.6898*PHI**2
DUDM = -8.037E-3

ELSE
SPEED = CSPD
DUDM = 0.0

ENDIF
PSLOPE=1.0539+2* 1.205 1*PHI-3* 169.4*PHI**2

/ +4" 1021.2*PHI**3-5*2056.4*PHI**4

* 80% Speedline, NEW design
* MEASURED

ELSEIF (NSPDLN.EQ.2 .AND. NWCHAR.EQ.1) THEN
PSI=0.5594+0.5469*PHI+29.074*PHI**2-766. 10*PHI**3

/ +5996.7*PHI**4-16548*PHI**5
IF (CSPD.EQ.0) THEN

SPEED = 10.5792-2.73749*PHI+0.34407*PHI**2
DUDM = -7.6399E-3

ELSE
SPEED = CSPD
DUDM = 0.0

ENDIF
PSLOPE=0.5469 + 2*29.074*PHI - 3*766.10*PHI**2

/ + 4*5996.7*PHI**3 - 5*16548*PHI**4

* 60% Speedline, OLD design
* MEASURED

ELSEIF (NSPDLN.EQ.3 .AND. NWCHAR.EQ.0) THEN
PSI=0.5*(1.0781+2.4180*PHI-1 1.458*PHI**2-66.302*PHI**3)

IF (CSPD.EQ.0) THEN
SPEED = 8.1296-0.45335*PHI-4.3236*PHI**2

DUDM = -6.38E-3
ELSE
SPEED = CSPD
DUDM = 0.0

ENDIF
PSLOPE-0.5*(2.4180-2* 11 .458*PHI-3*66.302*PHI**2)

* 60% Speedline, NEW design
* MEASURED
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ELSEIF (NSPDLN.EQ.3 .AND. NWCHAR.EQ.1) THEN
PSI=0.5*(1.1428 - 1.0562*PHI + 145.33*PHI**2 - 3187.2*PHI**3

/ + 25743*PHI**4 - 73319*PHI**5)
IF (CSPD.EQ.0) THEN

SPEED = 7.97210-1.56522*PHI-0.03456*PHI**2
DUDM = -5.8692E-3

ELSE
SPEED = CSPD
DUDM = 0.0

ENDIF
PSLOPE=0.5*(-1.0562 + 2*145.33*PHI - 3*3187.2*PHI**2

/ + 4*25743*PHI**3 - 5*73319*PHI**4)

* 50% Speedline, AM=1.00, with diffuser
* PREDICTED

ELSEIF (NSPDLN.EQ.4 .AND. NWCHAR.EQ.0) THEN
PSI=0.5*(0.9778 + 5.0955*PHI - 108.99*PHI**2 + 2246.5*PHI**3

/ - 24874*PHI**4 + 90406*PHI**5)
IF (CSPD.EQ.0) THEN

Approximated to 50% Speedline, NEW Design
SPEED = 6.17681-1.01700*PHI+1.82500*PHI**2

DUDM = -3.6288E-3
ELSE

SPEED = CSPD
DUDM = 0.0

ENDIF
PSLOPE=0.5*(5.0955 - 2*108.99*PHI + 3*2246.5*PHI**2

/ - 4*24874*PHI**3 + 5*90406*PHI**4)

* 50% Speedline, AM= 1.72 w/o diffuser
* PREDICTED

ELSEIF (NSPDLN.EQ.4 .AND. NWCHAR.EQ. 1) THEN
PSI=0.5*(0.9859 + 2.2741*PHI - 20.373*PHI**2 + 31.423*PHI**3

/ - 168.773*PHI**4 - 347.29*PHI**5)
IF (CSPD.EQ.0) THEN

SPEED = 6.17681-1.01700*PHI+1.82500*PHI**2
DUDM = -3.6288E-3

ELSE
SPEED = CSPD
DUDM = 0.0

ENDIF
PSLOPE=0.5*(2.2741 - 2*20.373*PHI + 3*31.423*PHI**2

/ - 4*168.77*PHI**3 + 5*347.29*PHI**4)

* 23% Speedline, OLD design
* 1MEASURED

ELSEIF (NSPDLN.EQ.5 .AND. NWCHAR.EQ.0) THEN
PSI=0.5*(1.1153+3.2417*PHI-29.913*PHI**2)

IF (CSPD.EQ.0) THEN
* Approximated to 23% Speedline, NEW Design

SPEED = 3.00832-0.19771 *PHI-0.66512*PHI**2
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DUDM = -2.7958E-3
ELSE
SPEED = CSPD
DUDM = 0.0

ENDIF
PSLOPE=0.5*(3.2417-2*29.913*PHI)

* 23% Speedline, NEW design
* MEASURED

ELSE
PSI=0.5*(1.1132+1 .6287*PHI- 16.743*PHI**2)

IF (CSPD.EQ.0) THEN
SPEED = 3.00832-0.19771 *PHI-0.66512*PHI**2
DUDM = -2.7958E-3

ELSE
SPEED = CSPD
DUDM = 0.0

ENDIF
PSLOPE=0.5*(1.6287-2* 16.743*PHI)

ENDIF

* The pump exit and inlet areas are used to convert from the total pressure rise of the
* pump characteristic to the static pressure rise required by the linearized equations.
* Also the local throttle characteristic slope is calculated by equating the pressure loss
* in the throttle and the piping legs to the pressure rise in the pump. Differentiating
* this with respect to mass flow, gives the local throttle curve slope, PDAMP(2),
* which is derived in two steps: first TSLOPE then PDAMP(1).

AEX = AREA(2)
AIN = AREA(1)
TSLOPE = 2*SPEED*PSI/(PI*D2*B2*PHI)-PHI*PI*D2*B2*SPEED*

/ (1/AEX**2-1/AIN**2)
PDAMP(1) = DYN(1)*(PHI/AREA(1)**2)*SPEED*PI*D2*B2
PDAMP(2) = PDAMP(1)-TSLOPE

* The nondimensional steady state pump slope is first dimensionalized and then
* corrected for wheelspeed variations (DUDM). The dynamic pressure rise is also
* subracted, the result being DLAG.
*********************************************** **************

DLAG = (PSLOPE*SPEED/(PI*D2*B2)+PSI*2*RO
/ *SPEED*DUDM-PI*D2*B2*SPEED*PHI*(1/AEX**2-
/ 1/AIN**2))

RETURN
END
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* The subroutine, STIFMATRIX, calculates the system matrix for the subsequent* eigenvalue extraction.

SUBROUTINE
STIFMATRIX(N,NSPDLN,PSLOPE,TSLOPE,SPEED,PHI,DLAG

/ ,ZLAG)
PARAMETER (NMAX=2,NMAX2=5,GAMMA=1.4,RO=1000,PI=3.14159,

/ EPS=0.001)
INTEGER NSPDLN
REAL PSMI,PLGI,VLGI,GM,LENLG,RLG,HIN
REAL NUMB,VGSS,DVOL,VSMF,PSMF,VLGF,PLGF
REAL NUMER,DEN1 ,DEN2,DENTOT,VRES,DVRES,DPEX,DPIN
REAL VSMI,ALGF,LSMT,RISM,ASMF
REAL AREA(NMAX),VCOM(NMAX),PCOM(NMAX),LEN(NMAX)
REAL MATRIX(NMAX2,NMAX2),PDAMP(NMAX),PHI,DLAG,ZLAG
COMMON LEN(NMAX),AREA(NMAX),VCOM(NMAX),

/ PCOM(NMAX),MATRIX(NMAX2,NMAX2),
/ DYN(NMAX),PDAMP(NMAX),PSMI,PLGI,VSMI,VLGI

DO 6 I=1,NMAX2
DO 7 J=1,NMAX2

MATRIX(I,J)--O
6 CONTINUE
7 CONTINUE

* The plenum air volumes and pressures (as input earlier) are measured with the
* pump off. At the operating point of interest, the air volumes adjust to equalize the
* pressure drops across each air-water interface. So the equilibrium values of air
* pressure and volume are calculated at each new operating point in the manner
* outlined below (see J. Bons thesis).

IF (PHI.EQ.0.001) THEN
PSMI = PCOM(1)
PLGI = PCOM(2)
VSMI = VCOM(1)
VLGI = VCOM(2)

ENDIF

* The added pressure of the water in each plenum (from pump off to current
* operating point) is determined from epirical fits to experimental data (as a function
* of speedline, of course).

* 100% Speedline, OLD Design
* MEASURED

IF (NSPDLN.EQ. 1 .AND. NWCHAR.EQ.0) THEN
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DPEX = 90631 + 2.3286E5*PHI - 2410700*PHI**2 + 2872200*PHI**3
DPIN = -11408 - 18329*PHI + 2.1705E5*PHI**2 - 1.5318E5*PHI**3

* 100% Speedline, NEW Design
* PREDICTED

ELSEIF (NSPDLN.EQ. 1 .AND. NWCHAR.EQ. 1) THEN
DPEX = 90631 + 2.3286E5*PHI - 2410700*PHI**2 + 2872200*PHI**3
DPIN = -11408 - 18329*PHI + 2.1705E5*PHI**2 - 1.5318E5*PHI**3

* 80% Speedline, OLD Design
* MEASURED

ELSEIF (NSPDLN.EQ.2 .AND. NWCHAR.EQ.0) THEN
DPEX = 62190 + 1.6366E5*PHI - 1649700*PHI**2 + 1961000*PHI**3
DPIN = -1072.9 - 3309.8*PHI + 24825*PHI**2 - 4568.8*PHI**3

* 80% Speedline, NEW Design
* MEASURED

ELSEIF (NSPDLN.EQ.2 .AND. NWCHAR.EQ.1) THEN
DPEX = 62915 + 733.14*PHI + 1.2176E6*PHI**2 - 1.6000E7*PHI**3
DPIN = -431.17 - 74.473*PHI + 28534*PHI**2 - 1.9033E5*PHI**3

* 60% Speedline, OLD Design
* MEASURED

ELSEIF (NSPDLN.EQ.3 .AND. NWCHAR.EQ.0) THEN
DPEX = 34494 + 89893*PHI - 8.5243E5*PHI**2 + 7.7986E5*PHI**3
DPIN = -588.01 - 2099.9*PHI + 22133*PHI**2 - 36778*PHI**3

* 60% Speedline, NEW Design
* MEASURED

ELSEIF (NSPDLN.EQ.3 .AND. NWCHAR.EQ.1) THEN
DPEX = 52727 + 64675*PHI - 8.2036E5*PHI**2 - 2.7266E5*PHI**3
DPIN = -230.15 + 294.45*PHI - 9721.0*PHI**2 + 1.0939E5*PHI**3

* 50% Speedline, OLD Design
* Approximated to 60% Speedline, OLD Design

ELSEIF (NSPDLN.EQ.4 .AND. NWCHAR.EQ.0) THEN
DPEX = 34494 + 89893*PHI - 8.5243E5*PHI**2 + 7.7986E5*PHI**3
DPIN = -588.01 - 2099.9*PHI + 22133*PHI**2 - 36778*PHI**3

* 50% Speedline, NEW Design
* MEASURED

ELSEIF (NSPDLN.EQ.4 .AND. NWCHAR.EQ.1) THEN
DPEX = 23898 + 51122*PHI - 6.4812E5*PHI**2 + 3.8840E5*PHI**3
DPIN = -148.15 + 8316.7*PHI - 63243*PHI**2 + 1.5442E5*PHI**3

* 23% Speedline, NEW Design
* MEASURED

ELSE
DPEX = 21050 + 5012.0*PHI - 42359*PHI**2 - 5.1253E5*PHI**3
DPIN = 194.05 + 995.24*PHI - 29343*PHI**2 + 1.7864E5*PHI**3

ENDIF
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* When the large plenum air volume is 300 liters, the surface area of the air water
* interface has been computed to be 1.460 square meters. The small plenum air
* volume interface area is computed for the initial volume specified (see J. Bons'
* thesis for complete derivation). RISM and LSMT are relevant length scales for the
* small plenum air volume.

ALGF = 1.460
RISM = 0.20
LSMT = 1.016
ASMF = 4*PI*LSMT*0.5*(RISM + SQRT(RISM**2+VSMI/(LSMT*PI)))

* If VLGI is not 300 liters, we need to calculate the new corresponding surface area
* of the air water interface in the inlet plenum. This is done with the following
* iteration.

IF (VLGI.EQ.0.300) GOTO 35
LENLG = 1.27
RLG = 0.71
HIN = 0.4166

30 NUMB = SQRT(RLG**2-HIN**2)
VGSS = LENLG*(RLG**2*ASIN(NUMB/RLG)-HIN*NUMB)
DVOL = ABS(VGSS-VLGI)
IF (DVOL.LT.EPS) GOTO 32
HIN = HIN*(VGSS/VLGI)**2
GOTO 30

32 ALGF = 2*LENLG*NUMB

* The program now iterates to find the final volumes in both the small and large
* plenums at the new operating point (first the small then the large). To simplify the
* iteration, the surface areas are assumed constant (at their value with the pump off).
* The initial guess for the large plenum air volume at the operating point in question
* is the initial volume.

35 VGSS = VLGI
40 NUMB = VSMI/(((DPEX+PSMI)/PSMI)-ALGF*(DPIN+PLGI-

/ PLGI*(VLGI/VGSS)**GAMMA)/(ASMF*PSMI))**(1/GAMMA)
VRES = VLGI + VSMI - NUMB
DVRES = ABS(VRES-VGSS)
IF (DVRES.LT.EPS) GOTO 50
VGSS = VGSS - 0.5*(VGSS-VRES)
GOTO 40

50 VCOM(2) = VRES
VCOM(1) = VLGI + VSMI - VCOM(2)
PCOM(1) = PSMI*(VSMI/VCOM(1))**GAMMA
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PCOM(2) = PLGI*(VLGI/VCOM(2))**GAMMA

* These volumes and pressures, along with information from the other parts of the
* program, are now used to construct the system matrix. The non-zero entries are
* filled below.

MATRIX(1,1) = -PDAMP(1)*AREA(1)/LEN(1)
MATRIX(1,3) = AREA(1)/LEN(1)
MATRIX(1,4) = -AREA(1)/LEN(1)
MATRIX(1,5) = AREA(1)/LEN(1)

MATRIX(2,2) = PDAMP(2)*AREA(2)/LEN(2)
MATRIX(2,3) = -AREA(2)/LEN(2)
MATRIX(2,4) = AREA(2)/LEN(2)

MATRIX(3,1) = -(GAMMA*PCOM(1))/(RO*VCOM(1))
MATRIX(3,2) = -MATRIX(3,1)

MATRIX(4, 1) = (GAMMA*PCOM(2))/(RO*VCOM(2))
MATRIX(4,2) = -MATRIX(4,1)

MATRIX(5,1) = DLAG*PHI*SPEED/(ZLAG*2.3)
MATRIX(5,5) = -PHI*SPEED/(ZLAG*2.3)

RETURN
END

* This subroutine, ELMHES, reduces the system matrix to Upper Hessenberg form.
* The algorithm shown was taken from a standard numerical recipes text.

SUBROUTINE ELMHES(A,N,NP)
DIMENSION A(NP,NP)
IF (N.GT.2) THEN

DO 17 M=2,N-1
X=o
I=M
DO 11 J=M,N

IF (ABS(A(J,M-1)).GT.ABS(X)) THEN
X=A(J,M-1)
I=J

ENDIF
11 CONTINUE

IF (I.NE.M) THEN
DO 12 J=M-1,N

Y=A(I,J)
A(I,J)=A(M,J)
A(M,J)=Y
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CONTINUE
DO 13 J=1,N

Y=A(J,I)
A(J,I)=A(J,M)
A(J,M)=Y

CONTINUE
ENDIF
IF (X.NE.0) THEN

DO 16 I=M+1,N
Y=A(I,M-1)
IF (Y.NE.0) THEN

Y=Y/X
A(I,M-1)=Y
DO 14 J=M,N

A(I,J)=A(I,J)-Y*A(M,J)
CONTINUE
DO 15 J=1,N

A(J,M)=A(J,M)+Y*A(J,I)
CONTINUE

ENDIF
CONTINUE

ENDIF
CONTINUE

ENDIF
RETURN
END

* This subroutine, HQR, extracts the system eigenvalues from the upper hessenberg
* matrix created above. This algorithm is also from a standard numerical recipes text.

SUBROUTINE HQR(A,N,NP,WR,WI)
DIMENSION A(NP,NP),WR(NP),WI(NP)
ANORM=ABS(A(1,1))
DO 12 I=2,N

DO 11 J=I-1,N
ANORM=ANORM+ABS(A(I,J))

11 CONTINUE
12 CONTINUE

NN=N
T=O

1 IF (NN.GE.1) THEN
ITS-0

2 DO 13 L=NN.2,-1
S=ABS(A(L- 1,L- 1))+ABS(A(L,L))
IF (S.EQ.0.) S=ANORM
IF (ABS(A(L,L-1))+S.EQ.S) GO TO 3

CONTINUE
L=-
X=A(NN,NN)
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IF (L.EQ.NN) THEN
WR(NN)=X+T
WI(NN)=O
NN=NN-1

ELSE
Y=A(NN-1,NN-1)
W=A(NN,NN-1)*A(NN-1 ,NN)
IF (L.EQ.NN-1) THEN

P=0.5*(Y-X)
Q=P**2+W
Z=SQRT(ABS(Q))
X=X+T
IF (Q.GE.O.) THEN

Z=P+SIGN(Z,P)
WR(NN)=X+Z
WR(NN-1)=WR(NN)
IF (Z.NE.O.) WR(NN)=X-W/Z
WI(NN)=O
WI(NN- 1)=O

ELSE
WR(NN)=X+P
WR(NN-1)=WR(NN)
WI(NN)=Z
WI(NN-1)=-Z

ENDIF
NN=NN-2

ELSE
IF(ITS.EQ.30)PAUSE 'Too many its.'
IF(ITS.EQ. 10.OR.ITS.EQ.20)THEN

T=T+X
DO 14 I=1,NN

A(I,I)=A(I,I)-X
14 CONTINUE

S=ABS(A(NN,NN- 1))+ABS(A(NN-1,NN-2))
X=0.75*S
Y=X
W=-0.4375*S**2

ENDIF
ITS=ITS+ 1
DO 15 M=NN-2,L,-1

Z=A(M,M)
R=X-Z
S=Y-Z
P=(R*S-W)/A(M+1,M)+A(M,M+ 1)
Q=A(M+1,M+1)-Z-R-S
R=A(M+2,M+1)
S=ABS(P)+ABS(Q)+ABS(R)
P=P/S
Q=Q/S
R=R/S
IF(M.EQ.L)GO TO 4
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U=ABS(A(M,M-1))*(ABS(Q)+ABS(R))
V=ABS(P)*(ABS(A(M-1,M- 1))+ABS(Z)

+ABS(A(M+1,M+1)))
IF (U+V.EQ.V)GO TO 4

15 CONTINUE
4 DO 16 I=M+2,NN

A(I,I-2)=O
IF (I.NE.M+2) A(I,I-3)=O

16 CONTINUE
DO 19 K=M,NN-1

IF(K.NE.M)THEN
P=A(K,K-1)
Q=A(K+1,K-1)
R=O
IF(K.NE.NN- 1)R=A(K+2,K- 1)
X=ABS(P)+ABS(Q)+ABS(R)
IF(X.NE.O.)THEN

P=P/X
Q=Q/X
R=R/X

ENDIF
ENDIF
S=SIGN(SQRT(P**2+Q**2+R**2),P)
IF(S.NE.O)THEN

IF(K.EQ.M)THEN
IF(L.NE.M)A(K,K-1)=

-A(K,K-1)
ELSE

A(K,K-1)=-S*X
ENDIF
P=P+S
X=P/S
Y-Q/S
Z=R/S
Q=Q/P
R=R/P
DO 17 J=K,NN

P=A(K,J)+Q*A(K+ 1,J)
IF(K.NE.NN-1)THEN

P=P+R*A(K+2,J)
A(K+2,J)=A(K+2,J)-P*Z

ENDIF
A(K+1,J)=A(K+1,J)-P*Y
A(K,J)=A(K,J)-P*X

17 CONTINUE
DO 18 I=L,MIN(NN,K+3)

P=X*A(I,K)+Y*A(I,K+ 1)
IF(K.NE.NN- 1)THEN

P=P+Z*A(I,K+2)
A(I,K+2)=A(I,K+2)-P*R

ENDIF
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A(I,K+ 1 )=A(I,K+ 1 )-P*Q
A(I,K)=A(I,K)-P

18 CONTINUE
ENDIF

19 CONTINUE
GO TO 2

ENDIF
ENDIF

GO TO 1
ENDIF
RETURN
END
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B.2. Output

The output shown on the following pages was directed by the code on a specified

memory file. Only the unstable flow coefficients, whose eigenvalue has positive

real part (WR), are spooled to the screen. Bold-face characters and underlining

have been added ho highlight certain features.
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LARGE PLENUM VOLUME (1) LARGE PLENUM PRESSURE (Pa)
3.000E-01 1.389E+05

SPEED(%)
5.878E-39

PHI PSI

LENGTH (m)
4.192E+01
3.277E+00

AREA (m2)
5.720E-02
2.900E-02

LOSS
6.000E+00
1.500E+00

VOLUME (1)
1.000E-01

PHASE LAG FACTOR
3.000E-2

PRESSURE (Pa)
1.427E+05

PUMP LEG THROTTLE LEG
1 2

WI WR R
.001 .496 -2.333E+00 -2.739E-03
002 .498 -2.304E+00 -6.027E-04

LEDFREQ B PAR
6.539E+00 3.49
6.457E+00 3.53

UPAR
3E-01 9.407E+04
7E-01 4.816E+04

.003.499 -2.276E+00 4.276E-03 6.380E+00 3.581E-01 3.284E+04

.004 .501 -2.251E+00

.005 .502 -2.230E+00

.006 .504 -2.212E+00

.007 .506 -2.198E+00

.008 .507 -2.188E+00

.009 .509 -2.180E+00

.010 .510 -2.176E+00

.011 .512 -2.173E+00

.012 .513 -2.173E+00

.013 .515 -2.173E+00

.014 .516 -2.175E+00

.015 .518 -2.177E+00

.016 .519 -2.179E+00

.017 .521 -2.183E+00

.018 .522 -2.187E+00

.019 .524 -2.191E+00

.020 .525 -2.196E+00

.021 .526 -2.200E+00

.022 .528 -2.205E+00

.023 .529 -2.210E+00

.024 .530 -2.214E+00

.025 .532 -2.220E+00

.026 .533 -2.224E+00

.027 .534 -2.231E+00

.028 .536 -2.236E+00

.029 .537 -2.240E+00

.030 .538 -2.245E+00

.031 .539 -2.250E+00

.032 .540 -2.256E+00

.033 .542 -2.260E+00

.034 .543 -2.265E+00

.035 .544 -2.270E+00

.036 .545 -2.275E+00

.037 .546 -2.279E+00

.038 .547 -2.284E+00

.039 .548 -2.289E+00

.040 .549 -2.295E+00

.041 .550 -2.298E+00

1.217E-02
2.476E-02
3.732E-02
5.200E-02
6.659E-02
7.958E-02
9.261E-02
1.029E-01
1.130E-01
1.213E-0 1
1.281E-01
1.331E-01
1.369E-01
1.405E-01
1.425E-01
1.435E-01
1.440E-01
1.434E-01
1.420E-0 1
1.396E-01
1.373E-01
1.342E-01
1.297E-01
1.259E-01
1.209E-01
1.150E-01
1.093E-01
1.031E-01
9.646E-02
8.888E-02
8.126E-02
7.384E-02
6.526E-02
5.623E-02
4.748E-02
3.792E-02
2.884E-02
1.838E-02

6.310E+00
6.251E+00
6.201E+00
6.163E+00
6.136E+00
6.114E+00
6.103E+00
6.095E+00
6.095E+00
6.096E+00
6.101E+00
6.108E+00
6.116E+00
6.127E+00
6.139E+00
6.151E+00
6.164E+00
6.176E+00
6.192E+00
6.206E+00
6.219E+00
6.235E+00
6.249E+00
6.267E+00
6.281E+00
6.295E+00
6.310E+00
6.325E+00
6.341E+00
6.354E+00
6.370E+00
6.384E+00
6.397E+00
6.410E+00
6.426E+00
6.441E+00
6.457E+00
6.468E+00

3.620E-0 1
3.654E-01
3.684E-0 1
3.706E-0 1
3.723E-01
3.736E-01
3.743E-01
3.748E-01
3.748E-0 1
3.747E-0 1
3.744E-01
3.740E-0 1
3.735E-01
3.728E-01
3.721E-01
3.714E-01
3.706E-0 1
3.698E-01
3.689E-0 1
3.681E-01
3.673E-01
3.664E-01
3.656E-01
3.645E-0 1
3.637E-01
3.629E-01
3.620E-01
3.612E-01
3.602E-01
3.595E-01
3.586E-01
3.578E-01
3.571E-01
3.563E-0 1
3.555E-01
3.546E-01
3.538E-01
3.532E-01

2.512E+04
2.042E+04
1.724E+04
1.491E+04
1.312E+04
1.169E+04
1.052E+04
9.539E+03
8.698E+03
7.979E+03
7.351E+03
6.801E+03
6.315E+03
5.877E+03
5.484E+03
5.133E+03
4.812E+03
4.520E+03
4.250E+03
4.005E+03
3.778E+03
3.567E+03
3.372E+03
3.186E+03
3.016E+03
2.858E+03
2.708E+03
2.567E+03
2.433E+03
2.308E+03
2.189E+03
2.076E+03
1.970E+03
1.868E+03
1.770E+03
1.677E+03
1.587E+03
1.503E+03

STABLE
BEHAVIOR

UNSTABLE
BEHAVIOR

,cr = 0.002
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.042.551 -2.303E+00 8.392E-03 6.483E+00 3.524E-01 1.421E+03

.043 .552 -2.308E+00 -2.326E-03 6,498E+00 3.516E-01 1.342E+03

.044 .553 -2.314E+00 -1.265E-02

.045 .554 -2.317E+00 -2.422E-02

.046 .554 -2.322E+00 -3.561E-02

.047 .555 -2.327E+00 -4.749E-02

.048 .556 -2.330E+00 -5.886E-02

.049 .557 -2.336E+00 -7.143E-02

.050 .557 -2.340E+00 -8.396E-02

.051 .558 -2.344E+00 -9.677E-02
.052 .559 -2.349E+00 -1.098E-01
.053 .559 -2.354E+00 -1.229E-01
.054 .560 -2.358E+00 -1.366E-01
.055 .560 -2.362E+00 -1.503E-01
.056 .561 -2.365E+00 -1.640E-01
.057 .561 -2.369E+00 -1.786E-01
.058 .562 -2.373E+00 -1.933E-01
.059 .562 -2.378E+00 -2.072E-01
.060 .563 -2.382E+00 -2.228E-01
.061 .563 -2.385E+00 -2.379E-01
.062 .563 -2.389E+00 -2.534E-01
.063 .563 -2.394E+00 -2.693E-01
.064 .564 -2.397E+00 -2.849E-01
.065 .564 -2.401E+00 -3.011E-01
.066 .564 -2.405E+00 -3.175E-01
.067 .564 -2.408E+00 -3.345E-01
.068 .564 -2.412E+00 -3.514E-01
.069 .564 -2.416E+00 -3.687E-01
.070 .564 -2.418E+00 -3.858E-01

STABLE
BEHAVIOR
(cr2 = 0.043
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6.514E+00
6.524E+00
6.537E+00
6.553E+00
6.563E+00
6.581E+00
6.592E+00
6.606E+00
6.619E+00
6.634E+00
6.646E+00
6.659E+00
6.670E+00
6.681E+00
6.694E+00
6.708E+00
6.720E+00
6.729E+00
6.743E+00
6.757E+00
6.768E+00
6.781E+00
6.792E+00
6.802E+00
6.815E+00
6.827E+00
6.834E+00

3.507E-01
3.501E-01
3.494E-01
3.486E-0 1
3.480E-0 1
3.471E-01
3.465E-01
3.458E-01
3.451E-01
3.443E-01
3.437E-0 1
3.430E-01
3.425E-01
3.419E-01
3.412E-01
3.405E-01
3.399E-01
3.394E-01
3.388E-01
3.380E-01
3.375E-01
3.369E-01
3.363E-0 1
3.358E-01
3.352E-01
3.346E-0 1
3.343E-01

1.266E+03
1.195E+03
1.126E+03
1.058E+03
9.936E+02
9.297E+02
8.700E+02
8.113E+02
7.547E+02
6.993E+02
6.463E+02
5.949E+02
5.451E+02
4.968E+02
4.494E+02
4.033E+02
3.587E+02
3.155E+02
2.731E+02
2.317E+02
1.917E+02
1.525E+02
1.144E+02
7.725E+01
4.092E+01
5.501E+00

-2.911E+01




