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Design Method for Centrifugal Compressor and
Centripetal Turbine Impellers

Raymond E. Holthe

Submitted to the Department of Mechanical Engineering
on May 20, 1957, in partial fulfillment of the requirements
for the degree of Master of Sclience in Mechanical Engineering.

The design method presented in this thesis in intended
to satlsfy the need for a simple, rapid, approximate means of
obtalning hub and casing shapes for compressor and turbine
impellers with stralght radial blades.

The method consists of three separate one-dimensional
solutions of the equations of motion in a rotating impeller
channel. Two solutions are made assuming axial symmetry and
the third accounts for variations in fluid properties from
blade to blade.

In the first solution, isentropic and axisymmetric flow
18 assumed and the concept of a mean streamline is introduced.
The mean streamline is defined as that stresmline which is
representative of the flow in the meridional plane. The
designer then specifies a velocity distribution along the
mean streamline and uses influence equations, developed in
this thesls, to compute the corresponding flow area. This
solution gives no information as to the shape of the mean
streamline. '

In the second solutlon, irrotational, isentropic, and
axlsymmetric flow is assumed. The desipgner sslects a partl-
cular mean streamline and computes the hub and casing shapeas,
using the flow areas from the first solution. A second set
of influence equations is used to determine the variation in
fluld properties from hub to casing. The combination of the
first and second solutions completely determines the flow in
the meridional plane. ‘

The third solutlion considers the flow in the blede-to-
blade plane. Blade surface velocities are computed to in-
vestigate blade loading and to examine the possiblility of e
stagnatlon area on the pressure surface of the blade.



Combining all three solutions results in a quasi three-
dimensional solution which gives a clear physical understand-
ing of the main flow in the impeller channel.

The design method 1s completely analytic and all calcu-
lations may be made by a digital computing machine.

Thesis Supervisor: Ascher H. Shapiro
Title: Professor of Mechanical Engineering



PREFACE

In writing this thesls, I have trled to keep in mind the
need for a simple impeller design method suitable for designers
with no more than four years of formal engineering training.
However, calculus has been used extenslvely. Mathematics is
such a powerful tool that any deslgner worth his salt should
be willing to sit down with pencil, paper, and eraser and cal-
culate before he begins to speculate.

The model of the flow has been based on the one-dimen-
slonal approach in order to give a clear physical picture of
what 1s going on in the impeller channel. This means that
ilmpellers designed by this method will not be the best impel-
lers it 1is possible to make -- they must be regarded only as
first approximations which are to be modified after perfor-
mance tests have been run.

My first acknowledgment is to Professor Ascher H. Shapiro,
ny thesls supervisor, who has generously donated his limited
time and unlimited talents in maintaining the technical accu-
racy and readability of this work. For her accurate typing,

I wish to thank Dorothy Mastrorililo. Caterpillar Tractor Co.,
Peoria, Illinois, has generously provided both the leave of
absence and the financial arrangements which were necessary
that I might devote full time to graduate study. Finally,

and most important, I express ny appreciation to Donna,

surely the most patient and understanding of wives.
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I. INTRODUCTION

A. Need for a design method

The ability of centrifugal compressors and centripetal
turbines to handle a large pressure ratio in a single stage
is being exploited fully at the present time. 8Small gas tur-
bine engines for road vehicles and hellcopters appear to be
the most promising applications. At high pressure ratios,
compressor and turbine impellers are highly stressed and the
trend has been toward impellers with straight radial blades.
Radial blades have no bending stresses due to centrifugal
force and stralght blades are the least expensive to manu-
facture. I belleve that this trend will continue and that
the mejority of the small gas turbine engines of the future
wlll use single stage impellers with straight radial blades.
It 1s for this reason that a simple, rapld, design method for
determining hub and casing shapes for centrifugal compressor
and centripetal turbine impellers with straight radial blades
will be a valuable addition to the turbomachinery literature.

B. Iiterature survey with comments
The following 1s a list of those published books and

rapers relating specifically to compressors and turbines which

I have found to be the most useful in writing this thesis.

Reference 3- "Steam and Gas Turbines" by Stodola

This is certainly e classic and 1s the loglcal starting
point for any investigation in the turbomachinery field. The
Lorenz axlal symmetry analysls, basic to most impeller design
methods, 1s developed on pages 990 and 991.



Reference 4- “A Rapid Approximate Method for the Design of
Hub-8Shroud Profliles of Centrifugal Impellers of
Given Blade Shape", NACA TN 3399.

This reference presents a graphlical design method which
requires about 40 hours for a solution. The flow is assumed
to be isentropic, steady, non-viscous, and compressible. The
method consists in specifylng a blade shape, hub shape, and
hub veloclity distribution and then drawing, by experience, a
streamline adjacent to the hub. The analysis of reference 7
18 used to compute the veloclty and density along the assumed
streamline. The one-dimensional continulty equation, based on
the veloclty and density at the midpoint of the gstreamtube
formed by the two streamlines, is used to check the mass flow
along the streamtibe. If the mass flows at each station are
not equal (within prescribed limits), a new streamline is
assumed and the process 1s repeated. The final streamline
becomes the base line for a new streamtube. The casing shape
1s determined by the streamline which finally passes the design
mass flow.

The method was used with 3, 5, and 9 streamtubes and it
was found that more than 3 streamtubes did not appreciably af-
fect the resulting casing shape. This result leads me to believe
that using just 1 streamtube (the basis of this thesis) will re-
sult in acceptable hub and casing shapes with a specified velo-
clty distribution along tﬁe mean streamline. Also, the method
of this thesis can be set up for a digital computer and 40 hours

of hand calculations and graphical measurements are eliminated.



Reference 5- “A Rapid Approximate Method for Determining
Velocity Distribution on Impeller Blades of
Centrifugal Compressors”, NACA TN 2421.

This reference presents a method for computing olade
surface velocities after the impeller 18 completely designed.
The method 1s essentlially an extension of that elven in Ap-
pendix D of referénce 7. The effect of slip 1s included here
but not in reference 7. It was shown in reference 4 that in-
cluding slip did not appreclably affect the casing shape but
did affeét the blade surface velocities. However, neglécting
sllip 1s conservative as the blade loadling is decreased by slip
(good), as shown in reference 4.

Reference 6- "A General Theory of Three-Dimensional Flow in
Subsonic and Supersonic Turbomachines of Axial,
Radlal, and Mixed Flow Types", NACA TN 260%4.
Wu's analyses and design methods are the most comprehensive
that I know. He treats the flow as being 3 dimensional in
the analyses and as quasi-3? dimensional in the design methods.
His methods would vield very accurate hub and casing shapes
but are so long and complex that, as far as I know; no one
uses them.
Reference 7- "Method of Analysis for Compressible Flow
Through Mixed-Flow Centrifugal Impellers of
Arbitrary Design", NACA Report 1082.

The analysis developed in this reference is the basis
of the most recent NACA publication on impeller design (refer-
ence 4). The anelysis can be applied to any impeller with
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radial blade elements (the blades are otherwise arblitrary).
Appendices B, C, and D develop equations for pressure and
velocity variations from hub to casing and from blade to
blade for these arbltrary blades. These equations reduce
to the eguations presented in this thesis when stralight

radial blades are used.

Reference 14- "Two-Dimensional Compressible Flow in Centri-
fugal Gomﬁressors with Straight Blades", NACA
Report 95
This 1s an early (1949) analysis of compressible, non-
viscous, steady, lsentropic flow which is assumed to lie on
the surface of a cone. The flow 1s assumed to be uniform

normal to the cone (from hub to casing). This reference

derives the commonly used slip factor equatlion:

1.4

where Z 1s the number of blades at the'outlet.

Reference 15- "Some Elements of Gas Turbine Performance",
peper presented at SAE meeting, March 6-8, 1956.

The centrifugal compressor and céntripetal turbine ap-

pear to have a bright future in small gas turbine engines,

such as engines for road vehicles. This reference presents

a clear, detalled dlscussion of gas turbines in general and

gas turbines for road vehicles in particular.

Reference 16- "Approximate Design Method for High Solidity

Blade Elements in Compressors and Turbines",
NACA TN 2408.
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The design method developed here leads to a blade shape
for a prescribed surface of revolufion about the axis of ro-
tation and prescribed blade surface velocities. It does not
determine the hub and casing shapes. The method may lead to
blade shapes which are not acceptable for high tip speeds.
Reference 17- "Some NACA Research on Centrifugal Compressors",

ASME Transactions, 1953.

A conclse resume of the extensive work done by NACA up
to 19555€overa inducer, impeller, and diffuser research.

It 18 an extremely valuable summary of all phases of com-

pressor research by the leading U. 8. agency in this field.

Reference 18- "Theoretical and Experimental Analysis of One-
Dimensional Compressible Flow in a Rotating
Radial-Inlet Impeller Channel", NACA TN 2691.

An excellent discussion of one-dimensional flow in a
rotating channel., Effects of friction, choking, and shock
formation are included. The effect of losses was found to be
slmlilar to the effect of a reduction of flow area. The losses

in a rotating channel were placed in four catagories:

1. Friction loss due to the viscosity of the fluid.
Friction loss is proportional to the square of the relative
velocity and 1ncfeases rapidly with flow rate.

2. Incldence loss due to a sudden enlargement or
contraction of the inlet flow area. Incidence loss occurs at
flow rates different from the design flow rate. At flow rates
less than design, the situation 1s as shown by Figure A.



The actual flow area Ay is less than the geometric flow

area Al' and a sudden expansion loss occurs as W decreases
suddenly to the value Wy'. This loss 1s proportional to the
product
W 2 2

2o (1 - A/a)
and is approximately constant at all flow rates less than
design because W; and A, both decrease. At flow rates greater
than design the sltuation 1s asg shown by Flgure B.
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The actual flow area Al is greater than the geometric

flow area Al' and a sudden contraction loss occurs as Wl
increases suddenly to the value Wl'. This loss 1s propor-

tional to the product

le 2

L - At
6. (1 Al/Al)

and increases rapidly as the flow rate exceeds design because

Wl' and Al both increass.



3. Blade loading loss due to boundry layer separa-
tion and secondary flovw on the blade surfaces. Thls loss de-
creases as the flow rate is increased because the greater
momentum in the main flow delaya boundry layer separation.

4, Shock loss when operating in the range of super-
sonic relative velocltlies. Thls loss occurs at large flow
rates if the static pressure at the channel outlet is too

great for completely supersonic flow to the outlet.

Reference 19- "Centrifugal Compressors"

Reference 20- "Design of Radial Flow Turbines"

For complete, up to date information on centrifugal

compressors and centripetal turbines, I recommend references

19 and 20, These references are the most complete that I know.

|4



Units and dimensions
| Séven independent physical uhite of measure are used in
this theslis:
1. Force measured in pounds of force, 1bf
2. Maés, meagsured in pounds of mass, lbm
3. Length, measured in feet, ft
4, Time, measured in seconds, sec
5. Heat, measured in British thermal units, BTU
6. Temperature, measured in degrees Rankine, R
7. Angle, measured in radians, rad
As the equations derived in this thesis are valid only
in Newtonlan reference frames (inertial or accelerating) and
thus relativity and nuclear reactions are excluded, we may
use Newton's second law of motion to relate the first four

of the sbove units of measure:

Ma
o

F =

where F 1s the unbalanced force acting on a system of fixed
ldentity, 1bf; M 1s the total mass of the system, 1lbm; a is
the acceleration of the mass-center of the system, ft/3902;
and 8o is a cohstant of proportionality whose numerical
value must be determined by experiment. It has been found
by countless experiments that a one poumnd unbalanced force
when acting on a mass of 32.174 1bm will produce an accelera-

2

tion of one ft/sec”, irregardless of the location where the



experimenté are performed. Thus, Newton's second law may be

written

) 2
1 1br = 22.174 1bm x 1 ft/sec”

= 32.174 1bm f£t/sec? 1bf & g,

By» being really equal ﬁo the pure number unity, may be
introduced into any equation to cancel units, whether Newton's
law is used or not and, indeed, 1f motlion is involved or not.
Similarly, GXperiqents by.qule and others have shown
that, 1n Newtonian reference frames, heat and work are related

by Joules law:
A

Q=7

~where Q 1s the heat flowlng into a system of fixed ldentity,
BTU; W 1s the work flowing out of the system so as to maintain
the system at i1ts initial temperature, ft 1bf; and J is a con-
stant of proportionality whose value is determined by experi-

ment. Agaln, countless experiments, irregardless of location,

have shown that one BTU of heat flowing into a system results
in 778.2 £t 1bf of work flowing out of the system to meintain
the temperature of the aystem constant. Thus, Joules' 1law

. may be written

1 51U = T78.2.£% Ibf

1= 778.2 ft 1bf/BTU &8 J

™



J, llke g,, is really a pure number having the value unity,
and may be introduced into any equation to cancel units,

whether heat or work is involved or not.

I'7



II. EXPLANATION OF THE DESIGN METHOD

A. Iist of assumptlons
The design method presented in this theslis 1s based on

the following assumptlions:
1. The impeller has stralght radial blades.
2. The impeller rotates with constant angular veloclty
about a fixed (Z) axis.
3. The fluld flowing through the impeller is a perfect
gas with zero viscosity.
4, The flow within the impeller has these characteristics:

a. It may be represented'by a mean streamline
which follows the approximate geometric
center of the impeller chanmel.

b. It 1s isentroplc, that is, there is no
heat transfer and the flow is perfectly
reversible.

c. It is irrotational, that is, its total
energy 1s constant both along the mean
streamline and normal to the mean stream-
1line.

d. It 1s steady, that is, values of flow
properties at a fixed point in the chan-
nel do not change with time.

e. It 1s axisymmetric, that i1s, values of flow
properties are the same in all meridional

(axial-radial) planes.

18
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5. Gravity effects are negllgible.
6. The absolute acceleration of the earth with respect
to the fixed stars 1s negligible.

B. Flow along the mean gstresmline

It is well known that the felative flow in an impeller
channel, although steady, is three-dimensional in nature.
Fluid properties vary with dlstance 1in gll three coordinate
directions. The solution of a2 three-dimensional flow is
extremely complex (reference 6) and, for engineers with no
more than undergraduate calculus, practically impossible.

It 1is for this reason that one and two-dimensioneal approxi-
mations are commonly used.

The one-dimenslional approximation, that is, assuming
that the rates of change of fluld properties in all direc-
tlions other than along a streamllne‘a.re negligible compared
with the rates of change along the sireamline, has several
extremely important adventages. Simply and rapidly, 1t
ylelds results which are valid in the englneering sense and
which present a clear physical understanding of the signifi-
cant features of the flow.

Using the one-dimensional approach, we assume that the
flow in an impeller channel i1s characterized by one particu-
lar streamline, which we call the "mean" streamline. Values
of fluid properties along the mean.streamline are assumed to

be the mean values from hub to casing and from blade to blade.



This assumption, to be valid, restricts the position of the
mean streamline -- it must lie (approximately) along the
centerline of the channel.

Appendix J presents the results of a one-dimensional
analysis of impeller relative flow, within the assumptions
presented previously. Using these results (collected in
Table 1), we specify, by experience or by fluid mechanics
theory,'a veloclity distribution along the mean streamline.
If this distribution 1s linear with radius, or constant, the
required flow area at any radius is computed in closed form,
as shown in Appendix J. Otherwlse, numerical integration
must be used. All channels having this calculated area-radius
relationship are equlvalent as far as the one-dimensional
analysis 1s concerned. We must turn to a two-dimensional
analysls to select one particular channel from the infinite
number which are satisfled by the calculated area-radius

relationship.

C. Property chanses normal to the mean stireamline
Table 2, in Appendix K, presents the results of a one-

dimensional analysis of property changes normal to a relative
streamline, By combining these results with those summarized
in Table 1, we have & quasi two-dimenslonal solution of the
flow in the meridional plane, since, with straight radial
blades and axlal symmetry, the mean streamline must lie in
this plane. This quasl two-dimensional solution enables us

to select the one particular chamnel which fulfills our deslgn
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requirements (such as space or welght limitations or the

need for highest possible efficiency). The selection 1s ac-
complished by assuming a mean streamline and then computing
the corresponding hub and casing profiles and velocities.

If these profiles or velocitlies are unacceptable, a new mean
streamline is assumed and the calculations are repeated.
Originally, I had planned to develop a design method in which
the hub and casing velocities are sgspecified and the corres-
ponding hub, mean streamline, and casing shapeé are computed.
This procedure was found to be unacceptable as the calculated
mean streamiine would not, in general, lie on the (approxi-
mate) centerline of the channel. In the proposed method,

all computations may be done on an automatic computer and,
for a fixed set of design parameters, several assumed mean
streamlines may be fed into the computer and the designer

(or technicilan) merely plots the results. This procedure
also glves a clear picture of the effects of mean streamline

shape on the flow in the meridional plaﬁe.

D. ZProperty changes from blade to blade

Having an approximate picture of the flow in the meridio-
nal plane, we use the analysis of Appendix N to compute pro-
perty variations from blade to blade. These variations are
intimately assoclated with the number of impeller blades and
the analysis of Appendix N helps us to understand the influence
of blade number on blade loading and behavior of the boundry

layer. By combining the two-dimensional meridional plane
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golution with the one-dimensional blade to blade solution,

we obtaln a quasl three-dimenslional solution throughout the

entire impeller.

Thus, with the aid of this quasi three-

dimenslonal solution, we can evaluate the gross effects of

hub shape, casing shape, and blade number on size, weight,

and efficliency.

E. Design procedure for a compregsor

A. _Prellminary steps:

1. BSpecify
is to

a.

2. Compute

8.

the properties of the perfect‘gaa which

be used

Inlet stagnation pressure and tem-
perature

Outlet stagnation pressure

Mass flow

Ratio of specific beats

Moiecular welght

the following:

Tip speed

Casing radius, tip radius, and
angular velocity

Hub radius for known (or assumed)
blade number and thickness at in-
ducer inlet

Properties at the inducer inlet

Properties at the impeller inlet,
including the radius to the mean

streamline.



B. Hub and casing design:

1. Specify the relative velocity distribution along
the mean streamline |

2. Using the analysis given in Appendix J, compute
the corresponding area distribution normal to
the mean streamline at specified stations on
the mean streamline

3. Specify the shape of the mean streamline (its
angle with the Z axls) and compute its radius
of curvature at all stations

4, Divide the areas computed in step B2 into two
parts -- one area extending from the hub (as
yot undetermined) to the mean streamline, the
other area from the mean streamline to the

casing (also not yet determined). This step

18 necessary to be certain that the mean streem-

line will llie approximately midway between the
hub and casing

5. Using the angles specified in step B3 and the
areas of step B4, compute the hub and casing
radll at all stations. The hub and casing are

now completely determined.

C. Evaluation of the hub and casing design:

1. Usling the mean streamline velocities specified
in step Bl, the radll of curvature of the mean
streamline computed in step B3, the hub and
caslng radil from step B5, and the analysis of

23
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Appendix K, compute the hub and cas-
ing relative velocitles at all stations.
2. Plot the results of steps B3 and Cl. On
the basis of space or weilght limitations
and boundry layer theory (or experience)
evaluate the hub and casing design. If
unacceptable, repeat the design, beglin-
ning with step B3, until satisfactory
gshapes and velocitlies are produced.’ This
completes the design in the meridional
plane.
D. Checking blade loading
' 1. Using the following:
a. Properties at the impeller inlet
from step A2e
b. Velocities along the mean streamline
from step Bl
c. Areas normal to the mean streamline
from step B2
d. Mean streamline angles from step B3
e. Known (or assumed) blade number and
thickness at all stations
f. The analysis of Appendix N,

compute the blade surface velocitlses.
2. Plot the results of step D1. On the basis
of boundry layer theory (or experlencs)

evaluate the choice of blade number and
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thickness made in step Dle. If unaccept-
able, repeat the design, begimming with
step Dle untll satisfactory velocitles are
produced. Since blade number and thickness
have only second-order effects on the hub and
casing shapes, 1t 18 not necessary to redesign
the hub and casing until step D2 is considered
satisfactory. The final design is then made,
beginning with step A2e.

A detalled numerical example is given in Appendices M and N.



III. SUGGESTIONS FOR FUTURE WORK

Time limitations prevented my working out a detalled
turbine design., The equations developed in this thesls are
based on first principles and are valid for turbines as well
as compressors. The details of design, however, will be dif-
ferent. The flow enters a turbine impeller after leaving a
set of nozzles (rather than an inducer) and leaves the impel-
ler by entering an exducer (rather than a diffuser). Thus,
the leaving flow must be analyzed, rather than the entering
flow as was done in Appendix L. Centripetal turbine design
methods are even more scarce than compressor design methods
and I hope that this thesis will be the starting point for a
gimllar detalled turbine design.

Rl
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IV. APPENDICES

Appendix A

vector absolute accaleration of P

unit vectors in the x, y, 2 directions

origin of accelerating reference frame
origin of inertial reference frame

a particle of fixed identity moving in any manner in
an accelerating refereéence frame
position vector of P from Oy

position vector of P from Op

position vector of Op from O

time as measured in the accelerating reference frame
time as measured in the inertial reference frame
vector absolute velocity of P

vector relative velocity of P

scalar components of W in the x, y, z.directions

orthogonal directlons defining an arbitrarily ac-

celerating reference frame

orthogonal directions defining an inertial reference

frame which 18 fixed in outer space
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instantaneous scalar coordinates of P with respect to

Op in the X, ¥j Zj accelerating reference frame

vector operator defined by equation (16)
vector absolute rotation of the accelerating refer-

ence frame

scalar components of @ in the x, y, z directions
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Appendix A

MOTION OF A PARTICLE IN AN ACCELERATING REFERENCE FRAME

=

XI Yi ZI determine an orthogonal inertial reference

frame, fixed in outer space (not fixed to the earth).

Xy ¥, Z, determine an orthogonal reference frame, ac-

celerating in any manner with respect to the inertial (I)
frame.

P 1s a particle moving in any manner in the accelerating
(A) frame and instantaneously located at the point (x, y, z)
}n the A frame.

Hi 1s the position vector of P with respect to Oy.

R, is the position vector of P with respect to 0,.

RB 1s the position vector of 0, with respect to O;.



I, 7, and X are unit orthogonal vectors in the X,, Y,,
Z, directions. 1, J, and k are constant in magnitude and
direction in the A frame. In general, they are constant
only in magnitude in the I frame since the A frame may be
rotating with respect to the I frame and, in that case, the
directions of I, 7, and k would be changing in the I frame.
From Figure 1,

ﬁi = ﬁb + ﬁk

The derivative of R& wlth respect to time in the I frame 1is
the velocity of P in the I frame (the ®absolute® velocity

of P), VE.
dﬁi dRo dEA

V. = = +

(1)
P at; a7 aty

From Figure 1,
Ry =Tx+ Ty + B (2)

Differentiating (2),

S

vax .4l . ,.v&y , 4 +pdz , gE
Tt T+ 8 il ol

Grouping terms,

ax,
d dk
a%;"ﬁ—r*?fg%'*‘f J*CatI“a%;Y*E;zJ

(3)



Since x, y, and z are scalars, they have identical time deri-
vatives in both the I and A frames. The first bracket in (3)

nay be written:
CI%XFI.+3%{.£+EE_J= [T & +33§_+E%§XJ (%)

The derivatives of the unit vectors in the second bracket of
(3) are perpendicular to these vectors and may be written:

R-0xT 0T F -k (5)

where (w is the vector rotation of the A frame with respect to
the I frams.

—

w=1Tw +Jwy+iw (6)

Expanding (5), we have, using (6),

fo = Ewy + T, (7a)
%%I- = Eo_-1Iw, (7b)
& = T + T, (70)

Combining (3), (&), and (7):

da
.&-i.z['{th-i-]'th-&E_L]

+[-k'wyx+3'wzx+i'wxy-3.'wzy-'waz+'Iwyz]
(8)

31
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aR
The first bracket of (8) is the expansion of a-,&-ﬁ‘-’ the velo-

city of P in the A frame (the "relative! velocity of P),
since 1, J, and k are constant in magnitude and direction in
the A frame. The second bracket of (8) is the expansion of
@ x Ry. Inserting these equivalents into (8), we have:

dh-A dRA -

Combining (1) and (9):

aR. dR aR
- iy (o) A
V= ey " T +

+ W x R, (10)

From (9) we see that the derivative of any vector in the A

frame with respect to time 1n the I frame 1s equal to the deri-
vative of that vector with respect to time in the A frame plus
the vector product of that vector with @ . We now make use of
this fact in differentiating v; to obtain E@, the acceleration
of P in the I frame (the absolute acceleration of P). From (10),

z s Jp I:dzﬁ°1 + [ (dHA @ x K] (11)
= = + X
% T T a2 abp qh A

From (9), the second bracket of (11) is:

d (GR‘HE R,) = (2] 4 (@ dHAJ
at; ‘agy xA:thz * T,

gy @xF)Is @xBx ) (12)



Defining the relative veloclty of P as W, the first bracket of

(12) is:
WL W - (13)
at,® a9 - @, 7 bY,

Since W is the relative velocity of a particle of fixed
identity, we use the special notation capltal D to denote sub-
stantial differentiation while following the motlon of this
particle. W is a function of space and time (x, y, z, and ty),
thus:

<|=3
=3

oW _ 3% px , oF oW pz_ oW
byt 5% Tt Sy Th ST pe t&y, ()

=

But, ]D)xA, %ﬁ, and %%; are the scalar components of W in the

X, ¥, and z directions, respectively.

\Y
=]

3 ,
1004 v oW 3? (15)

D-E;=WX—S-£+Wy-§-i+Wz——z-+a

&

(15) may be written in more compact form by introducing the

vector operator,? . In x, y, z coordinates,
VTS T+ B (16)

_ - - 3
Vo= @w +JW +kw)(1—§; T2+ E2)

- 2 2 .
= W_ a::*wy'éa'i* , == (NOTE: W .V#Y.W)
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Thus, (15) may be written,

%‘*‘W'V’W*-a%% (18)

A

The second bracket of (12), from (13), is:

ARy

E Xa-.:t—- &-)Xw (19)

>

The third bracket of (12), from (13), is:

E%K(E)xﬁA)=ﬁxW+-g‘%-’A-xﬁA (20)

Introducing (12), (13), (18), (19), and (20) into (11):
&%\
- =X
ayst-d;-—%J'l-[(w.V)w'Fé—f;—]
I

+ [%%:xHA-&GxEx R, ]+ [2wx W] (21)

(21) is the basic kinematic equation of motion of a particle

moving in any manner in a reference frame (the A frame) which

is itself accelerating in any manner with respect to an
inertial frame (the I frame). In words, the absolute accelera-
tion of P equals the absolute acceleration of the origin of the
A frame (first bracket) plus the total acceleration of P if the
A frame were not accelerating (the total acceleration of P as

seen by an observer stationed in the A frame and thus unaware

>4%
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of the acceleration of the A frame)(second bracket) plus the
sum of the tangentlal and normal acceleratlons of P about O,
due to the rotation of the A frame if P were fixed in the A
frame (third bracket) plus the "Coriolis" acceleration of P
(fourth bracket). All of the above was adapted from refer-
ence 1, p. 249-252,

For our purposes, we consider the inertial frame as belng
fixed to the earth, with OI at the center of the earth. This
means we are neglectihg the absolute acceleration of the earth
with respect to the fixed stars. This leads to insignificant
errors for the present work since the angular velocity of the
earth 1is only about 7 x 10-5 rad per sec (reference 1, p. 269).
Our A frame is defined as being attached to the surface of the
earth and rotating with an angular velocity & about the ZA axls
only. Thus, & has no components in the X, and Y, directions

and

Sszeiw

el

The distance IHo, is assumed to be constant and we neglect the
angular velocity of Ro (the angular velocity of the earth).
Thus,

am

dtIi!

We also assume that @ is constant in magnitude, thus

He
]
=1
jo7 [=1
>"I€
i
o



Equation (21) reduces to:

5, = (W,V)W-'-é%%-&i(ox (EwxE,) + 2E@ x ¥

(22)
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Appendix B

lengths of U vectors in the u;, Uy, Uy directions

unit vectors in x, y, z directions

origin of accelerating reference frame

a particle of fixed'ldentity moving in any manner
in an accelerating reference frame

position vector of P from Oy,

vectors tangent to arbitrery orthogonal curvi-

linear surfaces at the instantaneous location of P

unit vectors tangent to arbltrary orthogonal curvi-

linear surfaces at the instantaneous location of P
scalar coordinates of P in an arbitrary orthogonal
reference frame

vector relative velocity of P

scalar components of W in the “1"“2» Uz directions



, orthogonal directlions defining an accelerating

reference frame

scalar coordinates of P in the X, Y, Z, accelera-
ting reference frame

vector operator usling u;, U, Uz coordinates -
defined by equdation (28)

vector absolute rotation of the accelerating

reference frame

scalar components of @) in the uy, Up, Uz directions

28



Appendix B

VECTORS IN GENERAL CURVILINEAR COORDINATES

Let ul, uz, and u3 be any orthogonal curvilinear co-
ordinates which form a right-handed system. For example,

X, ¥, and z in Appendix A form a right-handed system. If ﬁA
is the position vector of P from OA’

R, =Tx+Jy+ Kz (23)

We now define the following:

3,

th-; 53; (24a)
_ 2K,

U, = 5%, (24p)
_ 3K, -

Ub 5‘535 , (24¢)

n, 5|9 | (25a)

n, = |0, (25)

hy 3 I'ﬁB (25¢)

- Ul

u, = q (26a)

- ﬁ2

u, = B, (26b)

hif
U = - (260)
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The U's are vectors tangent to the coordinate surfaces; the h's

are the lengths of the Ulg;
to the coordinate surfaces.

In these general coordinates:

W-«-ulrwl-a-uz W2+u3 WB

W= 1 W +u, W, + u3(03

Lo B u
ViR R TR 5
y 2y hy W) 3(hy by Wy)
, oy by W)
21,
hy ¥ by T, hy T,
= et | & =2 2
Vx W= v By | Suy du;  Ju,
nyW, hyW, hyW

Appendix B adapted from reference 2, p. 321-327.

and the U's are unit vectors tangent

(27a)

(27b)

(28)

(29)

(30)
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Appendix C

vector absolute acceleration of P

scalar components of &p in the r, €, z directions

lengthe of U vectors in the r, ©, z directions

unit vectors in the x, y, z directions

unit vector in the r direction

unit vector in the 6 direction

origin of accelerating reference frame

a particle of fixed 1dentity moving in any manner in

an accelerating reference frame

position vector of P from Oy

scalar cylindrical coordinates of P in the X Y, Zp

accelerating reference frame

time as measured in the accelerating reference frame

vectors tangent to arbiirary orthogonal curvilinear

surfaces at P

4\



(=1}
H

qJC'.I

(=1]
™

gl ol et
! b =

=
=

oz .14 =1 \.»F nF

e

T2

vectors tangent to the r, €, z orthogonal curvi-

linear surfaces at P

unit vectors tangent to the r, €5 z orthogonal

cumilinear surfaces at P

scalar coordinates of P 1ln an arbitrary orthogonal

reference frame

vector relative veloclity of P

scalar components of W in the r, ©, z directions

orthogonal directions defining an arbitrarily ac-

celerating reference frame

scalar coordinates of P in the Xy Y, Z, accelerating

reference frame

vector operator using r, 0, z coordinates - defined

by equation (45)

vector abgsolute rotation of the accelerating refer-

ence frame



"

scalar components of @ in the r, ©, z directions

resultant scalar component of @ - defined by

equation (44)
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Appendix C

5% IN CYLINDRICAL COORDINATES, r,©, AND z

We refer to Appendix B for the equations for u, K, U, h,
u, W, andV . As given,

ul-:-'r,u2==6, u3'='z

44



From (23), Appendix B,
a;h+n+m
From Figure 3,
x ; | Tx | =‘i§rl cos 8 = r cos 8

v2|Ty|=llr| stn @ =r sin ©
Introducing (31) and (32) into (23),

Rh = Ir cos 8+ Jr sin 9 + kz

From (24a), Appendix B, and (33),

R
U, =70, = é;;é =1 cos 6+ J sin 6

From (34), (31) and (32),

-

1
Ur= %*T%=F(IX+]Y)

From Figure 3,

From (35) and (36),

From (24b) and (33),

- - <Bﬁk
Ué = Ué = TR = =Ir gin 6 + Tr cos 6

(23)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

45



From (38), (31), and (32),

Uy =-Iy + Jx (39)
From Figure 3,

iy + x=mr (40)
From (39) and (40),

T, = & (41)
From (24c) and (23), _

R AL (42)

8 Z 92z

From (25), (26), (27), and (28) in Appendix B, and from (37),
(41), and (42),

b= |0 l=1



W=Zwr+ﬁwe+iwz (43)

g=-Lo +TW+EW = Ew (1)
=) 2,8 _3 2

V=4 57T 38 +Ea (45)

We now expand EP in r, 6, z coordinates. From Appendix A,
equation (22),

a-P,(w.V)W+§§+wa(wanAanwxw (22)

We expand the terms in (22). From (43) and (45),

.7 = (7w +ﬁwe+k‘wz)

- - W
- 3 8 _9 2.
'('e‘f‘f*% ae"'k‘;") ort T et a3z
oW . Y% ow EX
V.V F=W, 53+ 36+ .32 (47)

Before expanding (47), we notice that all partial derivatives
of the unit vectorsz , m, and k with respect to the r, ©, z,
coordinate directions are zero because the unit vectors are
always of unit length and orthogonal. £ ana T rotate about the
Z axis as P moves in the A frame and these rotations will pro-
duce partial derivatives with respect to time, as we shall see

later. Returning to (47) and using (43),
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- 2V _ oV oW
(T NF =, (fsE s T52+ E=2E)
W, — oW oV oV
(<) r, = © 4
- oW A v
+ W wazr"'i?';;—-l-i'azz) (48)
oIV
Expanding -5-:&- and using (43),
¥z 32 Mg  IF
aéﬁ‘ "t; *EsE, *t 3T, e
0¥, S5F
+ & + W (49)
9%, " 3%, 'z v
W
g-ﬁ-‘f-atime rate of change orf in the A frame =E}—e-

where T gives the direction of the change (normel to# and in
W

the positive 6 direction) and ;Q i1s the instantaneous angular

velocity of £ (and &) about the Z axis. Thus,

(50)

“ %
G|
i

ﬂlmﬁ

>

Similarly, 31; = -£ T where -Z gilves the direction of the
change (normal to m and in the positive € direction). Thus,

«-Z (51)

4@
Bl
"Slmﬁ

I Ty

'aé'ff = 0 since k does not rotate and is constant in magnitude,



Thus,
OF _
WA o]

Combining (49), (50), (51), and (52),

27 7% , =V, = Y%
oty 3EA T EEN
2

-W ey
8 7

-£ - * E'¢5§A

Expanding kwx (Ew x K, ), we have, using (33),

Xw x [kw x (Ir cos 6 + Jr sin 6 + kz)]

= k@ x (Jwrcos 6 - TWrsin 6)
=-Tw?r cos é - Jw?r gin e
=W2 (-Tr cos © - Trsin o)
Using (54), (31), (32) and (36),
Ew x (EW x §,) =02 (-Tx - Jy) = - Z &Py

Expanding 2k@ x W, we have, using (43),

2Ew x (LW, + By + EW,)
= 2@, - 2/ w,

Combining (22), ®8), (53), (55), and (56),

(52)

(53)

(54)

(55)

(56)
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- oW oW oW

B Oy U558+ 8 552 + E558)
e P
LW @--3;{24-3?:9-»? jzz)
+j?‘§¥§.+ Eiéggz'+ Eﬁ;;f- ;2' e %o er
- w2r7+ [.szwe + 2mw ] (57)

The first bracket in (57) is the relative acceleration of P
(1f the A frame were not rotating), the second bracket is the
centripetal acceleration of P due to the rotation of the A
frame, and the last bracket is the Coriolis acceleration of P,
also due to the rotation of the A frame.

Equation (57) is the kinematic equation of motion of a
particle of fixed identity moving in a rotating reference
frame under the following conditlons:

1. The 1lnertial reference frame 1ls attached to the
surface of the earth with its center at the center of the
earth. We neglect the-angular velocity of the earth.

2. The origin of the rotating reference frame remains
a constant distance from the center of the earth.

3. The rotating reference frame rotates with constant
angular velocity about the Z axis.

We may write (57) in scaelar form in the r, 6, and z

directions:



oW w oV oV oV
a W et & ) — W L+ r
T Tr or r X Z 02 a'tA
we2 2
- -wr-zwwe
. awe+f2 awe+w awe awe
(C] r 9r r 09 Z 9L ayA
wGwr
=t 2wV,
awz W awz W, OW

(578)

(57v)

(57¢c)

S
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Appendix D

scalar accelerations of P in r, €, z directions,

ft/sec2

distributed body forces per unit mass in the r, &, 2
directions, 1bf/lbm

" universal constant relating force and mass,

32.174 1om rt/éec2 1bf

origin of accelerating reference frame

a particle of mass of fixed identity, lbm

static pressure exerted by other fluid particles
on P - in positive r direction, 1bf/ft2

statlic pressure exerted by other fluid particles
on P - in positive z direction, 1bf/ft°

static pressure, lbr/ft2 (for non-viscous flulds,
P = pPp = p, = same in all directions at a given

point in the fluid)
force exerted by other fluld particles on P - in

positive r direction, 1bf

force exerted by other fluld particles on P - in
negative r directlion, 1bf

force exerted by impeller blade on P - in direc-
tion of @, 1bf

force exerted by impeller blade on P - in direc-
tion opposite to (w, 1lbf



Z!

53

components of S in the r, @, 2z directions, 1bf

components of 8' in the r, ©, z directions, 1bf

force exerted by other fluld particles on P - in
positive z direction, 1bf

force exerted by other fluld particles on P - in
negative z direction, 1bf

static density of P, 1bm/ft3

angular velocity of accelerating reference frame

about Z axis, rad/sec



Appendix D

DERIVATION OF LORENZ'S EQUATIONS FOR FORCES ON A
FLUID PARTICLE WITH AXIAL SYMMETRY

We shall use the Lorenz axial symmetry assumption (refer-
ence 3, p. 990-991) to derive the forces which cause P to ac-

celerate. We will derive these equations first for a compressor.
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In Figure 5, ABCD and A'B'C'D' represent adjacent im—
peller blades an infinitesimal distance, rd&, apart. The
blades are infinitely thin and there 1ls an infinitesimal mass
of fluid, P, between the blades. The blades exert forces S
and S' on P, S from ABCD and S!' from A'B'G!D'. We now assume

P has zero viscosity, thus S and S' act normal to the blades.

Since the blades, in general, are warped, S and S' will have
components in the coordinate dlrectlons. We call these com-

ponents Sr’ Se, S S S,', and Sz'. The fluld outside of

z? r" ©
the blades also exerts forces on P at the open edges ABB!A!,
DCC'D', BCC'B', and ADD'A'. We call these fluid forces R, R!,
2, Z', respectively.

We now define:

= °r r
Fr h P
- !
r =05
o P
S -8
= "z z
Fz N P

F Fe, and Fz are called the "distributed body foroces per

r’
unit mass" in the coordinate directions. We can now write

the Lorenz equations:

- =
PF, +R-R' S “—a

8
— or (58a)



PF, = -é% ag (58b)

PF, + 2~ 7' =

U‘?l"d
®

2 (580)

From Figure 5, as P approaches zero,

P =¥ar ra@adz (592)
R = p,rd@dz (59b)
R'= (p, + 3?"" dr) ragaz (59¢)
Z= p, dr rd @ (594)
zi= (p, + -g-i—z- dz) dr ra @ (59e)

Since we have assumed that P has zero viscosity, as P approaches
zero, p, = P, = P (hydrostatic state of stress).
Combining (58) and (59), we have, after cancellation,

o

CFp - r”'g"f'ar (60a)
a
()

CF, -2 L , (600)

The equations for a turbine are different only in sign.

Our coordinate system is as follows:



—

f
We see tha*b/(t), 6, and z are reversed while r remains the

same as before.

PO

of R Rt, Fr’ Fe, and Fz are unchanged.

" Our definitions
We change the direction of Z and Z'. Z now acts on surface
ADD'A' and Z!' now acts on surface BCC'B!'. The Lorenz equa-

tions for a turbine are then identical with those for a com—

pressor (equations (60) ).

ST
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Appendix E

indicates substantial differentiation while followlng
a particle of fixed identity

distributed body forces per unit mass in the r, 6, 2
directions, 1bf/lbm

universal constant relating force and mass,
32.174 1bm £t/sec® 1bf
atatlc pressure, 1bf/ft2

scalar cylindrical coordinates of a particle P moving

in an accelerating reference frame

radius of curvature of the relative streamline along

which P moves when P is at the point r, &, z; £t

scalar streamline coordinates of P when P 1s forced
to move in the meridional plane

time as measured in the accelerating reference frame, sec

scalar components of W in the r, O, z directions, ft/sec

scalar component of W in the meridional plane, ft/sec
(for impellers with axial symmetry and straight
radial blades, W, = W)



v €

angle between Z axis and positive g8 direction (Figure 8),
rad

static density of P, lbm/ftd

angular velocity of impeller about Z axis, rad/sec

Indicates partial differentiation while holding all

other variables constant

59
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Appendix E

LORENZ EQUATIONS FOR IMPELLERS WITH STRAIGHT RADIAL BLADES

Combining (60) in Appendix D and (57) in Appendix C,

we have:
TN TP AUAe: P
+§%-E'?‘j"w2r"2wwe) (61a)
* j:z ¥ Werwr *2W) (61b)
ov_ W, W oW

+ 55.12;) (61c)

By our assumption of axial symmetry, all partial derivétives
with respect to € are zero. By our assumptions of zero vis-
cosity and stralght radlal blades, Fr = Fz = We = 0. Equa-
tions (61) become:

| oW OV IV
-22. = L+ —Z2) —@°
32« Lo, SEe v, 55+ 5 -0Ps] (62a)



goFG = 2 @)Wf (62b)
awz awz z
_.g.%=,;§(wr.;?+wz-;-£+5-ﬁz) (62c)

With straight, radlal blades, the particle P is forced to move
in the meridional (axlal-radial) plane and it is convenient to
follow its motion in this plane in terms of streamline co-

ordinates, s and n, as shown in Figure 8.

Rel&ti&hé between velo-
itles and distances

We notice that the parentheses terms in (62a) and (62¢)

are the substantial derivatives of Wr and Wz, respectively
(Appendix A, equation (15) ). That is, since i%g = Q,

DV, oV, oW, oW,

5%, ~ " STt Y253t 5%, (63a)

bl



Dwz awz awz awz
Wgswrﬁ-&wz-d—-z--l-a-ﬁz (63b)

We now agsume that the flow relative to the rotating impeller
does not vary with time ("steady" flow), thus

awr awz '
5 50 (64)
oty ~ 3%,
From Figure 9c,
W, =W sin (65a)
W, = W cos (65b)
Taking the substantlal derivative of (65):
DW
r DX DW
= W cos X & + sin & (66a)
Dty Dty ~ DEy
W
D-f—z-.-.--w sina(%%(--i-%g—coso‘ (66b)
A A A
From Figure 8,
R,DX = Ds (67)
By definition of a streamline in steady flow,
== (68a)
A
5’%; =0 (68b)



Taking the substantial derivative of W,

DI _ QW D d¥W Dn
5t = 55 T * 5 Tt (69)

Combining (67) and (68a):

g% - & (70)

¢/

Combining (66), (68b), (69), and (70):

DW 2
-ﬁ.é-z.s g—-coso<+w-%-‘g- gin & (71a)
c
DW_ 2
Wza-g:_gmo( +W-3-g-coeo( (71p)
c

Combining (62), (63), and (71):

g,Fg = 2 WV, (72b)
BT A AR ]
oz &, 'PT;' ® 38 cosX (72¢)

We now find -;% and —-E

dp _ 9p Idr, IJp 2z
?%'c'r o8 ' 9z S8 (73a)
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22 ., 9P
on  J

H
o
+
Yo
o,lQ.
SN

From Figures9a and 9b,

'3'%” sin(
-3—‘;4 = cog K
-3% = =cos K
-%%= sin &K

Combining (72), (73), and (74):
2 W2 o
_;%-.-.---ég (R— gin o{ cos A+ W =3 sino(

2

'&lzrsind--g—sino(coso(-l-w AP 24) =
c EX]

- -éf (Wés-l:-- @?r sin /)
0

3..;% L (- " cogzo( - W -52—- sincl cos

€o (]
2 W2 oW
+W'r coso - 7 sin oL+ W 5E sin « cosX) =
()

- -‘f- (- w?2r cosol)

(73b)

(74a)

(74b)

(74c)

(744)

(75a)

(75b)

o4



Combining (74) and (75):

Ip _ _ ¢ W _,.2

<2 - E;(W'S'E w?r ) (76a)
22 . ¥ w2, dr

n- g, ( o r ST (76p)

Equations (76) are identical for a centripetal turbine if the

s and n directions are as shown in Figure 9d.

‘centripetal

i

=)



Appendix F

Cy specific heat at constant pressure, BTU/1bm R

C, gpecific heat at constant volume, BTU/lbm R

8o universal constant reiating.force and mass,
32.174 1bm ft/sec® 1bf

Hy Bernoulll constant for flow along a relative gtream-
line, ft2/8902

Hi Bernoulll constant for flow along an inertial
(absolute) streamline, ft2/3902

static enthalpy, BTU/1lbm

hoA stagnation enthalpy defined by equation (110),
BTU/1bm

h,y stagnation enthalpy defined by equation (110a),
BTU/1bm

J universal constant relating work and heat,

778.2 £t 1bf/BTU

k ratio of specific heats, cp/’cv

D statlic pressure, 1bf/rt2

R gas constant, ft 1bf/lbm R

Rc radius of curvature of the relative streamline, ft
r radius from Z axis, ft

8 streamline coordinates for two-dimensional flow in
n the meridional plane

T static temperature, R

u intrinsic energy, BTU/lbm

b



£ t = <

absolute velocity, f£t/sec

relative velocity, ft/sec

static density, 1.bm/f'b3

angular velocity of impeller about Z axis,

rad/sec

G
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Appendix F

CHANGE IN RELATIVE VELOCITY NORMAL TO A STREAMLINE

We have shown in Appendix E that the Lorenz equations
for impellers with straight, radlal blades are:

2 f oW 2 .ar
22 - - 2 (W S5 - @°r '—'ae) (772)
2
= - N 2 2r
2% %( - @er S3) (77b)

If we temporarily confine our attention to changes along a
particular relative streamline, (77a) becomes:

- W 2, g
2- é%wdg w2y &, (770)

Multiplying (77c) by ds and integrating,
2
-g j —B - g—- + ("z = constant of integration = H, (78)

We see that H,(usually called the Bernoulll constant of the
streamline) is invariable along the streamline but may vary
from streamline to streamline. We now investigate changes in
Hynormal to a particular streamline. In this case, (77b)
becomes:

%ﬁ"’é{;(‘ﬁz‘"“’zr &) (77a)

(o]



A

If we differentiate (78) with respect to n (at constant s),

we have:
%j% W%-g--i- zr-‘}i-rs%iﬁ- (79)
g
But -g,_ %—n—f% —?9- , 80 (79) may be written:
¢ |
-??- Loy, w2 .4 (79a)
Rewriting (774)
g 2
.._%). L+l+wir Eao (774)
(]
Subtracting (774) from (79a), we see that:
U - (80)
TTE @

Now, if Hy,the constant of integration in equation (78), 1is
ldentical for all relative streamlines, it wlll not vary in any
direction and:

_g;%; o) (81)

Ir (81) is true, then (80) becomes:

.
LI 82
e (82)



To

Equation (82) gives the rate of change of the relative velo-
city in the normal direction, under the condition of (81).

We now investigate condition (81). If the fluid flowing
through the impeller originated in a large reservolr (such as

the atmosphere) where %ﬁ»é %% , we see from equations (77¢)
and (77d) that -g:% = %% = - L, which is equation (82). Thus,
c

in a large reservoir, equation (81) holds.

According to Kelvin's theorem (reference 9, p. 280), equa-
tion (81) will hold in any region in which three conditions are
met:

1. Frictionless flow

2. Conservative body forces only

3. Density of the fluld depends only on the pressure

Conditlon 1 has already been specified in deriving the
Lorenz equations (Appendix D); condition 2 1s satisfied by
gravity and centrifugal force flelds; and condition 3 is
satisfied, for air and other perfect gases, by the isentropic
relation:

p\o-k = constant (83)

We now specify that the flow through our compressor and turbine
impellers originates in the atmosphere and also that the three
conditions of Kelvin's theorem are always satisfied. Any flow
which satisfies Kelvin's theorem is called "irrotational®, and
equations (81) and (82) may be used in all irrotational flows.
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Equation (81) holds for relative flows only. In an inertial
reference frame, the absolute velocity (V) is the velocity "rela-
tive" to the frame, thus (81) holds, under the conditions of
Kelvin's theorem. (81) does not hold for the relative velocity
(W) in an inertial frame. Thus, under the conditions of Kelvin's

theoremn,
- 0
in an inertial frame (84a)
dHA o
w7
a"H
A
W =0
in an accelerating frame (84Db)
dHI 40
an
where, using (83),
2 2
Hy = -g, 5%3 - X— = ~g, (gy) $ - %— (85a)
2 2.2
- d - L O r
Hy = -, S‘q}e =t S
2 2 2
= =g, (g=r) § - 7~ + (85b)

HI and H, are related to the stagnation enthalpy (noa) and (\to)
in AppendixG. To show thils relationship, we make use of the

perfect gas relations:



By definition, for any substance,

h=u-+ -J-%- - (86a)
For all perfect gases,
u=20_T (86b)
v
% o6
k= c
v
- = B
c, C, =¥ (864d)
JC
_HI - Eg.:l. (869)
P ='fR 7 (86f)
h=c,T (86g)
From (llo ) and (lt0a),
~ 2 2 2
= W W r
hOA = h + E.é-o_;r W (o)
2
- v .
h.=h+ (tioa)
(o) 8 ZgoJ
Combining (o), (unoa), (86a), (86b), (86e), and (86f),
2
it s, ED R R e
| X _v?
Thus, from (85) and (87),
Hy ¥ =g,J by



We see that (84) may be written:

dh
_a_ng.;.ao
in an inertial frame (84c)
dh
0A
= # O
Doa _
W =
in an accelerating frame
—_= 3% 0
an ?

13
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Appendix G

a control surface, fixed in a specified reference
frame, through which systems flow

a control volume (the space enclosed by a control
surface)

an infinitesimal volume element of a control
volume, £t

an inflnitesimal area element of a control sur-
face, £42

an infinltesimal area element of a control sur-
face through which a system enters the control
volume, ft2

an infinitesimal area element of a control sur-
face through vwhich a system leaves the control
volume, ft2

specific heat at constant pressure, BTU/lbm R

denotes substantial differentiation while follow-
ing the motion of a system of fixed identity

total internal energy of a system, BTU

internal energy of a system, BTU/lbm

internal energy of a system just before the system
enters a control volume, BTU/lbm

internal energy of a system just beforé the system
leaves a control volume, BTU/1lbm

universal constant relating force and mass,

32.174 1bm ft/sec® 1bf



hoa

hoa in

hOA out

hoz

hor 1n

hOI out

min

out

static enthalpy of a system, BTU/1lbm

stagnation enthalpy of a system, deflined by
equation (110), BTU/1bm

stagnation enthalpy of a system Just before
the system enters a control volume which
1s fixed in an accelerating reference frame,
BTU/1bm

stagnation enthalpy of a system just before
the system leaves a control volume which 1is
fixed in an accelerating reference frame,
BTU/1bm

stagnation enthalpy of a system, defined by
equation (110a), BTU/1lbm

stagnatlion enthalpy of a system just before
the system enters a control volume which is
fixed 1n an inertial reference frame, BTU/lbm

stagnation enthalpy of a system just before the
system leaves a control volume which is fixed
in an inertial reference frame, BTU/lbm

universal constant relating work and heat,
778.2 £t 1bf/BTU

total mass of a system, 1lbm

time rate of mass flow of a system, lbm/sec

mass flow of a system jJust before the system
enters a control volume, 1lbm/sec

mass flow of a system just before the system

leaves a control volume, lbm/sec



W

wfriction

systems

static pressure, 1bf/ft?
statlic pressure acting on a system just before
the system enters a control volume, 1bf/ft?
static pressure exerted by a system Just before
the system leaves a control volume, 1bf/ft°
heat flowing into a control volume, BTU
radius from Z axls to system, ft
radius from Z axis to system just before the
system enters a control volume, ft
radius from Z axis to system just before the
system leaves a control volume, ft
static temperature, R
stagnation temperature, defined by equation (113a), R
time as measured in a particular reference frame, sec
intrinsic energy of a system, BTU/1lbm
intrinslc energy of a system just before the system
enters a control volume, BTU/lbm
intrinsic energy of a system just before the
system leaves & control volume, BTU/lbm
absolute velocity, ft/sec
relative velocity, ft/sec
work flowlng into a control volume, ft 1bf
work flowing out of a control volume because of

friction on the control surface, ft 1lbf



n in

¥n out

Wshatt
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component of relative velocity of a system which
18 normal to a control surface, ft/sec

component of relative veloclty of a system which
is normal to a control surface just before the
system enters a control volume, ft/sec

component of relative velocity of a system which
18 normal to a control surface jJust before the
system leaves a control volume, ft/sec

net work flowing into & control volume due to
static pressure (normal stresses) on the control
surface, ft 1bf

net work flowing 1nto‘a control volume due to
shearing stresses on the control surface, £t 1bf

work flowing into a control volume due to a
rotating shaft plercing the control surface,
ft 1bf

eny extenslive property of a system

the value of X per unit mass

static density of a system, lbm/ft?

statlic density of a system just before the
system enters a control volume, lbm/ft’

static density of a system just before the
system leaves a control volume, 1bm/ft’

angular velocity of accelerating reference

frame about the Z axis, rad/sec
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Appendix G

CONTROL SURFACE ANALYSIS IN AN AGCELERATING REFERENCE FRAME

, We here derive general equations relating the time rate of
change of those extensive propertles of a system which are ex-
pressed per unit mass, such as specific mass, specifioc energy,
gpecific momentum, etc. as the system flows through an imagi-
nary closed surface which 1s fixed in an accelerating reference
frame. We call this imaginary surface the "control surface®.

We define the following:

CS = an imaginary "control surface® which is fixed in

an arbitrarily accelerating reference frame.

v

P
identity. By definition, the total mass of a system l1ls constant

the invariable volume contained within CS

= a gystem, that 1s, a collection of matter of fixed

(nuclear reactions excluded).

P
X

o= 8 system different from P1

any extensive property of a system (see reference 9,
p. 24 for a discussion of "properties')

M the total mass of a system (constant, by definition)

n

x the value of X per unlt mass. By definltion,

=X
X—Ho

Consider the flow of 2 gystems, P1 and P2’ through a CS.

and P, at time ¢

Figures 10 and 1l show the positions of Pl 2 1

and time tz.



At time tl, system P1 lies entirely within the C8 and system Pz

is entirely outside the CS. At time tz, system Pl has partially

moved out of the CS and system Pz has partially entered the CS.

xout is the total amount of X of system Pl which has passed

through the CS. X, is the total amount of X of system P,
which has also passed through the CS. We now define:

X,-. 5 the total amount of X of both systems which is

t1
inside the CS at time tl.

X,, = the total amount of X of both systems which is

t2
inside the CS at time tz.
Xpq 5 the total amount of X of system P, only at any

given time ,

From Figures 10 and 11,

X51 = %p1t2 (88a)

Xg2 = Xan + Zpyg2 = Xous (88v)
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Subtracting (88a) from (88b):
Xio = X1 = %otz ~ Xp1gr * Xin ~ Xout
X1tz = Bp1t1 = %oz T Xe1 * Xout T Fin (88c)

Expressing (88c) in words, the change in the total value of X
of system P1 during the time interval tz - tl equals the accu-
mulation of X within the CS during this time interval plus the
flow of X outward through the CS minus the flow of X inward
through the C38, during this time interval.

To f£ind the time rate of change of xpl, we divide (88c)

by t, - %, (which we define as Dt):
*p1t2 = Xeat1 - DX Sz T X
Y
X X
out _ Tin
+ 5 " BT (89)
X2 = X417,
The term (-—-—Iﬁr—-) in (89) represents the time rate of accu-
mulation of X within the CS, that 1s, throughout the control
volume, V . Since V is fixed in our accelerating reference
X2 = X4
frame, we see that ( 5 ) is independent of the movement

of the systems and is a function of time only. Thus, we write:

- X (Mx)y, = (Mx)
(ic_t_%_m_ﬂ) = [— Pt =5 < (Px)av (90)
W



where ‘P is the density of the mass instantaneously within the
control volume, and AU’ 1s a control volume element. We now

find integral forms for the other two terms in (89).

LeBelhaima ( xtv, a (91)
cs
In (91), m S 3= 1s the mass rate of flow through the control

surface, ‘f is the density of the mass as 1t passes through the
cs, Wn is the component of the relative velocity W which is
normal to the 0S, and dA is a CS area element. Combining (89),

(90), ana (91):

Ba (e (pnt s { Gep, ey,
/4 Ccs

- S (x fwn dA)in (92)
Cs

If the flow is “steady", that is, if no extensive property
accumulates within the control surface with time, the term
X -

(—1-;-2-5-55;-;) in equation (90) is zero since Xpo = th. Thus,

equation (92) becomes:

X S (x YW aa) . - S (x $W ar),  (92a)
cs cs

If, in addition, the flow 1s one dimensional, that is, if the

following four conditions are met:

31
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? f f
1. % and W out are constant over all the Yout® GCS
area elements,
1] 4]
2.‘f! and W ! are constant over all the %in% CS

area elements,

1 .
3. Xout T B S (x dA)out’ that 1s, x .. 18 the mean
out as
value of all the x's over the "out® CS,
1
k, Xy, = I;; (x dA)in, that is, x,, 1s the mean value
CS

. of all the x!'s over the "in" CS, equation (92a) becomes:

= (xR, A) - (xOW A (92p)

€@onservation of mass (€ontinuity)

We now use (92) and (92b) to express the law of conservation

of mass in terms of a control surface analysis. Let X = M,

the total mass of a system. For problems not involving nuclear
reactions, M 1s constant. Also, x = ﬁ = 1. Equations(92) and
(92b) become:

0= { F5 (v S (P¥y )ue = § (49, ab),,, (93a)
v c8 c8

0= (YW, A) e - (PV, A)yy (93b)
But, in (93b), for one-dimensional flow,

mz.'-‘PwnA (o4)



Thus, from (93b) and (94),

Dout = Byn = constant = ¥ Wn A (95)

(95) is the steady, one-dimensional continulty equation. Apply-

ing (95) to (92b),

%% =m (Xyu4 = xin) | (96)

(96) 1is the steady, one-dimensional equation for the time rate

of change of any extensive property of a system.

Conservation of Energy (First Law of Thermodynamics)

Ag a system flows through space and time, the first law of
thermodynamics states that (barring nuclear reactions) its total
energy content remains constant. We conveniently separate total
energy into three catagories: internal energy, heat, and work.
Of these, only internal energy 1s a property of the system since
heat and work are dependent on the past history of the system.
The conservation of energy equation may be expressed as follows
(reference 9, p. 28, with a change in sign convention and using

substantial derivatives):

-¥krw (97)

where E 18 the total internal energy of a System (BTU) which is
instantaneously within a fixed control volume, Q 1s the heat
(BTU) flowing into the control volume by reason of a higher

g3



4

temperature outside the control volume than inside, W 1s the
work flowing into the control volume (£t 1bf), and J is heat-

work conversion factor (778.2 ft 1bf per BTU). Work may be
done by surface forces, such as pressure and shear; by body
forces, such as gravity and centrifugal force; and by line
forces, such as capillarity. We neglect line forces here.

Also, %work" done by conservative body forces is not really

work as we have defined it. These forces do "work" which is

independent of the past history of the system and thus must be
classified in the energy catagory. The work term in (97) will
then éonsist of work done by pressure and shear forces on the

control surface.

W= wp + WB.'. (98)

Wb = Scs pressure force x dlstance moved = S;s(b dA) (ﬁn Dﬁ)

. |
w2 = S B W, ar)y, - S -5 A METONM (99)
708 8

In (99), (%), is the work flowing into the CS per unit mass
in

as the surroundings push fluid in through the CS. (%) is
out

the work flowing out of the CS per unit mass as the surroundings

are pushed aside by fluid leaving the CS.

Vo = Wonart ~ ¥eriotion (100)



/
wsha.ft is the work flowing into the CS by means of a rotating
shaft wh:}ch plerces the CS. wfrict ion is the work flowing out
of the CS8 because of friction on the CS8.

Combining (97): (98): (99): and (100):

%%’T)%""%’ ($\?Wnu)in-%‘ S (% W, aA) s
cs Ccs

W W
shaft _ “friction
* 5ot D (101)

But, from (92),

%jég%%:S'gT ($e)al + S (eh?wn aA) ot
e cs

- S (e ~?wn aA), (102)
cs
where e is the internal energy per unit mass of the matter
instantaneously within the control volume or of the matter

which passes outward or inward through the CS. Combining (101)

and (102),
g , Yenart _ ¥eriction (9 0)af
DE T T JDpt ~ T JDt -52-5 fe

v
2 ( @+ v aal , - S [P + o) W aal, (103)
Scs $3 n “*“ou o '\f— n n

(103) is the general form of the "energy! equation. For steady,

one~dimensional flow, we use (96):
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%f'* ghaft _ _frictlon _ m [(qu + e)out

- (—%’74 e)yn] (104)

We now specify that our system 1s a pure substance (refer-
ence 10, p. 18). Air is a pure substance as long as it is all
vapor (or all liquid). It is a matter of experience that the
internal energy of a pure substance at rest and not acted upon
by conservative body forces 1is a definite value which depends
only on the state of the substance. We call this special
property ¥intrinsic energy", u. When a system is in motlon
with velocity W, Newton's law of motion says that its internal

energy is:

WZ
8=u+§-8—(;—3. (105)

if no body forces act upon the system. The only body force
which 1s of appreciable magnitude for our purposes is the
centrifugal field caused by the rotation of our reference frame
about the Z inertial axis (see Figure 1, Appendix A). This

2 .2
fleld produces a body force equal to - %;% where ®1s the
angular veloclty of the rotating reference frame about the Z
axis and r is the shortest distance from the Z axis to the'
system. The negative sign 1s used since the system has used up

energy in going from zero radius to radius r in the centrifugal

field. Equation (105) becomes:

2 2 2
- we oo r
&= Ut 3g T %)-g;-f (106)

8¢
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Thus, (104) becomes (noting that m Dt = M):

w W ‘ 2 2 .2
shaft friction W r
3+ T T "o ”('-fv*“*r‘n'go -Q—'Tgo Jout
' 2 2 .2
W r
(—.?J +u + %7 Q—Tgo )in (107)

Now, i1f we specify that there is Jjust one shaft plercing the
CS and this shaft 1is rotating with angular veloclity & about

the Z axis, W in (107) is zero. This is true because the

shaft
CS and the shaft are both rotating at the same speed and there
is no relative motion. We also assume that the heat transfer
into (or out of) the CS is negligible compared with the other

terms. Under these conditions, (107) becomes:

W 2 2 .2
friction - ¥V _or
(;ﬁ3+u+ go 2g° )out
2 2 .2
).} r
- + -
(Fr+ v+ 2y~ T )i (108)

If we define:

h§ﬁ+u (86a)

hpa = h + - (110)
OA 2303' €
(108 ) becomes:
JM OA out CA in



33

If we neglect the work done by friction, (111) becomes:

Boa out 7 Boa 1n (112)
(112) is the energy equation for steady, one-dimensional
flow of & non-vigcous pure substance through a control surface
fixed in a reference frame which rotates with angular velocity
¢ about the Z axis. |

If the reference frame in (107) is an inertial frame,

(107 ) becomes:

g ¥ ohett wfriction

(T?'J' us ﬂ)out
- +u+ v2 ) (107a)
'\'f'ﬂ' Zg4J 'An 7e

If we now define:

h;%-ﬁu (86a)

2
- \'4
hor = h + E:J (110a)

(107a) becomes, assuming negligible heat transfer,

wshaft - wfr iction _

I TN hox out ~ POT in (107b)
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If we neglect the work done by friction,

W
shatt _ 4

orout ~ Porin (107¢)

(107c) 1is the energy equation for steady, one~dimensional flow

of & non-viscous pure substance through a control surface fixed
in an inertial reference frame. '

We may express h,, in terms of T and V by using (86g) and

(110a):
ve .
hOI=GpT*§-g—;-J'=Cp TOI (113)
- ve
Tox =T+ To (113a)

o “p
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out
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Appendix H

indicates substantlal differentiation while fol-
lowing the motion of a system of fixed identity
universal constant relating force and mass,
32,174 1bm £t/sec? 1bf
total mass of a system, 1lbm
time rate of mass flow of a system, lbm/sec
a system
power developed by a rotating shaft, ft 1bf/sec
radial distance from Z axls to system, ft
radial distance from Z axis to a system Jjust
before the system enters a control volume, fti
radial distance from Z axis to a system just
. before the system leaves a control volume, ft
unbalanced torque exerted by a system (lying
within a control volume) because of friction
on the control surface, ft 1bf
unbalanced torque exerted on a system (lying
within a control volume) by a rotating shaft
vhich pierces the control surface symmetrically
about the Z axis, ft 1bf
unbalanced torque acting about the Z axis,
ft 1bf

time, sec



e in

V-b-out

Wshart

that component of the absolute velocity of a
system which lies in a plane perpendicular
to the Z axis and i1s normal tq r, £t/sec

the value of ngjust before a system enters a
control volume, ft/sec

the value of V5 just before a system leaves .a
control vélume, ft/sec

work flowling into a control volume due to a
rotating shaft which plerces the control
surface symmetrically about the Z axis, £t/1bf

total angular momentum of a system about the
Z axis, defined by equation (114), 1lbm ftz/sec

unit angular momentum of a system about the Z
axis, defined by equation (115), f£t2/sec

angular velocity of the rotating shaft which
plerces the control surface symmetrically

about the Z axis, rad/sec

9



Appendix H

EULERS PUMP AND TURBINE EQUATION

Euler's equation relates the shaft work required to pro-
duce a gilven change in angular momentum (moment of momentum)
of a system. We speclify that our system instantaneously occu-
pies a control volume which 1s fixed in an linertial reference
frame.

If the system,as 1t flows in the inertial reference frame,
has a component of velocity which wlll produce a torgue about
some given axis (the "2" axis), we say that the system has
angular momentum about the Z axis. We use (96), Appendix G,
to express the time rate of change of angular momentum of the
gystem as 1t flows through a fixed control surface. Figure 12

shows a system P which has a component of veloclty, V about

el
the Z axis. r is the shortest distance from the Z axis to P.

Plane paralle|
- toXY plane.

We define:

>
u

= angular momentum about the Z axis S Mr Vg (114)

e
it

= angular momentum per unit mass = r Vg (115)

2
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From (96), (114), and (115),

D(Mr V)
5e— = o L(r Vg)

- (r V) ] (116)
out in

From Newton's law of motion, the sum of the unbalanced torques

ecting on the system about the Z axis equals the time rate of
change of the angular momentum about the Z axis.

D(Mr V_)
goZ.TZ = _ﬁ__@__ (117)

Combining (116) and (117),

g, 2—T, = m [(rVg) - (rvVy) 1 (118)

out in

We shall specify the following:

1. A C8 concentric with the Z axis, and symmetrical
about the Z axis. |

2. If there are electrical or magnetic flelds or capll-
lary forces present, their effect on the system is negligibls.
Electrical and magnetic fields, even if very strong, will not
affect the flow of air, unless the air were lonized. Capll-
lary forces are present only in control surfaces of very small
size.

Specification 1 means that pressure forces and gravity forces

have no unbalanced torque about the Z axis, regardless of the

inclination of the Z axls. Specifications 1 and 2 together



mean that only shear forces may have an unbalanced torque about
the Z axis. The forces mentioned are the only forcesof im
portance in an lnertial reference frame.

For convenilence, we separate the unbalanced shear torques

into two groups:

-2 Ty = Tghart ~ Trriction (119)

Tshaft 1s the torque exerted on the system by a shaft which
pierces the CS and 1s symmetrical about the Z axis (positive
for a compressor, hegative for a turbine). Tfriction is the
torque exerted by the system on the boundries of the CS
(always negative). Friction within the CS does not affect the
analysis.

Ir the shaft rotates with constant angular velocityw about

the Z axls,

T

- Pshaft - n wshaft (120)
gshatt w Maw

Combining (118), (119), and (120),

nW
€ [('—'Srhaoit) = Trraotson] = B (P Vglouy = (7 Vgl

v T

w
sh;ft - friction® g_ [(r Vg)gyt = (r Vglyn] (121)
18]

(121) is Euler's pump and turbine equation for steady, one-
dimensional flow through a fixed CS in an inertial reference

frame.
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Appendix J

net flow area normal to the mean streamline, £12

local speed of sound, defined by equation (124),
ft/sec

reference velocity (local speed of sound correspond-
ing to stagnation temperature, ecuation (129) ),
ft/sec

universal constant relating force and mass,
32.174 1bm ft/sec® 1bf

constant in equation (143), 1/sec

ratio of specific heats

Mach number as measured in an accelerating reference
frame, defined by equation (123)

Mach number as measured in an inertial reference
frame, defined by equation (122)

time rate of mass flow along the ﬁean streamline,
1bm/sec

static preasure, 1bf/ft2

symbol used in egquation (155)

gas constant, £t 1bf/lbm R

radial distance from the Z axis, ft

distance along the mean streamline (Figures 8 and 94), ft

static temperature, R

stagnatlion temperature, R

absolute velocity, f£t/sec

relative velocity, ft/sec



4

sub 8

sub 1.1

symbol used in equation (153)

static density, lbm/ft’ |

angular veloclty of accelerating reference frame
about Z axis, rad/sec |

at constant entropy

on the mean relative streamline at the impeller

inlet
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Appendix J

ONE-DIMENSIONAL ISENTROPIC FLOW OF A PERFECT GAS
ALONG A RELATIVE STREAMLINE IN A COMPRESSOR OR TURBINE IMPELLER
WITH STRAIGHT RADIAL BLADES AND AXIAL SYMMETRY

In this appendix, we express the governlng physical laws
of lsentropic flow in an impeller in differential form. We will
then have "influence coefficients" (reference 9, p. 227) which
express the effects of area and radius changes on fluld proper-
ties such as statlc pressure and static temperature along a
relative streamline.

We now define:

M= I = absolute Mach number (122)
M, = %‘- 2 relative Mach number (123)
02 = g, (-Q-E) Z local sgpeed of sound (124)

L o .

We may transform (124) by using (83), the ilsentropic relation
for a perfect gas, and (8(f), the perfect gas pressure-density-
temperature relationship.

p = constant x ¥ (83)

p=WRT (86f)

Taking the logarithmic differential of (83),



Combining (126) and (8¢(fF),

<
(’;‘%)g = kK RT

Combining (127) and (124),

o® = gk RT

Also,

2 .
o 2 gk RT,

From Appendix E, equation (76a),

W 2 r
%%:--é%(w-g?-w r '%—5)

For changes along a particular relative streamline,

dp=_g£_(w2%¥__w2r2%r_)
o

Noting that, from (123) and (128),

M, =

(126)

(127)

(128)

(129)

(76a)

(760)

(130)
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From' (86¢) and (130),

2 2 2
.gI;W =§—E%—w ==kpMA (131)

o

We may now write (76c) in the differential form:
QP---kMZdW+k@—-2-2"2 ar (132)
P A W o T

We have, from Appendix G, the continuity equation for one-

dimensional flow:

m=PAW = constant (95)

Writing (95) in difrferential form (by differentiating the

natural logarithm):

W F-o (133)
Similarly, (86f), (83), and (130) may be written:

Gp.of . | (134)

. Q:P‘f. (135)

in%? =2 -2 (136)



We. now have 5 simultaneous equations (132 to 136) in 7 un-
aM
knowns; =£, T’ m—'é_ d g—A;, %?-, and. MAg . We are free

to choose any 2 or these unknowns as independent and express

each of the remaining 5 unknowns in terms of these 2. For our
purposes, we choose g—“ﬁ and@—-z— = a8 the 2 independent vari-
ables. We then have, using (132), (135), and (133):

%‘p""‘kMAZdW*k“’—T "‘=kq£ k(- 2 - )

Rearranging,
aw _ _ 1 dA _ 1 azzrz_q; (137)
v z & Z 2T 37
l"'MA l"MA C

Using (132) anda (137),

&p -—-——-é-w“‘z s, k @lr’ar (138)
= -+ —
P iw? BT im?Z 2T
Using (135) and (138)
a M2 1 2 »? ar
—:{-“—7 =z 45 F (139)

Using (134), (138), and (139),

g Mp(e-1) dA . k-1 % r

dr
+ o 140
T m? K 'ig? & T (140)

(0O



From (128),

. -4 - (141)

Using (136), (137), and (140),

2 2
Gy L 2rM D) a @ e (g,
A ' ' ¢

These formulas are summerized in Table 1.

ol
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TABLE 1

INFLUENCE COEFFICIENTS FOR ONE-DIMENSIONAL ISENTROPIC FLOW
OF A PERFECT GAS ALONG A RELATIVE STREAMLINE IN A
COMPRESSOR OR TURBINE IMPELLER WITH STRAIGHT
RADTAL BLADES AND AXIAL SYMMETRY

dA W~ r~ dr
i —?- T
2 2
EM_%__ _ 2+ MT(k-1) Y
5
M, 1-M, 1-M,
aw _ 1 !
2
ap kM, X
p 1-—MAz 1—MA§
2
ay My 1
€ 14,2 1-,2
2
ar _ ac? My~ (k1) k-1
T 2 v 2 2
c 1 &A 1 MA

All of the above was taken, by permission, from unpublished
notes of Professor Ascher H. Shapiro.



From Table 1, we list the following rules for one-dimensional
flow, within the specifled assumptions:

1. Area increase and radius increase have the same
qualitative effect on all listed propertlies and conversely.

2. Due to the factor 1-M;° in the denominator, all
listed properties undergo opposlte effects as Mp passes
through unity. For example, radius (or area) increase de-
creases My 1in subsonlc flows and increases M 1in supersonic
flows.

' 3. Increase of area or radius always drives My away
from unity. Thus, for a centrifugal compressor with subsonic
entry, the increase in radius makes it very difficult to
reach Mach number unity (due to the factor r2) while the op-
posite 1s true for centripetal turbines with subsonic entry.
We see that choking (Mach number reaching unity) will normally

occur in the inducer of a compressor and in the exducer of

a turbine (with subsonic entry).
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Area Varlation Along a Relatlive Streamline for a Linear Varilation

in Relative Velocity with Radlus

We now derive, in closed form, the necegsary area change
required to maintalin a prescribed linear variation of relative
veloclity with radius. This prescribed velocity variation has

the form:

W=W, ,+K(r-r ;) (143)

where K 1s a prescribed constant having the dimension sec -

and station 1.1 1s at the impeller inlet.
From Table 1,

%ﬂg- 1 dA L, @ &
5 2 K - r
1-M, 1-M, ¢
Thus,
A _ _ (1 2) & e rf ar (144)
- A'W T Tz T
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From Table 1,

2
:gz 3 Mi-}(;{zl) %& + Iﬁ? ‘-‘f-;%-z- .g?. (145)
Combining (145) and (14%),
a? = - c® 4,%(-1) P & (k-1) @WPrar  (146)
Noting that
o? 2 = w? (123)
(146) becomes
ac? ] ~(k-1) Wa¥ + (k-1) w°r ar (1462)

Before integrating (146a), we must select one particular
relative streamline as being a sort of average or "mean!
streamline which represents the flow through the entire
impeller channel (see Figure 14 in Appendix L ).
Integrating (146a) from the impeller inlet to any
station downstréam on the "mean" relative streamline,

2 2 _ k-l (2

¢¥=¢c11 iy 20+ 5 wfe® - ry 0P )

Introducing (147) into (144),

w? r? ar

E'A" = "(1"MA2) %H' -
- - 2 r
01.1° - % (W2 - Wy 17) + BR P (- ry.q0)

(148)



From (143),

2 _ 2 - 2 (p - 2
We =W bW R - ry )+ B (r - py )

1.1
(149)
Introducing (123) and (149) into (148),
aA . aW  2(¥aW - o2 rar)
=+tw = =
c.
where (150)

20 = 20 ;% - (k-1)2W; § K(# - ry 1) + K2(x - »; 1)%]

+ (1\:---1)6‘32 (rz - r1.12)

From (143),

aw = K ar (151)
Inserting (151) and (143) into (150),

Kdr+2K2(r-r11)dr-2¢o2rdr

2w
L i (152)

aA , av_ M
tw

2¢

We now observe that

d(Zcz) = dx = _(k-l)(zwl.l K dr) -2 G&"l)Kz (r - rl.l)}(lSB)

ar + 2 (k-1) w?r ar

(152) is of the form

dA . aW 1l &
= (154)
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Integrating (154),

o7

A W A W 1 X
in + 1n = 1n ( ) = = = 1In
L V1.1 1.1 "1 LT x5
1
M FT
Ao w @
1.1
where
2 2,.2 22 M 2. 2., p 42
(2°1,1 =(k-1)K*(r°- y.q )['K W“H(k-l)w ©yq [(rl.l) -1]
3
2¢q 1
2,2 _ 2
a . Mg e L Gl TN
B11 W +Krr ) e 1
2 1 k=1 1.1 r -
[g'-rr—_?—-—)- + 1] + > 5 [(;'-—-) -1])
1.1 1.1
(155)

(155) gives the required area variation with radius for one-
dimensional 1lsentropic flow with a linear variation in rela-
tive velocity. |

If K= 0, that is, if W = W, q = constant, (155) becomes

2 2 =
- @ T 2 :
I:%'I = (e B2 L1 [(Z—) - 1D (156)

C1.1



In order to illustrate the effects of important parameters, we

rearrange (155) and introduce (123).

A 1 k-1 XT

X = KT 1= == W_J:ler lAz(rr -1)
1.1 1.1, r - 1.1 : 1.1
1+ (% 1)
1.1 1.1
-t
k-1
: 2 2

Kr = IAYERY 2

1.1 Ti.,1 ¢y 1 1.1
(155a).

Inmportant parameters are seen to be:

2 2
Kri 1 » " ang @O_T1.1
Wop 7 rqp” LN 2

1.1

log
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Appendix K

local speed of sound, ft/sec

universal constant relating force and mass,
32,174 1bm ft/3902 1bf

ratio of specific heats

Mach number as measured in an accelerating reference
frame

distance normal to the mean streamline (Figures 8
and 94), ft

static pressure, 1bf/ft2

local radlius of curvature of the mean streamline
(Figures 8 and 94), ft

radlial distance from the Z axis, ft

gstatic temperature, R

relative velocity along the mean streamline, f£t/sec

static density, lbm/ft>

angular veloclty of accelerating reference frame

(impeller) about Z axis, rad/sec



Appendix K

CHANGE IN FLUID PROPERTIES NORMAL TO
THE MEAN RELATIVE STREAMLINE

[[O

Ve paréllel the development of Appendix J. The govern-

ing physical laws for isentropic changes in fluld properties

normal to the mean streamline are as follows:

From Appendix F, equations (77d) and (82):

2 dn 2 2 4dr
AL At A

aw _
W

16

We have shown previously (Appendix J, (131) end (123»:

£ w2 . 2
3 kp My

Q
i
giJik

Introducing (82), (131), and (123) into (774),

2 2
dp _ ., 2 d¥ , . @° r° ar
f’k%xr*kfﬁ‘r

(774)

(82)

(131)

(123)

(132)

Thus, we see that for isentropic and irrotational flow, the

differential pressure change normal to a streamline 1s identi-

cal to the change along a streamline.
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Equations (13%), (135), (136), and (141) are valid in any

direction:
dp _a¥ , ar (134)
Y 2N I , 3
%2= ké_-;?; (135)

2

aM
-—-é‘-— =2 %"—’ - %2- | (136)
dcz aT
—— = T (142)

We now have 6 simultaneous equations [ (82), (132), (13%),

2
(135), (136)é and (l’-%) ] in 8 unknowns; ¢, R -’59, &z-c;g_ %_r_’

daM
d s %?-, Mg , and %g— As before, we are free to choose any
A
2 as independent and express the remaining 6 as functions of
dn wz rz ar
these 2. Here we choose T and ——5— ¢ as the lndependent
c .c

variables. We then have,

%}1 = - %n; (82)
4P . x y 2 dn 4 2% ar (
2 .2
Q_\,£=MA2%+@_§_ & (158)
2
%E = MAz(k-l) %9- + (k—--l)(")2 g %—I: (159)



2 2 2
9-;.- = Az(k-l) %‘5- + (k-1>‘9-—5~ %—‘3 (160)
C [ (o]
am,® - 2 dn w2 r? ap
—3 = -[2 + M,%(x-1)] R, -(k-1) vl (161)
A

These‘ formulas are summarized in Table 2.
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TABLE 2

INFLUENCE COEFFICIENTS FOR ONE-DIMENSIONAL ISENTROPIC CHANGES
IN FLUID PROPERTIES OF A PERFECT GAS NORMAL TO A RELATIVE
STREAMLINE IN A COMPRESSOR OR TURBINE IMPELLER WITH
STRAIGHT RADIAL BLADES AND AXIAL SYMMETRY

dn @®r? ar
Re c2 r
a,® 2
— -[2 + ¥,(x-1)] -(k-1)
My
L -1 0
a 2
5-’9- kM, k
a 2

& . 4t M, (x-1) (k-1)

3
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From Table 2 we list the rules for changes in propertles
normal to a streamline:

1. Increase in distance from the center of curvature
and radius increase have the same qualitative effect on all
liated properties (except relative velocity) and conversely.

2. Relatlve veloclty decreases as distance from the
center of curvature increases and conversely, but relative
veloclity 1s unaffected by changes in radius.

3. Passage of Mp through unity has no effect on the
direction of changé of all listed properties.

4. TFor changes in radius only (constant area), all
listed properties are unaffected by Mach number. Thus, for
simple radius change, compressibility of the gas has no ef-

fect on changes normal to a streamline.



Appendix L

Fg distributed body force in the 0 direction,
1bf/1bm

8o univeraal constant relatiﬁg force and mass,
32,174 lbm £t/sec> . 1bf

h static enthalpy, BTU/lbm

o stagnation enthalpy, BTU/lbm
universal constant relating work and heat,

778.2 £t 1bf/BTU

K constant defined by equation (167), BTU/lbm

M total mass of a gsystem instantaneously within
a control volume, lbm

P static pressure, lbf/ft2

r radial distance from Z axis, ft

8 entropy, BTU/lbm R

T static temperature, R

v absolute velocity, ft/sec

Vo in component of absolute velocity of a system in
the O directlon Just before the system enters
a control volume, ft/sec

Vb out component of absolute veloclty of a system in
the © dlrectlon Jjust before the system leaves
a control volume, ft/sec

W relative veloclity, f£t/sec

Wr components of relative velocliy in the r and

" z directions, ft/sec

Y,



Wshart

sub T
sub 1
gub 1.1

%)

work flowlng into a control volume due to a
rotating shaft which plerces the control
surface symmetrically about the Z axis, £t 1bf

static density, lbm/ft3

angular velocity of accelerating reference
frame (same as angular veloclty of impeller),
rad/sec

in an inertial reference frame

at the inducer inlet

at the lmpeller inlet
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Appendix L

PROPERTIES AT THE IMPELLER INLET

To determine the fluld properties at the impeller inlet
(inducer outlet), we write the governing physical laws for
fluid flow at the impeller inlet (station 1.1).

1. Relatlon between properties of a pure substance

Tds = dh - ﬁ-— dp (162)

2. Equations of motlon in an axisymmetric rotating reference

frame (equations (62a), (62b), (62¢), and (64) from Appendix E)

oV oW
- R O SF W, 5E -0 (163)
nge = war (62b)

- a sz awz
—5-5 = g-z;- (Wr -;——r— + Wz —;—E) (164)

3. Euler's equation in an inertial reference frame (equation

(121) from Appendix H, and neglecting friction)

W A 2 .2
SR . (@), . (165)

o)
where Ve in Z 0 and Ve out Z Wr; r is any radius at the impeller
inlet. VWe see from (165) that the shaft work is not uniform at

the impeller inlet but varies as the square of the inlet radilus.



e

L4, Energy equation in an inertial reference frame (equation

(107b) from Appendix G, and neglecting friction)

2 2
W v v
haft 1.1 1
._...H._S = J[ (b, mgo ) - (hy + ﬂgo )JI (166)

Ve previously assumed that the inducer inlet flow was irrota-
tional (Appendix F), thus from (84c)and (noa),

2
V
hor = hl + = constant at any radius = K (167)
Combining (166) and (167)
2
W v
ghaft 1.1
v = J(hl 1 -2—8—3— K) (168)

o)

We now use these 4 equations to determine the variation of
relative velocity with radius at the impeller inlet.
From (162),

oh 8 1 ;
*5?”-3';"3‘?%}% (169)

For frictionless, adlabatic, and irrotational flow,

-%—1; = 0 (the entropy is constant in any direction)

(169) becomes,

Qh 1 2p
r-JT¢ dr (170)
If we assume that Wr at the impeller inlet is zero,
(163) becomes:

ar .IL W2p (163a)



Combining (170) and (163a),

oh . 1 _ @2
or - g, i

Combining (165) and (168),

w2 p2 v2
'tr“" h + -—-17 -K

But, at the impeller inlet, from (175a), Appendix M,

(172) becomes:

w2 p2 w2
T:r“h*m‘x

Differentiating (173) in the r direction,

2
’g%TI (2r) = i;%%'+'2—73 (2w 1;—4

0

Combining (174) and (171),

2. 2
®w_r _ wr LA A
g " B T EJ OT

0o

Thus, since W # O,

oWw
97~ 0

na

(171)

(172)

(175a)

(173)

(174)

This means that W 1s constant radially at the impeller inlet,

1f the assumed condlitions are true.



This result checks with eguation (82) in Appendix K.

g;.’. - - & (82)
c
If Wr and We are zero at the impeller inlet, the fluid is
flowing parallel to the Z axls and the curvature of the rela-
tive streamlines 1ls zero (Rc is infinite). Under this con-
dition, (82) becomes

Z
o

(20
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Appendix M

area normal to the mean streamline, ft2
gross area normal to the mean streamline (not
including area taken up by blades), ft2

that part of A_ which lies between the casing

g
and the mean streamline, ft2

that part of Ag which lies between the hub and
the mean streamline, ft°

net area normal to the mean streamline (includ-
ing area taken up by blades), £t

inertial control surface used to calculate
impeller tip speed (Figure 13)

local speed of sound, ft/sec

local speed of sound cofresponding to local
stagnation temperature, f£t/sec |

specific heat at constant pressure, BTU/lbm R

specific heat at'constant volume, BTU/1lbm R

an infinitesimal distance travelled along the

mean streamline by a particle of fixed

identity (Figure 19), ft

the component of Ds in the positive r direction, ft
the component of Ds in the positive Z direction, £t

the infinitesimal change in o< corresponding to

Ds, rad

an Infinitesimal distance measured normal to the

mean streamline, positive when away from the cen-

ter of curvature of the mean streamline, ft

121



aw

al =) "

51

the infinitesimal velocity change normal to the mean
streamline corresponding to dn, Tt/sec

8lip factor (ratio of actual tangential component
of absolute veloclty at impeller outlet to impeller
tip speed)

universal constant relating force and mass,
32,174 1bm ft/sec® 1bf

enthalpy corresponding to stagnation temperature,
BTU/1bm

universal constant relating work and heat,
778.2 £t 1bf/BTU

ratio of specific hests, CP/CV

total mags of a system, lbm

molecular mass of fluld flowing through ilmpeller,
lbm/mole

Mach number measured in an accelerating reference
frame (defined by equation (123) )

Mach number measured in an inertial reference frame
(defined by equation (122) )

time rate of mass flow through impeller, lbm/sec

reference mass flow defined by equation (181), lbm/sec

distance measured normal to the mean streamline,posi-
tive when away from the center of curvature of the
mean gtreamline, f't

distance from center of curvature of mean streamline

to mean streamline (Figure 19), Tt

|22
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ol

ol

or]

distance from center of curvature of mean stream-
line to casing (Figure 19 and 24), £t

actual radius of curvature of casing (Figure 24), ft

distance from center of curvature of mean streamline
to hub (Figures 19 and 24), ft

actual radius of curvature of hub (Figure 24), ft

center of curvature of mean streamline (Figures 19
and 24)

center of curvature of casing (Figure 24)

center of curvature of hub (Figure 24)

static pressure, l‘bf/ft2

1sentroplc stagnation pressure, 1bf/ft°

ga.s constant for particular fluld flowing through
impeller, ft 1bf/lbm R

universal gas constant, 1545.32 £t 1bf/mole R

local radius of curvature of any specified relative
streamline, Tt

local radius of curvature of mean streamline,
£t (R, = n)

radius from Z axis, ft

radius from Z axis.to mean streamline, ft

radius from Z axis to casing, £t

radius from Z axis to hub, ft

imaginary hub radlius defined by equation (180), rt

static temperature, R

123



Tfriction

wfrict.ion

wshaft.

'y

Dot =

24

adiabatic stagnation temperature, R
unbalanced torque exerted by a system (lying

vwithin a control volume) because of friction
on the control surface, £t 1bf

blade thickness, £t

absolute velocity of fluild, f£t/sec

tangential component of V, ft/sec

relative velocity of fluid, ft/sec

relative velocity along the mean streamllne,
ft/sec

relative velocity along the casing, ft/sec

relative velocity along the hub, f£t/sec

work flowing out of a control volume bhecause
of friction on the control surface, ft 1bf -

work flowing into a control volume due to a
rotating sharft which plerces the control
surface symmetrically about the Z axis, f£t/1bf

number of blades

angle between fangent to mean streamline and.
Z axis (Figure 19), rad

a finite increment in cot ¢ , defined by
equation (205)

a finlite increment in ;, defined by equa-
tion (206), rt

static density of fluld, lbm/ft’

fluid density corresponding to stagnation tem-

perature and pressure, 1bm/ft3



@ angular velocity of rotating shaft and impeller,
rad/sec

sub 1 at the inducer inlet

sub 1.1 at the impeller inlet

sub 2 at the impeller outlet

gsub I quantity measured in an inertizl (non-accelerating)

reference frame
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Appendix M

NUMERICAL EXAMPLE -~ COMPRESSOR IMPELLER

Universal constants

g, = 32. 174
J = 778.2
R = 1545.32

Properties of air (assumed constant)

¥ = 28.970
b3
R = = = 53.342
: ¥
¥ = 1.4000

cp = E%I % = ,2399

cy =-;-i2 = ,1713

Performance parameters

Tol = 550
Poy = 14.7 PSIA
P
02 . ¢
Po1
m= 10

where station 1 and statlion 2 are shown in Figure 13.
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Calculation of mrg

From (121), Appendix H,

W T ’
shaft friction® W -
Y - = " & [ (rVg)y, = (r ve)lJI (121)

From (107b), Appendix G,

W |
shaft _ “friction -
T T = J‘(h02 ho])I (107v)

We choose our fixed inertial control surface as shown in
Figure 13. The only parts of the CS which are not at fixed
walls are the Anlet and exlt areas, [1] and [2]. If we as-
sume that the flow at [1] and‘[gl is one dimensional, the
friotion work term in (107b) 1s zero since there is no motion
at the fixed wallé and no force component parallel to the CS
at \[1] and [2]. This conclusion 1s true even if the fluid
‘were viscous. |

In (121), for a viscous fluid, Teriotion W11 not be
zero, even though the CS boundries are fixed walls. By our
asaumption of a frictionless (non-viscous) fluid, however,
this term is assumed to be zero.

Combining (107b) and (121), and noting that Vo1 ¥ 0,
Voo s f,Wr, where T, = glip factor,
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r w2 152
8 2 «Jh,-ha )e=dc, (T,-T.)
8o 02 ol ‘I % 02 ol‘I

z/goJc
wry =V S (T = Tyy)

T

‘ Poz E 286
o) - ez -

TOZ - Tol = 380

Assuming £ = .913,

wry = 1582

Galculation of inducer and impeller casing radius, r,

We now select the casing radius which will pass the maximum

mass flow at a specified maximum relative Mach number, L Ay—

Figure 14 shows the hub, mean, and oasing radli and the mean
streamline. The mean radius and streamline are discussed later.
The velocity triangles af inducer inlet and outlet are given
in Figure 15, which is a cylindrical section A~-A through the
inducer (see Figure 14). |

From Figure 15,

2 2 2 2
2 2 2 2
Visg =Wy *e gy (1758)
Ver = ©
v
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For adiabatic flow, we define:

- k=1 ., 2 Ly
‘1‘0 = (1 + === MI ) (176)

Combining (129), (128), and (176),

0" = [o®(1 + Bk i)y (177)
Combining (175), (122), and (123),
(M2 o?) = (2 ®) +a® 2 (178)
. 1 1
Combining (178) and (177),
2 2 ~ 2 2
¥ % 1M % |, w2 v ?
k=1 4 2 X=1 o 2
LS L NN
3
2 21
MA — MI 3.?_!.‘3:]:. (179)
k=1, 2 %1 T2
PR i N

(179) ’13 a dimensionless "tip speed parameter®, which expresses
the dimensionless impeller tip speed as a function of Mach
numbers and radius ratio. Focusing our attention on the in-
ducer casing radius where M." A is a maximum, we derive a mass
flow parameter which will allow us to select an inducer casing

which
‘ radius, at a given M,,,Awill pass the maximum mass flow. We

define the following:
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ms ‘el v, W xrcz - rh'z) (180)

where m is the actual design mass flow through the machine,

r, is the inducer casing radius, and r,' is the imaginary hub
radius which will give the net flow area normal to vy (the flow
~ area which includes the blockage of the inducer blades). The
actual hub radius, e must be smaller than gh' and will be
calculated later. Also,

- 2
m, S *Ll o1 TTp (181)

where m, is an imaglnary reference mass flow--the mass flow
which would flow through an area equal to nr, 2 if the fluid
density and velocity were 'eol and ¢ - We now combine (180)

and (181) in dimensionless form:

n__ €, vl(’éz - rh'z) ¥y (Mye)y (r°2 _ rh'z)
To Yoy ooy T2 ‘(1["(1““2" M )J Ta Ty
- M P T
o, I YL ol
= = 182
= r ! 2 Po1 1 ( )



But,
X
p, 1
o ()
Po1 To1
2
L% 1
T 2 -
ol o1 1|k 1 MIZ .
Thus,
k
Py Ty 1 kI k=1 5 2
it - , (L= )
Poy 11 k=1 . 2 1 1
W N
1
.
~ =1
= (1551 MI?-)1 (183)
Combining (182) and (183),
_ k+1
m . -
o = (14551 M | (184 )
b “u ==

(°)-<h>

Using (184) and (179), we may plot curves of

m
m r, T

S vs. W2 o for any assigned maximum value
r_ “ r 1 © o1 T2 '

L) - (2

Ta )
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of MlA' For this design, we are using MlA = 0.900 and this
curve 1s plotted in Figure 16, for k = 1.4, by taking corres-
ponding'values of My; in (184) and (179). The calculations

are given on the next page.
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Now, if we assume a value for i,-g—, and knowing wrz and ¢ 12
2 o

we can plot a curve of %— vs. -i,-ci . This 1s done by assumlng
(o] 2

r
values of 52- and, from Figure 16, reading off the corresponding

2 2 , 2
m Te Th m
values of — / (==) =~ (==—) . The values of =— are calculated
m r r m
o 2 2 °
r

and plotted against -i_-c-’- . Figure 17 1s this curve for an assumed
2

rh'
—— ratio of 0.25.
T2
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From Figure 17, a radius ratlo of 0.55 is selected and

= .0975 is read from the curve.

EIE

(o]
m = -.%’73 = 102.57

P
Yo. = R.-T._.f’l = .0722
1 ol

So1 =JgoE R Tol = 1149.6

nm
2~——_..Q.__'==, 35
o =61 %1 ™ »

r, = .627

' = 0.25 r, = .1568

r. = 0.55 r, = . 345

The above analysls was adapted from reference 12.

(294



Angular velocity and actual hub radius

@Y

W= —2 = 2523

2

n (v 2. rh'z) = .296

A -
1 net c
We now assume values for:

Z. = number of inducer (and impeller) blades = 23

= blade thickness at inlet (in a plane normal

<t
n

= actual hub radius =

5
294 l/ 2 Tlyity Bty A net
r? - 22 ) - (“lnety

= .,130

Properties at inducer inlet

We assume:

€, = .07



Using this assumed density, we can calculate:

V1=?—-I§———— =L"82
1 "1 net

2
v
- - 1 -
T, = Tol §§;3P35_ = 530.7
k
=T
Ty
Py = Py ('F;;) ~ =12.98 PSIA
144 p

P, = 'R"T;‘l‘ = .0660 # .07

Second trial:

¥, = .0650
Then:
| Vv = 520
T, = 527.5

.0650 O0.K.

-5
)
]

14t
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"Properties at impeller inlet

We now calculate the value of W at the impeller inlet.
We have shown in Appendix L that W is constant from hub to casing
at the impeller inlet 1f Wr is zero at the impeller 1inlet. By
continulty, assuming no change in inducer flow area in planes

normal to the Z axis,

A = A

1 net 1.1 net
~Pl v, = ‘?1.1 W, , (from (95) and Figure 15)
33.80 =¥ W (285)

From (165) and (166),

-7 .) (186)

ol.1l ol I

Since Ty 1s constant radially, (186) shows that T , ; varies
as the square of ry ;. From (186),

w? r1.12
To1.1 = To1 * T 5 (187)
Using the isentropic relation,
L
k-1
Tol.l)

Po1.1 ® Po1 (T"_“01



4

And (187), we can write: ' X
wz .2 =TI
1.1
Pyp.1 = Poy (1 + 2,7 o, o{ (188)
From (113) and (175),
2 2 2
. V.1 @ Ty P
1.1 ZgoJ cp 2go °y ol
2 2 2
W r
. M o T3
117 To1 T 253 op * 2,0 o (189)
Also,
k
k=1 _
' Ty .1 '
P1.1 7 Por1 () (190)
Pi.1
.- - (86f)
Combining (86F), (190), (188), and (189),
1
Po1 2 2 2F1
f1.1 = et e 1(230J ¢ To1” W11 t@'Ty 57)
R(Tol) (ZgOJ %a '
(191)

To use the one-dimensional approach, as we have done up to now,
we must use an average denslity at the impeller inlet. We define

this average density as:



4

Ts
S .2 &
T
v ] = h - m (192)
‘( 1.1 r -r A1.1 net wi.l

The integral in (192) is evaluated by Simpson's rule after an
assumed value of Wy ; is inserted in (191). After ‘?l.l is
calculated, the assumed value of W; , 1s checked by using
(185). After several trials, we find:

€ 1.1 = 0778

Wy q = 435 (193)

Detailed calculations: In (191), we use

Pyp = 2116
R = 53.342
Tol = 550

32.174

[10)
(»]
1l

J = 778.2
k = 1.4000

O = 2523



P, o = 6.410 x 2079 (6.611 x 10° - W, % + 6.365 x 106 »

First trlal: Assume Wl 1 = 450

station

0
1
2
3
I

Simpson's Rule:

r

h

_ .054 -
= (.0695 + .2896 + .1530 + .3268 + .0882) = .01670

. 01670
fi 1l

=
]

1.1 L0773

r

.130
.184
.238
.292
.346

56 = 130 -~ 9773

33.58 - 137 # w50

f

.0695
072k
. 0765
.0817
. 0882

o] .
‘S ‘?l.ldr?—%z('fo+4‘fl+zf2+4'934-?4)
N |

Second trial: Assunme Wl 1= 425

1.1

2)2.500

145



station r *P
o .130 . 0701
1 .184 .0730
2 .238 .0771
3 .292 .0825
L . 346 . 0889

r

C
5 ‘?l.l dr‘é'-'-o-%i* (.0701 + .2920 + .1542
Ty

+ .3300 + .0889) = .01683

01683
?1.1 348 - 130 - 9779

3380 - u3h # ka5

W1.1 .0779

i

Plotting these results, we have:

4
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The intersection occurs at W, ; = 435.20. Using W; ; = 435
in (185), we find

7 _ 33.80 _
.- ‘&33‘ = .0778

Inserting §, | = .0778 and W; ; = 435 into (191), we find that
Fi 1= .2487. We will use this radius as the "mean® radius of
the flow at the impeller inlet (see Figure 14).

?1.1 = .2487 (194)

Using (194), we now calculate the following: From (189) and
(193),

'i‘-l.l = 550 - 15.75 + 32.75 = 567.0 (195)

From (188),

5 3.50 -

3.94 x 10 = 21.80 PSIA (196)

3.305 x 106

Fog = W7 (14



From (187),

s
Ly = 550 + 294 X 10" _ 4155 (197)
ol.l 6.01 x 10° -

From (190), (196), (195), and (197),

3.50
By.p = 21.80 (25-2)" " = 16.30 ps1A

This value 1s checked by computing:
By, = (TRT), , = 2350 PSFA = 16.30 PSIA  O.K.

In summary, at the impeller inlet,

T = .2487

W= 435

T = 567

= 16.30 PSIA

gl

)l

= ,0778

=t/gok RT = 1168

¥, % = .372

ol
]

>
]

.296
= ,130

r = .345

RS
i

2 2
grosg = (ry” = o)

2523

= .321

¢



Area variation along the mean streamline

Having found the mean properties at the impeller inlet,
we now assume that changes in area, veloclity, etc. along the
mean streamline represent average or "mean' changes throughout
the entire impeller. This assumption permits us to develop a
straight-forward design method and is in accord with our pre-
vious one-dimensional treatment of Euler's equation and the
enefgy'equation.

We now select a particular variationvof relative velo-
city along the mean streamline. PFrom boundry layer considera-
tions (reférence 19, page 34), we know that any deceleration
of the main flow, with its corresﬁonding rise in pressure,
increases the danger of boundry layer separation and subse-
quent mixing losses. Presgsure increases due to ﬁhe centri-
fugal force fleld do not affect separation as the pressure in-
crease acts on main flow and boundry layer alike. It l1ls desir-
able to avold deceleration of the main flow whenever possible,
80 we shall design the impeller channel to have constant rela-
tive velocity along the mean streamline. It would be even
more deslrable to have the flow accelerate.along the mean
streamline. However, 1f we reallze that some sbrt of non-
rotating diffuser will be used after the impeller, and the
flow must decelerate in the diffuser to achleve a pressure
rise, we must compromise in our cholce of velocity distribu-
tion in the impeller. This argument does not apply at all
for turbine impellers. The falling pressure in the direction
of flow means we can safely decelerate 1in turbine impeller

and have the flow leave the impeller at a low velocity.

|50
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There is an addlitional reason for chooslng a constant
velocity along the mean streamline. We can show that for
constant veloclity and subsonic entering Mach number
(EA1.1 = ,372 for‘this design) the Mach number at any radius
greater than T, , must be less than M,, ;. Thus, in a com-
pregsor impeller with constant mean velocity and subsonic
initial relative Mach number, éhock waves and choking cannot
occur. We show this by using equations (123) and (147) from
Appendix J.

Combining (123) and (147), and noting that

W=W, . = constant

1.1
we have
7.2 - i
A 5 2+k-l(ﬂ)2 ('i‘-z-'i’- 2)
1.1 2 1.1

Since T is alwaeys greater than or equal to Fi“l, EAZ is always
less than or equal to Eﬁl 12 and, for Ekl 1= .372, shock

waves and choking cannot occur.

To compute the flow area for constant relative velocity,

we use equation (156) from Appendix J.
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2 -
=1+ 5 “i -1 [Eo) 31 ase)
1.1

Al.l = Agross = .321

k= 1.4

@= 2523

r1°1 = ;l.i = ,2487

©1,1 = ©p,3 = 1168

Detailed calculations of (156) are given in Table 3 and the

curve of I'—'A ve., == is plotted in Figure 18.
1.1 ‘fl 1
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Figure 18 gives the required area at any radius to have

W = 435 = constant along the mean streamline.

Selecting the mean streamline

We must now select a particular mean streamline from
the infinite number which could satisfy Figure 18. The choice
depends on the axlal depth which is available for the impeller,
the desired discharge angle (the angle e at the impeller tip -
Figure 8), and experience as to what shape of mean streamline
yields high efficiency.

| Let us assume that we have no experience with "mean

streamlines® but are famlllar with the basic laws of fluid
mechanics. We know that any deceleration of veloclty results
in a pressure rise with attendant danger of boundry layer
separation. Thus we are gulded 1ln a cholce of mean streamline
by the veloclty distributions along the hub and casing.
These distributions should result in gradual, rather than
rapid, decelerations. After the impeller channel has been
completely designed, we may use the equations developed in
Appendix K to calculate the veloclties along the hub and
casing. Unfortunately, it has been found impossible to choose
a mean streamline by initially specifying desirable velocity
distributions along the hub and casing. If these distribu-
tions are specified initially, the resulting hub and casing
shapes would not satlsfy our basic one-dimensional approach.
The mean streamline, which would be determined by these
specified distributions, would not, 1ln general, lie approxi-

mately midway between the hub and casing.



The method of selecting the mean streamline used in this
thesis consists in specifying the values of o and Re at
all radii (Figure 19) and using these values to calculate
the hub and casing veloclty distributions. We must then
refer to boundry layer theory, or to our own experience, as

to the desirability of these distributions.
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Figure 19

Definition of terms used in the
dosizn method



We now derlve an approximate equation for ﬁc’ the radius

of curvature of the mean streamline.

From Filgure 19,

2

D% = Dv® + DZ?

- 0.5
Ds - [1+ (pZ/pF)?]
Dr .

R, = D8/DeX

cot < = Dz/Dr
X = arc cot Dz/Dr

We now obtain an equation for ﬁc in terms of cot £ .

tiating (200b) in the r direction,

D& _ _ D%Z/DT4

DT 1 + (DZ/DF)~

(198)

(199)

(67)

(200a)

(200b)

Differen-

(201)



From (67), (199), and (201),

‘ 1.5
T - DE/DF _ _ [1+ (05/pF)%] (202)
C  DR/DT D*Z/DT°

From (202) and (200a)

' 2 — 1.5
ﬁc o - _[1+ cot®ex ] (203)
-2: cot K
Dr
(203) may be approximated for small AT, as follows:
: 1.5
2 .
c QcotX/AT
We now define:
Acot & = cot X .4 ~ cOt X r (205)
AT =T -r (206)

r+l r

where sub r 1s a station (radius) on the mean streamline and

sub r+1 is the next station in the direction of flow.
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Combining (204) and (205),

s L5
(1 + cot <., ]
AT (207)

cot azr - cot 5?}+l

oo |
114

(207) contains all the information needed to determine the mean

streamline. The procedure consists in specifying values of o€

at all T. ﬁc is then calculated from (207). To illustrate the

method, we arbitrarily specify a linear variation of o with

radius, as shown by the curve labeled "linear®" in Figure 20.
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Using values of o< from Figure 20, R, is calculated as shown

in Table 4.



- ‘
S STATICN

ALONSG
M~I\N

[
1.2
13
14
1S
{6
L7
(¢
K

[+]

O

4.5
9.0
13.5
(8.0
22.5
27.0
3.5

-~
()
n

TABLE 4

1 @

S
D

—_ LS
coTX [i+cot zaﬂ

A GrECFED)
STREAMLINE,

ol

27062
.54
41652
'3.01‘17?;
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The mean streamline is now completely determined as we
know its angle with the Z axis (&) and its radius of curva-
ture at all stations. We may layout the mean streamline as

Tollows:

1. Draw, to a large scale (4 times or larger), all

the radii from column 2 of Table 3.
2. At 4 or 5 points on each radlus, draw a short

streak which has the correct Hc and ‘¢ for that radius, from

colums 2 and 7 of Table 4.
3. Using a French curve, draw a smooth curve which

has the correct angle and radius of curvature at all stations.

This is the mean streamline.

Figure 21 is the layout (half size) of the design of
Table 4.
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Hub and casing layout

To determine the hub and casing, we use the geometric

relations given in Figure 19.

Agc

mean streamline and the casing

surface area of a truncated cone between the

A, = — (rcz - 2) (0 < cosx 1) (208)
B¢  cos X

surface areca of & truncated cone between the

]

Agh

mean streamline and the hub

A, =T __ (F% - p?2) (0 € cosX<1) (209)
gh cos o h =

In order to obtain physically acceptable hub and casing

shapes, 1t 1s necessary to specify Agc and Agh as a functlon

of T. We know A and A ., at station 1.1.
ge gh

A

]
]

m (.345% - .2487%) = .1799

gel.l

A L1411

g1l =T (.2487% = .130%)

We specify that, at station 2, the mean streamline 1is midway
between hub and casing.

A
= - 2 _
Agoz = Bgnz = —5= = .08185

We now plot curves of A__ and Agh as a function of » taking

ge

care that Agc + Agh = Ag in Table 3.

.1
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Using Figure 22, (208) and (209), we calculate r, and

From (208) and (209),

rh.
0‘5
A cos o
_ =2 gc
r, [r- + =
005
o [;2 _ Agh cos &
h ™

Table 5 presents the detalled calculations.

(208a)

(209a)

163



TAELE 5

ettt S A

i o T

T @0 a e @ [
5T.AHON : Agc Agh | COSeCy T e | .\
| ALONMG  FROM FROM| FROM | FROM I o 0@ |z .2 @,@E‘
| MEMN FRiG.z2|FI6.22 .TA&LE4gTA&LE3[©+H E@‘H
STRENUNE | B |
L 0749904100 [ Loooo! .248T| .3452 1304
1z LTS5 3831403 | 2076 | 3568 | L1664
13 070813551 4877 | 2865| 3635 | 1487
1.4 f-“o“» -l3ZO§ 4724 | .3054| .3800 2259
s 612 ’ 1235t a5y | 3244 | 3924 2569
e 1560 J2LT| 4234 | 3433 | L4047 | 2839
L7 U510 a234 8700 | .3z2 | 4111 | .30z
18 14567 .020G| 8526 | 3811 | 4248 | 3354
14 114040174 8090 | 400c| 4430 | 3003

i ldo 3487147 604 | 48 | 4502 | L3842
§ .11 5J247i.ui4§ J0T) | .4378 4700 4osz |
L2 1248 L0081 6494 | 45L8 | 4843 | 4318
i3 LII47 1050 5818 | 4757 | 4987 | .454C |
L4 148 LoiT | 5225 i 49461 5135 | 4712
LIS '.100:.0985; 4540 | 5135 | 5288 | .4495
| (.16 §.|OS| 09551 3327 §.5324 5442 | .5213 ?
L7 1.1001 0428 3040 | 5513 | 56Ol | 5430 |
a8 .0%54 0899 2334 5703 | 5765 | .5644
LM 1.09091.0870 ISL4 | .5842| .5430 | .585( |
120 .0562,.0845. o185 o8l | 600 | 6064 |
2 ;.oslﬁi.oalej% 0 6270 L6216 j toz‘lowf




iI71o

On the layout of the mean streamline, Figure 21, we
draw lines normal to the mean streamline using the values of
"< from Table 4. The intersection of each normal line with
the corresponding values of r, and Yy from Table 5 locates a
series of points on the hub and casing. A smooth curve drawn
through the points determines the hub and casing completely.
Figure 23 is the complete impeller layout (half size).
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Veloclty distribution along hub and casing

Having designed the impeller channel to satlsfy the area
curves of Figures 18 and 22, and the « - RE relationship of
Table 4, we now investigate the relative velocity distribu-
tions along the hub and casing. These dilstributions are a
very impoftant indicatlion of the aerodynamlc correctness of
the design.

From Appendix K, Table 2, the incremental change in
veloclty normal to the mean streamline 1is given by

aw _

=" (82)

o8

In order to integrate (82), we must know how Rc varies with
n, the distance outward from the mean streamline (see Figure 8).
The layout of the lmpeller channel, Figure 23, glves us this
information. A full-size view of a portion of Filgure 23 is

given in Figure 24,



Figure 24

Inpeller layout showing curva-
ture of streaemlines
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From Figure 24, we see that normals to the hub, mean
streamline, and casling at each station are, in general, curved
lines lying downstream of the o lines (the normal line for
station 1.9 is shown dashed in Figure 24). The integration of
(82) must be done along these curved lines. Figure 24 shows
that the curvature of the streamlines decreases from casing
to hub, that is, in the positive n direction. This means that
Wc must be greater than Wh, except at the impeller inlet, where
Wc equals Wh' Also, the radii of curvature of the casing and
the hub from centers OC and Oh are equal to the identical radii
from 0. That is, n, measured from 0 is equal to nc' measured

from O,; n;, measured from 0 1s equal to n,' measured from 0y,.

From these observations, we may write:

R,Zn (210)

that 1s, the radii of curvature of the casing, mean streamline,
and the hub ere identical to the values using O as the center
of curvature for all streamlines. This fact allows us to inte-
grate (82) directly.

Combining (82) and (210) and integrating from the mean

streamline to the casing,



(el

= _2 (2119.)

=ﬂk;£

Wh nh ‘
av _ _ dn
w = n
W n= Hc
W
In :ll- = - ln ._nl}.
] R
c
W R
h c
—_—= == (211b)
¥ "

The results of (211) show that Wc, W, and Wh satisfy a poten-
tial vortex velocity distribution in the impeller channel
(reference 9, page 271).

From Figure 19,

n = - if&_:zil (212e)



(r - r)

=R + ————
nh c cos X

Combining (211) and (212),

o o Ro
v _— (rc -7)
¢ cos X
"ho_ "o
' (r - T
. T :h)
c =

In solving (213) we use:

Hc and o< from Table 4

T from Table 3

r, and r, from Table 5

h

(76

(212b)

(213a)

(213b)

Figure 25 presents the results of these calculatlons as curves

of

as a function of —
1.1 F1.1
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We draw three important concluslons from Figure 25.

1. W, and Wh are shown to be not quite equal to W
at the impeller inlet. This dilscrepency from the previous
assumption of constant relative veloclty at the impeller
inlet (Appendix L) 1s the result of using Jjust 20 stations
along the mean streamline. However, the error is less than

one percent, which 1s certalnly acceptable considering the

extremely rapid change in cot o< at the impeller inlet (Table L).

2. The decelerations of WC and Wh are quite gradval
and should be acceptable as regards boundry layer separation.

3. The large difference between WC and Wh at the
Impeller outlet has no significance for frictionless flow.
However, with a boundry layer present on the casing, the
deceleration of Wc in the diffuser following the impeller
may result in boundry layer separation. It would be better
to design the impeller to have Wc, v, andowh equal at the
outlet. This would require that Hc be infinite at the outlet.

In view of these conclusions, and the extremely great

axial depth of the impeller (Figure 23), it would be advisable
to specify a different distritution of &< wifh radius (Table 4)
and to repeat the design. The curve labeled "sine wave" in
Figure 20 would shorten the impeller axial depth considerably
while the velocity distributions of Figure 25 would show more
rapid decelerations and less difference at the outlet. The
final design, as is always the case, nmust be a compromise
between space and weight limitations and the need for highest

possible efficiency.
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Appendix N

area norﬁal to the mean streamline, ft2

mean value of distributed body force per unit mass in
the tangential direction, 1bf/lbm

mean value of distributed body force per unit volume
in the tangential direction, I1bf/ft

universal constant relating force and mass,
32.174 lbm £t/sec® 1bf

Bernoulll constant for flow along a relative stream-
1ine, £t2/sec?

ratio of specific heats, Cp/C,

time rate of mass flow of a system, lbm/sec

streamline coordinate: for two-dimensional flow in
the meridional plane

atatlc pressure on the surface of a'blade“, lbf/ft2

static pressure on the mean streamline, lbf/ft2

statlc pressure on the pressure surface of a blade,
1bf/£12

statlc pressure on the suction surface of a blade,

1b/rt2

radius from Z axis, ft

radius from Z axis to a point on the mean streamline, ft

thickneas of impeller blades, ft

absolute velocity of fluld, ft/sec

N
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subl.l
gub 2

meridional component of V, ft/sec

tangential component of V, ft/sec

relative velocity of fluid, ft/sec

relative velocity along the mean streamline, ft/sec

component of W in radial direction, ft/sec

relative velocity along casing in meridional plane
(Figure 28), ft/sec

relative velocity along hub in meridional plane
(Figure 28), ft/sec

relative veloclty on the pressure surface of a
blade (Figure 28), ft/sec

relative veloclty on the suction surface of a blade
(Figure 28), ft/sec

number of impeller blades

angle between tangent to mean streamline and Z axis
(Figure 19), rad

préssﬁre difference between adjacent blade surfaces,
1bf/f 12

angular spacing between adjacent blade surfaces, rad

~ static density, lbm/ft3

static density on the mean streamline, 1bm/ft3'
angular velocity of impeller, rad/sec

at the impeller inlet

at the impeller outlet
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Appendix N

RELATIVE VELOCITY ON THE BLADE SURFACES

In Appendix M, Figure 25, we have shown the velocity
distribution from hub to casing in the meridional plane for
the design of Figure 23. In this Appendix we consider the
veloclty distribution in the impeller channel in the direc-
tion normal to the meridional plane, that is, in the 6 direc-
tion. We are particularly interested in the veloclities on the

blade surfaces. The veloclty distributions on the blade sur-

faces gilve lmportant information as to boundry layer behavior
and blade loading.

From (85b), Appendix F, we have the equation for changes
in fluid propertieé along a streamline, which we now take to

1lie on the gsurface of a blade.

2 2.2
-g, (E_IST) ‘; - -g— + g = constant = Hy . (85b)

For irrotational flow, we have already shown that

aH, :

Thus, H 1s constant in any direction and may be evaluated
at any convenient location in the accelerating frame. We know

the properties at the impeller lnlet, station 1.1 on the mean

streamline, from Appendix M.
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Combining (85b) and (214),

B W, .2 2
8, (g5 )—-——El B ?1'134- L1 - (g
D. ‘ 2 W
1.1 1.1 1.1
2= 2 ‘
w T 2
4 el E(Fr ) =11 =0 (215)
1.1 '
From (83),
7. £
p
—11,—& = (%) (216)
Combining (215) and (216),
| k-1
w2 2 x \ P1.1 k-
(—) =1 + —= 48, (E;T) === [1 - (=) ]
W11 W1 f1.1 P1.1
2 — 2
@ 2
+ :1'1 [(; ) - 1]} (217)
1.1

We have, in (217), the blade surface velocity, W, at any
radius, r, as a function of known propertiesg at the impeller

inlet and the blade surface pressure, p, at radius r.



We now derive an approximate equation for p as a func-

tion of known properties on the mean streamline. This means

we shall compute the (approximate) blade surface velocity
distributions approximately midway up on the blades, that is,
in the € direction from the mean streamline. These particular
distributions may be taken to be the average distributions
over the entire blade surfaces (from hub to casing). We pro-

ceed as follows: Assume that

p, = B+ 5P (2182)

- AZP- (218b)

gel|

Pg =

where pp 1s the pressure on the blade "pressure! surface
(leading surface for a compressor), Pg is the pressure on the
blade "suction" surface (trailing surface for a compressor),
and A p is the pressure difference in the 6 direction between
adjacent blades. In other words, we are agsuming a linear
pressure variation across the channel with p as the average
value.

We may express A p in terms of properties on the mean

streamline by using (62b) from Appendix E.

g,Fg = 2wV, (62b)

where Fé is the average "distributed body force per unit mass"

in the 6 direction (Appendix D) and WE 1s the radial component

183



of the relative veloclty on the mean streamline. We now

define,

F,' 5 T, (219)

where ¥_.! is the average distributed body force per unit

<]
volume in the 6 direction and ¥ is the density on the mean

streamline. If we multiply (219) by T A 6, the distance across

the channel between adjacent blades, we obtain the average

distributed body force per unit area of blade surface. This

body force per unit area is identical to Ap, equation (218).
That 1is,

Ap =F 'TA ® (220)
Combining (220), (219), and (62b),

2(0Wr~'l’ TA ©

P z (221)

i

From (65a), Appendix E,

W} = W sin A (65a)

where £ 1s defined in Figure 19, Appendix M, and W is the
veloclty on the mean streamline.
Combining (218), (221), and (65a),

WP P T A6 8in &

Y

p. = 5 + g (2223)
(o]

134
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p, = F - Ve rgAe gin &L (222D)
o

By dividing through by 51'1, we put (222) in the form of (217)

p .5 _, @wV¥FA6sind (223)
P11 P11 8o P1.1

where the plus sign is used for pp and the minus sign for Pg-
We may put (223) into a more convenient form as follows:

. oF F =
R -2 1.0 F1 7 e Ao sinL (223a)

P1.1 P1n € P1.1 Ty 1¥9.1

g—-—- and -ﬂ— are easily computed. From (95), Appendix G,
P1.1 4T

n=% A W= constant =‘Fl.l Al.l Wl.l (95)

We see that, for W = Wl , = constant,

?A=fL1AL1

7 A

LA Ll (224)
f1.1

A
1.1 34 tabulated in Table 3 for the design of Appendix M. Also,

A
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from (83), Appendix F,

-k -k
.I-). \-F = constant = -51-1 \Flol (83)
Thus,
— 7 -k P k A k
D - (fi-l) = (.11__) = (=L (225)
-— A
plol P ‘?l'l

Combining (223a), (224), and (225),

| K L
A Wr N 4 - A
_L = ( i..l) + w 1;1 1.1 i‘ 1]&_.1 Ao sinZ
P1.1 € P1.1 1.1
k-1 :
A A wTT F . =
—P - k-l [( %.l) 4 l.._l 1.1 -]i Ae Sil’lz ]
P11 €0 P1.1 1.1
(226)

We may estimate A 6 as follows: From Appendix M,
Z = number of blades = 23 and t = blade thickness at inlet = .005.
Since we do not have the values of blade thickness at all radii,

we assume that t = .005 = constant throughout the impeller.

Then,

3
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The general formula for the blade surface velocity, W, as a
function of properties on the mean streamline, 1s obtained by

combining (217) with (226) and (227).

k-1

w2 28, Pr.1 . VA1 A1
(——) =1+ f (k-l) 1 - { y\ L( y )
W14 v, V1.1

k=1

"]

W T ¥ = -
+ 1;1 1.1 r ( Z - ) sin o(.] ;
8o P1.1 1.1 /1.1

7 2 _ 2
+ (-‘—0——1—'}-—) [(E—) - 11 (228)
1.1 .1 :

The solutionsof (228) are presented in Figure 26 as curves of

W T Ay a
—= ag a functlon of = s using = and vy from Table 3

W1.1 I'1.1 .1

and the following station 1.1 values:

Wyp=W=1435
Py, 1 = 2350
P11 = 0778
E-‘l.l = .2487
Also,
A = 2523
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There are 5 lmportant conclusions to be drawn from Figure 26.

1. The boundry layer on the blade suction surface is
in no danger of separating as Ws is continually increasing.

2. The boundry layer on the DLlade pressure surface
would separate due to the rapid deceleration of Wp at radius
ratio 1.8 if 1t were not for the experimentally observed result
that the boundry layer on the pressure surface does not separate
under normal operation (reference 13, page 5).

3. Wﬁ is negative (thus imaginary) from a radius ratio
of approximately.1l.8 to the impeller outlet. In general, a
negative value of a blade surface velocity indicates an "eddy",
or zone of stagnant air, which is attached to the blade. The
eddy decreases the flow area of the channel] and thus increases
all relative veloclities outside of the stagnant area.

L4, There is an additional factor which has been
neglected in computing Figure 26 - "slip". We have assumed
complete guliding of the fluld by the impeller blades and 1t is
well known that such is not the case., Near the impeller outlet
the fluid deviates appreciably from the blade direction and, in
effect, the flow acts as if the lmpeller had backward curved
blades, rather than radial blades. The velocity triangles

are as shown in Figure 27. W"Slip" has the effect of increasing

the relative velocity near the impeller outlet and thus decreas-

ing the blade loading at the outlet (good).

}8‘1
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5. The great length of blade which shows negative

velocity (Wb) in Figure 26 suggests using "splitter" blades
which would extend from about radius ratio 1.7 to the outlet.
This would eliminate the negative values of Wp and would insure
"eddyless" operation (at the design condition). The curves
marked "Z = 46" in Figure 26 are the calculated velocities using
L6 blades from radius ratio 1.76 to the impeller outlet. For

this impeller, splitter blades would certainly be an improvement.
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By combining Figures 25 and 26, we obtain a quasi three-
dimensional picture of velocitles throughout the impeller.
Figure 28 1s an end view of the impeller showing the location
of the velocities of Figures 25 and 26.

ﬁiguréx28 

sional

Figure 29 combines Figures 25 and 26 on one graph to show the
relative magnitudes of the five velocities for this particular
design.
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