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Abstract

Over the past few decades Digital Video Effects (DVEs) have been
implemented in hardware or, more recently, in non-real-time software on
Macintosh computers or Personal Computers. As technology advanced, digital
signal processing IC's appeared on the market. Texas Instruments' TMS320C80
is a powerful, programmable parallel processor which can be used to implement
DVEs in software, and in real time. This thesis explores several video
resampling algorithms and their applicability to the 'C80 and implements
approximate polyphase filtering in order achieve a smooth shrinking effect. The
implementation is done in C, keeping in mind that a highly optimized version of
the same code needs to be able to run in real time.
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Chapter 1

Introduction

The goal of this thesis project is to implement the "Shrink" digital video effect

(DVE) for real-time video on the TMS320C80 ('C80). The "Shrink" effect is essentially a

resampling problem; for a given input video sequence the output video sequence is a

smaller version of the input. The output video must be able to change size smoothly

over time and be of high enough quality that any artifacts introduced by the processing

are not easily noticed.

The 'C80 is a powerful programmable processor particularly well suited for video

made by Texas Instruments. Its ability to efficiently move data around on and off-chip

memory banks and to process large amounts of data quickly make it possible to

implement a DVE such as "Shrink", in real-time software. DVE's have traditionally been

implemented in hardware or in non-real-time software.

This thesis explores several different ways of implementing video resampling in

C language on the 'C80 such that, if the inner loop of the algorithm were to be highly

optimized, it could run in real time. Special consideration is given to the 'C80's

architecture so as to use the processor most efficiently, and the special requirements of

video.

A two stage algorithm based on approximate polyphase filtering for resizing

video down to 25% of its original size is implemented in C and tested. The results were

evaluated subjectively, and were deemed to be quite good.



1.1 'C80
The 'C80 consists of six main pieces: a floating point Master Processor (MP),

four fixed point Parallel Processors (PPs), and a data movement engine called the

Transfer Controller (TC). Essentially, the MP is used to calculate parameters and to

direct all the data movement and processing on the 'C80. The TC actually executes all

the MP's data movement commands and the PPs are used to do all the actual

processing.

1.2 Video and Digital Video Effects
Processing digital video is not necessarily the same as processing other forms of

digital data. Video is typically quantized to eight or sometimes ten bits whereas audio,

for example, is typically quantized to sixteen bits. Video, therefore, does not have to be

processed with the same precision as audio. On the other hand, any error artifacts that

change from frame to frame are disturbing to a viewer. For example, alias in a piece of

undersampled digital video depends on the phase of the sampling. If the sampling

phase differs from frame to frame the alias jumps around on the screen from frame to

frame, creating a disagreeable effect. So, video processing must be very smooth. In

the case of resampling this means that as a piece of video is shrunk down at an

arbitrary rate the effects of the resampling process must be similar enough for

neighboring output picture sizes that any artifacts caused by the processing are as

unnoticeable as possible. Also, the resampling must be done at sub-pixel resolution so

that the change in size from frame to frame is uniform, regardless of the rate of

shrinking. Furthermore, artifacts which appear in patterns are more noticeable than

artifacts which appear to be random, so care must be taken so that the results of the

resampling processing are as close to uniform across the entire picture as possible. In



many cases tradeoffs must be made between the overall quality of a processed piece

of video and both temporal and spatial continuity.

1.3 The Video Resampling Problem
On the algorithm side there are two main issues in resampling video: correctly

determining the source of an output pixel, and low-pass filtering to ensure that no

aliasing artifacts are introduced by the reduction in signal bandwidth that accompanies

a reduction in signal sampling frequency. In most cases an efficient algorithm does

both of these operations simultaneously, and at the lower output sampling rate rather

than at the higher input sampling rate.

This thesis explores several ways of resampling signals, evolving from the

classical but impractical upsample and then downsample strategy to Crochiere and

Rabiner's more practical but still inadequately flexible for this application polyphase

filtering approach to the final approximate version of polyphase filtering.

Approximate polyphase filtering is implemented in two stages. If a piece of

video is to be shrunk to more than 50% of its original size horizontally and vertically

straight approximate polyphase filtering is used. The size and characteristics of the

filters used are varied according to the desired output video size such that only as

many computations as can be done in real time by the 'C80 are necessary and so that

the appropriate low-pass filtering is done. For output sizes less than 50% of the input

size the same approximate polyphase filtering is done after an initial stage of half-band

filtering and reduction in size by 50% in each direction.

Several different design methods for the filters used are also explored, from the

Remez-Exchange algorithm to various windowing methods. Designing the filters

proved to be quite a challenge because in most cases the design specifications were



very overconstrained. In the end most of the filters used are designed using Hamming

windows, and a few others are designed using Kaiser windows.



Chapter 2

TMS320C80 and Development
Environment

This chapter provides an overview of the processor used in this thesis, the

TMS320C80, or 'C80, and its components, the hardware environment within which it

operates, and the software development environment.

2.1 Introduction
The 'C80, is a monolithic multi-instruction, multi-data (MIMD) parallel processor.

It consists of a floating point Master Processor and four fixed point Parallel Processors,

as well as 50 Kbytes of on-chip static RAM. It also has a Transfer Controller which

handles data transfers and a Video Controller which handles video timing. It can run as

fast as 50 MHz, but the development system runs at 30 MHz.

The Master Processor is a 32-bit general purpose RISC processor with a 4 Kbyte

instruction cache and a 4 Kbyte data cache. The Parallel Processors are 32-bit

Advanced Digital Signal Processors (ADSPs), each with a 2 Kbyte instruction cache and

8 Kbytes of data RAM divided into three 2 Kbyte blocks for data and one 2 Kbyte block

for parameters. The on-chip memory is shared such that all of it is accessible to the

MP,.and all PP memory is accessible to the PPs through a crossbar structure. There

are many possible ways to use the shared memory; the configuration described above,

however, is standard. The Transfer controller handles data between on-chip and off-

chip RAM. The Video Controller can take care of video timing issues, but is not used in

this project.



The MP and the PPs can be programmed in C using compilers provided by

Texas Instruments, or in assembly language. The MP and the PPs have different

compilers and different assembly languages. Typically the MP is used for overhead and

for setting up tasks for the PPs. The PPs are used for repeated calculations, such as

convolving a line of data with an FIR filter. This makes for a very efficient scheme since

the major time sink in processing video is in processing a large number of data points

(1440 samples per line and 486 lines per frame for CCIR-601 video, which is a widely

used broadcast studio standard) and each of the four PPs can process data nearly

continuously if all the overhead is taken care of by the MP.

For the purposes of this thesis both MP and PP code is written in C. The code

written relies on a backbone of previously written functions that take care of some of the

Transfer Controller operations and interface with the development hardware.

2.2 'C80
A block diagram of the 'C80 and its main data paths is shown in Figure 2-1 [T195]

The MP and the four PPs each have their own memory banks which they can access

locally or globally. The TC has access to all these memory banks via the crossbar

structure and, along with the VC, acts as the interface to the external world.



Figure 2-1: Block Diagram of The 'C80 and its Main Data Paths

2.2.1 Master Processor
The MP is a general purpose processor RISC with an integral IEEE-754 floating

point unit. Its instruction set contains many of the primitives used by C compilers, and it

has a zeroing register that is often used by C, so that it is especially efficient in

executing C code. It has a 4 Kbyte instruction cache, a 4 Kbyte data cache, and 2

Kbytes of parameter RAM. In addition, it is able to access all of the PP RAM through

the crossbar structure, and to start or halt the PPs' processing using the cmnd

command.

The function of the MP is to coordinate all the activities of the 'C80. It interfaces

with the hardware and sets up all the video timing and I/O via the Video Controller. For

each frame it sets up and controls the PPs' processing: It calculates appropriate

parameters and writes them to the PPs' parameter RAMs; it controls data flow through



the PPs by setting up and dispatching Transfer Controller tasks; and it tells the PPs

when to process and on which of its data memory banks to operate.

2.2.2 Parallel Processors
A PP is a 32 bit DSP with a 2 Kbyte instruction cache, 2 Kbytes of parameter

RAM, and three 2 Kbyte banks of data RAM. Each PP also has access to all the other

PPs' data RAMs through the crossbar, but that feature is not used in this project.

Among the PP's features is a 16x16 or dual 8x8 bit multiplier, a splittable three input

ALU, and a 32 bit barrel rotator. It has 64-bit instruction words which support parallel

operations. For example, a PP can execute one 16x16 bit or two 8x8 bit multiplies, an

ALU operation such as a shift-and-add or up to four adds, two memory accesses, and

the necessary pointer updates all in one cycle. Also, each PP has a three stage pipeline

so that it supports a fast instruction cycle and three hardware loop controllers which

allow for zero overhead looping.

Essentially, the PP is the number crunching workhorse of the 'C80. Considering

the PPs' tight loop capabilities and the fact that there are four of them this is very

efficient. The PPs waste very little time on overhead. They receive instructions from the

MP that tell them what operation to perform on the data in its data banks, and just carry

them out.

2.2.3 Transfer Controller
The Transfer Controller handles movement of data and instructions for the MP,

PPs, Video Controller, and any external devices. It has a 64 bit interface to the crossbar

structure which allows it to access all of the on-chip RAM, and another 64 bit interface

which allows it to access off-chip memory. It also handles memory control functions

such as cache fills and write backs, DRAM refreshes, and others.



The TC does moves data in a process called Packet Transfers. Packet

Transfers can be initiated by the MP, the PPs, the Video Controller, or external devices,

though they are initiated exclusively by the MP in this implementation. A Transfer

Packet is a multi-dimensional structure containing information about source and

destination addresses and how they are to be updated, how much information is to be

transferred, and how the source data and address space is to be mapped to the

destination data and address space.

2.3 Development Environment
This section describes the hardware for which the code of this thesis is written

and on which it is tested and debugged as well as the tools and existing code base that

are used in developing code.

2.3.1 Development Hardware
The development hardware used consists of the circuit board shown in

Figure 2-2. The heart of the board is a 'C80. It also has five 128 Kbyte x 64 bit banks

of RAM, divided into two banks of input memory, two banks of output memory, and one

bank of intermediate or 'Program' memory. The 'C80 accesses the memory banks over

a 32 bit address and 64 bit data bus. Two switches ping-pong the input and output

memory banks so that, for example, one input memory bank is being used by the 'C80

while the other is being used to store incoming video, and one output memory bank is

being used by the 'C80 while the other is being written out to a video display. The

external hardware takes care of all the video timing issues, so the Video Controller on

the 'C80 is not used. There is also one small bank of code memory which is used by

the 'C80 via an 8 bit bus. Video data enters the board over a parallel cable in Rec.

CCIR-601 (601) format. It is deformatted and de-multiplexed to form the 64 bit data that



is then stored in one of the input memory banks. After processing, the 64 bit data in one

of the output memory banks is multiplexed and formatted to 601 and leaves the board

on parallel cable, as it came in.

Figure 2-2: Block Diagram of the Development Hardware

2.3.2 Programming Environment
The C code written for this project uses a library of functions that facilitate

Transfer Controller operations and setting up Transfer Packets. It also uses a set of

functions that set up and execute hardware functions such as I/O, video timing and ping-

ponging input and output memory banks, cycling LEDs, and reading information from



the development user interface, a simple joystick with one control button. This

backbone of code was written by Dale Jordan and Warren Kafer.

Also, a program written by Dale Jordan which implements resampling by the

'magic' number of Y was used as a guide. Y is a 'magic' number for two reasons:

First, resampling by a rational fraction with numerator one is simple downsampling, and

no sophisticated methods to map points which lie in between actual input samples to

output samples are necessary. Second, when resampling by Y input lines from one

field are always mapped to that same field in the output. Jordan's program, then, is

simpler than the one put together for this thesis project, but serves as an important and

useful reference, especially for developing the MP's flow control strategy.

Code was compiled using the MP and PP compilers provided by Texas

Instruments, and was tested and debugged directly on the development hardware. An

emulator was not available.



Chapter 3

Video and Digital Video Effects

This chapter describes the type of video that this thesis deals with, known as

CCIR-601 video. It then gives a brief overview of the kinds of digital video effects that

an editor may wish to use when putting together a piece of video.

3.1 Video
This thesis deals with video under the standard known as CCIR-601, or just 601,

as defined by the International Radio Consultative Committee (CCIR) in its

Recommendation 601-1. Additionally, it is constrained to video which is displayed at

59.94 Hz (heretofore referred to as 60 Hz), with interlaced scanning like in the U.S.

NTSC system as opposed to video which is displayed at 50Hz also with interlaced

scanning as in the European PAL system. This means that a frame of digital video is

defined as 486 lines of 720 pixels each where each pixel is stored in 8 bit 4-2-2

component format.

4-2-2 component format means that digital color video is stored in luminance, Y,

and chrominance, Cb and Cr, components. This is similar to the more familiar Y-/-Q

format, which maps to R-G-B through the matrix transformation in Equation 3.1, and

where Ycan be interpreted as the intensity or gray level of a black and white image and

I and Q contain the color information.



Y [0.299 0.587 0.114 R R 1.000 0.956 0.621 Y
I= 0.596 - 0.274 - 0.322 G 1 > G = 1.000 - 0.273 - 0.647 I

0.211 0.523 0.312 _BB 1.000 -1.104 1.701 LQ_

Equation 3.1

In Cb-Y-Cr format Yis the intensity and Cb and Cr contain the color information

in the form Yminus the blue component and Yminus the red component, respectively.

For 8 bit video Yhas 220 quantization levels, with black corresponding to 16 and white

corresponding to 235, though the signal level may occasionally be higher than 235. Cb

and Cr have 225 quantization levels centered about 128 such that if both are equal to

128 the picture appears to be monochrome. The three components are constructed

from the digitized values of the primary red, green, and blue analog signals R,, G,, and,

B, according to Equation 3.2, where Rd = int(219 Ra) +16, Gd = int(219 Ga) +16,

and Bd = int(219- B ) + 16.

77 150 29
Y- R +-Gd +-B

256 d 256 256 d

131 110 21
Cr = -25 6 Rd 2 5 Gd - 2 56 Bd +12 8

44 87 131
Cb - - R - Gd +- B d + 128

256 2 5 6  2 5 6

Equation 3.2

Since the human eye is less sensitive to color than to intensity, color information

can be sampled at a lower rate than is luminance information. Y, therefore, is sampled

at 13.5 MHz and Cb and Cr are sampled at half that frequency, 6.75 MHz. When stored

in memory two consecutive pixels of a line of digital video are represented by the 4-byte



word Cb- Y-Cr-Y. Vertical bandwidth is the same for both luminance and chrominance

components, so a 3x6 pixel picture, for example, is stored in the format shown in

Figure 3-1.

Cb Y Cr Y kb Y Cr.Y Cb Y Cr Y

Ob Y Cr Y Cb Y Cr Y Cb Y Cr Y

Figure 3-1: Representation of 3x6 Pixel Picture in Memory

Because of bandwidth considerations at the beginning of the television era, video

is typically interlace scanned. Each frame is divided into two fields, where each field is

illuminated on the screen on every other line, with one field filling in the lines in between

the other's. The fields are alternately illuminated at a rate of 60 fields per second or 30

frames per second under the NTSC system or at 50 fields or 25 frames per second

under PAL. To the human eye this appears to be a continuous picture.

3.2 Digital Video Effects
The category Digital Video Effects includes rotations, page turns, scaling,

perspective projection, and other effects. These effects are used for all kinds of video

production, from newscasts to sportscasts to corporate videos to film. Scaling, for

example, can be used to effect bringing a picture in from infinity or simply to resize a

piece of video to fit in a particular portion of the screen.

DVEs have historically been implemented in hardware, for example in the Grass

Valley Group's Kaleidoscope and DPM100 instruments and the Alladin Pinnacle. Most

effects can be implemented in real time in hardware, but this is expensive and often

inflexible. More recently, they have been implemented in software on MACS or PCs, but



not in real time. The work done for this thesis is a step towards real-time software

implementation.



Chapter 4

Shrinking

The digital video effect implemented in this thesis is shrinking a video image.

This chapter describes the shrink effect in more detail and discusses the goals of an

implementation of it. It also points out some of the major issues that affect the

implementation. Finally, it provides a brief description of some previous

implementations of the effect.

4.1 Description
Successive frames of video are to be smoothly shrunk from full size to arbitrarily

small size at an arbitrary rate. This is essentially a resampling problem. The number of

pixels is decreased: for an input picture of N x M pixels and a shrink factor P, the

output picture is N -P x M P pixels, where P ranges from 1 or 100% for large output

pictures to zero for infinitely small output pictures. This thesis project is mostly confined

to the case where 25% < P <• 100%. Unless P is a rational number with numerator

one, like Y or Y, output pixels do not map directly to input pixels; they generally map to

points somewhere in between input pixels. So, each output pixel's value must somehow

be calculated from the input pixels surrounding the point to which it maps. Also, the

high frequency content of the input picture must be attenuated in order to prevent

aliasing.



4.2 Goals
An acceptable implementation of picture resampling for video needs to meet a

certain set of quality standards. These standards, which speak to both the quality of the

filtering which is used in the resampling and to the necessary sub-pixel resolution are

outlined below. Additionally, requirements for real-time operation and use of the

processor are discussed.

4.2.1 Quality
The ideal shrunk picture should look exactly like the original picture when viewed

from farther away. That means that it has to have exactly the same DC values as the

original, as well as that it has to retain as much of the high frequency components of the

original as possible while remaining non-aliased. If the input picture has frequency

content up to the Nyquist frequency UN, which is equal to n for a discrete time signal,

the output picture can only have frequency content up to the new Nyquist frequency

UJN , = P.O N .

In order for the shrinking operation to be smooth at arbitrary rates the output

picture size cannot be limited to whole pixel values. In fact, it must be possible to

change the shrink factor by increments small enough so that when the picture is being

shrunk extremely slowly the difference between successive output frames is

imperceptible. As a point of reference the shrink effect developed in this thesis project

should have identical or better performance than the Grass Valley Group (GVG)

DPM100 DVE. In the DPM100 the shrink factor P is changeable by increments as small

as 0.01%.



Also, the mapping of a desired point in the input to an output sample needs to be

implemented with a certain amount of precision. It was decided that at least one tenth

of a sample of resolution was necessary.

4.2.2 Processor Time
First and foremost the resampling processing must be done in real time. "Real

Time" means that all processing on each frame of video must be complete in time for

successive output frames to be displayed at the same rate as the input frames come in.

For 60 Hz video this means that all the processing for each field must be complete

inside 16.6 msec. Since video is being treated as frames, not fields, for the purposes of

this thesis, all processing for each frame must be complete inside 33.3 msec.

Additionally, it is desirable to use a decreasing proportion of the available

processing power as the output picture size decreases. For very small output pictures it

is desirable for the processing time to be short enough so that several different small

output pictures can be computed for each frame.

4.3 Major Issues
An algorithm which reaches the goals of this project must take into account

several issues, such as algorithm separability, the limitations of how much a filter of a

certain size can accomplish, and the fact that the video to be used is interlace scanned.

These issues and their impact on this thesis project are addressed below.

4.3.1 Separability
Resampling can be viewed as a fully separable problem. This means horizontal

and vertical processing on a frame of video can be done separately and independently.

A frame can be resampled first vertically, then horizontally, or vice versa. The output

will be the same. So long as the horizontal and vertical processing is the same the



number of computations will also be the same. It is also possible to view the problem as

a non-separable one, where the horizontal and vertical resampling is done

simultaneously. This, however, is prohibitively more complicated and computationally

expensive to implement. It is more complicated because, if nonseparable filters are

used, it is necessary to look a certain number of samples in both the horizontal and the

vertical directions in order to compute a single output sample. This makes it difficult to

efficiently pipeline PP operations because of the 2 Kbyte size of a PP's Parameter RAM

block and the work involved in setting up the TC to move data in a way that would make

it possible. Using non-separable filters is also more computationally expensive

because, for an a x b point filter h[ni,n], the convolution sum

y[n,,n 2] = x[ki, k2 [n, - k,,n2 - k2 ], with x being the input, requires a b
k, =-oD k2 =-Go

multiplies and adds to compute a single output sample y[n, n1] whereas with a

separable filter of the same size h[n,,n,] = hhoronta , [n ]h vetical En2] the convolution sum

can be rewritten as y[n,n 2 = x[k,,k 2 [n -k, h[n2 - k2] and only requires
k2 =-oo (k, =-oo

a + b multiplies and adds to compute a single output sample. For most combinations of

a and b a .b is significantly greater than a + b.

4.3.2 Filter Limitations
The effectiveness of simultaneously cutting down the bandwidth of the picture

and interpolating output pixel values is constrained by the performance of the filters

used to do so. There is no such thing as a finite length ideal filter. So, filters were

designed to take the best possible advantage of tradeoffs between their characteristics

and the amount of computation necessary to implement them.



4.3.3 Interlaced Scanning
Interlaced scanning causes some very noticeable artifacts when video is

resampled and low-pass filtered vertically. If the video is treated as a series of frames

information which started out in one field of a frame may very well be mapped to the

other field. If that happens then the information is displayed in reverse chronological

order, causing smearing in areas where there is horizontal motion. If instead the video

is treated as a series of fields there is no horizontal smearing, but vertical resolution is

degraded.

A good example of the problems interlaced scanning can cause in resampling

video occurs when the video size and bandwidth is halved in the vertical direction. In

the original full size picture, if an object is moving horizontally across the screen it will be

farther along in the direction of motion in the second field of a frame than in the first. If

the video is treated as a series of frames by the resampling algorithm the area of motion

in the output picture will look smeared. This is because if the input is subsampled with

no filtering, information from only one of the input fields is mapped to the output, and

information from the other field is thrown away. The moving object is equally far along

in the direction of motion in both output fields. When it is displayed in interlaced format

its horizontal lines are alternately lined up and doubly spread out, with an overall effect

of smearing the object horizontally. This effect is outlined in Figure 4-1. Low-pass

filtering in addition to subsampling allays this effect, but does not change its nature.

Since a low pass FIR filter has a peak at its center most of the information in an output

pixel comes from the input pixel to which it maps, so fields can still be easily reversed.



Figure 4-1: Example of the Effects of Treating Interlaced Video as a series of Frames when Decimating
Vertically by a Factor of Two.

One way to fix this motion problem is to treat video as a series of fields. This,

however, cuts down vertical bandwidth makes the entire output picture appear blurry.

That is not a big problem in the area of motion, because human vision is less precise

where motion is involved, but in stationary areas the picture appears significantly

degraded.

Ideally, video would be processed as a series of fields in areas with motion, and

as a series of frames in stationary areas. This requires storing frame to frame

information and implementing a motion detection algorithm, however. This project has

neither the memory in the development hardware nor the compute-time to do such

motion detection. Consequently video is treated as frames in this project. Simple

modifications to the code could be made to treat video in fields.

Image Before Processing, Image Before Processing, Image Before Processing,
Fields 1 and 2 Fields 2 and 3 Fields 3 and 4

Image as it Looks When Displayed,
Before Processing

Frm. Prnr..r Imian . itI nn

When Displayed
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Chapter 5

Description of Algorithm

There are several possible ways to approach the resampling problem. This

chapter describes and evaluates the classical but impractical way to do it by upsampling

and downsampling, as well as alternative schemes such as classical polyphase filtering,

approximate polyphase filtering, a two step filter and then interpolate scheme, and half

band filters. It then discusses the collection of algorithms that were actually chosen for

implementation on the 'C80 system and the reasoning behind the choices. Finally, it

outlines the process for designing the filters used in the final implementation.

For the purposes of this thesis resampling video is treated as a separable

problem, as explained in Section 4.3.1. Therefore the following discussion of

resampling algorithms speaks in terms of signals rather than pictures, where a signal

can be either a line or a column of data.

5.1 Possible Methods of Resampling
The classical way to resample a signal is to first upsample and then downsample

it. Upsampling and downsampling are simple ways to increase and decrease the

sampling rate by integer factors, respectively. Taken together, they can change the

sampling rate by factors which are rational fractions.[OPP89]

Upsampling and downsampling, however, is not a very practical approach due to

limitations in memory space and compute time. For example, a line of video upsampled

by a factor of two no longer fits in a 2 Kbyte PP data RAM block. There are ways to get

around this, such as having the PPs process half lines of data at a time instead of whole



lines, or maybe finding a way to do the computations in-place so that more than one

RAM block is available to a PP at a time. Both of these schemes sacrifice speed and

neither scales well, however.

There are still other alternatives. One is a sort of virtual upsampling, where no

upsampling is done but the filter used for each output point generates the point as if it

were filtering an upsampled signal. The filter used would have to depend on how the

input points map to the output point. This is the method of periodic filters, also known as

polyphase filters.[CR083] [LIM88]

Another is low pass filtering combined with some kind of interpolation. A picture

is low pass filtered with an appropriate cutoff frequency, then any points that translate

directly to output points are transcribed, and all other output points are bilinearly or

bicubically interpolated from the intermediate data. This method scales quite well, but is

somewhat computationally intensive since the low pass filtering convolution must be

carried out for every single input point, and then each output point has to be interpolated

from the intermediate data.

5.1.1 Upsampling and Downsampling
Downsampling is a simple method of reducing the size of a picture by an integer

factor. It also provides an illustrative example of the necessity for low pass filtering. If

combined with upsampling, an equivalent method for increasing the size of a picture by

an integer factor, downsampling can be used to change the size of a picture by a factor

which is an integer fraction. Upsampling and downsampling are described in detail by

Oppenheim and Schafer [OPP89], and are summarized below.



5.1.1.1 Description
Consider a line of digital video, x[n] of length N. A simple minded way to reduce

the length of this line to N/M would be to subsample it, so that the output y[n] is

y[n] = x[nM]. This is simple minded because it causes aliasing unless the input x[n] is

bandlimited such that it has no frequency components at frequencies larger than 1/M

times the Nyquist frequency. x[n] is a discretized version of the analog signal xa, (t)

evaluated at t = nT, where Tis the sampling period, or one over the sampling

frequency. So x, (t)= x[nT]. In the frequency domain this means that the Fourier

transform of x[n], X(ej' ), is equal to the periodic replication of the Fourier transform of

Xa (t), X(jG), evaluated at 9 = MIT, where the Fourier transform is defined as

X(jn)= JXa(t)e-&J' dt. So X(ejm-)= I O- j . This is illustrated in

Figure 5-1.

Figure 5-1: Frequency Domain View of Continuous to Discrete Time Conversion

x(ijo)
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If y[n] = x[nM]= xa (nMT) periodic replication in the frequency domain can

Y OeXa( w 27-k ),

cause aliasing. MT k=o aMT MT which means that the frequency

content of the input signal is stretched out to M times its original location. Aliasing

occurs and information is lost wherever this causes overlapping.

Figure 5-2 illustrates this for the case M = 2.

Figure 5-2: Downsampling by 2 Without Proper Low Pass Filtering

The solution to the aliasing problem is to low pass filter the input data so that it is

bandlimited to 1/M times the Nyquist frequency. This process and its effects in the

frequency domain are illustrated in

Figure 5-3 and

Figure 5-4, respectively.



Figure 5-3: Block Diagram of Proper Downsampling

Figure 5-4: Downsampling with Filtering

Upsampling is a similar process, used to increase the sampling frequency of a

signal x[n] by an integer factor M. It is commonly done by stretching the input signal

x[n] in the time domain by inserting M -1 zeros in between each sample, with the

result that y[m]= nM (nM)= nM In the frequency domain, this means
0, otherwise

LPF

x[n] xp[n] M y[m]



that Y(eJ") -= 7 k a i _ - - T I, or that the frequency spectrum of the output
T k=-o, T T

y[m] is a compacted version of the frequency spectrum of the input as shown in

Figure 5-5 for the case where M = 3.

Figure 5-5: Upsampling by 3 Without Filtering

There is no aliasing so no information is lost in this procedure. There is, in fact,

too much information, since the frequency spectrum which was centered around 27n is

mapped to one centered around 2n/M and the one centered around 47 is mapped to

one centered around 4n/M, and so on. There are, in a manner of speaking, M- -

extra 'copies' of the frequency information within each period. These extra 'copies' must

be eliminated by low-pass filtering y[m] with a filter with cutoff frequency wC = n/M to

generate the desired properly upsampled version of x[n], y1,[m]. This process is

outlined and its result shown in

Figure 5-6 and Figure 5-7.
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Figure 5-6: Block Diagram of Proper Upsampling

Figure 5-7: Upsampling by 3 With Proper Filtering

Taken together, upsampling and downsampling is a simple way to change the

sampling frequency of a signal by rational fractions. The upsampling is done first

because it is lossless; if the downsampling were done first information would be lost

unnecessarily in the low-pass filtering stage preceding the downsampling. Also, this

configuration allows the two low-pass filtering stages to be combined into one, with

cutoff frequency oe = IL/max(L, M).

x(eiw)

Y(ejO)
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5.1.1.2 Evaluation
While resizing pictures by upsampling and downsampling is simple, it has some

serious drawbacks. The most significant of these is that, in this application at least, it is

prohibitively inefficient.

The low-pass filter and downsampling stages can actually be combined if the

filters used are finite impulse response (FIR) and are implemented by convolution in the

time domain rather than by multiplication in the frequency domain, as they are in this

case because it is significantly faster for the small filter kernel sizes used. There is no

reason to compute all of the low-pass filtered points at the high sampling rate; only

every Mth point is actually used in the output, so only every Mth point need be

computed.

The upsampling part of the algorithm, however, causes a problem. Upsampling

a line of video even by a small factor requires a large amount of memory; more than is

available in a PP's data RAM. Upsampling by a large factor, such as 49 for an output

picture size 49/50 or 98% of the input picture size, becomes unmanageable.

Fortunately there is a way to combine the upsampling, filtering, and

downsampling operations all into a single operation by using periodic filters.

5.1.2 Periodic Filters
A good way to explain periodic filters is through an example. Consider changing

the sampling frequency of an input signal x[n] by a factor of 2/3, using a 5-tap FIR filter

h[n] with cutoff frequency we = ·r/3 to do the low-pass filtering. One zero is inserted

between each sample of x[n] in the upsampling operation to make an intermediate

signal w[n']. The combined low-pass filtering and downsampling operation then works



on w[n'] to compute the output signal, y[m]. When doing the convolution only half of

the values of the filter h[n] are used at any one time to compute an output pixel; the rest

fall on the zeros inserted in the upsampling stage.

This leads to an equivalent but more efficient way to resample x[n] by a factor of

L/M. It is possible to skip the upsampling all together and compute the output

samples by convolving the input with the values of h[n] which would have fallen on the

non-zero parts of w[n'] had w[n'] actually been computed. For the case where

L/M = 2/3 this means that for alternate m's y[m] is computed as a convolution of the

appropriate part of x[n] with either kh[n] or h2[n], where

ha[n]= h[- 2]8 [n + 1]+ h[0]IS[n]+ h[2]5[n - 1] and h2[n] = h[- 1]6[n]+ h[1]6[n- 1]. This

analysis is shown in Figure 5-8.

Figure 5-8: Example of Combining Resampling and Filtering Operations

Provided that the subfilters hi[n] are long enough each of them has roughly the

same magnitude frequency response lHi(e•' . Exactly how well they are matched

depends on their length and design. What is different about them, and what makes

them able to interpolate between pixel values in addition to low-pass filtering them, is

40

w[n']*h[n']=>y[m]

--- w[n'lS- h[k-n']



their phase response ZH)(e') and group delay grd[H,(ejm)], where group delay is

defined as the negative first derivative of the unwrapped phase response. The group

delay of a filter at a particular frequency w can be interpreted as the number of

samples the filter will delay the frequency component of the input lying at a . For a filter

to interpolate the value of a pixel which would be a distance x away from the pixel

preceding it and a distance 1- x away from the pixel after it a filter ought to have a

constant group delay of x in its pass band. The group delay in the stop band is

irrelevant, since those frequencies are, by definition, attenuated.

An FIR filter h[n] symmetric about n = 0 has zero phase and, consequently,

zero group delay. That same filter shifted to the right by one sample, h'[n]- h[n - 1],

has a phase response with slope 1, and a group delay grd[H'(eJ) = 1. The

interpolating subfilters h,[n] are essentially shifted by fractions of a sample from each

other. In the case where L/M = 2/3 which was discussed above /1[n] has a group

delay of zero and hk[n] has a group delay of one half so it can interpolate the value of a

pixel exactly in the middle of two pixels.

5.1.2.1 Exact Polyphase Filter Approach
The exact polyphase filter approach is based on the periodic filtering described

above. It takes advantage of the facts that the two low-pass filtering stages can be

combined and that only the output samples which will actually be used need be

computed. Exact polyphase filters are described in detail by Crochiere and Rabiner

[CR083] [LIM88], and are summarized below.

Description



Changing the sampling frequency of a signal by a rational factor L/M is done

by modifying the regular convolution operation, where output pixels are calculated as

one filter h[n] steps through the input signal x[n], to an operation which computes

output pixels by cycling through a succession of L filters hi[n], i = 0,1,..., L-1 as it

steps through x[n]. L such filters are required because, since L - zeros would have

been inserted in the upsampling stage if that stage were actually implemented there

would be L different positions for which a unique set of points in h[n] would not fall on

the inserted zeros. Each of the L filters has roughly the same magnitude frequency

response, that of a low-pass filter with cutoff frequency M, = L/M if M > L, as it is for

shrinking. Each of the L filters has a different phase response and group delay such

that the group delay of each successive hi[n] has a group delay 1/L higher than the

previous h,[n]. Hence the appellation 'polyphase filters.'

Evaluation
This approach is quite effective as far as it goes. It is computationally efficient in

that it only needs 0 multiplies and adds per output sample, where Q is the number of

taps in h,[n]. Also, it skips the upsampling stage, so it does not use any more data

memory than it takes to store an input signal.

The drawback is that the resampling capabilities of exact polyphase filters are

limited to rational fractions. Furthermore, limitations in the size of the Parameter RAM of

a PP restrict the rational fractions to be fairly simple. For each set of L Q-tap polyphase

filters Q-L coefficients must be stored in each PP's Parameter RAM for the PP to be

able to its work. For a fraction which will give the desired 0.1% or better resolution this

is not possible. For example, a shrink factor of 81.1% would mean that L = 811 and



M = 1000. If Q is, say, 5, then 4 Kbytes are required to store the filter coefficients if

they are 8 bits wide, and 8 Kbytes if they are 16 bits wide. A PP's Parameter RAM is 2

Kbytes, and only about 1.5 Kbytes are actually available to the user. Finally, even if the

PPs' Parameter RAMs were larger the sheer number of coefficients that would have to

be stored in off-chip memory in order to accommodate 0.1% or better resolution is

prohibitive.

The exact polyphase filter approach, then, is one which is of limited use for all its

elegance. It can only be implemented on the 'C80 for resampling video in rather coarse

increments, like two or at most one percent. A similar but more attractive approach is

that of using approximate polyphase filters.

5.1.2.2 Approximate Polyphase Filter Approach
The approximate polyphase filter approach is, again, an implementation of

periodic polyphase filters. It differs from the exact polyphase approach in that it uses a

fixed number of polyphase filters to do the low-pass filtering and resampling for a

particular resampling factor.

Description
The filtering and resampling operation is again carried out using a set of periodic

polyphase filters. However, the period or number of different filters used is fixed at L,.

This means that there are also a fixed number of pass band group delays, one

associated with each filter. The range of the group delays is

L+ 2 1,,1 2 L-1- 9.,- L 9 ,-- L " L,0,,3, , if L =Lf is odd, and

1+,1/2 3 1 1 3 1+,12
- 2• ... , , , L , L ... , L if L is even. So long as L is sufficiently large this is

a good enough approximation to the fixed phase model that, to a human eye watching



video at least, the difference is indistinguishable. Regardless of its group delay each

low-pass filter should have a cutoff frequency wC = P, where P is a non-rational

resampling factor between zero and one.

The filtering and resampling convolution operation for this scheme is carried out

in the following way: Regular convolution, y[n] = Z x[k]h[n - k], can be seen as
k=--co

flipping a filter h[n] and sliding it along the input signal x[n] such that at each position

the output value y[n] is the sum of the dot product of x[n] and the flipped h[n] in the

region that they overlap. In this case, the procedure can be seen as indexing through

the input x[n] and, at each position k, choosing the flipped version of a Q-tap filter h,[n]

from the set of available filters H and setting the output value corresponding to that

position y[m] to the sum of its dot product with the part of x[n] it overlaps when

positioned at k. The position k is calculated from a running fraction rfm, which is related

to P by rf, = m/P, such that k = Lrf. . The fractional part of rf, f = rf, - Lrfm. is

used to select the filter hi[n] to be used at position k.

Figure 5-9 shows a diagram of this process.



Figure 5-9: Diagram of Approximate Polyphase Filtering Process

Evaluation
The approximate polyphase filter approach is both effective and efficient. It uses

a limited amount of memory space; only L Q coefficients need be in a PP's Parameter

RAM at a time, and L is a fixed number. Also, there is no need to store a separate set

of filter coefficients in off-chip memory for each possible value of P. Each set of filter

coefficients stored is good for several possible values of P. The set of possible values

of P, then, is limited by neither memory space constraints nor by a need for it to be a

rational fraction, only by the precision of the variables rf and f.

5.1.3 Filter then Interpolate
Another way to reduce the sampling rate of a signal x[n] is to first low-pass filter

it at its full sampling rate so as to prevent aliasing, and then to resample it by using

some form of interpolation

To reduce the sampling rate by a factor P x[n] is first low-pass filtered with a

filter with cutoff frequency rc = P "-7 to make an intermediate signal w[n]. The



advantage here is that the filter used can be FIR or IIR, and there need be only one filter

for a range of Ps; no need to complicate matters with a set of periodic polyphase filters.

The disadvantage is that this filtering is done at the full sampling rate, which can mean

that it requires a very large number of computations. The output signal y[m] is

interpolated from w[n] using any of a number of methods, such as nearest neighbor,

linear interpolation, cubic spline interpolation, or cubic convolution. Again, there is an

advantage in terms of flexibility of the algorithm, and a disadvantage in terms of the

computational expense of doing a second pass.

In general an FIR discrete time filter is easier to implement than an IIR filter. On

the upside an IIR filter can come closer to the desired frequency response with a fewer

number of coefficients than an FIR filter can. However, an FIR filter is inherently stable,

whereas it is possible for an IIR filter to go unstable, even if it is designed properly, due

to accumulated precision errors. Also, IIR filters require division, which can be

computationally costly, while FIR filters are strictly multiplicative. Finally, it is not

possible to vary the group delay of an IIR filter in a periodic fashion, so they cannot be

used for simultaneous low-pass filtering and interpolation. All the low-pass filtered

output samples must be computed first at the original sampling rate and then the signal

must be resampled using some form of interpolation.

5.1.4 Half-Band Filters
The ideal half-band filter, or one with cutoff frequency we = n/2 ,

hieal[n] sinis unique in that hideal[n]= 0 for all even values of n
Tin n

except n = 0. An FIR half-band filter based on hide,,[n ], such as one designed by

windowing hidea[n ],retains this property. A properly optimized convolution algorithm



can exploit the property to significantly cut down the computational expense of

resampling a signal by a factor of 1/2. A 13-tap half-band filter could be implemented

using 7 multiply-adds, a 17-tap half-band filter could be implemented using 9 multiply-

adds, and so on. If a half-band filter is used to resample a signal by a factor of 1/2

there is no interpolation to be done. Each output sample maps directly to a particular

input sample, so the operation can be viewed strictly as one of downsampling. This is

both a benefit, because it makes for a very simple process, and a drawback, because it

limits the use of half-band filters to resampling by factors of 1/2 only.

5.1.5 Summary
Several possible methods of resampling video were presented and evaluated in

this section: upsampling and downsampling, exact and approximate polyphase filtering,

filtering followed by interpolation, and halfband filtering. Each of these methods has its

own set of strengths and weaknesses.

The first two methods, upsampling and downsampling and exact polyphase

filtering, are theoretically simple and accurate. However, the former method requires a

large number of operations to perform the upsampling, and it requires extra memory

space to store the upsampled intermediate signal before the downsampling operation is

done. For a 1440 sample line of video data any upsampling requires more storage

space than is available in a 2 Kbyte PP data RAM buffer. The extra manipulations

necessary to properly manage these memory requirements would be difficult at best.

Together with the large number of operations necessary the memory requirement issue

makes pure upsampling and downsampling an unattractive option for resampling video

on the 'C80.



The latter method requires a reasonable number of operations to implement and

does not use any extra memory space. The down side is that it is limited to resampling

by factors P which are rational fractions P = LM . This poses a problem because, if a-

tap filters are to be used, Q. L coefficients need to be stored in each PP's parameter

RAM in order to perform the processing efficiently. For large values of L, which are

unavoidable if P is to have the desired 0.1% or better resolution, the number of

coefficients needed becomes so large that it no longer fits in a PP's parameter RAM.

Furthermore, a separate set of coefficients has to be kept in off chip memory for every

possible value of P. For these reasons exact polyphase filtering also is not suitable for

implementation on the 'C80.

The other three algorithms described, approximate polyphase filtering, filtering

and then interpolating, and halfband filtering, are more reasonable approaches to

implementing video resampling on the 'C80. The number of operations required to

perform the necessary calculations is manageable. It is different for different

combinations of the three algorithms and under for different values of relevant

parameters, as will be discussed in the next section. Memory space is also

manageable: of the three only the filter and interpolate approach requires extra memory

to store intermediate results, and even that is the same amount of memory as is taken

up by the input data; also the number of coefficients stored is fixed to at most Q. L f,

where Lf is the number of filters used in approximate polyphase filtering. Finally, the

resampling factor P is not limited to rational fractions.



The figures below show an example of why the last three algorithms are better

suited to implementation than the first two. The data presented is based upon

calculations done according to

Table 5-1, where K x N = 486 x 1440 is the size of an input picture, Q = 5 is the

number of coefficients per filter, P is the resampling factor, defined as P = LM '

L, = 16 is the number of filters used in approximate polyphase filtering, and Q'= 3 is

the number of non-zero coefficients in a halfband filter of length Q. Four different values

of P, of varying complexity, are used. P is constrained to be a rational number so that a

meaningful comparison can be made between algorithms which require such a

constraint and those which do not.

Table 5-1: Calculations for Comparing Resampling Methods

Figure 5-10 shows that upsampling and downsampling is significantly more

computationally intensive than the other algorithms. Figure 5-10: Comparison of

Resampling Methods in Terms of Number of Calculations

shows that while both upsampling and downsampling and filtering and interpolating

require extra memory space to store intermediate values, the former algorithm does so

in a dynamic way and can easily require much more space than the latter algorithm.



Figure 5-11: Comparison of Resampling Methods in Terms of Data Memory

Requirements

shows that the exact polyphase filter approach can require much more memory space

than is possible for storage of filter coefficients in the PP's parameter RAMs.

Number of Operations Needed to Process One 1440 Sample Line at
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Extra Memory Required to Process One 1440 Sample Line at Various
Values of P, Using 5-Tap Filters
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5.2 Final Choice of Algorithms
One or a combination of the above algorithms needed to be mapped to the 'C80

for real-time operation in order to achieve the desired video shrinking effect. After

examining the performance goals of the effect and the computational constraints of the

'C80 and the development hardware a multi-pass algorithm was decided upon.

5.2.1 Computational Constraints
Separating the resampling of an image into two stages, one horizontal and one

vertical as shown in

Figure 5-13, offers a significant computational savings for the second stage. For an

input image of n x m samples, a resampling factor P, and assuming that it takes C

processor cycles to compute an output sample in each stage, the number of cycles

necessary to complete the first stage is C. (P. n. m) and the number of cycles

necessary to complete the second stage is C.(P. n- P. m), for a total number of cycles

C, = C. n. m. (P+ P2). This means that the number of cycles available for computing

an output sample in each stage in real time is

(I 1 X cycles / processor( processors
Ca 30sec n- m . (P+ P2) operations sec

Figure 5-13: Two Stage Processing: Horizontal, Then Vertical



5.2.1.1 'C80
If a frame of video has n = 1440 samples per line and m = 486 lines and the

9.5260
processor used is a 'C80 with N = 4 and X= 50 MHz then C (p + A plot of

Ca versus Pis shown in Figure 5-14 and Figure 5-15.
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Figure 5-14: Cycles Per Output Sample

Figure 5-15: Cycles Per Output Sample (larger range of P)
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As the above plots indicate the number of cycles available to calculate an output

sample in each stage of processing is most limited when the resampling factor P is

closest to 100%, to as few as 4.8 cycles per sample per stage at 100%, and increases

quickly as P becomes very small, to as many as 86.6 cycles per sample per stage at

10%. This means that it is computationally feasible to use increasingly large filters as

the value of P decreases. It is desirable to do so, to a certain point, because as the

value of P decreases aliasing poses a greater problem so better, and therefore longer,

filters need to be used.

The architecture of the 'C80 and the development hardware encourages

resampling horizontally first and vertically second, as opposed to the other way around.

The two ways are computationally equivalent so long as the same filtering technique is

used processing in each direction, but the former is better suited in terms of data

transfer. Video frames are stored as lines in the input memory bank. For horizontal

processing all the Transfer Controller needs to do to copy a line of data to a PP's data

RAM is to grab it whole and copy it over. For vertical processing the Transfer Controller

must use an extra dimension and grab k byte blocks from each of a series of lines and

copy them into a PP's data RAM as a line. An example of how a vertical line of a 4 x 6

pixel image is mapped to a PP data RAM with k= 4, is shown in

Figure 5-16. If horizontal resampling is done first there are fewer vertical lines to

transfer around in the vertical resampling stage, making for a more efficient algorithm.

For the program that was written vertical columns were k = 8 bytes wide.



Figure 5-16: Mapping of a 4-byte Wide Column of Data to a PP's Memory

Finally there is the issue of memory space, which was touched upon in the

discussion of polyphase filters. Each PP has 2 Kbytes of Parameter RAM, of which the

first 0.5 Kbyte is reserved for use Transfer Controller and for handling interrupt vectors.

Also, the PP stack grows from the bottom of the Parameter RAM, so only the remaining

1.5 Kbytes minus the stack size are available to actually store parameters. At the same

time the PPs must have all of their parameters available locally in order to operate

efficiently. Consequently it is not feasible to implement any algorithm which requires a

large amount of memory to store filter coefficients, such as the exact polyphase filter

algorithm.

5.2.1.2 Assumptions
Since the 'C80 PP can do a multiply, an accumulate, a data fetch and store, an

instruction fetch, and pointer updates in a single cycle even 4.8 cycles per output

sample per stage is enough to do a reasonable number of calculations. The remainder

of this thesis project relies on the assumptions that PP code can be optimized to

implement a Q-tap FIR filter in Q + cycles, and to implement a half-band filter with Qhb

non-zero coefficients in Qhb cycles. These assumptions were decided to be reasonable

after consulting with local 'C80 programmers.



5.2.2 Multi-Pass Algorithm
After reviewing the computational, I/O, and memory constraints of the 'C80 and

the current development hardware a multi-pass algorithm was decided upon for

implementing the video resizing effect. This algorithm is diagrammed in

Figure 5-17.

Approximate Half-Band Approximate Running
Polyphase then Polyphase Average
Filtering Approximate Filtering and Nearest

Polyphase Neighbor
Filtering Interpolation

Figure 5-17: Algorithm Decision Tree

The resampling problem is treated differently depending on the value of the

resampling factor P. The range of values of P that are dealt with in this thesis is

25% < P < 100%. Methods for resampling video for smaller values of Pare

considered, but not implemented. For the range where 50% < P < 100% a single pass

of approximate polyphase filtering is necessary. If 25% < P< 50% the picture is first

downsampled to half its size in each direction using a half-band filter and then is

resampled by a factor PI = 2P using approximate polyphase filtering. Two methods of

handling the case where P < 25% are proposed, going back to approximate polyphase



filtering and using a combination of running average filtering and nearest neighbor

interpolation.

The reason the problem is broken up this way is that switching methods offers

computational savings, as will be discussed in the sections that follow. No one

resampling method is best for all values of P, so an efficient implementation of

resampling switches between different methods as is appropriate.

5.2.2.1 P>50%: Single Pass of Approximate Polyphase Filtering
Approximate polyphase filtering, used in the first and only pass of the resampling

algorithm if P> 50% and in the final pass if 12.5% < P < 50%, is used in the following

form: L Q-tap polyphase filters are designed and used for each of several ranges of P.

L is fixed at 16 because subpixel resolution of at most one tenth of a pixel is required

and because it is most convenient to implement a value of L which is a power of two.

The number of taps Q in a set of polyphase filters is constant across the set of filters

because it is significantly simpler to implement fixed rather than variable length filters.

For each range of P Q is chosen such that Q + is less than the number of cycles

available per sample per pass for calculation in the case that P> 50%. The same set

of filters is used for the final pass in the case that 12.5% < P < 50%, so that as P

decreases the resampling process begins to free up some of the processor. The ranges

of P and their corresponding 0 values are shown in Figure 5-18.



Figure 5-18: Relationship of Filter Size to Resampling Factor

5.2.2.2 25%<P<50%: Combined Half-Band and Approximate Polyphase
Filtering

If 25% < P < 50% a frame of video is resampled in two steps. The first step,

downsampling by a factor of 1/2, efficiently if coarsely reduces the size of the input

picture. A half-band filter with Q = 13 taps is used for this step. Assuming a highly

optimized filter, this step should take 63% of the processor. The second step,

approximate polyphase filtering with Pe. = 2P, fine tunes the results of the first step to

effect resampling by the original factor P. Such a two-step algorithm results in a net

savings in computation time over a single approximate polyphase filtering algorithm with

equivalent performance. For example if P = 45% the two step algorithm, using 5-tap

polyphase filters in the second step, takes 55% of the processor. A one step algorithm

with equivalent performance, 15 taps, since the first and last taps of the half-band filter

are zero, would take 96% of the processor. Although the difference is not extremely

large it is significant because the single step algorithm is right on the edge of being able
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to run real time, while the two step algorithm has a bit of a safety margin. The

theoretical relative performance characteristics of the two-step and equivalent one-step

processes are shown in Figure 5-19. The two traces do cross at P Z 30%, but the

difference between them never becomes very large beyond that point.

Computational Comparison of Two-Step and Single-Step
Algorithms for 250/<P<50%
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Figure 5-19: Processor Use for 12%<P<50%

5.2.2.3 12.5%<P<25%: Approximate Polyphase Filtering
One way to handle the case where 12.5% < P < 25% would be to go through the

half-band filter and decimate step twice to achieve a one quarter reduction in size in

each direction, and then to use approximate polyphase filtering to fine tune the

resampling to the desired value of P. Such a three-step algorithm is a simple solution,

but not necessarily the best one possible. For a 13-tap half-band filter the first two steps

use up 69% of the processor. Not much additional processing time is required for the

third step, but using an equivalent single-step approximate polyphase filtering algorithm

quickly becomes more efficient, as shown in Figure 5-20. Furthermore, as the output
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picture size becomes very small its quality becomes less important; a 31-tap filter for an

output picture 12.5% the size of the input picture in each direction is overkill.

Consequently, a return to the original single-step approximate polyphase filter approach

is proposed for the case where 12.5% < P < 25%.

Figure 5-20: Processor Use for 12.5%<P<25%

5.2.2.4 P<12.5%: Running Average Filter then Interpolate
The filter and then interpolate algorithm is proposed for very small output

pictures, such as ones below 12.5% of the original size along each axis. A simple filter,

an FIR box or running average filter is proposed. Such a filter is far from ideal--the

frequency response of a 10-point filter, shown in Figure 5-21, has sidelobes almost a

quarter of the height of the main lobe and an ill defined pass band and wide transition

region--but for an output picture of 60 x 90 pixels or smaller it ought to be perfectly

adequate. Similarly, nearest neighbor interpolation would look terrible on a large full-

resolution picture, but should be adequate for a small, low frequency picture. Taken
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together running average filtering and nearest neighbor interpolation give small output

pictures of reasonable quality at small computational expense.

Figure 5-21: Running Average Filter

5.2.2.5 Edge Effects
Anytime a finite length signal is filtered to produce another finite length signal the

question of how to handle the edges comes up. Any non-degenerate filter will introduce

errors in the first and last few samples of the output. For example, if an FIR filter with

an odd number Q of coefficients is convolved with an input signal x[n] defined on

some interval n = 0,1,...,N to produce a signal y[n] defined on some interval

Q-1n = 0,1,..., M the first K - 2 samples of y[n] will be calculated from unknown

samples of x[n] where n < 0. The same effect occurs at the other end, where y[n]

depends on values of x[n] for n > N. There are three standard techniques used to

handle this problem: zero padding, repetition, and reflection. Each of these techniques

assigns values to x[n] in the unknown regions n = -K,-K +1,...-1 and

n = N + 1, N + 2,...N + K. Zero padding sets x[n] to zero in both these regions,
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replication assigns x[n]= x[O] in the former and x[n]= x[N] in the latter region, and

reflection assigns x[n] in the unknown regions values which are the reflection of the

values of the defined portion of x[n] about n = 0 and about n = N. Of these three

methods zero padding was chosen for this project because, although produces less

pleasing results than the other two, it is the simplest to implement. Also, since the

number of coefficients used in the filtering operations increases only as the ratio of input

to output picture size increases any artifacts caused by the zero padding are guaranteed

to remain in a small number of pixels at the edges of the output picture.

5.3 Filter Design
A good design makes compromises among the desirable features in such a way

that the resulting set of filters produces the best looking output video. Design of both

periodic and half-band filters is discussed in this section.

5.3.1 Periodic Filter Design
A set of periodic filters can be designed either by sampling a prototype filter at

different offsets or by attempting to specify both the desired frequency and phase

response for each of the filters in a set separately. Beyond that they can be designed

using several methods including the Remez-exchange algorithm and windowing. The

actual design methodology was based on how well it facilitated meeting the design

criteria and on its simplicity of use.

5.3.1.1 Desirable Features of Filters
A set of polyphase filters has several desirable features, some of which are

particularly important for video. Among these are DC gain, matching of magnitude

frequency response, group delay, transition band, and pass-band and stop-band ripple.



Perfection, of course, is not possible. There are many trade-offs to be made; the

sharper the transition band, the larger the pass-band ripple, and so on. How these

trade-offs are made depends on the relative importance of the desirable features of a

set of filters for a particular application. For video the first three features listed are of

particular importance.

The DC gain of each filter hi[n] of a set H must be equal to exactly one. The

case of a flat field test signal illustrates why this is such a hard requirement. If the input

picture is uniformly gray the output picture should also be uniformly gray. With 8 bit

video even one bit's difference between the two is noticeable, and unacceptable.

The pass-band group delays of a set of filters are important because they are the

mechanism of the interpolation. The trade-off is that for a small number of taps

designing a set of filters with constant and correct group delays affects the possibility of

matching their magnitude frequency responses. At the same time, the magnitudes of

the frequency responses of each of the h,[n]s in a set H need to be the same.

Otherwise some of the filters do a better job of low-pass filtering and interpolation than

others. The result is that a high frequency object at one position on the input picture will

look different on the output picture than the same object at a different position on the

input picture. A high frequency object moving across the screen, for example, will

appear to blink in and out as it periodically becomes more and less blurry. A sinusoidal

input whose frequency falls in the pass-band of some of the h,[n]s, in the transition

band of some others, and in the stop-band of still others will be attenuated more and

less in a periodic manner. This effect is especially problematic because the Cathode

Ray Tubes (CRT's) used to display video have non-linear gain due to what is known as

gamma correction. In general the higher value of a pixel the higher the gain, so a



modulated monochrome sinusoid with a DC value of gray actually appears to be a

modulated sinusoid with a DC value which oscillates at the modulation frequency, as

shown in Figure 5-22.

Figure 5-22: Effects of Periodic Filters With Mismatched Magnitude Frequency Responses

The magnitude of the pass-band ripples must be less than 5%. Anything larger

will be noticeable to a careful observer. Also, all output values must be between 0 and

255, and ought to fit in the 16-235 for luminance and 16-240 for chrominance valid

range of 8-bit video. Large overshoots will cause values which are significantly out of

the valid range, which not only looks wrong but causes errors in any subsequent

processing of the same video. The down side of designing for such small ripple is that it

necessitates wide transition regions.
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5.3.1.2 Sampled Prototype Filter
One way to design L Q-tap periodic polyphase filters with cutoff frequency

WC = P is to design a single L -Q tap prototype filter h,[n] with cutoff frequency

WC = P/L, and to sample that filter to create the individual polyphase filters

h,[m] = h,[mL + i]. This works quite well so long as the magnitude of the frequency

response of hP[n] is sufficiently close to zero above WL = I/L. If it is not then

sampling hp[n] will in fact cause aliasing in the subfilters. This aliasing will be worse for

some of the subfilters than for the others, depending on the value of i, causing a set of

poorly matched filters.

5.3.1.3 N L Point Filters
Another approach is to design each filter of a set H separately. This can be

done by designing a single Q-tap zero-phase filter with cutoff frequency wC = P and

interpolating the individual hi[n]s from it. Ideally the interpolation could be done by

convolving the impulse response of the zero-phase filter ho[n] with an ideal interpolator

S sin[ (n - ai -k)]
such that hi[n]= kho ( k , where ai is the desired group delay of

h,[n]. Unfortunately the h,[n]s designed in this way have infinite impulse responses. If

they are truncated to Q coefficients their performance suffers. They become just as

difficult to match as h,[n]s designed by sampling a prototype hP[n].

Each Q-tap hi[n] could also be designed by specifying both its desired

magnitude frequency response and its desired group delay in the design algorithm. No

suitable design algorithm was found to do this, however.



5.3.2 Filter Design Techniques
Filters were designed using the sampled prototype filter technique because it

proved to be simpler than designing N L point filters: in both cases only one filter

needed to be designed, but sampling one large one was somewhat easier to do than

doing a lot of fractional sample delay convolutions.

Several design methods were considered, including the Remez-exchange

algorithm and windowing. After evaluating these methods windowing was used.

5.3.2.1 Remez Exchange
The Remez Exchange algorithm can be used to design optimal filters, where

'optimal' means that the maximum error from the desired filter is minimized. This

algorithm works quite well, provided that the number of coefficients in a filter is

sufficiently large. If, however, the design problem is as highly constrained as it is here,

the Remez-Exchange algorithm breaks down. According to the alternation

theorem[OPP89] a mini-max optimized filter with a small number of taps has an even

smaller (roughly half) number of alternations, with all the ripples in the pass band being

of equal size and all the ripples in the stop band being of equal size. The small numbers

of taps being used in this implementation and the design goal of significant attenuation

by ·a = 1/L in the prototype filter mean that a prototype filter designed using the

Remez-Exchange algorithm typically has unacceptably large ripples. Also, as the

algorithm iterates through its design procedure it ends up resorting to using coefficient

values of unreasonably large magnitudes at the edges of the filter in order to meet at

least some of the design constraints. Consequently the sub-filters made by sampling

the prototype filter can be severely mismatched; some are actually high pass filters.

Figure 5-23 shows an example of the time and frequency response of an 80 tap



prototype filter designed with P = 80% and the frequency responses of the 16 5 tap

subfilters made by subsampling it. The Remez-Exchange algorithm was not used for

filter design in this project because of its poor performance for the kind of

overconstrained filters that are necessary.

Prototype Filter, Time Domain

h[n]

Prototype Filter, Magnitude in Frequency Domain

IHI 1

n
-1 -0.5 0 0.5

Subfilters, Magnitude in Frequency Domain
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Figure 5-23: Example of Overconstrained Filter Designed Using the Remez-Exchange Algorithm

5.3.2.2 Windowing
Filters designed by windowing are ideal sin x/x filters multiplied by a window

such that h[n] = hdeal [n]w[n]. The reason for using the window w[n] is to attenuate the

ripples caused by the Gibbs Phenomenon. Several different types of windows can be

used. Among them are Boxcar, Hamming, Hanning, Bartlett, Blackman, and Kaiser

windows. Essentially the Boxcar window does nothing at all, the Hanning and Hamming

I I



windows are cosine shaped, the Bartlett is a triangle, and the Blackman is a sum of two

cosines. These windows are defined as follows for filters of length N+1 [OPP89] :

Boxcar: w[n] = , 0, o nt sN

0, otherwise

Hamming: w[n] =0.54 - 0.46cos(2nn/N), O n N

0, otherwise

Hanning: w[n] =0.5 - 0.5 cos(2xn/N), 0 n < N

0, otherwise

2n/N, O<n N/2

Bartlett: w[n]= 2-2n/N, N/2<n < N

O, otherwise

Blackman: w[n] = 0.42 -0.5cos(2nn/N)+0.08cos(4nn/N), 0 <n • N

0, otherwise

The Kaiser window actually meets filter specifications of desired width of the

transition region Am and the maximum allowable error 8 in so far as it is possible to do

so with a filter of length N+1. Knowing any two of the three parameters the designer

can calculate the third such that the resulting filter will meet its specifications. With the

three parameters set according to those calculations the Kaiser window can do as good

or better a job as any of the other windows discussed above; in fact in some cases it

turns out to be equivalent to one of those windows. If, however, all three of the

parameters are set ahead of time, as they are in the case considered here, it is just

another window. A Kaiser window is designed using the equation,



[n]= , ,P O_ n_ <N,
0, otherwise

where a = N and Io(.) is a zeroth-order modified Bessel function of the first kind. 3

is defined as,

0.1102(A - 8.7), A > 50

p O = .5842(A-21)0.4 +0.07886(A-21), 215 A< 50,

0.0, A<21

A-8
where A is related to N, Am, and 6 by A = -20 log8 and N =

2.285Awi

Aside from the Boxcar window the various windows are quite effective at

attenuating the large overshoot caused by the Gibbs phenomenon. They do so,

however, at the expense of a wider transition band. In cases where only a small

number of taps are used the transition band can be so wide that the design goal of

significant attenuation by m = 1/L in the prototype filter cannot be met. This causes a

problem because the subfilters made by sampling such a prototype filter are then

aliased and consequently mismatched. A smooth roll-off, on the other hand, is actually

somewhat advantageous for the video application addressed in this thesis. This is

because it means that there are only small, incremental differences between filters that

are appropriate for different but similar values of the resampling factor P, which makes

for very smooth transitions. The human eye is quite sensitive to motion, so smooth

transitions are even more important than absolute quality. Also, a single set of filters

can be used for a range of values of P.



The frequency response characteristics of filters designed using the six different

types of windows discussed above were evaluated for various combinations of

resampling factors and numbers of coefficients. Special attention was paid to matching

and overshoot when making comparisons. An example of such a comparison for the 16

5 tap subfilters with desired cutoff frequency m, = 0.87c is shown in Figure 5-24. When

comparing against the Kaiser window parameter values of 8 = 0.05 and therefore

p = 1.5098 were used. The transition width Am was left as the free parameter

because, for a filter which is as heavily constrained by the number of coefficients as the

filters designed here are, fixing Am to its actual desired value leads to outrageously

large values of the error 8 .
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Figure 5-24: Example of Frequency Responses of Periodic Filters Designed Using Various Windows.

It was found that for most cases prototype filters designed using the Hamming

window had the best matching and either the best or comparably small overshoots.

Hanning, Bartlett, and Blackman windows had similar but slightly worse results. The

Kaiser window was so overconstrained by the limitations on the number of coefficients a

filter could have that the transition bands were so large that the sampled subfilters were
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close to one and the number of filter coefficients available per subfilter is as small as 3

or 4 a Kaiser window actually gave good results, and was used. For such a small

number of taps the other windows responses of filters designed using the other windows

was so poor that errors introduced by Kaiser windowing were more acceptable. For the

case where P is close to 50% and the number of filter coefficients available per subfilter

is as large as 11 both Kaiser windowing and the Remez exchange algorithm, no longer

as overconstrained, actually did a good job of matching and keeping error small, but

Hamming continued to be used in this region regardless in order to insure continuity. In

some cases it was necessary to design filters with specified cutoff frequencies smaller

than the desired cutoff frequencies so as to attenuate the effect on matching of too large

a transition band.

Table 5-2 shows the breakdown of design methods and actual specified cutoff

frequencies (for the subfilters) for each range of the resampling factor P.

Table 5-2: Filter Design Methods and Parameters



5.3.2.3 Powers of Two Filters
One traditional way to design filters for hardware implementations is to constrain

their coefficients to be powers of two. Such filters are can be efficiently implemented in

hardware systems by shifting the input data rather than multiplying it. On the 'C80,

however, a rotate is equally or more computationally expensive than a multiply,

depending on the precision of the multiply. Powers of two filters, then, offer no

advantage to compensate for imposing an extra constraint on the filter design.

5.3.3 Half-Band Filter Design
The half-band filter used was necessarily designed using windowing. This is

because a window designed filter is the only one that is based directly on the ideal

sin x/x function, so is the only one that keeps the special property that every other

coefficient is equal to zero with the exception of the zeroth coefficient. Other design

algorithms, such as the Remez-exchange, make no guarantees about zero valued

coefficients. Since the extra computational efficiency provided by the regular zero-

valued coefficients is the reason using a half-band filter is worthwhile in the first place

this is not acceptable. So, the half-band filter was designed by windowing the ideal filter

sin( an)hiea [n] = with a 13 point Hamming window.
n



Chapter 6

Implementation of Algorithm

The algorithm described in the previous chapter is implemented on the 'C80 in a

way that makes efficient use of the processor's components and of the development

hardware. After a brief introduction, this chapter describes the details of the

implementation. A discussion of the MP and its role as the director of all the processing

is followed by an overview of the data flow through the system and the parameter

structures used to control PP operation. Finally, the details of the filtering as performed

by the PPs are explained.

6.1 Introduction
The way the 'C80 is used in this project the Master Processor is, indeed, the

master of all operations, the Transfer Controller is the data movement machine, and the

Parallel Processors are slave processors which do all the real number crunching work.

The MP takes care of interfacing with the timing hardware, directs all data movement

using the TC, and sets up parameters for the PPs to use in their processing. It also

decides what kind of processing is to be done, and directs the PPs to process which

chunk of data and when.

The PPs are used in a round robin fashion: the MP sets up the data and

parameters for PPO and starts it. It then sets up the parameters for PP1 and starts it,

and proceeds to do the same for PP2 and PP3. Eventually it comes back to PP1 where

it sets up the PP to process the next set of data, waits for it to finish its processing,

starts it processing the next set of data, reads the results of the previous set of



processing, and goes on to the next PP. Other schemes for setting up the PP

processing are also possible. For example, the 'C80 is able to support running the PPs

independently of the MP and of each other, with each of them requesting the TC to

provide it with data when it needs it. However, the current scheme is the simplest (the

one just described would require more sophisticated timing, bus arbitration, and TC

code). It is also particularly effective in this case because the processing for each line in

horizontal processing or for each column in vertical processing is the same.

When the program is first downloaded the MP takes care of a whole slew of

initialization. Then it enters its main loop, which it passes through once per frame for

the duration of the program's run time. There it makes decisions based on the value of

the resampling factor P as to which algorithm it will use and how many passes that

algorithm will take. It does whatever initialization is needed for each frame, and then, for

each pass, updates the appropriate TC structures and PP parameters and handles the

data movement so as to set up and implement first horizontal then vertical filtering. If

necessary it makes sure that the vertical filtering is seamless. While doing all this it

takes care to interleave data transfers with processing for maximum efficiency, so that

most if not all of the data transfers occur while the PPs are busy processing. When all

the processing is finished the MP takes care of any hardware issues such as the timing

of the output frame.

Meanwhile the PPs take care of the actual filtering work. They, too, do a bit of

setup and initialization the first time they are called, but carry very little overhead on

subsequent calls.



6.2 Program Structure (Description of MP Program)
When the program is first loaded into the development hardware the Master

Processor takes care of a set of initialization procedures. First of all it sets up the

hardware/software interface. It then starts each of the Parallel Processors doing their

own initialization, creates and initializes the necessary transfer controller structures, and

sets up the initial states for the LED's that indicate whether or not the program is

operating and waits for the first full page of data to start processing. Then it makes sure

that all the PPs are finished with their initialization procedures, creates and initializes

parameter structures in their Parameter RAMs, and collects pointers to those

parameter structures in the array ppParams[4] and pointers to the filter coefficient fields

in the array CoefTable[4]. Finally it initializes a few variables and enters the endless

main processing loop.

Once inside its main loop, which it steps through once per output frame, the MP

directs all the processing. The structure of the main loop is shown in Figure 6-1.



Figure 6-1: Structure of Main MP Loop

For each frame, the first thing the MP does is to reset any Transfer Controller

Packet Transfer source and destination pointers that may have been corrupted by the

previous frames' processing. It then reads the user interface to set its input parameter
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incr, which is related to the resampling factor P by P = 'i. Both the variables Pand

incr are used by the program; incr was chosen as the primary variable because, since it

is the variable passed to the PPs and used by them to step through the input data, it is

the simplest and offers the greatest resolution. incr is a fixed point variable with 16 bits

after the decimal point, so it can be incremented by as little as 1 bit or 1.53 x 10-5 . That

means that P has a resolution of 0.00153%. The MP then uses incr and P to select a

resampling strategy to use as discussed in section 5.2.2, sets up the appropriate PP

parameters to execute that strategy, including copying the necessary filter coefficients

into the PP parameter RAMs, and executes it. If the chosen strategy requires two

passes the MP executes the first pass, then sets up the parameters for the second pass

and resets any TC structures that will be reused, and executes the second pass.

When a pass of the chosen resampling strategy is executed a frame of video is

processed first horizontally and then vertically. In horizontal processing the MP

interleaves several setup operations with starting the processing of the first four lines of

data. This way the MP can efficiently touch all four of the PPs, and do some of the

setup in the otherwise 'dead' time that the PPs are busy computing a line of output data.

The first of these setup operations is initializing the PP memory banks to BLACK, where

BLACK means that Y = 16, Cb = 128, and Cr = 128 as prescribed by the CCIR-601

signal definition. This is done to facilitate zero padding the input data. BLACK is used

instead of absolute zero because it is the effective zero for color video, while absolute

zero is used as a sync signal. The setup also includes setting any parameters in each

PP's parameter structures that are peculiar to horizontal filtering, such as those which

indicate which set of filter parameters are to be used, how many passes and how many

filters in each pass are to be used, and the source and destination offset for each filter.



For each PP the MP tells the PP to begin processing as soon as it has received all the

information it needs to do so.

After starting the PPs running on the first four lines of data the MP enters a loop

which cycles through the PPs, transferring the next line of data to be processed to each

one, waiting for it to finish its current processing, starting it on its next processing run,

and transferring the line of data it has just finished processing out to the intermediate

program memory. When all the processing is done the MP transfers out the last few

lines of processed data. In addition, while it directs the first pass of horizontal

processing the MP copies the input to the output to act as background. It does this line

by line, interleaving one line of transfer during the 'dead' time while the PPs are

processing.

Vertical filtering is done in much the same fashion as horizontal filtering at the

MP level. The MP sets parameters unique to vertical filtering as it starts the PPs

processing the first four columns, and then loops through the PPs, directing them to

process all the columns while passing them new data from the previously horizontally

filtered frame of video residing in the program memory and reading their processed data

out to either program or output memory at opportune moments.

The major difference lies in that, for the first pass anyway, a full 8 byte wide 486

line column of data will not fit in a PP's 2 Kbyte data buffer. So, the vertical processing

is done in two passes, half a column at a time, with a bit of extra work to make sure that

there is continuity of output data between the two half-column blocks.

This 'seaming' issue is taken care of in the following fashion: Two additional

variables, nLinesOutPass and fracStart are defined. The first half or LASTLINE/2 of the

columns are processed without paying attention to seaming, except that only the first



nLinesOutPass output lines are computed. nLinesOutPass is defined as

nLinesOutPass = [• 2 mLijeOut+1j where numLinesOut = numLinesln(486) -P, and is the

number of output lines that can be computed from LASTLINE/2 input columns using

exclusively known values of the input, except for for the first few output lines. fracStart,

which indicates the group delay of the first filter that should be used in processing a set

of data, is set to zero for the first vertical pass. The second vertical pass uses input

data which overlaps the first LASTLINE/2 input columns such that the first output line

computed will the nLinesOutPass +1st line. This overlap is achieved by using input

data offset from the base of the input memory bank, newCenter-EP_to_start, where

newCenter = nLinestPs r newCenter = nLineslnPass if a half band filter is being used,

and EP_to_start is the distance in memory that is used for back tracking for zero-

padding. Also, no zero-padding is used at the beginning of the second half of the

columns; srcOffset is set to equal EDGE_PAD so that only output samples which are

fully composed of weighted valid input samples are computed. Finally, fracStart is set to

the fractional part of nLinesutPass so that the group delay progression from filtering the first

to the second half of the columns is smooth.

6.3 Data Flow
The data memory structure of the program as it runs on one frame of video is

outlined in Figure 6-2. The 'C80 has access to three of the five 128 Kbyte x 64 bit

external memory banks during each frame cycle: Input Memory, intermediate Program

Memory, and Output Memory. The MP uses the Transfer Controller to move data from

these banks to the PPs and vice versa. As for the actual processing, the three 2 Kbyte

memory banks within each PP are used as a set of rotating buffers. A variable rrindex,



valued 0,1, or 2, is used to index into the buffers in a round robin fashion. At any one

time the data being processed by the PP is in the src or source buffer, where

src = rrindex, the results of the processing are being deposited in the dst or destination

buffer, where dst = (rrindex + 2)mod 3, and the results of processing the previous set

of data are stored in the previous destination buffer last_ dst = (rrindex + 1)mod 3.

Also, after the results of processing the previous line are read out the input data for the

next line can be copied into the last_dst buffer without disturbing the current processing.

An example is shown in Figure 6-3. Such a scheme means that the results of

processing one set of data can be read out and copied to their destination and the next

set of input data can be loaded at the same time as the results of processing the current

set of data are being computed, without contention.

Figure 6-2: System Memory Structure

Figure 6-3: PP Memory Structure

last dst

src



The movement of the data around the system is handled by the Transfer

Controller using dimensioned Packet Transfer structures. The Packet Transfers are

either two or three dimensional. Line data is moved using two dimensional transfers

where the packet's source and destination A count is equal to the number of bytes of a

line to be transferred, the source and destination B counts are set to zero, and the

source and destination B pitches are set to LMEMBLOCK, which is equal to 2048

bytes, the length of a line of memory, and is dictated by this particular hardware

implementation. Column data is moved using three dimensional transfers where the

packet's source and destination A count is equal to the number of bytes to be

transferred per line, in this case 8, the source and destination B counts are set to the

number of lines that make up a column minus one, because the B counts count up from

zero, and the source and destination B pitches are again set to LMEMBLOCK. If data is

being moved from a memory bank to a PP the Packet Transfer is set for source update

mode, and if data is being moved from a PP to a memory bank the Packet Transfer is

set for destination update mode.

The Packet Transfer structures used in this project are summarized in

Table 6-1. In most cases their names indicate their functions. tclnToTmp and

tcTmpToOut are used to transfer an image from input memory, or InputBaseA, to output

memory, or OutRAMBase, to be used as background. tclnToPp is used to transfer an

input image to the PP's for the first round of horizontal processing. tcPpToPgm1 is used

to move horizontally processed data from the PP to intermediate memory, or

ProgramRAM, in line mode. tcPpToPgm2 moves vertically processed data from the

PP's to intermediate memory, in column mode, in the case where a multi-step algorithm

is being used. Similarly, tcPgmToPpl moves data from intermediate memory to the



PP's for vertical processing in column mode and tcPgmToPp2 moves data from

intermediate memory to the PP's for horizontal processing in the second pass in line

mode. Finally, tcPpToOut moves fully processed data from the PP's to output memory.

Table 6-1: Packet Transfers and Their Parameters

6.4 Control of Filtering: PP Parameter Structures
The MP also sets up parameter structures in each of the PP's data RAMs and

initializes them to default values. It does this by defining and initializing one such

structure, shmkPpParams, in the MP, copying it to each of the PP's, and making a table

of pointers to the new PP structures so as to be able to access and modify them.

shmkPpParams' structure type shmkMsgStruct and its subsidiary structure types

passArgs and firArgList are defined as follows:

struct shrnkMsgStruct {
short filtType;
unsigned char* src;
unsigned char* dst;
short passCount;
short numberOfFilters;
passArgs* fArgsPtr;
passArgs hFiltArgs[3] ;
passArgs vFiltArgs [l];
short fCoef [MAXFILTSIZE] ;

1;
typedef struct shrnkMsgStruct shrnkMsgStruct;

struct passArgsStruct {
firArgList ppFirArgs;
short srcOffset;
short dstOffset;

typedef struct passArgsStruct passArgs;



struct firArgList f
short fracStart;
short nCoef;
short pixSpace;
short nPixels;
unsigned short incr;

typedef struct firArgList firArgList;

The members of shrnkMsgStruct tell the PPs what method to use to filter which

data and sets up the appropriate parameters for that filtering operation. filtType can be

PERIODIC, which indicates approximate polyphase filtering, or HALFBAND, which

indicates halfband filtering and decimating by two. src and dst are pointers to the

source data and destination memory banks to be used by a particular filtering operation.

passCount is the number of passes a particular filtering operation is to make over a set

of data. It is equal to three for horizontal filtering, one pass for Y, one for Cb and one for

Cr. For vertical filtering it is equal to eight, since vertical filtering is done in eight byte

wide columns. numberOfFilters is the number of different sets of filters and filter

arguments to be used for an operation. It is equal to three for horizontal filtering, since

Y, Cb, and Cr must be treated separately and differently, and to one for vertical filtering,

since vertical filtering is the same for all the elements in a column. The hFiltArgs and

vFiltArgs arrays store the parameters for each type of filtering, and the fCoef array

stores the filter coefficients to be used.

The structure passArgs describes the parameters of a filtering operation

particular to filtering luminance, chrominance, or vertical data. Of its members

ppFirArgs sets up the details of the filtering operation and srcOffset and dstOffset tell

the PP exactly where in the input data memory bank to begin processing and exactly

where in the output data memory bank to place the processed data, respectively.

srcOffset, and dstOffset, therefore, are used to take care of zero-padding and to make

sure that luminance and chrominance input values are properly mapped to the output.



Finally, the firArgList structure is used to set up the remaining detail of the

filtering operation. Its members fracStart and incr tell the PP at what point of an

approximate polyphase filtering operation to begin and how to update the running

fraction counters, respectively. nCoefindicates how many filter coefficients are to be

used, nPixels tells how many output pixels are to be computed, and pixSpace indicates

how many bytes apart input and output pixels are, 2 for Y and 4 for Cb and Cr in

horizontal filtering, and 8 for vertical filtering.

6.5 Filter Implementation (Description of PP Program)
Each of the four Parallel Processors performs a set of initialization tasks when it

is first called by the Master Processor. It sets several variables relating to which PP it is,

sets a variable argsPtr to be a pointer to the shrnkMsgStruct that resides in that PP,

sets a variable uCmndto be a command which halts the PP, and evaluates that

command. The next time the PP is called it enters a loop which it stays in for the

remainder of the program. That loop consists of reading argsPtr to find out which

memory banks to use such that srcBuf = argsPtr->src and dstBuf = argsPtr->dst, calling

the appropriate filtering function once for every pass and once for every separate filter

specified for each pass, incrementing the srcBuf and dstBuf pointers in between passes,

and halting the PP when all operations are finished. If a halfband filter is to be used the

function DecimateFunc is called with arguments that tell the function where to begin

processing, where to place computed output samples, where to find the appropriate

firArgList parameter structure, and where to find the filter coefficients. If a set of periodic

filters is to be used the function ppQbyLTapFunc is called with the same set of

arguments.



The halfband filtering function DecimateFunc calculates the output samples by

stepping through the input and, at every other sample, summing the dot product of the

first Q input samples with the Q coefficients of the half band filter. It is assumed that the

filter as stored in Parameter RAM is already flipped, so that the sum of the dot product is

actually a convolution. For a symmetric filter, of course, flipping makes no difference in

any case. After each output sample is computed it is placed in the destination memory

buffer.

The periodic filtering function ppQbyLTapFunc performs its filtering in a similar

but slightly more complicated fashion. In addition to stepping through the input samples

using the source pointer sPtr it uses a 16 bit counter fracCounter to keep track of the

point in between the sample pointed to by sPtr and the next one which really maps to a

particular output sample. For example, to shrink a line of data by 78.1% one really

wants to step through the input samples at increments of 1.2804. This is not possible;

only integer size steps through a bank of memory make sense. So one steps through

the input samples at integer intervals using sPtr, and keeps track of the fractional part by

incrementing fracCounter by a variable incr, in this case 0.2804, with every step.

Whenever incr crosses one sPtr is incremented by two samples and fracCounter is set

back to its fractional part, otherwise sPtr is incremented by a single sample.

fracCounter is then used to pick the appropriate filter hi from a set of filters H to be

used, one which has a group delay that will allow it to interpolate the value of the output

sample that maps back to the input sample that would be at sPtr + fracCounter. The H

filters, again pre-flipped, are stored in the Parameter RAM such that they are pointed to

by coefBase. Since there are sixteen of them and they are all stored in contiguous

memory the pointer to the filter to be used at a particular point, currentCoefs, is simply
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equal to CoefBase plus the four highest order bits of fracCounter times the number of

coefficients: currnentCoefs = coefBase + (fracCounter>> 12)*nCoef. Once the position

of the input samples to be used and hi are chosen the output sample is calculated by

summing the dot product of the first Q input samples with the 0 coefficients of the filter

hi

In both cases the math is done as 16x16 bit multiplies (8 bit data and 16 bit

coefficients) and 32 bit adds. When the code is optimized 8 bit coefficients, and so 8x8

bit multiplies and 16 bit adds may be used for cases where the resampling factor P is

large. An experiment was tried which showed that for large P video processed with 16

and 8 bit coefficients was indistinguishable.



Chapter 7

Results and Discussion

The program written for this thesis project is capable of shrinking a frame of

video down to 25% of its original size both horizontally and vertically. It does not

currently run in real time on the 'C80, but is designed such that a highly optimized

assembly language version of the inner loop of the PP program should be able to do so

on a 50 MHz part. The resampling is done with 1/16 pixel resolution, and the

resampling factor can be adjusted by increments as small as 0.00153%.

The quality of the output video can only be judged qualitatively and subjectively.

Standard test signals such as color bars, flat fields, sinusoidal sweeps, and zone plates

were used to test output quality. Test signal results, however, do not necessarily map to

real video. For example, a process that looks terrible on a zone plate may actually look

fine on real video. So, several clips of real video were also tested.

The test signals were used primarily for program development both in terms of

algorithm and filter design and for debugging purposes. Final judgment on the quality of

the program's output was made based on real video clips. This is because a test signal

need only look so good in order for real video to look good. In the end, the output

quality was deemed to be acceptably good.

7.1 Test Signals
Several of the standard video test signals were used to judge the quality of the

program's output. These signals were particularly useful in the development stages of



the program because they show any mistakes very well, and because their predictability

can be helpful in debugging. For example, a mistake in setting up the vertical

processing to be 'seamless' even though it is done half a column at a time may be hard

to find on a real picture, but shows up readily on a zone plate. Figure 7-1 shows such a

seam on a zone plate with shallow diagonal lines superimposed on it.

Figure 7-1: Bad 'Seam' on a Zone Plate

Sinusoidal sweeps and a zone plate were used primarily to test filter matching

and performance. Poor filter matching, for example, shows up as a low frequency

modulation to the higher frequency region of a sweep. Figure 7-2 shows that effect for

one line of a horizontal sweep resized by 98% using three tap filters. The filters used

were matched as.best as was possible considering their extremely short length. Figure

7-3 is a picture of a portion of the actual video output of the same operation on a zone

plate, so that the effect of the mismatched filters is shown for both horizontal and

vertical filtering. The effect is particularly noticeable here because the DC value of the

output image is also modulated, even though the DC value of the signals it is made up

of is not, because of Gamma correction. This effect is most visible for the cases where

3 and 4 tap filters are used. When the filters are larger they are matched well enough

that there is no problem.



Figure 7-2: Effect of Mismatched Filters on a Single Line of a Horizontal Sweep

Figure 7-3: Effect of Mismatched Filters on a Zone Plate

Sweeps are also good for testing filter performance because they effectively

show the frequency response of a filter and clearly display any aliasing. Figure 7-4 and

Figure 7-5 show the signal of one line of output video that is a horizontal sweep

resampled by 62%. In Figure 7-4 8 tap filters with cutoff frequency me = O.85n , which is

too high, was used in doing the resampling. The output signal is attenuated very slowly

and aliasing is clearly visible. In Figure 7-5 8 tap filters with the more correct cutoff
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frequency jc = 0.60k were used in doing the resampling. The output signal is

attenuated with a much sharper cutoff, and there is significantly less aliasing. Most of

the filters that were used performed quite well: only a small amount of aliasing was

seen, and only at the very high frequencies.

Figure 7-4: Effect of Resampling With Filters With Too High a Cutoff Frequency

Figure 7-5: Effect of Resampling With Filters With an Appropriate Cutoff Frequency



Test signals such as color bars and flat fields were used to make sure that the

resampling process has unity gain at DC and that it treats color information correctly.

7.2 Real Video
The overall quality of the processing performed by the program written was

tested using real video clips. For example, a piece of video of a courtyard with trees

and bUildings in the background and a man running across the screen in the foreground

was used. The results were quite good: The edges of the building and of the sidewalk

remained sharp and the details of the trees did not show significant aliasing artifacts.

The program does not run in real time so motion artifacts due to frame processing and

interlaced scanning could not be evaluated, but they surely exist.

Another, harder, piece of video that was used for evaluation was a still of a dollar

bill, a magazine cover, and a few other objects. This still had lots of very hard (therefore

high frequency) edges and fine details. Here it was possible, though barely, to discern

that the wide transition bands of the filters softened the edges somewhat and that there

was, in fact, a slight alias component in the finely detailed regions of the dollar bill.

Overall, however, the output quality was quite acceptable; the artifacts were only visible

in side by side comparisons.

7.3 Effects of Coefficient Accuracy
The greatest effect of coefficient accuracy was that the DC gain had to be equal

to exactly one. Even one bit's difference was clearly noticeable on a flat field, and would

be on any piece of reat video with sizable low frequency areas.

16 bit coefficients were used in the final program. However, 8 bit coefficients

could be used in the optimized version for cases where the output picture size is large in
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order to gain some computational efficiency. Output quality would not be significantly

degraded because, since the output picture size is large the filters do not do very mUCh.

7.4 Further Work
There is stHI much work that could be done to improve the performance of the

program. First and most obviously, the PP part of the program needs to be optimized to

run in real time. Second it needs to be extended to be able to treat shrink factors

smaller than 25%.

Third, there are several small modifications that could make it run better and

smoother: When the current program resamples vertically it does so in abyte blocks.

This works perfectly fine, so long as the number of pixels in an output line is a multiple

of four. Otherwise the program can either display extra columns of bogus data or it can

cut down the number of columns it processes such that it processes only full columns. It

does the latter, and that appears somewhat jerky at the right edge as the picture size is

varied in time. The program could be modified to be able to process the last set of

columns in blocks of any size smaller than or equal to eight. Also, there is a bug, a

horizontal black line that appears at the top of the output picture whenever P is less than

50%, whose cause has not yet been found.

Finally, the program could be modified to treat video as fields or frames, to be

insensitive to the size of the input picture, and to be able to place the output picture

anywhere in the output frame at subpixel resolution.

7.5 Conclusions
This thesis explored several different ways to resample video and implemented

approximate polyphase filtering in a two stage fashion on the 'cao. The 'CBO lends itself
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quite well to resampling video because of its efficient data movement capabilities and

the computational horsepower provided by its four parallel processors. Because it is a

programmable processor it can be used to implement a dynamic algorithm which uses

different resampling methods and different size filters as needed.

Resampling of acceptable quality, with 1/16 pixel resolution in terms of

interpolation and 0.00153% resolution in terms of resizing, was achieved. It can not

currently be done in real time, but should be able to when properly optimized. The

resampling was tested on test signals and real video. The testing showed that matching

the magnitude of the frequency response of the approximate polyphase filters to each

other was especially important for video, even more so than making sure that the

magnitude frequency response was as close to ideal as possible, and the filters finally

used were designed accordingly. The final version of the program was found to be of

acceptable quality on real video.
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Appendix A: MATLAB Code
% File: ARMkFlt
% Creates L Q-tap approximate polyphase filters, each with cutoff frequency P*pi
% designed by sampling an L*Q filter, which in turn is designed by windowing
% an ideal low-pass filter with cutoff frequency P*pi/L with 'window'
% Also orders the filters according to group delay.

fO = firl(Q*L, P/L, window);
fl = arconv(L,Q,f0);
fl = fl';

filt = [I;

if ((Q/2) -~= floor(Q/2))
for i=L:-1:L/2+1

filt = [filt; fl(i,:)];
end;
for i=L/2:-1:1

filt = [filt; fl(i,:)];
end;

else
for i=l:L

filt(i,:) = fl(L+1-i,:);
end;
end;

function out = Tol5 (in)
% function out = Tol5(in)

% converts a set of filters with values ranging from -1 to 1
% to fixed point signed 15 bit numbers such that all the coefficients
% of each filter sum to 2A15.

[m,n] = size(in);

% scale input
in = in*32768;

% make sure the integer version adds up to 2A15
for i=l:m

tmp = round(in(i,:));
if sum(tmp) == 32768

out(i,:) = tmp;
else

while sum(tmp) > 32768
min_frac = .99;
min_ind = 1;
for j=l:n

if in(i,j) > 0
frac = in(i,j) - floor(in(i,j));

else
frac = 1 - (in(i,j) - floor(in(i,j)));

end;
if ((frac < min_frac) & (frac>.5))

min_frac = in(i,j)-floor(in(i,j));
min_ind = j;

end;
end;
tmp(min_ind) = tmp(min_ind) -1;
in(i,min_ind) = tmp(minind);

end;
while sum(tmp) < 32768

max__frac = 0;
max_ind = 1;
for j=l:n



if in(i,j) > 0
frac = in(i,j) - floor(in(i,j));

else
frac = 1 - (in(i,j) - floor(in(i,j)));

end;
if ((frac > max_frac) & (frac<.5))

max_frac = frac;
max_ind = j;

end;
end;
tmp(max_ind) = tmp(max_ind)+l;
in(i,maxind) = tmp(max_ind);

end;
out(i,:) = tmp;
end;

end;

% Filename: sim.m
% simulation of approximate polyphase filtering with sinusoidal sweep as input

pixCounter = 1;
fracCounter = 0;
incr = 3449/2A16;
coefOffset = 1;
numfilts = 16;
numpix = 800;

p=0;
for i=1:1000

p = p+4*i;
in(i) = sin(p/1000);
end;

end;

n=1:1000;
in=sin(n* (/pi));

flag = 0;

for i=l:numpix
val = in(pixCounter:pixCounter+Q-l).*filt(coefOffset,:);
out(i) = sum(val);

pixCounter = pixCounter+l;
fracCounter = fracCounter+incr;
if fracCounter >= 1

fracCounter = fracCounter-1
pixCounter = pixCounter+l;

end;
coefOffset = floor(fracCounter*16) + 1;

end;

% Filename: Spectra.m
% Used to compare filters designed using boxcar, hamming,
% hanning, bartlett, blackman, and kaiser filters.

echo on;
clg;

delta = [I;
maxes = [];
n = (1:64)/32;

subplot(3,2,1);
window = boxcar(Q*L);
armkflt;
mag = abs(fft(filt',64));
delta = max(min(mag))-min(min(mag));
maxes = max(max(mag));
plot(n,mag);
xlabel('w/p','fontName','symbol');



ylabel(' IHI');
title('Boxcar Window');
axis([0,2,0,1.25]);

subplot(3,2,2);
window = hamming(Q*L);
armkflt;
mag = abs(fft(filt',64));
maxes = [maxes;max(max(mag))];
delta = [delta;max(min(mag))-min(min(mag))];
plot(n,mag);
xlabel('w/p','fontName','symbol');
ylabel(' IHI') ;
title('Hamming Window');
axis([0,2,0,1.25]);

subplot(3,2,3);
window = hanning(Q*L);
armkflt;
mag = abs(fft(filt',64));
maxes = [maxes;max(max(mag))];
delta = [delta;max(min(mag))-min(min(mag))];
plot(n,mag);
xlabel('w/p','fontName','symbol');
ylabel(' IHI');
title('Hanning Window');
axis([0,2,0,1.25]);

subplot(3,2,4) ;
window = triang(Q*L);
armkflt;
mag = abs(fft(filt',64));
maxes = [maxes;max(max(mag))];
delta = [delta;max(min(mag))-min(min(mag))];
plot (n,mag);
xlabel('w/p','fontName','symbol');
ylabel(' IHI');
title('Bartlett Window');
axis([0,2,0,1.25]);

subplot(3,2,5);
window = kaiser(Q*L, 1.5098);
armkflt;
mag = abs(fft(filt',64));
maxes = [maxes;max(max(mag))];
delta = [delta;max(min(mag))-min(min(mag))];
plot (n,mag);
xlabel('w/p','fontName','symbol');
ylabel(' IHI');
title('Kaiser Window');
axis([0,2,0,1.25]);

subplot(3,2,6);
window = blackman(Q*L);
armkflt;
mag = abs(fft(filt',64));
maxes = [maxes;max(max(mag))];
delta = [delta;max(min(mag))-min(min(mag))];
plot (n,mag) ;
xlabel('w/p','fontName', 'symbol');
ylabel(' IHI ');
title('Blackman Window');
axis([0,2,0,1.25]);

delta
maxes



Appendix B: 'C80 Code
/*

* FileName: shrnkm.c
* MP code for shrinking
* Copyright Tektronix, Inc.
* Company confidential.
*/

#include "global.h"
#include "hwstuff.h"
#include "mvphw.h"
#include "video.h"
#include "mvp.h"
#include "protohw.h"
#include "string.h"
#include "shrnkMsg.h"
#include "joyStick.h"
#include "backGndGen.h"
#include "tcPacket.h"
#include "stdio.h"
#include "ppParamAlloc.h"
#include "Coef_table.h"

#define PP ALL ADDR Ox0000000FL /* All PPs Addresses combined. */
#define ALL_PP_ERR_HALT (PP_ALL_ADDR << 16) /* All PPs halted mask. */

const short* chooseFilter(float, const short*, short*);

/*

* Define pointers to PP RAM locations
*/

extern VOID PP_START(VOID); /* Starting address for PPs. */
ppParameterRam* ppParamRam[PPCOUNT] = {

(ppParameterRam*)PPO_PARAMETER_RAM,
(ppParameterRam*)PP _PARAMETER_RAM,
(ppParameterRam*)PP2_PARAMETER_RAM,
(ppParameterRam*)PP3_PARAMETER_RAM

UBIN8* ppState[PP_COUNT][3] = {
(UBIN8 *)PPO_DATA_RAM_0, (UBIN8 *)PPO DATA_RAMm1, (UBIN8 *)PPO_DATA_RAM_2,
(UBIN8 *)PPl_DATA_RAM_0, (UBIN8 *)PPl_DATA_RAM_1, (UBIN8 *)PP1 _DATA_RAM_2,
(UBIN8 *)PP2_DATA_RAM_0, (UBIN8 *)PP2 DATA_RAM_1, (UBIN8 *)PP2_DATA_RAM_2,
(UBIN8 *)PP3_DATA_RAM_0, (UBIN8 *)PP3 DATA RAMI, (UBIN8 *)PP3_DATA_RAM_2,

/*

* Define prototype PP Parameter Structure
*/

shrnkMsgStruct shrnkPpParams = {
PERIODIC, 0, 0, 1, 3, 0,



{ /* hFiltArgs */
{ {0, 3, 2, PIXPERLINE,O }, EDGE_PAD-1, EDGE_PAD+1 },
{ {0, 3, 4, PIXPERLINE/2,0 }, EDGE_PAD-4, EDGE_PAD },
{ {0, 3, 4, PIXPERLINE/2,0 }, EDGE_PAD-2, EDGE_PAD+2 },
},

/* vFiltArgs */
{ {0, 3, 8, LASTLINE/2+1,0 }, EDGE_PAD-8, EDGEPAD },

{ o,o,o,o,o,o,o,o,o,o 1,

main0

* Pointers to TC Structures
*/

tcPacket
tcPacket
tcPacket
tcPacket
tcPacket
tcPacket
tcPacket
tcPacket
tcPacket
tcPacket

*tcInToTmp;
*tcTmpToOut;
*tcInToPp;
*tcPpToPgml;
*tcPgmToPpl;
*tcPpToPgm2;
*tcPgmToPp2;
*tcPpToOut;
*tcPpToWhere;

*tcWhereToPp;

/* Used to copy the full field background */
/* Used to copy the full field background */
/* Copy input to PP for filtering */
/* Copy result of H filtering to intermediate memory */
/* Copy h filtered to PP */
/* Copy result of h filter to int memory, if 2 pass */
/* Copy h filtered to PP, if 2 pass */
/* Copy shrunk image to output */
/* Pointer to either tcPpToOut or tcPpToPgm2, depending on pass */

/* Pointer to either tclnToPp or tcPgmToPp2, depending on pass */

/*

* Pointers to PP memory locations
*/

shrnkMsgStruct* ppParams[PP_COUNT]; /* Pointers to Param structures in PPs */
short* Coeffable[PP_COUNT]; /* Pointers to Coefficient tables in PPs */

/*

* Hardware stuff
*/

UBIN8
UBIN8
UBIN8

page;
tmpPage;
RedLED;

/* Current memory page. */
/* Temporary memory page. */
/* Current Red LED state. */

* Processing control variables
*/

numPasses;
pass;

ppNum;
rrIndex;

numLinesOut;
numPixOut;

ioStartAddr;
ioDestAddr;
lineOut;
lineCnt;
lineStart;
newLines;

/* Number of passes to be made */
/* Current pass */
/* PP index. */
/* Round Robin data buffer index */
/* number of output lines */
/* number of pixels per output line */
/* used to read data from PPs */
/* used to write data to PPs */
/* Number of lines of data left to read out */
/* Number of lines left to process */

/* Number of lines being processed */
/* lines the PPs are processing. */
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UBIN32
UBIN32
int
int
int
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colOut;
colCnt;
colStart;
newCols;
numLinesIn;
numPixIn;
num_vert_passes;
vert pass;
nLinesInPass;
nLinesOutPass;
newCenter;

/* Number of columns of data left to read out */
/* Number of columns left to process */

/* Number of columns being processed */
/* Columns the PPs are processing. */
/* Number of columns in in current pass */
/* Number of pixels in in current pass */
/* Number of passes for vertical filtering */
/* Current pass in vertical filtering */
/* Number lines in in current vert. pass */
/* Number lines out in current vert. pass */
/* Where to get data from in 2nd vert. pass */

/*

* MP Parameters
*/

int method; /* How to run user interface */
unsigned int incr; /* Related to resampling factor. fixed point, 16.16 bits */
unsigned int incrincr; /* For user interface, changes in incr */
float percent; /* Resampling factor */
short filtType; /* Type of filter to be used: periodic or halfband */
short EP_to_start; /* Related to number of coefs, for edge padding */
const short *filtCoefs; /* Pointer to filter coefs to be used */
int filtSize; /* number of filter coefs to be copied into PP param RAM */
/*
* Parameters to be passed to the PPs

short
unsigned short
short

srcOffset;
fracStart;
coef;

/* Where to start filtering */
/* At what group delay to start filtering */
/* number of coefficients */

/*
* Initialize hardware to proper mode.

VideolntDIO; /* Disable frame interrupt. */
InDelayResetO; /* Reset the input. */
/* OutPageAuto0;*/ /* Set up the output for real-time operation */
OutPageManual0; /* Set up output for non-real-time operation */
OutPageZero0; /* Set up the output. */
InOneChModeo; /* Set input to One Ch mode. */
InSelCh20; /* MUST be done in One Ch mode. */
InPageAuto(; /* Set Auto page select mode. */
InPageZero(; /* Set up the input. */
OutDelayReseto; /* Reset the Output. */
InDelayBypass(; /* Set filter-bypass delay. */
prmsg("TEST-AR2.. .\n");

* Initialize all PPs, (Halt & Flush, set Task Interrupt vector,
* and start them up.
*/

command(PP ALL_ADDR I CMDD_ FLUSH_OP I CMD_IFLUSH OP I CMDRESET OP);
for (ppNum = 0; ppNum < 4; ppNum++) {
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ppParamRam[ppNum]->vector.tasklnterrupt = (UBIN32) (PP_START);
}
command(PP ALL ADDR I CMD_UNHALTOP);

/*

* Create and Initialize Transfer Controller structures.
*/

tcInToTmp = NewMpTcPacket();
TcLineCopy(tcInToTmp, InputBaseA, 0,

PIXPERLINE, SUM_MODE_B);

tcTmpToOut = NewMpTcPacket();
TcLineCopy(tcTmpToOut, 0, OutRAMBase,

PIXPERLINE, DUM_MODE B);

tcInToPp = NewMpTcPacket();
TcLineCopy(tcInToPp, InputBaseA, 0,

PIXPERLINE, SUM MODEB);

tcPpToPgml = NewMpTcPacket();
TcLineCopy(tcPpToPgml, 0, ProgramRAM,

PIXPERLINE, DUMMODE B);

tcPpToPgm2 = NewMpTcPacket();
TcDstVStripCopy(tcPpToPgm2, 0, ProgramRAM,

BLOCKSIZE, LASTLINE/2+ 1);

tcPgmToPp 1 = NewMpTcPacket();
TcSrcVStripCopy(tcPgmToPp 1, ProgramRAM,

0, BLOCKSIZE, 251);

tcPgmToPp2 = NewMpTcPacket();
TcLineCopy(tcPgmToPp2, ProgramRAM, 0,

PIXPERLINE, SUMMODEB);

tcPpToOut = NewMpTcPacket();
TcDstVStripCopy(tcPpToOut, 0, OutRAMBase,

BLOCKSIZE, LASTLINE/2+1);

/*

* Set initial states.
*/

LEDRedOnO; /* Turn on the Red LED. */
RedLED = 1; /* Remember state of LED. */
page = (InPage & ReadStatusPO); /* Load current Input Page number. */

while (page == (InPage & ReadStatusPO)) /* Wait for new page. */

/*

* Wait for all PPs to halt.
*/

while (ALL PP ERR_HALT - (ALL PPERR_HALT & PPERROR)) {
printf("\nuipp error = Ox%x\n", (unsigned int) PPERROR);

}
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/*

* Init PP data structures with default values
* and initialize pointers to Coefficients
*/

for (ppNum = 0; ppNum < 4; ppNum++) {
ppParams[ppNum] = NewPpParamWithCopy(ppNum, sizeof(shmkPpParams),

(void*)&shmkPpParams);
Coefrable[ppNum] = (short *) (&ppParams[ppNum]->fCoef);

}

/*

* Init Main loop variables
*/

method = AUTO;
incr = 0;
incrincr = Ox10;

/*

* Endless Main loop.
*/

while (1) { /* Endless Loop! */
LEDGmOn();/* Turn on the Green LED. */

/*

* Init transfer structures
*/

TcDstStart(tcTmpToOut, OutRAMBase);
TcSrcStart(tclnToTmp, InputBaseA);
TcSrcStart(tclnToPp, InputBaseA);
TcDstStart(tcPpToPgml, ProgramRAM);
TcSrcStart(tcPgmToPp 1, ProgramRAM);
TcDstStart(tcPpToPgm2, ProgramRAM);
TcSrcStart(tcPgmToPp2, ProgramRAM);
TcDstStart(tcPpToOut, OutRAMBase);

/*

* Read user interface to get value of incr
*/

/*

* If Joystick is in upper quarter and button is released
* change user interface methods
*/

if (JoyYPos() > ((JOYMAX-JOY MIN)*3/4 + JOY MIN)) {
if (ButtonActionOnRelease()) {

method = (method + 1) % NUMMETHODS;
printf("method = %d\n", method);

}
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* If method is AUTO, reset incr when button is released.
* If method is MANUAL, read incr directly from h. position of joystick.
* If method is FIXED, increment incr if button is released.
*/

if (method == AUTO) {
if (ButtonActionOnReleaseo) {

incr = 0;
}
incr += incrincr;

}
else if (method == MANUAL)

incr = ((JoyXPos() - JOY_MIN)<< 17)/(JOY MAX-JOY MIN);
else if (method == FIXED) {

if (ButtonActionOnReleaseo) {
incr += incrincr;

}
}

/*

* Decide how to process frame depending on value of incr
*/

if ((incr>> 16) > 0) {
filtType = HALFBAND;
percent = .50;
if(incr == (1<<16)) {

numPasses = 1;
}
else

numPasses = 2;
}
else {

filtType = PERIODIC;
numPasses = 1;

}

numLinesIn = LASTLINE;
numPixln = PIXPERLINE;

/*

* Processing loop
*/

for (pass=O;pass<numPasses;pass++) {
TcWaitForFree();

/*

* Decide parameters
*/

if(numPasses == 1) {
tcPpToWhere = tcPpToOut;
tcWhereToPp = tcInToPp;
if (filtType == HALFBAND)

percent = .50;
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else
percent = 1.0/((((float) incr)/(65536.0))+1.0);

}
else if (pass == 0) {

tcPpToWhere = tcPpToPgm2;
tcWhereToPp = tcInToPp;
percent = .50;

}
else {

tcPpToWhere = tcPpToOut;
tcWhereToPp = tcPgmToPp2;
percent = 1.0/((((float) ((unsigned short) incr))/(65536.0))+1.0);
TcDstStart(tcPpToPgml, ProgramRAM);
TcSrcStart(tcPgmToPp 1, ProgramRAM);
filtType = PERIODIC;
numLinesIn = numLinesOut;
numPixln = numPixOut;

}

numPixOut = (short) ((float) numPixln)*percent;
numLinesOut = (short) ((float) numLinesln)*percent;
filtCoefs = chooseFilter(percent, filtCoefs, &coef);
EP_to_start = coef/2;

/*

* Copy coefficient table into PP Parameter RAMs
*/

if (filtType == PERIODIC)
filtSize = sizeof(short) * ((int) coef) * 16;

else
filtSize = sizeof(short) * 11;

for (ppNum=0;ppNum<PP_COUNT;ppNum++) {
memcpy(Coeffable[ppNum],(void*) filtCoefs, filtSize);

}

/*

* Set up additional PP Params
*/

for (ppNum=0;ppNum<PP_COUNT;ppNum++) {
ppParams[ppNum]->hFiltArgs[0].ppFirArgs.nPixels = (short) numPixOut;
ppParams[ppNum]->hFiltArgs[0].ppFirArgs.nCoef = coef;
ppParams[ppNum]->hFiltArgs[0].ppFirArgs.incr = (unsigned short) incr;
ppParams[ppNum]->hFiltArgs[0].ppFirArgs.fracStart = 0;
ppParams[ppNum]->hFiltArgs[1].ppFirArgs.nPixels = (short) numPixOut/2;
ppParams[ppNum]->hFiltArgs[1].ppFirArgs.nCoef = coef;
ppParams[ppNum]->hFiltArgs[1].ppFirArgs.incr = (unsigned short) incr;
ppParams[ppNum]->hFiltArgs[1].ppFirArgs.fracStart = 0;
ppParams[ppNum]->hFiltArgs[2].ppFirArgs.nPixels = (short) numPixOut/2;
ppParams[ppNum]->hFiltArgs[2].ppFirArgs.nCoef = coef;
ppParams[ppNum]->hFiltArgs[2].ppFirArgs.incr = (unsigned short) incr;
ppParams[ppNum]->hFiltArgs[2].ppFirArgs.fracStart = 0;
ppParams[ppNum]->vFiltArgs[0].ppFirArgs.nCoef = coef;
ppParams[ppNum]->vFiltArgs[0].ppFirArgs.incr = (unsigned short) incr;
ppParams[ppNum]->vFiltArgs[0].ppFirArgs.fracStart = 0;
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ppParams[ppNum]->filtType = filtType;
}

/*

* Update TC structures
*/

tcPpToPgml->srcAcount = numPixOut*2;
tcPpToPgm l->dstAcount = tcPpToPgml ->srcAcount;

/*
* Initialize loop control variables

rrIndex = 1;
lineCnt = numLinesln-4;
lineOut = 4;
lineStart = 0;

/* Number of lines to process */
/* Number of lines transfered out. */
/* Number of lines started. */

/*
* Init PP data RAMs
*/

for (ppNum = 0; ppNum < 4; ppNum++) {

* Color them BLACK

GenColorLine(pp State [ppNum] [0],
GenColorLine(ppState[ppNum][1],
GenColorLine(ppState[ppNum] [2],

1024, BLACK);
1024, BLACK);
1024, BLACK);

* Setup PP memory pointers
*/

ioStartAddr = (UBIN32)ppState[ppNum][0]+EDGE_PAD;
ioDestAddr = (UBIN32)ppState[ppNum][2]+EDGE_PAD;

/*

* If first pass, copy input to output
*/

if (pass == 0) {
TcDstStart(tcInToTmp, ioStartAddr);
TcStart(tcInToTmp);
TcSrcStart(tcTmpToOut, ioStartAddr);
TcStart(tcTmpToOut);

}

TcWaitForFree()

/*
* load PPs with data and parameters
*/

TcDstStart(tcWhereToPp, ioStartAddr);
TcStart(tcWhereToPp);
ppParams[ppNum]->src = ppState[ppNum] [0];
ppParams[ppNum]->dst = ppState[ppNum] [2];
ppParams[ppNum]->fArgsPtr = ppParams[ppNum]->hFiltArgs;
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ppParams[ppNum]->passCount = 1;
ppParams[ppNum]->numberOfFilters = 3;
ppParams[ppNum]->hFiltArgs[0].srcOffset = EDGE_PAD-(EP to start*2)+1;
ppParams[ppNum]->hFiltArgs[l].srcOffset = EDGE_PAD-(EP to start*4);
ppParams[ppNum]->hFiltArgs[2].srcOffset = EDGE_PAD-(EP to start*4)+2;

/*

* Wait until the data got to the PP then start the PP
*/

TcWaitForFree();
command(CMDPPADDR(ppNum) I CMD_UNHALT_OP);

/*

* Loop to process horizontal filtering
*/

while (lineOut) {
for (ppNum = 0; (lineCnt > 0) && (ppNum < 4); lineCnt--, ppNum++) {

ioStartAddr = (UBIN32)ppState[ppNum][rrIndex];

/*

* If first pass, copy input to output
*/

if (pass == 0) {
TcWaitForFree();
TcDstStart(tcInToTmp, ioStartAddr+EDGE_PAD);
TcStart(tcInToTmp);
TcSrcStart(tcTmpToOut, ioStartAddr+EDGE_PAD);
TcStart(tcTmpToOut);

/*

* Set up next data to go into PP
*/

TcWaitForFree;
TcDstStart(tcWhereToPp, ioStartAddr+EDGE_PAD);
TcStart(tcWhereToPp);

lineStart++;
}

/*

* Start PP on next data, transfer out processed data
*/

newLines = 0;

for (ppNum = 0; ppNum < lineOut; ppNum++) {
ioStartAddr = (UBIN32)(ppState[ppNum][rrIndex]);
ioDestAddr = (UBIN32)(ppState[ppNum][(rrIndex+2) % 3]);

while (!(PP_ERR_HALT(ppNum) & PPERROR)) /* Wait for PP. */

if (lineStart > 0) { /* Start PP on next line. */

107



ppParams[ppNum]->src = (unsigned char*)ioStartAddr;
ppParams[ppNum]->dst = (unsigned char*)ioDestAddr;
TcWaitForFree();
command(CMDPPADDR(ppNum) I CMDUNHALT OP);
newLines++; /* Inc. Lines to be trans. out. */
--lineStart; /* Dec. Lines started count. */

}
ioStartAddr = (UBIN32)(ppState [ppNum][(rrlndex+1) % 3]);

TcWaitForFree();
TcSrcStart(tcPpToPgml, ioStartAddr+EDGE_PAD);
TcStart(tcPpToPgml);

lineOut = newLines; /* Update Transfer out count. */

rrIndex = (rrlndex+ 1) % 3;

/*

* Set up vertical filtering
*/

/*

* Decide how many passes are necessary
*/

if (numLinesIn <= LASTLINE/2) {
num_vert_passes = 1;
nLinesInPass = numLinesIn;
nLinesOutPass = numLinesOut;

}
else {

num-vert_passes = 2;
nLinesInPass = LASTLINE/2;
nLinesOutPass = (numLinesOut+1)/2;

}

/*

* Enter vertical loop
*/

for (vertpass=0O;vertpass<num_vertpasses;vertpass++) {
TcWaitForFree();

/*

* Set up parameters to make sure there is no problem with seaming
*/

if (vertpass == 1) {
fracStart = (unsigned short) (incr*nLinesOutPass);
srcOffset = EDGE_PAD;

if (filtType == HALFBAND) {
newCenter = nLinesInPass;

}
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else
newCenter = (short) ((nLinesOutPass*((1<<16)+incr))>>16);

TcSrcStart(tcPgmToPp 1, ProgramRAM+LMEMBLOCK*(newCenter-EP tostart));
if ((pass == 0) && (numPasses == 2))

TcDstStart(tcPpToWhere, ProgramRAM+LMEMBLOCK*nLinesOutPass);
else

TcDstStart(tcPpToWhere, OutRAMBase+LMEMBLOCK*nLinesOutPass);
nLinesInPass = numLinesIn-nLinesInPass;
nLinesOutPass = numLinesOut-nLinesOutPass;

}
else {

fracStart = 0;
srcOffset = EDGE_PAD-(EPtostart*8);
TcSrcStart(tcPgmToPp l, ProgramRAM);
if ((pass == 0) && (numPasses == 2))
TcDstStart(tcPpToWhere, ProgramRAM);

else
TcDstStart(tcPpToWhere, OutRAMBase);

}

TcWaitForFree();
tcPpToWhere->srcBcount = nLinesOutPass- 1;
tcPpToWhere->dstBcount = tcPpToWhere->srcBcount;

/*

* Initialize loop control variables
*/

rrIndex = 1;
colCnt = numPixOut/4-4; /* Number of vertical blocks to process */
colOut = 4; /* Number of blocks to be transfered out. */
colStart = 0; /* Number of blocks started. */

/*

* Send in parameters, first four blocks
*/

for (ppNum = 0; ppNum < 4; ppNum++) {
ioStartAddr = ((UBIN32)(ppState[ppNum][0]));
ioDestAddr = ((UBIN32)(ppState[ppNum][2]));
TcWaitForFree0;
TcDstStart(tcPgmToPpl, ioStartAddr+EDGE_PAD);
TcStart(tcPgmToPpl);
ppParams[ppNum]->src = (unsigned char*)ioStartAddr;
ppParams[ppNum]->dst = (unsigned char*)ioDestAddr;
ppParams[ppNum]->fArgsPtr = ppParams[ppNum]->vFiltArgs;
ppParams[ppNum]->passCount = 8;
ppParams[ppNum]->numberOfFilters = 1;
ppParams[ppNum]->vFiltArgs[0].ppFirArgs.fracStart = fracStart;
ppParams[ppNum]->vFiltArgs[0].ppFirArgs.nPixels = nLinesOutPass;
ppParams[ppNum]->vFiltArgs[0].srcOffset = srcOffset;

/*

* Wait until the data got to the PP then start the PP
*/

TcWaitForFree();
command(CMD_PPADDR(ppNum) I CMD_UNHALT_OP);
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/*

* Loop to process the vertical filtering
*/

while (colOut) { /* Columns left to transfer out */

/*
* Transfer data to PPs
*/

for (ppNum = 0; (colCnt > 0) && (ppNum < 4); colCnt--, ppNum++) {
ioStartAddr = (UBIN32) (ppState[ppNum][rrIndex]);

TcWaitForFree();
TcDstStart(tcPgmToPpl, ioStartAddr+EDGEPAD);
TcStart(tcPgmToPpl);

colStart++;
}

/*

* Start PPs processing new data, transfer out processeddata.
*/

newCols = 0; /* Temp. counting variable. */

for (ppNum = 0; ppNum < colOut; ppNum++) {
ioStartAddr = (UBIN32)(ppState[ppNum][rrlndex]);
ioDestAddr = (UBIN32)(ppState[ppNum][(rrlndex+2) % 3]);

while (!(PPERR_HALT(ppNum) & PPERROR)) /* Wait for PP. */

if (colStart > 0) { /* Start PP on next line. */
ppParams[ppNum]->src = (unsigned char*)ioStartAddr;
ppParams[ppNum]->dst = (unsigned char*)ioDestAddr;
TcWaitForFree();
command(CMDPP ADDR(ppNum) I CMD_UNHALTOP);
newCols++; /* Inc. Lines to be trans. out. */
--colStart; /* Dec. Lines started count. */

}
ioStartAddr = (UBIN32)(ppState[ppNum][(rrIndex+l) % 3]);

TcWaitForFree();
TcSrcStart(tcPpToWhere, ioStartAddr+EDGE_PAD);
TcStart(tcPpToWhere);

colOut = newCols; /* Update Transfer out count. */

rrIndex = (rrIndex+1) % 3;

TcWaitForFreeO;

}
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/* Hardware Misc. */
LEDGmOffo; /* Turn off for free time. */

if (RedLED) { /* Toggle the Red LED. */
LEDRedOff0;
RedLED = 0;
OutPageOne0;

} else {
LEDRedOn();
RedLED = 1;
OutPageZero();

}

if (page == (InPage & ReadStatusPO)) { /* Same as when we started? */
/*

* Still in the same frame as when we started processing
* video (we got done ahead of time) so we just wait for
* the next frame and start processing over again.
*/

while (page == (tmpPage = InPage & ReadStatusPO))

}else {
/*

* We took too long to process data, so let's wait for
* a brand new frame and start all over again. Actually
* we wait for two frames so that we alternately write
* into each output frame (Things really look ugly if we don't).
*/

while (page != (InPage & ReadStatusPO))
/* wait for this corrupted frame to finish */

while (page == (tmpPage = InPage & ReadStatusPO))
/* wait again so we write into the alternate page */

page = tmpPage; /* Save new page number. */

}
}

/* End of Main. */

/*

* Function chooseFilter, chooses the right filter depending on the shrink factor
*/

const short*
chooseFilter(float percent, const short* filtCoefs, short* coefs) {

int intPercent;
intPercent = (int) (percent* 1000.0);

if(intPercent >= 970) {
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filtCoefs = coef90_3kai;
*coefs = 3;

}
else if (intPercent >= 860) {

filtCoefs = coef80_4kai;
*coefs = 4;

}
else if (intPercent >= 780 ) {

filtCoefs = coef75_5;
*coefs = 5;

}
else if (intPercent >= 710) {

filtCoefs = coef71_6;
*coefs = 6;

}
else if (intPercent >= 650) {

filtCoefs = coef65_7;
*coefs = 7;

}
else if (intPercent >= 600) {

filtCoefs = coef60_8;
*coefs = 8;

}
else if (intPercent >= 560) {

filtCoefs = coef56_9;
*coefs = 9;

}
else if (intPercent >= 530) {

filtCoefs = coef53_10;
*coefs = 10;

}
else if (intPercent > 500) {

filtCoefs = coef50_11;
*coefs = 11;

}
else if (intPercent == 500) {

filtCoefs = halfband;
*coefs = 11;

}
else {

filtCoefs = coef90_3kai;
*coefs = 3;

}
return filtCoefs;

/*

FileName: shrnkp.cp
*/

#include "global.h"
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#include "protohw.h"
#include "mvphw.h"
#include "pphwc.h"
#include "shrnkMsg.h"
#include "video.h"

extern cregister volatile unsigned int COMM;
extern void pp_cmnd(long val);

const int ppParam[PP_COUNT] = {
PPO_PARAMETER RAM + GENERALPURPOSEOFFSET,
PP1_PARAMETER RAM + GENERALPURPOSE OFFSET,
PP2_PARAMETER_RAM + GENERAL_PURPOSE_OFFSET,
PP3 PARAMETER RAM + GENERALPURPOSE OFFSET,
};

void ppInToOutFunc(unsigned char* sPtr, unsigned char* dPtr,
const firArgList* firArgs);

void ppQbyLTapFunc(unsigned char* sPtr, unsigned char* dPtr,
firArgList* firArgs, short* Coefs);

void DecimateFunc(unsigned char* sPtr, unsigned char* dPtr,
firArgList* firArgs, short* Coefs);

void main(void)

int
unsigned int
unsigned int
shrnkMsgStruct*
UBIN8*
UBIN8*
int
int
passArgs*

ppNum;
PP_Bit;
uCmnd;
argsPtr;
dstBuf;
srcBuf;
passCnt;
filt;
firArgs;

/* Which PP is this. */
/* Bit mask for this PP. */
/* Command word for ip. */
/* Pointer to Parameter Structure */
/* Pointer to video output buffer. */
/* Pointer to video source buffer. */
/* number of passes */
/* Used to cycle through filters */

/*

* Initialize
*/

ppNum = COMM & 7; /* Read PP number. */
PP_Bit = OxI << ppNum; /* Turn number into bit mask. */
argsPtr = (shrnkMsgStruct*)ppParam[ppNum];

/*
* Halt the PP to synchronize with other PPs.
*/

uCmnd = PPBit I CMD HALT;
pp_cmnd(uCmnd);

/*
* Enter endless processing loop
*/

/* Set the HALT bit. */
/* Issue the command. */
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while (1) {

/*

* Set Src and Dst buffers.
*/

srcBuf = argsPtr->src;
dstBuf = argsPtr->dst;

/*

* Implement filtering for right number of passes and filters
*/

for (passCnt = 0; passCnt < argsPtr->passCount; passCnt++) {
firArgs = argsPtr->fArgsPtr;
for (filt = 0; filt < argsPtr->numberOfFilters; filt++) {

if (argsPtr->filtType == PERIODIC)
ppQbyLTapFunc(srcBuf + firArgs->srcOffset, dstBuf + firArgs->dstOffset,

&firArgs->ppFirArgs, argsPtr->fCoef);
else
DecimateFunc(srcBuf + firArgs->srcOffset, dstBuf + firArgs->dstOffset,

&firArgs->ppFirArgs, argsPtr->fCoef);
firArgs++;

}
srcBuf++;
dstBuf++;

/*

* When done, halt the PP.
*/

ppcmnd( uCmnd );

/*

* Function: ppInToOutFunc
* Does no processing, simply copies input data to output buffer
* Used for debug
*/

void
ppInToOutFunc(unsigned char* sPtr, unsigned char* dPtr, const firArgList* firArgs) {

int i;

for (i = 0; i < firArgs->nPixels; i++) {
dPtr[i*firArgs->pixSpace] = sPtr[i*firArgs->pixSpace];

}

/*
* Function: ppQbyLTapFunc
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* Implements approximate polyphase filtering using L=16 Q-tap filters
*/

void
ppQbyLTapFunc(unsigned char* sPtr, unsigned char* dPtr, firArgList* firArgs,

short* coefBase) {
short i,j;
int accum;
short pixSpace;
short nCoef;
unsigned short fracCounter;
unsigned short incr;
short dataReturn;
short* currentCoefs;

/*

* Initialize variables
*/

nCoef = firArgs->nCoef;
pixSpace = firArgs->pixSpace;
incr = firArgs->incr;
fracCounter = firArgs->fracStart;
dataReturn = pixSpace*(nCoef-1);
currentCoefs = coefBase + (fracCounter>>12)*nCoef;

/*

* Process all data
*/

for (i = 1; i < firArgs->nPixels; i++) {
/*

* Apply filter at current position
*/

accum = 0;
for (j=0;j<nCoef;j++) {

accum += (*sPtr)*(*currentCoefs);
sPtr += pixSpace;
currentCoefs++;

}

/*

* Write computed data point to output memory buffer
*/

*dPtr = (unsigned char) (accum>> 15);

/*

* Increment data and filter indeces
*/

sPtr -= dataReturn;
fracCounter += incr;
if (fracCounter < incr) {

sPtr += pixSpace;
}
currentCoefs = coefBase + (fracCounter>>12)*nCoef;
dPtr += pixSpace;
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/*

* Apply filter at current position
*/

accum = 0;
for (j=0;j<nCoef;j++) {

accum += (*sPtr)*(*currentCoefs);
sPtr += pixSpace;
currentCoefs++;

}

/*

* Write computed data point to output memory buffer
*/

*dPtr = (unsigned char) (accum>>15);

/*

* Function: DecimateFunc
* Implements half-band filtering
*/

void
DecimateFunc(unsigned char* sPtr, unsigned char* dPtr, firArgList* firArgs,

short* coefBase) {
short i,j;
int accum;
short pixSpace;
short nCoef;
short dataReturn;
short* currentCoefs;

/*

* Initialize variables
*/

nCoef = firArgs->nCoef;
pixSpace = firArgs->pixSpace;
dataReturn = pixSpace*(nCoef-2);
currentCoefs = coefBase;

/*

* Process all data
*/

for (i = 1; i < firArgs->nPixels; i++) {
/*

* Apply filter at current position
*/

accum = 0;
for (j=0;j<nCoef;j++) {

accum += (*sPtr)*(*currentCoefs);
sPtr += pixSpace;
currentCoefs++;
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/*

* Write computed data point to output memory buffer
*/

*dPtr = (unsigned char) (accum>>15);

/*

* Increment data and filter indeces
*/

currentCoefs = coefBase;
sPtr -= dataReturn;
dPtr += pixSpace;

/*

* Apply filter at current position
*/

accum = 0;
for (j=0;j<nCoef;j++) {

accum += (*sPtr)*(*currentCoefs);
sPtr += pixSpace;
currentCoefs++;

}

/*

* Write computed data point to output memory buffer
*/

*dPtr = (unsigned char) (accum>>l15);

/* Module: TI MVP MP/PP Message structure. */

/* Copyright Tektronix, Inc. 1995 */
/* company confidential */

#define EDGE PAD

#define BLOCKSIZE
#define MAXFILTSIZE

40 /* number of bytes at edge of waveform
* needed clean filtering (at least half
* the filter length) */

8
176

/* Width of column blocks, in bytes */

enum method {AUTO, MANUAL, FIXED, NUMMETHODS };
enum filtType {PERIODIC, HALFBAND};

struct firArgList
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short fracStart;
short nCoef;
short pixSpace;
short nPixels;
unsigned short incr;

typedef struct firArgList firArgList;

struct passArgsStruct {
firArgList
short
short

ppFirArgs;
srcOffset;
dstOffset;

};
typedef struct passArgsStruct passArgs;

struct shrnkMsgStruct {
short
unsigned char*
unsigned char*
short
short
passArgs*
passArgs
passArgs
short

filtType;
src;
dst;
passCount;
numberOfFilters;
fArgsPtr;
hFiltArgs[3];
vFiltArgs[1];
fCoef[MAXFILTSIZE];

typedef struct shrnkMsgStruct shrnkMsgStruct;

* Filename: Coef_table.h
* Filter coefficients to be used when resampling
*/

const short coef90_3kai[48] = {
17068, 19061, -3361,
15021, 20971, -3224,
12944, 22743, -2919,
10865, 24327, -2424,
8819, 25671, -1722,
6842, 26728, -802,
4972, 27457, 339,
3246, 27829, 1693,
1693, 27829, 3246,
339, 27457, 4972,
-802, 26728, 6842,
-1722, 25671, 8819,
-2424, 24327, 10865,
-2919, 22743, 12944,
-3224, 20971, 15021,
-3361, 19061, 17068,
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const short coef80_ 4kai[64] = {
4487, 25252, 6028, -2999,
3079, 25280, 7733, -3324,
1763, 25063, 9531, -3589,
557, 24594, 11391, -3774,
-523, 23872, 13280, -3861,
-1462, 22902, 15157, -3829,
-2250, 21701, 16980, -3663,
-2879, 20291, 18705, -3349,
-3349, 18705, 20291, -2879,
-3663, 16980, 21701, -2250,
-3829, 15157, 22902, -1462,
-3861, 13280, 23872, -523,
-3774,11391,24594,557,
-3589,9531,25063,1763,
-3324,7733,25280,3079,
-2999,6028,25252,4487,

const short coef75_5[80] = {
-1131, 16707, 18243,-899,-152,
-1267, 15109, 19686,-557,-203,
-1321, 13459, 20984, -91, -263,
-1309, 11796, 22106, 510, -335,
-1246, 10152, 23032, 1251, -421,
-1147, 8559, 23743, 2135, -522,
-1027, 7044, 24225, 3163, -637,
-895, 5628, 24467, 4331, -763,
-763, 4331, 24467, 5628, -895,
-637, 3163, 24225, 7044, -1027,
-522, 2135, 23743, 8559, -1147,
-421, 1251, 23032, 10152, -1246,
-335, 510, 22106, 11796, -1309,
-263, -91, 20984, 13459, -1321,
-203, -557, 19686, 15109, -1267,
-152, -899, 18243, 16707, -1131,

const short coef7 16[96] = {
-1449, 5644, 23122, 6931, -1573, 93,
-1307, 4444, 22944, 8296, -1666, 57,
-1150, 3338, 22567, 9712, -1718, 19,
-990, 2337, 22000, 11162, -1715, -26,
-833, 1449, 21257, 12623, -1648, -80,
-683, 676, 20351, 14073, -1505, -144,
-545, 21, 19301, 15489, -1276, -222,
-422, -520, 18126, 16848, -950, -314,
-314,-950, 16848, 18126,-520,-422,
-222, -1276, 15489, 19301, 21, -545,
-144, -1505, 14073, 20351, 676, -683,
-80, -1648, 12623, 21257, 1449, -833,
-26, -1715, 11162, 22000, 2337, -990,
19, -1718, 9712, 22567, 3338, -1150,
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57, -1666, 8295, 22944, 4444, -1306,
93, -1573, 6931, 23122, 5644, -1449,
};

constshort coef65_7[112] = {
-870, 62, 16390, 17382, 652, -1020, 172,
-726, -440, 15330, 18293, 1330, -1173, 154,
-590, -856, 14208, 19099, 2095, -1322, 134,
-465, -1190, 13039, 19791,2945,-1463, 111,
-353, -1446, 11841, 20357, 3873, -1589, 85,
-254, -1629, 10629, 20789, 4875, -1694, 52,
-169, -1746, 9418, 21081, 5941, -1769, 12,
-97, -1803, 8224, 21228, 7061, -1808, -37,
-37, -1808, 7061, 21228, 8224, -1803, -97,
12, -1769, 5941, 21081, 9418, -1746, -169,
52, -1694, 4875, 20789, 10629, -1629, -254,
85, -1589, 3873, 20357, 11841, -1446, -353,
111, -1463, 2945, 19791, 13039, -1190, -465,
134, -1322, 2095, 19099, 14208, -856, -590,
154, -1173, 1330, 18293, 15330, -440, -726,
172, -1020, 652, 17382, 16390, 62, -870,
};

const short coef60_8[128] = {
-372, -1699, 8032, 19595, 9053, -1555, -482, 196,
-273, -1792, 7031, 19486, 10083, -1354, -602, 189,
-186,-1838, 6057, 19264, 11112,-1093,-731, 183,
-110, -1842, 5119, 18934, 12127, -768, -867, 175,
-46, -1809, 4225, 18499, 13119, -377, -1008, 165,
8, -1746, 3381, 17966, 14075, 81, -1150, 153,
52, -1657, 2593, 17339, 14986, 608, -1290, 137,
88, -1549, 1867, 16628, 15840, 1204, -1425, 115,
115, -1425, 1204, 15840, 16628, 1867, -1549, 88,
137, -1290, 608, 14986, 17339, 2593, -1657, 52,
153, -1150, 81, 14075, 17966, 3381, -1746,8,
165, -1008, -377, 13119, 18499, 4225, -1809, -46,
175, -867, -768, 12127, 18934, 5119, -1842, -110,
183, -731, -1093, 11112, 19264, 6057, -1838, -186,
189, -602, -1354, 10083, 19486, 7031, -1792, -273,
196, -482, -1555, 9053, 19595, 8032, -1699, -372,

1;

const short coef56_9[144] = {
-37, -1768, 2232, 15266, 15908, 2910, -1827, -102, 186,
19, -1687, 1602, 14564, 16484, 3635, -1861, -177, 189,
65, -1588, 1024, 13812, 16990, 4400, -1864, -263, 192,
102, -1477, 501, 13016, 17420, 5203, -1833, -358, 194,
132, -1353, 31, 12185, 17769, 6037, -1765, -463, 195,
155, -1224, -383, 11326, 18035, 6896, -1656, -577, 196,
171, -1091, -742, 10448, 18214, 7774, -1501, -699, 194,
182, -957, -1047, 9558, 18303, 8664, -1299, -826, 190,
190, -826, -1299, 8664, 18303, 9558, -1047, -957, 182,
194, -699, -1501, 7774, 18214, 10448,-742,-1091, 171,
196, -577, -1656, 6896, 18035, 11326, -383, -1224, 155,
195, -463, -1765, 6037, 17769, 12185, 31, -1353, 132,
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218, -99, -1752, 601, 10668, 16280, 8586, -515, -1483, 81, 183,
207, -31, -1675, 191, 9986, 16341, 9290, -181, -1584, 29, 195,
195, 29, -1584, -181, 9290, 16341, 9986, 191, -1675, -31, 207,
183, 81, -1483, -515, 8586, 16280, 10668, 601, -1752, -99, 218,
171, 124,-1374,-809, 7878, 16157, 11333, 1050,-1815,-175,228,
159, 161, -1261, -1066, 7172, 15974, 11975, 1535, -1859, -259, 237,
147, 190, -1141, -1285, 6471, 15733, 12589, 2055, -1884, -351,244,
136, 213, -1021, -1467, 5780, 15435, 13171, 2608, -1885, -450, 248,
124,230,-901, -1615,5104, 15083, 13717,3194,-1862,-556,250,
113, 241, -783, -1729, 4446, 14680, 14223, 3807, -1810, -667, 247,

const short halfband[11] = {
295, 0,-1876, 0, 9780, 16370, 9780, 0,-1876, 0, 295,

1;
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