
Non-Invasive Measurement of Load Capacity of Trabecular Bones with Defects

Gregory D. Cabe B.S. Aerospace Engineering University of Texas at Austin, 1993

Submitted to the Department of Mechanical Engineering in Partial Fulfillment of the Requirements for the Degree of

> Master of Science in Mechanical Engineering at the Massachusetts Institute of Technology

January 1997 [February 1997 Solution of Technology All rights reserved

LIBRARIES

,

Non-Invasive Measurement of Load Capacity of Trabecular Bones with Defects

Gregory D. Cabe

Submitted to the Department of Mechanical Engineering on January 28, in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering

ABSTRACT

Tumors, from benign osseous lesions common in children to metastatic tumors found in cancer patients, can weaken bones to the point that they fracture under loads common in everyday living. Unfortunately, current guidelines for assessing bones with tumors are based on old technologies and have proven imprecise, inaccurate, and inconsistent in predicting the risk of fracture. Better techniques are necessary for determining the load capacity of weakened bones in order to prevent fracture and monitor the effectiveness of various treatments.

Therefore, researches at Beth Israel's Orthopedic Biomechanics Laboratory and Children's Hospital of Boston, Massachusetts are attempting to develop a new technique that is both simple and inexpensive yet provides an accurate and reliable measurement of bone strength to aid in assessing the risk of fracture. They propose predicting bone load capacity by applying elementary composite beam theory to noninvasive measurements of a weakened bone cross-section at the site of a tumor. Non-invasive measurements could be provided through such techniques as Quantitative Computed Tomography (QCT), Magnetic Resonance Imaging (MRI), ultrasound, or Dual Energy X-ray Absorptiometry (DXA).

This thesis discusses a series of parametric experiments which investigated the ability of composite beam theory models using QCT to predict the reduction in load capacity associated with different shapes and sizes of holes in trabecular bone. One hundred fifteen cores of trabecular bone with simulated lytic defects were imaged with QCT and then tested to failure in four-point bending, tension, and torsion. The results of these experiments showed, first, that in bending, tension, and torsion, trabecular bone yields at a specific local strain. Supporting that conclusion, rigidity of a specimen's weakest cross-section was found to be the elastic property that best predicts the load capacity (both yield load and ultimate load) of trabecular bones with defects ($r^2 = 0.98$ for bending, $r^2 = 0.97$ for tension, $r^2 = 0.97$ for torsion). Furthermore, comparisons of experimental data to results from finite element models showed that stress-concentration factors were sufficiently insignificant in trabecular bone with rounded holes that they do not confound composite beam theory models in the prediction of load capacity.

Therefore, if the type of loads are known (bending, tension, and/or torsion), elementary solid mechanics calculations of the rigidity of the weakest cross-section should predict the load capacity of an entire bone weakened by a tumor. Also, the reduction in load capacity of a bone weakened by a tumor could be measured by comparing the rigidity of it's weakest cross-section to the rigidity of the corresponding cross-section in the healthy contralateral limb.

Finally, the experiments showed that QCT can accurately and noninvasively measure the rigidity of a trabecular bone cross-section ($r^2 = 0.92$ for bending, $r^2 = 0.87$ for tension, $r^2 = 0.94$ for torsion) and that QCT measurements of rigidity correlate very highly with yield and ultimate load ($r^2 = 0.92$ for bending, $r^2 = 0.95$ for tension, $r^2 = 0.89$ for torsion).

This study provides a fundamental assessment of the behavior of trabecular bone with holes from a controlled, parametric investigation. However, further tests are necessary to determine if the technique describe above is valid for cortical bone, composite cortical-trabecular bone, and composite bone *in-vivo*.

Thesis Supervisors: John A. Hipp, Ph.D. Brian D. Snyder, M.D., Ph.D. Wilson C. Hayes, Ph.D.

Acknowledgements

An immeasurable amount of thanks must first go to Brian Snyder and John Hipp. Their vision, hard work, and dedication to improving medical care are what made this project possible, and their generous financial and intellectual support are what made my graduate education possible. I hope that I will someday emulate their excellent work and insight.

The experiments conducted for this study can by no means be credited only to me. They are the result of hard work by many people at Harvard and MIT, particularly my co-researcheres John Tedrow and James Hong. I would also like to give heartfelt credit and thanks to Norman Beruby at MIT for an invaluable education in machining, Dave Salveteli and Maria Oden for advice on finite element models, Aaron Hecker for training in machine testing, and Betsy Myers for her patient instruction in statistical analysis. I want to thank and commend Toby Hayes and the Orthopedic Biomechanics Lab staff for the use of their lab and equipment and more importantly for their dedication to providing a quality research education for their students. They take their responsibility as educators very seriously, and it shows and is greatly appreciated. To the entire staff of students and investigators at the OBL, I want to thank you all for your encouragement, advice, use of equipment, and above all friendship. I will take fond memories of all of you with me.

Most of all I owe a debt of gratitude to my parents, who always loved, always believed in, and always encouraged me. They gave me what few children ever have. And to my roommate and dear friend Kyle, who shared grad school with me and taught me more about engineering and virtue than any other friend or teacher. And finally, to my wonderful wife, Kristin, who gave up so much of herself to support and encourage me through what seemed like an endless project. Her love and selflessness can never be adequately paid back, nor will they be forgotten.

Table of Contents

CHAPTER 1: INTRODUCTION	7
1.1 OVERVIEW	9
1.2 MOTIVATION - THE CLINICAL PROBLEM	9
1.3 SUBJECT - THE POSSIBLE SOLUTION	10
1.4 OUTLINE OF STUDY - EVALUATING THE SOLUTION	13
1.4.1 Research Questions	14
1.4.2 Test Method	
1.5 Scope and Limitations	16
CHAPTER 2: MATERIALS	21
2.1 DESCRIPTION OF TRABECULAR BONE	
2.2 WHALE BONE AS A MODEL FOR HUMAN BONE	
2.3 TEST SPECIMENS	25
2.4 SPECIMEN PREPARATION	27
2.4.1 Specimen Potting	27
2.4.2 Introduction of Defects	28
2.4.3 Marking for Testing	
2.5 CONSIDERATIONS FOR SPECIMEN SIZE	31
CHAPTER 3: METHODS	.35
3.1 Specimens	.35
3.2 QUANTITATIVE COMPUTED TOMOGRAPHY SCANNING	36
3.3 FINITE ELEMENT MODELING	37
3.4 MECHANICAL TESTING	.38
3.4.1 4-Point Bending Test	41
3.4.2 Torsion	44
3.4.3 Tension	
CHAPTER 4: RESULTS	, 49
4.1 Test Results	.49
4.2 CAN THE ELASTIC BEHAVIOR OF TRABECULAR BONE WITH DEFECTS BE USED TO PREDI	
ITS LOAD CAPACITY?	. 52
4.3 CAN THE ELASTIC MECHANICAL BEHAVIOR OF TRABECULAR BONE WITH DEFECTS BE	
PREDICTED BY NON-INVASIVE IMAGING TECHNIQUES?	. 55
4.4 CAN NON-INVASIVE MEASUREMENTS OF THE ELASTIC PROPERTIES OF BONES WITH	_
DEFECTS BE USED TO PREDICT THE BONES' LOAD CAPACITY?	
4.5 HOW DO CERTAIN FACTORS AFFECT THE BIOMECHANICAL PROPERTIES OF TRABECULA	
BONES WITH DEFECTS?	
4.6 COMBINING SPECIMEN GROUPS FROM DIFFERENT ANIMALS	
4.7 CONCLUSIONS	. 66

CHAPTER 5: QUANTITATIVE COMPUTED TOMOGRAPHY	69
5.1 Overview	
5.2 SCAN PROTOCOL	
5.3 CALCULATIONS	70
5.4 VALIDITY OF SCANS OF SPECIMENS WITH DEFECTS	73
CHAPTER 6: FINITE ELEMENT MODELS	77
6.1 MODEL DESCRIPTIONS	77
6.2 CONVERGENCE TESTING	80
6.2.1 Analysis	
6.2.2 Results	
6.3 VALIDATION OF MODELS	85
6.3.1 Validation of Bending, Tension, and Torsion	85
6.3.2 Validation of Bending for Various Hole Sizes	
6.4 CALCULATION OF STRESS CONCENTRATION FACTORS	89
APPENDIX A: VALIDATION OF TESTING APPRATI	93
A.1 VALIDATION OF FOUR-POINT BENDING TEST JIG	
A.2 VALIDATION OF UNIAXIAL TENSION TEST JIG	
A.3 VALIDATION OF MACREFLEX OPTICAL MEASUREMENT SYSTEM	
APPENDIX B: RAW DATA	
APPENDIX C: FINITE ELEMENT ANALYSIS	143
APPENDIX D: QCT SCANNING	

•

Chapter 1 Introduction

3.1 OVERVIEW

This research is part of a five-year project to develop a quantitative technique that predicts fracture risk in long bones with benign and metastatic defects, such as those shown in Figure 1.1. The technique predicts fracture risk by applying linear-elastic composite beam theory (Bernoulli-Euler solid mechanics) to calculate the load capacity of a bone. Non-invasive imaging techniques are used to measure the bone's mechanical properties for these calculations.

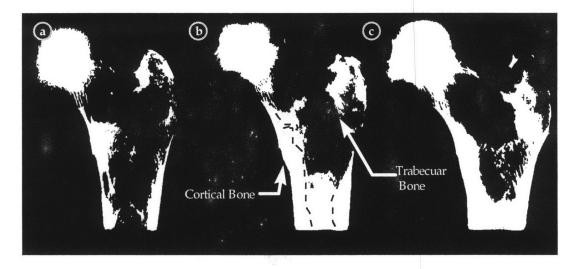


Figure 3.1 - Defects in human femurs can extend through both cortical and trabecular bone. a) defect through trabecular bone in the intertrochantric region, b) defect through the anterior cortex, c) defect through the posterior cortex, including trabecular bone.

Although the non-invasive technique is intended to predict fracture risk for entire bones (such as the femur and humerus), this thesis focuses only on its application to trabecular bone, using quantitative computed tomography as a non-invasive method of measuring mechanical properties of bone. Future studies will evaluate the technique for use with cortical and whole bones and other imaging data.

For this thesis, the prediction technique was investigated by using mechanical tests and finite element models to describe the behavior of trabecular bone specimens with holes. The results from these tests were used to determine if mechanical properties from composite beam theory accurately predict load bearing capacity. The mechanical test results were also compared with non-invasive measurements using quantitative computed tomography in order to determine if this imaging technique, coupled with composite beam theory, can predict the mechanical behavior of trabecular bones with holes.

3.2 MOTIVATION - THE CLINICAL PROBLEM

Pathologic fractures resulting from benign and metastatic osseous defects in the appendicular and axial skeleton occur in people of all ages. The intractable bone pain, fear of sustaining a fracture, and morbidity of a pathologic fracture associated with these defects severely reduce the quality of patients' lives; and determining the appropriate treatment protocol is one of the most difficult problems facing orthopedists and caregivers.

Although malignant bone tumors in children are rare, benign skeletal defects are relatively common. Benign bone defects occur in 33% to 50% of asymptomatic children evaluated by random radiographs of long bones¹. In the past ten years the Orthopaedic Oncology Service of the Massachusetts General Hospital has evaluated and treated 1,716 children and young adults with benign bone defects including: non-ossifying fibroma (131), fibrous dysplasia (231), unicameral bone cyst (157), aneurysmal bone cyst (112), giant-cell tumor (426), eosinophilic granuloma (38), enchondroma (357), hemangioma (235), and chondromyxoid fibroma (29)².

In adults, malignant tumors are more common, and the skeleton is the third most common site for metastatic spread of carcinoma³. There are over one million new cancer cases each year in the U.S.⁴, and autopsies revealed that 60% to 80% of cancer victims have evidence of bone metastases ⁵. Approximately 30% of bone metastases subsequently fracture or produce hypercalcemia, requiring treatment with radiation, bisphosphonates, glucocorticoid, or calcitonin ⁶. When pathologic fractures occur in the femur, humerus, or periacetabular pelvis approximately 90% of patients require surgical intervention to relieve pain and restore function and mobility⁷.

An accurate assessment of fracture risk is essential information for an orthopedist to determine the appropriate treatment for a bone defect, particularly when the orthopedist must decide whether or not to intervene surgically. The two guidelines (both based on plane radiographs) currently cited for making this decision are: 1) a defect greater than 2.5 cm in diameter should be considered at risk for fracture⁸ and 2) greater than 50% destruction in the cortical wall indicates the need for prophylactic stabilization⁹. The guidelines are based on several retrospective clinical studies, but they are not based on engineering principles and have exhibited clinical error rates as high as 42%⁸. Several retrospective clinical reviews have shown that experienced orthopedic surgeons are unable to arrive at either subjective or simple geometric guidelines that can

effectively predict fracture risk using plane radiographs^{10,11,12}. Several *in-vitro* studies of the behavior of bones with simulated defects have also indicated that load capacity depends on many factors not represented in current clinically accepted guidelines^{13,14,15,16}. Taken together, these studies show that the critical parameters that determine the loadbearing capacity of a long-bone with a defect include the amount of bone lost, the geometry and elastic modulus of the remaining bone, the location of the defect with respect to the applied loads, and the type of applied loads.

To improve prevention of pathologic fracture, more accurate and precise guidelines are needed for assessing bone status when a defect initially presents as well as better techniques for assessing the success of the treatment protocol.

The assessment of bone status may be improved by calculating a factor of risk ¹⁷ which incorporates both the strength of a bone and the loads to which it may be subjected. The factor of risk is defined as the load applied to the bone (the load bearing requirement) divided by the load at which the bone would fail (the load bearing capacity):

$$\Phi = \frac{\text{Load bearing requirement}}{\text{Load bearing capacity}}$$
[3.1]

When this ratio exceeds unity, the bone can be expected to fail. Unfortunately, previous investigations have only considered guidelines that include defect geometry, pain, age, anatomic site, lesion type, and activity levels^{18,19,20,21,22,23}. None of these factors is a direct measure of either the numerator or denominator of the factor of risk, and they typically rely only on information from plane radiographs.

3.3 SUBJECT - THE POSSIBLE SOLUTION

The objective of the Whitcker Foundation grant funding this study is to develop improved, practical methods for measuring fracture risk of long-bones in children and adults with osteolytic defects and pathological skeletal deformities. It also seeks to develop a method which minimizes cost and radiation doses in order to increase the availability of the technique and to make it a practical tool for repeated measurements that can be used to assess response to treatment. It is believed this can be accomplished by quantitatively measuring the critical parameters that determine load-bearing capacity (denominator in equation [1.1]) using non-invasive imaging and simple engineering principles.

The technique proposed in this thesis is detailed as the preferred method in Figure 1.2. A limb with a defect is examined by one of a number of non-invasive imaging techniques, including magnetic resonance imaging (MRI), dual-energy x-ray

absorptiometry (DXA), quantitative computed tomography (QCT), and quantitative ultrasonic attenuation (QUA). From the imaging data, the specimen is discretized into multiple cross-sections, and the material and geometric properties of each cross-section are calculated. The weakest cross-section of the specimen is determined for a variety of loads (tension/compression, torsion, bending, and combinations of the three) that correspond to those experienced in daily activities.

A calculated property (structural rigidity, in particular) of the weakest cross-section may then be incorporated into a measure of fracture risk, such as the denominator in equation [1.1]. The numerator must be found from studies of the load bearing requirements for common activities of daily living. These are available for both the femur^{24,25,26} and the spine^{27,28} from a number of theoretical and *in-vivo* studies.

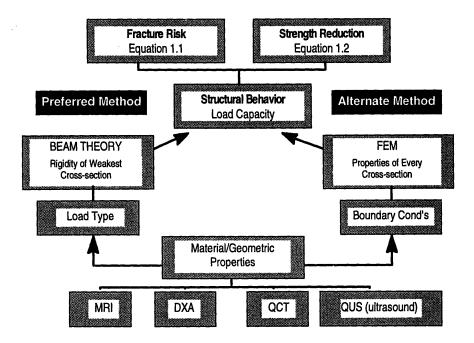


Figure 3.2 - Cross-sectional material and geometric properties of a bone with a defect and the healthy contralateral bone are measured using a non-invasive imaging technique. These properties and appropriate loading conditions are then used by either finite element models or composite beam theory to estimate the load capacity of the two bones. The ratio of the two load capacities (defect to healthy) is one way to measure the fracture risk due to a defect.

Even in the absence of a reliable model to determine the numerator in the factor of risk, a quantitative measure of a bone's strength reduction can be arrived at by comparing the load bearing capacity of a bone with a defect to the load-bearing capacity of the healthy contralateral limb:

% Stg. Reduction =
$$\frac{\text{Load bearing capacity (rigidity) of bone with defect}}{\text{Load bearing capacity (rigidity) of contralateral bone}}$$
 [3.2]

Equation [1.2] additionally requires properties of the matching cross-section from the healthy contralateral limb. However, it offers certain simplifications over equation [1.1]. It only requires knowing the *type* rather than the magnitude of expected loads and only requires that the imaging technique provide a *relative*, rather than absolute, measure of bone properties since the measurements are normalized to the contralateral "control."

An alternate method shown in Figure 1.2 is to use finite element models specifically developed for each patient. Although this analysis is potentially more powerful, it has a number of drawbacks, including:

- Current state of the art makes development of patient specific finite element models extremely expensive and time-consuming, limiting the clinical applicability of the method.
- 2) Finite element models would require scans of the entire limb and are generally created from QCT scans. However, QCT is radiative and therefore limits the number of scans (and cross-sections) that may be made.
- 3) Finite element models require detailed loading and fixation boundary conditions that are not currently available in the literature.
- 4) Bone may not behave exactly like a continuum such as steel, causing finite element models to potentially overestimate stiffness and incorrectly measure the effects of stress concentrators.

An additional option is to use closed-form solutions based on continuum mechanics that exist for holes in porous materials²⁹, but they are extremely limited in the hole shapes, material complexity, and loading conditions to which they may be applied.

THEORY BEHIND THE METHOD. The preferred method of Figure 1.2 relies on the validity of a few important assumptions. Since this method uses measurements of structural rigidity, the first and most important assumption is that there exists a linear relation between structural rigidity (or some alternate easily-measured property) and the load capacity of a bone. This has been shown to be true when testing trabecular bone cylinders³⁰ in the past. The method also assumes failure behavior according to Bernoulli-Euler theory by calculating strength based solely on information from the weakest cross-section. That is, it does not account for stress flow affected by the geometry of a defect, which may affect where and how failure initiates. Fortunately, bone (trabecular bone in particular) may not behave exactly like a continuum. Its porous and lamellar structure may somewhat alleviate the stress concentration factors induced by geometric and material irregularities.

Provided Bernoulli-Euler beam theory adequately models the stress state and load capacity varies linearly with structural rigidity, then it remains to determine a noninvasive technique of measuring the structural rigidity of a bone. Since the modulus and spatial distribution of the material determine a specimen's rigidity, a non-invasive imaging technique must somehow measure these two properties.

12

It has been shown that trabecular bone can be modeled as a rigid, porous foam composed of a mineral (calcium hydroxyapatite) suspended in an organic matrix ³¹. For a given mineral content, variations in the organic phase and the internal soft tissue (e.g. marrow) do not significantly affect structural properties of non-pathologic bone. Therefore, in trabecular bone, the mineral phase is the material which primarily governs a specimen's rigidity. In fact, a number of studies have shown ash density to have a very strong relationship to the modulus of trabecular bone³². The ash density is the mass of the mineral phase divided by the specimen volume and may be found from apparent dry density from the following relation:

$$\rho_{\alpha} = \rho_{\text{apparent}} \left(\frac{\text{dry weight}}{\text{ash weight}} \right)$$
[3.3]

Therefore, an instrument which is able to measure a specimen's ash density and cross-sectional geometry should give an excellent approximation of the specimen's structural rigidity. QCT accomplishes this by measuring the energy attenuation of an electromagnetic wave, which depends on the molecular composition and density of a bone's mineral phase. The spatial distribution of the mineral phase may be determined by measuring attenuation through a cross-section from a number of orientations. From this measure of density and spatial distribution, geometric, material, and structural properties of the bone can be calculated. The load capacity of the specimen may then determined as a linear function of the structural rigidity of its weakest cross-section.

3.4 OUTLINE OF STUDY - EVALUATING THE SOLUTION

To evaluate the non-invasive fracture risk prediction technique described in the previous section, the long-term goal is to test the following hypothesis:

Hypothesis. There exists a strong correlation between the failure load of an entire bone with a defect and material and geometric properties (derived from non-invasive imaging data) of the weakest cross-section containing the defect.

This hypothesis is first tested for simple beams of trabecular and cortical bone before studying whole bones as they appear in vivo.

3.4.1 RESEARCH QUESTIONS

The research for this thesis focused on four questions pertaining to the hypothesis above. The assumption that composite beam theory can be used to predict load capacity was investigated with simple mechanical tests and led to the question:

Research Question 1. Is the elastic behavior of trabecular bone with a defect related to its load bearing capacity?

In answering Question 1, elastic structural properties, the rigidity in particular, were measured using mechanical tests. However, composite beam theory analysis using data from non-invasive imaging techniques may be limited by the ability of the imaging technique to accurately measure structural properties of bone, which led to the question:

Research Question 2. Can the elastic mechanical behavior of trabecular bone with defects be predicted by non-invasive imaging techniques?

Although rigidity may be an elastic property that correlates to load capacity, this correlation assumes one of many possible failure criteria. It may be that another failure criterion is more appropriate, meaning that a different elastic property would correlate more highly with load capacity. If non-invasive techniques do effectively measure the elastic properties of a bone with a defect, they may be used to isolate various material, geometrical, and structural properties to answer the question:

Research Question 3. Which non-invasive imaging measurement best predicts the load capacity of trabecular bone with defects?

Finally, the primary hypothesis assumes that elastic properties alone are sufficient to predict the load capacity of trabecular bone. However, other factors, particularly geometrically-sensitive stress risers, may also affect the load capacity of trabecular bone when defects are introduced. It is important to determine if their effect is significant, which led to the final research question:

Research Question 4. How do certain other factors affect the biomechanical properties of trabecular bone with defects?

3.4.2 TEST METHOD

A series of parametric tests were conducted to answer the research questions for trabecular bone, idealized as a relatively homogeneous cylinder with a regularly shaped hole extending through its middle cross-section, as shown in Figure 1.3. Since we assumed the mechanical behavior of a beam with a hole is primarily governed by its modulus and geometry, those were the two parameters which were varied in this study. Specimens from a variety of animals and anatomic sites resulted in a continuous variation of modulus, whereas defects were limited to six discrete geometries.

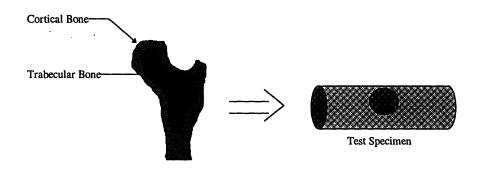


Figure 3.3 - Whole bone is composed of both cortical and trabecular bone. This thesis focuses on predicting fracture risk in only trabecular bone shaped as homogeneous cylinders with a transverse hole.

The important variables in the experiment were as follows:

•	Fixed variables:	homogeneity of specimen anisotropy of specimen specimen size
		sharpness of defect (rounded)
×	PARAMETRIC VARIABLES:	density of specimen
		defect`size
		defect shape (circular or rounded slot)
	INDEPENDENT VARIABLE:	structural rigidity (EI, EA, GJ)
•	Dependent variables:	slope of load vs. displacement curve yield (ultimate) load

Tests were conducted on 115 cylindrical cores of cancellous bone taken from the vertebrae of four bowhead, one immature sperm, and one pygmy sperm whale.

Specimens were screened for longitudinal orientation of trabeculae and material homogeneity based on plane radiographs.

Lytic bone lesions were simulated by drilling circular holes with diameters 28%, 47%, and 56% of the nominal cross-sectional diameter and rounded slots of the same diameters and twice the length into the rods of cancellous bone. In all cases, the long axis of the slot was parallel to the long axis of the specimen. Specimens were randomly assigned their defect size and shape. A control group with no holes was also included in the testing. The experimental design, therefore, included seven groups: three hole sizes multiplied by two shapes (circular and elongated), plus one group with no holes. Prior to creating the defects, the specimens were scanned using clinical QCT. After the defects were created, the specimens were again scanned at the defect site with clinical QCT.

The specimens were then subjected to simple modes of failure by uniaxial tension, bending, and torsional loads. Yield load was taken as the point where the tangent slope of the curve deviated from the slope of the linear portion of the curve. This corresponded to approximately 0.2% strain offset. The specimen's apparent structural (global) rigidity was taken as the slope of the load vs. normalized deflection. Outer fiber strain of the cross-section at the defect was determined in the case of bending by fitting a parabola to five digitized points on the bone, and calculating the strain at the defect from the radius of curvature of the parabola at that point.

The first research question was answered by correlating the mechanically measured rigidity with failure load of the trabecular cores. The second question was answered by correlating QCT measurements of rigidity to the mechanically measured rigidity of each specimen. The third research question was answered by determining which of a number of QCT measurements was correlated most highly with specimens' failure loads. The final question was answered by comparing trends in failure loads from the mechanical tests to trends predicted by finite element models, and by analysis of variance (ANOVA) tests, where the groupings were based on hole size and shape.

3.5 SCOPE AND LIMITATIONS

In order to answer basic questions about the mechanical behavior and imaging characteristics of bones with defects, it was necessary to isolate certain parameters and make a number of simplifications that limit the extent to which conclusions may be applied to *in-vivo* conditions. Whole bones are composite structures, composed of both cortical and trabecular bone tissue, with an irregular shape and heterogeneous density and microstructure. They are surrounded by soft tissue which affects loading conditions and imaging characteristics. Also, the various pathologic defects which may afflict it typically have irregular shape, composition, and size.

However, a number of simplifications in the specimens were necessary in order to isolate density and hole size as independent variables. The specimens were chosen to be regularly-shaped cylinders composed entirely of trabecular bone, from which all soft tissue was removed. Each specimen had relatively homogeneous density, transverse isotropy, and similar orientations of the major trabecular axis so that variations in these parameters did not affect experimental results. Also, the defects were regularly-shaped circular holes or slots extending through the cross-section at the specimen's mid-span.

Cores from whale vertebrae, rather than human bone, were tested in order to secure sufficiently large specimens. Since whale bone was shown to be a good model for human trabecular bone³³ the results of this study are intended to be generally applicable to human trabecular bone. However, the 25 mm x 75 mm specimens and hole sizes are smaller than *in-vivo*, while the trabecular microstructure is not. Therefore, the microstructural rather than continuum behavior of the tissue may have been exaggerated somewhat in this study. Bending, tension, and torsion tests covered the predominant modes of loading and failure expected *in-vivo*; however, conclusions from these tests may have only limited quantitative applicability to combined loading states, since stress flow around a defect depends somewhat on the type of loads. This dependence may also be magnified by non-circular hole shapes, which were not tested in these experiments.

Therefore, the following parameters, which may affect both mechanical behavior and imaging characteristics of trabecular bone were not addressed in this study:

- 1) shape of the specimen
- 2) heterogeneity of the specimen
- 3) orientation of planes of isotropy
- 4) interaction between cortical and trabecular bone, affecting both mechanical behavior and imaging characteristics
- 5) effects of soft tissue on mechanical behavior and imaging characteristics
- 6) material composition of the defect
- sharpness of the defect and its effect on stress concentrations; interaction of multicameral defects
- 8) anatomical site of the defect.

References


- ¹ Silverman, "Essentials of Caffeys pediatric x-ray diagnosis," *Pediatric Radiology*, 1989, pg. 1216.
- ² H.J. Mankin, M.C. Gebhardt, and D.S. Springfield, "Orthopaedic oncology service tumor database" [Abstract], 1996.

- ³ J. Body, "Metastatic bone disease: clinical and therapeutic aspects," Bone, Vol. 13, 1992.
- C. Boring, T. Squires, and T. Tong, "Cancer statistics," Cancer J Clin 43:7, 1993.
- ⁵ B. Berrettoni and J. Carter, "Current concepts in review: mechanisms of cancer metastasis to bone," J Bone Joint Surgery 68A:308, 1986.
- ⁶ J. Walls, N. Bundred, and A. Howell, "Hypercaclemia and bone resoprtion in malignancy," *Clin Orthop* 312:51, 1995.
- ⁷ M. Fidler, "Prophylactic internal fixation of secondary neoplastic deposits in long bones," *British Medical J*, Vol. 10:341, 1973.
- ⁸ R.K. Beals, , G.D. Lawton, and W.E. Snell, "Prophylactic internal fixation of the femur in metastatic breast cancer," *Cancer* 28:1350, 1971.
- ⁹ F.F. Parish and J.A. Murray, "Surgical treatment for secondary neoplastic fractures: a retrospective study of ninety-six patients," *J Bone Joint Surg* 52A:665, 1970
- ¹⁰ J.S. Keene, D.S. Seelinger, A.A. McBeath, and W.D. Engber, "Metastatic breast cancer in the femur: a search for the lesion at risk of fracture," *Clin Orthop* 203:282, 1986.
- ¹¹ R.E. Zickel, and W.H. Mouradian, "Intramedullary fixation of pathological fractures and lesions of th subtrochanteric region of the femur," *J Bone Joint Surg* 58-A-8:1061, 1976.
- ¹² J. Haler, M.P. Andre, D. Resnick, C. Miller, B.A. Howard, J.P. Shils, D.J. Satoris, and D. Trudell, "Detection of thoracolumbar vertebral body destruction with lateral spine radiography," *Investigative Radiology* 25:517, 1990.
- ¹³ J.A. Hipp, B.C. Edgerton, K.N. An, and W.C. Hayes, "Structural consequences of transcortical holes in long bones loaded in torsion," *J Biomech* 23:1261, 1990.
- ¹⁴ J.A. Hipp, G. Katz, and W.C. Hayes, "Local demineralization as a model for bone strength reductions in lytic transcortical metastatic lesions," *Investigative Radiology* 26:934, 1991.
- ¹⁵ J.A. Hipp, R.J. McBroom, E.J. Cheal, and W.C. Hayes, "Structural consequences of endosteal metastatic lesions in long bones," J Orthop Res 7:828, 1989.

- ¹⁶ R.J. McBroom, E.J. Cheal, and W.C. Hayes, "Strength reductions frommetastatic cortical defects in long bones," *J Orthop Res* 6:369, 1988.
- ¹⁷ V.C. Mow and W.C. Hayes, <u>Basic Orthopedic Biomechanics</u>, Raven press Ltd., New York, 1991, Chapter 3, "Biomechanics of cortical and trabecular bone: implications for assessment of fracture risk," pp. 93-141.
- ¹⁸ M. Fidler, "Incidence of fracture of metastases in long bones," Acta Orthop Scand 52:623, 1981.
- ¹⁹ K. Mase, T. Fukumura, J. Toriwaki, "Modified Digital Voronoi Diagram and its Applications to Image Processing," *Systems Computer Controls* 12:6, 1981.
- ²⁰ R. Capanna, A. Dal Monte, S. Gitelis, and M. Campanacci, "The natural history of unicameral bone cysts after steroid injection, *Clinical Orthopaedics and Related Research*, 1982, pp. 204-211.
- ²¹ R. Bunting, W. Lamont-Havers, D. Schweon, and Akliman, "Pathologic fracture risk in rehabilitation of patients with boney metastases," *Clinical Orthopedic and Related Research*, 1985, 192:222-227.
- ²² D.S. Cheng, C.B. Seitz, and H.J. Eyre, "Nonoperative management of femoral, humeral, and acetabular metastasis in patients with breast carcinoma," *Cancer* 45:1533, 1980
- ²³ H. Mirels, "Metastatic disease in long bones," *Clin Orthop Rel Res* 249:256, 1989.
- ²⁴ R.D. Crowindshield, R.C. Johnson, J.G. Andrews, and R.A. Brand, "A biomechanical investigation of the human hip," J Biomech 11:75, 1978.
- ²⁵ A.G. Patriarco, R.W. Mann, S.R. Simon, and J.M. Mansour, "An evaluation of the approaches of optimization models in the prediction of muscle forces during human gait," J Biomech 14:513, 1981.
- ²⁶ G. Bergmann, F. Graichen, and A. Rohlmann, "Hip Joint loading during walking and running, measured in two patients," *J Biomech* 26:969, 1993.
- ²⁷ A.L. Nachemson, "Disc pressure measurements," Spine 6:93, 1981.
- ²⁸ A. Schultz, K. Haderspeck, D. Warwick, and D. Portillo, "Use of lumbar trunk muscles in isometric performance of mechanically complex standing tasks," J Ortho Res 1:77, 1983.

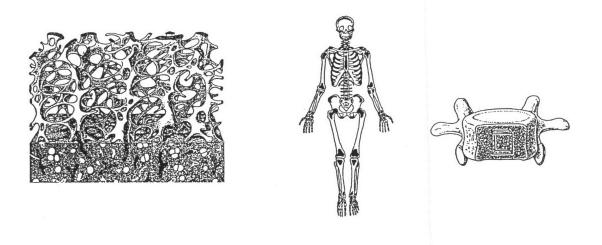
- ²⁹ S.C. Cowin, "The stresses around a hole in a linear elastic material with voids," Q. Jl Mech. Appl. Math., 37:441-466, 1984
- ³⁰ S.A. Goldstein, "The mechanical properties of trabecular bone dependence on anatomic location and function," *Journal of Biomechanics*, 20:1055-1061, 1987
- ³¹ L.J. Gibson, "The mechanical behavior of cancellous bone," *Journal of Biomechanics*, 18:317-328, 1985.
- ³² J.C. Rice, S.C. Cowin, and J.A. Bowman, "On the dependence of the elasticity and strength of cancellous bone on apparent density," *Journal of Biomechanics*, 21:155-168, 1988.
- ³³ J. Hong, "Noninvasive Prediction of Failure in Trabecular Bone with Simulated Osteolytic Defects," Massachusetts Institute Technology, 1997.

.

2.1 DESCRIPTION OF TRABECULAR BONE

Bones serve as the most important structural elements in the human body, protecting internal organs and providing the kinematic links necessary for muscle action. They are composed of an external shell of dense cortical tissue and a core which in many places is filled with a porous, mineralized tissue designated as cancellous, or trabecular, bone, shown in Figure 2.1. Trabecular bone is an interconnected threedimensional network of thin rods and plates of bone called trabeculae. Its mean (SD) apparent density in humans is 0.30 g/cm^3 (0.10 g/cm^3), and the accepted range is from $0.10 \text{ to } 0.90 \text{ g/cm}^{3-1}$. Trabecular bone is most prevalent in the following locations:

- 1) at the ends of long bones, under synovial joints
- 2) in the core of short bones
- 3) in the core of flat bones
- 4) under pretuberances to which tendons are attached


This research focuses on trabecular bone as a structural component of long bones, where it transmits and gradually concentrates the large loads from the cartilaginous joint surfaces into the compact bone of the shaft ².

Biomechanically, trabecular bone may be regarded as a bi-phasic composite of hydroxyapatite $(CA_{10}(PO_4)_6(OH)_2)$ -like crystals embedded in a collagen matrix. On the continuum level, it is generally characterized as a heterogeneous, anisotropic, cellular solid ^{3 4 5}.

Most research indicates that the both the modulus and strength of trabecular bone are linearly related to the square of its apparent density ⁶⁷, and modulus can vary by more than 100-fold from one location to another within the same metaphysis ⁸. Also, numerous studies have demonstrated a sensitivity of modulus and strength to loading direction (anisotropy) ^{5 9 10 11}, indicating that both elastic and failure properties must take into account architecture as well as tissue density.

A linear relationship between strength and modulus ⁵ ¹² and a weak dependence of yield and ultimate strain on apparent density and modulus ¹² ¹³ ¹⁴ ¹⁵ imply that bone may fail at a maximum principle strain. Linde et al reported mean (SD) ultimate strains in human proximal tibial bone of 2.02% (0.43). Turner reported yield strain of 0.74%

(0.14%) for bovine distal femoral bone, and Keaveny reported yield strain of 0.78% (0.03%) in tension and 1.09% (0.09%) in compression for bone from the bovine proximal tibia¹⁶.

Figure 2.1 - Distribution of trabecular bone within the human skeleton.

2.2 WHALE BONE AS A MODEL FOR HUMAN BONE

In this study, trabecular bone extracted from the vertebrae of whales was used as the model for human trabecular bone because it provided very large regions of homogeneous, uniformly-oriented tissue. Whale vertebrae were chosen as the specimen source because they could provide homogeneous samples large enough to be considered a continuum even with the presence of a large defect and could be machined into homogeneous test cylinders with a reasonably-large gage section. Homogeneous specimens of sufficient size could not be obtained from human or bovine tissue, which are typically used for biomechanical testing.

A small experiment was conducted to validate whale vertebral trabecular bone as an experimental model for human trabecular bone by comparing its uniaxial compressive behavior to that of human trabecular bone. Vertebrae were harvested from three of the whales used in the main study, and twenty-two (22) cylindrical samples were extracted from the vertebrae using the same techniques as were used in the main study. Specimens were sectioned using a rotary diamond blade (EXTEC labcut 1010 and 15HC series blade) into cylinders 12.7 mm in diameter and 15 mm in height, and their bulk dimensions were measured using a Mitutoyo digimatic caliper.

After cyclic preconditioning at 0.5 Hz, the specimens were loaded compressively to failure under displacement control at an average strain rate of 1.88% s⁻¹ in order to determine their moduli and strengths. Subsequent to testing, marrow and fat were removed from the specimens with a water jet and ultrasonic baths of 20% concentration chlorine bleach, and water was removed from the pores in a centrifuge at 1000 rpm for 15 minutes. Wet weights were immediately measured in a closed-chamber digital balance. Dry and ash weights were measured after dehydrating the specimens for 120 hours at 75°C and ashing for 24 hours at 600°C, respectively. Densities were determined using the following relations:

Apparent Density =
$$\frac{\text{wet weight}}{\text{bulk volume}}$$
 [2.1]

Ash Density =
$$\frac{\text{ash weight}}{\text{dry weight}} x$$
 apparent density [2.2]

In order to establish that trabecular bone from whales serves as an adequate model for human bone, the compressive behaviors of the specimens were compared to models developed by Keller based on compressive tests of 259 specimens from human femurs¹⁷. Figures 2.2 and 2.3 show that the relations between modulus (strength) and ash density for whale bone qualitatively match those that Keller found for human bone.

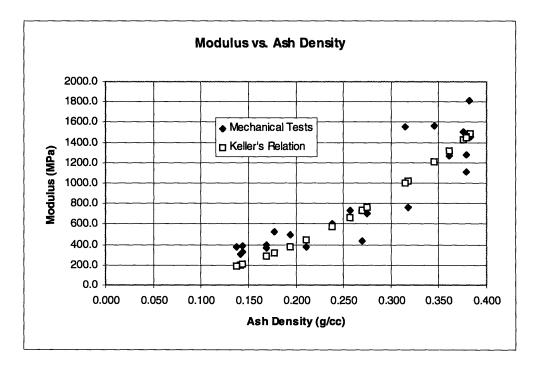


Figure 2.2 - The relation between compressive modulus and ash density of whale bone is similar to the relation between modulus and ash density found by Keller for human trabecular bone.

The relations found by Keller and plotted in the figures are as follows:

$$E = 10.2(\rho_{\alpha})^{2.01}$$
, $r^2 = 0.67$ [2.3]

$$S = 114 (\rho_{\alpha})^{1.72}$$
, $r^2 = 0.88$ [2.4]

where

- E = Young's modulus (GPa)
- S = ultimate strength (MPa)
- ρ_{α} = ash density (g/cc).

A quadratic relation was fit to the modulus vs. ash density curve for the whale bone $(r^2 = 0.82)$. This function was used throughout the study to predict modulus based on non-invasive measurement of density from QCT:

E (GPa) = 7.584
$$(\rho_{\alpha})^2$$
 + 0.940 (ρ_{α}) , ρ_{α} in g/cc [2.5]

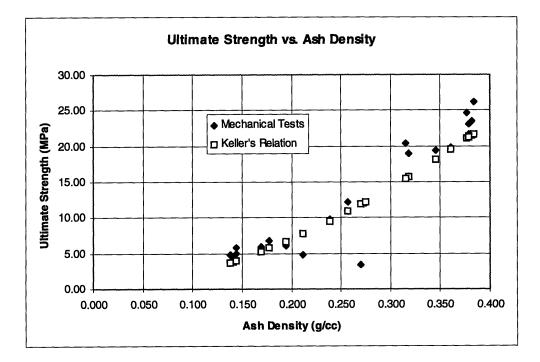


Figure 2.3 - The relation between compressive strength and ash density of whale bone is similar to the relation between strength and ash density found by Keller for human trabecular bone.

2.3 TEST SPECIMENS

One hundred fifteen (115) cylindrical cores of cancellous bone were taken from the vertebrae of four bowhead whales (Balaena mysticetus) ranging in age from adolescent to elderly, one immature sperm whale (Physeter macrorynchus), and one mature pigmy sperm whale (Kogia breviceps). Specimens were acquired from recently deceased whales at the National Marine Fisheries Service in Miami, Florida and the Department of Wildlife Management in Barrow, Alaska under research authorization from the National Oceanic and Atmospheric Administration. The tissue was harvested within 24 hours of the death of each animal and maintained below 0°C for a period of approximately 48 hours until it was shipped to the Lab at Beth Israel.

Cylindrical cores were extracted from each vertebrae in the superior to inferior direction with the longitudinal axis of the core oriented along the principle trabecular axis by designating the distal endplate as the orthogonal-zero reference surface. Coring regions were selected based on radiographs (Hewlett Packard Faxitron Series, model 43855A) and QCT scans (GE High Speed Advantage Helical Scanner, 3 mm slices and 0.9375 mm²/pixel resolution) of each vertebrae. The vertebrae were placed in an iced saline bath, and cores were extracted using a drill press at 360 rpm and a 12.7 mm diamond tip coring tool. Each core was then radiographed at 75 kV for 65 seconds and visually inspected to select specimens in which the trabecular structure was homogeneous, free of discontinuities (e.g. vascular channels), and uniformly oriented along the long axis of each specimen (<10° off axis).

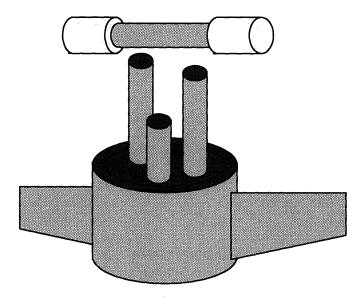


Figure 2.4 - Coring cylindrical cores of trabecular bone from whale vertebrae

As part of the test protocol, cores which passed the screening were imaged before and after defects were introduced using QCT in 3 mm slices and 0.234 mm²/pixel resolution. Their cross-sectional properties were calculated from the CT images using a Unix workstation. The variation in important cross-sectional properties throughout the specimen lot is shown in Table 2.1.

Table 2.1 - Cross-sectional Properties of Specimens Selected for Testing in Four-point Bending, Torsion, and Tension (variables defined in Appendix D) .

	Density	A (2)	EA		EIx	J (4)	GJ
	(g/cc)	(mm ⁻)	(MN)	(cm*)	(Nm^2)	(cm*)	(Nm^2)
Mean	0.37	84	0.14	0.078	1.24	0.21	3.4
Std. Dev.	0.18	33	0.15	0.045	1.47	0.06	3.2
Min	0.17	41	0.02	0.025	0.10	0.12	0.5
Max	1.03	143	0.95	0.165	9.55	0.33	19.1

In order to justify the continuum assumption, cross-sections from four cylindrical samples were analyzed under a stereo microscope at 20 times magnification. Figure 2.5 shows a stereo microscope view of one of the samples. The number of trabeculae per centimeter were measured in five directions across each circular cross-section, resulting in a mean (SD) over the twenty measurements of 14.3 (2.05) trabeculae per centimeter. Analysis by Harrigan concluded that at least three to five trabeculae are necessary to obtain average continuum behavior ¹⁸. Given test specimens 1.27 centimeters in diameter, the average number of trabeculae per diameter (18.2) was more than sufficient to meet the continuum assumption. The largest hole (56%) tested would leave an average of 4 trabeculae on either side of the hole, which is on the margin of the continuum assumption. However, 1.27 cm diameter specimens were the largest possible given the aspect ratio (length to diameter) required by the mechanical tests and the size of vertebrae from which the specimens were harvested.

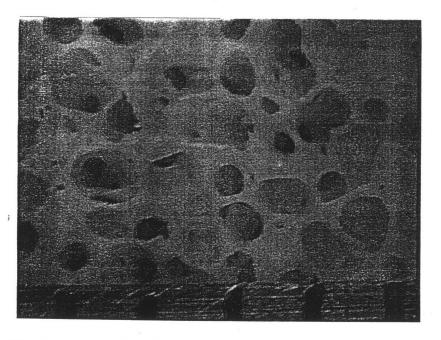


Figure 2.5 - Cross-section of a trabecular sample viewed at 20x magnification.

26

Trabecular rod thickness and trabecular plate width were measured to be on the order of 0.1 - 0.5 mm and 0.5 - 3.0 mm, respectively. Snyder and Hayes reported similar trabecular thicknesses for human proximal femurs in the same density range as the test specimens for this experiment ¹⁹. Although they only found on the order of 6 trabeculae per centimeter (we found 14.2 per cm), their specimens may have been somewhat osteoporotic since they were from a population with a mean age of 66. The similarity in trabecular spacing and thickness was a further justification for whale trabecular bone as a model for human trabecular bone.

2.4 SPECIMEN PREPARATION

Specimen preparation included coring, potting, introducing defects, and instrumenting for mechanical tests. The coring methods were discussed previously.

2.4.1 SPECIMEN POTTING

Cored specimens were 12.7 mm in diameter and approximately 50 mm in length. Approximately, six millimeters at each end of a specimen were potted in Polymethylmethacrylate (PMMA) endcaps for mechanical testing, leaving a gage section of 38 mm. The potted ends of the bone were scored, providing a rough surface on which the PMMA could grab the bone during the tension and torsion tests.

Specimens were potted in a precisely-machine aluminum jig, shown in Figure 2.6, in order to assure that they were properly aligned with their endcaps. An aligning sleeve was fitted over the cylindrical core and inserted into the aluminum potting jig. Liquid PMMA was prepared by mixing 2.25 parts of powdered monomer with 1 part liquid Fastray catalyst and poured into a well at the top of the jig, enveloping the end of the specimen that extended into the well. A rubber O-ring around the bone core served as a bottom for the mold well. The curvature of the ring molded a fillet into the PMMA endcap, reducing stress concentrations at the interface of the endcap and the specimen, as shown in the figure.

After 25 minutes the endcap was cured, and the other end of the specimen was potted. During potting, the specimen was wrapped in moist gauze to prevent drying. The polymerization of PMMA is an exothermic reaction, and heating of the specimen was a concern. Therefore a large block of aluminum was used as the potting jig to conduct heat away from the specimen and maintain a low average temperature. A thermocouple was used to trace the temperature profile throughout the reaction, and the profile is shown in Figure 2.7. The profile shows that the temperature spikes over a short period of time and does not even reach body temperature.

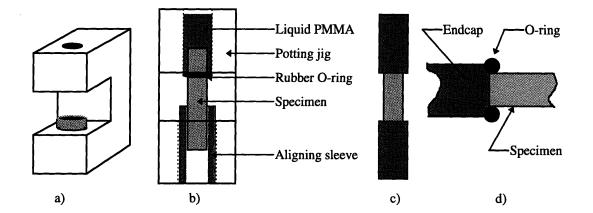


Figure 2.6 - a) Aluminum potting jig with aligning sleeve; b) configuration for molding PMMA endcaps around a specimen; c) a specimen with endcaps after potting is complete; d) A rubber O-ring moulded a rounded fillet at the specimen-endcap interface.

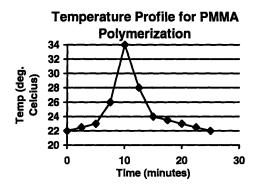


Figure 2.7 - The temperature profile during polymerization of PMMA.

2.4.2 INTRODUCTION OF DEFECTS

Specimens were randomly assigned a defect shaped as a circular hole or elongated slot with a diameter 28%, 47%, or 56% of the nominal specimen diameter, as shown in Figure 2.8. Defects were drilled or milled into the specimens. Slots were twice as long as they were wide, and had the same radius as the corresponding circular hole. These shapes and relative diameters were chosen because they roughly represent the geometry range most commonly encountered in pediatric defects and they produced reasonable steps in predicted specimen properties, as listed in Table 2.2. Specimens without a hole were assigned a value of 1.00 for each property in the table, and the relative value of a given property was calculated for each hole size based on the geometric reduction in cross-section, assuming a solid, not porous, material.

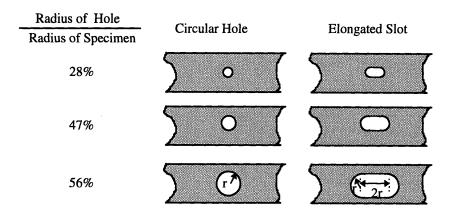


Figure 2.8 - Hole and slot sizes used for specimen testing.

Hole/Slot Size	Drill/Mill Bit inches (mm)	Area	Bending Moment of Inertia	Torsional Moment of Inertia
No Hole		1.00	1.00	1.00
28%	9/64 (3.57)	0.65	0.54	0.75
47%	15/64 (5.95)	0.42	0.29	0.56
56%	9/32 (7.14)	0.33	0.19	0.46

Table 2.2 - Relative Geometric Properties for Different Hole Sizes

Defects were milled or drilled into specimens on a Bridgeport milling machine at speeds between 400 and 1200 rpm, depending of the size of the hole. Each specimen was clamped snugly into a Delrin support jig, shown in Figure 2.9. A stiff lower base supported the specimen from bending, and more flexible top clamp held the specimen in alignment without damaging it. A well beneath the defect collected material that was removed and held water to keep the specimen cool from the bottom. Specimens were also cooled with a water spray from the top.

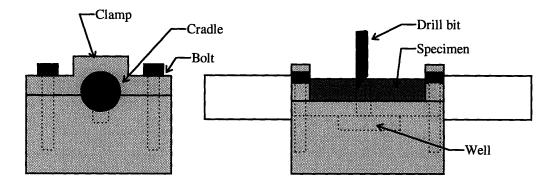


Figure 2.9 - Delrin jig for milling/drilling defects into specimens.

Titanium-coated drill bits were used to drill the circular holes. Four-fluted, endcutting, carbide-tipped mill bits were used to mill the slots. Slots were milled with two 6.8 mm deep passes of the mill bit along the length of the slot. Stereo-microscopic images of the specimens at 75 times magnification showed that the drill and mill bits cut smooth surfaces and did not damage trabeculae beyond the surface of the defect.

2.4.3 MARKING FOR TESTING

Immediately before testing, each specimen was coated with a water based, black ink using a paint brush. The ink provided contrast for optical markers used to track specimen deformation with a non-contacting displacement measurement system (MacReflex) during testing. Diamond-shaped markers of Scotchlite reflective tape approximately 1 mm on a side were fixed to the specimens with a pin-tip-sized drop of cyanoacrylate in the patterns shown in Figure 2.10. A grid was optically projected onto the specimen to align the placement of markers. Markers were placed on two opposite sides of only the specimens tested in tension.

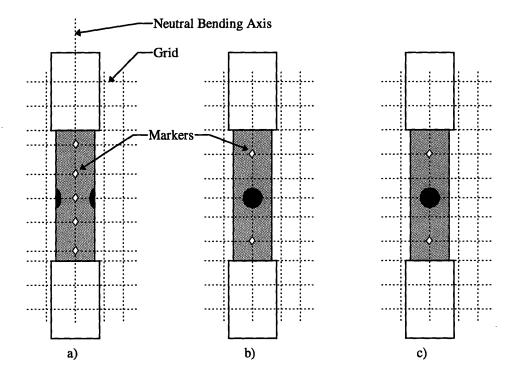


Figure 2.10 - Specimens with markers for a) bending b) torsion c) and tension. Tension specimens had two identical sets of markers on opposite sides of the specimens. The superimposed grid size shown here is approximately 0.5 cm.

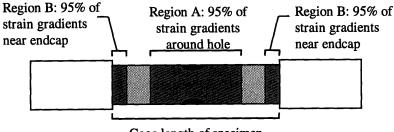
The shape, size, and material of the markers were all selected based on informal tests to provide the maximum resolution for the optical measurement system. The cyanoacrylate used to affix the markers was small enough that it was not likely to have affected the specimens' mechanical behavior.

2.5 CONSIDERATIONS FOR SPECIMEN SIZE

Selection of the specimen size was based on a number of considerations, including the nature of bending, tension, and torsion tests, the availability of bone material, and data from finite element models of specimens with holes and slots.

The specimen diameter (12.7 mm) was driven by the size required to consider the material a continuum, as discussed above. The cross-section was chosen to be circular because that shape was easiest to machine precisely, most nearly represented the gentle curvatures of trabecular bone *in vivo*, provided a more even load distribution in torsion, and was less prone to parasitic loads due to overconstraints and mismatches in geometry at the grips in bending, tension, and torsion.

The aspect ratio of the specimen's length to its diameter was limited to 3 by the size of the vertebrae from which the specimens were cored. The smallest vertebrae could only yield about 38 mm of bone between the endcaps, and dividing by a diameter of 12.7 mm resulted in an aspect ratio of 3. However, a minimum aspect ratio is recommended to obtain regions of constant stress field and to maintain a pure type of loading in bending and torsion tests. In order to minimize the contribution of shear to the bending test and limit the effect of stress concentrations at the load points on rigidity and strength, an aspect ratio of 6 to 12 is recommended ²⁰. For torsion, an aspect ratio of at least 5 is recommended. The addition of PMMA endcaps added a pseudo length to the specimen, increasing the aspect to 9.5 for bending specimens and to about 4 for the torsion specimens.


For specimens with holes, it is even more important to ensure that stress concentrations at the interface between the endcap and specimen gage length do not affect the rigidity or strength in the region where data is being collected. In order to determine if the specimens had a gage length long enough to satisfy this requirement, maximum principle strain contours were analyzed using finite element models of the candidate specimen geometry for tension, torsion, and four-point bending of a specimen with a hole. The minimum necessary aspect ratio for the specimen gage length was calculated by dividing the minimum necessary length for a model by the diameter of the model. The minimum necessary length was defined as the length required to prevent stress concentrations at the endcap from overlapping with stress concentrations due to the hole.

The finite element models were of a cylindrical specimen 4 cm long, 1 cm in diameter, imbedded in endcaps 1.5 cm long and 0.1 cm thick (cm are specified as the units only to clarify that we are speaking of a distance). The models were homogeneous and isotropic. Models were run for the largest hole size - a slot 60% the diameter of the specimen with an eccentricity of 200%. Smaller hole sizes would have less stringent minimum gage length requirements.

The strain distribution was resolved into 12 iso-strains in equal strain increments. The minimum strain gradient around the hole is listed in Table 2.1 for each model along with the maximum gradient. Also listed are the size of the region that contains 95% of the strain gradients around the hole and the region that contains 95% of the strain gradients emanating from the endcap interface. Figure 2.11 shows the regions qualitatively. The minimum gage length necessary to prevent the strain gradients in the two regions from interacting was the length of the hole region plus two times the length of the endcap region (since there were endcaps on both sides of the specimen). The minimum necessary aspect ratio was the minimum required gage length divided by the diameter of the specimen (1 cm).

Table 2.1 - Results of finite element modeling to determine minimum necessary aspect ratio of specimen gage length

	Min. Gradient (iso-strains per cm)	Max. Gradient (iso-strains per cm)	Hole Region (cm)	Endcap Region (cm)	Required Length (cm)	Required Aspect Ratio
Bending	0.198 / cm	5.80 / cm	2.20 cm	0.12 cm	2.44 cm	2.44
Torsion	0.280 / cm	11.6 / cm	2.30 cm	< 0.05 cm	2.30 cm	2.30
Tension	0.202 / cm	6.12 / cm	2.37 cm	0.10 cm	2.57 cm	2.57

Gage length of specimen

Figure 2.11 - The gage length of the specimen had to be long enough that regions A and B did not overlap.

These relative dimensions and aspect ratios represent the minimum necessary to prevent interaction or overlapping of stress concentrations from different sources. While inhomogeneities and anisotropy in the actual specimens increase the distance over which stress concentrations may interact, it was assumed that the stringent criteria described above were sufficient to exclude *significant* interaction even in actual bone specimens. Also, the actual specimens were screened for homogeneity, and the maximum hole diameter was 56%, rather 60%, of the specimen's nominal diameter. Therefore, the actual specimen ratio of 3 was considered sufficiently large

S.R. Simon, <u>Orthopaedic Basic Science</u>, American Academy of Orthopaedic Surgeons, 1994, Chapter 4, pg. 146.

- ² W.C. Hayes, L.W. Swenson, and D.R. Schurman. "Axisymmetric finite element analysis of the lateral tibial plateau." *Journal of Biomechanics*, 11:21-23, 1978.
- ³ L.J. Gibson, "The Mechanical Behavior of Cancellous Bone," *Journal of Biomechanics*, 18:317-328, 1985.
- ⁴ J.W. Pugh, R.M. Rose, and E.L. Radin, "A structural model for the mechanical behavior of trabecular bone," *Journal of Biomechanics*, 6:657-670, 1973
- ⁵ J.L. Williams and J.L. Lewis, "Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis," *Journal of Biomechanical Engineering*, 104:50-56, 1982.
- ⁶ D.R. Carter and W.C. Hayes, "The compressive behavior of bone as a two-phase porous structure," *Journal of Bone and Joint Surgery*, 59:954-962, 1977.
- ⁷ J.C. Rice, S.C. Cowin, and J.A. Bowman, "On the dependence of the elasticity and strength of cancellous bone on apparent density," *Journal of Biomechanics*, 24: 1143-1149, 1991.
- ⁸ S.A. Goldstein, D.L. Wilson, D.A. Sonstegard, and L.S. Matthews, "The mechanical properties of human tibial trabecular bone as a function of metaphyseal location," *Journal of Biomechanics*, 16:965-969, 1983.
- ^{*} T.D. Brown, and A.B. Ferguson, "Mechanical property distributions in the cancellous bone of the human proximal femur," *Acta Orthop. Scand.*, 51:429-437, 1980.
- ¹⁰ J. Galante, W. Rostoker, and R.D. Ray, "Physical properties of trabecular bone," *Calcified Tissue Research*, 5:236-246, 1970.
- ¹¹ F. Linde, B. Pongsoipetch, L.H. Frich, and I. Hvid, "Three-axial strain controlled testing applied to bone specimens from the proximal tibial epiphysis," *Journal of Biomechanics*, 23:1167-1172, 1990.
- ¹² C.H. Turner, "Yield Behavior of Bovine Cancellous Bone," Journal of Biomechanical Engineering, 111: 256-260, 1989
- ¹³ I. Hvid, S.M. Bentzen, F. Linde, L. Mosekilde, and B. Pngsoipetch, "X-Ray quantitative computed tomography: the relations to physical properties of proximal tibial trabecular bone specimens," *Journal of Biomechanics*, 22:837-844, 1989

- ¹⁴ J. Hvid, N.C. Jensen, C. Bunger, K. Solund, and J.C. Djurhuus, "Bone mineral assay: its relation to the mechanical strength of cancellous bone," *Engineering in Medicine*, 14:79-83, 1985.
- ¹⁵ L. Rohl, E. Larsen, A Odgaard, and J. Jorgensen, "Tensile and compressive properties of cancellous bone," *Journal of Biomechanics*, 24:1143-1149, 1991.
- ¹⁶ T.M. Keaveny, E.F. Wachtel, M.J. Cutler, and T.P. Pinilla, "Yield strains for bovine trabecular bone are isotropic but asymmetric," 40th Annual meeting of Orthopaedic Research Society, Feb 21-24, 1994, p 428.
- ¹⁷ T.S. Keller, "Predicting the compressive mechanical behavior of trabecular bone," submitted to *Journal of Biomechanics*, 27(9): 1159-68, 1994.
- ¹⁸ T.P. Harrigan, M.Jatsy, R.W. Mann, and W.H. Harris, "Limitations of the continuum assumption in cancellous bone," *Journal of Biomechanics*, 21:269-275, 1988.
- ¹⁹ V.C. Mow, A. Ratcliffe, and SL-Y Woo, <u>Biomechanics of Diarthrodial Joints</u>, Vol. II, Springer-Verlag, New York, 1990, Chapter 18, pp. 31-59.
- ²⁰ H.E. Davis, <u>The Testing and insepction of Engineering Materials</u>, 3d ed., McGraw Hill, New York, 1964.

Chapter 3 Methods

This chapter describes the test methods used in the study. First, a summary of the materials, methods, and measurements is presented. Then each mechanical test is individually discussed in detail.

3.1 SPECIMENS

Tests were conducted on 115 cylindrical cores of cancellous bone removed from the vertebrae of four bowhead, one immature sperm, and one pygmy sperm whale using a diamond-tipped core drill with an inner diameter of 12.7 mm. The cores were screened to select specimens with trabecular structure that was homogeneous, free of discontinuities, and uniformly oriented along the long axis of the specimen. The cores were potted in cylindrical PMMA endcaps. After specimens were cored, screened, and potted, each was randomly assigned one of seven defect sizes and shapes (including no defect). Lytic bone defects were simulated by drilling or milling circular holes 28%, 47%, and 56% of the nominal cross-sectional diameter and rounded slots of the same diameter and twice the length into the specimens, as described earlier.

To preserve the mechanical properties of the bone, all machining took place under continuous water cooling, and specimens were wrapped in saline-soaked gauze during potting. While not being machined, imaged, or tested, specimens were stored wrapped in gauze and frozen at -20°C, which is recommended as a storage technique that results in negligible degradation of bone properties over an extended length of time ¹.

Within each hole size, specimens were randomly assigned one of three mechanical test modes: four-point bending, tension, or torsion. The resulting testing lot is shown in Figure 3.1, and the number of specimens tested in each mode is shown in Table 3.1. In parenthesis is the number of specimens for which data was actually used. Eleven specimens were excluded because they broke during setup or broke at the endcaps rather than within the gage length.

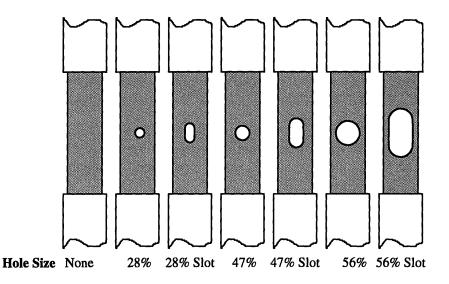


Figure 3.1 - Seven different groups of holes were tested, including no hole. A slot was paired with a circle for each diameter. The hole size is the ratio of the maximum width of the hole to the nominal diameter of the specimen.

Table 3.1 - Number of Specimens Tested in Each Mechanical Mode

Hole Size	No Hole	28%	28% Slot	47%	47% Slot	56%	56% Slot
Bending	7 (6)	5 (5)	5 (5)	5 (5)	5 (5)	5 (5)	5 (5)
Tension	6 (5)	5 (5)	5 (5)	5 (3)	5 (5)	5 (4)	5 (5)
Torsion	12 (10)	5 (5)	5 (5)	5 (3)	5 (3)	6 (5)	5 (5)

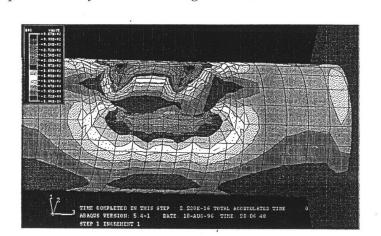
3.2 QUANTITATIVE COMPUTED TOMOGRAPHY SCANNING

The specimens were degassed for 45 minutes and scanned in a water bath with a GE High Speed Helical QCT Scanner both before and after defects were introduced. QCT scans were taken of the cross-section at the center of the defect (at its maximum width) for each specimen. QCT attenuation values were converted from Hounsfield units to density (g/cc) based on relations derived from solid hydroxyapatite phantom rods of known density, which were included in each scan. Cross-sectional properties were calculated based on the density and spatial distribution of bone mineral recorded in each QCT image. The protocol for QCT scanning and data reduction is described in detail in Chapter 5.

Descriptive statistics for the properties of the specimens in each of the mechanical testing groups are presented in Table 3.2. Comparing Table 3.2 to Table 2.1, which includes statistics for the entire lot of test specimens, shows that the distribution of specimens in each test was very similar to the overall distribution within the entire lot of 115 specimens.

	All Tests	Tension	Specimens	Bending	Specimens	Torsion	Specimens
	Density	A	EA	Ix	EIx	J	GJ
	(g/cc)	(mm²)	(MN)	(cm⁴)	(Nm²)	(cm⁴)	(Nm ²)
n	104	36	36	32	32	36	36
Mean	0.37	82	0.14	0.078	1.20	0.21	3.5
Std. Dev.	0.18	33	0.17	0.045	1.13	0.06	3.4
Min	0.17	41	0.02	0.026	0.13	0.12	0.6
Max	1.03	141	0.95	0.165	4.27	0.33	12.9

Table 3.2 - Cross-Sectional Properties of Test Specimens as Measured by QCT


3.3 FINITE ELEMENT MODELING

Linear, elastic finite element models were used to predict the stress, strain, and strain energy concentration factors for the specimens. Models of tension, torsion, and four-point bending of the specimens for each hole size and shape were created using Patran (PDA Engineering, Costa Mesa, Ca). The models included both the bone and rigidly attached metal endcaps through which the loads were applied. Twenty-node, quadratic, isoparametric elements were chosen to provide an accurate representation of the geometry of a circular defect in a cylinder and of large strain gradients. In addition, the mesh was significantly refined in the neighborhood of the defect. The models had approximately 1500 elements and 8500 degrees of freedom, depending on the defect size. The models were tested for convergence and validated against experimental studies of cylinders with holes.

Boundary conditions exactly modeled the constraints in the actual mechanical tests. Unit loads were applied to the models, and the maximum stress, strain, and strain energy in each model was recorded. Stress concentration factors were calculated for each hole size by dividing the maximum stress recorded in the finite element model by the stress predicted using Bernoulli-Euler solid mechanics theory. The "Bernoulli-Euler" stress was calculated at the specimen's most-reduced cross-section. Concentration factors were also calculated for strain and strain energy. Details of the finite element models and the their results are discussed in Chapter 6; however, the stress resulting concentration factors calculated for each hole size are presented here in Table 3.3. The Patran script files used to generate the models and sample plots are shown in Appendix C.

Hole Size	None	28%	28% Slot	47%	47% Slot	56%	56% Slot
Bending	1.00	1.88	1.58	1.55	1.45	1.41	2.54
Tension	1.00	2.46	3.82	2.28	4.34	2.32	7.49
Torsion	1.00	2.19	2.85	2.08	3.70	2.05	9.19

Table 3.3 - Stress Concentration Factors from Different Hole and Loading Models

The results of the model for four point bending of a 56% slot are shown in Figure 3.2. They show quantitatively the areas of high stress/strain concentration in the specimen.

Figure 3.2 - Strain contours for a specimen with a 56% slot subjected to four-point bending.

3.4 MECHANICAL TESTING

After the QCT examinations, specimens were tested to destruction in either fourpoint bending, tension, or torsion. These failure modes were chosen because they represent the primary modes in which long bones typically fail, and because they are not as susceptible to measurement error as compression tests can be ².

Specimens were thawed in physiological saline before testing and kept moist during testing, which was undertaken at room temperature (21° C, 63% humidity). At this temperature, the modulus has been shown to increase by only 2-4% above that at body temperature (37°C)¹. Specimens were tested at a constant displacement rate to complete fracture using an *INSTRON* model 1331 universal test machine for bending and tension and an Interlaken model 3300 test frame for torsion. The specimen's PMMA endcaps were secured in aluminum sleeves with set screws during testing in order to give an even load distribution and to avoid damaging the bone.

Because bone is a viscoelastic material, it exhibits a strain rate sensitivity in testing, and can be as much as 50% stiffer at high strain rates than low ³. Strain rates in daily activities are typically around 0.1% per second ⁴. Therefore, the displacement rate was adjusted for each specimen so that its predicted strain rate was between 0.01% s⁻¹ and 0.1% s⁻¹ based on its rigidity as measured by QCT and assuming a failure strain of 1.0%.

The applied load, test frame actuator displacement, and specimen deformation were all sampled at 12 Hz, and data acquisition was synchronized using the Biopac Data Acquisition System. A load cell was used to measure the load applied to each specimen. The displacement of the test frame actuator was measured with a linear variable displacement transducer (LVDT). The MacReflex Position Sensor measured specimen deformation by tracking the displacement of small optical markers attached at specific points along the specimen.

The MacReflex Position Sensor is a charged coupled device (CCD) camera system capable of tracking markers which reflect infrared light emitted from an light-emitting diode (LED) array attached to each camera. Each camera employs a 604×294 pixel CCD, a strobing infra-red LED array centered at 885 nm, and an electronic shutter that samples an object's position for 1/4000 seconds at a rate of 60 Hz. Proprietary hardware and software resolve images from the cameras into a 27,000 × 19,400 pixel grid with a standard deviation in pixel position of 0.003% of the field of view (FOV) due to spatiotemporal noise. Markers can be tracked in three dimensions by triangulation of images from multiple cameras, and the cameras' coordinate systems are scaled using a three-dimensional calibration frame with seven markers of known positions.

Fifty millimeter lenses and spacing rings were used with the MacReflex cameras in these experiments to give a 70 mm FOV (defined as the diagonal of the rectangular image), resulting in a spatial resolution of about 2 microns. Diamond shaped markers 1 mm on a side were used for maximum resolution. Validation of the MacReflex system and its markers are discussed in Appendix A, along with the protocol for using the system. Appendix A also discusses validation of the four-point bending and tension test apparati. The validation of the torsional apparatus is discussed in another thesis⁵.

Data were filtered using a low pass Blackman filter at -67dB with a cutoff frequency of 1.5 Hz, and a plot of load vs. normalized displacement (a calculation of average strain) was generated for each specimen. Deflection was normalized so that the slope of the plot would give units consistent with rigidity and in order to compensate for any variation in the distances between markers from one specimen to the next. The following properties were determined from this plot for each specimen:

- GLOBAL RIGIDITY. Global rigidity of the specimen was taken as the slope of a least-squares fit to the obviously linear portion (as determined by eye) of the plot of load vs. normalized deflection. The fit was not forced through a zero y-intercept; however, most plots naturally produced a yintercept very near zero.
- YIELD LOAD. Yield load was taken as the point where the tangent slope of the curve deviated from the slope of the linear portion of the curve by 30%, as shown in Figure 3.3 for the case of bending. This is approximately the same as the 0.2% strain offset for the plot in Figure 3.3. Approximately 10% of the linear portion of the curve was sampled on either side of a point to determine its tangent modulus.
- YIELD STRAIN. Outer fiber yield strain was taken as the strain that occurred simultaneously with the yield load. Strain was calculated from marker displacements.

- *ULTIMATE LOAD*. Ultimate load was taken as the maximum load supported by the specimen before failure.
- ULTIMATE STRAIN. Outer fiber ultimate strain was taken as the strain that occurred simultaneously with the ultimate load. Again, strain was calculated from marker displacements.
- FRACTURE PATTERN. The location and pattern of fracture for each specimen were drawn to compare with the fracture location predicted by finite element models.

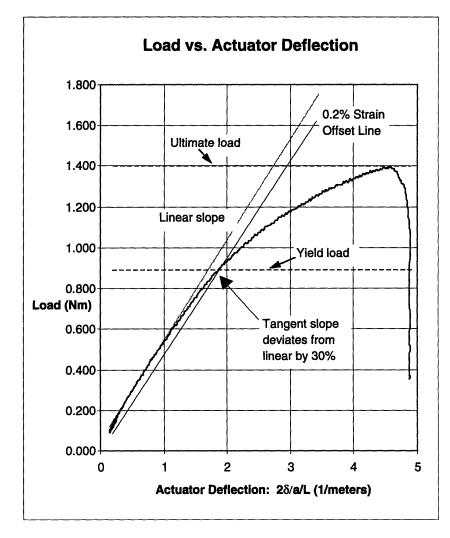


Figure 3.3 - Typical load vs. normalized deflection plot shows that 30% deviation in slope is approximately the same as a 0.2% strain offset. The specimen used in this plot had no defect. Strain was calculated using simple solid mechanics assuming a two-section beam of PMMA and bone.

The yield criterion was chosen because it corresponded to the 0.2% strain offset in an intact specimen and because it could be easily measured and was consistent from one specimen to the next, regardless of defect size. Other researches have used various offsets, such as 0.2% offset ⁶, 0.03% offset ⁷, as well as the point where the slope of the stress-strain curve began to decrease ⁸. However, a study by Turner ⁷, while concluding that the definition of yield had very little effect on the resulting relationship between

yield strain and cross-sectional properties, found that the standard deviation of yield strain measured at the point where slope began to decrease was as much as 22% less than that measured using the other criteria, further supporting the choice of the 30% deviation in slope as a valid choice for a yield criterion. It should be noted that the study also found that changing the definition of the point of zero strain did not affect the results.

3.4.1 4-POINT BENDING TEST

The basic test setup for the four-point bending test is shown in Figure 3.4. Marker and camera placements for four-point bending specimens are shown in Figures 3.5 and 3.6. The four-point bending jig used four load points spaced symmetrically about the center of the specimen to apply a constant moment throughout the gage length of the specimen. The moment arm on each side of the specimen was 38 mm. The lower left load point was fixed, and the other three load points were roller bearings, allowing axial deformation (which occurs during bending) without introduction of undesired axial loads. The top half of the four-point bending mount was rigidly fixed to the load cell of an INSTRON 1331 test frame and was free to rotate on a roller bearing about an axis perpendicular to the page. This rotational freedom insured identical loads, rather than identical displacements, at all load points. Load was applied through a hydraulic actuator to which the bottom half of the four-point contact mount was attached.

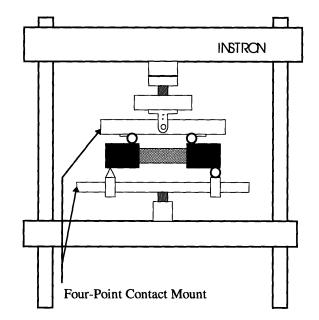


Figure 3.4 - Basic setup for four-point bending test.

Infra-red reflecting markers were placed symmetrically about the hole in 8 mm increments, with one marker directly at the center of the hole. Cameras were placed level with the specimen at a 20° angle from the specimen's normal, providing excellent

resolution in the plane of bending. They recorded displacement in three dimensions, but bending was calculated only in the plane of the actuator movement.

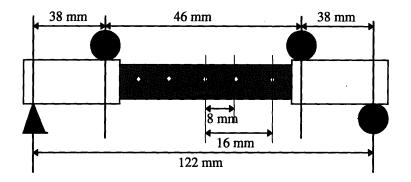


Figure 3.5 - Dimensions of test setup and marker placement for four-point bend test.

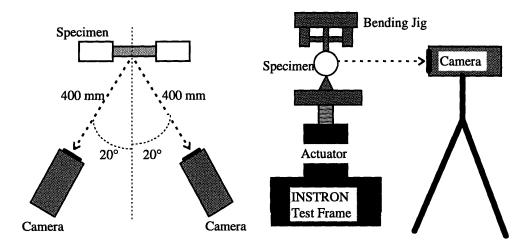


Figure 3.6 - Placement of cameras relative to the specimen.

Four point bend testing was performed on an *INSTRON* model 1331 test frame and load was measured in Newtons with a Sensotec 100 lb load cell. The applied moment was plotted vs. a normalized midspan deflection, as shown previously in Figure 3.3. The applied moment was calculated from the load cell measurements and moment arm (0.0381 m) using the relation:

$$M = \frac{0.0381 \text{ m} \times \text{Load}}{2}$$
[3.1]

The calculation of normalized deflection required a few assumptions. The first deals with the relation between strain and the applied moment. The strain at a given coordinate (x,y) relative to the section centroid is given by the general relation

$$\varepsilon = \frac{(MxIy + MyHxy)y - (MyIx + MxHxy)x}{E(IxIy - H^2xy)}$$
[3.2]

assuming equal compressive and tensile moduli. When the bending is applied purely about the x-axis, the y-component drops out. Also, since the orientation of the defects causes the x-axis to coincide with a principle axis of the specimen, $H_{xy} = 0$, further simplifying the relation to

$$\varepsilon = \frac{Mc}{Elx}$$
[3.3]

Given the simplified relation between load and strain, the relation between load and midspan deflection was derived using elementary solid mechanics and assuming a specimen composed of two homogeneous endcaps and a single section of bone. The rigidity of such a specimen in terms of its midspan deflection may be written as

$$\mathsf{EI} = \frac{\mathsf{M}}{(2\delta) / (\mathsf{aL})}$$
[3.4]

where

- M = applied moment
- δ = midspan deflection, measured by actuator displacment
- a = length of moment arm
- L = gage length of specimen (length between the inner two load points).

The normalized deflection was taken as the denominator in equation 3.4. Calculation of the specimen's rigidity, yield load, and ultimate load were described earlier. Yield and ultimate strain were derived from the five markers' digitized positions at the time of yield and ultimate load. The displacement of each marker from its original position at the beginning of the test was plotted in two dimensions in the plane of bending to give the current shape of the gage length relative to its unloaded shape. The y-axis was chosen to be coincident with the center marker. The equation for a parabola ($y = ax^2 + bx + c$) was fit with a least squares method to the five points, and the strain at the bottom exterior of the specimen was calculated from that fit using the following relations ⁹:

$$P = \frac{1}{2 |a|}$$
[3.5]

$$\rho(\mathbf{x}) = \frac{(\mathbf{P} + 2\mathbf{x})^{3/2}}{\sqrt{\mathbf{P}}}$$
[3.6]

$$\varepsilon(\mathbf{x}) = \frac{\mathbf{c}}{\rho(\mathbf{x})}$$
 [3.7]

where

•	-	= coefficient of the quadratic term in the parabola equation = the parameter of the parabola
•	-	
	ρ(x)	= the radius of curvature of the parabola at point x
	ε(x)	= outer fiber strain at point x in the parabola
•	с	= distance from the specimen's centroid to its outer fiber (assumed to be approximately 6.35 mm).

3.4.2 TORSION

In the torsion test, force from a uniaxial test frame was converted to torque applied about the specimen's long axis through a system of cables and pulleys. This technique allowed the specimen to warp and deform axially while still maintaining a pure torsional load about its centroid and not inducing uncontrolled axial or bending restoring forces. The technique has been demonstrated in other biomechanical studies ¹⁰. The basic setup is shown in Figure 3.7. Two markers were placed symmetrically on either side of the defect, approximately 12.5 mm from its center, and the cameras were positioned in a manner similar to the setup for four-point bending, as shown in Figure 3.8.

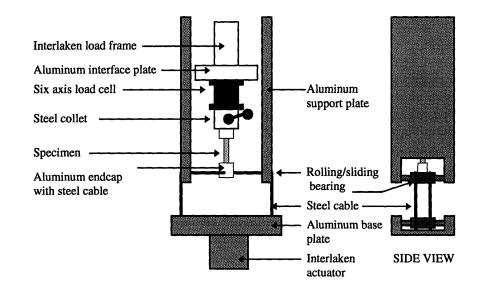


Figure 3.7 - Torsion testing jig setup.

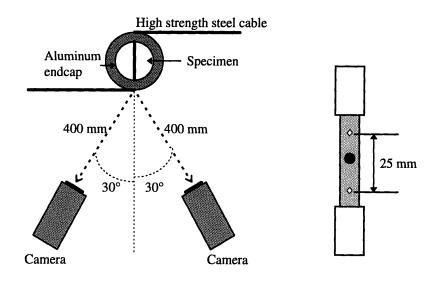


Figure 3.8 - Top view of camera positions and front view of specimen with markers.

The torsion tests were performed on an Interlaken model 3300 test frame, and the applied torque was measured with an AMTI model MC-3A-6-1000 six-axis load cell. The MacReflex cameras recorded the movement of the markers in three dimensions.

For torsion, the applied torque measured by the load cell was plotted versus the normalized deflection. A small pre-load was necessary to straighten the cables in each test. This did not significantly load the specimen, so the load measurement was tared after this pre-loading. The normalized deflection, called twist in the case of torsion, was calculated from the relative displacements of the two markers in three dimensions. The calculation assumed rotation about the geometric center of the specimen and assumed the instantaneous axis of rotation was perpendicular to the plane of motion of the marker. This allowed for relative twist between the markers to be calculated even though the markers were not necessarily rotating in the same plane, as would be the case if the specimen warped out of plane. However, the calculation implicitly assumed that out of plane motion of each marker was small compared to rotational motion. It turned out in the tests that this assumption was valid.

First, the motion of each marker relative to its unloaded position was calculated:

$$\Delta = \sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2}$$
[3.8]

The rotation of the marker about the specimen's geometric center was then calculated by taking Δ as the chord of the arc segment swept out by each marker:

$$\theta = 2 \operatorname{asin}\left(\frac{\Delta}{2r}\right)$$
 [3.9]

where r is the radius of the specimen. Then the twist of the gage length between the markers was calculated by dividing the relative rotation of the two markers by the original gage length.

Twist =
$$\frac{\delta \theta}{L_0} = \frac{\theta(\text{marker 2}) - \theta(\text{marker 1})}{L_0}$$
 [3.10]

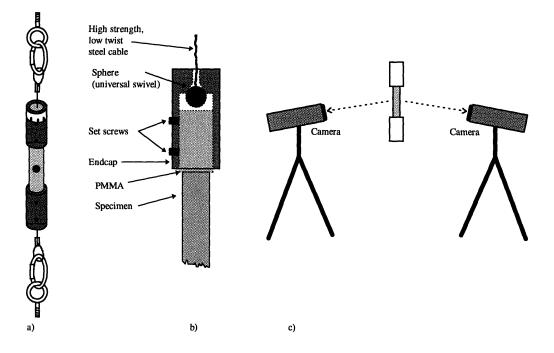
The original gage length, L_0 , was taken as the distance between the two markers before a load was applied. Twist was measured in radians/meter. Global rigidity, yield load, ultimate load, yield strain, and ultimate strain were calculated as discussed previously, with strain measured as the twist. However, in order to give the proper units, yield (ultimate) twist was multiplied by the specimen radius (6.35 mm) to give yield (ultimate) strain:

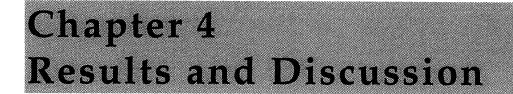
$$\gamma = \frac{r\theta}{L_0}$$
 [3.11]

3.4.3 TENSION

Tension is a mode of testing in which undesired loads can be very difficult to eliminate. For instance, take a cylindrical specimen 12.7 mm in diameter by 45 mm long, loaded in tension by rigid grips at both ends. If the specimen's long axis was misaligned with the axis of the grips by only 0.66°, it would experience twice the load on one side as the other due to undesired bending.

Therefore, the tension apparatus used in this test was designed to reduce undesired loads as much as possible by allowing to system to self-align and the specimen to twist and bend freely. The system, shown in Figure 3.9, consisted of three-link chains connecting each end of the specimen to an *INSTRON* test frame. The test frame actuator was on the bottom of the specimen, and the fixed portion of the frame, on the top. The specimen's PMMA endcaps were set screwed into aluminum endcaps through which the applied load could be evenly distributed. Alignment freedom was enhanced through a greased universal ball joint and high strength, low-twist cable which connected each aluminum endcap to the three-link assembly.




Figure 3.9 - a) Tension test setup; b) close-up view of endcap; c) cameras tracked marker displacements on opposite sides of the specimen.

Tests were performed on an *INSTRON* model 1331 test frame, and load was measured in Newtons with a Sensotec 2000 lb load cell, model 41/572-01. MacReflex was used to track marker displacement. Specimens were marked in the same manner as the torsion specimens, except that a set of markers was placed on two sides, rather than just one. The opposing markers were used to check and correct the uneven strain. Cameras were placed slightly below level with the specimen and angled up so that the LED strobes would not interfere with one another. Cameras were opposite each marker set so that one camera tracked the displacement of each marker set and marker motion was recorded in only two dimensions. Marker displacements were normalized to the initial distance between the markers, giving a unitless measurement. Therefore, marker displacement did not need to be calibrated to any particular unit of measure.

For tension, the applied load measured by the load cell was plotted versus a normalized displacement. The displacement between markers was divided by the initial distance between the makers for each set, to give a strain averaged over the length between the markers. The strains of the two marker sets were averaged, and this average was used for the plot of load vs. normalized displacement, as well as calculations of yield and ultimate strain.

¹ C.H. Turner and D.B. Burr, "Basic biomechanical measurements of bone: a tutorial," *Bone*, 14:595-608, 1993.

- ² T.M. Keaveny, W.C. Hayes, "A 20-year perspective on the mechanical properties of trabecular bone," *Journal of Biomechanical Engineering*, 115:534-542, 1993.
- ³ G.J. Sammarco, A.H. Burstein, W.L. Davis, and V.H. Frankel, "The biomechanics of torsional fractures: the effect of loading on ultimate properties," *Journal of Biomechanics*, 4:113-117, 1971.
- ⁴ S.R. Simon, <u>Orthopaedic Basic Science</u>, American Academy of Orthopaedic Surgeons, 1994, Chapter 4.
- ⁵ J. Hong, "Noninvasive Prediction of Failure in Trabecular Bone with Simulated Osteolytic Defects," Massachusetts Institute Technology, 1997.
- ⁶ J.W. Vahey, J.L Lewis, and R. Vanderby, "Elastic moduli, yield stress, and ultimate stress of cancellous bone in the canine proximal femur," *J. Biomechanics*, 20: 29-33, 1987.
- ⁷ C.H Turner, "Yield behavior of bovine cancellous bone," J. Biomechanics, 111: 256-260, 1989.
- ⁸ I. Hvid, "Cancellous bone at the knee: a comparison of two methods of strength measurement," Arch. Orthop. Trauma Surg., 104: 211-217, 1985.
- ⁹ I.N. Bronshtein and K.A. Semendyayev, <u>Handbook of Mathematics</u>, Van Nostrand Reinhold Co., New York, 1985, Chapter 2.
- ¹⁰ N.R. Crawford, A.G.U. Brantley, C.A. Dickman, and E.J. Koeneman, "An apparatus for applying pure nonconstraining moments to spine segments in vitro," *Spine*, 20:2097-2100, 1995.

This chapter presents descriptive statistics of the test results and shows typical plots of load vs. normalized deflections for each type of test. Then each of the research questions is addressed by discussing the results of statistical analyses of the test data. A typical data sheet for each type of test and a table of the raw QCT and mechanical test data are shown in Appendix B.

4.1 TEST RESULTS

All but eleven specimens failed within the gage length of the bone. These eleven specimens were excluded because they broke at the endcaps or were inadvertently damaged before the test began. Load vs. normalized deflection was plotted for every specimen, and mechanical behavior characteristics were determined according to the equations described in the previous Chapter. In addition, the fracture pattern on each specimen was carefully sketched. Copies of these sketches are also included in Appendix B.

Figure 4.1 shows a typical load vs. normalized deflection for the four-point bending test. In general most specimens displayed a large region of nonlinear deflection after yield, and a progressively decreasing load capacity after ultimate load. Fracture appeared to occur by intermittent crack growth. Some specimens immediately fractured once ultimate load was reached. In others, load capacity dropped sharply over a series of "steps", in which a crack would propagate, arrest, and then propagate again in fast fractures. Analysis of the failed specimens showed cases where the crack would displace from its initial path, presumably at the site of a crack-arrest. In general, cracks initiated between the corners and center of the defect, and initiated at the same location on both sides of the defect. They propagated in straight, parallel lines perpendicular to the long axis of the specimen (see sketches in Appendix B).

Figure 4.2 shows two typical plots of curvature at yield in four-point bending, defined by the displacement of five markers placed along the neutral axis of each specimen. The maximum deflection of most specimens was at the site of the center marker, since it was placed at the center of the defect. However, maximum deflection was not at the center of some specimens, typically those without a defect.

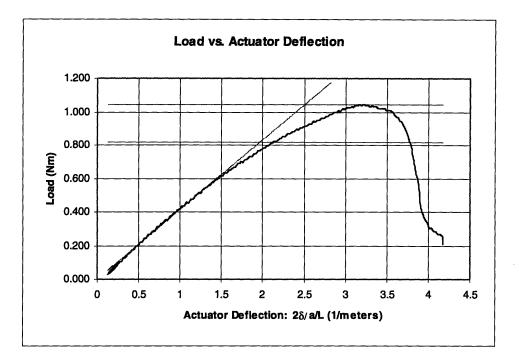


Figure 4.1 - Typical plot of load vs. normalized deflection for four-point bending

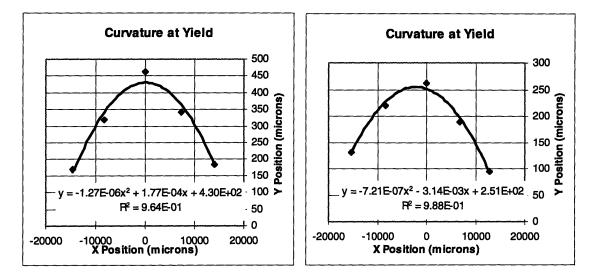


Figure 4.2 - Two typical plots of deflection at digitized points along the length of a specimen at yield. The first plot has the curvature centered at the center marker. Curvature in the second plot is centered to the left of the center marker.

Figure 4.3 shows a typical plot of load vs. normalized deflection for torsion. Most torsion specimens, like the bending specimens, showed significant nonlinear deformation after yield and appeared evenly divided between specimens which slowly lost load carrying capacity and those that instantly fractured after ultimate load. Fractures were in general spirals, initiating at the corners of the defect. However, in some of the specimens with circular defects, the crack propagated in a straight line perpendicular to the specimen's long axis, like the four-point bending cracks.

Figure 4.4 shows a typical plot of load vs. normalized deflection for the tension test. Tension displayed post-yield behavior similar to that of bending and torsion. However, a small, but significant, number of specimens failed in a more brittle manner, in which yield and ultimate loads were very close in magnitude. Tensile fracture patterns were similar to the four-point bending patterns; however, cracks predominantly initiated at the center of the defect rather than the corners.

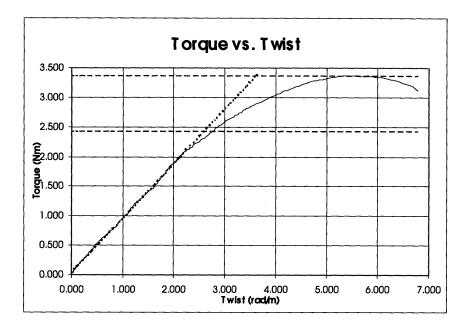


Figure 4.3 - Typical plot of load vs. normalized deflection (twist) for the torsion test.

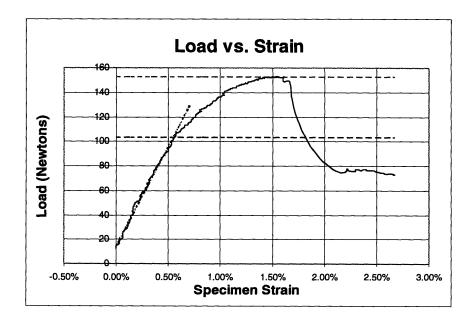


Figure 4.4 - Typical plot of load vs. normalized deflection (strain) for the tension test.

Table 4.1 lists descriptive statistics for the results of the four-point bending tests, Table 4.2 of torsion tests, and Table 4.3 of tension tests. The tables show a wide range of rigidities, yield loads, and ultimate loads within each test. The average coefficient of variation for these properties (standard deviation divided by the mean) was 87% and was very consistent from one type of test to the next. It should be noted, however, that yield strain does not vary as widely as the loads or rigidity.

	Yield Strain	Ultimate Strain	Rigidity Nm^2	Yield Load Nm	Ultimate Load Nm
Mean	1.10%	2.17%	0.91	1.22	1.56
Stdev	0.40%	0.96%	0.64	1.09	1.42
Max	2.08%	4.13%	2.05	3.82	5.50
Min	0.46%	0.90%	0.11	0.18	0.21

Table 4.1 - Descriptive Statistics of Four-Point Bending Tests

Table 4.2 - Descriptive Statistics of Torsion Tests

	Yield Strain	Ultimate Strain	Rigidity Nm^2	Yield Load Nm	Ultimate Load Nm
Mean	1.15%	3.27%	0.43	1.12	1.70
Stdev	0.40%	1.47%	0.34	0.98	1.50
Max	2.01%	8.21%	1.43	3.65	6.23
Min	0.12%	1.18%	0.03	0.10	0.17

Table 4.3 - Descriptive Statistics of Tension Tests

	Yield Strain	Ultimate	Rigidity	Yield Load	Ultimate Load
		Strain	<u> </u>	Newtons	Newtons
Mean	0.51%	1.20%	80.7	401	556
Stdev	0.13%	0.44%	78.2	379	486
Max	0.87%	2.56%	275.4	1317	1734
Min	0.28%	0.57%	8.48	64	89

4.2 CAN THE ELASTIC BEHAVIOR OF TRABECULAR BONE WITH DEFECTS BE USED TO PREDICT ITS LOAD CAPACITY?

To answer the first research question, relations between rigidities and yield load were investigated. Yield load correlated very strongly with ultimate load ($r^2 = 0.98$ for bending, $r^2 = 0.97$ for torsion, $r^2 = 0.97$ for tension). Therefore, conclusions drawn from statistical analysis of the yield load should apply equally well to ultimate load.

The yield load was correlated with mechanically measured rigidity first, since rigidity was the only elastic property that could be directly measured mechanically. Global rigidity, taken as the linear portion of the load vs. normalized deflection curve, correlated well with yield load for bending ($r^2 = 0.84$), torsion ($r^2 = 0.89$), and tension ($r^2 = 0.88$). The regressions are shown in Figures 4.5-4.7.

In bending, we were also able to measure cross-sectional rigidity local to the defect by calculating the outer fiber strain of the specimen at the defect. Derivation of this strain from five marked points along the neutral axis of the specimen was discussed earlier for the case of measuring yield strain. Rigidity was calculated as the slope of the linear portion of the load vs. strain curve. By using the curvature specifically at the defect to calculate strain, the local rigidity could be measured directly at the defect, rather than averaging over the entire length of the specimen. This local rigidity had an even stronger correlation with yield load ($r^2 = 0.93$). Our observation that yield load correlates more highly with local rigidity than global rigidity suggests that failure is a local phenomenon. It depends more on the mechanical properties and the load state of the cross-section where failure occurs and cross-sections local to the failure site than cross-sections far away. Global rigidity probably correlated less highly because it represented properties averaged over a wide range of cross-sections beyond the area local to the defect.

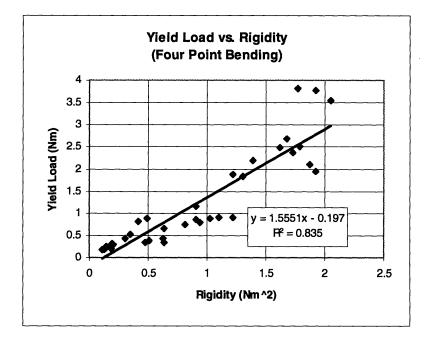


Figure 4.5 - Regression between yield load and global rigidity for four-point bending.

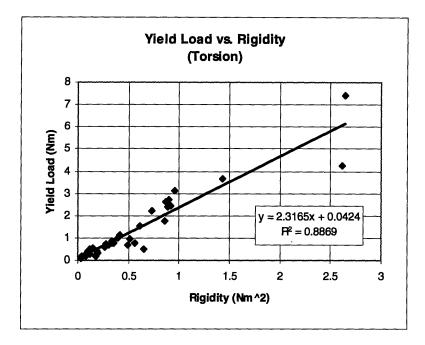


Figure 4.6 - Regression between yield load and global rigidity for torsion.

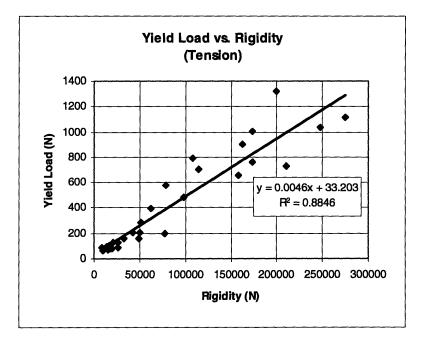


Figure 4.7 - Regression between yield load and global rigidity for tension.

4.3 CAN THE ELASTIC MECHANICAL BEHAVIOR OF TRABECULAR BONE WITH DEFECTS BE PREDICTED BY NON-INVASIVE IMAGING TECHNIQUES?

This question was answered in a simple form by correlating QCT estimates of the rigidity at the defect cross-section to the mechanically measured bending rigidity. The correlation between QCT GJ and torsional rigidity was $r^2 = 0.94$, and the correlation between QCT EA and axial rigidity was $r^2 = 0.87$. In bending, QCT EI min correlated to mechanically-measured global rigidity ($r^2 = 0.77$), but correlated more highly to the local rigidity of the defect cross-section as determined by outer-fiber strain calculations ($r^2 = 0.92$). It should be noted that in the case of local rigidity, the slope of the regression (shown in Figure 4.8) was not statistically different from one (p > 0.5) and the intercept was near zero. This indicates that QCT not only correlates to, but also accurately measures, the mechanical rigidity of a cross-section. Since a strictly local rigidity was not measured for torsion or tension, this conclusion could not be confirmed by experiment for those two modes of testing.

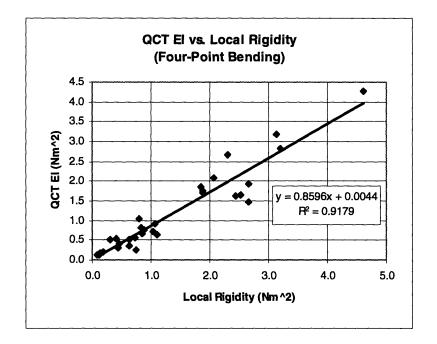


Figure 4.8 - Correlation of QCT EI to the cross-sectional rigidity at the center of the defect.

An analysis of covariance was performed to determine whether or not different hole sizes had different relations between QCT rigidity (AE, EI, and GJ) and mechanicallymeasured rigidity. The regressions of QCT measured rigidity vs. mechanically measured rigidity (discussed above) were grouped with hole size as the concomitant variable, and the slopes of the grouped regressions were compared. No significant difference was detected between groups for tension (p > 0.20) or torsion (p > 0.20). The only group which was significantly different than others in bending was the 56% hole group (p = 0.03). Ideally, to validate the method proposed by this thesis to non-invasively measure load capacity, the relationship between QCT measurements of rigidity and actual mechanical rigidity should be the same for every hole size. However, stress concentrations around the hole may further reduce the rigidity of a specimen with a defect beyond what would be calculated from a QCT image alone. Accordingly, the slope of Figure 4.9 would be multiplied by a factor equal to the stress-concentration factor. Table 3.3 showed that finite element models predicted different stress concentration factors for each hole, and that the factors for the 56% hole in bending were, on average, larger than those of other hole sizes, which is consistent with the graph in Figure 4.9.

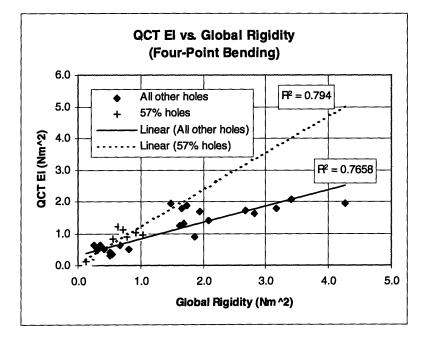


Figure 4.9 - QCT EI vs. global rigidity in four-point bending. Data is grouped according to hole size.

However, it should be noted that the significant difference detected when comparing QCT EI with global rigidity was not apparent when comparing QCT EI to local rigidity. Given the facts that global rigidity is not a great measure of local rigidity, a smaller range of rigidities is represented for the 56% group than the rest of the groups, and no statistical difference was detected between groups in tension, torsion, or bending using local rigidity, the statistical difference shown in Figure 4.9 was not taken as convincing evidence that hole size is a significant concomitant variable affecting a specimen's rigidity.

4.4 CAN NON-INVASIVE MEASUREMENTS OF THE ELASTIC PROPERTIES OF BONES WITH DEFECTS BE USED TO PREDICT THE BONES' LOAD CAPACITY?

In order to determine which elastic property best predicts failure (yield load), different properties were isolated using QCT. In the case of bending they were density, hole size ratio, moment of inertia (I), rigidity (EI), and $I\sqrt{E}$. QCT was used to measure the elastic properties of the specimens because, as discussed in the previous section, it is a good measure of elastic properties and unlike mechanical tests can be used to measure various geometric and material properties independently. The mechanical tests in this experiment could only measure the rigidity. The coefficients of determination of the linear relation between each property and yield load are shown in Table 4.4. Each property corresponds to a particular failure criterion, listed in the table. The "Current Clinical" criterion is not a criterion for yield, but rather the criterion currently cited to indicate the need for surgical intervention to prevent pathologic fracture.

Table 4.4 - Coefficients of Determination for the Regression Between Various Elastic Properties and Yield Load

Elastic Property	Failure Theory	Bending	Torsion	Tension
Hole Diameter Ratio (d/D)	Current Clinical	0.32	0.22	0.25
Material: Density	Material	0.55	0.81	0.72
Geometry: A / I min / J	Constant Stress	0.33	0.40	0.38
Structure: EA / EI min / GJ	Constant Strain	0.92	0.89	0.95
Structure: A√E / I√E / J√G	Constant Strain Energy	0.86	0.90	0.89

Yield load typically correlated most highly with the specimen's rigidity, and it was statistically more highly correlated than with other elastic properties (p=0.001) except for $I\sqrt{E}$ (p=0.2) in all three modes of testing. There was also a very strong correlation between rigidity and ultimate load in bending (r² = 0.95), torsion (r² = 0.83), and tension (r² = 0.95). The regressions between rigidity and yield load for each mode of failure are shown in Figures 4.10-4.12.

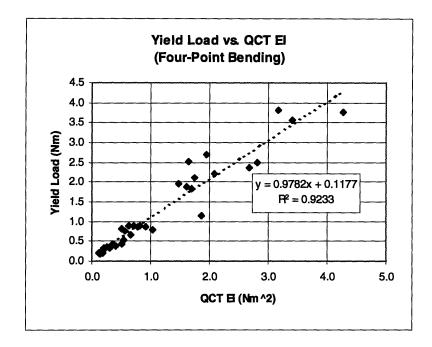


Figure 4.10 - Yield load vs. QCT measurement of bending rigidity.

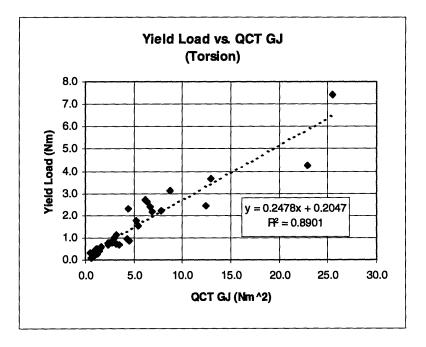


Figure 4.11 - Yield load vs. QCT measurement of torsional rigidity.

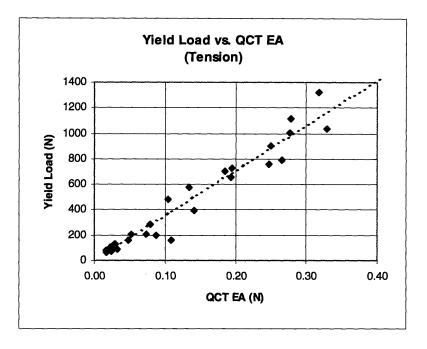


Figure 4.12 - Yield load vs. QCT measurement of axial rigidity.

The high correlation between rigidity and yield load suggests that yield strain is a constant throughout all specimens. The average yield strain was 1.10% in bending, 1.15% in torsion, and 0.51% in tension. These values are consistent with yield strains between 0.74% and 2.0% found in studies of human and bovine bone ^{1 2 3}. The fact that the yield strain for tension was lower than those for torsion and bending may be due to the fact that an average strain was reported for tension. Since failure undoubtedly initiated on the side with the higher strain, an average of a high and low strain would consistently underreport the actual failure strain.

In order to determine if yield strain was indeed invariant across specimens of different strengths, it was plotted versus yield load. No significant correlation was found in bending, torsion, or tension. The plot for bending is shown in Figure 4.13. A number of groupings were investigated by analysis of covariance to explain the spread in yield strains. Grouping by species indicated statistically significant differences between groups (p < 0.05 for bending), despite the fact that the bowhead group spanned a large range of densities and ages (from mature to geriatric). The results for torsion displayed the same grouping as those for bending; however, the groupings in tension were not significant. Additionally, it should be noted that there was a larger standard deviation in yield strain for the sperm and pigmy sperm whale specimens than in the bowhead specimens for all three types of tests.

We hypothesize that different mineralization of the tissue may be what leads to the different yield strain values in each group. This would explain why the yield strains group somewhat by species and why one species (with more consistent mineralization) might display a tighter grouping in yield strains.

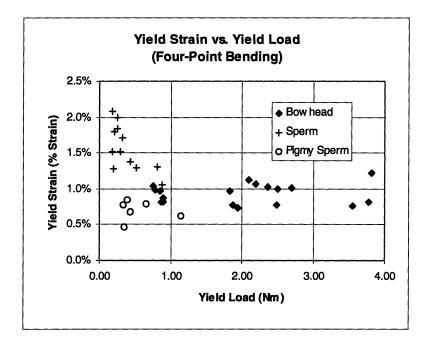


Figure 4.13 - A plot of yield strain vs. yield load shows a grouping of yield strain according to species. This grouping may be linked to different mineralizations characteristic of each specie.

4.5 HOW DO CERTAIN FACTORS AFFECT THE BIOMECHANICAL PROPERTIES OF TRABECULAR BONES WITH DEFECTS?

Comparison of coefficients of determination revealed the correct material and structural characteristics necessary to predict yield load. However, other factors which could possibly affect load capacity were also investigated using analysis of covariance on the regression of yield load vs. rigidity:

- Hole size
- Hole shape (eccentricity)
- Stress concentration factor

An analysis of covariance was first performed on the regression between yield load and QCT measurements of rigidity, using hole size as the concomitant variable. In contrast to the difference found in the slope of QCT EI and measured rigidity, there was no difference for bending (p=0.58) between QCT EI and yield load. There was also no statistical difference in slope from one hole size to the next for tension (p=0.1) or torsion (p=0.48). In addition, the relative values of the slopes from one hole-size group to the next were not ranked in the order that finite element analyses would predict. The slopes and standard errors of regression in bending for each hole size are listed in Table 4.5, and the corresponding plot is shown in Figure 4.14.

	Hole Size	N	Slope	Std. Error of Reg.
	No hole	7	0.97	0.14
	28%	10	1.08	0.11
	47%	10	1.10	0.10
E	56%	11	0.90	0.12

Table 4.5 - Grouping of Slopes for Regression of Yield Moment vs. Bending Rigidity Based on Hole Size.

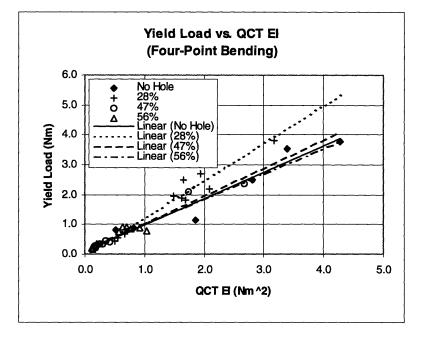


Figure 4.14 - Yield load vs. QCT EI in four-point bending grouped according to hole size. There is no statistical difference between the different groups, and relatives values of slopes do not agree with predictions based on finite element models.

Analysis of covariance was also performed using eccentricity (slot vs. circular hole) as the concomitant variable. It showed that there was a statistically significant difference between the slopes for different hole shapes in bending (p=0.034), torsion (p=0.008), and tension (p=0.018), with the slots about 25% weaker than the circular holes. Figure 4.15 shows the grouping for bending. This is in agreement with the predictions by finite element models and results of studies on cortical bone, although the effect of a slotted defect was greater in cortical bone⁴.

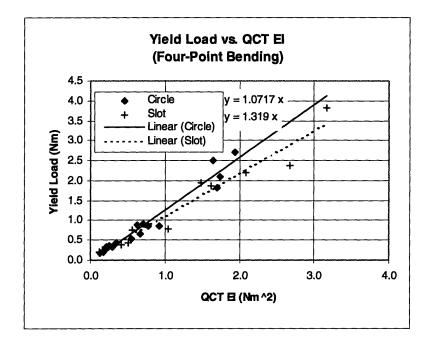


Figure 4.15 - Yield load vs. QCT EI in four-point bending grouped according to hole shape. The specimens with slotted holes were weaker than the specimens with the same defect width but circular holes by about 25%.

The final factor studied was grouping by stress concentration factor. Linear elastic continuum theory predicts the existence of stress-concentration factors that depend on the load condition and defect geometry. The grouping of specimens according to predicted stress-concentration factors would be different than the grouping by hole size or shape alone, so the two types of grouping were investigated independently. Finite element models were used to determine the stress concentration factors for each loading condition, hole size, and hole shape.

One way to determine the presence of stress concentrations is to analyze the location where fracture initiated. A 2x2 contingency table was made for each mechanical testing mode, based on the fact that finite element models would predict failure initiation either in the corner or the middle of a defect. These tables are shown below.

Chi-squared analysis indicated that the theoretical models correctly predict the location of the onset of fracture for bending (p=0.025), tension (p=0.10), and torsion (p=0.025). However, a heterogeneity chi-square analysis indicated that the three sets of data could not be pooled (p=0.5), suggesting that the behavior may not be exactly the same for tension as for bending and torsion.

Table 4.6 - Contingency Table for Fracture Location in Bending

Theory/Experiment	Corner	Middle	Total
Corner	11	4	15
Middle	3	12	15
Total	14	16	30

Table 4.7 - Contingency Table for Fracture Location in Torsion

Theory/Experiment	Corner	Middle	Total
Corner	11	2	13
Middle	4	9	13
Total	15	11	26

Table 4.8 - Contingency Table for Fracture Location in Tension

Theory/Experiment	Corner	Middle	Total
Corner	7	8	15
Middle	2	10	12
Total	9	18	27

Next, stress-concentrations were incorporated into the yield load vs. QCT rigidity regression by multiplying the measured yield load by the appropriate stress concentration factor. The following argument describes this approach as appplied to bending, and similar arguments apply to torsion and tension. Based on elementary solid mechanics and the finding in Section 4.3 that QCT EI correlates highly with mechanically-measured rigidity,

$$\varepsilon = \frac{M \times c}{EI} \propto \frac{M \times c}{(EI) \text{ based on QCT}}$$
[4.1]

and at yield

$$\epsilon$$
(yield) $\propto \frac{M(yield) \times c}{(EI) \text{ based on QCT}}$ [4.2]

As discussed in section 4.4, yield strain was basically invariant. Also, c (the distance from the neutral axis to the surface of the specimen) is approximately a constant. Therefore, equation 4.2 becomes:

$$\frac{M(yield)}{(EI) based on QCT} = constant$$
[4.3]

or

Equation 4.4 describes the linear regression of the plot in Figure 4.10. However, stress concentrations would theoretically increase the local stress and strain beyond that predicted by elementary solid mechanics. Therefore, equation 4.2 would need to be modified by the net stress concentration factor as follows:

$$\varepsilon$$
(yield) $\sim \frac{M(\text{yield}) \times c}{(EI) \text{ based on QCT}} \times K_{net}$ [4.5]

so that

(EI) based on QCT
$$\propto$$
 M(yield) \times K_{net} [4.6]

Therefore, the plots in Figures 4.10 through 4.12 were modified according to equation 4.6 by multiplying the measured yield load by the net stress concentration factor based on finite element models for each specimen. The coefficients of determination for the regressions actually worsened, rather than improved, for all three load cases when the net stress concentration factors were incorporated. The reduction in r^2 and the significance level of the difference between r^2 before and after stress concentrations were introduced are shown in Table 4.9. The plots of yield load vs. QCT rigidity summarized in Table 4.9 only included the specimens with holes. Including specimen's without holes in the regression worsened the correlations even further.

Table 4.9 - Reduction in the Coefficient of Determination of Yield Load vs. Rigidity When Stress Concentrations Are Incorporated.

	Without Stress Conc.	With Stress Conc.	Δr^2	Significance Level (p<)
Bending	0.91	0.83	-0.08	0.10
Tension	0.95	0.74	-0.21	0.05
Torsion	0.91	0.60	-0.31	0.05

Fracture initiated where linear elastic continuum theory predicted it would in most cases, but incorporation of theoretical stress concentration factors actually worsened correlations of rigidity with yield load. These two facts suggest that while stress concentrations are present to some degree, they do not exist to the extent that the assumptions of a linear elastic continuum would suggest. This may be due in part to the structural nature of trabecular bone as well as to masking of stress concentrations at the onset of plasticity. Studies of cortical bones with defects ⁵⁶⁷ have had similar results, in that small holes (< 20%) did not have as great an effect on load capacity as

theoretically derived stress concentration factors would predict and load capacity tended to vary linearly with hole size.

However, it is interesting to note that closed-form solutions of a flat plate of a linear elastic material with voids subjected to uniaxial tension far away from the hole predict stress concentration factors even greater than those present in a material without voids (greater than 3)⁸. If these large stress concentrations had been present in this study, the slope in Figure 4.14 of specimens with holes would have been very significantly less than that of specimens without holes.

4.6 COMBINING SPECIMEN GROUPS FROM DIFFERENT ANIMALS

As a "housekeeping" measure, analysis of covariance was performed on the regression between yield load and QCT measurements of rigidity, using the animal from which the specimens were taken as the concomitant variable. There was no significance difference in the slope of the plot from one animal to the next for bending (p=0.73) or tension (p=0.53), although a significant difference was detected for torsion between specimens from animals A, B, and C and animals D, E, and F. However, the standard errors of the regressions overlapped noticeably, as shown in the table below.

Table 4.10 - Grouping of Slopes for Regression of Yield Torque vs. Torsional Rigidity Based on Animal.

Animal	N	Slope of Regression	Std Error of Reg.
A	12	0.43	0.15
В	9	0.41	0.16
С	6	0.32	0.18
D	5	0.28	0.20
E/F	4	0.12	0.28

It should be noted for the analyses of covariance based on animal, although the population means all lay on straight lines (r^2s were high), small sample sizes (particularly for animals D, E, and F) may have reduced the power of the analysis and possibly violated the assumption that the regression coefficients had normal distributions. Considering the small sample size, the lack of a statistical difference in bending and tension, and the large standard error of regression in torsion, the specimens were all considered to be statistically from the same population.

4.7 CONCLUSIONS

There are two broad conclusions which encompass most of the results from this experiment. The first is that a simple elastic property (rigidity) of a single, weakest cross-section is an excellent measure of the load capacity of trabecular bone, regardless of the size or shape of any defects present. The second broad conclusion is that relative rigidity, and hence, relative load capacity of trabecular bone can be easily measured non-invasively, particularly using quantitative computed tomography. Together, these conclusions suggest that the preferred method of non-invasive imaging in Figure 1.2 can be used to accurately estimate fracture risk for trabecular bone, providing physicians with an objective, quantitative method of assessing bone tumors.

The most important take-home message is that stress concentration factors are sufficiently insignificant in trabecular bone with rounded holes that they do not confound simple Bernoulli-Euler models in the prediction of load capacity. The consistently high correlations between yield load and non-invasively measured elastic rigidity for all three fundamental types of loading further indicates that, assuming the type loading (though not the load magnitude), the rigidity of the weakest cross-section of a region of trabecular bone with a defect is sufficient to determine the load capacity of the entire trabecular region. Therefore, comparison of the minimum rigidity at the defect site to the rigidity of a corresponding cross-section on a healthy contra-lateral limb should give an excellent estimate of the reduction in load capacity of the bone with the defect. It should be noted that the correlation of rigidity to yield load and other results in the experiment indicate a strain-based yield criterion for trabecular bone, which is consistent with other investigations.

The specimens in the study displayed a significant non-linear region before they reached ultimate load, and it is reasonable to assume that *in vivo* bones are capable of supporting significant loads even after they have initially yielded. However, although yield load was used in this experiment primarily in order to accommodate the linear finite element models, the high correlation between yield and ultimate loads extends the power of the prediction to include ultimate load capacity as well. Comparing the rigidity of bone with a defect to that of a healthy contralateral limb should provide an excellent measure of the reduction in ultimate as well as yield load.

Both in theory (see Table 2.2) and experiment, as hole size increased it reduced the load capacity in bending more significantly than in tension or torsion. However, this experiment tested bending about the weakest axis. If the specimens were bent about the y- rather than the x-axis, the hole would, theoretically, have had less of an effect. The different effects of hole size on different modes of mechanical testing serves to point out that, regardless of the fracture risk prediction technique used, one still needs to know to some degree the types of loading expected on a weakened limb.

As a final note, although little research has been done on defects in trabecular bone, more has been done for cortical bone, and researchers have found strong correlations between hole size (width) and load capacity. However, most studies focused on specimens within a small density range and on *in-vitro* experiments where bone did not remodel in response to the defect. This study demonstrated that, at least for trabecular bone, material as well as geometric properties are required to predict load capacity. This is particularly important in trabecular bone, where density can vary from region to region, and in bone where remodeling in response to a defect can change the material properties of the tissue.

Although this study was conducted on a controlled set of tissue from whales, its conclusions should apply equally-well to a wide range of human trabecular bone. Homogeneous specimens of trabecular bone that adequately modeled human trabecular bone were tested in all three principle loading conditions: axial, bending, and torsion. The specimens in each mechanical test spanned a similar, wide range of material and geometric properties, representative of the spectrum of human trabecular bone. Defect sizes and shapes were parametrically controlled, and resembled those typically found in pediatric lesions. Furthermore, the conclusions focus on general characteristics of all trabecular bone and on the *relative* mechanical behavior of bones with various sizes and The particular equations relating one property to another or shapes of defects. describing a particular property of specimens used in this test are not intended to apply to human bone and, in fact, are irrelevant to proving the technique which was the subject of this thesis. Therefore, the conclusions of this study should be applicable to human trabecular bone, and the validity of this technique should extend to human bone as well.

The most important limitations of the study are that the strength prediction technique has not been proven to extend to highly inhomogeneous trabecular bone or regions in which trabecular orientation is highly variable. It also does not address cortical or combined cortical-trabecular bones, or bones in soft tissue. It does, however, provide a fundamental assessment of the behavior of trabecular bone from a controlled, parametric investigation, upon which the more clinically-applicable whole bone tests can be based.

¹ F. Linde, B. Pongsoipetch, L.H. Frich, and I. Hvid, "Three-axial strain controlled testing applied to bone specimens from the proximal tibial epiphysis," *Journal of Biomechanics*, 23:1167-1172, 1990.

² C.H. Turner, "Yield Behavior of Bovine Cancellous Bone," *Journal of Biomechanical Engineering*, 111: 256-260, 1989

- ³ T.M. Keaveny, E.F. Wachtel, M.J. Cutler, and T.P. Pinilla, "Yield strains for bovine trabecular bone are isotropic but asymmetric," 40th Annual meeting of Orthopaedic Research Society, Feb 21-24, 1994, p 428.
- ⁴ M.L. DeSouza, K.N. An, B.F. Morrey, and E.Y.S. Chao, "Strength reduction of rectangular cortical defects in diaphyseal bone," 35th Annual Meeting of ORS, p. 113, 1989.
- ⁵ B.C. Edgerton, K.N.An, and B.F. Morrey, "Torsional strength reduction due to cortical defects in bone", *Journal of Orthopaedic Research*, 8:851-855, 1990.
- ⁶ R.J McBroom, E.J. Cheal, and W.C. Hayes, "Strength reductions from metastatic cortical defects in long bones", *Journal of Orthopaedic Research*, 6:369-378, 1988.
- ⁷ J.A. Hipp, B.C. Edgerton, K.N. An, and W.C. Hayes, "Structural consequences of transcortical holes in long bones loaded under torsion", *Journal of Biomechanics*, 23(12): 1261-1268, 1990.
- ⁸ S.C. Cowin, "The stresses around a hole in a linear elastic material with voids, " *Q. Journal Mech. Appl. Math.*, 37: 441-465, 1984.

Chapter 5 Quantitative Computed Tomography Scans

5.1 OVERVIEW

Quantitative Computed Tomography (QCT) was used to non-invasively measure cross-sectional properties of the specimens. QCT scanners are powerful tools for measuring the geometric and material properties of bone cross-sections and as such, represent a reliable means of supplying the structural data necessary to calculate a factor of risk. QCT measurements have demonstrated precision of 3%-4% for measurements between scanners and 1-3% for multiple scans on a single scanner ¹. However, although its measurements are very accurate and precise, it should be noted that QCT produces at least 30 times higher radiation than dual-energy X-ray absorptiometry, which only measures projected attenuations of a cross-section ². Other techniques that produce no radiation at all, such as ultrasound and MRI, may also be used to measure structural properties of a bone cross-section. QCT was chosen for this experiment as a "gold standard" of imaging since it provides such excellent accuracy and precision.

A QCT scanner consists of source and detector arrays mounted on a circular gantry that rotates 360° around a specimen, at each point measuring the attenuation of x-ray energy emitted from the source. The attenuation values are continuously calibrated for changes in the surrounding medium (air) by measuring attenuation of an X-ray beam through the surrounding medium to a detector outside of the specimen's width. The attenuations measured at all of the angles around the specimen are convolved into a two-dimensional image of its cross-section. Each pixel in the 2-D image represents the calculated attenuation of the corresponding location in the specimen's cross-section. After each full rotation, the circular x-ray gantry translates along the length of the specimen and produces an image of the next cross-section, and so on.

The QCT value is measured in dimensionless Hounsfield units, H, which are defined by the relation

$$H = 1000 (\mu / \mu_0 - 1)$$
 [5.1]

where μ is the linear attenuation coefficient of the matter being measured and μ_0 is the linear attenuation coefficient of water measured on the specific scanner ³. QCT

5.2 SCAN PROTOCOL

QCT scans were performed using a General Electric High Speed Advantage Helical Scanner at Beth Israel Hospital, Boston, MA. Specimens were degassed in saline and sealed in water-filled acrylic tubes, and the tubes were positioned in a wooden gantry along with four solid hydroxyapatite phantom rods of known densities, as shown in Figure 5.1. The specimens and phantoms were scanned serially in 3 mm thick slices and spaced at 3 mm intervals, since these are typical of clinical studies. They were scanned at 120 kV and 220 mA, and attenuation values were filtered through a bone algorithm on the CT scanner. The image resolution was 0.234 mm/pixel (in both the X and Y directions). Two specimens were scanned in each image, along with the phantoms, which were used to calibrate the Houndsfield units with bone mineral density. The scanning protocol, along with the data reduction protocol and computer programs, is in Appendix D.

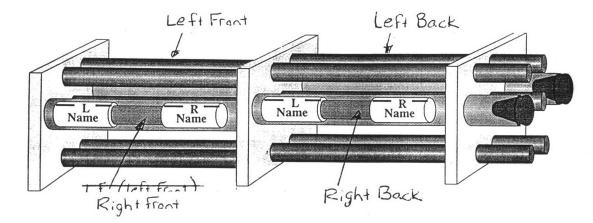


Figure 5.1 - Gantry for holding specimens during QCT scans.

5.3 CALCULATIONS

The images produced by each QCT scan were a series of two-dimensional arrays of x-ray attenuation values, one array per cross-section (or "slice"). These attenuation values were converted into true densities, measured in g/cc. All the pixels in a slice were filtered based on a density threshold to distinguish between water, trabecular

bone, and material more dense than trabecular bone. The density values and spatial distribution of thresholded pixels in a cross-section were then used to calculate material, geometric, and structural properties of the cross-section.

CONVERSION FROM HOUNDSFIELD UNITS TO DENSITY. A computer program sampled attenuation values for the five hydroxyapatite phantoms included in each scan slice. Using the known densities of the phantoms, it then calculated a linear relation to convert QCT attenuation values into ash density, measured in g/cc. Since the true ash density of the phantoms tended to vary slightly from one slice to the next, the regressions for all slices in a scan set were averaged, and this average was used as the conversion equation for every slice in the set. The coefficient of variation of the regression equation between 30 slices in a single scan set was measured for 29 scan sets. The mean coefficient of variation within a group was 2%, and the maximum was 3%. The maximum variation between the means of six groups was only 5%.

THRESHOLDING. The program which calculated cross-sectional properties relied on a threshold value to eliminate pixels which were not trabecular bone. The upper threshold was set at 1,500 mg/cc. The lower threshold was chosen to be a value which excluded water and reduced the effect of volume averaging of water and bone at the periphery of the specimen. Using image analysis software (Advanced Visual Systems, Waltham, Mass.) on a Sun workstation, the measured density value for water was sampled for seven scan sets. The average (max) density for the water was 54 (69) mg/cc. This established a minimum threshold of 69 mg/cc.

Next, the density and area within a circular region of the bone in a specimen were sampled for three specimens as the density threshold was increased. Based on the plot of area shown in Figure 5.2, the threshold began to eliminate bone when set above 0.13 g/cc. Density, area, and polar moment of inertia were also measured for the three regions shown in Figure 5.3 as the density threshold was varied. Analysis of the variation in cross-sectional properties from one region to the next indicated that below 0.9 g/cc, volume averaging at the water/bone interface may have begun to affect measurements adversely. Therefore, 0.11 g/cc was chosen as the water/bone threshold.

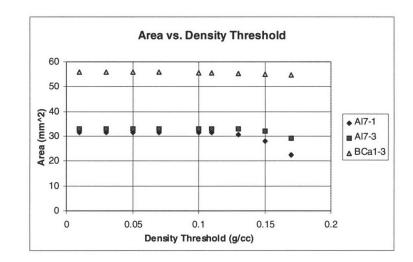


Figure 5.2 - Change in area as density threshold was increased.

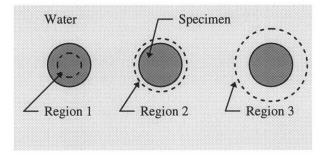


Figure 5.3 - Cross-sectional properties were measured in three increasingly larger regions with respect to the specimen cross section.

CALCULATION OF PROPERTIES. The cross-sectional properties of each image were calculated using a C program listed in Appendix D. Each image was a 2-D array of attenuation values, one value for each pixel. The size of each pixel (0.234 mm) was input to the program based on the specifications of the scan. The density, $\rho_{i'}$ of each pixel in the cross-section was calculated using the phantom regressions discussed earlier, and the modulus, $E_{i'}$ of each pixel was calculated using equation 2.5.

Area, geometric moments of inertia, and rigidities were calculated for each pixel above the threshold density of 0.11 g/cc and summed over all of the pixels to give the properties of the total cross-section. Properties were calculated using the standard engineering formulas below, and are detailed further in the code in Appendix D. The density (modulus) reported for a cross-section was the average density (modulus) over all "bone" pixels in the cross-section. The shear modulus, G, was assumed to be linearly related to E. Therefore E was used in the calculation of the torsional rigidity, rather than conducting a separate study to determine G. Geometric moments of inertia were calculated about the geometric centroid of the cross-section, and rigidities were calculated about the mass centroid of the cross-section. The following formulas, where

QCT

summation implies over all thresholded pixels, were used to calculate cross-sectional properties:

$A = \Sigma da$	[5.2]
$Ix = \Sigma (x^2 da) - Ax'$	[5.3]
J = Ix + Iy	[5.4]
$\rho = \frac{\Sigma (da \times \rho_i)}{\Sigma da}$	[5.5]
$E = \frac{\Sigma (da \times E)}{\Sigma da}$	[5.6]

$$\mathsf{E}\mathsf{A} = \Sigma \, (\mathsf{d}\mathsf{a} \times \mathsf{E}_{\mathsf{i}}) \tag{5.7}$$

$$\mathsf{E}\mathsf{I}\mathsf{x} = \Sigma \left(\mathsf{x}^2 \,\mathsf{d}\mathsf{a} \times \mathsf{E}_{\mathsf{i}}\right) - \mathsf{A}\mathsf{E}\mathsf{x}'' \qquad [5.8]$$

where

da	$= 0.234 \text{ mm}^2$
x'	= x coordinate of the geometric centroid
x''	= x coordinate of the mass-weighted centroid
ρ	= density of pixel i, calculated from phantom regression
\mathbf{E}_{i}	= modulus of pixel i, calculated from ρ_1 using equation 2.5.

The cross-sectional properties of the slice at the largest diameter of each hole were used in comparing non-invasive image analysis with mechanical tests.

5.4 VALIDITY OF SCANS OF SPECIMENS WITH DEFECTS

The low coefficient of variation in measuring density of the phantom rods within a scan and between scans served as one measure of validating the consistency of the QCT scanning protocol. However, there was also concern that the introduction of a hole might affect the QCT measurements, and this would not be reflected in measurements of the solid phantoms.

Therefore, in order to validate that QCT correctly measured the cross-sectional properties near the hole, QCT measurements of the post-defect specimens were compared to expected values based on the QCT scans of intact specimens using the following relations:

$$\mathsf{EA}_{\mathsf{expected}} = \mathsf{EA}(\mathsf{intact}) \times \left(1 - \frac{\mathsf{A}(\mathsf{hole})}{\mathsf{A}(\mathsf{intact})}\right)$$
[5.10]

$$EI_{expected} = EI(intact) \times \left(1 - \frac{I(hole)}{I(intact)}\right)$$
[5.11]

$$GJ_{expected} = GJ(intact) \times \left(1 - \frac{J(hole)}{J(intact)}\right)$$
 [5.12]

where intact rigidities were the values from QCT scans of intact specimens, and the ratios (hole to intact) of area, bending moment of inertia, and polar moment of inertia were calculated from the known nominal diameter of the intact specimens and the known diameters of the holes. Values from the actual scans of post-defect specimens correlated extremely well with the expected values, as shown in Table 5.1.

Table 5.1 - Post-defect QCT measurements compared to expected measurements based on QCT scans of intact specimens.

Cross-sectional Property	Correl. Coeff. (r ²)	Slope	Y-intercept
Axial Rigidity (EA)	0.99	0.99	0.00
Bending Rigidity (EI)	0.99	0.98	0.013
Torsional Rigidity (GJ)	0.99	0.98	0.015
Density	0.98	0.89	0.015

The fact that the slope for density is less than one may be explained by noting that volume averaging of pixels on the boundary of the specimen and its water bath effectively lowers the average density of the specimen. By introducing a hole, the length of the specimen-water boundary is increased, resulting in more volume averaging and a reduced average density.

¹ P. Steiger, J.E. Block, S. Steiger, et al, "Spinal bone mineral density by quantitative computed tomography: effect of region of interest, vertebral level, and technique," *Radiology*, 175: 537-43, 1990.

² H.W. Wahner, I. Fogelman, <u>The Evaluation of Osteoporosis: Dual Energy X-ray</u> <u>Absorptiometry in Clinical Practice</u>, Martin Dunitz, London, 1994.

³ S.M. Bentzen, I. Hvid, and J. Jorgensen, "Mechanical strength of tibial trabecular bone evaluated by x-ray computed tomography, *Journal of Biomechanics*, 20:743-752, 1987.

- ⁴ J.G. Benterud, A. Alho, J.H. Stromme, and A. Hoiseth, "Calcium equivalence of bone mineral measured by single-energy computed tomography An autopsy study of femur," *Trans. European Society of Orthopedic Research*, 1:1, 1991.
- ⁵ R. J. McBroom, W.C. Hayes, W.T. Edwards, R.P. Goldberg, and A.A. White, "Prediction of vertebral body compressive fracture using quantitative computed tomography," *Journal of Bone and Joint Surgery*, 67:1206-1214, 1985.
- ⁶ I. Hvid, N.C. Jensen, C. Bunger, K. Solund, and J.C. Djurhuus, "X-ray quantitative computed tomography: the relations to physical properties of proximal tibial trabecular bone specimens," *Journal of Biomechanics*, 22:837-844, 1989.
- ⁷ M.J. Cirelli, S.A. Goldstein, J.L. Kuhn, D.D. Cody, and M.B. Brown, "Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography," *Journal of Orthopedic Research*, 9:674-682, 1991.

Chapter 6 Finite Element Modeling

As mentioned in Chapter 3, linear, elastic finite element models were used to predict the stress, strain, and strain energy concentration factors for the specimens. Models of tension, torsion, and four-point bending of the specimens for each hole size and shape were created using Patran (PDA Engineering, Costa Mesa, Ca). The models included both the bone and rigidly attached metal endcaps through which the loads were applied. Twenty-node, quadratic, isoparametric elements were chosen to provide an accurate representation of the geometry of a circular defect in a cylinder and of large strain gradients. In addition, the mesh was significantly refined in the neighborhood of the defect. The models had approximately 1500 elements and 8500 degrees of freedom, depending on the defect size. The models were tested for convergence and validated against experimental studies of cylinders with holes.

Boundary conditions exactly modeled the constraints in the actual mechanical tests. Unit loads were applied to the models, and the maximum stress, strain, and strain energy in each model was recorded. Stress concentration factors were calculated for each hole size by dividing the maximum stress recorded in the finite element model by the stress predicted using Bernoulli-Euler solid mechanics theory. The "Bernoulli-Euler" stress was calculated at the specimen's most-reduced cross-section. Concentration factors were also calculated for strain and strain energy.

The models could have included only one quarter (one half in the case of torsion) of the geometry of the specimens by applying appropriate boundary conditions. However, full models were developed in order to allow for future incorporation of different bone material properties for each element, mapped from QCT scans of actual specimens.

Throughout this chapter, two measures of the stress concentration factor are discussed: the gross and net stress concentration factors

Gross stress concentration:
$$K_g = \frac{\sigma max}{\sigma gross}$$
 [6.1]

Net stress concentration:
$$K_n = \frac{OMAX}{ONET}$$
 [6.2]

where σ_{net} is the stress calculated using the net cross-section after the hole is introduced and σ_{gross} is calculated using the intact, or gross, cross-section without including the hole.

6.1 MODEL DESCRIPTIONS

Each finite element model was composed of three material types: trabecular bone (E = 1 GPa), endcaps (E = 50 GPa), and an extremely stiff ring (E = 200,000 GPa) through which the loads in tensile and torsional models were applied. The high modulus of the ring compensated for its small dimensions to produce a stiffness which simulated that of the actual jigs through which loads were applied. More importantly, it provided an even load distribution into the endcaps. The material types are identified by the italic text in Figure 6.1. The bone was a solid section which extended through the endcaps and contained a hole at its midspan. The endcaps were thin cylinders around the ends of the bone, and the stiff ring attached directly to an endcap.

The model geometries, meshes, and loading conditions were developed in Patran session files and contained parameters that were modified to change the hole shape and size, as appropriate to each specimen. The Patran session files were written and commented such that a new model could be easily generated by altering certain specimen dimensions, including:

- Radius of specimen
- Length of specimen
- Hole radius
- Hole shape
- Thickness of endcaps
- Length of endcaps
- Length of bone potted in endcaps
- Boundary conditions.

The finite element models assumed that the bone extended entirely through the endcaps and that the endcaps were rigidly fixed to the bone (there was no slip at the interface). The models' coordinate system oriented the x-axis transverse to the hole and the long axis of the bone, the y-axis coincident with the hole's long axis, and the z-axis coincident with the long axis of the specimen, as shown in Figure 6.1.

The model was divided into separate segments, shown in normal text in Figure 6.1, that were meshed somewhat independently:

- 1) a rectangular region in the neighborhood of the hole, which had the most refined mesh
- 2) regions on either lateral side of the first, which had a less refined mesh

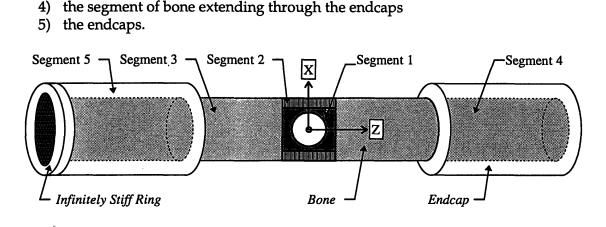


Figure 6.1 - Different meshes were applied to different segments of each model.

3) the gage length of the bone surrounding the hole

The mesh was developed to be refined near local concentrations of stress/strain gradients predicted by theory. The gradients were assessed quantitatively using isocontours of a number of different hole-size models. Gradients were highest at load and displacement constraints in the endcaps, along the y-axis for bending, and in the region immediately surrounding the hole, particularly on the sides of the hole. Therefore the endcaps were meshed two elements thick. The y-axis had a tighter mesh than the z-axis. Also, the region surrounding the hole had a tight mesh which was progressively refined towards the hole, and the near-hole region with the tight mesh (segments 2 and 3) was sized to engulf local concentration of gradients. Figures 6.2 - 6.5 show the bending models for each hole size. The meshes for the slots were very similar to the meshes for circular holes, and the meshes for tension and torsion were identical to those for bending.

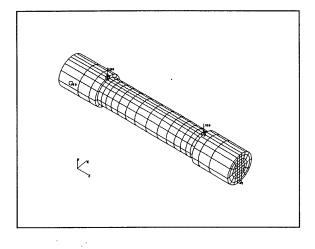


Figure 6.2 - Bending model with no hole.

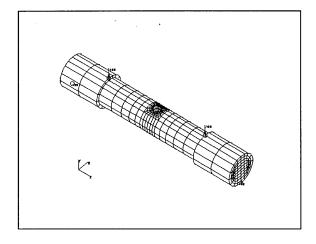


Figure 6.3 - Bending model with 28% hole

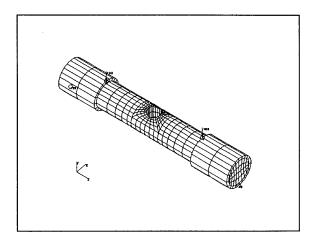


Figure 6.4 - Bending model with 47% hole.

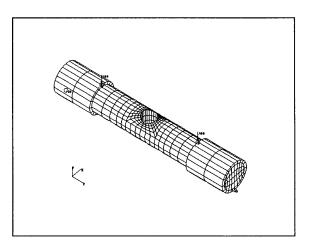
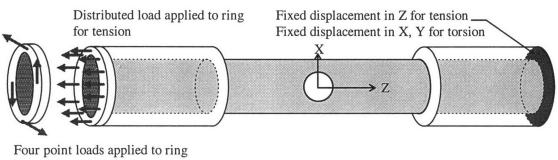



Figure 6.5- Bending model with 56% hole.

FOUR-POINT BENDING: The boundary conditions simulated a pin and z-axis roller on the bottom outside of the endcaps and two z-axis rollers on the top inside of the endcaps, with point-loads applied through the two top rollers. The bottom left node of the left endcap was constrained in all three degrees of freedom. The bottom right node of the right endcap was constrained in x and y but free to translate along the z-axis. The two loads were two concentrated forces in the y-axis, applied at two individual nodes on the exact top of the endcaps. The motions of the two nodes were constrained to zero in the x-axis but free in the y- and z-axes.

TENSION: The boundary conditions simulated uniaxial tension by fixing all nodes on the bottom surface of one endcap from motion in the z-axis and applying a uniformly-distributed pressure load on the nodes of the top surface of the stiff ring, as shown in Figure 6.6. Applying a load rather than set displacements at the ring freed the model to twist or bend once inhomogeneous material properties were applied from QCT maps.

TORSION: The boundary conditions simulated applying a pure torque by fixing all nodes on the bottom surface of one endcap from motion in the x-axis and y-axis and applying four point loads in pairs of equal and opposite directions on nodes of the top surface of the stiff ring, as shown in Figure 6.6. Because the ring was extremely stiff compared to the rest of the model and the applied load, an evenly-distributed torque was transmitted to the specimen, and it was free of shear that might have been introduced by applying point, rather than distributed load conditions. As in tension, applying a load rather than set displacements at the ring freed the model to bend and deform axially if inhomogeneous material properties were applied from QCT maps.

for torsion

Figure 6.6 - In the tension model, one endcap was constrained from motion in Z, and a distributed pressure load was applied to the stiff ring. Four point loads were applied to the ring in the torsion model to result in a couple, and motion of one end was constrained in X and Y.

6.2 CONVERGENCE TESTING

The four-point bending model with a 20% circular hole was used to verify the mesh with a convergence test of eight mesh densities. All eight models were identical except for changes in the mesh, and the same load was applied to every model. The models used in the convergence test had the following parameters in common:

Bone radius = 0.5 Endcap thickness = 0.1	1
--	---

Bone length = 2.0

Endcap length = 1.5

Bone modulus = 25e+3 Endcap modulus = 20e+6

• Hole Size = 20%

- Force = -50
- Moment Arm = 1.5
- (Resulting mid-span displacement = 0.32)

The bone extended entirely through the endcap, and the loads were applied in the yaxis at the edges of the endcap. The series of meshes tested for convergence are shown and described in Figures 6.7 through 6.14.

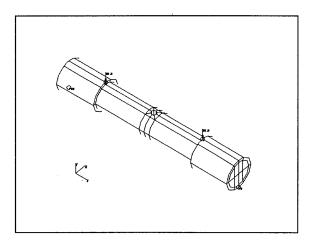


Figure 6.7 - Mesh A2: (452 nodes) This was the coarsest mesh possible and included wedge elements along both sides of the hole. Wedge elements are typically stiffer than quadrilateral elements.

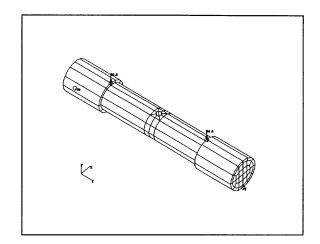


Figure 6.9 - Mesh A1 - (964 nodes) The mesh density of the entire model was doubled in the x and y (radial) directions.

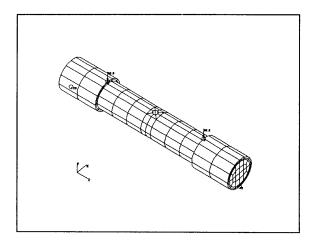


Figure 6.8 - Mesh 1: (1924 nodes) The endcap mesh was doubled in the z and y directions, and the gage length mesh was tripled in the z direction

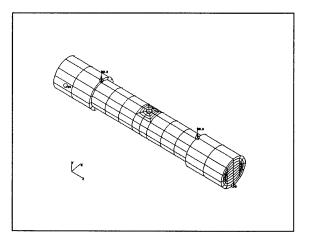


Figure 6.10 - Mesh 2: (3572 nodes) The mesh extending radially outward from the hole was doubled. The mesh density of the entire model was doubled in the y direction. This particular model increased mesh densities specifically in the directions where stress/strain gradients were most concentrated.

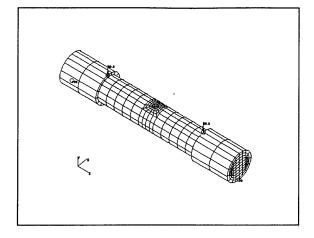


Figure 6.11 - Mesh 3: (6984 nodes) The number of elements in the neighborhood of the hole was doubled. This effectively increased the mesh density in the x direction for much of the model. The mesh density along the z-axis was increased by a ratio of 5:3.

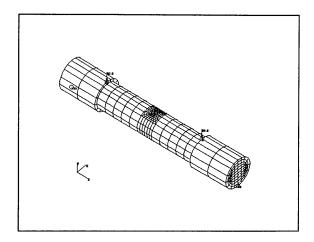


Figure 6.13 - Mesh 4: (8404 nodes) The mesh density both around the hole and extending radially outward from the hole was increased.

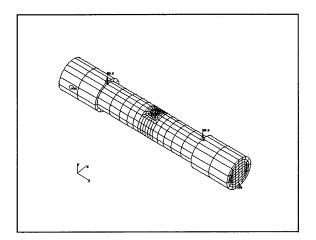


Figure 6.12 - Mesh 5: (8404 nodes) This mesh had the same number of elements as mesh 4, but they were proportioned so the mesh was more refined towards the hole.

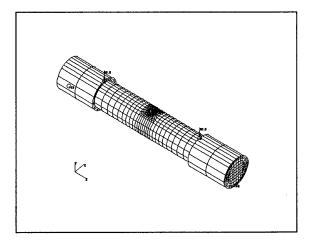


Figure 6.14 - Mesh 6: (16248 nodes) This mesh provided the severest test of convergence by significantly increasing mesh density everywhere: in the x and z directions, radially outward from the hole, around the hole and through the thickness of the endcaps. Note that long, distorted elements in this mesh may cause the model to be excessively stiff.

6.2.1 ANALYSIS

Displacements, stresses, and strains were studied at four different sites, as shown in Figure 6.15. The circle represents the side-exterior; the triangle, the side-interior; the square, the front-exterior; and the front-interior is not shown but can be inferred. Stresses should be highest at the two points on the sides and near zero at the square. Points on the interior of the hole were chosen to study the stress convergence and were selected in a region of large stress gradients.

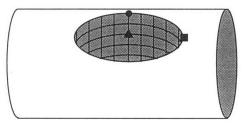


Figure 6.15 - Locations studied for convergence test.

6.2.2 RESULTS

The displacement convergence and the strain energy convergence for the side- and front-exterior nodes are shown in the Figures 6.16 through 6.21. Displacements converged nicely at all four selected sites. The stress and strain converged as expected for the points on the side (where stresses are high) and oscillated about zero for the location of the square in Figure 6.15. The study indicated that models had converged by Mesh 4. Mesh 5 was used for the models referenced in this thesis.

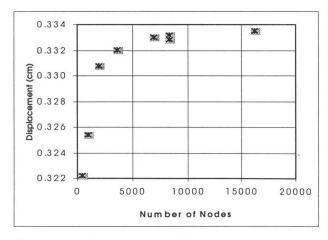


Figure 6.16 - Convergence of displacement of side-exterior point.

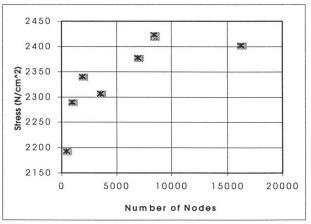


Figure 6.17 - Convergence of stress of sideexterior point.

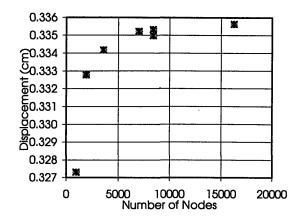


Figure 6.18 - Convergence of displacement of side-interior point.

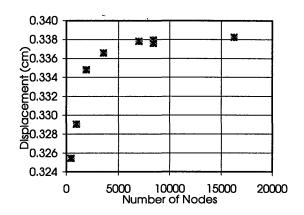


Figure 6.19 - Convergence of displacement of front-exterior point.

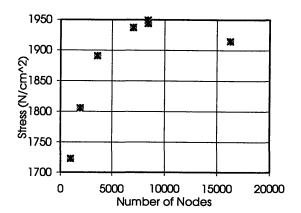


Figure 6.20 - Convergence of stress of sideinterior point.

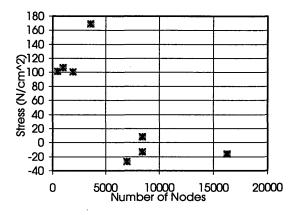
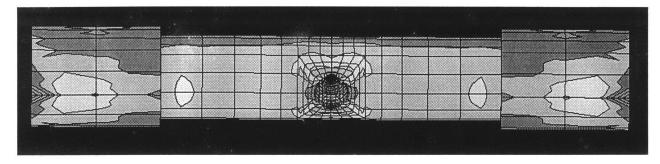



Figure 6.21 - Convergence of stress of frontexterior point.

The following figure shows the converged axial stress contours. A model with a 40% hole is displayed in order for the contours to be large enough to be visible.

Figure 6.22 - Axial stress contours of converged bending model with 40% hole.

6.3 VALIDATION OF MODELS

After determining the mesh density required for a converged solution, it was still important to validate the bending, tension, and torsion models against existing data. There exist published stress concentration factors for round bars with circular transverse holes in bending, tension, and torsion. Therefore, maximum stress concentration factors from the finite element models were compared to these existing data for 20% holes. In addition, maximum stress in bending was compared to existing data for holes from 6% to 60% in order to verify that the models would remain valid over a range of geometries.

6.3.1 VALIDATION OF BENDING, TENSION, AND TORSION

First, stress concentration factors were calculated for models of bending, tension, and torsion of specimens with 20% holes based on the converged mesh (Mesh 5). For each type of loading, the maximum principle stress in the finite element model was determined for models with no hole, a 20% circular hole, and a 20% slot. Then the gross stress concentration factors (K_g) were calculated by dividing the stress in the models with holes by the stress in the model without a hole. The published stress concentration factors were determined from graphs of K_g versus hole size as a percentage of nominal specimen diameter. These graphs were developed by Thum and Kirmser¹, by Jessop, Snell, and Allison², and by Fessler and Roberts³, using data from tests of actual specimens of different materials.

The maximum stress in the finite element model did not occur on the surface of the specimen but at a small distance inside the hole on the surface of the hole. This was in agreement with experimental findings^{1, 2, 4, 5} and was the stress used to calculate the published stress concentration factors.

Table 6.1 shows the gross stress concentration factors for the finite element models and for the published experimental data. The finite element models were in good agreement with the published data. The stress concentration factors for the models with slots are shown for reference, although experimental data does not exist for slots.

Model	Hole	Node	Modulus	Max Stress	Kg (FEM)	Kg
						(published)
ben0	none	41	25	761		
ben20e1	20%	1062	25	2424	3.18	3.05
ben20e2	20% slot	14421	25	2358	3.10	
ten0	none	109	25	64		
ten20e1	20%	1057	25	228	3.59	3.64
ten20e2	20% slot	14327	25	716	11.24	
tor0	none	1640	25	122		
tor20e1	20%	1327	25	452	3.71	3.75
tor20e2	20% slot	1237	25	762	6.25	

Table 6.1 - Theoretical and Experimental Stress Concentration Factors

6.3.2 VALIDATION OF BENDING FOR VARIOUS HOLE SIZES

Four-point bending models were made of specimens with circular holes 0%, 6%, 14%, 20%, 30%, 40%, 50%, and 60% of the specimen's nominal cross-sectional diameter. The meshes were based on the converged mesh (Mesh 5) from the convergence study discussed previously. The maximum axial stress in each finite element model was compared with maximum stress predictions using formulas developed by Roark⁶ and using graphs developed by Thum and Kirmser¹.

The Roark data come from formulas based on a compilation of data from multiple researchers. The Roark formulas are only applicable for holes smaller than 45% and were, therefore, not included in analysis of the 50% and 60% models. The graph developed by Thum and Kirmser is shown in Figure 6.23. As discussed earlier, K_n represents the stress concentration factor based on nominal stress (stress accounting for the reduced cross-section) and K_g represents the stress concentration factor based on gross stress (calculated for the intact cross-section). These two concentration factors were used to calculate the K_n and the K_g stresses, shown in Table 6.2.

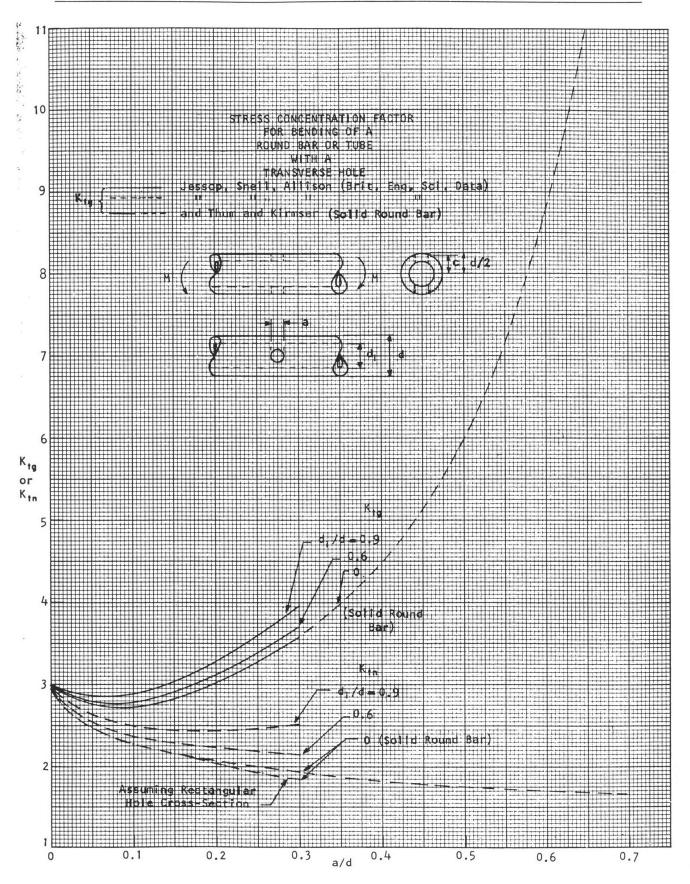


Table 6.2 compares the finite element data and the empirical data. S33 represents the maximum axial stress. Figure 6.24 shows the maximum stress predicted by the FEM vs. the maximum stress predicted by the three empirical relations. Both demonstrate how accurately the FEM predicted maximum stress as hole size changes. The correlations were all above $r^2 = 0.99$ and the slopes were all close to 1.0 with small y-intercepts. The lower correlation with Roark and the associated greater deviation from a slope of 1.0 may be explained by the fact that Roark's equations were developed with data compiled from a number of different sources, whereas the Thum and Kirmser data specifically represent stress concentration factors for a single study of solid cylinders with transverse circular holes.

	Fi	nite Elemen	its	Stress Calculated Using Experimental Data				
Model	Node #	Hole Size	S33	S33 (Roark)	S33 (Kn)	S33 (Kg)		
bh00vA	1091	.0%	402	402	403	403		
bh06v5	772	6%	1223	1114	1080	1114		
bh14v5	1056	14%	1207	1116	1124	1117		
bh20v5	1056	20%	1240	1182	1190	1171		
bh30v5	1056	30%	1329	1115	1264	1326		
bh40v5	1056	40%	1495	1202	1500	1510		
bh50v7	630	50%	1751		1737	1745		
bh60v7	630	60%	2009		2011	2004		

Table 6.2 - Theoretical and Experimental Stresses Calculated from Different Stress Concentration Factors. (S33 = maximum axial stress)

Since the models converged, agreed with experimental data for circular holes in all three types of loading, and agreed with experimental data for a range of hole sizes in bending, it was assumed that models would be equally appropriate for elliptical holes of various sizes in all modes of loading.

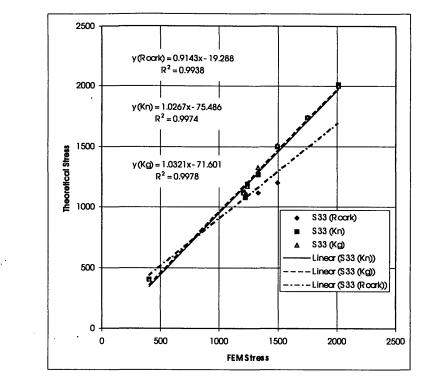


Figure 6.24 - Finite element models predicted stress concentrations very accurately over a range of hole sizes.

6.4 CALCULATION OF STRESS CONCENTRATION FACTORS

The stress concentration factors shown in Table 3.3 of Chapter 3 were net stress concentration factors, calculated using the same equation as 6.2:

Net stress concentration factor:
$$K_n = \frac{\sigma max}{\sigma net}$$
 [6.3]

The numerator, σ_{max} , was taken as the maximum stress in a finite element model of each specimen. The models, discussed in section 6.1, used the converged mesh, Mesh 5. Since the study compared various properties to a mechanically-measured load (yield load), a unit load (rather than displacement) was applied in every model. The denominator, σ_{net} , was based on the elementary Bernoulli-Euler formulas shown below:

tension:
$$\sigma \text{ net} = \frac{P}{A \text{ net}} = \frac{P}{A \text{ no hole}} \times \frac{A \text{ no hole}}{A \text{ net}} = \sigma \text{ no hole} \times \frac{A \text{ no hole}}{A \text{ net}}$$
 [6.4]

bending:
$$\sigma \operatorname{net} = \frac{\operatorname{Mc}}{\operatorname{I}\operatorname{net}} = \sigma \operatorname{no}\operatorname{hole} \times \frac{\operatorname{I}\operatorname{no}\operatorname{hole}}{\operatorname{I}\operatorname{net}}$$
 [6.5]

torsion:
$$\sigma \operatorname{net} = \frac{T}{J \operatorname{net}} = \sigma \operatorname{no} \operatorname{hole} \times \frac{J \operatorname{no} \operatorname{hole}}{J \operatorname{net}}$$
 [6.6]

where $\sigma_{no\ hole}$ was taken from the finite element models as the uniform stress throughout the gage section measured in specimens without a defect. The geometric properties, A, I, and J, were calculated based on the width of the defect at the location of the maximum stress in the finite element model. This location was in general at the widest point in the defect. The defect's width may be given by the equation:

$$W_{hole} = \sqrt{(r_{hole})^2 - (X - r_{hole})^2}$$
 [6.7]

where r_{hole} is the maximum width of the defect, and X is measured according to the coordinate system in Figure 6.25. Since the height, H_{Hole} , changes with the width, the height is also a function of X.

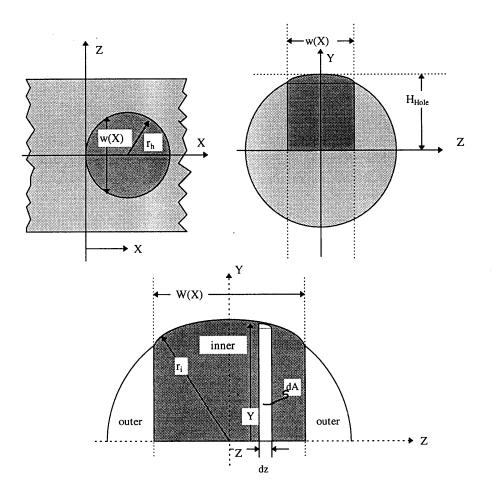


Figure 6.25 - Measurement of geometry of the defect along the length of the specimen.

The area, centroid, and moment of inertia of the hole at each cross-section were found by integrating along Z according to the convention shown in Figure 6.25. The differential element used for the integration is also shown in Figure 6.25:

$$dA=YdZ.$$
 [6.8]

To integrate across *Z*, *Y* and *dA* were written in terms of *Z*:

$$Y_i = \sqrt{r_i^2 - Z^2}$$
, $dA_i = \sqrt{r_i^2 - Z^2} dZ$ [6.9]

The subscript i indicates the inner portion (hole) in Figure 6.25. The area of the segment was given by

$$A_{i} = \int dA_{i} = \int_{-W(x)/2}^{W(x)/2} \sqrt{r_{i}^{2} - Z_{i}^{2}} dZ = \frac{1}{2} \left[Z \sqrt{r_{i}^{2} - Z_{i}^{2}} + r_{i}^{2} \sin^{-1} \left(\frac{Z}{r_{i}} \right) \right]_{-W(x)/2}^{W(x)/2}.$$
 [6.10]

The area moment of inertia of the differential rectangular element dA about its base was

$$dI_i = \frac{1}{3}Y^3 dZ.$$
 [6.11]

Therefore, the area moment of inertia of the entire segment about the Z-axis was

$$I_{i} = \int dI_{i} = \int_{-W(x)/2}^{W(x)/2} dZ = \int_{-W(x)/2}^{W(x)/2} \sqrt{\left(r_{i}^{2} - Z_{i}^{2}\right)^{3}} dZ$$

= $\frac{1}{12} \left[Z \sqrt{\left(r_{i}^{2} - Z_{i}^{2}\right)^{3}} + \frac{3r_{i}^{2}Z}{2} \sqrt{r_{i}^{2} - Z_{i}^{2}} + \frac{3r_{i}^{4}}{2} \sin^{-1} \left(\frac{Z}{r_{i}}\right) \right]_{-W(x)/2}^{W(x)/2}$ [6.12]

The moment of inertia about the y axis in Figure 6.25 was calculated in a similar manner, integrating along the z-axis, with a differential element da=Zdy.

Given the geometric properties of the hole, the net area, bending moment of inertia, and polar moments of inertia used in equations 6.4 through 6.6 were calculated as

$$A_{net} = A_{no \ hole} - A_{i} \qquad [6.13]$$

$$I_{net} = I_{no hole} - I_i \qquad [6.14]$$

$$J_{net} = J_{no hole} - J_{i}$$
 [6.16]

The resulting net stress concentration factors are shown in Table 6.3.

Hole Size	None	28%	28% Slot	47%	47% Slot	56%	56% Slot
Bending	1.00	1.88	1.58	1.55	1.45	1.41	2.54
Tension	1.00	2.46	3.82	2.28	4.34	2.32	7.49
Torsion	1.00	2.19	2.85	2.08	3.70	2.05	9.19

Table 6.3 - Net Stress Concentration Factors

It is worth noting that the finite element models predicted higher stress concentration factors for slots compared to circular holes with tension and torsional loading. Experimentally (Section 4.5), slots weakened trabecular bone more than circular holes for all types of loading, although only by about 25%, which is significantly less than that predicted by Table 6.1.

⁵ R.F. Kuo, E.Y.S. Chao, K. Rim, and J.B. Park, "The effect of defect size on the stress concentration and fracture characteristics for a tubular torsional model with a transverse hole," *Journal of Biomechanics*, 24:147-155, 1991.

⁶ Roark, Raymond J., Formulas for Stress and Strain, 2d ed., McGraw-Hill, New York, p. 739, 1943.

A. Thum and W. Kirmser, "Uberlagerte Wechselbeanspruchungen, ihre Erzeugung und ihr Einfluss auf die Dauerbarkeit und Spannungsausbildung guergebohrten Wellen," VDI-Forschungsheft 419, Vol 14(b) p. 1, (1943).

² H.T. Jessop, C. Snell, and I.M. Allison, "The stress concentration factors in cylindrical tubes with transverse holes," *Aeronautical Q.*, 10: 326ff, 1959.

³ H. Fessler and E.A. Roberts, "Bending stresses in a shaft with a tranverse hole," Selected Papers on Stress Analysis, Stress Analysis Conference, Delft, 1959, Reinhold Publ. Co., New York, pg. 45, 1961.

⁴ M.M. Levin, "Quantitative three-dimensional photoelasticity," *Proc. SESA*, 12:157-ff, 1943.

Appendix A Validation of Testing and Measurement Apparati

A.1 VALIDATION OF FOUR-POINT BENDING TEST JIG

A.1.1 SUMMARY

A cylinder of type 3003 aluminum potted with PMMA in steel endcaps and a cylinder of acrylic secured in aluminum endcaps were tested using the four-point bending apparatus. Modulus values for these materials were taken from the literature. The specimens were instrumented with strain gages, and were loaded using an Instron 8511 load frame. Load was measured using a 500 lb. Instron load cell, and load vs. strain was recorded for different orientations of the specimens.

The results show that this four-point bending jig is able to apply consistent loads with more than 98% repeatability in the measurement of rigidity. It is also able to measure the modulus of an aluminum specimen with less than 3% error and an acrylic specimen within less than 1% error, including error in the placement of the strain gages and measurement of the specimens' moments of inertia.

A.1.2 SPECIMEN POTTING AND INSTRUMENTATION

A cylinder of acrylic 16.12 mm in diameter was cut to 129 mm in length and turned down to exactly 15.88 mm in diameter on the ends, leaving a 45.8 mm gage length. The endcaps were marked off in 45° increments. A strain gage was secured at the specimen's midspan at the 0° mark and aligned along the length of the specimen. For testing, the cylinder was secured in aluminum endcaps (15.88 mm od) with set screws as shown in Figure A.1.

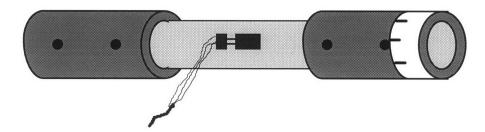


Figure A.1 - Acrylic specimen secured in aluminum endcaps with set screws

Two steel endcaps approximately 75 mm long were filled with polymethylmethacrylate (PMMA), and the PMMA was allowed to harden. Each endcap was then placed in the chuck of a emco lathe, and a hole was drilled with a 15/16" bit and was turned out to a diameter equal to the outer diameter of the aluminum specimen (25.4 mm). The hole was drilled approximately 40 mm into the PMMA.

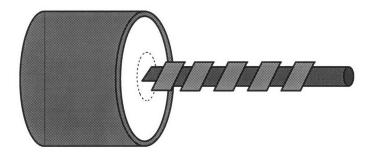


Figure A.2: Drilling Hole in Endcap

A piece of cylindrical aluminum 3003 stock was then cut to a length of approximately 150 mm. The endcap's hole was then filled with a small amount of PMMA, and one end of the aluminum cylinder was placed into the hole. Excess liquid PMMA which rose above the surface of the endcap was wiped clean. After the PMMA hardened, the second end of the aluminum tube was potted in the same manner, giving a 64.5 mm gage length. Tolerances between the outer diameter of the aluminum and the hole diameter were very tight; therefore, no additional alignment mechanism was necessary to insure that the endcaps were collinear.

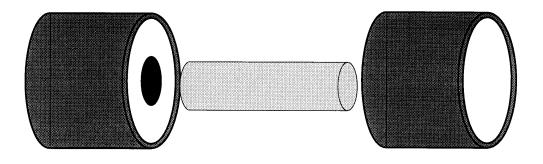


Figure A.3: Inserting the cylinder into the endcaps

The steel endcaps were marked off in 45° increments. A strain gage was secured at the specimen's midspan at the 0° mark and aligned along the length of the specimen. The same type of strain gage was mounted to the aluminum specimen as the acrylic. The specifications of the strain gage are as follows:

- Measurements Group Strain Gage
- CEA-13-125UW-350
- SN: R-A48AF131
- Resolution: $350 \text{ Ohms} \pm 0.3\%$
- Gage Factor: 2.150 ± 0.5%

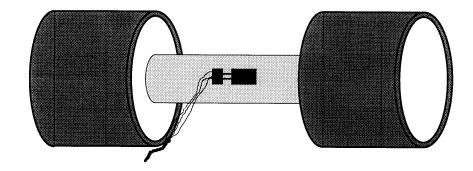


Figure A.4: Instrumenting the Strain Gage

A.1.3 TEST SETUP

The specimen was placed in the four-point bending test jig, as shown in Figure A.5. The top half of the test jig was rigidly fixed to the load cell of an Instron 8511 load frame and was free to rotate about an axis perpendicular to the page, insuring an even load distribution. The bottom half of the jig was rigidly attached to the bottom mount of the load frame. One fixed load point and three rolling load points allowed for deformation due to bending without the introduction of undesired axial loads.

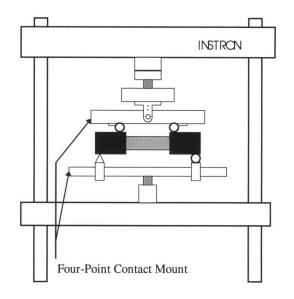


Figure A.5: Test Setup

Figure A.6 is a close-up view of the specimen in the test jig. The diameter of the bearing on the test jig was 41.22 mm. The aluminum specimen had the following critical dimensions:

- Xp = 39.69 mm
- Radius = 6.35 mm
- b = 64.5 mm

The acrylic specimen had the following critical dimensions:

- Xp = 23.7 mm
- Radius = 8.128 mm
- b = 45.8 mm

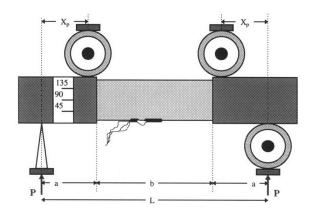


Figure A.6: Dimensions of test setup

A.1.4 TESTS, RESULTS, AND CONCLUSIONS

The specimen was loaded incrementally, and strain was measured with a Measurements Group P-3500 Strain Indicator and load with an 500 lb. Instron load cell. The load was allowed to settle before strain measurements were recorded since there was a slight viscoelastic response in both specimens. The specimens were loaded in four orientations: with the strain gage as shown in Figure A.6, with the strain gage oriented at 180° to that shown in Figure A.6, and in the two previous orientations with the specimen flipped horizontally. Measurements at each orientation were made six times, each time after repositioning. The same tests were performed on both the aluminum and acrylic specimens.

ALIMINUM. The true modulus of the aluminum 3003 specimen is 71 Gpa¹. When the strain gage was oriented at 0°, the measured modulus of the aluminum was 72.6 GPa (2.3% error), with COV = 1.7% for six measurements. When oriented at 180°, the modulus was measured to be 70.4 GPa (-0.8% error) with COV = 1.4% for six measurements.

ACRYLIC. The true modulus of the acrylic specimen is 3.4 GPa. When the strain gage was oriented at 0°, the measured modulus of the acrylic was 3.42 GPa (0.5% error), with COV = 1.9% for six measurements. When oriented at 180°, the modulus was measured to be 3.37 GPa (-0.9% error) with COV = 1.1% for six measurements.

These two specimens nearly bracket the modulus expected for trabecular and cortical bone specimens (2.5 GPa and 15 GPa, respectively). Therefore, the accuracy in the modulus measurements indicates that this test setup applies predictable and measurable loads within the range expected for bone experiments. The low COV despite multiple orientations and repositioning by eye (without the aid of measurement instruments) indicates that the test setup allows for an easily-attained high degree of precision in measurements.

A.1.5 RAW DATA

The following two pages show the raw data collected during the tests and the calculations made from that data.

CONFIGUR		Moment	Strain	Stress	CONFIGUE	Adi. Load	Moment	Strain	Stress
Load (Newtons)		(Nm)	Guain	(MPa)		(Newtons)			(MPa)
39	19.34	0.383802	2.70E-05	• •	45	25.34	0.502872	3.50E-05	0.002501
83	63.34	1.256982	8.90E-05		73	53.34	1.058532	7.50E-05	0.005264
147	127.34	2.527062	1.78E-04	0.012566	124	104.34	2.070627	1.44E-04	0.010297
195	175.34		2.43E-04	0.017303	198	178.34	3.539157	2.45E-04	0.017599
Siope		71.23	-5.57E-05		Slope		72.09	-7.79E-05	
Corr. Coeff.	(r^2)	1.00			Corr. Coeff.	(r^2)	1.00		
				.				••• ••	•••••
	Adj. Load	Moment	Strain	Stress (MPa)	Load	Adj. Load (Newtons)		Strain	Stress (MPa)
(Newtons)	(Newtons) 24.34		2 405 05	(MPa) 0.002402	(Newtons) 53	• •	0.661632	5.70E-05	0.00329
44 64	24.34 44.34		6.30E-05		80	60.34	1.197447		0.005955
85	65.34	1.296672	9.20E-05		122	102.34	2.030937	1.59E-04	
123	103.34		1.43E-04		145	125.34		1.70E-04	0.012369
175	155.34		2.13E-04		189	169.34	3.360552	2.52E-04	0.016711
201	181.34		2.46E-04		206	186.34	3.697917	2.76E-04	0.018388
Slope		73.17	-2.05E-04		Slope		69.05	-4.89E-04	
Corr. Coeff.	(r^2)	1.00			Corr. Coeff.	. (r^2)	0.99		
	Adj. Load	Moment	Strain	Stress	Load	Adj. Load	Moment	Strain	Stress
• •	(Newtons)			(MPa)	• •	(Newtons)	• •	3.20E-05	(MPa)
53	33.34		4.50E-05 8.20E-05	0.00329	36 64	16.34 44.34		3.20E-05 8.10E-05	0.001612
78	58.34 103.34		1.42E-05		102			1.27E-04	
123 144	124.34		1.42E-04		127	107.34		1.61E-04	
173	153.34		2.10E-04		161	141.34		2.10E-04	
200	180.34		2.48E-04		197	177.34			0.0175
Slope	100.04		-2.52E-05		Slope		70.81		
Corr. Coeff.	(r^2)	1.00			Corr. Coeff	. (r^2)	1.00		
	<u></u> /				t				
CONFIGUE	RATION 1A				CONFIGU	RATION 2B			
Load	Adj. Load	Moment	Strain	Stress	Load	Adj. Load		Strain	Strees
• •	(Newtons)	• •		(MPa)	• •	(Newtons)			(MPa)
52	32.34		5.10E-05		40		0.403647		
78	58.34		8.80E-05		81				
104	84.34		1.21E-04		103		1.653882		
130	110.34		1.55E-04 2.23E-04		123 164			2.14E-04	
182 210	162.34 190.34				199		3.559002		
Slope	190.04	74.78		•	Slope	170.04	70.29		
Corr. Coeff.	(**2)	1.00	7.116.04		Corr. Coeff	. (r^2)	1.00		
				•					-
Load	Adj. Load	Moment	Strain	Stress	Load	Adj. Load		Strain	Stress
(Newtons)	(Newtons)	· ·		(MPa)		(Newtons)			(MPa)
44	24.34		3.40E-05		36				
66	46.34		6.50E-05		60				
95	75.34		1.06E-04		85				
137	117.34		1.61E-04		103 152		-		
170	150.34								
212	192.34	3.816987		0.018981	210 Slope	190.34		-6.35E-04	0.018783]
Slope Corr. Coeff	(nA2)	1.00	-1.38E-04		Corr. Coef	(12)	1.00		
	. (1 2)	1.00		1					1
Load	Adj. Load	Moment	Strain	Stress	Load	Adj. Load	Moment	Strain	Stress
(Newtons)	(Newtons)			(MPa)	(Newtons)	(Newtons)	(Nm)		(MPa)
38		0.363957	2.50E-05		46	26.34	0.522717		0.002599
69	49.34	0.979152	6.70E-05	i 0.004869	67				0.004672
104				0.008323	104				0.008323
133				0.011185	136				0.011481
150				0.012862	160				0.013849
211	191.34			0.018882	210	190.34			0.018783
Siope	(-40)		2.09E-05	2	Slope Corr. Coef	(m^2)	1.00	3 -7.13E-04	1
Corr. Coeff	. (1*2)	1.00		1	COIT. COBI	. (1-2)	1.00	, <u> </u>	1
	<u>г </u>	71 00	SPECIM	EN: 0.5" Almn Cyl.		T	72.09	7	
	ſ					1			
	1		Moment		0.03969		69.05	1	
	l			n Radius (m)	0.00635		70.81		
	1		Initial Los	aoi (N)	19.66	4	70.29	1	
	l	72.53				1	70.34	1	
		71.99					70.08		
	Average	72.62				Average Off fr/71	70.44 -0.89		
	Off fr/71 Coeff. Var.	2.3% 1.7%				Coeff. Var.			
	Joogii, var.	1./7	2						

CONFIGU								
Load	Adj. Load	Moment	Strain	Stress				
	(Newtons)			(MPa)				
26.3	9.68			0.00028				
41.9	25.28	0.299568		0.000731				
66.1	49.48	0.586338	4.09E-04	0.001431				
89.2	72.58	0.860073	5.98E-04	0.002099				
Slope		3.508	2.21E-06					
Corr. Coeff	. (r^2)	1.00						
Load	Adj. Load	Moment	Strain	Stress				
(Newtons)	(Newtons)	(Nm)		(MPa)				
28.4	11.78	0.139593	1.11E-04	0.000341				
43.7	27.08	0.320898	2.30E-04	0.000783				
66	49.38	0.585153	4.11E-04	0.001428				
83.4	66.78	0.791343	5.52E-04	0.001931				
Slope		3.600	-5.27E-05					
Corr. Coeff	. (r^2)	1.00						
			· · · · · ·	•				
Load	Adj. Load	Moment	Strain	Stress				
(Newtons)	(Newtons)	(Nm)		(MPa)				
27.1	10.48	0.124188	9.20E-05	0.000303				
42.2	25.58	0.303123	2.11E-04	0.00074				
65.5	48.88	0.579228	3.97E-04	0.001414				
85	68.38	0.810303	5.59E-04	0.001978				
Slope		3.589	-2.09E-05					
Corr. Coeff	. (r^2)	1.00						
CONFIGU	RATION 1A							
		-						

Adj. Load Moment Strain

Adj. Load Moment Strain

Adj. Load Moment Strain

10.38 0.123003 1.06E-04

45.28 0.536568 3.93E-04

1.9%

27.68 0.328008 2.46E-04 0.000801

67.38 0.798453 5.74E-04 0.001949

8.38 0.099303 9.20E-05 0.000242

24.18 0.286533 2.17E-04 0.000699

51.08 0.605298 4.43E-04 0.001477 67.08 0.794898 5.82E-04

7.48 0.088638 8.40E-05 0.000216

25.48 0.301938 2.31E-04 0.000737 47.28 0.560268 4.19E-04 0.001367

68.88 0.816228 5.99E-04 0.001992

Load

Slope

Load

Slope

Load

Slope

(Newtons) (Newtons) (Nm) 27

(Newtons) (Newtons) (Nm)

(Newtons) (Newtons) (Nm)

Average Off fr/ 34

Coeff. Var.

44.3

61.9

Corr. Coeff. (r^2)

25

40.8

67.7

83.7

Corr. Coeff. (r^2)

24.1 42.1

63.9 85.5

Corr. Coeff. (r^2)

84

ment	Strain	Stress	Load	Adj. Load		Strain	Stress
n)		(MPa)	• •	(Newtons)	· ·		(MPa)
114708	8.30E-05	0.00028	25.6		0.106413		0.00026
299568	2.02E-04	0.000731	39.6		0.272313		0.000665
586338	4.09E-04		63.4		0.554343		0.001353
360073	5.98E-04	0.002099	84.5	67.88	0.804378	5.82E-04	0.001963
3.508	2.21E-06		Slope		3.446	-4.01E-05	
1.00			Corr. Coeff	. (r^2)	1.00		
	.	•				_	-
ment	Strain	Stress	Load	Adj. Load		Strain	Stress
n) (00500	4 445 04	(MPa)	• •	(Newtons)		0.505.05	(MPa)
139593		0.000341	25		0.099303		
320898		0.000783	38 69.2	21.38 52.58	0.253353		-
585153 791343	_		89	72.38			0.001521 0.002093
	-5.27E-05		Slope	72.00	3.400		
1.00	-0.27 E-00		Corr. Coeff	(r^2)	1.00	-0.00E-00	
1.00			0011.00011	· (' -/	1.00		
ment	Strain	Stress	Load	Adj. Load	Moment	Strain	Stress
n)		(MPa)		(Newtons)			(MPa)
124188	9.20E-05	0.000303	24.1	• •		8.20E-05	• •
303123		0.00074	41.3		0.292458		
579228	3.97E-04	0.001414	66.7	50.08	0.593448		
810303	5.59E-04	0.001978	85	68.38	0.810303	5.83E-04	0.001978
3.589	-2.09E-05		Slope		3.503	-6.60E-05	Ì
1.00			Corr. Coeff	. (r^2)	1.00		
			CONFIGU	RATION 28	1		
ment	Strain	Stress	Load	Adj. Load	Moment	Strain	Stress
n)		(MPa)	(Newtons)	(Newtons)	(Nm)		(MPa)
123003	1.06E-04	0.0003	24.7	8.08	0.095748	8.50E-05	0.000234
328008	2.46E-04	0.000801	42	25.38	0.300753	2.24E-04	0.000734
536568		0.00131	66.9	50.28	0.595818	4.32E-04	0.001454
798453			85	68.38	0.810303	5.82E-04	0.001978
3.517	-6.99E-05		Slope		3.502	-5.83E-05	
1.00	·····		Corr. Coeff	. (r^2)	1.00		
	04	0	1			.	•
ment	Strain	Stress	Load	Adj. Load		Strain	Stress
n) 2000000	0.005.05	(MPa)	• •	(Newtons)	• •		(MPa)
099303		0.000242	25.1		0.100488		
286533		0.000699	42.9		0.311418		0.00076
605298 794898			65		0.573303		
			83.6	66.98	0.793713		
3.460	-6.41E-05		Slope	(-40)	3.469	-6.71E-05	
1.00			Corr. Coeff	. (1*2)	1.00		
ment	Strain	Stress	Load	Adi Load	Moment	Strain	Stress
n)	e a ann	(MPa)		(Newtons)		Outun	(MPa)
088638	8.40E-05	0.000216	27.3		0.126558	1.13E-04	
301938		0.000737	41.1		0.290088		
560268			66.3	49.68			
B16228	5.99E-04		82.7	66.08			
3.437	-6.70E-05		Slope		3.483		
1.00			Corr. Coeff	. (r^2)	1.00		
			·				•
3.508	SPECIM	EN: 0.625" Acrylic	c Cyl.		3.446		
	Moment		0.0237		3.400		
		n Radius (m)	0.0081		3.503		
			16.62				
3.460	anual LU		10.02		3.502		
3.437					3.469		
3.518				Average	3.483 3.467		
3.5%				Off fr/ 34	3.467 2.0%		
				Coeff Ver	2.076		

1.1%

Coeff. Var.

Stress

.

CONFIGURATION 2

Load Adj. Load Moment Strain

A.2 VALIDATION OF UNIAXIAL TENSION TEST JIG

A cylinder of acrylic secured in aluminum endcaps was tested using the tension testing apparatus.

The specimen was instrumented with a strain gage and was loaded using an Interlaken Series 3300 hydraulic test frame. Load was measured using multiaxial Interlaken load cells, and load versus strain was recorded for different orientations of the specimen.

The results show that this uniaxial tension jig is able to maintain off-axis forces due to grip misalignment well below 5% of the applied load. It is also able to maintain strains due to uncontrolled bending in the specimen to below 25% of the applied tensile strain.

A.2.1 TEST SETUP

A cylinder of acrylic 16.12 mm in diameter was cut to 129 mm in length and turned down to exactly 15.88 mm in diameter on the ends, leaving a 45.8 mm gage length. The endcaps were marked off in 45° increments. A strain gage was secured at the specimen's midspan at the 0° mark and aligned along the length of the specimen. For testing, the cylinder was secured in aluminum endcaps (15.88 mm od) with set screws as shown in Figure A.7.

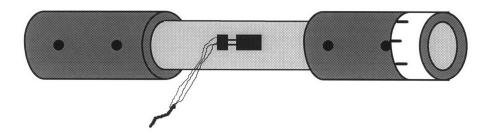


Figure A.7 - Acrylic specimen secured in aluminum endcaps with set screws

The specifications of the strain gage are as follows:

- Measurements Group Strain Gage
- CEA-13-125UW-350
- SN: R-A48AF131
- Resolution: $350 \text{ Ohms} \pm 0.3\%$
- Gage Factor: 2.150 ± 0.5%

The specimen was secured in the uniaxial tension test jig, shown in Figure A.8. Multiple links, steel cable, and a sphere/cone interface all reduced uncontrolled off-axis loads and allow for rotational and bending deformation due to inhomogeneity of the specimen.

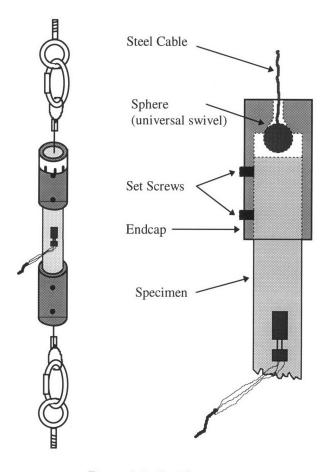
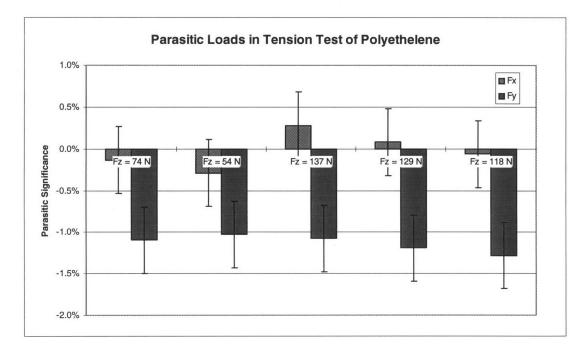
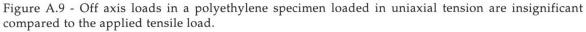


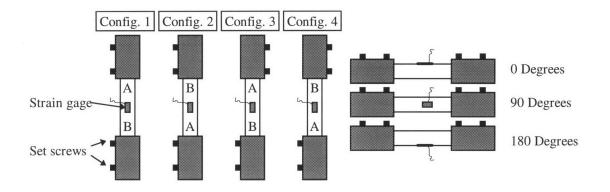
Figure A.8: Test Setup


A.2.2 TESTS AND RESULTS


A low-density polyethylene cylinder was secured in the endcaps and loaded to between 50 N and 150 N. A 2,500 lb, six-axis, Instron load cell, was used to measure the applied axial load and loads in two directions orthogonal to the applied load. The loads were sampled at 60 Hz and recorded over a period of 10 seconds. The parasitic significance of the off-axis loads was calculated using

$$\mathsf{PS}(\mathsf{Fx}) = \frac{\mathsf{Fx}}{\mathsf{Fz}} \, 100\%$$
 [A.1]

$$\mathsf{PS}(\mathsf{Fy}) = \frac{\mathsf{Fy}}{\mathsf{Fz}} \ 100\%$$
 [A.2]


The parasitic significance of the off axis loads are plotted in Figure A.9 for five different loads. The plot shows that off-axis shear loads on the specimen are negligible compared to the applied tensile load.

Given the dimensions of this specimen and test jig, misalignment of the specimen with respect to the load vector of less than a degree can induce bending loads that cause strain on one surface of the specimen to be double the strain on the opposite surface. In order to assess the magnitude of uncontrolled bending, the acrylic specimen was secured in the test jig as shown in Figure A.8, was loaded in tension, and the maximum and minimum strains were compared.

The specimen was loaded in four different configurations, shown in Figure A.10. In each configuration, load was applied incrementally, using an Interlaken DDC 4000 Controller. Strain was measured with a Measurements Group P-3500 Strain Indicator and load with a 5000 lb Torque-Thrust type 6467-124 Interlaken load cell. The modulus of the specimen was calculated as the slope of the stress vs. strain curve, where stress was calculated based on the applied load and the specimen's geometry. The modulus was measured with the specimen oriented at 0°, 90°, and 180°. The modulus measure-

ments were repeated five times at each angle, and the average moduli at each of these three angles were fit to an ellipse in order to determine a maximum and minimum.

Figure A.10 - Specimens were tested at three orientations in each of four different configurations.

Table A.1 shows the results of the modulus measurements in each of the four different configurations. The table shows a relatively consistent modulus from one configuration to the next, indicating that the axes of the endcaps were well aligned and that the specimen was secured precisely in the center of the endcaps. The modulus measurements were also both accurate and fairly precise, indicating that the loads were being transmitted as pure axial tension. Finally, the difference between the minimum and maximum modulus (and hence strain) as determined by ellipse-fits of the data was less than 50% in all configurations. This means that uncontrolled bending strains (1/2 of the difference between the min and max strains) at the specimen surface are less than 25% of the applied tensile strains, and they decrease toward the radial center of the specimen.

	Configuration 1	Configuration 2	Configuration 3	Configuration 4
Average (0° and 180°)	3.41 ± 0.61 GPa	3.24 ± 0.37 GPa	3.48 ± .67 GPa	3.01 ± 0.21 GPa
Error from 3.4 GPa	0.3%	4.6%	2.3%	-11.3%
Min - Max	26%	43%	8%	19%

A.2.3 CONCLUSIONS

The tension test jig applies precise tensile loads, while still allowing for bending and rotational deformation of a specimen. The load is applied precisely along the long axis of the specimen; uncontrolled shear strains are less than 1% of the applied tensile strain; and uncontrolled bending strains at the surface are less than 25% of the applied tensile strain. The insignificance of uncontrolled loads indicates that this jig can be used to accurately and precisely measured the tensile modulus of a specimen.

strain will be measured at the outer surface of the specimen, the magnitude of the bending strains at the surface suggests that modulus can only be accurately measured by averaging strain measured on opposite sides of the specimen.

Data and calculations of modulus for these tests are shown on the following four pages.

0 Degree CONFIGUI			CONFIGU
Load	Strain	Stress	
	(micro)		
` 80	` 161		
108	221	0.530496	
112	233		
122	256	0.599264	
154	319	0.756448	
Slope / Int.		2.14E-02	
Corr. Coeff	. (r^2)	1.00	
		_	
Load	Strain	Stress	
(Newtons)		(MPa)	
68		0.334016	
97	158		
127		0.623824	
160	269		
Slope / Int.			
Corr. Coeff	. (m2)	1.00	j i
Load	Strain	Stress	
(Newtons)	Strain (micro)	(MPa)	
(110 WIDIN) 68	(11100)	(IVIFA)	
96	123	0.334016	
90 127		0.623824	
162	300		
Slope / Int.		1.00E-02	
Corr. Coef		1.002-02	
	. (' _/	1.00	1
Load	Strain	Stress	
(Newtons)	(micro)	(MPa)	
59	108	0.289808	
80			
105	201	0.51576	
119	233	0.584528	
153	299	0.751536	
Slope / Int.	2.40	3.08E-02]
Corr. Coef	. (r^2)	1.00	
			-
1.000			
Load	Strain	Stress	
(Newtons)	(micro)	(MPa)	
(Newtons) 69	(micro) 126	(MPa) 0.338928	
(Newtons) 69 96	(micro) 126 175	(MPa) 0.338928 0.471552	
(Newtons) 69 96 112	(micro) 126 175 200	(MPa) 0.338928 0.471552 0.550144	
(Newtons) 69 96 112 127	(micro) 126 175 200 230	(MPa) 0.338928 0.471552 0.550144 0.623824	
(Newtons) 69 96 112 127 162	(micro) 126 175 200 230 290	(MPa) 0.338928 0.471552 0.550144 0.623824 0.795744	
(Newtons) 69 96 112 127 162 Slope / Int.	(micro) 126 175 200 230 290 2.78	(MPa) 0.338928 0.471552 0.550144 0.623824 0.795744 -1.23E-02	1
(Newtons) 69 96 112 127 162	(micro) 126 175 200 230 290 2.78	(MPa) 0.338928 0.471552 0.550144 0.623824 0.795744	1
(Newtons) 69 96 112 127 162 Slope / Int. Corr. Coeff	(micro) 126 175 200 230 290 2.78 <u>. (r^2)</u>	(MPa) 0.338928 0.471552 0.550144 0.623824 0.795744 -1.23E-02 1.00	1
(Newtons) 69 96 112 127 162 Slope / Int. Corr. Coeff	(micro) 126 175 200 230 290 2.78 (. (r^2) 2.29	(MPa) 0.338928 0.471552 0.550144 0.623824 0.795744 -1.23E-02 1.00	1
(Newtons) 69 96 112 127 162 Slope / Int. Corr. Coeff	(micro) 126 175 200 230 290 2.78 (. (r^2) 2.29 2.78	(MPa) 0.338928 0.471552 0.550144 0.623824 0.795744 -1.23E-02 1.00	1
(Newtons) 69 96 112 127 162 Slope / Int. Corr. Coeff	(micro) 126 175 200 230 290 2.78 f. (r^2) 2.29 2.78 2.61	(MPa) 0.338928 0.471552 0.550144 0.623824 -1.23E-02 1.00	1
(Newtons) 69 96 112 127 162 Slope / Int. Corr. Coeff	(micro) 126 175 200 230 290 2.78 5. (r^2) 2.29 2.78 2.61 2.40	(MPa) 0.338928 0.471552 0.550144 0.623824 0.795744 -1.23E-02 1.00	1
(Newtons) 69 96 112 127 162 Slope / Int. Corr. Coeff	(micro) 126 175 200 230 290 2.78 1. (r^2) 2.29 2.78 2.78 2.61 2.40 2.78	(MPa) 0.338928 0.471552 0.550144 0.623824 0.795744 -1.23E-02 1.00	1
(Newtons) 69 96 112 127 162 Siope / Int. Corr. Coeff (GPa) Average	(micro) 126 175 200 230 290 2.78 1. (r^2) 2.29 2.78 2.61 2.40 2.78 2.57	(MPa) 0.338928 0.471552 0.550144 0.623824 0.795744 -1.23E-02 1.00	1
(Newtons) 69 96 112 127 162 Siope / Int. Corr. Coeff (GPa) Average Off fr/ 3.4	(micro) 126 175 200 230 290 2.78 1. (r^2) 2.29 2.78 2.61 2.40 2.78 2.57 -24.3%	(MPa) 0.338928 0.471552 0.550144 0.623824 0.795744 -1.23E-02 1.00	1
(Newtons) 69 96 112 127 162 Siope / Int. Corr. Coeff Modulus (GPa) Average Off fr/ 3.4 Std. Dev.	(micro) 126 175 200 230 290 2.78 2.61 2.40 2.78 2.40 2.78 2.57 -24.3% 0.224	(MPa) 0.338928 0.471552 0.550144 0.623824 0.795744 -1.23E-02 1.00	1
(Newtons) 69 96 112 127 162 Siope / Int. Corr. Coeff (GPa) Average Off fr/ 3.4	(micro) 126 175 200 230 290 2.78 1. (r^2) 2.29 2.78 2.61 2.40 2.78 2.57 -24.3%	(MPa) 0.338928 0.471552 0.550144 0.623824 0.795744 -1.23E-02 1.00	1

90 Degre URATION 2	8 5	CONFIGUR	ATION 2
Load	Strain	Stress	
(Newtons)	(micro)	(MPa)	
70	98	0.34384 0.46664	
95			
104	140	0.510848	
120	170		
154	220	0.756448	_
Slope / Int.	3.37	1.73E-02	
Corr. Coeff	. (r^2)	0.99	
		Stress	
(Newtons)	(micro)	(MPa) 0.329104	
99	117	0.486288	
138	170		
157	195	0.771184	_
Slope / Int.	3.70	4.99E-02	
Corr. Coeff		1.00	
		Stress	
(Newtons)	(micro)	(MPa)	
` 76	120	0.373312	
104		0.510848	
135	216		
153	245	0.751536	
Signe / Int	3.02	1.14E-02	
Corr. Coef		1.00	
	· (· -/	1.00	1
Loed	Strain	Stroce	
		Stress (MPa)	
(Newtons)	(micro)	(MPa)	
(Newtons) 78	(micro) 133	(MPa) 0.383136	
(Newtons) 78 108	(micro) 133 188	(MPa) 0.383136 0.530496	
(Newtons) 78 108 123	(micro) 133 188 217	(MPa) 0.383136 0.530496 0.604176	
(Newtons) 78 108 123 140	(micro) 133 188 217 247	(MPa) 0.383136 0.530496 0.604176 0.68768	
(Newtons) 78 108 123 140 175	(micro) 133 188 217 247 306	(MPa) 0.383136 0.530496 0.604176 0.68768 0.8596	
(Newtons) 78 108 123 140 175 Slope / Int.	(micro) 133 188 217 247 306 2.75	(MPa) 0.383136 0.530496 0.604176 0.68768 0.8596 1.38E-02	
(Newtons) 78 108 123 140 175	(micro) 133 188 217 247 306 2.75	(MPa) 0.383136 0.530496 0.604176 0.68768 0.8596	
(Newtons) 78 108 123 140 175 Slope / Int. Corr. Coeff	(micro) 133 188 217 247 306 2.75 . (r^2)	(MPa) 0.383136 0.530496 0.604176 0.68768 0.8596 1.38E-02 1.00	
(Newtons) 78 108 123 140 175 Slope / Int. Corr. Coeff	(micro) 133 188 217 247 306 2.75 . (r^2)	(MPa) 0.383136 0.530496 0.604176 0.68768 0.8596 1.38E-02 1.00	
(Newtons) 78 108 123 140 175 Slope / Int. Corr. Coeff Load (Newtons)	(micro) 133 188 217 247 306 2.75 2.(r^2) Strain (micro)	(MPa) 0.383136 0.530496 0.604176 0.68768 0.8596 1.38E-02 1.00 Stress (MPa)	
(Newtons) 78 108 123 140 175 Slope / Int. Corr. Coeff Load (Newtons) 79	(micro) 133 188 217 247 306 2.75 . (r^2) Strain (micro) 127	(MPa) 0.383136 0.530496 0.604176 0.68768 0.8596 1.38E-02 1.00 Stress (MPa) 0.388048	
(Newtons) 78 108 123 140 175 Slope / Int. Corr. Coeff Load (Newtons) 79 110	(micro) 133 188 217 247 306 2.75 (r^2) Strain (micro) 127 177	(MPa) 0.383136 0.530496 0.604176 0.68768 0.8596 1.38E-02 1.00 Stress (MPa) 0.388048 0.54032	
(Newtons) 78 108 123 140 175 Slope / Int. Corr. Coeff (Newtons) 79 110 127	(micro) 133 188 217 247 306 2.75 (r^2) Strain (micro) 127 177 203	(MPa) 0.383136 0.530496 0.604176 0.68768 0.8596 1.38E-02 1.00 Stress (MPa) 0.388048 0.54032 0.623824	
(Newtons) 78 108 123 140 175 Slope / Int. Corr. Coeff Load (Newtons) 79 110 127 146	(micro) 133 188 217 247 306 2.75 ((MPa) 0.383136 0.530496 0.604176 0.68768 0.8596 1.38E-02 1.00 Stress (MPa) 0.388048 0.54032 0.623824 0.717152	
(Newtons) 78 108 123 140 175 Slope / Int. Corr. Coeff Load (Newtons) 79 110 127 146 162	(micro) 133 188 217 247 306 2.75 (r^2) Strain (micro) 127 177 203 234 261	(MPa) 0.383136 0.530496 0.604176 0.68768 0.8596 1.38E-02 1.00 Stress (MPa) 0.388048 0.54032 0.623824 0.717152 0.795744	
(Newtons) 78 108 123 140 175 Slope / Int. Corr. Coeff Load (Newtons) 79 110 127 146 162 Slope / Int.	(micro) 133 188 217 247 306 2.75 (r^2) Strain (micro) 127 177 203 234 261 3.05	(MPa) 0.383136 0.530496 0.604176 0.68768 0.8596 1.38E-02 1.00 Stress (MPa) 0.388048 0.54032 0.623824 0.717152 0.795744 9.14E-04	
(Newtons) 78 108 123 140 175 Slope / Int. Corr. Coeff Load (Newtons) 79 110 127 146 162	(micro) 133 188 217 247 306 2.75 (r^2) Strain (micro) 127 177 203 234 261 3.05	(MPa) 0.383136 0.530496 0.604176 0.68768 0.8596 1.38E-02 1.00 Stress (MPa) 0.388048 0.54032 0.623824 0.717152 0.795744	
(Newtons) 78 108 123 140 175 Slope / Int. Corr. Coeff Load (Newtons) 79 110 127 146 162 Slope / Int. Corr. Coeff	(micro) 133 188 217 247 306 2.75 (r^2) Strain (micro) 127 177 203 234 261 3.05 (r^2)	(MPa) 0.383136 0.530496 0.604176 0.68768 0.8596 1.38E-02 1.00 Stress (MPa) 0.388048 0.54032 0.623824 0.717152 0.795744 9.14E-04	
(Newtons) 78 108 123 140 175 Slope / Int. Corr. Coeff Load (Newtons) 79 110 127 146 162 Slope / Int.	(micro) 133 188 217 247 306 2.75 (r^2) Strain (micro) 127 177 203 234 261 3.05	(MPa) 0.383136 0.530496 0.604176 0.68768 0.8596 1.38E-02 1.00 Stress (MPa) 0.388048 0.54032 0.623824 0.717152 0.795744 9.14E-04	
(Newtons) 78 108 123 140 175 Slope / Int. Corr. Coeff Load (Newtons) 79 110 127 146 162 Slope / Int. Corr. Coeff	(micro) 133 188 217 247 306 2.75 (r^2) Strain (micro) 127 177 203 234 261 3.05 (r^2)	(MPa) 0.383136 0.530496 0.604176 0.68768 0.8596 1.38E-02 1.00 Stress (MPa) 0.388048 0.54032 0.623824 0.717152 0.795744 9.14E-04 1.00	
(Newtons) 78 108 123 140 175 Slope / Int. Corr. Coeff Load (Newtons) 79 110 127 146 162 Slope / Int. Corr. Coeff	(micro) 133 188 217 247 306 2.75 (r^2) Strain (micro) 127 177 203 234 261 3.05 (r^2) 3.37 3.70 3.02	(MPa) 0.383136 0.530496 0.604176 0.68768 0.8596 1.38E-02 1.00 Stress (MPa) 0.388048 0.54032 0.623824 0.795744 9.14E-04 1.00	
(Newtons) 78 108 123 140 175 Slope / Int. Corr. Coeff Load (Newtons) 79 110 127 146 162 Slope / Int. Corr. Coeff	(micro) 133 188 217 247 306 2.75 (r*2) Strain (micro) 127 177 203 234 261 3.05 (r*2) 3.37 3.70	(MPa) 0.383136 0.530496 0.604176 0.68768 0.8596 1.38E-02 1.00 Stress (MPa) 0.388048 0.54032 0.623824 0.795744 9.14E-04 1.00	
(Newtons) 78 108 123 140 175 Slope / Int. Corr. Coeff Load (Newtons) 79 110 127 146 162 Slope / Int. Corr. Coeff	(micro) 133 188 217 247 306 2.75 (r^2) Strain (micro) 127 177 203 234 261 3.05 (r^2) 3.37 3.70 3.02	(MPa) 0.383136 0.530496 0.604176 0.68768 0.8596 1.38E-02 1.00 Stress (MPa) 0.388048 0.54032 0.623824 0.717152 0.795744 9.14E-04 1.00	
(Newtons) 78 108 123 140 175 Slope / Int. Corr. Coeff Load (Newtons) 79 110 127 146 162 Slope / Int. Corr. Coeff Slope / Int. Corr. Coeff Modulus (GPa)	(micro) 133 188 217 247 306 2.75 (r^2) Strain (micro) 127 177 203 234 261 3.05 (r^2) 3.37 3.70 3.02 2.75	(MPa) 0.383136 0.530496 0.604176 0.68768 0.8596 1.38E-02 1.00 Stress (MPa) 0.388048 0.54032 0.623824 0.717152 0.795744 9.14E-04 1.00	
(Newtons) 78 108 123 140 175 Slope / Int. Corr. Coeff (Newtons) 79 110 127 146 162 Slope / Int. Corr. Coeff	(micro) 133 188 217 247 306 2.75 (r^2) Strain (micro) 127 177 203 234 261 3.05 (r^2) 3.37 3.37 3.02 2.75 3.05 3.05 3.05	(MPa) 0.383136 0.530496 0.604176 0.68768 0.8596 1.38E-02 1.00 Stress (MPa) 0.388048 0.54032 0.623824 0.717152 0.795744 9.14E-04 1.00	
(Newtons) 78 108 123 140 175 Slope / Int. Corr. Coeff Load (Newtons) 79 110 127 146 162 Slope / Int. Corr. Coeff Slope / Int. Corr. Coeff Modulus (GPa)	(micro) 133 188 217 247 306 2.75 (r^2) Strain (micro) 127 177 203 234 261 3.05 . (r^2) 3.37 3.70 3.02 2.75 3.05 3.18	(MPa) 0.383136 0.530496 0.604176 0.68768 0.8596 1.38E-02 1.00 Stress (MPa) 0.388048 0.54032 0.623824 0.717152 0.795744 9.14E-04 1.00	
(Newtons) 78 108 123 140 175 Slope / Int. Corr. Coeff Load (Newtons) 79 110 127 146 162 Slope / Int. Corr. Coeff Slope / Int. Corr. Coeff Slope / Int. Corr. Coeff Average Off fr/ 3.4	(micro) 133 188 217 247 306 2.75 (r^2) Strain (micro) 127 177 203 234 261 3.05 . (r^2) 3.37 3.70 3.02 2.75 3.05 3.18 -6.5%	(MPa) 0.383136 0.530496 0.604176 0.68768 0.8596 1.38E-02 1.00 Stress (MPa) 0.388048 0.54032 0.623824 0.717152 0.795744 9.14E-04 1.00	
(Newtons) 78 108 123 140 175 Slope / Int. Corr. Coeff (Newtons) 79 110 127 146 162 Slope / Int. Corr. Coeff Slope / Int. Corr. Coeff Modulus (GPa) Average Off fr/ 3.4 Std. Dev.	(micro) 133 188 217 247 306 2.75 (r^2) Strain (micro) 127 177 203 234 261 3.05 (r^2) 3.37 3.70 3.02 2.75 3.18 -6.5% 0.366	(MPa) 0.383136 0.530496 0.604176 0.68768 0.8596 1.38E-02 1.00 Stress (MPa) 0.388048 0.54032 0.623824 0.717152 0.795744 9.14E-04 1.00	
(Newtons) 78 108 123 140 175 Slope / Int. Corr. Coeff (Newtons) 79 110 127 146 162 Slope / Int. Corr. Coeff Slope / Int. Corr. Coeff Modulus (GPa) Average Off fr/ 3.4 Std. Dev.	(micro) 133 188 217 247 306 2.75 (r^2) Strain (micro) 127 177 203 234 261 3.05 (r^2) 3.37 3.70 3.02 2.75 3.18 -6.5% 0.366	(MPa) 0.383136 0.530496 0.604176 0.68768 0.8596 1.38E-02 1.00 Stress (MPa) 0.388048 0.54032 0.623824 0.717152 0.795744 9.14E-04 1.00	

-

180 Degr		GUR	ATION 2	
	-		. .	
Load (Newtons)	Strain		Stress (MPa)	
(110 1015)	(micro)	٩A	0.358576	
104		134		
122		157	0.599264	
140		182	0.68768	
160		208		
Slope / Int.			8.64E-03	
Corr. Coeff.			1.00	
Load	Strain		Stress	
(Newtons)	(micro)		(MPa)	
63	```	62	0.309456	;
92		92		
124		126	0.609088	3
156		162	0.766272	2
Slope / Int.		1.57	2.91E-02	2
Corr. Coeff.			1.00	
			-	
Load	Strain		Stress	
(Newtons)	(micro)		(MPa)	
65			0.31928	
105		146		
136			0.668032	
169		242		_
Slope / Int.		3.34		
Corr. Coeff	. (r~2)	_	1.00	וו
Load	Strain		Stress	
	Strain (micro)		Stress (MPa)	
(Newtons)			(MPa)	5
		93 129	(MPa)	
(Newtons) 73		93	(MPa) 0.358576	3
(Newtons) 73 103	(micro)	93 129	(MPa) 0.358576 0.505936 0.66312	5
(Newtons) 73 103 135 154	(micro)	93 129 172 193	(MPa) 0.358576 0.505936 0.66312 0.756448	3
(Newtons) 73 103 135 154 171	(micro)	93 129 172 193 218	(MPa) 0.358576 0.505936 0.66312 0.756448 0.839952	
(Newtons) 73 103 135 154 171 Slope / Int.	(micro)	93 129 172 193 218	(MPa) 0.358576 0.505936 0.66312 0.756448 0.839952 2.66E-03	
(Newtons) 73 103 135 154 171	(micro)	93 129 172 193 218	(MPa) 0.358576 0.505936 0.66312 0.756448 0.839952	
(Newtons) 73 103 135 154 171 Slope / Int. Corr. Coeff	(micro) . (r^2) . Strain	93 129 172 193 218 3.86	(MPa) 0.358576 0.505936 0.66312 0.756448 0.839952 2.66E-03 1.00 Stress	
(Newtons) 73 103 135 154 171 Slope / Int. Corr. Coeff Load (Newtons)	(micro) . (r^2) . Strain	93 129 172 193 218 3.86	(MPa) 0.358576 0.505936 0.66312 0.756448 0.839952 2.66E-03 1.00 Stress (MPa)	
(Newtons) 73 103 135 154 171 Slope / Int. Corr. Coeff Load (Newtons) 67	(micro) . (r^2) . Strain	93 129 172 193 218 3.86 82	(MPa) 0.358576 0.505936 0.66312 0.756448 0.839952 2.66E-03 1.00 Stress (MPa) 0.329104	
(Newtons) 73 103 135 154 171 Slope / Int. Corr. Coeff (Newtons) 67 98	(micro) . (r^2) . Strain	93 129 172 193 218 3.86 82 118	(MPa) 0.358576 0.505936 0.66312 0.756448 0.839952 2.66E-03 1.00 Stress (MPa) 0.329104 0.481376	
(Newtons) 73 103 135 154 171 Slope / Int. Corr. Coeff (Newtons) 67 98 115	(micro) . (r^2) . Strain	93 129 172 193 218 3.86 82 118 137	(MPa) 0.358576 0.505936 0.66312 0.756448 0.839952 2.66E-03 1.00 Stress (MPa) 0.329104 0.481376 0.56488	
(Newtons) 73 103 135 154 171 Slope / Int. Corr. Coeff Load (Newtons) 67 98 115 150	(micro) . (r^2) Strain (micro)	93 129 172 193 218 3.86 82 118	(MPa) 0.358576 0.505936 0.66312 0.756448 0.839952 2.66E-03 1.00 Stress (MPa) 0.329104 0.481376	
(Newtons) 73 103 135 154 171 Slope / Int. Corr. Coeff Load (Newtons) 67 98 115 150 170	(micro) . (r^2) Strain (micro)	93 129 172 193 218 3.86 82 118 137 181 207	(MPa) 0.358576 0.505936 0.66312 0.756448 0.839952 2.66E-03 1.00 Stress (MPa) 0.329104 0.481376 0.56488 0.7368 0.7368	
(Newtons) 73 103 135 154 171 Slope / Int. Corr. Coeff Load (Newtons) 67 98 115 150 170 Slope / Int.	(micro) . (r^2) Strain (micro)	93 129 172 193 218 3.86 82 118 137 181 207	(MPa) 0.358576 0.505936 0.66312 0.756448 0.839952 2.66E-03 1.00 Stress (MPa) 0.329104 0.481376 0.481376 0.56488 0.7368 0.7368 0.83504 3.00E-03	
(Newtons) 73 103 135 154 171 Slope / Int. Corr. Coeff Load (Newtons) 67 98 115 150 170	(micro) . (r^2) Strain (micro)	93 129 172 193 218 3.86 82 118 137 181 207	(MPa) 0.358576 0.505936 0.66312 0.756448 0.839952 2.66E-03 1.00 Stress (MPa) 0.329104 0.481376 0.56488 0.7368 0.7368	
(Newtons) 73 103 135 154 171 Slope / Int. Corr. Coeff Load (Newtons) 67 98 115 150 170 Slope / Int. Corr. Coeff	(micro) . (r^2) Strain (micro) . (r^2)	93 129 172 193 218 3.86 82 118 137 181 207 4.04	(MPa) 0.358576 0.505936 0.66312 0.756448 0.839952 2.66E-03 1.00 Stress (MPa) 0.329104 0.481376 0.481376 0.56488 0.7368 0.7368 0.83504 3.00E-03	
(Newtons) 73 103 135 154 171 Slope / Int. Corr. Coeff Load (Newtons) 67 98 115 150 170 Slope / Int. Corr. Coeff	(micro) . (r^2) Strain (micro) . (r^2)	93 129 172 193 218 3.86 82 118 137 181 207 4.04 3.74	(MPa) 0.358576 0.505936 0.66312 0.756448 0.839952 2.66E-03 1.00 Stress (MPa) 0.329104 0.481376 0.481376 0.56488 0.7368 0.7368 0.83504 3.00E-03	
(Newtons) 73 103 135 154 171 Slope / Int. Corr. Coeff Load (Newtons) 67 98 115 150 170 Slope / Int. Corr. Coeff	(micro) . (r^2) Strain (micro) . (r^2)	93 129 172 193 218 3.86 82 118 137 181 207 4.04 3.74 4.57	(MPa) 0.358576 0.505936 0.66312 0.756448 0.839952 2.66E-03 1.00 Stress (MPa) 0.329104 0.481376 0.481376 0.56488 0.7368 0.7368 0.83504 3.00E-03	
(Newtons) 73 103 135 154 171 Slope / Int. Corr. Coeff Load (Newtons) 67 98 115 150 170 Slope / Int. Corr. Coeff	(micro) . (r^2) Strain (micro)	93 129 172 193 218 3.86 82 118 137 181 207 4.04 3.74 4.57 3.34	(MPa) 0.358576 0.505936 0.66312 0.756448 0.839952 2.66E-03 1.00 Stress (MPa) 0.329104 0.481376 0.481376 0.56488 0.7368 0.7368 0.83504 3.00E-03	
(Newtons) 73 103 135 154 171 Slope / Int. Corr. Coeff Load (Newtons) 67 98 115 150 170 Slope / Int. Corr. Coeff	(micro) . (r^2) Strain (micro)	93 129 172 193 218 3.86 82 118 137 181 207 4.04 3.74 4.57 3.34 3.86	(MPa) 0.358576 0.505936 0.66312 0.756448 0.839952 2.66E-03 1.00 Stress (MPa) 0.329104 0.481376 0.481376 0.56488 0.7368 0.7368 0.83504 3.00E-03	
(Newtons) 73 103 135 154 171 Slope / Int. Corr. Coeff (Newtons) 67 98 115 150 170 Slope / Int. Corr. Coeff	(micro) . (r^2) Strain (micro)	93 129 172 193 218 3.86 82 118 137 181 137 181 3.74 4.04 3.74 4.57 3.34 3.86 4.04	(MPa) 0.358576 0.505936 0.66312 0.756448 0.839952 2.66E-03 1.00 Stress (MPa) 0.329104 0.481376 0.481376 0.56488 0.7368 0.7368 0.83504 3.00E-03	
(Newtons) 73 103 135 154 171 Slope / Int. Corr. Coeff (Newtons) 67 98 115 150 170 Slope / Int. Corr. Coeff Modulus (GPs) Average	(micro) . (r^2) Strain (micro)	93 129 172 193 218 3.86 82 118 137 181 137 181 3.74 4.04 3.74 4.57 3.34 4.04 3.91	(MPa) 0.358576 0.505936 0.66312 0.756448 0.839952 2.66E-03 1.00 Stress (MPa) 0.329104 0.481376 0.481376 0.56488 0.7368 0.7368 0.83504 3.00E-03	
(Newtons) 73 103 135 154 171 Slope / Int. Corr. Coeff (Newtons) 67 98 115 150 170 Slope / Int. Corr. Coeff Modulus (GPa) Average Off fr/ 3.4	(micro) . (r^2) Strain (micro) . (r^2)	93 129 172 193 218 3.86 82 118 137 181 207 4.04 3.74 4.57 3.34 4.04 3.91 1.1%	(MPa) 0.358576 0.505936 0.66312 0.756448 0.839952 2.66E-03 1.00 Stress (MPa) 0.329104 0.481376 0.481376 0.56488 0.7368 0.7368 0.83504 3.00E-03	
(Newtons) 73 103 135 154 171 Slope / Int. Corr. Coeff (Newtons) 67 98 115 150 170 Slope / Int. Corr. Coeff Modulus (GPs) Average	(micro) . (r^2) Strain (micro) . (r^2)	93 129 172 193 218 3.86 82 118 137 181 137 181 3.74 4.04 3.74 4.57 3.34 4.04 3.91	(MPa) 0.358576 0.505936 0.66312 0.756448 0.839952 2.66E-03 1.00 Stress (MPa) 0.329104 0.481376 0.481376 0.56488 0.7368 0.7368 0.83504 3.00E-03	

MODULUS (GPa)	
Average:	3.24
Uncertainty:	15%
Off fr/ bending:	-7%
Off fr/ 3.4	-4.6%
Max (ellipse):	3.94
Min (ellipse):	2.56
Min - Max:	43%

Radius (m)	0.00805
Area (m^2)	0.0002
Initial Load	(N)

	0 Degrees CONFIGURATION 1	CONFIGU
	Load Strain Stress	
	(Newtons) (micro) (MPa)	
	76 126 0.373312	
	76 126 0.373312 102 170 0.501024	
	133 218 0.653296	
	147 243 0.722064	
1	Slope / Int. 3.01 -7.11E-03	
l	Corr. Coeff. (r^2) 1.00	
	Load Strain Stress	
	(Newtons) (micro) (MPa)	
	73 90 0.358576	
	100 123 0.4912	
	131 161 0.643472 166 202 0.815392	
1	Slope / Int. 4.07 -9.39E-03	
	Corr. Coeff. (r^2) 1.00	
	Land Otrain Otrano	
	Load Strain Stress	
	(Newtons) (micro) (MPa)	
	70 97 0.34384	
	100 138 0.4912 130 179 0.63856	
1	165 225 0.81048	
	Slope / Int. 3.64 -1.07E-02	
	Corr. Coeff. (r^2) 1.00	
	Load Strain Stress (Newtons) (micro) (MPa)	
	(Newtons) (micro) (MPa)	
	72 120 0.353664	
	97 161 0.476464	
	128 212 0.628736	
	145 240 0.71224	
	Slope / Int. 2.99 -4.76E-03	
	Corr. Coeff. (r^2) 1.00	
	Load Strain Stress	
	(Newtons) (micro) (MPa)	
	80 138 0.39296 109 181 0.535408	
	125 204 0.614	
	157 256 0.771184	
	Slope / Int. 3.21 -4.65E-02	
	Corr. Coeff. (r^2) 1.00	
	Modulus 3.01	
	(GPa) 4.07	
	3.64	
1	2.99	
	3.21	
	Average 3.38	
	Off fr/ 3.4 -0.5%	
	Std. Dev. 0.466	
	Coeff. Var. 13.8%	

90 Degrees URATION 1	CONFIGURATION 1
Load Strain	Stress
(Newtons) (micro)	(MPa)
76 114	0.373312 0.501024
102 158	0.501024
117 178	0.574704 0.746624
152 231 Slope / Int. 3.21	0.746624
Slope / Int. 3.21	2.48E-03 1.00
Corr. Coeff. (r^2)	1.00
Load Strain	Stress
(Newtons) (micro)	
78 88	0.383136
108 121	0.530496
	0.682768 0.78592
Slope / Int. 4.28	
Corr. Coeff. (r^2)	1.00
	_
Load Strain (Newtons) (micro)	Stress
(Newtons) (micro)	(MPa)
	0.34384
94 129 120 170	0.461728 0.58944
	0.741712
Slope / Int. 3.22	4 42F-02
Corr. Coeff. (r^2)	1.00
	1100
Load Strain	Stress
Load Strain (Newtons) (micro)	Stress (MPa)
(Newtons) (micro)	(MPa)
(Newtons) (micro) 75 129 101 172	(MPa) 0.3684 0.496112
(Newtons) (micro) 75 129 101 172 131 222	(MPa) 0.3684 0.496112 0.643472
(Newtons) (micro) 75 129 101 172 131 222 146 251	(MPa) 0.3684 0.496112 0.643472 0.717152
(Newtons) (micro) 75 129 101 172 131 222 146 251 Slope / Int. 2.88	(MPa) 0.3684 0.496112 0.643472 0.717152 -3.96E-04
(Newtons) (micro) 75 129 101 172 131 222 146 251	(MPa) 0.3684 0.496112 0.643472 0.717152 -3.96E-04
(Newtons) (micro) 75 129 101 172 131 222 146 251 Slope / Int. 2.88 Corr. Coeff. (r^2)	(MPa) 0.3684 0.496112 0.643472 0.717152 -3.96E-04 1.00
(Newtons) (micro) 75 129 101 172 131 222 146 251 Slope / Int. 2.88 Corr. Coeff. (r^2) Load Strain	(MPa) 0.3684 0.496112 0.643472 0.717152 -3.96E-04 1.00 Stress
(Newtons) (micro) 75 129 101 172 131 222 146 251 Slope / Int. 2.88 Corr. Coeff. (r^2) Load Strain	(MPa) 0.3684 0.496112 0.643472 0.717152 -3.96E-04 1.00 Stress
(Newtons) (micro) 75 129 101 172 131 222 146 251 Slope / Int. 2.88 Corr. Coeff. (r^2) Load Strain (Newtons) (micro) 75 115	(MPa) 0.3684 0.496112 0.643472 0.717152 -3.96E-04 1.00 Stress (MPa) 0.3684
(Newtons) (micro) 75 129 101 172 131 222 146 251 Slope / Int. 2.88 Corr. Coeff. (r^2) Load Strain (Newtons) (micro) 75 115 102 156	(MPa) 0.3684 0.496112 0.643472 0.717152 -3.96E-04 1.00 Stress (MPa) 0.3684 0.501024
(Newtons) (micro) 75 129 101 172 131 222 146 251 Slope / Int. 2.88 Corr. Coeff. (r^2) Load Strain (Newtons) (micro) 75 115 102 156	(MPa) 0.3684 0.496112 0.643472 0.717152 -3.96E-04 1.00 Stress (MPa) 0.3684 0.501024
(Newtons) (micro) 75 129 101 172 131 222 146 251 Slope / Int. 2.88 Corr. Coeff. (r^2) Load Strain (Newtons) (micro) 75 115 102 156 118 180 151 227	(MPa) 0.3684 0.496112 0.643472 0.717152 -3.96E-04 1.00 Stress (MPa) 0.3684 0.501024 0.579616 0.741712
(Newtons) (micro) 75 129 101 172 131 222 146 251 Slope / Int. 2.88 Corr. Coeff. (r^2) Load Strain (Newtons) (micro) 75 115 102 156 118 180 151 227 Slope / Int. 3.33	(MPa) 0.3684 0.496112 0.643472 0.717152 -3.96E-04 1.00 Stress (MPa) 0.3684 0.501024
(Newtons) (micro) 75 129 101 172 131 222 146 251 Slope / Int. 2.88 Corr. Coeff. (r^2) Load Strain (Newtons) (micro) 75 115 102 156 118 180 151 227	(MPa) 0.3684 0.496112 0.643472 0.717152 -3.96E-04 1.00 Stress (MPa) 0.3684 0.501024 0.579616 0.741712 -1.72E-02
(Newtons) (micro) 75 129 101 172 131 222 146 251 Slope / Int. 2.88 Corr. Coeff. (r^2) Load Strain (Newtons) (micro) 75 115 102 156 118 180 151 227 Slope / Int. 3.33	(MPa) 0.3684 0.496112 0.643472 0.717152 -3.96E-04 1.00 Stress (MPa) 0.3684 0.501024 0.579616 0.741712 -1.72E-02
(Newtons) (micro) 75 129 101 172 131 222 146 251 Slope / Int. 2.88 Corr. Coeff. (r^2) Load Strain (Newtons) (micro) 75 115 102 156 118 180 151 227 Slope / Int. 3.33 Corr. Coeff. (r^2) Modulus 3.21 (GPa) 4.28	(MPa) 0.3684 0.496112 0.643472 0.717152 -3.96E-04 1.00 Stress (MPa) 0.3684 0.501024 0.579616 0.741712 -1.72E-02 1.00
(Newtons) (micro) 75 129 101 172 131 222 146 251 Slope / Int. 2.88 Corr. Coeff. (r^2) Load Strain (Newtons) (micro) 75 115 102 156 118 180 151 227 Slope / Int. 3.33 Corr. Coeff. (r^2) Modulus 3.21 (GPa) 4.28 3.22	(MPa) 0.3684 0.496112 0.643472 0.717152 -3.96E-04 1.00 Stress (MPa) 0.3684 0.501024 0.579616 0.741712 -1.72E-02 1.00
(Newtons) (micro) 75 129 101 172 131 222 146 251 Slope / Int. 2.88 Corr. Coeff. (r^2) Load Strain (Newtons) (micro) 75 115 102 156 118 180 151 227 Slope / Int. 3.33 Corr. Coeff. (r^2) Modulus 3.21 (GPa) 4.28 3.22 2.88	(MPa) 0.3684 0.496112 0.643472 0.717152 -3.96E-04 1.00 Stress (MPa) 0.3684 0.501024 0.579616 0.741712 -1.72E-02 1.00
(Newtons) (micro) 75 129 101 172 131 222 146 251 Slope / Int. 2.88 Corr. Coeff. (r^2) Load Strain (Newtons) (micro) 75 115 102 156 118 180 151 227 Slope / Int. 3.33 Corr. Coeff. (r^2) Modulus 3.21 (GPa) 4.28 3.33	(MPa) 0.3684 0.496112 0.643472 0.717152 -3.96E-04 1.00 Stress (MPa) 0.3684 0.501024 0.579616 0.741712 -1.72E-02 1.00
(Newtons) (micro) 75 129 101 172 131 222 146 251 Slope / Int. 2.88 Corr. Coeff. (r^2) Load Strain (Newtons) (micro) 75 115 102 156 118 180 151 227 Slope / Int. 3.33 Corr. Coeff. (r^2) Modulus 3.21 (GPa) 4.28 3.33 Average 3.39	(MPa) 0.3684 0.496112 0.643472 0.717152 -3.96E-04 1.00 Stress (MPa) 0.3684 0.501024 0.579616 0.741712 -1.72E-02 1.00
(Newtons) (micro) 75 129 101 172 131 222 146 251 Slope / Int. 2.88 Corr. Coeff. (r^2) Load Strain (Newtons) (micro) 75 115 102 156 118 180 151 227 Slope / Int. 3.33 Corr. Coeff. (r^2) Modulus 3.21 (GPa) 4.28 3.33 Average 3.39 Off fr/ 3.4 -0.4%	(MPa) 0.3684 0.496112 0.643472 0.717152 -3.96E-04 1.00 Stress (MPa) 0.3684 0.501024 0.579616 0.741712 -1.72E-02 1.00
(Newtons) (micro) 75 129 101 172 131 222 146 251 Slope / Int. 2.88 Corr. Coeff. (r^2) Load Strain (Newtons) (micro) 75 115 102 156 118 180 151 227 Slope / Int. 3.33 Corr. Coeff. (r^2) Modulus 3.21 (GPa) 4.28 3.33 Average 3.39 Off fr/ 3.4 -0.4% Std. Dev. 0.530	(MPa) 0.3684 0.496112 0.643472 0.717152 -3.96E-04 1.00 Stress (MPa) 0.3684 0.501024 0.579616 0.741712 -1.72E-02 1.00
(Newtons) (micro) 75 129 101 172 131 222 146 251 Slope / Int. 2.88 Corr. Coeff. (r^2) Load Strain (Newtons) (micro) 75 115 102 156 118 180 151 227 Slope / Int. 3.33 Corr. Coeff. (r^2) Modulus 3.21 (GPa) 4.28 3.33 Average 3.39 Off fr/ 3.4 -0.4%	(MPa) 0.3684 0.496112 0.643472 0.717152 -3.96E-04 1.00 Stress (MPa) 0.3684 0.501024 0.579616 0.741712 -1.72E-02 1.00
(Newtons) (micro) 75 129 101 172 131 222 146 251 Slope / Int. 2.88 Corr. Coeff. (r^2) Load Strain (Newtons) (micro) 75 115 102 156 118 180 151 227 Slope / Int. 3.33 Corr. Coeff. (r^2) Modulus 3.21 (GPa) 4.28 3.33 Average 3.39 Off fr/ 3.4 -0.4% Std. Dev. 0.530	(MPa) 0.3684 0.496112 0.643472 0.717152 -3.96E-04 1.00 Stress (MPa) 0.3684 0.501024 0.579616 0.741712 -1.72E-02 1.00

Load Strain Stress (Newtons) (micro) (MPa) 91 0.383136 78 105 125 0.51576 120 143 0.58944 186 0.746624 152 3.83 Slope / Int. 3.68E-02 Corr. Coeff. (r^2) 1.00 Load Strain Stress (MPa) (Newtons) (micro) 68 87 0.334016 92 124 0.451904 167 0.609088 124 159 215 0.781008 Slope / Int. 3.51 2.32E-02 Corr. Coeff. (r^2) 1.00 Load Strain Stress (MPa) (Newtons) (micro) 80 97 0.39296 110 138 0.54032 160 0.628736 128 207 0.805568 164 Slope / Int. 3.76 2.56E-02 Corr. Coeff. (r^2) 1.00 Load Strain Stress (Newtons) (micro) (MPa) 118 0.373312 76 102 163 0.501024 214 0.653296 133 243 0.766272 156 Slope / Int. 3.11 4.57E-04 Corr. Coeff. (r^2) 1.00 Load Strain Stress (Newtons) (micro) (MPa) 73 118 0.358576 99 162 0.486288 210 0.633648 129 162 265 0.795744 Slope / Int. 2.98 5.42E-03 Corr. Coeff. (r^2) 1.00 Modulus 3.83 (GPa) 3.51 3.76 3.11 2.98 Average 3.44 Off fr/ 3.4 1.2% Std. Dev. 0.382

180 Degrees

CONFIGURATION 1

3.41
18%
-2%
0.3%
3.87
2.99
26%

Radius (m)	0.00805
Area (m^2)	0.0002
Initial Load	(N)

Coeff. Var.

11.1%

•

0 Degrees Configuration 3	90 Degrees Configuration 3	CONFIGURATION 3	180 Degrees Configuration 3
Load Strain Stress	Load Strain	Stress	Loed Strain Stress
(Newtons) (micro) (MPa)	(Newtons) (micro)	(MPa)	(Newtons) (micro) (MPa)
64 100 0.314368		0.348752	66 87 0.324192
100 155 0.4912	96 138	0.471552	92 119 0.451904
131 204 0.643472	130 185	0.63856	122 157 0.599264
149 230 0.731888	165 237	0.81048	155 201 0.76136
Slope / Int. 3.20 -5.20E-03	Slope / Int. 3.41	3.63E-03	Slope / Int. 3.83 -6.45E-03
Corr. Coeff. (r^2) 1.00	Corr. Coeff. (r^2)	1.00	Corr. Coeff. (r^2) 1.00
Load Strain Stress	Load Strain	Stress	Load Strain Stress
(Newtons) (micro) (MPa)	(Newtons) (micro)	(MPa)	(Newtons) (micro) (MPa)
67 95 0.329104		0.334016	73 84 0.358576
92 129 0.451904	93 142	0.456816	102 121 0.501024
124 175 0.609088	120 184	0.58944	135 161 0.66312
158 226 0.776096	154 236	0.756448	169 205 0.830128
Slope / Int. 3.41 9.26E-03	Slope / Int. 3.18	6.26E-03	Slope / Int. 3.91 2.98E-02
Corr. Coeff. (r^2) 1.00	Corr. Coeff. (r^2)	1.00	Corr. Coeff. (r^2) 1.00
Load Strain Stress	Load Strain	Stress	Load Strain Stress
(Newtons) (micro) (MPa)	(Newtons) (micro)	(MPa)	(Newtons) (micro) (MPa)
68 82 0.334016	73 97	0.358576	75 117 0.3684
97 116 0.476464	102 138	0.501024	103 167 0.505936
107 134 0.525584	136 187	0.668032	136 225 0.668032
140 175 0.68768	172 238	0.844864	153 256 0.751536
Slope / Int. 3.76 2.92E-02	Slope / Int. 3.44	2.48E-02	Slope / Int. 2.76 4.51E-02
Corr. Coeff. (r^2) 1.00	Corr. Coeff. (r^2)	1.00	Corr. Coeff. (r^2) 1.00
Modulus 3.20	Modulus 3.41	1	Modulus 3.83
(GPa) 3.41	(GPa) 3.18		(GPa) 3.91
3.76	3.44		2.76
Average 3.45	Average 3.34		Average 3.50
Off fr/ 3.4 1.6%	Off fr/ 3,4 -1,7%		Ott tr/ 3.4 3.0%
Std. Dev. 0.286	Std. Dev. 0.147		Std. Dev. 0.642
Coeff. Var. 8.3%	Coeff. Var. 4.4%		Coeff. Var. 18.3%
		4	
MODULUS	(GPa)		
Average:	3.48	Radius (m) 0.00805	1
Uncertainty	: 20%	Area (m^2) 0.000204	
Off fr/ bend		Initial Load (N)	
Off fr/ 3.4	2.3%	\	4
Max (ellipse			
Min (ellipse			
Min - Max:	8%		

0 Degrees CONFIGURATION 4

Load	Strain		Stress
(Newtons)			(MPa)
6			0.334016
9!	-	158	
120			0.618912
161			0.790832
Slope / In		.69	4.17E-02
Corr. Coe	_		1.00
0011.000			1.00
Load	Strain		Stress
(Newtons)	(micro)		(MPa)
` 70		110	0.34384
98		162	0.481376
130) :	219	0.63856
16	5 2	281	0.81048
Slope / In	t. 2	.73	4.11E-02
Corr. Coe			1.00
	<u> </u>		
Load	Strain		Stress
Load	Strain		
	Strain (micro)		
Load (Newtons)	Strain (micro)	117 167	(MPa) 0.348752 0.496112
Load (Newtons) 7	Strain (micro)	117 167	(MPa) 0.348752
Load (Newtons) 7 [.] 10 [.]	Strain (micro)	117 167	(MPa) 0.348752 0.496112 0.658208
Load (Newtons) 7 ⁻ 10 ⁻ 134 168	Strain (micro)	117 167 226 289	(MPa) 0.348752 0.496112 0.658208
Load (Newtons) 7 [.] 10 [.] 134	Strain (micro) (1 3 1 5 2	117 167 226 289	(MPa) 0.348752 0.496112 0.658208 0.825216
Load (Newtons) 7 ⁻ 10 ⁻ 134 160 Slope / In	Strain (micro) (1 3 1 5 2	117 167 226 289	(MPa) 0.348752 0.496112 0.658208 0.825216 2.99E-02
Load (Newtons) 7 ⁻ 10 ⁻ 134 160 Slope / In	Strain) (micro) 	117 167 226 289	(MPa) 0.348752 0.496112 0.658208 0.825216 2.99E-02
Load (Newtons) 7' 10' 134 160 Slope / In Corr. Coe	Strein (micro) (1 2 3 1 1 1 2 2 2 2 2 2	117 167 226 289 .76 .76	(MPa) 0.348752 0.496112 0.658208 0.825216 2.99E-02
Load (Newtons) 7 ⁻¹ 10 ⁻¹ 134 160 Slope / In Corr. Coe	Strein (micro) (1 2 3 1 1 1 2 2 2 2 2 2	117 167 226 289 .76	(MPa) 0.348752 0.496112 0.658208 0.825216 2.99E-02
Load (Newtons) 7 ⁻¹ 10 ⁻¹ 134 160 Slope / In Corr. Coe	Strain) (micro) 	117 167 226 289 .76 .76	(MPa) 0.348752 0.496112 0.658208 0.825216 2.99E-02
Load (Newtons) 7' 10' 134 160 Slope / In Corr. Coe Modulus (GPa)	Strain) (micro) 	117 167 226 289 .76 .73 .76 .73	(MPa) 0.348752 0.496112 0.658208 0.825216 2.99E-02
Load (Newtons) 7 ⁴ 10 ⁷ 134 160 Slope / In Corr. Coe Modulus (GPa) Average	Strain (micro) (3 3 5 5 7 7 2 2 2 2 2 2 2 2 2 2 2 2 19. -19.	117 167 226 289 .76 .73 .76 .73	(MPa) 0.348752 0.496112 0.658208 0.825216 2.99E-02
Load (Newtons) 7' 10' 134 160 Slope / In Corr. Coe Modulus (GPa) Average Off tr/ 3.4	Strain (micro) (3 3 5 5 7 7 2 2 2 2 2 2 2 2 2 2 2 0.0	117 167 226 289 76 73 73 73 8%	(MPa) 0.348752 0.496112 0.658208 0.825216 2.99E-02

CONFIGURATION 4				CONFI	GURATIO
	Load	Strair	-	Stress	
	(Newtons			(MPa)	
	7			0.358	
•	10	-		0.496	
	12	-		0.604	
	16			0.805	
	Slope / In		2.76	4.14E	
	Corr. Coe	off. (r^2)		0	.99
	Load	Strair	1	Stress	
	(Newtons		-	(MPa)	
	6		98		368
1	9	-		0.46	
5	12	7		0.623	
•	16	2		0.795	
	Slope / Ir	nt.	3.21	4.39E	-03
	Corr. Coe			1	.00
	Load	Strair	1	Stress	
	(Newtons		-		
	7			0.348	752
	10	1		0.496	
1	13	3	203	0.653	296
;	16	6	258	0.815	392
2	Slope / Ir	nt.	3.12	1.29E	-02
	Corr. Coe	off. (r^2)		1	.00
4					
	Modulus		2.76		
	(GPa)		3.21		
	l		3.12		
	Average		3.03		
	Off fr/ 3.4	-1	0.9%		
	Std. Dev.		D.238		
	Coeff. Va	r	7.9%		
				-	

90 Degrees

MODULUS (GPa)	
Average:	3.01
Uncertainty:	4%
Off fr/ bending:	-14%
Off fr/ 3.4	-11.3%
Max (ellipse):	3.31
Min (ellipse):	2.73
Min - Max:	19%

ON 4	180 Degrees Configuration 4		
	Load	Strain	Stress
	(Newtons)	(micro)	(MPa)
	70	97	0.34384
	100	139	0.4912
	131		0.643472
	164		0.805568
	Slope / Int.	3.40	1.70E-02
	Corr. Coeff	. (r^2)	1.00
	Load	Strain	Stress
	(Newtons)	(micro)	
	74		0.363488
	104		0.510848
	137		0.672944
	174		0.854688
	Slope / Int.		-5.13E-03
	Corr. Coeff	. (r^2)	1.00
	Load	Strain	Stress
	• •	(micro)	• •
	76		0.373312
	105	156	
	141	210	
	175	265	
	Slope / Int.		
	Corr. Coef	. (r^2)	1.00
	Modulus	3.40	
	(GPa)	3.34	
	I.	3.17	
	Average	3.30	
	Off tr/ 3.4	-2.9%	
	Std. Dev.	0.119	
	Coeff. Var.	3.6%	

Radius (m)	0.00805
Area (m^2)	0.000204
Initial Load	(N)

A.3 VALIDATION OF MACREFLEX OPTICAL MEASUREMENT SYSTEM

A.3.1 SUMMARY

A series of tests were conducted to validate the precision of the MacReflex Position Sensor for a variety of configurations. The MacReflex Position Sensor is a CCD camera system capable of tracking infrared-reflecting markers, using a strobe centered at 885 nm, through movements in three dimensions. It employs a 604H x 294V-pixel CCD; however, proprietary hardware and software resolve the image into a 27,000H x 19,400V pixel grid. It is guaranteed to track up to 1000 markers varying from 0.5% to 18% of FOV and samples at 60 Hz. The CCD resolves the image into pixels no greater than 1/30,000 of the FOV (field of view of the camera across the diagonal) with a standard deviation of 0.003% of FOV from spatio-temporal noise. The technical specifications claim absolute accuracy (precision of a measurement) of between 1/10,000 (or 0.01%) and 1/50,000 (or 0.002%) FOV and image linearity for 50 mm or higher lenses to within less than 0.1% FOV.

The system employs an electronic shutter that samples an object's position in the first 1/4000 second of a measurement at a rate of 60 Hz in order to prevent "smearing" of the centroid of moving objects. The system calculates a marker position as the centroid of the entire marker (not just edges) without using an averaging function to describe the threshold.

Tests were conducted to evaluate the technical claims of the system's precision for the following types of measurements, using both a 50 mm lens and an 18-180 mm zoom lens:

- 1) 2D Precision tracking the stationary location of a single marker
- 2) 2D Relative Accuracy measuring distance between two marker locations
- 3) 2D Dynamic Accuracy tracking the movement of a single marker
- 4) 3D Precision tracking marker locations using a 3D reference frame based on the CAB 80 calibration frame

The system was evaluated using a number of different marker types, camera placements, and backgrounds. Therefore, there were a number of qualitative conclusions drawn which did not warrant quantitative data.

The experiments indicated that flat, diamond-shaped markers of Scotchlite (3M) reflective materials approximately 0.2% - 5% of the FOV contrasted by a flat black background are most precisely tracked by the system. The markers may be either two- or three-dimensional, but should be free of surface features that could change their appearance from different vantage points. The number of markers and their sizes must be determined and input to the software setup before testing to avoid poor or erratic measurements. Finally, in a three-dimensional measurement the cameras should be positioned at $\pm 45^{\circ}$ from the normal of the marker for maximum precision.

In general, the system is able to resolve the static location of a "good" marker to within 2 pixels (0.006% FOV) in X and 3 pixels (0.009% FOV) in Y. With 50 mm lenses (200 mm FOV), the system uncertainty is approximately 11 μ m in X and 16 μ m in Y for a two-dimensional measurement. With a 180 mm lens (18 mm FOV), the system uncertainty is approximately 2 μ m in X and 4 μ m in Y for a two-dimensional measurement. The measurement of movement in the "depth" of a camera system is about three times less precise than the measurement of movement in a plane normal to the camera system, necessitating a wide angle in the sweep between the cameras. The CAB 80 calibration frame is able to provide a precise reference frame to within 10 μ m in the X-,Y-, and Z-directions when the cameras are placed 90° apart.

A.3.2 CONCLUSIONS FROM INFORMAL EXPERIMENTS

From informal experimentation it was concluded that lightly-colored or reflective materials in the FOV can be misinterpreted (with a high degree of randomness) by the system to be markers and can blur the boundaries of actual markers, increasing the uncertainty in a measurement. Metal and water, in particular, can easily fool the system. Therefore, the material surrounding the camera should be colored flat black if possible.

The most effective markers are coated with Scotchlite (3M) tape, which is embedded with ground glass beads. Metal markers are also highly contrasting. Materials such as white or metallic silver paint on a black background do not provide sufficient contrast to act as markers. All markers, especially metal ones must be free of surface features or scratches than can be resolved by the cameras. As the marker moves, the surface features can come in and out of view, shifting the marker centroid and, therefore, adversely affecting system resolution. Should markers have unavoidable surface features that can be resolved by the monitor, adjusting the camera slightly out of focus can remove the features without significantly altering the system resolution.

The ideal marker size is about 0.5% to 10.0% of the FOV for the 50 mm lens and about half that for the zoom lens. This provides maximum resolution, compromising between a marker which is too large for a precise centroid and too small to be seen with reliability. Calibration frames should have markers of the same size (or smaller) as those used in the actual test.

When making two-dimensional measurements, a calibration scale must first be determined. This is best done by scaling to two points which bracket the range of motion expected for the actual tests. When setting up the software for a test, the marker size should be determined by setting the minimum and maximum marker sizes to their limits, monitoring the markers to determine their actual sizes, and then resetting the marker minimum to 3 pixels smaller and the marker maximum to 3 pixels larger than their actual size.

A.3.3 2D PRECISION

The ability of the system to track the two-dimensional position of a stationary marker is a good indicator of measurement uncertainty. This precision was assessed using a variety of fields of view and different marker types. Tests were conducted using markers made of reflective, Scotchlite (3M) materials that were fixed to a piece of trabecular bone, painted black with Fabercastle waterproof black ink. The position of the marker was recorded 150 times over a period of five seconds and plotted versus time. Two standard deviations in the MacReflex position measurement was recorded as the uncertainty.

In order to scale pixels to millimeters, the marker position was recorded, and then the marker was moved a known distance (measured by an LVDT) and its second position recorded. The known distance between the two points was used to scale pixels to millimeters, using the formula

Scale (Camera to cross-head) =
$$\frac{\Delta Y (cross-head)}{\sqrt{\Delta X^2 + \Delta Y^2} (camera)} \left(\frac{mm}{pixel}\right)$$
 [A.3]

During the actual test, the marker was held stationary midway between the two scaling points.

Two-dimensional measurement uncertainty was assessed in five tests of stationary markers viewed by 50 mm lens. A 9 mm displacement was used for scaling. The cameras were approximately 1.1 m from the markers. The uncertainties for the tests in the X and Y directions, expressed as two standard deviations, are shown in Table A.2. Figure A.11 shows a sample of the position vs. time plots for the high power zoom lens.

Test	FOV	τ	Jncertainty ()	K)		Uncertainty (Y)	
	mm	pixels	% FOV	mm	pixels	% FOV	mm
Test 1 Camera 1	190	2.6	0.008	0.015	3.7	0.011	0.021
Test 1 Camera 2	209	2.6	0.008	0.017	3.2	0.010	0.020
Test 2 Camera 1	159	1.1	0.003	0.005	0.0	0.000	0.000
Test 3 Camera 1	190	1.6	0.005	0.009	2.7	0.008	0.015
Test 3 Camera 2	190	2.6	0.008	0.016	3.8	0.011	0.025
Test 4 (with ink)	156	1.6	0.005	0.008	3.0	0.009	0.014
Test 5 (no ink)	156	1.3	0.004	0.006	2.9	0.009	0.014
AVERAGE		1.9	0.006	0.011	2.8	0.008	0.016

In the first through third tests, hemispherical, 3 mm markers (approximately 1.6% FOV) were used. In the first test, the marker was in the upper 10% of the camera's field of view, and in the second and third tests the marker was in the middle of the camera's field of view. In the fourth test a flat diamond maker (1.4% FOV) was placed against a bone cylinder painted black. In the fifth test, a flat diamond marker (1.4% FOV) was placed against a bone cylinder that had not been painted. The fact that the uncertainty does not change much from test to test, suggests:

- 1) The distortion (nonlinearity) of the lens is very small even near the edges of the field of view,
- 2) For the 50 mm lens, both flat diamond and hemispherical markers produce about the same resolution,
- 3) and the 50 mm lens is able to track markers on a natural bone background as easily as on a black bacground.

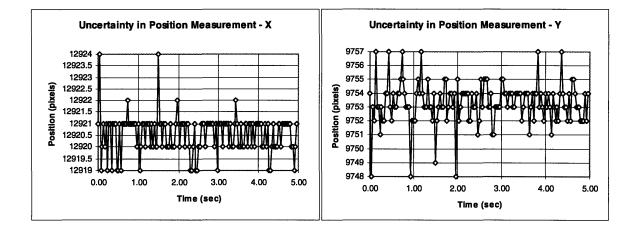


Figure A.11 - Uncertainty in the X- and Y-position of a 1.5% FOV marker using a 50 mm lens with a 156 mm FOV. Two standard deviations in the position was \pm 1.6 pixels / 0.006 mm in X and \pm 3.0 pixels/0.014 mm in Y.

Measurements of the diamond markers were made using a 50 mm lens at a distance from the marker of 365 mm, even though the lens is unable to focus closer than about 1000 mm. This test was performed in order to determine if a smaller field of view could be attained by tracking unfocused markers. Resolution dropped tenfold in this test to around 0.036% FOV (0.020 mm), which is actually worse resolution than with the larger field of view with a focused marker.

Two-dimensional measurement uncertainty was also assessed for stationary markers using a 180 mm zoom lens. Approximately 9 mm displacement was used for scaling. Table A.3 shows the position uncertainties, expressed as two standard deviations.

Test	FOV	U	ncertainty (X)		Uncertainty ()	0
	mm	pixels	% FOV	mm	pixels	% FOV	mm
Test 1 (black bckgnd)	18	2.7	0.008	0.0015	5.7	0.017	0.0032
Test 2 (black bckgnd)	35	1.0	0.003	0.0010	3.0	0.009	0.0031
Test 3 (black bckgnd)	78	2.1	0.006	0.0050	6.4	0.019	0.0152
Test 5 (natural bone)	27	4.0	0.012	0.0030	7.1	0.021	0.0057

Table A.3 - Uncertainty for 2D measurements with zoom lenses

It should be noted that the zoom lens did not have an infrared filter. However, informal tests showed that the uncertainty was the approximately same with or without the infrared filter for both the 50 mm lens and the zoom lens. The fact that the uncertainty did not improve linearly with the decrease in FOV may be explained by the fact that the marker in the smaller FOV appeared larger, therefore the "fuzziness" of its edges was commensurately magnified. The higher magnifications were also able to resolve the surface features of the markers into dark pixels in the otherwise white marker, perhaps making the calculation of a stable centroid more difficult. The lower resolution of Test 5 also suggests that a black background improves the resolution over a natural bone background.

A.3.4 2D RELATIVE ACCURACY

The previous measurements assessed the precision of a single measurement. In order to assess the accuracy of distance measurements, the distance between two marker positions as measured by the MacReflex system was compared to the distance measured by the LVDT of an Instron testing frame. This test was designed to identify problems due to nonlinearity of the image field.

Tests were conducted using markers made of reflective, Scotchlite (3M) tape fixed to a piece of trabecular bone, painted black with Fabercastle waterproof black ink. In order to scale pixels to millimeters, the marker position was recorded. Then the marker was moved a known distance (measured by an LVDT) and its second position recorded. The known distance between the two points bracketed the range of motion in the actual tests and was used to scale pixels to millimeters with equation A.3.

During the actual test, the marker was translated from one stationary point to the next in 0.1 mm increments. The expected change in X and Y (in pixels) based on the crosshead movement was compared to the change in X and Y recorded by the MacRe-flex system. The difference between the two (in mm) was reported as the error.

For the 50 mm lens (180 mm FOV), the distance between scaling points was approximately 20 mm. The error in nine 0.1 mm increments, two 0.5 mm increments, and four 1.0 mm increments was averaged. For the zoom lens (18 mm FOV), the scaling distance was 2 mm, and the error in thirteen 0.1 mm increments and three 1.2 mm increments was averaged. The results for the relative accuracy of the system are shown in Table A.4.

Lens	Uncertainty (X) (mm / % FOV)	Uncertainty (Y) (mm / % FOV)
50 mm (180 mm FOV)	±0.0100 (0.006%)	±0.0220 (0.012%)
Zoom (18.0 mm FOV)	±0.0010 (0.006%)	±0.0030 (0.017%)

Table A.4 - Relative accuracy of position measurements

The data from these tests are shown on the following page.

-

	CROSSHE Y	Delta	MACREFLE	Y	Deita X	Delta Y	Exp Delta X	Exp Delta Y	Елтог Х	Error Y
Scaling	mm 10.0		pixels 14374.0	pixels 5965.0	pixels	pixels	pixels	pixels	mm	mm
Reference	5.0			<u>15011.0</u> 9617.0	<u>-547.0</u> 335.0	<u>9046.0</u> -5394.0	-547.00 328.20	<u>9046.0</u> -5427.6		0.000
	7.0			11428.0	-111.0		-109.40	1809.2		0.00
	6.9				-6.0		-10.94	180.9		0.00
	6.8				-14.0		-10.94	180.9		0.00
	6.7 6.6			11986.0 12166.0	-10.0 -8.0		-10.94 -10.94	180.9 180.9		0.00 0.00
	6.5			12345.0	-11.0		-10.94	180.9		0.00
	0.0			120 1010				AVERAGE	0.002	0.00
		ece of tape]		MAX	0.004	0.01
		e (full zoo			100.10					
			aX (pixel/mm) aY (pixel/mm)		109.40 -1809.20					
			ar (pixevnin) d (mπ/pixel)		-0.00055					
	CROSSHI Y	EAD Delta	MACREFLE	Y	Delta X	Deita Y	Exp Delta X	Exp Delta Y	Error X	Error Y
Scaling	_mm 8.5	mm	pixels 14239.0	pixels 8650.0	pixels	pixels	pixels	pixels	mm	mm
Reference	6.5			12265.0	-222.0	3615.0	-222.00	3615.0	0.000	0.00
	7.7	1.2	2 14148.0	10102.0	131.0	-2163.0	133.20	-2169.0	0.001	0.00
	7.6							180.8		0.00
	7.5									0.00
	7.4 7.3				-11.0 -8.0					0.00
	7.3	-0.1	14100.0	10847.0	-8.0	191.0	-11.10	180.8 AVERAGE	0.002	0.00
	1.5 mm -	ece of tape				1		MAX	0.001	0.00
		se (full zoo							0.002	0.00
			a X (pixel/mm)		111.00					
	Scale xhee	d to carner	a Y (pixel/mm)		-1807.50					
	Scale cam	era to xhea	d (mm/pixel)	<u> </u>	-0.00055				<u> </u>	
	CROSSHI	EAD Delta	MACREFLE	Y Y	Delta X	Delta Y	Exp Delta X	Exp Delta Y	Error X	Error Y
	mm	mm	pixels	pixels	pixels	pixels	pixeis	pixels	mm	mm
Scaling Reference	8.0 6.0		13546.0 13330.0	6180.0 9804.0	-216.0	3624.0	-216.00	3624.0	0.000	0.00
	7.2							-2174.4		
	7.1							181.2		0.00
	7.0						-10.80	181.2	0.000	0.00
	6.9							181.2		0.00
	6.8	-0.1	13420.0	8358.0	-10.0	180.0	-10.80	181.2		0.00
	0.0					1		AVERAGE	0.001	0.00
	Zoom lens	ece of tape	•					MAX	0.001	0.00
			a X (pixel/mm)		108.00					
			a Y (pixel/mm)		-1812.00					
			d (mm/pixel)		-0.00055					
	CROSSHI	AD	MACREFLE	v						
	Y	Delta	x	Ŷ	Delta X	Delta Y	Exp Delta X	Exp Delta Y	Error X	Error Y
Scaling	mm 30.0	mm	pixels	pixels	pixels	pixels	pixels	pixels	mm	mm
Scanng Reference	30.0		14115.0 14250.0	10110.0 6719.0	135.0	-3391.0	135.00	-3391.0	0.000	0.00
	21.0			8599.0	-78.0			1865.1		
	20.5									
					2.0	-00.0	3.38	-04.0	0.006	
	20.0	-0.5	5 14182.0		8.0		3.38 3.38	-04.0 -84.8		0.00
	20.0 19.9	-0.5		8430.5		-83.5			0.027	
	19.9 19.8	-0. -0. -0.	14183.0 14183.0	8430.5 8417.0 8401.5	8.0 1.0 0.0	-83.5 -13.5 -15.5	3.38 0.68 0.67	-84.8 -17.0 -17.0	0.027 0.002 0.004	0.02 0.00
	19.9 19.8 19.7	-0. -0. -0.	14183.0 14183.0 14183.0	8430.5 8417.0 8401.5 8383.5	8.0 1.0 0.0 0.0	-83.5 -13.5 -15.5 -18.0	3.38 0.68 0.67 0.68	-84.8 -17.0 -17.0 -17.0	0.027 0.002 0.004 0.004	0.02 0.00 0.00
	19.9 19.8 19.7 19.6	-0. -0. -0. -0.	I 14183.0 I 14183.0 I 14183.0 I 14183.0 I 14183.0	8430.5 8417.0 8401.5 8383.5 8363.0	8.0 1.0 0.0 0.0 0.0	-83.5 -13.5 -15.5 -18.0 -20.5	3.38 0.68 0.67 0.68 0.67	-84.8 -17.0 -17.0 -17.0 -17.0 -17.0	0.027 0.002 0.004 0.004 0.004	0.02 0.00 0.00 0.02
	19.9 19.8 19.7	-0. -0. -0. -0.	I 14183.0 I 14183.0 I 14183.0 I 14183.0 I 14183.0	8430.5 8417.0 8401.5 8383.5 8363.0	8.0 1.0 0.0 0.0	-83.5 -13.5 -15.5 -18.0 -20.5	3.38 0.68 0.67 0.68 0.67	-84.8 -17.0 -17.0 -17.0 -17.0 -17.0	0.027 0.002 0.004 0.004 0.004 0.002	0.02 0.00 0.00 0.02 0.01
	19.9 19.8 19.7 19.6 19.5	-0. -0. -0. -0.	I 14183.0 I 14183.0 I 14183.0 I 14183.0 I 14183.0 I 14184.0	8430.5 8417.0 8401.5 8383.5 8363.0	8.0 1.0 0.0 0.0 0.0	-83.5 -13.5 -15.5 -18.0 -20.5	3.38 0.68 0.67 0.68 0.67	-84.8 -17.0 -17.0 -17.0 -17.0 -17.0 AVERAGE	0.027 0.002 0.004 0.004 0.004 0.004 0.002 0.009	0.02 0.00 0.00 0.02 0.01 0.02
	19.9 19.8 19.7 19.6 19.5 3 mm Mac	-0. -0. -0. -0. -0.	I 14183.0 I 14183.0 I 14183.0 I 14183.0 I 14183.0 I 14184.0	8430.5 8417.0 8401.5 8383.5 8363.0	8.0 1.0 0.0 0.0 0.0	-83.5 -13.5 -15.5 -18.0 -20.5	3.38 0.68 0.67 0.68 0.67	-84.8 -17.0 -17.0 -17.0 -17.0 -17.0	0.027 0.002 0.004 0.004 0.004 0.002	0.00 0.02 0.00 0.00 0.02 0.01 0.02 0.08
	19.9 19.8 19.7 19.6 19.5 3 mm Mac 50 mm Jer	-0. -0. -0. -0. -0. -0.	I 14183.0 I 14183.0 I 14183.0 I 14183.0 I 14183.0 I 14184.0 Ker	8430.5 8417.0 8401.5 8383.5 8363.0 8348.0	8.0 1.0 0.0 0.0 0.0 1.0	-83.5 -13.5 -15.5 -18.0 -20.5 -15.0	3.38 0.68 0.67 0.68 0.67	-84.8 -17.0 -17.0 -17.0 -17.0 -17.0 AVERAGE	0.027 0.002 0.004 0.004 0.004 0.004 0.002 0.009	0.02 0.00 0.00 0.02 0.01 0.02
	19.9 19.8 19.7 19.6 19.5 3 mm Mac 50 mm Jer Scale xhee	-0. -0. -0. -0. -0. -0.	I 14183.0 I 14183.0 I 14183.0 I 14183.0 I 14183.0 I 14184.0	8430.5 8417.0 8401.5 8383.5 8363.0 8348.0	8.0 1.0 0.0 0.0 0.0	-83.5 -13.5 -15.5 -18.0 -20.5 -15.0	3.38 0.68 0.67 0.68 0.67	-84.8 -17.0 -17.0 -17.0 -17.0 -17.0 AVERAGE	0.027 0.002 0.004 0.004 0.004 0.004 0.002 0.009	0.02 0.00 0.00 0.02 0.01 0.02
	19.9 19.8 19.7 19.6 19.5 3 mm Mec 50 mm Ier Scale xhee Scale xhee	-0. -0. -0. -0. -0. -0.	I 14183.0 I 14183.0 I 14183.0 I 14183.0 I 14183.0 I 14184.0 Ker a X (pixel/mm)	8430.5 8417.0 8401.5 8383.5 8363.0 8348.0	8.0 1.0 0.0 0.0 1.0 	-83.5 -13.5 -15.5 -15.0 -20.5 -15.0	3.38 0.68 0.67 0.68 0.67	-84.8 -17.0 -17.0 -17.0 -17.0 -17.0 AVERAGE	0.027 0.002 0.004 0.004 0.004 0.004 0.002 0.009	0.02 0.00 0.00 0.02 0.01 0.02
	19.9 19.8 19.7 19.6 19.5 3 mm Mac 50 mm ier Scale xhee Scale xhee Scale cam	-0. -0. -0. -0. -0. -0. -0. -0. -0. -0.	I 14183.0 I 14183.0 I 14183.0 I 14183.0 I 14183.0 I 14184.0 Keer a X (pixe/mm) a Y (pixe/mm) d (mm/pixel)	8430.5 8417.0 8401.5 8383.5 8363.0 8348.0	8.0 1.0 0.0 0.0 1.0 	-83.5 -13.5 -15.5 -15.0 -20.5 -15.0	3.38 0.68 0.67 0.68 0.67	-84.8 -17.0 -17.0 -17.0 -17.0 -17.0 AVERAGE	0.027 0.002 0.004 0.004 0.004 0.004 0.002 0.009	0.02 0.00 0.00 0.02 0.01 0.02
	19.9 19.8 19.7 19.6 19.5 3 mm Mac 50 mm ler Scale xhee Scale xhee Scale cam CROSSHI Y	-0. -0. -0. -0. -0. -0. -0. -0. -0. -0.	1 14183.0 1 14184.0 1 1418	8430.5 8417.0 8401.5 8383.5 8363.0 8348.0	8.0 1.0 0.0 0.0 1.0 -6.75 169.55 -0.00589 Delta X	-83.5 -13.5 -15.5 -18.0 -20.5 -15.0 Deita Y	3.38 0.68 0.67 0.68 0.67 0.68 Exp Deita X	-84.8 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 MAX Exp Della Y	0.027 0.002 0.004 0.004 0.004 0.004 0.002 0.009	0.02 0.00 0.00 0.02 0.01 0.02
Scaling	19.9 19.8 19.7 19.6 19.5 3 mm Mac 50 mm ler Scale khee Scale khee Scale khee Scale carm CROSSHE Y	-0.: -0 -0 -0 -0 -0 -0 -0	14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14184.0 ker a X (pixel/mm) d (mm/pixel) MACREFLE x pixels	8430.5 8417.0 8401.5 8383.5 8363.0 8348.0 8348.0	8.0 1.0 0.0 0.0 1.0 -6.75 169.55 -0.00589	-83.5 -13.5 -15.5 -18.0 -20.5 -15.0	3.38 0.68 0.67 0.68 0.67 0.68	-84.8 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 AVERAGE MAX	0.027 0.002 0.004 0.004 0.004 0.004 0.002 0.009 0.027	0.02 0.00 0.00 0.01 0.02 0.01
Scaling Reference	19.9 19.8 19.7 19.6 19.5 3 mm Mac 50 mm ler Scale xhee Scale xhee Scale cam CROSSHI Y	-0.0. -0.0.0. -0.0.0.0.	1 14183.0 1 14183.0 1 14183.0 1 14183.0 1 14183.0 1 14183.0 1 14184.0 ker a X (pixel/mm) a Y (pixel/mm) d (mm/pixel) MACREFLE X pixels 16697.0	8430.5 8417.0 8401.5 8383.5 8363.0 8348.0 ¥ ¥ pixels 12215.0	8.0 1.0 0.0 0.0 1.0 -6.75 169.55 -0.00589 Delta X pixels	-83.5 -13.5 -15.5 -18.0 -20.5 -15.0 Deita Y	3.38 0.68 0.67 0.68 0.67 0.68 0.68	-84.8 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 AVERAGE MAX Exp Detta Y pixels	0.027 0.002 0.004 0.004 0.002 0.009 0.027 Error X mm	0.02 0.00 0.00 0.01 0.02 0.08 Error Y mm
	19.9 19.8 19.7 19.6 19.5 3 mm Mac 50 mm ler Scale xhee Scale xhee Scale cam CROSSHE Y mm	-0.0. -0.0.0. -0.0.0. -0.0.0. -0.0.0.0.	14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14184.0 (pixel/mm) d (mm/pixel) MACREFLE x pixels 16697.0 16695.0	8430.5 8417.0 8401.5 8383.5 8363.0 8348.0 8348.0	8.0 1.0 0.0 0.0 1.0 -6.75 169.55 -0.00589 Delta X	-83.5 -13.5 -15.5 -15.0 -20.5 -15.0 Delta Y pixels -2887.0	3.38 0.68 0.67 0.68 0.67 0.68 Exp Deita X	-84.8 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 MAX Exp Della Y	0.027 0.002 0.004 0.004 0.004 0.009 0.009 0.027 Error X mm	0.02 0.00 0.02 0.01 0.02 0.08
	19.9 19.8 19.7 19.6 19.5 3 mm Mac 50 mm ler Scale xhee Scale xhee Scale xhee Scale xhee Scale xhee Scale xhee Scale xhee 100 15.0 14.0 13.0 13.0		1 14183.0 1 14183.0 1 14183.0 1 14183.0 1 14183.0 1 14183.0 1 14183.0 1 14183.0 1 14183.0 1 14184.0 ker a X (pixel/mm) d (mm/pixel) MACREFLE X pixels 16697.0 1 16598.0 0 16598.0 0 16593.0	8430.5 8417.0 8401.5 8383.5 8363.0 8348.0 X Y pixels 12215.0 9328.0	8.0 1.0 0.0 0.0 1.0 -6.75 169.55 -0.00589 Delta X pixels -92.0	-83.5 -13.5 -13.5 -15.5 -18.0 -20.5 -15.0 Detta Y pixels -2887.0 -193.5	3.38 0.68 0.67 0.68 0.67 0.68 0.68 0.68 0.68	-84.8 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 MAX Exp Delta Y pixels -2887.0	0.027 0.002 0.004 0.004 0.002 0.009 0.027 Error X mm	0.02 0.00 0.00 0.02 0.01 0.02 0.08 Error Y mm
	19.9 19.7 19.7 19.6 19.5 3 mm Mec 50 mm ler Scale xhee Scale xhe	-15.0 -1.0.	14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14184.0 ker a X (pixel/mm) d (mm/pixel) MACREFLE x pixels 0 16597.0 16598.0 16598.0 16598.0 16598.0 16598.0	8430.5 8417.0 8401.5 8383.5 8363.0 8348.0 X Y pixele <i>12215.0</i> <i>9328.0</i> 9134.5 8943.0 8740.0	8.0 1.0 0.0 0.0 1.0 -6.75 169.55 -0.00589 -0.0057 -0.00589 -0.00589 -0.0057	-83.5 -13.5 -15.5 -18.0 -20.5 -15.0 Delta Y pixels -2887.0 -193.5 -191.5 -203.0	3.38 0.68 0.67 0.68 0.67 0.68 0.67 0.68 Exp Delta X pixels -92.00 -6.13	-84.8 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -192.5 -2887.0 -192.5	0.027 0.002 0.004 0.004 0.004 0.009 0.002 0.0027 Error X mm	0.02 0.00 0.02 0.01 0.02 0.08 Error Y mm 0.00 0.00 0.00
	19.9 19.8 19.7 19.6 19.5 3 mm Mec 50 mm ler Scale xhee Scale xhe	-15.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1	14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14184.0 V(pixel/mm) MACREFLE X pixels 16697.0 16695.0 16598.0 16586.0 16586.0 16586.0 16586.0 16586.0 16586.0 16586.0 16586.0 16586.0 16586.0 16586.0	8430.5 8417.0 8401.5 8383.5 8363.0 8348.0 9348.0 9348.0 9328.0 9134.5 8943.0 8740.0 8346.5	8.0 1.0 0.0 0.0 1.0 -6.75 169.55 -0.00589 -92.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -13.0	-83.5 -13.5 -15.5 -15.5 -15.0 -20.5 -15.0 -15.0 Potta Y pixels -2887.0 -193.5 -191.5 -203.0 -393.5	3.38 0.68 0.67 0.68 0.67 0.68 0.67 0.68 Exp Detta X pixels -92.00 -6.13 -6.13 -6.13 -6.13	-84.8 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 AVERAGE MAX Exp Delta Y pixels -2887.0 -192.5 -192.5 -192.5 -192.5 -384.9	0.027 0.004 0.004 0.004 0.002 0.009 0.027 Error X mm	0.02 0.00 0.02 0.01 0.02 0.08 Error Y mm
	19.9 19.8 19.7 19.6 19.5 50 mm ler 50 mm ler 50 cale xhee Scale xhee Scale		14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14184.0 ker a X (pixel/mm) 4 (mm/pixel) MACREFLE x pixels 16697.0 16598.0 16598.0 16593.0 16573.0 16577.0	8430.5 8417.0 8401.5 8383.5 8363.0 8348.0 Y pixels 12215.0 9328.0 9134.5 8943.0 8740.0 8346.5 8331.0	8.0 1.0 0.0 0.0 1.0 -6.75 169.55 -0.00589 Delta X pixels -0.00589 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0	-83.5 -13.5 -15.5 -15.5 -15.0 -20.5 -15.0 Delta Y pixels -2887.0 -193.5 -193.5 -193.5 -203.0 -393.5 -15.5	3.38 0.68 0.67 0.68 0.67 0.68 0.67 0.68 0.67 0.68 0.67 0.68 0.67 0.613 -6.13 -6.13 -6.13 -12.27 -0.61	-84.8 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 AVERAGE MAX Exp Delta Y pixels -2887.0 -192.5 -192.5 -192.5 -384.9 -384.9 -19.2	0.027 0.002 0.004 0.004 0.004 0.009 0.002 Error X mm 0.000 0.005 0.006 0.005 0.004 0.035	0.02 0.00 0.02 0.01 0.02 0.08 Error Y mm 0.00 0.00 0.00 0.00 0.00 0.00
	19.9 19.7 19.7 19.7 19.6 19.5 3 mm Mec 50 mm ler Scale xhee Scale xhee Scal	-15.0 -1.0.1 -0.0.1 -0.0.1 -0.0.1 -0.0.1 -0.1 -0.1 -0.1 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -0.0 -	14183.0 14180.0 14180.0 14180.0 14180.0 14180.0 14180.0 <td< td=""><td>8430.5 8417.0 8401.5 8383.5 8363.0 8348.0 9 9 9 12215.0 9328.0 9134.5 8943.0 8740.0 8346.5 8331.0 8313.0</td><td>8.0 1.0 0.0 0.0 1.0 -6.75 169.55 -0.00589 Delta X pixels -92.0 -7.0 -5.0 07.0 -5.0 01.5</td><td>-83.5 -13.5 -15.5 -15.0 -15.0 -20.5 -15.0 Delta Y pixels -2887.0 -193.5 -191.5 -203.0 -393.5 -15.5 -18.0</td><td>3.38 0.68 0.67 0.68 0.67 0.58 Exp Detta X pixels -92.00 -6.13 -6.13 -6.13 -6.13 -6.13 -6.13</td><td>-84.8 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 AVERAGE MAX Exp Delta Y pixels -2887.0 -192.5 -192.5 -192.5 -384.9 -192.2 -384.9 -192.2 -384.9</td><td>0.027 0.002 0.004 0.004 0.009 0.009 0.002 Error X mm 0.000 0.005 0.006 0.005 0.006 0.005</td><td>0.02 0.00 0.02 0.01 0.02 0.08 Error Y mm 0.00 0.00 0.00 0.05 0.04 0.01 0.01</td></td<>	8430.5 8417.0 8401.5 8383.5 8363.0 8348.0 9 9 9 12215.0 9328.0 9134.5 8943.0 8740.0 8346.5 8331.0 8313.0	8.0 1.0 0.0 0.0 1.0 -6.75 169.55 -0.00589 Delta X pixels -92.0 -7.0 -5.0 07.0 -5.0 01.5	-83.5 -13.5 -15.5 -15.0 -15.0 -20.5 -15.0 Delta Y pixels -2887.0 -193.5 -191.5 -203.0 -393.5 -15.5 -18.0	3.38 0.68 0.67 0.68 0.67 0.58 Exp Detta X pixels -92.00 -6.13 -6.13 -6.13 -6.13 -6.13 -6.13	-84.8 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 AVERAGE MAX Exp Delta Y pixels -2887.0 -192.5 -192.5 -192.5 -384.9 -192.2 -384.9 -192.2 -384.9	0.027 0.002 0.004 0.004 0.009 0.009 0.002 Error X mm 0.000 0.005 0.006 0.005 0.006 0.005	0.02 0.00 0.02 0.01 0.02 0.08 Error Y mm 0.00 0.00 0.00 0.05 0.04 0.01 0.01
	19.9 19.8 19.7 19.6 19.5 3 mm Mec 50 mm ler Scale xhee Scale x	-15.0 -0.1 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0	14183.0 16579.0 16577.5 16575.5	8430.5 8417.0 8401.5 8383.5 8363.0 8348.0 9348.0 9348.0 9328.0 9134.5 8943.0 8740.0 8346.5 8331.0 8313.0 8286.5	8.0 1.0 0.0 0.0 1.0 -6.75 169.55 -0.00589 -92.0 -7.0 -5.0 -7.0 -7.0 -5.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7	-83.5 -13.5 -15.5 -15.5 -15.0 -20.5 -15.0 -20.5 -15.0 -191.5 -203.0 -393.5 -195.5 -203.0 -393.5 -15.5 -18.0 -26.5	3.38 0.68 0.67 0.68 0.67 0.68 0.67 0.68 0.67 0.68 0.67 0.61 -92.00 -6.13 -6.13 -6.13 -6.13 -6.13 -6.13 -6.13 -0.61 -0.61	-84.8 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 AVERAGE MAX Exp Dolta Y pixels -2887.0 -192.5 -192.5 -192.5 -384.9 -19.2 -19.2 -19.2 -19.2	0.027 0.004 0.004 0.004 0.009 0.009 0.027 Error X mm 0.000 0.005 0.006 0.005 0.006 0.005 0.006	0.02 0.00 0.02 0.01 0.02 0.08 Error Y mm 0.00 0.05 0.00 0.05 0.04 0.01 0.03
	19.9 19.7 19.7 19.6 19.5 3 mm Mec 50 mm ler Scale xhee Scale xhe	-15.0 -0.1 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0	14183.0 16697.0 16598.0 16597.0 16579.0 16577.5 16575.5	8430.5 8417.0 8401.5 8383.5 8363.0 8348.0 9 9 9 12215.0 9328.0 9134.5 8943.0 8740.0 8346.5 8331.0 8313.0	8.0 1.0 0.0 0.0 1.0 -6.75 169.55 -0.00589 Delta X pixels -92.0 -7.0 -5.0 07.0 -5.0 01.5	-83.5 -13.5 -15.5 -15.5 -15.0 -20.5 -15.0 -20.5 -15.0 -191.5 -203.0 -393.5 -195.5 -203.0 -393.5 -15.5 -18.0 -26.5	3.38 0.68 0.67 0.68 0.67 0.68 0.67 0.68 0.67 0.68 0.67 0.61 -92.00 -6.13 -6.13 -6.13 -6.13 -6.13 -6.13 -6.13 -0.61 -0.61	-84.8 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -192.5 -192.5 -192.5 -192.5 -192.5 -192.5 -192.5 -192.5 -192.5 -192.5 -192.5 -192.2 -192.2 -19.2 -19.2 -19.2 -19.2 -19.2 -19.2	0.027 0.002 0.004 0.004 0.009 0.002 0.009 0.027 Error X mm 0.000 0.005 0.006 0.006 0.005 0.006	0.02 0.00 0.00 0.02 0.02 0.08 Error Y mm 0.00 0.00 0.00 0.00 0.00 0.00 0.00
	19.9 19.7 19.7 19.6 19.5 3 mm Mac 50 mm Jer Scale xhee Scale x	-15.0 -0.1 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0	14183.0 16697.0 1657.5 16571.5 16571.5	8430.5 8417.0 8401.5 8383.5 8363.0 8348.0 9348.0 9348.0 9328.0 9134.5 8943.0 8740.0 8346.5 8331.0 8313.0 8286.5	8.0 1.0 0.0 0.0 1.0 -6.75 169.55 -0.00589 -92.0 -7.0 -5.0 -7.0 -7.0 -5.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7	-83.5 -13.5 -15.5 -15.5 -15.0 -20.5 -15.0 -20.5 -15.0 -191.5 -203.0 -393.5 -195.5 -203.0 -393.5 -15.5 -18.0 -26.5	3.38 0.68 0.67 0.68 0.67 0.68 0.67 0.68 0.67 0.68 0.67 0.61 -92.00 -6.13 -6.13 -6.13 -6.13 -6.13 -6.13 -6.13 -0.61 -0.61	-84.8 -17.0 -17.0 -17.0 -17.0 -17.0 AVERAGE MAX Exp Delta Y pixels -2887.0 -192.5 -192.5 -192.5 -384.9 -192.2 -384.9 -192.2 -384.9 -192.2 -1	0.027 0.002 0.004 0.004 0.009 0.002 0.009 0.027 Error X mm 0.000 0.005 0.006 0.005 0.006 0.005 0.006 0.005 0.006 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.002	0.02 0.00 0.00 0.02 0.03 0.08 Error Y mm 0.00 0.00 0.00 0.00 0.05 0.04 0.01 0.00 0.03 0.00 0.03 0.00
	19.9 19.7 19.7 19.6 19.5 3 mm Mac 50 mm Jer Scale xhee Scale x		14183.0 16697.0 1657.5 16571.5 16571.5	8430.5 8417.0 8401.5 8383.5 8363.0 8348.0 9348.0 9348.0 9328.0 9134.5 8943.0 8740.0 8346.5 8331.0 8313.0 8286.5	8.0 1.0 0.0 0.0 1.0 -6.75 169.55 -0.00589 -92.0 -7.0 -5.0 -7.0 -7.0 -5.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7	-83.5 -13.5 -15.5 -15.5 -15.0 -20.5 -15.0 -20.5 -15.0 -191.5 -203.0 -393.5 -195.5 -203.0 -393.5 -15.5 -18.0 -26.5	3.38 0.68 0.67 0.68 0.67 0.68 0.67 0.68 0.67 0.68 0.67 0.61 -92.00 -6.13 -6.13 -6.13 -6.13 -6.13 -6.13 -6.13 -0.61 -0.61	-84.8 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -192.5 -192.5 -192.5 -192.5 -192.5 -192.5 -192.5 -192.5 -192.5 -192.5 -192.5 -192.2 -192.2 -19.2 -19.2 -19.2 -19.2 -19.2 -19.2	0.027 0.002 0.004 0.004 0.009 0.002 0.009 0.027 Error X mm 0.000 0.005 0.006 0.006 0.005 0.006	0.02 0.00 0.00 0.02 0.02 0.08 Error Y mm 0.00 0.00 0.00 0.00 0.00 0.04 0.01 0.03 0.03 0.03
	19.9 19.7 19.7 19.6 19.5 3 mm Mec 50 mm ler Scale xhee Scale x	-15.6 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -0.1 -0.0 -0.1 -0.0	14183.0 14180.0 14693.0 16573.0 16571.5 16571.5 16571.5 <td< td=""><td>8430.5 8417.0 8401.5 8383.5 8363.0 8348.0 9348.0 9348.0 9328.0 9134.5 8943.0 8740.0 8346.5 8331.0 8313.0 8286.5</td><td>8.0 1.0 0.0 0.0 1.0 -6.75 169.55 -0.00589 -92.0 -7.0 -5.0 -7.0 -7.0 -5.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7</td><td>-83.5 -13.5 -15.5 -15.5 -15.0 -20.5 -15.0 -20.5 -15.0 -2887.0 -193.5 -193.5 -193.5 -193.5 -193.5 -193.5 -193.5 -18.0 -26.5 -18.0</td><td>3.38 0.68 0.67 0.68 0.67 0.68 0.67 0.68 0.67 0.68 0.67 0.61 -92.00 -6.13 -6.13 -6.13 -6.13 -6.13 -6.13 -6.13 -0.61 -0.61</td><td>-84.8 -17.0 -17.0 -17.0 -17.0 -17.0 AVERAGE MAX Exp Delta Y pixels -2887.0 -192.5 -192.5 -192.5 -384.9 -192.2 -384.9 -192.2 -384.9 -192.2 -1</td><td>0.027 0.002 0.004 0.004 0.009 0.002 0.009 0.027 Error X mm 0.000 0.005 0.006 0.005 0.006 0.005 0.006 0.005 0.006 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.002</td><td>0.02 0.00 0.02 0.01 0.02 0.08 Error Y mm 0.00 0.05 0.04 0.05 0.04 0.01 0.00 0.05 0.04 0.01 0.00 0.05 0.04 0.01</td></td<>	8430.5 8417.0 8401.5 8383.5 8363.0 8348.0 9348.0 9348.0 9328.0 9134.5 8943.0 8740.0 8346.5 8331.0 8313.0 8286.5	8.0 1.0 0.0 0.0 1.0 -6.75 169.55 -0.00589 -92.0 -7.0 -5.0 -7.0 -7.0 -5.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7	-83.5 -13.5 -15.5 -15.5 -15.0 -20.5 -15.0 -20.5 -15.0 -2887.0 -193.5 -193.5 -193.5 -193.5 -193.5 -193.5 -193.5 -18.0 -26.5 -18.0	3.38 0.68 0.67 0.68 0.67 0.68 0.67 0.68 0.67 0.68 0.67 0.61 -92.00 -6.13 -6.13 -6.13 -6.13 -6.13 -6.13 -6.13 -0.61 -0.61	-84.8 -17.0 -17.0 -17.0 -17.0 -17.0 AVERAGE MAX Exp Delta Y pixels -2887.0 -192.5 -192.5 -192.5 -384.9 -192.2 -384.9 -192.2 -384.9 -192.2 -1	0.027 0.002 0.004 0.004 0.009 0.002 0.009 0.027 Error X mm 0.000 0.005 0.006 0.005 0.006 0.005 0.006 0.005 0.006 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.002	0.02 0.00 0.02 0.01 0.02 0.08 Error Y mm 0.00 0.05 0.04 0.05 0.04 0.01 0.00 0.05 0.04 0.01 0.00 0.05 0.04 0.01
	19.9 19.7 19.7 19.6 19.5 3 mm Mec 50 mm ler Scale xhee Scale x	-15.6 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -0.1 -0.0 -0.1 -0.0	14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14183.0 14184.0 ker a X (pixel/mm) Y (pixel/mm) d (mm/pixel) MACREFLE x pixels 16697.0 16598.0 16598.0 16593.0 16579.0 16575.5 16577.5 16577.5 16577.5 16577.5	8430.5 8417.0 8401.5 8383.5 8363.0 8348.0 9348.0 9348.0 9328.0 9134.5 8943.0 8740.0 8346.5 8331.0 8313.0 8286.5	8.0 1.0 0.0 0.0 1.0 -6.75 169.55 -0.00589 Delta X pixels -9.20 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.	-83.5 -13.5 -15.5 -15.0 -15.0 -20.5 -15.0 -15.0 -193.5 -191.5 -203.0 -393.5 -195.5 -18.0 -26.5 -18.0	3.38 0.68 0.67 0.68 0.67 0.68 0.67 0.68 0.67 0.68 0.67 0.61 -92.00 -6.13 -6.13 -6.13 -6.13 -6.13 -6.13 -6.13 -0.61 -0.61	-84.8 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 AVERAGE MAX Exp Deita Y pixels -2887.0 -192.5 -192.5 -192.5 -192.5 -384.9 -192.2 -384.9 -192.2 -19.2 -19.2 -19.2 AVERAGE	0.027 0.002 0.004 0.004 0.009 0.002 0.009 0.027 Error X mm 0.000 0.005 0.006 0.005 0.006 0.005 0.006 0.005 0.006 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.002	0.0; 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A.3.5 2D DYNAMIC ACCURACY

In order to test if there is any "smearing" of the marker centroid when tracking a moving marker, a marker was affixed to a black specimen of trabecular bone and suspended from the actuator of an Instron 8511 test frame. The actuator then described a sinusoidal wave in the vertical direction at 0.5 Hz. The marker position based on a 50 mm lens and zoom lens were compared to the location as determined by the Instron LVDT. This test was performed for 2.5 mm, 1 mm, 0.5 mm, 0.1 mm, and 0.05 mm amplitude waves. Unfortunately, the noise in the feedback loop of the Instron prevented accurate waves below about 0.5 mm in amplitude.

The 0.5 mm amplitude wave is shown in Figure A.12 to demonstrate qualitatively that there is no smearing in the marker position. The marker was too small to be resolved adequately by the 50 mm lens, explaining the inability of that camera to accurately track the marker's movement.

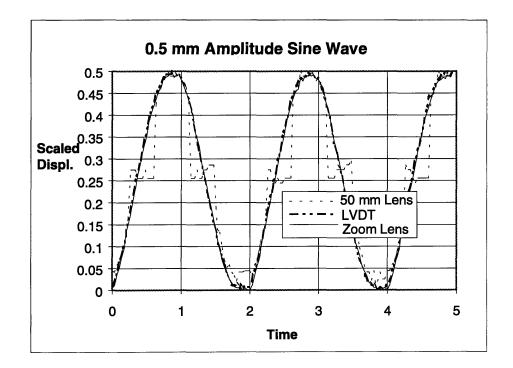


Figure A.12 - MacReflex system tracking the movement of a marker displaced in a sine wave by an Instron 8511 actuator.

A.3.6 3D PRECISION AND ACCURACY WITH THE CAB 80 CALIBRATION FRAME

In order to assess the precision when measuring in three dimensions, the cameras were calibrated using the CAB 80 Calibration frame supplied by MacReflex. The positions of seven diamond-shaped markers on the calibration frame were recorded 150 times over a period of two seconds. The uncertainties of the seven markers, considered to be two standard deviations of the position measurement, were averaged. These uncertainties along with uncertainties in the three-dimensional measurements of a small, stationary marker placed on a black cylinder of trabecular bone are recorded in Table A.5. A plot of noise in the X- and Y-axis for one of the tests is shown in Figure A.13.

The cameras were 1.15 m from the markers, and the angle between the cameras swept 60° in the first calibration test and 90° in the second. They swept 30° the first two bone tests, 60° in the third and fourth test, and 90° (optimal) in the fifth through seventh tests.

Test	Field of View (mm)	Uncertainty (X) (mm / % FOV)	Uncertainty (Y) (mm / % FOV)	Uncertainty (Z) (mm / % FOV)
Cal Frame Test 1 (60°)	190 mm	0.006 (0.003%)	0.022 (0.012%)	0.009 (0.005%)
Cal Frame Test 2 (90°)	190 mm	0.008 (0.004%)	0.008 (0.004%)	0.009 (0.005%)
Bone Test 1 (30°)	190 mm	0.011 (0.010%)	0.046 (0.042%)	0.014 (0.013%)
Bone Test 2 (30°)	190 mm	0.017 (0.016%)	0.052 (0.047%)	0.016 (0.015%)
Bone Test 3 (60°)	190 mm	0.011 (0.010%)	0.027 (0.025%)	0.013 (0.012%)
Bone Test 4 (60°)	190 mm	0.009 (0.008%)	0.025 (0.023%)	0.013 (0.012%)
Bone Test 5 (90°)	190 mm	0.010 (0.009%)	0.010 (0.009%)	0.009 (0.008%)
Bone Test 6 (90°)	190 mm	0.008 (0.004%)	0.006 (0.003%)	0.010 (0.009%)
Bone Test 7 (90°)	190 mm	0.012 (0.011%)	0.013 (0.012%)	0.012 (0.011%)

Table A.5 - Precision of 3D measurements with the CAB 80 and 50 mm lenses

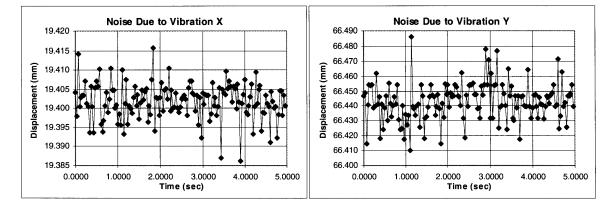


Figure A.13 - Noise due to system uncertainties in the X and Y direction of a small, square marker on a black cylinder of trabecular bone. The cameras were separated by 60° in this test.

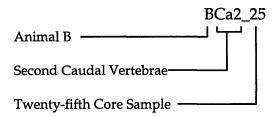
The Y-direction represents the depth into the cameras for the calibration frame and the first three bone test. The uncertainty shows that the resolution of movement into the depth of a camera is less than half that in directions perpendicular to the camera when the cameras. However, the resolution is also seen to improve as the cameras are moved from a 30° separation to a 90° separation. At 90°, the uncertainty is the same in all three directions.

Tests 4, 5, and 6 used bone that was not colored, colored black only around the markers, and painted entirely black, respectively. Just as in the two-dimensional tests, the uncertainty was not affected by the color of the background.

The accuracy of three-dimensional measurements was also assessed by comparing the actual marker locations on the CAB 80 calibration frame (listed on the specification sheet) to the locations recorded by the MacReflex system. The errors for the seven markers were averaged, and results for tests at 60° and at 90° are shown in Table A.6.

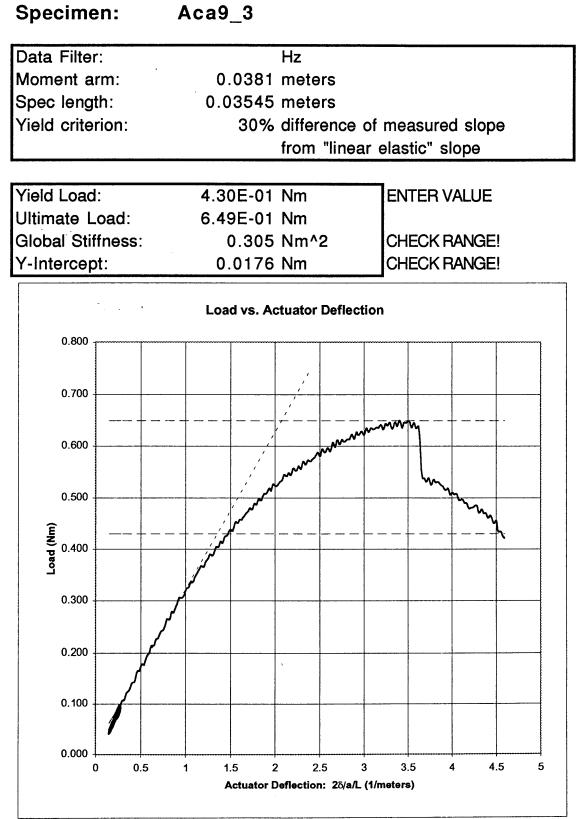
Table A.6 - Accuracy of 3D measurements with the CAB 80 and 50 mm lenses

Test	Field of View (mm)	Error (X) (mm / % FOV)	Error (Y) (mm / % FOV)	Error (Z) (mm / % FOV)
Cal Frame Test 1 (60°)	190 mm	0.003 (0.002%)	0.002 (0.001%)	0.005 (0.003%)
Cal Frame Test 2 (90°)	190 mm	0.005 (0.003%)	0.005 (0.003%)	0.003 (0.002%)


Table A.6 shows that when the position is averaged over time, the accuracy is about twice as reliable as the uncertainty in a single measurement. Therefore, if the motion of a marker is slow enough compared to MacReflex sampling rate, and the data is filtered with a low pass filter, then the measurement precision may be significantly improved.

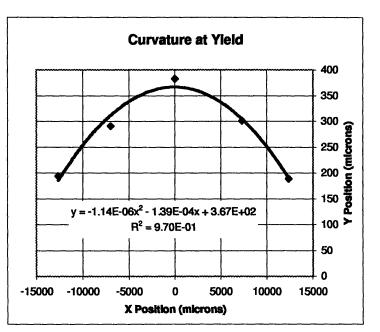
¹ M.F. Ashby and D.R.H. Jones, Engineering Materials I, Pergamon Press, Oxford, 1989.

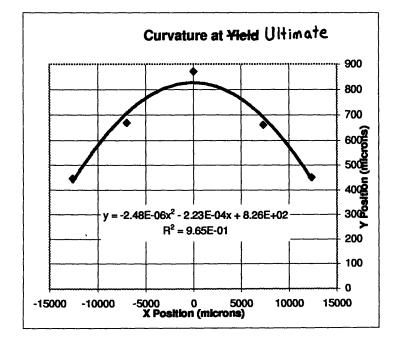
Appendix	R		
AUDENGIA			
	—		
Deres Defe			
Raw Data			
Train Data			


This appendix contains the raw data from the results of the QCT scans, computer modeling, and mechanical tests. Specimens are grouped according to the type of mechanical test. The first four pages are example data sheets for the three types of mechanical tests: bending, tension, and torsion. The following six pages are the results of the QCT scans, both of the intact specimens and the specimens after the defects were introduced. The next three pages are the results of the stress concentration calculations. The following three pages are the results of the stress concentration calculations. The following three pages are the results of the mechanical tests, and the final pages are the sketches of fracture patterns in the specimens.

The column labeled "E" in the tables is the eccentricity of the defect: 1 for a circle and 2 for a slot. The naming convention for the specimens has three parts which identifies the animal, vertebral location, and core number for each specimen, according to the following example. The data which could be contained in each part of a specimen name is also described below.

- Part 1: Animal
 - A: Infant male sperm whale
 - B: Mature female bowhead whale
 - C: Geriatric female bowhead whale
 - D: Mature male pigmy sperm whale
 - E: Immature female bowhead whale
 - F: Immature male bowhead whale: morphological variant "ingutuk"
- Part 2: Vertebral location
 - Ca: Caudal
 - C: Cervical
 - L: Lumbar
 - T: Thoracic
- Part 3: Core sample number: any number, as high as 30, to distinguish multiple cylindrical cores extracted from the same vertebrae of the same animal.


4-POINT BENDING: LOAD VS. ACTUATOR



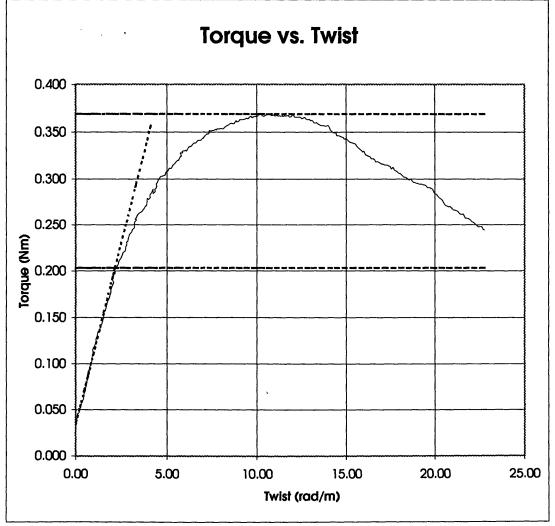
4-POINT BENDING: STRAIN DATA

Specimen: Al6-6

Yield Data Point:	490
-12642	195
-7003	291
0	383
7316	301
12364	190
a	-1.14E-06
p	438596
x of interest	0
rad of curve	438596
curvature	2.28E-06
strain	1.45%

Data Point:	827
-12622	447
-6992	670
0	871
7334	663
12384	452
a	-2.48E-06
1	201613
p x of interest	201013
rad of curve	201613
curvature	4.96E-06
strain	3.15%

Ultimate


TENSION: LOAD VS. STRAIN Specimen: Al8-4

Data Filter: 1.5 Hz 30% difference of measured slope Yield criterion: from "linear elastic" slope Y-Intercept: 8.6 N Stiffness: 49489 N Yield Load: 156 N Strain: 0.34 % Ultmt Load: 292 N Strain: 1.28 % Avg. Strain Diff: 73% 100% 50% 0% Load vs. Strain 300 250 200 Load (Newtons) 150 100 50 0 0.60% 0.80% 1.40% 0.00% 0.20% 0.40% 1.00% 1.20% **Specimen Strain**

TORSION: LOAD VS. TWIST

Specimen: Al7-4

Data Filter:	None	Hz	
Gage Length:	0.0244	meters	
Yield criterion:	30%	difference	of measured slope
		from "linec	ar elastic" slope
Pre-Load:	0.131	Nm	
Yield Load/Twist:	0.203	Nm	2.24 rad/m
Ultmt Load/Twist:	0.369	Nm	10.21 rad/m
Global Stiffness:	0.079	Nm^2	
Y-Intercept:	0.034	Nm	

DEND	BENDING				TNT		OCT		TA		
		-					QCT	DA		[[
SPECIME SPECIMEN			Length mm	Area	-		Axial Rig. (MN) axrig	1	EIx bar (Nm^2) ixbar		Tor. Rig. (Nm^2) Tors Rig
]						
AL6_2	0.28	1	35.22	137	0.229	0.623	0.085	0.150	0.903	0.299	1.79
BCa1_14	0.28	1	33.22	137	0.463	2.200	0.085	0.150		0.299	6.49
CCa1_14	0.28	1	37.17	140	0.389	1.673	0.230		2.581	0.311	5.17
CCa1_2 CCa1_9	0.28	1	37.54	136	0.430	2.034	0.230	0.157		0.311	5.82
DCa4_1	0.28	1	37.60	130	0.289	0.927	0.128	0.150	1.346	0.300	2.66
ACa9_3	0.28	2	35.45	136	0.209	0.541	0.128	0.132	0.787	0.302	1.60
BCa1_10	0.28	2	38.44	130	0.497	2.580	0.371	0.168		0.233	8.05
BCal_10 BCal_17	0.28	2	37.96	142	0.517	2.735	0.387	0.161	4.063	0.319	8.07
BCal_17 BCal_18	0.28	2	36.76	142	0.641	4.074	0.581	0.164		0.315	
ET1 1	0.28	2	36.52	145	0.476	2.356	0.328	0.154		0.320	6.58
AL8_7	0.20	1	36.56	135	0.163	0.358	0.045	0.129	0.466	0.256	
BCa1_24	0.47	1	45.25	144	0.599	3.542	0.511	0.170		0.332	11.61
DCa2 2	0.47	1	38.15	137	0.283	0.891	0.122	0.149		0.352	2.50
DL3 1	0.47	1	37.15	136	0.300	0.985	0.134	0.147	1.345	0.293	2.69
DL4 3	0.47	1	38.83	136	0.293	0.949	0.129	0.150		0.295	2.68
ACa7_6	0.47	2	37.78	133	0.188	0.455	0.060	0.130		0.290	1.27
AL4_2	0.47	2	35.08	132	0.201	0.504	0.066	0.137	0.625	0.276	1.34
AL6 6	0.47	2	34.54	134	0.201	0.502	0.067	0.141	0.704	0.284	1.43
DCa2_3	0.47	2	36.76	138	0.279	0.874	0.121	0.153	1.315	0.304	2.60
FT1_7	0.47	2	37.50		0.850	6.694	0.962	0.167	10.170	0.329	20.13
ACa7 1	0.6	1	37.84		0.222	0.602	0.081	0.147	0.855	0.294	1.73
BCa1_25	0.6	1	38.81	142	0.535	2.943	0.419	0.162	4.349	0.323	8.91
CCa1_6	0.6	1	38.00	138	0.447	2.158	0.297	0.156	3.360	0.313	6.40
ET1_4	0.6	1	37.03	139	0.495	2.512	0.350	0.155	3.299	0.309	6.98
ET1_5	0.6	1	37.89	138	0.527	2.831	0.390	0.151	3.720	0.304	7.77
ACa9_1	0.6	2	39.21	135	0.206	0.525	0.071	0.143	0.703	0.288	1.51
AL3_1	0.6	2	34.56	129	0.202	0.507	0.065	0.136	0.687	0.266	1.34
AL7_3	0.6	2	37.60	133	0.206	0.531	0.071	0.143	0.728	0.284	1.49
BCa1_28	0.6	2	43.94	145	0.578	3.414	0.497	0.170	5.421	0.337	11.08
ET1_7	0.6	2	38.20	139	0.471	2.295	0.319	0.156	3.124	0.309	6.58
ACa9_2	0	0	36.39	136	0.218	0.578	0.079	0.148	0.816	0.295	1.69
AL8_3	0	0	37.96	128	0.172	0.393	0.050	0.132	0.517	0.263	1.03
BCa1_26	0	0	44.34	143	0.505	2.594	0.371	0.165	4.273	0.326	8.49
CCa1_5	0	0	39.45	137	0.418	, 1.915	0.262	0.151	2.811	0.305	5.90
DCa4_4	0	0	36.45	141	0.338	1.243	0.175	0.158	1.861	0.317	3.90
BCa2_5	0	0	36.55	141	0.477	2.391	0.336	0.159	3.465	0.317	6.98
BCa2_9	0	0	36.89	139	0.456	2.206	0.306	0.159	3.403	0.315	6.73

BEND	INC	f			POST	Γ-DEI	FECT	ΓQC	T DA	ATA		
SPECIME!	N DAT Hole				QCT DAT	A			I max			
SPECIMEN	Hole Size	£	Area (mm^2) Area	Density (g/cc) Avg den	Moautus (GPa) Avg Mod	Axiai Kig. (MN) axrig	I min (cm^4) gixbar	EI min (Nm^2) ixbar	1 max (cm^4) giybar	EI max (Nm^2) iybar	Polar Mom. (cm^4) Polar mom.	Tor. Rig (Nm^2) Tors Rig
												[
AL6 2	0.28	1	102	0.216	0.575	0.059	0.099	0.545	0.142	0.780	0.241	1.325
BCal 14	0.28		102	0.438	2.088		0.105	1.942	0.142	3.245	0.241	5.186
CCal_2	0.28		110	0.438	1.620		0.103	1.695				4.294
CCa1_2 CCa1_9	0.28		110	0.363	1.524		0.121	1.650	0.140	2.265	f	3.915
DCa4_1	0.28		93	0.266	0.819	+	0.086	0.666		1.106		1.772
ACa9_3	0.28		92	0.234	0.657		0.079	0.508		0.929	+	1.436
BCal_10	0.28		96	0.483	2.478	+	0.075	2.088	·	3.656		5.744
BCa1_17	0.28		93	0.462	2.303			1.618		3.378	+	4.996
BCal 18	0.28	2	104	0.588	3.579		0.100	3.176		5.591	0.259	8.767
ETI I	0.28	2	92		2.164		0.082	1.481	0.146	3.115		4.596
AL8_7	0.47	1	62	0.172	0.395		0.047	0.180		0.450		0.630
BCa1 24	0.47	1	77	0.529	2.988		0.067	1.743	0.150	4.810	+	6.554
DCa2 2	0.47	1	63	0.236	0.665		0.046	0.299		0.800		1.098
DL3 1	0.47	1	66	0.257	0.772		0.050	0.349		0.994		1.343
DL4_3	0.47	1	59	0.226	0.622		0.043	0.256	0.115	0.683	0.158	0.939
ACa7_6	0.47	2	57	0.187	0.455	the second se	0.041	0.180	0.112	0.486	0.153	0.667
AL4_2	0.47	2	57	0.196	0.492		0.041	0.195	0.110	0.514	0.151	0.708
AL6_6	0.47		56	0.183	0.434	0.024	0.039	0.166	0.113	0.498	0.152	0.664
DCa2_3	0.47	2	64	0.273	0.863	0.055	0.050	0.410	0.128	1.081	0.178	1.491
FT1_7	0.47	2	70	0.748	5.569	0.391	0.056	2.676	0.137	7.707	0.193	10.380
ACa7_1	0.6	1	54	0.213	0.567	0.031	0.040	0.208	0.115	0.634	0.155	0.842
BCa1_25	0.6	1	59	0.467	2.415	0.143	0.043	0.919	0.131	3.263	0.174	4.182
CCa1_6	0.6	1	59	0.407	1.870	0.111	0.046	0.773	0.133	2.509	0.179	3.282
ET1_4	0.6	1	56	0.436	2.095	0.118	0.039	0.634	0.124	2.614	0.162	3.248
ET1_5	0.6	1	57	0.451	2.294	0.130	0.038	0.711	0.120	2.739	0.158	3.449
ACa9_1	0.6	2	43	0.202	0.524	0.022	0.026	0.131	0.099	0.486	0.125	0.616
AL3_1	0.6	2	44	0.197	0.492	0.022	0.027	0.130	0.098	0.464	0.125	0.594
AL7_3	0.6		43	0.193	0.486	0.021	0.027	0.125	0.096	0.426	0.122	0.551
BCa1_28	0.6	2	55	0.539	3.095	0.170	0.040	1.039	0.126	4.040	0.166	5.079
ET1_7	0.6	2	52	0.416		0.100	0.035	0.564	0.117	2.298		
ACa9_2	0		136	0.218	0.578	0.079	0.148	0.816	0.148			1.69
AL8_3	0		128	0.172								
BCa1_26	0		143	0.505	1	0.371	0.165	4.273	0.165			
CCa1_5	0		137	0.418	1.915	0.262	0.151	2.811	0.151	2.811		
DCa4_4	0		141	0.338	1.243	0.175	0.158	+		· · · · · · · · · · · · · · · · · · ·	+····	+
BCa2_5	0	· · · · · · · · · · · · · · · · · · ·	141	0.477	2.391					<u> </u>		÷
BCa2_9	0	0	139	0.456	2.206	0.306	0.159	3.403	0.156	3.329	0.315	6.73

TENS	ION	J	1	·	INT	ACT	QCT	DA	ТА		
SPECIME				TNITAT	TOCT		<u>V</u> UI		111		l
SPECIMEN			Length mm	Area (mm^2) Area	Density		(MN)		EIx bar (Nm^2) ixbar	Polar Mom. (cm^4) Polar mom.	Tor. Rig. (Nm^2) Tors Rig
				1				[1		<u>.</u>
AL3_6	0	0	32.64	136	0.220	0.586	0.080	0.148	0.851	0.295	1.68
BCa1_15	0	Ō	36.89	140	0.469		0.318		3.372	0.312	6.98
BCa2-3	0	0	36.78	137	0.476		0.330				6.76
DCa2_5	0	0	38.30	139	0.295		0.135			0.310	2.94
DCa2_6	0		38.06	140			0.142		(0.313	3.06
FT1_5	0	0	37.03	141	0.855		0.949		9.548	0.317	19.12
AL3_2	0.28	1	33.84	128	0.211	0.548	0.070	0.128	0.686	0.269	1.48
AL8_4	0.28	. 1	35.41	132	0.194	0.476	0.063	0.139	0.659	0.279	1.35
BCa1_19	0.28	1	36.74	143	0.544	2.998	0.428	0.164	4.485	0.324	9.23
BCa1_29	0.28	1	41.91	145	0.520	2.740	0.398	0.173	4.381	0.338	8.89
DCa4_3	0.28	1	38.05	137	0.280	0.879	0.120	0.151	1.286	0.299	2.56
AL6_4	0.47	1	35.54	136	0.211	0.546	0.074	0.148	0.780	0.294	1.53
BCa1_20	0.47	1	37.32	142	0.506	2.617	0.372	0.163	3.769	0.323	7.88
BCa1_6	0.47	1	35.83	143	0.550	3.131	0.447	0.165	4.827	0.326	9.47
DL5_1	0.47	1	37.33	135	0.261	0.778	0.105	0.145	1.072	0.290	2.12
ACa7_4	0.6	1	35.54	136	0.209	0.538	0.073	0.148	0.825	0.295	1.57
AL5_3	0.6	1	35.16	135	0.209	0.537	0.072	0.146	0.753	0.289	1.52
AL8_11	0.6	1	35.50	129	0.183	0.432	0.056	0.134	0.581	0.266	1.14
BCa1_11	0.6	1	36.99	139	0.490	2.529	0.351	0.156	3.577	0.311	7.33
ET1_3	0.6	1	37.24	141	0.664	4.266	0.600		6.187	0.315	12.27
AL8_10	0.28	2	37.36	134	0.196	0.482	0.064	0.143	0.660	0.285	1.35
BCa1_7	0.28	2	37.22	140	0.525	2.821	0.395	0.157	4.200	0.313	8.24
CCa1_12	0.28	2	38.72	132	0.521	2.957	0.389	0.148	4.136	0.293	8.29
DCa2_4	0.28	2	38.41	136	0.260	0.773	0.105		1.063	0.296	2.30
ET1_2	0.28	2	36.92	138	0.467	2.283	0.315	0.150	3.035	0.303	6.29
ACa8_2	0.47	2	34.76	130	0.194	0.475	0.062		0.629	0.271	1.25
AL4_4	0.47	2	33.78	133	0.191	0.463	0.061	0.141	0.642	0.279	1.28
AL5_2	0.47	2	34.98	132	0.184	0.433	0.057	0.139	0.592	0.277	1.19
AL8_2	0.47	2	33.48	129	0.186	0.443	0.057	0.136	0.592	0.267	1.19
CCa1_4	0.47	2	38.66	133	0.401	1.780	0.237	0.147	2.464	0.298	5.04
AL3_4	0.6	2	32.73	133	0.208	0.535	0.071	0.142	0.741	0.283	1.47
AL6_3	0.6	2	33.44	134	0.202	0.504	0.067	0.141	0.693	0.284	1.40
AL7_5	0.6	2	35.84	134	0.207	, 0.530	0.071	0.143	0.764	0.287	1.54
BCa1_12	0.6	2	37.64	142	0.467	2.266	0.322	0.162	3.309	0.321	6.73
FT1_6	0.6	2	37.71	141	0.787	5.738	0.810	0.160	8.449	0.318	16.72

				•								
TENS	ION	T			POS	F-DE	FEC	ГОС	TD.	АТА		
SPECIMEN	DAT	A	POST-D	EFECT	OCT DAT						<u> </u>	L
SPECIMEN	Hole Size		Area (mm^2) Area	Density (g/cc) Avg den	-	Axial Rig. (MN) axrig	I min (cm^4) gixbar	EI min (Nm^2) ixbar	I max (cm^4) giybar	EI max (Nm^2) iybar	Polar Mom. (cm^4) Polar mom.	Tor. Rig. (Nm^2) Tors Rig
												1
			10.6									
AL3_6	0		136		0.586		+					
BCa1_15	0	0	140	0.469	2.268	0.318		3.372	+	3.372	0.312	6.98
BCa2-3	0	0	137	0.476	2.413	0.330	i	tani in i				6.762
DCa2_5	0	0	139	0.295	0.965	0.135					······	2.94
DCa2_6	0	0	140	0.302	1.009	0.142		1.561	0.157	1.561	0.313	3.06
FT1_5	0	0	141	0.855	6.735	0.949	+	9.548		9.548		19.12
AL3_2	0.28	1	96	0.210	0.551	0.053	+	0.466		0.755	0.225	1.221
AL8_4	0.28	_1	. 96	0.198	0.495	0.048			0.137	0.673	0.225	1.090
BCa1_19	0.28	_1	111	0.486	2.516	0.279	·				0.268	6.809
BCal_29	0.28	1	116	0.473	2.390	0.276	+				0.274	
DCa4_3	0.28	1	109	0.263	0.807	0.088		0.845	0.147	1.256	+	
AL6_4	0.47	1	62	0.188	0.458	0.028	+	0.199	0.119		0.163	0.726
BCa1_20	0.47	1	78	0.466	2.370	0.185	0.065	1.228	0.148	3.616	0.213	4.844
BCa1_6	0.47	1	79	0.449	2.340	0.185	0.071	1.315	0.141	3.578	0.212	4.893
DL5_1	0.47	1	59	0.213	0.560	0.033		0.227	0.116	0.644	0.159	0.871
ACa7_4	0.6	1	48	0.182	0.434	0.021	0.031	0.130	0.105		0.136	0.582
AL5_3	0.6	_1	52	0.190	0.468	0.024	0.034	0.143	0.111	0.543	0.145	0.686
AL8_11	0.6	1	44	0.168	0.378	0.017	0.028	0.104	0.095	0.353	0.123	0.457
BCa1_11	0.6	1	65	0.458	2.352	0.152	0.048	0.940	0.134	3.319	0.182	4.259
ET1_3	0.6	1	57	0.569	3.415	0.193	0.039	1.095	0.125	4.376	0.163	5.471
AL8_10	0.28	2	77	0.167	0.379	0.029	0.063	0.237	0.122	0.461	0.185	0.698
BCa1_7	0.28	2	95	0.494	2.633	0.250	0.084	1.787	0.149	3.674	0.233	5.461
CCa1_12	0.28	2	93	0.483	2.660	0.247	0.086	1.911	0.143	4.045	0.228	5.956
DCa2_4	0.28	2	89	0.265	0.816	0.073	0.079	0.637	0.141	1.140	0.220	1.776
ET1_2	0.28	2	91	0.446	2.145	0.195	0.079	1.472	0.142	2.875	0.221	4.347
ACa8_2	0.47	2	54	0.183	0.436	0.024	0.037	0.153	0.106	0.446	0.144	0.599
AL4_4	0.47	2	59	0.194	0.482	0.028	0.042	0.192	0.118	0.544	0.160	0.736
AL5_2	0.47	2	54	0.166	0.371	0.020	0.037	0.142	0.107	0.395	0.144	0.537
AL8_2	0.47	2	53	0.179	0.420	0.022		0.147	0.104	<u> </u>	0.141	0.578
CCa1_4	0.47	2	66	0.372	1.586	0.104	0.051	0.695	0.133	2.096	0.185	2.791
AL3_4	0.6	2	45	0.204	0.529	0.024	0.028			+		0.661
AL6_3	0.6	2	41	0.175	0.407	0.017					+	0.467
AL7_5	0.6	2	44	0.206	0.531	.0.023		0.140		+		
BCal_12	0.6	2	53	0.436	2.078	0.109		·			0.156	L
FT1_6	0.6	2	55	0.686	4.817	0.266						<u>+</u>

TORS	ION			POST	[-DE]	FEC	ГОС	TD.	ATA		
SPECIME		POST-D	EFECT	QCT DAT	<u>A</u>						l
SPECIMEN		Area (mm^2) Area	Density (g/cc)			I min (cm^4) gixbar	EI min (Nm^2) ixbar	I max (cm^4) giybar	EI max (Nm^2) iybar	Polar Mom. (cm^4) Polar mom.	Tor. Rig (Nm^2) Tors Rig
ACa7_5	0.28 1	93	0.188	0.461	0.043	0.084	0.381	0.132	0.570	0.216	0.95
BCa1_21	0.28 1	108		2.055							h
DL2_2	0.28 1	95		0.597	0.222						
DL2_2 DL4_1	0.28 1	102	0.222	0.731	0.037			0.134			1.69
ET1_8	0.28 1	102	0.499	2.651	0.287	0.108		0.149			6.63
AL7_4	0.28 2	81	0.181	0.431	0.035						
BCal_22	0.28 2	95		2.370		+					
DL3_2	0.28 2	87	0.244	0.709						0.200	1.43
DL4_2	0.28 2	83	0.244	0.705	0.051						
FT1_8	0.28 2	105	0.733	5.354	0.550	0.102					
AL3_7	0.47 1	59		0.463	0.027						
AL7_1	0.47 1	. 61	0.178	0.417	0.025					0.162	
AL8_5	0.47 1	61	0.188	0.455	0.025			0.119			
BCa1_13	0.47 1	74	0.458	2.264	0.167	0.062			3.263		
CCal_13	0.47 1	70		1.563	0.107			f			
DL2_1	0.47 1	64	0.264	0.816							
ACa7_3	0.47 2	56	0.189	0.466							
AL5_1	0.47 2	60	0.189	0.458	0.020	0.044			+		
AL5_5	0.47 2	55	0.187	0.452	0.027				+		
BCa1_3	0.47 2	70	0.461	2.362	0.166						
DL2_3	0.47 2	57	0.401	0.613	0.035					0.155	
ACa8_1	0.6 1	49	0.178	0.415	0.020			0.107			
BCa1_8	0.6 1	55	0.428	2.056	0.112	· · · · · · · · · · · · · · · · · · ·	<u> </u>				
CCa1_1	0.6 1	55	0.398	1.792	0.098			0.122		0.150	2.80
CCa1_14	0.6 1	54	0.368	1.552	0.083	0.039				0.159	
DL5_2	0.6 1	47	0.226	0.623	0.005	0.029	0.176			0.135	0.81
AL7_2	0.6 2	43	0.198	0.503	0.025	0.025		0.096		0.134	0.56
BCal_1	0.6 2	52	0.450	2.245	0.117	0.020		0.116		0.122	3.19
BCal_16	0.6 2	53	0.526	2.985	0.160		0.924	0.121			4.54
BCal_5	0.6 2	54	0.457	2.313	0.124	0.039		0.121		0.150	
FT1_1	0.6 2	56	0.696	4.912	0.275	0.040				0.165	7.85
AL3_5	0 0	134	0.208	0.533	0.071	0.141	0.726				1.5
AL8_9	0 0	129	0.179	0.418	0.054			0.135		0.269	1.1
BCal_9	0 0	137	0.543	3.035	0.417					0.001	
DCa3_2	0 0	137	0.261	0.784	0.107						·
DCa3_6	0 0	138	0.270	0.824	0.113						2.4
BCa2_10	0 0	138	0.454	2.199	0.303						
BCa2_6	0 0	137	0.454	2.168	0.298		h				
CCa1_7	0 0	138	0.640	3.979	0.550						
CCal_11	0 0	141	0.437	2.074	0.292			0.161		0.326	
ET1_21	0 0	143	0.641	3.963	0.567		· · · · · · · · · · · · · · · · · · ·	0.160			
FT1_2	0 0	143	0.953	7.461	1.065						
FT1_4	0 0	143	1.031		1.216						

BEND		- 1	Str	ess	Con	centi	ation	Calcula	tions
SPECIME!	V DATA	4	B-E	Reduc	tions		UNIT F	EM	
SPECIMEN	Hole Size	E	d/D	Ix / Ix	Ix bar (cm^4) gixbar	EIx bar (Nm^2) ixbar	Model	Stress	K stress
	ļ								
AL6_2	0.28	1	0.72	0.54	0.0811	0.488	ben30e1	2.59E-02	
BCa1_14	0.28	1	0.72	0.54	0.0851	1.740	ben30e1	2.59E-02	
CCa1_2	0.28	1	0.72	0.54	0.0847	1.394	ben30e1	2.59E-02	
CCa1_9	0.28	1	0.72	0.54	0.0840	1.642	ben30e1	2.59E-02	1.88
DCa4_1	0.28	1	0.72	0.54	0.0822	0.727	ben30e1	2.59E-02	1.88
ACa9_3	0.28	2	0.72	0.54	0.0794	0.425	ben30e2	2.18E-02	
BCa1_10	0.28	2	0.72	0.54	0.0906	2.151	ben30e2	2.18E-02	1.58
BCa1_17	0.28	2	0.72	0.54	0.0871	2.194	ben30e2	2.18E-02	
BCa1_18	0.28	2	0.72	0.54	0.0888	3.434	ben30e2	2.18E-02	1.58
ET1_1	0.28	2	0.72	0.54	0.0833	1.642	ben30e2	2.18E-02	1.58
AL8_7	0.47	1	0.53	0.29	0.0374	0.135	ben45e1	3.99E-02	1.55
BCa1_24	0.47	1	0.53	0.29	0.0492	1.680	ben45e1	3.99E-02	1.55
DCa2_2	0.47	1	0.53	0.29	0.0432	0.360	ben45e1	3.99E-02	1.55
DL3_1	0.47	1	0.53	0.29	0.0425	0.390	ben45e1	3.99E-02	1.55
DL4_3	0.47	1	0.53	0.29	0.0436	0.401	ben45e1	3.99E-02	1.55
ACa7_6	0.47	2	0.53	0.29	0.0405	0.181	ben45e2	3.73E-02	1.45
AL4_2	0.47	2	0.53	0.29	0.0398	0.192	ben45e2	3.73E-02	1.45
AL6_6	0.47	2	0.53	0.29	0.0409	0.204	ben45e2	3.73E-02	1.45
DCa2_3	0.47	2	0.53	0.29	0.0445	0.381	ben45e2	3.73E-02	1.45
FT1_7	0.47	2	0.53	0.29	0.0484	2.949	ben45e2	3.73E-02	1.45
ACa7_1	0.6	1	0.4	0.19	0.0279	0.163	ben56e1	5.53E-02	1.41
BCa1_25	0.6	_1	0.4	0.19	0.0307	0.826	ben56e1	5.53E-02	1.41
CCa1_6	0.6	1	0.4	0.19	0.0297	0.638	ben56e1	5.53E-02	1.41
ET1_4	0.6	_1	0.4	0.19	0.0295	0.627	ben56e1	5.53E-02	1.41
ET1_5	0.6	1	0.4	0.19	0.0287	0.707	ben56e1	5.53E-02	1.41
ACa9_1	0.6	2	0.4	0.19	0.0271	0.133	ben56e2	9.97E-02	2.54
AL3_1	0.6	2	0.4	0.19	0.0259	0.131	ben56e2	9.97E-02	2.54
AL7_3	0.6	2	0.4	0.19	0.0271	0.138	ben56e2	9.97E-02	2.54
BCa1_28	0.6	2	0.4	0.19	0.0324	1.030	ben56e2	9.97E-02	2.54
ET1_7	0.6	2	0.4	0.19	0.0295	0.594	ben56e2	9.97E-02	2.54
ACa9_2	0	0	1	1	0.1480	0.816	ben0	7.46E-03	1.00
AL8_3	0	0	1	1	0.1324	0.517	ben0	7.46E-03	1.00
BCa1_26	0	0	1	1	0.1645	4.273	ben0	7.46E-03	1.00
CCa1_5	0	0	1	1	0.1513	2.811	ben0	7.46E-03	1.00
DCa4_4	0	0	1	1	0.1581	1.861	ben0	7.46E-03	1.00
BCa2_5	0	0	1	1	0.1593	3.465	ben0	7.46E-03	1.00
BCa2_9	0	0	1	1	0.1590	3.403	ben0	7.46E-03	1.00

TENS	ION	I	Str	ess	Con	centra	tion (Calculatio	ons
SPECIME!	N DAT	A	B-E F	Reduc	tions		UNIT F	EM	
SPECIMEN		1			Area (mm^2) Area	Axial Rig. (MN) axrig	Model	Stress	K Stress
			i						
AL3_6	0	0	1				ten0	1.97E-06	
BCal_15	0	0	1	1	140		ten0	1.97E-06	
BCa2-3	0	0	1	1	137		ten0	1.97E-06	
DCa2_5	0	0	1	1	139	0.1345	ten0	1.97E-06	
DCa2_6	0	0	1	1			ten0	1.97E-06	
FT1_5	0	0	1	1	141	0.9490	ten0	1.97E-06	
AL3_2	0.28	1	0.72	0.65			ten30e1	7.48E-06	
AL8_4	0.28	1	0.72	0.65	86		ten30e1	7.48E-06	
BCal_19	0.28	1	0.72	0.65			ten30e1	7.48E-06	
BCa1_29	0.28	1	0.72	0.65	95	0.2590	ten30e1	7.48E-06	
DCa4_3	0.28	1	0.72	0.65	89		ten30e1	7.48E-06	
AL6_4	0.47	1	0.53	0.42	57		ten45e1	1.07E-05	
BCa1_20	0.47	1	0.53	0.42	60		ten45e1	1.07E-05	
BCa1_6	0.47	1	0.53	0.42	60	0.1876	ten45e1	1.07E-05	2.28
DL5_1	0.47	1	0.53	0.42	57	0.0441	ten45e1	1.07E-05	
ACa7_4	0.6	1	0.4	0.33	45	0.0242	ten56e1	1.39E-05	
AL5_3	0.6	1	0.4	0.33	44	0.0239	ten56e1	1.39E-05	2.32
AL8_11	0.6	1	0.4	0.33	43	0.0184	ten56e1	1.39E-05	2.32
BCal_11	0.6	1	0.4	0.33	46	0.1159	ten56e1	1.39E-05	2.32
ET1_3	0.6	1	0.4	0.33	46	0.1978	ten56e1	1.39E-05	2.32
AL8_10	0.28	2	0.72	0.65	87	0.0419	ten30e2	1.16E-05	3.82
BCal_7	0.28	2	0.72	0.65	91	0.2569	ten30e2	1.16E-05	3.82
CCal_12	0.28	2	0.72	0.65	85	0.2528	ten30e2	1.16E-05	3.82
DCa2_4	0.28	2	0.72	0.65	89	0.0685	ten30e2	1.16E-05	3.82
ET1_2	0.28	2	0.72	0.65	90	0.2044	ten30e2	1.16E-05	3.82
ACa8_2	0.47	2	0.53	0.42	55	0.0260	ten45e2	2.04E-05	4.34
AL4_4	0.47	2	0.53	0.42	56		ten45e2	2.04E-05	4.34
AL5_2	0.47	2	0.53	0.42	55		ten45e2	2.04E-05	4.34
AL8_2	0.47	2	0.53	0.42	54	0.0240	ten45e2	2.04E-05	4.34
CCal_4	0.47	2	0.53	0.42	56		ten45e2	2.04E-05	<u>+</u>
AL3_4	0.6	2	0.4	0.33	44		ten56e2	4.48E-05	
AL6_3	0.6	2	0.4	0.33	44		ten56e2	4.48E-05	
AL7_5	0.6	2	0.4	0.33	44	· · · · · · · · · · · · · · · · · · ·	ten56e2	4.48E-05	1
BCal_12	0.6	2	0.4	0.33	47		ten56e2	4.48E-05	7.49
FT1_6	0.6	2	0.4	0.33	47	0.2674	ten56e2	4.48E-05	i

.

.

TORS	SION	I	ST	RE	SS CO	NCE	NTRA	TION	IS
SPECIME	N DATA	4	B-EI	Reduc	tions		UNIT F	EM	
SPECIMEN	Hole Size	E	d/D	J/J	Polar Mom. (cm^4) Polar mom.	Tor. Rig. (Nm^2) Tors Rig	Model	Stress	K stress
ACa7_5	0.28	1	0.72	0.75	0.203	0.935	tor30e1	4.72E-03	2,19
BCa1 21	0.28	1	0.72	0.75	0.243	5.635	tor30e1	4.72E-03	
DL2 2	0.28	1	0.72	0.75	0.213	1.637	tor30e1	4.72E-03	2.19
DL4 1	0.28	1	0.72	0.75		1.655	tor30e1	4.72E-03	
ET1 8	0.28	1	0.72	0.75	0.236	7.358	tor30e1	4.72E-03	
AL7_4	0.28	2	0.72	0.75		0.764	tor30e2	6.16E-03	
BCa1_22	0.28	2	0.72	0.75	0.237	5.087	tor30e2	6.16E-03	
DL3 2	0.28	2	0.72	0.75	0.214	1.567	tor30e2	6.16E-03	
DL4_2	0.28	2	0.72	0.75	0.214	1.247	tor30e2	6.16E-03	2.85
FT1 8	0.28	2	0.72	0.75	0.201	13.433	tor30e2	6.16E-03	2.85
AL3_7	0.47	1	0.53	0.56		0.803	tor45e1	6.02E-03	
AL7 1	0.47	1	0.53	0.56	0.137	0.603	tor45e1	6.02E-03	
AL8_5	0.47	1	0.53	0.56		0.633	tor45e1	6.02E-03	·
BCal_13	0.47	1	0.53	0.56		3.875	tor45e1	6.02E-03	2.08
CCa1_13	0.47	1	0.53	0.56		2.471	tor45e1	6.02E-03	
DL2_1	0.47	1	0.53	0.56		1.457	tor45e1	6.02E-03	2.08
ACa7_3	0.47	2	0.53	0.56		1.457	tor45e2	1.07E-02	
AL5_1	0.47	2	0.53	0.56	0.105	0.683	tor45e2	1.07E-02	3.70
AL5_1 AL5_5	0.47	2	0.53	0.56		0.683	tor45e2	1.07E-02	3.70
BCal_3	0.47	2	0.53	0.50		3.798	tor45e2	1.07E-02	
DL2_3	0.47	2	0.53	0.50		1.196	tor45e2	1.07E-02	
	-++	$\frac{2}{1}$		0.30					2.05
ACa8_1	0.6		0.4			0.616	tor56e1	7.23E-03	
BCal_8	0.6	$\frac{1}{1}$	0.4	0.46	0.138	3.133	tor56e1	7.23E-03	2.05
CCal_1	0.6	<u> </u>	0.4	0.46		2.861	tor56e1	7.23E-03	
CCal_14	0.6	1	0.4	0.46		2.047	tor56e1	7.23E-03	
DL5_2	0.6	1	0.4	0.46		0.971	tor56e1	7.23E-03	· · · · · ·
AL7_2	0.6	2	0.4	0.46		0.742	tor56e2	3.23E-02	
BCal_1	0.6		0.4	0.46		2.962	tor56e2	3.23E-02	9.19
BCal_16	0.6	2	0.4	0.46		3.844	tor56e2	3.23E-02	
BCa1_5	0.6		0.4	0.46		3.770	tor56e2	3.23E-02	
FT1_1	0.6	2	0.4	0.46		8.091	tor56e2	3.23E-02	· · · · · · · · · · · · · · · · · · ·
AL3_5	0	0	1	1	0.285	1.523	tor0	1.62E-03	1.00
AL8_9	0	0	1	1	0.269	1.134	tor0	1.62E-03	
BCa1_9		0	1	1		8.772	tor0	1.62E-03	<u> </u>
DCa3_2		0	1	1		2.380	tor0	1.62E-03	·
DCa3_6		0	1	1		2.408	tor0	1.62E-03	
BCa2_10	0	0	1	1	0,309	6.369	tor0	1.62E-03	1
BCa2_6	0	0	1	1		6.190	tor0	1.62E-03	
CCa1_7	0	0	1	1		11.740	tor0	1.62E-03	· · · · · · · · · · · · · · · · · · ·
CCa1_11	0	0	1	1	0.326	6.853	tor0	1.62E-03	_
ET1_21	0	0	1	1	0.326	12.470	tor0	1.62E-03	
FT1_2	0	0	1	1	0.325	22.930	tor0	1.62E-03	
FT1_4	0	0	1	1	0.325	25.500	tor0	1.62E-03	1.00

•

BEND	INC	Ţ			Mecha	anical	Test l	Data		
SPECIME SPECIMEN			MECHANICA Calcula Yield Stn Calc		Acutal Strain		Pre-Load	Rigidity	Yield Load	Ult. Load
			% Strain	% Strain	% Strain	% Strain	Nm	Nm^2	Nm	Nm
AL6_2	0.28	1	1.05	1.97	1.3	2.4	0.12	0.344	0.523	0.653
BCa1_14	0.28	1	0.93	1.15	1.0	1.3	0.25	1.681	2.7	3.04
CCa1_2	0.28	1	0.78	1.56	1.0	1.9	0.45	1.307	1.83	2.24
CCa1_9	0.28	1	0.8	1.42	1.0	1.8	0.60	1.789	2.51	2.88
DCa4_1	0.28	1	0.54	0.87	0.8	1.3	0.30	0.636	0.661	0.727
ACa9_3	0.28	2	1.17	3.52	1.4	4.1	0.08	0.305	0.43	0.649
BCa1_10	0.28	2	0.87	1.2	1.1	1.5	0.50	1.394	2.2	2.48
BCa1_17	0.28	2	0.62		0.8		0.45	1.224	1.88	2.24
BCa1_18	0.28	2	1.02	1.64	1.2	2.0	0.75	1.774	3.82	4.43
ET1_I	0.28	2	0.56	0.95	0.7	1.2	0.60	1.924	1.95	2.24
AL8_7	0.47	1	1.04	2.43	1.3	3.0	0.05	0.184	0.202	0.263
BCa1_24	0.47	1	0.94	1.41	1.1	1.7	0.40	1.87	2.1	2.5
DCa2_2	0.47	1	0.54	0.92	0.8	1.3	0.15	0.471	0.34	0.385
DL3_1	0.47	1	0.5	0.67	0.7	0.9	0.15	0.628	0.428	0.481
DL4_3	0.47	1	0.28	0.78	0.5	1.3	0.23	0.639	0.347	0.433
ACa7_6	0.47	2	1.61	3.19	2.0	3.9	0.06	0.148	0.255	0.314
AL4_2	0.47	2	1.21	3.06	1.5	3.8	0.08	0.202	0.292	0.407
AL6_6	0.47	2	1.45	3.15	1.8	4.0	0.07	0.166	0.258	0.334
DCa2_3	0.47	2	0.56	1.02	0.8	1.5	0.20	0.511	0.391	0.5
FT1_7	0.47	2	0.82	1.33	1.0	1.7	0.60	1.725	2.37	2.74
ACa7_1	0.6	1	1.61	2.46	1.7	2.6	0.02	0.198	0.322	0.371
BCa1_25	0.6	1	0.7	1.78	0.8	2.1	0.15	1.024	0.871	1.27
CCa1_6	0.6	1	0.9		1.0		0.06	0.903	0.853	1.14
ET1_4	0.6	1	0.77	1.04	0.8	1.1	0.05	1.221	0.894	1.07
ET1_5	0.6	1	0.65	1.26	0.9	1.7	0.30	1.099	0.9	1.14
ACa9_1	0.6	2	1.97	3.49	2.1	3.7	0.01	0.11	0.175	0.211
AL3_1	0.6	2	1.36	2.87	1.5	3.2	0.02	0.127	0.177	0.25
AL7_3	0.6	2	1.47	2.83	1.8	3.5	0.05	0.137	0.21	0.26
BCal_28	0.6	2	0.92	1.95	1.0	2.1	0.05	0.942	0.782	1.07
ET1_7	0.6	2	0.95	1.38	1.0	1.5	0.08	0.813	0.757	0.898
ACa9_2	0	0	0.95	2.76	1.1	3.1	0.10	0.495	0.878	1.4
AL8_3	0	0	1.2	2	1.3	2.2	0.08	0.417	0.817	1.05
BCa1_26	0	0	0.81	1.77	0.8	1.8	0.03	1.927	3.77	5.5
CCa1_5	0	0	0.66	1.6	, 0.8	1.9	0.45	1.617	2.49	3.93
DCa4_4	0	0	0.55	1.1	0.6	1.2	0.15	0.904	1.15	1.59
BCa2_5	0	0			-10				1	
BCa2 9	0	0	0.63	1.28	0.8	1.5	0.70	2.052	3.55	4.9

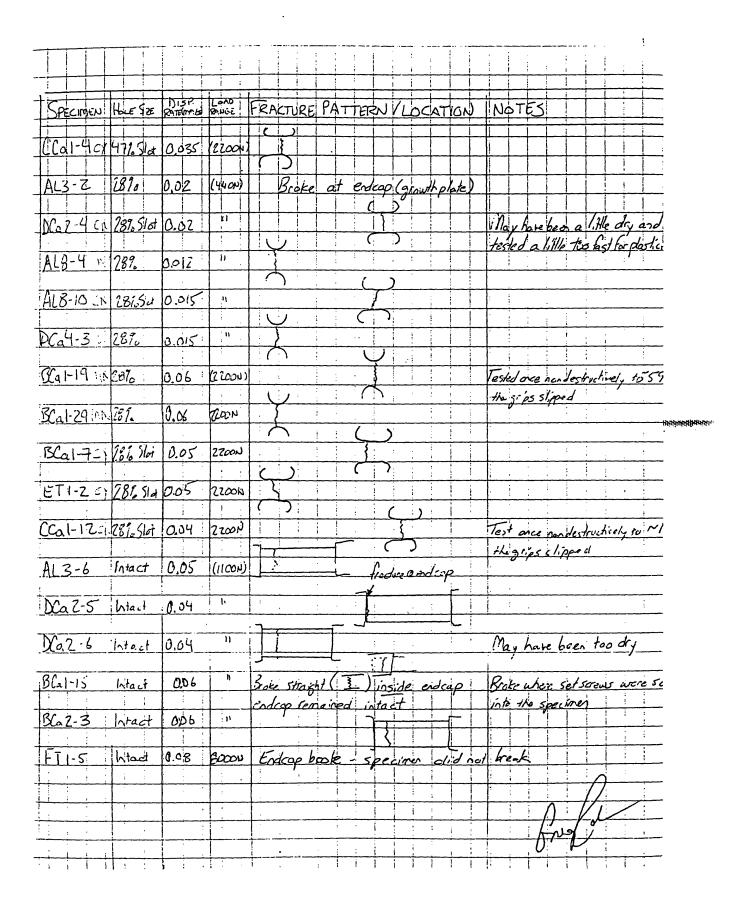
TENS	ION	[]			Mecha	anical	Test]	Data		
SPECIME!		_	MECHANIC		•		,		•	•
SPECIMEN		E	Calcul		Acutal .					
	Size		Yield Stn Calc	Ult Stn Calc	Yield Strain		1	Rigidity	Yield Load	
			% Strain	% Strain	% Strain	% Strain	N	NM	N	N
				1						
AL3_6	0	0		1	0.52%	2.09%		51094	285	45
BCal 15	0	0			0.52%			199470		173
BCa1_15 BCa2-3	0	0			0.03%			247979		173
DCa2-5 DCa2-5	0	0		·	0.41%			78133	575	
	0	0	·	+	0.82%		-0000000000000000000000000000000000000	61913		53
DCa2_6 FT1 5	0	0		+	0.70%	1.13%		01913	399	
AL3 2	0.28	1	· · · · · · · · · · · · · · · · · · ·		0.39%	1.52%		50127	205	27
AL3_2 AL8_4	0.28	1	· · · ·	+	0.34%			49489	156	29
BCal 19	0.28	1		+	0.34%			275438		
	0.28	$\frac{1}{1}$		+	0.44%			173464		116
BCa1_29 DCa4_3	0.28	1		+	0.39%			77098		29
		$\frac{1}{1}$		+	0.20%	+		20907	190	
AL6_4	0.47	$\frac{1}{1}$			0.30%			20907	120	77
BCa1_20					·			114444	701	80
BCal_6	0.47	1		+	0.62%			114464		
DL5_1	0.47	1	·	+	0.45%			26503		16
ACa7_4	0.6	1		+	0.40%			19569		14
AL5_3	0.6	1		+	0.49%			15270		
AL8_11	0.6	1		+	0.49%	0.83%		15500	76	9
BCa1_11	0.6	1								
ET1_3	0.6	1			0.38%	1		158378		86
AL8_10	0.28	2			0.48%			26420		19
BCa1_7	0.28	2	· · · · · · · · · · · · · · · · · · ·		0.56%			162941	898	107
CCa1_12	0.28	2			0.39%			173726		123
DCa2_4	0.28	2			0.54%			42353		27
ET1_2	0.28	2			0.38%	+		210086		89
ACa8_2	0.47	2			0.61%			17431	99	
AL4_4	0.47	2			0.62%			14562		
AL5_2	0.47	2		_	0.75%			9805		
AL8_2	0.47	2			0.56%			16284	+	
CCal_4	0.47	2			0.53%			98595	+	68
AL3_4	0.6	2			0.87%	+		8481	89	
AL6_3	0.6				0.59%			9868		
AL7_5	0.6			+	0.36%			17466	L	
BCa1_12	0.6	2			0.34%			33100	+	+
FT1_6	0.6	2			0.67%	1.06%		107750	792	95

TORS	ION			Mecha	anical	Test	Data		
SPECIME		MECHANIC	AL TESTS					L	
SPECIMEN		Calcula		Acutal	Strains	1	I.	1	1
DI DOIMDI	Size	Yield Stn Calc	Ult Stn Calc	Yield Strain		Pre-Load	Rigidity	Yield Load	Ult. Load
		% Strain	% Strain	% Strain	% Strain	Nm	Nm^2	Nm	Nm
				1					
ACa7_5	0.28	1 3.29	11.68	1.55	5.49		0.1034	0.385	0.591
BCa1_21	0.28	2.12	5.98	1.00	2.81		0.855	1.757	2.840
DL2_2	0.28	0.26	2.5	0.12	1.18		0.649	0.498	0.740
DL4_1	0.28	2.2	5.56	1.03	2.62		0.263	0.572	0.840
ET1_8		2.89	6.8	1.36	3.20		0.888	2.4	3.778
AL7_4	0.28 2		10.21	1.05	4.80		0.079	0.203	0.369
BCa1_22	0.28 2		6.22	1.27	2.93		0.609	1.549	2.394
DL3_2	0.28 2		4.73	0.92	2.22		0.184	0.417	0.624
DL4_2	0.28 2		4.94	0.94	2.32		0.12	0.275	0.397
FT1_8	0.28 2		8.81	1.24	4.14		1.431	3.65	6.229
AL3_7	0.47		9.83	1.08	4.62		0.079	0.219	0.429
AL7_1	0.47		/	,					
AL8_5		2.96	8.85	1.39	4.16		0.077	0.251	0.376
BCa1_13	0.47 1							2.3	2.512
CCa1_13	0.47 1	2.62	7.38	1.23	3.47		0.392	1.012	1.772
DL2_1	0.47 1								
ACa7_3	0.47 2								
AL5_1	0.47 2			2.01			0.043	0.187	0.277
AL5_5	0.47 2								
BCa1_3	0.47 2		5.1	0.98	2.40		0.516	0.948	1.497
DL2_3	0.47 2		4.19				0.174	0.169	0.36
ACa8_1	0.6 1		7.99	0.68	3.76		0.1951	0.333	0.5908
BCa1_8	0.6 1		5.16		2.43		0.411	1.136	1.489
CCa1_1	0.6 1		4.24		1.99		0.559	0.776	1.279
CCa1_14	0.6 1		5.57	·····	2.62		0.357	0.784	1.278
DL5_2	0.6 1		3.34	0.65	1.57		0.188	0.281	0.416
AL7_2	0.6 2			0.92			0.031	0.102	0.17
BCal_1	0.6 2		5.68	1.25	2.67		0.276	0.729	1.013
BCal_16	0.6 2		4.96	1.31	2.33		0.339	0.876	1.205
BCal_5	0.6 2	2.28	5.12	1.07	2.41		0.308	0.694	1.098
FT1_1			4.69	1.50	2.21		0.727	2.21	2.709
AL3_5 AL8_9	00		17.45	1.61	8.21		0.15	0.531	0.928
	+		13.33	1.81	6.27		0.115	0.519	0.774
BCa1_9 DCa3_2	00	3.81	6 12	1.79			0.956	3.136	
DCa3_2 DCa3_6	0 0	1.98	6.13 6.68	0.97	2.88 3.14		0.334	0.771	1.272
BCa2_10	0 0	3.08	8.3				0.495	0.697	1.248
BCa2_10 BCa2_6	0 0	3.03	8.66	1.43			0.872	2.03	4.008
CCa1_7	0 0	5.05	0.00	1.43	4.07		0.901	2.73	4.333
CCa1_1	0 0							2.191	3.138
ET1_21	0 0	2.76	5.35	1.30	2.52		0.92	2.191	3.368
•T1_2	0 0	1.58	5.55	0.74	2.32		2.615	4.26	5.500
FT1_4	0 0			1.35			2.613		
		2.80		1.35			2.043	7.4	

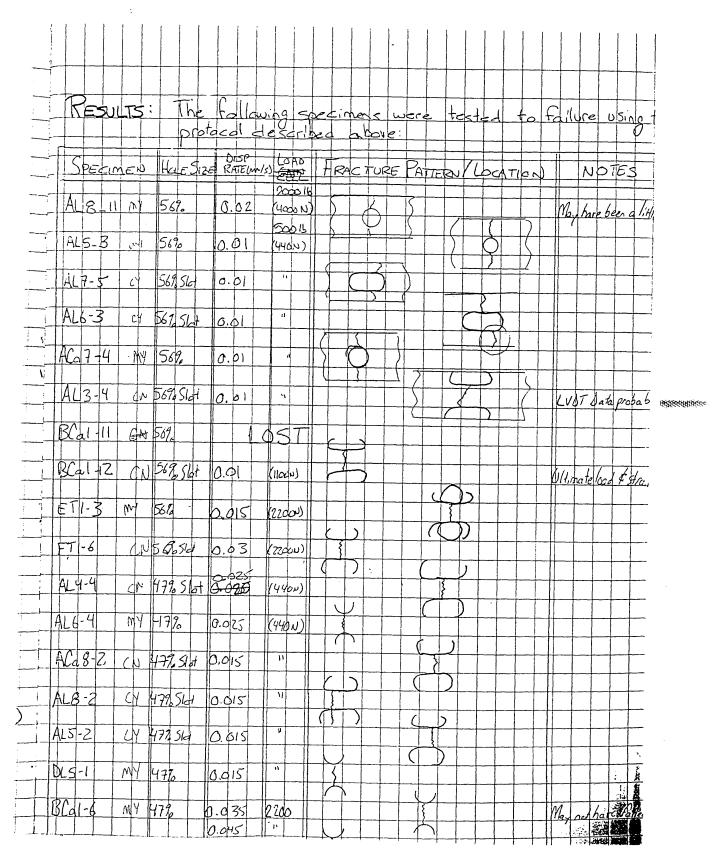
TORS	ION	I			INT	ACT	QCT	DA	TA		
SPECIME	V DATA	4		INTAC	TQCT					L	
SPECIMEN	Hole .	E	Length	Area	Density	Modulus	Axial Rig.	Ix bar	EIx bar	Polar Mom.	Tor. Rig.
	Size		mm	(mm^2)	(g/cc)	(GPa)	(MN)	(cm^4)	(Nm^2)	(cm^4)	(Nm^2)
				Area	Avg den	Avg Mod	axrig	gixbar	ixbar	Polar mom.	Tors Rig
	0.00	•	10.75	120	0.101	0.467	0.0(1	0.126	0.624	0.070	1.05
ACa7_5	0.28	1	40.75	130	0.191	0.467	0.061	0.135	0.634		
BCa1_21	0.28	1		143	0.491			0.163	3.718		7.51
DL2_2	0.28	1	36.91	136	0.262	0.781	0.106	0.148	1.100	+	2.18
DL4_1	0.28	1	37.25	135	0.264	0.793	0.107	0.148	1.123	0.291	2.21
ET1_8	0.28	1	37.51	141	0.583	3.356		0.160	4.840	0.315	9.81
AL7_4	0.28	2	35.76	128	0.174	0.400		0.132	0.512	0.261	1.02
BCa1_22	0.28	2	38.01	141	0.472	2.271	0.320	0.159	3.368		
DL3_2	0.28	2	37.83	134	0.260	0.773	0.104	0.141	1.035		
DL4_2	0.28	2	37.32	130	0.233	0.646		0.134	0.853	0.269	1.66
FT1_8	0.28	2	37.75	141	0.817	6.153	0.867	0.159	9.125	0.316	
AL3_7	0.47	1	32.34	132	0.203	0.516		0.140	0.724	0.280	1.43
AL7_I	0.47	_1	36.33	128	0.179	0.418		0.133	0.549		1.09
AL8_5	0.47	_1	36.84	130				0.134	0.565		1.13
BCa1_13	0.47	1	38.06	140	0.481	2.380		+	3.393		6.92
CCa1_13	0.47	1	37.59	129	0.371	1.568		0.139	2.066		4.41
DL2_1	0.47	1	38.64	134	1	0.938		0.145	1.241		2.60
ACa7_3	0.47	2	35.37	136	0.222	0.598	0.081	0.148	0.895		1.79
AL5_1	0.47	2	37.60	131	0.186	0.444	0.058	0.138	0.624	0.276	1.22
AL5_5	0.47	2	34.37	131	0.178	0.413	0.054	0.135	0.564	0.271	1.12
BCa1_3	0.47	2	37.73	138	0.483	2.454	0.340	0.151	3.340	0.307	6.78
DL2_3	0.47	2	38.74	136	0.258	0.766	0.104	0.148	1.089	0.292	2.14
ACa8_1	0.6	1	37.23	134	0.194	0.477	0.064	0.143	0.675	0.286	1.34
BCa1_8	0.6	1	36.70	137	0.479	2.381	0.327	0.149	3.444	0.301	6.81
CCa1_1	0.6	1	38.50	139	0.436	2.062	0.287	0.160	3.099	0.316	6.22
CCa1_14	0.6	1	38.59	132	0.371	1.584	0.209	0.150	2.273	0.297	4.45
DL5_2	0.6	1	37.76	136	0.259	0.769	0.104	0.147	1.061	0.293	2.11
AL7_2	0.6	2	34.70	136	0.216	0.566	0.077	0.148	0.813	0.295	1.61
BCal_1	0.6	2	38.01	140	0.468	2.267	0.317	0.158	3.223	0.312	6.44
BCal_16	0.6	2	37.04	+				0.153	3.593	0.306	8.36
BCa1_5	0.6	2	38.13	143				0.164	4.048	0.327	8.20
FT1 1	0.6	2	37.50			+	+	+	+	+	
AL3_5	0	0	33.66	· · · · · · · · · · · · · · · · · · ·			+				
AL8_9	0	0	36.25			+	+	+			
BCa1_9	0			+	+			+	+		
DCa3_2		0	38.05					+			
DCa3_6		0	37.15	+							
BCa2_10	0		57.15	138						+	
BCa2_10 BCa2_6	0			130						+	
CCa1_7	0			137							
CCal_1	0			138	+	+			+		
ET1_21	0			141			+		+		
	0			143	+						
FT1_2							-+				
FT1_4	0			143	1.031	8.519	1.216	0.102	12.040	0.525	

BENDING

TEST WAVE FORM: gdcben utp (con	troller sty
125 cycles between 0.0mm and -0	1/mm @ 0.05 mm/sec
	225 mm/sec
SPECIMEN TEMP: specimos were teste	ed e mon trop and
were thawail for approximately	20-30 minutes before
testing. They were kept point using	a damp piece of guaz gauze.
ROOM TEMP: 21°C / 70° FT	
NUMIDITY: 6390	
RESULTS: The following specimens u	
above with the except (where noted.	vere tested using the protocol
	52888888888888888888888888888888888888
SPEAMEN HAE SIZE FRACTURE PATTERN/LOCATION	NOTES
(View from bottom)	
BCal-26 None 85.8mm / 19.3mm from LFI/Right	Blah 26 was tested once to a displacem.
BCal-26 None 25.8mm / 19.3mm. from Lfi/Right Edges	Stal 26 was tested once to a displacem. of about 1. Som and then to failure. In to
BCal-26 None 25.8mm / 19.3mm from Lfi/Right Edges DCa4-4 None 29.5mm / 4.5mm CCa1-5 None 28.8mm / 9.4mm	Blah 26 was tested once to a displacem.
BCal.26 None 25.8m / 19.3mm from LA/Right CCal-5 None 28.8mm / 9.4mm ACa9-2 None At left endcap	Blah 26 was todd once to a displacem. of about 1. Smm and then to failure. In to first tost, it had not yiclded.
BCal-26 None 25.8mm / 19.3mm from LFI/Right idges DCa4-4 None 29.5mm / 4.5mm CCa1-5 None 28.8mm / 9.4mm ACa9-2 None At left endcap AL 8.3x None At left endcap	Stal 26 was tested once to a displacem. of about 1. Som and then to failure. In to
BCal-26 None 25.8mm/19.3mm from LFI/Right CCa4-4 None 29.5mm/4.5mm CCa1-5 None 28.8mm/9.4mm ACa9-2 None At left endcap	Blah 26 was todd once to a displacem. of about 1. Smm and then to failure. In to first tost, it had not yiclded.
BCal.26 None 85.8m / 19.3mm from LA/Right DCa4-4 None 29.5mm/ 4.5mm CCa1-5 None 28.8mm / 9.4mm ACa9-2 None At left endcap AL 8-3× None At left endcap BCal.18 28% slot	Blah 26 was todd once to a displacem. of about 1. Smm and then to failure. In to first tost, it had not yiclded.
BCal-26 None 25.8m / 19.3mm from LA/Right DCa4-4 None 29.5mm / 4.5mm CCa1-5 None 28.8mm / 9.4mm ACa9-2 None At left endcap AL 8-3x None At left endcap DCa4-1 287.	Blah 26 was todd once to a displacem. of about 1. Smm and then to failure. In to first tost, it had not yiclded.
BCal.26 None 85.8m / 19.3mm from LA/Right DCa4-4 None 29.5mm/ 4.5mm CCa1-5 None 28.8mm / 9.4mm ACa9-2 None At left endcap AL 8-3× None At left endcap BCal.18 28% slot	Blah 26 was todd once to a displacem. of about 1. Smm and then to failure. In to first tost, it had not yiclded.
BCal-26 None 25.8m / 19.3mm from LA/Right DCa4-4 None 29.5mm / 4.5mm CCa1-5 None 28.8mm / 9.4mm ACa9-2 None At left endcap AL 8-3x None At left endcap DCa4-1 287.	Blah 26 was todd once to a displacem. of about 1. Smm and then to failure. In to first tost, it had not yiclded.
BCal.26 None 25.8m / 19.3mm from LG/Right DCa4-4 Nane 29.5mm / 4.5mm CCa1-5 Nane 28.8mm / 9.4mn ACa9-2 Nane At left endcap AL 8-3x Nane At left endcap N DCa4-1 287. Stat N DCa4-1 287. Stat	Blah 26 was todd once to a displacem. of about 1. Smm and then to failure. In to first tost, it had not yiclded.
BCal.26 None 85.8m / 19.3mm from LG/Right DCa4-4 None 29.5mm / 4.5mm CCa1-5 None 28.8mm / 9.4mm ACa9-2 None At leA eroccap AL 8-3× None At left eroccap N DCa4-1 2810 slot Slot N DCa4-1 2810 slot Slot N BCa1-18 2810 slot Slot Y BCa1-17 181. slot Slot Y CCa1-9 2870 Slot	Blah 26 was todd once to a displacem. of about 1. Smm and then to failure. In to first tost, it had not yiclded.
BCal.26 None 25.8m / 19.3mm from LG/Right DCa4-4 Nane 29.5mm / 4.5mm CCa1-5 Nane 28.8mm / 9.4mn ACa9-2 Nane At left endcap AL 8-3x Nane At left endcap N DCa4-1 287. Stat N DCa4-1 287. Stat	Blah 26 was todd once to a displacem. of about 1. Smm and then to failure. In to first tost, it had not yiclded.
BCal.26 None 85.8m / 19.3mm from LG/Right UCa4.4 None 29.5mm / 4.5mm CCa1.5 None 28.8mm / 9.4mm ACa9.2 None At leA erodcap AL 8.3× None At left erodcap N DCa4.18 28% slot Image: Slot N DCa4.19 28% slot Image: Slot	Blah 26 was todd once to a displacem. of about 1. Smm and then to failure. In to first tost, it had not yiclded.


DRECIMEN	HOLE SIZE	FRACTURE PATTERN	NOTES	
ET 1.1 Al 6.2	287. Slot			
AC. 9.3	2876 516+			
* EW	SET OFT	EST PARAMETERS (SEE "SETUP B") FOR 47% HOLE *	
DL4_3 DL3_1	4790		Vollectec e 6 Hz, some as SETUPA" except load full seta scale set to 88 Newtons Data collected @ 12 Hz	
BCal-24	4790		Sampling nate = 6 # ; Full scale load 'N' = 220N	
DCa2-Z	4.7.90		6 H=; 10V= 88N	NRCOMBER .:
A14.2	477. Slot		104 = EBN	
- <u>Ca</u> 6	428 5107		1.0V = 8EN * All 47% specimens - the load goes to zero by the time the visible	
571.7	4790 5/ct		10V = 220N Crack has propagated 1/2 why through the specimen	
D(a2-3	4790 Slot		ICV=44N	
AL87	4790	\bigcirc	10V = 44N	
AL 6.6	47.90 Slat		10V = 84N	
ETI.5	5690	Q	16V=98N	
* NEW	SET OF	TEST PARAMETERS	(SEE SETUP C") FOR 5690 HOLE *	
ACa Z.1	567.		Abte: ACa7.1 was tested @ 0.006 mm/20 and may not have yielded. It was tested againe 0.01 mm/sec and did reach ultimate lead	
BCa1.28	5670 Slot		(IOV=44N) (OV=83N	

BENDING

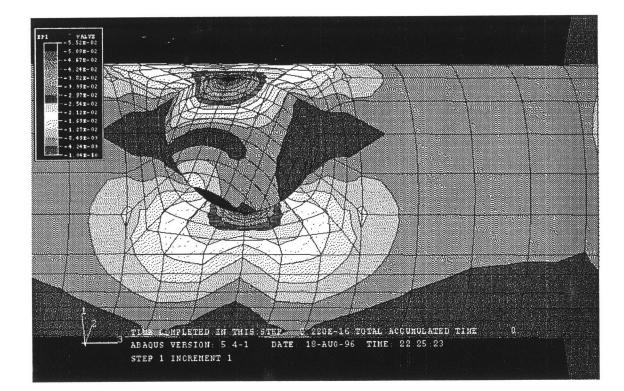

.

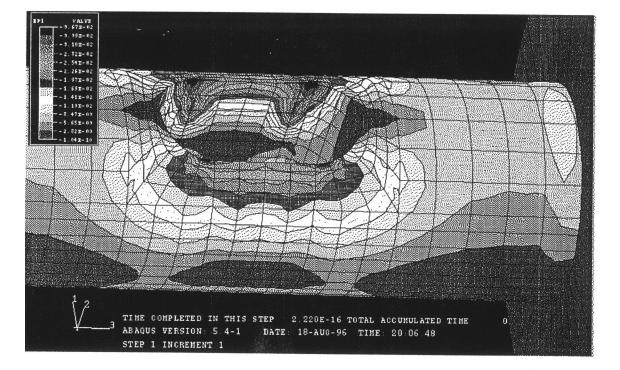
							l					;		l		•
SPECIMEN	HOLE SIZE	FRACTURE	PATTERS/LC	XATION		NOTE	5								$\overline{+}$	
ET1-7 CCA1-6 ET-4 BCal.25 ACa9-1 AL3-1	5690 Slot 5690 Slot 5690 Slot 5690 Slot 5690 Slot				0V = 8 10V = 8 10V = 8	N 8N 8N	ша ат 5h	s 1 e 51 a p j d l	fallo fallo fallo vere	be be ps ALU	line con la la la la la la la la la la la l	e p pore conti	rapa pri nu om	e po g tics	an +1 alion) in .	·
AL 7.3 * TESTEL	566564 566564 (151NG the inter the inter	et aroup	from 11	2 <u>6</u> .	юл=41 50-	4N 52.	The. They	se ki	nst 7 122 (1000 1007	5pec 5ca,	<u>cime</u>	ens d v	we	<u>^e</u>	805 14134
3Ca2-5 3Ca2-9	Nore Nore	6.85mm /30 33.8 m/2	0.30mm frem Emm frem II		•		Ì	adn	ncy b	<u>e b</u> a	ad (0	(r.:11	in t	are i	<u>Flac</u>	
	SETU WAVEFORM			uten	0.0m		1 - (1.05		E	0.02	25	<u>a</u> .n		······································	.
5 Ama	UG FREG	<u> </u>	<u>mp to -</u>	-4.0 p	v <u>m (</u>	2_0	015									
	ETUP (Wavefacti	1: 5 c, 1 <i>Iac</i>	ng <u>to</u>	ween 4.0m	0.0 n C	2 0.	and 015	-0. mm	03 a sec	1 <i>m</i>	20	2.02	2 ~~~	n/sec		
SAMA	LING FREC	9. Foe	<u>brtr</u> Co	<u>xLE</u>	CTIC	ж :	121	/2				_ز اکن	rvef	John		

TENSION

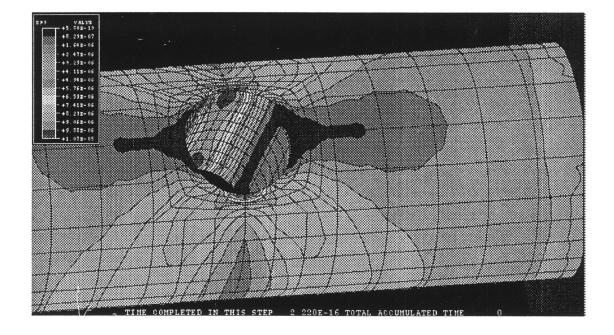
TENSION

TORSION

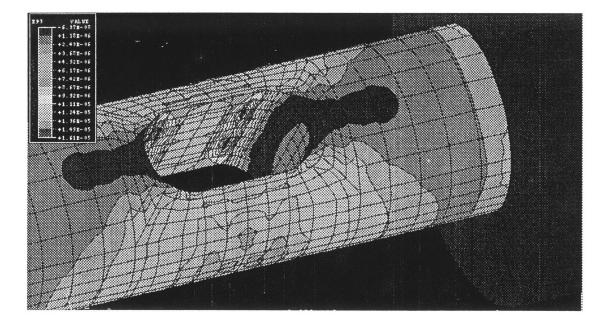

SPECIMEN Harsze	NSP Preload Load RATE (Nm) Gain	FRACTURE PATTERIN/ LOCATION	NOTES
BCal-3 47% Slot			
BCal-13 4790	v 0 0		Markers last las yiels
BCal-16 5505Slot	11 ()](
BCal-1 56% 510t	1, (s Y1		
BCal-5 567, Sler	u v v		
BCal-8 569	5 K U		
CCal-1 56%			
Cal-14 56%			
FT1-1 572 Stat			
125-2 569.			
AL-			
	0.15 0.1171		No ultimede stain-ma,
AL3-5 Intact		{ (not spiral)	Broke near middle
Xa3-6 Intact ALB-9 Intact			Broke near middle
ALB-9 Intact DCa3-2 Intact	IV IV IV	- (not spiral)	Bioke near middle
BCal-9 Intact			Broke rearmiddle
SCa2-10 Intact		(short spiral) }	Bicke @ bottom endcap Roste near bottom endc
Blaz-6 Intact	<u>n</u> <u>n</u> <u>n</u>		
ET1=21 Intact	<u> </u>	Spiral	Brake & batton endrag Brake & batton endrap

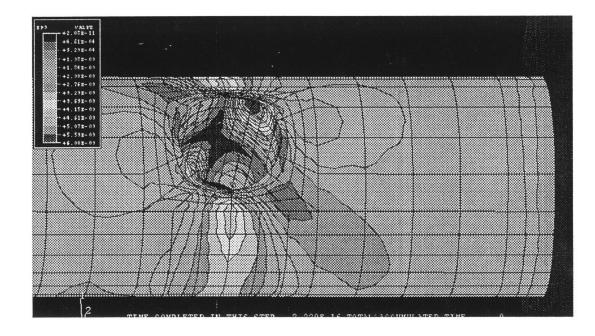

TORSION

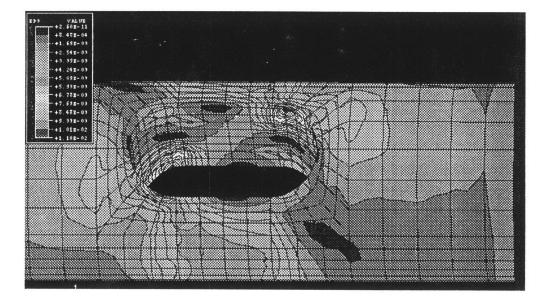
RESUL	TS: The	e follou	ing specime	ns were	tested	U5:00	g the p	mtocol	des	cibed_	
SPECIMEN	HOLE SIZE	RATE (MATE)	FRICTURE	ATTERN /	LOCATION	2	ΝΟΪ				
							Gan (Lood)	fieload			
BCa1-22	30% Slat	0.25	5	<u>, , , , , , , , , , , , , , , , , , , </u>			4000	0.1308			
BLoL21	301:	0.25					i)	N			
ETI-8	30%	0.25					<i>I</i> ,	N			
FTI-8	3090 Slat	0.25			\square	7	h :	N.			
AL7-4	3090510t	0.25					IN .	u	NOT	SPIRA	
4Ca7-5	367.	0.25		\rightarrow	- Q-	Ì	n	N	NOT	SPIRAL	a station of the second
L3-2	309. Slot	0.85	$\int \mathcal{A}$		{		• ħ	4			
4-1	3090	0.25			- Ó	Ź	n	N			
<u>312-2</u>	3010	0.25	$\frac{1}{2}$				Ŋ	N			
DL4-2	30% Slot	0.ZS		$ \rightarrow $	5		ħ	11		-	
DL2-3	477. Slot	0.25	$\frac{1}{2}$				۰. ۱	11			
AL7-1	4790	0.25	······		Į.	⊥ ∠	11	h	Specin	VEN LOST	
AL8-5-5	4790	6.20		(<u>1</u> 1	n			
ALS-1	47% Stat	0.20	· · · · · · · · · · · · · · · · · · ·		2		h	٦X			
ALS-S	47% SI or	6.20	SPECIME	N LOST			n	<u> </u>			
DL 2-1	479,	0.20	$\frac{1}{2}$	\ }				0.1305	SPEC	merle	
ACa7-3	47905101		SPECIMEN	LOST	{				Breker	while M.	
(Cal-13	47%	0.20	-	}	9	$\langle \rangle$	11	0.1305			



This appendix contains sample plots of the strain concentrations in each of the three types of testing, one plot for a circular hole and one for a slot. Strain was plotted rather than stress, so that high stresses at the load point, particularly in bending, would not distort the gray-scale. Following the plots is a Patran session file used to create the a model with a slotted defect. All the models were identical, except for the parameters discussed in Chapter 6. Depending on the loading type, one of three sets of boundary conditions at the end of the model were un-commented and made active.




Ben 45e2


Ten 45el

Ten 45ez

Tor 45e#1

Tor 45eZ

Aug 18 20:13	bb30e2.ses	1	Aug 18 20:13	bb30e2.ses
GO 1			\$ bone.	Ş
SET, ALPHA, 8 SET, LI, 0			\$\$\$\$\$\$\$\$\$\$\$	***************************************
VI 1 45/50			\$ Make	NITIAL OCTANT OF THE CYLINDER \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ two grid points, connect them with a line, rotate it so you have the radius of the cyl.
<pre>\$ MODEL: 28% H MODEL: 28% H MODEL: 1D-/ S MOdes: 11 S Elements: 23 S COMMENTS: This S for applying S modes of load S generation. S maxium aspect</pre>	is the setup with a fixture on the end tension and torsion, and it has all three ling listed. It has the new method of mesh The high edge angles can't be avoided. The cratio not in the bone is 10.8 and is in the ath the endcaps. The max edge angles are at		\$***** \$IIII 5 \$ \$FFFF 5 \$***** GR,1#,,0/0/6 \$**** \$IIII \$FFFF \$DDDD	<pre>%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%</pre>
\$ \$	\$		GR, 1#,, 0/.635/- LI, 1#, 2G,, 1, 2 PA, 1#, ARC, 0/0/0	679
\$ DDDD = A valu	he initialized by the user \$ se dependent on some previous value \$ he which must remain fixed (e.g always zero) \$ kg/cm/s \$ 0.635 cm \$		\$ Make \$**** \$FFFF \$DDDD	<pre>ide arc as hpat to make the octant of the cyl. patches from the hpat then delete the original i************************************</pre>
<pre>\$ Gage length: \$ Potted length \$ ENDCAPS</pre>	3.76 cm \$ n: 3.81 cm \$		HP,1#,EXTRUDE,(PA,4#,HPAT,3/2, HPAT,1,DEL	
 S Thickness: S Length: S DEFECT S Hole Radius: S Slot Length: S REGION WITH REFINED S Length: S Width: 	0.635 cm \$ 3.81 cm \$ 0.179 cm 28% d/D \$ 0.625 cm 200% eccentricity \$ 0.MESH (local to the defect) \$ 1.27 cm \$ 0.7 cm \$		\$ Make \$ to th \$ so th \$ the h	HE HOLE \$
\$ It is tight in the	s mesh, but is refined in the radial direction. radial direction near the hole (HP1,2,5,7) s he radial direction away from the hole (HP3,4) s	•	\$%%%%% \$IIII \$DDDD	<pre>the grid point ******* Radius of the Hole ********************************* X = defines Radius of hole, must be negative \$ Y = 0.1 higher than Radius of cyl. (defines Height) 2 = 1/2 length of slot, must be negative \$</pre>
	***************************************		\$****	***************************************
Ş	ER WITH THE HOLE \$		GR,1#,,179/.7	
<pre>\$ defining the radius \$ the initial segment \$ than the rest of th \$ defining the radius \$ trimmed to the hole \$ The hyperpatches ar \$ the hole and the or \$ then extruded as a \$ slot is extruded as</pre>	of a cylinder is created, with the user \$ s of the cylinder and the extruded length of \$ t. This length will contain a tighter mesh \$ ne bone. A hole is then created, with the user s of the hole. The initial octant is then \$ s and segmented into three separate segments. \$ the built from lines and patches generated by \$ tiginal segments. The length of the bone is \$ set of new HPATs. Finally the octant is \$ a set of new HPATs. Finally the octant is \$ ho f the three axes to produce the complete \$		LI,1#,ARC,G4/G6 \$ Extru \$%%%%% \$FFFF \$DDDD \$	<pre>b the arc 90 degrees 5/-90,7 ade the curved patch ************************************</pre>

Aug 18 20:13 bh30e2.ses Aug 18 20:13 3 bh30e2.ses PA,1#,EXTRUDE,0/-.8/0,2 PA, 1#, BREAK, 10L, 15 PA,15,D \$ Trim the faces of the octant to the hole PA,18,D PA, 8#, BREAK, P6, 2/3/4/5 \$ Trim the hole patch down to size - you have to make PA, 8/9, DEL \$ lines to trim to first. PA, 10T12, DEL PA, 14, DEL LI.1#.MERGE..5/6 PA, 5/2, DEL PA, 1#, BREAK, 11L, 6 PA,6,D PA, 18, D \$ Make lines at the intersection of the hole with \$ the base and the top face of the quadrant and LI,1#,MERGE,,3/4 \$ break the lines into two segments each. PA,1#, BREAK, 12L, 19 PA, 19, D LI.. INT..6.4 PA,21,D LI.3/4, BREAK, 0.5, 3 LI,2,DEL Y LI,, INT,, 6, 3 \$\$\$ MAKING THE PATCHES FOR THE FRONT FACE \$ LI,5/6, BREAK, 0.5,5 PA,1#,BR,P16,13 PA,13,D \$ Make grid points, lines, and extruded patches \$\$\$ MAKING THE PATCHES OF THE BASE \$ \$ that divide original octant into 3 segments plus the hole \$ Split the base in two. Delete the original and \$ delete the new patch near the hole. \$IIII X = 1/2 width of tight-mesh region local to hole \$ PA,1#,BR,7L,4 Ŝ X should be neg. PA,4,D Ŝ FFFF Y = 0.0 / should always be zeroPA, 23, D s SDDDD Z = 1/2 length of slot (should be neg.) S \$ Make the two lines still needed for the two \$ patches near the holes. Then build those two GR, 1#, , -. 35/0/-.179 \$ patches from 4 lines. \$************** Check the line numbers ******************* \$ Be careful!!!! Depending on the size of the hole, Patran \$ \$DDDD X = 1/2 width of tight-mesh region local to hole \$ \$ might reverse lines 5 with 6 and 3 with 4. If the model \$ Ś X,Z should be negative \$ doesn't initially run, this might be a problem. FFFF Y = 0 / should always be zeroS????? SDDDD Z = 1/2 length of tight-mesh region local to hole S LI,1#,2G,,14,17 PA,1#,EDGE,,7/13/3/8 GR,1#,,-.35/0/-.679 LI,2#,2G,,18/1,1/12 LI,1#,2G,,17,18 PA,1#,EDGE,,8/4/15/14 LI,1#,2G,,15,18 \$\$\$ MAKING PATCHES OF BACK, LEFT FACE \$ \$\$\$ (Building patches from lines) \$ SFFFF X, Z = 0 / should always be zero \$ Break the top, curved face into two patches. \$ SDDDD Y = 0.1 higher than Radius of the cylinder S PA, 1#, BREAK, 9L, 3 PA.3.D PA,1#,EXTRUDE,0/.8/0,7 PA, 1#, EXTRUDE, 0/.8/0,8 \$ Make lines from the two new patches. \$\$\$ Make lines at the intersection of the dividing patches LI,1#,PATCH,4,27 \$\$\$ with the base and the top face of the quadrant \$\$\$ LI,1#,PATCH,4,28 \$ Make a line parallel with y-axis. LI,1#, INT,, 3,14 LI,1#, INT,, 3,15 \$ Then make a line parallel with x-axis. \$*************** Check the line numbers ********************** \$ Be careful !!!! Depending on the size of the hole, Patran \$ \$ Trim the dividing patches down to size \$ might reverse points 22 and 23. This also affects the \$ PA,1#, BREAK, 9L,14 S reparameterizing. PA,17,D PA, 14, D

S

S

\$ Extrude the patches on the back, left side. Make two \$ HPATs from those two patches. Then mirror those two \$ HPATs to make the full eight HPATs.

PA, 2#, TRANS, 0/0/-3.81, 33/34 HPAT, 6/7, 2P, , 34/33, 36/35

\$ The endcaps must overlap the bone such that the mesh of the \$ endcap and the mesh of the bone will match. This means the \$ endcap mesh must also be properly defined.

GR,1#,,0/.635/-1.88

GR,1#,,0/1.27/-2

\$ Connect the two lines, sweep 90 degree arc, extrude the HP

LI,1#,2G,,34,35 PA,1#,ARC,0/0/0/0/0/1/90,26

HPAT, 8, EXTRUDE, 0/0/-3.81/0/0/0, 37

\$ Break the HP into two segements corresponding to HP4 and \$ HP5 so that it can have different appropriate mesh \$ densities. Make a line between HP4 and HP5, \$ break HP41 at the line, and then get rid of the line

LI,1#,2G,,26,31 HP,8/9,BREAK,27L,8 Y

LI,27,DEL

\$\$\$ THE FIXTURE \$

LI,1#,2G,,18,23 LI,1#,2G,,18,3

\$ Make a dummy line @ degenerate edge.

LI,1#,2G,,23,23

\$ Make patches from four edges.

PA,1#,EDGE,,19/18/20/17 PA,1#,EDGE,,14/1/16/18

\$ Get rid of original patch.

PA,1,D

\$\$\$ MAKING PATCHES ON THE TOP, CURVED FACE \$ \$ Make some lines to construct the patches.

LI, 1‡, 2G, 2, 6 LI, 1‡, PA, 2, 27 PA, 27, DEL LI, 2‡, BREAK, G11, 21 LI, 21/24, DEL LI, 24, BREAK, G13, 22 LI, 22/24, DEL

PA, 1#, EDGE, , 9/25/5/10 PA, 1#, EDGE, , 10/6/23/16

HPAT, 1, 2P,, 25, 31 HPAT, 2, 2P,, 26, 32 HPAT, 3, EXTRUDE, 0/0/.5, 29

\$\$\$ THE GAGE LENGTH FROM THE HOLE TO THE ENDCAP \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$

PA, 2#, TRANS, 0/0/-1.201, 29/30 HPAT, 4/5, 2P, , 30/29, 34/33

\$\$\$ MAKING THE PART OF THE BONE THAT GOES IN THE ENDCAPS \$\$\$\$\$\$\$

Aug 18 20:13	bh30e2.ses	7	Aug 18 20:13	bh30e2.ses
C) firsture view at the and of the or	4		\$\$\$ MESHING THE F	IRST OCTANT (1-5) \$
<pre>\$ A fixture ring at the end of the en PA, 2#, HPAT, 6, 8/9 HP, 10/11, EXTRUDE, //2, 38/39</pre>	ucap			ht, inner segment, adjacent to hole \$
\$ A fixture disk inside the ring			\$ H4 - ins	side segment, behind H1 \$ tide segment, in front of H4, along gage length \$
PA, 2#, TRANSLATE, //1, 35/36 HP, 12/13, EXTRUDE, //1, 41/40			\$ H6 - ins	side segment, beside H3, along gage length \$ side segment, in endcap \$
\$\$\$ THE SLOT \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$	\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$		\$ H8 - ins	side segment, in endcap \$ side segment of endcap \$ side segment of endcap \$
	front side. Use the patch from that it will have the correct		\$ H10 - ins	vide segment of fixture ring \$
\$ degenerate edge.			\$ H12 - ins	ide segment of fixture disk \$ side segment of fixture disk \$
SFFFF X,Y = 0 / should alwa				ide segment of slot \$ side segment of slot \$
DDDD Z = 1/2 (length of lo DDDD Z = 1/2 extruded leng	th of slot (HPAT) \$		\$ OCTANTS:	\$ SCT1: HP1 - HP15 \$
\$*************************************	**************************		\$ 0	CT2: HP16 - HP30 Reversed \$
HPAT, 14/15, EXTRUDE, //.179///, 21/42			\$ 0	CT4: HP46 - HP60 \$ CT5: HP61 - HP75 Reversed \$
<pre>\$\$\$ REPARAMATERIZING \$\$\$\$\$\$\$\$\$\$\$\$ \$ psil = -x (tan)</pre>	\$ \$		\$ 0	DCT6: HP76 - HP90 \$ DCT7: HP91 - HP105 \$
psi2 = +y (rad) psi3 = -z (length)	\$ \$		\$	CT8: HP105 - HP120 Reversed \$
\$ HP,1 ,LAB,,14/13	***************************************			$s_{si1} = \frac{2}{4} = -X$ (usually tan) $s_{si2} = \frac{1}{3} = \frac{2}{4} = X$ (usually rad)
HP,2 ,LAB,,12/11 HP,3 ,LAB,,17/22				si3 = / / / /9 = -Z (long axis) \$
HP,4 ,LAB,,1/2 HP,5 ,LAB,,18/23			\$ RULES: \$	\$
HP,6,LAB,,27/28 HP,7,LAB,,25/26				rad 1/3 you define \$ an 2/4 you define \$ 3 9 you define \$
HP,8 ,LAB,,28/35 HP,9 ,LAB,,26/37 HP,10,LAB,,33/38			\$ HP2 - r	ad 1/3 must match 1/3 of HP1, scale neg. \$
HP,11,LAB,,31/39 HP,12,LAB,,50/51			\$ Z	
HP,13,LAB,,48/49 HP,14,LAB,,55/54			\$ Z	(-x) 2/4 you define must be even \$ 9 must match 9 of HP1 \$
HP,15,LAB,,56/57 \$\$\$ MIRROR OCTANTS \$\$\$\$\$\$\$\$\$\$\$\$\$				tad 1/3 must match 1/3 of HP1 \$ tan 2/4 must match 2/4 of HP2 \$ you 9 you define \$
\$ Mirror all 8 octants. Then delete			\$ HP5-t	(-x) 2/4 must match 2/4 of HP3 5
HP,16 T30 ,MIRROR,Y,1 T15 HP,31 T45 ,MIRROR,Z,1 T15			\$ Z	9 must match 9 of HP4 5 ad 1/3 must match 1/3 of HP1 5
HP,46 T60 ,MIRROR,2,16T30 HP,61 T75 ,MIRROR,X,1 T15	•.		\$ Z	
HP,76 T90 ,MIRROR,X,16T30 HP,91 T105,MIRROR,X,31T45 HP,106T120,MIRROR,X,46T60				Image: Second state Image: Second state
<pre>\$ Delete the fixture disk inside the</pre>	ring. It won't be used.		\$ HP8 - r	ad 1/3 you define \$
HP,12/13/27/28/42/43/57/58/72/73/87/8			\$ Z	
<pre>\$ Delete the fixture ring on the bott \$ applied through a ring at the top.</pre>	om face. Loads are only		\$ Z	an 2/4 must match 1/3 of HP1 \$ 9 must match 9 of HP6 \$
HP,40/41/55/56/100/101/115/116,DEL			\$ HP10 - r \$ t	ad 1/3 must match 1/3 of HP8 \$ an 2/4 must match 2/4 of HP2 \$

.

\$ \$ \$ \$

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Aug 18 20:13	bb30e2.ses	9	Aug 18 20:13	bh30e2.ses
<pre>\$ Meshing Octants 1,4 ME,H1 /H46/H76/H91 ,1 ME,H2 /H47/H77/H92 ,1 ME,H3 /H48/H78/H93 ,1 ME,H4 /H49/H79/H94 ,1 ME,H5 /H50/H80/H95 ,1 ME,H6 /H51/H81/H96 ,1 ME,H6 /H51/H81/H96 ,1 ME,H8 /H53/H83/H98 ,1 ME,H9 /H54/H84/H99 ,1 ME,H10/H55/H85/H100,1 ME,H11/H56/H86/H101,1 ME,H13/H58/H88/H103,1</pre>	HEX/20,N,4/4/4/4/3/ /2/ /2/ HEX/20,N,4/2/4/2/4/ / / / /2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<pre>\$ The bone's material pr \$ 1 GPa - 100000 N/cm^2 PMAT, 1, ISO, 100000, . 3 PFEG, H1T120, HEX/20, 1 \$ The endcaps' material \$ 50 GPa - 5000000 N/cm' PMAT, 2, ISO, 5000000, . 3 PFEG, H8/9/23/24/38/39/53 \$ \$ The fixture's material PMAT, 3, ISO, 2E11, . 3 PFEG, H10T13/25T28/40T43, S \$\$\$\$ BOUNDARY CONDITIONS \$ 2.54 cm moment \$ Fix inner top \$ Fix outer lowe \$ Fix outer lowe</pre>	<pre>properties 2 - a composite of aluminum and PMMA 3/54/68/69/83/84/98/99/113/114, HEX/20, 2 1 properties /55T58/70T73/85T88/100T103/115T118, HEX/20, 3 - 4-POINT BEND, CONTROLLED LOAD = -39.4 N \$ t arm gives -1 Nm load left in X right in X er left in X and Y and Z er right in X and Y 7041</pre>
ME, H15/H60/H90/H105,H	HEX/20, N, 4/2/4/2/1/ / / / /		\$DFEG, H23, DISP/N, 0/0/0,, \$DFEG, H53, DISP/N, 0/0/,, M	N7295
<pre>\$ Meshing Octants 2,3 ME,H16T30/H31T45/H61* 1</pre>	3,5,8 T75/H106T120,HEX/20,ISO		<pre>\$DFEG,H8 ,FORCE/N,0/-39 \$DFEG,H38,FORCE/N,0/-39</pre>	
-	NG \$	\$\$\$\$\$\$\$	<pre>\$ Fix endcap on the bott</pre>	- TORSION, CONTROLLED LOAD = 9.8 N \$\$\$\$\$\$\$ tom end (bone is not fixed). Then apply a but the center of the fixture's end disk. yes 1 Nm load
\$ Tolerance = N \$ Use geometr 2 \$ Apply to a 1	ric equivalencing 11 nodes			/113/114,DISP/N,0/0/0,,F6 / /,N8055 .843/,N8199 / /,N8106
Y			<pre>\$ Fix endcap on the bott \$ distributed tension lt \$ 0.0658 N/cm distribute \$DFEG,H38/39/53/54/98/99</pre>	- TENSION, CONTROLLED LOAD = 1 N \$\$\$\$\$\$\$ tom end (bone is not fixed). Then apply a bad to the fixture's end disk and ring. ed over 15.2 cm gives a 1 N load. 9/113/114,DISP/N,0/0/0,,F6 1/85786,PRES/E,//0.0658,,F6
\$ Hex elemen 5 \$ Verify all 1 \$ Exiting				\$

Aug 18 20:13	bh30e2.ses
PL	
VI	
1	
45/235	
PL	
RUN, HIDE	
4	
DISP,1T#,PL	
FORCE, 1T#, PL	
PRES,1T#,PL	
\$\$\$ CREATING OUTPUT	THROUGH INTERFACE \$

•

.

\$5 \$1 \$1 \$1 \$4-POINT BEND OF BONE WITH 20% HOLE - VERSION 5 \$Y \$Y

.

·

Appendix D QCT Scanning

This appendix contains the protocol for the QCT scans and data analysis of the resulting image files. Following the protocol are two scripts for analyzing the data, the C program used to calculate the average CT numbers of the phantom hydroxyapatite rods, and the C program used to calculate the cross-sectional properties of the specimens from the QCT image files.

· _.

· . ·

Protocol for QCT Scanning and Analysis

D.1 PREPARATION

- 1) Allow specimens to thaw for 45 minutes in the refrigerator.
- 2) Allow specimens to thaw in warm 0.9 % saline solution for 15 minutes.
- 3) Degass specimens with Labconco vacuum pump at 200 microns of Hg for 20 minutes or until bubbles become insignificant.
- 4) Move specimens to iced saline bath until scanning (approx. 3 hours).

D.2 SCANNING

- 1) Use the wooden scanning gantry with acrylic specimen tubes and the following five solid hydroxyapatite phantoms, placed with respect to the front of the gantry as follows:
 - 0.05 g/cc lower left
 - 0.15 g/cc lower right
 - 0.518 g/cc center
 - 0.56 g/cc upper left
 - 1.518 g/cc upper right
- 2) Place specimens in acrylic tubes filled with iced saline bath, with the left end of each specimen always pointed forward.
- 3) Record the position of each specimen in the gantry and the scan number and name under which the scan set will be saved.
- 4) Scan on a GE High Speed Advantage Helical CT Scanner.
- 5) Place the gantry on the CT scanning table with the left front of the gantry facing towards the "left foot" of the table.
- 6) Configure the scanner so that "left" on the wooden gantry is "left" on the CT scan and so that the scan images are number sequentially, beginning with the "front" of the gantry.
- 7) Configure the scanner as follows:
 - Bone Algorithm
 - Small FOV option
 - 12 cm FOV (to encompass entire gantry)
 - 120 kV
 - 220 mA
 - 3 mm thick by 3 mm separation slices
- 8) Save the scans to a GE Optical WORM disk.

9) Remove the specimens from the gantry and store them in an iced saline bath until they can be wrapped in wet gauze and re-frozen.

D.3 DATA TRANSFER	D	.3	D	AT	Ά	Τŀ	٢A	N	S	F	Ε	R
--------------------------	---	----	---	----	---	----	----	---	---	---	---	---

- 1) Using GE Optical 1.93 software on the MacIntosh, copy the scan files to OBL4-temp directory and from there to the obl3/gdc/ directory.
- 2) In the directory where the scans are stored, convert the scans to a series of short integer files (.sht) with the command:
 - medviz2raw #< filename
- 3) In AVS, determine which series of .sht files belong to which specimen. Separate the .sht files into separate directories for each specimen, but keep a master directory of scans.
- 4) Run the following batch file, to make a hard copy of the scans. Change the numbers to reflect the number of slices in the scan:

```
@i=1
```

foreach file (*.sht)

```
sht2byt < $file | rawtopgm 512 512 | pgmnorm>! $i.pnm
@ i += 1
```

end @ i -= 1

```
pnmcat -lr 1.pnm 2.pnm 3.pnm 4.pnm 5.pnm >! r1.pnm
pnmcat -lr 6.pnm 7.pnm 8.pnm 9.pnm 10.pnm >! r2.pnm
pnmcat -lr 11.pnm 12.pnm 13.pnm 14.pnm 15.pnm >! r3.pnm
pnmcat -lr 16.pnm 17.pnm 18.pnm 19.pnm 20.pnm >! r4.pnm
pnmcat -lr 21.pnm 22.pnm 23.pnm 24.pnm 25.pnm >! r5.pnm
pnmcat -lr 26.pnm 27.pnm 28.pnm 29.pnm 30.pnm >! r6.pnm
pnmcat -lr 26.pnm r2.pnm r3.pnm r4.pnm r5.pnm r6.pnm | \
pnminvert | pnmscale 0.5 | \
pnmdepth 255 | pnmtorast > ! all1.rs
pnmcat -lr 31.pnm 32.pnm 33.pnm 34.pnm 35.pnm >! r1.pnm
pnmcat -lr 36.pnm 37.pnm 38.pnm 39.pnm 40.pnm >! r2.pnm
pnmcat -lr 36.pnm 72.pnm | \
pnminvert | pnmscale 0.5 | \
pnmdepth 255 | pnmtorast > ! all2.rs
```

\rm *pnm* compress *rs*

D.4 DETERMINE ANALYSIS PARAMETERS

- 1) Determine pixel size = FOV (120 mm) / FOV (512 pixels)
- 2) Load AVS network /qct/jah/avs/QCT/QCT_setup.net

- 3) Determine the coordinates of each chamber in the first and last slice of each scan.
- 4) Determine the region of interest for each specimen using QCT_rect_reg.net and stepping the cropped region of interest using the sleep button.
- 5) Create the centers.dat file, with the following data on each line:
 - pixel size in mm/pixel
 - threshold (always = 0)
 - diameter of phantoms (usually 10)
 - number of slices in the scan
 - number of phantom chambers
 - coords of centers of phantom chambers in first and last slices.
 Coords. for the lowest density chamber on the first line (x,y of first slice then x,y of last slice) followed by coords for the rest of the phantoms, one phantom per line.

D.5 CHECK THE ANALYSIS PROGRAM

- 1) Load the /qct/jah/avs/SLICE/whpslice.net AVS network
- 2) Check to determine if the square region of interest adequately calculates bone properties compared to a "free-form" region of interest. Check the threshold. If the threshold is to be changed, then change it in gdc_hpslice.c and recompile the program before running the analysis.
- 3) Be sure that the density to modulus relation is also correct.
- 4) If the program needs to be recompiled, use the compile command list at the beginning of the C code.

NOTE: The following are analysis routines:

- pslice: for liquid phantoms
- hpslice: for solid phantoms
- whpslice: for solid phantoms, with loads to calc. failure data
- dwhpslice: for solid phantoms, with loads, for 3D field files

D.6 PERFORM THE ANALYSIS

- 1) Run the following batch job:
 - \rm *.rig mask* pslice* *.sht.pslice
 - Is *.sht >! files.lst
 - whpslice_gen xmin ymin xmax ymax 0.0 0.0 1.0 0.0 0.0 0.0
 - foreach file (*.sht)
 - cat \$file.whpslice >! whpslice.dat
 - /home/gdc/progs/gdc_hpslice < \$file >>! whpslice_l.rig
 - cat mask.byt >>! mask.dat
 - end

- 2) NOTE: whpslice_gen requires the centers.dat file and creates .whpslice files which define the region of interest and the QCT numbers for each phantom. It requires the coords. of the region of interest as well as a force vector and a force application point. whpslice.dat contains
- 3) information necessary to run gdc_hpslice. gdc_hpslice is a routine modified from whpslice. It calculates certain structural properties given a .whpslice file for each scan slice and writes them to a .rig ASCII file. It requires a whpslice.dat file and needs a foce vector and load application vector to run.
- 4) The .rig file will contain a list of data (one line per slice) that includes:
 - area, cbone, tbone, avgden, avgmod, axrig, gixbar, ixbar, giybar, iybar, polar_moment, torrig)

Variables	Meaning	Units
cbone	cortical bone area	mm²
tbone	trabecular bone area	mm²
avgden	average density of all pixels above threshold	g/cc
avgmod	average modulus of all pixels above threshold	GPa
area	area of all pixels above threshold	mm ²
axrig	axial rigidity	MN
gxbara	geometric centroid of specimen (pixels above threshold)	mm
gybara	п 	mm
gix	moment of inertia about centroid of entire scan	mm ⁴
giy	11	mm⁴
gixy	11	mm⁴
gixbar	moment of inertia about centroid of specimen	mm⁴
giybar	11	mm⁴
gixybar	N	mm⁴
polar_moment	11	mm⁴
gphi	orientation to principle axes based on geometry	radians
gixbph	minimum principle moment of inertia	mm⁴
giybph	maximum principle moment of inertia	mm⁴
xbara	center of mass of specimen	mm
ybara	"	mm
ix	rigidity about centroid of entire scan	Nm ²
iy	II 2	Nm ²
ixy	и И	Nm ²
torrig	1) 1)	Nm ²
phi	orientation to principle axes based on mass distribution	radians
eimax	maximum principle bending rigidity	Nm ²
eimin	minimum principle bending rigidity	Nm ²

5) NOTE: The following are the variables calculated in whpslice.C

```
do_whpl
Aug 11 18:34
cd qct_i2
foreach dir (*)
        cd $dir
        \rm whpslice* *.sht.whpslice *.*% left* *.lst
        ls *.sht >! files.lst
****
        /home/gdc/progs/whpslice_gen 75 190 190 305 0.0 0.0 1.0 0.0 0.0 0.0
****
        set temp='pwd'_l.rig
        echo $temp
        echo "file
                                                      avgmod
                       cbone
                                 tbone
                                            avgden
        echo "
                        mm^2
                                  mm^2
                                            g/cc
        echo "512 512"
                                >>! left.region
        echo "75 190 190 305"
                                >>! left.region
        echo "0.2343000"
                                >>! left.region
        echo "0.00 0.00 1.00"
                                >>! left.region
        echo "0 0 100"
                                >>! left.region
        cat left.region $dir.phant >! left.whpslice
```

```
GPa
                                                                   MN
                                                                              mm^4
                                                                                         Nm<sup>2</sup>
        cat left.whpslice >! whpslice.dat
        foreach file (*.sht)
                 echo -n $file >>! $temp
                 /home/gdc/progs/gdc hpslice < $file >>! $temp
        end
        echo " " >>! $temp
        echo "WHPSLICE.DAT DATA" >>! $temp
        cat whpslice.dat >>! $temp
        \rm left.region
        cd ..
****
        enscript -r $temp
```

end

ixbar

qixbar

axrig

```
cd qct i2
foreach dir (*)
        cd $dir
        \rm whpslice* *.sht.whpslice *.*% right* *.lst
****
        ls *.sht >! files.lst
****
        /home/gdc/progs/whpslice_gen 320 190 435 305 0.0 0.0 1.0 0.0 0.0 0.0
        set temp='pwd'_r.rig
        echo $temp
        echo "file
                        cbone
                                  tbone
                                            avgden
                                                       avgmod
                                                                 axriq
                                                                           gixbar
                                                                                     ixbar
                                                                                               ĉ
        echo "
                        mm^2
                                  mm^2
                                                       GPa
                                                                 MN
                                                                            mm^4
                                                                                      Nm<sup>2</sup>
                                             g/cc
        echo "512 512"
                                 >>! right.region
        echo "320 190 435 305"
                                 >>! right.region
        echo "0.2343000"
                                 >>! right.region
        echo "0.00 0.00 1.00"
                                 >>! right.region
        echo "0 0 100"
                                 >>! right.region
        cat right.region $dir.phant >! right.whpslice
        cat right.whpslice >! whpslice.dat
        foreach file (*.sht)
                echo -n $file >>! $temp
                /home/gdc/progs/gdc_hpslice < $file >>! $temp
        end
        echo " " >>! $temp
        echo "WHPSLICE.DAT DATA" >>! $temp
        cat whpslice.dat >>! $temp
        \rm right.region
        cd ..
****
        enscript -r $temp
```

end

```
/*
                                                                   */
       COPYRIGHT NOTICE: This software was written and/or developed
/*
                                                                   */
/*
       by John A. Hipp, Ph.D. at the Orthopaedic Biomechanics Lab
                                                                   */
/*
       of Beth Israel Hospital and Harvard Medical School.
                                                                   */
/*
                                                                   */
/**
   **/
/*
                                                                   */
/*
       It may NOT BE USED without the EXPRESS consent of John Hipp.
                                                                   */
/*
                                                                   */
This program reads all of the images in a QCT exam, and calculates
/*
   average CT numbers for the phantom chambers - it then writes the
   data for each slice to a whpslice parameter file.
       Programs expects a file named files.lst conmtaining the
       filenames for the short integer image arrays for each slice
       It also expects a file called centers.dat containing
              the pixel size,
              the threshold (ideal CT # for water),
              the diameter of the chambers (in mm),
              the number of slices, and
              the number of chambers.
       The next lines contain the
       coordinates of the centers of the phantom chambers for the
       first and last slices in the exam. The program uses these
       coordinates to find the centers of the chambers in all slices
       Compile the program using
              cc whpslice gen.c -o whpslice gen -O3 -Bdynamic -lm
       Call the program using
              whpslice gen xmin ymin xmax ymax Fx Fy Fz rx ry rz
*/
#include <stdio.h>
#include <math.h>
char *calloc();
FILE *fp, *fps, *fpo;
double shiftx[6], shifty[6];
int xcent first[6], ycent first[6], xcent last[6], ycent last[6];
char fname[64];
main(argc, argv)
int argc;
char *argv[];
{
double pixel size, diameter, dx, dy, dist, xcent, ycent;
double csx, csxx, mean, sd;
double Fx, Fy, Fz, zpos;
int rx, ry, rz;
int i, j, k, row, col, nslices, nchambers, threshold, cnt;
int xstr, xend, ystr, yend, pixval, xmin, ymin, xmax, ymax;
short *image;
if((image = (short *)calloc((512 * 512), sizeof(short))) == NULL) {
       fprintf(stderr,"ERROR: could not get memory for images\n");
       exit(-1);
```

```
ł
/* check for proper command line paramaters */
if(argc != 11) {
        fprintf(stderr,"ERROR: wrong command line format\n\n");
        fprintf(stderr,"use: whpslice gen xmin ymin xmax ymax Fx Fy Fz rx ry rz\n");
        exit(-1);
        }
xmin = atoi(argv[1]);
ymin = atoi(argv[2]);
xmax = atoi(argv[3]);
ymax = atoi(argv[4]);
Fx = atof(argv[5]);
Fy = atof(argv[6]);
Fz = atof(argv[7]);
rx = atoi(argv[8]);
ry = atoi(argv[9]);
rz = atoi(argv[10]);
if((fp = fopen("centers.dat", "r")) == NULL) {
        fprintf(stderr,"ERROR: could not find data file centers.dat\n");
        exit(-1);
        ł
fscanf(fp,"%lf",&pixel size);
fscanf(fp,"%d",&threshold);
fscanf(fp,"%lf",&diameter);
fscanf(fp, "%d", &nslices);
fscanf(fp, "%d", &nchambers);
for(i=0;i<nchambers;i++) {</pre>
        fscanf(fp,"%d %d %d %d",
                &xcent first[i],&ycent_first[i],
                &xcent last[i], &ycent last[i]);
        shiftx[i] = (double)(xcent_last[i] - xcent_first[i]) /
                         (double)nslices;
        shifty[i] = (double)(ycent_last[i] - ycent_first[i]) /
                         (double)nslices;
        }
fclose(fp);
if((fp = fopen("files.lst", "r")) == NULL) {
        fprintf(stderr,"ERROR: could not find list of files files.lst\n");
        exit(-1);
        }
/*fprintf(stderr,"psize= %lf, thresh = %d, diam = %lf, nslices = %d, nchamb = %d\n",pixel siz€
for(i=0;i<nslices;i++) {</pre>
        fscanf(fp,"%s",fname);
        if((fps = fopen(fname, "rb")) == NULL) {
                fprintf(stderr,"ERROR: could not findimage file %s\n",fname);
                exit(-1);
                ł
        j = fread((char *)image, sizeof(short), (512 * 512), fps);
        if(j != (512 * 512)) {
                fprintf(stderr, "ERROR: Only found %d pixels for %s\n",
                         j,fname);
                exit(-1);
                ł
        fclose(fps);
```

/*

}

```
strcat(fname,".whpslice");
        fpo = fopen(fname, "w");
        fprintf(fpo, "512 512\n");
        fprintf(fpo,"%d %d %d %d \n", xmin, ymin, xmax, ymax);
        fprintf(fpo,"%lf\n",pixel size);
        fprintf(fpo, "%lf %lf %lf\n", Fx, Fy, Fz);
        rz = i * 3;
        fprintf(fpo, "%d %d %d\n", rx, ry, rz);
        for(j=0;j<nchambers;j++) {</pre>
                 csx = csxx = 0.0000000000;
                 cnt = 0;
                 xcent = xcent_first[j] + (double)i * shiftx[j];
                 ycent = ycent_first[j] + (double)i * shifty[j];
                 xstr = xcent - (diameter / pixel_size) / 2.0;
                 xend = xcent + (diameter / pixel_size) / 2.0;
                 ystr = ycent - (diameter / pixel size) / 2.0;
                 yend = ycent + (diameter / pixel_size) / 2.0;
                 for(col = xstr; col < xend; col++) {</pre>
                         for(row = ystr; row < yend; row++) {</pre>
                                  dx = xcent - col;
                      . •
                                  dy = ycent - row;
                                  dist = sqrt(dx * dx + dy * dy);
                                  if(dist <= (diameter / 2.0)) {
                                          pixval = *(image + 512 * row + col);
                                          if(pixval > threshold) {
                                                   csx += pixval;
                                                   csxx += pixval * pixval;
                                                   cnt++;
/*
                                                   *(image + 512 * row + col) =
                                                           4000;*/
                                                   }
                                          }
                                  }
                         }
                mean = csx / (double)cnt;
                 sd = sqrt((cnt * csxx - csx * csx) /
                                  ((double)cnt * (cnt - 1)));
                 fprintf(fpo, "%5.0lf\n", mean);
                 ł
        fclose(fpo);
        strcat(fname, "zzz");
        fps =fopen(fname, "wb");
        fwrite((char *)image, sizeof(short), (512 * 512), fps);
        fclose(fps);*/
        }
fclose(fp);
```

/******	***************************************
/*	*/
-	COPYRIGHT NOTICE: This software was written and/or developed */
	by John A. Hipp, Ph.D. at the Orthopaedic Biomechanics Lab */
	of Beth Israel Hospital and Harvard Medical School. */
/* /******	/* /**********************************
/*	*/
/* /*	It may NOT BE USED without the EXPRESS consent of John Hipp. */ */
/******	***************************************
/*	whpslice uses a nearest neighbor approach to determining if a pixel is trabecular or cortical bone.
	Prior to running this program, you must create an ascii file named pslice.dat with the following format:
	X_size Y_size xmin ymin xmax ymax pixel_size CT# 0 mg/cc HA CT# 50 mg/cc HA CT# 150 mg/cc HA CT# 500 mg/cc HA CT# 1000 mg/cc HA CT# 1500 mg/cc HA
	where X_size and Y_size are the overall array size, xmin, ymin, xmax and ymax define the rectangular subregion of interest, pix size is the actual pixel size in mm, The CT#'s are the CT#'s for the six phantom chambers, from which the program will calculate the linear regression between CT# and HA density
	The relationship between bone density and modulus is hard coded.
	The relationship between houndsfield units and density is hard coded.
	The array is passed to the program via stdin and the results are written to stdout
	compile:
*/	cc gdc_hpslice.c -o gdc_hpslice -lm -lMath++
#include	ow(); in(); cos(); abs();
char *ca FILE *fp int ctnu	d, *fpi, *fpo;

/* solid HA phantom chamber densities in gm/cc */
/*double kdens[6] =

```
gdc hpslice.c
                                                                                       2
Aug 12 12:06
{0.0000000, 0.050000000, 0.150000000, 0.518000000, 1.05600000,
1.5560000}; manufacturer's best guess */
/* adjusted manufacturers specs based on analysis of 419 slices
double kdens[6] =
{0.00487000, 0.0432000000, 0.142000000, 0.526000000, 1.07100000,
1.5440000; */
/* ash densities physically measured from 3 specimens of each rod */
/* measurements were made by Matt Silva. This change made 07-06-95 */
/* double kdens[6] =
{0.00300000, 0.0780000000, 0.178000000, 0.538000000, 1.04800000,
1.5970000}; */
double kdens[6] = 
\{0.0780000000, 0.178000000, 0.538000000, 1.04800000,
1.5970000};
main()
double slope, yintcp, pslope, pyintcp, r;
double avgct, avgden, avgmod, modulus, modsum, axrig;
double density, area, phi, gphi;
double x, y, da, ix, iy, ixy, dx, dy, dz, zx, zy, FFZ;
double gxbara, gybara, gixbar, giybar, gixbyb, gixbph, giybph;
double gix, giy, gixy;
double xbara, ybara, ixbar, iybar, ixbyb, ixbph, iybph, eimax, eimin;
double sumx, sumy, sumy, sumxy, sumxx, sxx, syy, sxy;
double Fx, Fy, Fz, pixel size;
double fstress, stress, dval, cstress, bstress, astress, strain;
double max strain, min strain, max cstress, min cstress, max stress, min stress;
double a[3][3], b[3];
double polar moment, torrig;
/* Threshold values go here */
float bone thresh gpercc = 0.13;
                                        /* app density threshold for bone - notbone g/cc */
                                         /* threshold for seperating cbone & tbone */
float cthresh = 1.5;
float *image, pixval, tpix, hipix, tbone, cbone;
float *temp2;
unsigned char *flip;
int rx, ry, rz;
int i, j, got, row, col, X size, Y size, X min, Y min, X max, Y max, nchamb;
int pixcnt, totcnt, idens;
int ipvt[3], maxdim, order;
short *temp;
/* Read in the parameters, and exit with error msg if not found */
if((fpd = fopen("whpslice.dat", "r")) == NULL) {
        fprintf(stderr,"ERROR: the parameter file - whpslice.dat was not found\n");
        fprintf(stderr,"You must first create this file\n");
        exit(-1);
        }
fscanf(fpd,"%d %d",&X size,&Y size);
fscanf(fpd, "%d %d %d %d", &X min, &Y min, &X max, &Y max);
fscanf(fpd,"%lf",&pixel_size);
fscanf(fpd,"%lf %lf %lf",&Fx,&Fy,&Fz);
fscanf(fpd,"%d %d %d",&rx,&ry,&rz);
```

```
nchamb = 0;
while(!feof(fpd)) {
        fscanf(fpd, "%d", &ctnums[nchamb]);
        nchamb++;
        }
fclose(fpd);
nchamb--;
/* fprintf(stderr,"%d %d %d %d %d %d \n",X size, Y size, X min, Y min, X max, Y max);
fprintf(stderr,"%lf %lf %lf %d %d %d %d \n",Fx,Fy,Fz,rx,ry,rz,ctnums[2]); */
/* allocate memory for data and temp image storage */
temp = (short *)calloc(X size, sizeof(short));
temp2 = (float *)calloc(X size * Y size, sizeof(float));
flip = (unsigned char *)calloc(X size, sizeof(char));
image = (float *)calloc(X size * Y size, sizeof(float));
if(image == NULL || temp == NULL || temp2 == NULL || flip == NULL) {
 fprintf(stderr,"ERROR: could not allocate memory for temporary image storage\n");
 exit(-1);
 }
fpi = stdin, fpo = stdout;
/* zero out the temp2 array */
for(row = 0; row < Y size; row++) {
        for(col = 0;col < X size; col++) *(temp2 + row * X size + col) = 0.0000000;</pre>
        }
/* calculate the slope and y-intercept for the linear regression relating
 CT# to K2HPO4 density */
sumx = sumy = sumxy = sumxx = sumyy = 0.00000000000;
for(i=0;i<nchamb;i++) {</pre>
        sumx += (double)ctnums[i];
        sumy += kdens[i];
        sumxy += (double)ctnums[i] * kdens[i];
        sumxx += (double)ctnums[i] * (double)ctnums[i];
        sumyy += kdens[i] * kdens[i];
        }
pslope = ((double)nchamb * sumxy - sumx * sumy) / ((double)nchamb * sumxx - sumx * sumx);
pyintcp = sumy / (double)nchamb - pslope * sumx / (double)nchamb;
sxx = sumxx - (sumx * sumx) / (double)nchamb;
syy = sumyy - (sumy * sumy) / (double)nchamb;
sxy = sumxy - (sumx * sumy) / (double)nchamb;
r = (sxy * sxy) / (sxx * syy);
fprintf(stderr, "Phantom(%d chambers): %3.2e %.3f %.3f\n", nchamb, pslope, pyintcp, r);
if(r < 0.925) {
        fprintf(stderr,"ERROR: phantom data are not good - check CT#'s\n");
        exit(-1);
        }
/* read in the entire image array, and convert CT numbers to density */
avgct = 0.0;
avgden = 0.0;
pixcnt = 0;
for(row = 0; row < Y size; row++) {</pre>
got = fread((char *)temp, sizeof(short), X size, fpi);
if(got < X size) {
         fprintf(stderr,"ERROR: out of input data at y = %d (%d)\n",row,got);
```

```
exit(-1);
         }
if(row >= Y min && row < Y max) {</pre>
        for(col = X min; col < X max; col++) {</pre>
                pixval = (float)*(temp + col);
                avgct += pixval;
                 /* convert CT# to HA density(qm/ml) */
                pixval = pslope * pixval + pyintcp;
                avgden += pixval;
                 *(image + X size * row + col) = pixval;
                if(pixval > bone_thresh_gpercc) pixcnt++;
                 }
        }
}
avgden /= (double)pixcnt;
avgct = avgct / (double)pixcnt;
/* fprintf(stderr,
        "Whole box(%d pixs) - Average ct num is %lf average den is %lf\n",
                pixcnt, avgct, avgden); */
fclose(fpi);
                   - , ,
/* loop over the rows of the entire array */
avgden = 0.000000000;
avgmod = 0.000000000;
area = 0.000000000;
axrig = 0.000000000;
gxbara = 0.000000000;
gybara = 0.000000000;
gix = 0.000000000;
giy = 0.000000000;
gixy = 0.000000000;
gixbph = 0.000000000;
giybph = 0.00000000;
gphi = 0.000000000;
xbara = 0.000000000;
ybara = 0.000000000;
ix = 0.000000000;
iy = 0.000000000;
ixy = 0.000000000;
zx = 0.000000000;
zy = 0.000000000;
totcnt = 000000000;
pixcnt = 000000000;
ixbph = 0.00000000;
iybph = 0.00000000;
phi = 0.000000000;
tbone = 0.000000000;
cbone = 0.00000000;
da = pixel size * pixel size;
/* fprintf(stderr,"pixel size = %f; da = %lf, thresh = %f\n",pixel size,da, bone thresh gpe:
for(row = Y min; row < Y max; row++) {</pre>
 for (col = X_{min}; col < \overline{X}_{max}; col ++) {
        totcnt++;
        /* this is where any thresholding is installed */
        pixval = *(image + row * X size + col);
        if(pixval > bone_thresh_gpercc) {
```

gdc hpslice.c

```
avgden += (double)pixval;
/* this is where the algorithm relating modulus and density is installed */
                /* density is in gm/cm3, modulus in N/mm2 */
                /* Keller manuscript E (GPa) = 10.5 * (ash density) ** 2.57 */
                /* Whale modulus based on compressive tests by James Hong in '95
                where E (GPa) = 7.584 (ash density)**2 + 0.9403 (ash density) */
                density = (double)pixval;
                if(density < cthresh) the += 1.0;
                else cbone += 1.0;
                modulus = (7584.0 * pow(density,2.0) + 940.3 * density);
                avgmod += modulus;
                x = ((double)col - 0.5) * pixel_size;
                y = ((double)row - 0.5) * pixel size;
                /* calculate */
                axrig += da * modulus;
                area += da;
                gxbara += x * da;
                gybara += y * da;
                gixy += x * y * da;
                giy += x * x * da;
                gix += y * y * da;
                xbara += x * da * modulus;
                ybara += y * da * modulus;
                ixy += x * y * da * modulus;
                iy += x * x * da * modulus;
                ix += y * y * da * modulus;
                zx += x * da * modulus;
                zy += y * da * modulus;
                pixcnt++;
                } /* end if pixval > threshold */
         ł
                /* end col loop */
 }
                 /* end row loop */
/* calculate the cross sectional properties */
if(pixcnt > 10) {
        avgmod /= pixcnt;
        avgden /= pixcnt;
        gxbara /= area;
        gybara /= area;
        gixbar = gix - area * gybara * gybara;
        giybar = giy - area * gxbara * gxbara;
        gixbyb = gixy - area * gxbara * gybara;
        polar moment = giybar + gixbar;
        gphi = 0.5 * atan2((2.0 * gixbyb), (gixbar-giybar));
        gixbph = gixbar *
                (cos(gphi) * cos(gphi)) + giybar *(sin(gphi) * sin(gphi));
        gixbph += gixbyb * sin(2.0 * gphi);
        giybph = giybar *
                (cos(gphi) * cos(gphi)) + gixbar *(sin(gphi) * sin(gphi));
        giybph -= gixbyb * sin(2.0 * gphi);
        giybph = fabs(giybph);
        xbara /= axrig;
        ybara /= axrig;
        ixbar = ix - axrig * ybara * ybara;
```

```
Aug 12 12:06
                                       gdc hpslice.c
        iybar = iy - axrig * xbara * xbara;
        ixbyb = ixy - axrig * xbara * ybara;
        torrig = iybar + ixbar;
        phi = 0.5 * atan2((2.0 * ixbyb), (ixbar-iybar));
        ixbph = ixbar * (cos(phi) * cos(phi)) + iybar *(sin(phi) * sin(phi));
        ixbph += ixbyb * sin(2.0 * phi);
iybph = iybar * (cos(phi) * cos(phi)) + ixbar *(sin(phi) * sin(phi));
        iybph -= ixbyb * sin(2.0 * phi);
        iybph = fabs(iybph);
        ł
if(ixbph > iybph) {
        eimax = ixbph;
        eimin = iybph;
        phi += M PI / 2.0;
        1
else {
        eimax = iybph;
        eimin = ixbph;
ixbph = eimin;
iybph = eimax;
if(gixbph > giybph) {
        x = gixbph;
        gixbph = giybph;
        giybph = x;
        gphi += M PI / 2.0;
if (pixcnt > 10) {
        /* convert the results to more presentable units */
                             /* average modulus in GPa */
        avgmod /= 1000.0;
        axrig /= 1000000.0;
                                /* axial rigidity in N * 10**6 */
        ix /= 1000000.0;
                                /* bending rigidities in N-m**2 */
        iy /= 1000000.0;
        ixy /= 1000000.0;
        torrig /= 100000.0;
        ixbar /= 1000000.0;
        iybar /= 100000.0;
        ixbph /= 1000000.0;
                                /* min bend rigidity in n-m**2 */
        iybph /= 100000.0;
                                /* max bend rigidity in n-m**2 */
        /* write the data out */
        tbone *= da;
        cbone *= da;
        phi *= 360.0/(2.0 * M PI);
                                         /* end loop over if pixcnt > 10 */
        ł
fprintf(fpo," %4.3e %4.3e/n",
```

fclose(fpo);
}

8050 - 42