
Cross Platform Issues in Software Design and

Development: A Case Study of AthenaMuse 2

by

Issam Bazzi

B.E., American University of Beirut (1993)

Submitted to the Department of Civil and Environmental
Engineering in partial fulfillment of the requirements for

the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1997

© Massachusetts Institute of Technology, 1997. All Rights Reserved.

A uthor
Department of Civil and Environmental Engineering

May 2, 1997

C ertified by
Steven R. Lerman

Professor of Civil and Environmental Engineering
T_ jis Supervisor

A ccepted by
Prof. Joseph M. Sussman

Chairman, Departmental Committee on Graduate Studies

JUN 241997 *

Cross Platform Issues in Software Design and
Development: A Case Study of AthenaMuse 2

by

Issam Bazzi

Submitted to the Department of Civil and Environmental
Engineering on May 9, 1997, in partial fulfillment of the

requirements for the degree of Master of Science

Abstract

This thesis addresses the main aspects of cross platform software design and development.
A software is cross platform if it can run on two or more platforms and provide the same
logical functionality as well as a similar look and feel. A deep understanding of the
required functionality and the capabilities of the different platforms to provide this
functionality is very important in early stages of the cross platform software development
process. We present different kinds of platform independence as well as the approaches
used to achieve them through a case study of a platform independent, object-oriented,
multimedia authoring environment, AthenaMuse 2. We highlight several innovative cross
platform techniques that were developed in AthenaMuse 2 ranging from a platform
independent user interface to abstraction layers for accessing and moving data in
heterogeneous environments. A comparison with the Java programming environment, as
an alternative solution, is also presented.

Thesis Supervisor: Steven R. Lerman
Title: Professor of Civil and Environmental Engineering

Acknowledgments

To my advisor, Prof. Steve Lerman, for his guidance and input during the writing of this
thesis and for his support at CECI.

To Dr. Jud Harward, and all the members of the AthenaMuse development team, for their
support during the development of AM2.

To CECI graduate students who always helped with their suggestions and encouragement.
Among them, Richard Rabbat.

To everyone at the MIT Center for Educational Computing Initiatives.

Table of Contents

1 Introduction .. 8
1.1 B ackground .. 9
1.2 Goals of Cross Platform Development
1.3 Benefits of Cross Platform Development .. 11
1.4 Organization of this Thesis ... 13

2 G eneral O verview 15
2.1 Introduction .. 15
2.2 Overview of Platforms .. 15

2.2.1 The UNIX Platform ... 16
2.2.2 Microsoft Windows .. 18
2.2.3 M acintosh 22

2.3 AthenaMuse 2 General Overview... 24
2.4 Introducing Java.. 28
2.5 C onclusion 31

3 Cross Platform Software .. 32
3.1 D efinitions ... 32
3.2 Types of Platform Independence ... 35

3.2.1 Human/Machine Interaction 35
3.2.2 File System Access .. 36
3.2.3 Database Access 37
3.2.4 2D and 3D Graphics 38
3.2.5 Network Communications 38

3.3 Approaches to Cross Platform Software.....................................39
3.3.1 Ported A PI 40
3.3.2 Functional Abstraction 40
3.3.3 E m ulation 4 1
3.3.4 A bstracting D ata .. 42
3.3.5 Using Object Class Libraries .. 42

3.4 C onclusion 43
4 Platform Independence in the AM2 Multimedia Toolkit 44

4.1 Design of the Multimedia Toolkit 44
4.2 AthenaMuse 2 User Interface ... 46

4.2.1 Class Hierarchy 48
4.2.2 The Attribute Mechanism .. 51
4.2.3 The Activity Mechanism ... 55
4.2.4 Event Handling in Java: A comparison 60

4.3 Athena Muse 2 Media Engine ... 63
4.3.1 Class Hierarchy .. 63
4.3.2 Temporal Media 65
4.3.3 Mechanisms for the Media Engine 67

4.4 C onclusion 68
5 Platform Independent Data Management .. 69

5.1 Abstracting the File System ... 69
5.2 The D atabase M odule 71
5.3 Generalized D ata Stream s .. 75

5.3.1 The Stream M odel ... 76
5.3.2 Class Hierarchy ... 77
5.3.3 The N etwork Stream 79

5.4 Conclusion 80
6 Lessons Learned and the Future .. 81
Appendix A AM2 Activity Mechanism Class Description 84

A .1 BSactivityM gr: ... 84
A .2 BSntfnRequest: 85
A .3 BSntfnRequestT: .. 85
A .4 BSactivityD ata: 85
A .5 UIm ouseD ata: .. 86
A .6 UIrefreshD ata...86

Bibliography ... 88

List of Figures

Figure 2.1: UNIX operating system [GLAD95] .. 16
Figure 2.2: UNIX X-Windows Application Interactions[GLAD95] 17
Figure 2.3: NT Operating System Architecture............................. 19
Figure 2.4: NT Application Interaction [GLAD95]...21
Figure 2.5: Architecture of the Mac Operating System............................... ... 22
Figure 2.6: Mac Application IO processing [GLAD95] 23
Figure 2.7: Application Programming Interface [AM2D94] 27
Figure 3.1: A General Cross Platform Architecture 32
Figure 4.1: Multimedia Toolkit Library interface 45
Figure 4.2: Portability Across Platform s .. 47
Figure 4.3: DIX &DDX classes ... 48
Figure 4.4: UI Container Widgets Class Hierarchy 49
Figure 4.5: UI Simple Widgets Hierarchy ... 50
Figure 4.6: UI Special Purpose Class Hierarchy 51
Figure 4.7: Attribute M echanism Classes ... 52
Figure 4.8: How To Get An Attribute.. 54
Figure 4.9: How To Set An Attribute 55
Figure 4.10: Activity Mechanism Classes 56
Figure 4.11: How Activities Work .. 59
Figure 4.12: Media Access Hierarchy ... 64
Figure 4.13: Media Presentation Hierarchy 64
Figure 4.14: Media Element Hierarchy ... 65
Figure 5.1: The virtual database p[CURT96] ... 73
Figure 5.2: Using different APIs to connect to different databases[CURT96]......... 73
Figure 5.3: A hierarchy of StreamSpecs ... 77
Figure 5.4: A Hierarchy of Streams 78

List of Tables

Table 3.1: File Naming Across Platforms ... 37

Chapter 1

Introduction

Today's computing world depends heavily on complex and heterogeneous computer sys-

tems composed of personal computers, workstations, and interconnecting networks with a

variety of operating systems and interface environments running on these systems. Com-

puter users and organizations that rely on current information technology (IT) realize that

every platform offers different benefits, and that these different platforms can be inte-

grated with the advances made in network software compatibility.

As a result, users are looking for software to standardize across the different platforms.

The need for a standardized software to execute on multiple platforms is not a new idea.

Companies have been developing software with versions for every platform that will

behave in a similar fashion across these platforms. FrameMaker TM and Lotus 1-2-3 TM , for

instance, are good examples as they have versions that run on Windows, Macintosh and

UNIXTM systems.

In most current software development practices, programmers are targeting their

applications to multiple platforms. Initially, the approach was to develop separate applica-

tions with separate source code for each platform. In today's development environment,

however, developing an application several times is not viable solution for companies that

are competitive. A continuing effort is being made to help develop the tools and tech-

niques necessary to create single source code applications that can be ported across differ-

ent platforms[GLAD95].

1.1 Background
AthenaMuse 2TM (AM2) is a platform-independent multimedia authoring system that

grew out of a research project at the Center for Educational Computing Initiatives (CECI)

at MIT between the years of 1992 and 1996 [HRW94]. AM2 is best described as a multi-

media authoring tool designed for authoring by multiple users in a heterogeneous, net-

worked environment. At the heart of AM2 is a scripting language called the Application

Description Language (ADL). ADL is the platform-independent storage format for AM2

application descriptions[AM2D97]. The original intention was to build a series of direct

manipulation editors to assist users of all levels of programming experience in developing

AthenaMuse applications. Only one such editor, a prototype layout editor, has been devel-

oped. Consequently, the ADL has also become the primary authoring medium for AM2

applications. The AthenaMuse environment currently runs on three flavors of UNIXTM

(SunOS 4.2.n, Solaris 2.5, and HPP-UX 9) as well as on Win95 and Windows/NT 3.5.1. A

preliminary version of AthenaMuse runs on Macintosh System 7, but as of the date of this

document, this version is not supported.

This thesis attempts to highlight the main aspects of cross platform software design

and development by presenting the cross platform strategies used in AM2. It also high-

lights some similarities and differences with the Java programming language, a new possi-

ble solution for developing network-centric, platform independent applications.

1.2 Goals of Cross Platform Development
Cross platform development evolved from portable coding practices[PETR94]. Portable

source code will compile and execute on another computer system even if the underlying

hardware is different.

The problem that portability solves represents a subset of the problems that a cross

platform solution must solve. Portability deals with differences in hardware and operating

system features, such as memory and file management. Many of these differences are

masked by compiler specific data types, careful coding practices and use of standard

libraries.

A cross platform solution must solve the portability problem and also the problems

specific to platforms: graphical user interfaces, event-driven operating systems, resource

management, drawing graphics, displaying images, rendering fonts, and interprocess com-

munication. Here is a list of goals that a cross platform solution should meet:

Platform Look and Feel
Since every platform has its unique look and feel, it is important that application takes on

the look and feel of that environment. In some cases, application users might prefer a uni-

form look across platforms which may be different from all platforms looks.

Inter-Application Communication
Inter-application communication should be independent of the platform if the applications

are on different platforms. This requires both a platform independent protocol for commu-

nication as well as a platform independent representation for data exchange. A good

example is establishing an FTP (file transfer protocol) session from a Windows machine

to a UNIX workstation where there is an FTP implementation for each platform.

Resource Exchange
A file or database record created on one platform should be readable and modifiable from

other platforms. The ability of an application to do such task will require knowledge of

platform specific data types and byte ordering. This knowledge is usually part of some

underlying layer and is hidden from the application. For example the ability to read and

modify a word processor file written on Windows from a Macintosh system is a necessary

requirement of a cross platform solution.

Data Handling
An application should be able to process and interpret the same data in a similar fashion

on all the platforms it runs one. One example is the ability to play a clip of digital video on

the platforms of interest using the same data for the video clip.

We will go in more details on several kinds of cross platform software when we dis-

cuss the types of platform independence in chapter 3.

1.3 Benefits of Cross Platform Development
There are many benefits for cross platform development. The most important and obvious

reason is the ability to run the same software on multiple platforms and to be able to move

resources across them. Here is a list of some of the benefits:

Efficient Use of Software Development Resources
Producing a single application on a single platform requires knowledge of the that particu-

lar platform and the functional components of the application. Developing a single appli-

cation on three platforms without using cross platform development techniques would

require three different designs and implementation of the application on those three plat-

forms. When using cross platform development, a single set of source code can be devel-

oped for all platforms, with some small part of the source code being platform specific.

This cuts down the implementation size and time by a significant factor.

Easier Maintenance

The time needed to produce an application represents only a part of the cost associated

with this software during its life. Continuous improvement and changes are always

needed. If cross platform solution is adopted for developing such an application, there is a

high probability that adding a feature or fixing a problem can be done once for all plat-

forms. This is especially true for adding new features if system specific functionalities

have been abstracted into a set of high level objects or more simply to a group of functions

that are independent of the platform they are on. Typically, a cross platform solution con-

sists of a set of layers of abstraction. Each layer provides a certain level of abstraction for

some specific purpose.

Supporting New Platforms Easily
Viable new platforms do not emerge often, and the long-term success of a new platform is

often difficult to predict. Even successful platforms have a life cycle that is usually dic-

tated by the success of a particular kind of computer hardware and the applications that are

available for that system. Using a cross platform solution makes it easier to support new

platforms and to quickly to move to a totally different platform environment with minimal

design and implementation changes.

Same Look and Feel
One important benefit of cross platform software is that the software developer can make

the look and feel of the application the same on all the platforms it runs on. A user using

an application on Windows, for example, will become accustomed to the specific look and

feel of that application. When the user moves to a different platform, he must learn the

application interface if the look and feel are different. If the look and feel of the applica-

tion are the same across platforms, the user can easily use the application. In large organi-

zation, and on a single user level, this removes the extra step of training to learn running

the application on a different platform.

Market Advantage
Providing multiple platforms is always a marketing plus. It makes a software product visi-

ble and possibly more appealing to multiple-platform users. Providing a solution on one

popular platform gives the software a lot of attention, but making it available on many

platforms gives the software the lead over the competition. This has been the case in most

commercial products that were made available across platforms such as Lotus 1-2-3 and

FrameMaker.

1.4 Organization of this Thesis
In this chapter, we gave a short introduction and background information about cross plat-

form software design and development. We also listed the main goals and benefits of

adapting a cross platform solution for software development. The rest of the thesis is orga-

nized as follows.

Chapter 2 provides a general overview of AM2, Java, and the various platforms they

are implemented on. AM2 is described in more depth, with concentration on the cross

platform aspects of this system. For comparison purposes, we give a short introduction to

Java and how it relates to the work described in the thesis. We then present some of the

properties of the three platforms that AM2 was developed on. We mainly focus on those

details of the platforms that are relevant to this work.

In chapter 3, we present a more formal definition of cross platform development. We

then detail the different kinds of platform independence that should be considered.

Finally, we present various approaches to achieve independence that have been adopted in

this area.

Chapter 4 goes into more details in describing how AM2 achieves different kinds of

platform independence. Two major components of AM2 are presented, namely, the user

interface (UI) and the media engine. Few useful mechanisms for achieving cross platform

UI implementation are presented. At the end, a comparison is made between AM2 and

Java event handling.

In chapter 5, we describe data management in AM2. First, we review the approach to

implementing an abstraction of the file system. Then, we give a brief introduction to the

AM2 virtual database module. Finally, we present a new approach for utilizing all kinds of

data using a single, platform, independent generalized stream interface.

In the last chapter, we conclude with a list of lesson learned from this work and what

the future holds for cross platform software development.

Chapter 2

General Overview

2.1 Introduction
Building cross platform software requires a deep understanding of how each platform the

software will run on works and how different features can be made available on these plat-

forms. In this chapter, we give a general overview of the three platforms that AM2 was

built on, focusing mainly on those aspects that make these platforms different. Special

attention is given to graphical user interface (GUI) since it usually constitutes the largest

part of code that cannot be used across platforms. Three platforms are presented: UNIX

running the X Window system, Microsoft Windows NT/95TM , and the Macintosh system

7 platform. Following in the chapter is an introduction to the general design of AM2 and a

brief introduction to the Java programming language and how it compares to AM2.

This chapter should provide a general background necessary for the rest of this thesis.

For more detailed information, a list of references is provided at the end.

2.2 Overview of Platforms
AM2 was developed on several platforms which can be grouped into three categories:

* UNIX: this includes different flavors of UNIX running on different architectures, for

example: SUN, HP, and DEC.

* Microsoft Windows: for example Windows NT, 95, and 3.1; all running on the Intel

architecture.

* Macintosh OS: this is Mac operating system with MacApp as the framework for

building applications.

The following three sections present an overview of the three platforms.

2.2.1 The UNIX Platform
One thing special about the UNIX platform is that it was not intended to run on one spe-

cific type hardware. Some of the platforms that the UNIX operating system runs on

include PC's, SUN Workstations, IBM RS/6000 workstations, and DEC computer sys-

tems. Over the past 20 years, UNIX had many versions starting from versions 1-5 to BSD

versions to Mach and AIX. This diversity of architectures spawned different looks of the

UNIX operating system such as Motif and OPEN LOOK with the X Window system

[GLAD95].

Main features of current UNIX operating systems are: multiuser support, multithread-

ing, reliable security, network connectivity, and hardware independence through device

drivers. But most of all the existence of a large set of standard UNIX utilities that makes

the system easy to use when moving from one hardware type to another (Fig 2-1).

Application

Service
Request

Message
Processing

Motif Open Look

X

UNIX Operating System

Hardware
Interrupt

Hardware Interrupt Service Routine: Drivers, Timers,etc.

Figure 2.1: UNIX operating system [GLAD95]

F I

A basic UNIX system provides a text mode only interface for the user. For GUI, Motif

is used with support by the XWindow system. X is a hardware independent, graphical

windowing system that controls a "bitmapped" display that allows applications to draw

pictures as well as text.

UNIX Input/Output

As mentioned above, a user can interact with the operating system either in text mode or in

a GUI mode using X. We are more interested in the second case for a multimedia applica-

tion. Here we give a small example.

Figure 2.2 illustrates an example of the interaction between a GUI application and the

operating system. When the application starts, it creates a window using a call to XtMan-

ageChild function. This is then propagated to a function in the X Library.

play
t

Figure 2.2: UNIX X-Windows Application Interactions[GLAD95]

The XtVaCreateManagedWidget reads the resources for the window from the resource

file supplied by the application and then displays the window on the screen. The operating

system then takes care of all messaging and interaction between the user and application.

Usually, every interaction is associated with a callback function. The overall effect of the

callback mechanism makes an X application event-driven [GLAD95].

The development of different versions of UNIX brought some problems for UNIX

developers since they need not only be concerned with portability to other operating sys-

tems but also need to be concerned with porting among the UNIX platforms. A standard-

ized version of UNIX has been proposed by IEEE by developing the Portable Operating

System Interface based on UNIX (POSIX). The idea is that applications written with this

interface should work on all platforms[ISAA94]. Some non-UNIX operating systems took

advantage of this. For example, Windows NT supports POSIX, which allows for easy

porting of UNIX application to Windows NT.

2.2.2 Microsoft Windows
Even though there are many flavors of Windows, we will focus here on Windows NT for

two reasons: first, AM2 was developed on Windows NT, second, the basic features of

Windows NT cover all other flavors of Windows (95, 3.1, 3.11 for Workgroup).

Windows NT Architecture
NT borrows from the better points of the other systems, and adds an object based view of

operating system components and all of the objects it manipulates. The NT architecture is

distinct in that it employs the following properties[BRAI94]:

Hardware Abstraction Layer:

HAL is virtualized machine architecture that represents the true underlying hardware, for

example: the Floating Point Unit, CPU registers, Virtual Memory Management Unit,

etc.The operating system is made largely independent of the supporting hardware. This

simplifies porting NT to different platforms. For each platform, the HAL is replaced.

Figure 2.3: NT Operating System Architecture

Object Based Model:

NT itself is modular and object based, and its view of all entities is also object based, i.e.

memory, files, users, devices, etc.

Message Passing:

Many subsystems communicate by passing messages, instead of traditional subroutine

calls. This highly decouples dependency on specific subroutine interfaces.

User-Mode Interface Subsystems:

Recognizing that the interface may be de-coupled from the operating system proper, NT

has User-Mode Interface subsystems. NT may support any number of user interfaces, and

new ones may be added quickly.

NT Input/Output
An NT application interacts with the operating system in a similar fashion to UNIX. When

a GUI application starts, a resource file is used to decide how and what kind of windows

and controls should be placed on the screen. This resource file is usually linked into the

application binaries when the application is compiled or stored in a Dynamically Linked

Library (DLL) that allows for run time linking of routines and resources[EZZE93].

All GUI calls are passed to a user interface library that takes care of managing differ-

ent windows (See Fig 2.4). In some cases the application might be built using a framework

such as Microsoft Foundation Classes (MFC) which provides a fully Object Oriented

Interface to the windowing system.

All messages from and to the user are handled via an application-global dispatcher that

takes care of passing the messages to the right window handler called Window Procedure.

In Windows, messages can be intercepted at any level and an alternative or an additional

action can be taken. The process is known as subclassing a window. This can be done

more than once for a single window, thus creating a chain of window procedures or han-

dlers where the latest handler receives the messages first, decides what to do and whether

to pass them to the previous one, and so on.

Dynamic Linking in NT

Dynamic linking provides a mechanism to link applications to libraries at run-time. In

contrast to a static library, the code in a DLL isn't included in the executable file that uses

the DLL. Instead, a DLL's code and resources are in a separate file (usually with a .DLL

extension). This file must be either currently loaded in memory, or accessible to windows

when the client program runs.

Application
Interaction
Messages

Display
Text

User
Input

Figure 2.4: NT Application Interaction [GLAD95]

When Windows loads a DLL or an executable file into memory, it scans a list of all the

names of DLL's which required to execute the application. Any DLL needed gets loaded

into memory at the same time if it is not already present. Alternatively, using the Windows

API, the function call LoadLibrary() allows loading a DLL into memory only when it is

actually needed, and unload it when it is through.

When a DLL is loaded into memory by the operating system, its procedures are acces-

sible by all other programs (or DLL's). Only one copy of the DLL needs to be present in

memory. This is possible because the library is not linked into any one of the programs

permanently. It is just present, in memory, making its services available to any code that

may need them. UNIX has a similar capability through the use of shared libraries.

Windows Kernel
GDI

1_

2.2.3 Macintosh
We give here a brief overview of System 7. Figure 2.5 shows the general design of the

Mac operating system. Many of the graphical elements were embedded into the hardware

which allows for fast and sophisticated graphical user interface applications on the Mac.

Device Drivers

Disk Video Keyboard Network

Hardware

Figure 2.5: Architecture of the Mac Operating System

The operating system is an event-driven, pre-emptive OS with all events processed by

the Toolbox event manager with some priority scheme for events. There are different

managers for operating system services. Some of the managers are shown in Figure 2.5.

Mac input/Output
The interaction between a Mac application and the operating system is event-driven.

When the application starts, it requests a window creation which propagates to the Tool-

box interface library. The call in turn requests information from a resource file and places

the window on the screen.

Events and notifications are handled by an event manager, part of the Toolbox sub-

system as shown in Figure 2.6, in a fashion similar to UNIX and NT. What makes the

Macintosh interface unique is that most of the operating system is located in the hard-

ware[GLAD95].

Figure 2.6: Mac Application IO processing [GLAD95]

MacApp/OpenDoc

In many cases instead of writing an application using the operating system routines

directly, a framework is used. For Macintosh, the most common is MacApp. MacApp is

an object-oriented framework and class library used for building various kinds of Macin-

tosh applications. It streamlines development by supplying the application main-event

loop and code for all basic Macintosh features. MacApp is a C++ class library. The library

implements many of the visual and organizational elements of most Macintosh programs.

As a framework, MacApp provides the foundation for a standard way to write Macintosh

programs. Many major applications have been written in MacApp. AM2 on Macintosh

was developed in MacApp.

A more recent and more interesting Mac framework is OpenDoc. The OpenDoc

Development Framework, or ODF, is an object-oriented framework developed in C++

which is targeted for building cross-platform OpenDoc component editors. Like MacApp,

Apple's framework for building stand-alone Macintosh applications, ODF makes the pro-

cess of building an OpenDoc component editor easier by implementing much of a compo-

nent editor's default behavior.

OpenDoc is supposed to be delivered on a variety of platforms and provides a good

foundation for building cross-platform component editors. On top of OpenDoc, ODF pro-

vides a set of cross-platform services to ease the development of OpenDoc component

editors. One of the services needed to write a truly cross-platform component editor is a

cross-platform graphics engine.

Other services include menu support and cross platform resources. The OpenDoc

Development Framework builds on the technology provided by OpenDoc and cross-plat-

form technology developed at Apple to provide a complete cross-platform solution. ODF

should allow a developer to develop component editors once and have them work on mul-

tiple platforms.

2.3 AthenaMuse 2 General Overview
This section gives an overview of the design goals of AM2, gives the application's general

components and presents the main architecture of the system.

AM2 Design Goals
AM2 has several design goals that have affected the design of the system itself as well as

application building environment it provides. These goals can be summarized as:

* form a flexible and extensible multimedia environment.

* support diverse media types and networking technologies.

* provide transparent application portability across X/UNIX, Macintosh, and Windows

platforms.

* provide an easy-to-use, flexible, and complete set of multimedia application editors.

To achieve these goals, the description of an application's interface should be separate

from the content presented. For example, in a multimedia application that contains a video

viewer you may want to use the viewer many times, but each video clip viewed with it is

tied to the particular context.

An application should be as portable as possible across platforms and environments so

that you can customize an application to suit a user's background and preferences, and so

that you can take advantage of special features of a particular hardware configuration or

operating system.

For example, an application may use the English language on interface controls as a

default, but it should also allow customization of the control labels in other languages.

And the application should request general services, such as a video source, and determine

how to access that source from a description of the system configuration.

Application Structure
Satisfying these goals suggests that an application consists of three distinct parts:

* The application description specifies the application's interface and functionality as

pure and platform-independent a form as possible.

* Application content is stored separately from the application description.

* Customizations of the application are stored separately so that the same application

description can run with different sets of customizations (These customizations in

AM2 are called assets)

In AM2, classes describe the application's interfaces and functionality. At run-time,

instances of these classes are populated with content drawn from databases, files, network

services, or the application itself. The use of classes to specify interfaces encourages users

to think in terms of, and to build with, nested interface templates.

AM2 Runtime Environment
Application Programming Interfaces (APIs) are necessary to facilitate communication and

transfer of information among the architectural layers of AM2. Three APIs can be distin-

guished in AM2. These include the ADL, the Multimedia Toolkit (or MMTK) API, and

the Device Independent (or DIX) API as shown in Figure 2.7.

The AM2 runtime environment runs as an automaton composed of objects, many of

which are instanced dynamically. In order to ensure the portability of the AM2 environ-

ment and to simplify the addition of new media types, there are four categories of services

below a device independent API (the DIX API):

* Operating System Services

* Media Services

* User Interface Services

* Database Services

The AM2 runtime environment makes requests for such services not from platform depen-

dent libraries or device dependent modules, but from device and platform independent

AM2 objects residing in or above the DIX API. For example, all calls to X Window Sys-

tem routines or the UNIX file system are segregated below the DIX API.

This is illustrated in the figure below.

Tools and Editors

AM2 API

AM2 Runtime Environment

Multimedia Toolkit API

edia Servicl IfaceServices

Figure 2.7: Application Programming Interface [AM2D94].

AM2 Modules

The core of the AM2 runtime environment lies in the control engine. In very simple terms,

a user interface module messages objects in the control engine (control objects) to notify

the automaton of user-generated events, such as button presses. The control engine

updates its own state appropriately and alters the application's display by messaging the

appropriate objects in the media engine, user interface module, and database servers. In

more detail, we will segregate functionality as follows:

•,

Control objects: manage the application event loop and process callbacks, supply applica-

tion content to interface objects, maintain application state. Control objects can be created

dynamically to support application development tools and the incremental parsing of

application description files by a separate parser object.

Media objects: provide access to application content and implement the display of that

content via media object methods. This allows control objects to call for the display of

media without knowing the underlying media type. Media objects manage the device

dependent details of each media type as well as device contention and tight media syn-

chronization at the level, say, of combining an audio stream with an independent video

stream.

User Interface objects: (UI objects) manage the windows and widgets of the underlying

windowing system in a platform independent fashion. These user interface objects are cre-

ated in response to messages from control objects, which coordinate the association of UI

and media objects. UI objects also message control objects in response to user input and

other window system events.

Database objects: provide application content on demand to the media and control objects

that request it from different kinds of databases.

2.4 Introducing Java
The main goal of the Java language was to develop applications in the context of heteroge-

neous, network-wide, distributed environments. Among many challenges to this goal is

the secure delivery of applications that consume the minimum of system resources, run on

any hardware and software platform, and have the ability to be dynamically extended.

Design Goals of the Java Language
A primary goal of the Java language is a simple language that could be programmed

without extensive programmer training and which would be roughly attuned to current

software practices.

The Java language is also intended for creating highly reliable software. Emphasis is

on extensive compile-time checking, and a second level of run-time checking.

The Java language was designed to support applications executing in networked envi-

ronments, operating on a variety of hardware architectures, and running a variety of oper-

ating systems and language environments. The Java language compiler generates byte

codes--an architecture-neutral, intermediate format used to transport code to multiple

hardware and software platforms.

In addition, the Java language supports multithreading at the language level with the

addition of some synchronization primitives, at the language library level, and at the run-

time level with monitor and condition lock primitives.

While the Java compiler is strict in its compile-time static checking, the language and

run-time system are dynamic in their linking stages. Classes are linked as needed. New

code modules can be linked in on demand from a variety of sources, even across a net-

work.

The Java Virtual Machine
The Java Virtual Machine (VM) is the software implementation of a "CPU" designed to

run compiled Java code. This includes stand-alone Java applications, as well as "applets"

that are downloaded and run in Web browsers such as the Netscape Navigator.

In other words, the Java VM is the part responsible for Java's cross-platform delivery,

the execution of its compiled code, and its security capabilities. The Java virtual machine

consists of:

* An instruction set

* A set of registers

* A stack

* A garbage-collected heap

* A method area

All of these are logical, abstract components of the virtual machine that allow for full

platform independence. They do not presuppose any particular implementation technol-

ogy or organization, but their functionality must be supplied in some fashion in every Java

system based on this VM. The Java virtual machine may be implemented using any of the

conventional techniques: e.g. bytecode interpretation, compilation to native code, or sili-

con. The memory areas of the Java virtual machine do not presuppose any particular loca-

tions in memory or locations with respect to one another. The memory areas need not

consist of contiguous memory. However, the instruction set, registers, and memory areas

are required to represent values of certain minimum logical widths (e.g. the Java stack is

32 bits wide).

Limitations of Java
Part of the notion behind Java is to simplify the programming model of C++ and

thereby prevent common programming faults, such as improper uses of pointers. There-

fore, the Java VM does not provide access to them. This limitation has been a source of

serious trouble to Java developers as pointers usually allow for a more flexible and

dynamic memory usage.

Java's VM supports only single inheritance. Single inheritance was chosen to simplify

the programming model (and maybe the VM implementation). But in many cases, the use

of multiple inheritance can create clean and reasonable class structures.

Another problem with Java is the lack of object persistence. Persistence implies that

memory management involves both in-memory and on-disk objects. Java hopes to glue on

interfaces to relational and object databases in order to obtain a capability important to vir-

tually all professional level applications.

Other problems with Java come from the fact that the performance is not as good as

compiled code and the language is still evolving with major changes from one version to

the next. In addition to the fact that learning the language is not as simple as it is supposed

to be.

2.5 Conclusion
In this chapter, we gave an overview of the three platforms that AM2 was built on. Even

though the design of the three operating system is some how similar, many challenges face

software developers when trying to develop cross platform software. AM2 is one good

example. The goals of AM2 were to meet these challenges by providing a platform inde-

pendent environment. Coming from a net-centric point of view, Java tries to solve the

platform problem in addition to providing robust and secure communication among many

other features. In the following chapters, we go in more details into how platform indepen-

dence can be achieved in general and in AM2 and Java in particular.

Chapter 3

Cross Platform Software

This chapter presents different kinds of platform independence that application devel-

opers try to achieve when developing a cross platform solution. It also presents some of

the most common approaches for building such applications. The chapter starts with some

definitions for different components of a cross platform system.

3.1 Definitions
A general cross platform system can be described by Figure 3.1. The figure shows two

platforms and three applications, one for each and a cross platform one that can run on

both. In this section, we define the different components shown that constitute the main

building blocks for different kinds of cross platform development[PETR94].

Figure 3.1: A General Cross Platform Architecture

Hardware Platform:

A hardware platform is a computer hardware design that incorporates a certain type of

microprocessor; for example, a PC, which is based on the 80X86 microprocessor, is a

hardware platform and a Macintosh, which is based either on the 680X0 microprocessor

or the Power PC architecture, is another hardware platform.

A hardware platform is capable of running any type of operating system. Some hard-

ware platforms run only one type, while others run more than one type; for example, the

Macintosh runs System 6, System 7, or A/UX; the PC runs DOS, Windows NT, OS/2,

UNIX, NeXTSTEP, Solaris, etc.

Graphical User Interface (GUI):

A GUI lets the user access software through a graphical (usually non-textual) para-

digm. Typically a GUI uses icons to represent an application or documents. An applica-

tion usually maintains one or more windows, a menu bar, and dialog boxes with the user

will interact.

Typically the user positions a mouse cursor over an icon and double-clicks to start up

the application or document. Other methods of interaction include clicking and dragging

files to copy or move them from one directory to another. A platform's GUI is unique but

still shares many anatomical features of most other GUIs. The Macintosh, Windows 3.1,

Win32 (Windows NT), Presentation Manager (OS/2), and Motif (X) are a few of the most

popular GUIs.

Operating System:

An operating system is a program that runs very close to the computer hardware (usu-

ally just above the ROM code or BIOS). It gives the user a way to access system and file

information and run applications. An operating system also provides the developer with a

set of access points which a application uses to obtain operating system information or

perform low-level tasks, like reading the contents of a file. The user interacts with the

operating system using a text-based command line (as in a UNIX shell) or using a GUI as

in Windows NT.

Application Programming Interface (API):

The API is a set of functions or routines that the application developer uses to access

the features and capabilities of the system or an underlying library. One example is a GUI

API that allows the control of user interface elements.

Platform-Dependent or Platform-Specific Feature or Code:

A platform-dependent or platform-specific feature is unique to that platform (for

example, a single desktop menu bar is unique to the Macintosh). Platform-dependent or

platform-specific pieces of source code will run only on a specific platform.

Platform-Independent Feature or Code:

A platform-independent feature is independent of the platform it will run on. A plat-

form -independent piece of source code can be compiled to run on any platform. When an

entire application is produced in a platform-independent way, it is a cross-platform appli-

cation.

Resource:

A resource is data that is bound to an application and is necessary for that application

to run. For example, an application's resources might define a new cursor shape, an icon,

or the contents of a dialog box. In the Macintosh a resource can be modified when an

application is running. In Windows NT a resource is usually statically bound to the exe-

cutable file during the development process and is not modifiable at run-time.

3.2 Types of Platform Independence
Platform independence can be classified into several types. The most common of all is the

user interface since it is usually the one that requires most of the work when moving an

application onto a different platform. We divide platform independence into the following

types:

* Machine/Human interaction

* File system access

* Database access

* 2D and 3D Graphics

* Network communication

In the following sections we discuss each of these types of platform independence.

3.2.1 Human/Machine Interaction
When developing an application the first step is to design, and possibly to prototype, the

look and feel that the application will have. All targeted platforms must be considered at

the beginning of the design effort. The look and feel will help to identify the actual pro-

gramming interface and structure the application requires to accomplish this specific look

and feel.

A user interacts with the computer through a set of hardware and software compo-

nents. The hardware components consist of the monitor for output and either a keyboard

and/or a mouse for input and interaction with the user. The software components can be

placed into three separate functional groupings. These groupings include high level func-

tions, allowing the application to display output in the form of objects; the low level func-

tions, providing the application with direct output for the intrinsic graphic hardware; and

the platform-specific functions, providing the actual hardware interface to these hardware

devices.

On the vast majority of currently available platforms, a user interacting with an appli-

cation can use one of two different types of input devices. These devices are the keyboard

and the mouse. For software interfacing, the keyboard is the simplest device. Information

is typed into the computer from the keyboard. The keyboard input can be either character

mode or line mode input. DOS, for example works only in text character mode, while

UNIX can work either in line or in character mode, depending upon the settings done in

the terminal. In UNIX text line modes, software drivers interact with the keyboard, keep-

ing all input in a buffer until a terminating character is entered.

3.2.2 File System Access

An application accessing data from files stored on the disk can be different from platform

to platform. The primary difference between applications is the identifier of the files being

accessed (file name). Table 3-1 provides a summary of the differences in file name sizes

for the relevant platforms. The table illustrates significant differences between the lengths

of the file names in the platforms. Applications planned for multiple platforms need to be

consistent in the naming convention for the file names across the platforms. If the applica-

tion is relying on the native file routines for accessing data, a platform-specific code is

needed to process each platform's data. The DOS file names are a standard 11 characters

with 8 characters names and 3 character extensions. This file naming convention is the

same in Windows since Windows runs as a user interface on top of DOS. The Windows

NT system supports the DOS file names, and a larger file naming convention of its own

high performance file system (NTFS) with file names being 256 characters. Macintosh file

names are 31 characters long with or without extensions. The UNIX system is even more

flexible with three formats. The first is the standard UNIX format with 14 character file

names. The second is the Berkeley System Extensions (BSD) to UNIX which allows for

file names as long as 255 characters. The third is the Network File System (NFS) which

also allows for file names as large as 1024 characters. The NFS is a portable platform due

to its network application. NFS extensions allow applications running on a DOS machine

to make requests for the NFS file system[GLAD95].

Other differences in file naming are case sensitivity and characters allowed in the file

name. In Windows, for example, file names are not case sensitive while on UNIX and

Macintosh they are. For systems that use pathnames, a slash is not allowed, while on Mac-

intosh, they are allowed. Moreover, in earlier versions of windows blank spaces were not

allowed.

Platform File Name Length Example

DOS 11 characters dos_exam.fil
8 character name with
3 character extension

Windows Same as DOS
Windows NT Same as DOS

NTFS 256 characters FILEcanbe_256_ch

UNIX 14 characters long FILE1234567890
BSD 255 characters FILE1234567890 more
NFS 1024 characters

Macintosh 31 characters mac_file_31_ch_long

Table 3.1: File Naming Across Platforms

3.2.3 Database Access

There are two different approaches for developing an application for multiple platforms

that access specific databases. The first option is to use the database system API to

develop the application. This option works only if the database system operates in all plat-

forms that are targeted, since the application will be written in the database language and

will be executed in the database program itself.

The second option is to develop a C language program, and either develop an interface

to the database or purchase an existing commercial interface that provides access to the

specific database. These routines will be as complicated as indexing, searching, and

retrieving records in multiple database files. The more complicated the access becomes,

the more important it is to use a commercial interface that will provide all required func-

tionality.

Some of the commercial database interface packages come with interfaces for a few

different platforms. The reason for using one of these commercial libraries is to stay com-

patible with the data, which resides in some standard database format. One of the prob-

lems with using one of these database libraries is that these libraries are extremely large.

3.2.4 2D and 3D Graphics
The main problem with displaying graphical data on a variety of platforms is that every

platform handles the graphical interface through its own set of display coordinates and

display parameters. To take a formatted graphical file and display that file requires a set of

interface routines that will interact directly with the targeted platform. Developers usually

build a set of interface routines that will interpret the graphics file and output the image in

the format that is supported by the platform's interface to the graphics routines.

3.2.5 Network Communications

The network interface is slightly different from all the other software interfaces. To imple-

ment an application that can communicate with applications running on a variety of plat-

forms requires selecting the protocol that will be used in communicating with the network.

The most widely used types of network communication is the TCP/IP protocol. When a

protocol is selected, the developer must determine whether that protocol is supported by

every platform. For example, the TCP/IP protocol is supported by all platforms, but addi-

tional interface software is needed to provide that network interface link to the application.

Supporting a common protocol and taking care of details such as the byte ordering in data

representation allows for platform independent ways of communication between applica-

tions residing on different platforms.

The communications interface for an application provides the user with control of the

communications devices. Every platform normally provides its own control for the com-

munication access. For example, Windows handles the communications devices internally

and buffers information for the application. The application does not directly interact with

the device. UNIX controls the communications ports by treating them as streams. The

Macintosh controls the communications ports in a similar manner to UNIX, where the

application interfaces directly to the communication ports.

When developing an application, directly communicating with the hardware to input

and output data would be consistent across the different platforms. All the application

would need to do to execute the correct input/output statements for the platform.

If the data streams being received or being transmitted require a specific protocol, such

as Kermit or XModem, then the developer has two choices in implementing this commu-

nications. First, the developer can create a custom interface providing the protocol to the

application, or second, the developer can acquire a third-party library that will provide this

protocol and interface the application to the communications hardware.

3.3 Approaches to Development of Cross Platform Software
There are numerous methods and techniques that are used in cross-platform development.

Some of these methods are straightforward and don't affect performance but will limit the

complexity of the resulting application. Others are more complex and may ultimately

affect performance but imply no limit to the application's final complexity. As with most

solutions, there is a trade-off between the time needed to implement the solution and its

usability.

Some techniques include a combination of the methods described below, mainly: port-

ing an API to a different platform, functional abstraction, emulating functionalities from

one platform to the other, data abstraction, and the uses of toolkits and object class librar-

ies supported across different environments.

3.3.1 Ported API
Probably the most common approach to cross-platform development is finding a common

denominator and then implementing an API that uses this common denominator and adds

to it. With this approach, the developer analyzes the target platforms and their APIs to

determine a subset of features that the application requires. Once the feature set is defined,

the developer can design a new API or layer to remove existing platform dependencies.

The design of this cross-platform API is supposed to produce applications that run on all

supported platforms.

3.3.2 Functional Abstraction
Normally the common denominator method requires you to construct a new functional

interface, or layer, that calls the corresponding function or functions in the underlying

platform API. Ideally this functional abstraction is kept to a minimum to allow the cross-

platform solution to take a fairly small development effort.

However, using an interface layer, adds an extra function call since one cannot call the

platform routines directly. This is called an indirection of the platform function. An indi-

rection of one function call rarely appreciably degrades performance on most platforms. A

call to an abstracted function will indirectly call the native API function. In some instances

it isn't possible to find a functional equivalent on all platforms. When this happens, one

needs to find the best fit for as many platforms as possible and then synthesize the func-

tionality on the other platforms.

Creating, or synthesizing, functionality that is not present in a platform isn't a distinct

cross-platform implementation technique. Rather, it is a way to augment another tech-

nique when a platform is deficient in one or more areas. For example, a cross-platform

date and time function needs to synthesize date and time information by calling low-level

functions. Unless all of the platforms for which you are developing a cross-platform API

provide the same feature set, you will need to synthesize some functionality.

If the cross-platform API is too broad, it may be very difficult or even impossible to

synthesize the required functionality across all platforms. For example, if some platforms

support preemptive multitasking and others don't, it would be complicated to synthesize

this functionality. In these cases it might be better to settle for less functionality. Because

synthesis is very labor intensive, the decision to use this method really depends on how

important a certain class of functionality is and how much time and how many resources

should be spent to solve the problem.

3.3.3 Emulation
If a particular platform differs radically from other target platforms, emulating the source

platform might be the easiest approach. This approach is a more encompassing version of

rewriting and synthesis.

Emulation can also be decided ahead of time if the developer knows that there are so

many differences among the platforms that it is better to start with a fully new API to be

implemented and used across all platforms.

3.3.4 Abstracting Data
Data abstraction isn't a method unto itself, but is a necessary component of all the other

methods. Data abstraction means that certain platform-dependent data types are abstracted

or hidden, and sometimes enhanced, in order to produce a new (common) data type to be

used by relevant platform-independent functions. Data abstraction is inherent in an object-

oriented cross-platform solution and is part of an object class definition.

The required degree of abstraction depends on the complexity of the functions that

will use the data type. For example, if one is developing a cross-platform solution for two

platforms, Pa and Pb, with corresponding data types, Da and Db, it might be necessary to

create a new data type Dc to produce a workable cross-platform functional interface.

However, in other cases one might decide that the cross-platform data type should be

equivalent to Da or Db.

Data abstraction allows the developer to specify additional data fields, modify data

fields, or hide certain necessary (platform-dependent) data fields.

3.3.5 Using Object Class Libraries
An object class library is essentially the object-oriented equivalent of the common denom-

inator method of cross-platform development coupled with data abstraction. One disad-

vantage of using an object-oriented language is the introduction of another level of

indirection in the execution of an object method over the equivalent functional implemen-

tation. In non-demanding applications this creates an acceptable amount of overhead, but

it can cause a marginally responsive application to become unacceptable or tedious for a

user.

Many class libraries have been ported to other platform. Microsoft Foundation Classes

(MFC) library is ported to the Macintosh by using a special cross compiler. AM2 provides

an object-oriented version of the GUI and the media services named the Multimedia Tool-

kit (MMTK) which we will describe in the next chapter.

3.4 Conclusion
In this chapter, we covered the main issues involved in developing cross platform software

and discussed some common solutions. Determining which solution to choose depends on

several factors. The first is whether the application has an existing implementation on one

platform and an attempt is being made to move it to another platform. This will impose

restrictions based on how the application behaves on the original platform. On the other

hand, if the application is to be implemented on all platforms, any of the above listed solu-

tions can be used. Second, the availability of some tools might make the porting process

easier and might affect the choice of the appropriate solution. For instance, the existence

of a cross compiler might allow for building the application on one platform and then

cross compile it to other platforms. Finally, and the most important factor is the function-

ality required for the application. For example, if some sophisticated graphics is needed, it

might be worth to develop a set of platform-independent and efficient interface routines to

the operating system graphics engine.

Chapter 4

Platform Independence in the AM2 Multimedia Toolkit

AthenaMuse 2 is a multimedia authoring system that requests services from the window-

ing system through the use of a set of tools that can provide these services in a platform-

independent way. This set of tools is called the multimedia toolkit (MMTK) and it is basi-

cally composed of two modules: The User Interface module (UI) and the Media engine

module.The UI module consists of the User Interface classes which are the platform inde-

pendent components that the Interface Control objects use to build application or module

specific interfaces.The Media engine manages different media elements such as individual

images, sound bites, film clips, text and other media units, which are included in an appli-

cation.

This chapter describes the process of the design and development of this toolkit and

focuses on the main cross platform issues involved in developing the MMTK. It also

describes the implementation of the MMTK under Microsoft Windows NT and Microsoft

Windows 95 and gives a brief comparison with Java.

4.1 Design of the Multimedia Toolkit

Being a part of a platform-independent system, the MMTK is designed in a way that fits

the needs and plans of AM2. In general terms, the design of the MMTK takes into consid-

eration a certain set of goals:

* platform independent media and user interface API.

* MMTK classes provide services to the control classes and ADL.

* C++ applications built with the MMTK do not require the control classes and ADL.

* generalized access to platform specific solutions.

The figure shown below (figure 4.1) shows the general architecture of the MMTK.

There are three layers:

* Platform independent (DIX) layer.

* Device Dependent (DDX) public interface.

* Native system code (Win32 for Windows, MacApp for Macintosh, and Motif for

Unix)

AthenaMuse . .third partylibraries Multimedia Toolkit libraries, e.g.
librarieslirreeg

Figure 4.1: Multimedia Toolkit Library interface

This figure also shows the relation between MMTK and other libraries. Sometimes,

certain services are needed for particular tasks. For example, one might need to be able to

read or write images in TIFF or JPEG formats. In this case, a third party library can be

used to support these services.

Another set of libraries that MMTK uses are the DIX and the UTILS. These libraries

are built in AM2 to supply basic services to other libraries such as data types manipula-

tions in the UTILS library, and event and attribute handling mechanisms in the DIX.

4.2 AthenaMuse 2 User Interface
The user's perception of any application is based on interaction with the User Interface,

making the user interface one of the most important components of an application. Many

factors influence these perceptions. Does the application's user interface match the logical

flow of the application? Are the interface components able to perform complex operations

with simple interaction? Do the components behave as the user expects?

The author of an application requires the ability to easily define complex interactions

between the various application interface components and the user. Providing the tools to

support the authoring process requires a rich set of individual components, and the ability

to combine these components to create reusable composite interface classes and modules.

The author's view of the interface tools and components should be independent of the

application's runtime window system.

The User Interface (UI) classes are the platform independent components that the

Interface Control (XF) objects use to build application or module specific interfaces. AM2

uses the letters "U"' as a prefix for UI classes at the DIX level and the letters "XF" as a

prefix for UI classes at the ADL level. For example a button at the DIX level is named

Ulbutton, while at the ADL level is named XFbutton. The UI objects do not have any

direct understanding of or connection to control objects. The interface control object

which requests the creation of the UI object specifies communication with control objects

through the registration of callback procedures.

The expected behavior of the various UI components is dependent upon the user's

experience and the application's runtime environment. The different platforms that Athe-

naMuse will eventually be ported to each have a different "Look & Feel", which means

that UI components that have the same logical use may look and perform differently on

different platforms. Since AM2 is designed with the understanding that authored applica-

tions may be run on any of the supported platforms, the AM2 UI classes will be modeled

on logical functionality. The individual platform dependent code will be implemented

using the "Look & Feel" of the native windowing system. This model, while more diffi-

cult to implement than a single AthenaMuse "Look & Feel", will make AM2 more accept-

able to users familiar with each of the supported platforms.

Native Native Native
X/Motif Macintosh Windows NT

App. App. App.

Figure 4.2: Portability Across Platforms

The UI module is designed to achieve the following goals:

* provides an object-oriented toolkit that lets the programmer build full-featured GUI

applications quickly and easily.

* organizes the various components of an application (widgets, menus, fonts, etc.) into

Code written into the User Interface API
Platform code Platform code Platform code

X/Motif Macintosh Windows NT

a set of C++ classes.

* provides a platform independent interface to the control classes.

* provides platform independent abstractions of specific window system interface ele-

ments.

* combines platform independent code and private methods that are implemented

using the "look and feel" of the native window system.

Following the general design of the MMTK, the UI has a layered structure (fig 4.2).

The actual implementation is based on two sets of C++ classes: UI and UX (fig 4.3). The

UI's are platform-independent and the UX's are the platform dependent classes.

Uwidget Ubutton Uclass

UXwidge UXbut t on UXclass

Window System API

Figure 4.3: DIX &DDX classes

4.2.1 Class Hierarchy
There are four different categories of the UI classes:

* Widgets: such as windows, buttons and labels.

* Graphical classes: such as fonts and images.

* Special-purpose classes: such as menus and clipboards.

* Window system environment: for initializing the windowing system and media serv-

ers.

These categories are organized in three hierarchies depending on the functionality of

the particular widget. These hierarchies are:

* Container Widgets: These are the widgets that can contain other simple types such as

top level windows, sinks for images and sinks for hypertext.

* Simple Widgets: cannot contain any other widgets as their children. These are

intended for some special purposes such as a push button or a label.

* Graphics and Special Purpose UI's: such as fonts, images and window system

classes.

Figure 4.4 shows the full container widgets hierarchy. The classes that are visible to

the user are:

* UItopShell: top level shell.

* UIvisual: a sink for different kinds of media.

* UIlayout: a layout manager for different widgets.

* UIhtml: a hypertext format for HTML documents.

i UltopShell - - - i UlappShell

, Ulshell -- - UldialogShell

/ U Ulvisual

MUlwidget f - - i Ulmanager+ -I Ullayout - - - Ulhtmi

SUlrowColumn

i Ulsimple

Figure 4.4: UI Container Widgets Class Hierarchy

Figure 4.5 shows the second hierarchy for simple widgets, the classes that are visible

to the user are:

* Ullabel: a simple text label.

* Ulbutton: a push button.

* Ultext: a text widget.

For the third hierarchy (Figure 4.6) the classes that are visible to the user are:

* UIimage: images with more than two colors, could be 2 to 24 bits deep.

* UIbitmap: 1 bit images (only two colors).

,I Ulicon

, Ullabel - - Ulbutton I-- UlcheckBox

I UlradioButton

I . Ultext

/Ulsimple t

- I UllistBox -- - - UlcomboBox

\ \UUIScrollBar

1fUlcluster

Figure 4.5: UI Simple Widgets Hierarchy

* UIfont: for font services. Normally one creates this font and attaches it to the appro-

priate text.

* UIwindowSys: responsible for initializing the windowing system and running the

main loop after the creation of the different widgets in an application.

The three hierarchies form a complete set of classes for building a GUI application

whether they are used directly or from the ADL in which case the control engine of AM2

takes care of passing the routine calls between the ADL and UI objects.

Ulimage- - -1 Ulbitmap

Ulpen UlpopupMenu

UIFont f Ulmenu + - - UlpullDownMenu

Ulcursor UlsystemMenu

Figure 4.6: UI Special Purpose Class Hierarchy

4.2.2 The Attribute Mechanism

Setting and getting attributes of different UI elements, such as setting the width of a button

or getting the background color of a test widget, is normally done in a platform-specific

way. In order to cope with all these differences, AM2 makes use of a platform neutral

mechanism for setting and getting attributes. The main goals of this mechanism are:

* avoid duplicate information: that is in order not to store the information about the

attributes in more than one layer.

* dynamic use: an attribute can be added to a widget as needed. This will simplify the

design a lot because for a particular window you may be interested in only one

attribute or in twenty attributes (width, height, background, borderwidth,...)

* processing of multiple attributes at one time: this is important for UNIX because set-

ting one attribute at a time is very expensive.

* extensibility: if a new attribute is needed for a particular class, it can just be added

without modifying the design.

* common interface between different modules: all modules have the same interface

for setting and getting attributes.

The two classes implemented for this mechanism are the BSattributeMgr and BSat-

tribute. In figure 4.7 below, the inheritance hierarchy is shown for the these classes. IN

this diagram, an arrow from class C1 to class C2 means Clinherits from C2, for example

UIwidget inherits from BSattribMgr, and a line connecting two classes C1 and C2 with a

circle on Cl side means Cl uses C2. For example, BSattribMgr uses BSattribute. Notice

that all UI, Media and Network classes inherit from BSattributeMgr which in turn uses

BSattribute.

Figure 4.7: Attribute Mechanism Classes

Classes Description

Given below is a brief description of the classes for this mechanism.

BSattributeMgr:

This is an abstract class from which the UI widget classes (and some media classes)

inherit. This class manages all the requests for setting and getting attributes received from

the control engine. The mechanism makes use of the following member functions of BSat-

tributeMgr: (The types used are types defined in the UTILS library of AM2)

* LookUpAttr: returns the attribute's type.

* InBatchList: returns true if the attribute is in the list of attributes to be processed.

* AddToBatchList: adds the attribute to the list of attributes to be processed.

* GetAttribute: returns the value of the attribute retrieved from the windowing system.

* SetAttribute: sets the list of attributes queued in the batch list.

Notice that most of these methods are pure virtual since they should be defined in the

derived classes.

BSattribute:

This class implements the attributes that are going to be set or retrieved. In other

words, widget and media attributes are going to be visible to the control engine through

instances of this class. Member functions involved in the mechanism:

* GetValue: returns the current value of this attribute. If the manager's batch flag is on,

the returned value will be the one that it actually holds, otherwise it will be the one

retrieved from the windowing system.

* SetValue: if the batch flag is off, it will ask the windowing system to set the value for

this attribute immediately. If it's on, it will add this attribute to the batch list through

the BSattributeMgr:AddToBatchList(..) function.

* GetType: returns the attribute's value type.

* GetEntry: returns a pointer to the attribute table entry that holds information about

this attribute.

How to get an attribute

This is done in four steps. First, the client, who is the one requesting the attribute, calls the

attribute manager with the GetAttribute method. Second, the attribute manager will create

an instance of BSattribute. Third, this BSattribute will check to see if it is in the attributes

batch list to get its value. If not it will retrieve the value from the system. Finally, this

BSattribute will be returned to the client with the appropriate information.

The mechanism is illustrated in Figure 4.8.

Attribute list

Figure 4.8: How To Get An Attribute

3.4.4 How to set an Attribute?

This is similar to getting an attribute. First, the client creates a BSattribute, then it calls the

BSattributeMgr to set its value. This manager will add the item to a list of items to be pro-

cessed called the batch list which is going to be flushed at the next logical moment. This

means that, the attributes in this list will be updated later. The other list is the attribute

managers list which keeps track of what attributes are attached to the particular UI compo-

nent.

The figure below (Figure 4.9) illustrates this process.

rii IIhUm L II vIIr Inu

Figure 4.9: How To Set An Attribute

4.2.3 The Activity Mechanism

Similar to attribute processing, events are usually handled in a platform-dependent fash-

ion. On Windows for example, there are messages and events. On UNIX, there are call-

backs and on Macintosh, there are behaviors. Handling these interactions differs among

these systems.

The AM2 activities manager is an agent that is responsible for registering for activities

(or what is called in Windows terms an event or a message) with a certain widget in a way

that if this widget receives that event, someone will know about that and do the required

work.

The activities mechanism aims at three main goals:

* object-oriented approach: any event, message, or callback is modeled as a C++

~·lh~ZI""·-C"IIIC~-*II· -· I I I II · PT -I_- II - ~RTla~i~r~np· -- I

object of a predefined activity class.

* extensible: adding new activities to the model should be easy and should not involve

modification of the design.

* common interface between different modules: to register for an activity, the same

interface should be used.

The classes implemented for this mechanism are the BSactivityMgr and BSntfnReq.

In figure 4.10, the inheritance hierarchy is shown for these classes. Other classes are also

designed in order to retrieve data from the activity. All these classes inherit from a base

class UlactivityData. Notice that all UI's, Media and Network classes inherit from BSac-

tivityMgr which in turn uses BSntfnReq and BSactivityData.

Figure 4.10: Activity Mechanism Classes

Classes Description

Given below is a brief description of the classes for this mechanism. Appendix A pro-

vides a more detailed description of the classes and their methods.

BSactivityMgr:

This is an abstract class intended to be the base class of any class that supports the sub-

scription, unsubscription, and notification of activities. UI classes inherit from this class

and therefore are able to support this kind of behavior.

In similar ways, some network and media classes are expected to be derived form this

class as well. Basically, this class is responsible for managing the requests for notifica-

tions for the occurrences of activities (subscribe), the removal of such requests (unsub-

scribe) and the notification calls whenever the activities requested occur.

BSntfnRequest:

This is an abstract class that defines the common interface for the classes that will rep-

resent possible notification requests. Members used:

BSntfnRequestT:

This class implements a form of notification request. The notification request imple-

mented in this class is one where there is an activity client object, an activity client's

method, and some client data.

BSactivityData

This abstract class is the common interface for any representation of activity data.

UlmouseData:

This class represents the data associated with different mouse activities. These activi-

ties include: MouseMove, MouseDown, MouseUp, MouseEnter, and MouseLeave.

UlrefreshData

This class represents the data associated with the refresh activity.

How Activities Work

The main mechanism can be seen as a two-step process:

First, an activity client subscribes (requests notification) with an activity manager on

the occurrence of certain activity.

Second, the activity manager detects the occurrence of the activity and notifies the

activity client.

In order to subscribe, the activity client needs to specify the name of the activity in

which it is interested, what object is going to be notified when the activity happens, what

method should be called in the notification process, and any client data to be passed to the

client's method.

All this information is packed in an object called the notification request which is sent

as an argument in the subscription process.

When the activity manager detects the occurrence of an activity for which there were

any subscriptions, it notifies the client object(s) by calling the subscribed method(s). As

part of the notification process, the activity manager sends any client data that was regis-

tered and any data associated to the activity that occurred.

The mechanism is illustrated in the figure below (fig 4.11).

An Example
The following is a short example of the activities mechanism usage in C++. Details

from the window system initialization and widget's creation have been removed for clar-

ity.

// Declaration of class ActivityClient which defines several handlers
// for different activities.

class ActivityClient (

public:
// Handler for activity generated when push-button is pressed
// void PushButtonHandler(BSactivityData * data, int *)

cout << "I was pressed!! " << endl;

// Handler for mouse activities
void MouseHandler(UImouseData * data, int *)

{
cout << "I got the message!! " << endl;
cout << "Keys : " << data->KeyList().Dump() << endl;
cout << "values: " << data->ToValueList().Dump() << endl;

// Handler for refresh activities
void RefreshHandler(UIrefreshData * data, int *)

{
cout << "I got the message!! " << endl;
cout << "Keys : " << data->KeyList().Dump() << endl;
cout << "values: " << data->ToValueList().Dump() << endl;

Figure 4.11: How Activities Work

main()
{
/---

// Creation of an ActivityClient instance and several notification
// requests for different activities
//--
ActivityClient ac;

int clientData = 123;

BSntfnRequestT<ActivityClient, UImouseData, int>
ntfnl("MouseMove", &ac, &ActivityClient::MouseHandler,

&clientData);

BSntfnRequestT<ActivityClient, BSactivityData, int>
ntfn2("Pressed", &ac, &ActivityClient::PushButtonHandler, NULL);

//--
// Creation of top shell and push button widgets
/--

UItopShell * top = new UItopShell("top", 0);
UIbutton* btnl = new UIbutton("btnl", top);

//---
// Subscriptions for notifications
//---
top->Subscribe(&ntfnl);
btnl->Subscribe(&ntfn2);

// Unsubscribe requests for activities MouseMove and Pressed
// Only for demonstration!!
//--

if (!top->Unsubscribe(&ntfn))
cout << " No subscription for that activity " << endl;

else
cout << "subscription removed " << endl;

if (!top->Unsubscribe(&ntfn5))
cout << " No subscription for that activity " << endl;

else
cout << "subscription removed " << endl;

The example shows how activities can be used in a totally platform independent way.

In the following section, we will compare this example to how Java does event handling.

4.2.4 Event Handling in Java: A comparison
Event handling in Java went through a major change from version 1.0 of the Java Devel-

opment Kit (JDK) to version 1.1. The changes that were made brought the Java event han-

dling mechanism closer to the AM2 activity mechanism.

In JDK 1.0, the model for event processing is based on inheritance. In order for a pro-

gram to catch and process GUI events, it must subclass GUI components and override

either the action() or handleEvent() methods. Returning "true" from one of these methods

consumes the event so it is not processed further; otherwise the event is propagated

sequentially up the GUI hierarchy until either it is consumed or the root of the hierarchy is

reached. The result of this model is that programmers have essentially two choices for

structuring their event-handling code[WWW3]:

1. Each individual component can be subclassed to specifically handle its target

events. The result of this is a plethora of classes.

2. All events for an entire hierarchy (or subset thereof) can be handled by a particular

container; the result is that the container's overridden action() or handleEventO method

must contain a complex conditional statement in order to process the events.

In JDK 1.1, a totally new model for handling events is introduced, named the "Delega-

tion Event Model". The main reasons behind introducing this model were to overcome the

problems with the old model, mainly the need for subclassing, merging all event types

together and passing client data with events. The new model solves all of the these prob-

lems by introducing an approach similar to the activities approach in AM2.

Delegation Model Overview

"Event types are encapsulated in a class hierarchy rooted at java.util.EventObject. An

event is propagated from a "Source" object to a "Listener" object by invoking a method on

the listener and passing in the instance of the event subclass which defines the event type

generated.

A Listener is an object that implements a specific EventListener interface extended

from the generic java.util.EventListener. An EventListener interface defines one or more

methods which are to be invoked by the event source in response to each specific event

type handled by the interface.

An Event Source is an object which originates or "fires" events. The source defines the

set of events it emits by providing a set of set<EventType>Listener (for single-cast) and/or

add<EventType>Listener (for mult-cast) methods which are used to register specific lis-

teners for those events.

The event source is typically a GUI component and the listener is commonly an

"adapter" object which implements the appropriate listener (or set of listeners) in order for

an application to control the flow/handling of events. The listener object could also be

another AWT component which implements one or more listener interfaces for the pur-

pose of hooking GUI objects up to each other"[WWW3].

Similar to activities in AM2, a hierarchy of event classes is used to represent different

event kinds. Each event class is defined by the data representing that event type or related

group of event types. Since a single event class may be used to represent more than one

event type (i.e. MouseEvent represents mouse up, mouse down, mouse drag, mouse move,

etc.), some event classes may also contain an "id" (unique within that class) which maps to

its specific event types. The event classes contain no public fields; the data in the event is

completely encapsulated by proper get<Attr>()/set<Attr>() methods (where set<Attr>()

only exists for attributes on an event that could be modified by a listener).

The delegation event model classifies events into two kinds: low level that deal with

events at the windowing system level such as a mouse move or keyboard press; and

semantic which are defined at a higher level to encapsulate the semantics of a user inter-

face component's model[WWW3].

Even though there might be some differences between AM2 activities and Java event

delegation, they both seem to provide a clean and simple object oriented approach for

event handling that gives a good logical separation between application and GUI code.

4.3 AthenaMuse 2 Media Engine
The AthenaMuse Media classes enable the author to create and use diverse media content

without being concerned about the specifics of each data format or system specific access

and presentation services.

AthenaMuse uses media element objects to describe the individual images, sound

bites, film clips, text and other media units, which are included in an application. A media

element is not the media technology but an object which represents the units of media that

an author assembles into an application.

The term media data is used to represent the actual stream of information which is

converted into the media presented (i.e., the frames from a video disc or a TIFF file). The

media data does not reside within the media element. At run time, the media element

objects retrieve the media data and perform the processing required to output the media.

4.3.1 Class Hierarchy
Media classes are divided into four categories:

* ME... Element: Individual media clips, sound bites, and other media chunks.

* MA... Access: Access to media data, and agents for access arbitration

* MD... Device: Device control

* MP... Presentation: Internal media data representation which interfaces with the pre-

sentation 'surface', or object

This categorization is very useful in separating what the media element represents ver-

sus its utilization. It also makes the media engine more platform independent. The reason

for this is that many media elements may have the same presentation element, which is the

part that communicates with the windowing system. Shown in Figures 4.12-14 the four

hierarchies for the media module, the media access, the media presentation, the media ele-

ments.

The benefits of this classification are that it ensures more encapsulation and it provides

commonly based classes which are interchangeable.

MAbase

I
MALtream

I
MAhtml

I I
MAfile MAdataserver

MAcommonPort

MAagent

MAvideo MAvidDiscVolRO

I
MAvidDiscAgent

Figure 4.12: Media Access Hierarchy

MPbase

II
MPimag

I
I I

MPbitmap MPdirect

I I
MPvidPort MPanim

I
MPindexed

Figure 4.13: Media Presentation Hierarchy

I
MPaudio

MEbase

I
I

MEtext

I
MEimage

- MEgif
- MEjpeg
- MEpbm
- MEphotoCD
- MEpix
. MEtiff
- MExbm

I
MEvisual

I
I

MEviewStream

MEvideo
MEvideo

I
MEaudio

I
MEmovie

MEvidDiscSeq

Figure 4.14: Media Element Hierarchy

Other classes that are not shown in the hierarchies are:

* MErgb -- single color, supports conversions between RGB, HSV, and internal 24/32

bit representations.

* MEnamedColor -- a named MErgb with a specific color value.

* MEcolorDB -- A collection of MEnamedColors, may be loaded from a file.

* MEbroker -- static class isolates ADL from details of media element construction.

* MEsink -- maintains presentation information for an element.

4.3.2 Temporal Media
In designing a multimedia library, temporal types of media need a very careful and clear

design. This is important because of issues such as synchronization. The following design

strategy is followed in the design of temporal media:

I
MEhtmi

I
MEavi

I

F--

* Temporal media elements store position internally as absolute offsets from the begin-

ning of the medium, using native frame units.

* Specification of an element's position, may use native frame units, normally as an

offset from the beginning of the elements frames.

* Time position specification is independent of the native frame unit.

* Time positions are calculated using the default or element creation frame rate instead

of the current frame rate.

Every temporal media element such as video or audio has the following attributes and

methods:

Position:

All temporal media have a beginning, end, current position, and duration. Representa-

tion of these attributes should be consistent across the various ADL media types. Time

based units provide the greatest level of interchange between different encodings of the

same information, but time is subject to a number of factors.

The actual time required to present part of a media element may vary between differ-

ent invocations of the presentation method, or by user modification of the playback rate. If

time is to be the common representation of position within a media element, that represen-

tation of time should be derived from the optimal time that the position represents. Opti-

mal time is defined here as the duration from the beginning of the media segment if the

media were presented at its capture rate, or internal presentation rate. For example an

NTSC videoDisc's internal frame rate is 30 frames per second, while an AVI digital video

may have been created at 20 frames per second.

Many media elements may be defined using a sub-range of the data available, or of

'larger' media elements. The underlying media-specific class must keep track of these

absolute 'addresses' into the available data but the media element normally will use

address relative to the segment when communicating with the ADL.Control a temporal

media element is done through setting a list of attributes for the element or calling certain

methods on it. The main attributes and methods are:

* startPosition: starting position of a temporal media element.

* endPosition: ending position of a temporal media element.

* currentPosition: current position of a temporal media element.

* defaultRate: at which the element is playing.

* AudioLevel: for elements with audio component.

* Pause: to stop the clip while keeping it on the sink.

* Play: to play from a certain positon to the other.

* PlayFor: for a period of time.

* PlayUntil: until you reach a certain frame number.

* Step: step to a certain position.

* Notify: notify someone at a certain time or by calling some activity.

This kind of control over temporal media elements allows for transparent merging of

different kinds of media on different platforms. Having a media device capable of per-

forming all the above requests on different platforms provides a good separation between

the various kinds of media and the user access to them.

4.3.3 Mechanisms for the Media Engine
The same mechanism described for the UI are supported for the Media. As long as a class

inherits from BSactivityMgr and BSattributeMgr, it has the ability to handle events and set

attributes.

Something specific about media events is that they occur during the processing and

presentation of media elements. Internal media events may indicate stages in the presenta-

tion of the media, activity in the data stream, and be derived from a media specific service,

or generated by a timer.

4.4 Conclusion
In this chapter we covered different aspects of the MMTK in AM2 focusing on the overall

design, the different classes used and the ability to provide a platform neutral interface to

its users. Also, we gave a brief comparison between AM2 activity mechanism and the

Java delegation event model.

In summary, the MMTK is an object-oriented platform-independent library that gives

its users the ability to develop on one platform and directly port to the other platforms

without having to rewrite the code for that other platform. In addition, this library hides

from its users all the details of the windowing systems and thus makes it very easy to use.

It has support for most of the media types required for a multimedia application and at the

same time new media types can be easily integrated to it.

Chapter 5

Platform Independent Data Management

This chapter gives a general overview of several modules in AM2 that deal with data man-

agement, mainly data access and data transfer. From a user's point of view, data can be

stored either in a file or in a database and can be moved across machines via some network

protocol. Operating system services that support data storage and data transfer are usually

specific to the platform, and in many cases the format itself might not be usable when the

data is moved from one platform to the other. What is needed is a platform independent

way for accessing and storing data.

In this chapter we highlight three aspects of AM2 that deal with platform independent

data management: abstracting the file system in AM2, the database module, and then gen-

eralized data stream interface.

5.1 Abstracting the File System
In general, all platforms support the concept of storing data on disk in the form of a file

which is visible both to the application and to the user. The access to a file, however, is

quite different, and a platform independent interface is needed to access them.

From the platform-independent application's point of view, there must be a way to

access a file on disk. When the file is opened and before it is closed, the system provides

some reference to the file. From the user's point of view, a file is specified by a name and

a location, which may be specified as a directory or folder.

Usually every platform offers a file system. In addition, C offers a library of file rou-

tines with wrapper functions around the operating system file functions. In Windows and

Macintosh, applications are encouraged to use the operating system functions directly and

stay away from the C wrappers.

Specifying files must be done in a platform-independent manner. X and Windows use

straightforward pathnames with a drive name on Windows, but on Macintosh, file refer-

encing is a little more complicated.

From the Macintosh user's perspective there are desktop, volumes, folders, and files.

Each has a name, which consists of 1-31 characters (1-27 for volumes that are disk parti-

tions). The characters can be of any kind, except colon ':', which is reserved as a delimiter

for applications that need to use pathnames or partial pathnames. Note that the slash '/' is a

common character in file names, for example "Family Tragedies 12/24/92." The use of

pathnames is allowed, but discouraged for several reasons:

* Since several mounted volumes may have the same name, a pathname may be

ambiguous.

* Pathnames are unreliable as a means of identifying files or directories because the

user can change the name of any element in the path at virtually any time.

A possible compromise in some situations is the use of partial pathnames. From a

known directory, say the application's, we specify a path to the file we want. Although

more robust than a full pathname, it would be useful if we were able to avoid it.

In AM2, a platform independent set of classes were developed that provide a clean

access to files on different platforms. We will describe two classes here.

OSfileSpecification:

The class OSfileSpecification replaces the pathname on UNIX and Windows and the

file naming on Macintosh. Its functions include:

* GetName: retrieves the file name.

* SetName: renames the file.

* GetPath: retrieves the file pathname.

* GetDrive: returns the drive number on which the file reside.

* Exists:checks if the file exists.

OSfile:

This class provides file input and output. It may be in either native or portable mode,

written as text, binary, or tagged data.

Instantiating this class opens the file. All text written out is converted to a portable for-

mat (Unicode); binary data is not changed. It has several modes: ReadOnly, ReadWrite,

WriteTrunc, and WriteAppend.

Some of its methods are:

* OpenNativeConstruct: opens the file. All text written out is in the machine's native

encoding format.

* Close: Flushes all buffers and closes the file. Any further reads or writes fail until

another file is opened with Open or OpenNative.

This interface for files allows for file access on different with the same code. AM2

input/output library takes care of passing requests for the file system with the appropriate

machine specific routines.

5.2 The Database Module
One of the goals for AM2 authoring is the separation of application design and data. A fur-

ther refinement of this goal is that it should be possible to reference interface and media

objects symbolically in the authoring environment. The data needed to create the object

should be stored externally. The AM2 database classes translate authoring language

requests and persistent storage representations of AM2 application data into the data

required to create instances of AM2 objects.

The database classes (DT) are the means by which AM2 abstracts the different persis-

tent storage models and methods. The database classes also manage the relationships

between application data stored in an external database, such as a library inventory, and

the data required within AM2 applications to present the inventory. Some of the main

objectives for the database module in AM2 are:

* Separation of the database methods from the creation of AM2 objects.

* Database classes are built upon database independent methods. The goal of these

classes is to provide a general interface which supports the persistent storage model

via bindings to specific databases.

* Queries may automatically fetch all selected records, or provide a "cursor" to the

Control Engine which may be used to fetch the specified number of records.

The database module provides a centralized and consistent mechanism by which data can

be stored, accessed, modified and deleted. A database access language is used to specify

data independent of the file system and other environment variables. Media objects can

therefore be modified in the database, and these modifications will be reflected in the

application, without needing to alter the actual code. Once all data belonging to a particu-

lar application is stored in a centralized location, it becomes much simpler to protect

against accidental deletion and to move or copy the data as a single unit. Database systems

are specifically designed for tasks such as data entry, deletion or modification. In addition,

they also provide extensive facilities for data searching and querying that would not nor-

mally be available to an application. If selective data is required by an application it can be

stored in the database and retrieved using a data query. By including a standard object-ori-

ented interface, the application can be given access to preexisting databases, thus signifi-

cantly increasing the usefulness and economic value of the application [CURT96].

In order to meet these requirements, AM2 makes use of a virtual database module

(VDM). The virtual database module is designed to offer a standard method of interfacing

with different database systems (figure 5.1) as opposed to the classical approach of build-

ing a separate interface for every database (figure 5.2).

(AApplication
A

Virtual Database

Database A Database B

Figure 5.1: The virtual database p[CURT96].

Databs tabase B

Figure 5.2: Using different APIs to connect to different databases[CURT96].

Using VDM, the structure of the database (schema) is retrieved automatically upon

connection by the virtual database system. The application can then use this schema infor-

mation to construct appropriate interfaces for the user.

A key component of any database system is the set of fundamental types from which

class attribute and method definitions are built. An allowable data type in one of these def-

initions is either a fundamental data type or an existing class. The types defined for the

VDM include simple types (e.g. integer, string), complex types (e.g. date, sequence) and

multimedia objects (e.g. image, sound).

As to the interface, the VDM takes the form of a set of predefined database object

classes. The designer can use these classes directly, or can derive more specialized classes

for database manipulation.

The interface can be divided into two main parts. The first part is a set of classes that

represent the fundamental data types available in the VDM, while the second part is a set

of classes that represent a connection to a component database and provide operations for

schema manipulation, query construction and query execution. The application author pri-

marily uses an instance of the database class to establish a connection to a database and to

perform various operations on that database.

A query class is available to aid in assembling and executing queries, while query

results are accessed through a cursor object. A multidatabase class is also available to rep-

resent a set of database objects and allows the execution of simple multidatabase que-

ries[CURT96].

Following the VDM approach for supporting databases does not only create platform

independent interface for using databases but also a database-independent interface that

allows applications to run using different database systems on different platforms.

5.3 Generalized Data Streams
The design and implementation of the network library in AM2 went through several

changes during the life of the whole project. The need to access remote machines was first

supported by providing a set of network classes that wrapped the TCP/IP protocol on the

three platforms.

One key problem with this approach was that even though it provided network access,

the interface was different from accessing data in a database or in a file. An application

that needs to retrieve data from different sources has to have a separate implementation for

each kind of data source.

What is needed is an interface that sits on top of different data sources and provides a

general uniform way of accessing data for applications to use. A generalized data stream

interface was proposed as a solution. This interface represents a general I/O model that is

implemented as a layer on top of file I/O, network, database and Web services. The goal of

the design is not only to allow streaming of data over the network but also to provide a

unified interface for accessing information whatever storage it might be located on. A

stream may originate from a memory buffer, a local file, an inter-process communication

pipe, or a network connection.

The strategy behind the generalized stream interface addresses three problems. First,

uniformity of interface to achieve independence of the media source; second, platform-

independence based upon widely available services like FTP and HTTP and database

access; and third, semantics for seeking into a stream.

The following three sections give some details of the stream model, the different

classes implemented and goes in details on the design and implementation of the network

stream that is one of the challenging elements of the generalized data stream interface.

5.3.1 The Stream Model

The Stream model incorporates the following:

* Stream Source

* Stream Destination

* Stream Unreliability

The stream source is modeled merely as a sequence of bytes at one end of the stream.

This allows for different kinds of data sources to be valid, even multiple sources that are

merged together.

The stream destination is modeled as a memory buffer. This does not impose any

restriction on the destination itself; however, it adds some practicality in thinking about

the model. It also allows us to define the stream behavior in terms of observations on the

buffer. The memory buffer can represent any intermediate stage before the destination

itself. The size of the buffer used by the stream can grow up to a maximum M defined as a

characteristic of the stream. M specifies the maximum displacement in the destination

buffer that a seek operation can successfully be done. For example, a video stream might

set M to the size of a frame since no information about the previous frame is often needed

when processing the current frame.

The stream unreliability lies in that seeking can not be performed beyond the bounds

of the destination buffer. Of course, seeking becomes less important as the size of source

becomes larger. More importantly, the stream unreliability is imposed by the fact that the

stream will not guarantee that all the bytes at the source will ever reach the destination.

For simplicity we assume that if at any time, a byte at the source is not delivered, every

byte that follows will not be delivered too, i.e. the stream fails at one point to continue its

operation.

A stream can receive commands from the user. These commands are the same as the

commands used with a file descriptor namely open, close, read, and others. These com-

mands are independently dealt with at the destination buffer level.

5.3.2 Class Hierarchy
In order to ensure uniformity of access for all kinds of streams, we differentiate between

streams and streamSpecs. A streamSpec is a data structure that specifies the source of the

stream. As an example, afileSpec (subclassed from streamSpec) might contain the path to

where a file resides, the name of the file, and some flags to indicate whether the file should

be open for read or write or both. A networkSpec might contain a server name, a protocol

to be used to connect to the server, a path and a file name.

Streams are constructed from their streamSpecs. All streams provide a uniform inter-

face including methods such as open, close, and read. The only difference is how the

stream will interpret these commands. A converter, that we call the Stream Manager, is

responsible for converting a streamSpec into a real stream that provides this interface.

_,".1Ji
V

Figure 5.3: A hierarchy of StreamSpecs

z 1

Figures 5.3 and 5.4 illustrate the streamSpecs and streams hierarchies. The SG prefix

stands for Stream Generalized interface. Dark boxes represent classes that can be instanti-

ated whereas white boxes represent abstract classes.

Figure 5.4: A Hierarchy of Streams

Different kinds of streams are derived from the base stream: blobs are simple memory

buffers and IPCs are inter-process communication pipes. These two kinds of streams are

Memory-Only streams in the sense that no disk access is required. Other streams contain

files and network streams. The net stream is a general network stream, whereas ftp and

http are more specialized versions of the network stream.

As it can be seen from the two figures, StreamSpecs form a parallel hierarchy to

streams. The only difference is that StreamSpecs do not interact directly with services pro-

vided by the system. They only describe the stream source. The Stream Manager converts

streamSpec into its functional stream. The Stream Manager needs to communicate only

with the interface of baseSpecs and base streams. Using an RTTI (Run-Time Type Identi-

fication) mechanism, the Stream Manager determines the actual level of the Spec in the

streamSpecs hierarchy and creates the corresponding stream in the streams hierarchy.

What follows is an example of constructing a file stream:

SGbase * file;

SGbaseSpec * spec = new SGfileSpec("fname") ;

file=SGmanager: :StreamFromSpec (spec);

Any other kind of stream can be constructed and used in a similar way, thus providing

the same interface and ensuring uniformity of data access across all streams.

The goal is to provide a cross-platform implementation of the Generalized Data

Stream Interface. To achieve this, we use a platform-independent system services such as

standard memory and file I/0 operations, widely available network services such as FTP

and HTTP, and third-party libraries available for different platforms such as the W3C

library, which is a general purpose Web API written in C [FRYS95].

5.3.3 The Network Stream
The network stream is constructed by providing the Stream Manager with either an

SGnetSpec, an SGftpSpec, or an SGhttpSpec. Both SGftpSpec and SGhttpSpec are special-

ized versions of SGnetSpec where the protocol to be used is defined a priori. The source of

a network stream is a URL (Uniform Resource Locator). The URL is encoded in the Spec

used for creating the stream. Since SGftpSpec and SGhttpSpec both inherit from

SGnetSpec, the URL is actually contained in the latter.

The implementation of the network stream tokens is done using the W3C library avail-

able for UNIX and MS-Windows platforms[FRYS95]. The W3C library is a general-pur-

pose Web API written in C that can be used as the code base for writing Web clients and

servers. The purpose of the library is to provide a sample implementation of HTTP and

other Internet protocols.

5.4 Conclusion
AM2 makes use of a powerful set of modules to manage data independent of both the plat-

form and the location of data. The use of a virtual database allows applications to access

several kinds of databases simultaneously. Many applications that make use of the data-

base module have been built and showed the effectiveness of the virtual database module

as an efficient and easy way to built multimedia applications.

The Generalized Data Stream Interface based on the stream abstraction provides a

convenient and uniform way of accessing data from different sources in a platform inde-

pendent fashion. One good example is the network stream has been used successfully in

streaming MPEG video.

Chapter 6

Lessons Learned and the Future

This thesis addressed the overall design and development process of cross platform soft-

ware through a case study of the AthenaMuse 2 multimedia authoring environment.

Software developers building a cross platform application can benefit from following

a coherent plan and a deep of understanding of the platforms the software will run on. The

complexity of many platforms and their differences might make the development process

extremely slow and inefficient in the absence of a formal design and development plan.

Many lessons were learned from the design and development of AM2. We touched on

most of those throughout the thesis.

Lessons Learned
The very first thing that should be well understood before developing a plan for cross plat-

form implementation is what the software should do. Knowing the features required for

the application will help in identifying the limitations of some of the platforms and where

some serious work might be needed. AM2, being a multimedia authoring environment,

required rich user interface and media support which motivated the idea of a separate tool-

kit for sophisticated user interface and media support.

Knowing what platforms offer is also another key issue. For instance knowing that two

out of three platforms do not support some kind of user interface might lead to the deci-

sion of simply creating an emulated version of the user interface for the three platforms

instead of trying to make two platforms behave like the third that supports the user inter-

face. AM2 utilizes a set of user interface components that combine platform native fea-

tures and some other emulated features, reflecting the fact that the common denominator

of the three platforms is not enough to implement the features needed for developing a

multimedia application.

The availability of cross platform tools and libraries might also change the plans. For

instance, having a cross platform network support from the W3C was a good choice for

AM2 as a substitute for writing network modules for the three platforms. Because of the

complexity of developing cross platform software, it is often better to look for specialized

tools that offer solutions for one or more aspect of the software. AM2 makes use of several

such tools for example, it relies on the Rogue Wave library for data structures which is

available for the three platforms, and the TIFF image library for TIFF and JPEG that is

also available for the three platforms.

Typically the largest part of the code that should be redone for platforms is in the user

interface where no standards have been identified, and operating systems which provide

different windowing systems with totally different programming and semantic interface.

For AM2, most of the platform-dependent code is in the multimedia toolkit that has three

distinct platform dependent (DDX) layers, one for each of the three platforms. Hence, spe-

cial attention should be paid to designing a user interface that can be built across the tar-

geted platforms with minimum effort.

Breaking the application down into a behavioral part and a data part is also important

for a clean design. AM2 makes use of the virtual database module to manage the data part

for applications where a large amount of data might be needed. The ability to store and

retrieve data regardless of the kind of the database and from multiple databases at the

same time brought AM2 a flexible and easy way of creating complex and multimedia-rich

applications with a fairly small effort.

The ability to abstract data elements and manage them in a platform and source inde-

pendent manner is also a key feature that the AM2 generalized streams provide. In today's

applications, data may reside locally, remotely, or in a database. Having to write separate

modules or pieces of code for each is time consuming and not acceptable. The generalized

streams in AM2 solve this problem in addition to providing a platform independent inter-

face for applications to use.

The Future

So what does the future hold for cross platform software? Until very recently, the tech-

niques given in this thesis were the most commonly used ones for developing platform

independent software. In today's software world, almost every developer, if not using, is

looking into or thinking of using Java. Among many other features, platform indepen-

dence is one that Java offers. This is mostly what makes Java a very attractive option for

developers. Using Java causes a paradigm shift from a machine-centric to a network-cen-

tric computing, thus making programs platform independent and only specific to the net-

work protocol they are built on. Because of all the features that Java provides, the shift to

using it looks very promising despite the fact that many parts of the language are still

under development and the performance is still not acceptable for moderately large appli-

cations.

Appendix A

AM2 Activity Mechanism Class Description

A.1 BSactivityMgr:
This is an abstract class intended to be the base class of any class that supports the sub-

scription, unsubscription, and notification of activities. The functions used are:

* Subscribe: subscribes the notification request pointed to by aNtfnRequest. Returns

aNtfnRequest if the activity for which a notification was requested is valid, NULL

otherwise. This method should be defined by the derived classes.

* Unsubscribe: unsubscribes the notification request aNtfnRequest and returns a

pointer to it if it was successfully removed, NULL otherwise. This method should be

defined by the derived classes.

* IsValidActivity: returns true if the activity referenced exists (is supported), false oth-

erwise. This method should be defined by the derived classes.

* Notify: calls the appropriate member function in every object that requested notifica-

tion for the activity referenced by this method. As part of the calling, it sends any

data associated with the activity.

A.2 BSntfnRequest:
This is an abstract class that defines the common interface for the classes that will repre-

sent possible notification requests. Members used:

Dolt: calls the notification method of the activity client sending the corresponding

activity data.To be defined in derived classes.

A.3 BSntfnRequestT:
This class implements a form of notification request. The notification request imple-

mented in this class is one where there is an activity client object, an activity client's

method, and some client data. The signature of the activity client's method is determined

by the type of the activity data and the type of the client data as in the following typedef:

typedef void (ACT::*ACMethod)(ADT*, CDT*);

where ACT is the type of the activity client object, ADT is the type of the activity data

(e.g., UImouseData, UIrefreshData, etc.) and CDT is the type of the client data. Members

used are:

* BSntfnRequestT: constructs a notification request object for the activity with name

anActivity, activity client object pAC, method to be called aMethod, and client data

pCD.

* Dolt: calls the notification method of the activity client sending the corresponding

activity data pointed to by pData.This method returns int only to provide overriding

facilities to be used in the timer mechanism.

A.4 BSactivityData:
This abstract class is the common interface for any representation of activity data. Mem-

bers used:

* KeyList: returns a list object with strings describing the data keys.To be defined in

derived classes.

* ToValueList: returns a list containing the values of all the mouse activity data. To be

defined in derived classes.

A.5 UlmouseData:
This class represents the data associated with different mouse activities. These activities

include: MouseMove, MouseDown, MouseUp, MouseEnter, and MouseLeave. The data

for these activities is stored in:

* xmouse: x-coordinate relative to the widget's origin.

* ymouse: y-coordinate relative to the widget's origin.

* button: button pressed, if any.

Members used:

* SkeyList: returns a list object with UTstrings describing the UImouseData keys.

Example: {"x", "y", "button"}.

* KeyList: calls the static SkeyListo member function described above.

* ToValueList: returns a list containing the values of all the mouse activity data.

A.6 UlrefreshData
This class represents the data associated with the refresh activity. The data for this activity

is stored in:

* x: x -coordinate of the upper-left corner of the region that needs refresh relative to

the widget's origin.

* y: y-coordinate of the upper-left corner of the region that needs refresh relative to the

widget's origin.

* width: the width in pixels of the region that needs refresh.

* height: the height in pixels of the region that needs refresh.

Members used:

* KeyList: returns a list object with strings describing the UIrefreshData keys.

* SkeyList: calls the static Skmember function described above.

* To ValueList: returns a list containing the values of all the refresh activity data.

Bibliography

[NUTT92] Nutt, J. Gary, Open Systems. Prentice Hall, Englewood Cliffs, 1992.

[GLAD95] Glad, S. Anthony, Cross-Platform Software Development. Van Nostrand
Reinhold, New York 1995.

[AM2D97]The MIT AthenaMuse Consortium, AthenaMuse Release 2. Documentation.
Available from http://www-ceci.mit.edu, 1997.

[PETR94] Petrucci Steve, Cross-Platform Power Tools, Random House Inc., New Yourk,
1993.

[AM2D94]The MIT AthenaMuse Consortium, Athen Muse 2 Design Specifications
version 1.4. Available from http://www-ceci.mit.edu, 1994.

[CURT96] Curtis K., "Multidatabase Support for Object-Oriented, Multimedia Authoring
Environments," Ph.D. Thesis, Massachusetts Institute of Technology, 1996.

[FRYS95] Frystyk, H. N. The W3C Reference Library., Available from the URL: http://
www.w3c.org/pub/WWW/library.

[MNEI97] Saadeddine Mneimneh, Issam Bazzi, Cyril Morcrette. "Generalized Data
Stream Interface", ATIRP First Annual Technical Conference, January 1997.

[HRW94] Harward, V.J. and Lerman S.R., "The AthenaMuse Multimedia Environment,"
paper presented at the Massachusetts Telecommunications Conference,
October, 1994.

[BRAI94] Brian, Marshall and Campbell Kelly, Windows NT Programming: An
Introduction Using C++., Prentice Hall, 1994

[WWW2] Campione, Mary and Walrath, Kathy., The Java Tutorial. Addison-Wesley
1997.

[WWW3] Sun Microsystems, Java Development Kit 1.1.1 Documentation. Available
from http://www.javasoft.com

[ISAA94] Issak, James, et al, Open Systems Handbook. IEEE Standards Press, 1994

[EZZE93] Ezzel, Ben, Windows NT 3.1 Programming, Ziff Davis Press, Emerville,1993

