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those existing.
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INTRODUCTION,

1. Areview of previocus methods on rigidly framed structure.

Tt is believed that a wide knowledge of the ana-

lysis of rigidly framed structure is generally required
in gaining ekconomies and in securing effective designs.
Notwithstanding the importance, the close investigation
of the stresses as they actually occur in this kind of struc~
ture is not usually attempted im practice. The reason is
simply due to the fact that the existing methods for inves—
tigation requires either considerable time to work out
formulas for statically indeterminate quantities to suit
a ﬁarticular case in question,or laborious work to apply
the different expressions already determined to get so
many unknoﬁn quantities. In view of the ecgonomy of the
‘time element, several very approximate methods are in
general use, although they sometimesgive results which
‘are serious in error. The methods that have been so far
developed can be classified as follows: |

a) The approximate methods. They are originated by
various authorities ( Spofford, Fleming, Swith; Burtx,. Tha-
yer, etc }. The methodsconsist: of certain combination af
of the fo‘lloﬁing assumptionss';

1. Point of contraflexure of columns at mid-height.

2 ; Point of contraflexure of teams at mid-~length.



3. Direct stresses in columns are propottional to
the distance of the column from neutral axis.

4, The shear on all interior colﬁnns is equal and
the shear on each exterior colunmn is equal to one

half the shear on interior column.

5, Shear is distributed amongst columns in proportion

to their moments of inertia.

6. Shear is distributed amongst columns in proportion

to area of vertical rectangle of which the coluen

is the axis.
As the methods are common in practice and canbe found in
papers written by respective authors mentioned above, so they
will not be given here in further detail.

b) The more exact methods. These consistofthe methods -
based on slope and deflection originated by Dr. C.A . Melick .
and Mr. E_F _.Jonson. The originbal work is laborious and is
almost inpractical for buildings several stories high.

The further development of the slope and deflection

method by W. M. Wilson and several other men ( bulletins 80
and 108', Eng. Exp. Sta of Univ; Of I11.) rendered this method
generally applicatle. Expressions for various} cases have
been derived. It is considered simple, although in some

cases its application is restricted. ( See Conclubion, Part 4)



c) The exact method. This method is a development
by method of least work. The well-known papers regarding
to this method are by Prof. A. Swith (Journal of Western
Society of Engineefs, Vol. XX ) and by Bp. Mikishi Abe ,

( Bulletin 107, Eng. Exp. Sta. of Univ: of I11..) . The

method is exact and the direct stresses can be taken into
accounti It is, of course, very long.

2. General outline of the present method.

The method herein developed and investigated

belongs to Class b, the more exact method, of the previous

discussion, or, in other words, the slope deflection method
treated in more unique manner, The preference of this me~
thod will be discussed in the conclusion of Part IV of this

work,
- The work is devided into 4 parts with an intro-

duction at its beginning, in which, besides some general
discussion, a section for getting primary sections of a re-

inforced concrete frame is also given, Several formulas
derived from the writer"s experience are presented, which,
when being applied, needs only a $ingle slide rule operation
and are deemed simple and helpful.

The first part of the work, Part I, is the Lasis
of the whole: All the theories aﬁﬁ derivations are included
in it. They serve in the main to get the characteristics

of a given frame, By characteristics of a frameare hers meant

the following':



Taking each member of the frame separately and as-
suming one end teing fixed, while the other end being sub-
and ashoar resuitedbherefrom o
jected to a unit moment, the expressions for the points of
contraflexures of the memberscan be obtained. The position
of the points of contraflexure does not chanje for any mag-

nitude of the accually applied moment. ( Characteristic T )

Taking each joini of the frame- sejarately and as-
suming a unit moment being applied to. the joint. Now since
it can be easily proven that in the strained position all the
members meeting at one point ars subjected to the same change

of slope; the relation of transmission of the moment, or the

moment factors, can be derived. The momwent factor does not
change for any magnitude of the actually applied moment.

( Characteristic II )

At the end of Part T a summary of the procedure for
computation is also given.

Most of the theories given in this part are taken
from Dr. Strassener's work appeared in the paper " For-

scherarbeiten auf dem Cebiete des Eisenbetons, Hefte 28",

The expressions for momemt factors for cases where four

. members meetinyg at a joint are the writer's own develop-
ment from the same principles’; these complete the missing
lvink of Dr., Strassener’'s work,

_ The second part of this work, Part IT, treats the
sethod of application of the development given in Part I

to the case of a frame subjected to vertical loads. Section
2, the separation of moments and their signs, shows the
unique manner of this method, in which ¥t lies its superiority.

The two sections on several short-cut methods for finding



- moments of rigid members and Criteria for maximum combined
stresses in beams . and columns are collected from various =

sources and seem to be helpful.

The third part of this wotk, Part IIT; treats

the method of application of the development given in Partl

to the case of a frame subjected to lerizorddl loads., On ac- _
count of the fact that the tops of all columns are subjected
to a deflection in this case, expressions for moments due to

anit deflection are derived. Now since the deflection and
the resulted moments are always .in direct proportion to

each other, advantage can be taken from this fact for deterw-
mining the moment of each member due to an assumed deflection
unity of each story of the frame. From these moments the

horizontal shear subjected to each column can be found. The

sum of the shears of all the columns in each story sHould
naturally be equal to the external force applied at that
story, which causes the assumed unit deflection. by multi-
plying the mcment due to the unit deflection by the ratio

Acctually applied force
External force causing unit defl.

the acctual moment of each member can be obtained.

I?r-. Strassener gives some hint for attacking
%ﬁéhvpfdb;léi in his paper mentioned above, but the methed
has not been treated iy hia in unique and simple manner.
The present method is a collection of the developments of
various enéineers appearing in "Schweizerische Bauzeitung"
and put up in simple and collective manner by the writer.

It should be noted that this method is more simple than
Wilson.'s method by reducing two equations from each story.

The fourth part of the work, Part IV, givesa



complete illustration of the method and comclusions.

3. Foundalent{al principles and assumptions of the present

slope deflection method.

Thé<principles and the assumptions of the method in successive
sections given in this work are almost the same as are given
in Wilson 's paper , Bulletins80 and 108, Eng’¢g experimental
station of University of Illinois., The treatment and the
applications of the principles and’assumptions are entirely
different from those given in Wilson's work and the preference
of the present method will be discussed in the comclusions
vA Part 4 . The principles and assumptions adopted can be
summarized as follows:

1) The moment at an end of a member of a frame is a func-
tion of the changes in the slopes of the tangents to the elas—

tic curvg_of the member at its ends and of the deflection of

one end of the nemhér relative to the other end.

2) In the strained position, all the columns and girders
which intersect at one point have been subjected to the same
‘change in slope. |
Upon these two principles the Part 1 of this work is based.

3) The change in the length of a member due to direct

stress is equal to zero.

4) The horizontal deflection of the tops of all columns

due to vertical load is equal to zero.
Upon theése two assumptions the part 11 of this work is based,

5) The horizontal deflections of the tops of all columns

of a story due to herizontal load are equal.



Upon assumptions 3 and 5 the Part 111 of this work is based.

Other minor assumptions are:

6) The connections between the columns and girders are
perfectly rigid.

7) The length of a girder is the distance between the

neutral axes of the columns which it connects and the length

£

of a column is the distance between the neutral axes of the

girder which it connects.

8) The deflection of a member due to the internal shearing

stresses is equal to zero.

9) The wind load is resisted entirely by the rigid frame;

4, Method of getting primary sections of the frame for in-

vestigation.

In all the methods discussed in section 1, except

the approximate ones, it is required to know all the sec~
tions of the members before investigation. This is, how~

ever, the hardest task, which the designer has to encounter,
if any exact conputation is intended to make at all. Owning
fo this fact, it seems to the writer to be favorable to in-.
clude this section in this work.

!;Iow since the scope of s*.t:r*m::t‘u‘.na-lz coaditidns s is so
wide that the degree of rigidity varies‘wiih all factbrs, like

supports, joints, materials;, etc. , it is impossible to present



any method which can be applied to all cases. In the fol-

lowing discussion it is, therefore, confined to reinforced

concrete frames, which has absoclute rigidity and the degree
of accuracy of the new slope deflection method herein pre-
sented can be warranted.

The formulas given below are derived from the writer's

experience and are based upon 1 ': 2': 4 concrete ( fo.= 650 .
fg= 18000 and n = 15), which is the mixture used im almost
all cases of building franesb.. Though the derivation of the
- formulas is so s-in,p‘le and their forms do not differ much
from ordinary ones, yet the merit of a single slide rule

operation can hereby obtained .

Formula 1, For rectangular beams.

d= [~—-d___
108+b

This formula is derived from ordinary chart for

( standard notations)

rectangular beams. For the specified stresses of 1': 2'1 4
concrete -2+ = 108 and whence we have the formula.
bd2

Formula 2, For T-beams, neutral axis lying im stem.

25-4"
in which b' is the assumed flange width, and according to

the specification of Joint Committee

a) It should not exceed —1'4- of the span length of

the beam:



b) Its overhanging width on either side of the web

shall not exceed 8 times the thickness of the slab,
e¢) It shall not exceed the distance c—-c of the beams.

This formula is derived by exarining a series of T-
beams together with the chartsgiven on page 364-385 of

Hool and Johnsons Concrete Eng*rd Handbook. It is found

that the design of T-beams is always limited by the stress
of steel, while the stress of concrete is generally far

below its limit. The latter stress ranges from 300 to 400

7

for.competent design with cost ratior = 70 approximately.

Now let draw a horizontal line on diagram 8, page 364 S5 B,
and J.'s book, which passes the curve fo= 350 and seo place
the line that half of t‘hé curve is above and half below it ,
it will be found that this imrizontal’ line 'corresponds

bd2
that this formula satisfies most of the cases, especially

= 35 and whence we have the formula. It hass been tested

for gettding primary sections®
Formula 3. For gefting reinforcing steel of rectangular
' and T+eams.
As = _'-.T‘,M;w."-."--;
14000+-d

This formula is obtained by substituting J-—-.--g into the
general one Ag - ==¥ - ]
jdafg

Formula 4. Fc;r columns centrally loaded.



Where A,= the net area of cross section of the column, P= the
centrally applied locad and C a constant given in the tatle
telow, its value is different with different values of "p",

the percentage of reinforcement..

1v2:4 (2000-1b. concrete) n=15,

f,=450 for ordinary lateral ties.*

— v —-—

s ) {
P Q.0l0{0.015 | 0.02 |0.025 :0.030 [0.035 | 0040 |0.045 | ©.050

C 513 | 545 ‘5'(6 eo& ©39 | 6Tl | Toz | 7134 | 765

The values of C in the akbove table are computed from the
expression C=fc[ 1+(n-1)pl , the formula is a general one
and requiré_s no further discussion.

For teams reinforced with compressive steel and
columns subjected to eccentric loading, formulae given

in various text books are supposed to ke used.

* Specification of Joint Committee.
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Part 1.

THEORIES FOR GETTING THE CHARACTERISTICS OF A GIVEN RIGIDLY
FRAMED STRUCTUREQ

The foundamental thearies from which this part

of the work is based; are originated by Prof. W. Ritter in
his book " Anwendung der graphische Statik"., During the

last ten years research works have continuocusly beer made

in Germany to study the effect of rigidity of any kind of
framed structure with the intention to obtain a method of
solution, which should be practical in actual use and, at the
same ting,z will give a degree of accuracy not far from the
exactness. In year 1918 Dr. Strassener pwblished a long

| article treating this subject -in?f’orsc-hé.ra'rbe;iten im Gebiete
des Eisenbetons” and since then several articles regarding

this work have appeared during the- years 1917-1921 in Sche
weizerische Bauzeitungs Tn both of Dr. Strassener™s work

and the articles in Schweizerische Bauzeitung the expres~
sions given for moment factors are confimed to joints where
only t'hree nenbérs reet. In order to solve problems like
rigidly framed buildings; cases alwaygs occur where four
members meet together, Iike interior bays of the building,
consequenty expfassi.o-ns for these, equations 10 to 14, are

jeveloped by the writer,



1. The change of slope of a bean.

Let, My = the moment applied at the left end of a bean.

M= " " L TS N NI

6,= the slope angle at the left end of a beam
due to M, = My = 1
Op= the skope angle at the right end of a beanm
due to My =My =1
8= the slope angle at left end due to My=1, or
the same at right end due to My=1
and let x = the distance of any section from left end

of the beam in question and x' the same from right

end, then the expressions for the slope angles

are?
a = —:'-'-'i;'f }-—'-g'—x——- . 1 X.-d 4
2T BT, s ST
Y BEeIy
1 Ve d v e s (1)
and B = == f X X GX
L2 EeI,
For beams of constant cross section, 8, =9y =8
: ' x
g=_L ___  and = _ L e (1,)

2ET . 8ET
The derivation of equation (1) can be obtained very easily

by following the discussions given in Morleys Strength of
Materials , pages 170+179, og by Prof. Swain"s theory given

in Transactions of A, S, C, E, 1918,

*The limit of integratian in equation (1) s from © to'}.
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'In case that the cross section of the beam is not
constart and its moment of ine;tia- varies, the integral
syabols of the above expreésions can be rrplaced by the -
symbol "Z" and by looking the value dx .a.s a part of the beanm
having a length of x .‘ The soluti;n of each expression can te

done graphically without difficulty.

In view of practical use, two tables are hereby re-

produced fromw "Forscherarbeiten auf dem Cebiete des Eisen—
betons, heft xxvi”™. In order to facilitate the use of the

tables, the following equation is given:!

8= .,...l-‘_,......? P @a B = ___L._....._... LJ q’b ] (lb)
2T, g 6E1,
Equation (1) is only applicable to symmetrical

beams, which type is used in almost all cases in building

construction. The factors —-—L'-._ and - L - are the slope
2EI, 6ET,
angles 6 and 8 respectively for beams of constant moment

of inertia I,, and the factors ¢, and g are constants found
either from table 1 or table 11 corresponding to the type
of haunches that the beam has., The.se constants depend also
upon the following items of the beam:

KL = length of haunch, and
c =-’/'___I_a-. -1

U1

~

, Or

cesecccrccacnenes (D)

1
C=+—2. -1 for beams having constant width
d
»



Table I. Por beams with straight haunches.

Pa= upper value, b= lower valuel

< | )
o 0| 0.4 0.8 1.0 1.2 1.4 1.8 220 | 3.0
1/ 1.0 812 432 .375 | 2331 | .295 .268 222 1158
/= 1.0 685 518 | 4680 | .414 | .378 344 | 294 |.215
1 1Yo | .7a2 | .21 | 583 | is554 | .530 | .51 .48l | .438
1/3 1.0 .843 758 729 | .705 86 669 | .643 | 601
1/ 1.0l .8ce | 718 .688 | .865 | .48 . 833 811 | ..578
1.0 |" 007 | .s56 839 | .25 | .813 .803 787 | _wal
L | 1.0 .845| 773 7501 732 | .71s 706 | .689 | .863
7/ 1.0 1 .939 ] .905 .894| .884 | .a7é 859 842

91



Table II. For beams with parabolic haunches,

Ya= upper value, Pb= lower value.

< 0 | 0,4 | 0,80 1.0 1.2 | 14 | 1.8 | 2.0 | 3.0
o | 1.01.73C 1592 545 | 507 | .475 | .449 | .406 | .338
2.1 1.0 |.820 | .7g0 | 870 | .635 | .605 | .579 | .535 | .459
1s3 | L0 | .819 | 728 | .696 | .671 | .650 [.632 | L.804 | .557

1.0 | .913 | .859 .839 | .821 | .806 | .793 | 7T | .732
14 | 1.0 |.865 | 796 | (772 | 753 | 738 | .724 | .703 | .668

1.0 | .949 | .917 | ,905 | .895 | .BBB| ..878 | .865 |.842
s | 1.0 | .892 | .37 | .8l8| .803 | 790 | .779 | .762 | .734
7 1.0 | ..967| .946 .939 ..931| .925 | .920 |..911 | .898

(9
4]
N

AT



2. The change of the slope of a column.

e e

Let, M, = the moment applied at the top of a colunmn,
yg= " JC RN SR R
8. = the change of slope at the top of a column
due to My = M3=1
64 = the change of slope at the foot 6f a .c,olunn
due to M, =My =1
Be = the change of slope at top due to My =1, or

the change of slope at foot due to M, =1,
The slope angles are expressed as (fig, 3 ) ':

| =_1_. x°dx = 1 x'edx
1 't.r d

and Bc = - f X X X T .0 0.0 .1.1,.3'(3)
h2 EI . .

It is generally that the columns are built as

shown in fig. 4 and in that case

h' (2h=h")

947 , *
2hET,
— 4'2 2
ec" h - * 00 » \01'0“.\,'1\,‘}."¢:o,-0 (Ba)
2hEI, |

3 = h'2(3h=2hH")
‘C

%h hu.c

wher h' is the clear height of the column and h is the dis-
tance between the foot of the column and the neutral axis

of the adjourning beams



With constant I = I, throughout the column, then

h=h"', and 8 =6, = 94, hence | .
~  and B = —fle oo oo eeon (31)
P B ST, . b

A

Itr
|

e:

5]

The strengthening of the top part of the column

due to beaw haunches does not exert an influence so serious
as the haunches to the beam itself, however, the effect de~
pends largely upon their relatiye stiffness. With strong
column and weak beams, i.e. beamws easily subjected to de-
formation, the effect is very small and h' will be almost
'equal to h. In the contrary, the whole strengthening effect
should be taken into consideration to warrant the correct-

ness of the design.

. Thé jerivation of equations (3); (3,) and (3,) can be
pade without difficulty from the references given in
dection I. The limits of integration of equation (3,)

are from O to h'.
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In reinforced concrete buildings the moment of
inertia for beams and girders is generally not the same

throughout the member,; it is therefore necessary to compute
and use the least moment of inertia for a given member. A
chart for determining that for T-sections is reproduced here
from the same book refered above, which can be used for T-
columns and sometimes for beams and girders. The moment of

f inertia is expressed as'¥
1

— ol

i
*; 12,2243 o g e (4)

5T

[ [ ]

Y

\ I ’ - Where u is a constant obtained
—J bl e Fo.0 from the chart.
4. Characteristic point of coniraflexure and moment factor. . .

By charaé¢teristic point of contraflexure is meant
the zero moment point ina rigid member resulted by applying
a unit>moment at one end.

By moment factor is héewe understood as a facter by
which the moment applied at a rigid joint is to be multiplied
so as to obtain the actual portion of the moment resisted by
each elastic member meeting at the joint.

Now let the charateristic point of contraflexure
and its distance from either end of a beam or a column be de-
noted in the way as shown in figl 7a and let |

@, = the change of slope at the left end of a beam
. due to M, =1,
ap = the change of slope at the right end of a beam
due to My =1, .
= the change of slope at the top of a column due ==
to M, =1, and
ag = the change of slope at the bottom of a column
due to My =1,
then from Fig. 6y, we have

Xe
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The moment M=1 applied at B will produce a moment M, at A,

The magnitude may be obtained by simple proportion, whence,

a -
Now by definition 8yis the slope angle produced by

moments M=1 both at ends A and B (fig. 8¢), then from figures

7a_c_d_e it is evident that

ap = 8p =B * MaR
=0 - (1 + 2.
op— (1 + =2 p
T
B I

With the same conception and draw similar figures we can

derive expressions for ay, a,, and aj. Thus we have

Xy = Gy -Lésg—x':s, sat left end of a beam

ap Oy~ o T B, at right end of a beam

L-a . (5)
= _h :
Ao ZGa= ==——, at top of a colunmn
© 7T e,
= h_ ..
and  ag =84- ===="B5. at foot of a column

hs=c
The values of 8 and B are given by previous equations, and

mostly, for beams either of constant cross section or of
symmetrical in form, ay = ap = a. The values of a and b will
be given later.

To ascertain the moment factors the transmis~

sion of the moment should be carefully considered. In order
to avoid confusion the following sets of notations are

used':
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n, =a fraction of the moment applied at a continuous
column, which is taken by the column abaove _

n, =a fraction of the moment applied at a continuous
column, which is taken by the column below_

n. =3 fraction of the moment applied at a continuous
beam, which is takenby the heam at right.

ny = a fraction of the moment applied at a continuous

beam, which is taken by the_beam at Jefi .

Nyi= 2 fraction of the moment taken by a column, when
the moment is transmitted to it from any member
adjourning its ypper end.

n1,~ a fraction of the moment taken by a column, when
the moment is transmitted to it from any member

adjourning its lower end.
nr1=’a fraction of moment taking by a beam, when the

moment is transmitted to it from any member ad-
journing its right end.

D=3 fraction of moment taking by a2 beam, when the
moment is transmitted to it from any member ad+
journing its legfi end.

For clear understanding of these notations figure 16 given
in the section on separation of moments will be refered.

Let us denote the resulting slope angle common to two

rigidly connected bars due toM =1by "y" with suffixes



ke

Fio. 1

Fia.?
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b, ¢, and bc representing the angles common to beams, columns,
beam and column respectively.

Now let the four members given in figures 7 b andc
be arranged as shown in figure 8; first consider the two
vertical members, or columns, te connected rigidly and
are continuous and a moment M =1 is incurred at the jdint,

fig. 8 a, then the slope at the top of the lower column

= np ag = ( l-ng) a,

and of the bottom of the upper column

Naog = ( 1-nb) xq

By assumption I] these two slopes should be egual

to the common slope angle y, at the joint, therefore we

have,
ng, = —-———:—-——
Xe %4
¥ ;
nb - PP ———— j . 00 .‘ o o 0 (6)
+
%c %q
and = e X
Ye = ———————

+
OLC A4
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SimilarN\ly from fig. 8b we can deriye

& ‘ .
n =__E__ Bl‘—._...a o ——
®at%p %g+8p
o0 o‘.li.’o,n.o (7)
Yy = _%a% J -
a8y

Again consider the case shown in fig.8c., we have, for a moment
coming from column to bean,

Tbe= npjap= (1-npp) a
and for amomemt coming from beam to column,
Ybe = nyjeg= (1any) o
X, o -
"r1” c+“b %p+%e |
Ybe )= -l S | e - (8)

therefore,

In the similar way we can derive expressions 'f'er;t;nh. nlu’etc.
2

By examinemthe equations (6), (7),and (8), the following rule
holds true': 4

If a moment M=1 is applied &t the joint of two bars,
x and y, then the portion of the moment which will come to bar x,

nx = ‘X at baI’ Y g 19, 9,9,0,0,8,8,0,0,0.90,90.9,0 (9)
& at bar x+ aat bar J

and the portion of the moment which will come to bar y

3] ,—..,__.g'_g‘.t_._b_.%}:_}.. _____ *,0,8.0.0,.0.0,0.0,0,0,00 9
"% 3t bar x*% at bar gy - (9)

By ® it is understood the angle caused by a moment M=1 applied

only to the bar in question. e w .
Fo-9. :I P
m) 4 . ; \ b O : .
. SRS 5 ¥ 3 @
poo e A B RERRTIRE
T e e S I R e
¢ < 2 g! \ 9 o ;
. - S r Y L L .
| VU O . b ' ‘B _a“j%k%
=
T7T77 T 1777 \ﬁ ':'6 ;i
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So far we omly have comsidered a combimation of two meabers,
for cases as shown'im fig. 8c ard 8d, equation (9) can still

ke applied. By looking the two comntinuous members as a single
member and according to assumption (2) we have,

o Y ‘ ;
i i ¥ AT N]p e—sm=2e—e
Yp %o e e e s e as (1@)
n ul T m———— n 1 u::____‘_____ P
Tbr¥e o, %c +Yp g

In the same way we can obtain the value of n for other combina~ -
tion of members.
To find the values of a3, b, and ¢, d, distances of point of
contraflexure from ends of beams and columns respectively,
as shown in figures © and 10 a/general expression is here first
derived: !
Let p = change of slope of the support due to M=1 and k
= change of slope at ends of the member due to subjected load.
Using other notations as used before,then refer to fig.(11)
it is evident :
—pgM,= ky * M (GaP) + w8 aQ
—pyMy=kp + My (Fpg ) * Ua Ve
If the member is only subjected to a moment, then

-PaM, = o + Ma(ea—p) + M8

oMy = Q, + M, (Op~p) + Maf -
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Now.since M """“"‘”{Mb(‘« ‘Fo,. 6 . '), by substitution
l-a
we can find
a=_-18 . |
ea"' 8. 0.0 0. 0.0 00 (11)
pa 0.0, 0,000

Similarily for expressions of b, ¢, and d.

From equation (11) and keeﬁﬁln mind that p is the-angle made
by the support due to M=1 the following expressions can be
derived: ’

Prom fig. €9)

a=e'@& - bq_e "B'
atnni0y b’ +ny %

c'= u'Per d= BPe (12)
ec'fnlugd, ed+nulac

Where Dp], Dyls etc. are those given in equation (8)

e ﬁ"ﬁd' .L"B

at=—L o 13)

c
Fiae Yy a+ T¢

From Fig. (10)

Same expressions as equation (12) except .... (14)
nrll’nuletc. are those given in{equation (10)
For beams and columns of constant moment of inertia, the ex~
pressions in equations (5),(12) and (14) can be verg much =
simplified and in that casesy,
L

=L 4nd =R —

6ETL, - 6EIc

2ET BE.IC
"Equation (5) is simplified to

a X, = __‘L___;i Cp =3 .._i"-
a=g[ 3 _b], b=p[ 3 L__a].

= _h__ @3 =g: {3__h 1
Bel3-B_], %4 =pl 3- A ]

-~ and all values of 8's in equations(12), (13) and (14) can be
substituted by 3-times their correspondingB’s.

:.1,._., ssceeee(15)

3
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5. The procedure of computation

For investigating an existing building o'r"a,build.ing,
of whose members the sections have already been approximately
determined by the method given in the introductory, the dis-
tances of the points of contraflexure, a,b,c, and d from sach
end of the member have first to be found. In order to do this
the following steps have to be taken:

(1) Determine the moment of inertia of each member by the
aid of the given chart, if necessary.

 (2) Determinme the values of © and P of each member by
the aid of equation (1) and (3) and by the given tables, if
nacessary.

(3) Beginning from the columns of the lowest story,
which are gemerally fixed or rigid. The distance d will be':
Taking care of the strengthening effect of the column

head, '
» d=——§—l.1:.g-b..‘.._..'_}2.'_ 19,0, 0,4.00.0.0 00,06 (16"3
2h-K' 3
and when the same is meglected,  d=—D ceeeeer(17)
3

In the first case th.eangle at the top of the coluan,

d‘CF h's eseee (18)
4EIc (3h[h-h'"]l+h'2)
and in the second,
&c =——.b-—._ or d:c =__3_._— ¢ 0000 0000 (19}
AT Ie 2 Bc

(For derivation of equations 16, 17, 18, and |9 see
appendix.)

In order to proceed the computation of angle"yé’ of each
columm, it is nacessary first to determine‘a ’, (equation 6)
in determining the latter , the dJ'.s’t.'ii'.m:fs“c','oii the next upper
column has to be first assumed (eyauation 5 ). c=Zl—-h is in
most of the cases close enough.

With this assumption and the values of Yc thus found
we can determime, from left toright the distance'a’, and
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\\/]
from right to left the distance\b by equation (13) for the
beam ¢lose:.to the: wa.ll.c.olumn’: and by equation (14) for beanms

in interior spans.

(4) After knowing the location of points of contraflexure
'so proceed to determine thevdista nce'd of the columas in the
story next above. In doing that use equation (7) to compute

Yb, squation {10) Blu, and finally equation (14) gives the re-
quired;?distance d.

(5) The location of the points of contraflexure for beams
above the second storywill then be calculated. The angle a for
the column below can be found either by eguation (5) or (15).

In order to do this it is again nacessary to assume the distance

1 . .
c =f—h of the column in question. In the same way as before we

compute Yc and the distances a,and b, for the beanms.
(8) Repeat the process mentioned in (4) and (5), we can

obtain all the distances a, b, ¢, and d for all stories of the
building. Beginning from top we can finally determine the
last unknowin', i,e. the distancec, which was assumed before
for each story of the building.

Tn case that the final value ¢ obtained in (6) varies

a great deal compared with the assumed value, so the process

may be repeated by assuming ¢ =its final value obtianed in-
“the first computationl IN general, however, the first com-

putation gives result sufficiently accurate, while in the

second computation the result is almost exact. The degree of

exactness to be attained depends, of course, upon the charac-

ter of the building and the opinion of the designer:

Note: Forc = i h and for constant moment of inertia from
4

equation (5), we have .

xg =__h a4=

1 3.6  OF 3 Be
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" Appendix,
The Derivation of equations 18, 17, 18, and 19.
From equation (11)

d - hnec R o_oi,osa!ol.o.o._.,.(A)

B s

From equation (3a)

84 = ﬁl@ﬂ:ﬁl}, 5 Be = __ﬁ_'_i__’ B.= _ﬁ’_':giBhTZh'\):
ZheEI, 2h-ET ° ' sheml,

also from equation (5)

= - b
T % < FIT ke

Substituting the values of 6 and B.in (A),we have

e I h‘ 2 (B'h—z-'h ') o
3h"(2h-h') + 2bEI;p4

For continuous and rigidly fixed columns P4 =0, then

d:: ___b_:;__ggg:g}l}_l ) _o..o._'a_o_o,-,u ® 0.0 0.0 (16)
3+ (2h-h') |
If h: h', then d :‘._.b__ . Vo.oﬁo,o'-aca‘oluo.r;ol(].'?)
Q .

Similarly assume p3=0 and substituting the values of ec,
B, and d in (B), we obtain

0. - =822 _ _..30h'2(3h-2h'){2h-h") |
€7 2Bl " 6peET 3(2hoh’)~BhhEL, (3h-2h")

= h.'3
i ,o;.”o.;.'o‘o(l'B)
4ET,(3h[h=t"]1+n"2)
If h=h", then g = ""':'t'lr—— I
4E1, {
| e (1)
or; since Bo = —3—. ._3 j

GE'IC. ’ %c = 2



PART 2*
MOMEMTS AND STRESSES DUE TO VERTICAL -LOADS.

In computing moments and stresses due to vertical
loads a general assumption has here been made that the deflec-
tion due to vertical load at the.top of the columns is equal
to zero. The theories followed in this section are mostly
given in Prof. W. Ritter's book " Anwendungen der Graphische
Statik." Tt is endeavored, however,in this section to put
thése theories into practical adoption: for the particular
use to solve rigidly framed buildings. The use of moment
factors developed in part 1 is a special feature, upon which
the separation of the moment at each joint is based. This
principle can be adopted for any kind of rigidly framed struc-
tures. In view of practical use several short cut methods
for finding moments of a rigid memkbér are presented here
alsa.

1. Several short-cot metheods for finding woments of rigid
Bembers.

From equations (11),, (11),, and (11) 1f k, and ky

are not =C we have ,: from equatlen (12)," o

Pb =~ Cp— g -Li-

pa-""‘“e -B . »
Substitute these values in (11), and s1mp11fy1ng the follow-
ing expressions result:

Refer to fig. (12) and by geometrical relation, we can see at

once, _
P
3 B .
. - (zo),
S =-—Ee' -—_—b
BT B -
For members of constant moment of inertia ¥a and Kb = —.1 A(L-x
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0

( Morley's Strength of Materials,page 1.76.) and §)= ._-.L;-.’(park D)
6EI

substitute these expressions into forwer equation, we

obtain,

Sa= - _ja__b“‘_.AjL:Xl_ - -a.-_,xq

L Le L 50)
Sb_ _ b ,_A L—X) = _ b_ . o
‘L L2 C L "_q

Where A is the bénding moment diagram due to the applied load
when the member is sim ply supported.
Y is the distance of the centroid of the area A from the
o-rigin A, and (L-%) is its distance from Bfor3a, &';‘:_r;\:r“
q and q' are the second factor of the right hand expres-
sion of each equation.
If we substitute ¢c amd d for a and b réspectimely into equation
(20) , the expressions for Se and 34 for a vertical member re-

sult. A1l the short—-cut methodsgiven below are based on equa~
tion €2:0).
For beams of varying cross eection separate discussions
are made in Case A and Case B, '
— Case A. Uniform distributed load . Fig. 13.—
In this case the moment diagram for a sieply supported
beam is a parabola, Calling the moment at center =M, then,

A=2/3 ML, 'L:i‘=-L—-, hence q=q'=2M.

From simple geometricalzrelation of similar triangles it is
evident that the graphical solation of Szand Sy shown in fig.
13 holds. The intersectiion of the two crossing llnes coin-
‘sideswith the apex of the parabola.

For beams of varying cross section , we have for equa-
tion (20)3 ,

ke, = _%..j;%l- x, (Morley's ,page 183)
'x dx (Part T,).

By putting these two angles in the form of a ratio the :factor
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J dx both in the numerator and in:the denominator cancels
° Ix ,
out, therefore the variation of morent of inertia of the

member does not effect the values of- S and Spin this case,

—Case B. Single concentrated load. Fig. 14—
As shown in the figure, the moment diagram for a
simply supported beam under this case is a triangle, whose

A=1/2 LM, Xfrom A =1/3 (L+x) and from B = 1/3 (L+%'}, hence

from equation (20)
(ML)

v L and L

To find the values of q:and q' without calculation, lay off
the length L either side from $he.:load, join the ends with
the apex of the moment diagram,and extend the lines as shown,
then q and q' are obtained, sfor= by similar triangles the
relation g’ M=L+x" L

and q'’:M=L+x":L
exists., Again draw crossing Lines in the way shown, then the
values of S, and Spcan be foumd. A similar relation holds, i.e.

Syta =gl
“and Spib=qg": L

Now in case that the cross section of the beam varies, the
solution of the problem is somewhat difficult here, for the

factor - f—@fx—'- ( compare Case A,) become
X .
x
Io -i--- fo ) in the expression for angle k,
X Ix
and fL dx in the expression for angle 8
o Iy

and these factors will not cancel out when expressed in the

formof a ratig, therefore the variation of the cross section
of the beam does have effect on the values of S and S

To take care of this effect the work is complicated.
In order to facilitate speedy solution, a table is reproduced

here from "Stra.ssenesz Forscherarteiten" ., The values of Sa

and Sy can be taken directly from the table. For single con—
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centrated ioa*d multiply the table value by the load and for

several concentrated loads or for a combination of concen-
trated load and uniforwm load take each load separately and
sum up the moments,

Case A and Case B hold also for vertical members.

—Case C., Columns subjected tocrane load. Fig. 15.

The applied crane load P causes a moment P-e, which
is equavalent to the moment caused by a horizontal couple
H as shown. Lay off CCK"".’éqnal to the moment Pre. Draw line
CK parallel to C'D and join LK as shown, then the resulting
area bound by the troken lines CK, XL, LD, and CD will be
the moment area of the column due to the crane load P with
no regard to the continuity of the column. The value of A and
x canbe easily computed, Compute g and q' from equation (20),
and lay off the same equal to CC" and DD" in the figure,then
join C"D and CD" , the values of Seand S35 are found. The
proof is the same as the first two cases.

2. Separation.of moments and their signs.
The moments due to vertical load will, in general,
be investigated by considering each single span separately

as shown in fig. 15, in which it brings out the way of the
separation of moments onto the columns and beams surrounding
the loa:ded central span. | '

If the moments M, and My for the loaded span be deter-
pined according to the method given in the previous section,
then at the column to the left of the load, the beam will
take a moment = np.1°M, and the total moment which falls to
the adjacent columns at left =AM, = M - anMa' From this

noment the lower column takes an amount = n_‘AM, and the
rest falls onto the upper column. Simila:rNly at the column
to the right of the load, the beam takes a moment = ny.°Mp,
the total moment which falls onto the adjacent columms at
right = AMpy= My~ ny .My, from which the lower column takes
a peortion = nyAMy while the upper takes the rest.

The trasition of moment lines for unloaded spans
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is as follows:

For all spamns to the right of the loaded the mwoment line
passes through the poimt B,

for all spans to the left of the loaded the moment line
passes throughthe point 4,

for all the columns ab cve the moment line passes through
the point C, and '
| for all the columns below the moment line passes thru.
the point D.

The pointsA, B, C, and D are the points of contraflexure
as marked in figfhre 6, part 1.

For the joints in stories next above or below the moment

trénsnitted over will be sepatated again. Let the moment to be
be reseparated be called M.andMy, then at the joint next above

the reduced column moment = nj,°M,, the total moment to be
resisted by the beams = AM. =M, = n{yM,, from which the left
beam takes a portion = njAM, and the rest falls to the right

- beam: Similarily at the joint next below the reduced column
womwent = n, 1°My, the beams have to resist a moment = AMy=
My=-n,y* Mg, from which the beam at left takes the portion
ny°AMy+, while that at right takes the rest.

The woment transmitted and to be reseparated becomes
smaller and smaller , the further ts the span frow the load-
ed one. ;
At the end columns the moment carried over by the beam
should be separwted in such a way that it will wholly be
taken by the columns, so in that case AM,= Myand AMy= My .

In the above discussion we hawve only considered the
absolute magnitude of the moments. Homever,in case that
several spans are lo:aded, the moment due to the load in

one spén .'nay in most ciaises cancel that due to the load in

the other. In order to get the algebric sum of the moments
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due to the loadings in'various spans and to avoid confusion
the following conventional signs will be fournd helpful=

" The moment is considered positive, if the ela-
stic curvature .of the beax axis at the portion considered
slopes downward, and nagative, if it slopes upward.

The moment is considered positive, if the elas-
tic carvature of the column axis at the portion comsidered
slopes to the right, and negative, if it slopes to the left."

In figure 15 the positive moment is drawn below
and to the right of the beam and column axes respectively and

the negative moment, above and to the left.

Keeping the above signs in mind it is very easy
to determine the character of the moments by considering the
elastic deflection of the member.

3. Deterwination of shear and ). _forces.
For all members of a building , if their moments
at joints are known, we can find the shear and norwal forces

very easily. For rectangular construction a:dvantage can be
taken from the fact that, just as the shear is perpendicular
to the normal force, the column axis is perpendicular to the

beam axis, therefore we can find the normal force of a column
from the shear of a beam and conversely the normal force of a
beam from the shear of a column.

Let Q be the norwal force or the shear required,
Qobe the same corresponding toa simply supported member, and,
as before , M, and My the woment at the left and the right end
of a fixed beam, and M,and My the mowent at the top and the
bottom of a fixed column respectively, then, taking positive
shear as that directed to the top at the left section of a
beam, and that directed to the left at the lower section of
a column, we hgve: |
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For the shear of the beam or norwal force of the column in

question Q = 4 o— -,:‘-@—.t—-—._..,‘. ’ . 0005 200 (21)
For the shear of the colunin or mormal force of the beam in
. Mc-}.{d ;
questlon Q, = Q,o+ P YO 0}0.0.070.1,0;0,5622)
h

For columns , since they are generally free from external
forces, then Q,=0, and

Ho =M 4

Q=
h
The derivation of the above expressions follows immediately
by taking ZM = O of the member considered. |

oo 000000000 (23)

4,.Criterja for maximum combined stresses inbeams and columns.

Both the maximum stresses in beams and columns occur
from the source of maxiwum bending moment and dirsct stress
resulting from normal force. For columns, especially those

of very slender section, the deflection, which we so far assume
to be zero, may cause an additional stress, btut the stress

due to maximum moment is , in alwost all cases , greater than
that due to maximum deflection and these two will not occur
simultaneously. If we load alternate bays of the structure
SO0 as to give maximum bending moment to the column in ques-
tion, (see discussions given later) the deflection caused
by the load on either side is of compensating character and
the stress resulted therefrom, if any, is generally small
and negligible. From figiure 18 it can be easily seen the
following criteria for maximum moments and hence the maxi-

~mum stresses of the beams and columns?$

For tecams maxiamum positive moments are caused by

bl*oading all the odd number of bays in both directions from
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the bay in question, counting the latter zero . The negative
goments are caused by loading all the even bays in the direc-
tion and all the odd bays away from the direction of the teanm

end in question, counting in the same manner the loaded bay
Zero.

For interior columns maximum momemts are caused by
loading the bay adjacent to the column in question for the

full hight of the structure, and, where possible py loading

alternate bays in both directions from the bay.

For exterior columns loadings causing maximum
moments are similar to interior columns,

For corner columns the moment way be considered as
being introduced into the column by the two girders meeting
at right angles to each other, and the moments may then be
combined tD give a diagonal resulting moment.

The waximum stresses in all mewbers will be found
by combining the stress caused by the maxisum momemt with

the normal force found by methods given in section 3.
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PART 3.
MOMENTS AND STRESSES DOUE TO BORIZONTAL LOADS.

02

In high building design the stresses caused by the
wind load applied in horizontal direction play such an im-

portant rolé that a close investigation always seems to te

justified. For buildings, of which the width is seall compared
with its height, the wind stress: 1is always a great factor.
In this part of the work the general theories given in Prof. W.
Ritter's and Dr. Strassener's books will be followed. It is
endeavored, however, that the theories are extended and put
in unique wanner for the practical solution of high buildings
due to horizontal loads.

Indealing with horizontal loads several appro-
ximate methods given by various authorities have been known,
and they are generally deemed as simple and practical. Never-
theless , none of thew seems to be consistant with the actual
condition. The exact method given in bulletin 80 of engi-
neering experimental statron of the University of Illinois
and sevetal other known methods derived from the theory of
least work are all too laborious and they are, therefore,
restricted in almost all cases in its practical adaptibility.

In the preceeding parts we have made one assump-—
tion, that is, the horizontal deflection of a rigid joint
due to vertical loads is equal to zero. This assumption, though
it does not conform to the theoretical correctness, is rea-—
sonable for the solution of the moments and stresses due to
vertical loads, since the effect is small and negligible.

In dealing with herizemtal loads this assumption will no more
hold, we have here two kinds of moment to consider:
a. Moments caused by loads considering the rigid

Joints not being subjected to any deflection.
t. Additional moments caused by resulting de-
flection.



The present method will be described under various sections
given below, from one-story+~frame to the gemeral case of
wang-story frames®

1. Derivabion of expressions for moments due todeflections.
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Considering the case as shown in figure (1@) the column has
an elastic su tport at its lower end, the upper end is free
to move and subjected to a horizontal load H, then the
resulting deflection is :
A= HX'+ Hh2py
and the angle, through which the top of the column is turaed,
s T= He' + Hhpy
where A'= h2(%d-Pc) and a'= h%
For expressions of %4 and Pc refer to Part 1,

By substitution, we have

A= Hh2 (ag* pg— B¢)
and 1= Hh(ag* Be) e (X))

Deviding the former expressionby the latter, we have



A -y

T ag * Py

But from equation (11); Part 1

_BBe .
aq* Aq
e A
therefore - = hed
1:

h—d

The noment at the foot. of the column due to the deflection

A caused by the horizontal load H is then
Mys= -=Hh = = ——E——_  (From equation X)
a8 ag* Pq
- A
(hed ) (dd."’ Pi )

or, since agtky = -—L‘P&
d ,

Mda = o e dt.A'_«_ ‘L,_o,,.!o;..;;-;‘.v_o_',.o:_o (24)
(h=d)hPe

Equation (24) is the general expression for moment due to
deflection, when the deflecting end is free to move,

Again refer to figure 18 the column has elastic
supports at both ends and the characlerisicsof the member, i.e.
distances ¢ and d,are already found according tb the method

given in Part 1, First assume the top end of the column is

free to move and is subjected to the shear Q, then we have

the moment

Sd{f %-Mdﬁ’h"‘“ =d__ =_.dA.
3 oy

SimilarNly by assuming the lower end of the column being free



to move and subjected to the horizontal shear Q, we have for -

QA = h—c
Sa= Mcém-.--

”
>

b b2Be
Now in the actual condition of the column the ends does not
move freely. As soon as the deflection A occurs at one end,
there produces moments M, and Mjat their respective ends; although
these end moments will offset a part of the angular turning
of the column ends, they, however, do not have any effect on
the value of the moments S, and Sy, since by hypothesis of
Part 1, point C is the zero-moment point of the column due to
a moment acting at the bottom end of the column, and point D
is the correspo'nding point of the same due to a moment at the
top end. |

From above discussion we can have the following ex=
pression to find the distance z,, distance of zero-moment

point frow the top end"

—2¢= %c=C

T e e e e e

=3 .
d h-z,-d
=4 + _h-d.-c
fe 1- Sd
S¢
By substituting the values of S,and S; in the above expression
we have , = ch '
c .
c+d

which gives the location of the zero—-moment point.

Now at point C the moment S, also equak to 2(z.—c), from

which relation we obtain

=A__._¢
h28, z,-c .

~
o
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From the figure it is evident that
Mo= Q'zc
and Mg= = 2(h- z,)
By proper substitution the equation for moments is expressed

in the following general fore:

M.=mec i

Md= m‘d ] LRCCIE I B O aio‘o(25)
Where m is a constant= -~ A :
Beh(hme-d)

In computing the moments of a building frame the value of A
in equation (25) can be assumed as unity. After Mcand My

due to unit deflection are found, we compute the shear Q
of each column from the foklowing equation:
0= _(Ma+ el |
h ,
for moments of opposite signs, and

o=

for wmoments of the sawe sign.

\-P'I
The sum of the internal shear,should be equal to the external
load B. The actual moments are found by multiplying the values

of M, and My due to unit deflection by the factor 75-_

P .
The separation of the mowents will be done by the:

aid of moment factors as described in Part 1 and 11,
In order to make the method clear the application

of the method to various cases are given in different sec-

tions following.
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2. Sipgle-story frame,
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Let us assume the case given in figure 19, a single
story, two span frame acted upon by a horizontal force H at the
top girder. The columns may be either hinged; elastic; or
fixed,

The horizontal force H causes a deflection of the
columns at the top end in the direction of the applied hori~

zontal load. The deflections at all columns are the sare,
because the top ends of the columns are connected by a con=
tinuous girder and the effect of normal stress can be neg=
lected.. The magnitude of the deflection due to the appl-ied
horizontal load is unknown, we can, however, first assume

a unit deflection and by the aid of equation (25) the moments
due to that defleétion can be solved. From the shear calcu~
lated therefrom we'c'an determine the fotce P which produces
the assumed deflection: By multiplying the moments by the

coefficient _H_ , the required moments due to the horizens
tal lead H can be found. The procedure of computation is as

follows:
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1. Compute the characteristics of the frame, i.e. distances

a, b, ¢, and d, and the moment factors of the corresponding

mewbers by t

1

he method given in Part 1.

2 ., Treat each column separately and assume the coluwn in

gquestion either as fixed or elastic, as the case way ke, and

the rest as free to wove. ( Figures 21 a, 22 a, and 23 a.)

Compute the moment of each wember in each case by equation (25)

in mhich the value of A is taken as unity., The reason for

taking each column separately is for the convenience of se-

parating the moments by mowent factors to each member. The



mowent diagrams in each case are shown in figures 21 b, 22 b,
and 23 b. In actual computation these diagrams need not be

drawn and the work can be done mentally.

3 .Taking the algebraic sum of the moments, it gives the
combined diagram figure 24 b. The resulting moment in each
member is that due to the assumed unit deflection.

A. Apply'eqnaiion (268) and find the values of Q,, 9,, and
Q,, fig. 25,then the sum of the shears must be equal to the
load P, the load which causes the unit deflection and pro-—
duces the moments, or

P=Q, +Q, +Q, |
5. Find the coefficient of B _ with which the moments

in figure 24 b are to ke multiplieg to give the required mec~
ments of the members of the frame due to the horizontal load

H ‘.
Fig. 26 shows a general case for the srparation of moments

due to deflection by moment factors.

3. Two=story frages.

For two story frames the moment of each member

are due to the combined effect of horizontal loads H, and

H,, fig. 27, Through the influence of theseloads the frame
changes its shape as shown in fig. 28, i.e. all the joints
deflect horizontally in therdirection of the load. Now

since the magnitude of the horizontal deflection is not known
so we have to get at it in some indirect way, as before,

by the aid of an assumed deflection and the moments resulted

therefronm.
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For two story frame we have to consider two condi-
tions of deformation., For the first condition assumwe the
top girder of the frame is subjected to a deflection A=unity,
while the lower girder remains in its originad position ( fig.
29 a.). The moment of each member can be computed in the same
way as for one story frame, in this we again consider each
of the three columns separately and compute moments by equa-
tion (25). The moment for each case is separated and the
algetric sums for the threst casesare found. The external
forces acting on the frame, which produces the deformation
of condition 1l are (fig. 294d)

On upper girder

P, =24 +Q, + Q4
On lower girder

Ry =Qg v Q, +Q,+vQ, +Q, + Q,
and on the footings
S =8, *Q, +Q,
The suffix given to P, R, and 5 denote the number of the con-

dition of deflection considered. ,
For the second condition a deflection of A = unity
at lower girder wi.ll be considered. The ujiper part of the

frame is free to move, so as soon as a deflection is given to
the lower girder, the upper girder will have a deflection
greater than A, The latter will te assumed as being res-
tricted from producing a deflection greater than A, so that
the relative positiocn of the upper part of the girder to the
lower part does not change. ( The deflection of the upper
girder camot be assuwed as bteing restricted to zero, as

in that case another moment due to deflecticn in opposite
direction will be resulted, which violets the condition of

moment separation ). After the moments in three cases are
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combined and shears fcynd, the external forces will be
( fig.: 30¢c )™
On uppet¥ girder,

Ry =Q+ 05+ Q,
on lower girder,

0

Py
and on the footings.

S, =Q, +2, +4Q

Now we have two load’. diagramson hand, figures 29 ¢ and 30 c;

Qg+ Q, +Q, +Q, +Q, *+Q,

The first produces a deflection unity at the upper girder and
the second produces the saee at the lower. In both of these
‘diagrams is also shown the elastic behavior of the frame
against the acting.loads. From the moments resulted from

t hese assumﬁd d‘?flectlons we can determine the mamentsdue to
any horlzontal Dy some simple modification.

Let the moments caused by the loads in fig, 29 ¢
be called ®m, and those caused by the loads in fig.30 ¢ be

called m,, then by addition we have a combined diagram with

forces
P, -R, acting on upper girder,
P, «R " " loWw " ,
| Fe 2 - lower | Fig. 31
and S, - S, " on the supports.

The combined moments are then = m, + 'm,.

It should be kept in mind that this combined load: -
diagram gives a unit deflection both at upper and lower girders.
Now in order to conforwm the actual deflection for a specific

case let the loads - imn diagrams2® ¢ and 30 ¢ be multiplied
by the coefficients x and y respectively, the combined loads, fig- -

(32), will now be ':



BR
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YP, - xR},,. on the upper girder,
*P; ~ YR, on the lower girder.
and -yS, + x S; on the supports.
Similasrily the moments = xm; + ym,
It is evident that for the applied loads H; and H,
$P, - xR, = H,
and xP, - 4R, = H,
From these two expressions the coefficients x and y
can be found and the moments computed from
M=xm, + ym, |
In practice in order to find the maximum moments it is
generally required to treat the horizontal loads as moving

load and in that case the values of influence moments have to
‘'te computed, i. e. the moments due to a horizontal load unity

at each panelpoint separately, thus the conditional equations

are as follows':

For a load unity acting at panel point 1,( fig. 34)atlowergirder,
YiPa - x, By =0
% Py = YRy, =1

and My = x,m, + y.m,
For a load unity acting at panel point 2, (fig.35) at upper girder,

YePx = x2Ry = 1

'Xz Py = YRy =0

and My =x,m, + 7, B3

For the load condition shown in fig: 33, M =M/H, + M H,
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4, Three=and wore—story frames,

. The method of computation given above can be ex-
tended to the solution of three and more story frames. There
are as many conditions of deflection as are number of stories.
From the load diagrams the elastic‘behaviof of the frame
against the influence of horizontal loads will be given. For
any specific case each condition of deflection gives a load
diagram and a corresponding sets of coefficients., There
are always as many conditional equations as are unknown
coefficients.

To make the qethod more evident it is given bélow
for a three story frane the deflection conditions with their
correspeéding‘monents and load-diagrams (figures 32 a<c) and
the conditional equations for the detérnination of coeffi-
cients for each caée of loadingc:

For the specific case shown in figure 40 the con-
ditional equations are:

xP, - yR, + zR% = H,

YP, = 2R} - zR," =H,

zP,+ xRy - ¥R',=H,
and the moments

M= xm, + ym, + zm4
T1f the hérizpntal.ldads are taken as moving~1oad,‘thegtgondi—
tional equations Qnd expressions for influence moments for
a unit load applied.at each panel point separately are as
follows': ) |
For a load unity acting at first floor girder,Fi9437; the

conditional equations are'’:
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et

X,Py = 73Rs + zR, = ©

YaPy =R = 23R," = 0

zyPs * TR, = 3,R,' =1
From which the coefficients X,;¥s and z, can be salved, The
~moment expression is
My =x.my + yimg + 3,8,
- For a load unity acting at second fieor girder, fig. 38, the
c&nditional eguations are=:
| X;Py » 73Ry + 2,Rg = 0
¥;P, = X,R," - 3,R,"=1"
z,P, xz- -3 R, =0

and the moment express,lon is
My = xmy + gom; + z,m,
‘For a load unity acting at the top girder; fig!. 39, the comdi-
tional equations are:
XgP; = 4R + z,R'= 1
IaPy - XaRy 1-23R"=0
| ZaPg * XaR, " =J,R," = 0
and also the moment expression is
Mg = Xam, + gaB, +Zl,
For thevspeci-fic case;, fig. 40, the expression for total moment
due to the combined effect H,, Hy andH, is given as.
M= H,M,+H;M; +HsM,
In all these cases the signs of the moments sjhould be taken
into due considerations
In computing the moments it is Fecommended to use

the ;o\low;v\a +tabular form .



Tpical Tabular Form for Computing Moment=s of Three Strory-Frame .
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53 Sgec-i’aip casesy

The usefulness of the methods is not only limited
to cases discussed above, but it can be adopted in almost all
kinds of framed structure with some modification. By means
of this method it is especially simple and exact for the so=
Iution of truss—formed frames and truss-=bentss

‘Tet take the case shown in fig. 41, a truss=formed

. frame. It is evident that this truss can be considered as a

- frame of the same type formerly considered except it is layed
in a horizontal position and, instead of one side, both sides

are fixed, i,e. fixed at both supports:.. The deflection con~
dition can be so considered that, while one vertical member
is subjected to a deflection A due to any vertical load, the

ends of other members joining this vertical are all subjected

to the same deflection, while the rest verticals are kept in
their original position by some imaginary external forces.

Here again the moments of all members due to the deflection

of each indevidual member for each deflection condition in
questiom are to be determined and these moments combined to
giveia moment diagram for each particular de-fiect ion condi-
tion., Figure:43 gives the three cases of deflection condi=
tions with their respectivegments: and load diagrams,

For the case ‘the truss being subjected to the loads
W,, Wy, and W, (fig. 42) the conditional leq'uations for solving

the coefficients X, 7, 3pnd 7 are as follows:
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xP, = yR,' + 3R, " =W,

—xR{"+yP, « zR," =W,

xR = yR, + zP, = W,
and the moment expression is

M=xm; + ym, + 28,

If the loads are to be treated as moving load; a unit load can
be plaeed 35 moving from one panel poimt to the other and the
three sets of coefficients canbe solved from similar equa-
tions given above,

To find the reactions A and B at the supports the
following equations hold:

XA~ yA, + zA, = A
xB, - yB, + 2B, =B
and A+B=W, +W, + 7,

If the truss and the loads are quite unsymmetrical
then there will be an imaginary horizontal force Hacting at
the upper chords for each load diagram; fig.44. This force
is equal to the algebrijic sum of the shears in the verticals,
or the unbalanced force in each case. We have now an addi-
tional deflection condition to consider, fig. 45. In fig. 45
the value P, is evidently equal to the algebriic sum of E's
in fig. 44, and the values of R, R," and R} are equal to the

direct stress of the correspending:verticals, or the end

shear of the caorresponding upper chords. The four coeffi-—
cients can be solved from the following four conditional

equations':
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xP, - gR,;* + zR,"+ vR/' =W,
-xRy"+ yPg= 3R, "+ VR, " =W,
xR, ™ ~yR, " '+zP3+ vR "=W,

-xH, + yH; + zH, + vP#, =0
and the mowent expression is

M= xm, + ymy, *zm, + VE,
In case that there is accually a-horizontally applied load H
a_ctine on the upper chord, then im solvingthe coefficients
the left "hapd expression should be put equal to H, the applied
load, instead of O,

If the truss is connected with two posts in the form
of a bent as shown in fig., 46, then another deflection condi~

tion,fig. 47, has to be taken care of and the conditional

equations will be raised to five in .number.

8. Abstract on theory of determinants.,

From the atove discussion it is seen that for each
story of the frame there is an unknown coefficient, For
tuildings more than four or five stories high, the solution
of these coefficients may be felt handicapped. It seems
to the writer that the use of the method of determinants

is preferable. The following abstract on this method is
taken from "Hawkes Advanéed'ﬁlgebra.” and will te found
helpful in most cases,
2) Definations':
Let us solve the equatiqns

a,x *+ b,y = ¢, and a,x + b,y = ¢,
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Multiply the first equationbyb, and the second by b,, we
obtain a,by,x +b,b,y = b,yc,

asbyx +bib,y= b,c;

Subtracting, we obtain (a,b, — ayb;)x =b,c; —=b,c,.

x =021 w BaCy 4 oo aje, ~agc,

- a,b
a,b, - a,b, a,b, -a,b,

He note that the denominators of the expressions for

x and y are the same. This denominatdor we will denote sym-—
bolically by the following notation:

[ i
i a b, :
a;b, —a,b, =§a" b"_;
] 2 2

The symbol in the right hand member is called a " De-

terminant". Since there are two rows and two columns, this
determinant is said to be of the second order” The left

hand member of the equation is called the " Development”
of the determinant. The symbols a,p;,a,,b; are called

" Elements "of the determinant.while the elements a, and b,

are said to comprise its Principal Diagonal”.

For a determinant of the third order, we may combine the teras

as follows

= af(béca-—b.;C‘zf') —a,(bjey+bge,) *+ a,(b,c,-b,ec.

|bs ¢y by c, by, cj
ibs Cs

1
by ¢,
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We observe that the coefficient of a, is the determi-

nant that we cbtain by erasing the row and column in which a,

lies. A similar fact holds for the coefficients of a, and a,.
The determinant obtained by/erasing the row and column in which

a given element lies is ca)lled the 7 'Minor"” of that element.

b- ey . .
mhus * . is the minor of a;. We notice that in the above
ba CB

development by minors the sign of a given term is + or = ac-

cording as the sum of the number of the row and the numbter of

the columnof the element in that term is even or old.
" Rules':

1. The development of a determinant of the nth
order is equal to the algebraic sum of the terms consisting of
letters following each other in the same order in which they
found in the principal diagonal but in which the subscripts

take on all possible permutations. A term has the positive

or the negative sign according as there is an even or an odd
number of inversions* in the subscripts. |

2. For the development of a deterwinant by minors
write in succession the elements of any row or column, each
mwltiplied by its minor. Give each terma + or a - sign accor-

ding as the sum of the mumber of the row and the number of the

If in a series of positive integers a greater integer pre-
‘cedes a less, there is said to be an inversion., Thus in the

series 1 4 3 2 there are three inversions.



column of the element in that term is even or odd. Develope
the determinant in each termby a similar process until the
value of the development can be determined directliy by mul=
tiplication.

3. The vaiue of one og the variables in the
solution of n linear equati»ons in nvariables consists of
a fraction whose denominator is the determinant of the sys=
tem and whose numerator is the same determinant, except that

the column which contains the coefficients of the given
variable is replaced by 2 column consisting of the constant
terams,
Principles:
1. If every element of a row or a column is
multiplied by a number m, the determinant is multiplied by m.

2: The value of a determinant is not changed,

if the columns and rows are interchanged.

3% If two columns or two rows are interchanged,

the sign of the determinant is changed..

4. If z determinant has tmo rows (or two columns)
or any row (or column) being m times any other row (or column);
its value is zero.

5., If each of the elements of any row or any

column consists of the sum of two numbers, the determinant may
be written as the sum of two determinants.
8. The value of the determinant is unchanged if

the elements of any row (or column) are replaced by the ele~



ments of that row (or column) increased or diminished by a

multiple of the elements of another row or colu=mn.

A numerical example for illustrating the use of determinants
for the solution of the coefficients £or high building frames

is given at the end of Part IV,
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CONCLUSIONE,
As the least work method has the special merit for its
-exactness, the method herein deécribed nossesses the preference
for its simpliciﬁy, The good featurés of this method csm be sum-
marized as folldws;

;1. In applying this method it is not necessary to remember
any formula, as soon as the gemeral princivles involved are umder-
stood. |

2. The commutation can be done with single slide rule opera-
tions., There is no long expressinn:-to be computed, this lessens the
liability of making numerical errors.

5. As soon as the so-called characteristics have been compu-
ted for a given framed structure, the moments can be found for any
kind of loading,. Influence table can also be vrepared with great
cases With the same amount of work it does not seem to be vossible
to do thgt in apéljing both of the least work and the ordinary slome
deflection method. |

4. The moments of all members and at all noints of a member

- can be computed at one time., This is_illustraﬁed in the examnle of
the three story-buildine.

5., Irregular structures and structures.subjected to eccentric
load,/as crane load, can be investigated without the least difficulty,
as the comnutation of characteristics and the separation of moments
can be handled in usual manner,

6.° The amount of labor %o be vut in for investication can

vary according to the degree of accuracy resuired, as the separation



of moments is qudte elastics It can be carried from a2 fairly ac-
curate result to one, which is almost exact.

7. The variation of cross section of a member can be
taken care of, as it only involves the additional labor to multi-
ply the slopne ancle by 2 constant.

The writer wants to add a few words oh the necessity of
a2 close investigation for buildings by this method. It is a well-
lmown fact that for high buildines. on =account of wind load and the
econory of the structure, a close investication is always necessary.
For ordinary buildings up %o four tc five story high such investi-
gation has never been attempted in ordinary office vwractice, because

the engineer s 4o not deem it justified to epend the lgbor and time

)
n

to do it by means of exact methods tnown to them. Now as simmle
this method appears, it seems to the writer thaf it does nay the
small amowmt of labor involved in this method, for it =liminates She
cugsswork which is cenerally made in desicnine wall colums or

colums subjected to crane load for ordinary office and mill build-

inee,



BIBIIOGRAPEY,
®ulletins #107, #108 and #80, Exverimental Station of University of
Illinois. | |
Morley, Strength of Materials.
W. Ritter, Die Anwendung der Graphische Statik.
Strﬁssener, Forscher-Arbeitune auf dem Gebiste des Eisenbetons,
Strassener, Die durchlaufende Bogentraecer.
~ Schweizerische Bauzeitung, 1917-1920.
Hool & Johnson, Concrete Encineers! Handbook,

Huette, Des Ingenieurs Taschenbuch.

. {3



