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Preface.

This work is prepared for the fulfilment of M.S degree
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have been taken to present the method in unique and simple manner and

to developý all the necessary expressions, so that the easiness of the

application of the method can be a~chieved. Examples are also given

at the end of the work, they serve the purposes of illustrating the

method of application, checking up the correctness of this method,

and, at the same time, giving a brief comparison of this method with

those existing.

Oving to the limited time and the large amount of work

involved, some points might have been overlooked, although great care

has been taken by the writer.
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Professor Charles M. Spofford for the inspiring instruction received

from him as a student in his class on advanced structures. He par-

ticularly wishes to express his appreciation of the valuable instruc-

tion and criticism on this work from Professor Hale Sutherland, under

whom the writer has taken the course on advanced structural design.

Kalean Shih

May, 1922.
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INTRODUCTION

1. A review of previous methods on rigidly framed structure.

It is believed that a. wide knowledge of the ana-

lysis of rigidly framed structure is generally required

in gaining etconomies and in securing effective designs.

Notwithstanding the importance, the close investigation

of the stresses as they actually occur in this kind of struc-

ture is not usually attempted in practice. The reason is

simply due to the fact that the existing methods for inves-

tigation requires either considerable time to work out

formulas for statically indeterminate quantities to suit

a particular case in question or laborious work to apply

the different expressions already determined to get so

many unknown quantities. In view of the ec4onomy of the

time element, several very approximate methods are in

general use, although they sometimes give results which

are serious in error. The methods that have been so far

developed can be classified as follow':

a) The approximate methods. They are originated by

various authorities ( Spofford, Fleming: Smith, Burt, Tha-

yer, etc ). The methods consist. of certain combination.

of the following assumptions -.:

1. Point of contraflexure of columns at mid-height.

2 -Point of contraflexure of beams at mid-length.

I



3-. Direct stresses in columns are propottional to

the distance of the column from neutral axis.

4. The shear on all interior columns is equal and

the shear on each exterior column is equal to one

half the shear on interior column.

5. Shear is distributed amongst columns in proportion

to their moments of inertia.

6. Shear is distributed amongst columns in proportion

to area of vertical rectangle of which the column

is the axis,

As the methods are common in practice and can be found in

papers written by respective authors mentioned above, so they

will not be given here in further detail.

b) The more exact methods. These consistofthe methods

based on slope and deflection originated by Dr. CA.Melick

and Mr,. .F.Jonson. The original work is laborious and is

almost inpractical for buildings several stories high.

The further development of the slope and deflection

method by W. M. Wilson and several other men ( bulletins 80

and 108, Eng. Exp, Sta of Univ; QOf Ill.) rendered this method

generally applicable. Expressions for various cases have

been derived. It is considered simple, although in some

cases its application is restricted. ( See Conclution, Part 4).
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c) The exact method. This method is a development

by method of least work. The well-known papers regarding

to this method are by Prof. A. Smith (Journal of Western

Society of Engineers, Vo.l. XX ) and by Dr. Mikishi Abe ,

( Bulletin 107-, Eng. Exp, Sta. of Univ. of IIi..) .. The

method is exact and the direct stresses can be taken into

account.: It is, of course:, very longj.

2. General outline of the present method.

The method herein developed and investigated

belongs to Class b, the more exact method, of the previous

discussion, or, in other words, the slope deflection method

treated in more unique manner. The preference of this me-

thod will be discussed in the conclusion of Part IV of this

work.

The work is devided into 4 parts with an intro-

duction at its beginning, in which, besides some general

discussion, a section for getting primary sections of a re-

inforced concrete frame is also given, Several formulas

derived from the writer"'s experience are presented, which,

when being applied, needs only a single slide rule operation

and are deemed simple and helpful.

The first part of the work, Part I, is the basis

of the wholed All t:he theories and derivations are included

in it. They serve in the main to get the characteristics

of a ggiven frame. By characteristics of a frameare here meant

the following':

I
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Taking each member of the frame separately and as-

su-ing one end being fixed, while the other end being sub-
~ad arzv rc••cror..

jected to a unit moment, the expressions for the points of

contraflexures of-the memberacan be obtained. The position

of the points of contraflexure does not change for any mag-

nitude of the accually applied moment. ( Characteristic I )

Taking each joint of t'he 4,ame. searately and as-

suming a unit moment being applied to the joint. Now since

it can be easily proven that in the strained position all the

members meeting at one point are subjected to the same change

of slope, the relation of transmission of the moment, or the

moment factors, can be derived. The moment factor does not

change for any magn~itude of the actually applied moment.

( Characteristic IT )

At the end of Part I a summary of the procedure for

computation is also given.

IMost of the theories given in this part are taken

from Dr. Strassener's work appeared in the paper " For-

scherarbeiten auf dem Gebiete des Eisenbetons, Hefte 26".

The expressions for momeat factors for cases where four

members meeti$3 at a joint are the writer's own develop-

men.t from the same principles' ; these complete the missing

link of Dr. Strassener's work.

The second part of this work, Part II,: treats the

method of application of the development given in Part I

to the case of a frame subjected to vertical loads. Section

2, the separation of moments and their signs, sho-ws the

unique manner of this method, in which Tt lies its superiority.

The two sections on several short-cut methods for finding



moments of rigid members and Criteria for maximum combined

Sstresses in beamse'and columns are collecteda rom various

sources and seem to be helpful.

The third part of this work, Part lI:,1 treats

the method of application of the development gFiven in Part*I

to the case of a frame subjected to xerwn4( 4 loads., On ac-

count of the fact that the tops of all columns are subjected

to a deflection in this case, expressions for moments due to

unit deflection are derived. Now since the deflection and
the resulted moments are always ý:in direct proportion to

each other, advantage can be taken from this fact for deterL-

mining the moment of each member due to an ass~umed deflection

unity of each story of the frame. From these moments the

horizontal shear subjected to each column can be found. The

sum of the shears of all the columns in each story should

mat eaily be equal to the external force applied at that

story., which causes the assumed unit deflection. by multi-

plying the mcment due to the unit deflection by the ratio

Acetually appli.ed force
External force causing unit defl.

the acctual moment of each member can be obtained.

Dr, Strassener gives some hint for attacking

such problem in his paper mentioned above, but the method

has not been treated Ay him in unique and simple manner.

The present method is a collection of the developments of

various engineers appearing in "Schweizerische Bauzeitung"

Sand put up in simple and collective manner by the writer.

It should be noted that this method is. eore simple than

Wilson,'s method by reducing two equations from each story.

The fourth part of the work, Part IV, giveza



complete .illustration of the method and conclusions.

3. Foandamental principles and. assumptions of the present

slope deflection method.

The principles and the assumptions of the method in successive

sections given in this work are almost the same as are given

in tWilson 's paper ,. Bulletins80 and 108, Eng'g experimental

station of University of Illinois. The trzeatment and the

applications of the principles and4assumpt-ons are entirely

different from those given in Wilson's work and the preference

of the present method will be discussed in the conclusions

vn P+ 4t-- . The principles and assumptions adopted cmn be

4 summarized as follows":

1) The moment at an end of a member of a frame is a func-

tion of the changes in the slopes of the tangents to the elas-

tic curve of the member at its ends and of the deflection of

one end of the member relative to the other end.

2): In the strained position, all the columns and girders

which intersect at one point have been subjected to the same

change in slope.

Upon these two principles the Part 1 of this work is based'..

3) The change in the length of a member due to direct

strees is equal to zero.

4) The .horizontal deflection of the tops of all columns

due to vertical load is equal to zero.

Upon these two assumptions the part 11 of this work is based.

5) The horizontal deflections of the tops of all columns

of a story due to horizontal load are equal..

.I



7) The length of a girder is the distance between the

neutral axes of the columns which it connects and the length

of a column is the distance between the neutral axes of the

g girder which it connects..

8) The deflec-tion of a member due to the internal shearing

stresses is equal to zero..

9) The wind load is resisted entirely by the rigid frame.

4:. Method of getting primar-ry sections of the frame for in.-

vestigation.

In all the methods discussed in section 1, except

the approximate ones, it is required to know all the sec-

tions of the members before investigation. This is, how-

ever,,, the hardest task, which the designer has to encounter,

if any exact computation is intended to make at all. Owning

to this fact, it seems to the writer to be favorable to in-

clude this section in this work,

Now since the scope of s~trctIura1o. •oditiOcns is so

wide that the degree of rigidity varies with all factors, like

supports, joints, materials,, etc. , it is impossible to present

.t
I

Upon assumptions 3 and 5 the Part 111 of this work is based.

Other minor assumptions are,:

6) The connections between the columns and girders are

perfectly rigid.



any method which can be applied to all cases. In the fol-

lowing discussion it is, therefore, confined to reinforced

concrete frames- which has absolute rigidity and the degree

of accuracy of the new slope deflection met-hod herein pre-

sented can be warranted.

The formulas given below are derived from the writer's

experience and are based upon 1 ': 2': 4 concrete ( .fc = 650 .

fs = 16000 and n 15):, which is the mixture used in almost

all casee of building frames.. T hough the derivation of the

formulas is so simple and t heeir frms do not differ much

from ordinary ones, yet the merit of a single slide rule

operation can hereby obtained.

Formula I,, For rectangular beams. ( standard notations)

d= -.4L
1080b

This formula is derived from ordinary chart for

rectangular beams. For the specified stresses of 1 ' 2 : 4

n1

concrete 1---- = 108 and whence we have the formula.
bd2

Formula 2, For T,-beams, neutral axis lying in stem.

d

35*b'

in which b" is the assumed flange width, and according to

the specification of Joint Committee

a.) It should not exceed-I- of the span length of4
the beam.:,
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b) Its overhanging width on either side of the web

shall not exceed 6 times the thi'ckness of the slab.

e) It s-hall not exceed the distance c-c of the beams.

This formula is derived by examining a series of T-

beams together with the c-hartAgiven on page 364r-365 of

'Hool and Johnsont's Concrete Eng"'r Handbook. It is found

that the design of T-beams is always limited by the s.tress

of steel, while the stress of concrete is generally far

below its limit. The latter stress ranges from 300 to 400

for -competent design with cost ratio r = 70 approximately.

Now let draw a horizontal line on diagram 8, page 364H-i..

and J.'s book, which passes the curve fc= 350 and so place

the line that half of the curve is above and half below it

it will be found that this: horizontal line corresponds

L - = 35 and whence we have the formula. It has been tested
bd2
that this formula satisfifes most of the cases, especially

for getting primary s:ectionss

Formula 3. •.rt getting reinforcing steel of rectangular

and T.beams..

As5

This formula is obtained by substituting j -7 into the

general one A= ---
jdfs:

Formula 41. For columns centrally loaded.



Ac P

Where Ac= the net area of cross section of the column, P= the

centrally applied load and C a constant given in the table

below, its value is different with different values of "p",,

the percentage of re.inforceme-nt.

1"::2:4 (2000-.lb. concrete) n=15.

fc=450 for ordinary lateral ties.*

ý iO .! o.ca o.oz5 o.oC1o o 0oo .o-o45 i o5O

The values of C in the above table are computed from the

expression C=fc[ 1+(n-l)p] , the formula is a general one

and requires no further discussion.

For beams reinforced with compressive steel and

columns subjected to eccentric loading, formulae given

in various text books are supposed to be used.

* Specification of Joint Committee.

f1Ir1



Part 1.

T HEORIES FOR GETTINRG THE CRARACTERIS'TICS OF A GIVEN RIGIDLY

FRAMED STRUCTURE4

T-he foundamental theories from which this part

of the work is based- are orighated by Prof. W. Ritter in

his book " Anweandng der graphiache Statik"' During the

last ten years research works have continuously been made

in Germany to study the effect of rigidnity of any kind of

framed strucature with the intention to obtain a method of

so.lution, which should be practical in actual use and, at the

same time, will give a degree of accuracy not far from the

exactness. In year 1916 Dr. Strassener plblished a long

article treating this subject .inForsc-herarbeiten in Gebiete

des Elisenbetons" and since. then several articles regarding

this work have appeared during the-: years 1917-1921 in Sch-

weizerische Bauze.itung' Tn both of Dr. Strassener'1 s work

and the articles in Schweizerische Bauzeitung the expres-

sions given for moment, factors are confined to joints where

only three members meet. .I order to solve problems like

rigidly framed buildings; cases alwafs occur where four

consequent# expressions for these, equations 10 to 14, are

developed by the writer.

f laca AD trs lougbp t, er, A, ke in~Ine i r b ys of th L) u 3A din

Il
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1. The change of slope of a beam.

Let- Ma= the moment appli'ed at the left end of a beam.

Mb= " "" " " right " " " "

ea= the slope angle ait the left end of a beam

due to Ma = b =1

eb = the slope angle at the right end of a beam

due to Ma = Mb = 1

$= the slope angle at left end due to Mb= 1, or

the same at right end due to Ma= 1
and let x = the. distance of any section from left end

of the beam in question and x" the same from right

end, then the expressions for the slope angles

are.:

a =·' 4 * ·J' x-' dxx 1dx.a L E* I Y b r. x
.... .. (1)

and p·•1- * x'xadx
L2 EI.

For beams of constant cross section, ea = b

S L =  and ....... (la

2EI . IET
The derivation of equation (1) can be obtained very easily

by following the discussions given in Morlefs Strength of

Ma:terials , pages 170o-179, og by Prof. Swain's theory given

in Transactions of A" S. C. T. 19184

SThe liit of interati---------------n n equaton ------ is ro to --

* The limit of integration in equation (1) is f-r-or to0 .
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In case that the cross section of the beam is not

constant and its moment of inertia varies, the integral

symbols of the above expressions can be rrplaced by the

symbol "E" and by looking the value dx as a part of the beam

having a length of x. The solution of each expression can be

done graphically without difficulty,

In view of practical use, two tables are hereby re-

produced from "Forscherarbeiten auf dem Gebiete des Eisen-

betons, heft xxvi". In order to facilitate the use of the

tables, the following equation is given':

e -, ," a = -. -b .(1b2 El 6F1E

Equation (l b ) is only applicable to symmetrical

beams, which type is used in almost all cases in building

construction'. The factors , and L are the slope
2EI, 6E I,

angles 6 and 3 respectively for beams of constant moment

of inertia I,, and the factors Ta and Pb are constants found

either from table 1 or table 11 corresponding to the type

of haunches that the beam has:. These constants depend also

upon the following items of the beak:

KL = length of haunch, and

CtI -- , - or
r . ..... . .. .... .. ..... * l . (2 )

d
C,= d-a . 1 for beams having constant width

dsa



Table I. For beams with straight haunches.
'Pa= upper vmlue, 'b= lower valuel

0.4

61.2

.742

.843

.806

.907

.845
939

0.8

.432
.518

.621

.758

.716

.856

.773

.905

1.0

.375
.. 460

.583

.729

.688
.839

.750
.894

I T.2

.331

.41 4

554
705

.665

.825

.732

*884

1.4

.295

.376

.530
.'86

8.48

.813
4 -- -- -.---

.718

.876

1.6·-W··-II·~

.266
.344

.511
6"69

.633
.803

.706

.869

j717T7J U7LZIF2 j7TIZ77
U7CLJ27J

jc~

Ob201

C2

1/3

1/4

ly$51__-·

0

1 "0

1.0

.0
.0

1.0
1.0

3.0

.156
. .21 5
.2I·lr··~-~.u·5·_

.438
.601

.. 578
.761

.663
S842

.222
.. 294
4 -9 -4

.481
.643

.64

.611

.787

.689
L.859

.. . , •~1118~08~18~2~B~-·d··r;-*i~~--.rr·· --~ur;~--r rli :. · · ;·.- - ----- . - .

------ ~----· I ..% - - - --- --- - ----· -------- -- ·------------------- -- ·"-

$~O

-- `~-----p~ .,,• . "• . L.4 --- ----

""-C-~UII~-------------. ·.·-.~--11111~-,r~uC~--~k~--Llur ~l~·r~------YrrC1-··r

--':-----UY*-r·i · 1?·1-····-1-~--- ·-- r··l·· 3----- i-~ i ý---4_ I

~~--~-~~- -.l·l...----~-·l-.sp~__~.II

--Li- ~-__1__1_-

1.6 3.0
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Table II. For beams with parabolic haunches,
•a= upper value, 'b = lower value.

0.8

.592

.7tl-O

.728
.859

..796
.917

.. 837
..946

1.0

.545

.670

.,696

8339

r772

.905

.8T'8

1 3P'9

1.2

.507

.635

.671

.821'

.753

.895

.803

.. 931

PA4

.475

.605

,650

.806:

.738

.-886

.790

.925

1 1 2 0

.449

.5 79

S.832

.793

.724

..878

.779

.920

.406
.535

L.,604
.771

.703

.865

.7862

.911

3.0

.336

.459

.557
.73-2

.668

.842

.734
.896

-w~
YCz3

~7IZEL7
jy2IrIyj

C

IC 1¾

1/2

1/3

1/4

.4

.73 C

.820

.819

.913

.865

.949

.892

.. 967

1.0

1.0

1.0

1.0

1.0

1.0

1.0

~I _1L _ _ ~ .. .. .. . !i .. .. . . . ... _ ... ._,, ,. ... .. __

t f·~- n

.1C .0-4
--

t 1-·4111-·-----·1-~-· -~---~-·U·· -- ~--.-·---~-L-.I

.........---... I-- - I i------~--)ll* 1, r·· .L---·.L - I I ·~--·I-~···

-U~Llii-~~C~

I-~

--~---~------L--~I-i.~,__~-___~- --------·- I~

---- ·- ·--------- · ·-- ·---

~--:-
6-

"~'`~' ""i"~~;"----~"~` "--'~" i^'~`~-~"' ~-"--~~~~~-- ~~--~~'~'~-^~~'~~~I-"-"~~I
!
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2. The change of the slope of a column.

Let , M = the moment applied at the top of a column,

Md = " " foot " "

%c = the change of slope at the top of a column

due to Me = Md 1

ed = the change of slope at the foot of a colunr

due to = Md = 1

Pc = the change of slope at top due to Md = 1, or

the change of slope at foot due to Mc = 1.
The slope angles are expressed as (fig. 3 )':

SJ. xedx d- 1 X"`dx
l xd h El

1 x'x dx
and (3 =- J -.--

h2 El

It is generally that the columns are built as

shown in fig. 4 and in that case

h' (2h-h')
d ---- *

2hEFI

C H (3a)
2hEIl

Sc=  . (.-2. )
6h 2 EI c

wher h' is the clear height of the column and h is the dis-

tance between the foot of the column and the neutral axis

of the adjourning beams

1



With constant I = Ic throughout the column, then

h = h', and e = 8 c dp hence
e -= --h-- and -= h e• • ,, •,

2O I &J 6EI3

The strengthening of the top part of the column

due to beam haunches does not exert an influence so serious

as the haunches to the beam itself;, however, the effect de-

pends largely u.pon their, relative stiffness. With strong

column and weak beams, i.,e. beams easily subjected to de-

formation:,, the effect is very small and h' will be almost

equal to h. In the contrary, the whole strengthening effect

should be taken into consideration to warrant the correct-

ness of the design.

* The derivation of equations (31, (3 ) and (3b ) can be

made without difficulty from the references given in

Section I. The limits of integration of equation (3a )

are from 0 to h'.
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I'n reinforced concrete buildings the moment of

inertia for beams and girders is generally not the .same

throughout the .e.vb:er,- it is therefore necessary to compute

and use the least moment of inertia for a given member.. A

chart for determini:ng that for T-sections. is reproduced here

from the same book refered above, which can be used for T-

columns and sometimes for beams and girders. The moment of

inertia is expressed as '

• bI . 1 .* (4)
Whr "i~is a c 'on:s ob.t. . "

Where u is a constant obtained
from the chart.

"-U

By characteristic point of contraflexure is meant
the zero moment point in a rigid member resulted by applying
a unith.moment at one end.

By moment factor is here understood as a facter by

which the moment applied at a rigid joint is to be multiplied

so as to obtain the- actual portion of the moment resisted by

each elastic member meeting at the joint,;
Now let the charater-istic point of contra.flexure

and its distance from either end of a beam or a column be de-

noted in the way as shown in fig'. 7a and let

a = the c-hange of. slope at the left end of a beam
due to Ma = If

ab = the change of sl.ope at the rfight end of a beam
due to Mb ,

cc c the change of slope at the top of a column due

to Me 1, and

ad = the change of slope at the bottom of a column
due to Md 1,

then from Fid. 6b, we have

F.

...
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The moment M=1 applied at B will produce a moment Ma at A.

The magnitude may be obtained by simple proportion, whence,

a L-a

Now by definition ebis the slope angle produced by

moments M=1 both at ends A and B (fig 86c), then from figures

7a_c_d_e it is evident that

ab =b Ma

= eb- (1 + a
L-a

SL-a

With the same conception and draw similar figures we can

derive expressions for ma, ac, and rd. Thus we have

a = •a- a 8, at left end of a beam
L-b

ab =b,- - L- - * f, at right end of a beam
L-a . ( C5)

c C C h at top of a column
h-d c

and ad = 9 d- -h , at foot of a column
hac

The values of 8 and P are given by previous equations, and

mostly, for beams either of constant cross section or of

syfmmetrical in form, aa = ab = a . The values of a and b will

be given later.

To ascertain the moment factors the transmis-

sion of the moment should be carefully considered. In order

to avoid confusion the following set s of notations are

used:



na = a fraction of the moment applied at a continuous

column, which is taken by the ._..

nb = a ftaction of the moment applied at a continuous

column, which is taken by the•_•l•UbJi._e

n, =a fraction of the moment applied at a continuous

beam, which is taken by t he _he•...te_~ ig

nI = a fraction of the moment applied at a continuous

beam, which is taken by the_Bkpa•,_Jadt_,,

nul= a fraction of the moment taken by a column, when

the moment is transmitted to it from any member

adjourning its ".pjz end.

nlu = a fraction of the moment taken by a column, vhen

the moment is transmitted to it from any member

adjourning its L.oj_ end

nrl= a fraction of moment taking by a beam,, when the

moment is transmitted to it from any member ad-

journing its ri•ght end.

n Ir= a fraction of moment taking bya- beam-, when the

moment is transmitted to it from any member ad-ý-

journing its lfi end.

For clear understanding of thezse notations figure 16 given

in the section on separation of moments will be refered.

Let us denote the resulting slope angle common to two

rigidly connected bars due to M = 1 by "y" with suffixes
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b,, cý, and be representing the angles common to beams, columns,

beam and column respectively.

Now let the four members given in figjures 7 b andc

be arranged as shown in figure 8, first consider the two

vertical members, or columns, be connected rigidly and

are continuous and a moment M = 1 is incurred at the joint,

fig. 8 a, then the slope at the top of the lower column

= nb = ( 1-na) a,

and of the bottom of the upper column

-na d = ( 1-nb) d

By assumption II these two slopes should be equal

to the common slope angle Yc at the joint, therefore we

have,

ac
na

ac + 0d

d.
nb = - **.... (6)

a c adand

ac + d



Similarily from fig. 8b we can derive

Lb

ab:+ &,

Yb - -aB _

s~a+ag~

nl=- a•
aa+b

I· (7)

Again consider the case shown in fig.8c. we have, f-or a moment
coming from column to beam,

Ybc= nrlab= (1,nrl) "c
and for amomemt coming from beam to column,

Ybc = nulac = (lnnul) ab
therefore.,

rl Lc+-b

Ybc )= me -

n b+i
(b+ac

71

4.0· ,** *I.-O.~li (Q\

In the simila:r way we can derive expressions f ornnlr, nitetc

ey examin'e.the equations (6), (7),and (8),-the following rule

holds true':

-If a moment M=1 is applied at the joint of two bars,
x and y, then the portion of the moment which will come to bar x,

n = at bar -
i at bar x* a at bar y

and the portion of the moment which will come to bar y
n -a at bar x

.'-T•• bar x+% at bar y
*I Of at *.! at 01 *1 0./0 0

By a it is understood the angle caused by a moment M=1 applied
only to the bar in question.

(M~) (L\•

I,

T6

i'.

~il
77~-

U

, ,, , , . ; ., ... .. (9)
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So far we only have considered a combination of two *usbers,
for cases as shown in fig. 8c and 8d, equation (9) can still
be applied. By looking the two continuous members as a single

member and according to assumption (2) we have,

r n-r=- -
Yc+"b %b +Yc

nul= nla
Yb+ n ec +Yb

In the same way we can obtain the value of n for other comb ina-
tion of members..
To find the values of a, b, and c, d, distances of point of

contraflexure from ends of beams and columns respectively,
as shown in figures 9 and 10 ýgeneral expression is here first

derived:

Let p = change of slope of the support due to M=l1 and k
= change of slope at ends of the member due to subjected load.
Using other notations as used before,then refer to fig.(11)

it is evident

-paa= ka a+ Ga- ) + Mbb
-b Mp=kl, + M ( Ob-e ) + MaP (ilL

If the member is only subjected to a moment, then

-PaM oa + M (e a-) + MbB

I;

---a--

-P b = - + MbGOb- ) + Map



Now since M=- a b ••• 6
-ae can find

we can find
), by s•ubstitution

a+pa (11)

Similar1'-ily. for expressions of b, c, and d.

From equation (11) and kee in mind that p is the angle made

by the support due to M=1 the following expressions can be

derived':

FProm fig. (9)

a = _L_.L_ b"= L 8b' _n _a

ea+nrlb, eb' +nlr a
- d,.-,-***** (12)cA= h'Bc '  d= he

c, +nluad, d+nul c
Where nrl, nul, etc. are those given in equation (8)

? , h" tif ' C. Lc a . * - -* *** (13)
'cI+ Yb . a+ Ye

From Fig. (10)

Same expressions as equation (12) except ****(14)

arl,nuletc. are those given inequation (10)

For beams and columns of constant moment of inertia, the ex-
pressions in equations (5), (12) and (14) can be very much ,

simplified and in that case::,.

.=L nd c = h

6 E aI, 6EIc

8= -- = 3P, and ec  =h__ 3e
29I 2E:Ic

Equation (5) is simplified to

'(a = p[ 3 L 4] ab =p 3_ 'L ]
L-b L-a *** *******(15)

Mc = ic[3- h ] d = p-L[ 3- .. . ]
h-d h.-c

and all values of 8"s in equations(12), (13) and (14) can be

substituted by 3-times their correspondingp 's.

::



5. The procedure of computation

For investigating an existing building or a,building,

of whose members the sections have already been approximately

determined by the method given in the introductory, the dis-

tances of the points of contraflexure, a,b,c, and d from each

end of the meymber have first to be found. In order to do this

the following steps have to be taken:

(1) Determine the moment of inertia of each member by the

aid of the given chart, if necessary.

(2) Determine the values of E and P of each member by

the aid of equation (1) and (3) and by the given tables, if

nacessary.
(3) Beginning from the columns of the lowest storT,

which are generally fixed or rigid. The distance d will be':

Taking care of the strengthening effect of the column

head,

S3h-.2h' . h' . (16)
2h-A' 3

and when the same is neglected, d=- h.- .**.... * (1T)
3

In the first case th:eangle at the top of the column,

= h13 ----* ** (1-)
4EIc(3h[h-h']+h'2)

and in the second,

dc =-- or C - 3 .(. . * (19
4EIc 2 8c

(For derivation of equations 16, 11, 18, andl9 see
appendix.)

In order to proceed the computation of angle'%y' of each
column, it is nacessary first to determine ' "s (equation 6 )
in determining the latter , the distsnce"c"o the next upper

column has to be first assumed (eqauation 5 ). c=•-.h is in
4

most of the cases close enough.
With this assumption and the values of Yec thus found

we can determine-, from left to right the distance a , and



from right to left the distance b by eqinuation. (13) for the
beam elose.to the wall columnP and by equation (14) for beams

in interior spans.

(4) After knowing the location of points of contraflexure

so proceed to determine the:,'distance'd: of the columns in the

story next above. In doing that use equation (7) to compute

Yb, equation ?(10) nlu, and finally equation (14) gives the re-
quired istance d.

0(5) The location of the points of contraflexure for beams
above the second story will then be calculated. The angle m for

the column below can be found either by equation (5) or (15).

In order to do this it is again nacessary to assume the distance

c =1 h of the column in question. In the same way as before we
4

compute Yc and the dista:nces a,a•g a4b, for the beams.
(6) Repeat the process mentioned in (4) and (5), we can

obtain all the distances a, b, c, and d for all stories of the

building. Beginning from top we can finally determine the

last unknowjn : i.e. the distancec, which was assumed before

for each story of the building.

In case that the final value c obtained in (6) varies

a great dea-l compared with the assumed value, so the process

may be repeated by assuming c = iits•- final value obtianed in

the first computationL IN general, however, the first com-

putation gives result sufficiently accurate, while in the

second computation the result is almost exact. The degree of

exactness to be attained depends:, of course, upon the charac-

ter of the building and the opinion of the designer.

N•t•'l For c = I h and for constant moment of inertia from
4

equation (5),1 YCv ,

cd = h or d 5
V•T • 6 or 3
.,L.

I
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Appendix.

The Derivation of equations 16, 17, 18, and 19.

From equation (11)

¶ *~··t · ! · i· :· (A)

9 d+ Pd

From equation (3a)

-d '2h-Od ~ " ~ 2

2hETT
.= 3hr.2j -2h' -- AA6cBc-~~ h:2 ih1~*

8h"ET

also from equation (5)
h

C c " h" Cd

Substituting the values of edand Scin (A),we have

d -..3.(h-Zh' .
3h" (2hi-h')

For continuous and rigidlj fixed columns Pd =. 0

d =- h'- , h 2 h'
3* (2h-h')

If h = h'. then d = h.

3

Similarlj assume pd = 0 and

........ .... (17)

substituting the values

pc and d in (B), we obtain

.h'. - 3h2 3h-2h' (h-h"_
c "I hE6h OEc3(2hh' )-6hh'Ic(3h-2h")

4ETI c (3h[ h-h i"] +h'')
* * *·~ (18)

If h = hr', then

or, since P h
Cg

4EI
*... * . , * * (19)

3
2 c.

** *..;*** * .- (B)

+ 2 hBIcpd

, then

of OC,

P



-PART 2

MOME1MTS AND STRESSES DUE TO VERT'ICAL LOADS.

In computing moments and stresses due to vertical
loads a general assumption has here been made that the deflec-
tion due to vertical load at the. top of the columns is equal
ýto zero. The theories followed in this section are mostly
given in Prof. W. Ritter's book " Anwendungen der Graphische
Statik." It is endeavored, however,in this section to put
thdse theories into practical adoption: for the particular
use to solve rigidly framed buildings. The use of moment
factors developed in part 1 is a special feature, upon which
the separation of the moment at each joint is based. This
principle can be adopted for any kind of rigidly framed struc-
tures. In view of practical use several short cut methods
for finding moments of a rigid member are presented here
also.

ae•k~rs.
From equations (11)a, (11)b, and (11) if ka and kb

are not =0 we 'have,: from eq-ua~ti on :( (11, ' ..

Pa, a-.a , Pb = -eb- b

Substitute these values, in (11)a and simplifying the follow-
ing expressions result':

+ _a *.a-- -aa L-a + b

'b M = b . kbMb L aL L

Refer to fig. (12) and by geometrical relation, we can see at
once:,

kaa a

b ..kb

kbS = m - i
For members of constant moment of inertia ka and kb =- -ALLx)

EI L



( Morley's Strength of Materials, page 1 4•6.) and )=. L(,rk 0
6ERI

substitute these expressions into former equation-, we
obtain,

Sa a - 6 L-., a
L L2  L

b ASb -. -b *- 'L L2  L

Where A is the bending moment diagram due to the applied load

when the member is simply supported.
T is the distance of the centroid of the area A from the

origin A, and (L-r) is its distance from BforSc-, s revre

q and q' are the second factor of the right hand expres-

sion of each equation.

If we substitute c amd d for a and b respectively into equation
(20) , the expressions for Sc and Sd for a vertical member re-

sult. All the short-cut methods given below are based on equa--

tion (2.0).

For beams of varying cross section separate discussions

are made in Case A and Case B.

-- Ca A. Uniform distributed load . Fig. 13.--

In this case the moment diagram for a simply supported

beam is a pa:rabola:, Calling t-he moment at center =M, then,

A=2/3 ML, L-'Z=--L hence q=q'=2M.
2 '

From simple geometrical relation of similar triangles it is
evident that the graphical solution of Saand Sb shown in fig.
13 holds. The intersectilon of the two crossing lines coin-
sideswith the apex of the parabola.

For bea:ms of varying cross, section , we have for equa-
tion _,20)9 ,

ka=kb fL dx, (Morley's ,page 183)

8 = I-x'x dx (Part I, )
L2B tw EIx

By putting these two angles in the form.of a ratio-the factor
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i1
S-_dl both in the Inumera:tor and in the denominator caacels

I
0 x
out, therefore the variation of moment of inertia of the
member does not effect the values of- Saand :Sbin this case.

-Case B.. Single concentrated load-. Fig. 14--

A§ shown in the figure, the moment diagram for a

simply supported beam under this case is a tri.angle, whose

A=1/2 LM, Yfrom A = 1/3 (L+x) and from B 1/3 (L+•i), hence
from equation (20)

qkL.. q,= )
L and L

To find the values of qand q' without calculation, lay off
the length L either side from the load, join the ends with
the apex of the moment, diagram,and extend the lines as shown,
then q and 4'q are obtained, sior. by similar triangles the
relation q ":. M = L+x : 'L

and q' :M = L+x":L

exists. Again dra&- crossing Jines in the way shown, then the
values of Sa and Sbcan be found. A s:imilar relation holds, f.e.

S a: a = q:L
and Sb ":b = q"': L

Now in case that the cross section of the beam varies, the

s olution of the problem is somewhat difficult here, for the

fc+k--or -: J- dx ( compare Case A.) become
Ix

d x  + x in the expression for angle k,o xx

and iLdx in the expression for angle B ,
•o IX

and these factor-s will not cancel out when expressed inithe f

formof a ratio, therefore the variation of the cross section
of the beam does have effect on the values of Sa.and Sb

To take care of this effect the work is complicated.
In order to facilitate speedy solution, a table is reproduced

tere. from "StrassenerJs Forscherarbeiten". The values of Sa

and Sb can be taken directly from th±p ta2ble. For single con-
•....
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centrated load multiply the table value by the load and for

severa:l concentrated loads or for a combination of concen-

trated load and uniform load take each load separately and

sum up the moments.

Case A and Case B hold also for vertical members.

-- qCas_. Columns subjected to crane load. Fig. 15.
The applied crane load P causes a moment P'e:, which

is equavalent to the moment caused by a horizontal couple
H as shown. Lay off CC' eýqual to the moment P'e. Draw line
CK parallel to J'D and join LK as shown, then the resulting
area bound by the broken lines CK, KL, LD, and CD will be
the moment area of the column due to the crane load P with
no regard to t'he continuity of the column. The value of A and
x can be easily computed. Compute q and q' from equation (20),
and lay off the same equal to CC" and DD" in the figure,.then
join C"D and CD" , the values of Seand Sd are found. The
proof is the same as the first two cases.

The moments due to vertical load will, in general,
be investigated by considering each single span separately

as shown in fig. 1&, in which it brings out the way of the

separation of moments onto the columns and beams surrounding

the loa.ded central span.
If the moments Ma and Mb for the loaded span be deter-

mined according to the method given in the previous section,

then at the column to the left of the load, the beam will

take a moment = nri'Ma and the total moment which falls to

the adjacent columns at left = NAMa Ma - nrlMa. From this

moment the lower column takes an amount = nb 'AMA and the

rest falls onto the upper column. Similasxrily at the column

to the right of the load, the beam takes a moment = nr' Mb,
the total moment which falls onto the adjacent columns at

right = AMb Mb - nlrMb, from which the lower column takes

a portion = nbAMb while the upper takes the rest.
The tra'sition of moment lines for unloaded spans
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is as followsý:

For all spans to the right of t-he loadedi t--hea moment line

passes through .the point B,

for all spans to the left of the loaded the moment line

passes t~hrough the point A,

for all the columns abcve the moment line passes through
the point C, and

for all the columns below t-he moment. line passes thru.
the point D.

The pointsA, B, C, and D are the points of contraflexure

as marked in fig:ure 6, part 1.

For the.j.oints in stories next above or below the moment

transmitted over will be sepatated again. Let the moment to. 6
be reseparated be called McandMd., then at the joint next above

the reduced column moment nlu' Mc, the total moment to be

resisted by the beams = AM= Mc - nluMc, from which the left

beam takes a portion = nlAM c and the rest falls to the right

beam.; Similarlly at th.e joint next below t-he reduced column

moment = nul'Md, the beams have to resist a moment = AMd=
Md- nul Md:, from which the beam at left takes the portion

nl'AMd';', while that at right takes the rest.

The moment tra.nsmitted and to be reseparated becomes
smaller and smaller , the further is the span from the load-
ed one.

At the end columns the moment carried over by the beam
should be separated in such a way that it will wholly be
taken by the columns, so in that case AMO- Maand AMb= Mb.

In the above discussion we ha:ve only considered the

absolute magnitude of the moments. Hoever,in ca:se that

several spans are lo-aded, t-he moment due to the load in

one span may in most c:,ses cancel that due to the load in

the other. In order to get the algebric sum of the moments



due to the loadings in various spans and to avoid confusion

the following conventional signs will be found helpful=

.f " The moment is considered positive, if the ela-
stic curvature eof the beam axis at the portion considered
slopes downward, and nagativer, if it slopes upward..

The moment is considered positive, if the elas-

tic curvature of the column axis at the portion considered

slopes to the right, and negative, if it slopes to the left."

In figure 15 the positive moment is drawn below
and to the right of the beam and column axes respectively and

the negative moment, above and to the left.

Keeping the above signs in mind it is very easy
to determine the character of the moments by considering the
elastic deflection of the member..

3. De-.e.. ai Leq~t.. . ra
For all members of a building , if their moments

at joints are known, we can find the shear and normal forces

very easily. For rectangular construction l:dvantage can be
taken from the fact that, just as the shear is perpendicular
to the normal force, the column axis is perpendicular to the

beam axis, therefore we can find the normal force of a column

from the shear of a beam and conversely the normal force of a
beam from the shear of a column.

Let Q be the normal force or the shear required,
Qobe the same corresponding to a simply supported member, and,

as before , Ma and Mbthe moment at the. left and the right end
of a fixed beam, and Mcand Md the moment at the top and the
bottom of a fixed column respectively, then, taking positive

shear as that directed to the top at the left section of a

beam, and. that directed to the left at the lower section of
a column, we have :



For the shear of the beam or normal force of the column in

question = Q0- - * * (21)

For the shear of the column or normal force of the beam in

question a = Qo + c-d .(22)
h

For columns , since they are generally free from external

forces:, then Qo= 0 , and

S. -. -.- A .. ** (23)

h
The derivation of the above expressions follows immediately

by taking EM = 0 of the member considered.

Both the maximum stresses in beams and columns occur

from the source of maximum bending moment and direct stress

resulting from normal force. For columns, especially those

of very slender section, the deflection, which we so far assume

to be ziero, may cause an additional stres4, but the stress

due to maximum moment is , in almost all cases , greater than

that due to maximum deflection and these tiro will not occur

simultaneously. If we load alternate bays of the structure

so as to give maximum bending moment to the column in ques-

tion, (seF d-0iscussions given later) the deflection ca:used

by the load on either side is of compensating character and

the stress resulted therefrom, if any, is generally small

and negligible. From figiure 16 it can be easily seen the

following criteria for maximum moments and hence the maxi-

mum stresses of the beams and columnst

For beams maximum positive moments are caused by

loading all the odd number of bays in both directions from



the bay in question, counting the latter zero . The negative

moments are caused by loading all the even bays in the direc-

tion and all the odd bays away from the direction of the beam
end in question, counting in the same manner the loaded bay

zero.

For interior columns maximum momemts are caused by
loading the bay adjacent to the column in question for the

full hight of the structure, and, where possible y loading

alternate bays in both directions from the bay.
For exterior columns loadings causing maximum

moments are similar to interior columns.
For corner columns the moment may be considered as

being introduced into the column by the two girders meeting
at right angles to each other, and the moments may then be
combined t-b give a diagonal resulting moment.

The maximum stresses in all members will be found
by combining the stress caused by the maximum momemt with

the normal force found by methods given in section 3.



PART 3.

MOMTENTS AND STRESSES DUE TO HORIZONTAL L ADS.

In high building design the stresses caused by the
wind load applied in horizontal direction play such an im-

portant r6le that a close investigation always seems to be

justified. For buildings, of which the width is small compared
with its height, the wind stress- is always a great factor.
In this part of the work the general theories given in Prof. W.
Ritter's and Dr. Strassener's books will be followed. It is
endeavored, however, that the theories are extended and put
in unique manner for the practical solution of high buildings
due to horizontal loads.

In dealing with horizontal loads several appro-
ximate methods given by various authorities have been known,
and they are generally deemed as simple and practical. Never-
theless , none of them seems to be consistant with the actual
condition. The exact method given in bulletin 80 of engi-
neering experimental stat;;on of the University of Illinois

and sevetal other known methods derived from the theory of
least work are all too laborious and they are, therefore,
restricted in almost all cases in its practical adaptibility.

In the preceeding parts we have made one assump-
tion, that is, the horizontal deflection of a rigid joint

due to vertical loads is equal to zero. This assumption, though

it does not conform to the theoretical correctness, is rea-

sonable for the solution of the moments and stresses due to

vertical loads, since the effect is small and negligible.

In dealing with heor'~Khal loads this assumption will no more

hold, we have here two kinds of moment to consider:

a. Moments caused by loads considering the rigid

joints not being subjected to any deflection.
b. Additional moments caused by resulting de-

flection.



The present method will be described under various sections

given below,, from one-story--frame to the general case of

many-story frames'"

1. Derivation of expressions for moments due to deflections..--,~-~-~~~~-~------------------ -~-i
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Considering the case as shown in figure (1i) the column has

an elastic s-ufport at its lower end, the upper end is free

to move and subjected to a horizontal load H, then the

resulting deflection is

A-= H'+ Hh2 d

and the angle, through which the top of the column is turned,

is ,= ' + Hhjd

where X'= h2(x d - Pc) and a'= had

For expressions of ad and Pc refer to Part 1.

By substitution, we have

A= Hh2 (Oc+ Od- 1c)

and ,r= Rh(xd+ Pc)

Deviding the former expression by the latter, we have

Sif
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=h-
a d Od

But from equation (-), Part 1

S----- -d
ad + ?d

therefore .. hd

or, .. .
h--ý

The moment at the foot, of the column due to the deflection

A caused by the horizontal load H is then

Md6= - h = - (From equation X)
ad+ 0 d

-d A

or, since ad.+kd.
d

Md5  * * ** * (24)
(h-d)hpci

Equation (24) is the general expression for moment due to

deflection, when the deflecting end is free to move.

Again refer to figure 18 the column has elastic

supports at both ends and theck-clu•;i of the member, .i.e.

distances c and d,ai already fou.nd according to the method

given in Part 1. First assume the top end of the co.lumn is

free to move and is subjected to the shear Q, then we have

the moment.

h2 pc
Similarly by assuming the lower end of the column being free



to move and subjected to the horizontal shear Q, we have for

, M .M A--^ = cA
h hBc

Now in the actual condition of the column the ends does not

move freely. As soon as the deflection A occurs at one end,

there produces moments Mc and Mdat their respective ends; although

these end moments will offset a part of the angular turning

of the column ends, they,. however, do not have any effect on

the value of the moments Sc and Sd, since by hypothesis of

Part 1, point C is the zero-moment point of the column due to

a moment acting at the bottom end of the column, and point D

is the corresponding point of the same due to a moment at the

top end.

From above discussion we can have the following ex-6
pression to find the distance zc, distance of zero-moment

point from the top end.

S zc - c

-Sd h-zc-d

z = d + h-d-c
81 Sd
S

By substituting the values of Scand Sd in the above expression

we have ch

c+d

which gives the location of the zero-moment point.

Now at point C the moment Sc also equal to Q(z- c), from

which relation we obtain

= A. c

h2pc c - C



From the figure it is evident that

Mc= Q'ze

and Yd=- Q ( h - zc )

By proper substitution the equation for moments is expressed

in the following general form:

Mc= m'C

Md= m'd ........... (25)

Where a is a constant = - .
Pch(h "-d)

In computing the moments of a building frame the value of A

in equation (25) can be assumed as unity. After Mcand Md

due to unit deflection are found, we compute the shear Q

of each column from the following equation:

h
for moments of opposite signs, and S. .... ....... (26)

( Md - Mc )
h

for moments of the same sign.

The sum of the internal shearshould be equal to the external

load 1. The actual moments are found by multiplying the values

of Mc and Md due to unit deflection by the factor -

The separation of the moments will be done by thea

aid of moment factors as described in Part 1 and 11.

In order to make the method clear the application

of the method to various cases are given in different sec-

tions following.
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Let us assume the case given in figure 19, a single

story, two span frame acted upon b y a horizontal force H at the

top girder. The columns may be either hinged, elastic', or

fixed.

The horizontal force H causes a deflection of the
columns at the top end in the direct-ion of the applied hori-

zontal load. The deflections at all columns are the: same,

because the top ends of the columns are connected by a con;

tinuous girder and the effect of normal stress can be neg.e.

lected.. The magnitude of the deflection due to the applied

horizontal load is unknown, we can, however, first assume

a unit deflection and by the aid of equation (25) the moments

due to that deflection can he solved. From the shear calcu-

lated therefrom we can determine the force i. which produces

the assumed deflection. By multi'plying the moments by the

coefficient H_ , the required moments due to t-he horizon-

tal load H can be found. The procedure of computation is as

foll ows:

V-5.;
V--~
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1. Compute the characteristics of the frame, i.e. distances

a, b, c, and d, and the moment factors of the corresponding

members by the method given in Part 1.

2 . Treat each column separately and assume the column in

question either as fixed or elastic, as the case may be, and

the rest as free to move. ( Figures 21 a, 22 a, and 23 a.)

Compute the moment of each member in each case by equation (25)

in mhich the value of A is taken as unityl. The reason for

taking each column separately is for the convenience of se-

parating the moments by moment factors to each member. The

A~--

'i
Si!

(Ca)

/

r I



moment diagrams in each case are shown in figures 21 b, 22 b,

and 23 b. In actual computation these diagrams need not be

drawn and the work can be done mentally-.

3 .Taking the algebraic sum of the moments, it gives the
combined diagram figure 24 b. The resulting moment in each
member is that due to the assumed unit deflection.

4, Apply equation (26) and find the values of Q1, Q2, and

Qa, fig. 25, then the sum of the shears must be equal to the

load P, the load which causes the unit deflection and pro-

duces the moments, or

P = Q, + Q, + Q,
5. Find the coefficient of Ji with which the moments

in figure 24 b are to be multiplies to give the required mo-

ments of the members of the frame due to the horizontal load

H.

Fig. 26 shows a general:case for the srparation of moments

due to deflection b. moment factors.

3. Twow-storv frames.

For two story frames the moment of each member

are due to the combined effect of horizontal loads H. and

H2 , fig. 27, Through t-e influence of theseloads the frame

changes its shape as shown in fi;. 28, i.e. all the joints

deflect horizontally in the, direction of the load. Now

since the magnitude of the horizontal deflection is not known

so we have to get at it in some indirect way -as before,

by the aid of an assumed deflection and the moments resulted

therefrom.
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For two story frame we have to consider two condi-

tions of deformation. For the first condition assume the

top girder of the frame is subjected to a deflection A=unity,

while the lower girder remains in its original position ( fig.

29 a.). The moment of each member can be computed in the same

way as for one story frame, in this we again consider each

of the three columns separately and compute moments by equa-

tion (25). The moment for each case is separated and the

algebric sums for the three: cases are found. The external

forces acting on the frame, which produces the deformation

of condition 1 are (fig. 29 d)

On upper girder

P, = Q. + Q& + Qa
On lower girder

R, =6 Q + 2q + Q8 + al + Q2, + •

and on the footings

S, = Qz + a, + Qs
The suffix given to P, R, and S denote the number of the con-

dition of deflection considered.

For the second condition a deflection of A = unity

at lower girder will be considered. The ujper part of the

frame is free to move, so as soon as a deflection is given to

the lower girder, the upper girder will have a deflection

greater than A. The latter will be assumed as being res-

tricted from producing a deflection greater than A, so that

the relative position of the upper part of the girder to the

lower part does not change. ( The deflection of the upper

girder cannot be assumed as being restricted to zero, as

in that case another moment due to deflection in opposite

direction will be resulted, which violets the condition of

moment separation ). After the moments in three cases are



combined and shears found, the external forces will be

( fig. 30c ) "

On uppe"girder,

R,2 =Q, + Q1 + Q*
on l.ower girder,

P = , + ~Q + Q, + 1 + Q2 + QS
and on the footings,

S, = Q1 + Q2 + Q 3

Now we have two loacL:: diagrams on hand, figures 29 c and 3o c

The first produces a deflection unity at the upper girder and

the second produces the same at the lower. In both of these

diagrams is also shown the elastic behaviia of the frame

against the acting-loads. From the moments resulted from

these assumed deflections we can determine the maentsdue to
loa4

any horizontalby some simple modification.

Let t-he moments caused by the loads in figi 29 c

be called am and those caused by the loads in fig .30 c be

called a,:, then by addition we have a combined diagram with

forces

PL- R, acting on upper girder,

F, R, " " loker
Fig 31

and o, - " on the supports.!
The combined moments are then = al + im2 .

It should be kept in mind that this combined load.

diagram gives a unit deflection both at upper and lower girders.

Now in order to conform the actual deflection for a specific

case let the load5t .. in diagrams29 c and 30 c be multiplied

by the coefficients x and y respectively, the combined loads,fig-

(32),will now be :



6PI - xR, on the upper girder,

xP, . 7R, on the lower g.irder.

and -yS, 2 + x S2 on the supports.

Simila.r'ily tne moments = xmi + ya,

It is evident that for the applied loads Hi and H2

P,- =R, Hz

and xP, gR~ = tH,

From these two expressions the coefficients x and y

can be found and the moments computed from

M = xm, + y2

In practice in order to find the maximum moments it is

aenerally required to treat the horizontal loads as moving

load and in that case the values of influence moments have to

be computed, i. e. t-he moments due to a horizontal load unity

at each panel point separately,, thus the conditional equations

are as follows':

For a load unity acting at panel point 1,( fig.- 34) "owergirder.

P R, = 0

xP, - R, 1

and M- = xm 1 + ylam2

For a load unity acting at panel point 2, (fig.35) at upperl girder,

-Pt - xz Rt = 1

Xo P1 -I TR = 0

and i = x 2m1 + y72 MR

t For the load condition shown in fig. 33, M = + l , 2H



4, Three-and- more-stor~ frames

The method of computation given above can be ex-

tended to the solut.ion of three and more story frames. There

are as many conditions of deflection as are number of stories.

From the load diagrams the elastic behavior of the frame

against the influence of horizontal loads will be given. For

any specific caze each condition of deflection gives a load

diagram and a corresponding sets of coefficients.. There

are always as many conditional equations as are unknown

coefficients'

To make the method more evident it is given below
-. •., .,,, .,, Ll , Cf, r,,, ,~,, f LL~,·

Lor a toerL suory fibE Iram h1n Ua.flectZio[n conU UiLUS W.imn I'hlr

corresponding moment, and load-diagrams (figures 32 a-c) and

the conditional equations for the determination of coeffi-

cients for each case of loading:

For the specific case s'hown in figure 40 the con,
ditional equations are?:

xP, - yR, + ~R -H,

NP, wR" - zR," --,

zP + xRI - H',
and the moments

M = xmi + yMa, + za3
the

If the horizontal loads are taken as moving load, then~condi-

tional equations and expressions for influence moments for

a unit load applied.at each panel point separately are as

follows':

For a load unity acting at first floor girder,Fig..37, the

conditional equations are":
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xlP, r. yiR, + agR s =

4P, -•R"j - aR," = 0

Z- P, *· R ' - y, =3 1

From which the coefficients xyy, and z, can be solved, The

moment expression is

M = x ai + y.mi.. + Z.as

For a load unity acting at second floor girder:,, fig.- 38, the

conditional e.quations are-:-

x 2 P,, .+ zR = 0

P2 - x22 R 7 -Z 2R "=1

z P, + 1R1 ' -, RS 2"=0

and the moment express:ion is

M2 = x2l., + y,2,m2 + z sa0

For a load unity acting at the top girder; fig, 39, the condi-

tional equations are:

x,P, - y•,R' + z-,R"'= 1

as2`P - xqR a023s =
z +P, + xsRI' "~ 3 R2' = 0

and also the moment expression is

M, = x.,m,1 + y m. +zm3, s

For the specific case; fig. 4po:,. the expression for total moment

due to the combined effect HI, 'H and:H, is given as.

M' HzM +'H2 M- +÷'HMs

In all these cases the signs of the moments should be taken

into due consideration.1

In computing the moments it is eecommended to use

t~e 4Follow;vy +fabLac f 0 r-v,;
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5. eial case-

The. usefulness of the methods is n.ot only limited

to cases discussed abbve, but it can be adopted in almost all

kinds of framed structure with some aodification. By means

of this method it is especially simple and exact for the s.o-

lution of truss-formed frames and truss-bents,,

Let take the case s-hown in fig. 41, a truss4f ored

frame., -It is evident that this truss can be considered as a

frame of the same type formerly considered except it is layed

in a horizontal position and, instead of one side, both sides

are fixed-, i.e. fixed at both supports-.: The deflection con-

dition can be so considered that:, while one vertical member

is subjected to a deflection A due to any vertlcal load, t-he

ends of other members joining this vertical are all subjected

to the same deflection, whi:le the rest verticals are kept in

their original position by some imaginary external forces.

HRere again the moments of all members due to the deflection

of each indevidual member for each deflection condition in

question are to be determiined and these moments combined to

give Ia moment diagram for each particular deflection condi-

tion. Figureha 43 gives the three cases of deflection condi-

tions with their respective moments and load diagrams;

For the case the truss being subjected to the loads

W1, W•, and Wa (fig. 4z) the conditional equations for solving

the coefficients x:, Y, and z are as follows':
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xP1  yR- + zR' I

-xR;"+yP, zR," =ZTh

xR 1 w yR' + zP, = W

and the moment expression is

M = xm i + Ym2 + z•aI

If the loads are to be treated as moving load;, a unit load can

be plased as moving from one panel point to the other and the

three sets of coefficients can be solved from similar equa-

tions given above.

To find the reactions A and B at the supports the

f,ollowing equations -hold':

xA1.'- yA2 + zAs = A

xB, - yB, + zB, = B

and A + B = ~I + W2 + Ta

If the truss and the loads are quite unsymmetrical

then there will be an imaginary horizontal force H acting at

the upper chords for each load diagram, fig.4:4. This force

is equal to the algebraic sum of the shears in the verticals,

or the unbalanced force in each case. We have now an addi-

tional deflection condition to consider, fig. 45. In figi 45

the value P4 is evidently equal to the algebrkic sum of F's

in fig. 44, and the values of Ri', R4 " and R" are equal to the

direct stress of the corresponding verticals, or the end

shear of the corresponding upper chords. The four coeffi-..

cients can be sdlved from the following four conditional

equations':



xP21 yR2 ' + zR '"+ vR4 ' = WI

xR`"+ jP,- .zR + vR" = VW

xR1M -yR" + P + vR 'I

-x1 -+ yR 2 + zH3 + VP 4 =0

and the moment expression is

M= X2 1 + 'i2 +z s3 + v1i,

In case that there is accually a horizontally applied load H

acting on the upper chordi, then in solvingthe coefficients

t:he left hand expression should be put equal to H, the applied

load, instead of 0.

If the truss is connected with two posts in the form

of a bent as shown in fig. 46, then another deflection condi-.

tion,fig. 47 , has to be taken care of and the conditional

equations will be raised to five in number.

6. Abstract on theory of determinants.-------------------

From the above discussion it is seen that for each

story of the frame there is an unknown coefficient. For

buildings more than fo•r- or five stories high, the solution

of these coefficients may be felt handicapped. It seems

to the writer that the use of the method of determinants

is preferable. The following abstract on this method is

taken from "Hawkes Advanced Algebra." and will be found

helpful in most cases.

a) Definations':

Let us solve the equations

ax + bly =C and a2 x + b2Y = c 2
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Multiply the first equation by b2 and the second by b1, we

obtain azb 2x + bzb 2y = b 2,c

ab x + b b,2 = bze

-ubtracting, we obtain (a,b 2 - a,.b.)x = b 2,c -bc,.

or if aib, , a.b L OI

x b 2 cz 1• and y= ac, c a ,-c1
azb 2  ab. aazb, a 2bb

We note that the denominators of the expressions for

x and y are the same. This denominator we will denote syn,

bolically by the following notatiod:

a z b 2 -a 2 b = a b
a 2 b2

The symbol in the right hand member is called a "De-

terminant". Since there are two rows and two columns, this

determinant is said to be of the "second order/ The left

hand member of the equation is called the " Development"

of the determinant.. The symbols a ,ba,a 2 ,.b - are called

" Elements "of the determinant, while the elements az and b2
are said to comprise its Principal Diagonal".

For a determinant of the third order, we may combine the terms

as fo.llows'-.

a1 bz c1

a2 b2 c2

a3 b9 cs

= a1 (b cz-bd c) - a,(bcc-, bec) + a (b •c-bc)

b2ý c bb e2 bi Cb .ci
b 

a+

Sb, 3, 3 a 'bs 3 c a bt c 2
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We observe that the coefficient of a1 is the determi-

nant ~that we obtain by erasing the row and column in which a1

lies;. A similar fact holds fEor ýthe coefficients of a, and a3.

The determinant obtained byýsing the row and column in which

a given element lies is called the ".'Minor" of that element.

0- c .

Thus 1 is the minor of a,, We notice that in the above
b3 c8

development by minors the sign of a given term is + or- ac-

cording as the sum of the number of the row and the number of

th'e columnof the element in that term is.even or old.

Rules.:

1. The development of a determinant of the nth

order is equal to the algebraic sum of the terms consisting of

letters following each other in the same order in which they

found in the principal diagonal but in which the subscripts

take on all possible permutations. A term has the positive

or the negative sign according as there is an even or an odd

number of inversions in the subscripts.

2. For the development of a determinant by minors

write in succession the elements of any row or column, each

muItiplied by its minor. Give each term a + or a, sign accor-

ding as the sum of the number of the row and the number of the

If in a series of positive integers a greater integer pre-

cedes a less, there is said to be an inversion, Thus in the

series 1 4 3 2 there are three inversions.
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column of the element in that term is even or odd. Develope

the determinant in each term by a similar process until the

value of the development can be determined directly by nul-

tiplication.

3. The value of one of the variables in the

solution of n linear equations in n variables consists of

+ ction whose den minator is the determinant of +he s s
r 1.o1 % CL. LIJ' .A' JIJLJ Ud . I LA U-L U.LL A b U

tem and whose numerator is the same determinant, except that

the column which contains the coefficients of the given

variable is replaced by a column consisting of the constant

terms.

Principles':

1 . If every element of a row or a column is

multiplied by a number m, the determinant is multiplied by m.

2. The value of a determinant is not changed,

if the columns and rows are interchanged.

3. If two columns or two rows are interchanged,
the sign of the determinant is changed-.

4. If a determinant has two rows (or two columns)

or any row (or column) being m times any other row (or column)

its value is zero.

5. If each of the elements of any row or any
column consists of the sum of two numbers, the determinant may

be written as the sum of two determinantsi

6. The value of the determinant is unchanged if

the elements of any row (or column) are replaced by the ele-

I



ments of that row (or column) increased or diminis-hed by a

multiple of the elements of another row or column.

A numerical. example for illustrating the use of determinants-

for the solution of the coefficients 6br high building frames

is given at the end of Part IV.

S..
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CON0CL ~ T ITNS.

As the least work method has the special merit for its

exactness, the method herein described possesses the preference

for its simplicity. The good features of this method can be sum-

marized as follows;

1. In applying this method it is not necessary to remember

any formula, as soon as the general principles involved are under-

stood.

2. The computation can be done with single slide rule opera-

tions. There is no long expressianito be computed, this lessens the

liability of making numerical errors.

3. As soon as the so-called characteristics have been comou-

ted for a given framed structure, the moments can be found for any

kind of loading. Influence table can also be prapared with graat

ease. With the same amount of work it does not seem to be possible

to do that in applpin~ both of the least work and the ordinary slope

deflecti on method.

4. The moments of all members and at all points of a member

can be comnuted at one time. This is illustrated in the example of

the three story-building.

5. Irregular structures and structures subjected to eccentric

load,-,as crane load, can be investigated without the least difficulty,

as the comnutation of characteristics and the seParation of moments

can be handled in usual manner.

6.- The amount of labor to be put in for investipgation can

vary according to the degree of accuracy required, as the separation



of moments is quIte elastic. It can be carried from a fairly ac-

curate result to one, which is almost exact.

7. The variation of cross section of a member can be

taken care of, as it only involves the additional labor to multi-

ply the slope ang-le by a constant.

The writer wants to add a few words on the necessity of

a close investigation for buildings by this method. It is a well-

known fact that for hiýgh buildings. on account of wind load and the

econony of the structure, a close investigation is always necessary.

For ordinary buildings up to four to five story high such investi-

gation has never been attempted in ordinary office practice, because

the engineer a do not deem it lustified to snend the labor and time

to do it by means of exact methods Iknown to them. Now as simnle as

this method appears, it seems to the writer that it does pay the

small amount of labor involved in this method, for it eliminates the

"'uesswork which is p'enerally madei in desiýninF. wall columns or

columns subjected to crane load for ordinary office endm_ mill build-

in-5s.
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