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Abstract
The use of substantial amount of exhaust gas recirculation (EGR) via the technique of flow

stratification in-cylinder was investigated to improve the fuel economy of spark ignition engines
under part load. The fuel economy gain is achieved by reducing the pumping loss with EGR
while the stratification enables stable combustion at high levels of EGR. By doing so, the ability
to control NOx emissions using the three-way catalytic converter is also retained. To realize this
goal, a new method of supplying EGR to achieve in-cylinder stratification was incorporated and
experiments were performed to demonstrate the concept.

A new transparent engine facility was constructed to assist the development of the stratified
EGR strategy. In order to minimize the mixing in intake port, to maintain the stratification in
cylinder, and to obtain fast burn, an intake flow control system was realized by using solenoid
valve-controlled EGR injection. Qualitative measurements of in-cylinder flow motion at
motoring condition were carried out with visualization techniques such as planar laser-induced
fluorescence (PLIF) and Mie scattering to obtain information on the mixing process during intake
and compression. The engine was operated at firing condition to assess the engine performance
operating in a stratified-EGR mode. Cylinder pressure measurements were used to gain
information about the combustion process. A new combustion model incorporating mixing and
flame stretch factor, which is believed to be significant, especially under the diluted mixture
condition, was developed to examine flame propagation properties under the stratified condition.

The visualization results of PLIF showed that the stratification between air/fuel mixture and
EGR gas was relatively well established during the intake stroke. There was, however,
significant mixing in the late part of the compression stroke. This process may be explained by
that large scale tumble motion was introduced into the cylinder during the intake stroke, and that
the organized motion broke into small eddies during the compression stroke and hence resulted
in the substantial mixing then. Performance comparison between the engine operating with the
homogeneous mixture and with the stratified mixture illustrated that the stratified mode had
greatly improved fuel consumption and had provided stable combustion at high dilution ratio.
The observed trend on the burning process could be reproduced reasonably well by the model.
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Wai K. Cheng
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CHAPTER 1 Introduction

Fuel economy improvement has been a challenge for engineers working on engine

engineering. There have been tremendous efforts in this area since the birth of internal

combustion engines. Diesel and lean burn technologies for fuel economy improvement are well

established. Severe requirements on engine emissions, however, have limited the application of

these combustion systems because the current three way catalytic converter cannot be used for

NOx reduction in oxygen rich condition. Although under intense development, NOx catalyst with

high conversion efficiency under lean condition does not appear to be feasible in the near future

due to the difficulty of the technology. Therefore, there is a significant interest in improving the

fuel economy of SI engines running under overall stoichiometric condition.

The objective of this thesis is to assess the feasibility of operating an engine under

very high extent of external EGR. The overall charge would thus remain stoichiometric and thus

the exhaust is amenable to three way catalytic treatment. To alleviate the unstable combustion

under very dilute condition, a stratified charge strategy is explored: the external EGR and the

fresh charge (which is stoichiometric) are kept separate in the cylinder through the appropriate

design of the charge motion. Ideally, if there is no mixing between these two parts of the charge,

the flame would propagate only in the undiluted fresh and hence there would be no combustion

problem. In practice, there would always be mixing and the overall combustion behavior needs to

be examined.

In the following, some background on various lean/dilute combustion strategies is first

discussed. Then the subject of this thesis- study of a stratified EGR strategy for SI engine - is

introduced.

1.1 Previous studies

The major fuel economy benefit via using a lean or dilute combustion strategy comes from

the reduced pumping loss in part load operation; there is also thermodynamics benefit in terms of

the lower level of dissociation in the burned gas and of the higher specific heat ratio particularly

for the lean burn case. The lean and dilute strategies are briefly reviewed in the following.



1.1.1 Lean burn engine

Improvement in fuel economy has long been the primary factor driving lean burn

development. A theoretical analysis showed that heat capacity effect and pumping work effect

were the primary incentives [1,2]. The stable and complete combustion at the very lean air/fuel

ratio is essential for lean burn implementation.

As the mixture is leaned from a stoichiometric condition, the energy required for combustion

initiation increases. Much effort has been applied to the ignition of highly lean air mixtures. The

flame speed also reduces significantly. Dual or multiple spark improved the fuel economy by

about 5 % by reducing combustion duration [3-5].

Extension of the lean combustion limit could be achieved through the appropriate

enhancement of the turbulent motion in the engine. Controlled charge motion and turbulence

generation are used to realize a fast burn combustion system with a conventional ignition system.

High swirl was generated by adopting the swirl control valve and optimizing the intake port

design [6]. When an advanced engine management system and a variable-swirl system with a

variable valve timing/lift mechanism were applied, the fuel economy improvement of 12 % was

achieved with lean, homogeneous charge engine.

Another approach to intensify turbulence and to extend lean limit was using the tumble

motion in cylinder. By using the effects of turbulence enhancement and the charge stratification

realized by tumble, a significant combustion improvement could be realized in the extremely lean

conditions such as the air fuel ratio of 30 [7]. The fuel distribution and flow structure in cylinder

was optimized by intake port partitions and tumble control piston [8].

1.1.2 Engine operating at high level of charge dilution

The increase of the amount of EGR gas does help the fuel economy. The improvement in

fuel consumption at part load condition with increasing EGR gas at constant brake load is mainly

due to the reduced pumping work. There are also other beneficial effects of EGR; reduced heat

loss to the walls because burned gas temperature decreases remarkably, and the reduction in the

degree of dissociation in the high-temperature burned gases [9,10].

There are attempts to increase the amount of EGR gas usage through different methods

without combustion degradation. One research has shown charge separation in cylinder by using

a swirl motion supplied through an additional induction port [11]. The gain in fuel economy was



shown to be 10 % increase in the experimental engine. The gain is largely due to the decrease in

pumping loss with EGR gas increased. The geometry of that research engine, however, was too

complex to be applied to a real engine even if there are promising results in fuel economy.

Recently, the concept of EGR gas stratification was applied to the modem four valve engine

[12,13]. This research was based on an engine geometry with two intake ports; one intake port

was used for the fuel-air mixture and the other one for the EGR gas at part load condition.

Therefore the flow stratification in cylinder was introduced through the intake flow separation.

Experimental results showed that the engine could operate at over 25 % EGR rate and under

certain condition nearly 40 % EGR rate. The spark plug of the research engine was located off-

center or two spark plugs were required for the proper flame propagation. This arrangement was

necessary because only the half of cylinder was supposed to be filled with combustible mixture

under part-load condition.

1.2 Objective and approach

The objective of this thesis is to assess the feasibility of operating an engine under the very

high extent of external EGR. The strategy is to use a stratified charge concept so that the fresh

mixture is separated from the EGR gas which forms the remaining part of the charge. This

separation would enable robust combustion in the fresh mixture, while the EGR gas would serve

as a "buffer" in the charge. Therefore efficient part load operation may be possible by controlling

the amount of EGR gas, rather than by the throttling the induction flow. It would be better if we

could use air rather than the EGR gas as filling substance in the cylinder. But the additional air to

the stoichiometric mixture makes the overall air-fuel ratio lean and prevents the usage of three-

way catalytic converter for NOx control. The EGR gas is definitely required in order to meet

NOx regulation in the future. The availability of EGR gas for improving fuel economy can be

fully obtained in addition to the NOx control if a substantial amount of EGR gas can be used in

cylinder.

With the limited research on the relation between stratified EGR gas and combustion

properties, it is not clear how much benefit on the fuel economy from stratified EGR could be

expected, but the effect of different non-uniformity on combustion properties with arbitrary

controlled EGR mixing is able to be investigated.



1.3 The engine concept

The concept of the stratified_EGR combustion system for part load operation is shown in

Fig. 1.1a and b. The intake system is set up to induce the strong tumble motion which persists

through the combustion process. The purpose of the strong tumble is to maintain a separation of

the mass elements of the charge across the cylinder bore by trapping them in the strong vertical

vortex, while at the same time, providing good mixing in the axial direction within the cross-

section of the vortex to promote combustion.

In the proposed system, stratification is to have the fresh mixture at the center part of the

barrel vortex and EGR at two sides. With this configuration, the spark plug would conveniently

be located at the center of the combustion chamber. Other benefits of such a system are that the

heat transfer to the walls is less because combustion gas is buffered by EGR regions, and that

hydrocarbon emissions are less because the piston crevice is less exposed to the fresh mixture.

The EGR stratification is obtained by partitioning the Siamese intake port, shown in Fig.

1. b, so that the fresh mixture would enter the center of the cylinder through the center half of

the intake valves; and EGR would enter the two sides of the fresh mixture. Several design issues

of the intake system are critical to the success of the combustion system.

* The intake system should provide enough tumble motion to maintain a barrel stratification.

This requirement is different from that of the usual tumble design engine. In the latter, the

tumble is designed to break up into small scale turbulent eddies at the start of the

combustion process so as to promote turbulent burning. The current configuration

requires that the large scale tumble motion persist throughout much of the combustion

process to maintain stratification. The requirement is especially difficult at low rpm and

low load at which Reynolds number is small.

* The combustion within the stratified vortex should be fast to have a satisfactory

performance. Thus the turbulence within the barrel vortex should be high to promote

combustion. This is a requirement in contradiction to the previous one and compromise is

required.

* The EGR induction system has to be controlled so that there is pressure balance between

the exhaust gas flow and the flow of the fresh mixture to prevent mixing during the intake



process. Also because the supply pipe in the intake port does not form a complete gas

seal, the EGR has to be switched off when the valve is closed to prevent backflow of the

EGR into the fresh charge part of the system.

1.4 Engine development procedure

A critical element in this research is dependent on the realization of the flow stratification in

cylinder in order to increase the amount of EGR gas through the optimum flow control. With this

approach, the three-way catalytic converter could be retained for NOx emission control and fuel

economy also can be improved. The critical issues in the application of this method were

defined.

The objective was achieved by demonstrating the feasibility of stratified EGR engine

concept by constructing and operating such engine. The approach is described in the following :

1. Design and development of engine with visualization feature and firing capability

A quartz transparent liner was developed for visualization and a metal cylinder was used for

firing; although the firing could be done with the quartz cylinder as well. Key features of the

production engine were maintained as much as possible in developing a transparent engine.

2. Assess system performance in terms of flow stratification during the induction and

compression period with PLIF and Mie scattering technique

Laser diagnostics were applied to assess the system performance. Recently, the planar laser

induced fluorescent (PLIF) technique has become an important tool for engine research, as it can

provide spatially-resolved measurements of species concentration. Using acetone as the tracer

gas, the technique characterizes stratification and mixing in the engine. Mie scattering technique

was applied to investigate the formation of tumble motion from the intake flow and its

subsequent decay into small eddies during the intake and the compression stroke.

3. Evaluate the system performance at a firing condition



The engine performance was evaluated with a firing test at selected system operation

conditions.

4. Combustion model for the stratified-EGR engine

The flame propagation, which is not easily measured during combustion, was assessed by

using a quasi-dimensional model to examine its effects on the engine output.



CHAPTER 2 Apparatus and diagnostics

2.1 Experimental procedure

Because charge separation is essential for the successful operation of the stratified EGR

concept, a transparent engine was designed so that the in-cylinder flow field could be visualized.

Of vital interest is the mixing between the fresh mixture and the EGR gas. Another critical

element is the design of the intake system that introduces an artificial external EGR to the

engine. The followings are the detail description of experimental apparatus and diagnostics.

2.1.1 The transparent engine

The key issues in the transparent engine design are to keep as much as production engine

condition and obtain a full stroke view. This concept was achieved by using production piston,

piston rings and operating with limited lubrication for motoring and firing as well as using whole

cylinder liner of glass. The engine performance could be assessed on the same engine simply by

replacing cylinder liner for each experimental purpose including visualization and firing.

The single cylinder engine was designed for lean/stratified_EGR mode operation and to give

a good optical access while maintaining most of the features of a typical production engine.

Engine specification is shown in Table 1. The production engine was modified to a single

cylinder engine by operating one of 4 cylinders of a DAEWOO four-cylinder 1,500 cc engine.

Figure 2. la and b are intake side view and exhaust side view respectively. Figure 2.2- 2.3 show

the overall assembly view.

The engine head was raised from the block and supported by six columns and plates, which

are shown in Figure 2.4 and Figure 2.5 for details. Extended cylinder liner for visualization and

firing purpose was fitted in between them. The piston was connected by a spacer to the original

piston. Figure 2.6 contains the detail for the spacer. In this manner the full displacement volume

could be accessed optically. Piston ring gap was increased to around 1mm, which is larger than

that of the production engine around 0.15 mm range because the larger thermal expansion of

piston and ring than quartz at a high temperature operation caused the excessive scratch on the

wall.



The cylinder liner for visualization was made of quartz (Fused Quartz GE Type 125). This

quartz has over 90 % transmittance at over 300 nm wave length and lower mechanical strength

than sapphire, which is a preferred material used in transparent engines [14]. Quartz was selected

for this research because it is not expensive, and easy to machine and polish compared to

sapphire. Since the transparent engine was operated in motoring condition for the most part and

firing for the limited time, the mechanical property of this material is not as critical. The 7 mm

thickness of liner was calculated to be sufficient for mechanical strength. The cylinder liner for

firing test was made of mild steel with the same thickness as the glass cylinder. The dimensions

for the cylinder liner are shown in Figure 2.7.

The cylinder liner was fastened to the cylinder head by four head bolts and a support bracket,

which are shown in Figure 2.8 for details . This configuration allows easy assembly and

disassembly of the liner without taking the head off in order to clean the liner surface during the

experiment. The contacting surface between the quartz cylinder and the aluminum cylinder head

and the support bracket was cushioned by a rubber gasket.

Lubrication oil, which was bypassed from oil pump, was supplied onto the bottom of the

extended piston. Since engine oil was supplied at a high pressure, the oil jet hit on the bottom of

the piston and splashed onto the cylinder liner, which made oil distribution relatively even on the

liner as much as possible . The oil supply valve was turned off after a small amount of oil was

supplied for motoring test to keep the window condition clean. But for firing test with metal

cylinder, continuous supply was kept for lubrication and cooling purpose. In order to prevent oil

splash to outside, four pieces oil splash guard was mounted between bracket and cylinder block.

For oil return into oil sump, two holes were incorporated in the bottom piston. Oil drain

performance was not enough during engine operation due to the piston movement and the oil

supplied but not drained continuously contributed to lubrication until the engine stopped. Two

suction lines were mounted on the guard plate to take out the blow by gas.

Valve timing system was developed because the original belt driving system could not be

used to make enough room for the extended cylinder liner. The new cam sprockets and crank

gear of production engine were replaced with new ones: the gear for cam drive(Gates P80-5M-

25) has 38 teeth and crankshaft gear(Gates P40-5M-25) has 19 teeth. In order to maintain enough

belt tension, an auto tensioner supplied with the production engine was used. And an idler was



installed between crankshaft gear and exhaust gear to hold enough wrap angle. The cam driving

belt(Gates 16905M25) has the same tooth profile and width (25mm) with gears.

Later one transparent acrylic panel was mounted near the quartz cylinder on the front side for

safety, which is strongly recommended for firing test to prevent any injury due to explosion. As

previously described, quartz itself with 7 mm thickness is strong enough for firing. But when the

quartz cylinder was used for a long time, the scratch on the wall made the mechanical properties

of quartz weaker and high pressure after misfiring or some knocking conditions caused

explosion.

2.1.2 Artificial EGR gas supply and control of mixing

Since it is not easy to change the casting of the cylinder head, an adapter was made and

inserted into the intake port. The adapter has two functions: one is to generate in-cylinder tumble

motion; the other is to divert the flow of EGR gas and fuel-air mixture into the intended region of

the cylinder respectively to minimize mixing during the supply stage.

The fuel-air mixture was inducted to the intake port close to the cylinder center with the

main flow pipe and EGR gas was inducted to the remaining area through the adapter of EGR

pipe as shown in Fig 1.1. Thus the fresh fuel-air mixture is located around the center part of the

combustion chamber and EGR gas forms a buffer at each side of fuel-air mixture. This

configuration has the advantage that it would allow a centrally located spark plug to be used. By

buffering much of the piston crevice with EGR gas, the crevice HC mechanism also could be

reduced.

EGR gas supply pipe was divided into two branches at the intake port to supply EGR gas to

each branch of the runner in the Siamese port. Shear between the EGR gas flow and the fuel-air

mixture flow is minimized to prevent mixing between them. EGR gas supply was controlled by

solenoid valves to be synchronous with the intake event.

The adapter design was based on the geometric limitation of the intake port and performance.

Table 2.2 shows the dimension of tumble adapter and velocity ratio.

2.1.3 Instrumentation and data acquisition

Dynamometer and speed control: DC dynamometer was installed on the test bed. Engine was

mounted on test bed with rubber damping and coupled to the dynamometer through a universal



joint. A motor was connected to the water pump to circulate coolant and closed loop cooling

circuit was adopted for dynamometer cooling. A thermocouple is mounted in the coolant

reservoir to monitor the coolant temperature. Dynamometer controller (Digalog Model 1022A-

STD) was connected to the dynamometer and installed on the engine control panel outside

engine room.

Engine cooling: Another motor was mounted on the test bed to operate the engine coolant

pump. Engine originally has a coolant pump mounted in the engine front side. However the pump

was modified in order to operate the belt driving system. Water cooling was not needed for this

work in order to keep uniform temperature around the combustion chamber as much as possible

because the cylinder liner cooling depends on air convection.

Crank angle and piston positioning: An optical shaft encoder, BEI motion systems Model

H24E-FI8-SS-360, connected to the crankshaft, was used to indicate crank angle. For

compression BDC reference signal, an optic sensor and a rotor with slot were installed at the end

of the exhaust camshaft, where a production distributor was mounted. This sensor generates one

pulse per rotation. The signal combination of the shaft encoder and the optic sensor was used to

set the reference signal for the bottom dead center before compression stroke.

Mixture preparation and metering: Air passing through the laminar flow element and the air

cleaner element was inducted into the mixing tank. Air flow rate was measured with a laminar

flow element (Meriam 50MW20-2, 40 CFM@8" H20 accuracy '/_ 0.5% of full scale): the

pressure drop across a matrix of small flow channel in which the flow is laminar is related to the

volume flow rate.

Propane was continuously supplied to the mixing tank. The supply pressure of propane was

kept to 20 psi and the flow rate was controlled with valve for the required amount of each test

condition. Throttle valve was mounted between mixing tank and intake manifold. Since only one

cylinder was used and intake manifold was modified, a plenum with 10 times as much as engine

displacement was added to minimize the induction pressure pulsation effect due to the long

induction system. Intake manifold temperature and pressure were measured to monitor an

operating condition. Figure 2.9 shows the calibration curve of intake pressure sensor(Model

Tanyx SA 25, 0-25 psi range)



Exhaust gas A/F was measured with a broad band AFR analyzer (Horiba Model MEXA-

1 10 X). With this A/F value, fuel flow rate was calculated. Output signal was also connected to

the data acquisition computer.

Spark ignition: Spark timing is set at a specified value with a reset counter (DCI model 304).

Spark trigger signal was sent to ignition driver. In order to reduce ignition signal noise and

ignition malfunction, photo power TR was used. There was a significant ignition problem and

pressure signal noise when the spark plug with pressure transducer(Kistler Model 6117A) was

used. The reason for ignition problem with this spark plug was assumed as this spark plug did not

carry any resistance inside due to space limitation for pressure transducer mount. Some

improvement was made when 20 K ohm resistance was inserted between spark plug and high

tension cable. But still abnormal misfiring occurred. This spark plug was replaced with a

conventional spark plug ( Champion Model BRK6E)

Cylinder pressure measurement: The spark plug type pressure transducer was used initially

because no modification in the cylinder head to mount transducer was needed. As mentioned

above, that pressure transducer had significant noise problem due to the spark plug malfunction.

Therefore another pressure transducer (Kistler Model 6051A) was mounted in the cylinder head

and used together with a dual mode charge amplifier (Kistler Model 5010) to measure cylinder

pressure.

EGR(inert gas) flow rate: High pressure inert gas supply was required to meet mass flow rate

needed for the experiment at a large dilution rate. Air is inert gas for lean burn and Nitrogen (N2)

gas for EGR operation. Two solenoid valves (Kip Inc. Model 241015-02, '/8" orifice) were used.

For supply system configuration, refer to Figure 2.10. Another laminar flow element ( Meriam

50MW20-1-'/ 2", 22 SCFM @ 8" H20 ) was installed to measure the flow rate. Hereafter external

EGR means N2 gas.

Cylinder wall temperature and exhaust gas temperature were monitored during engine

operation to prevent engine overheating.

Data acquisition: For firing test, cylinder pressure, intake pressure and exhaust A/F signal

were acquired in IBM compatible PC, in which Global Lab data acquisition interface card and its



associated software were installed. Data were recorded on a 1 deg crank angle interval by using

the pulse per crank angle from the shaft encoder as an external clock. The bottom dead center of

compression stroke was added to the pressure signal to get cycle reference. At least over 600

cycles were gathered at each test condition and about 100 consecutive cycles per test were

acquired. Figure 2. 10 contains major components of the experimental setup.

2.1.4 Experimental setup for visualization

Since the tumble adapter for main fresh mixture flow was designed to generate a strong

tumble, LDV test or other technique to quantify the turbulence intensity or flow velocity at each

location might be needed in order to assess the performance of adapter. However, it is expected

that the adapter, designed based on generally accepted knowledge for strong tumble generation

should introduce higher level of tumble strength than base level. Even though the tumble ratio

might not be optimum for this test condition, its contribution to stratification in the cylinder

could be assessed with visualization test. Therefore visualization test was adopted to assess the

system performance in terms of tumble motion and stratification..

Two kinds of visualization technique were used to get flow field information during

induction and compression stroke at motoring condition. Experiment was done at the same

condition as that of firing condition: the engine was operated at 1000 rpm and WOT by

supplying high pressure(20 psi) inert gas, which makes 30 % inert gas fraction.

2.1.4.1 Mie scattering flow visualization

The purpose of this test was to visualize the tumble motion introduced and formed in the

cylinder. Baby powder was used for tracer for flow visualization, the particle size of which is

less than 10 gim. The particles were supplied into one of inert gas supply lines to have clear

streak line with a small amount of tracer. The tracer was illuminated with Argon-Ion laser, Model

95 Lexel, of continuous beam with a power output of 2.5W at a wavelength of 514 gm. Laser

sheet with 1 mm thickness was formed with cylindrical lens and passed through the center line of

one of intake valves. Intensified CCD camera (Model 576SE) was used to take pictures of

scattered particles. The camera was connected to a .camera control unit to synchronize with

engine operation. Images were transferred to IBM compatible PC with 16 bit, slow scan (1 frame

per 8 cycle ). The images with the resolution of 576 x 386 Pixels were monitored on screen with

data acquisition software, Winview, supplied by Princeton Instruments, which was used for

image analysis.



Figure 2.11a shows the schematic of the experimental setup. Since the laser emits the

continuous beam, the camera and seed supply was synchronized to take pictures at the intended

crank angles.

2.1.4.2 Planar Laser Induced Fluorescence(PLIF) flow visualization

This test was to estimate the level of stratification and mixing process during induction and

compression stroke. The laser utilized in this test was an XeCl-excimer laser(Lamda Physik

Compex 102) with a power output of approximately 112 mJ at a wavelength of 308 nm and a exit

beam size(7x22 mm). The laser beam was formed into a thin sheet (0.7 x 38 mm ) with two

cylindrical lenses and slit and directed through the quartz cylinder. The camera operation and

data acquisition in PLIF test are the same way described in 2.1.4.1. Acetone (Dimethyl ketone, or

2-Propanone) CH3-CO-CH3 was used for the fluorescence tracer because it is easy to vaporize it

even with motoring condition owing to the low boiling point (58 'C). It absorbs over a broad

band of wavelengths (225-320nm) with a maximum between 270 and 280 nm. The fluorescence

emission is broadband in the blue (350-550nm) with peaks at 445 and 480 nm and a short

lifetime of less than 4ns. Details are given in Table 2.3. Since the wavelength of XeCl-excimer

laser is 308 nm, the absorption efficiency is not good [15-16], but in this test, the sufficient

amount of acetone was supplied through one of inert gas supply lines by Venturi effect and

gravity to have enough fluorescence light intensity. Acetone has been used for a tracer for the

measurements of planar fuel distributions and the progress of turbulent mixing formation by

planar laser-induced fluorescence [15,17].

The schematic of the experimental setup for PLIF is shown in Figure 2.1 lb. The camera,

laser and seed supply were synchronized together.

2.1.4.3 Shadowgraph flame visualization

Flame propagation was supposed to be measured with Shadowgraph technique. The setup for

this experiment is the same as that of typical Shadowgraph test [18], which consists of two

spherical mirrors and 350W mercury arc lamp as a light source. Cylindrical lens was tried to

improve the aberration problem due to the curvature of cylinder and the area near the side wall

was not considered for experiment because this area was expected to be distorted or expanded

due to the aberration.



2.1.4.4 System synchronization

Since the supply of inert gas was controlled with solenoid valve timing, the dynamic

characteristic of solenoid valve should be assessed to have a precise control of supply timing.

Simple rig test was done to examine it. The results showed 8 ms time delay for opening and 26

ms duration for closing.

Figure 2.12 shows the process chart of the control of laser and camera for PLIF test.

Considering the travel distance of trigger signal and light, the exposure time(15 gs) covers all

fluorescence lifetime (4ns) but not phosphorescence lifetime (200 Rs).

2.1.5 Experimental setup for firing test

Most experiments were performed at the constant engine load based on conditions and the

constant engine speed, 1000 rpm, which are generally used for the experimental engine test for

performance and visualization together. Since engine was operated at air cooling condition with

the metal cylinder, engine was needed to be cooled down to prevent overheat, which becomes

less than 3 min.

Profane was used for fuel because gas fuel enables us to assess the flow motion effect separately

without consideration of fuel vaporization effect. Homogeneous mixture was made in mixing

tank by supplying inert gas, air and fuel. For stratified mixture, air and fuel were completely

mixed before the mixture arrived at the intake port and inert gas was supplied through solenoid

valve.

2.2 Experiments

2.2.1 Engine motoring

Since the engine was cooled down via convection rather than water cooling, the duration of

engine operation was limited to prevent any possible damage on quartz liner due to overheating.

Even though engine lubrication oil was supplied into the piston, its main purpose is to prevent a

solid contact between the piston ring and the wall but it did not contribute to cooling the engine.

Therefore the duration of engine operation had to be confirmed. Engine was motored to see the

temperature variation of outside of the quartz wall and bottom of the piston. The temperature of

the piston was measured to estimate the temperature of inner wall of quartz. Since quartz is weak

to the big temperature gradient, the gradient was monitored. No fan to cool down the cylinder



was used to maintain a uniform temperature because quartz does become stronger as it gets hotter

and uniformly hot operation is preferable.

Figure 2.13 shows temperature variation of the bottom of the piston and the outside wall of

quartz cylinder. Since the thermocouple for the outside wall of quartz cylinder was mounted near

the cylinder head, temperature was expected to be highest value. The heat generation during

motoring is largely due to compression pressure and friction between the piston ring and the

wall. The temperature increase on the wall is less than that of the piston, which indicates the low

conduction characteristic of quartz material.

The temperature variation of the outside wall of the metal cylinder is illustrated in Figure

2.14. Compared with Figure 2.13, the temperature gradient in the metal wall was smaller than

that of the quartz cylinder.

2.2.2 Flow visualization

Several measures were taken to improve the quality of obtained images. All experiments for

visualization were targeted for the qualitative assessment on tumble motion and stratification.

2.2.2.1 Mie scattering flow visualization

A lot of trials were needed to obtain good pictures. The biggest problems were to keep

window clean and to have enough image intensity. Once particles were supplied into the cylinder

and stuck on the cylinder wall, it was hard to take them out even though most particles in air

were removed form the cylinder during exhaust stroke. Engine oil did help clean the window a

little bit, but it was not enough to maintain a clear view because the camera could take only one

picture per 8 cycles. When the amount of particles was small, the scattered light intensity was not

enough to see flow motion. Smaller particles around 1gm size were tried. But the light intensity

was also not enough even though the problem of maintaining the clean window was lessened.

The bigger particles around 50 gm were investigated to enhance the light intensity, but with the

possible damage on the quartz wall considered, it was not tried.

Pictures were taken with baby powder at 75, 120 deg ATDC of the intake stroke and 90

BTDC compression stroke. In order to capture the streak line , the exposure time of the camera

was 333 [t sec (2 deg).



2.2.2.2 PLIF flow visualization

The engine with quartz cylinder was operated at motoring condition. Usually the flow

characteristic differences between motoring and firing results from the residual gas back flow

dynamics and its impact on intake flow. When induction flow was guided by the pressure

difference between intake port and cylinder, backflow dynamic could make a big difference

between them. However, it is expected that even though supplementary inert gas flow was

affected by the back flow dynamics, the inert gas flow would keep the same flow response

characteristic at motoring as firing flow response because it was supplied with high pressure.

Engine was operated at WOT and 1000 rpm, 1500 rpm with 30 % EGR supply. Since'the

difference between front and side view of cylinder was supposed to indicate the level of

stratification, the pictures for both side were taken.

Each data set has at least 10 frames; the first 1 - 3 frames are for the background and later

frames for the data. The reason for taking the background on each data set is that the amount of

engine oil or other fluorescent material attached on the cylinder wall was different, which made

the different level of background noise. Before gathering the data at different condition, engine

was motored at least 1 minute to remove all acetone remaining in the cylinder after each test.

Pictures were taken at 30, 45, 60, 90, 120, 150, 180 ATDC of the intake stroke, which includes

intake stroke and exhaust stroke.

Rig test for calibration was done. Since there was a strong background noise, it was required

to make calibration on the data. The followings are the procedures to take pictures for

calibration:

Step I Fill acetone in the cylinder and stay for more than 10 minutes

Step 2 Take pictures at 30, 45, 60, 90 and 120 deg crank angle

Step 3 Take out all acetone from the cylinder with the vacuum pump and take pictures

at the same angle for the background image

Another calibration test was to assess image deformation due to the curvature of the cylinder

wall. The scale with 1mm unit was inserted into the quartz cylinder and pictures were taken.



2.2.2.3 Shadowgraph flame visualization

Rig test was carried out to examine the aberration effect due to the cylinder wall curvature

and thickness. The results indicated that the wall was found to act like lens with multiple focuses.

Since the vertical direction was not distorted so much, firing test was carried out hopefully to

take a picture on the flame profile. Figure 2.15 shows that it was hard to figure out images due to

the resolution limit of the camera and the engine oil images on the wall. The trial to take a

picture on the flame through the curvature glass with Schlieren or Shadowgraph technique could

be found in literature [19-20].

The conclusion from this trial is that pictures should be taken with the wall dry without any

lubrication oil because engine oil made a significant problem on clear images and a special

equipment or modification is demanded to improve the aberration problem.

2.2.3 System performance

Intake port pressure was measured to monitor pressure wave characteristics. Differences in

pressure between the intake port and the cylinder drive the flow through the intake valves. The

pressure characteristic was supposed to indicate the difference of the injection strategy.

The pressure in the volume of supplementary inert gas was measured. The purpose of the

pressure measurement was to confirm whether the pressure wave characteristic possibly affects

the flow rate when a different solenoid valve timing was applied. The performance of the

solenoid valve was confirmed. Since the solenoid valve has its own response time, the system

response time including the flow rate, pressure wave characteristics and so on was required to be

measured to make precise control as much as possible.

2.2.4 Engine performance

Since pumping loss is heavily involved in part load condition, the system performance would

be better at part load condition. However, the induction momentum of air/fuel mixture and

supplementary inert gas could not be strong enough to maintain the stratification strategy.

Therefore combustion stability would be worse.

Engine firing test was carried out to directly measure the performance of the system at each

case. Even though the purpose of this work is to investigate the strategy of stratified-EGR mode

operation, the lean burn test also was done because the stratification strategy could be applied to

extend lean limit. Air in lean condition is also inert gas, but excess oxygen will contribute to

combustion positively compared with nitrogen. Therefore the comparison between lean burn and



EGR burn in terms of the performance of stratification strategy was another interest. For

performance comparison, the experiment for reference condition was done first. Emission test for

HC was carried out to examine the engine operation condition including leakage etc.

However, from the beginning, it was recognized that attempts to assess the performance

improvement with this concept by directly measuring the performance at each condition would

be difficult and not central to the study at hand. It was decided, therefore, to conduct a set of

experiments comparing two cases; one where mixture was homogeneously mixed, and the other

with stratified mixture in the cylinder.

The experimental conditions executed are shown in Table 2.4. For each experiment and each

case, cylinder pressure was collected for a large number of cycles. When the wall temperature

reaches 80 deg 'C, data collection was started. During operation, the fuel flow rate was

maintained as a constant value by supplying fuel at higher than atmospheric pressure. Spark

timing was swept to have the maximum engine performance at each experiment. In order to have

the maximum performance at each experimental condition, engine was operated at MBT

(Maximum spark timing for Best Torque) spark timing.



CHAPTER 3 System performance analysis

In this chapter, system performance analysis techniques are described. The analysis is based

on the following. i) The pressure data; results are used to evaluate the difference between the

stratified EGR and the homogeneous lean burn analysis. ii) The image data from LIF

measurement; the data are used to evaluate the in-cylinder mixing process during the intake

stroke.

3.1 Analysis of pressure data

Since the performance of engine is based on the processing of cylinder firing pressure,

pressure data analysis and interpretation of the statistics of the results are the engine diagnqstic

tools. In this work, the primary objective is to extend the misfiring limit of the usage of the

charge dilution further than could be achieved in a conventional way. The cyclic variation of

combustion is significantly involved when the engine was operated close to combustion limit;

frequent misfiring mass occurs.

Intake pressure was used to set the reference pressure of the cylinder pressure in every cycle

to eliminate the effects of possible signal drift. Figure 3.1 illustrates the mass flow rate, intake

pressure wave characteristic and cylinder pressure at motoring condition. The trend in Fig. 3.1 a

is not linear and these trends change with the engine speed and the valve timing. Each curve of

Fig 3.2b shows the intake pressure wave characteristic at each average intake pressure, shown in

the legend. The nonlinear flow rate is largely due to the pressure wave characteristic during the

intake stroke. Sudden pressure increase when the intake valve is opened, which is clear when

intake pressure is low, seems due to the backflow of the cylinder mass into the intake port. For

the reference pressure of cylinder pressure, the average pressure value of the intake pressure was

used.

Pressure data was used to calculate work transfer from gas to piston. The gross indicated

mean effective pressure (IMEP), gross indicated work per cycle normalized by the displacement

volume, was used to indicate the engine performance. The gross indicated work was defined as

the work which is delivered to the piston over the compression and the expansion strokes only.

The maximum cylinder pressure, crank angle at which the peak cylinder pressure occurs and the

rate of pressure rise (dP/dO) were investigated because these pressure-related parameters can

easily be measured through the pressure transducer.



3.2 Heat release analysis and statistics

In order to obtain the information about the fundamental characteristics of burning process,

the cylinder pressure analysis is necessary to separate the effect of combustion from the effect of

volume change, heat transfer, leakage, etc. Such analysis is referred as a heat release analysis

and is based on applying the first law of thermodynamics to cylinder contents, in which the

pressure changes can be related directly to the amount of fuel chemical energy released by

combustion.

The two most common approaches to calculate the mass fraction burned from the measured

cylinder pressure data in a spark ignition engine are one zone model and two zone model. One

zone model is based on the assumption that combustion chamber contents are treated as a single

zone. In two zone model the combustion chamber is divided into burned and unburned zone. The

advantage of two zone model is that the thermodynamic properties of the cylinder contents -can

be quantified more accurately because it is obviously based on a more realistic picture of the

combustion process than one zone model. The disadvantages are that the geometric location of

each zone must be estimated, and in order to decide the composition of the gas flowing into the

crevice additional assumptions are needed.

To simplify heat release analysis, one zone model was applied to all the cylinder pressure

data collected for each experiment. This model has been developed and used for various

applications within Sloan Laboratory [21-23].

Since details of the one zone model have been described in [21], the essential basics used for

this work are the subject of this section.

By applying the first law of thermodynamic law to the combustion chamber, one can obtain

an equation for the chemical or gross heat release that may be solved using a measured pressure-

time data from an engine, a model for heat transfer, and a model for crevice mass flux:

6a,, h = - pdV + Vdp + SQ,, + (h' - u + cT)dm,r (3.1)
' -1 '-1

The first two terms of Eq. (3.1) together represent work and the sensible internal energy

changes of the charge, which would be heat release if no losses were present.



The heat transfer model to calculate heat loss to walls is based on Woschni's correlation for

the heat transfer coefficient h [22]. This correlation is described in detail in the following

Sec.5.5.

5Qh, = Ah(T- Tw) (3.2)

The last term of Eq.3.1 is the energy loss of the chamber due to the flow into the crevice

regions; h is evaluated at cylinder condition if the crevice flow is out of the cylinder or at the

condition in the crevice volume if the flow is into the cylinder. The mass flow into the crevice is,

dmcr =- dp (3.3)
R T,

Leakage or blow-by effect was not included separately in this model because the metal

cylinder was used for firing and the leakage condition was not much different from the

production engine. The total crevice volume for a warm-up condition was assumed to be 1 % of

the clearance volume.

Appropriate functions of temperature to determine the ratio of specific heat y were suggested

by Chun and Heywood [22], in which a table of y values is provided for several different

equivalence ratios and three residual fractions. Although there may be uncertainty as to whether

the effective y value for a homogeneous charge is applicable to the stratified charge situation,

quantifying this uncertainty is beyond the scope of this work and the y value based on the overall

charge is used. For the compression and the expansion stroke, y is approximated by linear

functions and a constant value for combustion stroke. In order to ensure a smooth transition from

compression to combustion and from combustion to expansion, a 5 deg transition region was

added in the beginning and at the end of combustion. Since y varied with the fuel-air equivalence

ratio, residual fraction and fuel types, the accuracy of y depends on the appropriate values of

mixture composition. In order to predict the amount of residual gas fraction x, the model

developed by Fox [25] was used. The model relates Xr to engine speed, inlet pressure, valve

overlap, and fuel-air equivalence ratio.

3.2.1 Individual cycle variables

From the detailed analysis of the pressure trace from each cycle, several parameters were

determined in characterizing cyclic variations in combustion. The following variables were

determined on cycle-by-cycle bases:



0-2% Mass fraction burned angle, 00-2% : This is the angle of crank rotation when 2% of the

mass in the chamber is burned, referred to as the flame initiation angle.

0-10% Mass fraction burned angle, 8_10%, : This is the crank angle between the spark and the

point when 10% of the mass in the chamber is burned, referred to as the flame development

angle, which is the measure of the time required to develop a fully turbulent propagation flame.

0-50% Mass fraction burned angle, 00-0%, : The angle between the spark and the point where

50% of the mass in the chamber is burned

0-90% Mass fraction burned angle, 00-_90 : The angle between the spark and the point where

90% of the mass in the chamber is burned

10-90% Mass fraction burned angle, 01090oo : The angle between the points when 10% and

90% of the mass in the chamber is burned. Also referred to as the flame propagation angle, it is

the measure of the time required for a fully developed flame to propagate through the majority of

mixture.

Coefficient of variation of IMEP, COVIMEP: The coefficient of variation is defined as the

standard deviation normalized by the average value. The COV of IMEP was used to describe

engine stability, since it directly relates to engine torque variations.

Peak Pressure, Pmax: The peak pressure per cycle is the maximum pressure of the cycle.

Peak pressure location, ,pmax : Opmax is defined as the crank angle at which the peak pressure

occurs, measured from the piston top dead center.

Peak mass burning rate, ,(Ia,,x): This is the peak rate of mass burning during the combustion

cycle, normalized by the total mass in the cylinder.

Peak mass burning location, O,(max): This is the crank angle at which b(max,,) occurs,

measured from the spark crank angle.



Heat transfer fraction, Qhtf : The heat transfer fraction is defined as the fraction of fuel

enthalpy in the mixture lost to the combustion chamber walls through heat transfer.

Peak mass fraction burned, Xb(..x) : This is the peak value of mass fraction burned for each

cycle at the end of combustion.

The mass fraction burned was taken relative to the computed mass fraction burned at spark;

the 2 %, 5%, etc. are not necessarily the absolute points.

3.2.2 Misfires, partial burn cycles and operating limits

Misfires: Misfires are defined as the cycles for which the gross IMEP is less than zero, which

implies that the flame does not propagate at all in these cycles. There will not be any significant

amount of fuel burned. Means and standard deviations for cycle variables are computed by

omitting both misfired cycles and those immediately following a misfire. The cycles following a

misfire were removed because these cycles are abnormal too, in the sense that their burned gas

fraction is lower than that of all the other cycles.

Partial burn cycles: Partial burn cycles are defined as the cycles whose gross IMEP is

between zero and one-half of the mean value of the total sample with positive IMEP. These

cycles are engine cycles where at the time of exhaust valve open a significant amount of the fuel

is still unburned, even though a propagating flame has been developed.

Operation limits: Operation limits are limits within which acceptable engine operation is

obtained. In general 10 % COVIMEP has been used for the criterion of engine operation limits. In

case of heavy dilution condition, the engine experiments were carried out at over 10 % COV of

IMEP to have information on combustion and compare two systems even though those operation

conditions are not used in real engines.

3.2.3 Sample size and uncertainty

The appropriate sample size depends on operating conditions because in general the higher

the degree of cyclic variability is, the greater are the number of cycles required to define the

behavior under those conditions. Since it was hard to sustain a steady state operation with this

engine, the average values of overall cycles could not show the performance value at each

condition. Around 600 cycles were obtained for analysis at each experiment. The average of



variables was done per 100 consecutive cycle and its trend on overall data analysis was analyzed.

The analysis of cycle-by-cycle was limited due to the sample size.

3.2.4 Statistics

Since it is impossible to look at and evaluate all pressure tracers, the statistical behavior of

parameters should be considered. Several statistical results including the sample mean,

coefficient of variation (COV) , were determined for the cycles corresponding to each sample of

pressure data recorded. For certain data, correlation coefficients between the combinations of

individual cycle parameters were computed to allow investigation of the relationship between

certain variables for a single experiment.

The correlation coefficient ( R ) to describe the relationship between two variables x and y is

defined as

N

S(Xi - )i (yi -Y)
R = (3.4)

I (Xi - Y)2 i • 2

where N is the number of cycles, i and y are the mean values of x and y. A value of R=0

corresponds to no correlation between the variables, while a value of ± 1 means that there is a

perfect one-to-one correspondence between them.

Box distribution was used to show the distribution of data scattered. The box contains 50 %

of the data population and the line in the box indicates the medium of the data.

3.3 Image processing and calibration

To eliminate noise in the fluorescence signal requires an image post-processing.

Disturbances needed to be taken into account include fluorescence from the oil spots on

windows, background light scattering, laser intensity variation over space, optical distortion, and

operating gain conditions of the intensifier etc.



The raw images of the acetone distribution in the cylinder were post-processed in order to

eliminate the artifacts. Scattered laser light caused a strong background noise due to the

fluorescence species, especially engine oil attached on the cylinder wall.

The image is corrected by subtracting a mean background image from each of the images of

interest. The calibration and background corrections are made on the basis of mean laser sheet

characteristics to take into account the shot noise and pulse-to-pulse fluctuations in the laser

sheet. The reason for the background difference between raw data and calibration is largely due

to the oil distribution difference on the cylinder inner wall.

I(x, Y)image = I(x, Y)raw - I(X, Y) background ,raw

I(x, Y)calibration =I(x Y)raw,calibration - I(X, Y)background , calibration (3.5)

,where I(x, y) is image intensity at (x, y) location. x is radial direction and y is also cylinder

axial direction.

In addition to the background correction, the curvature correction of the raw image is needed.

I(X, ) calibration = f(X, y) uniform

I (x, Y) image =f2 (x, y) I (x, Y) real,data (3.6)

where f,,f2 are the function of the wall curvature effect including aberration, etc. Iuniform is the

image intensity of the uniform acetone distribution

Since the fluorescence signal is proportional to the mole fraction[15], it follows that

Ireal,data (X, Y) image (X, Y) fi (x, y) Xdata

Iuniform,cal Icalibration (X, y) f2 (, y) fn Xuntbfrm,cal (3.7)

where the factor fn corrects the difference in the temperature and the pressure between data and

calibration condition. The image of acetone distribution in the cylinder normalized by calibration

intensity can be achieved by the following relation.



realata (x, Y) I(x, Y)raw - I(x, Y)backgroiund,raw fA (x, Y)

untorm,cal I (, Y)y) raw,cali,,bration - I (X, Y)background,calibration f 2 (x,) (3.8)

If the acetone concentration represented in the calibration image and fn were known, the

acetone mole distribution in the cylinder could be calculated by the following relation.

Xdata 1(x, Y) raw- I(X Y)background,raw f (x, y)

X unit(rm cal I(x, Y)raw,calibraion - I(x, Y)background,calibratin fn f 2 (x, y) (3.9)

However, since the seed concentration(acetone) in the calibration gas can not be determined

with a sufficient accuracy because of the difficulty of maintaining the known value and it is not

easy to obtain the factor fn, images under different conditions can be compared qualitatively.

Figure 3.2 illustrates one of typical calibrated results. The local image near the wall shows

that light intensity was over the saturation limit of the camera. Once the intensity is beyond the

saturation limit, the image correction is not possible. Therefore the calibrated image of those

areas is not available to get the mixture distribution information. In order to improve this

situation, the less power of laser light was tried, then the light intensity of other areas was not

enough. Locally saturated spots were shown in all image analysis results because of a necessary

trade off required. The horizontal lines on the calibrated image were caused by the scratch on the

wall due to the piston ring travel. The vertical lines were due to the fluorescence of the wall

reflection of the laser beam and its variations.

The image contraction in a radial direction was shown in Figure 3.3. The small scale marks I

mm and the overall scale in the cylinder shows 75 mm. The 5 mm near the wall was clearly

shown as dislocated non linearly. This image contraction was not calibrated because the level of

contraction was considered to be relatively small.

The influence of cyclic variations was taken into account by averaging images.



CHAPTER 4 Engine development

This chapter is to describe the development procedure, which includes the verification of a

design concept by constructing and operating the engine and to assess the system performance

with experiment results. The design concept of the stratified-EGR mode operation is to reduce

the fuel consumption by maintaining the stable combustion with high EGR. In order to achieve

the goal, more precise flow control into the cylinder is essential. Detail experiments were carried

out to achieve the design target shown in Table 4.1.

The level of stratification between fresh mixture and lean/dilute gas was investigated by

seeking the system performance required during each engine stroke. Table 4.2 shows the system

requirement at each engine stroke.

4.1 Effects of tumble motion on combustion

4.1.1 Tumble enhancement by intake port partitions through the tumble adapter

As described in Section 3.3.1, a tumble adapter was mounted in the intake port to enhance

the tumble motion. In order to confirm the effectiveness of the tumble adapter, a comparison test

was conducted with the metal cylinder. The engine was operated at part load condition, 75 kpa

intake pressure, 35 deg BTDC spark timing, stoichiometric condition. The production condition

was known to be a low tumble engine with the tumble ratio 0.45 compared with the typical

values for good combustion characteristics in the range of 0.7 - 1. Since the level of tumble

enhancement with the tumble adapter was not measured, the quantitative comparison in terms

of the charge motion was not possible, but the condition with the tumble adapter was expected to

be high tumble. The effectiveness of the configuration was evaluated by comparing the engine

behavior in the original configuration with the engine behavior with the adapter.

Table 4.3 shows the test summary. The high tumble illustrates more stable combustion and

fast burning. It is generally understood that the tumble has a strong effect on flame propagation

angle 10o-90% rather than flame development angle 00-o1% This trend was shown in Table 4.3.



Figure 4.1 shows the comparison of pressure and mass fraction bum rate, which was

averaged with 100 cycles. The spark timing (35 BTDC) is assumed to be slightly retarded

compared with MBT. The comparison of burning characteristics is shown in Figure 4.2. The

results showed that the tumble adapter formed a high turbulence and made a stable combustion.

All these results lead to the conclusion that the tumble adapter meets its target to increase the

burn rate.

The in-cylinder flow motion under motoring condition is illustrated in Figure 4.3. Since the

seed was supplied through one of supplementary gas lines as shown in Fig 2.11 a and the pictures

were taken at the plane passing through the intake valve stem offset from the cylinder center line,

the pictures did not include the overall tumble motion generated in the center plane. And the

view was limited by the camera even though the laser sheet covers the whole stroke. Figure 4.3a

and b show the flow motion at 70 deg ATDC and 120 deg ATDC during the intake stroke,

respectively. The dark wide stripe, which covers the lower left side of view, was due to'the

scratch on the wall and the dark side of upper right was due to the particle accumulation on the

wall. Large scale motion in Fig 4.3 is clearly shown. During compression stroke, the tumble

motion was found to be broken into the small scale turbulence[26]. Figure 4.3 c shows the small

scale motion at 90 deg BTDC compression stroke even though the tumble rotation seems to be

sustained. The breakdown of the large scale motion into irregular small eddies enhances in-

cylinder mixing. Figure 4.4 and 4.5 show the cycle by cycle variation at 120 deg ATDC intake

stroke and at 90 deg BTDC compression stroke respectively. The large scale motion shown in

Fig. 4.4 illustrates less cycle by cycle variation than the small eddies during compression stroke

shown in Fig. 4.5. The small scale eddies in Fig. 4.5 had not only a large cyclic variation, but

also was relatively well distributed. The characteristic of small eddy distribution and mixing was

discussed in Section 4.2 in detail.

4.2 Realization of charge stratification

The charge stratification between the air/fuel mixture and the supplementary inert gas to

simulate external EGR was generated in the intake port and supplied into the cylinder. The

inflow momentum of air/fuel mixture and inert gas is driven by the piston induction as well as by

the inert gas supply control mode. Since the geometric shape of the cylinder head, pentroof

design, is good for maintaining the tumble motion, the high tumble motion itself is not hard to be

sustained through the intake stroke.. It was expected that each side of the inert gas flow should



have an equal momentum to minimize mixing and form the stratified mixture in the cylinder.

Unless the momentum balance of inert gas flow is maintained, the unbalanced momentum creates

a swirl motion which could destroy the tumble motion and caused mixing between fresh mixture

and critical EGR. Even though the flow hit the valves, the velocity of supplementary gas is more

significant than that of air-fuel mixture as addressed in Section 2.1.2. Therefore the large velocity

gradient that exists at interface between two flows could also increase mixing.

4.2.1 In-cylinder visualization results

The mixing process during the intake and compression stroke was discussed in this section.

Since the view covered around 40 % of the window of overall stroke, the overall mixing process

in the cylinder was not shown in image data. Figure 4.6a and b illustrate the engine side and front

view at 90 deg ATDC of the intake stroke. The upper part is the combustion chamber in the

cylinder head, which was not accessible to visualization. The lower part is not completely

accessible to visualization due to the limitation of the laser beam size.

Figure 4.7 illustrates the overall mixing process during the intake and compression stroke.

The seed was supplied through the right supplementary gas supply line. The mixing process

measured through the window illustrates that the level of mixing across the cylinder increases as

the piston goes down. The boundary lines were expected to be formed by the large scale motion

in the cylinder as discussed in Section 4.1.1. As the piston goes up after the bottom dead center,

the tumble motion is getting to be broken due to the flat top piston and compression. When the

piston reaches 60 deg BTDC, a significant mixing has already been occurred. Considering the

mixing of the left side, substantial amount of mixing was expected at around 45 - 50 deg BTDC

of the compression stroke, MBT spark timing. Since the tumble motion has three dimensional

nature, one sectional view might not reveal enough information on mixing process, but these

results indicate that an additional mechanism is needed to maintain the stratification during the

compression stroke.

Figure 4.8 shows the comparison of intensity profiles at the same piston position, 45 deg

ATDC of intake stroke and 45 deg BTDC of compression stroke. The radial profile in Fig. 4.8a,

the intake side, clearly indicates the stratification of supplementary gas even though the overall

image was distorted due to disturbances. However the significant mixing during the compression

stroke was shown in Fig. 4.8b. Figure 4.9 illustrates mixing characteristic at the same piston



position, 90 deg. The mixing trend in the intake side is similar to that of 45 deg of Fig. 4.8a. The

notable intensity gradient at 90 deg BTDC during compression is shown in Fig. 4.9b, which

indicates that the substantial mixing occurred during the later part of the compression stroke as

mentioned before. The mixing profile difference of axial direction at the same piston location

illustrates the decay of the large scale motion during the compression stroke.

The comparison of cycle-by-cycle variation in mixing is shown in Figure 4.10a and b. The

front and side views of 90 deg ATDC intake stroke are shown together. The image was calibrated

with the background only, not intensity, to minimize image distortion. As the Mie scattering

result of the front view is shown in Fig. 4.3, the tumble motion could be observed in this side

view if the seed follows the strong tumble motion. However as shown in Fig. 4.10a, it is hard to

observe the tumble motion with the image of PLIF. The possible reason may include that the

shutter exposure time was too short to show any streak line or the seed did not reach the cylinder

center line, where the laser sheet is passing through. The cycle-by-cycle variation of the mixture

distribution of the front view also is worse than that of the side view. It is not clear that the

tumble motion causes the cycle variation in mixing characteristic. In order to maintain

supplementary gas in each corner of the cylinder, the tumble generated by supplementary gas

might not be needed.

The mixing characteristics by changing the engine speed and the acetone supply location, on

the left side of the part, were also examined. There was a similar mixing trend. Therefore, the

result is not included here. Although the images were distorted due to the noise related to the

engine operation, visualization test results illustrated a significant information on the flow

motion, the mixing process in the cylinder during the intake and compression stroke. However

this information was not reflected on the design improvement, which required the major change

of the piston etc.

4.2.2 Phasing of artificial EGR injection and its effect on combustion

The proper synchronized timing control of the supplementary gas supply is a means to

achieve a stable combustion at the dilute limit by maintaining stratification in the cylinder. In the

EGR strategy, one extreme is a complete mixing between air-fuel mixture and inert gas

(homogeneous charge), and the other limit is a complete stratification between them. When the

EGR injection in the port occurs at close-valve, there is substantial mixing between the fresh



charge and the artificial EGR in the port and the charge approximates that of the homogeneous

configuration. In open valve injection, the momentum of the EGR jet contributes to the tumble

motion in the charge and tends to maintain the separation between the fresh mixture and the

artificial EGR. Therefore by controlling the supply timing, the extent of mixing could be varied.

Another point is to find out the optimum operating condition of the solenoid valve and to assess

the relative performance. The solenoid valve opening duration was adjusted to 18 ms so as to

meet the air/fuel ratio requirement.

Figure 4.11 shows the combustion behavior at lean condition with the difference of air

supply timing by controlling the solenoid valve. Different cases are labeled by the CA at the start

of EGR injection. For example, the 520 case is defined as that with opening timing of the

solenoid valve at 520 deg so that it is in synchronization with the intake stroke'. The others are

shifted to 180 deg out of phase with the intake period; the 340 means that air is supplied during

the exhaust stroke. IMEP and COV of IMEP are shown in Fig. 4.1 la. The mixing control in the

intake port did not show any significant improvement at this particular operation condition; X is

1.4, spark timing is 35 deg BTDC. Fig. 4.1 lb illustrates the statistical distribution in IMEP. The

box in each case contains 50 % data and the center line is for a median value. The 520 case

shows wider data spread into higher IMEP largely due to the faster burning compared with the

others. It is generally accepted that the maximum cylinder pressure occurs at about 16 deg after

the top dead center for MBT timing [27]. In that point of view, the spark timing 35 deg BTDC

for 520 case, is a little advanced for MBT timing possibly owing to the fast burning

characteristic, which is also illustrated in Fig. 4.11c, e and f. Since the spark timing was

maintained at a constant value, the performance improvement with the help of the mixing control

strategy was not much shown in Fig. 4.11 a and b.

The effect of supply control on engine performance was investigated at much leaner

condition. When there was a significant cycle by cycle variation in engine performance, the

setting of MBT spark timing was not a simple work because the misfire and after-misfiring

cycles were alternating. Therefore the engine was operated at ? of 1.55 and the spark timing of

30 deg BTDC, which was assumed to be MBT in terms of uniform IMEP. Figure 4.12 illustrates

that the mixing control in the intake port made a significant improvement in combustion, about

14 % increase in IMEP and stable combustion. The effect of stratification by optimizing supply



angle is clearly shown in Fig. 4.12b on the flame propagation angle o1 0-90%. Whether the

stratification has a bigger effect on the flame propagation angle than the flame development

angle 0o-o0% could not be deduced from the data. The variation of the maximum cylinder pressure

of the 520 case, which is shown Fig. 4.12c, was larger than the others, but most of cycles have

higher pressure and the crank angles of the maximum pressure were less scattered and stayed

around MBT timings as shown in Fig. 4.12d.

Figure 4.13 shows the effect of the supply angle on combustion at WOT, 30 % EGR and

stoichiometric operation with MBT spark timing (45 deg BTDC). The results show the similar

trend with lean burn condition. Since the 700 case has more time for mixing in the intake port,

this could have worse combustion behavior than the 160 and 340 cases in terms of dilution effect

on combustion. However Fig. 4.13 did not show those trends, which means that less mixing but

non uniformity in mixture of the 160 and 340 could make a negative effect on combustion. The

spark timing of non synchronized cases seems not to be MBT as shown in Fig.4.13d. Therefore

in order to assess the effect of the spark timing on combustion performance, an experiment was

done with 5 deg advance (50 deg ATDC). Figure 4.14 shows the comparison of peak pressure

and IMEP with the peak pressure location. All other cases show a typical slow burning

characteristic, whereas the 520 case indicated less partial burning. Comparing Fig. 4.13 and Fig.

4.14, the further spark advance increased the flame development angle 0-j10o and reduced the

flame propagation angle O1 o0. •(). These changes improved the combustion stability of non

synchronized cases.

Figure 4.15 illustrates the comparison on the combustion behavior at the part load with the

operation condition of 40 % dilution ratio, stoichiometric and 50 deg BTDC spark timing. Since

mixture was heavily diluted by EGR gas, the normal operation with less than 10% COV of IMEP

was hard to be achieved. The 520 case brought about more stable combustion and higher

maximum combustion pressure with small improvement in IMEP as shown Fig. 4.15a and b. The

burn angles are statically compared in Figure 4.16 because the cycle average of those angles is

not enough to understand the combustion performance. The 520 case shows the narrow

distribution in the flame initiation angle o0-2% and 0o-os%.

The solenoid valve was opened at 20 deg BTDC in 520 case.



In order to examine the effect of less dilution ratio and supply control on engine

performance, the engine was run at WOT condition with 20% EGR ratio, stoichiometric and 40

deg BTDC spark timing. Table 4.4 shows the summary of the test result. The difference in IMEP

could be regarded as a experimental data scattering range. In this operation condition, the

dilution effect on combustion could be regarded negligible even with the relatively large EGR

ratio. These results can be achieved with the help of a high tumble.

The narrow angle spacing of supply angle around 520; 430 deg (520-90 deg) and 610 deg

(520+90 deg) was tried to confirm whether the 520 deg is a relatively optimum condition. The

430 deg case supplies supplementary air during the early intake stroke and the 610 deg case does

it during the later intake stroke. Figure 4.17 shows performance comparison. Since the spark

timing was not adjusted for MBT timing, the comparison of IMEP and COVimep does not imply

the system performance exactly. Peak pressure and peak pressure location Opeakpressure indicate that

the spark timings for 520 and 610 are too advanced, which shows the fast burning as shown in 0o-

10o and l0o-90%. A possible explanation for this characteristic is that the early supplementary air

supply before intake valves open with 340 deg gave much time to be mixed in the intake port and

the part of air supplied during the early intake stroke also had time to be mixed and did not have

enough momentum to make stratification during the intake and compression stroke. The mixing

in the intake port with the 610 case is similar when intake valves are closed, but the supplied air

during the later intake stroke seemed to be able to make mixture stratification during the last

cycle.

Therefore the full synchronization with the intake stroke is found to be a better way to supply

supplementary air.

Two conclusions can be drawn with regard to the phasing control of supplementary gas; first,

the duration of supplementary gas in the intake port with the early injection before the intake

valve open did not contribute to more mixing in the intake port at a low dilution situation, but at

a high dilution, less duration and mixing in the intake port did improve combustion. The cycle

by cycle variation in mixing dynamics due to the pressure interaction between dilute gas and

air/fuel mixture should also be considered. And second, there was a substantial reduction in

IMEP fluctuations with the synchronized supply control at a high dilution condition.



4.3 Effects of the charge stratification on engine performance

The effect of the charge stratification on engine performance was addressed more in this

section by comparing the homogeneous charge supply with the stratified (the 520 case) charge

supply. There might be an optimal operation condition in supplementary gas supply in each load

condition. However too many experiments are needed to find all those conditions, which is

beyond the work scope of this research. Therefore two conditions were compared; one is WOT

and the other is part load. Fuel flow rates are kept at a constant value.

4.3.1 Reference operation

Engine was run at a stoichiometric condition without EGR to have reference data. First in

order to check combustion efficiency HC was measured. Table 4.5 shows the test results. Since

unburned hydrocarbon levels in the exhaust of a spark-ignition engine under normal operating

conditions are typically in the range 1000 to 3000 ppm CI, the measurement was expected to be

done at a normal operation condition considering the level of HC in Table 4.5.

In order to have the reference data for the system performance comparison, engine firing

pressure data was obtained and analyzed with the burn analysis program. Figure 4.18 shows the

comparison of IMEP and P,,max vs. 0Pmax and 0io-9os vs. 0o-Io% at two operating conditions. Table

4.6 is the summary of test results. The flame development angle 0o-10j was more affected by load

increase than the flame propagation angle 0o-90o%, probably due to the influence of the amount of

residual gas amount in the cylinder with the difference of load.

The fuel flow rates for each load condition were kept a constant level for load comparison.

The part_J of Table 4.6 was used for the reference for the part throttle test of lean and dilution

condition and the part_2 was for WOT, where WOT is to indicate the throttle position rather than

to mean the full load performance.

4.3.2 Lean limit extension

The combustion performance in the lean mixture condition was already introduced and

discussed in section 4.2.2. In this section, the combustion properties were addressed. In order to

understand the contribution of stratification strategy to combustion, each parameter was analyzed

by comparing combustion of homogeneous and stratification mixture together. Table 4.7

illustrates the lean burn test summary.



Figure 4.19 shows the comparison of lean burn between the homogeneous mixture and the

stratified mixture combustion. As shown in Table 4.7 and Fig. 4.19a, there was a significant

IMEP variation in the homogeneous mixture. When the flame development angle 0o-~o0 is less

than around 35 deg, near the top dead center of compression stroke, the peak pressure location

moves to the later crank angle with the increase of 0o-.4o, shown in Fig. 4.19e and f. As Oo-o10 is

higher than 35 deg, which means that most burning occurs during the expansion stroke, IMEP

drops steeply, as shown in Fig.4.16 c. Most of the stratified mixture was burned at less than 35

deg of 0-o10%. However a significant amount of homogeneous mixture was burned at higher than

35 deg. Another point to make is that IMEP of homogeneous mixture is more sensitive to 00-10%

change, which means that the less the flame development angle 00-o10 .is, the bigger IMEP is.

Since the burn angle 010-90% is proportional to the burn angle 60-0lo as shown in Fig. 4.19g and h,

once the stratification strategy reduces the flame development angle 0o-o10, the effect also

decreases the flame propagation angle 610-90%. Figure 4.19i and j show the statistical distribution

of frequency of 60-oo% and 10o-90%. The cycle-by-cycle variation of 10o-90o is bigger than that of Oo-

1o%. Fast flame development produced higher peak pressure, which is shown in Fig 4.19k and 1.

The trend of peak pressure as a function of 60o.0o is similar between two cases but the stratified

strategy made a fast burn.

Next analysis is on the engine operation of less air dilution ratio at WOT, which creates more

turbulence generated by a strong tumble motion. As shown in Table 4.7, IMEP of homogeneous

mixture is bigger. Comparing burn angles, the stratified mixture has a fast burning characteristic.

Therefore there seems not much improvement with the stratification strategy results. Even

though there is a difference in lamda value even with the same fuel flow rate, overall operation

conditions can be regarded similar due to the limit of engine operation. Figure 4.20 illustrates the

results in detail. As illustrated in Fig. 4.20a, the homogeneous mixture seems to be operated

around MBT spark timing. Considering this fact, the stratification strategy improved combustion

a little by reducing the burn angle. And the general trend shows that with the same flame

development angle Oo-1lo, the flame propagation angle 010-90% is reduced with the help of

stratification.



4.3.3 Dilute limit extension

The typical modern production engine has the tolerance on EGR dilution ratio up to about

20% [27]. As the amount of EGR gas increases after normal operation limit, there are a rapid

IMEP drop and a significant combustion instability. In this section, the effect of stratification

strategy on the combustion of highly EGR diluted mixture was addressed. Table 4.8 shows the

summary of test results.

In order to understand the stratification effect on combustion, the data analysis was

statistically analyzed because at part throttle operation there are significant partial burning and

IMEP fluctuation. Figure 4.21 shows the individual cycle parameters. Fig. 4.21a and c illustrate

that there are highly IMEP variations due to the cyclic behavior of slow burn and after slow

burn 2. Even with the stratification strategy, the level of COVimep is too big for engine operation as

shown in Fig. 4.21b and d. Considering the peak pressure location and IMEP distribution in Fig.

4.21, the spark timing, 50 deg BTDC, might not be controlled enough for MBT timing, even

though Fig. 4.21e and f indicate that the peak pressure location seems to be advanced. However

those spark characteristics were reflected on peak pressure value in Fig. 4.21a and b.

Another interesting behavior in burn parameter 0o-10o is that there is a significant IMEP

variation around the 50 deg of e0_10%. Since this location is the piston top dead center, if the

flame had not been developed to the top dead center, the possibility of misfiring would be quite

high. This issue was discussed in Section 4.3.2, but the trend in this operation condition is much

different. As shown in Fig. 4.21g and h, there are two groups with a different trend. With the

stratification strategy, the group with a long duration was diminished, which could make it

possible to have less cycle by cycle variation.

In both figures 4.21g and h, there are substantial IMEP variations for cycles with

approximately the same 00-10o of around 50 deg. With spark timing at 50 deg BTDC, the 10 %

burn point of these cycles thus occurred at around TDC. This data is consistent with those in

figures 4.21i and j, which show that for the same 60-0o% duration, there is a substantial variation

in the peak pressure location. The implication is that although the early parts (0 - 10% burn) of

2 After-slow burn cycle showed relatively higher IMEP due to the internal residual gas containing
some fuel from the previous partial burn cycle.



combustion in these cycles are similar, there are substantial differences in the later part of the

burning process.

To investigate this observation further, cycles with 0o.-os=50 deg are selected out from Fig.

4.21 and are explored in Fig.4.22. In Fig. 4.22a and b, the IMEPs of these cycles are proportional

to the mass fraction burn.' The group in the homogeneous mixture has a different combustion

characteristic compared with the cycles in the stratified mixture as well as the slow burning

cycles. The higher pressure(temperature) of these cycles contributed to larger heat loss as shown

in Fig. 4.22c and d. The correlation between IMEP versus 01o-90s shown in Fig. 4.22e and f is not

strong, which indicates that the cycle by cycle variation of fuel in mixture largely caused by the

partial burn is a dominant factor in combustion; Since 10% of the fuel burned of each cycle does

not have to be the same amount of fuel, the amount of fuel of each cycle has a large cycle

variation even with constant fuel supply.

The conclusion from this issue is that the level of stratification at this operation condition

reduced the partial burning, but not enough to make a fully developed stable flame, which

requires the angle 00-10% to be less than 50 deg after ignition as shown in Fig. 4.21.

Figure 4.23 shows burn parameters at WOT engine operation with EGR dilution. It indicates

that engine was operated with a relatively stable combustion. The stratification strategy reduced

the number of slow burn cycles. In this operation condition, the frequency of the cycle of after

slow burn is also relatively small. The burn characteristics in Fig.4.23c and d indicate that a

small variation of 00.-10 of the homogeneous mixture make a larger variation of IMEP than that

of stratified mixture and IMEP of stratified mixture is less dependent on the variation of 0o-o10..

Considering a poor correlation between 90-o0% and 10o-90% and a good correlation between peak

mass burn rate vs. 10o-90%, peak mass burn rate seems governed by the flame propagation angle

80o-90g , as shown in Fig. 4.23g-1, rather than the flame development angle 00-10%. The

homogeneous mixture and stratified mixture seems to follow the same trend of peak mass burn

rate at given 01o-o9%.

The same approach was tried to get the information about the reason of variation of IMEP at

fixed 45 deg of 0o-o10 shown in Fig. 4.23e and f. Figure 4.24 shows a similar trend in all burn



parameters. The variation in IMEP can be regarded as a typical combustion variation influenced

by mixture composition and flow. One point to be addressed here is that the IMEP decrease with

the increase of 01o-90% has a steeper slope in homogeneous mixture as indicated Fig. 4.24e and f,

which could be regarded as the indicator of the effectiveness of stratification strategy.

In order to characterize the observed IMEP variations, the use of 60-5o% was suggested to

relate individual cycle IMEP values to some measure of their burn history because this includes

the dependence on both flame development and propagation details [21]. Figure 4.25 shows the

comparison of IMEP vs. 00-50o at two operation conditions. 00-50% seems not to be a good

characteristic parameter to see any correlation between IMEP and 00-50% for this engine and

operation conditions. It is well known that IMEP is relatively insensitive to phasing changes

around the MBT spark timing. A typical combustion shows that half the charge is burned at

about 10 deg after TC or the maximum pressure occurs at about 16 deg after TC [2]. Even though

Fig 4.21 a-b and 4.23 a-b show that peak pressure occurs less than 16 deg ATC, Fig 4.25

indicates that spark timing seems not advanced enough due to slow burning. Since the setting of

MBT timing is not a simple work here, the cycle variation caused by not MBT phasing is needed

to be considered.

4.3.4 Comparison between lean burn and EGR

The reduction of laminar flame speed for given values of unburned temperature and pressure

due to the addition of burn gas is much greater than the reduction due to the addition of excess

air because (i) the burn gas has a higher heat capacity, and (ii) the oxygen in the excess air helps

combustion, whereas the EGR diluent just absorbs energy and impedes the diffusion of chemical

species and heat[28]. Figure 4.26 shows the performance comparison between lean burn and

EGR. The comparison is based on the dilution ratio described in Table 4.7 and Table 4.8. The

stratification strategy did improve engine performance in terms of overall view. The

effectiveness of this strategy is getting better as the dilution ratio increases. The combustion

variability was significantly improved up to a certain dilution ratio, where the amount of internal

residual gas has a dominant effect on laminar flame speed. In order to fully assess the

performance, the comparison of indicated specific fuel consumption shown in Fig. 4.26d might

3 In these figures, values of xb > I arise from the fact that following a partial burn cycle, the fuel
mass in the cylinder is higher than the fuel mass of the average cycle.



not be enough. As expected, the fuel consumption was improved at the lean burn condition with

the stratification strategy.

The effect of the stratification strategy on variations of flame initiation and development

angles is given in Figure 4.27. The results less than 40 deg of Oo-jo% are from lean burn data.

Figure 4.27a indicates that there is a linearity between mean 0o-2% and mean 0o-4o%, and flame

initiation and development were reduced with the stratification strategy. However Fig. 4.27b and

c illustrate notable results. Even though the stratification strategy has reduced the flame initiation

angle at a given operating condition, the trend in Fig. 4.27b indicates that the cycle variability of

this angle was worsened with the stratification strategy at the fixed 0o-10%. But this trend was

reversed at Fig. 4.27c.

In order to examine this issue, the correlation between 00-.2% and 00.o0o for the various

operating conditions including the homogeneous mixture and stratification mixture is shown in

Figure 4.28. There is a significant difference between lean burn and EGR in the general shape.

Except the fast combustion of the stratification strategy in lean burn, it appears that there is a

good linear correlation between 0o-2% and 00-10% that is shown Fig. 4.28e - f. The correlation of

EGR illustrated in Fig. 4.28a - d is more complex than that of lean burn; there are two slopes in a

and b largely due to the slow burn at the high dilution ratio and the correlation between c and d

shows a different shape. How does the stratification strategy affect the flame initiation and

development ? The effect of this strategy on 60-2, is not so clear. The flame initiation angle 0o-2%,

also called a ignition delay, is strongly influenced by ignition performance [27]. Once the flame

was initiated, this strategy reduced the flame development angle 0o-o.%; the shorter 00-2% was, the

faster the flame was developed in Fig. 4.28d. Since the flame development angle 0o-o10 was

affected by the laminar flame speed, which is enhanced by the stratification of diluent, this result

supports the effectiveness of the system partially.

Figure 4.29 shows the effect of the stratification strategy on variations of flame development

angles. The stratification strategy effectively reduced the mean and variation of the flame

development angle. Even though the flame development angle 0o-o10 was reduced with the

difference of engine operation condition, the flame propagation angle 01o-90% maintains the same

level in both cases except one small dilution condition. The dilution ratio has a stronger effect on

the flame development angle Oo-1os than the flame propagation angle 01o-90g



4.4 Identifying the design performance limit and its improvement

In this experiment, propane was used for fuel to minimize the effect of fuel vaporization and

to have a uniform air/fuel mixture. When liquid fuel was injected into the cylinder, the

possibility of fuel distribution near the spark plug is expected to be high with the stratification

strategy, which could improve the flame development. The engine speed 1000 rpm, which is

limited by an experimental setup, is not generally used for engine performance assessment. It is

also not certain whether the stratification strategy was fully assessed in this test operation

condition and whether this system will work at other operating conditions even if the system

worked successfully at this condition. There are also optimization issues involved, which needs a

tremendous amount of work. Therefore the discussion of the effect of different engine speeds and

load conditions on system performance will not be included here even though those effects are

really important for the system assessment.

4.4.1 Charge mixing in the intake port and during the intake stroke

The need to supply supplementary gas during the induction stroke as a synchronized

condition was discussed in Section 4.2.2.

Since the air induction motion is controlled by the intake valves and the piston motion, the

supply control of supplementary gas with a specified angle should be optimized with the cam

phasing. Because of the test setup limitation, supplementary air was supplied in jet form, which

enhances mixing due to the nearby gas entrainment into jet stream. Another important factor in

mixing during the intake stroke is an induction momentum imbalance.

As shown in Fig. 4.7, stratification was maintained relatively well during the intake stroke.

Since the residual gas back flowed into the intake port is also inducted, it is expected that the

relative amount of inert gas external of internal is another factor. This is closely related to engine

load control. As discussed in the previous sections, the efficiency of stratification strategy is

getting rapidly worse largely due to the amount of inert gas uncontrollable. Also this issue was

further investigated in Section 5.

4.4.2 Charge mixing during the compression stroke

When the piston goes up after the bottom dead center, the tumble motion breakup starts due

to the geometry in the cylinder. In order to preserve the tumble momentum and stratification

momentum formed during the intake stroke, there must not be much restriction in the flow

direction. The cylindrical shape is expected to be better. The piston flat top was modified as an



attempt to maintain the momentum [8]. Considering the rigorous mixing during the compression

stroke shown in Fig. 4.7, the design of flat top piston is required to be improved.

Another issue is that there seems a tradeoff between stratification requirement and

turbulence generation. Tumble motion should be broken into the small eddy motion at certain

crank angle during the compression stroke in order to be able to assist combustion. However the

breakup of tumble motion could enhance the mixing due to the increase of mixing surface area

and eddy motions.

4.4.3 Charge mixing during the flame propagation phase

Even though there is a perfect stratification between air/fuel mixture and inert gas, the

mixing due to the diffusion or the expansion of burned gas during the flame propagation phase is

expected and it would have a certain effect on the flame propagation. The possible way to control

mixture distribution during the combustion phase is to set spark timing, which is limited for

MBT for performance.

With the complex motion in the cylinder, it might not be easy to be able to figure out the

each contribution on flame development of propagation. Therefore the possible level of mixing

and mixture distribution and their effect on combustion is addressed in Section 5.6.1.2.

4.5 Discussion on engine implementation

There are several issues in order to implement the concept of stratified_EGR mode operation

to the production engine. Considering the information from the concept development results, the

suggestion on production engine implementation are as follows.

* EGR distribution system

In order to supply the dilute gas into the targeted area of in-cylinder, the mixing between

fresh mixture and dilute gas in intake port should be minimized. The even distribution to each

cylinder will be critical to maintain a uniform cylinder-to-cylinder power output. Two functional

requirements are needed to be considered; one is to minimize the pressure fluctuation in EGR

distribution system and the other to synchronize with the induction period throughout engine

operation range. Since the supply source of EGR gas is from exhaust system and the pressure is

maintained around atmospheric pressure, plenum is recommended to meet the amount of EGR

gas required at each operation condition and to minimize pressure wave motion. An EGR

distributor mechanically driven by cam mechanism is also recommended.



* Piston top design

The rapid mixing during the compression stroke is largely due to the geometry of cylinder

wall and piston top design. In order to keep the tumble momentum and the stratification during

the compression stroke, the piston top is recommended to be a curved shape.

* Control mechanism

The EGR gas supply from the exhaust system to the intake system is needed to be controlled

to meet the EGR gas requirement. An electronically controlled EGR valve is recommended.

Since the internal EGR gas is substantial at low load, more precise control on the amount of

external EGR based on the engine operation condition is needed. A lot of calibration work is

expected to setup the optimum operation condition.



CHAPTER 5 Model for lean/dilute combustion in the stratified

EGR engine

5.1 Overview

The objective of the modeling is to develop a quantitative description of flame propagation

properties in a highly diluted mixture and the resulting engine performance. The following issues

are of particular interest.

E Flame initiation & development under the influence of flame stretch effect at high

level of dilution.

0 Burned gas and unburned fresh mixture mixing in the end gas and its effect on

combustion

As shown in the previous chapter, at the same level of dilution, the stratified charge

configuration has a substantially smaller cycle by cycle variation(CCV) of IMEP than the

homogeneous configuration. One of the objective of the modeling effect is to explain this

difference. There are a lot of different factors contributing to cyclic variations[27]. The

approach here is to examine the sensitivity of the engine performance (e.g. IMEP) to the various

factors via the model.

The MIT engine simulation program[29] was used as the base code. This program is based

on a quasi-dimensional model. The engine combustion chamber is divided into burned and

unburned zone, and the interface between them is the flame front, which is taken to be thin,

spherical surfaces intersecting the combustion chamber walls and centered at the spark location.

The burned gas zone consists of an adiabatic core and thermal boundary layers to take account of

the heat transfer effect. In this base code, the fuel, air and residual gas are uniformly premixed

and overall balances of mass, energy, chemical species are applied to each zone. A closed set of

simultaneous ordinary differential equation with time dimension yields the temporal variation of

temperature, pressure and other relevant variables in each zone. This program can account for

turbulence, flame propagation, heat transfer, etc. and thus incorporate a reasonably complete

description of the relevant physics.



The present investigation involves the development of turbulence and combustion models in

order to incorporate the effects of mixing of dilution gas, strong tumble and stratification on the

flame propagation.

5.2 Modeling assumptions and approach

Even though there is a strong organized (tumble) motion in cylinder, an isotropic and

homogeneous turbulence structure is assumed. This assumption is a reasonable description of the

small scale motion that affects flame propagation. Since at a highly diluted condition, the flame

in engine falls within the turbulent combustion category of "distributed reaction". Entrainment of

the unburned mixture into the enflamed region is assumed to be the dominant effect of

turbulence on the combustion process (see next section). The other assumptions used are:

* It is assumed that the average flame front expands spherically away from the spark

kernel

* Blowby and crevice flow are neglected. The actual peak pressures are thus slightly

higher.

5.3 Combustion model

5.3.1 Eddy burning model

The combustion model is the eddy burning model, which was initially formulated by

Blizzard and Keck[30] and is extended to encompass the "distributed reaction" regime[31,32].

The original model is based on the assumption that turbulent flames in spark ignition engines can

be modeled as thin wrinkled multiply connected locally laminar flames and simulates the

development of the flame as a turbulent entrainment process followed by a burn-up process in a

region behind the flame front. The concept could be extended to the flame zone in a spark

ignition engine with a highly diluted charge; then the combustion could be categorized as the "

thickened wrinkled laminar flamelet" ( or distributed reaction ) regime rather than in the

wrinkled laminar flamelet regime as the experimental evidence attests[33]. The model still

applies, but with a much longer burn-out time governed by the substantially lower laminar flame

speed of the local charge. The local mixture dilution ratio is empirically modeled by a

stratification function (see Sec. 5.3.4).



Burning rate equations with a further modification are modeled [31, 32] as:

me - m(
Mb = p, A,. SLIo + (5-1)

the = puA fu 1 - exp(- ) 1-exp(- -) JI 07 + SL Ijj (5-2)

where

mb mass burned

me mass entrained into the flame front

p, density of the unburned mixture

A, flame front area

S, laminar flame speed

Tb characteristic time to burn an eddy of size A

A Taylor micro scale

u' turbulence intensity

m,  mass entrained into the flame front

r,. flame radius

L macro scale ( integral length scale ) of turbulence

I, strain rate factor

The first term in Eq. (5.1) represents the laminar propagation forward of the approximately

spherical front of the thick turbulent flame or the burning of the entrained mass at laminar flame

speed; the second term represents the burning of mixture already entrained within this flame

front or the burning of the pockets of unburned mixture in the burned region.

In Eq. (5.2), the equation governing entrained mass incorporates contributions to the

entrainment rate from the burning speed normal to a local flame front gas and the distortion of

that flame front due to turbulent velocity fluctuations with the mixture. The first correction term

of the first term in Eq.(5.2) is the time dependent integral time scale for small turbulence present,

which means that the flame sheet initially is spherical and laminar like. The second one is the



size dependent integral length scale to take account the influence of flame curvature, which

means that early flame growth should not be significantly affected by the turbulence until the

kernel achieves a radius on the order of that of a turbulent eddy [34].

Since the eddies are assumed to be burned up by laminar flame propagation, the

characteristic time to burn an eddy of size A is:

Tb = C, C, is model constant.
SL

For isotropic and homogeneous turbulence, the Taylor micro scale is defined as:

1 = 15LkI (5.3)

where,

v viscosity of unburned mixture

5.3.2 Laminar flame speed

The laminar flame speed is calculated from an empirical correlation of Metghalchi and Keck

[35]. This is modified in order to account for mixture dilution effect. The correction is a function

of burned gas fraction and is based on the data by Rhodes[28] from experiments with constant

volume combustion of Indolene-air mixture.

SL 7 - F (5.4)
S = T=oo Poo

F. = C,(1- 2.06f 0.773)+C 2 (1-4.1f +4.7f 2) (5.5)

where,

T, unburned gas temperature (K)

P cylinder pressure (bar)

T P reference conditions 298 K and 1 bar

SL,  laminar flame speed at the reference conditions

a, f/ constants for propane

'f residual gas mole fraction

C1 , C2 model constants



For propane, these constants can be represented by

a = 2.18-0.8(o- 1)

03 = -0.16 + 0.22 (0 - 1)

SL, = 34.2- 138.7 (0 - 1.08)2

where 0 is equivalence ratio.

A combination of generally used correlation is used. The first term of Eq. (5.5) is valid with

engine internal residual fraction f up to 0.3 and the second term is up to 0.44. This new model

extends f up to 0.55. Figure 5.1 shows the comparison between this model and previous

models[28,36]. As shown in Fig. 5.1, there is uncertainty in value extrapolated over 0.3 of

dilution mass fraction that was not available in test data.

5.3.3 Modeling of strain rate factor Io

Laminar flame theory shows that the flame response can be affected by stretch , preferential

diffusion, and flame curvature. For nonunity Lewis number, defined as the ratio of thermal

diffusivity to the mass diffusivity of the mixed reactant, the differential diffusion of heat and

species results in a strong sensitivity of the local flame structure to strain rate.

Researches of strain rate effects on combustion illustrated that when Lewis > 1, lean or

dilution mixture, an increase in strain rate results in a decrease in the rate of consumption of

reactant, resulting less flame surface area and slower turbulent flame speed [37]. Since engine

was operated with a highly diluted mixture, where the Lewis number plays an important role in

flame behavior, the consideration of flame response to strain was incorporated into combustion

model.

5.3.3.1 Model I: general approach

The concept of flame stretch was used to explain and quantify the various phenomena

associated with flame stabilization. There are two types of strain on laminar flames in SI engines

[34,38]. Geometric strain is described by the surface increase normalized to its surface.

K 1 dA(
K = - (5.6)^ A dt



A generalized expression is

-- = V v + (v * n)(V * n)A dt (5.7)

which is derived by using the invariant formulation[39]. The first term is the stretch due to the

non uniform tangential velocity field and the second term represents the effect of curvature of the

propagating flame.

In turbulent flow field, turbulence strain is defined as the ratio of turbulence intensity to the

Taylor micro scale.

u
Kt-,

The effective strain rate K is the sum of geometric strain and the turbulence strain.

1 = dA- u'
K= K + K I + -IS A dt A

(5.8)

(5.9)

The expressions of the various flame responses for a wrinkled flame in a non uniform flow

field are given by [40]:

S I T,,
S 1- LV n+( --)( act K,S, Le 2T,,

S (5.10)
S.  K,, TS1 - +( - 1)( )acK,
S Le Le 2 Tad

where

K,, )K
SL"

DT" a

Sm" DS,"SL) ESL"

SDT D a

Von

Karlovitz number

laminar flame thickness

Lewis number

for source at the center and r. is the flame radius



dr
S =dt Burning speed

dt

E
act - Activation temperature

Tad Adiabatic flame temperature

Ea Chemical reaction activation energy

R Universal gas constant

the adiabatic, unstretched planar flame state.

These expressions show that the flame response is affected by the stretch (K : 0) and

preferential diffusion (Le # 1), and flame curvature (V en # 0). Therefore a formulation for

the change of the laminar flame speed with respect to the strain rate and the Lewis number is

described as:

SLI =-

S,,
(5.11)

=1-2L2 + 1- - TK1 

(5.11

r. Le 2Tad a

Karlovitz number Ka is the ratio of a chemical time scale to a hydrodynamic time scale.

Ka(SL )K = 5L I(dA+ It (5.12)

SSL L A dt (5.12)

Expressions for K are complex for general flame geometry and velocity fields. But for an

unconstrained spherical laminar flame propagating at constant pressure away from an ignition

source with negligible motion of the burned gas, the initial development of a spherical flame can

be illustrated as

I (dA 2 dr, 2 u (5.13)
A dt r,. dt r, pb



which is based on the assumption that

dr1  Pu S, when L<<1
dt Ph b

After further rearrangement, the stretch factor I,, is described as

I =1-2 + -•e ( +2- (5.14)
rf Le 2T, S, 15Lv r PJ

In this model approach, the turbulence strain effect is too high at high dilution ratio and

different order of magnitude compared with the geometric strain. The simple sum of two strains

might not be a good approach. Laminar flame speed is getting smaller with the increase of

dilution mass fraction, which makes Karlovitz number bigger when the magnitude of turbulent

strain is too big. In this case the combustion environment in cylinder changes from the flame

sheet model applicable region to the boundary region between distributed reaction and flame

sheet reaction largely due to the low values of laminar flame speed. Whether the flame structure

under these conditions is significantly different is not known[2].

In a turbulent flow the fluctuating nonuniform local velocities impose aerodynamic

stretching on the highly-convoluted flame surfaces. Thus the results of stretched laminar flames

can be applied to certain situations involving turbulent premixed flames. The minimum

requirement for such an application is that the flamelet satisfies the Klimov-Williams criterion,

which basically states that the laminar flame thickness must be smaller than the Kolmogorov

microscale [37]. When the turbulent Karlovitz number ( ratio of laminar flame time to

Kolmogorov time ) is greater than unity, the flame stretch is strong and the smallest eddies can

enter into the flame structure since Kolmogorov length scale is less than laminar flame thickness,

thereby broadening the flame structure. These eddies produce the largest straining rates and may

lead to local extinction of some inner reaction zone, but nothing definite is known about this

interaction at present[41].



5.3.3.2 Model II: eddy burning approach

In a highly diluted mixture, which is located at the boundary region between distributed

reaction and laminar flamelet reaction, additional approximation is needed in order to reduce the

excessive turbulent stretch effect and incorporate the stretch effect especially in terms of

preferential diffusion and curvature.

For spherical flame, the following relation can be derived from a conventional definition.

1 (dA = 2 (dr, dr, dm, 1 (5.15)
A dt - r dt ) dt dt 47r r,2

From entrain combustion model and eddy burning characteristic time,

dm, j24-S me - mb
dt - mp -.4r • S e + (5.16)

me - = pu. .(r - r (5.17)

Therefore, the stretch factor can be described as follows:

1 dA 2 dr, 2 Pu S + r (5.18)
A dt t f ri dt r p3A r

In this formulation, the planar flame approximation is not needed. Furthermore, since

turbulence eddy effect is included in the flame stretch formulation, additional turbulence strain

effect is not considered.

S1 dA 2 r re 3
KaK = - -- -* s - + -" 1 (5.19)

However there was a serious oscillation in the stretch factor of Model II due to the oscillation

in the ratio of entrained radius to flame radius, which was largely caused by the flame area

interaction. The oscillation could be the limitation of the combustion geometry or that of eddy

entrained model.



5.3.3.3 Model III: general approach without turbulence effect

Effects of flame stretch can best be observed when r. is small with stable ignition.

Experimental results of the flame speed of the positively-stretched outwardly-propagating flame

for propane/air mixtures showed that there is clear preferential diffusion effect and the stretch

effect is strongest when the flame kernel is small and decreases at the flame propagates outward

[37].

When the flame kernel is small, where laminar flame speed dominates and strong flame

stretch effect is expected, the incorporation of stretch effect into combustion model is essential to

be able to explain the flame behavior especially for the mixture with large Lewis number even

though the stretch model itself could not be used for a fully developed flame area with turbulent

flame speed.

Next approach for stretch factor calculation is to incorporate the flame stretch effect during

initial flame development, which is based on two assumptions.

* The first assumption is that the density in the preheat region is the arithmetic average

of burned gas density and unburned one.

* The second one is that the time derivative of laminar flame thickness is zero, which

means that laminar flame thickness is relatively constant compared with other

parameters.

Since the assumption, << 1, is not required, this formulation could be applied to initial
flame formation stage, where that assumption is weak.

flame formation stage, where that assumption is weak.

A dtJ r, P. S (5.20)

In this formulation, the assumption that the thickness of the flame reaction zone is negligible

is not required.

/.1ý



From the overall mass conservation, the rate of change of mass in the burned, preheat, and

unburned zones should be equal to the rate of dispersion of mass in the unburned region:

+ Pb) d(4 t,2,) = -4ir(rf + S)pu,uu
1

2 (5.21)

PU + Pb

2 1 + -PU
(5.22)

If L, = 0., then

2
S+ +1 3

(h P9U ý
1+ 1+

Pu

Ph
SL

(5.23)

(5.24)

As mentioned before, there is no consideration for turbulent effect on stretch. However, this

formulation can be used to include the stretch effect on laminar flame speed.

Coefficient of mass diffusion is calculated based on the relationship by [42]

Dm= D,, ) (5.25)

where, D, = 0.09621(cm/s): mass diffusivity of propane/N 2 at T.= 273 K, Po= 1 atm

4

3

dt
Ph -t J+

SL = U re l = r. - U,

= 1+

i = Pu
A• SL

Therefore.

Ka K = LjS L SL,

2
1+ 
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.



Since the nitrogen concentration in all mixtures considered here is very high as compared

with the concentrations of other species, the binary diffusion coefficient of the deficient reactants

is used as diffusion coefficients.

General relation for laminar flame thickness is used.

DT a
S SL

If Le=Pr=Sc=l is true, the relation becomes

V

SL

5.3.4 Inert gas stratification and mixing model

The mixing model of inert gas in the cylinder, including internal residual and external EGR,

was developed. In engines, mixture is not quiescent. As discussed in Sec 4.2.1, EGR gas supplied

through the supplementary pipe was mixed during compression stroke and the mixing level at

spark time was quite high. Ideally the mixture around spark plug was supposed to be combustible

with fuel and air and the other region was filled with inert gas. Since it is not easy to define the

stratified region with the limited access to the combustion chamber, the mixing status in terms of

a stratification function was incorporated into the combustion model. Introducing the inert gas

stratification function as an additional variable in the engine cycle analysis brings about another

dimension because it could take many forms at a given inert gas fraction. To simplify, the shape

of function and the width of the inert gas variation was considered.

Various stratification functions studied in the analysis are shown in Figure 5.2. It is assumed

that the mixture dilution ratio in the burned zone is a function of a progressive variable which is

chosen to be the burn gas fraction. Eq. 5.25 indicates the detail of the functions in Fig. 5.2.



f - linear = (finar - finitial ) - Xb + initial

f _ sinusoidal = (fina - finitia) sin(7r(xb - 0.5)) + finitial

finitial x < 0.5
f initial + ftinal

f - step = foverall Xb = 0.5 ' fverall = 2

flinal Xh > 0.5

(5.25)

For example, by maintaining an overall inert gas mass fraction equal to 36 %, we can have

the linear stratification of width 30 %/ 42%, 33 %/ 39%, etc., where the first number corresponds

to the mass fraction at xb = 0 and the second number, to the mass fraction at x, =1.

5.4 Turbulence model

The turbulence model consists of a zero-dimensional energy cascade, which was developed

by Mansouri et al. [43]. Mean flow kinetic energy is supplied to the cylinder through the inlet

valve and converted to turbulent kinetic energy through a turbulent dissipation process.

The followings are equations for the mean and turbulent kinetic energy.

1 3
K = ImU2 , k = mu' 2

2 2
(5.26)

The rate of change of the mean kinetic energy K and the turbulent kinetic energy k is

described by

dK 1 ri,
d- = -m rhiV i2 - P - K
dt 2 m

dk m'
- = P - me - k -s- + A
dt m

u'"3 (2k/3m)Y
E

P = , ) = 0.3307 C•kk)

du' 2 p
A = 3mu' k=-k

dt 3 p

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

_ ·_ __I___~___~

I



where,

m mass in the cylinder

rhi, mass flow rate into the cylinder

rh, mass flow rate out of the cylinder

Vi velocity into the cylinder

P rate of turbulence kinetic energy production

e rate of viscous dissipation per unit mass

A rate of turbulence amplification due to rapid distortion

1 characteristic size of large-scale eddies

L geometric length scale

Cf adjustable constant

The macro scales of turbulence consist of the characteristic size of large-scale eddies and the

V
geometric length scale, which is assumed to be given by I = L - ,which is subject to the

,rB2/4

V
restriction that L < B 2/4 during induction, compression and exhaust stroke.

After ignition the macro scale is assumed to be governed by the conservation of angular

momentum of eddies,

I= illPu a (5.32)

where the subscript u stands for unburned mass and the subscript o for the value at the time of

ignition. Another macro scale was defined to incorporate the squish effect on turbulence

generation,

V - V,:
l.q = B2/4 + t (5.33)

nY 7cB2/4

where,

V,. cylinder volume at TDC



t cylinder head gasket thickness

Therefore the rate of turbulent kinetic energy production consists of two terms during

combustion.

(K•( k • A r-A (K) k\K Aqi

P =0.3307Cp- ( Y 2 Abore squish + 0.3307CP K Aquish (5.34)
1 m Abore boq m Abore

The modeling of tumble and tumble-generated turbulence with quasi-dimensional has been

difficult because there are no adequate techniques to quantify the mean flow field as well as

turbulence flow field.

The tumble generated turbulence is interpreted through shear stress. Large shear stress exists

near the cylinder wall around TDC due to the breakdown of the tumble vortex and there is the

energy transfer of the tumble rotational energy to turbulent kinetic energy. Since the shear stress

U
is proportional to •, the turbulence generation was modeled as:

h/2

P = CA , =C/h (5.35)

Due to the lack of experimental data, the turbulence model validation was qualitative; burn

rate data was used for the indirect turbulence model validation.

5.5 Heat transfer model

Heat loss to combustion chamber in SI engines is mainly due to convection. In quasi-

dimensional model, the heat transfer rate in each zone is generally determined by using:

w = hA(T - T) (5.36)

where

h convective heat transfer coefficient



A surface area of cylinder head, piston, cylinder liner

Tg mean temperature of the gas

T, wall temperature of each area

During combustion, the heat transfer rate in unburned and burned zone is determined

separately.

The convective heat transfer coefficient, h, is calculated from a Nusselt - Reynolds number

correlation.

N u = a Rd (5.37)

where

hL
N = - Nusselt number

VL
R, = - Reynolds number

L characteristic length scale (macroscale of turbulence)

IC thermal conductivity

v kinematic viscosity

a, d constants

The effective velocity

V = U2 + U 2 + (VI)/2)2) (5.38)

was used to obtain the heat transfer coefficient, where U is the mean flow velocity, VP is

instantaneous piston speed[29]. This heat transfer model was found to yield over prediction of

heat transfer rate due to the high velocity of Eq.(5.8). Therefore Woschni's correlation was used

to calculate the convective heat transfer coefficient h.

Woschni's correlation [24] is summarized as:

h = 3.26B(m) -0.2 P(kpa)o8 T(K) - 55 w(m / s)0 8 (5.39)



The average velocity w was expressed as follows:

Vd T,
w = CIS,, + C2 V Prm) (5.40)

PrV,

where B is the cylinder bore, S, is the mean piston speed, Vd is the displaced volume, p is the

instantaneous cylinder pressure, Pr, V,, T, are the working-fluid pressure, volume, and

temperature at intake valve closing and Pm is the motored cylinder pressure at the same crank

angle as p.

For the gas exchange period: C, = 6.18, C2 = 0

For the compression period: C1 = 2.28 C2 = 0

For the combustion and expansion period: CI = 2.28 C2 = 0.00324

Woschni's correlation represents spatially averaged combustion chamber heat fluxes.

However during combustion, where substantial temperature nonuniformities exist between

burned gases and unburned gases, zone averaged approach is expected to be more accurate than

global models. The heat transfer to the combustion chamber surfaces in contact with the

unburned and burned gas zones is given by:

0, = he,A,. (T -T), Qb = h .bAb (T, - T) (5.41)

respectively. Since he depends on local gas properties and velocities, h,,u and h,, are not

necessarily the same.

5.6 NOx formation model

Analysis of NOx formation mechanism has been done to see the burned gas temperature

effect with the fully mixed model and unmixed model of burned gas.

5.6.1 Models for burned gas temperature for NO calculation

1) A fully mixed model



The model assumes that the burned gas region is homogeneously mixed, and the temperature

for NO calculation is based on the averaged adiabatic core temperature of the burned gas,

Th = Tb,ac (5.42)

where T,,, is the adiabatic core temperature which is based on the total sensible enthalpy of the

burned gas.

2) An unmixed model

This model is based on the assumption that no mixing occurs between gas elements that burn

at different times, and each burned gas element is isentropically compressed and expanded

according to the cylinder pressure after combustion.

In order to specify the temperature of each element of charge, the following supplemental

relationships are employed. The mean burned gas temperature Tb, is calculated by using

enthalpy balance in the cycle simulation program.

IIn
Since Tb - Tbixhi, the temperature Tbi of the mass element which just burns may be

Xb i

calculated from Tb by

i-1

Thmb- Tbjmb(j)

Tbi = J , mb = mb(j) (5.43)
mb (i) .i=l

where the index i indicates the sequence of burning of the mass elements.

The temperature of the burned gas element after combustion is given by

T,(xx) p(xb l ,(nM(i))
Thi(---- =Lp----•· (5.44)

where T,, (x~ , xi,) is the temperature of the element (i) when the pressure is P(xb). The index

x,, denotes the burning time of element i, which the temperature is Thi (x).



In the boundary layer region, the burned gas temperature is compensated by

Tb 2 Tw(5.45)

where T,,b is the weighted mean of the wall temperature in the burned zone.

When the unmixed model applies only to the adiabatic core region, the temperature of

subdivision can be calculated based on the following equation.

i-!

T.,acmac - b im (J)
Tbic = (5.46)

M, U(i)

5.6.2 NO kinetics

1) The extended Zeldovich mechanism

N + NO N2 + O, kk = 1.6x10" kri = 7.6x10" xe -38s000/T

N+0 2 <=NO+ O, kf2 = 6.4x10 9 xTxe (-3125/T) kr2 = 1.5x10 9 xTxe - 9'9 ,5 °/T

N + OH , NO + H, k., = 4.2x10 6  k,3 = 2.0x1014 e- 2 3,6 5
0/T

(5.47)

where T is in 'K and the forward and reverse reaction rate constants are cm3/mole.s. The rate

constants are based on the Table in the book[2]. Except for rich mixture at a low temperature

where prompt NO may be important, most of the NO formation will occur via the extended

Zeldovich mechanism.

2) The N20 mechanism for lower temperatures and excess air

H+ N20 : N 2 + OH, k, 4 = 3.0x10 1 3 xe-5 35 0/T

O + N 20 =*' N 2 + 02, kj, = 3.2x1015 xe-189To/r

O+N 2 0 <= NO + NO, k.f6 = ky

N2 0+ N 2 , N 2+ O+ N2 , kf, = 1015xe-s30500/T



where the rate constants are given in cm 3/mole.s. These are based on the theory developed by

Lavoie et al[44] with some modification by P.C. Baruah.

Using the principal reactions governing the formation of NO and steady state approximation

for [N], the following expression is obtained.

d{NO}ac = 2 MNo (1 -la2)  [R( +6R fIN
dt p, 1 + a[R,/(R2 + R,)] 1+ [R/(R4 + R, + R6) ]  M a a

(5.49)

where R, = kI [N],[NO], etc., a = [NO]/[NO],, [ ]e denotes the equilibrium concentration.

The NO formation at boundary is assumed like the following equation.

d {NO}b, -=f {NO}c, (5.50)
dt in,

mVh
[NO] adia + [NO],,l  '

[NO]vg = adia bI (5.51)
Sdia bl Vunburned

adia Tbl Tunburned

Once the NO chemistry has frozen during the early part of expansion stroke, the integration

over all elements will give the final exhaust NO concentration. Thus, if (NO) is the local mass

fraction on NO, then the average exhaust NO mass fraction is given by

S(NO(i)}h (i)
{NO} = '=' (5.52)

where {NO(i)} is the final frozen NO mass fraction in the element of charge which burned

when the mass burned was mb (i).



5.7 Results and discussion

Since the model describes the mixing and combustion processes in terms of parameters

related to the charge turbulence, these parameters need to be calibrated with respect to the

current engine application. In this section, the calibration process is first described. Then the

model is exercised to study the sensitivity of the engine behavior as a function of the various

subprocesses.

5.7.1 Model calibration

Most of the simulation work was carried out at one EGR operation condition. Lean burn

condition was briefly introduced in order to assess the system operation in that condition.

The followings are important parameters to be calibrated to match experimental results:

* Cp : The coupling constant that connects the mean kinetic energy to turbulent kinetic

energy; see equation (5.30). This factor should be unique to each engine design and

engine operation condition.

* C,: The scaling factor for the eddy burning time; b = C-L reducing Chas the
SL

same effect as making small Taylor length scale or increasing laminar burning speed.

* Flame stretch factor I,,: which is based on mathematical interpretation of flame

structure. There is still open question whether turbulent flame will really follow the

simplified mathematical model. However during flame initiation stage, it is

generally recognized that burning is controlled by the laminar burning speed with the

negligible turbulence effect.

* Assumption on initial burn fraction xb: This factor has a significant effect on

initial burn duration. When the spark ignition model is not included, the simulation

should start based on the assumption that flame has grown to a certain diameter. This

is not critical in stoichiometric operation, but it is required for highly diluted

mixture.



5.7.2 Combustion in the EGR dilution

Simulation was calibrated to match the experiments largely in IMEP, peak pressure and

combustion phasing. Two kinds could be tried in calibration. One is based on the assumption that

flow field conditions are the same between stratification and homogeneous strategy even with the

different EGR supply method. The other is that each case has its own calibration condition. Since

adjusting model constants for each condition seems too arbitrary even though supplementary gas

could change flow field in the cylinder, a single calibration was applied to both homogeneous

and stratified mixture. The control of turbulence generation was calibrated with Cp in Eq. 5.30.

the calibration coefficient of rate of the turbulence kinetic energy production and the eddy

burning time was calibrated with C,.

The effect of flame stretch factor

The parameters related to the flame stretch factor are shown in Figure 5.3, where the

conditions for calculation are homogeneous mixture: 30 % EGR ratio, 45 BTDC spark timing

and stoichiometric operation. Figure 5.3a illustrates a significant magnitude difference in

Karlovitz No between geometric strain and turbulent strain model. As noted in section 5.3.3.1,

this difference is largely due to the low value of laminar flame speed. Since the turbulent

Karlovitz No is greater than unity, the engine operating conditions are found to be in the

boundary regime of the flame sheet model. The flame curvature effect is shown in Fig 5.3b. This

factor should be considered when the flame model based on the spherical flame propagation

assumption is used. The non dimensional numbers shown in Fig. 5.3c indicate that the

preferential diffusion effects are needed to be considered. Since the propane has large Lewis

number at a highly diluted mixture[45], this result supports the need to include Lewis number

effect on the flame stretch. Figure 5.3d is the calculation result of the flame stretch factor, which

shows that the flame stretch factor has a strong effect on early flame development phase.

Figure 5.4 shows the flame stretch effect on engine performance. The calculation was carried

out with and without the stretch factor. Even though the stretch factor has strong effect on the

flame development phase, its effect propagates throughout the whole combustion period. Since

the simulation has shown the fast burn characteristic in both cases, as addressed before, the

flame stretch effect to reduce the burning speed is needed.



The effect of initial flame growth

At the condition of the dilution limit, the initial flame size, which is induced by ignition has a

significant influence on combustion. Strong spark energy is able to extend the lean/dilution limit

of combustion. In simulation, this effect can be incorporated into the initial condition of the mass

fraction burned. Therefore the relative magnitude of contribution to combustion between

stratified strategy and high spark energy can be assessed by the sensitivity analysis. The physical

meaning for the variation of initial mass fraction burned Xb,,in can be interpreted as a sparking

condition.

Figure 5.5 shows the effect of the initial mass fraction burned on combustion. In

homogeneous mixture, the initial mass fraction burned had a significant effect on combustion.

However the initial size of the stratified mixture combustion highly contributed to the flame

propagation until around 0.2%. This result showed that at large dilution ratio the initial flame

formation was hard. Therefore a slight favorable mixture around spark plug could improve the

combustion stability. Since there is a linear relationship between Xbi,,ni and the initial flame radius,

the flame radius can be used for criterion of setting initial condition. One research on the initial

flame size showed that the flame radius after ignition was about 1 mm at a highly diluted

condition[34]. In this simulation, the initial mass fraction burned was assumed as 0.25%, which

is equivalent to about Imm flame radius.

The effect of charge mixing and stratification

The effect of mixing during combustion on combustion properties was examined by adopting

a mixing function. When the flame grows during the initial phase within the combustion

chamber, the stratification effect on combustion would be significant. The stratification of the

inert gas near the spark plug or the location of unburned air/fuel mixture near it will contribute to

accelerate the flame development by enhancing the laminar flame speed. Even though the

complete stratification had been achieved during induction and compression, it is expected that

the mixing between inert gas and fresh mixture would occur due to the expansion of the burned

gas.

Figure 5.6a shows the comparison of IMEP vs. initial EGR fraction with the difference of

mixing function at same calibration condition between homogeneous and stratified mixture: Cp =

0.45 and C, = 1. As the EGR fraction of the initial burning mixture gets smaller with the constant

overall residual fraction, the fast burn could be accomplished. Since the spark timing was



maintained at fixed value, the fast burn did not contribute to IMEP increase. The less EGR

fraction during the flame development phase, the step mixing function, reduced the Oo-los and 0o-

50%, but it increased the flame propagation angle 01o-90%, precisely 050-90% as shown in Fig 5.6. The

longer duration of 10-90g, reduced IMEP even with the fast burn characteristic during flame

development phase. Since the experiment result shown in Fig 4.23 indicated that the faster the

flame development angle is, the shorter is the flame propagation duration, the increase of 01o0-)oo

might not be the real situation in engine. The mixing effect on combustion parameters versus

crank angle is compared in Figure 5.7. The slow burn of step mixing model after 50 % mass

fraction burned is reflected on the less pressure and mass fraction in Fig 5.7a and b.

The linear mixing model was used for further investigation on the mixing during combustion.

The comparison with the experiment results illustrated that the mixing profile of models during

combustion did not make a big difference on engine performance parameters up to the level

where calculation results match experimental results.

Figure 5.8 and 5.9 show the detail comparison of engine performance for the homogeneous

mixture and the stratified mixture respectively. Experimental results are typical 10 cycles of each

condition and calculation results are from the linear mixing model. As shown in Fig 5.8, there are

significant cyclic variations in the experiment results in the homogeneous mixture. The

simulation indicates faster burning during the flame propagation phase than the experiment. The

fast burning characteristic in simulation is also shown in Fig 5.9 for the case of stratified mixture.

The variation of IMEP around 30 % EGR ratio has a stiffer slope in case of homogeneous

mixture than that of stratified mixture, which is shown in Figure 5.10. Therefore a small

perturbation of EGR gas could aggravate IMEP fluctuation, which illustrates that with the

stratified strategy the combustion stability was improved in addition to the increase of IMEP.

The result showed that at high dilution ratio the laminar flame speed had a dominant effect on the

flame propagation because the effect of volume expansion after TDC on the decrease of the

pressure and unburned gas temperature is relatively high as shown in Fig 5.10e and f. This may

explain that the cyclic variation of IMEP in homogeneous mixture is due to the variation in the

amount of dilution gas.

The effect of turbulence

Since the turbulence intensity level was not measured in this work, it is not sure that the

performance improvement of the stratified-EGR operation is with the help of turbulence or

stratification itself.



The simulation was done to examine the effect of the variation of turbulence level as an

independent variable on the system performance. If the turbulence intensity level during

combustion is adjusted to match IMEP of the homogeneous operation to that of the stratification

strategy at 30 %, the performance improvement of the stratification strategy can be assumed to

be from the turbulence intensity increase rather than the stratification effect. The turbulence level

was arbitrarily increased to 10 % higher than that of the homogeneous mixture during the

combustion period. Figure 5.11 shows that the trend of variation of IMEP around 30 % EGR

follows that of the stratified strategy. When the dilution fraction is less than 30 %, the increase of

turbulence promotes flame propagation. However at high dilution ratio the turbulence effect is

not much because the laminar flame speed is the dominant factor in this range as shown in Fig

5.1 le. Comparing with the experimental result shown in Fig 4.23 c and d, the variation of IMEP

as a function of the flame development angle shows the similar trend. Since the supply of

external EGR was maintained at the constant level, the fluctuation of the amount of dilution gas

was due to the cyclic variation of the internal residual gas. These characteristics are clearly

shown in Figure 4.21 g and h, in which the engine was operated with more EGR fraction.

5.7.3 Lean burn

Excess air in lean burn condition acts as inert gas too. Since oxygen does help combustion,

even with the same level of dilution ratio between air dilution and N2 dilution, there are

significant differences in the combustion performances as illustrated in Figure 4.26 . The main

factors that make the performance of the stratified lean operation better than that of the stratified

EGR operation was addressed. The simulation methods are the same, which is described in

section 5.6.1.2.

The effect of the charge stratification is shown in Figure 5.12. In this calculation, Cp = 0.375

and C, = 0.9 were used as a calibration condition for both mixtures. A relatively big discrepancy

resulted in the homogeneous mixture. A possible explanation is that the turbulence flow field is

not same between the homogeneous mixture and the stratified mixture because the discrepancy is

largely due to the flame propagation angle, which is strongly affected by the turbulence effect.

The trend in the combustion phasing is similar to the EGR combustion shown in Fig.5.6.



5.7.4 System performance on engine NOx emissions

This work has emphasized on the engine operation at the stoichiometric air fuel condition in

order to use three way catalytic converter and to use a significant amount of EGR gas to reduce

the pumping loss.

In this section, the effect of this strategy on engine NOx emission was discussed. The optimum

mixture distribution near the spark plug was intended to improve combustion, but it would have

an adverse effect on NOx formation. Therefore, it is needed to assess the effect of the mixture

stratification on NOx formation.

In this simulation, two kinds of strategies were addressed. One is the stratification of mixture

composition of unburned gas and the other is to take account of the stratification of burned gas,

which is described in Sec.5.6.

The stratification of EGR in unburned mixture and the temperature layer of burned gas

Even though the engine was operated in the stoichiometric condition, the level of NOx

formation is relatively small with the high dilution. However if each burned gas element is

isentropically compressed and expanded without mixing, it will enhance NOx formation due to

the element with the high temperature. Figure 5.13 illustrates the effect of stratification of the

unburned gas mixture and the burned gas temperature on NOx formation. Since the spark timing

was maintained at the constant value, the fast burning with the help of the stratification of EGR

gas increased the peak pressure as shown in Fig. 5.6b, which formed a significant amount of

NOx; more than 3 times at about 0.33 the initial EGR stratification. This is an indication of NOx

fluctuation mainly caused by the mixture non-uniformity burned or unburned.

The stratification of excess air in unburned mixture and the temperature layer of burned gas

Figure 5.14 shows the NOx formation in lean burn condition. The order of magnitude in NOx

level is 10 times that of EGR burn even at the lower load condition. The NOx formation trend

shows the exponential growth with the stratification, which means that a small fluctuation in the

non-uniformity of in-cylinder gas could cause a significant variation of NOx formation.

5.7.5 System performance prediction at different engine speed

In order to predict the engine performance operating in the stratified-EGR mode at the

different engine speed, a calculation was carried out at 1500 rpm, MBT spark timing and

stoichiometric condition. Since the stratification of about 10 % of residual gas was expected with



the current system, the engine performance was compared at the same brake mean effective

pressure(BMEP) between 30 % external EGR condition with 10% stratification effect and base

condition without EGR

Figure 5.15 shows the comparison of the combustion performance at the 695 kpa BMEP. The

slow burn due to the high EGR ratio caused higher compression work as shown in the figure and

reduced IMEP.

Figure 5.16 illustrates the performance comparison at low and high load conditions. As

expected, a significant improvement in pumping loss and cooling loss was resulted. At low load,

the effectiveness of stratification strategy is diminished due to the higher internal residual gas.

Around 1 % improvement in brake specific fuel consumption and brake thermal efficiency is

shown at low load, but over 5 % improvement was resulted at high load as shown in Fig. 5.16a

and b. In the NOx formation, about 100 times difference is shown in Fig. 5.16e.



CHAPTER 6 Summary and conclusions

A spark ignition engine operating in a stratified-EGR mode was developed to use a

substantial amount of EGR to improve the fuel economy of spark ignition engines under part

load. The fuel economy gain was achieved mainly by reducing the pumping loss with EGR and

by improving heat loss. Stable combustion at high level of EGR was achieved by charge

stratification, so that the fresh mixture and the burned gas from EGR are essential in different

regions of the cylinder. The research has been largely focused on the understanding of the mixing

progress between the air/fuel mixture and the dilution gas, and its effect on combustion at low

load and low speed condition.

In order to study the means of supplying the stratified EGR gas, of maintaining the

stratification in the cylinder, and of obtaining fast burn by increasing the tumble motion in the

cylinder, a new transparent engine test facility was developed and experiments were performed

to demonstrate the concept of the spark ignition engine operating in a stratified_EGR mode.

Laser diagnostics including PLIF technique and Mie scattering technique were applied to observe

the in-cylinder flow motion and mixing process during intake and compression. The engine was

also operated at firing condition to assess the engine performance operating in a stratified-EGR

mode. Cylinder pressure measurements were used to gain information about the combustion

process.

A new combustion model incorporating a mixing function and the flame stretch factor was

developed to examine the flame propagation properties. Simulations under highly diluted mixture

were carried out to investigate the effect of charge mixing and stratification in unburned mixture

and turbulence. In addition to the engine performance prediction, NOx emission calculation was

also investigated by incorporating a layer model in the burned gas.

The contributions and conclusions of this research are described as follows:

1. The feasibility of the stratified-EGR concept in a spark ignition engine was demonstrated in

a single cylinder engine.



2. A transparent engine was developed to examine the level of in-cylinder flow control. Flow

visualizations(Mie scattering and PLIF) were applied to observe the fluid motion and mixing

progress in the cylinder.

3. Acetone was effective as a fluorescent tracer for the PLIF experiments. Single laser shot and

averaged images of 2D-acetone distribution illustrated the instantaneous qualitative measure

of cycle-by-cycle variation of fuel distribution and the progress of turbulent mixing.

4. Comparisons of PLIF and Mie scattering images at the similar field of view and crank angle

revealed the relationship between the large scale motion and the mixing process. There were

less cycle by cycle variations in the large scale tumble motion introduced during the intake

stroke than the small eddies distribution during the compression stroke.

5. The stratification between air/fuel mixture and EGR gas was relatively well established

during the intake stroke. There was, however, a significant mixing in the later part of the

compression stroke. This process may be explained by that large scale tumble motion was

introduced into the cylinder during the intake stroke, and that the organized motion broke

into small eddies during the compression stroke and hence resulted in the substantial mixing.

6. Injection of the supplementary gas before intake valves open did not make a notable

difference in combustion characteristics at low dilution ratio; however injection during

valve-open and minimizing the mixing between the supplementary gas and the fresh mixture

improved the combustion at high dilution ratio.

7. Performance comparison between the engine operating with the homogeneous mixture and

with the stratified mixture illustrated that the stratified mode greatly improved fuel

consumption and provided the stable combustion at over 30 % EGR. The combustion

variability was significantly improved up to 40 %, where the amount of internal residual gas

has a dominant effect on the laminar flame speed.

8. The observed trend on the burning process could be reproduced reasonably well in an engine

simulation model by incorporating a mixing function and a flame stretch factor. Linear

mixing assumption can relatively well predict the trend of engine performance compared



with the test data. Simulation underpredicted the flame development angles and

overpredicted the flame propagation angle, and the model with flame stretch factor improved

the model prediction.

9. In highly diluted mixture, the stratification in unburned mixture had a bigger effect on the

combustion stability than the turbulence. Turbulence effect, however, was stronger in low

dilution mixture.

10. A model using layering of burn gas and stratification of dilution gas in the unburned mixture

is developed to evaluate NOx formation. The results indicate that the overall NOx production

is very sensitive to the mixture distribution.

11. The implementation of the stratified-EGR concept engine for prototype engine development

is recommended. The major components to be developed include the EGR distribution

system, charge motion control, and the appropriate engine management for the optimum

operation.
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Table 2.1 Engine geometry and specifications

Contents
Model:
Type:

Combustion Chamber:
Bore:
Stroke:
Con rod length:
Clearance volume:
Displacement:
Compression ratio:
Valve onening duration

* Valve timings:

Valve overlap:
Valve. lift Max:

DescriptionI

Table 2.2 Tumble adapter design and velocity ratio

Main flow pipe EGR flow pipe
* Diameter (mm) 23 5
* Length (mm) 100* 190
* Velocity ratio in order to meet 1 10

system requirement
* intake port length

DAEWOO 1.5 DOHC
Four cylinder, iron block and aluminum cylinder head, two intake
valves, two exhaust valves, double overhead cams
Pentroof, central ignition
81.5 mm
76.5 mm
127.5 mm
46.80 cc
0.375 liters
9.0
INT: 230*
EXH : 2300
IVO 350 BTDC (5050 CA)
IVC 150 ABDC (1950 CA)
EVO 450 BBDC (3150 CA)
EVC 50 ATDC (5450 CA)
400
INT: 8.5 mm
EXH: 8.5 mm

v lt,



Table 2.3 Data on acetone properties

Properties
Boiling point (°C)
Molecular weight
Specific gravity (kg/cm3 )
Autoignition temperature (oC)
Absorption wavelength (nm)
fluorescence quantum efficiency (of), %
Emission wavelength (nm)
fluorescence lifetime (Zf), ns
phosphorescence quantum efficiency (,p), %
phosphorescence emission (nm)
phosphorescence lifetime (z,), pis

Table 2.4 Experimental conditions

Reference condition EGR operation Lean operation
* Engine speed (rpm) 1000 rpm <-- --
* Spark timing MBT-- --

(deg, BTDC)
* Mixture Homogeneous Homog / Stratif Homog / Stratif
* Air/fuel ratio (Lamda) 1. 1. 1.4-1.6
* EGR ratio (%) 0. 30- 40 0.
* Load (IMEP, bar) 4-6 2.5-6 4. -6.

data
56
58.08
0.79
465
225 - 320
0.2
350-550
4 ns
1.8
350-600
200

__
,

RIO d " I " I



Table 4.1 Design target, design parameters and test required

Design target Design parameter Test
* High turbulence Tumble adapter Firing

- increase turbulent flame Mie scattering
speed ( motoring )

* Stratification Symmetric EGR supply PLIF ( motoring)
- increase laminar flame speed

* Minimize mixing in the intake port Solenoid valve Firing
- synchronize with the intake stroke Pressure wave in the

intake port

Table 4.2 System performance requirement of each stroke

Status Target
* Before intake stroke No mixing in the intake port
* Intake stroke Supply supplementary gas at stratified condition
* Compression stroke Maintain momentum for stratification
* Expansion stroke Control the spark timing

Table 4.3 Test results summary of the tumble adapter performance

Low tumble High tumble
* IMEP (COV of IMEP) bar 4.26 (2.9%) 4.36 (2.2%)
* Pmax @ ang (bar @ deg ATDC) 19.7@21.6 21.8@19.5
* Peak mass burning rate 0.032@ 16.4 0.037@ 13.2

@ ang ( I/deg @ deg ATDC)
* 0- 2%(deg) 27.0 26.2
* 0 - 10 % (deg) 34.7 33.5
* 0 - 50 % (deg) 50.2 46.9
* 0 - 90 % (deg) 66.3 60.8
* 10 - 90 % (deg) 31.6 27.3

Table 4.4 Test results summary of the supplementary gas supply timing control

Supply IMEP COV Pmax CA,Pmax 0 - 10 % 10 - 90 % Dilution
Timing (bar) (bar) (deg) (deg) (deg) ratio

160 5.06 3.67 29.41 16.86 35.17 29.17 21.64
340 5.26 3.53 28.87 17.77 36.33 29.91 21.51
520 5.32 3.75 27.79 18.47 37.1 31.79 20.90
700 5.11 3.81 27.44 18.01 36.86 31.17 21.41

--- ;



Table 4.5 Engine operation for baseline

Load( IMEP, gross) Spark timing Lamda HC Ps
(bar) (deg, BTDC) (ppm C1) (bar)
4.2 30 1.04 1365.7 ± 233.0 5.4
4.1 30 1.03 1310.5 ± 238.0 5.6
4.1 35 1.04 1275.3 ± 220.9 4.8
4.0 35 1.03 1230.0 ± 220.9 4.8

Table 4.6 Reference test results for lean burn and EGR test

File Spark Fuel mass IMEP, Pinax bar CA Pmax 0-10%, deg 10-90%, deg
Timing per cycle bar (COV) deg (COV) (COV)

(g,/cyc) (CO V) (CO V)
Part 1 30 0.0088 4.29 24.25 16.77 25.61 23.35

(1.38) (6.99) (13.1) (6.33) (9.84)
Part 2 25 0.012 5.60 29.39 18.63 22.77 22.47

S(1.14) (6.97) (12.93) 7.01 8.38



Table 4.7 Test results summary of lean burn operation

File Spark Lamda Dilution ratio' IMEP, bar Pm,,bar CA Pmaxdeg 0-10%, deg 10-90%,deg
Timing (COV) (COV) (COV) (COV) (COV) (COV)

Lean H_ Part 35 1.56 34.5 4.22 18.93 15.66 39.16 54.22
(1.96) (17.04) (15.34) (31.90) (9.90) (29.92)

Lean S_ Part 35 1.58 35.3 4.71 23.73 17.85 34.47 36.66
(1.95) (6.00) (14.52) (13.57) (8.43) (26.94)

Lean H_ WOT 35 1.45 29.7 5.97 29.40 19.53 33.16 30.36
(1.83) (3.24) (13.09) (14.22) (8.22) (16.31)

Lean S_ WOT 35 1.54 33.7 5.86 31.57 17.48 31.98 28.42
(2.32) (3.65) (12.66) (15.83) (8.27) (18.26)

Table 4.8 Test results summary of EGR operation

File Spark Timing EGR gas ratio, IMEP, bar Pma, ,bar CA Pmaxdeg O-10%,deg 10-90%, deg
,deg %2 (COV) (COV) (COV) (COV) (COV)

EGR H Part 50 38.7 2.82 17.84 10.4 55.66 56.2
(66.72) (18.47) (56.47) (17.03) (26.04)

EGR S Part 50 38.0 3.44 19.96 12.81 48.12 45.84
(36.59) (19.61) (33.5) (6.56) (19.97)

EGR H WOT 45 30.4 4.77 22.42 15.41 44.80 51.92
(16.20) (15.3) (24.11) (12.99) (29.55)

EGR S WOT 45 31.5 5.23 26.66 16.86 41.38 37.83
(6.06) (12.37) (12.51) (6.74) (22.95)

mair  15.67(- 1)
Dilution Ratio= air

mairs + mfuel + mair  15.67A + 1
stoichiometric a/f ratio with mfuet, A is lamda.

m2 ER% R 00, where is the mass of exhaust
2 EGR% = EGRx100, where mEGR is the mass of exhaust

where mair is surplus air mass for lean condition, mfuel is fuel mass, mair,s is air mass for

gas recycles, m i is the inducted mass per cycle.EGR



(a) concept of stratified_EGR flow configuration

Adapter for tumloWe and EGR stratification

port

(b) intake system design for stratified_EGR system

Engine configuration. (a) concept of stratified_EGR flow configuration, (b)
intake system design for stratified_EGR system
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(a) Intake side view

(b) Exhaust side view

Engine assembly view
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Figure 2,2 Side view of the transparent engine assembly
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Front view of the transparent engine assembly

t Plate

t Plate

I ·

Cylinder Liner

Support Bracket

Figure 2,3



M10 x 1.25
J

MIO x 1.25-\

31

M10 x 1.25

M24 x 1.5

Unit 1 mm

M24 x 1.5

MIO x 1.2

Figure 2.4 Support bar and cylincder mount bolt drawing

___



8 HOLES

UNIT : MM

(a) Upper plate

4r-#---

DIA 14,138/14.095 X 11 DEEP 2 HOLES

UNIT : MM

(b) Lower plate

Support plate drawing

1/4'-1

r2.50
I i I

02.50

-1/2'-14

2 PLCS

111· · .R 1 ·. ' · i;i 1 I
--4-J-------ý-D------------- 414------;c H --------- i-;

I I I I ; I I ; I I ; I | .

Figure 2.5

fi2.50

i

- ·--

,I 1 _3 __I
ill i !!l i-T

I

-t2.5



2I75

NAl L64

S~cAa 1*4

lai

Sec~tic. A - A

UNIT 11404o

Figure 2.6 Spacer drawing

Unit I, mm
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intake pressure sensor calibration
120

100

2 2.5 3

Sensor output (V)

Figure 2.9 Calibration curve of the intake pressure sensor
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12 V Power SuppLy

a/t sensor

of the experimentaýFigure 2,10 Schematic



Ar-Ion Laser

Valves

ICA 1 deg

(a) Mie scattering experiment setup

(b) PLIF experiment setup

Figure 2.11 The schematic of the experimental setup
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Figure 2.13 Temperature variation on the bottom of the piston and the quartz wall at
motoring condition. Comparison between wide open throttle and throttle closed
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Figure 2.14 Outside wall temperature of the metal cylinder with difference of cylinder
pressure. Data for no compression is obtained by removing spark plug.



(a) 30 deg ATDC : Expansion Stroke

(b) 50 deg ATDC : Expansion Stroke

Shadowgraph images of combustion. 1000 rpm, X = 1, part load
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Intake mass flow rate and pressure characteristics at motoring condition (a) mass
flow rate vs. intake pressure. (b) intake pressure vs. crank angle. (c) cylinder
pressure vs. crank angle. 1000 rpm.
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Figure 3.2 Image Correction for background and cylinder wall curvature
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Figure 3.3 Calibration image for cylinder wall contraction. The small scale is 1 mm.
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(b)

Effect of tumble on combustion. Comparison between production condition and
tumble enhancement condition. (a) Cylinder pressure vs. crank angle (b) Mass
fraction burn rate vs. crank angle. 1000 rpm, X=1, MBT spark timing.
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Figure 4.2 Effect of tumble on burn duration. Comparison between production
condition and tumble enhancement condition. Burn angle 0o1-90o vs. burn
angle 00-o10%. 1000 rpm, X= 1, MBT spark timing.
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(a) 70 ATDC intake stroke

(b) 120 BTDC intake stroke

(c) 90 BTDC compression stroke

Figure 4.3 In-cylinder flow motion at motoring. Mie scattering test results.
1000 rpm, WOT
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Figure 4.4 The cycle by cycle variation of in-cylinder flow motion during the intake stroke.
1000 rpm, motoring, 120 deg ATDC, WOT
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Figure 4.5 The cycle by cycle variation of in-cylinder flow motion during the compression stroke
1000rpm, motoring, 90 deg BTDC, WOT



(a) Front view

(b) Side view

combustion chamber
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45 ATDC

60 ATDC 60 BTDC

90 ATDC 90 BTDC

120 ATDC

(a) Intake stroke

Figure 4.7

120 BTDC

(b) Compression stroke

Images of PLIF to show overall mixing process:
(a) intake stroke (b) compression stroke, 1000 rpm, WOT, motoring
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(a) Front view (b) Side view

Figure 4.10 Cycle by cycle variation of mixing process during the intake stroke
(a) front view (b) side view, 90 deg ATDC
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Figure 4.11 The effect of supply timing on combustion performance at lean operation. 1000
rpm, X=1.4, spark timing = 35 deg BTDC. Horizontal axis is CA at which
injection commences. IVO at 505. (540 deg is TDC intake)
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The effect of supply timing on combustion performance at EGR operation.
1000 rpm, X = 1, EGR ratio = 30 %, spark timing = 45 deg BTDC
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= 31 %, spark timing = 45 deg BTDC, WOT
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