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Abstract

Extensive linear and nonlinear analysis have been applied to heart rate variability
(HRV) to gain insight into how the complex feedback system regulated by the au-
tonomous nervous system controls the heart. Additionally, previous studies suggest
a difference in the dynamics of healthy and pathologic interbeat intervals, possibly
resulting from an altered control of the cardiovascular system. In my thesis, I ana-
lyze HRV in healthy and pathologic subjects to investigate possible differences in the
dynamics of the interbeat interval. Because linear analysis suppresses important non-
linear interactions, and many previously applied nonlinear methods assume the heart
rate is a specific type of deterministic chaos, these methods are limited and cannot be
generously applied. Therefore, I apply higher order spectral analysis (HOSA), specif-
ically third and fourth order cumulants, to HRV to investigate nonlinear properties of
healthy and pathologic heart rate time series. HOSA has been previously employed
to detect nonlinearities arising from a phase coupling of Fourier components in gen-
eral time series. In addition, higher order spectral analysis has been used to suppress
Gaussianities present in a signal. To this end, by applying third and fourth order
cumulants, I demonstrate a distinctive nonlinear mode locking present in pathologic
patients that is dramatically different than the complex nonlinearity encountered in
healthy subjects.
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Chapter 1

Introduction

The normal heart rhythm has the deceptive appearance of regularity and consistency

- after all, what could be more dependable than the pacemaker of life? However,

measurements reveal that this seemingly uniform, metronomic signal is in fact highly

variable, even with a constant level of physical activity. While the presence of these

beat-to-beat variations has been recognized for quite some time, this variability is

still often overlooked or treated as noise [1]. Furthermore, the mean heart rate, an

indication of the level of cardiac exertion, is traditionally regarded as the principal

measurement of interest.

In the past decade, considerable attention has been devoted to analyzing sub-

tle heart rate dynamics. These fluctuations in the heart rate, known as heart rate

variability (HRV), are studied primarily for two reasons [2]:

* They yield insight into the physiological mechanisms governing cardiovascular

control.

* They provide clinical information regarding the overall condition of the cardiovas-

cular system.

"Linear" methods such as power spectral analysis are used to assist clinical diag-

nosis of pathologies ranging from fetal distress syndrome to congestive heart failure

(CHF) [3]. However, linear analysis is inadequate because it suppresses Fourier phase

information. Because all nonlinear processes are characterized by Fourier phase inter-



actions, linear analysis is insufficient for describing such processes. Complex cardiac

behavior suggests that the heart rate is the output of a highly nonlinear system.'

Thus, linear analysis may not fully describe physiologic or pathologic heart rate dy-

namics. To more completely characterize HRV, nonlinear analysis is increasingly ap-

plied. Such analysis investigates temporal structure, or "phase information" within a

time series using methods such as phase portraits and Lyapunov exponents [5]. How-

ever, these methods are also limited because they generally assume the heart rate is

"chaotic," a specific type of nonlinear deterministic process.2

In my thesis, I introduce a method of nonlinear analysis known as higher order

spectral analysis (HOSA), which extracts phase information from more general non-

linear processes (i.e., not necessarily chaotic). The specific tools for my analysis are

the third and fourth order cumulants. By applying third order cumulants to heart rate

time series, I investigate the presence of nonlinearities in both healthy and diseased

patients to better understand the physiological processes in each system. Goldberger

et al. [6] have hypothesized that the complex nonlinearity found in healthy HRV

breaks down in diseased patients. Using HOSA, I test this hypothesis. Ultimately,

the results from this analysis may be useful for both the mathematical modeling of

the cardiovascular system and for clinical diagnosis of patients.

Before applying HOSA to "real world" heart rate time series, it is necessary to ad-

dress some key questions. First, while HOSA theoretically can detect nonlinearities,

how practically effective is HOSA for detecting nonlinearity in simulations? Specif-

ically, it is important to consider finite-size effects (i.e., the number of data sets to

be averaged and the length of the data needed to obtain an accurate estimate) and

the unexpected numerical problems that can arise in computation. Additionally, can

HOSA be used in practice to both distinguish and quantify different types of nonlin-

earities? While HOSA has often been applied in previous work to study frequency

interactions, these interactions are usually quite simple, involving a phase coupling

1We must be careful in describing the heart rate as nonlinear, as this is a somewhat controversial
conclusion that has not been concretely proven [4].

2The issues introduced in this paragraph will be explained in further detail in Section 2.1.



between only two or three frequencies (modes). However, in heart rate time series, the

power-law scaling behavior of the power spectrum may indicate more complex non-

linear frequency interactions. Therefore, a third question to be addressed is whether

HOSA is sensitive to power-law nonlinear frequency interactions. To better under-

stand the use of HOSA for the study of nonlinear systems, we first apply HOSA to

fully characterized mathematical models. This topic is explored in Chapter 3, which

discusses the application of HOSA to two Gaussian random processes with a known

autocorrelation c2( () "fed" into a quadratic nonlinear system.

After determining the effect of nonlinearities in the mathematical simulations, I

apply the knowledge obtained from these simulations to analyzing actual heart rate

time series. Chapter 4 discusses the use of HOSA to both healthy subjects and CHF

patients.

In addition to examining nonlinearities in the heart rate, Chapter 5 introduces

the use of the fourth order cumulant to detect the presence of low amplitude, low

frequency oscillations in the heart rate of patients with CHF. These important os-

cillations, associated with Cheyne-Stokes breathing, may not be readily apparent in

the power spectrum. Because HOSA suppresses Gaussian noise, this method is ex-

tremely useful for detecting oscillations "hidden" in large amplitude noise. To this

end, I develop a new method of analysis using HOSA to detect oscillations in heart

failure patients.

The general goal in these series of investigations is to more clearly characterize

the physiologic system governing the beat-to-beat interval, and compare the nonlinear

HRV dynamics under selected healthy and pathologic conditions. The three specific

inter-related aims of my thesis project are:

1. Determine the utility of third order cumulants for detecting and quantifying

general nonlinearities in mathematical simulations (Chapter 3).

2. Apply third order cumulant analysis to compare healthy and pathologic heart

rate time series (Chapter 4).

3. Use fourth order cumulants to detect low amplitude, low frequency oscillations



in pathologic heart rate time series (Chapter 5).



Chapter 2

Background

2.1 Physiological Motivation

The healthy, adult human heart spontaneously beats at a rate of approximately 50

to 80 times a minute at rest. Each of these beats is the end result of an elaborate

sequence of electrical and mechanical events [7]. Electrically, the normal heartbeat

originates in the sino-atrial (SA) node (located in the upper right atrium) which acts

as the natural pacemaker, and hence is known as normal sinus rhythm. The electrical

activity beginning in the SA node propagates radially through the atria, causing them

to contract and pump blood into the ventricles. The excitation is next carried through

the atrio-ventricular (AV) node to the specialized conduction system consisting of the

bundle of His, bundle branches, and the network of Purkinje fibers. Through this

conduction system, the electrical impulses activate the ventricular muscle, causing

the ventricles to contract and the heart to pump blood to the lungs and system

circulation.

To precisely calculate the interbeat interval time series used in HRV analysis, we

utilize the electrocardiogram (ECG), a record of the net electrical activity of cardiac

cells. The synchronized depolarization and repolarization of atrial and ventricular

cells trace out well-defined waveforms illustrated in the ECG in Figure 2-1. The "P"

wave reflects atrial depolarization, the "QRS" complex corresponds to the electrical

activation of the ventricles, and the "T" wave reflects ventricular repolarization (re-
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Figure 2-1: Electrocardiogram record of cardiac electrical activity.

covery). From the ECG, we determine the cardiac interbeat interval by calculating

the time between two consecutive "R" waves (R-R interval). While the "R" wave

does not precisely represent the "onset" of the mechanical heart beat, it is chosen

to measure the period between beats because it is less affected by measurement and

quantization noise and is more readily identifiable [2]. We obtain the overall heart

rate time series by calculating successive cardiac interbeat intervals. The ECG is

often recorded from an ambulatory device known as a Holter monitor, which stores

and digitizes the data. Ectopic beats, which do not originate in the SA node, are usu-

ally removed before HRV analysis. These abnormal beats may occur even in healthy

hearts, and often dominate the analysis if not excluded.

Autonomic Control of the Heart Rate

The firing activity of the SA node is strongly regulated by autonomic influences

from the brainstem, mechanics of respiration and circulation, and circulating neuro-

hormones [8]. This complicated feedback control system is schematized in Figure 2-

2. Although local factors such as tissue stretch and temperature changes affect the

discharge frequency of the SA node, the two branches of the autonomic nervous sys-

tem (ANS) are the most important factors in determining the heart rhythm. These

I '
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two branches, the parasympathetic (vagal) and sympathetic system, are regulated

by higher centers located in the brain. Cardiac parasympathetic fibers originate in

the dorsal motor nucleus (medulla oblongata), while sympathetic fibers originate in

the vasomotor center [8]. Both the parasympathetic and the sympathetic system

innervate the sino-atrial node, and thus the net effect of these systems impact the

overall heart rate. The effects of these systems are mediated through neurotransmit-

ters (norepinephrine in sympathetic, acetylcholine in vagal), which alter the electrical

activity of pacemaker cells. Specifically, parasympathetic stimulation decreases the

firing rate of the pacemaker cells, while sympathetic stimulation increases the firing

rate.

Alterations in heart rate can be evoked by changes in blood pressure [3]. Trans-

ducers known as baroreceptors located in the aortic arch and carotid sinuses send

feedback to the central nervous system. A change in blood pressure will elicit a change

in heart rate through reciprocal changes in activity in the two autonomic divisions.

The heart rate is also significantly affected by mechanical aspects of circulation, pri-

marily respiration. Specifically, during inspiration, the heart rate increases, while in

expiration, the heart rate decreases. This coupling of the heart rate to respiration is

known as "respiratory sinus arrhythmia." It is important to note that this variability

is indicative of a healthy condition, not a diseased one [2]. In addition, the cardio-

vascular system is connected to many relatively independent resistances within the

circulation network. By varying its resistance, each tissue regulates its own blood flow

and pressures. The cardiovascular system is regulated by these individual resistances

[8].
The central nervous system acts by integrating information from various sensors

within the cardiovascular system and controlling the rate of the heart beat through the

peripheral ANS. Recently, there has been interest in studying HRV to gain insight into

the nonlinear competition between sympathetic and parasympathetic mechanisms

that govern the cardiovascular system [9]. A direct measurement of the parasympa-

thetic and sympathetic activity is not clinically feasible; HRV, while indirect, provides

a non-invasive indicator of integrated neuroautonomic control. The complex control



Figure 2-2: Complex feedback systems operating over wide range of temporal and
spatial scales that regulate the dynamics of the heart rate. ADH - Antidiuretic
hormone; ACTH - Adrenocorticotrophic hormone; SA - sino-atrial node.
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feedback system of the cardiovascular system is not fully understood. However, both

nonlinear and linear analysis of HRV have considerably advanced our current under-

standing of this system.

2.1.1 Linear Methods of Assessing Heart Rate Variability

(HRV)

The beat-to-beat variability of the heart can be considered the integrated regulatory

response of the cardiovascular system to intrinsic and extrinsic perturbations [1]. Ex-

amples of these perturbations range from changes in posture to adjustments in local

vascular resistance in different tissue beds. A classical interpretation applied to a wide

variety of physiologic systems is that the cardiovascular system acts in response to

these disturbances to maintain homeostasis and achieve a physiological steady state

[10]. According to this theory, developed by Walter B. Cannon of Harvard Medical

School, we expect the heart rate to be relatively constant until perturbed and to

remain at a constant value until perturbed again. This traditional homeostatic view-

point assumes that the cardiovascular system under analysis is "well-behaved" and

relatively "linear" - a change in the input elicits a proportional change in the output.1

The assumption of the heart rate as linear is widespread, and many techniques have

utilized this principle for both clinical application and physiologic understanding of

the cardiovascular system.

Traditional statistics to quantify HRV include the mean and the standard devi-

ation (first and second moments). These straightforward measures provide useful

clinical application. For example, CHF is often associated with a decreased vari-

ability, as measured by standard deviation, compared to normal heart rate dynamics

[11]. This characteristic is evident in the interbeat interval time series of a CHF

patient shown in Figure 2-3 part (b), as contrasted to the heart rate time series of

a healthy patient, shown in part (a). In addition, several studies have demonstrated

that a lower standard deviation is associated with an increased mortality after my-

1 A detailed description of linearity will be introduced in Section 2.2.
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Figure 2-3: Heart rate time series for (a) healthy subject and (b) patient with conges-
tive heart failure (CHF). Note the higher mean resting heart rate (lower R-R interval)
and reduced variance in CHF.

ocardial infarcation. Thus, traditional HRV analysis plays an important prognostic

role, especially because the patient can be monitored non-invasively.

Because the mean and standard deviation yield limited insight into the beat-to-

beat dynamics of the heart rate, linear analysis is frequently applied. In a linear pro-

cess, all frequency components are uncorrelated; thus, Fourier phases are randomized.

Linear analysis, e.g. power spectral analysis, is traditionally used to characterize such

processes. This technique uses Fourier methods to decompose a process into a super-

position of sinusoids with different amplitudes and frequencies. The power spectrum

presents the squared amplitude of these sinusoids as a function of frequencies. With

this technique, oscillations present in the heart rate can be identified and correlated

with physiological phenomena [2]. For example, the healthy heart rhythm, which is

modulated by respiratory activity, oscillates with a frequency of approximately .25 Hz

(corresponding to one respiratory cycle every four seconds). An oscillation may also

be apparent at approximately .1 Hz. While the origin of this 10 second oscillation is

not fully understood, it is known that it is importantly influenced by the baroreflex.

Studies have shown that fluctuations in heart rate that occur at frequencies greater

than approximately .15 Hz are mediated by parasympathetic activity, while lower

(b) CHF



frequencies are jointly mediated by the sympathetic and parasympathetic nervous

system.

The presence or absence of an oscillation (a peak in the frequency domain) can

indicate altered autonomic nervous activity, thus providing clinical information. For

example, diabetes, a disease accompanied by dysfunction of the ANS, is associated

with a decrease in respiratory sinus arrhythmia, as well as changes in the 10 second

oscillation induced by body posture changes. In addition, the heart rate of some CHF

patients contains a one cycle per minute oscillation. This pathologic pattern, associ-

ated with Cheyne-Stokes breathing, will be discussed in more detail in Chapter 5.

It is important to recognize the clinical as well as physiologic importance of linear

analysis indeed, certain aspects of heart rate control can be deduced without

dealing with the nonlinearities inherent in the cardiovascular system. However, the

complex dynamic nature of the beat-to-beat interval cannot be fully explained with

conventional linear methods. Furthermore, the constancy predicted by homeostasis

cannot account for the dynamic, apparently far-from-equilibrium behavior observed

in "regular" sinus rhythm: the intrinsic, highly irregular variability of the normal

heart rate does not seem to correspond to a steady state [10]. In recent years, the

assumption of HRV as a linear process has been challenged by increased evidence

that many complex nonlinear interactions exist in physiologic systems, including the

cardiovascular system. Consequently, researchers employ nonlinear analysis to more

fully explain complex cardiac dynamics [5].

2.1.2 Nonlinear Methods of Assessing HRV

Nonlinear dynamics are used to study systems that respond disproportionately to

stimuli [12]. Such a system cannot simply be dissected into its components, since

the modes of the system interact. As a result, a nonlinear mechanism can produce

a highly complex output, such as the heart rate. In addition, in nonlinear systems,

small changes in a control parameter can lead to large changes in behavior. A wide

class of different behaviors can typically result from even a simple nonlinear process.

A typical feature of heart activity is the heterogeneous, intermittent patterns that



change with time.2 When nonlinear dynamics are used to characterize HRV, these

sudden dramatic changes in cardiac behavior do not need to be attributed to an

equally dramatic change in cardiovascular control.

Chaos is a branch of deterministic nonlinear dynamics that has been applied

recently to quantify and explain erratic cardiac behavior [5]. The term "determinis-

tic" implies that chaotic systems are not strictly random, but rather the equations,

parameters, and initial conditions are known and can be completely described math-

ematically. A chaotic process demonstrates aperiodic dynamics and demonstrates a

sensitive dependence on the initial conditions: a minor change in the initial condi-

tions may cause a marked difference in the outcome (known as the "butterfly effect").

Nonlinear chaos is not characterized by a complete state of disorganization as the ver-

nacular suggests, but rather a constrained type of randomness which is associated with

fractals - the geometric concept of scale-invariance or self-similarity which applies

to the structure of chaotic (strange) attractors.

The properties of heart rate time series as well as the underlying physiology con-

trolling the cardiovascular system demonstrate the possibility of chaotic or fractal

influences in cardiac behavior [12]. Careful inspection of the heart rate reveals similar

fluctuations on multiple different orders of temporal magnitude. Figure 2-4 demon-

strates this scale-invariant characteristic, which is absent in any non-fractal process.

Self-similar processes are found in a range of physical systems ranging from earth-

quakes to other biological systems. These processes are characterized by a power

spectrum with a "1/f" power law decay that contains the same spectral power in any

decade of frequency. Figure 2-5 displays this 1/f power spectrum of a healthy heart

rate time series analyzed over several hours. This scale-invariant "fractal" manner of

the heart rate is consistent with, but not diagnostic of chaos, since fractals may also

arise from stochastic mechanisms.

The broad spectrum of the heart containing superimposed peaks in frequency

(from the baroreceptor reflex and respiration) is also consistent with (but not neces-

sarily indicative of) chaos [12]. In addition, phase space trajectories of the heart rate

2 This non-stationarity increases the difficulty in analyzing the dynamics of the heart rate.
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reveal a complicated "attractor," rather than a periodic or fixed-point attractor seen

in linear or regular processes.

What are the physiological mechanisms which induce this complex HRV? Heart

rate control is influenced by the interaction of several central nervous system oscilla-

tors and control loops. The interaction of these physiologic control systems operating

on different time scales may induce irregular time courses that create scale-invariance

in the heart rate [9]. Additionally, the feedback loops present in the heart produce de-

lays in response time. Glass and Mackey [12] have emphasized the importance of time

delays in chaotic systems. Another proposed mechanism which causes complex be-

havior in HRV arises from competing neuroautonomic inputs of the parasympathetic

and sympathetic branches of the nervous system.

The highly variable nature of the heart rate supports several functional purposes

[10]. First, the erratic fluctuations in the healthy heart rate serve as an important

mechanism for creating adaptability, or the ability to respond to unpredictable and

changing perturbations. In addition, the absence of a characteristic time scale creates

a broad frequency response that prevents the system from becoming mode-locked

(locked to a single frequency). Finally, the long-range (fractal) correlations found in

healthy patients indicate an overall principle for structuring highly complex nonlinear

processes that generate fluctuations over a wide range of time scales [9].

Not surprisingly, a number of pathologies are characterized by a breakdown of the

complex nonlinear dynamics observed in healthy heart function [6]. This breakdown

may be manifest by a loss of complex variability, sometimes with the emergence of

highly periodic behavior. For example, spectral analysis of ECG waveforms associated

with sudden cardiac death reveals a narrow spectrum, rather than a broad spectrum

apparent in chaotic systems. In addition, patients with severe left ventricular failure

typically display two patterns: a strong, low frequency oscillation in heart rate (.01-

.06 Hz) and reduced beat-to-beat variability. Similar pathologic patterns have also

been observed in fetal distress syndrome. In general, emerging regularities indicate a

decreased nonlinear complexity in pathologic patients,

There are a number of existing methods which quantify nonlinear dynamics demon-



strating deterministic chaos. Two such measures used to quantify phase-space plots

are the correlation dimension (CD), a measure of the complexity of the process, and

the Lyapunov exponent (LE), a measure of the predictability of the process [13].

These measures have been applied to cardiac behavior with conflicting results [14].

The reliability of these methods is questionable, since these methods have difficulty

distinguishing deterministic chaos from linear correlated stochastic processes [6]. In

general, characterizing a process as "chaotic" with complete certainty is a difficult

task.

Previous application of chaos-related metrics demonstrates the potential useful-

ness of using dynamic nonlinear analysis to understand the complexities of the car-

diovascular system. However, chaos is a sub-topic of the field of nonlinear dynamics,

specifically applicable only to deterministic systems. It is unlikely that the cardiovas-

cular system is purely deterministic since stochastic influences are likely to affect the

overall state of the system. While the methods of CD and LE inherently assume that

the system is "chaotic," other methods of statistical analysis have investigated more

general nonlinearities in HRV. For example, Ivanov et al. [4] have used wavelet-based

time series analysis to elucidate the nonlinear phase interactions between the different

frequency components of the beat-to-beat interval.

In nonlinear systems (deterministic and stochastic), the Fourier phases of the

signal interact in a non-random fashion. Thus, the harmonic components are not

statistically uncorrelated. This Fourier phase dependence, a defining feature of the

nonlinearity present, cannot be addressed with linear techniques. A technique that

has previously been used to describe nonlinear interactions between Fourier phases

is called higher order spectral analysis (HOSA). Although HOSA has been applied

to a variety of physical systems, its application to HRV is relatively uncharted. By

applying HOSA to the heart rate, the nonlinearly induced phase-couplings can be

investigated, potentially improving our understanding of the complex processes of

the ANS.



2.2 Higher Order Spectral Analysis (HOSA)

Since their first application in 1963, higher order statistics have been used to analyze a

range of complex systems including telecommunications, sonar, radar, plasma physics,

economic series, and biomedicine [15, 16, 17]. These statistics, known as cumulants,

and their associated Fourier transforms, known as higher order spectra, extend beyond

the second order characteristics of a signal to extract phase information as well as

information due to deviations from Gaussianity. For general signal analysis purposes,

there are two main motivations for using HOSA [17]:

1) To detect and quantify nonlinear interactions between Fourier components of a

time series.

2) To suppress Gaussian noise processes for detection and classification problems.

Before we can explore these applications of HOSA, we must first introduce more rig-

orous definitions of linearity and nonlinearity, as well as the definitions of cumulants.

2.2.1 Gaussian Processes

By definition, a Gaussian, or "linear", process is fully described by its first order

characteristics (i.e. the mean) and second order characteristics (i.e. the autocorrela-

tion or power spectrum). The autocorrelation, C2.(T) (also known as the two-point

cumulant), of a process x(k) of finite length N, is defined as:

1 N-7 1 2

N T x(k)=1 (k (2.1)k=1

where (-) denotes the expected value operation. For finite length stationary, ergodic

processes 3 , we approximate the ensemble expected value as a time average operation.

This operation can be visualized as the process in Figure 2-6. For a set time lag, T,

3A process, x(k) is ergodic if all its moments can be determined from a single observation. This
implies that all time averages of all possible sample realizations equals the ensemble average [16, 17].
In addition, stationarity implies that the statistics of y(k) do not change with time. In our analysis,
we will assume all processes are ergodic.
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Figure 2-6: Autocorrelation for x(k).

we multiply x(k) with x(k + T) (represented as the arc), and average this value for

all k (sliding the connected points along the axis). To gain a physical intuition of

autocorrelation, consider flipping an unbiased two-sided coin. Each point on the x

axis, k, corresponds to one flip of the coin. A flip resulting in a head corresponds to

a value of 1, whereas a tail corresponds to a value of -1. Because there is an equal

probability of producing a 1 and a -1 (a head or a tail), the average of all products

x(k)-x(k+7) will be zero. Thus, for any time lag 7 -4 0, there is no correlation between

x(k) and x(k + r): knowledge of the present value of x(k) provides no information

for a future value at x(k + T).

Now, consider the following recursively defined equation:

x(k + 1) = ax(k) + w(k) (2.2)

where w(k) is a stationary white Gaussian noise sequence. For a given T, the value

of x(k + T) depends on a previous value x(k) by definition of recursion. Thus, this

relationship between two points, called the autocorrelation, completely describes the

process defined by Equation 2.2. More generally, the autocorrelation is sufficient

for describing any zero-mean Gaussian process. Consequently, for such processes,

all higher order moments provide no additional information because they can be ex-

pressed in terms of second order characteristics. For a set of zero mean (jointly)

Gaussian random variables, {Xl, X 2 , ... XL}, with autocorrelation 4 y, higher order mo-

4We represent y7() as 7 for convenience.



ments can be decomposed as follows [18]:

(Xl X2X3 ... XL) = L odd (2.3)
E Yjlj2'Yj 3i4'jL-1jL L even

where the summation is over all distinct pairings {jlj2}, ... {jL-jL} Of the set of

integers 1, 2, ...L.

Alternatively, the power spectrum, which is the Fourier transform of the autocor-

relation, is an equivalent second-order characteristic which also completely describes

a Gaussian process. Formally, the power spectrum, S2x(f), is defined for a process

x(k) with corresponding Fourier transform X(f) as5

S2x(f) = X(f)X*(f) = IX(f)12  (2.4)

This classical method evaluates the power of each frequency component, suppressing

all phase information [17]. An important characteristic of Gaussian processes is that

all frequency components are uncorrelated, i.e., Fourier phases do not interact and are

random. It therefore follows that phase-blind statistics completely describe Gaussian

processes since they have randomized phases.

Because Gaussianity is preserved under linear operations, all linear systems with

Gaussian inputs generate Gaussian (randomized phase) outputs. For example, Fig-

ure 2-7 shows several sinusoids with varying amplitudes, phases, and frequencies as

the input, X(k), to a linear time-invariant (LTI) system. Due to linearity, the out-

put, Y(k), consists of the superposition of these sinusoids with the same frequency

components scaled and shifted. However, because Fourier components of X(k) are

uncorrelated, no coupling occurs between phases, 0,, of the sinusoids Y(k) [17].

5 X* is the complex conjugate of x



X(k) Y(k)

X(k) = , Amexp{j(k k + pm)}

Y(k)= 1 Bmexp{j(k k+ 0)}
m

Figure 2-7: Linear time invariant (LTI) system with sinusoidal inputs, and uncorre-
lated harmonic components at the output.

X(k) = 1 Aexp{j(•, k +(PI)}

Z(k) = E I CmC.exp{j(Xm+ X.n)k + (qm+ cn)}

Figure 2-8: An example of a nonlinear (NL) quadratic system with sinusoidal inputs,
and correlated harmonic components at the output.

2.2.2 Nonlinear Processes

In a nonlinear process, a (frequently complex) interaction exists between Fourier

phases of a time series. Consider the quadratic nonlinear system shown in Figure 2-

8. This system clearly induces phase coupling at the output Z(k) [17]. To examine

such a process (i.e., nonrandom phase), we cannot rely on classical linear methods.

Rather, we turn to a more sophisticated method - higher order statistics. We begin

our study of HOSA by introducing the third order cumulant, a higher order statistical

technique for examining nonlinear processes.

For random variables xl, x2 , and x3, the third order cumulant is defined as:

CUm(xI, x 2, 3) (X31 2X3) - (Xl)(X 2 X3) - (X2) (X21 3)

--(X3)(X1 2) + 2(x 1)(X2)(X 3) (2.5)

LTI

System



Given a strictly stationary, random process x(k), the third order cumulant of x(k),

denoted as c3x(71, r2), is given by [17]:

c3 (71-, 7 2) = cum {f(k)Z(k + Ti)x(k + T2)
= (x(k)x(k + T1)x(k + T2)) - (x(k)){(x(k)x(k + Ti)) + (x(k)x(k + T2))

+(x(k + T1)x(k + 72))} + 2(x(k))3  (2.6)

obtained by substituting xl = x(k), x 2 = x(k + Ti), and x 3 = x(k + T2) into Equa-

tion 2.5 and noting that (x(k)) = (x(k + T1)) = (x(k + 72) = mx by stationarity.

Defining the moment function as

mnx(71, T2 , .. Tn- 1 ) -- (x(k)x(k + T1)...x(k + Tn-1)) (2.7)

we can rewrite Equation 2.6 as

C3x(T1, T2 ) = m3x(T1, T2 ) - (mx(m2x(T1) + m2x(T1) + 2x (T2 - 71)) - 2m 3 ) (2.8)

Additionally, the third order cumulant can alternatively be written as:

C3x(T1, T2) = m3 (T1, T2) - mG (T1, T 2) (2.9)

where m3x(71, • 2 ) is the third order moment function of x(k) and m G(71, 2) is the

third order moment function of a Gaussian random process with the same first and

second order characteristics as x(k) (which we will denote as xG(k)). We derive

this result by first observing that all odd moments of a zero mean Gaussian random

process are zero (from Equation 2.3). To obtain zero mean random processes, denoted

by G (k), ýG (k + Ti), G (k + T2 ), we must subtract the mean from each process:

AG(k) = ZG(k) - m (2.10)

G (k + 1) = G (k + Tj) - mx (2.11)

G (k + 72) = G(k + 72) - m (2.12)



Hence,

(jG(k)>G(k + T1)G(k + T2 )) = 0 (2.13)

Substituting Equations 2.10 through 2.12 into Equation 2.13, we obtain

((xG(k) - mx)(xG(k + T) - mx)(xG(k + 72) - mx)) = 0 (2.14)

Multiplying all terms, and after some algebra we obtain:

m3G(71, 2) = (xG(k)ZG(k+Tl)XG(k+T2))= m•(-m2 71 )M7 272)+m2X(72 -))-2
(2.15)

This decomposition process can be visualized with Figure 2-9 (with the arc represent-

ing the moment operation, and the blue circle representing the mean). An important

result of Equation 2.9 is that for a (randomized phase) Gaussian process, x(k), the

third order cumulant is zero [17]:

m3x (71, 72) = mG (71,72)

SC3,(7T1,72) = 0

In addition, we note that for zero mean processes, the third order cumulant and the

third order moment operation are equivalent, thus Equation 2.9 simplifies to

cU (TI, 72) = m3x (7172 ) (2.16)

Whereas the autocorrelation examines the relationship between two points, the

third-order cumulant examines the relationship between combinations of three points

within a time series (Figure 2-9), removing Gaussianities. By only preserving non-

randomized phase information, the third-order cumulant captures nonlinearities.6

6 Likewise, fourth order cumulants to be discussed in Chapter 5 share this property.
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2.2.3 Quadratic Phase Coupling Example

To further demonstrate why second order characteristics are insufficient for describing

nonlinearly induced phase coupling, consider the time series given by

s(t) = cos(wit + 01) + cos(w2t + 82) + cos(w3t + 93) (2.17)

where

w3 = w1 + w2  (2.18)

and 01, 02 are randomly distributed in [0, 27). Consider two cases:

Case 1: 03 randomly distributed in [0, 27r)

Case 2: 03 = 01 + 02.

If 03 is independent of 01, 02 (case 1), then a time series consisting of many realizations

of s(t) with different sets of random phases will have Gaussian statistics. However,

in case 2, the phases 01 and 02 of s(t) are "completely" coupled. This phenomenon,

known as quadratic phase coupling (QPC) [15], results from a quadratic nonlinear

system which induces interaction between Fourier components (causing contributions

to the power at sum and/or difference frequencies). The power spectrum of s(t),

shown in Figure 2-10, conceals phase relations of harmonic components, and therefore

fails to discriminate case 1 from case 2. For cases 1 and 2, the third order cumulants

can be easily obtained [17]. For case 1,

c3s(T1, T2) 0 (2.19)

However, for case 2:

1
C3s (T, T2) = -COS(W 2T1 + WlT2) + COS(W 3T1 - WT12) +4

cos(wiT1 + W272) + COS(W371 - W2T2) +

cos(w171 - W3T2 ) + COS(W 2T1 - W3 T2 )} (2.20)
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Figure 2-10: Power spectrum, S2x(f), for s(t) with both randomized phases (case 1)
and quadratic phase coupling (case 2).

To see this result more intuitively, we turn to the frequency domain and introduce the

auto-bispectrum, which is formally defined as the Fourier transform of the third-order

cumulant:

1 00 00
Sa(1, f)= (2)2 J C3 (71, T2 ) . ej2rf11-j 2 rf2T2dTldr2  (2.21)

Alternatively, the bispectrum can be defined as

S3U(f1, f2) = (X(fi)X(f 2)X*(fi + f2)) (2.22)

From Equation 2.22, we can see that if the Fourier components are uncorrelated (as in

case 1), the average triple product of the Fourier components is zero, producing a zero

bispectrum. However, in case 2, the coupling of the Fourier components results in a

nonzero bispectrum with a peak at (fi, f2), indicating the oscillation at fi + f2 results

from a nonlinear interaction between fi and f2. This result, shown in Figure 2-11,

demonstrates the utility of HOSA for detecting quadratic phase coupling in signals.

2.2.4 Conclusion

HOSA has previously been applied to a variety of systems. Specifically, these systems

contain "quadratic" nonlinearities, which induce phase coupling between triads of
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Figure 2-11: Bispectrum displaying peak at (wi, w2 ) due to phase coupling between
wl and w2.

Fourier modes (such as discussed in the QPC example) [15]. By applying bispectral

analysis, the cross-spectral transfer of energy resulting from these nonlinearities can

be detected and quantified. While HOSA has been applied in previous works to

study frequency interactions, these interactions are usually quite simple, involving a

phase coupling between only two or three frequencies. However, in many nonlinear

processes, such as those with 1/f power spectra, more complex nonlinear frequency

interactions exist. Because of these complex frequency relationships, performing the

higher order analysis in the time domain will be just as informative as the frequency

domain'. Before applying HOSA to highly complex heart rate time series, we begin

by applying HOSA to well described processes with calculable third-order cumulants

to gain further understanding of the uses and potential limitations of this method.

7 Generally, higher order spectra rather than cumulants are computed to analyze nonlinearities.
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Chapter 3

Basic Investigation of HOSA:

Mathematical Modeling

To better understand the use of cumulants for the study of nonlinear "real world"

systems, we first apply higher order cumulants to fully characterized mathematical

models. By applying higher order cumulants to well-known nonlinear processes, we

can address several key questions. Specifically, we can examine finite-size effects,

nonstationarity effects, and unexpected numerical problems that may arise in com-

putation. Furthermore, we can assess the effectiveness of HOSA for both detecting

and quantifying general nonlinearities, and determine the sensitivity of the third order

cumulant to power-law nonlinear frequency interactions.

3.1 Computation of c3(71, 72) for Gaussian Ran-

dom Processes Applied to a Nonlinear Sys-

tem

To explore HOSA and its limitations, it is most informative to examine nonlinear

processes, y(k), arising from the most general nonlinear systems:

x(k) - Nonlinear System -- + y(k)



Brillinger [17] suggests that many nonlinear relationships may be approximated by

the system:

y(k) = x(k) + xz"-l(k) (3.1)

for different orders n. For n = 2, the system is linear (y(k) = (1 + 3)x(k)). However,

n = 3 corresponds to the quadratic nonlinear system we will use in our analysis:

y(k) = x(k) + px2 (k) (3.2)

This quadratic nonlinear system, while simple, describes a wide variety of physical

systems.

The input to this quadratic nonlinear system will be a zero-mean, stationary Gaus-

sian random process x(k) described by its autocorrelation, C2x(T). From Section 2.2,

we recall that higher (third and fourth) order cumulants of a Gaussian random pro-

cess are zero. However, when this process serves as the input to a nonlinear system,

the output is a non-Gaussian random process with non-zero higher order cumulants.

In this chapter, we compute the third order cumulant of y(k) for two different inputs

x(k). One of these inputs is characterized by an exponentially decaying autocorrela-

tion, the other by long-term correlations.

For any Gaussian input, x(k), the third order cumulant of y(k) (described by

Equation 3.2), c3y( 1i, T 2 ), can be expressed as a combination of higher order moments

of x(k). In addition, because x(k) is Gaussian, all higher order moments of x(k) can

be decomposed into a combination of first and second order moments as described in

Equation 2.3. Because the first moment (the mean) of x(k) is zero, c3y(T1, T2 ) can be

written explicitly in terms of only the second order characteristics of x(k), m2x(T).

It is important to note that this relationship is independent of the choice of m2 2(T).

From Equation 2.1, and from the fact that x(k) is zero mean, we note that the second

order moment of x(k), m2x(T), defined as:

m2x(T) = (x(k)x(k + -r)) (3.3)



is equivalent to c2x(7,). Thus, we will use m2x((7) (rather than c2x( T)) to denote the

autocorrelation of a zero mean random process.

By definition, the third order cumulant of y(k) is:

C3y(T1 , T 2 ) = (y(k)y(k + TI)y(k + T2 )) - (y(k)){(y(k)y(k + Ti)) + (y(k)y(k + 72 )) +

(y(k + Ti)y(k + T72 ))} + 2(y(k))3  (3.4)

- m3y (T1,7 2 ) - my (m2y(T1) m2y(T 2 ) + m2y(T 2 - T1)) + 2m3 (3.5)

To determine c3y (TI, 72 ), we must first obtain my, m 2y(T), and m 3y(71 , T2 ). We begin

by finding my and m 2y(7), the first and second moments of y(k). Using Equation 3.2

and the fact that (x(k)) = 0, we have

MY = (x(k) + Z2(k))

S(x(k)) + ±(z 2 (k))

= P(x(k) x(k + 0))

= O/mx (0) (3.6)

Similarly,

m2y(T) = ((x(k) + ±X2(k)) (x(k +7) + fX 2(k +7))) (3.7)

Furthermore, we expand the terms in Equation 3.7. Because x(k) is Gaussian, (from

Equation 2.3) we eliminate all odd order moments. Thus, we have

m2y(7) = (x(k)x(k + )) + 32(2(k)X2(k + ))

= m 2x (7)+ O 2 (k)x 2 (k + T)) (3.8)

To decompose the fourth order moment (x2 (k)x 2 (k + 7)), we consider all possible

combinations of second order moments. We graphically represent the second order

moment (xlx 2) as shown in Figure 3-1. For any given combination, we multiply all

second order moments together. Finally, we sum the products from all combinations.

It is helpful to visualize this decomposition process.
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Figure 3-1: Depiction of second order moment, (xlx2).

m2x (0)I m 2x(0)

x(k) x(k+r)

Figure 3-2: Combination 1 for fourth order moment (x2 (k)x 2 (k + T)).

To facilitate this decomposition, we consider each combination separately. One

possible combination of the points x(k), x(k), x(k + T) and x(k + T) is shown in

Figure 3-2. The product of the second order moments within this combination is

m2x(0). Next, we consider the combination shown in Figure 3-3. This combination

yields the product m2x(T). Likewise, the same product results from the combination

in Figure 3-4. Summing these combinations, we obtain

(2 (k)x2(k + T)) = m, (O) + 2mx (7) (3.9)

m2x( r)

x(k) m2x x(k+c)

Figure 3-3: Combination 2 for fourth order moment (x 2(k)x 2(k + T)).



m2x ()

x(k) x(k+t)

Figure 3-4: Combination 3 for fourth order moment (x 2 (k)z 2(k + 7)).

We can now determine the second order moment:

m21(T) = m2x(T) + 2m2X(0) + 202m2x(7)T (3.10)

The next step in calculating C3x (T1, 2 ) is to determine m3y (Tl, T2 )

mT3y(TI,7 2 ) = ((x(k) + 3xZ2(k)) (x(k + 7T) + /x 2(k + 7T)) (x(k + T2 )+ +x2(k + T2)))

(3.11)
After expanding terms in Equation 3.11, all odd moments are again removed. All even

moment terms are collected, and can further be broken down into a superposition of

second order moments.

m3y(71, 72 ) = (3x(k)x(k + T)X 2 (k + 2 ) + x(k) 2(k (k + )(k +T 2 ) +

Zx2(k)x(k + T1)x(k + T2 ) + 033 x 2 (k)x 2 (k + T1) 2 (k + 7T2 )) (3.12)

We determine each term separately:

p(x(k)x(k + 7Tl)X 2(k + T2))

i(x(k)x2 (k + T1)x(k - 72 ))

S(X 2 (k)x(k + Ti)x(k + T2 ))

/3 (X2 (k)X2(k + TI)X 2(k + T2))

= (m 2x(T7)mn2(0) + 2m 2x(T 2)m 2x(72 - 7T))(3.13)

= / (m2 x(T 2) 2x(0) + 2m2x(T1)m2x(7 2 - T1))(3.14)

= 2 (mT2 (72 - T7)m 2 x(0) + 2m 2 x(T 1) M2x( 2))(3.15)

S33 3(m3X(0) + 2m2x(0)7m ( - 1)

+2m 2x () m 2x (T2) + 2m 2x (0) m (71)

+8m 2x (T71)M2x 72)m 2 x (T72 - 71)) (3.16)



Combining Equations 3.10 through 3.16, the final expression of C3y,(1, T2 ) yields:

C3y (1,7 2) = 20((m2x (T1)M2x (T2 - 7T1 ) + -m2 (T2)m2x (T2 - 71)

+m2 (Tl7)m2(T2)) + 8' 3 m2.7(T1)m2x (2)m2x(T 2 - T1) (3.17)

Equation 3.17 demonstrates that both the autocorrelation of a zero mean process

x(k) and the parameters of the nonlinear system determine the theoretical third

order cumulant C3y(T1, 72 ) 1 . As expected, an absence of nonlinearity, /, (theoretically)

causes C3y(TI, T2) to be equivalently zero.

By calculating the theoretical third-order cumulant for various Gaussian random

inputs, we can determine the effect of changing the magnitude of the nonlinearity 3.

In addition, we can compare the theoretical results to experimental results obtained

from simulations to determine the effects of numerical artifacts or other problems

that may arise.

Specifically, we study two mathematical simulations. The input to these simula-

tions consists of a zero mean Gaussian random process, x(k), with a known autocor-

relation m2,(T) "fed" into the quadratic nonlinear system described in Equation 3.2.

The input to the first simulation is a Gaussian random process with a short-term,

exponentially decaying autocorrelation. This simple model will allow the initial in-

vestigation of the third order cumulant. Second, we study a nonlinear process with

a 1/f spectrum. This process contains long-term correlations found in many physi-

ologic systems, such as the heart rate. This model both allows us to determine how

the "non-white" power spectrum of the input affects the cumulant, and provides the

ability to test if "whitening" the output spectrum is necessary.

1The general relationship between the (n-1)th order polyspectra of y(k) and the power spectrum
of x(k) is given in Brillinger [17].



3.2 Simulation 1: Short-term, Exponentially De-

caying Autocorrelation

3.2.1 Theoretical Calculation of c3y(1, 72)

A zero mean Gaussian random process with a short-term exponentially decaying

autocorrelation can be generated with the following recursion:

x(k + 1) = ax(k) + w(k) (3.18)

where w(k) is a zero-mean, unit variance ((w2 (k)) = 1) stationary white 2 Gaussian

noise sequence and x(0) is a Gaussian random variable with zero mean and variance 1

that is independent of (which implies uncorrelated to) w(k). For x(k) to be stationary,

a must be strictly less than 1.

To demonstrate that the process generated in Equation 3.18 is zero mean, we take

the expectation of both sides:

(x(k + 1)) = a(x(k)) (3.19)

Since (x(0)) = 0, Equation 3.19 implies that x(k) is zero mean.

To verify that the autocorrelation of x(k) indeed decays exponentially, we must

first determine m 2x(0), or (Z2(k)) [18]. Squaring both sides of Equation 3.18 and

taking expectations, we have

(x2 (k + 1)) = a 2 x 2 (k)) + 1 (3.20)

Because the process is stationary, we can assume that

(x2(k + 1)) = (X2(k)) = m 2x(O) (3.21)

2w(k) is white implies that C2w(T) = 0, for T7 0, or each value of x(k) is independent of all other
values.



and solve for m2x(0):
1

m2 (0) = 1 - (3.22)

In addition, we observe that x(k) and w(k) are independent, and 3.18 can be rewritten

as:
7--1

z(k + 7) = a'x(k) + a kkw(k) (3.23)
k=O

Therefore, the autocorrelation can be computed by exploiting the independence of

x(k) and w(k)3 :

m2x(T) = (x(k)x(k + T))

S(x (k) a Tx(k)+ a k(k))
k=O

= T(x2 (k)) = a&m2x(0)
1

= I - 2  (3.24)

By substituting Equation 3.24 into Equation 3.17, we determine C3y(T, 7T2 ) (for

different values of P as T1 and T2 are varied) with code created using the software

package MATLAB 4 . To ensure that x(k) is stationary, we let a = .5. To determine

the effect of changing P on the third order cumulant, we find c3y(T1, T2 ) for both

p = .4 and P = .8. For all three-dimensional plots, different colors represent different

amplitudes. In addition, the three-dimensional image is projected onto the XY-plane

and shown as a contour plot. Parts (a) and (c) of Figure 3-5 show the theoretical

C3y(T, 7T2 ) for P = .4 and 3 = .8 respectively as r1 and T2 are varied from -50 to 50.

For both values of /, we observe that the third order cumulant, c3y (Ti, T2 ), is nonzero

for only a few time lags centered around the origin. In addition, by increasing the

nonlinearity P, the qualitative structure of the third order cumulant does not change.

The increased nonlinearity in the system merely increases the magnitude of the peak

present in C3y (T1, T2). By doubling the nonlinearity present, the maximum value of

c3y(T 1, 7 2 ) changes disproportionately from 2.1 to 6.0.

3Independence implies that (x(k)w(k)) = 0.
4 MATLAB and FORTRAN code is attached in Appendix A.



(b)

(c) (d)
Figure 3-5: Third order cumulant for Gaussian random process with short-term,
exponentially decaying autocorrelation filtered through a quadratic nonlinear system.
Different colors represent different amplitudes. In addition, the three-dimensional
image is projected onto the XY-plane and shown as a contour plot. (a) Theoretical
C3y (T1 , T2), 3 = .4, maximum value of 2.8; (b) Experimental C3y,(T 1 , T2), / = .4,maximum value of .50; (c) Theoretical C3y(T1 , 7 2 ), T = .8, maximum value of 6.0;
(d) Experimental 3 y, (T1, T2 ), 3 = .8, maximum value of 2.9. The nonlinearity /
causes a significant nonzero C3y(T1, T) for only a few lags centered around the origin.
Additionally, the experimental results closely match the theoretical results.

(n.)



3.2.2 Experimental Calculation of C3y(T1, '2)

A stochastic realization of y(i)(k) is experimentally obtained (using MATLAB) by

generating x(k) recursively from Equation 3.18 and inputting it into the nonlinear

system defined in Equation 3.2. From y(i)(k), c~,) (Ti, T2 ) must be estimated since only

a finite length realization of y(i)(k) is numerically realizable. To obtain a consistent

estimate, we use the following procedure suggested by [17]. First, to simplify calcula-

tions, the average value of y(i)(k) is subtracted from y(i)(k). For a zero mean process

y(i)(k), the natural sample estimate of c3(iTi ,7 2) reduces to

W 1 k2

c3 (•, T2) = (y(i)(k)y(i)(k + Ti)y(i)(k + T2)) yk') (k)y(') (k + T) y(k + 2)
k=kl

(3.25)
where k1 = 1 - min(O, T, T2) and k2 = N - max(0, 71, T 2). The final estimate,

C3y (T, T2 ), is obtained by averaging over several realizations i = 1, 2, ...K:

1 K
c3 (T, T2) =K Zc) (1, T2) (3.26)

The calculations of all third order cumulants were performed using the program

c3div.f created in Fortran code (attached in Appendix A). Under certain conditions

[16, 17], this estimate will be asymptotically unbiased, with variance approaching

zero as K -+ oc, or as N -+ oo for K = 1. This asymptotic consistency implies that

sample estimates of cumulants converge in probability to their true values.

By computing the third order cumulant experimentally, we can accomplish two

goals. First, we can determine a suitable control to compare C3y(Ti, T2 ) to confirm that

the nonzero cumulant can only be attributed to nonlinear phase interaction rather

than numerical artifact or other characteristics of the time series. Second, we can

determine the length of the realization, N, and the number of realizations, K, to

"sufficiently" detect the nonlinearity 0.



Determining a Suitable Control

A characteristic feature of quadratic nonlinear systems is mode coupling, which pro-

duces a non-random phase structure in the output, y(k). By applying HOSA (specifi-

cally third order cumulants), we hope to detect and quantify this nonlinearly induced

phase coupling in y(k). However, we must be certain that the resulting third order

cumulant, obtained experimentally, arises only from nonlinearity, rather than numer-

ical artifact. Thus, our goal is to determine a suitable control on which to perform

parallel HOSA analysis to serve as a comparison. If the surrogate data is linear,

all higher order (third and fourth) cumulants will theoretically be zero. Thus, any

nonzero experimentally obtained third order cumulant (of the surrogate data) only

results from artifact.

By randomizing its Fourier phases, the nonlinearity present in y(k) is essentially

removed, while preserving the linear statistics contained in the power spectrum or au-

tocorrelation. Thus, the surrogate data, yrp(k) (where rp denotes randomized phases),

is obtained by Fourier transforming the original time series y(k), preserving the mag-

nitude of the Fourier transform while randomizing the phases5 , and performing an

inverse Fourier Transform 6:

y(k) e-# |Y(f)le/Y(W)

yrp(k) -== IY(f)leJY'Ond

Comparing the zero mean realizations of y(k) and y,,p(k) (termed phase random-

ized surrogate), displayed in parts (a) and (b) (respectively) of Figure 3-6, we note a

striking difference in their distributions. Examining the histogram of each realization,

we observe that y(k) has an asymmetric distribution (part (c) of Figure 3-6). Not

surprisingly, the distribution of yrp(k) (part (d) of Figure 3-6) is more "Gaussian-like".

To ensure that any difference found in C3y,,(T1,7T2) and C3y(T 1 , 72) cannot be at-

tributed to the different shapes of their histograms, we change the distribution of

yrp(k) to "match" the distribution of y(k). Thus, we retain the relative temporal

structure of yrp(k), while changing its actual values to span the same range as y(k).

5We randomly generate LY(f) from a uniform distribution from [0..27r).
6This procedure has been previously applied to "linearize" nonlinear processes [4, 5].
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(b) randomized phase ("linearized") yrp(k) with Gaussian distribution shown in (d)
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(a) (b)
Figure 3-7: Third order cumulant for Gaussian random process with short-term,
exponentially decaying autocorrelation filtered through a quadratic nonlinear system,
with 3 = .4. (a) Experimentally obtained C3y(T1, T2 ); (b) Experimentally obtained
C3yrpad (T1, 72 ) calculated from yrpsd(k), where rpsd denotes phase randomized, same
histogram of y(k). There is no noticeable difference between parts (a) and (b).

We denote the resultant process as Yrpsd(k) (where rpsd is an abbreviation for "ran-

domized phases, same distribution").

To determine if yrpad(k) is a suitable control, we apply third order cumulant anal-

ysis to both y(k) and yrpsd(k). The length of each realization of y(k) and yrpsd was

empirically chosen to be 211 (or 2048) data points. Using Equation 3.25, we com-

pute the third order cumulant, c' (Ti, T2), for y(i)(k). We obtain the final estimate,

C3ay(T, T2 ), by averaging over 10 realizations (i.e., K = 10 in Equation 3.26). The plot

of C3y(T1, 72 ) is displayed in part (a) of Figure 3-7 as T1 and T2 are varied from -50

to 50 for 3 = .4. We perform parallel analysis on yrpsd(k) to compute C3yrp,d (T1, T2 ),

shown in part (b) of Figure 3-7.

Because yrpsd(k) is a linear process, its third order cumulant, C3yrp,d (71, T2 ), is the-

oretically zero. However, from part (b) of Figure 3-7, we observe that (experimentally

obtained) C3yr,d (T1, T2 ) is substantially different from zero. We hypothesize that the

resulting nonzero third order cumulant, C3y,,pd (Tr, T2 ), arises from the effect of the

asymmetric shape of the histogram since there is no phase information present.

To ensure that the experimentally obtained nonzero cumulant results only from

nonlinear phase interactions (and spurious numerical artifacts such as finite size ef-



Figure 3-8: Summary of experimental procedure for determining c3 y(T1 , T2 ).

fects), we must remove the strong effect of the histogram on HOSA. To accomplish

this, we calculate a new statistic:

c3ya, (rl, T2) = C3y (r, T72) - C3yrpa,,d (T, 2) (3.27)

C3y,1 (T, T72 ) is therefore only influenced by nonlinear phase information present in y (k).

Figure 3-8 shows a diagram summarizing the experimental procedure for determining

C3YnL (Ti, T2 ) in the context of the simulations studied.

The experimentally obtained c3yn (T1, 72 ) for both / = .4 and / = .8 are shown

in parts (b) and (d) of Figure 3-5 respectively as T1 and T2 are varied from -50 to

50. Because the experimentally obtained third order cumulant is only an estimate

computed from finite length data, the experimental results are not exactly equivalent

to the theoretical results. However, we do observe strong qualitative similarities

between the experimental calculations and the theoretical calculations of c3y (T1, T2 ).

In addition, an increase in the nonlinearity, 0, from .4 to .8 produces a corresponding

Mathematical Models to test cumulants
x(k), Gaussian random process (Grp) with known c2(@)

length 211 Breakdown higher order curmulants for Grp

Compute theoretical C r(c 2)

Nonlinear system
x(k)+ + (k)

Experimental
Randomize Phase (rp)

y(k) Same histogram

Generate 10 artificial time series y(k): y•(k) .. ylo(k)
jy()(k ) j y(')rp(k )

Calculate C(i)3y('r l ,tr2) for i = 1..10, calculate C(i)3y,,d(,•1 2)

C3y,n1(1,2) - C3y~ rp'(1,2) Compute experimental
C3y(l,'2)



Figure 3-9: The "control", C3yontr.o, (71, T2), demonstrates the third order cumulant
when no linearity is present.

change in the magnitude of C3y. (T1, T2) from .50 to 2.9.

To test whether the observed nonzero c3y,1 (T1, T2) arises from the nonlinearity

present in y(k), we introduce a new control. Specifically, from y(i)(k), we generate
two randomized phase, same distribution processes Yasd,1(k) and ypsd,2(k) from each

of the ten realizations of y(i)(k). After computing c3yrpd,1 (T 1 , T2 ) and C3rpsd, 2 (T17, 72),
we calculate our control:

C3Ycontro (T1, 72 ) = C3y.rpsd,1 (1, T2) - C3yrpd,2 (T1, 72 ) (3.28)

The peak present in C3 tI (71, T2 ) (and in the theoretically derived third order cumu-

lant) is absent in C3ycont,ro (T1,T 2 ), shown in Figure 3-9. However, because y(i)(k) is

finite length, and we are averaging over a finite number of realizations, c3Ucontroo (71, T2 )

contains numerical artifact, causing it to deviate somewhat from zero. Ultimately,
by comparing C3ycontrol (T1, 72 ) and c3un, (T1, T2 ), we can determine whether the nonzero

cumulant arises from finite size effects or from actual phase interactions induced from

nonlinearities.



Figure 3-10: C3y,, (T1, T2 ) obtained by averaging over only one realization (K = 1), for
N = 211, / = .4. The noise level obscures the nonlinearity present.

Other Considerations: Averaging Over Several Realizations; Stationarity

Effects

Averaging over more realizations increases the accuracy of the estimate of c3U, (71, T2).

With only one realization, a poor estimate is obtained as a result of the high noise

level, and the nonlinearity present in y(k) is unobservable (Figure 3-10). An increased

number of realizations decreases the noise level present, thus detecting the peak in

ca3y, (Ti, T2 ) becomes substantially easier. Empirically, we determine that for a process

y(i)(k) of length N = 211, averaging c(i) (T1, 72) over K = 10 realizations is sufficient

for detecting nonlinearity for both 3 = .4 and 3 = .8.

Additionally, from our analysis, we determine the importance of stationarity at the

input x(k) (resulting in a stationary process y(k) at the output) in order to produce

a consistent estimate, C3y, (Ti, T2). Initially, a was chosen to be .9. Theoretically,

this generates a stationary process x(k). However, experimentally, x(k) was found

to be nonstationary (as a result of the finite length). This generated many different

estimates of C3s,1 (TI, 72), none of which resembled the theoretical c3y(-(T, 2) computed.

__ _ ____



3.3 Simulation 2: Long-term Correlations - 1/f

Nonlinear Process

3.3.1 Theoretical Calculation of C3y(T1, 72)

1/f processes, or self-similar processes demonstrating long term correlations, are in-

herent in many physical systems, including biological systems [19]. Many of these

systems are quite complex and are frequently nonlinear. However, previous models

used to simulate these complex processes only capture the 1/f spectrum, while ignor-

ing the nonlinear component present in the Fourier phases [19]. In this section, we

determine a method for generating nonlinear 1/f processes. In addition, we deter-

mine a robust signal processing method for detecting nonlinearities in 1/f processes

for real world applications. Additionally, we apply the third order cumulant to more

fully understand nonlinear 1/f processes.

Stationarity is a necessary condition for higher order cumulant analysis [17]. For

a 1/1f process to be stationary, the condition 0 < 6 < 1 is necessary. To generate a

stationary nonlinear 1/1f process, a zero mean Gaussian random process with power

spectrum, S2_(f) = 1/fA (1/2 < A < 1), will serve as the input to the quadratic

nonlinear system defined in Equation 3.2:

S2 (f) = 1/f((1/ 2 < A < 1) -+ x(k) +O x 2(k) - S 2y(f) O: l/f(0 < 6 < 1)

To verify that the output spectrum, S2y(f), of the quadratic nonlinear system is

proportional to 1/f", and that 1/2 < A < 1 is necessary at the input for y(k) to be

stationary, we:

1) Determine C2x(7).

2) Obtain c2y(T) expressed in terms of C2x(T).

3) Find S2y(f), the corresponding Fourier Transform of C2y(T).



[20] derives that a process x(k) with power spectrum S2z(f) = 1/f' has a corre-

sponding autocorrelation C2x(T) (defined for T > 0):

c2 (T7)

where H

1 -[(T + 1)2H - 2-2H + ( - 1)2H]2

S-(A + 1)
2

Because the autocorrelation is symmetric about zero, for 7 < 0 we have

C2x(-T) = C2x(T)

To simplify analysis, let x(k) have unit variance:

c2x(0) = 1

For larger T, Equation 3.29 asymptotically approaches:

C2x(T) t a--(1-X\

(3.29)

(3.30)

(3.31)

(3.32)

where a = H(2H-1)

Therefore, we can approximate the following Fourier transform pair:

S2x(f) == C2x(•)

1/ f A a• - (1- )
(3.33)

Next, using Equations 2.1 and 3.10, we determine C2y(T), the autocorrelation of y(k):

C2y (T) = m 2y (T) - my

= m2x () + 2022mx (7) (3.34)

Recognizing that m2x () = C2 (T) since x(k) is zero mean, we substitute Equation 3.32



into Equation 3.34 to obtain:

C2y(T) T aOT- (1- A) + 2 /022 T - 2(1-A) (3.35)

Using Equation 3.33, we obtain the corresponding power spectrum S2y(f):

S 2y(f) 1/f A + (202c)1/f 1- 2(1-A) (3.36)

For y(k) to be stationary,

0 < 1 - 2(1 - A) < 1

-- 1/2 < A < 1

For our analysis, we arbitrarily choose A to be 5/8, (which corresponds to a value of

H = 13/16).

To find the theoretical third order cumulant, (because c2-(T) = m2X(T)) we sub-

stitute Equation 3.29 into Equation 3.17. c3y(T1, T2) is again calculated for / = .4 and

/ = .8 as T1 and T2 are varied from -50 to 50. Similar to the example in Section 3.2.1,

we observe that increasing p does not change the qualitative structure of C3y (T1, T2 ),

but rather increases the magnitude proportionately. This effect is demonstrated in

parts (a) and (c) of Figure 3-11. The maximum amplitude of C3y(T 1, 72 ) changes from

5.0 to 15.9 as 3 is increased from .4 to .8.

In addition, we observe that the three-dimensional graph of c3y(T1 , T2) is more

complex, with a nonzero value near the origin as well as along one-dimensional slices.

The more complex nonlinear frequency interactions present in y(k) result in a more

complex third order cumulant structure compared to the third order cumulant ob-

tained in the example in Section 3.2.1.
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Figure 3-11: Third order cumulant for 1/f nonlinear process. (a) Theoretical
C3y(T1, 12), = = .4, maximum value of 5.0 (b) Experimentally obtained c3y.,(i 1 , T2 ),

-= .4, maximum value of .17; (c) Theoretical c3 (T71, T2), / = .8, maximum value of
15.9; (d) Experimentally obtained C3y, l(T1, T2), 3 = .8, maximum value of .22. The
complex nonlinear frequency interactions present in y(k) result in a complex third
order cumulant structure which is somewhat obscured experimentally.
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3.3.2 Experimental Calculation of C3y(T1, T2)

We wish to generate a Gaussian random process, x(k), with autocorrelation C2x (T)

given in Equation 3.29, and corresponding power spectrum

S 2x(f) = X(f)2 = 1/ f (3.37)

This is most easily accomplished by constructing x(k) in the frequency domain.

x(k) - X(f)|ej / x (f) (3.38)

where

ZX(f) = 0 randomly distributed in [0, 27) (3.39)

|X(f)l = 1/1f (3.40)

Because x(k) is a Gaussian random process, it contains no information in its

Fourier phases. Thus, we randomly generate ZX(f) from a uniform distribution from

[0..27r) and multiply ZX(f) with IX(f)l given in Equation 3.40 to obtain X(f). To

determine x(k), we take the inverse Fourier transform. In addition, we normalize

the variance of x(k) to be 1 to be consistent with the theoretical derivation (Equa-

tion 3.31). We generate y(k), a stationary nonlinear 1/f process with phase inter-

actions, by letting x(k) serve as the input to the quadratic nonlinear system. The

power spectrum of both x(k) and y(k) are displayed in parts (a) and (b) of Figure 3-12

respectively.

The same procedure described in Figure 3-8 (also applied in Section 3.2.2) is

applied to experimentally obtain the third order cumulant, c3y~ 1 (T, r2) (i.e., each

realization contains 211 data points and 10 realizations of c(•i, T2 ) are averaged).

Parts (b) and (d) of Figure 3-11 display the experimentally obtained c3y~ (T7, 72 ) for

9 = .4 and / = .8 respectively. We observe that the nonzero information along the

one-dimensional slices present in the theoretical third order cumulant is somewhat
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Figure 3-12: Power spectrum of (a) 1/fI process, S2x(f); (b) 1/f8 process through
nonlinear system (with -= .4), S2y(f).

obscured in c3ynl (T1, T2) due to the low signal to noise ratio. In addition, the maximum

amplitude of C3y (T1, 72) is attenuated.

Experimentally, we find more complex nonlinear frequency interactions are more

difficult to detect with the third order cumulant (compared to the example in Sec-

tion 3.2.1). However, by averaging over more realizations, we can decrease the noise

level, and thus accentuate the nonzero cumulant due to nonlinearity. Despite this

numerical artifact, the experimental results are comparable to the theoretical results,

thus verifying the validity of our procedure to calculate C3y, (T1, 72 ).

Whitening the Spectrum

Higher order cumulants are theoretically affected only by nonlinear phase information

and not by linear information contained in the power spectrum. However, experimen-

tally, it is quite possible that the cumulant is affected by linear characteristics. Thus,

it is possible that whitening the spectrum could remove artifacts due to the power

spectrum and enhance the experimental cay, (T1, T2 ). This could be an important con-

sideration in preprocessing a signal before analysis with HOSA. To determine if higher

order cumulants are affected by the shape of the histogram, we whiten the spectrum,

S 2y(f), before applying third order cumulant analysis to y(k). This is achieved by



Figure 3-13: Third order cumulant C3y,whitened(T1, 72) for 1/f nonlinear process with
whitened spectrum.

taking the Fourier Transform, preserving the Fourier phase information, normalizing

the Fourier magnitude (to maintain a unit variance for y(k)), and taking the inverse

Fourier Transform.

Ywhitened(k) 4• cej Y(f )

where < ywhitened(k) >= 1

The third order cumulant, C3yhitened(T, 72 ), shown in Figure 3-13 for / = .4, is

obtained experimentally by averaging ten realizations of whitened l 2 ) Comparing
this result to Figure 3-11, we observe that the "whitening" procedure does not enhance

the cumulant (i.e., C3ywhitened (T1 , 2) does not more closely resemble the theoretical

c3y (T,7-2 )). Thus, we determine that whitening the spectrum is unnecessary before

applying higher order cumulant analysis.

3.4 Summary

After applying two Gaussian random processes (characterized by different autocor-

relations) to a quadratic nonlinear system, we calculated the third order cumulant,

C3y(ri, 72 ) both theoretically and experimentally. Through theoretical calculations,
we discover the following:



* The nonlinearity, 0, present in the quadratic nonlinear system causes a nonzero

third order cumulant, C3g (r1 , 2 ). Increasing P increases the magnitude of C3y (1, 72),

without changing the overall qualitative structure. Thus, the nonlinearity present

in the system may be quantified by the maximum amplitude of C3y(T1, T2 ).

* Different third order cumulants result from different Gaussian inputs to the

quadratic nonlinear system. Specifically, the third order cumulant is more com-

plex for processes with more complex nonlinear (1/f) frequency interactions.

By comparing theoretical results to experimental simulations, we arrived at several

other conclusions:

* The shape of the histogram of a process y(k) substantially affects the third

order cumulant. To remove this undesired effect, we determined a new statistic,

c3yn1 (71, 72) -

* The control, c3yontrol (T1, 72), is necessary for ensuring that any nonzero cumulant

results from nonlinearity, rather than numerical artifact.

* To produce a consistent estimate of c3y (T1, T2), y(k) must be stationary.

* Averaging over more realizations to obtain c3y,nl (Ti, T2 ) accentuates the nonzero

structure of the third order cumulant resulting from nonlinear frequency inter-

actions, while attenuating the noise level.

* "Whitening" the process, y(k), provides no advantage for using third order

cumulants to investigate nonlinearities.

In summary, this chapter provides guidelines for applying third order cumulants.

In addition, it demonstrates the effectiveness of the the third order cumulant in

investigating general nonlinearities, as well as 1/f nonlinear processes relevant to the

analysis of healthy heart rate time series.



Chapter 4

Applying HOSA To Detect

Nonlinearities In Heart Rate

Time Series

In this chapter, we apply HOSA to heart rate time series to investigate nonlinearly

induced phase-coupling in both healthy and diseased subjects. While nonlinear anal-

ysis has been previously applied to irregular heart rate dynamics, the validity of such

approaches is often questioned. Therefore, it is not universally accepted that heart

rate variability is a nonlinear process. One of the goals of this study is to use higher

order statistics to unambiguously confirm the presence of nonlinearity in healthy heart

rate time series.

Additionally, a number of pathologies are postulated to be characterized by a

breakdown of the complex nonlinear dynamics observed in healthy heart function

(this breakdown results in a loss of complex variability sometimes with the emer-

gence of periodicities) [6]. Thus, we will also apply HOSA to identify underlying

differences in nonlinear dynamics between healthy heart rate time series and subjects

with congestive heart failure (CHF). Specifically, we apply the third order cumulant,

C3 (T1, 2 ), to probe these nonlinearities in healthy and pathologic heart rate time series.

Ultimately, this nonlinear analysis may yield insight into the physiological process of

the autonomic nervous system (ANS), in comparison to conventional linear analysis.



4.1 Methods

4.1.1 Subjects

We analyzed cardiac interbeat data from two different groups of subjects: 8 healthy

adults without clinical evidence of heart disease (age range: 29-64 years, mean 44)

and 8 adults with severe heart failure1 (age range: 22-71 years; mean 56). Data from

each subject consist of approximately 24 hours of ECG recording. Data from patients

with heart failure due to severe left ventricular dysfunction are likely to be particularly

informative in analyzing nonlinear dynamics under pathologic conditions since these

individuals have abnormalities in both the sympathetic and parasympathetic control

mechanisms [23] that regulate beat-to-beat variability.

4.1.2 Physiological Time Series Preprocessing

The time series was obtained by plotting the sequential intervals between beat k and

beat k + 1. Parts (a) and (b) of Figure 4-1 display time series for both a healthy sub-

ject and a subject with CHF. The healthy beat-to-beat interval, which is modulated

to respiratory activity, has been shown to include oscillations with a frequency of ap-

proximately .25 Hz (corresponding to one respiratory cycle every four seconds). This

feature, known as "respiratory sinus arrhythmia" corresponds to heart rate increasing

during inspiration and decreasing during expiration [2]. To remove the strong respi-

ratory signal embedded in the heart rate time series, the heart rate was first averaged

over a non-overlapping window of six beats. This procedure is important because we

wish to focus our analysis primarily on nonlinear cardiac behavior over relatively long

time scales (less than .1 Hz).

An immediate problem facing researchers applying time series analysis to interbeat

interval data is that the heartbeat time series is often highly non-stationary. To reduce

1ECG recordings of Holter monitor tapes were processed both manually and in a fully automated
manner using our computerized beat recognition algorithm (Aristotle). Abnormal beats were deleted
from each data set. The deletion has practically no effect on the cumulant analysis since less than
1% of total beats were removed. Patients in the heart failure group were receiving conventional
medical therapy prior to receiving an investigational cardiotonic drug; see Ref. [21].
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the effect of nonstationarity present after averaging (specifically due to a slow drift),

we compute the first difference of the signal [24]. Finally, we truncate all time series to

have 16,600 consecutive data points to eliminate spurious effects arising from length

differences.

4.1.3 Third Order Cumulant Analysis

To obtain the third order cumulant, c3b, 1 (T1, T2 ), for the 16 heart rate time series, we

followed the procedure described in Section 3.2.2. Specifically, for the 16 heart rate

time series, we first generate 10 realizations of each time series by segmenting the

processed 16,600 length signal into 10 data sets2 . Each realization is made zero mean

by subtracting the average value from each segment. In addition, to maintain uni-

formity among all data sets, we normalize the standard deviation of each realization

to 1. The resulting time series, denoted by b(i)(k), is shown in parts (c) and (d) of

Figure 4-1 for a healthy patient and a pathologic patient respectively. For each zero

mean realization, Equation 3.25 (with N = 1660) is used to calculate cb)(T1 , T 2 ). The

overall estimate C3b (T 1 , T2 ) is obtained using Equation 3.26 by averaging over K = 10

realizations.

Section 3.2.2 demonstrates that the third-order cumulant is sensitive to the shape

of the histogram of the time series. Thus, it is first necessary to remove the contribu-

tions of the shape of the histogram to the third-order cumulant. To remove this effect,

each nonlinear realization, b() (k), is linearized (by randomizing the Fourier phases)3 ,

while preserving the original histogram of the nonlinear time series. We denote this

surrogate data as b'~, where "rpsd" is an abbreviation for randomized phase, same

distribution. Parts (c) and (d) of Figure 4-1 show b$d(k) for both a healthy patient

and a pathologic patient, respectively. After computing the third-order cumulant of

2In Section 3.2.2 each realization contains 2048 data points. However, because we only have
16,600 points available in the total time series for each subject, the data length of each "realization"
is only 1660.

3This entails Fourier transforming b(i) (k), preserving the magnitude of the Fourier transform while
randomly generating the Fourier phases from a uniform distribution from [0..27r). and performing
an inverse Fourier Transform.



both the nonlinear time series (denoted c3b(71, 72 )) and the randomized phase time

series (denoted by C3brpsd(71, 72)), C3brpsd (71, 72) is subtracted from c3b(71, 72) to remove

all effects due only to the shape of the histogram. The resulting statistic, c3b~1 (71, 72 ),

retains the nonlinear phase information present in the time series.

To test whether the observed nonzero c3b 1(71, T72) arises from the nonlinearity

present in the beat-to-beat interval, we determine a control (from the procedure

in Section 3.2.2). Specifically, we generate two randomized phase, same histogram

processes brpsd,l(k) and b0sd,2 (k) from each of the ten realizations of b(i) (k). After

computing C3brpsd,1 (7T1, 72 ) and C3bpd,2 (Ti, 72 ), we calculate:

C3bcontrol(71, 7 2 ) = C3brpsd,1 (71, 7 2 ) - C3brpsd,2 (71, T72 ) (4.1)

Ultimately, by comparing c3bcontrol (71,7 2 ) and c3bn1 (1, T72), we can determine whether

the nonzero cumulant arises from finite size effects or from actual phase interactions

induced from nonlinearities.

4.2 Results

Parts (a) and (b) of Figure 4-2 show C3bn (7T1,7 2 ) versus T7 and 72 for the healthy

and CHF time series respectively. In addition, part (c) displays c3bcontrol (T, 72 ) versus

71 and 72 for the surrogate time series. Any deviation from zero of the third order

cumulant, C3bcontrol (7, 72 ), (calculated from the surrogate data), results purely from

numerical artifact (i.e., finite size effects). This effect produces a (somewhat) uniform

"noisy" three dimensional c3bontrol (T(,7 2 ). In contrast, for both healthy and pathologic

time series, we observe that C3bn~1(1, 72) is substantially nonzero for a small number

of time lags around the origin. Because all nonlinearity is removed in the surrogate

data, this difference in third order cumulants indicates the presence of nonlinearity

in both healthy and pathologic time series.

Qualitatively, the graphs of c3b~1 (71, 72 ) for healthy and pathologic patients are very

similar. However, we note a substantial difference in the magnitude of the maximum



(a) (b)

Figure 4-2: c3bU1 (71, T2 ) for (a) a patient with congestive heart failure (CHF),
3max = .62; and (b) a healthy patient, /,ax = .16. Part (c) shows "zero" amplitude

C3bcotro0 (T1 , T2 ) (obtained from surrogate data), indicating an absence of nonlinearity.

amplitude ("peak") of C3bn, (71, 72). Chapter 3 suggests that the maximum amplitude

of c3bl (-1i, 2 ), which we will denote as Omax, is a measure of nonlinearity present in

the system. For the healthy time series shown in part (a) of Figure 4-1, Omax = .16,

while for the pathologic time series, shown in part (b) of Figure 4-1, Omax = .62.

For the group of eight healthy subjects, ,max = .22 + .10 (mean + standard devi-

ation), while for the subjects with CHF, Omax = .72 + .33. The maximum amplitude,

Omax, of c3b, (71 , T2 ) (for 0 < 71, T2 < 50) for all 16 data sets is shown in Table 4.1 and

displayed (graphically) in Figure 4-3. With the exception of one healthy (n6483) and

one pathologic (m9674) subject, ,max for the two groups are distinctly separated. For

all other healthy patients, 3max < .3, while for all other CHF patients, Omax > .5.

\ X /



X

x

©

- , x
O

I .UV

1.25

S1.00

O 0.75

0.50

0.25

000~t
V.VV

Healthy Disease

Figure 4-3: /3ma, maximum amplitude of c3bI (7-, 7-2 ) (for 0 < 71, T2 < 50) for 8 healthy
heart rate time series and 8 heart rate time series with congestive heart failure, p-value
< .001 for t-test.



Table 4.1: f3max, maximum amplitude of c3b, 1 (7l, 2 ) (for 0 < 71, T2 < 50) for: 8
healthy heart rate time series (prefixed by "n", e.g. n7453); 8 heart rate time series
with congestive heart failure, (prefixed by "m", e.g. m8679); p-value < .001.

Healthy HR Omax Pathologic HR Omax

Time Series Time Series

n6265 .16 m8679 .62

n6420 .11 m8988 .62

n6483 .42 m9435 .80

n6539 .24 m9643 1.20

n6786 .11 m9674 .30

n7453 .20 m9706 .52

n8177 .28 m9723 .50

n8184 .25 m9837 1.21

Mean ± SD .22 ± .10 Mean ± SD .72 ± .33



4.3 Discussion

Two important conclusions can be drawn from these results. First, the noticeable dif-

ference between C3b, (71, T2 ) (calculated from heart rate time series) and C3bcontroi (T 1 , T2 )

(calculated from the surrogate data) indicates the presence of nonlinearity in all

(healthy and pathologic) heart rate time series studied. By concluding that heart

rate time series are nonlinear processes, we are not denying the usefulness of linear

analysis. Rather, we are emphasizing that other, more sophisticated techniques could

be beneficial in analyzing and interpreting complex cardiac behavior. Additionally,

any attempt to model heart rate dynamics should incorporate these phase interac-

tions. Consequently, third order cumulant analysis could be used as a test for the

ability of a model to reproduce these results.

Second, Anmax is an indirect measure of the nonlinearity of a process. As demon-

strated in Chapter 3, when the nonlinearity, f, in the nonlinear quadratic system

increases, Omax increases. The pronounced difference in ,max values for the healthy

and CHF subjects suggests an inherent difference in the nonlinear dynamics of the

healthy heart rate and the pathologic heart rate. This conclusion reaffirms that an

altered physiologic control results from pathology. The more coherent peak, 0"ma,

found in the CHF data demonstrates a distinctive, more intense pattern of mode

interactions (mode locking). This result has potential clinical implications in using

third order cumulant analysis to detect heart failure physiology. It will be necessary

to validate this finding in a larger group of subjects to determine whether this tool

can be used for diagnosis of CHF.





Chapter 5

Using HOSA To Detect

Extremely Low Amplitude Heart

Rate Oscillations

5.1 Introduction

The healthy heart rate time series, representing the output of a complex cardiovascu-

lar control system, fluctuates in an irregular, highly variable fashion. With congestive

heart failure (CHF), this complex heart rate variability has been shown to be sub-

stantially reduced [9]. Additionally, previous studies have reported emerging inter-

mittent, low frequency oscillations (about every minute) in the beat-to-beat interval

of selected CHF patients. These oscillations are associated with periodic (Cheyne-

Stokes) breathing, an abnormal breathing phenomenon associated with low cardiac

output and circulatory delay'. However, it is not clear whether the heart rate os-

cillations accompanying Cheyne-Stokes physiology are due to entrainment of cardiac

activity by respiration or to entrainment of both respiratory and cardiac dynamics to

some central oscillatory mechanism [23]. These previously reported oscillations were

detected either visually or with classical power spectral methods. In this chapter, we

'This respiratory pattern is characterized by a systematic decline in the depth of respiration until
breathing stops momentarily, followed by a recommencement of deep breathing [2].



demonstrate that this emerging periodicity may be more ubiquitous than previously

believed in CHF subjects. Previously, these oscillations were obscured by a high noise

level, thus they could not be detected with conventional linear methods.

To detect these low amplitude, low frequency oscillations "buried" in noise, we ap-

ply a HOSA technique, namely the fourth order cumulant. The plot of the (projected)

fourth-order cumulant presents a visual representation of low frequency oscillations

that are not readily apparent in the power spectrum of the original time series. Be-

cause HOSA accentuates these subtle oscillations, it offers an attractive advantage

over classical power spectral methods.

5.2 Methods

5.2.1 Subjects

We analyzed cardiac interbeat data from two different groups of subjects: 12 healthy

adults without clinical evidence of heart disease (age range: 29-64 years, mean 44)

and 12 adults with severe heart failure (age range: 22-71 years; mean 56). Data from

each subject consists of approximately 24 hours of ECG recording.

5.2.2 Physiological Time Series Preprocessing

The time series was obtained by plotting the sequential intervals between beat k and

beat k + 1. Because the interbeat interval at night time is typically more stationary,

only the nocturnal portion of the time series is utilized (approximately six hours, or

twenty thousand data points). In addition, to remove the strong respiratory signal

(corresponding to one oscillation every four seconds) occurring from respiratory sinus

arrhythmia, the heart rate is averaged over a non-overlapping window of ten beats.

Averaging over ten beats allows us to more closely examine lower frequencies, which

may be obscured otherwise. For uniformity among data sets, all time series (heart rate

and artificial) were made zero mean and unit variance, and were truncated to have

2000 data points. To compare the sinusoidal nature of the time series, we performed



identical analysis on an artificially created sinusoid with additive white (uncorrelated)

Gaussian noise (AWGN), y(k), such that

y(k) = s(n) + .5w(n) (5.1)

where

s(n) = cos(27rn/11) (5.2)

and w(n) is an uncorrelated Gaussian random process with zero mean, and variance

1.

5.2.3 Fourth Order Cumulant Analysis

In Chapters 3 and 4, HOSA was applied to both simulated and HRV data to extract

phase information from nonlinear processes. In this chapter, we introduce another

key motivation for using polyspectral analysis - to remove additive Gaussian noise

processes. For Gaussian processes, all higher order cumulants (greater than second

order) are theoretically zero by definition [17]. Thus, a time series corrupted with

additive Gaussian noise can be analyzed in the cumulant domain to remove the noise

present, thus accentuating the intrinsic properties of the signal.

Specifically, we utilize the fourth order cumulant, C4 (T1, T2 , 73 ), which is defined

for a zero mean signal x(k) as [16, 17]:

C4x(T71, T2 , 7 3 ) = 4x(T1, 7 2 , T3 ) - 2x(T1)m2x(T73 - 7 2 ) -

m2x(T2)m2x(73 - 7 1 ) - m2x(T3)2x(T2 - 7T1) (5.3)

where m,,(7) (more commonly known as the moment function) is defined in Equa-

tion 2.7. Assuming x(k) is ergodic and finite length N, we approximate all ensemble

expected values as time average operations [17]. Thus, we can estimate m4x (T1, T2 , 3 )

as:

m 4 x (TF, 72 , 7T3 ) = (x(k)x(k + Ti)x(k + T2)x(k + T3 ))



1 k2

S x(k)x(k + T)x(k + 2)(k+ )x(k + T3) (5.4)
k=kl

where k, = 1 - min(O, Ti,T 2, T 3) and k2 = N -max(0, T1, T 2, 73). Also, we can approx-

imate m2.(T) as:

1 N-
m 2x(7) = (x(k)x(k + 7)) , N- z()z(k+ 7) (5.5)

k=1

where (.) denotes the expected value operation. Because the length of each data set

is 2000, we do not segment the data set, as we did with third order cumulant analysis

in Chapter 4. By substituting Equations 5.4 and 5.5 into Equation 5.3, we obtain our

final estimate of C4x (TI, T2 , 73 ) 2 . The calculations of all fourth order cumulants were

performed using the program c4.f created in Fortran code (attached in Appendix A).

We compute C4 (T1, -r2, 8) for all data sets, setting "lag" T3 to eight arbitrarily, and

varying the other two lags T1 and 72 from -50 to 50. To obtain a visual representation

of C4 (T1, 72 , 8), the three dimensional cumulants were plotted, and their contours were

projected onto the XY-plane.

5.2.4 Classical Power Spectral Method

Fourier analysis is classically employed to detect strong frequency components in

signals. Therefore, for each processed data set, we compute the power spectrum.

In order to compare the power spectral method to the cumulant technique to be

described, the 2000 length signal is divided into two overlapping signals of length 1024

each. The power spectrum of each segment is computed and averaged. Assuming an

averaged eighty beats per minute heart rate, the frequency axis is converted from

cycles per every 10 beats to cycles per second (by dividing the frequency axis by 7.5).

2Note we only use one realization compared to averaging over several realizations in Chapters 3
and 4.



5.2.5 Averaged Fourier Transform of C4(T71, 2, T3)

To compare HOSA to classical power spectral methods, we used the following tech-

nique to obtain a new measure, which we term the averaged Fourier transform of the

cumulant, c4 (T1 T 2, T73 ). First, we determine c4 (TI, T2, k2) as we vary 71 and 7T2 from -512

to 512, while setting 73 to a constant k2. This created a three-dimensional signal of size

1024 x 1024 x 1024. By holding T2 constant, we then partitioned the entire signal into

individual two-dimensional signals, c4 (T1, ki, k2), of length 1024 (71 = -512.. + 512).

First, each two-dimensional signal was linearly detrended (to make the signal station-

ary for FFT processing) by removing the best straight-line fit from the data. Next,

the Fourier transform of each two-dimensional signal was computed. This procedure

was repeated for all 1024 values of 7T2, and the Fourier transform of the cumulant for

all two-dimensional signals was averaged for a specific value 73 . Finally, this proce-

dure was repeated for eleven different values of 73 (which was incremented from -512

to 512 in steps of 100). A single two-dimensional signal, which is the cumulative

Fourier transform of C4 (T1, 72 , 73) was obtained by averaging the Fourier tranforms re-

sulting from varying 71 and 72 from -512 to 512, for 73 = -512, -412, ...412, 512. The

calculation for the averaged Fourier transform of c4 (7I,72 , T73) is performed using the

program c4psav.f created in Fortran code (attached in Appendix A). This technique

was applied to all healthy and diseased data sets, as well as to the simulated sinusoid

with additive white Gaussian noise.

The analysis performed on the heart rate is summarized in Figure 5-1.

5.3 Sinusoid with Additive White Gaussian Noise

(AWGN) Example

An example that will be useful to compare to pathologic heart rate time series is the

sinusoid with AWGN mathematically described by Equations 5.1 and 5.2. To compute

the fourth order cumulant of y(k), we note that an important property of HOSA is

that the cumulant of the sum of statistically independent random processes equals
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Figure 5-1: Summary of methods performed on the heart rate

the sum of the cumulants of the individual random processes (whereas the same is not

true for higher order moments) [16, 17]. Therefore, because s(k) (with corresponding

fourth order cumulant C4s(T1, T2 , 73 )) and w(k) (with corresponding c4w (1, T2 , 73)) are

independent:

C4y(T1, 2, 3) = C4 (71, 2, 73) + C4(I, T2, T3) (5.6)

From Equation 5.6 and noting that higher order cumulants of Gaussian random pro-

cesses (w(k)) are theoretically zero, we observe that

C4y (T1, T2, 7 3) = C4s(1, T2, 73) (5.7)

Generally, for a sinusoid,

s(n) = acos(wn + t) (5.8)

we can compute the fourth order cumulant, C4y (T, T2, T3), (given in [16]):

4y1,T2, 3) = -- 4 [COS (T1 - 2 - 3)) + COS(W2 -r2  - 1)) + COS((T 1 - 72))]
(5.9)

Thus, we can theoretically compute C4y(T1, T2 , T3 ) (with s(k) given in Equation 5.2)

by setting a = 1 and w = 27r/11. To compare the sinusoidal simulation to HRV

analysis, we generate y(k) (in MATLAB) and compute the estimate of the fourth



order cumulant experimentally using Equation 5.3 (by using the approximations given

in Equations 5.4 and 5.5). By setting r3 to a constant (8), and varying 71 and

T2 , we essentially obtain a projection of C4y (T1, T2, T3 ) onto three dimensions. From

Equation 5.9, we see that this projection contains sinusoidal components, resulting in

an oscillatory structure in the fourth order cumulant projection (part (c) of Figure 5-

4). Therefore, a signal with strong oscillations will have a sinusoidal fourth order

cumulant projection, regardless of the noise present. Because the third order cumulant

of a sinusoid is theoretically zero, it is necessary to compute the fourth order cumulant

to retain the oscillations in our original sinusoid [16].

5.4 Results

A representative pathologic heart rate time series (before processing) is shown in part

(a) of Figure 5-2 next to that of a healthy patient (part (b) of Figure 5-2), and an

artificial sinusoid with AWGN (part (c) of Figure 5-2). Comparing the diseased heart

rate time series to the artificial sinusoid, we do not observe strong similarities. Al-

though further HOSA analysis suggests the presence of an oscillation repeating about

every 100 beats, this oscillation is buried in noise, and therefore is not unambiguously

visible. This oscillation is apparently absent in the healthy heart rate time series.

Parts (a),(b), and (c) of Figure 5-3 show the power spectra S(f) (obtained in

Equation 2.4), the square of the Fourier Transform amplitudes of the averaged heart

rate time series shown in Figure 5-2. As expected, the sinusoid with additive white

Gaussian noise (AWGN) displays a prominent peak at its frequency of 1/11 (which

is normalized in Figure 5-3 for comparison). In addition, the healthy heart rate time

series has the expected 1/f power spectrum. While the spectrum from the pathologic

time series has an increased amplitude between the ranges of .075 to .015 Hz, there

does not appear to be a single dominant frequency.

Parts (a), (b), and (c) of Figure 5-4 show C4(T 1 , T2, 8) of the healthy heart rate,

diseased heart rate, and sinusoid with AWGN (respectively), with lag T3 set to 8, and

lags ri and T2 varying from -50 to 50. The fourth order cumulant obtained from the
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Figure 5-4: The higher order cumulant C4(Tl, 72 , 73 ) (and its projected contour) of the
interbeat interval after averaging for (a) a healthy subject, (b) patient with heart dis-
ease, and (c) an artificial sinusoid with AWGN. Notice the complexity of the healthy
cumulant, compared to the structured oscillation observed in both the artificial signal
and the pathologic signal.

healthy heart rate time series is erratic, possessing no easily identifiable structure or
regularity. In contrast, c4 (T1, 72 , 8) for the diseased patient displays a structured oscil-

latory "lattice" which appears extrememly sinusoidal particularly when compared to
the cumulant of the artficial sinusoid with AWGN. This visual display of a dominant

frequency apparent in c4 (T1, 72 , 8) prompts further attention to the increased magni-

tude previously observed in the power spectrum between the frequencies of .005 and

.01 Hz.

Finally, the averaged Fourier transform of the detrended cumulant is displayed

in parts (c) and (d) of Figure 5-5 (for the healthy subject and diseased patient,

_ ___ __
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respectively). This method appears to accentuate the true oscillations of the signal,

while attenuating the noise present. Comparing this method to the classical power

spectral techniques (Figure 5-5 (a) and (b)), we see a great improvement in detecting

the oscillation present. Specifically, the peak occurs at a frequency of .012 Hz, or

every 82.5 seconds (equivalent to every 110 beats). This low frequency corresponds

to the well-described coupling of heart rate to respiration in heart failure, termed

Cheyne-Stokes breathing.

The same analysis performed on the other data sets yielded similar results. Ten

of the twelve pathologic signals showed evidence of a single dominant frequency.

Although these low frequency peaks were present in the power spectrum of the signal,

they were not usually prominent. However, the Fourier transform of the cumulant

accentuated these peaks. In addition, the two-dimensional graph of C4 (T1, 72 , 8) also

served as a visual display for oscillations in the ten patients with heart disease. None

of the healthy data sets displayed any evidence of this oscillatory behavior.

Analysis was also performed on a time series obtained by transforming the original

sequence of R-R intervals into a series of time (in intervals of 5 seconds) versus number

of beats. Although the analysis produced similar results, in many cases, the frequency

of the oscillation was too low to be visible. This is because the averaged Fourier

transform of the fourth order cumulant experimentally results in a low frequency 1/f2

behavior, which overpowers very low frequency oscillations. Thus, when detecting

oscillations, it was more convenient to look at the beat-to-beat interval.

5.5 Discussion

In this study, we apply fourth order cumulants to pathologic beat-to-beat intervals to

demonstrate that a dominant frequency is indeed present in a majority of the heart

failure patients studied, thus suggesting that this oscillation is a prominent character-

istic of the signal. The actual mechanisms underlying the periodic pattern reported

here are not known. However, the sustained (non-damped) character of the oscillation

is important in identifying the underlying dynamics as being nonlinear in character
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Figure 5-5: The averaged Fourier transform of C4 (T1, T2 , T3 ) of the interbeat inter-
val after averaging for (b) a healthy subject, (d) patient with heart disease. This
technique removes the excess noise present, uncovering the dominant features of the
signal. We compare this technique to the corresponding power spectrum displayed
in parts (a) and (c). The peak from the pathologic patient is unambiguously present
in the averaged Fourier transform of C4 (T1 , T2 , 73) compared to the power spectrum.
In the healthy subject, neither the averaged Fourier transform of c4 (T1, T2 , T3) nor the
power spectrum displays any dominant peaks.
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[23]. These results, as well as the results in Chapter 4, suggest that universal nonlin-

ear dynamics in CHF subjects are inherently different from healthy subjects. These

dynamics present in pathology may result from the cardiovascular system becoming

"mode-locked" (i.e., being entrained) to one specific frequency. Thus, despite many

dynamic inputs from the autonomic nervous system, the cardiovascular system can

not adaptably respond. The complexity found in healthy beat-to-beat intervals is

highly reduced, resulting in an emerging regularity.

The observed periodic heartrate dynamics have potential diagnostic and prognos-

tic importance. To determine the full scope of these clinical applications, further

analysis must be applied.





Chapter 6

Conclusions

Linear and nonlinear analysis have been widely applied to describe quantitatively

the properties of normal and pathologic interbeat fluctuations. In addition, previ-

ous studies have suggested a difference in the dynamics of healthy and pathologic

interbeat intervals, resulting from an altered autonomic control of the cardiovascular

system. My investigations employed HOSA to explore the dynamics of both healthy

and pathologic heart rate time series for two major applications: to investigate non-

linearity; and to detect the presence of low frequency, low amplitude oscillations in

pathologic time series.

Conventional linear analysis, including power spectral methods, assumes the heart

rate is a superposition of statistically uncorrelated harmonic components; therefore,

it ignores all potential phase interactions between frequencies. However, in nonlinear

deterministic and stochastic systems, the Fourier phases of the signal interact in

a non-random fashion. This Fourier phase dependence, an important consequence

of the nonlinearity present, cannot be addressed with traditional linear techniques.

The importance of phase information has been utilized for several signal processing

applications, including image processing. Oppenheim et al. [25] describes how in

many contexts, the phase structure contains much of the essential "information" in a

signal. Furthermore, one interpretation of the importance of phase is that it preserves

the location of "events," or the dynamics of a signal. Chapter 4 uses third order

cumulants to extract this important phase information from healthy and pathologic



time series, demonstrating that:

* Both healthy and pathologic beat-to-beat intervals possess nonlinearly induced

(non-random) phase information.

* This nonlinearity is inherently different in healthy and pathologic time series.

Chapter 5 utilizes the fourth order cumulant to detect sinusoidal components

within noisy pathologic heart rate time series resulting from an emergent periodic-

ity associated with Cheyne-Stokes breathing. These results, as well as the results in

Chapter 4, suggest universal nonlinear dynamics in CHF subjects which are intrinsi-

cally distinct from healthy subjects.

Specifically, the results from HOSA analysis in Chapters 4 and 5 demonstrate a

distinctive type of mode interaction consistent with "mode-locking" present in patho-

logic interbeat intervals. This-mode locking may result from a breakdown in the

complex nonlinear dynamics present in healthy heart rate time series.

These preliminary results emphasize the necessity to construct nonlinear mathe-

matical models to provide testable explanations for physiologic heart rate fluctuations

[23]. Finally, a mechanistic explanation for this different nonlinearity (as well as the

periodicities) encountered in pathologic and healthy subjects should be provided by a

unified model of the cardiovascular system and its autonomic control. To confirm our

preliminary results, additional healthy and pathologic data sets should be analyzed

with higher order cumulant analysis. Further results will determine the full clinical

application of HOSA analysis for diagnostic and prognostic purposes.



Appendix A

Computer Code

/* c3theor.m */

% To determine the theoretical third order

%cumulant c3(tl,t2) % for a zero mean Gaussian

%random process, x(k), with autocorrelation c(t)

%as the input to a quadratic nonlinear system,

%x(k) + b x^2(k)

t2 = -100:1:100;

b = .4;

for tl = -100:100

c3theor(:,tl+101) = ...

(2*b.*(c(t2).*c(t2-tl) + c(tl).*c(t2-t1) + ...

c(tl).*c(t2)) + 8*(b.^3)*c(tl).*c(t2).*c(t2-ti))

end

********************************************** **

/* c.m */

X Short-term, Exponentially Decaying

% Autocorrelation c(t) for zero mean

% Gaussian random process x(k)

function c2tl = c(tl);

c20 = 1 / (1-.5^2);

c2tl = c20.*(0.5).^(abs(tl));

/* c.m */

% Long-term autocorrelation c(t) for

%zero mean Gaussian random process x(k)

function c2tl = c(tl);

ti = abs(t1);

gamma = .3750;

H = 1 - gamma/2;

b = .4;

c2x = .5*((tl+1).^(2*H) - 2*((ti).^(2*H))

+ (ti-1).-(2*H));

if (find(tl==O))

c2x(find(tl==0))= 1;

else

c2ti = c2x + 2*b^2*(c2x.^2);

***************************************************

/* createnlecgrp.m*/

% Generate nonlinear process by inputting

X exponentially correlated gaussian random process

% into a quadratic nonlinear system

b=.4;

a = .5;

k = 11;

corrgrp(1) = randn(1,1);

for 1 = 1:2^k-1;

corrgrp(l+1) = a.*corrgrp(l) + randn(1,1);

end

nlcorrgrp = corrgrp + b*(corrgrp.'2);



rpnlcorrgrp = rphase(nlcorrgrp');

%control -- randomized phase of above signal

%randomized phase nonlinear gaussian

rpsdnl = samehist(nlcorrgrp,rpnlcorrgrp);

%randomized phase, same distribution

%of nonlinear process

\*rphase.m*\

%Randomizes the Fourier Phases of a signal,

%while preserving the magnitude of its FT

function ranphase = rphase(signal)

L = length(signal);

L2 = L/2;

L2a = L2 - 1;

mag = abs(fft(signal,L));

rph = 2*pi*rand(length(mag)/2-1,1);

phase = cos(rph) + j.*sin(rph);

phsconj = conj(phase);

specti = [mag(1); mag(2:L2).*phase; mag(L2+1);

mag(L2:-1:2).*phsconj(L2a:-1:1)];

ranphase = real(ifft(spectl));

/* samehist.m */

% Matches ''rphase"' histogram to "'sigtomatch"

function shist = samehist(sigtomatch,rphase)

[y,indexlist] = sort(rphase);

[sortedlist,j] = sort(sigtomatch);

for i = 1:length(indexlist)

shist(indexlist(i)) = sortedlist(i);

end;

/* createoof.m*/

% Generate nonlinear process by inputting

% 1/f^(5/8) Power Spectrum of gaussian random proces

% into a quadratic nonlinear system

b = .4;

a = .5;

k = 11;

x = randn(2^k,1);

oofsig = oof(2^k,x);

oofsig = oofsig / std(oofsig);

oofnl = oofsig + b*(oofsig.^2);

oofnl = oofnl / std(oofnltemp);

% Normalize standard deviation at output

rpoofnl = rph(oofnltemp);

% control -- randomized phase of above signal

rphistnloof = samehist(oofnltemp,rpoofnltemp);

% randomized phase, same distribution

% of nonlinear process

/*oof.m*/

% Creates a length N 1/f^(5/16) Fourier Transform

% magnitude with angle "origsig", and returns

% the inverse fourier transform, '"sig'"

function sig = oof(N,origsig)

mag(1) = 0;

for k = 1:(N/2)

mag(k+1) = 1/(k/N).^(5/16);

end;

mag(N/2+2:N) = mag(N/2:-1:2);

totangle = (angle(fft(origsig)))';

phs = (cos(totangle) + j.*sin(totangle));

spectl = mag.*phs;

sig = real(ifft(spectl))';

/* c3div.f */

program main

ss parameter(nmax=0000O,lseg = 2048,nn=50)

real u(iseg), y(nmax)

real c3ave(-nn:nn,-nn:nn), c3(-nn:nn,-nn:nn)



do i = 1, nmax

read(5,*,end=101) y(i)

ntot=i

end do

101 nseg = int(ntot/lseg)

do i = 1, nseg

do j = 1, iseg

u(j) = y((i-1)*lseg+j)

end do

call Cthree(u,c3,lseg,nn)

do m = -nn, nn

do n = -nn, nn

c3ave(m,n)=c3ave(m,n)+c3(m,n)

end do

end do

end do

do m = -nn, nn

write(6,1001)

(c3ave(m,n)/real(nseg),n=-nn,nn)

1001 format(1O1(F14.8,1X))

end do

stop

end

SUBROUTINE Cthree(u,c3,1seg,nn)

real u(*), c3(-nn:nn,-nn:nn)

real ave, sd, s2

integer ti, t2

*** calculate mean & s.d.

ave = 0.

s2 = 0.

do i = 1, iseg

s2 = s2 + u(i)**2

ave=ave+u(i)

end do

ave = ave/real(lseg)

sd = sqrt((s2/real(Iseg))-ave**2)

*** normalize data to zero mean and unit s.d.

do i = 1, iseg

c u(i) = (u(i)-ave)/sd

c depending on experiment

u(i) = (u(i)-ave)

end do

*** calculate C3

do tl = -nn, nn

do t2 = -nn, nn

il = min(0,tl,t

i2 = max(0,tl,l

temp = 0.

do i = 1-il, iseg-i2

temp = temp + u(i)*u(i+tl)*u(i+t2)

end do

tot = real(lseg-i2+il)

c3(tl,t2)=temp/tot

end do

end do

return

end

/* c4.f */

program main

parameter(nmax=100000,nn=50)

real u(nmax)

real c4(-nn:nn,-nn:nn,-nn:nn)

do i = 1, nmax

read(5,*,end=101) u(i)

lseg=i

end do

101 continue

call Cfour(u,c4,lseg,nn)

do m = -nn, nn

write(6,1001) (c4(8,m,n),n=-nn,nn)

1001 format(101(F14.8,1x))

end do

stop

end

SUBROUTINE Cfour(u,c4,1seg,nn)

real u(*), c4(-nn:nn,-nn:nn,-nn:nn)

real C2(0:1000)

real dc(0:101,0:101,0:101), temp(0:101,0:101,0:101)

real ave, sd, s2

X....tl ....X...t2-tl...X



integer tl, t2, t3

do tl=0,2*nn

do t2=0,2*nn

do t3=0,2*nn

temp(tl,t2,t3)=O.

end do

end do

end do

*** calculate mean & s.d.

ave = 0.

s2 = 0.

do i = 1, iseg

s2 = s2 + u(i)**2

ave=ave+u(i)

end do

ave = ave/real(lseg)

sd = sqrt((s2/real(iseg))-ave**2)

*** normalize data to zero mean and unit s.d.

do i = 1, iseg

u(i) = (u(i)-ave)/sd

end do

*** calculate 2-point correlations before average.

c2(0) = 1.*real(lseg)

do i = 1, 2*nn

c2(i) = 0.

do j= 1, lseg-i

c2(i)= c2(i)+u(j)*u(j+i)

end do

end do

*** finite-size corrections to 2-point correlations.

nmax = 2*nn

do n=0,nmax

dl = 0.

do 1 = 0, nmax-n

if(l .ne. 0) dl = dl + u(1l)*u(l+n)

d2 = 0.

do m = l+n, nmax

ml = lseg-m+l+l

if(m .ne. l+n) d2 = d2 + u(ml)*u(ml+n)

dc(l,m,n) = dl + d2

end do

end do

end do

*** calculate C4

= -nn, nn

t3 = -nn, nn

ii = min(0,tl,t2,t3)

jO = 0 - ii

ji = ti - il

j2 = t2 - il

j3 = t3 - il

call sort4(jO,jl,j2,j3)

if(temp(jl,j2,j3) .ne. 0.) then

c4(tl,t2,t3) = temp(jl,j2,j3)

else

temp(jl,j2,j3) = 0.

do i = 1, lseg-j3

temp(jl,j2,j3) = temp(jl,j2,j3) +

u(i)*u(i+jl)*u(i+j2)*u(i+j3)

end do

tot = real(lseg-j3)

temp(jl,j2,j3) = temp(jl,j2,j3)/tot

x1=(c2(jl)-dc(O,j3,jl))/tot

x2=(c2(j3-j2)-dc(j2,j3,j3-j2))/tot

x3=(c2(j2)-dc(O,j3,j2))/tot

x4=(c2(j3-jl)-dc(jl,j3,j3-jl))/tot

x5=(c2(j3)-dc(O,j3,j3))/tot

x6=(c2(j2-jl)-dc(jl,j3,j2-jl))/tot

temp(ji,j2,j3)=temp(ji,j2,j3)-xl*x2-x3*x4-x5*x6

c4(tl,t2,t3) = temp(jl,j2,j3)

end if

end do

end do

return

end

SUBROUTINE sort4(kl,k2,k3,k4)

integer kk(4), kt

kk(1l)=kl

kk(2)=k2

kk(3)=k3

kk(4)=k4

do i = 3, 1, -1

do j = 1, i

if(kk(j) .gt. kk(j+l)) then

kt = kk(j)

kk(j) = kk(j+l)



kk(j+1) = kt

end if

end do

end do

kl=kk(1)

k2=kk(2)

k3=kk(3)

k4=kk(4)

return

end

/* c4psav.f */

program main

parameter (nn=512,nmax=128000)

real c4(-nn:nn,-nn:nn)

real u(nmax)

real x(1:2*nn),y(1:2*nn),sig(1:2*nn)

real sum(O:nn)

real psd(0:nn)

integer tl, op

do i = 1, nmax

read(5,*,end=101) u(i)

iseg=i

end do

101 continue

op=100

do tl = -nn,nn,100

call Cfour(u,c4,tl,lseg,nn)

do i = O,nn

sum(i) = 0.

end do

count = 0

do m = -nn, nn

count = count + 1

do n = -nn, nn-1

y(n+nn+l) = c4(m,n)

end do

call detrend(x,y,sig,2*nn)

call power(y,nn,psd)

do i = O,nn

sum(i) = sum(i) + psd(i)

end do

end do

op=op+l

do m=l,nn

write(op, *) (sum(m)/count)

end do

end do

stop

end

SUBROUTINE Cfour(u,c4,tl,lseg,nn)

real u(*), c4(-nn:nn,-nn:nn)

real ave, sd, s2

integer ti, t2, t3

*** calculate mean & s.d. of time series u(lseg)

ave = 0.

s2 = 0.

do i = 1, iseg

s2 = s2 + u(i)**2

ave=ave+u(i)

end do

ave = ave/real(lseg)

sd = sqrt((s2/real(lseg))-ave**2)

*** normalize data to zero mean and unit s.d.

do i = 1, iseg

u(i) = (u(i)-ave)/sd

end do

*** calculate C4 by the slow (straightforward) way

do t2 = -nn, nn

do t3 = t2, nn

il = min(O,tl,t2,t3)

i2 = max(O,tl,t2,t3)

xl=0.

x2=0.



x3=0. **** FFT subroutine from Numerical Recipes

x4=0. SUBROUTINE REALFT(DATA,N,ISIGN)

x5=0. REAL*8 WR,WI,WPR,WPI,WTEMP,THETA

x6=0. DIMENSION DATA(*)

do i = -il+l, iseg-i2 THETA=6.28318530717959DO/2.ODO/DBLE(N)

c4(t2,t3)=c4(t2,t3)+ u(i)*u(i+t1)*u(i+t2)*uCk'13M

xl = xl + u(i)*u(i+tl) IF (ISIGN.EQ.1) THEN

x2 = x2 + u(i+t2)*u(i+t3) C2=-0.5

x3 = x3 + u(i)*u(i+t2) CALL FOUR1(DATA,N,+i)

x4 = x4 + u(i+tl)*u(i+t3) ELSE

x5 = x5 + u(i)*u(i+t3) C2=0.5

x6 = x6 + u(i+tl)*u(i+t2) THETA=-THETA

end do ENDIF

tot = real(lseg+il-i2) WPR=-2.0DO*DSIN(0O.5DO*THETA)**2

c4(t2,t3)=c4(t2,t3)/tot WPI=DSIN(THETA)

& -(x1*x2+x3*x4+x5*x6)/(tot*tot) WR=1.ODO+WPR

end do WI=WPI

end do N2P3=2*N+3

do t2 = -nn, nn DO 11 I=2,N/2+1

do t3 = -nn, t2 Il=2*I-1

c4(t2,t3)=c4(t3,t2) 12=11+l

end do I3=N2P3-I2

end do 14=I3+1

WRS=SNGL(WR)

return WIS=SNGL(WI)

end H1R=Ci*(DATA(I1)+DATA(I3))

H1I=C1*(DATA(I2)-DATA(I4))

*** Power spectrum subroutine H2R=-C2*(DATA(I2)+DATA(I4))

*** data(2*n): the time series (input data) of length 2*N H2I=C2*(DATA(I1)-DATA(I3))

*** psd(O:n): power spectrum density (square of FT amplitudeDATA(Il)=HlR+WRS*H2R-WIS*H2I

***** where psd(i) corrspond to frequency f=i/(2*N), i from OAfd(12)=HiI+WRS*H2I+WIS*H2R

SUBROUTINE POWER(DATA,N,PSD) DATA(I3)=HiR-WRS*H2R+WIS*H2I

DIMENSION DATA(2*N), PSD(O:N) DATA(I4)=-HiI+WRS*H2I+WIS*H2R

** call FFT WTEMP=WR

call REALFT(DATA,N,1) WR=WR*WPR-WI*WPI+WR

** Calculate the PSD WI=WI*WPR+WTEMP*WPI+WI

psd(0) = data(1)**2 11 CONTINUE

psd(n) = data(2)**2 IF (ISIGN.EQ.1) THEN

do i = i, n-1 H1R=DATA(1)

psd(i) = data(2*i+l)**2+data(2*i+2)**2 DATA(1)=HIR+DATA(2)

end do DATA(2)=H1R-DATA(2)

return ELSE

end HiR=DATA(1)

DATA(1)=Ci*(H1R+DATA(2))

DATA(2)=C1*(H1R-DATA(2))



CALL FOURi(DATA,N,-1)

ENDIF

RETURN

END

SUBROUTINE FOURi(DATA,NN,ISIGN)

REAL*8 WR,WI,WPR,WPI,WTEMP,THETA

DIMENSION DATA(*)

N=2*NN

J=1

DO 11 I=1,N,2

IF(J.GT.I)THEN

TEMPR=DATA(J)

TEMPI=DATA(J+1)

DATA(J)=DATA(I)

DATA(J+1)=DATA(I+1)

DATA(I)=TEMPR

DATA(I+1)=TEMPI

ENDIF

M=N/2

IF ((M.GE.2).AND.(J.GT.M)) THEN

J=J-M

M=M/2

GO TO 1

ENDIF

J=J+M

11 CONTINUE

MMAX=2

2 IF (N.GT.MMAX) THEN

ISTEP=2*MMAX

THETA=6.28318530717959DO/(ISIGN*MMAX)

WPR=-2.DO*DSIN(O.5DO*THETA)**2

WPI=DSIN(THETA)

WR=1.DO

WI=O.DO

DO 13 M=1,MMAX,2

DO 12 I=M,N,ISTEP

J=I+MMAX

TEMPR=SNGL(WR)*DATA(J)-SNGL(WI)*DATA(J+l)

TEMPI=SNGL(WR)*DATA(J+1)+SNGL(WI)*DATA(J)

DATA(J)=DATA(I)-TEMPR

DATA(J+1)=DATA(I+1)-TEMPI

DATA(I)=DATA(I)+TEMPR

DATA(I+1)=DATA(I+I)+TEMPI 1

12 CONTINUE

WTEMP=WR

WR=WR*WPR-WI*WPI+WR

WI=WI*WPR+WTEMP*WPI+WI

13 CONTINUE

MMAX=ISTEP

GO TO 2

ENDIF

RETURN

END

subroutine detrend(x,y,sig,ntot)

real y(*), x(*), sig(*)

do i=1,ntot

x(i) = i

end do

** linear regression fit

mwt = 0

call FIT(x,y,ntot,SIG,mwt,A,B,SIGA,SIGB,CHI2,Q)

do i=l,ntot

y(i) = y(i) - (A + B*x(i))

ave = ave + y(i)

end do

** set mean to 0

ave = ave/real(ntot)

do i=l,ntot

y(i) = y(i) - ave

end do

return

end

SUBROUTINE FIT(X,Y,NDATA,SIG,MWT,A,B,SIGA,SIGB,CHI2,Q)

DIMENSION X(*),Y(*),SIG(*)

SX=O.

SY=O.

ST2=0.

B=O.

IF(MWT.NE.O) THEN

SS=O.

DO 11 I=1,NDATA

WT=1./(SIG(I)**2)

SS=SS+WT

SX=SX+X(I)*WT

SY=SY+Y(I)*WT

.1 CONTINUE



ELSE

DO 12 I=1,NDATA

SX=SX+X(I)

SY=SY+Y(I)

12 CONTINUE

SS=FLOAT(NDATA)

ENDIF

SXOSS=SX/SS

IF(MWT.NE.O) THEN

DO 13 I=1,NDATA

T=(X(I)-SXOSS)/SIG(I)

ST2=ST2+T*T

B=B+T*Y(I)/SIG(I)

13 CONTINUE

ELSE

DO 14 I=1,NDATA

T=X(I)-SXOSS

ST2=ST2+T*T

B=B+T*Y(I)

14 CONTINUE

ENDIF

B=B/ST2

A=(SY-SX*B)/SS

SIGA=SQRT((1.+SX*SX/(SS*ST2)) /SS)

SIGB=SQRT(1./ST2)

CHI2=O.

IF(MWT.EQ.O) THEN

DO 15 I=1,NDATA

CHI2=CHI2+(Y(I)-A-B*X(I))**2

15 CONTINUE

Q=1.

SIGDAT=SQRT(CHI2/(NDATA-2))

SIGA=SIGA*SIGDAT

SIGB=SIGB*SIGDAT

ELSE

DO 16 I=1,NDATA

CHI2=CHI2+((Y(I)-A-B*X(I)-A-B(I)/SIG(I))**2

16 CONTINUE

CC Q=GAMMQ(O.5*(NDATA-2),O.5*CHI2)

ENDIF

RETURN

END

FUNCTION GAMMQ(A,X)

IF(X.LT.O..OR.A.LE.O.)PAUSE

IF(X.LT.A+1.)THEN

CALL GSER(GAMSER,A,X,GLN)

GAMMQ=1.-GAMSER

ELSE

CALL GCF(GAMMCF,A,X,GLN)

GAMMQ=GAMMCF

ENDIF

RETURN

END

SUBROUTINE GCF(GAMMCF,A,X,GLN)

PARAMETER (ITMAX=100,EPS=3.E-7)

GLN=GAMMLN(A)

GOLD=O.

AO=1.

A1=X

BO=O.

B1=1.

FAC=1.

DO 11 N=1,ITMAX

AN=FLOAT(N)

ANA=AN-A

AO=(Ai+AO*ANA)*FAC

BO=(Bi+BO*ANA)*FAC

ANF=AN*FAC

A1=X*AO+ANF*A1

B1=X*BO+ANF*B1

IF(A1.NE.O.)THEN

FAC=I./A1

G=B1*FAC

IF(ABS((G-GOLD)/G).LT.EPS)GO TO 1

GOLD=G

ENDIF

11 CONTINUE

PAUSE 'A too large, ITMAX too small'

GAMMCF=EXP(-X+A*ALOG(X)-GLN)*G

RETURN

END

SUBROUTINE GSER(GAMSER,A,X,GLN)

PARAMETER (ITMAX=100,EPS=3.E-7)

GLN=GAMMLN(A)

IF(X.LE.O.)THEN

IF(X.LT.O.)PAUSE

GAMSER=O.
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RETURN

ENDIF

AP=A

SUM=1./A

DEL=SUM

DO 11 N=1,ITMAX

AP=AP+1.

DEL=DEL*X/AP

SUM=SUM+DEL

IF(ABS(DEL).LT.ABS(SUM)*EPS)GO TO 1

11 CONTINUE

PAUSE 'A too large, ITMAX too small'

GAMSER=SUM*EXP(-X+A*LOG(X)-GLN)

RETURN

END

FUNCTION GAMMLN(XX)

REAL*8 COF(6),STP,HALF,ONE,FPF,X,TMP,SER

DATA COF,STP/76.18009173DO,-86.50532033DO,

* 24.01409822D0,

* -1.231739516D0,.120858003D-2,

* -.536382D-5,2.50662827465DO/

DATA HALF,ONE,FPF/O.5DO,1.ODO,5.5DO/

X=XX-ONE

TMP=X+FPF

TMP=(X+HALF)*LOG(TMP)-TMP

SER=ONE

DO 11 J=1,6

X=X+ONE

SER=SER+COF(J)/X

11 CONTINUE

GAMMLN=TMP+LOG(STP*SER)

RETURN

END

**######************** **** *************** *** * *
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