
SOUND ENHANCEMENTS FOR GRAPHICAL
SIMULATIONS

Prepared by

Steven G. Villareal

B.S., Mechanical Engineering (1995)
University of Texas at Austin

Submitted to the Department of Mechanical Engineering in Partial Fulfillment of the
Requirements for the Degree of Master of Science in Mechanical Engineering at the

Massachusetts Institute of Technology

May 27, 1997

© 1997 Steven G. Villareal
All rights reserved

The author hereby grants M.I.T. permission to reproduce and to distribute publicly paper
and electronic copies of this thesis document in whole or in part.

Author
Dep4gWent of Mechanical Engineering

May, 1997

Certified by
Professor Thomas B. Sheridan

Thesis Supervisor
Professor of Engineering a '

Accepted by
Professor A. Sonin

Chairman, Department Committee on Graduate Students
" " ..'.. . '. . .7. '.

JU L 211997 ,ing.

~cRc:
tP·s,

Abstract

SOUND ENHANCEMENTS FOR GRAPHICAL
SIMULATIONS

Prepared by

Steven G. Villareal

Submitted to the department of Mechanical Engineering on May 27, 1997 in Partial
Fulfillment of the Requirements for the Degree of Master of Science in Mechanical

ABSTRACT

With the advancement of processing power and visual displays, simulators are proving to
be a cost effective tool for training workers and studying human behavior. Economics
play a central role in determining the level of added realism. In general, slight additions
in realism are accompanied by large increase in cost.

This research project provides programming tools for adding sound effects and other
physical enhancements to graphical simulators in a cost effective manner. These tools are
applied to enhance the realism of a high-speed train simulation used in human-factors
studies. Sound effects are generated on a PC using digital playback and FM synthesis
techniques. An ethernet software library is provided for linking the PC to a local area
network running the simulation.

Thesis Supervisor: Professor Thomas B. Sheridan

Title: Professor of Engineering and Applied Psychology, Human-Machine Systems Lab

Acknowledgements

ACKNOWLEDGEMENTS

It has been a pleasure studying at MIT. During this short time, I have had so many
positive experiences and met some truly great friends. The skills I have learned here will
last me a lifetime.

The Human-Machine Systems Laboratory is one of the greatest labs at MIT. To my
fellow lab member: Jay Einhorn, Mike Timmons, Mike Kilaras, Mark Ottensmeyer, Ed
Lanzilotta, Shin Park, Jianjuen Hu, Suyeong Kim, Helias Marinakos, Jim Thompson, and
Dave Schloerb, I would like to thank you for sharing your culture and ideas. Working
with you has broadened my horizons and I hope I have broadened yours.

It wouldn't be MIT if there wasn't a group of "Tooler" to socialize with. So I thank the
Toolbox Club: Larry Barrett, Razman Zambre, Bernardo Aumond, and Karl Iagnemma
for always striving to do their best, no matter how many simulations or OP-amp circuits
were needed! I wish all of you the best of luck in your careers.

To the Juicy Chicken Intramural Basketball Champions of 1997, thanks for supplying an
outstanding season and stress outlet when times were rough; never underestimate the
heart of a champion.

I would also like to thank the Department of Transportation Volpe Center's Dr. Jordan
Multer and my thesis advisor Professor Sheridan for making this research project
available for me. Thanks also to J.K. Pollard for his endless work with the train simulator
hardware.

Last, but certainly not least, I want thank my wonderful parents Gilbert and Patricia
Villareal for always supporting me and encouraging me to do my very best. They are the
ones who instilled in me the philosophy that doing your best always pays off ... once
again you are right.

Table of Contents

TABLE OF CONTENTS

ABSTRACT 3

ACKNOWLEDGEMENTS .. 4

CHAPTER 1: INTRODUCTION .. 9

.1 BACKGROUND 9
1.1.1 High Fidelit In Sim ulators.............................. 9

1.2 OBJECTIVE...................... 10

CHAPTER 2: SOUND GENERATION .. 11

2.1 SOUND CHARACTERISTICS1........................ 11
2.1.1 Pure Tones and Noise 11
2.1.2 Period, Frequency, and Pitch 15
2.1.3 T im b re... ... 16

2.2 ADDITIVE AND SUBTRACTIVE SYNTHESIS 18
2.3 FREQUENCY MODULATION 20
2.4 PROGRAMMING THE YAMAHA OPL3 FM CHIP22

2.4.1 The Compiler 22
2.4.2 Ports and Registers: Description and Usage .. 22

W riting register values to the Ports... 23
R egister L ayout...23

2.4.3 Register Map for the FM Synthesizer...25
Instrum ent T able... 25
Frequency Control (Register AOh-A8h and BOh-B8h) ... 27
Connection Algorithm. Feedback. and Left & Right Stereo (Register COh-C8h)...............................28

2.4.4 Initializing the SoundBlaster 16 Card 29
2.4.5 H elpful Resources 29
2.4.6 Sam ple C ode 30

2.5 DIGITAL SOUND SOFTWARE LIBRARY: SMIX...31
2.6 PROGRAMMING THE SB 16 MIXER CHIP................... 33

Writing register values to the Ports... ... 33

CHAPTER 3: COMMUNICATION ... 35

3.1 NETW ORKING ... 35
Hardware and Software Requirements..................... 35

3.1.1 Software 36
Hand-Shaking 36
Synchronization 37

3.1.2 Sample Code ... 38
Program Notes ... 38
Data Transfer ... 38
Host IP Address 39

CHAPTER 4: HIGH-SPEED TRAIN SIMULATION... 41

4.1 BACKGROUND 41
4.1.1 D esired Sounds 42
4.1.2 Physical Enhancements 42

4.2 FM SYNTHESIS OF ENGINE THROTTLE.. 43
Digital Filtering 43
Frequency Spectrum Analysis 44

4.2.1 Engine Instrument Parameters 47

Table of Contents

4.3 DIGITAL PLAYBACK OF TRACK SOUND ... 48
4.3.1 D ecom p osition 48
4.3.2 Synchronized Playback .. 50

4.4 O THER SOUNDS 52
4 .4 .1 B ell..... 5 2
4.4.2 Dead-man Alerter 52
4.4.3 Speeding Indicator...52
4.4.4 Brake Steam and Screeching ... 53
4.4.5 D igital Train H orn .. 53
4.4.6 H ow to Add N ew Sounds...53

4.5 PC SOUND GENERATION SOFTWARE 54
4.5.1 Program Flow.......................... 55
4.5.2 Some FM Function Notes...57

Initialize_Sound_Timbre_2op_Mode(ch, inst_num, L_R_B) .. 57
GenerateSound(ch, fn, block, inst_num, L_R_B) 57
StopFM sound(ch, freqnum)...... .. 58

4.6 TRAIN SIMULATOR DEVELOPMENT STRUCTURE...59
Using the Makefiles ... 59

4.6.1 N etw orking Librar .. 60
A dding A N ew N etw ork O utput V ariable ... 60

4.6.2 Serial Interface Libraries..61
D igital C hannel D ata B anks 61

4.7 CABIN ENCLOSURE..63
4.7.1 Hardwiring Keyboard buttons 64

4.8 SEAT VIBRATION 66
4 .9 E N HA N CEM ENT C O ST ... 67

CHAPTER 5: CONCLUSION 69

APPENDICES... 71

APPENDIX A : FM SAM PLE CODE.. 71
APPENDIX B: DIGITAL PLAYBACK SAMPLE CODE...................... 81
A PPENDIX C : E THERNET C ODE...85
APPENDIX D: PC TRAIN SOUND SOFTWARE 105

REFEREN CES 117

List of Figures

LIST OF FIGURES

FIGURE 1. MASS-SPRING-DAMPER SYSTEM. 12

FIGURE 2. MSD IMPULSE RESPONSE (0),, = 20 Hz, = 0.03)...13

FIGURE 3. NOISE TIME AND FREQUENCY CHARACTERISTICS 14

FIGURE 4. PITCH VERSUS FREQUENCY 15

FIGURE 5. SOUND ENVELOPE. 16

FIGURE 6. ADDITIVE SYNTHESIS BLOCK DIAGRAM ... 18

FIGURE 7. SUBTRACTIVE SYNTHESIS BLOCK DIAGRAM. ... 19

FIGURE 8. SIMPLE 2-OP FM SYNTHESIZER..20

FIGURE 9. 2-OPERATOR CONNECTION ALGORITHMS.29

FIGURE 10. CLIENT AND MULTIPLE HOST NETWORK CONFIGURATION.......................... 36

FIGURE 1 1. SCHEMATIC VIEW OF DATA TRANSFER. 37

FIGURE 12. FIRST TRAIN SIMULATOR SETUP. .. 41

FIGURE 13. POWER SPECTRAL DENSITY OF ENGINE POWER LEVELS 1 AND 2 ... 44

FIGURE 14. POWER SPECTRAL DENSITY OF TRAIN ENGINE POWER LEVELS 4 AND 5.45

FIGURE 15. DIGITAL FIR FILTER FREQUENCY RESPONSE 46

FIGURE 16. HIGH-PASS FILTERED POWER LEVELS. 46

FIGURE 17. TRACK NOISE TIME TRACE.49

FIGURE 18. FULL TRACK NOISE BROKEN INTO 4 DISCRETE PARTS 49

FIGURE 19. TRACK NOISE TRIGGER SEQUENCE .. 50

FIGURE 20. LINEAR INTERPOLATION FOR TRACK COMPONENT DELAYS. ... 50

FIGURE 21. MAIN PROGRAM FLOW CHART.. 56

FIGURE 22. DIRECTORY STRUCTURE AND LIBRARIES USED FOR NETWORKING AND USER INPUT59

FIGURE 23. FRONT VIEW OF CABIN ENCLOSURE 63

FIGURE 24. SUBJECT'S VIEW FROM WITHIN THE CABIN ENCLOSURE .. 63

FIGURE 25. EXTERNAL USER 10 BOXES.................... 64

FIGURE 26. 15" SPEAKER PLACED UNDER THE SUBJECT'S CHAIR. 66

List of Tables

LIST OF TABLES

TABLE 1. SOUNDBLASTER PORT IDENTIFICATION. .. 22

TABLE 2. REGISTER-TO-SLOT AND CHANNEL RELATIONSHIP. 24

TABLE 3. REGISTER ADDRESS M AP 25

TABLE 4. INSTRUMENT TABLE OFFSET FORMAT ... 26

TABLE 5. M IXER CHIP REGISTER M AP 33

TABLE 6. ENGINE NOISE INSTRUMENT PARAMETERS 47

TABLE 7. BELL INSTRUMENT PARAMETERS. .. 52

TABLE 8. PC SOUND GENERATION SOFTWARE PROGRAM FILES ... 54

TABLE 9. CHANNEL-TO-BUT rON M AP 65

TABLE 10. ENHANCEMENT COST SUMMARY.. 67

8

Chapter 1: Introduction

Chapter 1: INTRODUCTION

1.1 Background

1.1.1 High Fidelity In Simulators

Simulations have proven to be an effective tool in training workers and in studying

human behavior. The level of realism need not be the same in both cases. Fidelity must

be selected according to the target application. For example, one would expect a very

complex flight training simulator but a less complex maintenance training simulation [5].

There is a tradeoff that must be made between adding realism versus cost. The demand

for inexpensive simulators is high. In terms of training a person, a simulation can have a

significantly lower operating cost as opposed to using real equipment [5]. In general,

"small gains in realism often can be achieved only at relatively great incremental cost."

[5].

The objective of this project is to create a realistic human interface for simulations used

in human factors research in a cost effective manner. The M.I.T. Human-Machine

Systems Laboratory (HMSL), under the direction of Professor Thomas Sheridan,

routinely develops graphical simulators to test human-in-the-loop scenarios. Two HMSL

systems currently in use are driving and high-speed train simulators. The latter is the

focal point of this thesis.

One of the most challenging and expensive aspects of a simulator is developing the visual

scenes. Both HMSL simulators generate graphics using Silicon Graphics workstations,

which balance speed, graphical quality, and cost effectiveness. The ability to model the

system, though necessary, is sometimes not enough to generate the most accurate

experimental data. A subject participating in a behavioral experiment must also be aware

of the surroundings and remain focused on the experimental task. During long

Chapter 1: Introduction

experiments, fatigue and boredom can distract the subject. By increasing situational

awareness, the subject may remain vigilant. One way to raise situational awareness is by

adding sound and other effects that increase the realism of the simulation.

1.2 Objective
It is important for moving vehicle simulators to give the subject an alternate sense of

speed or motion aside from visual feedback. In the case of a car or train simulator, this is

extremely important if reaction times or speed limits are invoked. Consider the routine

act of driving a car. The speedometer is not the only source of speed information. We

hear the tone of the engine, wind turbulence, and the tires moving across the pavement.

Each physical cue contributes to a greater sense of speed awareness. For the train

simulator, track noise is an important speed indicator. In addition to speed, we also need

feedback on the level of power being added to the system. This feedback can come

visually by a motor tachometer or current indicator and audibly by a modulating

frequency. The latter is used for both the driving and train simulations.

The objective of this design project is to cost effectively add these important sounds into

graphical simulations. In the process of adding sound effects to the Volpe high-speed rail

simulator, a framework for adding sound to other simulations has also been established.

This document provides programming tools for sound creation, networking

communication, and external device interface.

Chapter 2: Sound Generation

Chapter 2: SOUND GENERATION

In theory, it is possible to reconstruct a complex sound from its frequency spectrum

provided the original signal is band-limited. Given this information, all the harmonics

and their relative amplitudes can be replaced by separately mixing pure tones each having

an appropriate loudness; this is what is termed sound synthesis. In reality, however,

mixing pure tones is not sufficient. As will be shown, a sound is not defined solely by its

harmonic content. The transient behavior defined by timbre must also be reproduced.

Electronic synthesizers accomplish this with relative ease.

There are four basic methods of reproducing sound: (1) additive synthesis, (2) subtractive

synthesis, (3) frequency modulation, and (4) digital sampling. The first two will be

described briefly for completeness, while the latter two are the focal point of this chapter.

Before describing these different methods of synthesis, there are a few term that must be

clarified.

2.1 Sound Characteristics
A number of terms will surface as one begins to read sound related literature. The tone,

timbre, frequency, and vibrato differentiate one sound from another. It is therefore useful

to be familiar with their definitions in order to recreate the desired sounds successfully.

This section provides an introduction to some essential terms used when describing the

creation of sound with frequency modulation (FM).

2.1.1 Pure Tones and Noise

Pure tones are to sound as atoms are to matter. They are the building blocks of sounds we

perceive as being musical. Tuning-forks are devices that generate pure tones in order to

Chapter 2:Sound Generation

correct the musical notes played by various instruments like pianos

the prongs of a tuning-fork resonate, the surrounding air vibrate

pressure waves to our ear-drums. The resulting sound waves are pe

in intensity. This can be simulated by the lightly damped mass-sf

system shown in Figure 1.

and guitars. When

s, thus transmitting

riodic and only vary

iring-damper (MSD)

Figure 1. Mass-Spring-Damper System.

In this model, the position of the mass corresponds to the endpoint motion of a tuning-

fork. To see how the system behaves by suddenly striking it with a hammer, we need to

solve for the impulse response. This sets the system in motion thus revealing all the

dynamics (see Figure 2).

Figure 2 shows the impulse response of the MSD system with a natural frequency (co,,) of

20 Hz and a damping ratio(ý) of 0.03. The system oscillates with a period T=50 msec

and has an exponentially decaying amplitude. If humans could hear frequencies this low,

we would hear a constant pitch but the loudness fades.

X(t)

-v

,•! :·.

!~:- .!s- F(t)

7*
/i:~ :·::::::: i: -

i

B

;::::"

Chapter 2: Sound Generation

Figure 2. MSD impulse response ((,, = 20 Hz, c= 0.03).

Noise, as opposed to pure tone, is unwanted sound generated by a broadband signal. Both

are sounds, but are differentiated with respect to frequency content. The frequency

content of a sound wave can be determined easily using the Fourier Transform.

According to the theory, all signals can be represented as the sum of sinusoids. For

continuous time signals periodic in To, the following equation applies:

f(t) = ake M k' ;
=(1)

where a =f f(t)ejktdt and ejo' =cosot(+jsincot.

Each ak is the corresponding amplitude of a component having frequency cok. Practically

speaking, the Fast Fourier Transform (FFT) is the numerical routine commonly used to

determine each ak. Figure 3 shows the time trace (a) and power spectral density (b) of a

noise signal obtained using the FFT. The FFT shows relatively uniform power over the

Impulse Response

1.S

1.0

0.5

-0.0

-1.0

00.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.

Time [Sec.]

i j I

Chapter 2:Sound Generation

given frequency band and thus is referred to as band-limited white noise. The term

"white noise" is used in analogy to white light, which is composed of all colors in the

visual spectrum (each of which can be described by a frequency).

Noise Time Trace
1.5

1

0.5

0

-0.5

-1

-1.5
0 0.05 0.1 0.15 0.2 0.25

Time [sec.]

I-I N\ A l(M .AA A,

0.3 0.35 0.4 0.45 0.5

A
I II a I I

ii 1AA&1-1AA

Figure 3. Noise time and frequency characteristics.

Noise Power Spectral Density
2.5

2

$5

1

50 100 150 que.nRh z] 300

'vY V'J VAT VI VVWVu IL V 'I V w V VVtVI VVYW V I v vv vIfv

I

!I • , II II I I

fI If If If Vul I I I I Il ifinll||ld' 1111 1 NIU

i [T i I , • -~ t]-- 1

I

LII--~----LI·IIYI -·- ·----- -----

&

350 400
-I

450 sm0

Chapter 2: Sound Generation

2.1.2 Period, Frequency, and Pitch

As previously mentioned, the period of a sound wave, T. is the time required to complete

one full cycle. The frequency is calculated from the inverse of the period as follows,

1
f=-

T

This is the fundamental parameter used in synthesizing sounds and can be easily

measured; for example, with an oscilloscope. A sound is also defined by it's pitch.

Unlike frequency, pitch is a subjective quantity requiring human subjects to evaluate it.

Quite often, these two terms are interchanged, but it is the frequency that actually defines

the pitch of a sound. Hence, if there is no clearly defined frequency, there is no clearly

defined pitch. Therefore a tuning-fork tuned to a pitch of middle C will vibrate 261 times

in one second, regardless of whether the sound is loud or soft. This is also true for all

sounds with a frequency of 261 Hz, no matter how they are reproduced. For example, the

hum of a diesel engine rotating at 261 rotations per second will also produce middle C.

The pitch, or perceived frequency, is nonlinearly related to the actual frequency (see

Figure 4). [6, pg. 66]. Humans tend to judge the pitch to be lower than the actual

frequency after about 1000 Hz.

I I

I

Roqueq in cp
Pitch versus frequncy [After S. S. Stevens and J. Valkmann, J. Acoust. S c Am.,8, 1 5 (1987)].

Figure 4. Pitch versus frequency.

Chapter 2:Sound Generation

2.1.3 Timbre

The last major sound characteristic is timbre. Simply stated, timbre differentiates one

musical sound from another when the apparent pitch and loudness are the same. This is

why we can distinguish between the sounds of a flute and a clarinet both playing the same

note; they have different timbre. The harmonics of a sound play a major role in

determining timbre. Complex sounds, unlike a pure tone, can be composed of many

frequencies of varying intensity. In most cases, there is a dominant or fundamental

frequency contributing most of the energy accompanied by less intense higher

frequencies. The higher frequencies are called harmonics if they are an integral multiple

of the fundamental. "Hemholtz proved that the timbre of a sound is determined by the

proportions in which the various harmonics are heard in it." [6, pg. 71]

In addition to harmonic content, the sound envelope also affects timbre (see Figure 5).

The envelope consists of three parameters: attack, sustain, and decay. The onset or attack

of a sound determines the growth in loudness over time. "The characteristic tone of an

oboe is due largely to its...attack." [6, pg. 71]

Figure 5. Sound Envelope.

Time
Sound envelop. (From L A. Hiller, L. of Music Theory 7, 108 (1963)].

Chapter 2: Sound Generation

The sustain time is the amount of time the sound remains in steady state. This time is

critical to how the ear perceives the sound. Since the ear is a mechanically vibrating

system, it too must reach a steady-state value in order to recognize a tone. "The

minimum recognition time (duration threshold) is 4 ms for sine tones switched on

suddenly." [10, pg. 111] A clicking sound will be heard if the duration is any shorter.

Finally, the decay time is the transition from steady state to zero. This too is what allows

one to distinguish between two sounds having the same steady-state timbre but different

decay envelopes.

The next section will cover the hardware used to synthesize sounds. By using frequency

modulation (FM), many sounds can be created each having different timbre and thus

different sound envelopes.

Chapter 2:Sound Generation

2.2 Additive and Subtractive Synthesis
Additive and subtractive synthesis were the first analog methods used to reproduce sound.

During additive synthesis, a complex sound is constructed from discrete frequencies

corresponding to the desired harmonics. The building blocks come from three basic

waveforms: (1) sine wave, (2) sawtooth, and (3) square wave. Each is generated by a

voltage-controlled-oscillator. Using the Fourier Transform, it can be shown that each

waveform has a unique frequency content. The square wave, for example, will have a

frequency spectrum containing the fundamental frequency plus odd harmonics with

amplitudes falling off at a ratio of 3, Y, , , etc. A sawtooth, on the other hand,

contains both odd and even harmonics with exponentially delaying amplitudes. Any

unwanted harmonics can be attenuated by appropriately filtering the output signal. To

complete the synthesis, an amplitude modifier is placed in series with the filtered output

to create the desired sound envelope as shown in Figure 6.

Figure 6. Additive synthesis block diagram.

As the name suggests, subtractive synthesis operates in the opposite sense of additive

synthesis. In this case, noise, which contains many frequencies, is band-pass filtered to

get only a desired frequency output. Ideally, white noise would be generated because it

has uniform amplitude for all audible frequencies, but only band-limited white noise is

realizable. To generate all the necessary harmonics, an array of parallel filters, each

passing only a desired frequency, is setup and then summed at the output. An amplitude

modifier can then modulate the output signal to produce the desired sound envelope (see

Figure 7).

Wave I Envelope
Gee o ;- Filter - Generator•.Gneaorj -- •J, ,..

""I-~I ---

--

Noise ý
Generator - FIlter 1

________Envelope
Filter 2 " Generator

n iltar n

S Frequen

Frequency

Frequencycy

Figure 7. Subtractive synthesis block diagram.

Chapter 2: Sound Generation

Speaker

· Q-•,',.

A

a
E

Frequency Frequency

.I

fil)

Chapter 2:Sound Generation

2.3 Frequency Modulation
A third method of reproducing sound relies on frequency modulation (FM). By

modulating the frequency of one waveform with another waveform, a rich spectrum of

harmonics, not present in either of the two original waveforms, can be obtained. This

scheme has two advantages over the previous two synthesis methods. First, FM is

computationally superior. This method of adding harmonics is much faster than taking a

signal and adding in its harmonics one at a time. Second, the parameters in FM are easy

to change in real time thus allowing one to more easily imitate rapidly changing sounds.

Figure 8 show a basic configuration for a simple FM system:

Figure 8. Simple 2-OP FM synthesizer.

The sine wave oscillators are called operators and perform three functions: (1) frequency

generator, (2) envelope generator, and (3) sine wave generator. In this configuration,

there is one modulator and one carrier. The arrangement of modulators and carriers is

called an algorithm. The following equation expresses the algorithm shown in Figure 8:

FM(t)= Asin(oCt + Bsinco,,,t). (2)

Modulator Carrier

Sine Gen. - H i Sine Gen. n
A+ , i A + A FM(t)

A. A
_ c

Frequency Envelope Frequency Envelope
Generator Generator Generator i Generator

Operator I Operator 2

Chapter 2: Sound Generation

The parameters A and B are the carrier and modulator amplitudes, respectively. The

frequencies oo, and co% are the carrier and modulator angular frequencies, respectively.

Expanding equation (2), yields the following:

FM (t) = A[sin octcos(Bsino,,Jt)+cos ,wtsin(Bsin o,,t)] . (3)

The two terms within this sum can be expressed as:

sin(B sin w,, t) = 2J, (B)sin o),,,t t+2J3(B)sin 3,,t +...+ 2J,,, (B) sin(2n + 1)o,,t+... (4)

cos(B sin o,t) = Jo(B) + 2J, (B)cos 2o,,t +... + 2J2,, (B)cos 2nao,,t +... (5)

where J,,(B) is a Bessel function of nth order [3, pg. 17]. Substituting (4) and (5) into (3)

explicitly shows the harmonics:

FM (t) = A[Jo(B)sin ,.t + J, (B){(w. + ,,,)t - sin(we - ,,,)t)+

+ J, (B){(o, + 2w,,,)t - sin(ow - 20,,,)t} (6)

+ J,(B){(o C + 3w,,,)t -sin(CO -330,,,)t}+...].

The key parameters that determine the harmonic frequency content are the carrier

frequency and the ratio of carrier to modulator frequency. In addition, the amount of

higher harmonics is determined by the amplitude of the modulator. For more information

into the theory of Frequency Modulation, please see reference [3].

There are several companies that manufacture FM synthesis equipment. For this research

project the SoundBlaster 16® (SB 16) computer sound card is used to generate FM sounds.

The selection criteria is based on performance, cost, and compatibility. To follow is a

discussion of how to program the FM chip used by the SB 16 the Yamaha OPL3 FM

chip.

Chapter 2:Sound Generation

2.4 Programming the Yamaha OPL3 FM Chip
This section will cover only the essentials of programming the OPL3 FM chip used by the

SB 16. The objective is to provide enough information to get one started programming

FM sounds. For more detailed information on all the card's functions, please see

reference [11].

2.4.1 The Compiler

All the code presented in this document can be compiled using Borland C/C+ version 3.1

or higher. Some functions used in the code are Borland library functions and may not be

available on other compilers.

2.4.2 Ports and Registers: Description and Usage

Because the OPL3 is a register-oriented chip, knowing how to access the registers is

essential. "Registers are certain interfaces that are directly assigned to hardware.

Commands that directly control hardware operation are placed in registers." [7, pg. 35]

Each register has a unique hexadecimal address offset from the base I/O port address;

base 16 numbers will be written with an "h" suffix. The base I/O port for the SB16 is set

during installation or by jumpers on the card and can range from 220h-280h. This

information is stored in the DOS environment variable "BLASTER" located in the

autoexec.bat file. The function detect_settings() defined in the SMIX sound library (see

attached disk) can be used to read and store the base I/O value. The OPL3 chip is

accessed through ports 2x0h-2x3h, where "x" is a place holder for the 2nd number of the

base I/O address (i.e., 283h). The following table indicates the function of each port

address:

Table 1. SoundBlaster Port Identification.

PORT FUNCTION BANK 0 BANK 1: PERMISSIONS

Address/Status 2x0h 2x2h Read/Write

Data 2x1 h 2x3h Write Only

Chapter 2: Sound Generation

Writing register values to the Ports

The address port is used to "connect" to the requested register. After the request, the

program must wait before writing data to the data port. To write a byte to a SB 16 port,

the following procedure should be used:

(1) Write the register address to the address port (2xOh for bankO or 2x2h for bank 1).

(2) Wait at least 3 microseconds.

(3) Write the register value to the data port (address port +1).

The following code will execute the above tasks:

void timedelay(unsigned long clocks)

unsigned long elapsed=O;
unsigned int last, next, ncopy;

outp(0x43, 0);
last=inp(0x40);
last=-((inp(0x40)<<8) + last);
do

{
outp(0x43, 0);
next=inp(0x40);
ncopy=next=-((inp(0x40)<<8) + next);
next-=last;
elapsed+=next;
last=ncopy;

} while (elapsed<clocks);

void FM_Write_Output(unsigned port, int reg, int val)
{

outp(port, reg);
timedelay(8); // delay about 3.3 microseconds
outp(port+1, val);
timedelay(55); // delay about 23 microseconds

Register Layout

The OPL3 is separated into two register "banks". Each bank can generate nine

independent 2-operator FM synthesizers referred to as channels. Table 2 gives the

register set for the modulator (OP Number 1) and carrier (OP Number 2) of each channel.

Chapter 2:Sound Generation

For example, all the registers needed to program the modulator of cl

60h, 80h, and E0h. Registers AOh, BOh, and COh affect both oper

carrier register addresses are offset from the modulator registers b)

channels are available on bank 1 and have exactly the same registo

2x2h and 2x3h control this bank. An example function that writes

(channel 1 modulator) of bank 0 is written as follows:

iannel 1 are 20h, 40h,

itors. Notice that the

3h. An additional 9

,r offsets; recall ports

value to register 20h

Void WriteRegValueBankO(int reg, int val)
{

FM_Write_Output(baseio+Oh, reg, val);
}

WriteRegValBankO(20h, 60h); //write the value 60h to register 201 of bank 0

Table 2. Register-to-Slot and Channel Relation hip.

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

2

5

3

6

7

10

8

11

9

12

13

16

14

17

15

18

21

24

22

25

28

2B

29

2C

2A

2D

30

33

31

34

32

35

er[f. YMF26H
Appli

g.

41

44
42

45

48

4B

49

4C

4A

4D

50

53

51

54

52

55

61

64

62

65

68

68

69

6C

6A

6D

70

73

71

74

72

75

81

84

82

85

88

B8

89

Sc

8A

OD

90

93

91

94

92

95

El

E4

E2

E5

ES

EB

E9

EC

EA

ED

FO

F3

F2

F4

F2

F5S

A

A

A

A

A

A

A

A

3

4

5

6

7

8

81

82

83

84

85

86

B7

88

2

3

4

5

6

7

8

9

Cl

C2

C3

C4

C5

C6

C7

C8

I

.m m m_ ,.,. p'--.•.•Nm I_I____(Ir~-----I-I I1___1_1CI-l------

i I

9-' " "'~ ~"'~"""''"'""--~~-'

Chapter 2: Sund Generation

2.4.3 Register Map for the FM Synthesizer

The register map for the FM chip used by the SoudBlaster® 16 is shown in Table 3. These

registers contain all the parameters that must be set in order to make an FM sound. This

section will give the instrument table format used to store FM parame ters and describe

channel registers. Please refer to reference [11] for complete infor nation on other

registers.

Table 3. Register Address Map.

Bank 0 Bank 1

MULT
I I I

KSL TL

AR DR

SL RR
! I g I ! I

F-NUMBER (1)

AM) DIEGI MUtT
I t

KSL TL

AR DR

SL RR
I4 I I

F-NUMBER (1)

AcON

[From YMF262 Application Manual, pg. 12]

Instrument Table

The instrument table is an array used to store groups of FM parameters. Each row in the

array defines a different FM sound. Sounds can be indexed according to their position in

the array and easily loaded into the registers.

20H

40H

A0H
AOs

1SAtTimer2
SatThw2

• •

I'-

RIM

=m

ar'MNA)4ER

real OeaN

nml

nIW

M

AM IVOIE

Chapter 2:Sound Generation

The function Initialize_Sound_Timbre_2op_Mode() defined in the high-speed train

simulation code loads an FM sound from the instrument table in this manner (see

Appendix D). Table 4 shows the format for a row in the table:

Table 4. Instrument Table Offset Format.

OFFSET (HEx)
00

01

02

03

04

05

06

07

08

09

OA

OB-OF

DESCRIPTION

Modulator Sound Characteristics

Carrier Sound Characteristics
Bit 7 : Amplitude Modulation (AM)
Bit 6 : Vibrato (VIB)
Bit 5 : Envelope Generator Type (EGT)
Bit 4 : Key Scale Rate (KSR)
Bit 3-0: Frequency Multiplier (MULT)

Modulator Scaling/Output Level

Carrier Scaling/Output Level
Bit 7-6: Key Scale Level (KSL)
Bit 5-0: Total Level (TL)

Modulator Attack/Decay

Carrier Attack/Decay
Bit 7-4: Attack Rate (AR)
Bit 3-0: Decay Rate (DR)

Modulator Sustain Level/Release Rate

Carrier Sustain Level/Release Rate
Bit 7-4: Sustain Level (SL)
Bit 3-0: Release Rate (RR)

Modulator Wave Select

Carrier Wave Select
Bit 7-3: Clear
Bit 2-0: Wave Select (WS)

Feedback/Connection
Bit 3-1: Feedback (FB)
Bit 0 : Connection (CNT)

Reserved for Future Use

I

~"~~"

Chapter 2: Sound Generation

The abbreviations in parenthesis after each bit correspond to the labels in the register

map. An example of using the instrument table to define two sounds is shown below.

/* Sample instrument table definition */
int inst[128][23] = /*define the array dimensions */
{
/* (index #0: FM sound 1) */
{ 0x60, 0x60, Ox8E, 0x8D, OxFF, OxFF, OxOF, OxOF,
Ox00, Ox00, OxOD, Ox00, Ox00, Ox00, Ox00, Ox00 },

/* (index #1: FM sound 2) */
{ 0x61, 0x70, 0x68, 0x00, OxF2, 0x52, OxOB, OxOB,
Ox00, Ox00, OxOA, Ox00, Ox00, Ox00, Ox00, Ox00 }

The numbers within the brackets ({... }) are hexadecimal. Using a two digit hex number

conveniently breaks an 8 bit computer word into two groups of 4 bits. Here are some

examples:

FFh = 1111 1111 binary
FOh = 1111 0000 binary
OFh = 0000 1111 binary
60h = 0110 0000 binary

Breaking a computer word into high and low bits is convenient and used repeatedly

throughout the code included in the appendices.

Frequency Control (Register AOh-A8h and BOh-BBh)

The frequency produced by the FM synthesizer is set by a 10-bit value (F-NUMBER)

formed from 8 low bits (F-NUM(l)) in register AOh-A8h and 2 high bits (F-NUM (h)) in

register BOh-B8h. The octave is determined by the 3-bit value (BLOCK) in register BOh-

B8h. The FM sound for a given channel is on when the KEYON bit is 1 and off when 0.

BITs
REGISTER (HEX) B7 1B6 B5 1B4 3BS 1B2 IB1 jBO

AO-A8 F-NUM (L)

BO-B8 KEY BLOCK
ON 2 21 20 F-NUM (h)

O 2 21 20

Chapter 2:Sound Generation

Equation 7 gives the F-NUM (in decimal) as a function of desired frequency f [Hz] and

BLOCK number:

- NUMBER * 2 (20-BLOCK)
F - NUMBER = 5000050000 S(7)

For example, if a 277.2 Hz frequency is desired (C#) and BLOCK is 4, then

F-NUMBER=363d=0101 10101 lb. Thus, F-NUM (1)=01 and F-NUM (h)=0110101 lb. If

channel 1 is being programmed, the value 6Bh would be written to register AOh and 31h

(KEYON+BLOCK+F-NUM(h)) would be written to register BOh.

Connection Algorithm, Feedback, and Left & Right Stereo (Register COh-C8h)

The following table shows the function of each bit in the COh-C8h register:

In 2-operator mode there are only two possible connection algorithms. The classical FM

configuration is obtained by setting CNT to 0 (see Figure 9 (a)). This algorithm has self-

modulation on operator 1, where the value of FB ranges from 0-7 according to bits 1-3.

If pure tones are desired, the value of CNT is set to 1 making the parallel connection

shown in Figure 9(b).

When the SB 16 is in OPL3-mode, bits 4 and 5 control the right (STR) and left (STL)

audio output. Setting these bits high/low will turn the left or right audio output on/off.

Chapter 2: Sound Generation

Figure 9. 2-Operator connection algorithms.

2.4.4 Initializing the SoundBlaster 16 Card

Before any FM can be programmed, the SB16 must be initialized. The following

procedure initializes the sound card:

(1) Write the value 00h to register 01h of bank 0 to initialize the card.

(2) Write the value Olh to register 05h of bank 1 to set the card to OPL3 mode.

(3) Write the value 00h to register BDh of bank 0 to setup FM mode.

Refer to the function InitializeFMsound() in Appendix D.

2.4.5 Helpful Resources

Third party software exists to assist those not familiar with the effects of changing FM

parameters. One such program, called FMED 101, is shareware and can be downloaded

at http://www.cdrom-paradise.com/fmed.html. The shareware version of this program is

included in the companion diskette. This program provides an interface that changes the

SOperator I b Operator 2 FM(t)

02

(a) CNT = O

rFB

01 ----- • -•-• Operator 1 i ' -

1 FM(t)

(02 C Operator 2

(b) CNT = I

i

Chapter 2:Sound Generation

FM parameters during program execution so that one can experiment with different

combinations. One can also do a search on the World Wide Web for "SoundBlaster

Utilities" and find a variety of newsgroups and other shareware.

2.4.6 Sample Code

Appendix A and the companion diskette contain sample code that programs the SB 16 FM

chip. Borland C/C+ version 3.1 and higher will compile the code.

Chapter 2: Sound Generation

2.5 Digital Sound Software Library: SMIX
In cases where a complicated sound must be reproduced almost exactly, FM synthesis

may not be the best approach. Playing a digitally sampled version can be used as an

alternative, but not without a penalty. The main disadvantage of this method is that

through sampling, the sound file must be played back with the recorded sampling rate.

Otherwise the sound will be distorted. Sound recordings can also get quite large; for high

sampling rates, a few seconds can exceed a megabyte, thus limiting the size and duration

the sample.

Digital sampling involves discretizing a continuous time signal into quantization levels.

The size of each level depends on how many bits are used by the analog-to-digital

converter (ADC) and the voltage range. For example, a 12-bit ADC with a l10V range

will register 4.88 mV per level. Thus sampling accuracy is increased as the number of

bits increases in the ADC. Stored digital sounds are converted to continuous time via a

digital-to-analog converter (DAC). Aliasing and quantization noise should be considered

when high quality recordings are desired.

The SoundBlaster 16 has the ability to play 8-bit mono or 16-bit stereo digitized sounds

ranging from 5 kHz to 44 kHz in frequency. Programming the SB 16 to play digital

sounds is more complicated than generating FM sounds and requires knowledge

programming interrupt service routines and the DMA controller 8237. For detailed

information on DSP programming, see reference [2].

For those not familiar with this type of programming, the SMIX library, developed by

Ethan Brodsky, provides a set of functions that initialize the DMA and allows digital

recordings to be played back simultaneously with FM sounds.

Chapter 2:Sound Generation

The SMIX software allows 8 digital sounds to be played simultaneously at a maximum

sampling rate of 44.1 kHz, changeable within the code. All digital sounds must be

recorded at the same sampling rate and converted to a raw 8-bit unsigned format. Any

file in the wav format can be converted to the raw format using the utility wav2raw.exe.

Once all the desired sounds are in the raw format, they must be assembled into a single

resource file, or sound library. To create a sound library, use the utility sndlib.exe. The

user must assign a unique case-insensitive keyword to each sound. The keywords must

then be assembled into a character array at the beginning of the program using SMIX as

follows:

/* Character array of sound library keywords */
char *sound key[NUMSOUNDS] = /*NUMSOUNDS = n+1*/

{
"sndkeyl",
"sndkey2",

"sndkeyn"

A desired sound is triggered by passing its array position to the function start_sound()

within the main program. The sample program smix.c available on the included diskette

should be used as a model to setup the rest of the program. The utility programs

wav2raw.exe and sndlib.exe are also on the diskette.

Ilrl-·IIIII~C-l ~· ~ _ __~_

Chapter 2: Sound Generation

2.6 Programming the SB16 Mixer Chip

The mixer chip within the SB 16 contains a set of registers that control the master volume,

FM sound volume, and digital sound volume. The register address port and data port are

accessed through 2x4h and 2x5h, respectively. Table 5 shows the mixer chip register

map.

Table 5. Mixer Chip Register Map

REGISTER BITrs
OFFSET (HEX) B7 B6 B5 4 B3 82 B1 BO

04 Digital Volume LEFT Digital Volume RIGHT
22 Master Volume LEFT Master Volume RIGHT
26 FM Volume LEFT FM Volume RIGHT

Each register has a 4-bit left and right side speaker volume control ranging from 0-15. If

a 2 digit hex number is written to the register, the least significant digit will correspond to

the lower 4 bits (right side) and the most significant digit will correspond to the upper 4

bits (left side).

Writing register values to the Ports

To write a value to the mixer chip register, use following the procedure:

(1) Write the register address to the address port 2x4h.

(2) Wait at least 3 microseconds.

(3) Write the register value to the data port 2x5h.

For example, to set the FM volume maximum on the left and 9 on the right, the value F9h

should be written to register 26h. The function Mixer_Control() in Appendix D can be

used for this purpose.

Chapter 3: Communication

Chapter 3: COMMUNICATION

3.1 Networking
High-fidelity simulation requires considerable processing power for performing real-time

dynamics and graphical calculations. Therefore, sound effects should be generated on an

external system (i.e. a PC), thus minimizing computational overhead on the main

processor. As a result, the external system must be networked with the workstation in

order to obtain user input and the state of the simulation. The sound effects are then

coordinated according to this information. Fast network communication is necessary to

allow the sound system to be responsive to changes in simulation state, thus minimizing

time lag. Ethernet is one networking standard that provides high transfer rates and

reliable transmission.

Hardware and Software Requirements

The only hardware required to setup a network link between a PC and Unix workstation

is an ethernet network adapter for the PC. Unix workstations are generally network-

ready. If a network already exists, consult with the network administrator to select the

card most compatible with the existing system. To use the communication software

provided with this document, Novell LAN Workplace for DOS® must be purchased and

installed on the PC. Other platforms. such as Artisoft's LANtastic or Novell Netware.

will not work because a developer's kit library specific to LAN Workplace is used to

develop the communication software. Note that this software is written in C'+ , so special

linking of C and C" code may be required.

The following section will briefly explain some networking basics and will provide the

programmer information on how to use the ethernet software.

Chapter 3: Communication

3.1.1 Software

The networking software in Appendix C is designed to setup a bi-directional ethernet link

between a client and multiple host computers (see Figure 10). Data is transmitted

through the networking cable (co-axial, 1OBaseT, etc) and stored in a buffer located

within the network adapter. The network adapter can be viewed as a black box that

collects the data packets as a bit stream and then sorts the variables in a format defined by

the programmer.

Figure 10. Client and multiple host network configuration.

Hand-Shaking

The manner in which data is exchanged between the client and host is extremely

important. Consider the case where the main loop in the client program is twice as fast as

the main loop of the host program. If both the client and host send data to the buffer

indiscriminately, data will accumulate within the buffer because the host simply can not

read the data stream fast enough. At some point, the buffer will reach it's maximum

storage capacity and overflow. This is shown schematically in Figure 11.

Figure 11. Schematic view of data transfer.

Buffer overflows can be prevented by operating the communication ir

mode. In this way, the host sends data only after receiving data from

result, transmission occurs only when both the client and host are checkii

the same time. Before the client writes data to the buffer, it checks to

ready to receive. It will wait for a maximum of 1 second before aborting

host checks the network within this 1 second window, a data exchange w

a hand-shaking

the client. As a

ig the network at

see if the host is

the send. If the

Il occur.

Synchronization

As explained above, during hand-shaking mode data transfer occurs onli

and host are checking the network simultaneously. Hence, the highest

happens only when the host and client are exactly synchronized. Exact

can happen only if the main control loops in the client and host progran

frequency. In most cases, however, this will not be the case due t

processor speeds and computational overhead. It is therefore waste

processing time for the faster computer to check the network at the end or

loop. It is the programmer's responsibility to measure the frequency c

adjust the bandwidth accordingly.

when the client

data throughput

synchronization

is have the same

o differences in

ful in terms of

Sbeginning of its

,f each loop and

Chapter 3: Communication

3.1.2 Sample Code

The easiest way to learn how to implement the ethernet code is by following the demo

programs. It is assumed that the user has knowledge of using projects and makefiles.

Appendix C and the attached disk provide C++ code demonstrating both single and

multiple host communication with a PC. The PC client code, located in /network/client

on the disk, contains the project files (.ide) to compile the code under Borland C/C++

version 4.5. The SGI host code located in /network/host contains the make files used to

compile the code on a UNIX system.

The low-level communication functions are defined in netclint.cpp and unixnet.cpp for

the PC and SGI workstation, respectively. The user should not need to alter these files.

Program Notes

Because the client and host are hand-shaking, it is the responsibility of the client program

to initiate the data transfer. The host program must be started before the client program.

This will open a socket and establish the link. Also, the definitions of ECHO_PORT and

BUFFER_SIZE must be the same in both the client and host programs. If multiple host

workstations are being used, the echo port defined within each host program must match

the definition in the client program.

Data Transfer

The core functions are the data transfer functions defined in the client and host programs.

The number and type of arguments should agree with each other. For instance, if the

client computer is expecting two variables of type float and sending a variable of type int,

the function declaration should be as follows:

CLIENT PROGRAM:
void NetSendRecv(NetClient &enet, int dataout, float *datal in, float *data2in)
{

if(enet.iswritereadyo) {
sprintf(buffer_send,"%d",dataout); //send integer variable
enet.send((char *)buffersend, BUFFER_SIZE); //Data sent out of the pc

if(enet.isreadready() {

- -

Chapter 3: Communication

len=enet.recv((char *)buffer_recv,BUFFER_SIZE);
sscanf(buffer_recv,"%f %f,datalin,data2in); // float data received from host
if(len<=0) {

printf("\n zero receiving length");
exit(l);

}
}
else {

printf("\n not connected: read not ready \n");

The host program must be modified in a similar manner to send two variables of type

float and to accept a variable of type int:

HOST PROGRAM:
int networkSendRecv(float datalout,float data2out,int *datain)
{

int rc=-1;

sprintf(buf_send,"%3.2f %3.2f",datalout, data2out);
strcpy(buf_recv, "N");
if (netserv.isconnected()) {

rc = netserv.recv(buf_recv,BUFFER_SIZE);
if (rc > 0) {

sscanf(buf_recv,"%d",datain); /*Scan in only if data is transfered!*/
netserv.send(buf_send,BUFFER_SIZE);

}
else sprintf(buf_recv," Rc = %d \n", rc);
}
return rc;

Host IP Address

The host internet protocol (IP) address is the number used to uniquely identify the

workstation on the network. The C++ class NetClient defines the low-level functions that

link the client to a host. Each object of type NetClient declared within the main program

creates a new host connection. The class has been written such that all objects of this

type are initialized with the host IP address. Therefore, the host IP can be changed only

by recompiling the code. If, however, there is only one host, the class HostlP can be

used to change the host IP without having to recompile the program. This is useful when

the client PC needs to link with either host 1 or host 2, but not both at the same time.

Chapter 3: Communication

The object HostlP defined in netclint.cpp will allow the user to enter the host IP address

on the command-line using the following syntax:

C:\ executable_-ipaddress

where "executable" is the name of the client networking program and the underscore (_)

represents a space afterwards. The value ipaddress is either in the format a.b.c.d, where

a, b, c, and d are numbers ranging from 0-255, inclusive or is the host name resolvable on

the local network. If the command line argument is left off or if it can not be resolved by

the network, the user is prompted a second time. The client program would use the

following network initialization sequence: (also see onehost.cpp)

Within Client Main Program:

/*Create an object of type HostlP class initialized with the first string after executable */
HostlP ipaddress(argv[1])

/*Create an object of type NetClient Class and initialize it with the IP address obtained by
ipaddress */
NetClient enet(ipaddress.returnlP();

Note that each host linked with this program will have to have the same echo port defined

in the client program.

Chapter 4: High-Speed Train Simulation

Chapter 4: HIGH-SPE

4.1 Background
For a number of years the Federal Rail A

National Transportation Systems Center to r

by looking at automation and information

experiments, Dr. Edward Lanzilotta and

developed the high-speed rail simulator shov

Figure 12. First tri

The simulation uses three high-performan

dedicated to calculating the train dynamics

view. Another is used to create a dashboard

traffic control (CTC). Figure 12 shows the

Chapter 4: High-Speed Train Simulation

factors data. The monitor on the left is the dashboard and the monitor on the right is the

OTW view. The subject provides input through the keyboard and throttle joystick.

Experiments, typically lasting 3 hours, would have the subject drive the train from one

station to the next while recording operator responses to various train failures. Because

of the length of each experiment, the project supervisors decided to pursue adding more

fidelity to the simulation, thereby increasing situational awareness and vigilance.

This section will apply the information provided in Chapters 1-3 to the Volpe Center's

train simulator. The external and internal train cab sounds are created on an external

Pentium PC using a SoundBlaster 16 sound card and an amplified audio system. The

networking software detailed in Chapter 3 is used to link this PC to the local network of

SGI workstations. In addition, the physical interface is improved by creating external

hardwired controls, a cabin enclosure, and a vibrating chair.

4.1.1 Desired Sounds

Increased fidelity in the simulator comes mainly by adding sound effects. The main

external or environmental sounds are track, engine, and braking noises. These sounds are

auxiliary sensory inputs that help keep the subject aware of the train state. There are also

internal train cab sounds that can be added to increase realism. These are the dead-man

alerter, speeding indicator, bell, and train horn sounds.

4.1.2 Physical Enhancements

In addition to adding sound, a preliminary cabin structure enclosure has also been

constructed.. The structure isolates the subject from the large room and supports the

dashboard display. Also, the user interface has been improved. This is done by replacing

the keyboard interface with external control boxes. As a final (and experimental)

enhancement, a 15" speaker driver is used to actuate the subject's seat. This is used to

simulate the rumbling of the train cab.

Chapter 4: High-Speed Ttain Simulation

4.2 FM Synthesis of Engine Throttle
One strategy in recreating the engine sound is to determine the dominant frequency that

changes according to power level. This will correspond to the changing pitch the

operator hears as the power level is varied. FM synthesis can easily generate this

frequency with the benefit of providing a smooth transition between power levels. The

rest of the complex spectrum can be played in the background digitally, thereby recreating

the entire sound.

Digital Filtering

Separating the frequency components requires the use and knowledge of digital filtering.

Therefore, issues of sampling and signal aliasing should be addressed. The goal is to

extract the frequency band that is common to all the power levels and play them back as a

separate group.

Finite-Impulse-Response (FIR) filters are commonly used and have the following pulse

transfer function:

H(q)= bo +bq - +b,q-' +..-+b,,q -'" (8)

where n is the order of the filter. The following n"' order difference equation is obtained

from equation 8 by applying the shift operator, q" f(k) = f(k + n):

y(k)= box(k)+bx(k -1)+bx(k-2)+...+b,,x(k-(1-n)) . (9)

Equation 9 is a robust non-recursive filter but will require almost 10 times as many terms

as a recursive type to achieve the same high frequency attenuation. If the set of

coefficients are chosen symmetrically (i.e. bk=b(n-k)), the filter will have linear phase.

What this property means in physical terms, is that any signal that goes through the filter

will be time delayed, but undistorted. The coefficients can be easily obtained by using the

FIR1 command in Matlab®.

Chapter 4: High-Speed Train Simulation

Frequency Spectrum Analysis

As the engine throttle increases, one can hear an increasing frequency. Physically, this

corresponds to harmonics of the diesel engine pistons as the speed changes. By recording

various power levels and analyzing the frequency spectrum, the dominant frequency

components can be determined. Figures 13 and 14 compare the unfiltered power spectral

density for 4 power levels recorded on an Amtrack commuter train. The throttle lever for

this train has a total of eight running speeds.

0 50 100 150 200 250

Frequency [Hz]

Figure 13. Power spectral density of engine power levels 1 and 2.

Unfiltered Engine Power Level Frequency Spectrum

100000

90000

80000

70000

S60000

t; 50000

S40000

30000

20000

10000

0!

"- Power Level 1
;. - - - Power Level 2 !

Dominant High Frequency
of each power level

ALABJ

-

UnitrdEgn oe LvlFeunySetu

I .

Chapter 4: High-Speed Train Simulation

Figure 14. Power spectral density of train engine power levels 4 and 5.

Figures 13 and 14 show that all 4 power levels have a similar cluster of frequencies below

100 Hz and distinctive frequencies above 100 Hz. The low frequency cluster most likely

corresponds to mechanical resonance.

The high-pass FIR filter show in Figure 15 is applied to each unfiltered power level

recording to determine whether frequencies higher than 112 Hz correspond to the pitch

changes heard as the power varies. As expected, each resulting spectrum shows a

dominant frequency (see Figure 16). One can hear the pitch increase with increasing

power level by listening to the filtered recording successively.

Thus, it is reasonable to extract the low frequency band that is common to all power

levels using a low-pass FIR filter (the inverse of Figure 15) and play them continuously

in the background.

Unfiltered Engine Power Level Frequency Spectrum

100000

90000

80000

*$ 70000

60000

3 50000

40000

30000

20000

10000

0
0 50 100 150 200 250

Frequency [Hz]

Chapter 4: High-Speed Train Simulation

Figure 15. Digital FIR filter frequency response.

Figure 16. High-pass filtered power levels.

High-Pass FIR Frequency Response
o)c = 112 Hz

1.20
1.00

' 0.80
.. 0.60
CM 0.40

a 0.20
0.00

-A 20

100 150 200
Frequency [Hz]

500
0

-500

_-1000
S-2000 Linear Phase

.£ -2500a.
-3000
-3500
-4000

0 50 100 150 200

Frequency [Hz]

Filtered Engine Power Level Frequency Spectrum

0UUUU

25000

" 20000
Q

S15000oooZ,

1 1000L

5000

0
0

250

Frequency [Hz]

.02

0
Frequency [Hz] 250

Chapter 4: High-Speed Train Simulation

4.2.1 Engine Instrument Parameters

Having identified the frequency range at which the FM generated engine sound should

play, an instrument file must be generated and written to the FM chip register set (see

Table 4). The engine instrument parameters are defined as follows:

Table 6. Engine Noise Instrument Parameters.

OFFSET (HEX) 00 01 02 03 04 05 06 07 08 09 :OA

ENGINE FM
PARAMETERS 61 70 68 00 F2 52 OB OB 00 00 OA

(HEX)

A somewhat heuristic approach is taken in determining all the parameters, but some are

easily determined by listening to the actual sound: like adding vibrato to simulate an

undulating frequency.

Chapter 4: High-Speed Train Simulation

4.3 Digital Playback of Track Sound
The main feedback of train speed is provided by the track noise created as the train

wheels pass over connecting track rails. If these connection points occur at equally

spaced intervals, then the rate of track noise instances (a "click-clack" sound) will be a

function of the train speed. Therefore it is necessary to vary the digitally recorded track

noise according to the speed calculated by the simulator.

One approach is to play one digitally recorded click-clack sound in a loop continuously.

The sampling frequency can be modulated to give the sensation of changing speed. The

disadvantage here is that other digital sounds played during the same time will be

distorted because they are not playing at their recorded sampling frequency. For this

simulator, other digitally recorded sounds, such as the train horn and air brakes, must be

played throughout the simulation thus eliminating this option. An alternative approach

using only one sampling frequency would be to discretize a single click-clack sound and

then synchronize the playback. This approach is discussed below.

4.3.1 Decomposition

The decomposition of track noise is accomplished with the use of a sound wave editor.

This type of program allows the user to play and edit desired section of a total sound

recording. Using this program, one representative track click-clack sound is extracted

from an actual digital recording (see Figure 17).

The time trace in Figure 17 is then broken up into 4 discrete components as shown in

Figure 18. Each component has a time duration of Ati therefore,

4

t total At i
i=i

where ttotal is the total time required to play all the components sequentially.

Chapter 4: High-Speed Train Simulation

Figure 17. Track noise time trace.

Discrete Track Components

2 0 0

200rI t2t,0 0.1 0.2 0.3 0.4 0.5 0.6 0.7200

0loi "\ ''--. •t -... .. t -S 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
200

0 .1 0.2 0.3 0.4 0.5 0.6 0.7

100

At 4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time (sec.)

Figure 18. Full track noise broken into 4 discrete parts.

One "Click-Clack" Extracted from a Digital Recording
250

I

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time (sec.)

* 150

< 100

50

Chapter 4: High-Speed Train Simulation

4.3.2 Synchronized Playback

The function start_sound() of the SMIX library is designed to play up to 8 digital sounds

simultaneously in the background. As a result, a triggering scheme is required to

playback the 4 track parts according to the train speed. This is done by adding a variable

time delay between each track component and between each 4 component group. The

following time line illustrates this scheme:

Click-Clack Sequence 1 Click-Clack Sequence 2

Sequence0 00
V- I I I I I II I I >

Delay Al A2 A3 A4 All Al A2 A3 A4 time

Figure 19. Track noise trigger sequence.

According to Figure 19, each component is followed by a variable time delay (Ai), which

is calculated as a function of the current train speed. For simplicity, a linear interpolation

is used as show in the following figure:

Figure 20. Linear interpolation for track component delays.

C

[sec] B t
11

Chapter 4: High-Speed Tiain Simulation

The following equation is used to calculate the delays:

i C-D(A~-A)+D (10)

1
where A,,oc -o and the values of A, B, and D are set in software. The value of C is

speed

equal to the total time required to playback the i"' component. Thus, as the speed

increases, AII decreases and the time delay between each component decreases.

Chapter 4: High-Speed Train Simulation

4.4 Other Sounds
In addition to the engine and track noise, other sounds have been added to the simulation

to increase realism. The following section will briefly discuss the importance of these

other sounds.

4.4.1 Bell

The bell sound is FM synthesized using the following instrument parameters:

Table 7. Bell Instrument Parameters.

OFFSET (HEX) 00 01 02 03 04 05 06 07 08 09 OA

BELL FM
PARAMETERS 07 12 4F 00 F2 F2 60 72 00 00 08

(HEX)

The parameters were obtained from a predefined SoundBlaster instrument (SBI) file

provided by Creative Labs. The bell is important because real train operators must ring

the bell when arriving and departing from a station.

4.4.2 Dead-man Alerter

The dead-man alerter is a runaway train prevention system used in locomotives. The

alerter goes off if the train operator does nothing for 45 seconds. The actual siren sound

used on locomotives was not recorded and is not used with this simulator. Instead, a

similar sound is played in a loop until the subject presses the dead-man switch.

4.4.3 Speeding Indicator

Another safety mechanism used is a speeding warning. Two cues are used to get the

subject's attention: an audible warning and a flashing LED lamp. The digitally sampled

warning is not the same sound used on real locomotives.

-- ------------ -"

Chapter 4: High-Speed Train Simulation

4.4.4 Brake Steam and Screeching

Braking sound effects proved to be an important audible cue of speed reduction and speed

control. For this simulator, both power and braking are commanded through one joystick.

The joystick position is determined according to the value sampled by an analog-to-

digital converter and ranges between ±1.0.

Power increases from idle to full throttle if the joystick value is greater than zero.

Braking occurs when a negative value is registered. Without an audible cue, it is difficult

to know whether or not the joystick is near the zero point. Thus, the sound generation

system plays a digital air brake sound every time the joystick makes a transition from

power to braking. In addition, a metal-on-metal screeching sound, which has a

programmable time duration, is also played. This added sound makes the subject aware

of active braking.

4.4.5 Digital Train Horn

In addition to the breaking sound effects, a real train horn sound has been digitally

sampled. Train operators must blow the horn when approaching grade crossings. The

user can press one of the control box buttons to play the horn throughout the simulation.

4.4.6 How to Add New Sounds

The digital sounds described above have been added as outlined in §2.4. For sample

code, refer to smix.c located on the attached disk.

Chapter 4: High-Speed Train Simulation

4.5 PC Sound Generation Software
The sound effects are controlled by a program running on a Pentium 133Mhz with 32

megs of RAM and a network card. This code is a mixture of C and C"+ and is compiled

for DOS with Borland C/C+ ÷ version 4.5. The project file controls linking all the source

code and generates the executable and object files. The user should make sure the source

directories set under the project options menu are correct. The following table

summarizes the relevant files of the project:

Table 8. PC Sound Generation Software Program Files.

SOURCE INCUDE LIBRARY
DIGITAL PLAYBACK

smix.c smix.h
detect.c detect.h
xms.c xms.h

USER INTERFACE

display.cpp display.h

NETWORK SOFTWARE

tllbsock.lib
netclint.cpp netclint.h obsolete.lib

MAIN PROGRAM

trainsnd.cpp

The above files are also located on the companion diskette.

Chapter 4: High-Speed Train Simulation

4.5.1 Program Flow

Figure 21 show the program flowchart for trainsnd.cpp. Upon execution, the network,

digital sound, FM sound, and display graphics are initialized. The program time base is

also started at this point. Once the idle engine sound is generated, the program enters the

main control loop, which is performed until the program is terminated by pressing the "q"

key. If the train velocity is below 10 m/s, the network will be checked between each track

component. Next, any user inputs from the keyboard or network are checked. These can

be commands to trigger the horn, bell, or warning sounds. If the power level has changed

from the current level, the FM engine frequency is also increased or decreased

accordingly. Before the ith track component is played, the network is checked once more

if velocity is greater than 10 m/s and i = 5 . This essentially reduces the rate at which the

client checks the network in order to match the slower host workstation (see §3.0 for

details on synchronization). Before repeating the command loop, the simulation time is

checked to see if the update time, set by the programmer, has been exceeded. If so, all the

delays are recalculated according to the linear interpolation described in §4.3.2.

Chapter 4: High-Speed Train Simulation

Figure 21. Main program flow chart.

Chapter 4: High-Speed Train Simulation

4.5.2 Some FM Function Notes

The main program brings together the digital playback functions defined in smix.c, the

networking functions defined in netclint.cpp, and user interface functions defined in

display.cpp. A majority of functions defined within the main program itself pertain to

FM. Even though the program is commented, this section is devoted to explaining some

of the functions in trainsnd.cpp relating to FM.

Initialize_ Sound_ Timbre_2op_Mode(ch, instnum, L_R_ B)

Before an FM sound can be played by the SB 16, all the FM parameters must be written to

the registers (see Table 3). This function loads into the registers the row in the instrument

table that corresponds to the index inst_num. An array of modulator register offsets for

various channels is used to concisely write the parameters to the registers of any channel

ch. The offset array is defined as follows:

/* Offsets for channels 1-9*/
int Offset [] =

{
0x00;
0x01;
0x02;
0x08;
0x09;
Ox0A;
0x10;
Oxl1;
0x12};

The last argument determines the stereo mode of the sound. The argument will have one

of three values: 10h (left), 20h (right), or 30h (both). These values have been defined

using the #define preprocessing directive.

GenerateSound(ch, fn, block, instnum, L_ RB)

Within the main program, GenerateSound() is called to play instrument inst_num from

the instrument table with a F-NUMBERfiz and block number block on channel ch. Recall

that F-NUMBER is not the frequency in hertz, but a 10-bit number loaded into registers

AOh-A8h and BOh-B8h. This function uses the bit shift operator to separate the high and

low bit values and write them to the proper register.

Chapter 4: High-Speed Train Simulation

StopFMsound(ch, freqnum)

This function is used to turn off the FM sound playing on channel ch. Stopping a sound

requires changing KEYON (bit 5 on register BOh-B8h) to zero. Changing only this bit in

the register will produce a clicking noise, so the current value of F-NUMBER freqnum

must be masked with KEYON=O.

Chapter 4: High-Speed Train Simulation

4.6 Train Simulator Development Structure
As with most simulators, if some developmental structure is not used to organize the

code, debugging can become overwhelming and practically impossible. The designers of

the train simulator segmented the code into a series of libraries in order to isolate

problems and help troubleshooting. The following figure shows the libraries that are

relevant to the ethernet and serial port software:

Figure 22. Directory structure and libraries used for networking and user input.

The directory /usr/projects/rail-sim is termed the pivotal directory because it bridges the

libraries and the simulation executable. Three libraries are used for networking and

obtaining user input: libsnd, libio, and bg. After compilation, each library will place a

library archive file, denoted with a ".a" extension, into the parent directory. These files

are then used by the makefile in /vehicles/veh-2 to create the simulator executable.

Using the Makefiles

The makefile is analogous to the PC compiler project file. It is simply a convenient way

to execute repeated command line compiler options. To compile the code in a library,

Chapter 4: High-Speed Train Simulation

type "make install" within the library directory. This will compile and install a library

archive into the parent directory.

4.6.1 Networking Library

The code used to collect and send data to the PC is located within the libsnd library. The

program unixnet.cpp defines the host ethernet functions as discussed in §3.0 while

sound.cpp defines the network initialization and data transfer functions. The latter two

functions are called within the main program (see train_main.c located on the attached

disk).

Adding A New Network Output Variable

As explained in §3.0, the programmer must ensure that the network data transfer function

argument list for both the client and host agree. The following four steps should be

followed when adding a new network output variable.

(1) Go to the /usr/projects/rail-sim/lib/libsnd directory and open sound.cpp. At the

beginning of the file, append the new data type to the end of the function

declarations for send_sound() and NetworkSendRecvO().

(2) Now change both function definitions. In NetworkSendRecvO(), the character format

must also be added (i.e. %dfor integer or %f for float types).

(3) Save the file and type "make install" at the command prompt. This will compile the

new changes and install the library archive into the parent directory.

(4) Last, add the argument type to the send_soundO function in train_main.c. Make

sure the variable type is in the same position within the argument list. Save the file

and type "make all" at the command prompt.

The programmer must also change the client PC function NetSendRecv() defined in

trainsnd.cpp.

Chapter 4: High-Speed Train Simulation

4.6.2 Serial Interface Libraries

A computer can receive and send information to external devices via its parallel and serial

port. The selection of each type depends on the needs of the system and how data is

collected and sent. For instance, parallel communication is suitable for high bandwidth

applications, but is susceptible to noise and therefore limited to short range transmission

lines. A serial port, on the other hand, can send data as far as 100 feet, but with a much

lower bandwidth. The choice for the train simulator is based more on ease of

implementation rather than bandwidth or transmission length. A commercial serial port

interface unit is used to collect user input.

The LV824-G CerealBox, made by BG Systems, serves as the data acquisition system for

the SGI workstation. The CerealBox provides 24 channels of digital input/output, 8

analog inputs, and 3 analog outputs. The library located in the /usr/projects/rail-

sinm/lib/bg directory contains the low level functions required to use the digital and analog

features. Please refer to the BG Systems manual for details on the functions contained

within this library. The libio library contains the functions used with the train simulator

to initialize the CerealBox and transfer data.

Digital Channel Data Banks

The digital 1/O channels provided by the CerealBox are divided into three banks, with 8

channels per bank. Bank I contains channels 1-8, bank 2 has channels 9-16, and bank 3

controls channels 17-24. Each bank can be used for input or output, but not both at the

same time. The program cereal.c located in the libio directory defines in what mode the

three available banks should operate. For the train simulator, bank 1 and 2 are set for

digital input and bank 3 is used for digital output.

The data collected by the CerealBox is stored in the data structure bgdata. Two array

members of the structure, bgdata.din[3] and bgdata.dout[3] hold the values from each

bank depending on the set mode. For example, data being collected from channels 1-8

(bank 1) and channels 9-16 (bank 2) on the train simulator will be stored in bgdata.din[O]

Chapter 4: High-Speed Train Simulation

and bgdata.din[1], respectively. Data being sent to channels 17-27 are written to

bgdata.dout[3]. Breaking the channels into banks of 8 is not arbitrary, but done so that

each channel can represent one bit in an 8-bit computer word. Therefore, the best way to

send and extract data from bgdata.dout or bgdata.din is to define a bit field. This gives

the programmer a convenient method of setting individual bits values without having to

calculate the equivalent hex number. The following bit field is used for this purpose:

/* Digital I/O Bit Field Type definition/
typdef union {

int i;
struct {

unsigned allpins:8;
{ byte;
struct {

unsigned p8:1, p7:1, p6:1, p5:1,
p4:1, p3:1, p2:1, p1:1;

}bits;
} digital_lO;

Variables declared as type digital_lO can access individual bits or the entire word as

follows:

digital_lO banklin, bank2in, bank3out;

bank3out.bits.pl = 1; /* write a low value for channel 17 */
bank3out.bits.p5 = 0; /* write a low value for channel 21 */

bgdata.dout[2] = bank3out.byte.allpins; /* write all the bits to the output array */
bankl in.byte.allpins = bgdata.din[0]; /* write all the input data from chl-8 to bank1 */

Chapter 4: High-Speed Ti ain Simulation

4.7 Cabin Enclosure
For the simulation to truly be realistic, the simulator environment had to evolve from the

two monitors on a table shown in Figure 12. As a first attempt, a cabin enclose has been

built to isolate the subject from the room (see Figure 23). A projection unit replaces the

OTW monitor and the cabin structure houses the display, control boxes, and throttle (see

Figure 24).

Figure 23. Front view of cabin enclosure.

Figure 24. Subject's view from within the cabin enclosure.

Chapter 4: High-Speed Train Simulation

4.7.1 Hardwiring Keyboard buttons

Until now, the keyboard has been used primarily to input train commands. For example,

some function keys are used to open or close the doors, set cruise control, and apply

emergency braking. To add realism, the CerealBox and two control boxes are used to

control the train. Figure 25 show the external I/O interface boxes which connect to the

CerealBox.

Figure 25. External user IO boxes.

All buttons have an LED that lights red or green to indicate the switch state. Some LEDs

are hardwired to the switch and others, like the motor circuit breaker LEDs, illuminate

according to the voltage at their terminals. This is done to signal failures with red LEDs.

Table 9 shows the channel-to-button mapping used within train_main.c to control the

train.

Chapter 4: High-Speed Train Simulation

Table 9. Channel-to-button Map.

F1
may beii souna
Motor 1 Circuit Braker

P3 3 F2 Motor 2 Circuit Braker
P4 4 F3 Motor 3 Circuit Braker
P5 5 F4 Motor 4 Circuit Braker
P6 6 Play Horn Sound
P7 7
P8 8
P1 9 F9 Emergency Brake Release
P2 10 F10 Brake Pump
P3 11 F8 Door Open/Close
P4 12 Cruise Control On/Off
P5 13

P6 14
P7 15 F12 Emergency Stop
P8 16 ESC Alerter Reset
P1 17 Cruise Control LED

P2 18 Motor 1 LED
P3 19 Motor 2 LED
P4 20 Motor 3 LED
P5 21 Motor 4 LED
P6 22 Door LED
P7 23 Speeding Flasher
P8 24 Speeding Buzzer

Within train_main.c, values are written to bank3out according to inputs from banklin

and bank2in. The following procedure is used:

bgdata.dout[2] = bank3out.byte.allpins; /* write all the bits to the output array */

send_outputs(&bgdata); /*send a data packet the CerealBox */
check_outputs(&bgdata); */ get the input data */

banklin.byte.allpins = bgdata.din[0]; /* chl-8 input data */

bank2in.byte.allpins = bgdata.din[1]; /* ch9-17 input data */

I

I

This speaker has a built in low-pass filter, so playing the engine and track noise through

this speaker creates a low frequency vibration on the seat above.

I

Figure 26. 15" speaker placed under the subject's chair.

Chapter 4: High-Speed Train Simulation

4.8 Seat Vibration
The last physical enhancement applied to the train simulator was to add vibrations to the

subjects chair using the 15" speaker driver shown in Figure 26. Cost is the driving factor

in choosing this method because other means like hydraulics systems are messy and

expensive. Commercial products that use the same voice coil drive principles are also

expensive and can not provide adequate bandwidth with sufficient power.

Chapter 4: High-Speed Train Simulation

4.9 Enhancement Cost
Table 10 summarizes the approximate cost of all the components used to upgrade the

train simulator. Considering that there are commercial train simulators that cost on the

order of $ 100K, the upgrades done here should be considered cost effective if subsequent

experiments provide more meaningful data.

Table 10. Enhancement Cost Summary.

ITEM APPROXIMATE COST

Pentium PC $2,000

SoundBlaster 16 Sound Card $100

Micro Works Sound System $300

Network Adapter $200

LAN Workplace for DOS $100

15" Speaker with crossover $150

Cabin Enclose $250

CerealBox serial data acquisition $800
Control Boxes $100

TOTAL $4,000

As mentioned early on, there is a balance between added fidelity and added cost. A

hydraulically controlled six degree-of-freedom platform would be a nice addition, but it

would not be appropriate considering the type of human-machine studies conducted.

Chapter 5: Conclusion

Chapter 5: CONCLUSION

The objective of this design project was to develop a framework for adding sound

enhancements to graphical simulations. The tools used within this framework include

programming the SoundBlaster 16 PC sound card to play both digitally sampled sounds

and FM synthesized sounds, establish an ethernet link between a PC and Unix

workstation, and interface external input devices. Each of these tools has been

successfully applied to the Volpe high-speed train simulator.

The most difficult aspect of adding sound to the Volpe train simulator was synchronizing

the track sound components. The solution of adding a variable delay at the end of each

component is only one solution, however. A more complicated method can be

constructed by taking advantage of the time-base running on the PC. Instead of using a

hard delay that actually stops the program after each component, triggering can be based

on time. This will be advantageous when the calculated delay between click-clack

sequences is long (i.e. low speeds). Using the current method, the time delay time is

limited to 3 seconds, so that the program does not lag behind. Because the train speeds

up quickly, the delays are usually no greater than 500 msec and thus are not noticeable.

Hence, if triggering is based on time, the main control loop is always running and can be

checking for user inputs like bell and horn flags continuously.

In addition, it is possible to make the system more user-friendly. In particular, when a

new sound or transfer variable needs to be included, several functions must be changed

and recompiled on both the PC and SGI. A streamlined version could possibly have a

user interface that controls all the variables being transferred and allows modifications

without recompiling the code.

Chapter 5: Conclusion

There are also other sounds effects that can be added to increase the overall realism

without increasing the system cost. For example, wind turbulence, could be digitally

sampled and played back during the simulation. Also, the train horn could be improved

to play as long as a lever is pulled, as opposed to just once each time a button is pressed.

This would require breaking the original digital recording into three sections: onset,

sustain, and decay. When the lever is pulled, the onset is played once followed by the

sustain phase. This lasts until the lever is released, at which point sustain then transitions

into the decay phase. This scheme would allow the train operator to control the horn

duration; as is the case when approaching a grade crossing.

Based on my experience, the following background allows one to more effectively add

sound to simulations: signal processing , digital filtering, and programming hardware. In

addition, knowing how to use a sound wave editor is essential for managing digital sound

effects. A good ear also helps.

Appendix A

APPENDICES

Appendix A: FM Sample Code
FM sample code goes here.
/*

* FM synthesizer low-level interface demo program.
* Copyright (c) 1993 Creative Labs, Inc.
*/

/*

* This program is not intended to explain all the aspects of FM sound
* generation on Sound Blaster cards. The chips are too complicated for
* that. This program is just to demonstrate how to generate a tone and
* control the left and right channels. For more information on the FM
* synthesizer chip, contact Yamaha.

* Here's a brief description of FM: Each sound is created by two operator
* cells (called "slots" in the Yamaha documentation), a modulator and a
* carrier. When FM synthesis was invented, the output value of the
* modulator affected the frequency of the carrier. In the Yamaha chips, the
* modulator output actually affects the phase of the carrier instead of
* frequency, but this has a similar effect.

* Normally the modulator and carrier would probably be connected in series
* for complex sounds. For this program, I wanted a pure sine wave, so I
* connected them in parallel and turned the modulator output down all the
* way and used just the carrier.

* Sound Blaster 1.0 - 2.0 cards have one OPL-2 FM synthesis chip at
* addresses 2x8 and 2x9 (base + 8 and base + 9). Sound Blaster Pro version
* 1 cards (CT-1330) achieve stereo FM with two OPL-2 chips, one for each
* speaker. The left channel FM chip is at addresses 2x0 and 2x1. The right
* is at 2x2 and 2x3. Addresses 2x8 and 2x9 address both chips
* simultaneously, thus maintaining compatibility with the monaural Sound
* Blaster cards. The OPL-2 contains 18 operator cells which make up the
* nine 2-operator channels. Since the CT-1330 SB Pro has two OPL-2 chips,
* it is therefore capable of generating 9 voices in each speaker.

* Sound Blaster Pro version 2 (CT-1600) and Sound Blaster 16 cards have one
* OPL-3 stereo FM chip at addresses 2x0 - 2x3. The OPL-3 is separated into
* two "banks." Ports 2x0 and 2x1 control bank 0, while 2x2 and 2x3 control
* bank 1. Each bank can generate nine 2-operator voices. However, when the
* OPL-3 is reset, it switches into OPL-2 mode. It must be put into OPL-3* mode to use the voices in bank 1 or the stereo features. For stereo* control, each channel may be sent to the left, the right, or both
* speakers, controlled by two bits in registers COH - C8H.

* The FM chips are controlled through a set of registers. The following
* table shows how operator cells and channels are related, and the register* offsets to use.

Frequency Modulation Sample Code

* FUNCTION MODULATOR- -CARRIER-- MODULATOR- -CARRIER-- MODULATOR- -
CARRIER--
* OP CELL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
*CHANNEL 1 2 3 1 2 3 4 5 6 4 5 6 7 8 9 7 8 9
*OFFSET 00 01 02 03 04 05 08 09 OA OB OC OD 10 11 12 13 14 15

* An example will make the use of this table clearer: suppose you want to
* set the attenuation of both of the operators of channel 4. The KSL/TOTAL LEVEL
* registers (which set the attenuation) are 40H - 55H. The modulator for
* channel 4 is op cell 7, and the carrier for channel 4 is op cell 10. The
* offsets for the modulator and carrier cells are 08H and 0BH, respectively.
* Therefore, to set the attenuation of the modulator, you would output a
* value to register 40H + 08H == 48H, and to set the carrier's attenuation,
* you would output to register 40H + OBH == 4BH.

* In this program, I used just channel 1, so the registers I used were 20H,
* 40H, 60H, etc., and 23H, 43H, 63H, etc.

* The frequencies of each channel are controlled with a frequency number and
* a multiplier. The modulator and carrier of a channel both get the same
* frequency number, but they may be given different multipliers. Frequency
* numbers are programmed in registers AOH - A8H (low 8 bits) and BOH - B8H
* (high 2 bits). Those registers control entire channels (2 operators), not
* individual operator cells. To turn a note on, the key-on bit in the
* appropriate channel register is set. Since these registers deal with
* channels, you do not use the offsets listed in the table above. Instead,
* add (channel-I) to AOH or BOH. For example, to turn channel 1 on,* program the frequency number in registers AOH and BOH, and set the key-on
* bit to 1 in register BOH. For channel 3, use registers A2H and B2H.

* Bits 2 - 4 in registers BOH - B8H are the block (octave) number for the
* channel.

* Multipliers for each operator cell are programmed through registers 20H -
* 35H. The table below shows what multiple number to program into the
* register to get the desired multiplier. The multiple number goes into
* bits 0 - 3 in the register. Note that it's a bit strange at the end.

* multiple number multiplier multiple number multiplier
* 0 1/2 8 8
* 1 1 9 9
* 2 2 10 10
* 3 3 11 10
* 4 4 12 12
* 5 5 13 12
* 6 6 14 15
* 7 7 15 15

* This equation shows how to calculate the required frequency number (to
* program into registers AOH - A8H and BOH - B8H) to get the desired
* frequency:
* fn=(long)f * 1048576 / b / m /50000L
* where f is the frequency in Hz,
* b is the block (octave) number between 0 and 7 inclusive, and
* m is the multiple number between 0 and 15 inclusive.

Appendix A

#define STEREO
#define OPL3

// Define this for SBPro CT-1330 or later card.
// Also define this for SBPro CT-1600 or later card.

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <ctype.h>
#include <dos.h>

#define KEYON 0x20 // key-on bit in regs bO - b8

/* These are offsets from the base I/O address. */
#define FM 8 // SB (mono) ports (e.g. 228H and 229H)
#define PROFM1 0 I On CT-1330, this is left OPL-2. On CT-1600 and

// later cards, it's OPL-3 bank 0.
#define PROFM2 2 // On CT-1330, this is right OPL-2. On CT-1600 and

// later cards, it's OPL-3 bank 1.

#ifdef OPL3
#define LEFT 0x10
#define RIGHT

#endif
0x20

unsigned IOport; // Sound Blaster port address

void mydelay(unsigned long clocks)

* "clocks" is clock pulses (at 1.193180 MHz) to elapse, but remember that
* normally the system timer runs in mode 3, in which it counts down by twos,
* so delay3(1193180) will only delay half a second.

* clocks = time * 2386360

*time clocks / 2386360

unsigned long elapsed=0;
unsigned int last,next,ncopy,diff;

/* Read the counter value. */
outp(0x43,0);
last=inp(0x40);
last=-((inp(0x40)<< 8) + last);

do {
/* Read the counter value. */
outp(0x43,0);

/* want to read timer 0 */
/* low byte */

/* high byte */

/* want to read timer 0 */

Frequency Modulation Sample Code

next=inp(0x40); /* low byte */
ncopy=next=-((inp(0x40)<< 8) + next); /* high byte */

next-=last; /* this is now number of elapsed clock pulses since last read */

elapsed += next; /* add to total elapsed clock pulses */
last=ncopy;

} while (elapsed<clocks);

int basel6(char **str, unsigned *val)
/* Takes a double pointer to a string, interprets the characters as a
* base-16 number, and advances the pointer.
* Returns 0 if successful, 1 if not.

char c;
int digit;
*val = 0;

while (**str != ') {
c = toupper(**str);
if (c >= '0' && c <= '9')

digit = c -'0';
else if (c >= 'A' && c <= 'F')

digit = c -'A' + 10;
else

return 1; // error in string

*val = *val * 16 + digit;
(*str)++;

return 0;

int basel0(char **str, unsigned *val)
/* Takes a double pointer to a string, interprets the characters as a
* base-10 number, and advances the pointer.
* Returns 0 if successful, 1 if not.

char c;
int digit;
*val = 0;

while (**str != ') {
c = toupper(**str);
if (c >= '0' && c <= '9')

digit = c -'0';
else
return 1; // error in string

-I-U" - ----

I

w

Appendix A

*val = *val * 10 + digit;
(*str)++;

}
return 0;

unsigned ReadBlasterEnv(unsigned *port, unsigned *irq, unsigned *dma8,
unsigned *dmal6)
/* Gets the Blaster environment statement and stores the values in the
* variables whose addresses were passed to it.
* Returns:
* 0 if successful
* 1 if there was an error reading the port address.
* 2 if there was an error reading the IRO number.
* 3 if there was an error reading the 8-bit DMA channel.
* 4 if there was an error reading the 16-bit DMA channel.

char *env;
unsigned val;
int digit;

env = getenv("BLASTER");

while (*env) {
switch(toupper(*(env++))) {

case 'A':
if (basel6(&env, port))

return 1; //errc
break;

case 'I':
if (basel0(&env, irq)) H

return 2; //errc
break;

case 'D':
if (basel0(&env, dma8))
return 3;

break;
case 'H':

if (baselO(&env, dmal6))
return 4;

break;
default:

break;

// interpret port value as hex
Dr

'interpret IRQ as decimal
r 8-bit DMA channel is decimal

// 816-bit DMA channel is decimal

// 16-bit DMA channel is decimal

return 0;

void FMoutput(unsigned port, int reg, int val)
/* This outputs a value to a specified FM register at a specified FM port. */

I

Frequency Modulation Sample Code

outp(port, reg);
mydelay(8);
outp(port+1, val);
mydelay(55);

/* need to wait 3.3 microsec */

/* need to wait 23 microsec */

void fm(int reg, int val)
/* This function outputs a value to a specified FM register at the Sound
* Blaster (mono) port address.

FMoutput(lOport+FM, reg, val);

void Profml (int reg, int val)
/* This function outputs a value to a specified FM register at the Sound
* Blaster Pro left FM port address (or OPL-3 bank 0).*/

FMoutput(lOport+PROFM1, reg, val);

void Profm2(int reg, int val)
/* This function outputs a value to a specified FM register at the Sound
* Blaster Pro right FM port address (or OPL-3 bank 1).*/

FMoutput(lOport+PROFM2, reg, val);

void main(void)

int i,vall,val2;

int block,b,m,f,fn;

unsigned dummy;

clrscr();

ReadBlasterEnv(&lOport, &dummy, &dummy, &dummy);

#ifdef STEREO
#ifdef OPL3

printf("Program compiled for Sound Blaster Pro ver. 2 (CT-1600) and SB16 cards.\n");
#else

printf("Program compiled for Sound Blaster Pro ver. 1 (CT-1330) cards.\n");

Appendix A

#endif
#else

printf("Program compiled for Sound Blaster 1.0 - 2.0 cards (monaural).\n");
#endif

fm(1,0); /* must initialize this to zero */

#ifdef OPL3
Profm2(5, 1); /* set to OPL3 mode, necessary for stereo */
fm(OxCO,LEFT I RIGHT I 1); /* set both channels, parallel connection */

#else
fm(OxCO, 1); /* parallel connection */

#endif

* Set parameters for the carrier cell *

fm(0x23,0x21); /* no amplitude modulation (D7=0), no vibrato (D6=0),
* sustained envelope type (D5=1), KSR=0 (D4=0),
* frequency multiplier=l (D4-DO=1)
*/

fm(0x43,0x0); /* no volume decrease with pitch (D7-D6=0),
* no attenuation (D5-DO=0)

fm(0x63,0xff); /* fast attack (D7-D4=OxF) and decay (D3-DO=OxF) */
fm(0x83,0x05); /* high sustain level (D7-D4=0), slow release rate (D3-DO=5) */

* Set parameters for the modulator cell *
, . * .*****,t* *** t**************** /

fm(0x20,0x20); /* sustained envelope type, frequency multiplier=0 */
fm(0x40,0x3f); /* maximum attenuation, no volume decrease with pitch */

/* Since the modulator signal is attenuated as much as possible, these
* next two values shouldn't have any effect.
*/

fm(0x60,0x44); /* slow attack and decay */
fm(0x80,0x05); /* high sustain level, slow release rate */

* Generate tone from values looked up in table. *

printf("440 Hz tone, values looked up in table.\n");
fm(Oxa0,0x41); /* 440 Hz */
fm(Oxb0,0x32); /* 440 Hz, block 0, key on */

getche();

Frequency Modulation Sample Code

fm(Oxb0,0x12); /* key off */

* Generate tone from a calculated value. *

printf("440 Hz tone, values calculated.\n");
block=4; /* choose block=4 and m=1 */
m=1; /* m is the frequency multiple number */
f=440; /* want f=440 Hz */
b= 1 << block;

/* This is the equation to calculate frequency number from frequency. */

fn=(long)f * 1048576 / b / m /50000L;

fm(0x23,0x20 I (m & OxF)); /* 0x20 sets sustained envelope, low nibble
* is multiple number

fm(0xAO,(fn & OxFF));
fm(0xB0,((fn >> 8) & 0x3) + (block << 2) 1 KEYON);

getche();

* Generate a range of octaves by changing block number. *

printf("Range of frequencies created by changing block number.\n");
for (block=0; block<=7; block++) {

printf("f=%51d Hz (press Enter)\n",(long)440*(1 << block)/16);
fm(0xB0,((fn >> 8) & 0x3) + (block << 2) 1 KEYON);
getche();

* Generate a range of frequencies by changing frequency number. *

printf("Range of frequencies created by changing frequency number.\n");
block=4;
for (fn=0; fn<1024; fn++) {

fm(0xAO,(fn & OxFF));
fm(0xB0,((fn >> 8) & 0x3) + (block << 2) I KEYON);
delay(1);

}

* Single tone again. Both channels, then if on stereo board,* play tone in just the left channel, then just the right channel. *

Appendix A

printf("440 Hz again, both channels.\n");
block=4;
fn=577; /* This number makes 440 Hz when block=4 and m=1 */
fm(0xAO,(fn & OxFF));
fm(0xB0,((fn >> 8) & 0x3) + (block << 2) I KEYON);

#ifdef STEREO
#ifdef OPL3
/* This left and right channel stuff is the only part of this program
* that uses OPL3 mode. Everything else is available on the OPL2.

getche();
printf("Left channel only\n");
fm(OxCO,LEFT I 1); /* set left channel only, parallel connection */

getche();
printf("Right channel only\n");
fm(OxCO,RIGHT I 1); /* set right channel only, parallel connection */

#else
getche();
fm(0xB0,((fn >> 8) & 0x3) + (block << 2)); // key off

printf("Left channel only\n");
Profml(OxBO,((fn >> 8) & 0x3) + (block << 2) 1 KEYON);

getche();
Profml(OxBO,((fn >> 8) & 0x3) + (block << 2)); // key off

printf("Right channel only\n");
Profm2(0xBO,((fn >> 8) & 0x3) + (block << 2) I KEYON);

#endif
#endif

* Attenuate the signal by 3 dB. *

getche();
fm(0xB0,((fn >> 8) & 0x3) + (block << 2) I KEYON);
printf("Attenuated by 3 dB.\n");
fm(0x43,4); /* attenuate by 3 dB */
getche();

fm(0xB0,((fn >> 8) & 0x3) + (block << 2));

#ifdef OPL3
/* Set OPL-3 back to OPL-2 mode, because if the next program to run was
* written for the OPL-2, then it won't set the LEFT and RIGHT bits to
* one, so no sound will be heard.

Profm2(5, 0); /* set back to OPL2 mode */
#endif
}
Mixtest goes here. code goes here.

_··_I_·3i__UI___Y_~·_ ·;· ·-ll·-YI-i*l---l^ I-I·_ ---̂ _~· I _·~-·I

Appendix B

Appendix B: Digital Playback Sample Code
/* SMIXC is Copyright 1995 by Ethan Brodsky. All rights reserved */

/*.** MIXTEST.C * **** ** */

#include <conio.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#include "detect.h"
#include "smix.h"

#define ON 1
#define OFF 0

#define TRUE 1
#define FALSE 0

#define SHAREDEMB /* Undefine this to store all sounds in separate EMBs */
#define NUMSOUNDS 6 /* Change this if you want to add more sounds */

char *resource_file = "mixtest.snd";

char *sound_key[NUMSOUNDS] =
{

"JET",
"GUN",
"CRASH",
"CANNON",
"LASER",
"GLASS"
};

int baseio, irq, dma, dmal6;

SOUND *sound[NUMSOUNDS];

int stop;

long counter;

char inkey;
int num;
int temp;

void ourexitproc(void)
{

int i;

for (i=0; i < NUMSOUNDS; ++i)
if (sound[i] != NULL) free_sound(sound+i);

#ifdef SHAREDEMB
shutdown_sharing();

#endif

Digital Playback Sample Code

I

void init(void)
{

int i;

randomize();

printf("---\n");
printf("Sound Mixing Library v1.27 by Ethan Brodsky\n");
if (!detect_settings(&baseio, &irq, &dma, &dmal6))
{

printf("ERROR: Invalid or non-existant BLASTER environment variable!\n");
exit(EXITFAILURE);

}
else
{
if (!initsb(baseio, irq, dma, dmal6))
{

printf("ERROR: Error initializing sound card!\n");
exit(EXITFAILURE);

}
}

printf("BaselO=%Xh IRQ%u DMA8=%u DMA16=%u\n", baseio, irq, dma, dma16);

printf("DSP version %.2f: ", dspversion);
if (sixteenbit)
printf("16-bit, ");

else
printf("8-bit, ");

if (autoinit)
printf("Auto-initialized\n");

else
printf("Single-cycle\n");

if (!initxms())
{
printf("ERROR: Can not initialize extended memory\n");
printf("HIMEM.SYS must be installed\n");
exit(EXIT_FAILURE);

}
else
{

printf("Extended memory successfully initialized\n");
printf("Free XMS memory: %uk ", getfreexmso);
if (!getfreexms())
{

printf("ERROR: Insufficient free XMS\n");
exit(EXIT_FAILURE);

}
else
{

printf("Loading sounds\n");
#ifdef SHAREDEMB

initsharing();

Appendix B

#endif
open_sound_resource_file(resource_file);

for (i=0; i < NUMSOUNDS; i++)
load_sound(&(sound[i]), sound_key[i]);

atexit(ourexitproc);

close_sound_resource_file();
}

}
init_mixing();
printf("\n");

void shutdown(void)
{
int i;

shutdown_mixing();
shutdown_sb();

for (i=0; i < NUMSOUNDS; i++)
free_sound(sound+i);

#ifdef SHAREDEMB
shutdown_sharing();

#endif
printf("\n");
}

int main(void)
{
init();

start_sound(sound[0], 0, ON); /* Start up the jet engine */

printf("Press:\n");
printf(" 1) Machine Gun\n");
printf(" 2) Crash\n");
printf(" 3) Cannon\n");
printf(" 4) Laser\n");
printf(" 5) Breaking glass\n");
printf(" Q) Quit\n");

stop = FALSE;

counter = 0;

do
{
/* Increment and display counters */
counter++;
cprintf("%81u %81u %4u", counter, intcount, voicecount);
gotoxy(1, wherey());

/* Maybe start a random sound */
if (!random(10000))

Digital Playback Sample Code

{
num = (random(NUMSOUNDS-1))+1;
start_sound(sound[num], num, OFF);
}

/* Start a sound if a key is pressed */
if (kbhit())
{

inkey = getch();
if ((inkey >= '0') && (inkey <= '9'))
{
num = inkey - '0'; /* Convert to integer */
if (num < NUMSOUNDS)

start_sound(sound[num], num, FALSE);
}

else
stop = TRUE;

}
}

while (!stop);

printf("\n");
stop_sound(0); /* Stop the jet engine */

shutdown();

return(EXIT_SUCCESS);
}

Appendix C

Appendix C: Ethernet Code
Client Code:

* Copyright (C) Human-Machines Systems Laboratory, MIT, 1994
* File: NetClint.h
* Function: network client program
* Created in C by Shi-Ken Chen in 1993.
* Modified to C++ by Jie Ren in 1994.
* Added HostlP class by Steven G. Villareal in 1997

extern "C"{
//#include <sys/socket.h>
#include "socket.h" //did this to keep all the relevant file in 1 dir.
}

#ifndef netclinth
#define _netclinth

class NetClient {
private:

int socketOpen;
fd_set readfds, writefds;
char hostip[15],inchar;

protected:
public:

NetClient(char *);
-NetClient();
int open(int);
void closeo);
int send(char *, int);
int recv(char *, int);
int isreadready();
int iswriteready();

class HostlP {
private:

char hostip[15];
public:

HostlP(char *);
-HostlP();
char *returnlP();

#endif /*_NetClient_h */

Ethernet Code

* Copyright (C) Human-Machines Systems Laboratory, MIT, 1994
* File: NetClint.cpp
* Function: network client program
* Created in C by Shi-Ken Chen in 1993.
* Modified to C++ by Jie Ren in 1994.
* Added HostlP class by Steven G. Villareal in 1997.

#include <iostream.h>
#include <stdio.h>
#include <conio.h>
#include <string.h>
#include <process.h> // Necessary to run in C++ environment
#include "netclint.h"

* host : ip address, such as "89.0.0.5"

NetClient::NetClient(char *host)
{

strcpy(hostip, host);
if (!loaded()) { // to see if the network driver is installed.

printf("The TCP/IP protocol stack is not loaded\n");
exit(l);

}
socketOpen = -1;

NetClient::-NetClient()
{

if (socketOpen >= 0) close();

H/-------------------------------------- ------------
// Make the network connection
// port: 1024-4999, has to match the port number in server!
// return: 1 - open successfully
// 0 - can not open.
l--------------------------------------- ------------
int NetClient::open(int port)
{

struct sockaddr_in addr;
int i;

// make a local socket
if ((socketOpen = socket(PFINET, SOCKSTREAM, 0)) < 0) {

soperror("socket");
return 0;

// connect the local socket to sever.
unsigned long remote_ip;
char *host = hostip;
if ((remoteip = rhost(&host)) == -1) {

printf("Unknown or illegal hostname = %s", hostip);
return 0;

}

- -_1_11·-·11111- ·L. __._ _~_·_ ~_^_1_·~_II·. _I-ii--~-C···-

Appendix C

printf("\n\n Opened netclient (%s). Socket #%d ", hostip, socketOpen);

bzero ((char *)&addr, sizeof(addr));
addr.sinfamily = AF_INET;
addr.sin_port = htons(port);
addr.sin_addr.s_addr = remote_ip;
if (connect(socketOpen, (struct sockaddr *)&addr, sizeof(addr)) < 0) {

soperror("connect");
return 0;

}

return 1;
}

II-------------------------------------- ------------
// Close the connection and the socket
/--------------------------------------- --------------
void NetClient::close()
{

soclose(socketOpen);
socketOpen = -1;

}

/-------------------------------------- ------------
// To see if the socket (network) is connected.
// return : 1 - yes
// 0- no
II-------------------------------------- ------------
int NetClient::isreadready()
{

struct timeval seltime;

FD_ZERO(&readfds);
FD_SET(socketOpen, &readfds);

seltime.tv_sec = 1; seltime.tv_usec = 0;
int se= select(socketOpen+1, &readfds, (fd_set *) 0, (fd_set *) 0, &seltime);
if (se <= 0) return 0;
return 1;

int NetClient::iswriteready()
{

struct timeval seltime;

FD_ZERO(&writefds);
FD_SET(socketOpen, &writefds);
seltime.tv_sec = 1; seltime.tv_usec = 0;
int se= select(socketOpen+1, (fd_set *) 0, &writefds, (fd_set *) 0, &seltime);
if (se <= 0) return 0;

return 1;
}

/ send buffers (length of slen) to server
/ return: the number of bytes sent.

Ethernet Code

// < -1 fail.
int NetClient::send(char *buffer_s, int slen)
{

int sn;
if (FD_ISSET(socketOpen, &writefds)) {

sn = sowrite(socketOpen, buffer_s, slen); //BUFFER_SIZE);
if (sn < 0) {

//soclose(socketOpen);
fprintf(stderr, "\07 send error! \n");

return -1;
}

return sn;

// receive buffer_r (length of rlen) from server
// return : the number of bytes received
// : -1 - failure.
int NetClient::recv(char *buffer_r, int rlen)
{

int len;
if (FD_ISSET(socketOpen, &readfds)) {

// printf("R ");
len = soread(socketOpen, buffer_r, rlen);

//printf("%d, %s ",len,buffer_r);
} else {

fprintf(stderr,"\07 receive failure!\n");
return -1;

}
return len;

}

/* This function is used to prompt the user for the host IP
address if it has not been enterned entered on the command line. */

HostlP::HostlP(char *commandline)
{

strcpy(hostip, (commandline+l)); //copy command line arguments
cout << "command line argument entered is "<<hostip<<endl;
if(commandline[0]!='-') { //if not command arguments ask for them

cout<<"Enter the Host IP Numerical Address: ";
cin >> hostip;

}
else {

cout << "Command line arguemt used!"<<endl;
}

HostlP::-HostlP()
{

char *HostlP::returnlP(void)
{

return hostip;

Appendix C

Copyright (C) Human-Machines Systems Laboratory, MIT, 1997
File: unihost.cpp

The following program is a modification to the original networking
code written by Dr. Chin and Dr. Ren and prompts the user to enter
the ip address of the host machine. This provides a better user
environment. On the command line, type "-ipadress" after the file
name otherwise you will be prompted to enter the ip address.

*#include <iostream.h>*********

#include <iostream.h>
#include <conio.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <dos.h>
#include <ctype.h>
#include <string.h>
#include <sys\timeb.h>
#include <math.h>
#include <stddef.h>
#include "netclint.h"
#define ON 1
#define OFF 0
#define TRUE 1
#define FALSE 0

/*Networking Definitions*********************************/
#define ESC 27
#define ECHO_PORT 1109
#define BUFFER_SIZE 80

/*Function Prototypes"*****.******"*.***.*******../
void InitializeNetwork(NetClient &enet);
void NetSendRecv(NetClient &enet, float dataout, float *datalin, float *data2in,

int *data3in, int *data4in);

/*Networking Global Variables*/
int host, len;
char buffer_recv[BUFFER_SIZE], buffersend[BUFFER_SIZE];

void main(int argc,char *argv[])
{

int transfercount =0, data3in, data4in;
float dataout,datainl ,datain2;
dataout = 579;

HostlP ipaddress(argv[1]);
NetClient enet(ipaddress.returnlP();
InitializeNetwork(enet);

do{
NetSendRecv(enet, transfercount, &datainl, &datain2, &data3in, &data4in);
transfercount++;
cout <<"Transfer #"<<transfercount

<<" buffer_recv = " << buffer_recv

Ethernet Code

<< " buffersend = "<< buffersend
<<endl;

} while (!kbhito);

/*Network Functions */

void InitializeNetwork(NetClient &enet)
{

if (!enet.open(ECHO_PORT)) {
printf("couldn't open network connection\n");
exit(l);

}

void NetSendRecv(NetClient &enet, float dataout, float *datal in, float *data2in,
int *data3in, int *data4in)

{

if(enet.iswritereadyo) {
sprintf(buffer_send,"%3.2f",dataout); //send argument variable
enet.send((char *)buffer_send, BUFFER_SIZE); //Data sent out of the pc
printf("write ready \n\n");

}
else printf("write not ready \n");

if(enet.isreadreadyo) {
len=enet.recv((char *)buffer_recv, BUFFER_SIZE);
printf("reading data from the buffer \n\n");
sscanf(bufferrecv,"%f %f %d %d",datalin,data2in,data3in,data4in); //Data received from

host
if(len<=0) {

printf("\n zero receiving length");
exit(l);

}
}
else {

printf("\n not connected: read not ready \n");
}

}

Appendix C

Copyright (C) Human-Machines Systems Laboratory, MIT, 1997
Authors(s): Jianjuan Hu, Steven G. Villareal

File: multinet.cpp
The following program uses the networking code written by Dr. Chin
and Dr. Ren to link a PC (client) to 2 SGI workstations (hosts). The IP
addresses of the 2 host machines are defined here.

#include <iostream.h>
#include <conio.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <dos.h>
#include <ctype.h>
#include <string.h>
#include <sys\timeb.h>
#include <math.h>
#include <stddef.h>
#include "netclint.h"
#define ON 1
#define OFF 0
#define TRUE 1
#define FALSE 0

/*Networking Definitions***** ** ***************************
#define ESC 27
#define ECHO_PORT_1 1109 //Must have SAME definition in host 1 code
#define ECHO_PORT_2 1100//Must have SAME definition in host 2 code
#define BUFFER_SIZE 80 //Must have SAME definitionon both host codes

/*Function Prototypes"***.***.. **.***..****"***.../
void InitializeNetwork(NetClient &enet, int &echo_port);
void NetSendRecv_l (NetClient &enet, float dataout, float *datal in, float *data2in,

int *data3in, int *data4in);
void NetSendRecv_2(NetClient &enet, float dataout, float *datal in, float *data2in,

int *data3in, int *data4in);

/*Networking Global Variables*/
int len, echo_port;
char buffer_recv_l [BUFFER_SIZE], buffer_send_l [BUFFERSIZE];
char buffer_recv_2[BUFFER_SIZE], buffer_send_2[BUFFER_SIZE];

void main(int argc,char *argv[])
{

int transfercount =0, data3in, data4in;
float dataout_l1, dataout_2,datainl,datain2;
dataout_1 = 111;
dataout_2 = 222;

/* Initialization for Host 1 object */
NetClient Host1 ("89.0.0.7"); //host1 IP is set within code here
InitializeNetwork(Hostl, ECHO_PORT_1); //second argument not needed when

//using only 1 host.

Ethernet Code

/* Initialization for Host 2 object */
NetClient Host2("89.0.0.5"); //host2 IP is set within code
InitializeNetwork(Host2, ECHO_PORT_2);

do{
NetSendRecv_l(Hostl, dataout_l, &datainl, &datain2, &data3in, &data4in);
NetSendRecv_2(Host2, dataout_2, &datainl, &datain2, &data3in, &data4in);
transfercount++;
cout <<"Transfer #"<<transfercount

<<" bufferrecv_1 = " << buffer_recv_l
<< " buffersend_1 = "<< buffer_send_1
<<endl;

cout <<"Transfer #"<<transfercount
<<" buffer recv2 = " << buffer_recv_2
<< " buffersend_2 = "<< buffersend_2
<<endl;

} while (!kbhito);

/*Network Functions */

void InitializeNetwork(NetClient &enet, int &echo_port)
/* Added the second argument so that only one function is needed to initialize

multiple hosts*/
{

if (!enet.open(echo_port)) {
printf("couldn't open network connection\n");
exit(1);

}

void NetSendRecv_l(NetClient &enet, float dataout, float *datalin, float *data2in,
int*data3in, int *data4in)

/* The number and type of arguments should agree with host sending function*/

if(enet.iswriteready() {
sprintf(buffer_send_l ,"%3.2f",dataout); /send argument variable
enet.send((char *)buffer_send_l, BUFFER_SIZE); //Data sent out of the pc
printf ("write ready \n\n");

}
else printf("write not ready \n");

if(enet.isreadready() {
len=enet.recv((char *)bufferrecvl ,BUFFER_SIZE);
printf("reading data from the buffer \n\n");
sscanf(buffer_recvl,"%f %f %d %d",datal in,data2in,data3in,data4in); //Data received

from host
if(len<=0) {

printf("\n zero receiving length");

Appendix C

exit(1);
}

}
else {

printf("\n not connected: read not ready \n");
}

void NetSendRecv_2(NetClient &enet, float dataout, float *datal in, float *data2in,
int *data3in, int *data4in)

{

if(enet.iswriteready()) {
sprintf(buffersend_2,"%3.2f",dataout); //send argument variable
enet.send((char *)buffer_send_2, BUFFER_SIZE); //Data sent out of the pc
printf ("write ready \n\n");

}
else printf("write not ready \n");

if(enet.isreadready()) {
len=enet.recv((char *)buffer_recv_2,BUFFERSIZE);
printf("reading data from the buffer \n\n");
sscanf(buffer_recv_2,"%f %f %d %d",datalin,data2in,data3in,data4in); //Data received

from host
if(len<=0) {

printf("\n zero receiving length");
exit(1);

}
}
else {

printf("\n not connected: read not ready \n");
}

}

Ethernet Code

Host Programs:

Copyright (C) Human-Machine Systems Laboratory,
Massachusetts Institute of Technology

File: unixnet.h
Function: Ether-network connection between IRIS and PC

Created by Shi-Ken Chen in C, 1993
Modified by Jie Ren in C++, Aug. 1994.

#define NETUNIX // comment out when used in PC!!!!

#ifdef NET_UNIX
#include <termio.h>
#include <sys/socket.h>
#include <sys/endian.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <bstring.h>
#include <sys/time.h>
#define soread read
#define sowrite write
#define soclose ::close
int kbhit();

#else /*PC*/
#include <time.h>
#include <stdlib.h>
#include <conio.h>
extern "C" {
#include <sys/socket.h>

#endif

#ifndef unixnet h
#define _unixneth

/* For iris, the socket number starts with -3
the accept will creat new socket from -7, 8

#define MAX_SOCKETS 16

/* @ Introduction
Class 'NetServer' is a network server object. It opens and
close a connection socket. The port number used is from
1024 to 4999 for a unix system (pc users may use 7-?).
A server and a client has to be synchronized (use the same
transfer rate). Otherwise the data will be piled up in the
receiver buffer, which will result transfer delay.

class NetServer {
private:

int in_use[MAX_SOCKETS];

Appendix C

int socketMin;
int socketMax;
int firstcreat;
int port;
int socketOpen, wksocket;

protected:
void read_and_echo(int, char*, int);
void make_new_echo(int);

public:

/* @ Section Constractors*/
NetServer(int);
-NetServer();

/*@ClassMethods */
int isconnected();
int send(char *, int);
int recv(char *, int);
int open();
void closeo);

#endif /*_unixneth*/

Ethernet Code

Copyright (C) Human-Machine Systems Laboratory,
Massachusetts Institute of Technology

File: unixnet.cpp
Function: Ether-network connection between IRIS and PC

Created by Shi-Ken Chen in C, 1993
Modified by Jie Ren in C++, Aug. 1994.

#include <stdio.h>
#include <sys/types.h>

#include "unixnet.h"

/*@Method
Constractor: port_num: 1024-4999 for assignment to clients.

The clinet port number must match this
server port number.

NetServer::NetServer(int port_num)
{

port = port_num;
socketOpen = -1;

#ifndef NET_UNIX //for PC only.
if (!loaded()) {

fprintf(stderr," The TCP/IP protocol stack is not loaded\n");
exit(l);

}
#endif /*NET_UNIX*/

/* @ Method
if the socket is open, close it.

NetServer::-NetServer()
{

if (socketOpen > 0) closeo);
}

/* @ Method
open a socket and bind it to clinet socket (with 'port' number).
return: 1 - successful

0 - failure

int NetServer::openo
{

int x;
struct sockaddr_in addr;

for (x = 0; x <= MAX_SOCKETS; x++) {
in_use[x] = 0; // every port is free.

}

Appendix C

/* open a local socket */
if ((socketOpen = socket(PF_INET, SOCK_STREAM, 0)) < 0) {

perror("socket");
return 0;

}

int on=1; /* override the socket addr if it is in use */
/* in PC, it is char on = 1 */
/* but 'char on=1' does not work with iris */

setsockopt(socketOpen, SOLSOCKET, SO_REUSEADDR, &on, sizeof(on));

/* binding the local socket to clinent */
bzero ((char *)&addr, sizeof(addr));
addr.sin_family = AFINET;
addr.sin_port = htons(port);
addr.sin_addr.s_addr = 0;

// printf("SocketOpen=%d\t Port=%d\n",socketOpen,port);

if (bind(socketOpen, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
(void) closeo);
perror("bind");
return 0;

} //else printf(" so=%d ", socketOpen);

// To indicate that a socket is ready to listen for imcoming
// connection requests, 5 is is currently limited by the system.
if (listen(socketOpen, 5) < 0) {

(void) close();
perror("listen");
return 0;
}

firstcreat = 1; // synchronize with accept
socketMin = socketOpen;
socketMax = socketOpen;

return 1;

/*@Method close network socket
*/

void NetServer::close()
{
soclose(socketOpen);
socketOpen = -1; // indicates that the socket has been closed.
}

/* @ Method
* Test to see if the the network socket is connected
* return 0 : wait for connection
* >0 : ready to receive/send socket

int NetServer::isconnected()

Ethernet Code

static int x,i;
static struct timeval seltime;
static fd_set readfds;

FDZERO(&readfds);
seltime.tv_sec = 0; seltime.tv_usec = 0;
FDSET(socketOpen, &readfds);

// set all sockets in use for reading.
for (x = socketMin; x <= socketMax; x++) {

if (inuse[x]) {
//printf(" x=%d ", x);

FD_SET(x, &readfds);
}

i = select(MAX_SOCKETS,&readfds, (fdset *) 0, (fd_set *) 0,&seltime);

if (i <= 0) { // wait for clinet's response
//fprintf(stderr, " Select Error!");
return 0;

}
**/

wksocket = socketOpen;
//for (x = 0; x < MAX_SOCKETS; x++) {

for (x = socketMin; x <= socketMax; x++) {
if (FD_ISSET(x, &readfds)) {

if (x != socketOpen) {
//read_and_echo(x, recvbuf, recvlen);
wksocket = x;
return 1;
) else {
make_new_echo(x);
return 0;
}

/* @Method
* Read a socket into recvbuf (buffer), with
* a length of recvlen.
* The user provides rooms for the recvbuf!
* return : number of bytes received.
* -1: failure.

int NetServer::recv(char *recvbuf, int recvlen)
{

static int len;

if ((len = soread(wksocket, recvbuf, recvlen)) <= 0) {
fprintf(stderr,"\nFail to receive from socket #%d. Len=%d\n",

wksocket, len);
inuse[wksocket] = 0;

-~""`~~

Appendix C

return -1;
}
return len:

}

/* @ Method
* Send the content in sendbuf (buffer), with
* a length of sendlen, to the client.
* return : the number of bytes sent.
* -1: failure.

int NetServer::send(char *sendbuf, int sendlen)
{

static int rc;

rc = sowrite(wksocket, sendbuf, sendlen);
if (rc < 0) {

fprintf(stderr,"Fail to send by socket #%d\n", wksocket);
in_use[wksocket] = 0;
return -1;

}
return rc;

/* @ Method
* Make a new socket using accept()

void NetServer::make_new_echo(int s)
{

int ns;
struct sockaddr_in peer;
int peersize = sizeof(peer);

if ((ns = accept(s, (struct sockaddr *)&peer, &peersize)) < 0) {
fprintf(stderr,"Could not accept new connection\n");
return;
}

if (ns >= MAX_SOCKETS) {
fprintf(stderr, "\07 Socket index exceeds maximum!\n");
}

if (firstcreat) {
//socketMin = ns;
socketMax = ns;
firstcreat = 0;
} else socketMax = ns;
in_use[ns] = 1;

fprintf(stderr,"\n Created socket #%d from %s:%d",
ns, inet_ntoa(peer.sin_addr), htons(peer.sinport));

#ifdef NET_UNIX

Ethernet Code

/*-------------------------------------- ----- *1
int kbhito /* test if keyboard has been hit */
1*--
{

int n;
extern int errno;
if (ioctl(fileno(stdin), FIONREAD, &n))

fprintf(stderr, "ioctl() returns error #%d\n", errno);
return(n>O? n: 0);

}
#endif /*NET_UNIX*/

100

Appendix C

* Copyright (C) Human-Machines Systems Laboratory, MIT, 1997
* File: netlink.cpp (HOST program)
* This program creates an ethernet link between an SGI and a PC
* running NetClint.cpp software developed by the HMSL. This

program must be started before the client!

#include <gl/gl.h>
#include <gl/device.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <curses.h>
#include <time.h>
#include "unixnet.h"

/*================== NETWORK =======================================*
#define ECHO_PORT 1109 /* the clinet has to use the same port#*/
#define BUFFER_SIZE 80 /* the clinet should have the same size!! */
char buf_send[BUFFER_SIZE];
char buf_recv[BUFFER_SIZE];
char inkey;
short val;
Device dev;

int networkSendRecv(float datalout,float data2out,
int data3out, int data4out, float *datain);

NetServer netserv(ECHO_PORT);

int main(void)
{

/*---------------------.*/
/* initialize variables */
/*_---------------..
float k=0;
float t=1.0;;

/*----------------------------.-------- --*

/* open network connection with Phantom PC */
/*-------------.----------------------- --*

if (!netserv.openo) {
fprintf(stderr, "\07 Network is not ready!\n");
exit(l);

}
else {
fprintf(stderr, "\n\n The TCP server (%d) is ready.\n",

ECHO_PORT);
}

/*----------.-----------------------*/
/* configure and open display window */
/* ---------------------------------- */

101

Ethernet Code

prefposition(0,640,540,1023);
winopen("input");

color(BLACK);
gconfig();

/* /----------
/* set up queuing */
/* -------------- */

qdevice(ESCKEY);
qdevice(KEYBD);

/*---------------- . .*/
/* main control loop */
/*------------------*/

while(1) {
if(qtestO) f

dev = qread(&val);
if (dev == ESCKEY) exit(0);
switch (val) {

case '1':
k--;
break;

case '2':
k++;
break;

}
}

/* Receive/Transfer Data and Calculate the velocity based on the time transmitted from PC.

networkSendRecv(k, 11,1,,&t);
if(*buf_recv!='N') {
printf ("Data In from PC ==> %s Data Out from sgi ==> %s \n",buf_recv,buf_send);
}

return 0;
}

/* receive data from the network.
This server sends out a string of data ONLY after receiving
and the client operates in the same manner.
In this way, the server and client are synchronized.

return -1 : when waiting for connection
>=0 : number of bytes received.

Note: The client is responsible to send the first string
to kick off data transfer!

int networkSendRecv(float datalout,float data2out,int data3out,

102

Appendix C

int data4out, float *datain)

int rc=-l;

sprintf(buf_send,"%3.2f %3.2f",datalout, data2out,data3out,data4out);
strcpy(buf_recv, "N");
if (netserv.isconnected() {

rc = netserv.recv(buf_recv,BUFFER_SIZE);
if (rc > 0) {

sscanf(buf_recv,"%f",datain); /*Scan in only if data is transfered!*/
netserv.send(buf_send,BUFFER_SIZE);

}
else sprintf(bufrecv," Rc = %d \n", rc);
}
return rc;

}

103

Ethernet Code

Makefile for Client PC and SGI Host ethernet connection
SHELL = /bin/sh
FILES = Makefile netlink.cpp unixnet.cpp
OBJS = netlink.o unixnet.o
CFLAGS = -O -I/usr/include/bsd
OPTIONS =
LIBES = -L -L/usr/lib -Im -Ifm_s -Ic_s -Ibsd -Igl_s
LIBES = -Im -Ifm_s -Igl_s -Ic_s -Ibsd
CC = CC
ether: $(OBJS)

$(CC) $(OPTIONS) $(OBJS) $(LIBES) -o netlink

update:
rm *.BAK *.CKP

cleanup:
-rm *.o

.C.O:
CC $(CFLAG) -c $< -o $*.o

104

---------- ·11111111~ ------ ·.~_ ~_ I-~---*I.

Appendix D

Appendix D: PC Train Sound Software

/* Human-Machine Systems Lab High-Speed Train simulation sound enhancement
/* program. Copyright (C) Human-Machines Systems Laboratory, MIT, 1997
/* Written by Steven G. Villareal
/* Revision:
/* (1) created time base for the program 4/19/96
/* (2) added conditional statement for track component delays 4/21/96
/* (3) added mouse funcitons
/* (4) added synctrainsnd(function to replace switch command
/* (5) modified main to input host IP address from the command line 2/25/97
/* (5) modified network to get command line arguments or prompt user for host IP
/* (6) created display functions that create screen graphics 3/5/97
/* (7) added speeding/alerter waring sound 3/11/97

#include <iostream.h>
#include <conio.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <dos.h>
#include <ctype.h>
#include <string.h>
#include <sys\timeb.h>
#include <math.h>
#include <stddef.h>
#include <graphics.h>
#include <netclint.h>
#include <display.h>
extern "C" {

#include <detect.h>
#include <smix.h>

}
#define ON 1
#define OFF 0
#define TRUE 1
#define FALSE 0

#define NUMSOUNDS 10 /* Change this if you want to add more sounds

#define KEYON_BIT 0x20
#define FM_MONO 8
#define BANKO 0
#define BANK1 2
#define MIXER 4
#define MASTERVOL_REG 0x22
#define FMVOL_REG 0x26
#define VOICEVOL_REG 0x04
#define BLOCK4 4
#define OP2 2
#define OP4 4
#define LEFT 0x10

105

PC Train Sound Software

#define RIGHT 0x20
#define BOTH 0x30
#define CHANNEL1 1
#define CHANNEL2 2
#define UPDATE_TIME

1000//[msec]
#define BRAKE_TIME

10000//[msec]
#define L_TRACK

3 //[m]
#define IDLE

100
#define TRACKSOUND(indexnum,T_F) start_sound(sounds[indexnum],indexnum,T_F)
#define ENGINE_CH

1
#define ENGINE_INST

0
/*Networking Definitions ***
#define ESC 27
#define ECHO_PORT 1109 //must be the same in host program
#define BUFFER_SIZE 80 //must be the same in host program

/*Function Prototypes ***
void Ourexitproc(void);
void InitializeDigitalSound(void);
void ShutdownDigitalSound(void);
void timedelay(unsigned long clocks);
void FM_Write_Output(unsigned port, int reg, int val);
void FMout_Mono(int reg, int val);
void WriteRegValBankl(int reg, int val);
void WriteRegValBankO(int reg, int val);
void Mixer_Control(int reg, int val);
void InitializeFMSound(void);
void Initialize_Sound_Timbre_2op_Mode(int ch, int inst_num, int LR_B);
int GenerateSound(int ch,int fn, int block, int inst_num, int L_R_B);
void StopFMSound(int ch, int freqnum);
void DeinitializeFMSound(void);
void GenerateDisplay(void);

void SyncTrackSound(int &i);

void DisplayFrequency(int fn);
unsigned long GetRealTime(void);
unsigned long SetProgTime (unsigned long current_prog_clock);
unsigned long GetProgTime(void);
void TimeDelay (unsigned int num);
void InitializeNetwork(NetClient &enet);
void NetSendRecv(NetClient &enet, float dataout, float *datal in, float *data2in,

int *data3in, int *data4in, int *data5 i, int *data6in);

/*Global Variables******************** **************/

/*FM variables*/
unsigned int bellfreq = 100, block = 4, instnum;

106

- -~---I'"

Appendix D

int engpower = IDLE;
int Offset[]= // Array of modulator register

{ // offsets for various channels
Ox00, // on the FM chip. Carrier
Ox01, // registers are always the
0x02, // modulator register plus three
0x08, II Exs.
0x09, // Channel Modulator Carrier
Ox0A, // 1 20h 23h
Oxl0, // 2 21h 24h
Oxll, II 3 22h 25h
0x12 // 4 28h 2Bh
}; II 5 29h 2Ch

/* instrument table definition */
int inst[128][23] =
{

/****.***************** Engine **************************/
{ 0x61, 0x70, 0x68, Ox00, OxF2, 0x52, OxOB, OxOB,
0x00, 0x00, Ox0A, 0x00, 0x00, 0x00, 0x00, 0x00 },

/******....*.*****"**** Bell Sound *******************/
{ 0x07, 0x12, Ox4f, 0x00, OxF2, OxF2, 0x60, 0x72,
Ox00, Ox00, 0x08, Ox00, Ox00, Ox00, Ox00, Ox00 },

/*Digital Sound Variables*/
char *resource_file = "train.snd"; //this is the sound library file name!
int baseio, irq, dma, dmal6;
long counter;
char inkey;
int num;
int temp;
double trackdelay[5] = { 2, 181, 214, 120, 228 }, del[5];
double dell, del2, del3, del4, dell 1, t,tl ,tO,timerO,brake_end_time;
float velocity, jcmd;
char *sound_key[NUMSOUNDS] =

{
"trackcl",
"trackc2",
"trackc3",
"trackc4",
"horn",
"idle",
"steam",
"alarm_loop",
"speeding",
"braking"
};

SOUNDS *sounds[NUMSOUNDS];

/*Networking Global Variables*/
int host, len;

107

PC Train Sound Software

char buffer_recv[BUFFER_SIZE], buffer_send[BUFFER_SIZE];

int main(int argc, char *argv[])
{
/* Flags and Counters */
int speedflag = FALSE, alerterflag = FALSE, hornflag = FALSE, bellflag = FALSE;
int trackflag = FALSE, brakeflag = FALSE, stopbrakeflag = FALSE;
int i = 1, k=0, stop = FALSE;
int bell_inst = 1, bell_ch = 2;
HostlP ipaddress(argv[1]); /* Establish Host ID */
NetClient enet(ipaddress.returnlPo); /* Creat NetClint Object */

/* Sound Card & Network Initialization and Screen Display Generation **********/
InitializeNetwork(enet);
InitializeDigitalSound();
InitializeFMSoundo; InitializeGraphics();
GenerateDisplay();

start_sound(sounds[5],5,TRUE);
GenerateSound(ENGINE_CH,engpower,block,ENGINE_INST,BOTH);
SetProgTime(0); //Intialize the program clock to zero.
tO = GetProgTime();
timer0 = tO;
/* Main Control Loop*/
do {

if (velocity <= 10.0) { //read net faster when train is going slow
NetSendRecv(enet,le-3*GetProgTime(), &velocity, &jcmd,

&speedflag, &alerterflag, &hornflag, &bellflag);
}

gotoxy(5,7); clreol();
gotoxy(5,7);
cout << "Buffersend: "<<buffer_send

<< " Bufferrecv: "<<bufferrecv
<< endl;

if (hornflag) { start_sound(sounds[4],4,FALSE);)

if (bellflag) {
StopFMSound(bell_ch,bell_freq);
GenerateSound(bell_ch,bell_freq,4,bellinst,BOTH);
}

/* Speeding and Alerter Flags go here*/
if(speedflag) {

if(!sound_playing(8)){
start_sound(sounds[8],8,TRUE);

}
else {stop_sound(8);}

if(alerterflag) {

108

Appendix D

if(!sound_playing(7)){ //if alerter snd is NOT playing do this.
start_sound(sounds[7],7,TRUE); //Play alerter sound

}
}
else {stop_sound(7);}

if (kbhito) { //If a key is hit, get that key and check the flags.
inkey = getch();

if ((inkey == 'b')) {
StopFMSound(bellch,bell-freq);GenerateSound(bell•ch,bellfreq,4,bellinstBOTH); }

if ((inkey == '1')) start_sound(sounds[4],4,FALSE); //Play the horn sound.
if ((inkey == '2')) start_sound(sounds[8],8,FALSE); //Play alerter sound
if ((inkey == 'q')) stop = TRUE; //exit the demo

}

/* Adjust Engine Power accoding to Joystick Position */
if (jcmd > 0) {stop_sound(9); brakeflag = TRUE;) //

if(((jcmd) < 0) && (velocity > 0.5)) { //play the air brake sound if jcmd is negative
if (brakeflag) {
//and the train is moving.

start_sound(sounds[6],6,FALSE);
start_sound(sounds[9],9,TRUE);
brake_end_time = GetProgTime() + BRAKE_TIME;
brakeflag = FALSE;
stopbrakeflag = TRUE;

}
}

if (stopbrakeflag) {//Controls screeching brake sound time length
if(brake_end_time <= GetProgTime() II velocity ==0) {

gotoxy(23,3);clreol();cout<<"TIME FINISHED "<<endl;
stop_sound(9); stopbrakeflag = FALSE;

}
else { gotoxy(23,3);clreol();cout<<"TIME still LEFT!"<<endl; I

if((10*jcmd+lDLE) > engpower){ //increment engpower if powerin is larger
if(engpower >= IDLE) { //don't increment engpower ABOVE IDLE

engpower+=2;
GenerateSound(ENGINE_CH,engpower,block,ENGINE_-NST,BOTH);
DisplayFrequency(engpower);

}
else engpower = IDLE;
if (!trackflag){TimeDelay(50);} //avoid fast freq increase when sound is not

playing.

if((10*jcmd+IDLE) < engpower) { //decrement engpower if powerin is smaller
if(engpower >= IDLE) { //don't decrement engpower BELOW IDLE

engpower-=2;
GenerateSound(ENG INE_CH,engpower,block, ENGINE_INST,BOTH);
DisplayFrequency(engpower);
}

109

PC Train Sound Software

else engpower = IDLE;
if (!trackflag){TimeDelay(40);) //avoid fast freq increase when sound not playing.

/* Play the Track sound component */
if (trackflag) {

gotoxy(23,2);clreol();cout<<i<<endl;
if (i == 5 && velocity > 10){

NetSendRecv(enet, e-3*GetProgTime(), &velocity, &jcmd,
&speedflag, &alerterflag, &hornflag, &bellflag);

}
if (i == 3 && (velocity > 10.0 && velocity <= 70.0)) {

NetSendRecv(enet,le-3*GetProgTime(, &velocity, &jcmd,
&speedflag, &alerterflag, &hornflag, &bellflag);

}

SyncTrackSound(i);
}
else {

NetSendRecv(enet, e-3*GetProgTime(), &velocity, &jcmd,
&speedflag, &alerterflag, &hornflag, &bellflag); /*Get network info */

}

tl = GetProgTimeo - tO; //ti is the time that has elapsed since the beginning of the loop

/* UPDATE INTERRUPT ****************************** ******* */
if(tl > UPDATE_TIME){

t = le-3*GetProgTime();
if (velocity < 0.125) velocity = 0.125;
if ((dell 1 = L_TRACK*1000.0/velocity) > 2000) {

trackflag = FALSE; }//Want to avoid calc. an infinit delay time.
else {/* Calculate track component sound delays */

trackflag = TRUE;
if (velocity < 5) {

for (k = 1; k<5;k++) del[k] = 0.75*trackdelay[k];
}
else {

for (k = 1;k<5;k++)
del[k] = 0.75*trackdelay[k]/1 000.0*(dell 1 -39.0)+0.45*trackdelay[k];
}

tO= GetProgTimeO; //Initialize the loop time before exiting.
/* END INTERRUPT **

} while (!stop);

StopFMSound(ENGINE_CH,engpower);
StopFMSound(bell_ch,bell_freq);
stop_sound(6);

110

Appendix D

ShutdownDigitalSound();
DeinitializeFMSound();
closegrapho; /*
return(EXIT_SUCCESS);
}

Return the system to text mode */

/*Frequency Modulation Functions*/

void timedelay(unsigned long clocks)

unsigned long elapsed=0;
unsigned int last, next, ncopy;

outp(0x43, 0);
last=inp(0x40);
last=-((inp(0x40)<<8) + last);
do

outp(0x43, 0);
next=inp(0x40);
ncopy=next=-((inp(0x40)<<8) + next);
next-=last;
elapsed+=next;
last=ncopy;
}

while (elapsed<clocks);

FM_Write_Output(unsigned port, int reg, int val)

outp(port, reg);
timedelay(8);
outp(port+1, val);
timedelay(55);

// delay about 3.3 microseconds

// delay about 23 microseconds

void FMout_Mono(int reg, int val)
{

FM_Write_Output(baseio+FM_MONO, reg, val);
I

void WriteRegValBank0(int reg, int val)

FM_Write_Output(baseio+BANKO, reg, val);

void WriteRegValBankl (int reg, int val)

FM_Write_Output(baseio+BANK1, reg, val);

void Mixer_Control(int reg, int val)
{

FM_Write_Output(baseio+MIXER, reg, val);

111

void
{

}

PC Train Sound Soft'ware

void lnitializeFMSound(void)

/*Card Initialization*/
WriteRegValBankO(1,0);
WriteRegValBankl (5,1);
WriteRegValBankO(8,0);
WriteRegValBankO(OxBD, 0);

//Initialize the card
//Get into OPL-3 Mode
//Setup FM mode

//Setup FM mode

/* Mixer Control Initialization */
Mixer_Control(MASTERVOL_REG, OxEE); //Set master volume to 14
Mixer_Control(FMVOL_REG, OxBB); //Set FM volume to 9
Mixer_Control(VOICEVOL_REG, OxEE); //Set FM volume to 13

void StopFMSound(int ch, int freqnum)
/* this function only changes bit 6; the keyon bit. This eliminates a
* clicking noise caused by changing the other bits in that register.
* The function arguments are the current channel flag and frequency number.

WriteRegValBankO(OxBO+(ch-1), ((((freqnum>>8) & 0x3) + (block << 2)) & OxDF));

void DeinitializeFMSound(void)

int i;
WriteRegValBankl (5,0);
for(i=1 ;i<=9;i++){

StopFMSound(i,engpower);
}
Mixer_Control(MASTERVOL_REG,

/ _setcursortype(_NORMALCURSOR

//Reset chip to OPL-2 mode

OxAA); //Lower the master volume
I);

InitializeSound_Timbre_2op_Mode(int ch, int inst_num, int L_RB)

WriteRegValBankO(0x20+Offset[ch - 1], inst[inst_ num][0]);
WriteRegValBankO(0x23+Offset[ch - 1], inst[instnum][1]);
WriteRegValBankO(0x40+Offset[ch - 1], inst[instnum][2]);
WriteRegValBankO(0x43+Offset[ch - 1], inst[inst_num][3]);
WriteRegValBankO(0x60+Offset[ch - 1], inst[instnum][4]);
WriteRegValBankO(0x63+Offset[ch - 1], inst[instnum][5]);
WriteRegValBankO(0x80+Offset[ch - 1], inst[instnum][6]);
WriteRegValBankO(0x83+Offset[ch - 1], inst[inst_num][7]);
WriteRegValBank0(OxEO+Offset[ch - 1], inst[instnum][8]);
WriteRegValBankO(OxE3+Offset[ch - 1], inst[instnum][9]);
WriteRegValBankO(OxCl, L_R_B I (inst[inst_num][10] & OxF));

int GenerateSound(int ch, int fn, int block, int inst_num, int LR_B)
/* Start an new FM instrument with frequency fn and block on the L_R_B speaker

112

void
{

}

Appendix D

/* side. */
{

Initialize_Sound_Timbre_2op_Mode(ch, inst_num, L_R_B);
WriteRegValBank0(OxAO+((ch)-1), (fn & OxFF));
WriteRegValBankO(OxBO+((ch)-1), ((fn>>8) & 0x3) + ((block << 2) 1 KEYON_BIT));
return 0;

void SyncTrackSound(int &i)
/* Coordinates the track sound components according to the value of i. */

{
if (i == 5){

TimeDelay(dell11); //play the delay between total events
i = 1; //reset back to 1st component

}
else {

TRACKSOUND(i-1 ,FALSE);
TimeDelay(del[i]);

// TimeDelay(100); //checking the network bandwidth...
i++; //increment to next component

}

/*Digital Sound Playback Functions*/

/* SMIXC is Copyright 1995 by Ethan Brodsky. All rights reserved */
/* Modified 3/20/96 by Steven G. Villareal, Human-Machine Systems Lab */
I **t************* ****** *************************** /

void ourexitproc(void)
{

int i;

for (i=0; i < NUMSOUNDS; ++i)
if (sounds[i] != NULL) free_sound(sounds+i);

}

void InitializeDigitalSound(void)
{

int i;
if (!detect_settings(&baseio, &irq, &dma, &dmal6)) //Get Blaster Environment

printf("ERROR: Invalid or non-existant BLASTER environment variable!\n");
exit(EXIT_FAILURE);

}
else

{
if (!init_sb(baseio, irq, dma, dmal6))

{
printf("ERROR: Error initializing sound card!\n");
exit(EXITFAILURE);

}

printf("DSP version %.2f: ", dspversion);
if (sixteenbit)

printf("16-bit, ");
else

113

PC Train Sound Software

printf("8-bit, ");
if (autoinit)

printf("Auto-initialized\n");
else

printf("Single-cycle\n");
if (!init_xms())

{
printf("ERROR: Can not initialize extended memory\n");

printf("HIMEM.SYS must be installed\n");
exit(EXIT_FAILURE);

}
else

printf("Extended memory successfully initialized\n");
printf("Free XMS memory: %uk ", getfreexmso);
if (!getfreexms())
{

printf("ERROR: Insufficient free XMS\n");
exit(EXIT_FAILURE);

}
else
{

printf("Loading sounds\n");
open_sound_resource_file(resource_file);

for (i=0; i < NUMSOUNDS; i++)
load_sound(&(sounds[i]), sound_key[i]);

atexit(ourexitproc);

close_sound_resource_file();
}

}
init_mixing();
printf("\n");

void ShutdownDigitalSound(void)
{

int i;

shutdown_mixing();
shutdown_sb();

for (i=0; i < NUMSOUNDS; i++)
free_sound(sounds+i);

printf("\n");

/* Program Time Base Functions **
/* The following is modified code originally written by Ed Lanzilotta */

114

Appendix D

/* 4/18/96

static unsigned long prog_offset = 0;
static int progtime_set = FALSE;

unsigned long GetRealTime(void)
/* Get the current real time from the CPU time base. */
{

static unsigned long rt; //This value will represent milliseconds
struct timeb current real time;
ftime(¤treal_time); //Get the current real time
rt = (current_real_time.time*1000) + current_real_time.millitm;

return(rt); //Return the real time clock value.

unsigned long SetProgTime (unsigned long current prog_clock)
/* Initializes the program clock to the value of "currentprog_clock".
/* Returns the program time. */

unsigned long progtime;
// unsigned long current_prog_clock;

prog_offset = GetRealTime() - current_progclock;
prog_time = GetRealTimeo - prog_offset;
prog_time_set = TRUE;

return(progtime);
I

unsigned long GetProgTime(void)
/* This returns the value of the current program time. */
{

unsigned long progtime;
if (progtime_set)

progtime = GetRealTime() - prog_offset;
else

prog_time = SetProgTime(O);//Ilnitialize the time set_progtime has not been called yet
return(progjime);

void TimeDelay (unsigned int num)
/* Delays the program execution for the 'num' milliseconds. */
//unsigned int num;
{

unsigned int end_time;
int time_left;

/* Calculate the end time */
end_time = GetRealTime() + num;
time_left = num;
while (time_left > 0)

time_left = end_time - GetRealTime();

115

PC Train Sound Software

void
{

}

void NetSendRecv(NetClient &enet, float dataout, float *datalin,
float *data2in, int *data3in, int *data4in,
int *data5in, int *data6in)

sprintf(buffer_send,"%3.2f",dataout); //send argument variable

if(enet.iswritereadyo) {
enet.send((char *)buffer_send, BUFFER_SIZE); //Data sent out of the pc

}

if(enet.isreadready()) {
len=enet.recv((char *)bufferrecv,BUFFER_SIZE);
sscanf(buffer_recv,"%f %f %d %d %d %d",datal in,data2in,data3in,data4in,

from sgi
data5in,data6in); //Data received

if(len<=0) {
printf("\n zero receiving length");
ShutdownDigitalSound();
DeinitializeFMSound();
closegraph(; /* Return the system to text mode
exit(l);

116

/*Network Functions */

InitializeNetwork(NetClient &enet)

if (!enet.open(ECHO_PORT)) {
printf("couldn't open network connection\n");
exit(l);

}

References

REFERENCES

[1] Bowsher, J. M.
1975.

The Physics of Music. New York: John Wiley & Sons, Inc.,

[2] Creative Labs, Inc. The Developer Kit for Sound Blaster Series: Development
Tools for Adding Sound to DOS Applications. Creative Labs, Inc., 1991.

[3] Hund, August. Frequency Modulation.
Hill Book Company, Inc., 1942.

1st ed., New York and London: McGraw

[4] Jeans, Sir James.
1937.

Science and Music. New York: The Macmillan Company,

[5] Jones, Edward R., et al. Human Factors Aspects of Simulation. Washington D.C.:
National Academy Press, 1985.

[6] Josephs, Jess J. The Physics of Musical Sound. NY: Van Nostrand Reinhold
Company, 1967.

[7] Messmer. Has-Peter. The Indispensable PC Hardware Handbook. New York:
Addison-Wesley Publishing Company, 1995.

[8] Novell@. LAN WorkPlace@ for DOS Administrator's Guide. ,1992.

[9] Volkmann, J; and Stevens, S. Acoustic Society Am.. 8, pg. 185-190 ,1937.

[10] Winckel, Fritz. Music, Sound, and Sensation: New York: Dover Publications,
Inc. ,1967.

[11] Yamaha@. YMF262 Application Manual. Cat No.: LSI-6MF262A4, 1994.

117

