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Abstract

This thesis proposes a method for the single-sensor enhancement of speech that has been
corrupted by additive broadband noise. The method is based on a technique known as Sinusoidal
Analysis-Synthesis (SAS) and involves two steps. First, sinusoidal tracks relevant to the speech
alone are extracted from the short-time spectrum of the corrupted speech. Secondly, extracted
tracks are processed to reduce the perceptual level of any remaining noise.

In order to evaluate the potential of this enhancement technique, an upper bound on its
performance is examined. The speech-only tracks are extracted from the corrupted speech by
using tracks from the corresponding uncorrupted speech as a guide. These extracted tracks are
then processed within the single-sensor framework. The resulting enhancement represents an
upper limit on performance for whatever type of track processing is performed. Several types of
track processing are explored, and the best-case results are compared to traditional spectral
subtraction enhancement.
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Chapter 1

Introduction

1.1 Speech Enhancement: Definition and Background

Speech enhancement can be defined generally as the perceptual improvement of speech

that has undergone some type of distortion. In this thesis we examine the case where speech has

been corrupted by additive broadband noise that is independent of the speech. In addition, we

assume that enhancement is performed within the single-sensor framework, meaning that only a

single recording of the corrupted speech can be used by any algorithm; additional simultaneous

recordings of the corrupted speech, or the noise by itself, from other sensors are not available.

Within these constraints, we focus on the goal of reducing the level of the corrupting noise while

maintaining the integrity of the underlying speech such that the overall effect is perceptually more

pleasing, though not necessarily more intelligible, to a listener. This is a very subjective goal, and

there exists no simple mathematical objective function which can be minimized to achieve the

desired enhancement. Therefore, listening comparisons must be made in order to judge the

quality of any developed techniques.

The described single-sensor enhancement problem is long-standing and has many

applications [1]. It is a very difficult task, and essentially all techniques are faced with the same

dilemma. In the enhanced signal, the noise level may be perceptually lower, but unnatural

sounding artifacts are introduced. Whether or not these artifacts are more or less objectionable

than the original noise is usually unclear, and oftentimes listeners prefer the original noise, because

it sounds more natural. The enhancement method examined in this thesis attempts an

improvement over past work but does not avoid this dilemma.

Two common approaches to speech enhancement are noise removal and reconstruction.

Noise removal focuses on the noise and tries to suppress it in the corrupted speech. An example



is the method of spectral subtraction, which subtracts the expected value of the noise spectrum

from the short-time spectral magnitude of the corrupted speech. No direct knowledge of the

underlying speech is utilized. With reconstruction, on the other hand, parameters for a model of

speech production are estimated from the corrupted speech, and an approximation of the

uncorrupted speech is synthesized from these parameters. The quality of the enhanced speech is

therefore limited by the parametric model. As an example of reconstruction, speech can be

modeled as a time-varying all-pole filter that is excited by a periodic pulse train during voiced

speech and by white noise during unvoiced speech. The filter coefficients, the voiced/unvoiced

decision, and the pitch-period are then estimated from the corrupted speech.

1.2 Sinusoidal Analysis-Synthesis for Enhancement

The enhancement scheme investigated in this thesis can be considered a combination of the

reconstruction and noise removal concepts. Sinusoidal analysis-synthesis (SAS), a technique

developed by MacAulay and Quatieri [2], is the parametric representation of speech associated

with the reconstruction component. SAS approximates speech as a sum of finite-duration, time-

varying sinusoids, each referred to as a track. These tracks are formed by matching peaks

frame-to-frame in the short-time discrete Fourier transform (STDFT) magnitude of a speech

signal. For enhancement, the goal is to estimate from the STDFT of corrupted speech only those

tracks that are relevant to the underlying speech, thereby eliminating the broadband noise lying in

between these tracks. This speech-only track estimation problem is separated into two steps, the

first of which can be considered reconstruction and the second noise removal. In the first step,

speech-only tracks are extracted from the corrupted STDFT magnitude by matching appropriately

selected peaks, and in the second step, the corrupted parameters of the resulting tracks are

processed to reduce the level of any remaining noise.

The idea of using SAS for enhancement was first proposed in [3], but their approach is

based on a modified SAS system with a very small parameter set that produces a more synthetic

sounding speech estimate in comparison to the system discussed above. By using a larger



parameter set, the SAS system being investigated in this thesis avoids restrictions on the potential

quality of the enhanced speech. However, parameter estimation from the corrupted speech (i.e.

track extraction) is made much more difficult. The system in [3] must also be trained on the

uncorrupted speech of each individual user, whereas our approach assumes speaker independence.

1.3 Thesis Outline

This thesis focuses on determining and evaluating an upper bound for the performance of

the proposed SAS enhancement technique. In the framework that is developed, corrupted speech

is generated by adding white Gaussian noise to uncorrupted speech. The track extraction step is

performed with guidance from the uncorrupted speech, thereby violating the single-sensor

assumption. Track processing is then explored within the boundaries of single-sensor

enhancement. Because the extraction step is, in a sense, optimized, the resulting speech estimate

represents an upper limit on performance for whatever type of processing is performed. If this

upper bound affords convincing enhancement, justification is provided for the development of a

technique to perform track extraction without precise knowledge of the uncorrupted speech.

Chapters 2 and 3 provide background information on SAS and spectral subtraction. In

Chapter 4, SAS enhancement is proposed, and development of the evaluation framework is

initiated by defining a procedure for extracting speech-only tracks. Chapter 5 explores techniques

for track amplitude processing, and in Chapter 6, the best-case SAS enhancement results are

compared to spectral subtraction through a listening test. Lastly, Chapter 7 presents a summary

and offers directions for future work.





Chapter 2

Sinusoidal Analysis-Synthesis

Sinusoidal analysis-synthesis (SAS) is the basis of the speech enhancement technique

explored in this thesis. The SAS model approximates speech as a finite sum of sinusoids, each

with time-varying amplitude and phase. The goal for enhancement is to estimate only

speech-relevant sinusoids from corrupted speech. SAS processing, as developed by MacAulay

and Quatieri in [2], generates these sinusoids from uncorrupted speech and serves as a starting

point for our enhancement system. This chapter describes the procedure and prepares us for the

application of SAS to speech enhancement.

2.1 Sinusoidal Analysis-Synthesis Framework

Under the SAS framework, a digitized speech signal, s[n], is approximated as

Q

[n]= Xak(n)cos[Ok(n)], wk(n) =k(n) (2.1)
k=1

where ak(n), 6 k(n ) , and ok (n) are the time-varying amplitudes, phases, and instantaneous

frequencies of each sinusoid. These three sets of functions are generated from the short-time

discrete Fourier transform (STDFT) of s[n] given by

M-1 .21fnM-1
S[f,d]= X w[n]s[n+Td]e , O f < N / 2, (2.2)

n=O

where w[n] is a windowing function, M is the frame length, T is the frame interval, N is the DFT

length, d is the frame number, and f is the DFT bin number. In the SAS system, peaks from the

STDFT magnitude are selected and then matched frame-to-frame to form what are called tracks.

The amplitudes, phases, and frequencies associated with the peaks of each track serve as sample

points of the functions ak(n), 6 k(n), and Cok(n). In order to completely specify these functions,



amplitude and phase must be interpolated along the tracks, after which the speech estimate is

calculated according to (2.1).

The formation of tracks begins by selecting peaks in the STDFT magnitude of the speech

signal. Specifically, a peak is found at bin value p if the following condition holds:

S[p,d] > IS[p- 1,d]I and IS[p,d]l > S[p + 1,d] . (2.3)

Let p be the bin value of the kth peak in the STDFT magnitude at frame d. Then the frequency,

amplitude, and phase associated with the kth peak are

271p
Qk,d- N (2.4a)

Ak,d = S[p,d]l, (2.4b)

and 8k,d = ARG{S[p,d]}+ , (2.4c)

where k,d is referenced to the center of the STDFT frame. With all peaks selected at each frame,

tracks are formed by pairing peaks between successive frames using a nearest-neighbor frequency

matching algorithm. For each peak k in frame d the algorithm tries to find a matching peak I in

frame d+l such that the quantity I l,d+1 - Qk,d1 is minimized. In addition, I"l,d+1 - "k,d1 is

required to be less than a pre-defined matching tolerance A. If no peak 1 is found to satisfy this

constraint, peak k is left unmatched. Following this procedure, two or more peaks in frame d may

be paired to the same peak 1. In such a case, the peak in frame d whose frequency has the

smallest absolute difference with Ql,d+1 remains paired. Peak I is then removed from the list of

possible matching candidates, and the process starts again for the other peaks in frame d that had

been paired to peak 1. The result of the algorithm is a set of tracks, each composed of a series of

matched peaks spanning one or more frames. The beginning/end of track is defined by a peak in a

given frame that is not matched to a peak in the previous/successive frame. The structure of the

tracks is illustrated in Figure 2.1, where each vertical line represents the STDFT at a given frame,

and the X's represent peaks in the STDFT magnitude. The dashed lines connecting the X's

represent the tracks that are formed.
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Fig. 2.1 Track formation by matching peaks frame-to-frame in the STDFT magnitude (note the
matching tolerance A)

Interpolation of amplitude and phase between the peaks of each track is the next step in

SAS. The process is performed piece-wise from frame-to-frame. To explain this in more detail,

we rewrite (2.1) as

1 Q(d)
"[n+Td]=- (ad,d (n)cos[Ok,(n)] k,d (n) = k,d(n ) , 05 n < T, (2.5)

N k=1

where ak,d(n), Ok,d(n), and Ck, d(n) are functions existing over only a single frame interval, and

where the number of sinusoids, Q(d), varies with the frame number. The functions ak,d(n) and

Ok,d(n) describe the interpolation of amplitude and phase between a peak k in frame d that is

paired to a peak I in frame d+l.

Simple linear interpolation is adequate for the amplitude function, in which case it is given

by

ak,d(t)= Ak,d +  A,d+1 Akd t, 05 t < T, (2.6)

where the time variable t is used instead of n to indicate that the function is continuous. By itself,

(2.6) results in a track whose amplitude begins and ends abruptly. To prevent this, the amplitude

is additionally required to ramp up from zero at the beginning and down to zero at the end, a

process that is referred to as the "birth" and "death" of a track. More specifically, suppose that

peak k in frame d represents the beginning of a track. Then, over the frame interval preceding d,



amplitude is interpolated from zero up to Ak,d with frequency held constant at Qk,d" An

analogous procedure is followed at the end of a track.

Generating the phase functions, k,d (t), is more complicated, because the phase of a peak

is not unique, and because the proper relationship between frequency and phase must be

maintained. The end-points of the phase function are constrained to be

Ok,d (0) = )k, d  
(2.7a)

and k,d (T) = E,d+l + 21rP, (2.7b)

where P is an integer, and the term 27rP is necessary because the Ok,dare measured modulo-2r.

Since the time derivative of the phase function is the instantaneous frequency, two more end-point

constraints are introduced:

k,d (0) = •k,d (2.7c)

and k,d(T)= ••1,d+l (2.7d)

The four constraints listed in (2.7a-d) can all be satisfied if the phase function is represented with

a cubic polynomial:

Ok,d(t) = a + t + Xt 2 + t 3 . (2.8)

Combining (2.7a-d) and (2.8) yields the polynomial coefficients:

a = Ok,d, (2.9a)

P = Qk,d, (2.9b)

3 1
ST2 (O1,d+1 -k,d - k,dT + 21P) - 1 (1,d+ - k,d ), (2.9c)

T ' T

-2 1
and = T~3 (O1,d+l -k,d k,dT + 2P) + T2 4,d+l k,d ) (2.9d)

Both X and 3 are dependent on P, and therefore different values of P will yield different phase

functions. Intuitively, P should be chosen so that k,d (t) is "maximally smooth," a notion which

is quantified by minimizing the variation of the phase function over the frame interval.

Specifically, the function

f(P) = j[O (t; p)]2 dt (2.10)



is chosen to represent smoothness. Minimizingf(P) with respect to P yields the optimum value

Popt = round1 [(Ok,d + k,dT- O1,d+1)+ C (h1,d+1 -k,d)], (2.11)

where round{x} chooses the integer closest to x. The expression for Popt is substituted into

(2. 10c-d), and0k,d (t) is then completely specified.

Once ak,d(t) and Ok,d(t) are generated for all peaks in all frames, the speech estimate can

be computed according to (2.5). While (2.5) indicates that the ak,d (t) and Ok,d (t) are sampled at

integer time values, these functions can be re-sampled using any time interval since they are

continuous. As one consequence, arbitrary time expansion and contraction of the original speech

signal, without a change in pitch, is easily achieved under the SAS framework. In fact, numerous

other transformations, such as pitch shifting and tone shaping, can be implemented in the context

of SAS [4]. These applications are not relevant to the enhancement work at hand but

demonstrate a broader application of SAS in speech processing.

2.2 SAS Implementation

In selecting the parameters for the SAS process, the goal is to create a speech estimate

that sounds as close to the original speech as possible. In our implementation we focus

specifically on digital speech signals sampled at a rate of 10kHz. Our first consideration is the set

of parameters used in the STDFT: the windowing function w[n], the frame length M, the frame

interval T, and the DFT length N. The Hamming window provides adequate suppression of

side-lobe leakage between peaks in the STDFT magnitude. Given the relationship between

window length and main-lobe width for the Hamming window, it is shown in [2] that the frame

length must be at least 2.5 times the voiced pitch period in order to resolve frequencies separated

by the pitch fundamental of a voiced speech segment. Assuming that the lowest pitch

fundamental to be encountered is 100Hz, this translates to a frame length of 25ms. A frame

interval of 10ms provides adequate time-resolution to follow transitions within the speech, and

with a 10kHz sampling rate, we then have M=250 and T=100. The DFT length, N, must be large

_____·____ _ __·_ ~_ __ _~ __



enough so that peaks in the underlying discrete-time Fourier Transform (DTFT) are well

represented by the DFT samples. The value N=1024 works well, providing a bin-width of

9.77Hz.

Our next consideration is the formation of SAS tracks. In the peak matching algorithm,

the matching tolerance, A, should reflect the largest frame-to-frame variation expected in the

fundamental pitch of a voiced speech segment; the algorithm should be able to form a single track

that follows the pitch fundamental over time. On the other hand, the matching tolerance should

not be so large that tracks vary wildly in frequency during unvoiced sections of speech for which

the frequencies of the STDFT peaks exhibit little ordered structure. A value of A=100Hz is

adequate in meeting both these requirements.

The last parameters to be examined are those associated with selecting peaks in the

STDFT. If every peak generated according to condition (2.4) is used to create tracks, the

resulting speech estimate sounds almost perceptually indistinguishable from the original, but many

more peaks than necessary are being used to achieve this quality. Because of low-level recording

noise, areas of silence in the speech signal are not precisely zero, and therefore very small

amplitude peaks are found in the STDFT of these regions. Consequently, it is more appropriate

to impose a minimum peak amplitude that is referenced to the average energy of the entire speech

signal. Toward this end we define a peak-to-signal-ratio (PSR), and the minimum peak amplitude

is derived from this ratio. Let or2 denote the sample variance of the speech signal given by

2= 1 s2[n] - S[n] , (2.12)

where L is the total length of the signal. Then consider a white zero-mean Gaussian random

process with variance cQ2 . The expected value of the STDFT squared magnitude of this process

is

M

v, = o w2 [n] , (2.13)
n=O

independent of time and frequency. The minimum peak amplitude is defined to be



Am= 10 (2.14)

where the PSR is in decibels. In addition to (2.3), we then require that IS[p,d]l> A,.

Empirically, -30dB is approximately the largest PSR threshold for which high quality synthetic

speech is still obtained. At this value, peaks within the silence regions are not selected, but

regions of the synthetic signal containing speech are perceptually indistinguishable from those

when all possible peaks are selected. As the PSR is increased beyond -30dB, some peaks relevant

to the speech are ignored, and artifacts are heard in the synthetic speech.

To illustrate the SAS implementation, Figure 2.2 depicts spectrograms for two speech

utterances, one female and one male. The spectrogram is a plot of IS[p,d]I in decibels, with time

(frame number) on the horizontal axis and frequency (bin number) on the vertical axis. The

STDFT magnitude is represented by gray-scale, with a lighter shade corresponding to a larger

value. Below each spectrogram image is a spectrogram-like plot displaying the frequency

contours of the corresponding SAS tracks. During voiced sections of the speech, the track lines

follow the smoothly-varying, harmonic ridges of the spectrogram very well, and during unvoiced

sections, the track lines are shorter and more erratic in frequency since the underlying

spectrogram is noise-like. For both utterances, the speech estimate produced from the depicted

tracks is nearly perceptually indistinguishable from the original, aside from the absence of low-

level recording noise during regions of non-speech activity.
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Chapter 3

Spectral Subtraction

Spectral subtraction is a popular single-sensor enhancement technique that pre-dates SAS.

It focuses on enhancing only the short-time spectral amplitude of corrupted speech and defines a

class of estimators for doing so. In this chapter, background on the technique is presented in

anticipation of its later use for the development and evaluation of SAS enhancement. Various

forms of spectral subtraction, found mainly in [1], are reviewed and compared, and then a well

known implementation is examined.

3.1 Formulations of Spectral Subtraction

For the enhancement problem being considered, let s[n], z[n], and y[n] be the uncorrupted

speech signal, the additive noise, and the corrupted speech signal, respectively, and let S[f, d],

Y[f , d], and Z[f , d] be their corresponding STDFT's. We have

y[n] = s[n]+ z[n], (3.1)
from which we then know

IY[f,dl 2 = IS[f,dl 2 + Z[f,dl 2 + S[f ,d]Z*[f,d]+S* [f,d]Z[f,d]. (3.2)

Assuming that the noise is zero-mean and uncorrelated with the speech, we can take the expected

value of (3.2) with S[f, d] treated as a known value and obtain

EIY[f,df} = IS[[f ,d2 + Z[f,d 2, (3.3)
since the expected values of Z[f,d] and Z*[f,d] are both zero. For the single-sensor

enhancement problem, we can compute I Y[f, d]l2, and E{ I Z[f, d]12 } may be known or can be

estimated by averaging adjacent frames of I Y[f, d]12 during areas of non-speech activity. With

these two available quantities, an estimate of IS[f, d]l 2 suggested by (3.3) is



S[f, d] 2 = Y[f, d]2 - E Z[f, d]12 . (3.4)

Estimation of the short-time spectral amplitude of the uncorrupted speech using (3.4) is referred

to specifically as power spectral subtraction. A more general formulation estimates I S[f, d]l as

S[f,d] = Y[f,d]a _kE{ Z[f,d]a , (3.5)

where the parameters a and k can be varied to achieve different attenuation characteristics. Use

of a=l and k=1 has received considerable attention, and with these values we refer to (3.5) as

amplitude spectral subtraction. The estimate IS[f, d]l" in (3.5) is not guaranteed to be positive,

and if the right hand side does become negative, setting IS[f, d]l" equal to zero is the most widely

accepted practice.

In order to construct an estimate of s[n] using any form of spectral subtraction, an

estimate of the complex-valued function S[f, d], rather than its magnitude, is required. The most

common solution is to approximate the phase of S[f, d] as that of Y[f, d]. Generating IS[f, d]l

from (3.5), we have

S[f,d] = S[f, d] exp(jZY[f, d]). (3.6)

The entire spectral subtraction process can then be written as a time-varying, zero-phase

frequency response S[f, d] applied to Y[f, d]:

S[f,d]H[f , d] Sfd]
Y[f,d]

la

(3.7)

With this frequency response representation of spectral subtraction, a connection to Wiener

filtering can be drawn, and as a result, the formulation in (3.5) is both reinforced and expanded.

If, for y[n]=s[n]+z[n], both s[n] and z[n] can be represented by uncorrelated stationary

random processes, then the minimum mean-square linear estimator of s[n] given y[n] is the

non-causal Wiener filter with frequency response

P, (c ,)
H(cO) = P (3.8)P, (0) + PZ(w)



where P,(o) and P,(0o) are the power spectral densities of s[n] and z[n]. The speech signal is

not stationary, so one possible approximation to (3.8) is a time-varying Wiener filter that is

applied to Y[f, d]:

H[f, d]= E{IS[f , d (3.9)
E{IS[f, d]12} + E{IZ[f , df}

If E{ I S[f, d]12  is estimated as the right-hand side of (3.4), we obtain Wiener spectral

subtraction:

IY[f,d] 2 - E{IZ[f, d]2
H[f , d]= (3.10)

Comparing to (3.7), we see that (3.10) is just the square of the suppression filter for power

spectral subtraction. A generalized form of (3.9), known as a parametric Wiener filter, can also

be considered:

H[f,d] = , (3.11)

where a and fl are varied to obtain different characteristics. Using the filter H[f,d], our

estimate of S[f, d] is given by

S[f,d]= H[f,d]Y[f,d]. (3.12)

If we estimate E{IS[f,d]l2 as S[f,d] and combine (3.11) with (3.12), we obtain the implicit

relationship

SI[f,d = IY[f,d]I, (3.13)

which can be solved for IS[f,d]l. If a=1 and fl=1/2, the solution is exactly the method of power

spectral subtraction in (3.4), and for a=1/4 and f-=1 a solution to (3.13) is

IS[f ,dl = •IY[f ,d]l+ (IY[f, d12- E{IZ[f ,d2 1/2. (3.14)

__



Coincidentally, this same estimator is found by solving for the maximum likelihood estimate of

S[f, d], assuming that the noise is Gaussian at each frequency [5]. We therefore refer to (3.14)

as maximum likelihood spectral subtraction.

3.2 Comparison of Formulations

If the corrupting noise, z[n], is zero-mean white Gaussian with variance oa", a quantitative

comparison can be made between the four specific forms of spectral subtraction that have been

discussed: power, amplitude, Wiener, and maximum likelihood. All of these formulations, except

amplitude, involve the term E{ IZ[f, d] 2 ) given by

M

f, = on W 2 [n] , (3.15)
n=0

independent of time and frequency. The quantity E{ IS[f,d]I}, necessary for amplitude spectral

subtraction, can be computed by considering the probability density of IZ[f,d]l, which is

Rayleigh [5]:

2Z[f,d] -1Z"[fd 42

p(eZ[f , dZ[f,d]l O, (3.16)
"In

from which the expected value of IZ[f,d]l is found to be

E{IZ[f, d ])- 2 (3.17)

Now, for anyf and d, we define

Y[f , d]2p = (3.18)

which can be considered a (speech-plus-noise)-to-noise ratio. The spectral subtraction estimate of

S[f , d] is then given by

S[f,d]= H(p)Y[f,d] , (3.19)

where H(p) is a gain function whose form is dependent on the specific type of spectral

subtraction. Through manipulation of (3.7), (3.10), and (3.13) we have:



Power: H(p) = (3.20a)

Amplitude: H(p) = (3.20b)

p-1
Wiener: H(p) = (3.20c)

p

Maximum Likelihood: H(p) = 1 + (3.20d)

Figure 3.1 shows a plot of H(p) versus p for each type of spectral subtraction, and in all

cases, the attenuation of H(p) increases as p decreases. This can be viewed as an attempt to

increase the overall SNR of the speech estimate by attenuating spectral areas with a relatively low

SNR while leaving those with a relatively high SNR unaffected. On the whole, maximum

likelihood attenuates the least, while amplitude spectral subtraction attenuates the most.
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Fig 3.1 Gain function for various forms of spectral subtraction

Further information is obtained by examining the expected value of IS[f ,d]l given

IS[f,d]l. To simplify the notation, let A=IS[f,d]l, B=IY[f,d]l, and C=IS[f,d]l. The

probability density of B given A is Rician [5]:

2B- 2AB
p(BI A)=- e Io  B > 0, (3.21)

4n
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where 10(x) is the modified Bessel function of order zero. From this distribution, E{BI A} can be

computed numerically, and by combining (3.19), (3.20a-d), and (3.21), E{C1A} can be computed

for each type of spectral subtraction. Figure 3.2 is a plot of these curves for f, =1. As

anticipated, E{BIA} is always larger than A, but as A increases, E{BIA} asymptotically

approaches A. We also note that all the spectral subtraction estimates of A are biased, i.e.

E{CIA} #• A. With maximum likelihood, a relatively large upward bias is observed for smaller

values of A, while the bias is relatively small for larger values of A. With power, Wiener, and

amplitude, a much smaller upward bias is achieved for smaller values of A at the expense of a

large downward bias for larger values of A.
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Fig 3.2 E{ CIA } vs. A for various forms of spectral subtraction

3.3 Implementation of Spectral Subtraction

In this section we discuss the specific implementation of spectral subtraction which will

eventually be used as a basis for comparison with the SAS enhancement scheme developed in this

thesis. The implementation is documented in detail by Boll [6], and it incorporates several steps

beyond basic spectral subtraction. In developing this implementation, we consider speech

corrupted by additive white Gaussian noise to achieve SNR's from 18dB down to OdB, and we

A
- E{BIA}
---- E{CIA}: Maximum Likelihood

- -- E{CIA}: Power
-.---- E{CIA}: Wiener
. .----E{CIA}: Amplitude
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assume that the variance of the noise is known so that E{ I Z[f, d]l2 } can be computed exactly

according to (3.15).

As a first consideration, S[f, d] must be transformed to a time-domain signal in order to

produce an estimate of the uncorrupted speech. To make this process simple, several

modifications are made to the STDFT parameters that were selected in Section 2.2 for SAS. The

frame length remains 25ms, but the frame rate is increased from 10ms to 12.5ms so that adjacent

frames overlap by exactly one-half. Also, a rectangular window is used instead of a Hamming

window. To transform the STDFT to a time-domain signal, the inverse DFT of each frame is

calculated, multiplied by a Hanning window, and overlapped and added with the adjacent frames.

Since a series of Hanning windows adds to one when the windows are overlapped by half their

length, the original time domain signal is reconstructed perfectly if the STDFT is not modified.

In Boll's system, S[f,d] is calculated by applying amplitude spectral subtraction to

Y[f,d]. If S[f,d] is transformed to the time domain after only this first step, the perceptual

level of the noise is noticeably reduced, and the underlying speech remains intact. The noise,

however, no longer sounds white. Instead, the residual manifests itself as randomly spaced spikes

in the STDFT magnitude and sounds like the sum of tone generators with random fundamental

frequencies turned on and off at the frame rate - some have described it as "musical noise" or

"doodly-doos." To further reduce the level of this noise residual, Boll applies a filter along each

bin of IS[f,d]l that exploits the frame-to-frame randomness of the offending spikes. Operation

of the filter can be stated as follows:

If IS[f,d]l< i, then

S[f,d]= min fJS[f,c]l exp(jZS[f,d]),
Id-l c5d+1

otherwise
S[f,d] = S[f,d],

where ic is some threshold and S[f, d] is the new estimate of S[f,d]. This adaptive

order-statistic filter targets only low-energy, randomly time-varying spectral components for

attenuation and leaves high-energy components unchanged. Empirically, a threshold of Kc = 1.5yr,



provides substantial reduction of the noise residual at the expense of slightly muffled sounding

speech.

As a final processing step, the speech estimate is attenuated in areas of non-speech

activity. This has the effect of "evening out" the perceptual level of the noise residual, since the

residual is masked somewhat by speech activity. The non-speech areas are detected by calculating

the value

Q(d)= 201og 0 N/2X [f ,d] /EZ[f ,d]} (3.22)

at each frame. If Q(d) is less than some threshold, then frame d is classified as non-speech, and

IS[f,d]l is attenuated by some constant factor for every f. Empirically, a threshold of -18dB

proves satisfactory for detecting the non-speech frames, and attenuating these frames by -25dB

results in a residual level that sounds perceptually in balance with its level during speech activity.

Having the attenuation turn on and off instantly, however, makes the speech estimate sound

"jerky," but forcing the attenuation level to fade in and out over three frames solves this problem.



Chapter 4

SAS for Speech Enhancement

In Chapter 2 we saw that SAS creates its speech estimate from a subset of the STDFT

values of a speech signal, completely ignoring spectral areas surrounding the tracks that are

generated. Thus, SAS inherently lends itself to speech compression, and in practice it has proven

very effective for low-rate speech coding [7]. Viewed differently, this same property suggests a

method for enhancing speech corrupted by broadband noise. If tracks associated only with the

original speech can be estimated from the STDFT of the corrupted speech, then the spectral

components of the noise lying in between these tracks will be eliminated in the synthesized signal.

In our enhancement system we separate this speech-only track extraction problem into two parts.

First, tracks are extracted from the corrupted speech by appropriately selecting and matching

peaks from its STDFT. Then, the corrupted frequencies, amplitudes, and phases associated with

the peaks of these extracted tracks are processed to reduce any remaining noise. After this,

interpolation is performed along the speech-only tracks, and the resulting sinusoids are summed to

produce an estimate of the uncorrupted speech.

This thesis attempts to evaluate the performance of the SAS enhancement system when

track extraction is performed by employing specific knowledge of tracks from the uncorrupted

speech. If tracks extracted in this manner can be processed within the single-sensor framework to

yield significant enhancement, we conclude that the use of SAS for speech enhancement has

definite potential, and justification is provided for developing a method to blindly extract speech-

only tracks. If convincing enhancement is not obtained, we know that a blind track extraction

procedure would perform no better, and time has not been wasted developing such a technique in

vain.



Figure 2.3 depicts a block diagram of the overall evaluation framework for the thesis. An

uncorrupted speech signal is deliberately corrupted with additive white Gaussian noise, after

which the STDFT's of both the uncorrupted and corrupted signals are computed. SAS tracks are

generated in the uncorrupted STDFT according to the procedure outlined in Chapter 2, and these

tracks are then used to extract speech-only tracks from the corrupted STDFT. In this chapter, the

formation and synthesis of the extracted tracks is examined. Chapter 5 then explores various

types of track processing within the limits of single-sensor enhancement. In Chapter 6, the best

results obtained from synthesizing the speech-only track estimates are compared to results

obtained through spectral subtraction. If the development of blind track extraction is to be

justified, SAS enhancement based on tracks extracted with knowledge of the uncorrupted speech

should provide a significant improvement over spectral subtraction. If it does not, then

deterioration of the SAS enhanced speech resulting from blind track extraction would likely result

in an enhancement that is worse than spectral subtraction.

Uncorrupted Speech

Spectral Subtraction SAS Enhanced Speech
Enhanced Speech

Fig. 2.3 SAS enhancement evaluation framework



4.1 Speech-Only Track Extraction

Track extraction was defined as the process of selecting and matching peaks from the

corrupted STDFT to form tracks relevant to the speech. By using tracks from the uncorrupted

speech as a guide in this process, we provide an upper bound on the performance of any track

extraction algorithm operating within the limits of single-sensor enhancement, where no specific

knowledge of the uncorrupted speech is available. The location of a track within the STDFT of

the uncorrupted speech is given by the frequencies (bin values) of its matched peaks, and for each

of these tracks, a corresponding track with approximately the same location is formed in the

corrupted STDFT. The frequency, amplitude, and phase of each peak defining any such track are

taken from the corrupted STDFT, but the manner in which the peaks are selected and matched

from frame-to-frame is dictated by a track from the uncorrupted speech.

Specifically, track extraction proceeds as follows. For each peak along a track from the

uncorrupted speech, a peak at approximately the same frequency is sought in the corresponding

frame of the corrupted STDFT magnitude. The corrupted peak whose frequency is closest to that

of the uncorrupted peak is selected, and if the absolute difference between the frequencies of the

two peaks is below some threshold, the corrupted peak is included in the extracted track. If not,

the corrupted peak is considered "lost," and its parameters are interpolated after all other peaks

from the associated track are extracted from the corrupted STDFT. The SAS amplitude and

phase interpolation formulas given in (2.6) and (2.8) are utilized, but instead of applying these

formulas over a single frame interval, they are allowed to span any consecutive number of frames

containing lost peaks. The parameters of the lost peaks are then found by sampling the resulting

amplitude and phase functions at each frame interval lying within the interpolation region.

Figure 4.1 depicts the track extraction procedure by plotting together peaks from the

STDFT's of the uncorrupted and corrupted speech. The tracks from the uncorrupted speech

(dashed lines) are the same as those seen in Figure 2.1. The extracted tracks, represented by the

dark solid lines, are seen to connect peaks from the corrupted STDFT (the O's) that are close to

_ __



peaks from the uncorrupted speech (the X's). In several places, peaks are lost in the corrupted

STDFT, and interpolation is required.

U,

X Uncorrupted STDFT peak
0 Corrupted STDFT peak

-- - Uncorrupted track
- Extracted track

Time

Fig 4.1 Illustration of the track extraction procedure

4.2 Synthesis of Unprocessed Extracted Tracks

By synthesizing extracted tracks before any processing is applied to their corrupted

parameters, we examine the enhancement properties of speech-only track extraction by itself. In

experiments designed toward this end, speech utterances were corrupted with additive white

Gaussian noise to achieve SNR's ranging from 18dB down to OdB. Speech-only tracks were

extracted using a threshold of 40Hz to match peaks defining the uncorrupted tracks to peaks in

the corrupted STDFT. The extracted tracks were then interpolated and summed to produce an

estimate of the uncorrupted speech. For all SNR's, the underlying speech from the corrupted

signal was perceptually intact in the estimate, but a large amount of noise remained. Instead of

sounding broadband, the noise now sounded highly correlated with the speech. The fact that the

estimate was completely silenced during regions of non-speech activity was a partial cause, and in

addition, the noise that remained during speech activity possessed a speech-like quality. This

quality did not change with SNR; the residual simply became louder as the SNR decreased.

Several informal listeners found the new speech-like noise residual to be very unnatural sounding

and preferred the original corrupted speech, even though the noise level was perceived to be



higher. Enhancement was definitely not achieved, and the need for track processing was made

clear.

Allowing only one of the three extracted track parameters (frequency, amplitude, or

phase) to be taken from the corrupted spectrum, while the other two are retained from the

uncorrupted tracks, isolates each parameter's contribution to the overall noise residual. When

this modified extraction procedure was utilized in our experiments, corrupted track amplitudes

were quickly identified as the largest perceptual component of the noise residual. With corrupted

amplitudes alone, the synthesized speech sounded almost identical to the speech synthesized from

extracted tracks with all three parameters corrupted. When only frequency or phase were

corrupted, the resulting synthetic speech sounded very close to speech synthesized from the

uncorrupted tracks. It was concluded that track processing should focus on the extracted track

amplitudes, while frequency and phase can essentially be ignored.

With the above conclusion, characterizing the quality of any amplitude extracted from the

corrupted STDFT is appropriate. For this purpose, we define a peak-to-noise-ratio (PNR) in the

same manner that a peak-to-signal-ratio (PSR) was defined in Section 2.2. Specifically, for any

peak k in frame d of the STDFT of the uncorrupted speech, the PNR in decibels is defined to be

PNRk,d = 10l1oglo Ad ) (4.1)

where v,, is the expected value of the Gaussian noise STDFT squared magnitude given in (3.15).

Intuitively, we expect that as the PNR of a peak from an uncorrupted track decreases, the

corresponding amplitude that is extracted from the noisy speech will be more corrupt relative to

the original amplitude.

If peaks with smaller PNR's are excluded from the track extraction procees, we find that

the perceptual level of the residual noise in the speech estimate can be reduced while maintaining

the integrity of the underlying speech. This is achieved by referencing the minimum peak

amplitude threshold used during track formation in the uncorrupted speech to a particular PNR

rather than PSR, so that the amplitude threshold increases with the noise power. A portion of the

_ ___~_ __.___ __1_.



speech-only track information resulting from the use of a -30dB PSR, as specified in Section 2.2,

is discarded in exchange for a reduction of the noise residual. For all SNR's ranging from 18dB

down to OdB, a minimum PNR of -12dB was judged to provide the best compromise between

noise reduction and preservation of the underlying speech. With this threshold, any artifacts due

to the lost speech-only track information seemed to be perceptually masked by the noise residual.

Figure 4.2 illustrates the implementation of track extraction with a -12dB PNR minimum

amplitude threshold. We see spectrograms of the two speech utterances from Figure 2.2 after

white Gaussian noise has been added to achieve an SNR of 6dB. Below each spectrogram is a

spectrogram-like plot of the extracted tracks. Since a -12dB PNR threshold is used, we see fewer

tracks than in Figure 2.2, where a -30dB PSR threshold is used.

In summary, the track extraction procedure developed in this chapter is not considered a

successful enhancement technique by itself. Corrupted track amplitudes were identified as the

most significant cause of the perceptually objectionable noise residual resulting from the synthesis

of extracted tracks. By excluding uncorrupted STDFT peaks with smaller PNR's from the

extraction process, the audible effects of the noise residual in the speech estimate are somewhat

reduced. Based on these findings, the exploration of track processing in Chapter 5 focuses on the

amplitudes of tracks that are extracted using a -12dB PNR threshold.
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Chapter 5

Extracted Track Amplitude Processing

In Chapter 4, we developed a procedure to extract speech-only tracks from the STDFT of

corrupted speech by using tracks from the corresponding uncorrupted speech as a guide.

Assuming the performance of the extraction step in our SAS enhancement system to be thusly

optimized, we now focus on processing the corrupted amplitudes of extracted tracks to reduce

the noise residual in the speech estimate. Processing is performed within the limits of single-

sensor enhancement, utilizing no specific knowledge of the uncorrupted speech. In this chapter

we consider two methods: spectral subtraction and track amplitude smoothing.

5.1 Bias Removal Through Spectral Subtraction

During the discussion of spectral subtraction in Chapter 3, we saw in (3.3) and in Figure

3.2 that the STDFT magnitude of the corrupted speech will be, on average, larger than the

STDFT magnitude of the uncorrupted speech at any particular time-frequency location. SAS

track amplitudes are taken directly from the STDFT magnitude, but in our enhancement system,

an extracted track amplitude is not necessarily taken from the same frequency location as the

corresponding uncorrupted track amplitude. The two locations are constrained to be close,

however, and we therefore observe that an extracted amplitude is biased above its corresponding

uncorrupted amplitude in a manner approximated by (3.3). As an illustration, Figure 5.1 plots the

amplitudes of an uncorrupted track and its corresponding extracted track over time. The tracks

are from the female utterance that appears in Figures 2.2 and 4.2. With an overall SNR of 6dB

for the corrupted speech, the average PNR of the uncorrupted track is 1.12dB. At every frame,

except one, the extracted amplitude is larger than the uncorrupted amplitude.
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Fig 5.1 Uncorrupted track amplitudes and corresponding extracted track amplitudes taken from female
speech with a 6dB SNR

Although spectral subtraction was originally developed to remove the bias from the entire

STDFT magnitude of corrupted speech, its application at a particular STDFT bin number is

independent of information at any other bin number. Therefore, spectral subtraction can be

applied without modification to any track amplitude if the expected value of the noise spectrum at

the corresponding frequency is known, as is the case for the Gaussian noise being considered.

Stated more formally, let A be the amplitude of an uncorrupted track peak, let B be the

corresponding extracted amplitude, and let /y, be the expected value of the Gaussian noise

STDFT sqaured magnitude. Redefining the (speech-plus-noise)-to-noise ratio of (3.18) to be

B2
S- , (5.1)

VIn

an estimate of A is

= H(p)B, (5.2)

where H(p) is any one of the gain functions given in (3.20a-d) for the discussed forms of

spectral subtraction: maximum likelihood, power, Wiener, and amplitude.

In our experiments, each type of spectral subtraction was applied to tracks extracted

according to Section 4.2. In all four cases, the noise residual in the resulting speech estimate was

at a lower perceptual level and sounded less "harsh" in comparison to the residual described in
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Section 4.3. Stated more precisely, it sounded as though a low-pass filter had been applied to the

residual that existed before spectral subtraction was utilized. This makes sense because spectral

subtraction applies greater attenuation to extracted tracks with smaller amplitudes, as

demonstrated by Figure 3.1, and these smaller amplitude tracks tend to lie at higher frequencies.

The degree to which each form of spectral subtraction perceptually reduced the noise residual is

also in agreement with Figure 3.1 - maximum likelihood was the least effective and amplitude the

most, with power and Wiener lying in between.

Despite the relatively large reduction of the noise residual provided by amplitude spectral

subtraction in our experiments, the underlying speech in the estimate retained nearly all the clarity

that was present when extracted tracks were synthesized without modification, suggesting that

even more attenuation might be applied without severely damaging the quality of the speech. By

increasing the parameter k in the spectral subtraction formulation of (3.7), more attenuation is

provided. With a=1 and k allowed to vary, the gain function for amplitude spectral subtraction

becomes

H p - k) / 2H() = (5.3)

and Figure 5.2 is a plot of this function for various values of k. A further reduction of the noise

residual was heard as k increased, but the underlying speech started to sound muffled, especially

for k>1.5. A value of k=1.25 was judged to provide the best compromise, and with this specific

value, (5.3) will be referred to as modified amplitude spectral subtraction. After its application,

the level of the noise residual was low enough so that a preference among informal listeners

between the speech estimate and the corrupted speech leaned towards the estimate, especially for

very low SNRs. The residual still sounded very correlated to the speech, but was now much more

tonal - during longer voiced sections of an utterance, it might be described as a "warble."

Figure 5.3 demonstrates the application of modified amplitude spectral subtraction to the

extracted track from Figure 5.1. The extracted track amplitudes are no longer biased above the



corresponding uncorrupted amplitudes, and, in fact, the majority of them lie below the

uncorrupted amplitudes, as predicted by Figure 3.2.
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Fig 5.2 Gain function for amplitude spectral subtraction with varying k
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Fig 5.3 Uncorrupted track amplitudes and corresponding extracted track amplitudes after the
application of modified amplitude spectral subtraction

Using modified amplitude spectral subtraction as a first step in track processing is certainly

reasonable, but it possesses a short-coming in the context of SAS. By operating on each track

amplitude independently, the highly structured manner in which these amplitudes are connected

over time is completely ignored. Exploiting this structure to further reduce the noise residual is

the next step in our development as we consider smoothing the series of amplitudes that define

each track.



5.2 Track Amplitude Smoothing

A large number of tracks formed in an uncorrupted speech utterance, especially those

from a voiced section, exhibit amplitudes that change quite slowly and predictably from

frame-to-frame. A series of extracted track amplitudes, on the other hand, tends to vary much

more randomly because of the corrupting noise. These observations are demonstrated in

Figure 5.4 where we see pairs of uncorrupted and extracted tracks from the male and female

speech of Figures 2.2 and 4.2. Each extracted track is from a corrupted utterance with an overall

SNR of 6dB, and modified amplitude spectral subtraction has been applied. The average PNR of

the corresponding uncorrupted track is printed at the top of each plot. We see that the

uncorrupted tracks (dark lines) tend to vary smoothly over time while the extracted tracks (lighter

lines) look much more jagged. From these plots it is does not appear that the exact, or even

approximate, shape of the uncorrupted tracks is recoverable from the extracted tracks, but it does

seem plausible that smoothing the extracted track amplitudes over time might further reduce the

noise residual in the speech estimate.
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Fig 5.4 Uncorrupted track amplitudes (solid lines) and the corresponding extracted track amplitudes (dashed
lines) after modified amplitude spectral subtraction. Top row: female speech. Bottom row: male speech.
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5.2.1 Moving Average Filters

The first type of smoother that we have considered is a weighted moving average, which

can be represented as a linear time-invariant (LTI) filter with finite-length impulse response h[n]

satisfying

h[n]= h[-n], InlI L (4.20a)

h[n]=O, Inl>L,

and

L

_ h[n] = 1, (4.20b)
n=-L

where the length of the filter is 2L+1, and the time index n represents frame number. We do not

have any strict constraints in the frequency domain for the filter other than a desire for it to exhibit

a low-pass characteristic. Several popular symmetric windowing functions, such as the

rectangular, Bartlett, Hanning, and Hamming, all meet this requirement, and they are easily

normalized to comply with (4.20b). By experimenting with different windows, various tradeoffs

between low-pass bandwidth and high-pass attenuation are achieved [8], and for each window,

the amount of smoothing increases with the filter length.

The track amplitude sequences being filtered are finite length, so the manner in which the

filter is applied at the endpoints of each sequence must be considered. Let a[n] be a sequence of

track amplitudes having length T. We want to perform the convolution i[n]= h[n]*a[n] and

then replace the original track amplitudes with ii[n] for 0 • n < T. Because h[n] is symmetric

about n = 0, a[n] must be extended so that it is defined for - L • n < T + L. One option is to set

a[n]=0 at the added beginning and end points, but this causes iu[n] to taper down towards zero at

the beginning and end of the track. For very short tracks, where T < L, the entire track is

severely attenuated. A better solution is to extend the values a[0] and a[T-1] into the added

beginning and end points, i.e. a[n]=a[0] for - L • n <0 and a[n]=a[T-1] for T • n < T + L.

This way, any filtered track can still begin or end with a large amplitude, and very short tracks are

not attenuated.



In our experiments, filtering extracted tracks with a moving average of the proper length

resulted in a small perceptual reduction of the noise that remained after the application of spectral

subtraction. The warble that was heard during longer voiced sections was transformed into a

noise that sounded quieter and less time-varying. With a rectangular window defining the shape

of the impulse response, best results seemed to be obtained using L=2, and with any of the

tapered windows (Blackmann, Hanning, or Hamming), L=3 seemed best. Improvements afforded

by the rectangular and tapered windows seemed perceptually equivalent, so the rectangular

window appeared the better choice since it had a shorter length. After filtering the track

amplitudes, transition areas in the speech estimate became slightly slurred, but for low SNR's

these degradations were judged to be less perceptible and unnatural sounding than the warbles

that were eliminated. For SNR's greater than 12 dB, however, the tradeoff was debatable. As L

was increased beyond three, the slurring in transition areas became worse, and no additional

reduction of the noise residual was heard during longer voiced segments.
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Fig 5.5 Uncorrupted track amplitudes (solid lines) and the corresponding extracted track amplitudes
(dashed lines) after modified amplitude spectral subtraction and a moving average filter with a

rectangular window and L=2.

Our experiments suggest that, among the specified class of weighted moving average

filters, a filter with a rectangular window and a length of five frames (50ms) provides the best
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improvement to the speech estimate. In comparison to the improvement heard after the

application of spectral subtraction, however, the added benefit of the moving average amplitude

smoother was fairly small. Figure 5.5 depicts the same tracks from Figure 5.4, but now a moving

average filter with a rectangular window and L=2 has been applied to the extracted tracks.

5.2.2 Median Filters

Another type of smoothing filter that we have considered is the running median which,

unlike the moving average, is non-linear. A running median replaces each value of a sequence

with the median of a surrounding sub-sequence, and its application to a sequence of track

amplitudes a[n] with length T is analogous to the moving average filter. First, a[n] is extended so

that it is defined over the range - L<n < T + L. Then, for 0 < n < T, di[n] is equal to the

median of the sub-sequence a[n-L]... a[n+L], where the length of the filter is 2L+1.

The running median filter is markedly different from the moving average in two ways.

First, if the sequence being filtered is composed of constant sub-sequences, each at least L+1

samples long, then the sequence is unchanged by the median filter. Therefore, a median filter is

capable of preserving edges within a sequence, whereas a moving average filter smears such

discontinuities. Secondly, if every sample of a sequence equals some constant except for one

outlying sample, then every sample of the median filtered sequence is equal to this constant, no

matter how large the outlier. The median filter removes the outlier without affecting the rest of

the sequence, while a moving average filter results in a hump around the outlier. Figure 5.6

illustrates these differences between the running median and moving average filters, both with

L=2, as they are applied to two artificially constructed sequences.

The edge preservation and outlier suppressing properties of the running median filter have

made it a popular tool in image processing. For example, images that are corrupted with impulse-

like noise can often be enhanced with a 2-dimensional median filter [9]. More related to the work

at hand, median filtering has proven useful in smoothing the contours of estimated short-time

speech features, such as zero-crossing rate and pitch period, which contain large-scale



discontinuities that need to be preserved and small-scale estimation noise that should be

suppressed [10]. In addition, a series combination of a running median and moving average has

been used for this same application with reported improvements over standard median filtering. It

is not clear from Figure 5.5 that the sequences of extracted track amplitudes exhibit any

properties that make them obvious candidates for median filtering, but one might hypothesize that

the edge preservation property could reduce the slurring problem associated with the moving

average filter.
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Fig 5.6 Demonstration of the differences between a moving average and running median filter. Top
row: edge preservation. Bottom row: outlier suppression.

In our experiments, median filtering of the extracted track amplitudes with L= 1 had almost

no perceptual effect on the speech estimate. The warbling was reduced somewhat, perhaps, but

any improvements were negligible in comparison to those resulting from a moving average filter

of the same length. At the same time, no noticeable artifacts were introduced into the speech

estimate. With L=2, median filtering reduced the warbling by an amount comparable to a moving

average filter, but an equivalent amount of slurring was heard. As L increased beyond two, the

slurring became worse, and no further reduction of the residual was perceived. When a series

combination of a running median and moving average was applied with combinations of L= 1 and



L=2 for the two filters, no additional improvements over the standard median filter were heard in

the speech estimate.

In summary, the best results obtained in our experiments from median filtering seemed

perceptually equivalent to those obtained from the moving average. Figure 5.7 depicts the tracks

from Figure 5.4, but now a running median filter with L=2 has been applied to the extracted

tracks. Comparison with Figure 5.5 reveals few visual differences between the general shape of

each median and moving average filtered track, an observation that coincides with the perceptual

equivalence of the resulting speech estimates. Apparently, sequences of extracted track

amplitudes possess very few of the features that highlight differences between the application of a

running median and a moving average.
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Fig 5.7 Uncorrupted track amplitudes (solid lines) and the corresponding extracted track amplitudes
(dashed lines) after modified amplitude spectral subtraction and a running median filter with L=2.

5.3 Conclusions

In this chapter, two types of track amplitude processing, spectral subtraction and

smoothing, were found effective for reducing the noise residual in the speech estimate produced

from extracted SAS tracks. Removing the upward bias of extracted track amplitudes by applying

modified amplitude spectral subtraction resulted in a substantial reduction of the noise residual.
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Spectral subtraction, however, does not take advantage of the track structure in which amplitudes

from the uncorrupted speech tend to vary smoothly over time. Based on this observation, the

amplitudes defining each extracted track were processed with a smoothing filter. Both a moving

average and running median filter resulted in an equivalent perceptual reduction of the noise

residual at the expense of some minor slurring in the underlying speech. The improvements due

to smoothing, however, were small in comparison to the improvements heard after spectral

subtraction was applied.

Examining these results, we note that spectral subtraction can be utilized outside of the

proposed SAS enhancement framework, while track amplitude smoothing is a procedure that is

entirely unique to SAS. The use of SAS for enhancement would appear more credible if the

SAS-specific track amplitude processing had a larger perceptual impact. However, benefits

resulting from the very fact that the speech estimate is constructed from extracted SAS tracks

have not yet been evaluated through comparison with a non-SAS enhancement procedure. By

comparing traditional spectral subtraction with the best-case SAS enhancement, the overall effect

of the SAS-specific processing can be isolated and judged. This is the focus of the next chapter.





Chapter 6

Comparison of SAS and Spectral Subtraction

In order to determine the relative benefit of the SAS-specific processing in the

enhancement procedure discussed in Chapter 5, a comparison is made with traditional spectral

subtraction, as implemented in Section 3.3. For the development of a blind track extraction

algorithm to be justified, SAS enhancement based on tracks extracted with specific knowledge of

the uncorrupted speech should demonstrate a clear and significant improvement over traditional

spectral subtraction. The existence of such an improvement was evaluated through an informal

listening test involving multiple subjects and utterances, and the results are presented in this

chapter.

6.1 Qualitative Comparison of SAS and Spectral Subtraction Enhancement

Before the listening test is discussed, some general qualitative comparisons can be made

between the SAS enhancement technique and traditional spectral subtraction. Figure 6.1 shows

spectrograms of the uncorrupted and corrupted speech from Figures 2.2 and 4.2. In addition, we

see spectrograms of both the SAS and spectral subtraction speech estimates. The most obvious

visual difference between the two estimates is that SAS preserves some of the higher-

frequency/lower-energy harmonic lines, while the spectral subtraction spectrograms look very

"spotted" is these areas. The fact that tracks are being used to create the SAS estimate allows

most of these noise spots to be eliminated, and track amplitude smoothing interpolates between

the speech-relevant spots to more faithfully reproduce the harmonic lines. In both cases,

however, very low energy portions of the original speech are completely lost.

In terms of aural perception, the residual in the SAS estimate sounds correlated to the

speech since the corrupting noise is effectively filtered by narrow band-pass filters that follow the

I,,



harmonic lines of the speech. The residual in the spectral subtraction estimate, though

perceptually louder, sounds relatively uncorrelated to the speech. One might argue that an

uncorrelated residual sounds more natural, but the fact that it is louder might outweigh this

advantage.
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Fig. 5.1 Comparison of SAS and spectral subtraction enhancement for male and female speech



6.2 Listening Test

A very informal listening test comparing SAS enhancement and spectral subtraction was

conducted with the assumption that if a significant preference for SAS enhancement existed, it

would be evident in such a test. During the test, subjects listened to several sets of speech

utterances through headphones. Each set consisted of four signals: 1) an uncorrupted utterance,

2) the same utterance corrupted with white Gaussian noise to achieve an SNR of 6dB, 3) the

corresponding SAS speech estimate, and 4) the corresponding spectral subtraction speech

estimate. A 6dB SNR was chosen because it was felt that at this noise level either of the two

speech estimates would be preferred over the corrupted speech. The estimates were labeled "A"

and "B", and the letters' correspondence to SAS or spectral subtraction was randomized from set

to set. For each set, subjects were allowed to listen to each of the four utterances as many times

as they wanted and were simply asked if they preferred listening to "A" or "B."

In creating the speech estimates for the listening test, spectral subtraction was

implemented to the specifications of Section 3.3. With SAS enhancement, however, track

amplitude processing was not performed precisely as outlined in Chapter 5. Rather than using

k=1.25 for amplitude spectral subtraction, k=1 was used. Then, before smoothing, the adaptive

order-statistic filter presented in Section 3.3 was applied to each sequence of track amplitudes,

rather than along STDFT bins as Boll originally intended. Lastly, a moving average filter with a

rectangular window and L=2 was applied to the track amplitudes, just as discussed in

Section 5.2.1. Applying Boll's filter along the tracks did result in a further reduction of the noise

residual after amplitude spectral subtraction with k= 1 had been applied, but after the listening test

it was recognized that the filter had been designed to be most effective along portions of the

STDFT that did not contain speech. Applying it along the tracks completely violated this logic,

and upon closer examination it was found that the filter merely attenuated the lower amplitude

tracks further. The same perceptual result was obtained much more directly by setting k= 1.25 in

the spectral subtraction equation. Therefore, Chapter 5 presented the use of amplitude spectral

subtraction with k=1.25 as proper procedure and did not mention Boll's filter for the sake of



maintaining coherency. The filter is mentioned here, however, so that the conditions of the

listening test are documented with complete accuracy.

6.3 Results and Conclusions

Six different sets of utterances were presented to each subject during the test:

1. Female - "The bowl dropped from his hands."
2. Male - "He has the bluest eyes."
3. Female - "We made some fine brownies."
4. Male - "The chef made lots of stew."
5. Female - "That shirt seems much too small."
6. Male - "Stuff those with soft feathers."

Nine subjects participated, and the results are depicted in Figure 5.2, where the number of times

SAS and spectral subtraction were chosen is plotted against both listener and utterance.

Altogether, SAS enhancement was chosen 60% of the time and spectral subtraction 40%. Among

the 9 listeners, 4 chose SAS more often, 4 chose spectral subtraction more often, and 1 chose

both an equal number of times. Among the 6 utterances, the SAS enhancement was selected

more often except for one utterance.
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The statistical results of the listening test might be used to indicate a slight preference for

SAS enhancement, but they must be qualified by a description of the subjects' reactions and

comments. Upon first comparing the two speech estimates, some of the subjects were perplexed,

complaining that they could hear no significant difference between the two. They then proceeded

to switch back and forth between the estimates, listening more intently for smaller differences. By

the end of the test, most of the subjects indicated that they were able to hear a difference between

the two estimates in each set, but that selecting one as perceptually more pleasing was oftentimes

arbitrary. Two of the subjects, however, were able to quickly perceive two distinct types of

enhancement and then consistently pick the type that they liked. Both of these subjects chose

SAS, but one other subject was almost as consistent in selecting spectral subtraction. Whatever

the subject's preference, no one made any comment about one enhancement being obviously

better than the other.

In light of the statistics and especially the subjects' reactions, a strong and immediate

preference for SAS enhancement over spectral subtraction was clearly not exhibited in the

listening test. The SAS-specific features of our enhancement system did not appear to add any

substantial perceptual improvements to spectral subtraction. We therefore conclude that

developing an algorithm to blindly extract speech-only tracks from corrupted speech is not yet

justified. The upper bound on the performance of SAS enhancement that was examined needs to

promise much more convincing gains before such a pursuit makes sense.





Chapter 7

Summary and Future Work

7.1 Summary and Conclusions

This thesis investigated the use of Sinusoidal Analysis-Synthesis (SAS) for the single-

sensor enhancement of speech corrupted by additive broadband noise. In the proposed

enhancement scheme, speech-only tracks are first extracted from the corrupted speech by

appropriately selecting and matching peaks in its STDFT mangitude. Then, the corrupted

parameters of these tracks are processed in order to reduce the perceptual level of any remaining

noise. To evaluate the potential of this technique, a framework was developed for examining an

upper bound on performance. Track extraction was performed with specific knowledge of the

uncorrupted speech so that the procedure was, in a sense, optimized. The extracted tracks were

then processed within the single-sensor constraints, and the resulting speech estimate represented

an upper bound on the performance of SAS enhancement for whatever type of processing was

performed.

After experimenting with the synthesis of unproccessed extracted tracks, it was concluded

that the extraction procedure, by itself, does not afford convincing enhancement. Corrupted track

amplitudes were identified as the largest contributor to the resulting speech-correlated noise

residual and therefore became the focus of track processing. Two single-sensor processing

techniques were considered. First, spectral subtraction was applied to remove the upward bias in

extracted track amplitudes. Of the several forms tested, modified amplitude spectral subtraction

seemed to provide the best compromise between noise reduction and speech preservation. Next,

various smoothing filters were applied to the extracted track amplitudes in an attempt to take

advantage of the SAS track structure. Both moving average and running median filters provided

some additional reduction of the noise residual, but the improvements were small in comparison



to those resulting from spectral subtraction. A comparison was then made between SAS

enhancement and traditional spectral subtraction in order to isolate effects of the SAS-specific

processing in our system. An informal listening test indicated no significant preference for SAS

enhancement, leading us to conclude that the development of a blind track extraction algorithm is

not yet justified.

The results of the listening test suggest that the SAS-specific features of our enhancement

system add no substantial improvements to traditional spectral subtraction. This is somewhat

surprising given that the noise lying in between the tracks is eliminated. A possible explanation is

that the resulting noise residual sounds less natural in comparison to that of spectral subtraction,

thereby canceling the benefits of its lower perceptual level. This may be an inherent problem with

using SAS for enhancement. While the benefits of eliminating inter-track noise now seem

questionable, SAS tracks clearly introduce a large amount of structure to the enhancement

problem. In this thesis, efforts made to exploit the track structure produced little improvement in

the speech estimate. However, the examined filters were selected based on a simple empirical

observation that the track amplitudes should vary smoothly, in some sense, over time. New track

processing techniques could conceivably take advantage of the track structure in a more optimal

manner, and if such work is continued, the framework developed in this thesis will prove useful.

7.2 Future Work

In light of our conclusions, continuation of the work in this thesis should focus on the

development of better track amplitude processing techniques. One course of action is to

incorporate more accurate knowledge of speech into the processing. This is an idea that has

already demonstrated merit in an enhancement procedure developed by Ephraim [11]. In this

system, the probability distributions of both the speech and noise STDFT magnitudes are jointly

estimated by using a hidden Markov model (HMM) that is trained on a corpus of representative

uncorrupted speech utterances. With these two distributions, estimation of the STDFT magnitude

of the uncorrupted speech is formulated in the Bayesian sense, and an improvement over



traditional spectral subtraction is reported. Incorporating speech knowledge into the estimation

of amplitudes along extracted SAS tracks would clearly have a different specific form, but the

general idea is the same. For example, a parametric or statistical model describing the manner in

which uncorrupted track amplitudes vary over time could be developed. With a parametric

model, a class of curves might be fit to the extracted track amplitudes after spectral subtraction

has been applied, and with a statistical model, a minimum-mean-square-error filter might be

developed to jointly perform bias removal and smoothing.
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