
Object and Pattern Detection in Video Sequences

by

Constantine Phaedon Papageorgiou

B.S., Mathematics/Computer Science (1992)

Carnegie Mellon University

Submitted to the

Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1997

© 1997 Massachusetts Institute of Technology.
All rights reserved.

Signature of author

Certified by

Department of Electrical tigineering and Computer Science
May 14, 1997

Accepted by

Tomaso Poggio
---Thesis Supervisor

Arthur C. Smith
Chairman, Department Committee on Graduate Students

JUL 2 41997

----

''





Object and Pattern Detection in Video Sequences

by

Constantine Phaedon Papageorgiou

Submitted to the
Department of Electrical Engineering and Computer Science

May 14, 1997

in partial fulfillment of the requirements for the Degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

This thesis presents a general trainable framework for object detection in static
images of cluttered scenes and a novel motion based extension that enhances per-
formance over video sequences. The detection technique we develop is based on a
wavelet representation of an object class derived from a statistical analysis of the
class instances. By learning an object class in terms of a subset of an overcomplete
dictionary of wavelet basis functions, we derive a compact representation of an object
class which is used as input to a support vector machine classifier.

The paradigm we present successfully handles the major difficulties of object
detection: overcoming the in-class variability of complex classes such as faces and
pedestrians and providing a very low false detection rate, even in unconstrained en-
vironments.

We demonstrate the capabilities of the technique in two domains whose inherent
information content differs significantly. The first system is face detection; we extend
the methodology to the domain of people which, unlike faces, vary greatly in color,
texture, and patterns. Unlike previous approaches, this system learns from examples
and does not rely on any a priori (hand-crafted) models or motion-based segmentation.

The thesis also introduces a motion-based extension to enhance the performance of
the detection algorithm over video sequences. This module is based on the realization
that in regions of motion, the likely classes of objects are limited, so we can relax the
strictness of the classifier. This does not compromise performance over non-moving
objects. The results presented here suggest that this architecture may be extended
to other domains.

Thesis Supervisor: Professor Tomaso Poggio

Department of Brain and Cognitive Sciences
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Chapter 1

Introduction

The amount of audio and visual information available has exploded in recent years,

to the point where manually searching and cataloging the vast number of databases

available has become impossible. One can expect this problem to only get worse,

with the drop in prices in memory and the advent of new, inexpensive digital video

recording techniques. This is a serious problem with databases of still images; for

databases of video sequences, this problem is compounded several times over. Imagine

trying to manually search a single video sequence for all images of Bill Clinton; at

a rate of 30 frames per second, even one hour of video presents a formidable, time-

consuming task. Our goal is to develop a robust, automatic method for searching

video sequences for a specific class of objects, for example, faces or people. This

technology represents the first step in a system that would find all the frames showing

Bill Clinton, as hinted at above. This automatic detection module would first find the

subset of frames containing images of people, and then would pass the subimages of

people to a recognition module that could compare the person to an internal database

of people that it "knows", to determine which ones are Bill Clinton.

1.1 The Problem

The work in this thesis addresses the problem of object and pattern detection in video

sequences of cluttered scenes. This problem is a version of the detection problem for



single images; in this case, though, the dynamic motion information is available to any

algorithm that tackles object detection in video sequences. In this sense, the detection

in video task is more simple than detecting objects in static images. Regardless of the

extra information available, the object detection task is still difficult; we now discuss

the characteristics of the problem that make it so challenging.

Trying to detect real-world objects of interest, such as faces and people, poses

especially challenging problems since these non-rigid objects are hard to model and

there is significant variety in color and texture. In contrast to the case of pattern

classification where we need to decide between a relatively small number of classes,

the detection problem requires us to differentiate between the object class and the

rest of the world. As a result, the class model must accommodate the intra-class vari-

ability without compromising the discriminative power in distinguishing the object

within cluttered scenes. Furthermore, the need for a precise and tight class model is

magnified due to the difficulty of the decision problem in the case of detection.

In Figure 1-1, we highlight the difficulty of the general detection problem by

showing a subset of the training examples used as prototypes for a pedestrian object

class. We can see that that the pedestrians vary greatly in color and texture and

there is no consistency in the background. The model we develop should be able to

model this variability.

I.

..I·
Figure 1-1: The top row shows examples of images of people in the training database.
The examples vary in color, texture, view point (either frontal or rear) and back-
ground. The bottom row show edge detection of the pedestrians. Edge information
does not characterize the pedestrian class well.

M ta



One appealing framework in which the problem can be cast is that of maximum

likelihood estimation (MLE). This is a powerful technique, since we can obtain an

estimate of the likelihood from our data set, but it suffers from the problem that it

assumes there is one and only one class object in the scene. For the more general and

much more difficult case, this set of approaches cannot be used since it is not known

how many class objects are present in the scene, if any.

Consequently, the classification of each pattern in the image must be done in-

dependently; this makes the decision problem susceptible to missed instances of the

class and false positives. As mentioned above, our dual goal is to develop a system

that misses very few of the desired objects while generating very few false detections.

How do we quantify "very few", though? A false detection rate of one for every

10,000 patterns looked at seems very low, but when we realize that a typical image

we will be analyzing contains on the order of 500,000 subwindows, this means that

could expect 50 false detections per image. When we look at video sequences, the

cumulative number of false detections across a sequence of frames would seriously

limit the practicality of using such a system. Hence, one of the goals underlying our

work is to provide a framework whose accuracy is tunable to the current task.



1.2 Previous Work

In this section, we describe prior work in object detection in static images and in

video sequences that is related to our technique.

1.2.1 Object Detection in Static Images

The basic problem of object detection in images is of central importance to any

image understanding system. Typically, the systems that have been developed fall

into one of two categories: template-based approaches that attempt to match or fit

a prototype template to different parts of the image (Betke and Makris, 1995[2],

Yuille et al., 1992[31]) or image invariance methods that base a matching on a set of

image pattern relationships (eg. brightness levels) that, ideally, uniquely determine

the objects being searched for (Sinha, 1994[22][23]).

More recently, systems for detecting unoccluded vertical frontal views of human

faces in images have been developed using example-based approaches by Sung and

Poggio, 1994[26], Moghaddam and Pentland, 1995[15], Rowley et al., 1995[20], Vail-

lant et al., 1994[28], and Osuna et al., 1997[17]. These view-based approaches can

handle detecting faces in cluttered scenes and have shown a reasonable degree of

success when extended to handle non-frontal views. The system of Sung and Poggio

models a set of faces and non-faces as clusters in a high-dimensional space. For a

given pattern, the system uses two distance measures for each cluster to differentiate

face patterns from non-faces: a Mahalanobis-like distance in the space of the largest

eigenvectors and the Euclidean distance in the space of the smallest eigenvectors. A

neural network classifier is trained on these distance measurements. To find all the

faces in an image, the algorithm iterates over each sub-image of the image, calculating

the distance measures for input into the neural network. The other face detection

systems cited above are similar: Moghaddam and Pentland use an eigenface repre-

sentation derived from a principal components analysis of faces, Rowley and Vaillant

use neural networks with different receptive fields, and Osuna uses a support vector

machine to classify the patterns.



An approach that differs from the standard pixel-based representation was taken

by Sinha, 1994[22][23] who introduced the idea of the "template ratio" - encoding

a human face as a set of binary relationships between the average intensities of 11

regions. The assumption behind the template ratio was that these relationships will

hold regardless of significant changes in illumination direction and magnitude. For ex-

ample, the eye sockets are almost always darker than the forehead or the cheeks. The

success and robustness of the template ratio approach for face detection indicates that

a representation based on the encoding of differences in average intensities of differ-

ent regions is a promising direction. However, no rigorous mathematical formulation

and learning algorithm for the derivation of the template were presented; the face

regions covered by the template and the relationships were hand-crafted. Also, the

detection algorithm was based on simple template matching whose expressive power

is restricted to relatively simple and fixed relationships.

1.2.2 Object Detection in Video Sequences

The detection of objects in video has seen a high degree of interest in recent years.

We describe several relevant systems here.

Most early systems that detect objects in video sequences have focused on us-

ing motion and simple shapes or constraints to find people. Tsukiyama and Shirai,

1985[27] use simple shape descriptions to determine the location of leg motion against

a white background and a distance measure is utilized to determine the correspon-

dences between moving regions in consecutive images. This system can handle multi-

ple people in an image, but requires a stationary camera and only uses leg movement

to track people. Leung and Yang, 1987[12][11] use a voting process to determine can-

didate edges for moving body parts and a set of geometric constraints to determine

actual body part locations. This architecture also assumes a fixed camera; another

important restriction is that it is only able to deal with a single moving person.

The use of 3D models has been prominent in finding people in video sequences.

This type of system, while adequate for specific, well-defined domains, involves using

a lot of domain specific information in the development of the model and is not



easily portable to new domains. Hogg, 1983[7] describes a system that is based

on modeling a human figure as a hierarchical decomposition of 3D cylinders, using

dynamic constraints on the movement of the limbs as well. Edge detection is used to

determine the possible locations of body parts and a search tree is used to determine

the location that maximizes a "plausibility" measure, indicating the likelihood that

there is a person at this location. Rohr, 1993[19] develops a system using similar 3D

cylindrical models of the human body and kinematic motion data. Model contours

are matched with edges that are found in an image using a grid search method. A

Kalman filter is used to determine the exact position and pose of the walking person

across multiple frames. Both these architectures assume a fixed camera and a single

moving person in the image.

Wren et al., 1995[30] describe a system for the real-time tracking of the human

body. The model of the person they develop uses a maximum a posterior (MAP)

approach to segment a person into blobs corresponding to different regions of the

body. This system relies on two key assumptions: that the camera and background

are fixed and that there is a single person in the image. These are clearly restrictive

assumptions for a general purpose person tracker.

McKenna and Gong, 1997[14] describe a system that tracks people in video and

automatically detects a face for each person found in the images. The algorithm

assumes a fixed camera and, after detecting motion, clusters the motion information

to separate different bodies of motion. They use a Kalman filter to track the different

people and implement a radial basis function network to detect the faces. As noted,

the system assumes a fixed camera and may have problems detecting people that are

not moving.

To track moving objects, Heisele et al., 1997[6] use the clusters of consistent color

to track moving objects. Initially, the system computes the color clusters for the first

image in a sequence. The system recomputes the cluster centroids for subsequent

images, assuming a fixed number of clusters. To track an object, the clusters corre-

sponding to that object are manually labeled in an initial image and are tracked in

subsequent frames - the user is in effect performing the first detection manually. The



authors highlight, as future work, investigating object detection with this algorithm.

An important aspect of this system is that, unlike other systems described in this

section, this technique does not assume a stationary camera.

Campbell and Bobick, 1995[4] take a different approach to analyzing human body

motion. They present a system for recognizing different body motions using con-

straints on the movements of different body parts. Motion data is gathered using

ballet dancers with different body parts marked with sensors. The system uses cor-

relations between different part motions to determine the "best" recognizer of the

high-level motion. They use this system to classify different ballet motions. Lakany

and Hayes, 1997[10] also use moving light displays (MLDs) combined with a 2D FFT

for feature extraction to train a neural network to recognize a walker from his/her

gait.

All these systems have succeeded to varying degrees but have relied on the follow-

ing restrictive features:

* explicit modeling of the domain;

* stationary camera and a fixed background;

* marking of key moving features with sensors/lights;

* implement tracking of objects, not detection of specific classes.

Model-based approaches need a large amount of domain specific knowledge while

marking features is impractical for real world use. The tracking systems have prob-

lems handling the entrance of new people into the scene; to overcome this problem, a

tracking system would need to emulate a detection system. This work will overcome

these problems by introducing an example-based approach that learns to recognize

patterns and avoids the use of motion and explicit segmentation. The motion-based

extension presented in this thesis is used solely to enhanced detection accuracy, with-

out compromising accuracy over non-moving objects.



1.3 Our Approach

The approach taken in this thesis is that the system we develop will learn to perform

the detection task from examples for static images and then will be enhanced with

a motion module. Learning based techniques are used in many pattern classification

problems in a wide range of areas, from image processing to time series prediction.

The problem of learning from examples is formulated as one where the system at-

tempts to derive an input/output mapping, or equivalently, a model of the domain,

from a set of training examples. This type of approach is particularly attractive for

several reasons. First and foremost, by learning the characteristics of a problem from

examples, we avoid the need for explicitly handcrafting a solution to the problem.

A handcrafted solution may suffer from the users imposition of what he thinks the

important features or characteristics of a decision problem are. With a learning-based

approach, exactly the important features and relationships of a decision problem are

automatically abstracted away as a trained model. On the other hand, learning based

approaches suffer from the problem of overtraining or overfitting, where the model

has learned the decision problem "too well" and is not able to generalize to new data.

For a learning based system to be successful, we must choose an appropriate

set of features or representation that will allow the system to learn the decision

problem. As we mentioned before, many of the static detection systems use pixel-

based image representation. The pixel values are used directly to represent the objects

of interest, typically faces. While this approach is satisfactory in the case of faces

which are relatively rigid objects, the systems fail to generalize to other domains.

The fundamental problem is that the raw pixel intensities fail to capture the common

structure of complex class instances.

One might consider using an edge-based representation; Figure 1-1 shows images of

people that are used to train our system with their corresponding edge maps, derived

after processing them with a Sobel edge detector. This is not feasible because these

algorithms only examine a small local neighborhood to determine if a pixel is part of

an edge; it should be clear from the variability in clothing patterns that, at a fine scale,



edge detection will result in many spurious patterns. It is clear from these images

that an approach based on analyzing and matching these fine scale edges is unlikely

to succeed. These images show that, not only are the edges unreliable information,

but also that different instances of the people class can appear very differently and

it will be hard, if not impossible, to derive a class model from edges. There is no

consistency across this sample of the class, so it is not evident how we should specify

our model. The above examples of pixel-based and edge-based representations are

given to illustrate that the appropriate representation of the class objects is the the

crux of developing a trainable detection system. To make the model learning and

classifier training feasible, a new representation must be invoked.

In Section 1.2, we describe the work of Sinha, 1994[22][23]; this idea of using rela-

tionships that express differences between intensities of neighboring regions suggests

use of basis functions that encode these differences. The Haar wavelet is a particular

simple family of such basis functions that we choose for our system. In our work, we

use the wavelet representation to capture the structural similarities between various

instances of an object class. Another important feature of our work is the use of

an overcomplete, or redundant, set of basis functions; this is important in capturing

global constraints on the object shape and for providing adequate spatial resolution.

We introduced this idea in [16], where we applied the idea of using wavelets for de-

tection for the first time and showed how the wavelet based representation is both

efficiently learnable and provides a model of an object class that has significant dis-

criminative power; the application domain was pedestrian detection in static images.

The Haar wavelet representation has also been used for image database retrieval, Ja-

cobs et al., 1995[8], where the largest wavelet coefficients are used as a measure of

similarity between two images. Our results on object detection using the wavelet rep-

resentation demonstrate that it may be a promising framework for computer vision

applications.

In this thesis, the capabilities of our technique are highlighted by applying it to

two classes, faces and pedestrians. These two domains are characterized by different

types of information. Human faces share common pattern structure, as noted earlier,



with eye regions being darker than the forehead, and so on. As such, the face detection

system learns commonalities within the boundaries of the face. On the other hand,

the pedestrian class can only be defined by the general boundary of the body - clearly,

there is no way to characterize the many colors, textures, and patterns of clothing

that exist. We will show that the wavelet framework and learning algorithm that

our approach is based on is able to handle these domains whose inherent information

content differs widely.

This thesis presents a novel extension that uses motion cues to improve detection

accuracy. The motion module is a general one that can be used with many detection

algorithms - we apply it in our wavelet framework for pedestrian detection as a

testbed. In the case of video sequences, we can utilize motion information to enhance

the robustness of the detection module. We generate the flow field between two

consecutive frames, defined as the pixelwise correspondences between the two frames.

From this low-level map we can extract higher order information on regions of the

sequence that are moving. We compute the flow between consecutive images and

detect discontinuities in this flow field that indicate probable motion of objects relative

to the background. In these regions of motion, the likely class of objects is limited,

so we can relax the strictness of the classifier. It is important to observe that we do

not assume a static camera nor do we need to recover camera ego-motion, rather,

we use the dynamic motion information to assist the classifier. Additionally, the

use of motion information does not compromise the ability of the system to detect

non-moving people.

The organization of the paper is as follows: in Chapter 2 we introduce the wavelet

based representation that is the core of the pattern recognition algorithm. A short

review of the discrete wavelet transform is given and we also present its extension to

the dense wavelet transform. Chapter 3 presents the learning algorithm that auto-

matically learns the important characteristics of an object class. Chapter 4 describes

the support vector machine learning algorithm we use. The system architecture is de-

scribed in Chapter 5. The experimental results are detailed in Chapter 6. In Chapter

7, we describe the novel motion-based module that allows us to apply the detection



technique to video sequences, with higher accuracy than a system that analyzes each

frame statically. Chapter 8 summarizes the results of the thesis, presents several

potential applications of the technique, and describes directions for future work.



Chapter 2

Wavelets

This section describes the underlying representation that we use for extracting ob-

ject features, the Haar wavelet; a more detailed treatment can be found in Mallat,

1989[13]. We also describe a denser (redundant) transform that we use to achieve the

spatial resolution we need to accomplish detection and define the wavelet basis.

2.1 The Haar Wavelet

Wavelets provide a natural mathematical structure for describing our patterns. These

vector spaces form the foundations of the concept of a multiresolution analysis. We

formalize the notion of a multiresolution analysis as the sequence of approximating

subspaces VO C V1 C V 2 C ... V j C ... Vj +l ... ; the vector space Vj + can describe

finer details that the space V3, but every element of V j is also an element of Vj+l.

A multiresolution analysis also postulates that a function approximated in Vi is

characterized as its orthogonal projection on the vector space V'.

As a basis for the vector space V3, we use the scaling functions,

= '2j(2 x - i),0i = 0, ... ,23 - 1, (2.1)



where, for our case of the Haar wavelet,

() = for 0 x < 1 (2.2)0 otherwise

Next we define the vector space W J that is the orthogonal complement of two con-

secutive approximating subspaces, Vj + 1 = Vi (E Wj . The W3 are known as wavelet

subspaces and can be interpreted as the subspace of "details" in increasing refine-

ments. The wavelet space W' is spanned by a basis of functions,

Oi = Vx_/( 2 'x - i), i = 0,...,2j, (2.3)

where for Haar wavelets,

1 for 0 x< <

V(x)= -1 for x < 1 (2.4)

0 otherwise

The sum of the wavelet functions form an orthonormal basis for L 2 (R). It can be

shown (under the standard conditions of multiresolution analysis) that all the scaling

functions can be generated from dilations and translations of one scaling function.

Similarly, all the wavelet functions are dilations and translations of the mother wavelet

function. The approximation of f(x) in the space Vi is found to be:

Ajf = Z < f(u), 70(u) > O'(x) (2.5)
kEZ

and similarly, the projection of f(x) on W j is:

Djf = Z < f(u), k(u) >' O(x) (2.6)
kEZ

The structure of the approximating and wavelet subspaces leads to an efficient

cascade algorithm for the computation of the scaling coefficients, Aj,k, and the wavelet



coefficients, Tj,k:

Aj,k = hn-2k>j+l,, (2.7)
nEZ

yj= k E n-2kAj+1,l (2.8)
nEz

where { h; } and {gi } are the filter coefficients corresponding to the scaling and wavelet

functions. Using this construction, the approximation of a function f(x) in the space

Vi is:

Ajf = A Aj,kV-/2(2jx - k) (2.9)
nEZ

Similarly, the approximation of f(x) in the space Wi is:

Djf = -y7j,kV-§ 4 (2jx - k) (2.10)
nEZ

Since we use the Haar wavelet, the corresponding filters are: h = {...,0, 0, 7, 0, 0,...}

and g = {...,0, -, 0,...} The scaling coefficients are simply the averages of

pairs of adjacent coefficients in the coarser level while the wavelet coefficients are the

differences.

It is important to observe that the discrete wavelet transform (DWT) performs

downsampling or decimation of the coefficients at the finer scales since the filters h

and g are moved in a step size of 2 for each increment of k.

Haar scaling function Haar wavelet

Figure 2-1: Haar scaling function and Haar wavelet.



2.2 2-Dimensional Wavelet Transform

The natural extension of wavelets to 2D signals is obtained by taking the tensor

product of two 1D wavelet transforms. The result is the three types of wavelet

basis functions shown in Figure 2-2. The first type of wavelet is the tensor product

of a wavelet by a scaling function, (x, y) = Ob(x) 0 0(y); this wavelet encodes a

difference in the average intensity along a vertical border and we will refer to its

value as a vertical coefficient. Similarly, a tensor product of a scaling function by a

wavelet, k(x, y) = (x) 0 0b(y), is a horizontal coefficient, and a wavelet by a wavelet,

(x), y) = O'(x) 0 0(y), is a corner coefficient since this wavelet responds strongly to

corners.

Since the wavelets that the standard transform generates have irregular support,

we use the non-standard 2D DWT where, at a given scale, the transform is applied

to each dimension sequentially before proceeding to the next scale (Stollnitz et al.,

1994[24]). The results are Haar wavelets with square support at all scales. In doing

the non-standard transform, we apply quadruple density transforms in each of the

dimensions.

(a) (b) (c)

Figure 2-2: The 3 types of 2-dimensional non-standard Haar wavelets; (a) "vertical",
(b) "horizontal", (c) "corner".

2.3 Dense Wavelet Transform

The standard Haar basis is not dense enough for our application; for the 1D transform,

the distance between two neighboring wavelets at level n (with support of size 2n )

is 2". For better spatial resolution, we need a set of redundant basis functions, or

an overcomplete dictionary, where the distance between the wavelets at scale n is

'2 . We call this a quadruple density dictionary (see Figure 2-3). As one can easily

observe, the straightforward approach of shifting the signal and recomputing the



DWT will not generate the desired dense sampling. Instead, this can be obtained

by modifying the DWT. To generate wavelets with double density, where wavelets

of level n are centered every 12", we simply do not downsample in Equation 2.8.

To generate the quadruple density dictionary, we do not downsample in Equation

2.7 and get double density scaling coefficients. The next step is to calculate double

density wavelet coefficients on the two sets of scaling coefficients - even and odd -

separately. By interleaving the results of the two transforms we get quadruple density

wavelet coefficients. For the next scale, we keep only the even scaling coefficients of

the previous level and repeat the quadruple transform on this set only; the odd scaling

coefficients are dropped off. Since only the even coefficients are carried along at all

the scales, we avoid an "explosion" in the number of coefficients, yet provide a dense

and uniform sampling of the wavelet coefficients at all the scales. As with the regular

DWT, the time complexity is O(n) in the number of pixels n. The extension of the

quadruple transform to 2D is straightforward.

step

Figure 2-3: Quadruple density 2D Haar basis. The dense sampling provide adequate
spatial resolution and the overlapping supports facilitates the definition of complex
constaints on the object patterns.



Chapter 3

Learning

3.1 Learning the Object Class Representations

In this section we describe the wavelet representation and how it can be learned from

examples. We illustrate the techniques on two different classes of objects: faces and

full-body pedestrians.

3.1.1 The Wavelet Representation

The Haar coefficients preserve all the information in the original image, but the coding

of the visual information differs from the pixel-based representation in two significant

ways: the coefficients encode the difference in average intensity between different

regions along different orientations. Furthermore, this coding is done in different

scales. The constraints on the values of the coefficients can express well-defined

constraints on the object. For example, a low value of a wavelet coefficient indicates

a uniform area and a strong value of a "corner" coefficient indicates an actual corner

in the image. Since the precise value of a coefficient may be irrelevant, we analyze

its relative value compared to the other coefficients after we perform a normalization

described in the next section. It is also straightforward to encode the relationships

between the ratio of intensities, instead of the differences; this is accomplished by

simply computing the wavelet transform on the log of the image values. The wavelet



transform also provides a multiresolution representation with coefficients in different

scales capturing different levels of detail; the coarse scale coefficients capture large

regions while the fine scale coefficients represent smaller, local regions.

Another important aspect of this representation is the use of an overcomplete

(redundant) Haar basis which allows us to propagate constraints between neighboring

regions and to describe complex patterns. We choose the quadruple density wavelet

transform since it is found to provide adequate spatial resolution. As is demonstrated

in the following section, the use of difference or ratio coding of intensities in different

scales provides a very flexible and expressive representation that can characterize

complex object classes. Furthermore, the wavelet representation is computationally

efficient for the task of object detection since we do not need to compute the transform

for each image region that is examined but only once for the whole image and then

look at different sets of coefficients for different spatial locations.

Given an object class, the central problem is how to learn which are the relevant

coefficients that express structure common to the entire object class and which are the

relationships that define the class. Currently, we divided the learning into a two-stage

process: identifying the significant wavelet coefficients and learning the relationships

between the coefficients. This section describes the first stage of learning; the second

stage is described in the next section.

Figure 3-1: The databases of faces used for training. The images are gray level of size
19 x 19 pixels.

3.1.2 Learning the Face Class
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1.05 1.42 1.73 1.97 2.07 1.97 1.70 1.48 1.46 1.61 1.89 2.08 2.08 1.93 1.65 1.27 1.12
1.04 1.30 1.45 1.55 1.62 1.56 1.37 1.26 1.26 1.30 1.44 1.56 1.56 1.50 1.36 1.15 1.09
0.86 0.98 1.03 1.00 0.95 0.82 0.69 0.69 0.72 0.71 0.79 0.92 1.01 1.04 1.03 0.94 0.94
1.10 1.27 1.31 1.27 1.08 0.83 0.70 0.67 0.70 0.77 0.85 1.05 1.26 1.38 1.42 1.33 1.28
1.54 1.81 1.91 1.83 1.61 1.29 0.99 0.84 0.83 0.96 1.20 1.53 1.81 1.99 2.01 1.82 1.72
1.50 1.78 1.90 1.78 1.54 1.24 0.90 0.73 0.72 0.82 1.12 1.45 1.72 1.91 1.89 1.67 1.56
0.99 1.19 1.30 1.20 1.00 0.80 0.59 0.54 0.55 0.54 0.71 0.94 1.14 1.28 1.24 1.06 0.97
0.57 0.68 0.75 0.70 0.60 0.51 0.48 0.56 0.60 0.56 0.58 0.62 0.70 0.77 0.74 0.64 0.62
0.60 0.73 0.81 0.81 0.79 0.83 0.96 1.15 1.21 1.08 0.92 0.82 0.82 0.85 0.81 0.73 0.70
0.86 1.01 1.04 0.99 0.98 1.11 1.39 1.69 1.73 1.48 1.16 0.96 0.90 0.99 1.06 1.01 0.95
0.93 1.01 0.97 0.86 0.84 1.02 1.35 1.64 1.68 1.45 1.11 0.84 0.79 0.92 1.04 1.03 0.99
0.80 0.83 0.85 0.79 0.71 0.75 0.93 1.12 1.15 0.99 0.81 0.75 0.80 0.87 0.87 0.84 0.81
0.62 0.66 0.76 0.85 0.85 0.82 0.85 0.96 0.98 0.90 0.87 0.90 0.91 0.82 0.70 0.63 0.61
0.56 0.56 0.68 0.82 0.89 0.87 0.84 0.87 0.89 0.86 0.90 0.95 0.89 0.73 0.59 0.54 0.56
0.61 0.54 0.62 0.77 0.85 0.85 0.83 0.86 0.88 0.85 0.87 0.91 0.85 0.71 0.59 0.57 0.64
0.72 0.58 0.58 0.74 0.90 0.92 0.87 0.87 0.88 0.87 0.91 0.93 0.83 0.68 0.61 0.67 0.79
0.44 0.35 0.32 0.36 0.43 0.47 0.47 0.50 0.51 0.48 0.46 0.44 0.38 0.35 0.35 0.41 0.47

Table 3.1: Ensemble average of normalized horizontal coefficients of scale 4 x 4 of
images of faces. Meaningful coefficients are the ones with values much larger or
smaller than 1. Average values close to 1 indicates no meaningful feature.

(a) (b) (c) (d) (e) (f)

Figure 3-2: Ensemble average values of the wavelet coefficients for faces coded using
gray level. Coefficients whose values are close to the average value of 1 are coded gray,
the ones which are above the average are darker and below the average are lighter.
We can observed strong features in the eye areas and the nose. Also, the cheek area
is an area of almost uniform intensity, ie. below average coefficients. (a)-(c) vertical,
horizontal and corner coefficients of scale 4 x 4 of images of faces. (d)-(f) vertical,
horizontal and corner coefficients of scale 2 x 2 of images of faces.

For the face class, we have a set of 2429 gray-scale images of faces; this set consists of a

core set of faces, with some small angular rotations to improve generalization. These

images are all scaled to the dimensions 19 x 19 and show the face from above the

eyebrows to below the lips; typical images from the database are shown in Figure 3-1.

Databases of this size and composition have been used extensively in face detection

[25] [20] [17] and we keep this data format for comparison purposes. For the coefficient

analysis, we use the wavelets at scales of 4 x 4 pixels (17 x 17 coefficients of quadruple

density for each wavelet class) and 2 x 2 pixels (17 x 17 in double density for each

class) since their dimensions correspond to typical facial features for 19 x 19 face

images. We have a total of 1734 coefficients.

!



Figure 3-3: The significant wavelet bases for face detection that are uncovered through
our learning strategy, overlayed on an example image of a face.

Our goal is to learn the significant subset of coefficients which convey the most

important information on the structure of the face class. One could attempt to

determine this set from a visual analysis of the database and by using knowledge of

the structure of the face. However, it is clear that this ad hoc approach cannot replace

a more rigorous analysis; this will also become essential when we try to analyze more

complex objects such as people. Our approach is to identify which coefficients are

consistent along all the examples of the class. These coefficients can either be very

small along the ensemble of objects, indicating areas with almost uniform intensity,

or can have significant non-zero values, indicating a feature such as corner or vertical

boundary. Coefficients whose values change randomly between different instances of

the class do not indicate a class feature and can be discarded from consideration. For

the learning and detection steps we use the absolute value of the coefficients; this

simplification will also be important for the case of people detection.

The basic analysis in identifying the important coefficients consists of two steps:

first, we normalize the wavelet coefficients relative to the rest of the coefficients in

the patterns; second, we analyze the averages of the normalized coefficients along the

ensemble.



The normalization step involves computing the average of each coefficient's class

({vertical, horizontal, corner} x {2, 4}) over all the object patterns and dividing every

coefficient by its corresponding class average. We calculate the averages separately

for each class since the power distribution between the different classes may vary. To

begin specifying the wavelet representation, we calculate the average of each normal-

ized coefficient over the set of objects. As an example of the effect of this processing,

Table 3.1 shows the average coefficient values for the set of horizontal Haar coeffi-

cients of scale 4 x 4 for the face class. After the normalization, the average value of

a coefficient for random patterns should be 1. We can observe three types of coeffi-

cients: coefficients whose ensemble average values are much larger than 1, indicating

strong coefficients that are consistent along all the examples, coefficients whose values

are much less than 1, indicating uniform regions, and coefficients whose values are

close to 1. The last group contains coefficients whose values are not consistent along

the ensemble and therefore can be considered as irrelevant coefficients. From the

former two groups we choose the strongest and weakest coefficients as the consistent

prominent features. The above analysis is done to the different coefficient types at

different scales. To illustrate the detected features we code the ensemble average of

the coefficients using gray level and draw them in their proper spatial layout, shown

in Figure 3-2. Coefficients with values close to 1 are plotted in gray, those with values

larger than 1 are plotted darker, and those with values less than 1 are lighter. It

is interesting to observe the emerging patterns in the facial features. The vertical

coefficients, Figure 3-2(a),(d), capture the sides of the nose, while the horizontal coef-

ficients, Figure 3-2(b),(e), capture the eye sockets, eyebrows, and tip of the nose. The

mouth is found to be a relatively weak feature compared to the others. The corner

coefficients, Figure 3-2(c),(f) respond strongly to the endpoint of facial features. We

also conduct a similar analysis with the wavelets of the log of the intensities (these

are related to the ratio of intensities). Results of this statistical analysis are similar

to the intensity differencing wavelets, indicating that, for pedestrians and faces, the

difference and ratio versions capture essentially identical information. An analysis

using the sigmoid function as a "soft threshold" on the normalized coefficients yields



equivalent results. In general, the learning of the coefficients can be based on different

statistical analyses of the ensemble coefficients.

From this statistical analysis, we derive a set of 41 coefficients, from both the

coarse and finer scales, that consistently recover the significant features of the face.

These significant bases consist of 6 vertical, 7 horizontal, and 6 corner coefficients at

the scale of 4 x 4 and 10 vertical, 11 horizontal, and 1 corner coefficients at the scale

of 2 x 2. Figure 3-3 shows a typical human face from our training database with the

significant 41 coefficients drawn in the proper configuration.

3.1.3 Learning the Pedestrian Class

For learning the pedestrian class, we have collected a set of 924 color images of people

(Figure 1-1). All the images are scaled and clipped to the dimensions 128 x 64 such

that the people are centered and approximately the same size (the distance from the

shoulders to feet is about 80 pixels). Since there can be variations in scale and size be-

tween peoples during the detection process we cannot use very small scale coefficients

and need to allow a tolerance of few pixels. Therefore, in our analysis, we restrict

ourselves to the wavelets at scales of 32 x 32 pixels (one array of 15 x 5 coefficients

for each wavelet class) and 16 x 16 pixels (29 x 13 for each class). For each color

channel (RGB) of every image, we compute the quadruple dense Haar transform and

take the coefficient value to be the largest absolute value among the three channels,

yielding 1326 wavelet coefficients. The use of the largest coefficient in absolute value

among the RGB channels is based on the observation that there is no consistency

in color between the different people and the most robust visual information is the

differentiation between a person's overall shape and the background. The use of the

absolute value of the coefficient is essential in the case of pedestrians since the signs

of the coefficients are meaningless; a dark body against a light background should be

interpreted the same way as a light body against a dark background.

To visualize the emerging patterns for the different classes of coefficients we can

color code the values of the coefficients and display them in the proper spatial layout,

as we did for the faces. Each coefficient is displayed as a small square where coefficients



close to 1 are gray, stronger coefficients are darker, and weaker coefficients are lighter.

(a) (b) (c) (d) (e) (f) (g)

Figure 3-4: Ensemble average values of the wavelet coefficients coded using gray
level. Coefficients whose values are above the template average are darker, those
below the average are lighter. (a) vertical coefficients of random scenes. (b)-(d)
vertical, horizontal and corner coefficients of scale 32 x 32 of images of people. (e)-(g)
vertical, horizontal and corner coefficients of scale 16 x 16 of images of people.

Figures 3-4(a)-(d) show the color coding for the arrays of coarse scale coefficients

(32 x 32) and Figures 3-4(e)-(g) show the arrays of coefficients of the finer scale,

(16 x 16). Figure 3-4(a) shows the vertical coefficients of random images; as expected

this figure is uniformly gray. The corresponding images for the horizontal and corner

coefficients, not shown here, are similar. In contrast to the random images, the

coarse scale coefficients of the people, Figures 3-4(b)-(d), show clear patterns. It

is interesting to observe that each class of wavelet coefficients is tuned to a different

type of structural information. The vertical wavelets, Figure 3-4(b), capture the sides

of the pedestrians. The horizontal wavelets, Figure 3-4(c), respond to the line from

shoulder to shoulder and to a weaker belt line. The corner wavelets, Figure 3-4(d), are

better tuned to corners, for example, the shoulders, hands, and feet. The wavelets of

finer scale in Figures 3-4(e)-(g) provide better spatial resolution of the body's overall

shape and smaller scale details such as the head and extremities appear clearer.

The result of the analysis described above is a set of 29 coefficients that are

consistent along the ensemble either as indicators of "change" or "no-change". There

are 6 vertical and 1 horizontal coefficients at the scale of 32 x 32 and 14 vertical and

8 horizontal at the scale of 16 x 16. Figure 3-5 shows the coefficients in their proper



Figure 3-5: The significant wavelet bases for pedestrian detection that are uncovered
through our learning strategy, overlayed on an example image of a pedestrian.

spatial locations, overlayed on an image from the training database. The identified set

of coefficients is used as a feature vector for a classification algorithm that is trained

to differentiate pedestrians from non-pedestrians.

3.1.4 Discussion

We have decomposed the learning of an object class into a two-stage learning process.

In the first stage, described in this section, we perform a dimensionality reduction

where we identify the most important coefficients from the original full set of wavelet

coefficients consisting of three types in two scales. The relationships between the

coefficients which define the class model are learned in the second stage using a

support vector machine (SVM). Based on our initial experiments, it is doubtful that

successful learning of the relationships between coefficients' values could be achieved

on the original full set of coefficients - for our two domains, these have dimensions of

1326 and 1734 - without introducing several orders of magnitude of additional training



data. Most of these coefficients do not necessarily convey relevant information about

the object class we are learning but, by starting with a large overcomplete dictionary,

we would not sacrifice details or spatial accuracy. The above learning step extracts

the most prominent features and results in a significant dimensionality reduction.

Comparing the database of people, Figure 1-1, to the database of faces, Figure 3-1,

illustrates an important fundamental difference in the two classes. In the case of faces,

we can find clear patterns within the face, consisting of the eyes, nose and mouth;

these patterns are common to all the examples. This is not the case with full-body

images of people. The people do not share any common color or texture. Furthermore,

there a lot of spurious details such as jackets, ties, bags and more. On the other hand,

the overall body has a typical shape (or "silhouette") that characterizes people well.

It should be observed that in the case of faces, the inner facial features are picked

up by our learning algorithm while in the case of people it is the body shape that is

identified. Our approach treats these two different cases in almost uniform manner.



Chapter 4

Support Vector Machine Classifier

As described in the previous section, the decision task, whether a given window

contain a member of the target class or not, is the most difficult task and crux of

the detection system. In Chapter 3 we describe the identification of the significant

coefficients that characterize the object classes. These coefficients can be used as

feature vector for various classification methods.

The classification technique we use is the support vector machine (SVM) devel-

oped by Vapnik et al., 1992[3][29]. This recently developed technique has several

features that make it particularly attractive. Traditional training techniques for clas-

sifiers, such as multilayer perceptrons (MLP), use empirical risk minimization and

only guarantee minimum error over the training set. In contrast, the SVM machin-

ery uses structural risk minimization which minimizes a bound on the generalization

error and therefore should perform better on novel data. Another aspect of the SVM

technique that makes it appealing is that there is only one tunable parameter, C, a

penalty term for misclassifications. This is contrasted with other conventional classi-

fiers like neural networks, where there are a large number of tunable parameters that

can greatly affect the performance of the classifier, such as network topology and the

learning rate. We first illustrate the SVM algorithm for the simple case of two linearly

separable classes and then describe the full algorithm for nonlinear decision surfaces.

As we already hinted at, the goal of the SVM algorithm is to find a classifier that

minimizes the generalization error over a set of labeled examples, {(xi, yi) I=,. For
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Figure 4-1: The separating hyperplane in (a) has small margin; the hyperplane in (b)
has larger margin and should generalize better on out-of-sample data.

the linearly separable case, it is clear that the hyperplane that accomplishes this is

the one that maximizes the margin between the two classes, where margin is the sum

of the distances from the hyperplane to the closest point in each of the two classes.

This concept is illustrated in Figure 4-1.
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(a) original data set (b) mapped feature space

Figure 4-2: The original data set may not be linearly separable; the support vector
machine uses a nonlinear kernel to map the data points into a very high dimen-
sional feature space in which the classes have a much greater chance of being linearly
separable.

Finding the best linear separating hyperplane will obviously not work for a prob-

lem whose solution has a nonlinear decision surface. Herein lies the key in the formu-

DI



lation of the SVM algorithm. An interesting aspect of the SVM is that its decision

surface depends only on the inner product of the feature vectors. This leads to an im-

portant extension since we can replace the Euclidean inner product by any symmetric

positive-definite kernel K(x, y) [18]. Instead of working in the original feature space of

variables, x, the SVM uses this nonlinear kernel to project the original set of variables

into a high dimensional feature space in which the problem has a greater chance of

being linearly separable. More formally, xCWd =- z(x) - ( 1 (x), ... , 0,(x))e~~ . This

mapping of the feature vectors into a higher dimensional space significantly increases

the discriminative power of the classifier. Changing the kernel function leads to dif-

ferent well known classifiers such as Gaussian RBFs, polynomial classifiers of various

degrees, and MLPs. For our classification problem, we find that using a polynomial

of degree two as the kernel provides good results.

The detection architecture is not hardcoded to use the support vector machinery;

indeed, we could use any classification algorithm but choose the SVM because of

its solid theoretical foundations and its initial success when applied to tasks such as

handwritten digit recognition (Boser et al., 1992[3]) and face detection (Osuna et al.,

1997[171).

It should also be observed, that from the viewpoint of the classification task, we

could use the whole set of coefficients as a feature vector. However, using all the

wavelet functions that describe a window of 128 x 64 pixels in the case of pedestrians

would yield vectors of very high dimensionality, as we mentioned earlier. The training

of a classifier with such a high dimensionality would in turn require too large an

example set. The dimensionality reduction stage of Chapter 3 serves to select the

basis functions relevant for this task and to reduce their number considerably.



Chapter 5

System Architecture

5.1 The Detection System

Once we have identified the important basis functions we can use classification tech-

nique - for this thesis, we use a support vector machine - to learn the relationships

between the wavelet coefficients that define the object class. In this section, we

present the overall architecture of the detection system and the training process.

5.1.1 System Architecture

The system detects objects in arbitrary positions in the image and in different scales.

To accomplish this task, the system is trained to detect a member of an object class

centered in a detection window of a certain size - 19 x 19 for faces and 128 x 64

for pedestrians. This training stage is the most difficult part of the system training

and once it is accomplished the system can detect objects at arbitrary positions by

scanning all possible locations in the image by shifting the detection window. This

is combined with iteratively resizing the image to achieve multi-scale detection. For

our experiments with faces, we detected faces from the minimal size of 19 x 19 to

5 times this size by scaling the novel image from 0.2 to 1.0 times its original size,

at increments of 0.1. For pedestrians, the image is scaled from 0.2 to 2.0 times its

original size, again in increments of 0.1. At any given scale, instead of recomputing



the wavelet coefficients for every window in the image, we compute the transform for

the whole image and do the shifting in the coefficient space.

For the face detection system, since we are using the coefficients of scale 2 x 2 that

are computed at double density, a shift of one coefficient in the finer scale corresponds

to a shift of one pixel in the image; a shift in the coarser scale coefficients of 4 x 4 (in

quadruple density) also corresponds to a shift of one pixel in the image space. Thus,

the spatial resolution for detecting faces is one pixel. For the pedestrian detection

system, a shift of one coefficient in the finer scale corresponds to a shift of 4 pixels

in the image and a shift in the coarse scale corresponds to a shift of 8 pixels. Since

most of the coefficients in the wavelet bases are at the finer scale (the coarse scale

coefficients hardly change with a shift of 4 pixels), we achieve an effective spatial

resolution of 4 pixels by working in the wavelet coefficient space.

5.1.2 System Training

We train our systems using databases of positive examples gathered from outdoor

and indoor scenes. The initial negative in the training database are patterns from

natural scenes not containing people or faces. A combined set of positive and negative

examples for a single class form the initial training database for the classifier. A

key issue with the training of detection systems is that, while the examples of the

target class are well defined, there are no typical examples of the negative example

class - this class is immense. The main idea in overcoming this problem of defining

this extremely large negative class is the use of "bootstrapping" training (Sung and

Poggio, 1994[26]). In the context of the pedestrian detection system, after the initial

training, we run the system over arbitrary images that do not contain any people.

Any detections are clearly identified as false positives and are added to the database

of negative examples and the classifier is then retrained with this larger set of data.

These iterations of the bootstrapping procedure allows the classifier to construct an

incremental refinement of the non-pedestrian class until satisfactory performance is

achieved. This bootstrapping technique is illustrated in Figure 5-1 for pedestrians;

the implementation for the face detection version is equivalent.



Figure 5-1: Incremental bootstrapping to improve the system performance.



Chapter 6

Experimental Results

6.1 The Experimental Results

6.1.1 Face Detection

To evaluate the face detection system performance, we start with a database of 924

positive examples and 1000 negative examples. The system then undergoes the boot-

strapping cycle detailed in Section 5.1.2. For this system, the support vector classifier

undergoes 5 bootstrapping steps, ending up with a total of 6000 negative examples.

Out-of-sample performance is evaluated using a set of 131 faces. We evaluate the

rate of false detections using a set of 50 images of natural scenes that do not contain

either faces or people; a total of 9, 427, 479 patterns are classified by the face detection

system. To give a complete characterization of performance of the detection system,

we run a large set of tests using different classification thresholds. This provides the

only true way of measuring the performance of such a system; rather than give a sin-

gle performance result, we compute the full spectrum of the accuracy/false detection

rate tradeoff inherent in such a system. The ROC curve measuring this performance

is shown in Figure 6-1. We can see that, if we allow one false detection per 5,500

windows examined, the rate of correctly detected faces is 75%. On the hand, a much

more stringent system that only allows one false positive for every 50,000 windows

examined has an accuracy of 40%.



Figure 6-1: ROC curve for the frontal face detection system. The detection rate is
plotted against the false detection rate, measured on a logarithmic scale. The false
detection rate is defined as the number of false detections per inspected window.

In Figure 6-2 we show the results of running the face detection system over example

images. The woman in the left image is not detected due to the rotation of her head;

currently, the system is not able to handle large rotations such as this, but with

further training on an appropriate set of rotated examples, this type of rotation could

be detected. In the image on the right, all the faces are detected correctly, but there

is a single incorrect detection. Again, we expect that with further training, this will

be eliminated.

6.1.2 People Detection

The frontal and rear pedestrian detection system starts with 924 positive examples

and 789 negative examples and goes through 9 bootstrapping steps ending up with a

set of 9726 patterns that define the non-pedestrian class. We measure performance on

novel data using a set of 105 pedestrian images that are close to frontal or rear views;

it should be emphasized that we do not choose test images of pedestrians in perfect

frontal or rear poses, rather, many of these test images represent slightly rotated or

walking views of pedestrians. As with the faces, we use a set of 50 natural scenes to

measure the false detection rate; the pedestrian detection system looks at 2, 789, 081



Figure 6-2: Results from the face detection system; the missed faces are due to either
high degrees of rotation (top left, middle right, lower right) or occlusion (lower right).
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Figure 6-3: ROC curves for the frontal and rear view people detection system. The
detection rate is plotted against the false detection rate, measured on a logarithmic
scale. The false detection rate is defined as the number of false detections per in-
spected window. System B penalizes incorrect classifications of both positive and
negative examples equally, while system A penalizes incorrectly classified positive
examples five times more than negative examples.

patterns.

In general, the performance of any detection system exhibits a tradeoff between

the rate of detection and the rate of false positives. Performance drops as we impose

more stringent restrictions on the rate of false positives. To capture this tradeoff,

we vary the sensitivity of the system by thresholding the output and evaluate the

ROC curve, given in Figure 6-3 for two versions of the system. System B penalizes

incorrect classifications of both positive and negative examples equally while system

A penalizes incorrectly classified positive examples five times more than negative ex-

amples. The curve indicates that even larger penalty terms for the positive examples

may improve accuracy significantly. From the curve, we can see, for example, that

if we have a tolerance of one false positive for every 15,000 windows examined, we

can achieve a detection rate of 70%. Figure 6-4 exhibits some typical images that are

processed by the pedestrian detection system; the images are very cluttered scenes

crowded with complex patterns. These images show that the architecture is able to ef-

fectively handle detection of people with different clothing under varying illumination



Figure 6-4: Results from the pedestrian detection system. These are typical images
of relatively complex scenes that are used to test the system.
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conditions.

Considering the complexity of these scenes and the difficulties of object detection

in cluttered scenes, we consider the above detection rates to be high. We believe

that additional training and refinement of the current systems will reduce the false

detection rates further; initial work in using the same framework to detect side views

of pedestrians is promising.



Chapter 7

Motion

This thesis presents a technique for boosting detection accuracy when we are pro-

cessing video sequences; the system is applied to detecting pedestrians in cluttered

scenes with promising results. In Section 1.2 we describe several systems that have

been developed to detect walking people. All of the systems assume a static camera,

clearly a severe restriction for a practical system that might be integrated in a driver

assistance system, for instance; the one system that does not assume a static camera,

that of Heisele et al., 1997[6], is actually only doing tracking of manually labeled color

blobs, so is not yet a viable pedestrian detection system. Since these systems heavily

rely on motion to determine the location of pedestrians in the images, they would

also have problems finding pedestrians that are not moving. This section describes a

new module that can be integrated into a static detection system to improve results

over video sequences, while maintaining the same degree of accuracy for objects that

are not moving.

For this approach, we do not require that detailed motion information be recovered

from a video sequence - our goal is to determine the general areas of motion in an

image. The class of possible moving objects is limited in the video sequences we

look at - typically, only cars and people will be moving - so we can use this a priori

information to relax the strictness of the classifier in the regions of motion. It is

important to reiterate that, in contrast to most other people detection systems that

rely on motion to accomplish detection, our motion extension does not compromise



the ability of the system to detect non-moving objects.

We start our discussion with a description of the algorithms used to recover the

motion in consecutive frames for the two cases of static and moving cameras and then

describe the relaxation of the classifier.

7.1 Motion Estimation

Given that our camera is fixed, we are guaranteed that the background is static, so to

find motion in this case, we do a simple differencing of consecutive frames to obtain

the areas where there are moving objects. Due to camera distortion, the background

pixel values recovered by the camera may not be exactly the same from frame to

frame, so rather than a strict differencing, we threshold the results of the differencing

to allow for small changes in illumination. This method has been used in several

systems (Hogg, 1983[7], Wren et al., 1995[30]) that also assume that the only moving

objects will be people. It is easy to see that this is a trivial case; we can exactly

recover where motion has occurred very easily.

In the case of moving camera or moving background, a simple change detection

strategy will not work. This case of a moving camera or a moving background is

handled by a class of algorithms called optical flow algorithms. Here, we are not

guaranteed that the same pixel location in consecutive frames will correspond to the

same object. On the other hand, we can be confident that in subsequent frames, the

same location will correspond to a pixel in a small neighborhood of the original pixel.

It is exactly this constraint that optical flow algorithms use to determine motion

information.

More formally, the goal in attempting to recover motion is to determine the vectors

Ax and Ay associated with a gray level image, B, that describe the position of each

pixel relative to a reference image, A. For our case, A is frame t of the video sequence,

and B is the subsequent frame t+1; for the static camera case, the vectors Ax and Ay

will be vectors of zeros. This definition is summarized in the optical flow equation:



F(x, y,t + 1) = F(x + Ax(x, y), y + Ay(x, y), t) (7.1)

where (Ax(x, y), Ay(x, y)) is the flow field describing the pixelwise correspondences.

The algorithm introduces two assumptions that make the solution tractable: the

change in adjacent flow vectors varies slowly - a smoothness assumption - and the

flow vectors themselves are small. The optical flow constraint equation,

OF OF OF(x, y) = A(x, y) (x,y) + Ay(x, y) (x, y) (7.2)at OX ay

is a first-order approximation to the Taylor series expansion of equation 7.1 (which

is an underdetermined equation in two unknowns) and is solved over small neighbor-

hoods of points.

This approximation is accurate for displacements of less than one pixel, so the

optical flow algorithm we use for our system (Bergen and Hingorani, 1990[1]) uses

a coarse-to-fine strategy where flow fields are iteratively estimated for higher reso-

lutions of a Gaussian pyramid representation of the image. This type of strategy

enables facilitates the efficient computation of flow fields where the image-to-image

displacements are quite large. Then, to obtain the fine pixelwise correspondences,

the algorithm computes the level-by-level correspondences and adds the refinements

in the flow fields together.

Since our detection system is based on static analysis of a single image, we do not

need to recover full motion information; rather, we assist the detection module by

indicating probable location of a moving object. This can be done without recovering

camera ego-motion, which is a difficult task; our algorithm identifies the relative mo-

tion of moving objects relative to the background. This is accomplished by identifying

discontinuities in the optical flow field, corresponding to boundaries of the objects,

and then using morphological operators to define the full region of interest. To locate

discontinuities in the flow field, we compute the L2 norm of adjacent flow vectors,

L2(Ij,IJ+1) = /(Ax(ij))2 + (Ay(ij)) 2 (7.3)



and threshold this distance measure such that if L 2(Ii,j, Ii,j+1) > M, we have found

a discontinuity in the flow field.

The collection of the discontinuity points will be the boundary between the back-

ground and a moving object in the foreground. The output of this processing is

a binary image where pixel values of one indicate the boundary of a moving and

non-moving region and pixel values of zero indicates a non-boundary.

It is important to note that we do not need to recover detailed motion information;

rather, we are simply looking for general regions in which we are confident that there

are moving objects.

7.2 Morphological Processing

The output of the optical flow processing is a binary image where pixel values of

one indicate the boundary of a moving and non-moving region and pixel values of

zero indicates a non-boundary. Once we identify the motion boundaries, we must

process them to identify the full region of interest. Since we cannot assume that a

single outlined moving region corresponds to a single moving object, we must fully

process the interior of the region to find any people and label the pixels within the

moving boundaries with values of one as well. To accomplish this we make use of some

simple concepts from mathematical morphology, under the assumption that there will

be some moving areas (arms, etc.) within the boundaries of a moving region.

Mathematical morphology (Serra, 1982[21], Dougherty, 1992[5], Korn et al., 1996[9])

is a quantitative theory that formalizes notions of shape and structure of objects. We

use some simple transforms from mathematical morphology to process the image to

yield a representation where pixel values of one indicate motion, not just the boundary

of a motion/non-motion region. These operations are defined on R2; the extensions

to the discrete case are straightforward.

Let X denote a binary shape (ie. pixel values of one) in 'R
2 space, let B' =

{-blbeB} denote the symmetrical set of B with respect to the origin, and let Xb

denote the translate of X by the vector b. We define the dilation of X by B by:



X ÷ B" = U X-b = (x, y)R2 B(xz,y) n X $ 0} (7.4)
beB

Dilation corresponds to growing a region by tracing the center of the structuring

element, B, along the boundary and adding the points covered by B to the set X.

The complementary operation to dilation is erosion,

X e B8 = X X-b = {(x, y) 2I B(x,y) C X} (7.5)
beB

which corresponds to shrinking a region by tracing the center of the structuring

element, B, along the boundary and removing the points covered by B from the set

X.
The structural element we use is a square with a side length of 10 pixels. Initially,

the image is smoothed to eliminate noise in the flow field. Then the dilation transform

is applied to the image to enlarge the area in which we will search for pedestrians.

Figure 7-1 shows a sample image with the sequence of transforms that is applied.

7.3 Relaxing the Classifier

The result of the morphological processing is a binary image with the areas of motion

clearly identified. Since our test images are of typical cluttered street scenes, the types

of moving objects we encounter is very limited; usually, they will be either people or

cars and we can use this hint to improve detection. By lowering the strictness of

the classifier, we can detect pedestrians that would not normally be detected by the

base system; typically they are pedestrians that are in an off-frontal pose and so are

classified as non-pedestrians by the base system. The new threshold of classification

for the moving regions is determined empirically, over a sequence of images.

We test the system over a sequence of 208 frames; the detection results are shown

in Table 7.1. Out of a possible 827 pedestrians in the video sequence - including side

views for which the system is not trained - the base system correctly detects 360

(43.5%) of them with a false detection rate of 1 per 236,500 windows. The system



Figure 7-1: The sequence of steps in the motion-based module. The upper left image

shows the static detection results, the upper right image shows the thresholded mo-

tion discontinuities, the lower left image shows the result of using the morphological
operator, and the lower right image shows the improved detection results.
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enhanced with the motion module detects 445 (53.8%) of the pedestrians, a 23.7 %

increase in detection accuracy, while maintaining a false detection rate of 1 per 90,000

windows. It is important to iterate that the detection accuracy for non-moving objects

is not compromised - in the areas of the image where the optical flow algorithm and

subsequent morphological processing does not find motion, the classifier simply runs

as before. Furthermore, the majority of the false positives in the system enhanced

with the detection module were partial body detections, ie. a detection with the head

cut off, which were still counted as false detections. Taking this factor into account,

the false detection rate is even lower.

Detection False Positive
Rate Rate (per window)

Base system 43.5% 1:236,500
Motion extension 53.8% 1:90,000

Table 7.1: Performance of the pedestrian detection system with the motion-based
extensions, compared to the base system.

This relaxation paradigm has difficulties when there are a large number of moving

bodies in the frame; the region of motion that is determined will be large and is

susceptible to more false positives. Based on our results, though, we feel that this

integration of a trained classifier with the module that provides motion cues could be

extended to other systems as well.



Chapter 8

Conclusion

In this thesis, we describe a general framework for object detection in cluttered scenes

based on the idea of an overcomplete wavelet representation and a novel motion

based module that improves detection accuracy over video sequences when applied to

detecting pedestrians. The motion-based extension introduced in this thesis allows us

to use a moving camera and makes no assumptions on the motion of pedestrians in the

scene, that is, the system is still able to detect non-moving pedestrians. Previous work

in people detection has assumed a fixed camera and moving people; these limitations

severely restrict the range of possible practical applications.

The wavelet representation we use yields not only a computationally efficient

algorithm but an effective learning scheme as well. The core detection engine auto-

matically learns the characteristics of an object class and is applied to both face and

people detection with promising results. The success of the wavelet representation

for face and people detection comes from its ability to capture high-level knowledge

about the object class (structural information expressed as a set of constraints on the

wavelet coefficients) and incorporate it into the low-level process of interpreting im-

age intensities. Attempts to directly apply low-level techniques such as edge detection

and region segmentation are likely to fail in the type of images we analyze since these

methods are not robust, are sensitive to spurious details, and give ambiguous results.

Using the wavelet representation, only significant information that characterizes the

object class - as obtained in the learning phase - is evaluated and used.



We also present an extension that uses motion cues to improve pedestrian detec-

tion accuracy over video sequences. This module is appealing in that, unlike most

systems, it does not totally rely on motion to accomplish detection; rather, it takes

advantage of the a priori knowledge that the class of moving objects is limited while

still being able to detect non-moving pedestrians.

We discuss several directions for future work and several possible applications of

the techniques described in this thesis.

8.1 Future Work

To demonstrate the generality of the detection system we have developed, we should

apply it to new object classes. Interesting classes of objects this could be applied to

are cars, airplanes, and more views of pedestrians - side, sitting, walking, and so on.

The current system has difficulty detecting occluded objects. One way to deal

with occluded objects could be to train several different lower level object detectors

for different body parts and to combine the results using a voting process to create a

pedestrian detector. For instance, we could develop arm, head, and leg detectors; if

a certain number of detections in a proper configuration occur in a small area of an

image, we would be confident that there was a person at that location. This type of

system would effectively handle some occlusions.

The determination of the regions of motion for the motion-based module currently

results in too much noise; improving this part of the system would result in improved

performance in the form of higher detection accuracy and a lower false positive rate.

To be able and apply the techniques to practical areas, the detections need to

be performed at near real-time frame rates of at least one or two frames per second.

Currently, the system takes several minutes to process a single image; it should be

possible to reduce this time to close to the desired rate with additional work.

It would also be interesting to try and learn to detect moving people by using the

same architecture trained over the optical flow map of moving people. The wavelet

representation would be finding differences in motion, rather than differences in in-



tensity.

8.2 Applications

The ability of our system to deal with both stationary and moving cameras, and

stationary and moving objects, facilitates a wide range of applications. Our testbed

system of pedestrian detection could be integrated into a driver assistance system that

alerts the driver to pedestrians in the path of the automobile and also has surveillance

applications.

This work has clear applications for the search and indexing of video databases;

by using this system, we could quickly identify objects of interest and then pass

the results to a dedicated recognition module to determine if the object is a specific

instance, for instance, a specific person.

The strength of our system comes from the expressive power of the redundant

wavelet representation - this representation effectively encodes the intensity relation-

ships of certain pattern regions that define a complex object class. The encouraging

results of our system in two different domains, faces and people, suggest that the de-

tection approach described in this paper may well generalize to several other object

detection tasks. When coupled with the novel motion-based module presented here,

the system's performance is very encouraging over a pedestrian detection task.
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