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In this thesis, I shall prove the equivariant resolution of singularities theorem first,
then using this theorem and the barycentric subdivision technique, I shall prove
the equivariant semi-stable reduction theorem. Both results are over algebraically
closed fields of characteristic 0 and their proofs are purely algebraic in nature. In
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be. I shall also discuss a stronger form of the theorem when the dimension of the
fiber is less than or equal to 2.
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Introduction

In this thesis, k is always assumed to be an algebraically closed field of characteristic

0. By a variety we shall mean an integral scheme of finite type over k without further

remark. Our main goal is to prove the following theorem:

Theorem 0.1. Let C be a nonsingular algebraic curve, let 0 E C, and let

f : X -- 4 C be a proper morphism of a variety X onto C such that the morphism

res f : X - f-'(0) -- + C - 0

is smooth. If G is a finite group acting on X and C, f is G-equivariant, and 0 is

invariant under the action of G, then there exist a nonsingular curve C' and a finite

morphism

7 : C' -- + C

with r-1(O) = 0', and there exist an variety X', a finite group G' determined by

C', and a morphism p : X' -- + X c C' so that we have the commutative diagram



X' -±- XxcC' ---+ X

jf'op If' jf
C' = C' C

with the following properties:

a) G is a quotient group of G'. There are natural actions of G' on all the varieties

in the above diagram, in particular, G' acts on X and C in the obvious sense.

Moreover, every morphism in the diagram is G'-equivariant,

b) p is an isomorphism over (f')-'(C' - 0'),

c) p is projective. In fact, p is obtained by blowing up a sheaf of ideas F with

S(.f,)-_(c,-o,) = OxXcC'I(fI,)-'(c,-o,),

d) X' is nonsingular, and the fiber (f' o p)- (O') is reduced with nonsingular com-

ponents crossing normally.

Remark. We only state the existence of C', 7r, and G' right now. We will give a

more precise form of the theorem and state what exactly C', r, and G' are in the

fourth chapter.

This theorem is the equivariant version of the semi-stable reduction theorem in

[KKMS]. They treated the problem by associating a conical polyhedral complex

and a compact polyhedral complex to a toroidal embedding, hence reducing the

semi-stable reduction problems to purely combinatorial problems on combinatorial



objects, namely, polyhedral complexes. We use a similar approach here, construct-

ing subdivisions of polyhedral complexes more carefully to solve the equivariant

case. First, we shall prove the following equivariant version of Hironaka's famous

resolution of singularities theorem, which is an indispensable ingredient of the proof

of theorem 0.1.

Theorem 0.2. Let X be a variety, let Z C X be a proper closed subset, and

let G C Autk(Z C X) be a finite group. Then there is a projective G-equivariant

modification r : X 1 -+ X such that X 1 is a nonsingular variety and r-1(Z) is a

G-strict divisor of normal crossings. Moreover, G acts on X 1 \ r-1(Z) -- + Xi

toroidally.

This theorem was announced by Hironaka, but a complete proof was not easily

accessible for a long time. The situation was remedied by E. Bierstone and P. Milman

[B-M2], who gave a construction of completely canonical resolution of singularities.

Their construction builds on a thorough understanding of the effect of blowing up.

They carefully constructed an invariant pointing to the next blowup.

The proof we give here comes from joint work of Professor Dan Abramovich and

the author [R-W]. We assume the existence of resolution of singularities without

group actions. We first reduce the problem to the toroidal embedding case using

resolution of singularities, and then we further reduce the question to a combinato-

rial problem on the conical polyhedral complex associated to this toroidal embed-
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ding. Finally we solve the problem by using barycentric subdivision, which is a very

powerful tool in solving equivariant problems.



CHAPTER I

Preliminaries

In this chapter we give a brief introduction on toric varieties and toroidal embed-

dings. Most of the material comes from [F2] and [KKMS]. We omit all proofs, the

interested reader is referred to the references.

1. Toric Embedding

The idea of toric variety comes from the study of compactification problems [NA].

The compactification description gives a simple way of saying what a toric variety

is: It is a normal variety X containing a torus T as a dense open subset, together

with an action

TxX -- X

of T on X which extends the natural action of T on itself. The simplest compact

example is the projective space Pkn , regarded as the compactification of kn as usual:

(k*)" c_ k"~ P•kn

Any product of affine and projective spaces can also be realized as toric varieties.
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Let N be a lattice isomorphic to Z" for some n. A polyhedral cone in NR is a

cone which has its apex at the origin and is generated by a finite number of vectors.

We call a polyhedral cone rational if it is generated by vectors in the lattice, and

call it strongly convex if it does not contain any lines passing through the origin.

We abuse terminology and simply say a cone in N when we refer to a strongly convex

rational polyhedral cone.

Denote the dual lattice Hom(N, Z) by M and denote the dual pairing of N by

<, >. If a is a cone in N, define

aV = {u E MR :< u, v >> 0 for all v E a}.

This dual cone determines a commutative semigroup

S, = a" M = {u E M :< u,v >> 0 for all v E a}.

The following lemma is the starting point of toric variety theory; it gives us the

foundation to construct toric varieties from cones.

Lemma 1.1 (Gordon's Lemma). S, is a finitely generated semigroup.

So the group algebra k[S,] is a finitely generated commutative k-algebra, and we

have an affine variety U, = Spec (k[S,]).

If T is a face of a, then S, is contained in S,, so k[S,] is a subalgebra of k[Sj].

The homomorphism k[S,] -- k[S,]l induces a morphism U, -- + U,.

Lemma 1.2. If 7 is a face of a, then the morphism U, --- U, embeds U, as a
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principal open subset of U,.

In particular, the torus TN = Uo can be embedded into the affine toric varieties

U, for all cones a in N.

We can define an action of the torus TN on U, as follows. A point t E TN can

be identified with a map of groups M -+ k*, and a point x E U, can be identified

with a map of semigroups S, -- k; the product t x x is the map of semigroups

S, -- + k given by

u i-- t(u)x(u)

These maps are compatible with inclusions of the open subsets of U, corresponding

to faces of a. In particular, they extend the action of TN on itself.

A finite rational partial polyhedral decomposition(abbreviated to f.r.p.p.

decomposition) of NR is a finite set A of strongly convex rational cones in NR such

that:

(1) if a is an element in A, then all faces of a are elements in A,

(2) for any a, T E A, a n T is a face of a and 7.

From an f.r.p.p. decomposition we can construct a toric variety X(A) in the

following way. We take the disjoint union of all affine toric varieties U, for a E A

and glue as follows: for cones a and 7, the intersection a n T is a face of both a and

7, SO Uan, is identified as a principal open subvariety of U, and U,; we glue U, and
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U, by this identification on open subvarieties.

Theorem 1.3. X(A) is a well-defined separated variety.

The actions of TN on the varieties U, described previously are compatible with

the patching isomorphisms. It gives an action of TN on X(A) which extends the

product in TN:

TN x X(A) -- X(A)

TN x TN TNr.

The converse is also true: any separated, normal variety X containing a torus TN

as a dense open subvariety, with compatible action as above, can be realized as a

toric variety X(A) for a unique f.r.p.p. decomposition of NR.

Suppose q : N' ---+ N is a homomorphism of lattices, A an f.r.p.p. decomposition

of N, and A' an f.r.p.p. decomposition of N' such that for each cone a' E A', there is

some cone a E A containing &(a'). Then there exist morphisms U,, -- + U, C X(A)

for all a' E A. These morphism are easily seen to be independent of the choice of

o's, and they patch together to give a morphism

0* : X(A') ---+ X(A)

Theorem 1.4. A toric variety X(A) is compact if and only if its support IAI is the

whole space NR.

_ _
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Theorem 1.5. The map 0,,: X(A') ---+ X(A) is proper if and only if ¢-1(l) =

Theorem 1.6. An affine toric variety U, is nonsingular if and only if a is generated

by part of a basis for the lattice N, i.e., if and only if the cone has index one in N,

in which case

U, - ki 0 (k*)n-i, i = dim(a).

We henceforth call a cone a nonsingular if U, is nonsingular, i.e., if it is of index one.

We say that an f.r.p.p. decomposition is nonsingular if all its cones are nonsingular,

or equivalently, if the corresponding toric variety is nonsingular.

Theorem 1.7. The rings A, = k[S,] are integrally closed.

2. Toroidal Embedding

A large portion of the terminology in this section is borrowed from [N-dJ] and

[KKMS]. Let Z be a variety, Zi the irreducible components of Z, G a group acting

on Z. We say that Z is G-strict if the union of translates UgEGg(Zi) of each

component Z, is a normal variety, or equivalently, if each Zi is normal and whenever

there is an element of G mapping Zi to Zj, i : j, then Zi n Zj = q. We say that Z

is strict if it is G-strict with respect to the trivial group, i.e., if every Z2 is normal.

A modification is a proper birational morphism of irreducible varieties.

A divisor D C X is called a divisor of normal crossings if etale locally at every
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point it is the zero set of u1 ... Uk for some ul,... , uk belonging to a regular system

of parameters. Thus, in a strict divisor of normal crossings D, all components of D

are nonsingular.

An open embedding U L- X is called a toroidal embedding if locally in the

6tale topology (or in classical topology when k = C) it is isomorphic to a toric

variety T -+ V (see [KKMS], II§ 1). Let Ej, i E I be the irreducible components of

X\U. A finite group action G C Aut(U " X) is said to be toroidal if the stabilizer

of every point can be identified on some neighborhood with a subgroup of the torus

T. We say that a toroidal action is G-strict if X\U is G-strict. In particular, the

toroidal embedding itself is said to be strict if X\U is strict. This is the same as the

notion of toroidal embedding without self-intersections in [KKMS]. For any

subset J of I, the components of the sets niEjEi - UijEi define a stratification of

X. Each component is called a stratum.

A conical(resp. compact) polyhedral complex A is a topological space IAI

with a finite family of closed subsets {ao} (called its cells) and finite-dimensional

real vector spaces V, of real-valued continuous functions on a, such that

1. via a basis fi, ..., f, of Va, we get a homeomorphism

0C " ac -+ a/ C R•n,

where a,' is a conical convex polyhedron in R7- not contained in a hyperplane(resp.

V, contains R, the constant functions, and via a basis 1, fi, ..., f~ of V., we get a
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homeomorphism

S: an -- + o' C P"'

where ao is a compact convex polyhedron in P"n not contained in a hyperplane),

2. 0-'(faces of ao) is the union of some ap's for up E A. We call the ap's faces

of a, and -1'( interior of ao) the interior of a,

3. IAI is the disjoint union of the interiors of au's,

4. if ap is a face of a,, then Vp consists of restrictions of elements of V, on ap.

An integral structure on a conical(resp. compact) polyhedral complex is a

family of finitely generated abelian groups La C V, such that:

1(compact case only). La contains the set of all constant functions with values in

nZ for some integer n,

2. La x R V,,

3. If ua is a face of ua, then res, L = Lp.

The motivation to introduce conical polyhedral complex with integral structure

comes from the following theorem; it gives us a perfect analogue between toric

varieties and strictly toroidal embeddings.

Theorem 1.8. To every strictly toroidal embedding U C X, we can associate a

conical polyhedral complex with an integral structure A = (IA, aY , M Y ) whose cells

are in 1-1 correspondence with the strata of X.
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From now on, when we refer to a conical polyhedral complex, it is understood

that the complex is endowed with an integral structure.

We introduce the following construction, which we will use in proving the semi-

stable reduction theorems. Suppose that for a strictly toroidal embedding U C X,

we are given a positive Cartier divisor D with support X \ U. We associate to the

triple (X, U, D) a compact polyhedral complex A* with an integral structure, where

IA*l = {x E IAII < D,x >= 1},

6*Y = IA*I n 6~, for all cells 6Y C A,

and the integral structure is given by resb.Y(MY). In [KKMS, p.86 (Definition

2)] one defines a finite rational partial polyhedral decomposition A' of a

conical polyhedral complex A. As in the previous section, we abbreviate it to f.r.p.p

decomposition. We restrict our attention to the case where IA'I = IAI, and we

simply call this a polyhedral decomposition or a subdivision.

The utility of polyhedral decompositions is given in the following theorem; it

establishes a correspondence between allowable modifications of a given strictly

toroidal embedding (which in our terminology are proper) and polyhedral decom-

positions of the conical polyhedral complex.

Theorem 1.9 [KKMS]. The correspondence A' 'ý- ZA, defines a bijection between

the f.r.p.p. decompositions of A and the isomorphism classes of modifications of

__
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X.

In order to guarantee that a modification is projective, one needs a bit more.

Following [KKMS, p.91], a function ord : A -+ R defined on a conical polyhedral

complex with integral structure is called an order function if:

(1) ord(Ax) = A - ord(x),VA E R+,

(2) ord is continuous and piecewise-linear,

(3) ord(NY n a y ) C Z for all strata Y,

(4) ord is convex on each cone a C A.

For an order function on the conical polyhedral complex corresponding to X, we

can define canonically a complete coherent sheaf of fractional ideals on X, and vice

versa (see [KKMS, I§2]). An order function is positive if and only if its corresponding

sheaf is a genuine ideal sheaf. We have the following important theorem [KKMS]:

Theorem 1.10. Let F be a coherent sheaf of ideals corresponding to a positive

order function ord, and let Br(X) be the normalized blowup of X along F. Then

Br(X) -+ X is an allowable modification of X, described by the decomposition of

IAI obtained from subdividing the cones into the largest subcones on which ord is

linear.

A polyhedral decomposition is said to be projective if it is obtained from a

positive order function. It is clear from theorem 1.10 that a modification obtained

from a projective decomposition is a projective morphism.
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Lemma 1.11. Let A be a polyhedral complex. If A' is a projective subdivision of A

and A" is a projective subdivision of A', then A" is a projective subdivision of A.

Given a cone a and a rational ray T C a, it is natural to define a subdivision

of a centered at T, whose cones are of the form a' + T, where a' runs over faces

of a disjoint from T. Given a polyhedral complex A and a rational ray T, we take

the subdivision centered at T of all cones containing 7, and again call the resulting

subdivision of A the subdivision centered at T.

A very important subdivision is the barycentric subdivision. Let a be a cone

with integral structure, and let el, ... , ek be integral generators of its edges. The

barycenter of a is the ray b(a) = R>o E ei. The barycentric subdivision of a

polyhedral complex A of dimension m is the minimal subdivision B(A) in which the

barycenters of all cones in A appear as cones in B(A). It may be obtained by first

taking the subdivisions centered at the barycenters of m-dimensional cones, then

taking the subdivisions of the resulting complex centered at the barycenters of the

cones of dimension m - 1 of the original complex A, and so on.

One can also obtain the barycentric subdivision inductively in a different way:

The barycentric subdivision of an m-dimensional cone 6 is formed by first taking the

barycentric subdivisions of all its faces and each of the resulting cones a, including

the cone a + b(6). Hence, it is clear that B(A) is a simplicial subdivision.

Lemma 1.12. let A be a polyhedral complex and T a rational ray, then the sub-
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division centered at 7 is projective. In particular, the barycentric subdivision of a

polyhedral complex is projective.
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CHAPTER II

Equivariant Toroidal Modification

In this chapter we are going to prove the equivariant resolution of singularities for

toroidal embeddings.

Lemma 2.1. Let X be a variety, f : X -- + X the normalization of X, and G a

subgroup of Aut(X). We can define a canonical action of G on X such that f is a

G- equivariant map.

Proof. Let g be any element of G, we abuse notation and use g to denote the

automorphism of X induced by g. From the universal property of the normalization

map, we see that g o f factors through f, i.e., there exists a morphism g : X -- + X

such that the following diagram is commutative:

- IX f-+ X

- IXIt is clear that if g is the identity map of X

It is clear that if g is the identity map of X, then g is the identity map of X.
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Take any two elements gl, g2, we have the following commutative diagram:

X -+ X

X - X

x --+ x

From the diagram we see clearly that g- o 2 = g o g2. Take gl = g and g2 =

g-1, we get ý o g- 1 = go g-1 = id = id. This shows that for any g in G, g is

an automorphism of X. We hence define the action of g on X by y, from the

construction of y we know that f is G-equivariant.

Lemma 2.2. Let U C X be a strictly toroidal embedding, and let G be a finite

subgroup of Aut(U C X). Then:

(1) The group G acts linearly on A(X).

(2) If the action of G is strictly toroidal, g E G, and 6 C A(X) is a cone such

that g(6) = 6, then g1b = id.

Proof.

(1) Clearly, G acts on the stratification of U C X. Note that from Definition 3

of [KKMS, P. 59], A(X) is built up from the groups M' of Cartier divisors

on Star(Y) supported on Star(Y) \ U, as Y runs through the strata. Since
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g e G canonically transforms MY to M<- Y in a linear manner, our claim

follows.

(2) Assume g(6) = 6 and g1 : id. Then there exists an edge el E 6 such that

g(el) $ el. Denote g(el) by e2 . Let El and E2 be the divisors corresponding

to el and e2. Since g(el) = e2 we have g(E1) = E 2. As el, e2 are both edges of

6, E1 n E 2 - q. So Ug9Gg(E1) can not be normal since it has two intersecting

components. This is a contradiction to the fact that G acts strictly on X.

Lemma 2.3. Let G be a finite subgroup of Aut(U C X) acting toroidally on X. Let

A 1 be a G-equivariant subdivision of A, with corresponding modification f : X 1 -+

X. Then G acts toroidally on X 1 and f is G-equivariant. Moreover, if G acts

strictly on X, it also acts strictly on X 1.

Proof. The fact that there is a natural G-action on X 1 such that f is G-equivariant

follows from the canonical manner in which X 1 is constructed from the decomposi-

tion A1 , see Theorems 6* and 7* of [KKMS, §2.2.].

Now for any a E XI and any g E Staba, we have gof(a) = fog(a) = f(a), hence

g e Stabf(a). So Staba is a subgroup of Stabf(a), which is identified with a subgroup

of the torus in a neighborhood of f(a). This shows that Staba can be identified with

a subgroup of the torus in a neighborhood of a.

It remains to show that if G acts strictly on X, then it also acts strictly on X 1.

Assume this is not the case. Then there exist two edges T1 , T2 in A 1 which are both
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edges of a cone 6' and g(rT) = T2 for some g E G. Choose a cone 6' of minimal

dimension among all cones in A containing T1 and T2 . Since G acts strictly on X,

T1 and T2 cannot both be edges in A. Without loss of generality, assume T2 is not

an edge in A, then T2 must be in the interior of a cone 6 in A containing 6'. Now

since T2 C 6/ n g(6') and T2 is contained in the interior of 6, we conclude that the

intersection of the interior of 6 and the interior of g(6) is nonempty, from which

it follows that g(6) = 6. By the previous lemma, g1b = id, so gly' = id as well, a

contradiction. FO

Proposition 2.4.

(1) There is a one-to-one correspondence between the edges in the barycentric

subdivision B(A) and the positive dimensional cones in A. We denote this

correspondence by r7 -+ 6&,.

(2) Let Tri -j be edges of a cone J E B(A). Then 6~ and 56j are of different

dimensions.

(3) If G is a finite group acting toroidally on a strictly toroidal embedding U C X,

then the action of G on XB(A) is strict.

Remark. Using this proposition, the argument at the end of [R-dJ] can be signif-

icantly simplified: there is no need to show the G-strictness of the toroidal embed-

ding obtained there, since the barycentric subdivision automatically gives a G-strict

modification.
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Proof.

1. Define b: {positive dimensional cones in A} -- + { edges in B(A)} by

b(6) = the barycenter of 6

and define 6: { edges in B(A)} - { positive dimensional cones in A} by

6 (T) = the unique cone whose interior contains 7.

It is easy to see that b and 6 are inverses of each other.

2. We proceed by induction on dim A. The case dim A = 1 is trivial. Since

-i and Tj are two edges of 6 E B(A), the cone R+Ti + R+Tj must lie inside some

cone of A, say 6*, which we can choose to be of minimal dimension. We recall the

second construction of the barycentric subdivision described in the Preliminaries.

If dim * < m - 1, 6 is in the barycentric subdivision of the (m - 1)-skeleton of

A, and the statement follows by the induction hypothesis. If dim 6* = m, exactly

one of 71 and 72 must be the barycenter of 6*(otherwise a proper face of 6* which

contains Ti and Tj is a cone of A with smaller dimension than 6*), hence one of 6,

has dimension m and the other has dimension strictly less than m.

3. Since the decomposition B(A) of A is equivariant, by lemma 2.3 we know that

G acts toroidally on XB(A). Let El, E 2 C XB(A) \ U be irreducible components

and el, e2 edges in B(A) correspond to El, E2 . If E1 n E 2 : q, there is a cone in

B(A) containing el,e 2 as edges. From part (2), dim e,, dim6e2 , so g(el) / e2 for
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any g E G. This proves that G acts strictly on XB(A). OE

Proposition 2.5. There is a positive G-equivariant order function on B(A) such

that the associated ideal F induces a blowing up BrXB(A), which is a nonsingular

G-strict toroidal embedding on which G acts toroidally.

Proof. By the previous proposition, we know that G acts toroidally and strictly on

XB(A). It follows from lemma 2.2 that the quotient B(A)/G is a conical polyhedral

complex, since no cone has two edges in B(A) which are identified in the quotient.

We can use the argument in [KKMS, I§2, lemmas 1-3] to get a positive order function

ord : B(A)/G -+ R which induces a simplicial subdivision of B(A)/G such that all

its cells are of index 1. Let q : B(A) -+ B(A)/G be the quotient map. Then

ord o q is a positive order function which induces a G-equivariant subdivision of

B(A) into simplicial cones of index 1. Let F be the corresponding ideal sheaf. By

theorem 1.6, the blow up XB(A) along F is a nonsingular strictly toroidal embedding

U C BrXB(A). By lemma 2.4, G acts strictly and toroidally on XB(A). Finally by

lemma 2.3, G acts strictly and toroidally on BrXB(A). EO

Theorem 2.6. Let U C X be a strictly toroidal embedding, and let G c Aut(U C

X) be a finite group whose action is toroidal. Then there is a G-equivariant toroidal

ideal sheaf F such that the normalized blowup of X along F is a nonsingular G-strict

toroidal embedding.

Proof. In the previous two propositions, we performed barycentric subdivision
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of A and found G-equivariant subdivision of B(A) to get a subdivision {(6} whose

cells are all of index 1. We consider {6J} as a subdivision of A. Let Y -+ X be

the modification associated to this subdivision. Clearly Y is nonsingular and G

acts strictly and toroidally on Y. Since we know the composition of two projective

subdivisions is projective from lemma 1.11, {6i} is projective, so it is obtained from

a positive order function. Let F be the coherent sheaf of ideals corresponding to this

order function, then Y is the normalized blowup of X along F. O

Remark. With a little more work we can obtain a canonical choice of toroidal

equivariant resolution of singularities. We observe that the cones in the barycentric

subdivision have canonically ordered coordinates agreeing on intersecting cones: for

a cone 6, choose the unit coordinate vectors ei to be primitive lattice vectors gen-

erating the edges T-, where i = dim 6,, the dimension of the cone of which T is a

barycenter. Recall that to resolve singularities, one successively takes subdivisions

centered at lattice points wj which are not integrally generated by the vectors ei.

These wj are partially ordered with respect to the lexicographic ordering of their

canonical coordinates, in such a way that if wjO wk have the same coordinates (e.g.

if g(wi) = w2), they do not lie in the same cone. Therefore we can take the centered

subdivisions simultaneously.

We conclude this chapter with a simple proposition which is implicitly used in

[N-dJ] and will be used in the next chapter.
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Proposition 2.7. Let U C X be a strictly toroidal embedding, and let G c Aut(U C

X) be a finite group acting strictly and toroidally. Then (X/G, U/G) is a strictly

toroidal embedding.

Proof: Since the quotient of a toric variety by a finite subgroup of the torus is

toric, X/G is still a toroidal embedding, by definition of a toroidal embedding.

We need to show that it is strict. Let q : X -+ X/G be the quotient map. Let

Z C X \ U be a divisor. Then q(Z) = q(Ugg(Z)). Since the action is strict, we have

q(Ugg(Z)) ~_ Z/Stab(Z), which is normal. Ol

rL-~r~-------- ----l--L-l.l----l-P ..~·II-~II~XIY~



CHAPTER III

Equivariant Resolution of Singularities

In this chapter, we are going to prove the equivariant resolution of singularities

theorem for the general case. We have already proven the theorem for the case of

toroidal embeddings in the second chapter. Hence, it suffices to reduce the problem

to the toroidal case. To achieve this goal, we first need the following theorem:

Theorem 3.1. Let S be a smooth variety, let S' be a normal variety, and let

f : S' -- ý S be a finite morphism. Suppose Z is a divisor of S of normal crossings

and T = S - Z. If f-1(T) is etale over T, then f-1(T) --- + S' is a strictly toroidal

embedding. Moreover, Gal(S'/S) acts on S' toroidally.

To prove this theorem we need the following lemma[G]:

Lemma 3.2 (Abhyankar's lemma). Let X be a regular local scheme, let D =

E div fi be a divisor of normal crossings, i.e., fl, f2, ... , fr belong to a regular
1<i<r

system of parameters. Let Y = Supp D and U = X - Y. Given a finite etale
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covering V of U, there exist nl, ..., n, E Z+ such that for

X' = X[Z, ... Xr]/(Xl n ' - fi, ... , Xr " - fr),

U' = U xx X', and V' = V xx X', the etale covering V' -+ U' can be extended

uniquely to an etale covering X" -- + X', where X" is a variety containing V' as an

open subvariety.

Proof of theorem 3.1. Since the question is local, we can assume that S is a

regular local scheme and Z = E div fi is a divisor of normal crossings. Applying
1<i<r

Abhyankar's lemma we get nl, ..., n, E Z+ and

SI = S[xx,...xr]/(Xlnl - f, ... , xr n - fr)

such that S' xs S" is etale over S". We pass everything to its completion and still

use the same notation. Since S' x s S" is etale over S", after taking completion they

are isomorphic. Hence we have a map p: S" --- S', which is a quotient map under

a subgroup G C Gal(S"/S). Since S" is strictly toroidal, Gal(S"/S) is a subgroup

of the torus S" - Z". It follows that G is also a subgroup of the torus S" - Z". Hence

S' = S"/G is strictly toroidal(proposition 2.7.) and Gal(S'/S) = Gal(S"/S)/G C

(S" - Z")/G = S' - Z', i.e., Gal(S'/S) acts toroidally on S'. O

Proof of theorem 0.2.

Suppose Z, X, and G are as given in the statement of the theorem. Let Y = X/G,

Z/G be the quotients, and B the branch locus. Define W = (Z/G) U B. Let
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(Y', W') -+ (Y, W) be a resolution of singularities of Y where W' a strict divisor

of normal crossings. Let X' be the normalization of Y' in K(X), let Z' be the

inverse image of W', and let U = X'\ Z'. From theorem 3.1 we know that U C X'

is a strictly toroidal embedding on which G = Gal(X/Y) acts toroidally. Applying

proposition 2.5, we obtain a nonsingular strict toroidal embedding U C X 1 -- X'

as required. Li

The following conjecture is suggested by Professor Dan Abramovich, it is a gen-

eralization of theorem 3.1.

Conjecture. Let T C-+ S be a strictly toroidal embedding, let Z = S - T, and let

f : S' - S be a finite morphism where S' is normal. If f-1(T) is etale over T,

then f- 1 (T) --- S' is a strictly toroidal embedding. Moreover, Gal(S'/S) acts on

S' toroidally.

The next theorem will not be used later in this thesis. It is the analogue of

theorem 3.1 in the toric variety case. It is interesting that neither of them seems to

imply the other.

Theorem 3.3. Let T -- S be an affine toric variety, and let f : S' ---+ S be a

finite morphism where S' is normal. If f-1(T) is dtale over T, then f- 1(T) ---+ S'

is also an affine toric variety. Moreover, Gal(S'/S) can be identified with a subgroup

of f- 1 (T), i.e., Gal(S'/S) acts toroidally on S'.

Proof: Let n = dimS. Then T is a torus isomorphic to k*n. Since f-1(T) is finite
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etale over T, from classical results in complex tori theory and the Leftschetz prin-

ciple, we know f-1(T) is also isomorphic to k*". Now if we identify f -(T) with Spec

k[yl, Y2, y .. n, y1-1, Y 2- 1,. Y ., Yn-1] and T with Spec k[xl,,2, ..., Xn, X1-1 , 2X-, ..., n-1]

then the morphism f is induced from a homomorphism of their coordinate rings,

which we also denote by f. Using the following lemma we can find suitable coor-

dinates of f-1(T) and T such that the map is monomial with respect to the new

coordinates.

Lemma 3.4. Let f be a homomorphism of rings from k[xz,X2, ... , Xn, 1l-1, x2
- 1, ... , Xn - 1

to k[yl, y2 7 ..., Yn, y1- 1, Y2-1 ,..., -]. Then f is 6tale 4 f = go h o e, where e is

an automorphism of k[xi, X2 , ... X ,, X1- 1, 2- 1, ***,-1, g is an automorphism of

k[ylz, y2, . Yn, Y1-1, Y2-1, ..., Yn- 1], and h(yi) = (yi)m i, mi E Z+, for i = 1, 2, ..., n.

Without loss of generality, we assume these suitable coordinates are {xi} and

{Yi}, and f(xi) = yimi, mi E Z+, for i = 1, 2,..., n.

Since S is an affine toric variety, we can assume it to be Spec k[x 1\, XA2, ... A, X],

where A1, A2, ... , As are generators of a cone 6 in N = Zn. Let el, e2, ... , e, be the

generators of the lattice N, then el, , ..., e generate a lattice N' such that
ml m2 mn

N C N'. We use 6' to denote the cone in N' generated by Aj, i = 1, 2, ..., n, and use

Se6 to denote the affine toric variety corresponding to this cone. We immediately

have the following fiber product diagram:
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T - S6,

Itf
T - S

It is easy to see that f' : T -+ T is identical to f : f-1 (T) -+ T. Since S6, and

S' share the same open set f-'(T), they have the same function fields. Moreover, f

and f' are both affine morphisms, S6, and S' are both normal varieties, so f and f'

are both normalization maps and hence are identical.

We thus conclude that f-1(T) -+ S' is a toric variety.

To see that Gal(S'/S) can be identified with a subgroup of f-'(T), note that

Gal(S'/S) acts on S' and S is the quotient of the action. The restriction of Gal(S'/S)

on f-'(T) obviously agrees with the action of a subgroup G' of f-'(T) on f-'(T).

Since f- 1 (T) is an open subscheme of S', we conclude that the action of Gal(S'/S)

on S' agrees with the action of G' on S'. Hence we can identify Gal(S'/S) with

G'. O

Proof of lemma 3.4.

=-=: Obvious.

-~: we assume f(xi) = Ciylaily 2ai2 ...ya, aij E Z. A better way to see what
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this map looks like is to take the logarithm of the coordinates xi's and yi's. We have

f : (log CX, log 2 ,... log n )T = A x (log yl, log Y2, ... log yn)T
C, C2 Cn

where A has aij as its (i, j)th entry. In other words, the homomorphism between the

coordinate rings of the torus can be realized as a linear function between the loga-

rithms of their coordinates. It is easy to see that the morphism f is an isomorphism

if and if only the matrix A has determinant 1 or -1.

Since all entries of A are integers , we can performs column and row trans-

formations to diagonalize A, in other words, there exist matrices S and R with

integer entries such that A = SATR, S and R have determinants 1 or -1, and

A' = diag(al, a2, ..., an) where all a2 are integers. Since f is 6tale, A is nonsingular

and ai are nonzero. We can further assume that a2 are all positive, by choosing

appropriate S and R.

Now let's set

(log 1, log ... (log log , ... log X-n )T

and

(log yl', log y2', ... log ynI)T = R(log y, log Y2, ... log yn)T

Then we define e, g, h by

e : xi xi-

h xi I yi/ai
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g " Yi -- + Yis .

e, g are isomorphisms from our previous discussion. It is clear that f = g o h o e.
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CHAPTER IV

Equivariant Semi-stable Reduction

Lemma 4.1.

Let C be a smooth curve and G a finite subgroup of Aut(C). Denote the function

field of C by K. Let field K' be a Galois extension of K which is also a Galois

extension of KG. Let 7r : C' -+ C be the normalization of C corresponding to the

field extension K C K', and let G' = Gal(K'I/KG). Then G' is a finite group with

a well-defined action on C', and if we define an action of G' on C in the obvious

sense, then 7 is G'-equivariant.

Proof. Denote the completion of C and C' by C and C', respectively, ir can be

extended to a morphism T : C' -+ C.

Since G' = Gal(K'I/KG), there is a canonical surjection p : G' -+ G. To simplify

notation we will use y to denote p(g) for g E G'.

We can extend the action of G on C to C. Since every element g' of G' induces an

automorphism of C', we can define an action of G' on C'. The surjection p : G' -+ G
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induces an action of G' on C which is

Since y is the restriction of g on K,

K'

K'

compatible with the action of G on C.

the following diagram is commutative

+- K

4-K

It follows that the diagram

gT

I g
V-

ft

is commutative. Hence W is G'-equivariant. Let g E G' and c E C'. Then

To g(c) = g•o F(c). But w(c) E C and hence g o 4(c) E C, so g(c) E T-1(C) = C'.

This proves that g maps points of C' to C'. Similarly we can prove that g maps

points of C' - C' to C' - C'. It follows that the restriction of g to C' induces an

isomorphism of C' to itself, so G' acts on C'. Finally, since W is G'-equivariant and

r is the restriction of W on C', r is G'-equivariant. El

Lemma 4.2. Let X, X', Y be varieties and let G be any group acting on X, X', Y.

If f :Y -+ X, p: X' ---+ X are G-equivariant morphisms, then there is a natural

action of G on X' xx Y such that the following diagram is G-equivariant
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X'xxY Y

X' X

Proof. Let g E G. We have the following commutative diagram:

X' xx Y E- Y

jgof' {f

X' --fP X

By the universal property of fiber products there exists a morphism g' : X' xx

Y - X' xx Y such that the following diagram is commutative,

X'xxY = X'xxY - Y

X'xxY X'xxY Y

X' _-4 X' --P X

So p' o g' = g o p' and f' og' = g o f'. Clearly, if g is the trivial element of G,

it corresponds to the identity morphisms on X, X', and Y, and g' is the identity

map on X' xx Y. Moreover, g1 ' o g2' = (g1 o g2)' for any gl, g 2 E G. Hence

g' o g-1' = (g o g-1)' = id, proving that g' is an automorphism. We define the action

of g on X' xx Y by the automorphism g'. From our construction this G-action
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clearly makes the diagram G-equivariant. O

Before we state the equivariant semi-stable reduction theorem more precisely, we

need a few more machineries.

Let C be a smooth curve, let G be a finite group acting on C, and let O be a

point on C which is invariant under the action of G. Denote the local ring of O by

Ao,c and the maximal ideal of Ao,c by mo,c.

Lemma 4.3. Under the above conditions, the image of G in Aut(C), which we

denote by H, is a cyclic group and we can find a local parameter t of Ao,c such that

K = KH(t) and the minimal polynomial of t is XIHI - a for some a E KH.

Proof. We abuse notation and don't distinguish between automorphisms of the

curve C and automorphisms of its function field K(C). Since H acts on C and O

is invariant under the action of H, H C Aut(Ao,c). Passing to the completion of

Ao,c, we consider H as a subgroup of Aut(Ao,c).

Since C is nonsingular, Ao,c is a regular ring and Ao,c - k[[s]] for any regular

element s E mo,c. For any g E H, s-lg(s) invertible, so II s-g(s) is invertible
gEH

in k[[s]]. Let n = IHI. Since k is algebraically closed, any invertible element of

k[[s]] has nth roots. Hence there exists r E k[[s]] such that I s-1 g(s) = rn, i.e.,
gEH

I g(s)= (,,)n

Clearly, II g(s) is invariant under H, so (sr)n is invariant under H. Since
gEH

g((sr)> ) = (sr)n, we have g(sr) = 5gsr, where (g is an nth root of unity. For
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different g, (g must be different, so {(glg e H} is exactly the set of all nth roots of

unity. It follows immediately that H is cyclic.

Since H is cyclic, the action of any element of H on moc Y k is a multiplication
mo,c2

by an nth root of unity. Moreover, different elements of H correspond to different

nth roots of unity. Let t' be a generator of mo,c, and denote the image of t' in

mo,c mo,c by gQJ) = it. Here
moc by Vt. Let g be the element of H which acts on moc 2 by g() = . Here

mo,c2  mo,c2

1
( is a primitive nth root of unity. Consider the element t = - ( ý-igi(t'). It

n O<i<n-1

is easy to check that g(t) = (t and t - t' E mo,c 2. Hence t is a local parameter of

Ao,c and the minimal polynomial of t is Xz - t n . This proves that K = KH(t). EO

We fix this generator t of mo,c. For all d > 1, let Cd be the normalization of

C corresponding to the field extension generated by td, let 7rd Cd -- C be the

canonical morphism, and let Od = 7"d-1(0). Let K(C) and K(Cd) be the function

fields of C and Cd, respectively. Clearly, K(Cd) is a Galois extension of both K(C)

and K(C)H. We use Hd to denote the group Gal(K(Cd)/K(C)H). By lemma 4.1,

Hd acts on Cd, Hence Gd Hd XH G acts on Cd. Given a smooth variety X and

a morphism f : X ---+ C, suppose f-1 (0) is a divisor of normal crossings. We

write f -(0) = E n(i)Ei. For d > 1, let Xd be the normalization of XxcCd, let
1<i<N

fd : Xd -+ Cd be the projection, and let Ud = fdl(Cd - Od). From Lemma 2.1, 4.1
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and 4.2 we have canonical Gd-actions on Xd and Cd so that the following diagram

Cd C

is Gd-equivariant. Henceforth, whenever we do a base change Cd -+ C, we will

extend the group action of G to a group action of Gd as above.

Lemma 4.4 [KKMS, P. 102]. Ud C Xd is a strict toroidal embedding.

Remark. This lemma is also an easy corollary of theorem 3.3.

Lemma 4.5. [KKMS, P. 103]. Let v = l.c.m.(n(1),n(2),...n(N)). If vrd, then

Xd -+ X, c, Cd is an isomorphism, hence the closed fibers fd'l(Od) are indepen-

dent of d, and the projection X, -+ Xd induces a bijection between the strata of

X - U, and the strata of Xd - Ud. Moreover, fdl(Od) is a reduced subscheme of

Xd-

In the following discussion and lemma 4.6, we always assume v d.

Let Ad be the polyhedral complex associated to Ud C Xd, then there is a canonical

polyhedral isomorphism between Ad and A,.

However, when we replace A, by Ad, the integral structure changes. The integral

structures on the corresponding polyhedrals 6Yd and 6Y- are given by the functions

defined by MYd and MY-, respectively. There is the following lemma:
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Lemma 4.6 [KKMS, P. 105]. Every Cartier divisor D on Star Yd supported by

fd-l(Od) is of the form p*D1 + a(t") for some a E Z, where p is the morphism from

Xd to X,.

For Ud C Xd, we have a positive Cartier divisor Dd with support Xd - Ud, namely

fd-l(Od). Dd defines a function id Ad -+ R+. Note that via the canonical

v
isomorphism Ad A,, ld = -l,, we can define a compact polyhedral complex

Ad* = {x E Adld(X) = 1}

By restriction, we get an integral structure Md* on Ad*. Moreover, by central

projection and the canonical isomorphism between Ad and A,, we get a canonical

isomorphism of Ad* and A,*. By lemma 4.6, Md* = -dM,* + Z. Hence, we obtain
v

isomorphism between the integral lattice (Ad*)z in Ad* and the lattice of (A,*) zV

of points in A,* with coordinates in -Z. We recall the following theorem [KKMS].

It reveals the connection between subdivisions of the compact polyhedral complex

and the corresponding modifications of X.

Theorem 4.7. Given U C X and a divisor D whose support is in X - U, let A' be a

subdivision of A, let (A*)' be the associated subdivision of A*, and let f : Za, -- + X

be the corresponding modification. Then

a) The vertices of (A*)' are in (A*)z if f-1(D) vanishes to order one on each

component of ZA, - U.
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b) If (a) holds, the volume of every polyhedron To in Ao' is (di iff Z is(dim ro)!
nonsingular.

We call a subdivision of a compact polyhedral complex reduced if the subdivision

satisfies the condition (a), and we call it nonsingular if it satisfies condition (b). We

also call a compact polyhedral complex reduced(resp. nonsingular) if its trivial

subdivision is reduced(resp. nonsingular).

Theorem 4.8 (Equivariant Semi-stable Reduction Theorem I).

Let C be a nonsingular algebraic curve, 0 E C, X a nonsingular variety, and

f : X -- + C a proper morphism of a variety X onto C such that

resf : X - f-'(0) --- + C - 0

is smooth and f-1(0) is a divisor with normal crossings. Suppose f -(0) = E n(i) E
1<i<N

and let v be the least common multiple of n(i), 1 < i < N. If G is a finite subgroup

acting on X and C, f is G-equivariant, 0 is invariant under the action of G, and

f-1(0) is G-strict, then

1. There exists an e E Z+ such that for any d E Z+, we have a variety X', a

morphism p: X' -+ X Xc C', and the Gved-equivariant commutative diagram

' + Ce dxcX - X

Sfved oP fved f

Cved = Cved C
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with the following properties:

a) p is an isomorphism over fved- 1 (ved - Oved),

b) p is projective. In fact, p is obtained by blowing up a sheaf of ideals F with

l ved--1 (Cved-Oved) = OCvedXCX •ved-1(C-ed-Oved),

c) X' is nonsingular, and the fiber (fved p)- 1 (Oved) is reduced with non-singular

components crossing normally.

2. Suppose dim X < 3, then e = 1 suffices.

Proof. Since X is nonsingular and f- 1 (0) is a divisor of normal crossings of X,

X - f- 1 (0) -+ X is a toroidal embedding. We use A to denote its conical polyhedral

complex and A* to denote the compact polyhedral complex corresponding to f-1 (0)

as usual. We first construct the following commutative diagram:

f, f

Cv -4 C

After this base change, we know from lemma 4.5 that f,- (O,) is already a reduced

subscheme of X,. From our previous discussion we know that Gv acts naturally on

X, and the above diagram is G,-equivariant. Moreover, since f-1(0) is G-strict,

f,-'(O,) is Gv-strict.

We consider the conical polyhedral complex A, and the compact polyhedral com-
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plex A,* corresponding to X, and f,-'(O,), respectively. Since f,-1(O,) is G,-strict,

the G,-quotient of A, is a well-defined conical polyhedral complex by lemma 2.2.

Moreover, since f,- 1 (O,) is invariant under the action of G,, A,* is invariant un-

der the action of G,, so its G,-quotient is also a well-defined compact polyhedral

complex on A,/G,.

We have shown that A,* has all its vertices in (A,*)z, i.e., A,* is reduced. So

An*/Gv is also reduced. If we can find a nonsingular subdivision of Av*/G,, this

will induce a Gv-equivariant nonsingular subdivision of A,*, and we will be done.

However, a general reduced compact polyhedral complex may not have a nonsingular

subdivision, as shown in the following counterexample.

Example. let A be the tetrahedron in Z3 with the four vertices (0,0,0), (1,1,0),

(1,0,1), (0,1,1). Clearly, there is no lattice point besides these four vertices in A, so

A is the only reduced subdivision of itself. However, A has volume 2, so it is not
3

nonsingular.

Fortunately, the following theorem assures us that we can get a nonsingular sub-

division of any compact polyhedral complex if we are allowed to refine the integral

structure(by a refinement of an integral structure we mean a larger integral structure

containing the original one).

Theorem 4.9. Given a polyhedron a E R• with integral vertices, there exist an

integer e and a subdivision of a into simplices T, such that for all a:
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1
1) vertices of 7T E -Z n,

e
1

2) volume(·T) = e

This theorem was proved in [KKMS]. They introduced very complicated subdivi-

sions and proved theorem 4.9 with those subdivisions. Moreover, they also proved

that these subdivisions are all projective, hence the subdivision in the above the-

orem is projective. For any integer e, they introduced a subdivision for a simplex

called the e-regular subdivision. Intuitively, an e-regular subdivision of a simplex

of dimension n is just a subdivision of the original simplex using n + 1 families of

hyperplanes, each family containing e + 1 parallel hyperplanes. An e-regular subdi-

vision subdivides an n-dimensional simplex into en identical simplices(see [KKMS]

for detail). Any regular subdivision is also projective, we will use this fact later.

The above theorem, combined with the discussion after lemma 4.6, gives us a way

of using a base change to get a nonsingular subdivision.

Returning to our proof, we already know that A,*/G, is reduced, applying the

above theorem, we get an integer e and a subdivision 7T of A,*/G, such that for all

a:

1) vertices of T, E -Zn, and
e

2) volume(T,) =
enn!teger d, we further perform a d-regular subdivision of

Now for any integer d, we further perform a d-regular subdivision of -, and obtain
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a subdivision ua such that for all #:

1
1) vertices of a# E -Zn,

ed
1

2) volume(ap)= (ed)n !(ed)nn!1*

This subdivision leads to a G,-equivariant subdivision of A,* which we also call

aUP

Hence, if we interpret ua as a subdivision of Aved*, then this subdivision is Gved-

equivariant. This subdivision induces a G,,d-equivariant modification p : X' -

Xved which satisfies all the conditions.

In the cases X is a variety with dimension less or equal than 3, e = 1 suffices.

Indeed, the following Pick's theorem and proposition 4.11 provide us a nonsingular

subdivision of A*,. A proof of Pick's theorem can be found in [EGH]. OE

Lemma 4.10 (Pick's Theorem). Let Z x Z be a lattice and P a convex polygon

whose vertices are all lattice points. If A is the number of lattice points inside P

and L is the number of lattice points on the boundary of P, then the area of P is

L
A + - 1. In particular, for a triangle with no lattice points on it other than the

2
1

vertices, the area is -.
2

Proposition 4.11. Let P be a compact polyhedral complex of dimension at most 2.

There exists a nonsingular subdivision of P.

Proof. If P is of dimension 1, the result is obvious.
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If dimP = 2, we consider any maximal reduced subdivision P' of P. Then P' must

also be nonsingular. Indeed, there is no lattice point in any triangle of the subdivision

(since otherwise, we can subdivide this triangle to get a finer subdivision), so the

1
area of any triangle of P' is - by Pick's theorem. O

2

Theorem 4.12 (Equivariant Semi-stable Reduction Theorem II). Let C be a non-

singular algebraic curve, 0 E C, X a variety, and f : X -+ C a proper morphism

of a variety X onto C such that

resf : X - f -(0) -- + C - 0

is smooth. If G is a finite subgroup acting on X

0 is invariant under the action of G, then there

any d E Z+, we have a variety X', a morphism

Ged-equivariant commutative diagram

Sfed op

Ced

P-- Ced X C

S fCed

Ced

and C, f is G-equivariant, and

exists an e E Z+ such that for

p : X' -+ X xc C', and the

ed X

with the following properties:

a) p is an isomorphism over fed-1(Ced - Oed),

b) p is projective. In fact, p is obtained by blowing up a sheaf of ideals F with

lfead-1(Ced-Oed) - OCedXCXifed1-(Ced-Oed),
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c) X' is nonsingular, and the fiber (fed 0 p)-Y(Od) is reduced with non-singular

components crossing normally.

Proof. By theorem 0.2, we can find a G-equivariant resolution

g9:Y -+ X

such that Y is nonsingular and g- 1(f-1(O))red is a union of non-singular components

crossing transversely. We perform the barycentric subdivision on A(Y) and let

the corresponding modification be h : B(Y) -+ Y. Let v be the l.c.m of all the

coefficients of h-1 og-lof-1 (0). From proposition 2.4 we know that G acts naturally

on B(Y), h is G-equivariant, and h- 1 o g- 1 o f- (0) is G-strict. By theorem 5.3,

we can find an e' E Z+ such that for any d C Z+, there exist a variety X' and a

morphism p : X' - Cve'd XC B(Y) satisfying all the conditions stated in theorem

5.3. In particular, the following diagram is commutative and G,,d-equivariant

fogoh

X' + Cve'd XC B(Y) '- B(Y)

f'og'oh' f ogoh

Cve'd C

By lemma 5.2, it follows that in the following diagram, Gve'd acts naturally on

Cve'd x c X and the whole diagram is Gveld-equivariant
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g" o h
Cve'd XC X

{f"

Cve d

4 (Cve dXC X) XX B(Y) B v(

g' oh

=" Cve' xc X dd

= Cewa "vi

Thus we can let e = ve'. For any d, (X', g' o p) satisfies all the conditions we

need. O-

Remark. In theorem 4.8, for the case dim X < 3 we assumed that X is a smooth

variety and f-1 (0) is G-strict divisor of normal crossings, so that we could have a

good control of e. In fact, if we drop the G-strict condition, we can perform the

barycentric subdivision as in the proof of theorem 4.12 and show that e can be

chosen to be 2.

B(Y)

Igoh
X

I
C
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