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Abstract

This thesis describes the development and implementation of an interactive, integrated clinical
system for 3-D visualization of thermal fields on patient anatomy to aid in hyperthermia cancer
treatment planning and evaluation in the hyperthermia clinic at DFCI. Hyperthermia is an
adjunctive treatment modality based on the preferential temperature elevation of tumor tissue,
creating a tumor environment that synergistically enhances the efficacy of radiotherapy and
chemotherapy. Prior to hyperthermia treatment administration, power deposition and heat
transfer models can be used to estimate the 3-D thermal fields that will be produced in the target
volume by the power applicator. Following treatment these predicted fields can be modified,
using thermometric data obtained from thermal probes during treatment, to estimate the 3-D
thermal fields that occurred during treatment.

This project comprised two broad objectives: to develop a model for rapid calculation of
the power deposition field from an ultrasound power applicator; and to combine this model
with an existing rapid model for bioheat transfer and an existing geometric treatment planner to
produce an integrated clinical system. For the first objective, a general method was developed
for rapid calculation of the acoustic pressure field from a non-uniformly vibrating rectangular
acoustic source. Comparisons between simulated and measured acoustic fields in a water
bath indicated that acoustic beams from the applicator transducers could be modeled by a
modified Gaussian parametric description, accelerating pressure field calculations by two orders
of magnitude (compared with the conventional method of solving the Rayleigh-Sommerfeld
diffraction integral). In addition, a new technique was developed to modify the pressure field
from an acoustic source insonating a non-attenuating medium to account for acoustic absorption,
and this method was validated by acoustic simulations with the transducer geometry. For the
second objective, the power deposition and bioheat transfer models were incorporated into the
environment of the geometric planner. This integrated system was used to perform thermal
treatment planning predictions and therapy reconstructions using patient geometric models and
thermometric data taken from a real treatment. Further work must now integrate the system's
treatment predictive and reconstructive capabilities with clinical practice to provide maximal
patient benefit.
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Chapter 1

Introduction

Those who cannot be cured by medicine can be cured by surgery. Those who cannot
be cured by surgery can be cured by heat. Those who cannot be cured by heat, they
are indeed incurable.

- Hippocrates, 400 B.C.

Hyperthermia is an adjunctive treatment modality based on the preferential temperature elevation

of tumor tissue, creating a tumor environment that synergistically enhances the efficacy of

radiotherapy [91] and chemotherapy [42, 97]. In Asia and Europe many groups are actively

practicing hyperthermia and achieving impressive clinical results; Harima et al. [39] in Japan

and van der Zee et al. [99] in the Netherlands, for example, recently reported on the use of

hyperthermia with radiotherapy in cervical stage IIIb tumors and assorted inoperable pelvic

tumors, respectively; both studies indicated an approximate doubling in complete response rate,

compared to radiotherapy alone.

Tissues, both normal and cancerous, are susceptible to thermal injury [57, 58]; the extent of

the injury is correlated with the thermal dose, which is related to the magnitude and duration

of the temperature elevation [12]. The technical aim of hyperthermia cancer therapy is to

deliver a therapeutic thermal dose to tumor tissue while delivering a sub-therapeutic dose to the

surrounding normal tissue.

To perform quantitative hyperthermia, it is necessary to have knowledge of the 3-D temper-

ature field for the duration of treatment. Thermal modeling is used to obtain this knowledge,

and thermal modeling in turn requires knowledge of the 3-D power deposition field (specific

absorption rate SAR), as well as tissue thermal properties. Power deposition modeling requires



a model of the power applicator used to heat the target volume, and accurate location of the ap-

plicator relative to the patient. For treatment thermal planning, patient and applicator geometric

modeling, power deposition modeling and heat transfer modeling are necessary; for treatment

thermal reconstruction, all these are required, plus thermometric data taken during heating. In

both cases-treatment planning and treatment reconstruction-a 3-D visualization system is

desirable to relate the calculated thermal fields to the patient geometry.

1.1 Project History

The Dana-Farber Cancer Institute (DFCI) and the MIT hyperthermia groups recognize the need

to bring patient anatomic visualization and thermal and ultrasound modeling to bear to improve

clinical hyperthermia dosimetry and in turn hyperthermia treatments. These two institutions

joined together in a hyperthermia National Institutes of Health (NIH) Program Project Grant

(PPG). This PPG traces its roots to the MIT Hyperthermia Center, directed throughout the

1980's by Dr. Padmakar P. Lele. At that time, the focus of work under the grant was in the

areas of ultrasound device development and physics, and in particular in the development of

the Steered, Intensity Modulated, Focused Ultrasound (SIMFU) system [58]. In the late 1980's

Dr. H. Frederick Bowman became the principal investigator (PI) of the PPG, and under his

tenure the Focused Segmented Ultrasound Machine (FSUM) [14, 38], designed to heat deep

tumors, was commissioned. Dr. Terrance S. Herman followed as PI, and the base of operations

moved from MIT to DFCI. In addition, the focus of the PPG changed to a more clinical

orientation as the FSUM received a Food and Drug Administration (FDA) Investigational

Device Exemption (IDE) for a phase I trial. Today Dr. C. Norman Coleman is the principal

investigator of the PPG, and he heads a group comprising physicists, radiation therapists,

and computer programmers at the Joint Center for Radiation Therapy (JCRT). Dr. G6ran K.

Svensson directs the physics group and is responsible for developments in ultrasound applicators

and associated physics. Formerly in this group, Mark Dopheide performed early work in

developing Xknife [55] and HYPER/Plan [38], a stereotactic radiosurgery and radiotherapy

planning system and a hyperthermia therapy geometric planning system, respectively. Radionics

Software Applications, Inc., (RSA) was established to maintain and develop Xknife, and it enjoys



a close association with the JCRT. Within the DFCI group, JOrgen L. Hansen and James M.

Pelagatti have maintained and developed HYPER/Plan. Both planning systems are built on

the AVS scientific graphics and visualization commercial platform (Advanced Visual Systems,

Inc.). On the MIT side of the collaboration, the Hyperthermia and Bioheat Transfer Group

headed by Dr. H. Frederick Bowman has pursued thermal dosimetry via thermal modeling and

dense thermometry for site-specific applications in hyperthermia. Dr. William H. Newman

conceived and jointly developed with Dr. Gregory T. Martin a rapid computational model for

bioheat transfer, the Finite Basis Element Method (FBEM) [65, 66, 73, 75]. With the geometric

and heat transfer models in place, what remains for an integrated, clinical treatment modeling

system is a power deposition model, and its integration with the other two models.

1.2 Document Organization

The task at hand, then, is to integrate rapid models of power deposition and heat transfer into an

existing geometric planning system to create an integrated, interactive hyperthermia treatment

planning and evaluation system. A brief outline of the tasks necessary to achieve this goal, and

how they are broken down into chapters, follows.

Chapter 2 includes a discussion of object hierarchies and coordinate transformation in the

context of computer graphics. These concepts, particularly coordinate transformation, recur

repeatedly in this document, so a solid grounding early on is advisable. In addition, this chapter

contains a detailed development of Volumizer, which is used to generate a patient volumetric

model from a patient surface model. This volumetric representation of the patient is critical

for power deposition and thermal calculations, so this chapter also briefly describes the steps to

obtain the volumetric representation from the original 3-D patient image.

Chapters 3 and 4 concern ultrasound power deposition modeling. The former chapter

provides background in acoustic physics, and the latter presents developments in acoustic

calculation and modeling made in the course of this dissertation. These developments include

a technique for rapid calculation of the acoustic pressure field from a non-uniformly vibrating

rectangular or cylindrical wedge acoustic source; models of the acoustic pressure field from a

single FSUM transducer and multiple FSUM transducers radiating into a water bath; and the



description and theoretical validation of the Fanned Absorption Method (FAM) for modifying

the acoustic pressure field from a source radiating into a non-attenuating medium to approximate

the pressure field in an absorptive medium.

Chapter 5 represents the confluence of several lines of work by a number of individuals.

It is here that the geometric, power deposition, and thermal modeling efforts join together

to form an integrated treatment modeling and thermal visualization system. Included in this

chapter is an overview of the system (depicted in a flow chart in Figure 5-1 on page 172,

for impatient readers); a theoretical description of the Finite Basis Element Method (FBEM)

thermal model; an inventory of thermal visualization tools; and an explanation of how predicted

thermal fields can be modified by thermal measurements (in particular, SAR and temperature)

into reconstructed thermal fields that more accurately reflect the heating that occurred during

hyperthermia treatment administration. (The tissue perfusion field is critically important in

the thermal model, although its characterization is beyond the scope of this thesis.) Chapter 6

applies the models to the clinical case of a patient who received hyperthermia treatment with

the FSUM at DFCI, and in whom thermal measurements were taken during treatment. Thermal

field predictions and reconstructions are presented using thermal visualization tools.

The final chapter, Chapter 7, contains a short discussion of the potential clinical utility of

the integrated treatment system. In addition, directions for future work within the scope of this

project are considered.

An ancillary chapter, relegated to Appendix A, presents material only peripherally related

to the focus of this thesis. This self-contained appendix analyzes a theoretical strategy for

concentrating thermal dose deposition in the target volume by temporally oscillating the power

deposition field. Appendix B includes derivations that are not critical for understanding material

presented or developed in the main chapters, but they may be welcome to the reader who desires

supplemental details. These appendicular derivations are cited in the main chapters when

relevant. Appendix C contains a tabulation of tissue power deposition and thermal properties,

and another tabulation of various geometric and power specifications of the FSUM device.

Finally, Appendix D provides a short list of clinical ultrasound hyperthermia systems.



1.2.1 Document Contributions

When reading a document like this one it is not always obvious which contributions are the

author's, and which ones belong to others. This is all the more true when a number people from

various disciplines are all involved in the work. As a service to the reader, then, the author's

contributions are briefly itemized: the Volumizer algorithm and implementation (Chapter 2); the

rapid diffraction integral solution for the acoustic pressure field from a non-uniformly vibrating

rectangular or cylindrical wedge acoustic source; the models of the acoustic pressure field

from an individual and multiple FSUM transducers; the FAM (Chapter 4); integration of the

geometric, power deposition, and heat transfer models in AVS (Chapter 5); and the presented

visualization tools (Chapter 6).



Chapter 2

Computer Graphics

When correctly viewed,
Ev'rything is lewd.
I can tell you things about Peter Pan
And the Wizard of Oz-there's a dirty old man!

- Tom Lehrer, verse in the song "Smut" on the album
That Was the Year that Was, 1965

Computer graphics are obviously integral to visualization. (For more background in computer

graphics, the reader is referred to Foley and van Dam [31] or its condensed, more readable

brother Foley et al. [32].) In addition, computer graphic techniques for transforming coordinate

systems can be used in power deposition and heat transfer modeling. In a hyperthermia treatment

system designed for power deposition and thermal modeling on the one hand, and thermal field

visualization on the other, computer graphics and thermal modeling are very closely related

indeed. In a sense, such a treatment system starts with visualization, in which the patient

and applicator geometries are established; proceeds to power deposition and heat transfer

modeling, in which calculations are performed to compute the resulting thermal fields (such as

SAR, temperature, and thermal dose fields); and finally returns to visualization, in which the

calculated thermal fields are displayed on the patient anatomy.

First the patient is imaged, e.g. via CT. Relevant anatomic structures are contoured in

each CT slice using IMEX, and the contours from adjacent slices are joined to form 2-D

anatomic surfaces using Mosaic. These anatomic surfaces, along with the treatment applicator,

are displayed using HYPER/Plan to specify the geometry of treatment. The 2-D anatomic

surfaces are then transformed into a 3-D, volumetric patient representation using Volumizer,



on which thermal calculations are performed. After the 3-D thermal fields are calculated, they

are displayed on the patient anatomy. IMEX, Mosaic, HYPER/Plan, and Volumizer were all

developed to function on the AVS platform, a scientific graphics and data visualization program.

This chapter begins with a general background of computer graphics, especially as it relates

to coordinate transformation. This is followed by brief descriptions of AVS, IMEX, and Mosaic,

and an extended description of Volumizer.

2.1 Computer Graphics Primer

Complex geometries composed of multiple parts are often organized into hierarchical structures

called trees, although in schematic drawings they typically look like upside-down trees. The

tree concept is illustrated in Figure 2-1. In HYPER/Plan the root of this tree is called graph.

(AVS has an even more fundamental level to this tree structure called top.) graph has two

important graphical structures underneath it, patient and applicator. The relationship of patient

(or equivalently applicator) to graph is that of a child to a parent. patient typically has a

number of children, corresponding to various organs, the tumor, thermometric sensors, and

surface markers. applicator also has children, corresponding to its constituent transducers

(xducers); and each xducer has a child of its own, beam, which is a graphical structure designed

to show in which direction xducer radiates ultrasound waves, and does not correspond to a

physical object in the conventional sense. The structure of the tree is that it has only one root,

every child has one and only one parent, and a parent can have an arbitrary number of children.

The reason for organizing a structure in this hierarchical scheme is that geometric trans-

formations (rotations, translations, etc.) of subsets of the total structure are easy to orchestrate.

To give a specific example: The patient and applicator can be rotated independently. This is

important for changing the treatment portal, for example, in which case applicator is moved

relative to patient. But if it is desired to rotate patient and applicator together, which would

occur if the user wanted to change his viewing position of patient and applicator, this rotation

would take place by rotating graph, and not rotating patient or applicator directly at all. A subtle

result arises if one applies the same rotation to patient and applicator, instead of rotating graph.

Although the end effect on the orientations of patient and applicator are the same in both cases,



tp

patient applicator

tumor left lung right lung ... liver xducer, xducer2  ... xduceri

I I I
beam, beam2  ... beami

Figure 2-1: A typical tree hierarchical structure from HYPER/Plan.

their relative positions may change in the second case because the axis' about which rotation

occurs is not necessarily clearly defined, and may be different for patient and applicator. Thus

it is best and simplest to geometrically manipulate the highest (i.e. closest to the root) relevant

structure in the tree to accomplish a geometric transformation.

Some common geometric transformations that can be performed are translation, rotation,

reflection, shearing, scaling, and any combination of the above. In addition, changes in object

projection (i.e. parallel projection vs. perspective projection) are easily accommodated by geo-

metric transformations. For the scope of this thesis, however, only translation, rotation, uniform

scaling, and combinations thereof will be discussed.

A geometric object, for present purposes, consists of a number of vertices. The geometric

transformation of the object as a whole is in some sense equivalent to the simultaneous trans-

formation of all its constituent vertices. A 3-D vector (or a point in 3-D space) will be denoted

variously and equivalently by A (Px, Py, Pz), IPx Py Pz , and IPx Py pz 1. A point in 3-D

space may also be denoted by any of these conventions, or by P. A prime (') will denote a

transformed vector, which means the vector was multiplied by a transformation matrix. T, R,

S, and G will denote matrices for the translation, rotation, scaling, and general (combination)

transformations, respectively.

By convention in the field of computer graphics, vectors are row vectors (i.e. horizontal)

'In AVS the default axis of rotation for an object intersects the origin of the object's local reference frame, but
the default can easily be changed.



that pre-multiply matrices. In other words, if G transforms 7 to f', then f' = fG.2 This

pre-multiplication scheme has the conceptual advantage that sequential transformations that

occur appear as consecutive (i.e. left to right) matrix multiplications in matrix equations. That

is, if ' is transformed by GA to j' (i.e. P' = I3GA), and 7' is then transformed by GB to t7"

(i.e. 7" = -' GB), then j" = -*GAGB.3 In general, transformations are not commutative, so

GAGB # GBGA.

Translation can be performed by simple vector addition, j' = 7+ t, where t is the translation

vector. Alternatively, translation can be performed through matrix multiplication, 7' = 'FT, or:

Ip "p' p' 1 = Px iy Pz 1 1 0 o0 0 =p py+t, pz+tz 1 (2.1)
0 1 00

0 0 10
tX ty tz 1

The translation matrix T can equivalently be represented by:

1000

0 1 0 0 13 TT - • (2.2)
0 0 10 t 1

tx t, tz 1

where 13 is the 3 x 3 identity matrix and 0 T is the transpose of the zero-vector.

It turns out all relevant geometric transformations can fit into this paradigm of transforming a

vector by a 4 x4 matrix multiplication, so conceptually it is simplest to perform transformations in

this fashion. This also explains why it is desirable to represent a 3-D vector by four components

(1P Py Pz 11).
The rotation transformation matrix is given by:

R3
R = -, (2.3)

0 1

where R 3 is a 3x3 matrix with a determinant of one (i.e. det R3 = 1). To determine R 3, the

rotational transformation from one reference frame to another is not a difficult task. Let the

2This equation is compared to the case where vectors are column vectors (i.e. vertical) that post-multiply
matrices, in which case the equation would read 7' = G 7.

3If post-multiplication were the convention, then the equation would read 7" = GBGA . This equation is
confusing because the transformation GA was applied prior to GB, but GB precedes GA in the equation.



orientation of the first reference frame be defined by the orthogonal unit vectors f, f, and k

(I1 0 01, 10 1 01, and 10 0 11, respectively), and let the orientation of the second reference frame

be defined by orthogonal unit vectors that in the first reference frame are e^, e2, and 83. Then

1R3 = , E2R3 = ^, and e3R3 = k, or as a matrix equation:

el 2
e2 R 3 = 3 = (2.4)

e3 k

Interestingly:

Te I l e I el el el
AT T T

e2  e2  = 2 1 e 2  e3  62

e3  e33 3 3 e I

Equations 2.4 and 2.5 can be combined to yield:

S-1 T

R 3 = e2  = 2

The3 3is given by:

The scaling transformation matrix is given by:

e2 3 = 13
e03- 03

S = (2.7)
0 1

where S3 is a 3x3 diagonal matrix, and S3 = 813 for uniform scaling (s being the scalar scaling

factor).

The general transformation matrix, which can include multiple translation, rotation, and

uniform scaling operations, has the form:

1=3 O'
G =.

t1
(2.8)

where R3 denotes the combination of rotation and uniform scaling operations. In the tree

hierarchical structure, each child has an associated transformation matrix by which it is spatially

related to its parent. A meaningful way of looking at this transformation matrix is that it converts

a point in the child's reference frame to the parent's reference frame, i.e. the transformation matrix

corresponds to a transformation of reference frame.

(2.5)

(2.6)

e1 • ̂2

e2 - e2
e3 * e 2



For SAR field prediction, it is critical to know how transducers of the applicator spatially

relate to the patient. More specifically, it is necessary to go from the reference frame of each

transducer to that of the patient, and vice versa. Before going further it is necessary to define

some notation. GA-B denotes the transformation matrix from reference frame A to B. Also, as

before, 'refers to a vertex, and subscripts refer to reference frames. For example, p and pxdi

refer to the same vertex / in the reference frames of patient and xduceri, respectively. So we

would like to know how to determine Gpt xdi and Gxdi~pt, such that:

Pxdi = Ppt Gpt--xdi and Ppt = P xdi Gxd--pt (2.9)

To calculate Gpt xdi, it is necessary to travel along the branches of the tree that connect

patient with xduceri:

Gpt-+xdi= Gpt--gr Ggr-+ap Gap-xdi  (2.10)

where the subscripts gr and ap refer to graph and applicator, respectively. Now Gpt-gr is the

transformation from a child (patient) to its parent (graph)-this is, by definition, the transforma-

tion of the child. So Gpt-gr = Gpt. Conversely, Ggr-ap is the transformation for a parent (graph)

to its child (applicator), which is the inverse of the transformation of a child to its parent. So

Ggr--ap = G- 1. Similarly, Gap*xd, = Gx-. So Equation 2.10 becomes:

Gpt-+xd = Gpt Ga' G-xd (2.11)

A similar analysis can yield Gxdi~pt. Alternatively, if Gpt--xd is already known, Gxdi-pt can

be determined by recognizing these two transformations are inverses of each other:

Gxdi--pt = G - 1 xd = Gxd, Gap G - 1  (2.12)

2.1.1 Computational Short Cuts

Computational savings can be achieved when performing several types of matrix operations

in this computer graphics matrix paradigm. Specifically, G matrix inversion, GAGB matrix

multiplication, and fG vector-matrix multiplication can be performed with half to three-quarters

the computational effort (and time) as that necessary to perform the same operations on general

4-vectors (i.e. 4-component vectors) and 4x 4 matrices.



The canonical form of the G transformation matrix lends itself more easily to matrix inversion

than the general 4 x4 matrix. It is a trivial exercise to demonstrate that:

Rl= 63 0 - R313 O
- 1= -f33 1_ (2.13)

t 1 -itR 3-1 1

Thus only a 3 x3 matrix need be inverted, instead of a 4x4 matrix. Since dense matrix inversion is

typically O(n3) operations (where nxn is the size of the matrix being inverted), a computational

savings of around 40% is achieved.

In the general case of matrix multiplication of two 4 x4 matrices, 64 floating point multipli-

cations and 48 floating point additions are used. In the current paradigm, however, the fourth

column of GA and GB is always 10 0 0 1IT, so only 48 multiplications and 36 additions need be

performed, for a computational savings of 25%.

In truth, the computational savings in these matrix inversion and matrix multiplication

operations, though satisfying, do not result in measurably faster program performance. To see

why, we take the case of planning a patient treatment with the FSUM, and its 56 transducers. In

the worst (most computationally involved) scenario, we would like to know the 56 Gpt-xd and

56 Gxd -pt transformation matrices, for a total of 112. Equation 2.12 shows that to obtain all the

Gxdi pt, we need to perform a single matrix inversion (Gp 1 ), a matrix multiplication to calculate

Gap Gp 1, and another matrix multiplication to calculate Gxdi Ga G•p1 ' for each transducer; this is

a total of one matrix inversion and 57 matrix multiplications. Then to obtain each the Gpt-xdi we

need to perform a matrix inversion on each Gxdipt, resulting in 56 matrix inversions. So all 112

transformation matrices were obtained at the computational price of 57 matrix inversions and

57 matrix multiplications. The user sitting in front of the computer terminal cannot register the

short time it would take a computer (operating at millions of FLOPs-floating point operations

per second) to perform these few calculations, whether or not the matrix operation algorithms it

used were computationally efficient.

But computational savings in vector-matrix multiplication can indeed be valuable, because

so many more of this type of matrix operation are performed. To give a quick example, when

performing SAR field predictions it is necessary to determine the coordinates of each point in

the patient lattice in the reference frame of each transducer. The number of points in a typical

patient lattice is O(104-105), which, when multiplied by 56 transducers, results in O(105-107)

vector-matrix multiplications.



In the general case of multiplication of a 4-vector by a 4 x4 matrix, 16 multiplication and

12 addition operations are necessary. But in the transformation paradigm, because the fourth

column of ' is always 1 and the fourth column of G is always 10 0 0 1 T , only 9 multiplication

and 9 addition operations are necessary. This produces a computational savings of about 40%

(because multiplication is a much more computationally costly operation than addition).

2.2 AVS: For Scientific Data Visualization

AVS is both a software product, Application Visualization System, and the company that makes

it, Advanced Visual Systems Inc. (In this thesis, AVS will refer exclusively to the software.)

AVS is described as a data visualization environment, and its oldest part, the Geometry Viewer,

is a 3-D surface renderer, and is central to the graphical requirements of this thesis.

The Geometry Viewer is built on PHIGS (Programmer's Hierarchical Interactive Graphics

System), which is used for displaying graphical primitives-simple graphical objects such as

lines, triangles, and text. Complex objects are constructed from many primitives. The Geometry

Viewer also uses geometric primitives, although they are not quite as primitive as those used by

PHIGS. In general, graphical limitations of PHIGS are also limitations of the Geometry Viewer.

Furthermore, these limitations are usually low-level, and difficult to overcome. For example,

a triangle is defined in PHIGS by the (x, y) coordinates and RGB (red, green, and blue) color

values for each of its three vertices. To color the triangle, RGB values are interpolated (using

barycentric weighting of the vertex colors) to blend colors smoothly between vertices. But if

the color is meant to represent a value above (e.g. red) or below (e.g. blue) a certain threshold

value, then we would like to see a triangle with one red vertex and two blue vertices colored in

two distinct, uniformly colored regions, instead of by a smooth blend.

Since its first incarnation, AVS has expanded to include a number of data manipulation and

visualization capabilities. Isolated functions are put in modules, and modules are connected

to make flow networks. This modular structure promotes clear thinking and organization,

and also provides a framework for custom development of new modules to perform custom

functions. There are limitations in AVS customization as well. For example, while custom data

structures can be created in AVS and passed between modules, these data structures cannot be



sized dynamically, but must instead be of a fixed size.

HYPER/Plan is a custom module under development at the JCRT-initially by Mark

Dopheide, and more recently by Jorgen L. Hansen and James M. Pelagatti. It was conceived as a

geometric patient treatment planning system. This means it was designed to provide graphical

representations of the patient and the treatment applicator, and allow the user to manipulate them

to plan the geometry of the treatment. The representations of the patient and applicator need

to be able to move together, to change the point of view of the user; and separately, to change

their relative positions and orientations. HYPER/Plan has another graphical capability related

to power deposition: it gives the user an idea of where power will be deposited by projecting

square tubes from transducers that are powered on. This simple display of the qualitative power

deposition field is only a very rough approximation of the true field, but it gives a "quick and

dirty" indication of where heating is likely to occur for a given geometric arrangement of the

patient and applicator. Figure 2-2 shows the key features of HYPER/Plan: the 3-D Geometry

Viewer (upper right), containing the representations of the patient organ surfaces and the FSUM

power applicator; the geometric control panel (left), with widgets to control the position and

orientation of patient, applicator, or graph (i.e. both the patient and applicator together); the

applicator power control panel (lower right), allowing power on or off for each transducer.

AVS geometric objects are called geoms, and they come in several flavors. The anatomic

surface representations generated in HYPER/Plan are made out of the polytriangle type of

geom, which consists of polytriangles (strips of connected triangles), polylines (connected line

segments), and disjoint lines (unconnected line segments). The objects can be rendered as

shaded surfaces, by showing the polytriangles, as wire frameworks, by showing the polylines

and disjoint lines, or as a combination of both.

2.3 IMEX and Mosaic: For Generation of Anatomic Geoms

The patient anatomy displayed in HYPER/Plan is custom generated for each patient, and

often for each treatment. This process begins with a 3-D patient image obtained from some

medical imaging technology. Typically CT (computed tomography) is used, but MRI (magnetic

resonance imaging), PET (positron emission tomography), or any alternative imaging modality





Figure 2-2: Typical image from HYPER/Plan, in color.
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Figure 2-2: Typical image from HYPER/Plan.
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that can produce an < . ima> image file can be used to create the patient image as well. < . ima>

is the standard patient image file format developed and used at the JCRT, and its format reflects

how patient images are actually acquired. The 3-D image is a collection of parallel 2-D slices

through the patient. Each 2-D image is a collection of rectangular (typically square) pixels,

and the color or intensity of the pixel reflects the value of some property (e.g. radiodensity, in

the case of CTs) of the tissue at that pixel location. The slices need not be uniformly spaced,

but all pixels of all slices have the same rectangular dimensions. By convention, the slices are

generally parallel to the xy-plane, and the origin of each slice is the middle of the slice.

IMEX is a freeware AVS module that is used to contour anatomic structures in patient image

slices. The process of contouring is termed segmentation. Contouring is semi-automatic,

which means sometimes IMEX needs help to complete a contour, or occasionally it contours

incorrectly. In both these cases, user intervention is recommended. Only relevant anatomic

structures need be contoured, and they need not be contoured in every slice. If a structure is

contoured, however, at the very least it should be contoured in multiple and adjacent slices.

Mosaic4 is another freeware AVS module that connects the IMEX contours into polytriangle

geoms that represent anatomic surfaces. Mosiac performs its task automatically. However, it

does not generate particularly efficient geoms, meaning there are many repeated line segments

and degenerate 5 triangles. In addition, Mosiac occasionally produces a triangulated surface with

a fold that does not make physical sense. Although such a fold does not significantly affect the

way the geom appears in the Geometry Viewer, it can, if ignored, result in significant errors

in the volumetric patient representation. This case, and what to do about it, will be discussed

further in Section 2.4.2.

2.4 Volumizer: For Surface to Volumetric Representation

Conversion

Volumizer 6 is the AVS module that automatically generates the volumetric patient representa-

4This Mosaic module is not to be confused with the NCSA Mosaic World Wide Web browser.
5A degenerate triangle has three colinear vertices and no area. The degenerate triangles generated by Mosaic

are invariably composed of only one or two distinct vertices.
6Thanks to Dr. Gregory T. Martin, who conceived the name "Volumizer."



tion, a.k.a. the patient mesh and the patient lattice. Because the patient geometry is irregular,

this volumetric representation is critical for 3-D power deposition and thermal analysis, whether

the calculation method be finite difference, finite element, or some other numerical technique.

In the context of HYPER/Plan, the initial patient model is a surface model (obtained from a

volumetric patient image first contoured by IMEX, then triangulated by Mosaic), so conversion

of this surface patient model to a volumetric patient model is necessary before power deposition

and heat transfer modeling can be performed.

Volumizer takes as input all the patient anatomic geoms, and generates a field that completely

encloses the imaged portion of the patient. Each point of the field is identified by 3-D coordinates,

and a scalar field value or data value. The field value is a code number that corresponds to an

anatomic structure. Tumor, e.g., is identified by the number 11, so every point of the patient

mesh that resides within the tumor volume has data value 11.

Volumizer automatically generates a regular lattice, although there is no reason (short of

the necessary effort) it could not be customized to generate an irregular lattice that conforms

better to the patient anatomy. Once the coordinates of each lattice point are known, Volumizer

determines which anatomic structure (if any) each point resides within.

Now the 2-D version of Volumizer's objective, i.e. the determination of whether a point is

inside a polygon is an extensively studied problem, and there are several well-known solution

methods. Haines [36] gives a good review article on the subject. The most popular family of

solutions is probably the crossings test, but other solution methods certainly exist, such as the

angle summation and triangle fan methods). All of these methods mentioned can be naturally

extended to 3-D (see Carvalho and Cavalcanti [16] for a 3-D analog of the angle summation

method), but the one that will be developed in Volumizer is based on the crossings test. What

is original in the Volumizer algorithm is that it is optimized for determining whether a point

is inside a polyhedron of the type generated by Mosaic-constructed of triangles arranged in

parallel layers.

Conceptually, the way Volumizer determines whether a point lies within a given geom is to

shoot a ray from the point to infinity (in any direction), and determine how many times the ray

intersects the enclosed surface of the geom. If the number of intersections is odd, the point is

inside the geom, and if the number is even, the point is outside. This strategy is illustrated in



2-D in Figure 2-3. The general inside point, P1, emanates two sample rays which intersect the

perimeter L an odd number of times; similarly, the rays coming from the general outside point,

P2, intersect L an even number of times.

Figure 2-3: Central concept of Volumizer.

As is often the case with simple concepts, implementation is fairly involved. Reasons for

difficulty of implementation fall into two categories: special cases and optimizations. Some of

the special cases are illustrated in Figure 2-4, and they will be addressed later, after discussing

the specifics of the implementation of Volumizer.

Before proceeding to implementation, however, a sample tissue type field generated by

Volumizer is shown in Figure 2-4. The grid indicates different organ types by different color,

with blue signifying tissue within the patient volume but not within a specific organ structure.

A gray plane indicates the tranverse plane through the patient corresponding to the displayed

slice of the tissue type field.

2.4.1 Computational Implementation

The anatomic polytriangle geom surfaces are composed of triangles, and a sample (albeit simple)

surface is shown in Figure 2-5A. PQRS is a tetrahedron, and we would like to know if the

point V lies within it. A ray x' parallel to the x-axis is drawn from V, and it is easy to see the ray

intersects the surface of PQRS in two places: APQR at T and AQRS at U. It takes a little





Figure 2-4: Cross-section through a typical tissue type field generated by Volumzer, in color.
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Figure 2-4: Cross-section through a typical tissue type field generated by Volumzer.
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more work for the computer to "see" this, however. First, the computer looks at the projections

of the tetrahedron's four constituent triangles on the yz-plane, as shown in Figure 2-5B. Second,

the computer determines whether the line (not just the ray) x' intersects the projections of the

triangles. (If the line intersects the projection of a triangle, then it will also intersect the triangle

itself. This is only true because the projection is parallel to the line.) This determination of

intersections is performed for all triangles composing the surface (i.e. APQR, APQS, APRS,

and AQRS, in the present example). Third and last, the computer determines for all triangles

that intersect the line x' (i.e. the ray x' extended infinitely in both directions) the x coordinate of

the intersection, and counts the number of intersections that occur between V, (vX, vU, vI), and

the end of the ray x', (+oo, vy, vz).

Figure 2-5C illustrates how to determine if the line x' intersects APQR, and if so, how to

determine the x coordinate of the intersection. (See Section B.1 for more details.) In general, a

line in the yz-plane is defined by the equation Ay + Bz = C. (A or B, but not both, can equal 0,

and C can equal 0.) For example, the line PQ is defined by AR y + BR z = CR. The line divides

the yz-plane into two semi-infinite regions, and all (y, z) pairs in one region (not including the

boundary, i.e. the line itself) can be defined by the inequality AR y + BR z > CR; similarly,

all the pairs in the other region can be defined by AR y + BR z < CR. By my convention, the

constants AR, BR, and CR are such that for all points within APQR the first inequality holds.

Define the corresponding lines for the other two sides of the triangle (PR and QR). Then:

Ap vy + Bp v, > Cp

If AQ vy + BQ vZ >CQ == (vy, v) lies within the yz projection of APQR. (2.14)

AR vy + BR v, > CR

If Equation 2.14 holds true, the next matter is to determine the x coordinate of the intersection

of the line x' with the unprojected triangle APQR. That triangle lies in a plane defined

by AA x + BA y + CA z = DA. Given vy and va, it is now a trivial matter to determine the

x coordinate of the point of intersection of APQR and line x'.

This procedure must be repeated for each of the constituent triangles of the geom surface.

The x coordinates of all intersection points between the triangles of the geom surface and the

line x' are determined, and those that fall between v. and +oo (i.e. on the ray x') can be counted.

If the count is odd, the point V lies inside the geom, and if the count is even it lies outside.

There is a slightly easier, less direct way to count the number of intersections between V and



the end of ray x'. Unfortunately, reasons alluded to in Section 2.3 and discussed in Section 2.4.2

preclude this alternative technique, but it is worth mentioning anyway because it parallels the

result of Equation 2.14. Just as a line divides a plane into two semi-infinite planar regions,

a plane divides a 3-D space into two semi-infinite 3-D regions. All the points in one of the

semi-infinite regions are defined by AA x + BA y + CA z > DA, and all those in the other by

AA x + BA y + CA z < Da. By my convention, points that lie in the region that contains the

+oo end of the ray x' are defined by the second inequality. Then:

If AA vx + BA vy + CA v, > DA ==* V lies between T and the end of ray x', (2.15)

i.e. V is in the +x direction of the unprojected triangle APQR.

Another point worth mentioning is why a line x' parallel to the x-axis is favored over other

directions. At first glance, lines parallel to any of the three orthogonal directions (x-, y-, or

z-axis) are equivalent, and any of them are preferable to oblique directions because projections

are easier to perform (i.e. less computationally involved) in the three orthogonal directions. But

for reasons related to anatomy, lines parallel to the y-axis are poor choices.

In the coordinate system of the anatomic geoms generated by Mosaic the y-axis extends

from head to toe (or toe to head).' Within each scanned slice of the patient the organ contours

generated in IMEX are closed curves, and these curves are connected into a surface representation

by Mosaic. If an organ is not completely contained in the region of the patient that was imaged,

it does not make sense to close the surface representation of the organ where it intersects the

boundary of the imaged region. A similar situation arises if an organ is not contoured in every

image slice in which it appears. Sometimes Mosaic closes the organ surface anyway, and

sometimes it does not. Figure 2-6 shows an image from HYPER/Plan in which the contoured

skin surface is open on the top and bottom, but the lungs are both closed on the bottom, where

they intersect the boundary of the imaged region. If an anatomic geom is open on its top or

bottom, the algorithmic concept of Volumizer will not work if rays or lines parallel to the y-axis

are used. But even if a geom is open on its top or bottom, it will still appear closed on its sides,

so using rays or lines parallel to the x- or z-axis will both work, and work equally well. By my

convention, lines parallel to the x-axis are used.

7N.B.: This is not the same coordinate system as the one typically used in medical imaging systems, such as
CT, where it is the z-axis that extends from head to toe (or toe to head).
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Figure 2-6: 2-D organ surfaces in HYPER/Plan, in color. The external volume is open on top

and bottom, but other organs, e.g. the lungs, are closed.
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Figure 2-6: 2-D organ surfaces in HYPER/Plan. The external volume is open on top and bottom,

but other organs, e.g. the lungs, are closed.



2.4.2 Geometric Special Cases

The points P3, P4 , and P5 in Figure 2-3 on page 42 illustrate three special cases. P3 is a point

that lies on the perimeter itself, so whether it is inside or outside is ambiguous. The ray shown

coming out of point P4 is tangent to the perimeter at T, so it intersects L an even number of

times even though P4 is inside the perimeter. Finally, P5 intersects L throughout the entire

length of the line segment UV-an infinite number of intersections, neither odd nor even. In

practice, all three of these special cases can be handled when they occur by "fudging" the point,

i.e. slightly perturbing the coordinates of the point. This is a legitimate procedure because even

if the coordinates of the point were known to an accuracy of 1 Am (which they most certainly

are not), then within experimental error they could be fudged by 0.1 Am, and that would be

sufficient to reduce the special case to the general case.

Fudging would probably be difficult to implement if the enclosed surface were everywhere

differentiable, but because it is composed of piecewise planar triangular pieces it is relatively

straightforward. Using the example of a line x' through the point V, if the line is observed to

intersect exactly a side of a triangle, if the line intersects and is coplanar with the triangle, or

if the point V itself lies within the triangle, then the point V and line x' are fudged and the

transgression is remedied; the special case has been transformed into a general case.

There is one other special case, alluded to in Section 2.3, that should not exist at all, but

does exist because of a Mosaic idiosyncrasy. Consider two coplanar triangles, AJKM and

A JLM in Figure 2-7A, that make up part of a triangulated surface of a geom. This geometry

also contains a third implied and somewhat redundant triangle, A JKL, which covers the same

territory as the other two combined. A line that intersected AJKM would also intersect

AJKL, registering two intersections where only one should exist. Figure 2-7B illustrates a

variation on this idea. AQRS and AQST are two non-coplanar triangles that make up part of

a geom surface. But the four triangles APQR, APRS, APST, and APTQ give an alternate,

slightly different representation of the same patch of surface represented by the geom.8 A line

that intersects APQR, for example, will (probably) also intersect AQRS. In this case there

are technically two distinct surfaces covering the same surface region QRST, but there should

8Technically, of course, the hexahedron (six-sided solid) PQRST is a legitimate triangulated surface in its own
right. But this example is meant to show two different but close representations of the same patch of surface, like
two pieces of paper, one on top of the other.



only be one.

Part of Mosaic's personality is that it occasionally generates duplicate sets of triangles that

correspond to the same patch of surface, and the sets can be equivalent, as in Figure 2-7A, or

slightly different, as in Figure 2-7B. These funny patches, or folds (my terminology), are not

generated frequently, but the fact that they occur at all demands they be addressed. A general line

(meaning a line that does not fall into one of the special case categories illustrated in Figure 2-3,

page 42) intersects an enclosed surface an even number of times; but if the line passes through

a fold, then it may intersect the surface an odd number of times. Thus an odd number of

intersections between a general line and an enclosed surface indicates the presence of a fold. In

contrast, a general ray can intersect a surface an odd or even number of times, so it cannot be

used to indicate the presence of a fold. This is why the specific algorithm used in Volumizer

intersects a line with a geom, and not a ray. In the case of an odd number of intersections

between a general line and an enclosed surface, the two points of intersection which are closest

to each other (and they may be identical) are combined into a single point in the middle.

(A) J (B) R

S

Q

K

Figure 2-7: Idiosyncratic cases in Mosaic.

2.4.3 Computational Optimization

Volumizer basically performs three tasks:

1. Organizes information about the constituent triangles that make up the triangulated geoms.



2. Generates automatically the 3-D coordinates of the patient lattice, the boundaries of which

surround the volume of the patient image.

3. Determines which anatomic structure, if any, each lattice point resides within.

2.4.3.1 Pre-Processing

The first task falls under the general computational technique of pre-processing. The idea

behind this technique is that by investing a little time and effort up front, great savings in time

and effort can be had later on. In the case at hand, information about the triangles of each geom

is calculated and organized so that it can be easily accessed later on.

First, the extreme x, y, and z coordinates of each geom are determined, forming a bounding

box on the geom. This is important because if the lattice point lies outside the bounded region

of the geom then it is outside the geom itself, and no more work need be done.

Second, the constants of the equations defining the three lines of the sides of each triangle (see

Equation 2.14), and the equation defining the plane in which the triangle lies (see Equation 2.15)

are calculated and stored for each triangle. By calculating these constants once and storing

them, rather than calculating them for every point in the lattice, an enormous amount of time is

saved.

Finally, the triangles of each geom are ordered and numbered. The purpose of this ordering

is to limit the number of triangles that have to be tested for intersection with a line. To give

an analogy, if I am trying to find room 1997 in an unfamiliar building, I will start (and end!)

my search on the 19 th floor, and I need not worry about trying doors on any of the other floors

of the building. Triangles are ordered according to the minimum y coordinate of the triangle

(min (A)).9 In cases where two triangles have the same min (A), they are ordered according

to maxy(A). When the y extents of two triangles are both equal, they are sorted according to

minz(A); and if they are still equal, by max,(A). Figure 2-8 and Table 2.1 illustrate how some

sample triangles would be sorted (using only information about the y extents). The triangles are

sorted using the ANSI standard qsort () function, which resides in the C library associated

with <stdl ib.h>. This routine uses the quick sort algorithm [88], and sorts in O(n log n)

9Here are two examples to elucidate notation: miny (A) is the minimum y coordinate of a triangle; maxz (a 3)
is the maximum z coordinate of triangle #3.



time.

Triangles are numbered in five ways: sorted, y ascending, y descending, z ascending, and

z descending order. The first three numbering schemes are illustrated in Figure 2-8. The sorted

order numbers, si, are indicated inside the triangles in Figure 2-8. (There are n = 9 triangles,

and i is the index number of a given triangle, with 1 < i < n.) The sorted ordering may be

considered an identity ordering, with si = i, and the sorted ordering numbering scheme is the

principal way of identifying the triangles (i.e. A8 j = Aj).

y A
9

7 8
65

AAAA
Figure 2-8: Ordering triangles in Volumizer-Example #1.

Table 2.1: Ordering triangles in Volumizer-Example #1. Sorted, y ascending, and y descending

order numbering of triangles.

Si 1 2 3 4 5 6 7 8 9
ay, 1 2 2 2 5 5 7 8 8
dy, 1 4 4 4 5 6 7 9 9

The second number associated with each triangle is the y ascending order number, a•,. In

this numbering scheme, ay, corresponds to the highest si such that miny(Aaj,) > miny(Aj) for

any j < ayi. This numbering scheme is important because if a point V satisfies the inequality

v, > miny (Aan), then there is no need to test if a line going through V intersects any triangles

j with sj < ay.. In the building analogy, if I know room 1997 is at least as high as the 19 th floor,

I need not search any room below the 19t" floor.



The third number associated with each triangle is the y descending order number, dy. In

this numbering scheme, dy, corresponds to the lowest si such that maxy(Ady,) < maxy(Aj) for

any j > dy,. This numbering scheme complements the ascending order numbering scheme, and

it is important because if a point V satisfies the inequality v, < maxY(AdJi), then there is no

need to test if a line going through V intersects any triangles j with sj > dy,. Continuing the

building analogy, if I know room 1997 is at least as low as the 19th floor I need not search any

room above the 19th floor. Table 2.1 gives si, ayi, and dy, for the triangles shown in Figure 2-8.

The triangles that comprise the anatomic surface representations in HYPER/Plan can easily

accommodate a further level of optimization. With few exceptions, the vertices of each (non-

degenerate) triangle in these geoms connect parts of contours from two adjacent slices from the

patient image. Thus when the y ascending and y descending order numberings are determined,

many triangles will share the same miny(A) and maxy(A). In this case, these triangles with

the same extents in the y-axis can be further numbered in z ascending and z descending order,

and azi and dz, are analogous to ay, and dy4, respectively, and determined in analogous fashion.

In other words, when triangles i in the range n I _ n2 share the same ayi = nl and dy, = n2,

then (and only then) a,, and dz, are determined, with nl < az _< dz. 5 n2. Each triangle has

an associated rectangle in the yz-plane defined by the y and z extents of the triangle, and (for

the most part) only those triangles whose y and z extents contain the point (vy, ve) need to be

checked for intersection with the line x' through the point V. An example of all five numbering

schemes is given in Figure 2-9 and Table 2.2. The question of how to exploit these numbering

schemes for computational speed will be explicitly examined in Section 2.4.3.3.

2.4.3.2 Grid Generation

The grid, in the present context of grid generation, refers to the 3-D coordinates of the patient

anatomic mesh. As Volumizer is currently implemented, grid generation is performed fully

automatically and very simply. The bounding box around the volume of the patient image is

determined by taking the minimum and maximum extents in the x, y, and z directions. A grid

resolution, or spacing, is defined by the user, and has a default value of 1 cm. The grid is

then generated as a cubic lattice with a lattice spacing equal to the grid resolution, and the grid

volume coincides with the patient image volume.



2.4.3.3 Anatomic Mesh Generation

Once the coordinates of the lattice points of the grid have been determined, it is necessary to

determine for each grid point which (if any) anatomic structure it lies within. Optimization

in performing this task takes place in two ways, one taking advantage of the pre-processing

discussed in Section 2.4.3.1, and one taking advantage of the grid coordinates.

The first level of optimization involves the various order numberings of the triangles that

make up the geoms. The lowest (slow) and highest (Shigh) sorted order numberings of triangles that

may intersect the line x' going through the point V are determined. Then only the triangles with

slow < Shigh need be checked for intersection. slow and Shigh are determined by a binary search

algorithm [88], which operates in O(log n) time. It is these order numberings that optimize

Volumizer for the anatomic geoms generated by Mosaic; the order numberings allow Volumizer

to take advantage of the geom geometric characteristics, i.e. that the geom polyhedra comprise

faces that are only triangular (and not some other kind of polygon), and that the triangles are

arranged in parallel layers (which correspond to the planes of the CT slices).

The second level of optimization in anatomic mesh generation requires the coordinates of

the grid to be organized in a specific way. When multiple points lie on the same line x' parallel

to the x-axis, there is no need to determine, for every point, the intersections between x' and

the triangles that make up the geoms. The intersections need be determined just once, and then

they can be used to evaluate which points on the line x' reside within which geoms. As the grid

generation routine is currently implemented (see Section 2.4.3.2), multiple grid points on the

same x' is the rule, and allows for substantial savings in computational time. This optimization

method provides another reason to identify intersections between lines and triangles, instead

of intersections between rays and triangles. Were intersections between rays and triangles

determined instead, this optimization could not be used.



Figure 2-9: Ordering triangles in Volumizer-Example #2.

Table 2.2: Ordering triangles in Volumizer-Example #2. Sorted,

z ascending, and z descending order numbering of triangles.

y ascending, y descending,

6 8 A10
7 9

2 4
1 3 5

si 1 2 3 4 5 6 7 8 9 10
a, 1 1 1 11 6 6 6 6 6

dy, 5 5 5 5 5 10 10 10 10 10

az 1 1 3 4 4 6 7 8 9 9

dzi 1 2 3 4 5 7 7 8 9 10



Chapter 3

Ultrasound Power Deposition:

Background

Power tends to corrupt, and absolute power corrupts absolutely.
- Lord John Acton, in a letter to Mandell Creighton, 1887

In hyperthermia, thermal energy is deposited in tissue to elevate the tissue temperature. The

volumetric power deposition, or specific absorption rate SAR, refers to the rate of this thermal

energy deposition. In the context of this thesis, SAR is administered by ultrasound radiation

(although there are other ways SAR can be administered-most notably by microwave radiation).

There are many ways that SAR can be administered clinically, experimentally, and theoretically,

but in this thesis we will largely restrict ourselves to SAR by ultrasound radiation. This chapter

provides a background in acoustic physics and discusses methods other investigators have

used to compute the Rayleigh-Sommerfeld diffraction integral, which is used to calculate the

acoustic pressure field from a planar acoustic source. The next chapter, Chapter 4, discusses

computational advances in ultrasound modeling made in the course of this thesis.

3.1 Acoustic Physics Primer

The reader will be served well by a brief discussion of basic acoustic physics. This will elucidate

where the important Rayleigh-Sommerfeld diffraction integral (Equation 3.23) comes from, and

what some of its limitations are. (For greater rigor or more explanation, please refer to Fahy [28],



Hynynen [47], Morse and Ingard [71], or Wells [101].)

Notation can be confusing, in large part because the same letter is used to indicate different

aspects of the same quantity, and frequently the differences are subtle. Nevertheless, this

time-honored tradition will be perpetuated here. To elucidate the notation, and to minimize the

reader's frustration in dealing with the notation, an example will be presented. Vectors in general

will be indicated with an arrow, as in ', the instantaneous velocity of a medium at a specific

location in space. In the 1-D case, velocity is simply the scalar u. The magnitude of u is given

by lul, and of u' by II|1 = V'Y1. For the case of quantities that vary sinusoidally in time, the

amplitude Ua of the quantity u is indicated by a subscripted a, such as u = Ua cos wt = uaej wt. 1

Finally, the time-averaged value of a quantity is signified by angle brackets (( )), as in the

time-averaged velocity squared (u2) = u2/2 for sinusoidally varying u.

For non-attenuating plane wave motion in 1-D (along the x-axis), the conservation of mass

(continuity) equation can be expressed as:

8p Bu--p = x (3.1)
at dX

where p is the acoustic pressure (the deviation of the pressure from the baseline pressure P), u is

the local particle velocity of the medium, and K = p-' (dp/lP),, the isentropic compressibility,

more commonly known as the adiabatic compressibility.2 The conservation of momentum is

given by control volume analysis:

= -p (3.2)

In fact, these continuity equations have already been simplified by eliminating higher-order

terms, based on the assumptions that particle velocity and pressure are both "small." 3 (These

'Strictly speaking, u = Re(uaejwt), i.e. just the real part of the complex quantity Uaejwt. By convention,
however, in this representation of u, uaej"t is left as a complex quantity. Note that lul = Iuaewt I = Ual cos wtl,
not Jlu = Ua; in other words, there is a distinction between the magnitude of u, lul, and the amplitude of u, Ua. In
some conventions Ua can be a complex quantity, which allows the expression uaej wt to convey phase information
distinct from time; in this thesis, however, amplitude will denote the magnitude of this complex quantity, i.e. no
phase information will be conveyed by the amplitude. Another variation in convention allows the amplitude to be
a vector, Ua, describing oblique vibration in 2-D or 3-D. For clarity and simplicity in this thesis, again, amplitude
will be restricted to a scalar quantity.

2The subscript s indicates constant entropy. Equation 3.1 assumes the sound waves compress and rarefy
isentropically, an assumption taken by Hueter and Bolt [43, page 31]. Morse and Ingard indicate that in cases of
high frequency (about 1 GHz in gases, e.g.) or very high thermal conductivity, however, compression and rarefaction
may be considered isothermal, and the isothermal compressibility KrT p-'(Op/9P)T (the subscript T indicates
constant temperature) should be used instead of r, [71, page 230].

3To give an example of how Equations 3.1 and 3.2 are affected when particle velocity and pressure are not



higher-order terms arise because p does not vary strictly linearly with p, and n is not strictly

constant with varying p.) Equations 3.1 and 3.2 can be combined to eliminate u and produce

the well-known wave equation:
F 2'-at2  C" X2

8t 2 dx 2

where c = 1/jV is the wave speed, also known as the speed of sound.

In 3-D, the continuity and conservation of momentum equations take on the forms:

at

and:

Vp = -p t

(3.3)

(3.4)

(3.5)

Particle velocity and pressure can be related to each other through a velocity potential ', which

is defined implicitly by:

.u = -V (3.6)

Combining Equations 3.5 and 3.6 produces the relationship between pressure and velocity

potential:
a=

=P t (3.7)

Substituting expressions for particle velocity and pressure in terms of velocity potential into

Equation 3.4 results in a wave equation for velocity potential:

(, t= C2 V2•Y
8t 2

(3.8)

The pressure wave equation can be obtained very simply by differentiating Eq.3.8 with respect

to time, and multiplying by density:

(3.9)2P = C22p
st 2

small, Morse and Ingard provided the more precise versions [71, pages 243 and 247]:

ap 0 du Op
S(1 + - px-t 8: 8x-

Op Ou du
and = - p - puax at 9X

Clearly these equations are rather complex and unwieldy, and as such they are eschewed in favor of their first-order
counterparts whenever possible. (Furthermore, even the more precise equations have limitations, e.g. they are not
valid beyond second order.)



The pressure and particle velocity were already seen to be related to each other through the

velocity potential. In addition, their ratio defines the acoustic impedance Z:

Z, = (3.10)
Un

where un = z -a, the velocity component normal to the plane of interest, i, is the unit vector in

the same direction, and Z, is the acoustic impedance in the A direction. The acoustic impedance

is indirectly a function of wave frequency, since frequency affects both pressure and normal

particle velocity, although for plane waves acoustic impedance is independent of frequency. The

acoustic impedance is seen to be a property not only of the medium, but also of the pattern of

wave propagation. In its most rigorous sense acoustic impedance is used to relate the pressure

to the velocity component normal to a surface, in which case the concept of acoustic impedance

is meaningful only at surfaces.

The wave energy density E is the volumetric energy associated with a wave as it propagates,

and comprises terms for kinetic energy and potential energy associated with the compression

and rarefaction of the medium:

E = 2 (3.11)
2 2

Conservation of energy for the case of no energy absorption or creation gives the acoustic

intensity I, which measures power flux associated with wave transmission:

-V = (3.12)

Alternatively, the acoustic intensity can be seen to be the power flux associated with pressure-

volume work:

I= pU (3.13)

Equation 3.13 is often preferable to Equation 3.12 because it gives an explicit expression for the

acoustic intensity.

For the intensity in the normal direction n, In, in the case where pressure and normal particle

velocity vary sinusoidally with the same frequency (although not necessarily in phase), the

time-averaged normal intensity is:4

1 1
(In) = (pun)= 2•P R e(Z 1) = 2 Re(Zn)  (3.14)

4Contrary to what was suggested by Fahy [28, page 167], [Re(Z)] 1 0 Re(Z- 1) (unless Z is real).



A continuous wave acoustic source vibrating with velocity component normal to the suface

un{vb} = unae j (w t +
Oun 

( {')), where vb is an arbitrary point on the source surface and ýo is the

phase, produces surface acoustic pressure p{V-b} = paej(wt+wp { }). The mean power (q) emitted

from the source with surface A is given using Equation 3.14:

) = (I dA (p) dA = pa 2 dA (3.15)

As indicated in Equation 3.13, the acoustic intensity is the product of a pressure and a

velocity. An alternative way of viewing this product is to equate the acoustic intensity with the

product of the "static" pressure of a propagating acoustic wave and the speed at which the wave

propagates:

I= Ic (3.16)

where Hl is the radiation pressure. Note that radiation pressure is a vector quantity, unlike the

acoustic pressure.

3.1.1 Plane Wave Solution

Plane waves correspond to the solution of the 1-D wave equation given in Equation 3.3.

For a sinusoidal wave propagating in the +z direction in a non-attenuating medium, with

Y {0, t} = Yaej wt, the solution to the wave equation is:

I{x,t} -= Traej(t-kx)

p{x, t} = jwpW{x,t} , pa = wp•a (3.17)

u {x, t} = jkY{x, t} , Ua = kYa

ux indicates the particle velocity consists only of the component in the x direction. In this

case, the acoustic impedance, in general a complex quantity, is everywhere the real product

ZX = p/ux = PC.
Substitution of Equation 3.17 into Equation 3.11 gives the energy density, which on the

average is:
E>U= 2 + = =-pUi2

(E) =_ 1 a Pa (3.18)
2 2 2 2 2pc2



From Equation 3.13, the acoustic intensity (which is a scalar for the 1-D case, and is associated

with the x direction), on the average, is:

pCU2 2

(Ix) = a a P (3.19)2 2 2pc

For this wave motion, then, (Ix) = (E)c; and, in fact, Ix = Ec.

There are clear similarities between Equations 3.14 and 3.19, and the similarities form

the basis of some simplifications that are usually assumed in acoustic physics exegeses (often

without justification). Specifically, the quantity pc in Equation 3.19 takes the place of the

acoustic impedance in Equation 3.14, which leads to the casual observations that Z = pc, and

that the acoustic impedance is a scalar, real (i.e. not complex) quantity. These observations

are true for plane wave vibration, but they are not true in general. Nevertheless, they are often

applied to acoustic physics problems.

3.1.2 Spherical Wave Solution

Spherically symmetric waves radiating outward from a spherical source of radius R, with the

velocity potential at the source surface '{R, t} = ya{R}ej (wt- kR), have the wave function

solution:

'{r,t} = R a{RJ}ej(wt-kr) = R a{R
r r

p{r, t} = jwpW{r, t} , pa{r} = wpYa{r} (3.20)

ur{r,t} = jk(1-j/kr)P{r,t} , Ua{r} = 1 +(kr)- 2 kWa{r}

ur is the velocity in the radial direction, the only non-zero velocity component for this ge-

ometry. The pressure amplitude Pa{Tr = pa{R}R/r varies with radial position, as does the

radial particle velocity amplitude ua{r} = ua{R}(R/r)[1 + (kr)- 2]/[1 + (kR)- 2]. Further-

more, Ua = Pa 1 + (kr)- 2/pc. If R < A the spherical source is called a simple source, and in

the limit as R - 0 the source becomes a point source.

The solution in Equation 3.20 indicates pressure and particle velocity are not entirely in

phase. In the near field of the spherical source, when r < A, they are significantly (up to 900 for

a point source) out of phase, but in the far field, when r > A, they are essentially in phase. The

acoustic impedance (in the radial direction) is Z, = pc/(1 - j/kr).



The average energy density is:

(E) = 2 [1 + (kr)-2/2] (3.21)
2pc2

The average acoustic intensity (which is again 1-D but associated now with the radial direction)

is:

(Ir) = p a (3.22)2pc

So in the spherical wave case, Ir Ec, although the relationship approaches equality as r -+ oo00.

3.1.3 Rayleigh-Sommerfeld Diffraction Integral

The solution of the wave equation for a planar source embedded in an infinitely rigid baffle is an

important case because many real ultrasound transducers are modeled in this way. The source

can be any shape, and it can comprise unconnected regions in the plane, but it must lie in the

plane of the baffle. Typically the motion of the source surface in the direction normal to the

surface, us, is constrained by u, = unaej (" t- ), where una and phase p need not be uniform

over the source. The rest of the plane is constrained by no vibration, i.e. u, = 0; and no

pressure gradient normal to the boundary, i.e. 9Op{vb}/On = 0. (ib refers to an arbitrary point

on the boundary, i.e. the plane, and n refers to the direction normal to the plane, h.) These two

constraints-no velocity or pressure gradient normal to the boundary-are actually equivalent

conditions, as can be seen from Equation 3.2 (page 60) or Equation 3.5 (page 61). This is

because a pressure gradient induces an acceleration in the direction opposite the gradient; but on

the surface of the rigid plane baffle, normal velocity is zero, and normal acceleration is zero, so

normal pressure gradient must be zero, too. (N.B.: velocity and pressure gradient components

parallel to the plane baffle need not be zero.)

The solution for the velocity potential for this embedded planar source, called the Rayleigh-

Sommerfeld diffraction integral or simply the diffraction integral, is based on the spherical

source solution. An explicit derivation is given in Section B.2, and the result, i.e. the diffraction

integral itself, is repeated here:

{I,2 t} = Un e-jkd dA (3.23)

where V7 is the field point of interest, A is the source surface, dA is a differential part of A, and

d is the distance between V' and dA. On a pedagogical note, the form of Equation 3.23, i.e. the



integral part of the right-hand side of the equation, can be seen to come relatively directly from

Huygen's principle.

For the case in which angular velocity w is constant over the radiating surface, and using the

relation p = pOY/Ot (see Equation 3.7), the diffraction integral can be converted into:

p{ = U e-jkd dA = C e-jkd dA  (3.24)

This equation is valid even if normal particle velocity amplitude and phase are not spatially

constant over the radiating surface.

3.1.4 Planar Reflection

Specular reflections of sound off boundaries can often be modeled by an rigid, infinite planar

boundary bordering a semi-infinite medium. The sound field that results from a spherical source

placed in a semi-infinite medium bounded by an infinitely rigid planar boundary is discussed

now (although the method can be extended to accommodate an arbitrary source). The boundary

conditions are again no vibration (un = 0) and no normal pressure gradient (dp{fIb}/On = 0).

The solution can be achieved using the method of images, in which two identical sources are

placed symmetrically on opposite sides of the boundary. The symmetry of this arrangement,

shown in Figure 3-1A, produces the desired boundary conditions using a real source, located

at P, and an identical virtual or imaginary source, located at P'. R is the location of an

arbitrary point in the sound field. So p{r-}, the acoustic pressure at R resulting from direct

sound transmission from P, and also reflected sound transmission, which looks like direct

transmission from P', is given by:

pV{, t} = psphPR, t} + psph{P'R, t} (3.25)

where Psph is the pressure from a spherical source, given in Equation 3.20. In the limit as the

real source moves closer to the boundary (Figure 3-1B), the two sources coalesce into a single

source on the boundary with twice the power of the original real source:

lim p{f, t} = psph{PR, t} + Psph{P'R, t} = 2psph{PR, t} (3.26)
P-.+P



(A) (B)

Figure 3-1: Determination of acoustic pressure field from a spherical source in a semi-infinite

medium bounded by an infinitely rigid plane.

3.1.5 Planar Reflection and Refraction

The physics of ultrasound reflection and refraction is analogous to that of light. When the length

scales involved are large compared to the wavelength, the physics is governed by the familiar

Snell's law, illustrated in Figure 3-2. An incident wave traveling through medium 1 encounters

a locally planar interface at an incident angle Bi from the normal. Part of the wave is reflected

from the interface at reflection angle Or = 0i, and the rest is transmitted through medium 2 at an

transmission angle 0t. Snell's law states:

sin Oi cl-= -- (3.27)
sin 0t C2

where c1 and c2 are the wave speeds in medium 1 and 2, respectively. If c2 < cl, there is a critical

value of the incident angle 0i, O", such that when 0i > O* all of the incident wave is reflected,

and none is transmitted; this phenomenon is called total internal reflection. The critical angle

0* is given by Equation 3.27 when transmission angle 0t = 7r/2:

C1
sin 0i* = - (3.28)

C2

In the specific case of ultrasound, the local pressure and particle velocity must be continuous

at the interface. Using these two constraints, it is possible to determine how the incident

pressure wave is divided into the transmitted and reflected pressure waves. A derivation is given

in Wells [101, pages 16-17], but the results will be summarized here. Let pi, Pt, and Pr be the

acoustic pressures at the interface of the incident, transmitted, and reflected waves, respectively.
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wav
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Figure 3-2: Snell's law and wave transmission and reflection (adapted from Wells [101,

page 16]).

The ratio Pt/Pi is called the pressure transmittivity

pressure reflectivity, and they are given by:

Pt 2Z2 COS Oi

Pi Z2 cos Oi + Z1 cos Ot

of the surface, and the ratio Pr/Pi is the

(or 0 if 0i > O1) (3.29)

and:
Pr Z 2 COS 0i - Z 1 cos 0t
p Z 2 cos Oi + ZI cos (or 1 if Oi > O") (3.30)pi Z2 COS Oi + ZI COs Ot

where Z 1 and Z 2 are the acoustic impedances of medium 1 and 2, respectively. Since the

incident, transmitted, and reflected waves are all plane waves in this example, Z1 = pi c and

Z2 2 P2C2-

Similarly, let Ii, It, and Ir be the acoustic intensities at the interface of the incident, trans-

mitted, and reflected waves, respectively. Using Equation 3.19 to determine the intensity of a

plane wave, the intensity transmittivity and intensity reflectivity are given by:

It 4Z 2Z1 cos Ci COs Ot 2

Ir Z2 cos Oi - Z COS t ) 2
ii -Z 2 C OS Oi+ Z C O S Ot

and:

(or 0 if Oi  *) 9)

(or 1 if Oi _ Oi*)

(3.31)

(3.32)



3.1.6 Acoustic Absorption

Thus far discussion of acoustic physics has assumed lossless wave propagation, i.e. there is no

attenuation of energy, either through absorption or scattering, in the wave as it propagates

through the medium. The conversion of wave mechanical energy into thermal energy via

absorption is (on a very simple level) the mechanism of heating in ultrasound hyperthermia, and

without absorption there is no ultrasound hyperthermia. Thus ultrasound hyperthermia requires

the tissue in the target volume not be lossless.

The so-called classical mechanism of absorption credits viscous losses as the source of

absorption. This mode of absorption is important in fluids, but in biological tissues relax-

ation processes dominate. Relaxation processes occur in systems with coupled compartments,

meaning energy can by moved from one compartment to another. (To give an example of two

compartments in a biological tissue, consider water inside a cell, and protein dissolved in the

water. Protein transfer between these two compartments has been suggested as a molecular

mechanism of ultrasound absorption in tissues [101, pages 132-134].) An ultrasound wave can

impart some of its energy into a compartment (e.g. by transiently increasing temperature during

the compressional phase of the wave), and before the wave recovers that energy (i.e. during the

rarefactional phase) some of it has already moved to a different compartment from which the

wave cannot extract all of the energy it gave. The discrepancy in imparted and recovered energy

is the absorbed energy. Theoretical arguments suggest that biological tissues typically have

multiple different relaxation processes which together account for the majority of the ultrasound

absorption.

Ultrasound attenuation refers to overall loss of energy (or equivalently loss of acoustic

pressure amplitude ) of an ultrasound wave as it travels through a medium. Absorption accounts

for much of the attenuation, but scattering is another mechanism of attenuation.5 Scattering is

divided into three qualitatively different behaviors: specular reflection, when the characteristic

length L of the obstacle is much greater than the ultrasound wavelength A (i.e. L > A); diffuse

reflection, when L < A; and a combination of the two in the transitional region, where L ,, A.

The wave field that results from attenuation in a purely absorbing medium (i.e. no scattering) is

5As remarked by Goss et al. [35, page 181], "Attenuation ... [is] often measured, with ultrasonic absorption
in biological tissues receiving little attention. Thus the distinction between attenuation and absorption is not often
appreciated."



termed the primary field [8]. The field that results when scattering and absorption take place

is typically called the diffracted field, and the difference between the diffracted and primary

fields is called the scattered field [90].6 In a sound field in which scattering takes place, wave

mechanical energy continuously scatters from some areas to others, and it is possible to have a

wave geometry in which scattering causes an increase in acoustic pressure at some points in the

scattered field, compared to the primary field. In such cases, attenuation (by scattering) is said

to take place, even though the scattering increases the acoustic pressure.

In general in biological systems, scattering contributes much less to attenuation than does

absorption; so scattering is ignored, and attenuation is taken to be equal to absorption [29, 30,

46, 93, 101].7 Important exceptions to this rule occur at tissue-air and soft tissue-bone interfaces,

where the acoustic impedance of the media on opposite sides of the interface is poorly matched.

In such cases, significant wave reflection and refraction occurs. Wave patterns can in practice

be determined using Huygen's principle of summing the wave contributions of Huygen's

sources. Using Huygen's principle, scattering can be seen to encompass the wave phenomena

of reflection and refraction.

In media that attenuate sound through absorption, energy is taken from the wave motion

and converted into thermal energy in the medium. This absorbed energy, of course, is (on a

very simple level) the mechanism of heating in ultrasound hyperthermia. The volumetric power

absorbed is proportional to the wave energy flux, which is the magnitude of the intensity:

Q=2a 1il (3.33)

where a is the absorption coefficient, and 2a is simply the constant of proportionality between

acoustic intensity magnitude Il11 and volumetric power absorption Q. Of greater practical

interest is the time-averaged volumetric power, which is proportional to the average magnitude

of the intensity:

( 2) = 2 (lll) (3.34)

For planar waves (traveling in the +x direction) which undergo attenuation due to absorption,

6Given this meaning of "diffraction," the Rayleigh-Sommerfeld diffraction integral (see Equation 3.23, page 65),
which gives the velocity potential in a uniformly non-absorbing, non-scattering medium, is perhaps something of
a misnomer. But this rather academic issue may best be left to science historians....

7In cases where very tight focuses are generated and required, it may not be possible to ignore scattering.



but without scattering, energy conservation leads to the intensity solution:

(I {x}) = (Ix {0})e - 2ax (3.35)

or, with Equation 3.19:
Pa{X}2  Pa{O}12 2ax

2 = p- e-2(3.36)2 2

Equations 3.36 and 3.17 can easily be transformed into the pressure solution:

Pa{x} = pa{0e-ax
(3.37)

p{x, t} = pa{0}ej(wt-kx)-ax = pa{0}ej(t-k'x)

where k' = k - ja is the complex wave number. Equation 3.37 illustrates that the absorption

coefficient really indicates how pressure amplitude decays, and only secondarily how acoustic

intensity magnitude decays (since ( oiI1) c pa). Another way of looking at this is that a-' is

seen to be the length constant8 for attenuation of pressure, whereas (2a)-' is the length constant

for attenuation of intensity.

When attenuation is achieved through scattering as well as absorption, a scattering coeffi-

cient a and attenuation coefficient p are often used in Equation 3.37 in analogous fashion to

a. Whereas absorption coefficient a indicates the differential fractional decrease in pressure

amplitude per differential distance of wave propagation that is due to absorption, scattering

coefficient a indicates the same for decreases due to scattering, and attenuation coefficient p

for decreases due to the combination of absorption and scattering. These quantities are related

through p = a + a. When the effects of scattering are considered unimportant, p e a.

For spherical waves (traveling outward in the positive r direction) undergoing absorption,

energy conservation gives essentially the same intensity solution as that of the planar case:

(I,{r}) = (Ir{R})e-2a(r-R) (3.38)

With Equations 3.22 and 3.20, this leads to the pressure solution:

pa{r} = pa{R}e - a (r-R)

(3.39)

p{r,t} = R--pa{R}ej(wt-kr)-a(r-R) = RPa{R}ej[wt-kR-k'(-R)]
r r

8Here the length constant denotes the distance the planar wave must propagate to decrease the relevant parameter,

pressure amplitude pa or acoustic intensity magnitude lllf in this case, to e- 1 , 37% of its initial value. The

absorption coefficient a is measured in Np/cm, where Np indicates nepers, and Np/cm is "length constants per
cm." 1 Np = 20 loglo e P 8.686 dB.



3.1.7 Non-Linear Absorption

The Rayleigh diffraction integral assumes the amplitude of the acoustic pressure is infinitesimal.

This approximation is necessary for absolute rigor because if the pressure amplitude were finite

the pressure would not oscillate quite symmetrically; i.e. rarefaction would not exactly mirror

compression. Intuitively this can be seen because rarefaction cannot produce absolute pressures

smaller than that of a vacuum (i.e. 0 Pa), but compression can proceed without practical limit

(certainly multiple times atmospheric pressure). This asymmetry results in more time spent

in rarefaction than compression, and the asymmetry is increasingly apparent as the acoustic

pressure amplitude increases. If this non-linear effect ceases to be negligible, then pressure

p can no longer be accurately represented by p{t} = poeij t, but is instead represented by

the Fourier series p{t} = limn pi ej iw t . In addition, as pressure increases the wave speed

itself varies with the phase of vibration of the medium, due to non-linearities in the medium

compressibility; furthermore, this varying wave speed distorts the wave front, increasing non-

linear effects and introducing higher harmonics. Barring attenuation of non-linearities (from

absorption, e.g.), the compounding distortion eventually leads to discontinuities in the wave front,

a phenomenon called shock which limits energy propagation by the wave [47]. This introduction

of harmonic frequencies in non-linear wave propagation can have important consequences for

energy deposition because the absorption coefficient a (which is related to SAR as shown in

Equation 3.34) is empirically a function of ultrasound frequency f [93, 101]:

oa(f) ) alfa2  (3.40)

where al and a2 are tissue-dependent constants, and a2 is slightly larger than 1 (e.g. a2 = 1.2).

The theoretical possibility of using non-linear absorption in hyperthermia has been suggested

[48], but will not be pursued further here. Thus acoustic pressure amplitudes will be assumed

to be small enough in subsequent analyses that non-linear absorption is negligible.

3.1.8 Gaussian Source Solution

Expanding on the work of Aanonsen et al. [1], Du and Breazeale [25] and Breazeale and

Huang [15] derived an analytic solution for the acoustic pressure field from an infinite planar

Gaussian source. (Interestingly, Du and Breazeale used different approximations in their deriva-



tion than did Breazeale and Huang, but the final analytic results were the same. However, only

the earlier derivation, [25], included a term related to absorption.) The source vibrates with

the profile u {r, t} = umax Gauss(r, rs)e j wt, where Gauss(r, a) - exp(-r 2/2a2), and as is the

Gaussian source width. (Gausso((, a) - Gauss((, a)/rvo2w is the Gaussian normalized such

that the area under the Gaussian ff_ Gauss o(, a) d< = 1. See Figure 3-3.) The pressure field

of this Gaussian source is given by:

p{r, z, t} = Pmax exp (• 2) e-azej(w t - kz+p) (3.41)

where max = pcnmax, a{Z} - as1 + z2, z'{z} - z/ko 2 , and p = z'r 2/2a , 2 - tan-' z' is

the phase. z' is a dimensionless version of the the beam depth z, 7b is the Gaussian beam width,

and a({z} is the analytical solution for the Gaussian beam width. N.B.: The Gaussian source

described above is infinite in spatial extent, although for practical purposes it only vibrates

within a circle of nominal radius 2Os to 4os (depending on the desired degree of accuracy)

centered at the maximum vibration, with the rest of the plane effectively being a rigid baffle.

Furthermore, the terms Gaussian source width (i.e. as) and Gaussian beam width (i.e. Ob) do

not give the respective widths of the source and beam, at least not in the conventional sense of

the term width; instead, they give the respective length constants associated with the Gaussian

profiles of the source vibration and the acoustic beam from the source.

Du and Breazeale observed that Equation 3.41 described a field whose tranverse cross-section

is always Gaussian, with decreasing axial pressure and increasing Gaussian length constant as

depth z increases. In addition, they remarked the pressure field lacked the extrema present in

near fields of uniformly vibrating (circular) sources, and it also lacked the side lobes seen in

the far field of such sources. 9 Equation 3.41 was derived based on the Rayleigh-Sommerfeld

diffraction integral. Although it is not a rigorously valid solution (as approximations were

9In general, the near field (also called the Fresnel zone) and the far field (also called the Fraunhofer zone)
are characterized by qualitatively different interference patterns; the acoustic pressure amplitude field is usually
observed to have peaks and troughs in the near field (except for simple and point sources), but to decrease inversely
with distance in the far field. If an acoustic source is divided into simple spherical or point sources, the acoustic
wave contributions from these sources travel along essentially parallel paths in the far field, but oblique paths in the
near field. The nominal transition between near and far field is the distance a2/A, where a is the radius or half-width
of the source, and A is the acoustic wavelength. For a uniformly vibrating planar source, there is a main region, or
main lobe, of constructive interference in the far field in which the entire source is essentially equidistant from any
given point in the main lobe. To the sides of the main lobe-but still in the far field-are smaller side lobes, which
are regions where constructive interference is locally maximal. Directivity functions characterize the locations
and relative magnitudes of the lobes.
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Figure 3-3: The Gaussian function, with as = 1. Solid line (-) indicates Gauss(x, 1); dotted

line ( ... ) indicates Gausso(x, 1).

used in the derivation), it is a closed-form solution. This fact is very valuable in acoustic beam

parameterization, and it will be exploited to parameterize FSUM acoustic beams in Section 4.2.2.

Figure 3-4 depicts contours of the pressure amplitude (Pa) field in the rz-plane, of Gaussian

sources of Gaussian source width a, = 0.6, 0.8, 1.0, and 1.2 cm, with absorption coefficient

a = 0 Np/cm (the absorption of water) and wavenumber k = 42 cm -1 (the wavenumber in

water of the ultrasound waves emanating from the FSUM transducers, i.e. 1 MHz vibration in

water).

3.2 Practical Acoustic Physics

The acoustic physics thus far presented has been developed in a reasonably rigorous fashion

here, with the exception of Section 3.1.6 on attenuation. The main assumptions used were that

acoustic perturbations, i.e. p and u, were small. In general acoustic waves were taken to be

purely sinusoidal, and continuous wave (as opposed to pulsed wave). In cases where attenuation

was considered, absorption was taken to be equal to attenuation, i.e. scattering was insignificant.
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Figure 3-4: Contours in the rz-plane of the pressure amplitude (Pa) field of Gaussian sources

with Gaussian source widths a, = 0.6, 0.8, 1.0, and 1.2cm and wavenumber k = 42 cm - 1.

(r, z) are cylindrical coordinates, with z = 0 corresponding to the plane containing the source,

and r = 0 to the center of the source. Contour lines are at multiples of 10% of Pmax = Pa{0, 0}.

3

2

E

S-1

A

0 40

as=0.8 cm

)

~-LLC

It



In real systems it is not necessarily advantageous to solve problems with this level of

rigor, for several reasons. Real media are not ideal or perfectly homogeneous in their wave

transmission, absorption, reflection, or scattering, and it would be impractical to model every

detail of geometry, boundary condition, and medium property in a real system. But even if

it were practical to set up the equations that model a very complex system, actually solving

the equations would be a computationally monumental task. Absorption coefficients are not

accurate to better than 10% or 20% [35], and may be even worse, so simple models that reduce

computation to tolerable levels are preferred.

In practice, a number of further simplifying assumptions are made to model ultrasound

transmission and absorption. These relate to three main areas: the technique of modeling

a sound source as the superposition of simple sources; the modification of this technique to

accommodate acoustic attenuation by absorption; and the evaluation of the volumetric power

deposition field given the acoustic pressure field. The first two areas will be discussed in

subsequent sections, and the third area will be discussed now.

The purpose of ultrasound modeling in hyperthermia is to determine the SAR field Q.

Equation 3.34 shows how to obtain (Q) from (IlIll), and Equation 3.12 shows how to obtain

Sllll) from p and Ui. In practice, however, acoustic impedance is taken to be the real quantity

Z = pc and time-averaged intensity is taken to be ) - p/2pc,as in the plane wave case.

Thus once the Pa field is determined:

2
= ap (3.42)

2pc

This equation is felt to be reasonably accurate (except very near simple sources).

3.2.1 Superposition of Simple Source Solutions

Frequently investigators model acoustic sources as a large number of simple or point sources that

are closely spaced (a fraction of a wavelength apart) on the surface of the modeled source [27,

47, 80, 103]. This technique is valid to arbitrary accuracy as the simple sources approach point

sources, but only if the simple source solutions themselves are perfectly accurate. For certain

simple geometries, the simple source is known, such as the hemispherical source embedded in an

infinite rigid plane (which is the same as the solution for the simple source in an infinite medium,



Tsph). For most geometries, however, the simple source solution is not known; in these cases,

investigators usually make the assumption that the simple source solution Ysph is still valid. For

example, Ellis and O'Brien [27] used the Ysph solution to calculate the pressure field from a

concave cylindrical slice geometry; Diederich and Hynynen [24] for convex cylindrical slices;

Kossoff [56], Madsen et al. [64], O'Neil [80], Penttinen and Luukkala [83] for concave spherical

radiators. Most investigators acknowledge the use of the Rayleigh-Sommerfeld diffraction

integral in non-planar geometries is not rigorously correct, although it approaches perfect rigor

as the radius of curvature of the modeled source approaches infinity (assuming the rest of the

plane is an infinite rigid baffle). O'Neil suggested that when the width of the transducer is large

compared to the wavelength, the diffraction integral will be close to correct for modeling curved

transducers, at least in the main part of the acoustic beam.

The solutions for acoustic pressure in the cases of planar or spherical wave propagation

with absorption (Equations 3.37 and 3.39, respectively) do not satisfy the wave equation derived

earlier (Equation 3.9). This makes sense because the wave equation assumed all wave mechanical

energy stayed in the wave without energy or momentum loss from attenuation. This author

did not unearth a derivation of the wave equation with absorption, nor even a statement of the

equation, but Ellis and O'Brien [27] submitted the lossy Helmholtz equation to describe acoustic

pressure attenuation through absorption:

V 2p + kI 2p = 0 (3.43)

where the complex wavenumber k' = k - ja. Equations 3.37 and 3.39 are seen to satisfy

Equation 3.43.

The solution for a spherical source in an absorbing medium (Equation 3.39) can be substituted

for the solution in a non-attenuating medium (Equation 3.20) in the derivation of the pressure

solution for a planar source (Equation 3.24) to yield:

{i, t} I ekd dA (3.44)

This equation is exact when the complex wavenumber k' is uniform throughout medium (as-

suming the conditions necessary for the validity of Equation 3.24 still hold).

For the case in which absorption coefficient a varies in space, the spherical source solution



is modified to be:

p{r, t} = pa{R}e [wt-kR-R k'{}itd] = p j{R}e(wt-kr)-f a{}d (3.45)
r r

Strictly speaking, this solution assumes the absorption coefficient is a function only of the radial

position r (or the dummy variable (), and not of the other two spherical coordinates 5 and 09.

Nevertheless it is used in practice to provide the spherical source solution in inhomogeneous

media [47, 62]. Using Equation 3.45 to accommodate the general planar source in an infinite

rigid plane, Equation 3.44 becomes:

p{, t} = e-kd- addA (3.46)

where e refers to the straight line from the differential source element dA to the field point i.

3.3 Numerical Solution of Rayleigh-Sommerfeld

Diffraction Integral

The Rayleigh-Sommerfeld diffraction integral yields an analytic solution only in a very few

cases, such as along the central axis of a planar circular uniformly radiating source [53]. In

general, however, the solution is not analytic, and calculation of the solution is notoriously

computationally intensive. Historically, most efforts at numerical solution have concentrated on

specific transducer geometries, or specific regions in the insonated field. In chronological order,

important elucidations of the diffraction integral include O'Neil [80] (concave spherical radiator

solution along the central axis and in the focal plane), Freedman [33] (rectangular radiator

solution along the central axis), Zemanek [103] (circular radiator near field solution), Lockwood

and Willette [61] (general planar radiator near field solution), Penttinen and Luukkala [83]

(concave spherical radiator near field solution), Archer-Hall and Gee [5] (diffraction integral

reduction from double to single integral for an axisymmetric source solution using, and Madsen

et al. [64] (concave spherical radiator entire insonated field solution).

A common and general numerical technique to solve the diffraction integral is to approximate

the radiating surface as a collection of small hemispherical sources [47], sometimes called

monopole sources [27]. The source size must be small compared with the sound wavelength,

and in the limit they approach point sources.



Other techniques have focused on converting the 2-D diffraction integral into an equivalent

1-D integral. Madsen et al. [64] and Swindell et al. [94] observed the pressure field contributions

from all the points on the radiator equidistant from a field point are in phase. The contribution

from an arc of equidistant points is therefore proportional to the length of the arc, so the

diffraction integral is reduced to a 1-D integral over different arcs. Lockwood and Willette [61]

and Penttinen and Luukkala [83] developed an impulse-response technique which, given the

impulse-response of the radiator, provided the continuous wave pressure field in a 1-D integration

over time.

3.3.1 Acoustic Pressure Field of Rectangular Source

Ocheltree and Frizzell [79] reported a numerical method to solve Equation 3.24 relatively quickly

and accurately. Figure 3-5 illustrates the geometry of this so-called rectangular radiator method,

which will be described now. The acoustic source surface A is divided into N small rectangular

regions of areas Ai, heights hi, and widths wi, where 1 < i < N. (In general the source surface

may comprise multiple transducers; Figure 3-5 shows four transducers.) The N rectangles need

not share the same dimensions, but constraints on the rectangle widths and heights must be met

(see Equation 3.49). Each rectangle has its own local coordinate system (xi, Yi, zi), and each

can be related to a global coordinate system (x, y, z). The contribution to the complex acoustic

pressure at a field point V from the ith subelement is given by:

jpC e-(a+jk) di kvxwi kyhijpC e( -+Jk)d sinc kVW sinc Ai (3.47)
Pi i di 2d- 2d(

where d is the distance from an arbitrary point on the subelement surface to the field point, di is

the distance from the center of the subelement surface to the field point, sinc 0 = (sin 0)/0, and

U~ = (v',•, vy~, vz,) is the field point in the local coordinate system. The total pressure at V from

the entire emitting surface is given by:

N

p{, t P-ti p{i, t} (3.48)
i=1

"Small" is a relative term, when deciding how small to make the rectangular subelements

Aj, and it depends on two things: The normal velocity of the source surface must be essentially

constant over the entire rectangular subelement Ai, and the distance d between the field point



Figure 3-5: Determination of acoustic pressure field by summing contributions from rectangular

subelements. Here four coplanar rectangular transducers are shown, with dotted lines indicating

rectangular subelements.
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vi7 and a differential area dAi on the subelement must be essentially constant as well. For

calculations such as those pursued by Ocheltree and Frizzell, transducers were assumed to

vibrate uniformly, so the former condition is trivially met. When the latter condition is met, the

field point is in the far field of the rectangular subelement; the sinc terms in Equation 3.47 are

seen to be directivity functions (see Footnote 9 on page 73). The constraint on d is met when:

hi, wi :5 (3.49)

(See Equation 11 in [79].) Here FoPF is a fudge factor that stipulates a tougher constraint as

it increases. In the acoustic simulations of Ocheltree and Frizzell, FO&F = 10 was empirically

determined to give accurate approximations for pressure. (The constraint in Equation 3.49

is the limiting constraint only when normal surface velocity u, is essentially constant over

the subelement A2 . Were this not the case, a second constraint on subelement height hi and

subelement width wi based on normal surface velocity would need to be determined, and the

more stringent of the two constraints would be the limiting and relevant constraint.)

According to the derivation of Ocheltree and Frizzell, the above constraint on d (Equa-

tion 3.49) in fact should have been:

hi, wi 4Ad (3.50)V FO&F

(note that v,; was replaced by di). However, when repeating the simulations of Ocheltree

and Frizzell, the constraint in Equation 3.50 was found to be insufficiently strict. The more

stringent constraint in Equation 3.49, which Ocheltree and Frizzell used without explanation,

proved adequate. (This shift from di to v,~ in the constraint equation is discussed further in

Section 4.1.5 on page 106).

Equation 3.47 is not valid for a non-uniformly absorbing medium, but the medium of

interest, namely the patient, is non-uniformly absorbing. Inhomogeneities affect this equation

both directly and indirectly-indirectly because discontinuous inhomogeneities, i.e. boundaries,

are sites of reflection and refraction of sound waves. The amount of reflection that occurs at a

boundary is largely determined by the ratio of the acoustic impedances of the media on both

sides of the boundary. For this reason the most clinically important reflections to consider

occur at soft tissue-bone and tissue-air interfaces. Ultrasound refraction is significant only at

very curved surfaces or surfaces nearly parallel to the direction of sound wave propagation, so



refraction is usually ignored [29, 30]. For the current analysis, all scattering effects will continue

to be ignored.

Lu et al. [62] modified Equation 3.47 for breast model simulations based on one central

assumption: density p and wave speed c were essentially identical between breast tissue (br) and

water (w), so ultrasound reflections did not occur in their model. (According to their model,

the breast was immersed in degassed water, a common ultrasound coupling medium between

the ultrasound transducers and the patient. Involvement of the chest wall was assumed to be

negligible in their analysis, and was ignored.) Equation 3.47 was modified because a was now

a function of position instead of a constant (although wavenumber k, like wave speed, remained

a constant). The result of their assumption yielded:

jpc N e-(wdwi +abrdbri+jkdi) kVi.w kvy hA
p{i, t} cy d se s Au (3.51)

A i=1 di 2d2  2d2

where dw, is the part of di over which sound waves propagate through water, and dbr, is the

same for breast tissue. This equation differs from Equation 3.47 only in the exponential term.

Assuming soft tissues in general and water share the same density and wave speed, Equation 3.51

can be generalized to:

pc e adi+jkdi] c k sinc k hAi (3.52)
i=1 di 2di 2d



Chapter 4

Ultrasound Power Deposition: Advances

Nearly all men can stand adversity, but if you want to test a man's character, give
him power

Abraham Lincoln

Advances in ultrasound modeling that took place in the course of this thesis are detailed in

this chapter. These advances fall into three principal categories: accurate and rapid acoustic

modeling of rectangular and cylindrical wedge acoustic sources (Section 4.1), acoustic modeling

of individual (Section 4.2) and multiple (Section 4.3) FSUM transducers based on acoustic

measurements and computer simulations, and the development of the Fanned Absorption Method

(FAM), a technique for modifying the acoustic pressure field in a non-absorbing medium to

obtain the acoustic pressure field in an absorbing medium (Section 4.4). The chapter ends with

a summary of the modeling results obtained here, and some of their implications (Section 4.5).

The work developed in this chapter is important for thermal modeling of hyperthermia in-

duced by ultrasound power applicators because the SAR field is a critical input parameter in

thermal models. The numerical method developed in Section 4.1 greatly accelerates acoustic

simulations of non-uniformly vibrating rectangular sources. These simulations are important

for modeling individual FSUM transducers, and they are crucial for providing theoretical justi-

fication of the FAM.



4.1 Acoustic Pressure Field of Rectangular or

Cylindrical Wedge Source

Ultrasound transducers shaped like rectangles or subsections of cylinders are commonly used to

heat tumor tissue in hyperthermia cancer therapy. Intracavitary devices, used to treat prostate,

rectal, and vaginal tumors, for example, use cylindrical transducers in a convex geometry, with

sound radiating outward from the transducers. In contrast, external devices, for treatment of

deep tumors, surround the patient and use a concave geometry, with sound radiating toward the

center of the cylinder.

The rectangular radiator method of Ocheltree and Frizzell [79] (see Section 3.3.1) was

developed to rapidly calculate the acoustic pressure field from a rectangular source. This method

can be easily modified to accommodate transducers in the shape of a "rectangular" subsection

of a right circular cylinder (as shown in Figure 4-2 on page 87). Whereas the original technique

subdivided a rectangle into smaller rectangles, the modified technique subdivides a cylinder

subsection into like parts. The modified technique is herein expanded to allow calculation of the

sound pressure field from a cylinder subsection. The derivation given here parallels that given

by Ocheltree and Frizzell, but aspects of the implementation are specific to sources in the shape

of a cylindrical subsection.

As usual, the Rayleigh-Sommerfeld diffraction integral serves as the starting point of the

acoustic pressure field calculation (see Equation 3.44 on page 77). As mentioned before, this

integral is rigorously correct for a planar source embedded in an infinite rigid baffle, but not

for the cylindrical geometry. Nevertheless, it is often used for a variety of non-planar sources,

including cylinder subsections [24, 27].

4.1.1 Abstract

The rectangular radiator method, a technique for rapid calculation of acoustic pressure fields

from acoustic sources that are planar, rectangular, and vibrate in a spatially uniform pattern, is

extended to accommodate cylindrical sources and spatially heterogeneous vibration. Pressure

fields were calculated for uniform and rectangular paraboloid vibration patterns for square

sources with sides from 0.5 to 100 wavelengths. For planar sources acoustic beam contours



showed remarkable similarity between these two vibration modes. On the axis of symmetry

(longitudinal axis), rectangular paraboloid vibration was observed to elevate both peaks and

troughs in pressure amplitude in the near field, but decrease pressure amplitude in the far field.

4.1.2 Introduction

Ultrasound power transducers are commonly used to heat tissue in hyperthermia cancer treat-

ment. Treatment systems often use transducers that are rectangular or cylindrical in shape [24,

26, 62, 95], and the acoustic pressure fields are modeled to help design power applicators and to

predict power deposition fields. Ocheltree and Frizzell [79] developed a technique capable of

rapid pressure field calculation for rectangular acoustic sources, the rectangular radiator method.

This method was based on the summation of complex pressure field contributions from rectan-

gular subelements of the source to calculate the pressure field from the entire source. A common

way of performing pressure field calculations is by approximating the source by a large number

of point or simple sources, and summing the pressure field contributions [27, 47]; the algorithm

by Ocheltree and Frizzell achieves its computational efficiency by significantly reducing the

number of subelements for which the pressure field contribution must be calculated and then

summed.

The algorithm will be expanded here in two ways. First, the method will be modified to

allow pressure field calculations from sources that do not vibrate uniformly, such as Gaussian

transducers [25] and clamped transducers [72]. Second, the method will be modified to allow

pressure field calculations from sources that are shaped like a "rectangular" subsection of a

circular cylinder-henceforth referred to as a cylindrical wedge-as depicted in Figure 4-2.

The derivation performed by Ocheltree and Frizzell was a partial second-order analysis,

meaning not all first- and second-order terms were considered. Here a complete second-order

analysis will be presented, with benefits over the original algorithm that are three-fold. First,

the new constraint equations (used to determine the degree to which sources must be subdivided

for accurate pressure field calculation) from the current analysis give more accurate constraint

equations. Second, a potential consequence of including first-order terms in the present analysis

is that the number of subdivisions necessary to achieve a given level of accuracy in pressure field

calculation may be reduced (although this is not always possible). And third, sources which do



not vibrate uniformly can be more easily accommodated by the complete second-order analysis,

with constraint equations that consider non-uniformities in vibration. The derivation presented

here proceeds in essentially the same fashion as that of Ocheltree and Frizzell, but all first- and

second-order terms are considered.

4.1.3 Methods

For a continuous wave planar acoustic source embedded in an infinite plane rigid baffle, and

radiating into a non-scattering medium of constant sound absorption coefficient, the complex

sound pressure p at a point in the field is given by:

p{i, t} = jpc U e- (a+jk)d dA (4.1)

where j = -V1, p is density of the medium, c is speed of sound in the medium, A is acoustic

wavelength, A is source surface area, Un is the normal component of the velocity of the

differential source area dA, d is the distance from the field point to the differential source area

dA, a is the absorption coefficient, and k is the acoustic wavenumber (k = 27r/A). The surface

A can be broken up into N subsurfaces Ai, with 1 < i < N, and the total sound pressure field is

then given by the sum of the pressure contributions from each subsurface pi (i.e. p = •IN Pi),

where:

pi{ , t} ;= e- (a+jk)d dAi (4.2)

4.1.3.1 Rectangular Acoustic Source Solution

A rectangular source is broken up into rectangular subelements. Figure 4-1 illustrates the local

canonical coordinate system used for a rectangular subelement Ai centered at its local origin.

(This local coordinate system (xi, yi, zi) can be related to a global coordinate system (x, y, z),

as shown earlier in Figure 3-5 on page 80.) The field point Vi3 is located at (Vi, Iv,, Vz,) in the

local reference frame, the width and height of the subelement are wi and hi, and its corners are

located at (±wi/2, +±h/2, 0). Equation 4.2 then becomes:

pi{il, t} =- jpc hhi/2 wi;/2 Un -(a+jk)d dxi dyi (4.3)
J-hi/2 -wi/2 d
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The distance di from the field point v' to the center of subelement Ai (the origin) is given

implicitly by d2 = v + v,2 + v 2. The distance d from the field point i4 to an arbitrary point on

the subelement surface (xi, yi, 0) is given by:

d2 =(vx - x,)2 + (Uyi - yi) 2 + v2 = dý 1 -zi 2
2vxixiV2,i~2v1yYi +

2

(4.4)

Equation 4.3 requires expressions for d and d-', which are given approximately by second-order

Taylor series:

d - di [1

E 1+

VxiXi

V XdX

vyi Yi

d?+diz

+ i22d?

2d
2d2

dxv
di)

2

+ 1 -
2d2 (

3vx2

di

v~2• , VXVy 4XiYi

d - d4
3v2 ) + 3vx,vy ix iy i+ 1_L2 (1

2d 2

(4.5)

(4.6)

Equation 4.5 is substituted into Equation 4.3 to yield:

jpc hi/2 f wi/2
A J-hi/2 J-wi/2

2d2 - 2

Un exp (a + jk)did

2d_ di

vxidi VyiYi
d2
di

VxiVd4 Xi dx} dyi

Sjpc h/2 w/2 eexp
-A f-h,/2 f-w,/2 • d

x exp -(a + jk) [2d Xi 4+

Ydi

(1
Upi+ )di
_ 

_2

d?.

exp [j k ( vxidi
V i yi Xi Yi

zV

di )I (4.7)

} dxi dyi

Substituting u { x, yi } Uno + un,xi + u, Yi + u1, + U y? + Uniyi, Equation 4.6,

and the Taylor series for the exponential function into Equation 4.7 yields (up to second-order

terms):

Sjpe -(a+jk)di
Adi

f hi/2
hi/2

w,/2 Uno + Axxi+A+Ay + A + + + Axiy)
-wi/2

x exp[jk ( i + ) dxi dyi (4.8)

where uno is a constant; un, = aunlaXi, Un, = Oun/ayi, Un.. = 92Un/X?, Un2 ,, = O2U n/Oy 2,

and un., = 2un/Xi Oyi are evaluated at the local origin; and:

88
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AX = Unx+ di + a
Uodi (di1

AY = u~ + Uny + a

A = Un +nVx + a) 1- - (a + jk) 1 -
2 di ( 2d2 d 2  d d

2 2+ Uno Vxi + 1

d z2
A = uYyy + UT•vYi (1 ) un1 (•+ 2d2  3v2 + jk) -

dx -di J 2d? O ý d i 2dkd - 2

+i dic + C

+ (UnxVY. + Uy2xi ( C )+ Un&$Vxj yi ( 3a+jk + a2)Axy = , + d 72 di +
The boxed terms in the expressions for Ax and Ay,, namely the junok/2di terms, are the only

terms in A,, AY, A, Ayy, and Ay considered by Ocheltree and Frizzell [79] in their derivation.

This significance of this observation is that by considering all the terms that comprise Ax, Ay,

AX,9 Ayy, and Axy, a new solution equation for pi and new constraint equations can produce

faster pressure field computations (to the same level of accuracy) than can be achieved by the

original rectangular radiator method of Ocheltree and Frizzell.

Equation 4.8 is exact to second order; if the second-order terms in Equation 4.8 are sufficiently

small to ignore, then:

jpcwihie -(a+jk)di kvyiwi kyz, hi(
pi e sine 2d- (4.9)

Ad[ 2d; 2d;

SkviWi y kvyhi h kv,.wi kin y h 1
+ - A i ginc sinec + A hi sine gmc

2 2di 2di 2di 2di

where sinc (sin )/( and ginc = (sinc - cos )/(.' (Cf. Equation 4.9 to Equation 10

in [79].)

'The sinc function is seen in the literature; the ginc function is not. To 99.9% accuracy,
sinc 6 1 - 62/6 + 64/120 for (I <• 1.25, and ginc 6 (/3 - 63/30 + (5/840 for Ij1 < 1.5.
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Equation 4.9 is accurate when the second-order terms are small compared to the max-

imum source surface normal velocity unma, the maximum normal speed amplitude of the

entire acoustic source (not just the rectangular subelement). Specifically, the constraints are

|Axx (wi/2)2 , JAyy (hi/2)2, |Axy (wi/2)(hi/2) < unm,,/F, where F is a constraint factor that in-

creases as desired accuracy increases. Assuming that a <K k (as Ocheltree and Frizzell [79] did),

and that uno Unmax, Un, , 2Unmax/Sx, Uny - 2Unmax/Sy, Un ,, 4Unmax/S2, Unyy - 4Unma./Sy,

and unZy - 4Unmax/SSy, where s, and s, are the y and z dimensions of the entire acoustic

source, the constraints from the second-order terms become (approximately):

2 2 1 1 ) 1 ( k _&)+2w1i < - + 1+ + + ) +s, s, di di di 2 2

2 2 1 1 1 (1 2k_ 2-1
hi < 2 2 1 + + + + I + - + (4.10)

\I sY SY di di 2 2

4 4 1 1 1 1 3-
wihi < +2 -+- + + k ) 2

F ss s, s d- di d-
For the case of a uniformly vibrating source (u, = uno), the constraints can be simplified to:

wi, hi < 2 1 1+ k- + ] (4.11)di di 2 2
wihi < 4 1 k) + - 1

(Cf Equation 4.11 to Equation 11 in [79].)

4.1.3.2 Cylindrical Wedge Acoustic Source Solution

A cylindrical wedge source is broken up into cylindrical wedge subelements. Figure 4-2

(page 87) illustrates the local canonical coordinate system used for a cylindrical wedge subele-

ment A. centered at its local origin, and with radius of curvature R. The field point is

located at (vx,, vy;, Vz,) and (v,r, vy, ve, ) in Cartesian and cylindrical 2 coordinate systems,

respectively, the sides of the subelement are Rd, and h., and its corners are located at at

2The usual cylindrical coordinate system is (r, 0, z), but this system is abandoned here in favor of (r, y, 0) because
in acoustic field calculations the z direction usually corresponds to the nominal direction of sound radiating from
the acoustic source. Furthermore, the use of the (r, y, 0) system facilitates comparison of corresponding results
throughout Section 4.1 between rectangular and cylindrical wedge sources.



(R sin(1i/2), ±hi/2, R cos(Oi/2)) and (R, +hi, 2, ±Oi/ 2 , ) in the two coordinate systems.

Equation 4.2 then becomes:

Pi4, t} A -h/2 V
2  -e(a+jk)d RdOi dyi (4.12)

J--hi/2J-dif2 d

The distance di from the field point v4 to the center of subelement Ai ( (R, 0, 0) in cylindrical

coordinates, (0, 0, R) in Cartesian coordinates) is given implicitly by di2 = vi +v2 + (v, R)2

The distance d from 'i to an arbitrary point on the subelement surface (R, yi, Oi) is given by:

d2 = (vi - Rsin i)2 + V2 + (Uzi - Rcos i)2

2  1+ 2v, RsinOi 2vy yi  2  2v+,R(1 - cos Oi)

d - d2  d d

( 2v,,ROi 2v3,yi yi2  vR(4.13)
di 1- d? di2  d• d (4.13)

Continuing the derivation in the same fashion as for the rectangular subelement case leads

to the result:
jpC -(a+jk)di [hi/2 týi/2 2

Pi e - k)d h/2 /2 U + AR + A + AR(R + Ay iy + Aeo(R) 2 + Ayyy 2 + AoeR9Oyi]Adi -hi/2 i- 2 I

x exp jk + (--i RdJ dyB (4.14)

where Uno is a constant; Uno = BUn/Oi, i,n = n/ , nee 2n/OYi , uZnyy = -2Un/Y i2,

and Unoy = D2un/9Oi 9yi are evaluated at the local center of the subelement (i.e. (R, 0, 0) in

local cylindrical coordinates, and (0, 0, R) in local Cartesian coordinates); and:

Ao = + +a
R di d•

A U = u+ + aUVy

Aoe = Unoo + Uno Vxj 1 + a) _2dno vz, 3Vxdi (!an + jk) \R diz2R 2  Rd d( 2V R d? 2d \ R d?

+UnoVx2i +

AY Un= u + U•y n IVy U ( 3v
2 di di 2d2 d 2i )



2 1
+ di

U Un. x 1i
+ 71

dh ,\di
U+no1 Zvy 3 3a + jk

d? d(+ k d)

(Again, Equation 4.14 is exact to second order.) Ignoring the second-order terms in Equa-

tion 4.14:

jpcRd hi e- (+jk)di
S Ad e Sno

A . kyvxR
+ - AoROiginc 2d

2 2dz

sinc kvxi R79i
2di

sinc kvyhi
2di

sinc kv h
2di

kvRi i
- + Azh; sinc ginc

2d

The constraints from the second-order terms are IAool(R)i/2) 2, JAyyl(hi/2)2,

IAolI(Rdi/2)(h-/2) < Unmax/F. Assuming again that a < k, and that uno - unma, Uno ,

2Unma/o, U, 2Unma/Sy, unoo 4Unmax/ 2, U - 4Unma/S 2 , and Uny ~ 4 Unmax/aOSy,

where co and s, are the 0 and y dimensions of the entire acoustic source (and so = Rao is the

arc length of the entire source), the constraints become (approximately):

R'i < 2 {2 1
so/- SO 8 + 1 k)'1 v

2di d[ RR

3

di
±k] 2 212

2

1

de
h•~<- +VF s8 Y 1 + -k +di 2 2

Rdhi < - [s-F sosy
2( 1+1) )+2 -2+ + a

1 (3
di di+ k) + 2'

For the case of a uniformly vibrating source (un = uno), the constraints simplify to:

3+
di

|vzi I
R

Ri, d< + kFdi di
2 1 2

dedi 2 2

+k]+ a 2

(4.17)

R'dhs < + k + a2F di di
The field point is not necessarily visible to the entire radiating surface of the cylindrical

wedge. The parts of the cylindrical wedge which do not enjoy a direct line of sight to the field

UAo ey
R

+
SRd,

(4.15)

2di JI

(4.16)

1+
di



point are taken to contribute insignificantly to the sound pressure at the field point, so these parts

are ignored. A specific protocol to determine the portion of the radiator visible to a given field

point is given in Section B.3.

4.1.4 Results

Field Calculations were made for square planar sources and convex and concave cylindrical

sources radiating into a non-absorbing medium, and pressures amplitude were normalized to

the maximum calculated axial pressure amplitude. For easy comparison with the calculations

performed by Ocheltree and Frizzell [79], the square planar sources were sized 0.5A, 1A, 2A, 5A,

10A, 20A, and 100A on a side (A is wavelength), and pressure field calculations were performed on

the z-axis and in the xz-plane (see Figures 4-3 - 4-9). In addition, two type of source vibration

were considered: uniform and rectangular paraboloid. Rectangular paraboloid vibration was

felt to be a reasonable approximation of the vibration achieved in clamped transducers [72], and

was defined by source surface normal velocity unz, y} = unm,.[1 - (2x/s,) 2][1 - (2y/s,) 2],

where the source is centered at the origin, and sx and s, are the sides in the x and y directions

(so 1xl • sx/2, and lyl 5 s,/ 2 for un{x, y}).

In addition to the simulations of square planar sources, simulations were performed for

cylindrical wedge sections. Specifically, sources s, = 10A in height and so = 10A in

arc length, with an aperture of ao = 600 and a corresponding radius of curvature R =

30A/Xr. Both concave (Figure 4-10) and convex (Figure 4-11) geometries were considered,

as were both uniform and rectangular paraboloid vibration. (Rectangular paraboloid vi-

bration in the cylindrical wedge case is analogous to that in the rectangular planar case:

un{O, y} = Unm.[1 - (20/ao)2][1 - (2y/s,)2], with 1l1 • uo/2 and |y| 5 sy/2.)

The constraint conditions were implemented by iteratively dividing the source into two

halves or four quadrants (depending on which constraint conditions were violated) of congruent

shape and equal size. In general the displayed fields were calculated with the constraint factor

F = 5. For error analysis, all fields were also calculated with F = 100 to obtain nominal "exact"

fields. In addition, for the purposes of comparison fields were also calculated with F = 2 and

using the Ocheltree and Frizzell [79] constraint equation (with their constraint FoF = 10).

(In general field calculations using F = 2 and Fo&F = 10 required about the same amount of



computational effort.) Figure 4-12 shows the maximum and root mean square (RMS) errors in

normalized pressure amplitude along the z-axis (up to normalized x = 4) for the seven different

sizes of square planar source under uniform and rectangular paraboloid vibration. Errors were

also calculated for the concave and convex sources and compared to the errors in the square

planar case with s = 10A, and they were found to be modestly (13%) but inconsistently greater

for the curved sources. Pressures were normalized to the maximum pressure in the calculated

field, and errors were determined over the calculated axial field points. (Axial pressure was

calculationed at normalized axial depth z/(s 2/4A) from 0.01 to 4.00 in increments of 0.01.)

4.1.5 Discussion

Several observations are readily apparent when comparing uniform and rectangular parabo-

loid vibration pressure field simulations. First, the normalized field beam contours in the

yz-plane are remarkably similar, in both the rectangular planar and cylindrical wedge cases

(Figures 4-3 - 4-11). (In the rectangular case, the field in the yz-plane is the same as that in the

xz-plane because the rectangular sources investigated were square.) Second, in the cylindrical

wedge case (Figures 4-10 and 4-11), the same cannot be said as strongly of the normalized beam

contours in the xz-plane, particularly in the convex case. And third, the normalized acoustic

pressure amplitude Pa on the z-axis exhibits interesting and consistent differences in the case

of square planar sources (Figures 4-3 - 4-9). Specifically, peaks and troughs in the acoustic

pressure amplitude are at the same axial distances with rectangular paraboloid vibration as with

uniform vibration, with the sole exception of the last peak, which is closer to the source under

rectangular paraboloid vibration; in addition, near field pressures are in general elevated and far

field pressures are depressed under rectangular paraboloid vibration, compared with uniform

vibration.

The pressure field is understandably complicated by deviation of the source from planarity.

In the concave case (Figure 4-10), the geometric focus of the source in general does not overlap

with the diffraction focus (i.e. the most distal peak, located in the transitional region between

near and far field), and the result is a peak at the geometric focus that dwarfs the peak at

the diffraction focus. In addition, the geometric focusing action elevates the pressures in the

far field (and, as for the planar case, in the near field) under rectangular paraboloid vibration,
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and the source is in canonical coordinates. Bottom: Normalized pressure amplitude Pa on the
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(-) correspond to rectangular paraboloid vibration.
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Figure 4-10: Acoustic pressure field of concave cylindrical wedge source with sides sy, so =

10A, aperture or = 60', and radius of curvature R = 30A/7r. Top: -3dB and -6dB contours of

the pressure amplitude of the beam in the yz-plane, normalized at each axial distance. Middle:

-3dB and -6dB contours of the pressure amplitude of the beam in the xz-plane, normalized

at each axial distance. x is normalized by side so, y by side sy, and z by s2/4A. The center

of the source (i.e. (0, 0, R) in canonical cylindrical coordinates) is taken to be the origin in the

subfigures, and the cross-section of the source is shown in the zz-plane. Bottom: Normalized

pressure amplitude Pa on the z-axis. In all subfigures, dotted lines (-.. -) correspond to uniform

vibration, and solid lines (-) correspond to rectangular paraboloid vibration.
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compared with uniform vibration. This elevation of pressure amplitude in both near and far field

under rectangular paraboloid vibration can be viewed from another point of view: Concavity

causes more effective geometric focusing for uniform vibration than for rectangular paraboloid

vibration, so the normalized pressure away from the geometric focus suffers under uniform

vibration.

For the convex radiator, these issues associated with the geometric focus disappear, resulting

in a simpler picture. Specifically, near field peaks in pressure decrease in magnitude with

distance from the source, which makes sense given the geometric divergence of sound from the

source. (See Figure 4-11.)

Maximum and RMS error generally increased as the source dimensions increased, by a

factor of about four between side s = 0.5A and s = 100A. In addition, rectangular paraboloid

vibration resulted in a slightly more than doubling of error in general, compared with uniform

vibration. Increasing the constraint factor from F = 2 to F = 5 doubled computational effort

but tripled accuracy. F = 2 and FO&F = 10 were comparable in terms of computational effort,

and F = 2 produced modestly more accurate results in general. (The value F = 2 cannot

be compared directly to the value FO&F = 10 used by Ocheltree and Frizzell because their

constraint factor is analogous to the one used here, but not identical. Equation 4.11 can be

compared to Equation 3.49 to yield the approximate relation F e Fo0&F/27r.) As previously

mentioned, errors did not seem to be substantially affected by deviations from planarity of the

source.

As mentioned in Section 4.1.4 (page 93), the nominal exact pressure field was taken to be the

field calculated with F = 100. Needless to say, such a constraint factor will provide accuracy

superior to that obtained by F = 2 or F = 5, but it is nevertheless possible that the level of

accuracy achieved by using F = 100 is not as great as desired. Thus for the case of the square

planar source with side s = 10A and rectangular paraboloid vibration, fields were also calculated

with F = 1000 and F = 10,000. Maximum and RMS differences between the F = 100 and

F = 1000 fields were 0.2% and 0.03%, respectively, as were the differences between the

F = 100 and F = 10,000 fields. (Differences between the F = 1000 and F = 10,000 fields

were 0.02% and 0.003%. In general errors were inversely proportional to F, which is expected

given the way F was defined.) Thus the fields calculated using F = 100 can be expected to
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have variable levels of accuracy, in general increasing with increasing source size and greater for

rectangular paraboloid than uniform vibration, but with a maximum error under 1% and RMS

error under 0.1% in any case, at least in the investigated range of source sizes.

An interesting observation is made when comparing the results obtained by Ocheltree

and Frizzell [79] and those presented here. The sides of the square acoustic planar sources

investigated here were made the same as those investigated by Ocheltree and Frizzell, for

the express purpose of comparison. Even though the accuracy of the fields calculated here

significantly exceeded that of the fields calculated by Ocheltree and Frizzell (see Figure 4-12),

the latter fields appear much "smoother" than the former. Another way of putting this is that

there are calculation artifacts that clearly correspond to calculation error, such as on the z-axis

at normalized z values near 1.2 in Figures 4-7 - 4-9, that are present here but are absent in the

results presented by Ocheltree and Frizzell. This discrepancy in the presence of this particular

type of artifact comes about because of differences in the implementation of the constraint

equations (Equations 3.49, 4.10, and 4.11). Specifically, here the constraints were implemented

by iteratively dividing the subelement into two halves or four quadrants. In contrast, the

implementation of Ocheltree and Frizzell was, in one step, to subdivide the entire source into

the smallest number of subelements such that the subelements satisfied the constraints (see

Equation 11 in [79]). (Their constraint used field point component vz, instead of the distance di

from the field point to the subelement center; since vz, is constant over the the entire surface

of the planar subelement, their constraint was invariant for every conceivable subelement of

a planar source. If they had used di, which varies continuously over the planar subelement,

then an implementation more akin to the one used here would have been more expedient.)

A consequence of iteratively halving or quartering a source is that the ultimate number of

subelements into which the source is divided can change drastically (often by a factor of

about 2 or 4) between field points near each other; the calculated pressure at the field point

associated with fewer subelements usually has greater error, and this phenomenon produces the

characteristic artifacts mentioned above. The implementation of Ocheltree and Frizzell results

in less radical differences in the number of subelements into which the source is divided, for field

points near each other; consequently the calculated pressure has an error that, though present,

does not change dramatically between field points near each other. Like many things in life,
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the artifact has an up side and a down side. The up side is that the reader can quickly get a

sense of the magnitude of the maximum error in the field calculation, i.e. the size of the artifact.

The down side is aesthetic, namely the results produced here, with artifact clearly visible, may

induce a certain level of discomfort, particularly when compared with the artifact-free results of

Ocheltree and Frizzell; the reader is advised to rest assured, however, that their lack of artifact

does not change the reality that significant error is present in their results.

The pressure fields shown here were obtained using the constraint factor F = 5. This

value may seem too small to generate accurate results, but there are several reasons why this

is in fact possible. First, as observed by Ocheltree and Frizzell, in Equation 4.8 (page 88)

there is considerable cancellation of each quadratic term as it is integrated over the rect-

angular or cylindrical wedge subelement (i.e. odd components of A Zzxexp(jkvxxj/di),

Axyxjyy exp[jk(vx, x + vy, y)/di], etc., cancel out over the subelement). Second, quadratic

terms on the average are only one-third their maximum value for a region centered at the origin,

but the constraint equations were based on the maximum value. Lastly, the constraints used in

Equations 4.10 and 4.16 are considerably more strict than they need be in order to obtain simpler

constraint equations. Specifically, the terms making up the quadratic coefficients (i.e. Axz, Ay,

and Axy for the rectangular source, and A00, Aoy, and Ayy for the cylindrical wedge source)

were indiscriminately summed to generate the constraint equations, whereas in the expressions

for the quadratic coefficients the terms were variously positive, negative, and imaginary, so in

general they would not sum to as great a magnitude as suggested by the constraint equations.

The linear terms (i.e. the sinc li ginc (2 terms in Equations 4.9 and 4.15) are often very

small compared to the constant terms (i.e. the sinc 61 sinc 62 terms). Ignoring the linear terms

typically doubled error, but ignoring them is not recommended because their inclusion does

not greatly increase the computational burden, unless the spatial first derivatives of the source

surface normal velocity (i.e. u,., ur,, and un,) are computationally expensive to evaluate).

A brief discussion about the validity of the diffraction integral is in order. Strictly speaking,

the diffraction integral is rigorously correct only for planar sources (embedded in infinitely rigid

plane baffles and radiating into a semi-infinite, homogeneously absorbing medium), and not for

curved sources such as cylindrical wedges. Nevertheless there is a rich history of application

of the diffraction integral to curved sources, including concave cylindrical wedges [27], convex
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cylindrical wedges [24], and concave spherical sources [56, 64, 80, 83]. As non-planar sources

approach the planar condition, however, the diffraction integral approaches perfect rigor (assum-

ing, again, the infinite rigid plane baffle and semi-infinite, homogeneous medium). O'Neil [80]

suggested that when the width of the transducer is large compared to the wavelength, the diffrac-

tion integral will be close to correct for modeling curved transducers, at least in the main part

of the acoustic beam. Even in the case of planar sources, however, the diffraction integral is

not rigorously correct in practice because real planar sources lack the infinite rigid planar baffle

and semi-infinite homogeneous medium. Thus in the case of rectangular transducers that are

connected to form cylindrical arrays [26, 62], or even planar arrays [95], diffraction integral

calculations are not perfectly correct. Despite this shortcoming, many investigators see value in

solving the diffraction integral because the theoretical solution is generally felt to approximate

the empirical solution fairly well, especially in the main part of the acoustic beam.

A result which illustrates where the application of the diffraction integral to field calculation

from non-planar sources can break down comes from the case of the concave radiator, shown

in the bottom of Figure 4-11. Specifically, the pressure amplitude goes to zero as the z-axis

position approaches the source surface. This result is an artifact that arises due to the fact that as

a field point approaches a convex radiator, the area of the radiator that is visible at the field point

becomes vanishingly small; in the limit as the field point sits on the source surface, none of the

radiator will be visible. (See Section B.3 for further explanation.) As evidenced in Figure 4-11,

however, this artifact is only relevant at extreme proximity of the field point to the source surface.

Results were presented for square planar sources as small as 0.5A (half a wavelength), but

with small source sizes the calculation method used herein is not necessarily computationally

advantageous over the point or simple source method. Ellis and O'Brien [27] used a source spac-

ing of A/4, and Diederich and Hynynen [24] used A/32. With the former spacing, computational

advantage of the rectangular radiator method is achieved when the source side is about s = 2A

or larger (with the constraint factor F = 5 and for the calculated field cross-sections); with the

latter spacing, computational advantage of the rectangular radiator method is achieved for all

source sizes considered. In general, the computational advantage of the rectangular radiator

method over the simple source method increases dramatically as the size of the source increases.

An additional observation worth making is that the evaluation of the acoustic pressure from
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a source subelement appears fairly involved for rectangular and cylindrical wedge subsources

(Equations 4.9 and 4.15), but in general it is not substantially more computationally involved

than the corresponding evaluation from a point or simple source. This is because the sinc e

and ginc ( terms in general need not be calculated laboriously as transcendental functions, but

instead can usually be accurately and rapidly determined from the first three non-zero terms of

their respective Taylor series (see Footnote 1 on page 89).

4.2 Acoustic Modeling of Individual FSUM Transducer

The objective of this section is to produce a parameterized model of the acoustic beams of

the individual FSUM transducers, which will facilitate rapid SAR field calculations. Obser-

vations concerning acoustic measurements and acoustic simulations will be used to develop a

parameterized model. Specifically:

1. Pressure amplitude measurements from a single FSUM transducer will be presented.

(Section 4.2.1)

2. Acoustic simulations will be performed using the Rayleigh-Sommerfeld diffraction inte-

gral to calculate the pressure amplitude field from a simulated FSUM transducer vibrating

in uniform, rectangular paraboloid, and Gaussian profiles. These simulations will be

compared with the measured pressure field. (Section 4.2.2)

3. The analytic solution for the pressure field from a Gaussian source will be modified to

produce a parametric model of the acoustic beam from the FSUM transducer. This model

will be compared with the measured pressure amplitude field. (Section 4.2.3)

The geometry of the FSUM as a whole is described later in Section 4.3.1, but in this

section only the geometry of individual FSUM transducers are of interest. Each transducer is

a 3.3 x 3.3 cm square, vibrating at 1 MHz-although not necessarily vibrating uniformly over

the entire transducer surface (i.e. the vibration phase is uniform over the transducer surface, but

the vibration amplitude may not be).
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4.2.1 Acoustic Pressure Measurements in Water Bath

Acoustic pressure field measurements were taken to characterize FSUM transducers individually

and in combination.3 Transducers radiated into a degassed water bath, and a hydrophone was

used to take pressure measurements. The hydrophone signal was proportional to the acoustic

pressure amplitude, and contained no information about phase.

Measured fields are presented for transducer #28, xd28, the most thoroughly characterized

FSUM transducer by acoustic pressure measurement. (See Section 4.3.1 for the geometric

arrangement of the FSUM transducers.) Pressure measurements were taken in seven trans-

verse (i.e. xy-) planes at depths of z = 9.5, 4.5, 19.5, 24.5, 29.5, 34.5, and 39.5 cm from

transducer #28. Within each plane, measurements were taken in 0.25 cm increments in the x di-

rection, and 0.05 cm increments in the y direction. Figure 4-13 shows the pressure amplitude

Pa measurements in these planes (with the exception of the z = 39.5 cm plane, due to space

considerations in the figures), normalized to the deduced maximum pressure amplitude, Pmax. 4

4.2.2 Acoustic Simulation

Computer simulations of pressure fields from individual FSUM transducers were performed for

comparison with the measured field. Simulations numerically solved the Rayleigh-Sommerfeld

diffraction integral according to the protocol derived in Section 4.1 with F = 10, and simulations

varied according to source vibration pattern: uniform, rectangular paraboloid (see Section 4.1.4

on page 93); and Gaussian vibration with Gaussian source width ao = 0.5 and 1.0cm, shown

in that order in Figures 4-14 - 4-17. Simulations were performed in the same seven transverse

planes in which hydrophone measurements were taken, although the grid spacing within the

planes was 0.2 x 0.2 cm (as opposed to the 0.05 x 0.25 cm of the measured field).

Simulated pressures were normalized so that overall beam power was the same as in the

measured pressure field. The acoustic power crossing each transverse plane was calculated by

summing the square of the pressure field in the plane (see Section 3.2), weighted by the area of

the grid pixel (0.04 cm 2 for simulated fields, 0.0125 cm 2 for measured fields).

3The experiments detailed in this section were performed and/or supervised by Jorgen Hansen.
4The actual pressure to which the measured pressure amplitude Pa data were normalized is not especially

important. The specific normalization value used here was obtained from the pa{z } fit depicted in Figure 4-18 on
page 123.
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Figure 4-13: Measured pressure amplitude field of FSUM transducer #28, in transverse cross-

sections at six depths z. Upper subfigures show normalized pressure amplitude Pa on the y-axis

of the cross-sectional plane; lower subfigures show contour plots of Pa at intervals of 10% of the

maximum pressure amplitude pmax, the maximum pressure amplitude. Part I.
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Figure 4-14: Pressure amplitude field of FSUM transducer with uniform vibration, simulated by

the Rayleigh-Sommerfeld diffraction integral. Field transverse cross-sections are shown at six

depths z. Upper subfigures show simulated (dashed lines) and measured (solid lines) normalized

pressure amplitude Pa on the y-axis of the cross-sectional plane; lower subfigures show contour

plots of simulated Pa at intervals of 10% of pmax. Part I.
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tion, simulated by the Rayleigh-Sommerfeld diffraction integral. Field transverse cross-sections
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Figure 4-17: Pressure amplitude field of FSUM transducer with Gaussian vibration with Gaus-

sian source width arms = 1.0cm, simulated by the Rayleigh-Sommerfeld diffraction integral.

Field transverse cross-sections are shown at six depths z. Upper subfigures show simulated

(dashed lines) and measured (solid lines) normalized pressure amplitude Pa on the y-axis of the
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The simulated field for a uniformly vibrating source (Figure 4-14) is remarkably dissimilar

to the measured field (Figure 4-13), particularly in the transverse planes closer to the source.

Most obvious are the extreme differences in the peak pressure amplitude Pa within a transverse

plane, and the area under the Pa{0, y, z} curves. The reader may question whether the pressure

normalization, meant to equate the overall beam power in the simulated and measured cases,

was in fact performed correctly. The pressure contour plots show the source of the apparent

discrepancy: In the near field the simulated peak pressure and the nominal beam width are

rather underrepresented by the pressure curves on the x- and y-axes, Pa•{, 0, z} and Pa{O, y, z }.

Another important difference between simulated and measured field is that near field extrema

are clearly evident in the simulated uniform field, but are essentially absent in the measured

field.

The simulated fields for a rectangular paraboloid or Gaussian source vibration pattern enjoy

better agreement with the measured field, but there are still shortcomings. The rectangular

paraboloid case (Figure 4-15) and the Gaussian case with Gaussian source width as = 1.0cm

(Figure 4-17) were remarkably similar. When compared with the measured field, both simulated

fields were characterized by beam widths that were slightly too large, and, especially closer to

the source, peak pressure amplitudes that were too small. In the case of the Gaussian source with

Gaussian source width as = 0.5 cm (Figure 4-16), the beam width and peak pressure amplitude

matched better to the measured field in transverse planes close to the source, but further from

the source the beam width was decidedly too large and the peak pressure amplitude too low.

All three of these simulated fields shed the near field extrema present in the uniformly vibrating

case.

4.2.3 Parameterization of Acoustic Beam

A parametric model of the acoustic beam from a single FSUM transducer is developed in this

section. In this development, it is first observed that the measured transverse cross-sections

from the pressure field of a single FSUM transducer presented in Section 4.2.1 have features

consistent with the pressure field from a Gaussian acoustic source-although agreement between

measured and simulated pressure fields in Section 4.2.2 was not especially good. Then the

analytical solution for a Gaussian source (see Section 3.1.8, page 72) is empirically modified to
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produce a parametric acoustic beam description of an FSUM transducer that agrees well with the

pressure measurements. (Parametric acoustic beam models have been consider by others; e.g.

a parametric acoustic beam model with Gaussian transverse cross-sections in the focal region

was investigated by Davis and Lele [21].)

The measured field patterns shown in Figure 4-13 are particularly suggestive of a Gaussian

transducer in several ways. Most telling is the apparent lack of near field extrema in the axial

pressure field, and in addition the transverse (xy-plane) field cross-sections indicated beam

cross-sections with a fair degree of circular symmetry. Nevertheless, simulations of Gaussian

transducer vibration performed in Section 4.2.2 did not show exceptionally good agreement

with acoustic field measurements. The purpose of this section, then, is to produce a parametric

beam model of FSUM transducers which more accurately reflects field measurements.

Within each cross-sectional plane, the measured pressure field from an individual trans-

ducer was fit to a Gaussian. Specifically, the parameters po, xo, yo, and the Gaussian beam

width ub were fit by least squares (LS) to approximate the measurements by Pmeas X, y, z } I

po Gauss/(x - o) 2 + (y - yo) 2 , tb), where Po and ab are the peak pressure and Gaussian

beam width of the fitted Gaussian in the cross-sectional plane, and x0 and yo are spatial offsets.

Numerical fits were obtained using the fmins function in Matlab 4.1 (The Mathworks, Inc.,

Natick, MA), which is based on a Simplex search method.

The resulting fit values for Po and ab were then each fit to the analytical expression for the

pressure field for a Gaussian source (see Equation 3.41 on page 73). First, the fitted Po values at

various depths z were fit for the maximum pressure amplitude Pmax and Gaussian source width

ao by LS to the analytical Gaussian beam equation:

Palo, z} = P. as Pmax (4.18)

where a' ~as1 + (z/kg2)2 is the analytical solution for the Gaussian beam width. The result

is shown in Figure 4-18. The solid curve indicates with an x the fitted normalized po values at

each depth z, and the dashed line is the normalized pressure amplitude curve for the Gaussian

beam with the best fit to the x's, given by Gaussian source width as = 0.81 cm.

Next, the fitted Po values at various depths z were fit for Gaussian source width as by LS to the

analytical solution for the Gaussian beam width o, {z} = a5 1 + (z/ko2) 2 (see Equation 3.41).
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Figure 4-18: Axial pressure amplitude Pa vs. depth z for FSUM transducer #28 measurements

and the analytic Gaussian source solution. The solid line with x's indicates the Pa values at the

given depths z fitted to measurement. The dashed line corresponds to the analytical Gaussian

beam axial pressure solution, Pa{0, z}, with Gaussian source width a, = 0.81 cm.
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The best fit for the Gaussian source width in this case was as = 0.82 cm (which is in excellent

agreement with the value found in Figure 4-18), and the results are shown in Figure 4-19. The

solid curve indicates with an x the fitted normalized Gaussian beam width values at each depth z,

and the dashed line is the analytical solution for the Gaussian beam width {z} I, with Gaussian

source width as = 0.81 cm. (N.B.: a, = u1{0}.) At first glance, the dashed curve looks as

if it could not possibly be the best fit for Gaussian source width, because it resides entirely

above the solid curve connecting the fitted values of the Gaussian beam width. Dotted lines

corresponding to the analytic solution for the Gaussian beam width curves for 75% and 125%

of the deduced Gaussian source width (0.61 and 1.02 cm) give insight into how this is possible:

a smaller Gaussian source width as produces smaller Uo, for small values of z, but larger uo, at

large values of z.

There is good agreement between the fit values ofpo and the axial pressure amplitude Pa{0, z }

curve based on Gaussian source width as = 0.81 cm in Figure 4-18, but the same cannot be said

of the agreement between the fit values of the Gaussian beam width and the analytical solution

for the Gaussian beam width based on based on as = 0.82 cm in Figure 4-19. The Gaussian

source pressure equation (Equation 3.41) can be modified (for empirical reasons, not theoretical

ones) to:

pa{r, z} = Pmax exp - ae-z = Pmax exp (4.19)
2( ab 2b/ 1 + (z/kos) 2

where the modified Gaussian beam width au'{z} = fla { f 2z} = fs1 + (f 2z/ko2) 2, and fi

and f2 are fudge factors. LS fitting of the modified Gaussian beam width a"u to the x's in

Figure 4-19, and using Gaussian source width as = 0.81 cm, produced the values fi = 0.82

and f2 = 0.58; this a"'{z} curve is indicated by the dotted line in Figure 4-20. In addition, the

curves for the fitted Gaussian beam widths ab (X's) and the analytical solution for the Gaussian

beam width al({z} for as = 0.82 cm that were shown in Figure 4-20 are shown again.

Figure 4-21 shows how this modified Gaussian pressure amplitude solution compares with

the acoustic measurements of transducer #28. Predictably, agreement is excellent-predictably,

because obtaining strong agreement was the motivation for modifying the analytical Gaussian

beam width aC, to the modified Gaussian beam width ua" in the exponential term of Equa-

tion 4.19. This modification was not justified on theoretical grounds, but it was clear from
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Gaussian source solution. The solid line with x's indicates the Gaussian beam width ab values at

the given depths z fitted to measurement. The dashed line corresponds to the analytical solution

for the Gaussian beam width ar{z}} for Gaussian source width os = 0.82 cm, and the dotted

lines for as = 0.61 and 1.02 cm.
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Figures 4-14 - 4-17 that restricting pressure amplitude field characterization to solution of the

Rayleigh-Sommerfeld diffraction integral would not provide especially good agreement with

the measured field.

The errors between the analytical Gaussian beam (Equation 3.41) and the measured pressure

field were calculated, as were the errors between the modified Gaussian beam (Equation 4.19)

and the measured pressure amplitude field. The specific simulation parameters were: a Gaussian

source width a, = 0.81 cm for both Gaussian beam models, and fi = 0.82 and f2 = 0.58 for the

modified Gaussian description. Pressure amplitude was normalized to Px = 1, and RMS and

maximum error were calculated within each transverse plane, over non-zero measured points;

and also for all seven transverse planes together, over non-zero measured points. Figure 4-22

indicates the errors calculated for all seven transverse planes; the respective RMS and maximum

error over all non-zero measured points were .08 and .43 for the analytical Gaussian beam,

and .05 and .38 for the modified Gaussian beam. These errors are perhaps misleadingly large,

however, as illustrated in the upper subfigures (pressure amplitude Pa vs. transverse distance y)

of Figure 4-21. In this figure (particularly in the transverse planes corresponding to z = 9.5 cm

and z = 14.5 cm), small positional errors of the beam can produce large errors in pressure

amplitude because of the steep radial gradient of the beam pressure.

There are several possible explanations for the discrepancy between pressure amplitude

fields simulated using the diffraction integral and the measured pressure amplitude field. The

non-planar geometry of the FSUM applicator as a whole, and the concomitant acoustic reflec-

tions of waves from one transducer off other transducers or the housing of the applicator head,

is a likely contributor to the discrepancy, and could conceivably cause the acoustic beam nar-

rowing (compared with simulations) observed in the measurements. Explaining discrepancies

between simulated and measured fields is probably not a terribly useful exercise, however-

particularly for a device with such dramatic design and construction idiosyncrasies as the FSUM.

As suggested by Diederich and Hynynen [24], the Rayleigh-Sommerfeld diffraction integral is

appropriate for theoretical studies concerning ultrasound fields, but of course acoustic mea-

surements show the real behavior of the acoustic source. Thus the modified parametric beam

model given in Equation 4.19 is an eminently reasonable description of the acoustic beam from

transducer #28.
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Figure 4-22: RMS and maximum normalized pressure amplitude Pa error for the analytic

Gaussian beam model and the modified Gaussian beam model. Errors, marked by x's, were

calculated in each of the seven transverse planes at various depths z.
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Measurements were also made of beams from other FSUM transducers, and, though the

fields were not identical, they exhibited much of the same behavior seen in the beam from

transducer #28; in particular, the lack of near field extrema was universally observed. A total of

98 beam cross-sections were measured for 36 different transducers. (Measurements were made

on planar grids with 0.15 cm increments in the x direction and 0.05 cm increments in the y direc-

tion.) 76 of these beam cross-sections showed clear Gaussian patterns, and 22 exhibited bizarre

forms---even when other beam cross-sections of the same transducer were Gaussian. Thus the

76 Gaussian beam cross-sections were fit by LS to Pme{z, Y} = po Gauss(r{x, y}, ab), where

Po and the Gaussian beam width ab are fitting parameters. (The other 22 beam cross-sections

were ignored.) The planes of the beam cross-sections contained the nominal focal point of the

FSUM, but the cross-sections were in general oblique to the beam. This obliqueness resulted in

Gaussian beam cross-sections that were elliptical instead of circular, so the cylindrical coordinate

r{x, y} was itself a function of five fitting parameters: xo and yo, the x and y offsets; rmin and

rmax, the respective minor and major semiaxes of the ellipse (N.B.: rmin = ab); and 0, the angle
of rotation of the ellipse in the cross-section. Specifically, r{x, y }2/rmi n2 = X12 /i n 2 22/rn2

where (x', y') is the 2-D point (x - xo, y - Yo) rotated through the angle 0. The mean and standard

deviation of the fitted Gaussian beam widths for the 76 Gaussian beams was 0.77 ±-0.05 cm, with

a range from 0.66 to 0.90 cm. (See Table C.2 in Appendix C for specific transducer Gaussian

beam width values.)

Given the available acoustic measurements for the various FSUM transducers, and the relative

constancy of the modified Gaussian beam width curve in the region of interest (z < 30cm)

in Figures 4-20 and 4-21 for transducer #28, it seems expedient to approximate the Gaussian

beam width as constant along the axial region of interest (i.e. near the focal plane, at a beam

depth equal to the radius of curvature of the FSUM device, 23.8 cm). This results in the beam

parameterization:

pa{r, z} = Pmax exp (r 2) ez (4.20)

where ab is the fit value of the Gaussian beam width for a specific transducer, or 0.77 cm if

no fit exists for the transducer; and the Gaussian source width au = 0.81 cm, the fit value for

transducer #28. Phase issues associated with this parameterization will be discussed in the next

section.
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4.3 Acoustic Modeling of Multiple FSUM Transducers

In this section the transition is made from modeling the acoustic field of a single transducer

excited by itself to modeling multiple transducers excited simultaneously. The transducers of the

FSUM are excited coherently, i.e. at the same frequency (1 MHz) and in phase with each other.

Thus although the device is not a phased array, there are nevertheless constructive and destructive

interference patterns that are important to capture in the acoustic model. The approach will be:

1. Pressure amplitude measurements will be presented from a transducer excitation pattern

corresponding to multiple, simultaneously excited FSUM transducers. (Section 4.3.3)

2. The modified Gaussian parametric model for pressure amplitude field will be used with

several intensity and pressure superposition schemes to determine which scheme most

accurately models the observed measurements. (Section 4.3.4)

4.3.1 FSUM Geometry

The FSUM comprises 56 square transducers placed on the inside of a subsection of a spherical

shell. The transducers are 3.3 cm on a side, and they subtend a nominal 90 of arc in the directions

of their heights and widths. The coordinates of the corners of the transducers were obtained

from the CAD description of the FSUM. These design coordinates were given to an accuracy

of 10- 3 cm, in the FSUM reference frame, although the accuracy of the FSUM construction

understandably fell considerably short of this.

Figure 4-23 schematizes the FSUM and its canonical coordinate system. (A more detailed

schematic of the device can be found in Figure 5-2 on page 176.) The radiating surfaces form

a nominal spherical shell of radius 23.8 cm, and dashed lines in the cross-sectional yz-plane in

Figure 4-23A indicate the central axes of the ultrasound beams emanating from the transducer

surfaces, and how the beams focus at the center of the sphere. The transducers radiate in the

+z direction, so Figure 4-23B is facing the back (non-radiating) side of the transducers. In

addition, the transducers in Figure 4-23B are labeled according to their respective identification

numbers, 0-55.

To determine more accurately the real orientations of the individual FSUM transducers,

indirect, qualitative pressure measurements were taken in the focal plane (z = 0cm) for all
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Figure 4-23: Schematic of the FSUM showing the geometric arrangement of its 56 transducers,

in the FSUM coordinate system.

56 transducers, one at a time. Specifically, a 1 cm sheet of superflap (an ultrasound absorber)

and a thin, temperature-sensitive sheet of liquid crystal were sandwiched between transparent

Plexiglas sheets, and placed in a water bath with the liquid crystal sheet in the (designed) focal

plane of the FSUM. Transducers were excited individually, causing heating of the superflap

and coloration of the liquid crystal. The location of the coloration was determined using a grid

drawn on the Plexiglas.

Given perfect device construction, it would be expected that peak pressures in this plane

would be observed at (0, 0, 0) cm; however, measurements indicated peak pressures in the focal

plane occurred at (xi, yi, 0) cm, where i corresponds with the xdi, O • i < 56 (and in general

xi, y; - 0 cm). To modify the geometric description of the device to account for these offsets,

new transducer coordinates were obtained by rotating the original coordinates about the center

of (the radiating surface of) the transducers so that the beam would intersect (zi, yi, 0) cm instead

of (0, 0, 0) cm. Thus the coordinates of the centers of the transducers were unchanged, but the

coordinates of the corners were slightly altered. See Section B.4 for details.

133



4.3.2 FSUM Transducer Power Characteristics

Individual FSUM transducers could receive up to a nominal 35 W of electrical power. Transducer

efficiency, the ratio of emitted acoustic power to electric power, ranged from about 0 to 75%,

depending on the transducer. Variations in this efficiency were mainly due to differences in

transducer natural frequency, differences in coupling between the piezoelectric transducers and

their backing, and in some cases poor electrical connection of the transducers. Table C.2 in

Appendix C tabulates the relative acoustic pressures of the transducers; the relative maximum

power for transducers can be calculated by squaring the relative pressures.

The software that drives the FSUM allowed power to be set from 0 to 100% of maximum

power, adjustable within 1%, for each individual transducer. Power settings could be adjusted

absolutely or relatively, and any combination of transducers could be adjusted simultaneously

as long as the adjustment was the same for each transducer.

4.3.3 Acoustic Pressure Measurements in Water Bath

Acoustic field studies were performed for various combinations of FSUM transducers ex-

cited jointly. As in Section 4.2.1, transducers radiated into a degassed water bath, and a

hydrophone was used to make pressure amplitude measurements. Figure 4-24 shows which

FSUM transducers were excited for one particular set of measurements. For this excitation

pattern, measurements were taken in the xz- and yz-planes, in increments of 0.05 cm in the x

and y directions and 0.5 cm in the z direction; these measurements are shown in Figure 4-25A

and 4-25B, respectively.

Several notable features are exhibited in the Pa field shown in Figure 4-25. In particular,

there is a substantial degree of high spatial frequency content, and there is a clear concentration

of intensity in the focal region (at least in Figure 4-25A). Spatial variations are characteristic

of the near field region of acoustic fields, and large variations are indicative of acoustic sources

with sides that are considerably larger than the acoustic wavelength. In the case of the excitation

pattern under investigation, the side of the combined FSUM source, seven transducers on a side,

has a nominal diameter of about 23 cm. A 1 MHz source of this size, with a wavelength of

0.15 cm, produces a near field that spans about 1 m, comfortably containing the entire region in

the vicinity of the geometric focus of the device.
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Figure 4-24: FSUM excitation pattern. Numbered transducers were excited, unnumbered were

not.

The cross-section of thePa field shown in Figure 4-25B clearly indicates that the cross-section

does not contain the geometric focus of the FSUM; in anatomic terms, it is a para-sagittal plane

rather than a mid-sagittal plane. In the case of acoustic radiation into a non-attenuating medium,

such as the case here, the geometric focusing action of the FSUM should generate a substantial

peak in the pressure field in the vicinity of the focus. (The expected peak is clearly visible in

Figure 4-25A.) Since it is not clear how far from mid-sagittal the plane is, comparisons in the

next section between measured and modeled fields will be restricted to the xz-plane.

Both planar cross-sections in Figure 4-25 are clearly asymmetric, which, given the symmetric

design of the FSUM device, may seem surprising. These asymmetries are caused by several

factors, including imperfections in device construction associated with transducer geometry

(Section 4.3.1) and power (Section 4.3.2).

4.3.4 Acoustic Simulation

It is unrealistic to expect an acoustic model to capture every peak and valley in the measured

field, particularly when the patterns are so complex. Peaks between the modeled and measured

fields will frequently fail to match up well, so direct comparison may lead to the mistaken

impression of poor modeling. Thus comparison between modeled and measured fields will

be made by comparing the fraction of acoustic power in a displayed plane that resides within
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Figure 4-25: Measured pressure amplitude Pa field of FSUM, in the (A) xz- and (B) yz-planes.
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squares centered at the device focus. For simplest comparison, modeled Pa field values were

calculated on the same grid points in the xz- and yz-planes where measurements were taken.

The total acoustic power contained in a plane, Qpl, was taken to be proportional to the sum of the

squares of the pressures on the grid points; in symbolic terms, 4p c Ejipjpl Papipl ,jpl 2 , where

(ip1, jpl) spans all grid points in the plane. The power contained in a square in a plane, (sq, was

proportional to the sum of the squares of the pressures on the grid points in (and on) the square;

or, Qsq oC Ei,,j, Pa{isq, jsq 2 , where (isq, jsq) indicates the grid points contained in the square.

The fraction of acoustic power within the square was then given by qsq /pl.

Five models were investigated--four based on the parametric model for individual trans-

ducers developed in Section 4.2 (see Equation 4.19 on page 124), but differing in the treatment

of the phase term (see Equation 3.41 on page 73); and one using the Rayleigh-Sommerfeld

diffraction integral (see Equation 3.24 on page 66) for a Gaussian source. Specifically, the five

models were:

1. Intensity superposition. In this scheme, the acoustic intensity field contributions from

individual transducers are added. This is mathematically equivalent to pressure field

contributions that are summed independently: PaFSUM {X, Z} = iEp {r, z1 }2, where

PaFsUM {x, y, z} is the Pa of the entire device at the field point (x, y, z) in device coordinates,

and pa( {r, zi} is the Pa from the i"t transducer (xdj) at the field point (ri, zi) in local

transducer coordinates. (This scheme is most appropriate for transducers that are excited

incoherently.)

2. Pressure superposition with distance-weighted phasing [89]. Here pressure field contri-

butions from individual transducers are obtained using the parametric model, and they

are added together as complex pressure fields using a phase term that is proportional to

the distance between the center of the transducer and the field point: PFsUM{X y, Y, z} =

Ei pa{ri, zi}e -ikd ', where di = r? + zi2.

3. Pressure superposition with depth-weighted phasing. This scheme is similar to distance-

weighted phasing, except the depth zi is used for in phase term: PFSUM{X, y, z} =

ZE pa {ri, zi }e -ikz

4. Pressure superposition with Analytic solution phasing. This scheme is similar to the
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distance-weighted and depth-weighted phasing, except the phase term comes from the

analytic solution of the Gaussian source given in Equation 3.41: PFSUM{X, y, z} =

EiPa2 {ri, zi}ei(z[ r ,2/2b 2_ i--kzi), where zi 2 zi/ko, and r -= o 1, +z 2 , where

as for all transducers is taken to be the value determined for transducer #28, namely

as = 0.81 cm.

5. Pressure superposition using the Rayleigh-Sommerfeld diffraction integral. This model

was based on the solution of the diffraction integral for Gaussian sources, all with Gaussian

length constants as = 0.81 cm. Numerical solution was achieved using the method

developed in Section 4.1 with F = 20.

Figures 4-26 - 4-30 show respectively the respective simulated Pa fields in the xz- and yz-planes

for the intensity superposition method and the pressure superposition methods using distance-

weighted phasing, depth-weighted phasing, analytic solution phasing, and Rayleigh-Sommerfeld

diffraction integral. Shown in Table 4.1 is the fraction of acoustic power in squares of 2, 4, and

6 cm on a side and centered at the focus. Data are presented for the measured and five simulated

fields.

Table 4.1: 4sq/1pl x 100%, the percentage of acoustic power inside squares of various sides

centered at the focus of the FSUM device in the xz- and yz-planes.

Simulation Model

Measuredt

Intensity superposition

Pressure superposition

Distance-weighted

Depth-weighted

Analytic solution

Diffraction integral

Square Side
2cm

xz yz

23 -

14 14

23 22

24 21

33 31

21 20

4cm

xz yz

46 -
31 31

46 43

47 42

53 51

44 43

tThe measured field is clearly not a simulation model, but it is shown here for comparison with

the simulated fields. (yz-plane values were not available for the measured field.)

A number of interesting observations can be made concerning Table 4.1 and Figures 4-25 -
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xz yz

67 -

44 45

59 59

59 58

65 62
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Figure 4-26: Simulated pressure amplitude Pa field of FSUM using modified Gaussian parametric

model and intensity superposition, in the (A) xz- and (B) yz-planes.
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Figure 4-27: Simulated pressure amplitude Pa field of FSUM using modified Gaussian para-

metric model and pressure superposition with distance-weighted phasing, in the (A) xz- and

(B) yz-planes.
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Figure 4-28: Simulated pressure amplitude Pa field of FSUM using modified Gaussian parametric

model and pressure superposition with depth-weighted phasing, in the (A) zz- and (B) yz-planes.
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Figure 4-29: Simulated pressure amplitude Pa field of FSUM using modified Gaussian para-

metric model and pressure superposition with analytic solution phasing, in the (A) xz- and

(B) yz-planes.
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Figure 4-30: Simulated Pa field of FSUM using modified Gaussian parametric model and

pressure superposition with the Rayleigh-Sommerfeld diffraction integral, in the (A) xz- and

(B) yz-planes.
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4-30. The table indicates that the distance- and depth-weighted phasing schemes produce nearly

identical fields, in terms of the power calculations performed in the table, and that both agree

remarkably well with the measured field, especially in the 2 x 2 and 4 x 4 cm2 squares centered

at the focus.

The intensity superposition scheme has the tendency to reduce high peaks in the pressure

field, where constructive interference would take place in a different phasing scheme; and

conversely to raise valleys and low peaks, where destructive interference would otherwise take

place. These effects conspire to diminish the dominance of the focal region in the pressure field,

evidenced in Table 4.1 by less power concentration in the squares at the focus.

Given the parametric description of the transducer beams, one might expect the analytic

solution phasing scheme would be an attractive choice for phasing, but Table 4.1 suggests

otherwise. The original analytic model for a Gaussian beam (Equation 3.41) was of course

modified (Equation 4.19) in FSUM acoustic simulations, and perhaps this modification was

somehow very incompatible with the original phase term. It is not necessarily surprising that

variations in the phasing scheme can result in radically different acoustic fields, however-in

fact, phased arrays depend on this phenomenon.

As shown in the table, the analytic solution phasing scheme had superior agreement with

measurement in the 6 x 6 cm2 square, but overestimated the concentration of power in the

smaller squares. Given that the modeling here is motivated by empirical results, a phasing

scheme could be conceived that combines features of different phasing schemes. For example,

the distance-weighted phasing scheme could be used in a sphere of radius 2 or 3 cm around the

focus, and analytic solution phasing outside that sphere. But, in fact, such a phasing strategy

would probably not improve agreement between modeled and measured fields. This is because

the fraction of the power in the square ring between the 4 x 4 and 6 x 6 cm2 squares was

nearly invariant between different modeling schemes: about 13% (compared with 21% for the

measured field).

Lastly, the Rayleigh-Sommerfeld diffraction integral model will be discussed. In Table 4.1

this method is seen to exhibit worse agreement with the measured field than the distance- and

depth-weighted phased schemes, consistently underestimating the power concentrations in the

central squares; nevertheless, this method was not bad. But given that calculation by this method
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was two or more orders of magnitude slower than any of the phased schemes [89], depending

on the constraint factor F, there is no question that the phased schemes are computationally

preferred when they provide comparable (or better!) agreement with measurements.

For the FSUM excitation pattern explored here, then, the preferred models are the distance-

and depth-weighted phased schemes, which appear nearly equivalent, with the former marginally

and insignificantly better. The field cross-sections shown in Figures 4-27 and 4-28 reflect the

extreme similarity in these simulations, but they both show significant differences from the

measured field cross-sections in Figure 4-25. However, as pointed out by Sidney et al. [89]:

From a clinical point of view, differences in pressure fields are only significant

if they result in significantly different calculated temperature fields. In this light,

differences in temperature fields are minimized by thermal convection by blood

perfusion and thermal conduction in tissue, which attenuate the amplitude of spatial

variations in temperature from spatial variations in SAR; furthermore, this thermal

attenuation is greater at higher spatial frequency [96, Umemura and Cain].

4.4 Fanned Absorption Method

The FSUM transducer and device modeling of Section 4.2 and Section 4.3 was performed for

a non-attenuating medium. Without attenuation from absorption, however, there is no power

deposition, and hence no heating. Since hyperthermia is the intended application of the acoustic

modeling in this thesis, then, it is clear an adjustment in the model must be made to accommodate

ultrasound absorption. It is the objective of this section to develop the Fanned Absorption

Method (FAM), a method which takes the acoustic pressure field of a single source radiating

into a non-attenuating medium, and modifies it to take into account the affects of absorption.

Field contributions from individual transducers can then be combined using distance-weighted

phasing (or some other scheme) to obtain the field from the entire device.

Barring scattering, reflection, and refraction effects, ultrasound waves are transmitted radially

from their point of origin, propagating along so-called fan lines. This spherical geometry for

wave transmission is taken quite literally by the class of numerical techniques which subdivide

individual acoustic sources into many simple or point sources (Section 3.2.1, page 76). The
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affects of attenuation from absorption are in practice calculated as the waves propagate along

these fan lines (see Equations 3.45 and 3.46).

In radiotherapy, radiation is generally transmitted in the same radial geometry as ultrasound.5

Milan et al. [69] took advantage of this geometry to tabulate radiation dose at 17 different

depths along the central axis of the beam, and five different depths along fan lines in a plane

containing the central axis. Thus a fan lattice comprising fan lines with grid points was

established. In this particular case the geometry was triangular, with the triangle apex, the

origin of the fan lines, located at the source of radiation. Radiation dose values could be easily

interpolated throughout this plane, and various computational protocols were used to calculate

off-axis dose and accommodate tissue heterogeneity of radiation absorption and scattering. More

sophisticated computational protocols are used now, such as the JCRT Photon Algorithm [54].

(The reader is also referred to Bentel [8] for general discussion of radiation dose calculation.)

These algorithms generally operate by tabulating on a fan lattice radiation dose values obtained

experimentally using phantoms, interpolating values between tabulated points, and modifying

tabulated values according to beam aperture, beam collimator, and tissue heterogeneity.

In the field of computer graphics, ray-tracing is used to produce images from scenes that

have instances of reflection or refraction. Ironically, then, in computer graphics ray-tracing is

used specifically to accommodate wave phenomena which we would like to ignore in ultrasound

field prediction. But extended ray-tracing also has the ability to generate images with partially

absorbing and scattering media, so it is not surprising that an algorithm similar to ray-tracing

can be used for ultrasound field prediction. (We are unaware of a "super-extended" ray-tracer

which takes into account wave constructive and destructive interference patterns, but in theory

there is no reason why such a ray-tracer could not be made. Ray-tracers are used to generate

visual images and to illustrate visual phenomena-generally for commercial ends, not scientific

ones-and the desire to see images which exhibit light diffraction phenomena has not yet arisen.)

Ray-tracing is a famously computationally intensive technique, however, and for this reason it

is not necessarily desirable to use it to perform acoustic field calculations.

5Technically ultrasound could be considered a form of radiation, but radiation in the context of radiotherapy
generally refers to the specific use of either positive ions (using particle accelerators), gamma rays (gamma knife
Co60 systems), or x rays (LINAC systems) [63].
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4.4.1 Fan Lattice Description

The Fanned Absorption Method (FAM) for rapid acoustic field calculation will now be described.

Similar to radiation dose calculation schemes, this method starts with a nominal known pressure

field from an acoustic source radiating into a non-attenuating (i.e. non-absorbing and non-

scattering) medium. The field can be known at discrete spatial locations from measurements

or numerical simulations, or it can be known universally through a parametric description of

the acoustic beam. A fan lattice is established, and attenuation factors are calculated at each

lattice point to calculate the pressure field in the presence of absorption; the attenuation factor

is simply the ratio between the pressure amplitude fields with and without absorption.

There are several qualities desired in the fan lattice that comprises the fan lines. First,

the shape of the fan lattice should reflect the source geometry in the near field, but the fan

lines should radiate spherically in the far field. Second, there should be a simple scheme for

interpolating between the lattice points to arbitrary points-much as there is a simple scheme

(namely trilinear interpolation, Section B.5) for interpolating between Cartesian grid points to

fan lattice points. Third, there should be an easy way to handle pressure attenuation calculations

as acoustic waves propagate along the fan lines and are absorbed. The reason for wanting these

qualities should become clear by the end of this section.

The fan lattice is basically a discretized version of the fan coordinate system, and both

look like a cross between a sphere and the source geometry. For example, the fan lattice and

coordinate system for a square planar source look like a cross between a sphere and a pyramid

with a square base, and they are depicted in Figure 4-32A. The source, in the local source

coordinate system, is embedded in the xy-plane and centered at the origin O. Acoustic waves

are taken to originate at O', a fan line offset distance d behind the planar source, and they

radiate spherically. Any given fan line is defined by two angles Ox and ,y, termed here fan

angles.6 Points along the fan line are given by the r coordinate, which is measured along the

fan linefrom the surface of the source, not from 0' or O.

A point obviously can be represented in Cartesian coordinates, (x, y, z), or fan coordinates,

6Fan angles should not be confused with Euler angles, the conventional angles used to describe spherical
coordinates.
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Figure 4-31: Fan lattice schematic. (A) Square source. (B) Rectangular source.

(f,, 3y, r). Fan coordinates can be converted to Cartesian coordinates:

r
Z -Y{- , 0,}

x = (z + d) tan l (4.21)

y = (z + d) tan O,

where the projection factor7 7{, fl ,} = - tan2flx + tan2 y + 1. Conversely, Cartesian coordi-

nates can be converted to fan coordinates:

fx = tan - '
z+d

,3y = tan- 1  Y (4.22)z+d

r = z-y {fl, !, }

In the fan lattice, fan lines are placed at discrete angles 0f, and y, with intervals of A0.

Fan lattice points are placed at intervals of Ar along fan lines. Specifically, the (fx, Of, r) fan

coordinates associated with the fan lattice indices (i, j, k) are given by:

Ol{i} = iAO

fl{J } = J AW (4.23)

7The projection factor is so named because it gives the ratio between the length of an increment along a fan
line, and the length of the increment projected onto the z-axis.
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Figure 4-32: Orthogonal views of three layers of the fan lattice for a square planar source.

r{k} = k Ar

where (i, j, k) are all integers, and -n < i, j n and 0 < k < n,. Along a given fan line, the

difference in position between adjacent lattice points is (Ax, Ay, Az), where geometry indicates:

Az{i,j} = Ar
y{i, j}

Ax{i,j} = Az{i,j} tan/ 3{i} (4.24)

Ay{i,j} = Az{i,j} tan ,3{j}

The fan lattice looks like a series of quasi-spherical onion layers emanating from the source,

with a squarish grid on each layer. Figure 4-32 shows three layers of the fan lattice (including

the planar layer coplanar with the source) in orthogonal views, with the fan line offset distance

d = 0.5 (arbitrary length units). In the xz-plane (and, equivalently, the yz-plane) projection,

dotted lines depict the fan lines, and the planar source (not shown) would be in the xy-plane (i.e.

the z = 0 plane).

The matter of how to determine the fan line offset distance d can be an important one, and

ultimately comes down to a judicious estimate based on empirical measurements or numerical

simulations of the pressure field (as will be illustrated in Section 4.4.2). When the fan line offset
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distance is determined, however, the desired characteristics of the fan lattice will have been met.

Once the fan lattice is established, the attenuation factor8 f needs to be calculated. This

attenuation factor quantifies the attenuation from absorption as acoustic waves propagate down

a fan line, and it corresponds to the absorption terms in Equations 3.45 and 3.46 on page 78.

Specifically, the pressure field transformed using the FAM so that absorption is taken into

account is given by pFAM = fPo, where po is the pressure field for acoustic radiation into a

non-attenuating medium. In the continuous description of the fan coordinate system:

f{fl3, , r} = exp (- j {, , }dJ (4.25)

In the discrete description of the fan lattice:

f {i, j, k} =exp - exp -Ar t {i, j, (4.26)
(=1 t=1

Note that f{/3, /y, 0} = 1 and f{i, j, 0} = 1. In practice, f{i, j, k} can be calculated iteratively:

f {i, j, k} = f {i, j, k - 1} exp(-a{i, j, k}Ar) (4.27)

which shows that the attenuation factor at a given lattice point depends only on the absorption

coefficient at that point and the attenuation factor at the previous (next closest to O') lattice point

on the same fan line.

The fan lattice and fan coordinate system describe, in a sense, the geometry of the propagation

of acoustic waves from the source. Using them in the FAM to perform acoustic field attenuation

calculations can be viewed as a compromise between treating the source microscopically, with

simple sources radiating acoustic waves spherically; and treating the source macroscopically,

with the shape of the source reflected in its radiating acoustic waves. Clearly the FAM is not

as rigorous an approach as that used in Equation 3.46. But a parametric beam description such

as the modified Gaussian in Equation 4.19 (Section 4.2.3) does not accommodate the use of

Equation 3.46, so an alternative technique, like the FAM, must be used to deal with attenuation.

4.4.1.1 Rectangular Source

For the general planar rectangular source, with unequal height and width, a modification of the

fan coordinate system must be adopted. Figure 4-31B depicts this variation. Now there are two

8Attenuation factor is not part of the standard nomenclature in ultrasound physics.
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fan line offset distances parameters which must be determined, d, (between 0O and 0) and d,

(between O' and 0), and Equations 4.21 and 4.22 for coordinate conversion are modified. For

conversion from fan to Cartesian coordinates:

r
z --

x = (z + dx) tan O/ (4.28)

y = (z + d. ) tan 0,

For conversion from Cartesian to fan coordinates:

x = tan-  x
z + d,

S = tan-  Y (4.29)
z + d,

Equations 4.23 is slightly modified to accommodate different increments in angles in the x and

y directions:

x{i}} = iAo,

y {J } = J A3 (4.30)

r{k} = k Ar

where -nx• i < nx, -n, < j < ny, and 0 < k < nz.

Figure 4-33 shows, in orthogonal views, three layers of the fan lattice (again including the

planar layer coplanar with the source) of a source with dx = 0.5 and d, = 1.5 (arbitrary length

units). The xy-plane projection appears rather similar to that in Figure 4-32, but the different

curvatures in the x and y directions are clearly evident when comparing the other two projections.

Dotted lines show how the projections of the fan lines emanate from O0 in the xz-plane and O'

in the yz-plane; but as mentioned before, the fan lines themselves do not emanate from a single

point. Thus in the case of the general rectangular source, fan lines do not radiate spherically in

the fashion of the square planar case.
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4.4.1.2 Convex Cylindrical Wedge Source

Another source geometry worth investigating here briefly is that of the convex cylindrical

wedge. The fan lattice in this case is similar to that of the rectangular source case, except the

fan r coordinate tracks the curved surface of the cylindrical source instead of the planar surface

of the rectangular source, making for more rounded lattice layers in the near field.

Figure 4-34 shows the xz-plane cross-section of the convex cylindrical source in its canonical

coordinates (refer also to Figure 4-2 on page 87). Once again, it is desired to relate the fan

coordinates 9 (Pf, ýy, r) to the Cartesian coordinates (x, y, z), and vice versa. The point O

and the fan line offset distances dx (QOO) and d, (0,0) are analogous to their respective

counterparts in Figure 4-33, with the caveat that here O, dx, and d, vary as a function of fan

angle ,x. In principal, when the functional relationships relating dx and d, to ,x are determined

then conversions between the fan and Cartesian coordinate systems can be performed (using

equations similar to Equations 4.28 and 4.29). (Equation 4.30 applies as stated to the fan lattice

of a convex cylindrical source.)

0'

/ (x,y,z) or,I/ c • . .

z

-'-•-dx -- dx-

-W-

Figure 4-34: Cross-section in xz-plane of convex cylindrical wedge for fan lattice determination.

9The fan coordinate r should not be confused with the cylindrical coordinate r. In this section only fan
coordinates are used.
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From Figure 4-34:

h = R sin 0 = d, tan 3x (4.31)

and:
= d + dxcos = (4.32)R

These two equations can be combined to give:

(d, tan ',)2 = R2(1 - cos 2 0) = R 2 - (dx + d,)2 (4.33)

Equation 4.33 is a quadratic equation in dX, with solution: 10

d = cos,3Ox R 2 - di~ 2 sin23x - d' cos 2  (4.34)

For the convex cylindrical source, w = d' + dx = d' + dy. (d' is positive as shown in

Figure 4-34, but it would be negative if O were to the left of O'. Furthermore, it is conceivable,

for a source with much greater x extent than y extent, that O' could lie to the right of O for large

Ox, resulting in d, < 0 ! Unlike 0,, however, O is constrained to lie between 0' and O', so

d', dx > 0.) Thus:

w{3X} = cos X•R 2 - d' 2 sin2 Ox + d' sin 23x (4.35)

(If O' and 0' are coincident, then d' = 0 and Equation 4.35 simplifies considerably to w {3} =

R cos 3x.) Then Equation 4.28 can be modified for converting fan coordinates into Cartesian

coordinates:

r
z = + w=

Z { 7x, O,} + W{}3i

x = (z - d') tan O3 (4.36)

y = (z - d') tan /,

where w, d', and d' are as shown in Figure 4-34. Conversely, Equation 4.29 can be modified

for converting Cartesian coordinates into fan coordinates:

OX = tan-' Xz-d'X

o10 f course, the quadratic equation has two roots; the given solution corresponds to the positive root. (In the
region of interest, 13xI 7r/2 and dx > 0.)
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, = tan I' (4.37)
z -d

r = (z - w{i3O}) Y{/3IX 3Y}

The discretized f {i}, 3 {Jj}, and r {k} can be obtained from Equation 4.30.

Figure 4-35 shows, in orthogonal views, three layers of the fan lattice (including the cylin-

drical wedge layer essentially coincident with the source) of a source with radius of curvature

R = 1, d' = R - 0.5 = 0.5, and d' = R - 1.5 = -0.5 (arbitrary length units). Dotted

lines show how the projections of the fan lines emanate from O in the xz-plane and O' in the

yz-plane. The views are rather similar to those in Figure 4-33, with the main difference most

visible in the xz-plane projection: The r = 0 layer is curved (with radius of curvature R = 1,

the radius of curvature of the source).

4.4.2 Theoretical Validation

The FAM can be viewed as a technique to determine how much an absorbing medium attenuates

the acoustic pressure field (compared with acoustic radiation into a non-attenuating medium).

For the FAM to perform this task reasonably accurately, two conditions must hold. First,

the attenuation achieved by the simple expedient of marching down fan lines and adjusting

the attenuation factor at each step must produce a good estimate of the true attenuation. Put

another way, the "true" pressure attenuation at a given field point is a combination of all the

attenuations experienced by spherical acoustic waves propagating from each differential area of

the source, and the attenuation achieved using the FAM must correspond well to this "combined"

or "averaged" attenuation.

Second, although the FAM modifies the amplitude of the pressure field, it does not alter its

phase. For acoustic fields produced using a single source or multiple incoherent sources, this

second condition is not so relevant. This is because it is really the pressure amplitude that is

considered important for SAR field calculation. For acoustic fields produced using multiple

coherent sources, however, this second condition is critical. This is because the acoustic field

for multiple coherent sources is the complex sum of the constituent fields from each source, and

this complex addition is very sensitive to phase.

For the task at hand, using the FAM to model the coherently excited FSUM transducers, both

155



L

L
L--

I

4-

-0.5 0
x

1 1.5 2

0.5

-0.5

0 0.5 1 1.5 2
Z

Figure 4-35: Orthogonal views of three layers of the fan lattice for a convex cylindrical wedge

source.

156

0.5

-0.5

_1
-E

-1

- -I

-J1

- I

0.5

0.5

>, 0

-0.5

4
-I

-0.5 0 0.5

I I I g

l I g P

... 
I I

IT

'

E

E



conditions (amplitude and phase fidelity) must be validated, and to this end multiple computer

simulations were performed of a single FSUM transducer radiating into inhomogeneously

absorbing media. Briefly:

1. Using the Rayleigh-Sommerfeld diffraction integral solution method developed in Sec-

tion 4.1, acoustic simulations are performed to find the pressure field of an FSUM trans-

ducer with a Gaussian vibration profile radiation into a non-attenuating medium and eight

other medium absorption geometries. These nine fields are taken to be the nominal "ex-

act" pressure field solutions for their respective non-attenuating or absorbing geometries,

and they are termed the baseline fields.

2. For pressure phase validation, the pressure phase fields for the eight absorbing medium ge-

ometries are each compared with the pressure phase field for the non-attenuating medium.

These comparisons use only the pressure fields calculated from the acoustic simulations

using the diffraction integral, and not any FAM modified pressure fields; thus the FAM

pressure phase validation is indirect. (Section 4.4.2.1)

3. For pressure amplitude validation, FAM modifications of the pressure amplitude field

for the non-attenuating medium are performed for all eight absorbing geometries. These

FAM-modified pressure amplitude fields are compared with the pressure amplitude fields

calculated using the diffraction integral; thus the FAM pressure phase validation is direct.

(Section 4.4.2.2)

From this description, it is clear that acoustic simulations fell in two broad categories: baseline

simulations, which used the Rayleigh-Sommerfeld diffraction integral to solve for the complex

pressure field; and FAM simulations, which used the FAM to modify the baseline field calculated

for a non-attenuating medium.

In all these simulations, the FSUM transducer was placed in the canonical local source

reference frame (see Figure 4-1 on page 87), and complex pressures were calculated on a

uniform Cartesian "pressure grid." The FSUM transducer model used in baseline simulations

consisted of a 3.3 x 3.3 cm2 square transducer vibrating with a Gaussian profile with Gaussian

length constant a, = 0.81 cm, and numerical solution was achieved using the method developed

in Section 4.1 with constraint factor F = 20. To accommodate inhomogeneity in the absorption
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of the medium, the numerical method was modified in the absorption term in the manner

suggested by Equation 3.46 on page 78. Pressure grid points (xi, yj, zk) were in the range

-3.0 < xi, yj < 3.0cm and 0.5 < zk < 30cm, in uniform increments of 0.5 cm in all three

directions. Since the Gaussian beam was fairly narrow (the nominal beam width is 2 ab or 4 ab),

the vast majority of the acoustic energy in the beam from the source surface to somewhat beyond

the focal depth of the FSUM device (23.8 cm) was contained in the volume discretized by the

grid.

For FAM simulations several values of d were investigated. A3 was chosen so that increments

in the fan lattice in the x, and ,y directions would be 0.5 cm when r = 30.0cm (the furthest

part of the pressure grid), and the fan lattice was sufficiently large to completely encompass the

pressure grid. Values of d, AO, and Ar are shown in Table 4.2. A final note concerning the

implementation of the FAM in these simulations relates to the specific protocol for determining

the attenuation factor f{fI} at an arbitrary field point P (i.e. a point not necessarily on the

pressure grid). As previously suggested, the trilinear interpolation method (Section B.5) can

be used; but for simpler computation the nearest neighbor method was employed here. In

this method f {f} = f { x{i}, I,{ j}, r{k}}, where (f {i}, fl{j}, r{k}) is the fan lattice point

nearest to the field point P.

Table 4.2: Values for fan line offset distance d, fan angle increment A3, and fan line increment

Ar in FAM simulations.

d AO Ar

10cm 0.720 0.25 cm

20 0.57 0.25

30 0.48 0.25

40 0.41 0.25

50 0.36 0.25

Four different absorption geometries were considered: uniformly absorbing, absorbing and

non-attenuating regions separated by an oblique plane, an on-axis spherical absorbing region,

and an off-axis spherical absorbing region. All cases except for the the uniformly absorbing

medium geometry are illustrated in Figure 4-36. These cases were chosen because of the relative
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ease with which the diffraction integral could be solved in the absorbing geometries. (For the

second case, on oblique plane was chosen instead of a plane parallel to the source because in the

parallel case FAM modified pressure fields differed rather trivially from the baseline pressure

fields.) In detail, the geometries were:

1. In this geometry the semi-infinite medium (bounded by the plane of the FSUM transducer)

was uniformly absorbing. The specific values of absorption a were:

A. a = 0.05 Np/cm (mild absorption)

B. a = 0.10 Np/cm (severe absorption)

C. a = 0 Np/cm (no absorption)

(The pressure field in the non-attenuating medium, Geometry 1C, is required before

the FAM can be used. N.B.: The FAM is not used to approximate this field, since the

attenuation factor f = 0 everywhere in this field. For an explanation of Np, see Footnote 8

on page 71.)

2. Here the medium was divided by an oblique plane into two regions of different absorption

(but with uniform absorption within each region). The equation of the plane in the local

transducer reference frame was -x + z = 15.0cm, which intersects the beam axis at

(0, 0, 15) cm. In the region nearer the transducer, a = 0 Np/cm; in the second region, on

the other side of the plane:

A. a = 0.05 Np/cm

B. a = 0.10 Np/cm

3. Here the medium was divided into an axial spherical region (i.e. a sphere centered on

the axis of the acoustic beam of the source), and a second region of different absorption

comprising the rest of the semi-infinite medium. The sphere had radius r = 2 cm and was

centered at (0, 0, 15) cm. Outside the sphere a = 0 Np/cm, and inside the sphere:

A. a = 0.05 Np/cm

B. a = 0.10Np/cm
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4. This case was just like the previous one, except the spherical region was offset from the

beam axis. The sphere had radius r = 2 cm but was centered at (2, 0, 15) cm. Again,

outside the sphere a = 0 Np/cm, and inside the sphere:

A. a = 0.05 Np/cm

B. a = 0.10 Np/cm

The values of a = 0.05 and 0.10 Np/cm correspond to a range within which lies the nominal

ultrasound absorption (at 1 MHz) of most soft tissues [35].

Case #2

a #0

t x
a=0' '

I,Z

a=0'a#0
% / z

..

Case #3

Case #4

Figure 4-36: FAM validation geometries, drawn to scale. Case #2: An absorbing region and

a non-attenuating region divided by an oblique plane; Case #3: An on-axis spherical region of

absorption; Case #4: An off-axis spherical region of absorption.

To calculate attenuation from absorption in the baseline simulations, it was necessary to

determine path lengths from the source subelements of the source to absorption region boundaries

(i.e. planar or spherical boundaries), and from absorption region boundaries to field points. It
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was also necessary to specify absorption region geometries in transformed reference frames,

since the source was subdivided into subelements, and the absorption geometry needed to be

defined for each subelement. (Details concerning these calculations are given in Section B.6.)

To calculate attenuation factors in the FAM simulations it was necessary to determine within

which absorption region each fan lattice point resided. This determination was straightforward

for planar and spherical geometries. (Refer to Section 2.4.1 for details concerning the planar

geometry.)

Theoretical validation of the FAM will proceed in two parts: validation of the pressure phase

Lp field, and validation of the pressure amplitude Pa field.

4.4.2.1 Pressure Phase Validation

All FAM simulations share the same Lp field with the Lpo field (where po is the baseline pressure

field in a non-attenuating medium), because the FAM operates by attenuating the amplitude-

but not altering the phase-of the po field; i.e. A Lp = 0 for all FAM fields. This means

that comparing the pressure phase fields of baseline simulations into absorbing media with the

Zpo field is equivalent to comparing pressure phase fields of corresponding baseline and FAM

simulations into absorbing media. This also means that without performing even a single FAM

simulation, the applicability of the FAM to a given geometry of coherently radiating acoustic

sources can be assessed by comparing the presure phase fields of baseline simulations into

absorbing media with the Lpo field. (If the FAM fails phase validation tests, however, it is

still possible that the FAM could pass amplitude validation tests for application to incoherently

radiating sources.) Thus baseline simulations will be used in lieu of FAM simulations for phase

validation.

Four metrics were used to compare the baseline pressure phase fields Lp in absorbing

media (Geometries lA, 1B, 2A, 2B, 3A, 3B, 4A, and 4B) with the baseline pressure phase

field Lpo in a non-attenuating medium (Geometry IC), and all four metrics were based on

the phase difference. 11 The first metric, LAI Lp = ILp - Lpo , was the mean absolute differ-

ence between Lp and Zpo values at corresponding pressure grid points. The second metric,

11The phase difference Zp - Lpo was constrained between - 1800 and 1800, and the absolute value of the phase
difference between 00 and 1800.
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IA Imax Lp -- max ( I p - Lpol ), was the maximum absolute difference between corresponding Lp

and Lpo values. The remaining two metrics, IAI Lpbow and IAImaxLp1•%, were the same as the

first two metrics, respectively, except the comparisons were only made over the grid points for

which p > 10% Pmax, where Pmax is the maximum amplitude of the p field. Metric calculations

were performed over all pressure grid points, and results are summarized in Table 4.3.

Table 4.3: Comparison of the pressure phase fields in baseline simulations, using four metrics.

a Geometry

0.05 Np/cm 1A

2A

3A

4A

0.10 1B
2B

3B

4B

IAI Zp IAImxLp
10 1110

1 129

2 56

<1 18

1 149

1 142

4 172
1 43

IAI ZPlo IAImaxLPl0O
<10 <10

<1 2

<1 2

<1 3

<1 <1

<1 4

1 4

<1 5

In all geometries AI LZp was essentially trivial, but IAIm Zp ranged from substantial to huge.

However, by confining the comparison to the most significant portion of the acoustic field (i.e.

where the pressure amplitude field is at least 10% of its maximum value-which corresponds

to a nominal acoustic intensity amplitude field that is at least 1% of its maximum value) the

metrics improved considerably, with JAI Lplo% and |AImax LPlo% less than or equal to 10 and 50,

respectively. The pressure field associated with Geometry 1B (for example) provides insight

into why the pressure field is so small where IAI Lp is large. Figure 4-37 shows a cross-section

through the xz-plane of the Pa and JAI Lp fields. This figure clearly demonstrates that regions of

large JAI Lp are significantly offset from the beam axis, where the vast majority of the acoustic

energy is located. The same point is made from a different perspective in Figure 4-38, in which

JAI Lp is plotted against Pa for each grid point in the pressure field calculation. The lack of

data points in the upper right-hand corner of the figure indicates that where Pa is large, JAI Lp is

not, and vice versa. Thus, for practical purposes, the Zp fields are essentially the same for the

absorption geometries that were investigated.
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4.4.2.2 Pressure Amplitude Validation

Unlike pressure phase validation, pressure amplitude validation actually does require FAM

pressure field simulation. In this validation study, pressure amplitude Pa fields from FAM

simulations for the absorption geometries were compared with their respective counterparts from

the baseline simulations. Two metrics were used: AI pa, the mean absolute difference in pressure

amplitude, and IAmaxPa, the maximum absolute difference. As mentioned before, several

different values of fan line offset distance d (and fan angle increment A3) were investigated in

the FAM simulation. Table 4.4 summarizes the results for the different absorption geometries

and values of fan lines offset distance.

The data for IAI Pa indicate agreement that was almost embarrassingly good, and the data

for IAlmaxPa show very good agreement as well. The results appear very robust with respect to

the fan line offset distance d, meaning that variation in d from 10 to 50 cm, a substantial range,

makes very little difference. If an "optimal" value for the fan line offset distance were chosen,

however, it would probably be d = 30 cm.

4.4.2.3 Conclusions About Validation

The short version of this section is that the FAM was emphatically validated for the case of the

FSUM transducer with Gaussian vibration. There are at least two obvious ways for improving

results still further. One, use trilinear interpolation instead of the nearest neighbor method

to determine the attenuation factor at an arbitrary field point. And two, in cases where the

absorption geometry is defined continuously (as opposed to only at discrete lattice points),

implement the FAM as a continuous method (in much the same way the baseline simulations

were performed).

How is it possible that the FAM results could be so extraordinary? Gaussian sources are

generally well-behaved, and surely this was a significant contributor to the success of the

FAM validation. Simulations have been performed with non-Gaussian sources, most notably

uniformly vibrating sources. Preliminary analysis suggests that amplitude fidelity of the FAM

is not bad for the uniform source, but not nearly as good as for the Gaussian source. (Phase

fidelity for the uniform source was not addressed.) It is also possible that for different source

shapes or vibration patterns, the FAM could be more sensitive to the choice of fan line offset
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Table 4.4: Comparison of normalized pressure amplitude Pa and phase Lp fields between FAM

and baseline pressure fields, using two metrics.

Geometry d IAIPa IAlmaxPa
1A 10cm 0.01% 0.21%

20 0.01 0.21

30 0.01 0.21

40 0.01 0.21

50 0.01 0.21

2A 10 0.01 0.19

20 0.01 0.19

30 0.01 0.19

40 0.01 0.19

50 0.01 0.19

3A 10 0.03 1.10

20 0.03 1.10

30 0.03 1.10

40 0.03 1.10

50 0.03 1.10

4A 10 0.05 2.20

20 0.05 2.20

30 0.04 2.20

40 0.05 2.20

50 0.05 2.20

Geometry d AI Pa lAmaxPa
1B 10cm 0.10% 1.10%

20 0.09 1.10

30 0.09 1.10

40 0.10 1.10

50 0.11 1.10

2B 10 0.19 2.20

20 0.16 2.20

30 0.17 2.20

40 0.19 2.20

50 0.21 2.20

3B 10 0.05 2.20

20 0.05 2.20

30 0.05 2.20

40 0.05 2.30

50 0.05 2.20

4B 10 0.10 4.60

20 0.09 4.60

30 0.09 4.60

40 0.09 5.50

50 0.09 4.60
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distance. In any case, preliminary observations suggest that Gaussian transducers are preferable

for acoustic modeling by the FAM, and designers of ultrasound devices could simplify acoustic

modeling efforts by building devices with Gaussian sources.

In cases in which the FAM achieves reasonable amplitude fidelity but poor phase fidelity, the

FAM can still be prudently applied if sources radiate incoherently. And in cases in which the

FAM realizes mediocre amplitude fidelity, all is not necessarily lost, at least in the application of

ultrasound power to induce biological hyperthermia. For example, the FAM could potentially

spatially shift peaks in the pressure field in an absorbing medium, resulting in poor agreement of

the peaks between the FAM and actual fields; however, as suggested in the quote on page 145,

such variations could be attenuated in the temperature elevation field, producing better agreement

where it counts: between the modeled and actual temperature fields.

4.5 Summary of SAR Modeling Results

First, a method was developed to solve rapidly the Rayleigh-Sommerfeld diffraction integral to

calculate the pressure field in a uniformly absorbing medium from a non-uniformly vibrating

rectangular or cylindrical wedge acoustic source (Section 4.1). Second, a parametric model was

developed for the acoustic beam-specifically, the pressure amplitude field-from an individual

FSUM transducer radiating into a non-attenuating medium; pressure amplitude field measure-

ments and acoustic simulations of a non-uniformly vibrating FSUM transducer based on the

solution of the diffraction integral were both used in this model development (Section 4.2).

Third, a model was developed to determine the pressure amplitude field from multiple simul-

taneously excited FSUM transducers radiating into a non-attenuating medium; this model was

based on a scheme of summing pressure field contributions from the parametric beam models

of individual FSUM transducers. The most accurate summing scheme was mathematically

equivalent to giving the parametric beam models for individual FSUM transducers a phase term

proportional to the distance between the field point in the beam and the center of the transducer

surface (Section 4.3). Fourth and last, the Fanned Absorption Method (FAM) was developed to

take the pressure field from a source radiating into a non-attenuating medium, and modify the

field to account for absorption; this method was validated using acoustic simulations based on
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the solution of the diffraction integral for a Gaussian source of the size of an FSUM transducer

(Section 4.4).

The significance of the FAM in modeling the FSUM device is that, according to the FAM

pressure phase validation study, the FAM does not significantly alter the pressure phase field

from a Gaussian source of the size of an FSUM transducer. This means that the acoustic beam

models of individual transducers are expected to have essentially the same pressure phase field,

with or without absorption in the medium, so the beam models should superpose according to

the same scheme, with or without absorption. Thus to estimate the pressure field from multiple

FSUM transducers, the transducer beam models are individually modified by the FAM, and then

superposed by the distance-weighted phasing scheme elaborated in Section 4.4.12

12The reader is to be congratulated at this juncture for reaching the end of what may well be the longest
dissertation chapter in the history of academics.
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Chapter 5

Integration of Models in Treatment System

He say "One and one and one is three"
Got to be good-looking 'cause he's so hard to see
Come together right now over me.

- John Lennon and Paul McCartney, verse in the song "Come Together"
on the Beatles album Abbey Road, 1969

Originally HYPER/Plan was conceived as a geometric hyperthermia treatment planner, which

means graphical representations of the patient and treatment applicator are interactively posi-

tioned and oriented on the monitor until the human planner is satisfied with the visual appearance

of the plan. In other words, based only on the relative geometric positions of the patient and

applicator, the treatment plan looks like it will heat the target volume effectively.

Such a planning strategy does not use power deposition or thermal modeling. Integrating

these kinds of models into a geometric planning system is desirable for at least two reasons.

First, treatment planning is improved. In general there is a nominal thermal objective for

hyperthermia treatment, e.g. to elevate all tumor tissue to at least 430 C for at least 30 min, while

keeping other tissues below 410 C. With purely geometric planning, the thermal objective cannot

be addressed prior to treatment administration; to generate a treatment plan that considers the

thermal objective, power deposition and thermal models must be used.

Second, heat transfer in biological systems is not sufficiently well described that the predicted

temperature field (calculated during treatment planning) is considered to be a sufficiently accurate

reflection of the temperature field that actually occurred during treatment administration. Even

ignoring theoretical issues associated with the validity of diffusive and convective heat transfer
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equations, there are a number of material power deposition and thermal properties which

may not be known more accurately than to 10%, 20%, or even greater error. In practice,

therefore, thermal measurements are taken continually during treatment administration. If the

spatial density of these measurements is sufficiently great, there is no need to interpolate and

extrapolate temperature field values between and around measurement sites. This is the ultimate

objective of a number of non-invasive, 3-D temperature field measurement systems, based on

MRI [104], electrical impedance tomography (EIT) [9], microwaves [20], etc. In practice in the

hyperthermia clinic, however, thermal measurements are taken using invasive sensors on needle

probes. Sensors continually measure temperature at a finite number of discrete locations, and

these measurements can be used to modify the predicted thermal fields to produce thermal fields

that give a more accurate picture of the temperature field that occurred during treatment. This

combination of the predicted thermal field with the thermal measurements is called thermal

reconstruction, and it can be used to quantitatively evaluate the treatment. If the thermal

reconstruction can be performed sufficiently quickly, it can be used to monitor treatment in real

time or quasi-real time.

Thus for ease and rapidity of treatment 3-D thermal planning and evaluation, rapid power

deposition and thermal models are necessary. The work developed in Chapter 4, culminating in

parametric descriptions of acoustic beams from FSUM transducers and the Fanned Absorption

Method (FAM), responded to the need for rapid ultrasound power deposition modeling; and

the Finite Basis Element Method (FBEM), conceived by Dr. William H. Newman and jointly

developed by Drs. Newman and Gregory T. Martin, responded to the need for rapid thermal

modeling. This chapter details the integration within the AVS platform of the geometric planning

system with power deposition modeling, thermal modeling, and thermal visualization tools for

viewing 3-D SAR and thermal fields. The next chapter, Chapter 6, presents some results of

clinical interest that are based on this integration.

5.1 Overview of Integration

The elements necessary to achieve the integration of 3-D geometric, power deposition, and

thermal modeling are united in a simplified flow chart in Figure 5-1. The flow chart is divided
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horizontally into three regions: Geometry, Power Deposition, and Heat Transfer.' The first

column, Geometry, indicates whence comes the volumetric model of the patient, which is

necessary for power deposition and thermal modeling. The patient is imaged (by CT), and the

patient image is transformed first into a surface model (using IMEX and Mosaic), and then a

volumetric model (using Volumizer). To reiterate, the volumetric model basically consists of a

lattice of points, and each point is associated with the type of anatomic organ in which it resides.

The middle column corresponds to Power Deposition. Ignoring for the moment the

Thermometry box in Figure 5-1, the SAR model is observed to require the patient volu-

metric model, tissue power deposition properties, and information about the power applicator.

In practice the principal power deposition property considered for ultrasound devices is the

ultrasound absorption coefficient a. The nominal 3-D a field is obtained directly from the tissue

types given in the patient volumetric model. The I Applicator box signifies the geometry of the

power applicator (both its own geometry and its position and orientation relative to the patient)

and the power excitation pattern.

The third column corresponds to Heat Transfer, and in many ways it is similar to the Power

Deposition column. The thermal model also requires the patient volumetric model (which

may include thermal boundary conditions), and in addition it requires the SAR field and tissue

thermal properties. Tissue thermal properties include mainly thermal conductivity k and blood

perfusion w. As in the case of a, nominal 3-D k and w fields are obtained from the patient

volumetric model.

The 3-D SAR or temperature field, once calculated, can be displayed on the patient anatomy

by a variety of visualization tools, and this visualization is termed here thermal visualization.

An interactive aspect of the integrated system is illustrated in Figure 5-1 by the arrow with the

dotted line from 3-D thermal visualization I to IApplicator . Specifically, thermal visualization

during treatment planning or treatment monitoring may indicate that heating can be improved

by changing the position or excitation pattern of the applicator.

Thus far in this discussion I Thermometry has not been considered; in other words, only the

'It is clear from the lyrics at the beginning of this chapter that the Beatles anticipated the advent of an integrated
hyperthermia treatment system. Consider: "'One [geometric] and one [power deposition] and one [heat transfer]
is three [types of modeling].' " The next line, "Got to be good-looking 'cause he's so hard to see," surely alludes
to visualization, in the oblique fashion typical of the Beatles. And finally, the title and essence of the song, "Come
Together," refers to clinical integration of these parts for hyperthermia therapy.
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Power Deposition

Figure 5-1: 3-D thermal visualization system with integrated geometric, power deposition, and

thermal modeling.
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treatment planning phase of therapy has been addressed, with predicted SAR and temperature

fields. In Figure 5-1 the I Thermometry I box is sandwiched between the Power Deposition

and Heat Transfer columns, and this position is appropriate because thermometry can be used

directly for temperature measurement and indirectly for SAR measurement. With the addition

of spatially discrete SAR and temperature measurements, SAR and temperature fields can be

reconstructed. As mentioned before, these reconstructed fields can be visualized on the patient

anatomy with thermal visualization tools.

Temperature and SAR are not the only quantities that can be measured, and if other power

deposition or thermal parameters are measured these measurements can be included into field

prediction and reconstruction calculations. Acoustic absorption a cannot be measured by ther-

mometric means alone, although it is certainly possible to measure it, but thermal conductivity

k and blood perfusion w can be measured by thermometric means. Spatially discrete measure-

ments of a, k, or w can be incorporated into the relevant parameter field in any one of several

ways. First, the field can take on the measured value everywhere within a sphere (or other vol-

ume) around the measurement site. Second, the field can take on the measured value everywhere

within the anatomic organ containing the sensor site (or the average of measured values if there

are multiple measurement sites in the same organ). And third, a more sophisticated model of

the parameter, based on a physical and physiological understanding of the parameter, can be

used to reconstruct the parameter field in a fashion that is analogous to SAR and temperature

field reconstruction.

Thermal dose is a function of temperature integrated in time, i.e. D = f2t2 F{T} dt; in a

single number thermal dose attempts to quantify thermal history [12]. If the temperature field

is continually reconstructed, then the thermal dose field can be continually updated. Needless

to say, the thermal dose field can be visualized on the patient anatomy using the thermal

visualization tools.

5.2 Elements of Integrated System

Given the overview of the integrated system, we now proceed to descriptions of the individual

elements that make up the whole. In cases in which the element has already been described, the
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reader is referred to the relevant discussion.

5.2.1 Geometry

The first three boxes in the Geometry column of Figure 5-1 concern the patient geometry, and

the fourth box relates to the power applicator. The initial patient image, given in <. ima> file

format, can be considered a volumetric representation of the patient. IMEX is used to contour

relevant anatomic organs on the patient image, and Mosaic connects the organ contours to create

a patient surface representation. Volumizer creates a patient mesh, a volumetric representation,

from the surface representation. There are two important differences between the volumetric

representations of the patient given by CT and Volumizer. First, the former is essentially the

3-D radiopacity field of the patient (given in Hounsfield units), whereas the latter is a 3-D

tissue type field. And second, the patient mesh produced by Volumizer is the grid on which

power deposition and thermal calculations are performed, so it is more directly relevant than the

field produced by CT. Brief discussions of the patient image, IMEX, and Mosaic are given in

Section 2.3 on page 36, and an extended development of Volumizer is given in Section 2.4 on

page 40.

HYPER/Plan, the geometric hyperthermia treatment planning system mentioned briefly in

Section 2.2 on page 36, produces in the AVS Geometry Viewer images of the 2-D surfaces of the

patient organs and the power applicator (as shown in Figure 2-2 on page 39). Widgets provide

interactive control of the position and orientation of the patient and applicator, and also of the

transducer excitation pattern. In HYPER/Plan, objects (viz. the patient and applicator) are first

translated laterally (x-axis in HYPER/Plan), vertically (y-axis), and anteroposteriorly (z-axis),

and then rolled (rotated about the x-axis), pitched (y-axis), and yawed (z-axis). Because the order

of the translation and three rotation transformations is fixed, the final position and orientation of

the objects are well-defined.

5.2.2 Power Deposition

The subject of ultrasound power deposition modeling has been discussed extensively in Chap-

ters 3 and 4. Some of these discussions concerned acoustic sources in general, and some
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concerned the transducers of the FSUM device specifically. For the remainder of this chapter

and all of the next, however, only the FSUM device will be considered. The geometry of this

device was given in Section 4.3.1 on page 132, but this description omitted an important mode of

operation of the device called wobulation, illustrated in Figure 5-2, in which the spherical shell

undergoes a quasi-precessional motion within the device housing. The transducers are affixed

to a spherical shell, which is connected by an arm to a rigid housing. (The rigid housing and a

flexible cover together enclose the spherical shell of transducers and contain a degassed water

bath.) In wobulation mode, the arm rotates at angular velocity Wwob about the axis labeled a, and

the spherical shell rotates at angular velocity -,wob about the axis labeled a', where a' precesses

about a. The speed of wobulation is adjustable, but typically the arm rotates at 0.5 Hz in the

clockwise direction, facing the radiating side of the transducers (i.e. wwob = -3 rad/s in the

(nominal) z direction in the FSUM coordinate system-see Figure 4-23, page 133). Although

dramatic temporal fluctuations in the SAR field may result from this mode of heating, temporal

fluctuations in the resulting temperature field are relatively small. This is because the time

constant for thermal equilibration is given roughly by the inverse of perfusion w-' (where w is

in the units ml blood/s-ml tissue), and in physiologic systems inverse of perfusion has values

considerably longer than the short times associated with the revolution of wobulation, O(w -Il).

(Equation B.39 on page 249 provides further insight.) A reasonable strategy for performing

power deposition modeling with wobulation, then, is to divide the continuum of one complete,

3600 rotation of the arm into n discrete positions at regular intervals of (360/n) ° , perform power

deposition modeling at each position, and average the n SAR fields. Appendix B.7 addresses the

issue of how to transform coordinates between the rigid housing and spherical shell reference

frames, given the angular position of wobulation, Owob = Wwobt.

The implementation of the power deposition model for the FSUM is based on the modified

Gaussian beam description developed in Section 4.2, the pressure superposition scheme devel-

oped in Section 4.3, and the FAM developed in Section 4.4. To review, the amplitude of the

complex pressure field from each FSUM transducer is given by the modified Gaussian beam

description multiplied by the local attenuation factor determined by the FAM, and the phase of

this complex pressure field is distance-weighted. The complex pressure field contributions from

all FSUM transducers are then simply added (as complex fields) to produce the pressure field
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Figure 5-2: Geometry of the wobulation mode of the FSUM.

from the entire FSUM device.

As previously mentioned (see Section 3.1.6, page 70), tissue-air and soft tissue-bone in-

terfaces are problem areas in power deposition modeling because acoustic waves are largely

reflected at these boundaries. In particular, soft tissue-bone interfaces can be the site of sub-

stantial unwanted heating. When an acoustic wave propagates through soft tissue towards bone,

the significant majority of the energy of the wave is reflected at the interface due to the poor

acoustic impedance matching between soft tissue and bone; the fraction of wave energy that

does cross the boundary into bone, however, is absorbed with such relish that dramatic levels

of SAR can occur in the bone. In addition, if the reflected wave passes back through the same

soft tissue whence it came (a normal reflection, as opposed to an oblique reflection), then on the

soft tissue side of the interface SAR is nearly doubled by the reflection (compared to acoustic

wave propagation without reflection). This acoustic phenomenon of a wave propagating and

attenuating twice through the same region of tissue-first as an incident wave, then as a reflected

wave-can also be observed at soft tissue-air interfaces, where the acoustic impedance mismatch

results in practically complete reflection of the acoustic wave.

These interfaces are clearly troublesome, both from the perspective of the acoustic modeler

who wants to model accurately the acoustic physics, and that of the clinician who wants to

deliver efficacious but safe heating. The way they were addressed in the current FSUM acoustic
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model was to ignore them; specifically, when FAM fan lines entered air or bone regions the

attenuation factor was simply set to zero for the rest of the fan line (in the distal direction).

This protocol was not experimentally validated, but some level of justification can nevertheless

be achieved. In particular, when pressure field predictions indicate that an acoustic beam has

substantial energy in the region at which a FAM fan line crosses a soft tissue-air or soft tissue-

bone interface, the user can be notified that substantial heating may occur, and the treatment

plan should be adjusted. In the treatment administration phase, thermometry or complaints from

the patient would generally indicate that excessive SAR (or temperature) elevation occurred, so

prompt action could be taken to change the treatment geometry; the new treatment geometry,

which would not suffer from an unacceptable SAR pattern, would then serve as the basis for

thermal reconstruction.

5.2.3 Heat Transfer

The thermal model integrated into the treatment system is the Finite Basis Element Method

(FBEM), a numerical technique optimized for the solution of the bioheat transfer equation

(BHTE), or the Pennes BHTE:

1 aT QT= V2T -2T + (5.1)
a at -k

where a is thermal diffusivity, T is tissue temperature elevation, t is time, A is inverse perfusion

length, Q is SAR, and k is thermal conductivity. A2 = WpblCbl/k, where w is perfusion, Pbl is

blood density, and cbl is blood specific heat capacity. This equation is the normal heat conduction

equation with an additional A2T term, which models the convective heat transfer of perfusion as

a temperature-dependent heat sink. The effects of metabolic heat generation are implicitly taken

into account in the BHTE through the use of the tissue temperature elevation T, which is relative

to the tissue baseline temperature-i.e. the tissue temperature without the power deposition

(SAR) of treatment. In this model of tissue heat transfer, blood perfusion attenuates thermal

perturbations as they conduct through tissue. This fact is used to computational advantage in

FBEM thermal calculations by considering only the portion of the SAR field that is "thermally

near" the field point of interest.

The BHTE traces its origins to the landmark paper of Pennes [82]. A number of investigators
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have looked into the heat transfer mechanisms associated with thermally significant vessels [10,

11, 19, 51, 52], modeling heat transfer with various vessel geometries including counter-current

arrangements; but in many cases the BHTE models tissue heat transfer sufficiently accurately [17,

18, 86, 102], and it is substantially simpler, both conceptually and computationally, than models

that consider vessel geometry.

A brief formulation of the FBEM is now presented to illustrate how it is used to solve

the BHTE; the reader is referred to Martin [65], Martin et al. [66], Newman [73], and New-

man et al. [75] for further details, and Newman et al. [74] for early related work. The formulation

is distilled here to a simple case designed to illustrate the two principal features of the FBEM

that allow rapid thermal field computation. The first feature limits the volume of integration

over which thermal calculations are performed, and the second precomputes Green's function

solutions for finite power sources.

The specific case at hand is the steady-state temperature field solution for a heated volume

of infinite spatial extent and uniform thermal properties (i.e. uniform k and w). The SAR field

can be spatially heterogeneous, but it must be temporally constant. In this case, the temperature

elevation T{r'} at a point r' due to a point power source q{ 1} at a point f is given by:

T{} k pt {, ') (5.2)

where upt {j, r'} is the dimensionless Green's function solution to the BHTE for a point source.

The temperature elevation field from an entire heated region can be computed as the super-

position of the temperature elevation fields from point power sources. Thus, the temperature

elevation T{F'} at a point ' due to heating in a region is given by:

T{ f} = A upt{f, f} dV (5.3)

where V is the infinite domain volume, dV is a differential volume located at f, and Q is SAR.

(Q dV in Equation 5.3 corresponds to 4 in Equation 5.2, with Q dV approaching the point source

4 as dV shrinks to a point.)

For a point power source in a spatially infinite volume of uniform thermal properties, the

Green's function solution is:
e-Ad

Upt{fP} = (5.4)
47rAd
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where d = I r'- p 1. A critical observation to make here is that upt {l F } attenuates exponentially

with distance d, or, equivalently, with the dimensionless parameter Ad. This means that an

accurate T{r'} calculation can be performed that only considers the contributions of the SAR

field in a limited volume V' within a distance n/A of r, where V' C V, and accuracy increases

with n, the number of perfusion lengths. Thus the infinite volume V can be divided into the

"thermally near" region V' and the "thermally far" region Vo = V - V'; in addition, V' can be

divided into N subvolumes Vi, with V' = E•, Vi. Then Equation 5.3 can be transformed into:

N A N

T{F} u pt {,F}dV = Z OE{I} (5.5)
i=0 i=O

where Oi is the Finite Basis Element (FBE), the temperature elevation field due to the SAR

field in the volume Vi. Now although E•{r'} = fv, (Q{j }A/k)upt {i, f} dVi, when SAR does

not vary substantially over the subvolume Vi then Ei can be accurately approximated by:

Qjp}jA Q.. Q }V 2Ai
Oi{j} U•pt{F, '} dV = &V A uv{pi,r} (5.6)

where Ap is the center of the subvolume Vi and uv {}r' is the Green's function solution for the

uniformly heated subvolume Vi at r'. uv can be evaluated explicitly; for example, for a spherical

subvolume Vi of radius a and centered at p-i:

(Aa) 2  sinh d
Usph{(p, T0} = (5.7)

3 sinh Aa

(Aa)2 (cosh a Aa pt, }, d > a

(See Equations 3.15 and 3.16 in [65].) Thus Equation 5.5 is computationally simplified because

the FBEs can be calculated explicitly and quickly, and in practice the contributions of only a

relatively few (compared with conventional FEM schemes) finite sources need be considered.2

These are the most important strengths of the FBEM (at least in terms of its computational

speed).

The case of afinite heated volume with uniform thermal properties is now considered. Each

thermal boundary surrounding this region falls into one of three categories: thermal boundary

2The calculation of e0 , the temperature elevation field from heating in the "thermally far" region Vo, is a special
case. When it is desired to calculate Oo -and this may not be necessary, given Vo is thermally far from the field
point of interest-a nominal O{f0} and o are used.
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of the first kind (constant temperature), second kind (constant heat flux), and third kind (forced

convection equals heat flux). The thermal contribution from each thermal boundary condition

is divided for solution into homogeneous and non-homogeneous components, Th and Tnh,

respectively. Furthermore, boundaries are approximated by one of two geometries, representing

the ends of a spectrum: locally planar, and locally spherical.

Green's function solutions for the homogeneous thermal boundary conditions of all three

kinds and both geometries can be computed by the method of images in a manner analogous to

the calculation of the acoustic pressure field from an acoustic source in a region bounded by a

planar rigid boundary (see Section 3.1.4, page 66). For the planar case, for example, to achieve

a homogeneous thermal boundary of:

1. the first kind, each power source within the volume is mirrored by an equal (but opposite)

virtual power sink mirrored on the opposite side of the thermal boundary;

2. the second kind, each source is mirrored by an identical source;

3. the third kind, each source is mirrored by an empirically determined source that matches

conductive and convective heat flux at the boundary.

A similar though more complicated formulation exists for the spherical boundary geometry

(see [65, 66] for details).

Non-homogeneous temperature elevation field contributions Tnh for thermal boundary con-

ditions of all three kinds and both geometries can be computed as well. Using the planar case as

an example again, for a field point at a distance d from the non-homogeneous thermal boundary,

the non-homogeneous temperature elevation field is given for the thermal boundary of:

1. the first kind: Tnhl {d} = TbeAd, where Tb is the temperature of the boundary;

2. the second kind: Tnh2{d} = •,e Ad/kA, where <4b is the heat flux at the boundary;

3. the third kind: Tnh3{d} = ToeeAd/(1 + AL/Bi) = TooeAd/(1 + kA/h), where Too is the far

fluid temperature elevation, L is an arbitrary length scale, Bi = hL/k is the Biot number,

and h is the heat transfer coefficient at the boundary.
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Again, a similar but more complicated formulation exists for the spherical geometry (see [65, 66]

for details).

The essence of the FBEM formulation has now been presented. There are a number of

peripheral issues that could still be addressed, but only two will be considered here. First, if the

SAR field is divided into finite spherical subvolumes (as is the preferred custom to date), there

will be regions of overlap and/or vacant spaces between adjacent power sources. If the volume

contained in overlap does not equal that in vacant spaces, then a packing factor f must be

introduced to compensate; viz., fv Q{f7} dV = f EC -o{J Q I} V. For the case of hexagonally

close-packed spheres of uniform size,3 f = 3 v2/7r P 1.35.

Second, the thermal lattice (comprising points at which temperature is calculated) need not

be the same as the power deposition lattice (comprising points at which SAR is given), which

affords a certain amount of flexibility. In addition, the SAR field is decoupled from thermal

boundary conditions in the FBEM formulation, so interactive changes in one do not require

repeated calculations of the other.

5.2.4 Thermal Visualization

Various thermal visualization tools were considered in the course of this project. These tools

combine 3-D patient geometry with 3-D thermal fields to convey how the thermal fields spatially

relate to the patient. Thermal fields were put into the AVS field structure, a structure which

accommodates with equal facility predicted, reconstructed, SAR, temperature, temperature

elevation, and thermal dose fields. This field structure, literally a C structure called AVS fi e ld,

contained thermal data in a 3-D array, with thermal data associated with a 3-D uniform lattice.4

The tissue type field identified tissue type on the same coordinates as those of the thermal fields.

Thermal visualization tools were investigated in three principal areas:

* Slicing-thermal parameters displayed in pseudocolor on 2-D planar slices through the

3-D thermal field;

3This calculation of packing factor is considerably simplified by recognizing that hexagonal close-packed (HCP)
and face-centered cubic (FCC) crystalline forms share the same density, and then calculating the packing factor for
the FCC geometry. See Chapter 2 in Barrett et al. [7] for a discussion of crystal structure.

4An AVSf ield structure can actually contain one of three different coordinate descriptions: uniform, rectilin-
ear, or irregular. For simplicity, however, only the uniform type of AVSfield was used for thermal fields.
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* Surface washing-thermal parameters displayed in pseudocolor on the tumor surface;

* Volumetric plotting-thermal parameters graphed as tumor volume fraction above the

indexed thermal parameter.

In the next chapter, Chapter 6, predicted and reconstructed SAR and temperature fields will be

presented using the slicing and volumetric plotting tools.

There are a number of possible variations for the slicing tool in particular. For example, slices

can be arbitrarily oriented, or they can be restricted to one or more principal planar orientations.

The pseudocoloring scheme, to give another example, can use a finite number of discrete colors

or an entire continuum of colors. The specific slicing tool presented in Chapter 6 gives 2-D

slices in the same planes in which organ contours were made using IMEX. In fact, these contours

are superimposed on the 2-D thermal field slice, and to provide additional geometric context a

gray plane is displayed through the relevant plane of the patient in the AVS Geometry Viewer.

5.2.5 Thermal Reconstruction

For treatment monitoring and evaluation, 3-D thermal fields can be reconstructed from a com-

bination of the predicted thermal fields and spatially discrete thermal measurements. In thermal

reconstruction, predicted fields provide the functional form of the reconstructed field, which

is then multiplied by a constant that minimizes error at the discrete measurement sites. There

is a certain amount of flexibility in such a reconstructive process. For example, the treatment

volume can be divided up into several different regions (e.g. by tissue type), with a different

multiplication constant in each region; or error minimization can use different weights for the

errors associated with different sensors or different regions.

To perform error minimization at the sensor sites it is necessary to know the sensor coordi-

nates (in the patient reference frame) and the predicted field value at sensor sites. Probe location

(or more specifically, sensor location) can be determined in several ways. If thermal probes are

inserted into the treatment region prior to patient imaging, then the location of the probes can

be determined directly from the patient image. Orthogonal (or, with greater difficulty, oblique)

x rays or ultrasound images can also be used to locate probes.

Calculation of the predicted thermal field at sensor sites usually involves interpolation be-
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tween field mesh points, unless sensor sites coincide exactly with field mesh points. Interpolation

techniques include trilinear interpolation (see Section B-4), nearest neighbor interpolation (see

Section 4.4.2 on page 158), natural neighbor interpolation, and kriging. (See Watson [100]

for an overview of interpolation techniques.) Trilinear interpolation was used for the results in

Chapter 6 because of its ease of use and the fact that uniform AVS f i elds were used to store

and manipulate thermal fields. Given measured and interpolated predicted values at sensor sites,

error minimization was achieved using the least squares (LS) or weighted least squares (WLS)

method.

5.2.5.1 Discrete Temperature and SAR Measurement

Minimally invasive thermal measurements were taken with needles housing thermistors. These

sensors can be used to measure thermal properties, such as tissue thermal conductivity, thermal

diffusivity, and perfusion, and thermal parameters, namely temperature and SAR [6, 13, 14, 98]

The resistance of the thermistor is a function of temperature, so with calibration temperature

measurement by thermistor is straightforward enough. The thermistor probe influences the tissue

thermal field, however, and a temperature artifact must be determined to relate the measured

temperature to the tissue temperature in the absence of the probe. Evaluation of this artifact will

be discussed shortly in the context of SAR measurement.

A thermal probe measures SAR only indirectly; in fact, absolute SAR is not measured at all,

but rather instantaneous change of SAR [14]. To illustrate this process of SAR measurement,

assume thermal equilibrium is achieved under a constant SAR field. At time t 1, the SAR field is

instantaneously changed (and then maintained constant). The simulated temperature T{t} as a

function of time t measured at a single sensor site is shown in Figure 5-3A. For times very close

to ti, before T has changed substantially, the V2T and A2T terms in the BHTE (Equation 5.1)

are not subject to significant changes, so any change in OT/at is a direct consequence of the

change in Q, viz.:

pc {t+} - T { = Q{t} - Q{tja} (5.8)

where p is tissue density and c is tissue specific heat capacity, and t- and t,+ are times just

before and after t1, respectively. Figure 5-3A illustrates a step increase in SAR at t1, and a step

decrease at t2.
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22 t2

Figure 5-3: Simulated temperature in response to step changes in SAR, measured by thermistor-

based thermal sensor, excluding (A) and including (B) temperature artifact.
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The simulations in Figure 5-3A ignore temperature artifact from ultrasonic heating of the

thermal probe itself. The thermistor and needle of the probe absorb ultrasound energy much more

effectively (i.e. the ultrasound absorption coefficient is higher) than tissue, and consequently

they experience much more rapid changes in temperature (at least initially) than tissue after

step changes in SAR. The temperature artifact is illustrated in Figure 5-3B. Immediately after

a step up in SAR, T is seen to rise dramatically, but after a short time (about 1 s) a temperature

field is achieved around the probe in which the V 2T term of the BHTE counters the elevated

temperature at the probe-tissue interface. After this short time T changes in basically the same

way as it did without temperature artifact. Thus Equation 5.8 still holds, with the caveat that t'

is far enough after tl that the temperature artifact is fully developed. In practice, (aT/at) {t- }

is averaged over a temporal region prior to ti, and (OT/Ot){t + } is evaluated over a temporal

region starting roughly 5 s after tl. As in Figure 5-3A, Figure 5-3B illustrates a step increase in

SAR at t , and a step decrease at t2.
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Chapter 6

Results of Clinical Interest

For every problem, there is one solution which is simple, neat and wrong.
- Henry Louis Mencken

The purpose of this chapter is to demonstrate the ability of the integrated system to perform

thermal predictions and reconstructions, to showcase visualization tools that can be used to

display the thermal fields, to provide a sense of how the user interface works, and to discuss

limitations of the system and ways to address them. In the style of an instruction manual, a

description of the thermal prediction process is given, with accompanying figures taken from

the computer monitor (Section 6.1). This is followed by a discussion of thermal reconstruction,

including the presentation of thermal reconstructions based on an actual patient hyperthermia

treatment (Section 6.2). This section also lists sources of error in all areas related to thermal

prediction and reconstruction, and suggests directions of investigation to reduce these errors.

In the interest of clarity, several font styles are used in this chapter: filenames and C data types

and structures are in typewriter, AVS module names and control panel labels are in sans

serif, and geometric objects are in italics. For the special case of HYPER/Plan, HYPER/Plan

refers specifically to the module of that name, and HYPER/Plan (regular roman font) refers to

hyperthermia geometric planning in general.

6.1 Thermal Prediction

The AVS Network Editor is a user interface in which different AVS modules can be selected

and connected interactively. Modules are represented by gray boxes containing the module
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name, and connections are symbolized by colored lines going from one module port to another.

Information flow along connections is unidirectional, from a port on the bottom of one module to

one on the top of another. The color of the connection corresponds to the type of information; of

those shown, a dark cyan connection indicates a string (i.e. an array of characters, char [ ] ), red

an editlist (which contains geometric information, including geoms), blue an AVSfield, and

yellow an AVScolormap (which gives coloring information). A flow network illustrating the

integrated system is given in Figure 6-1, taken from the Network Editor workspace. Inasmuch

as it is possible, the architecture of this particular network is meant to reflect the flow chart in

Figure 5-1 (page 172). In particular, modules grouped on the left relate to geometric modeling,

in the middle to power deposition modeling, and on the right to heat transfer modeling. In

addition, all depicted module connections transfer information in the downward direction, and

in some cases to the left or right as well. (If the same modules were connected in the same way

but their positions were changed, however, it is possible that some connections would transfer

information upwards.)

In Figure 6-1, module names that begin with a lower-case letter indicate modules that are

part of the standard AVS library of modules, and modules that begin with an upper-case letter

indicate custom modules. The uppermost two modules, Get Patient Name and HYPER/Plan,

were not developed in the course of this thesis, but the remaining custom modules were. Modules

will be described in turn, starting with modules associated with geometric modeling, then power

deposition modeling, heat transfer modeling, and thermal visualization. Last to be considered

is a preliminary module associated with thermal reconstruction.

Get Patient Name

The Get Patient Name module performs the basic task its name suggests: it lets the user select

the patient and treatment. According to the HYPER/Plan convention, the name of the computer

directory of the patient treatment is the concatenation of the patient's name and the six-digit

treatment date-e.g. s idney0 6 02 9 7. (The different output ports of this module correspond

to slightly different versions of the patient treatment name; they all give the absolute pathname

of the directory, including the directory name itself, and in addition three of the ports give

filenames or parts of filenames.) Figure 6-2 shows the control panel of Get Patient Name,

187



Figure 6-1: AVS network depicting integrated system.
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Figure 6-1: AVS network depicting integrated system, in color.
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which largely consists of a file browser that lists only directories and <. ima> files. To select
a patient treatment the user clicks on the <. ima> file corresponding to the desired patient
treatment.

Figure 6-2: Get Patient Name module control panel.

HYPER/Plan

Once the patient treatment is selected, the HYPER/Plan module automatically reads the patient
anatomic geoms into the Geometry Viewer. This assumes that the tasks of contouring anatomic
structures using IMEX and connecting the contours into organ surface representations using
Mosaic has already taken place. (These tasks will not be addressed here.) The HYPER/Plan
control panel is shown in Figure 2-2 on page 39, along with the HYPER/Plan geometric
output shown in the AVS Geometry Viewer. Widgets-slider bars for translation, and dials for

191



rotation-control the spatial manipulation of one of three selected objects: the patient, the power

applicator, or both together. Recall from Section 2.1 (page 29) that manipulating patient also

manipulates all the child objects of patient as well, i.e. the organ objects that comprise patient;

manipulating applicator also manipulates its constituent transducers and transducer beams; and

manipulating graph is tantamount to manipulating its child objects, patient and applicator.

The geometric representations of the treatment objects in their chosen spatial positions and

orientations are ultimately displayed in the Geometry Viewer.

Volumizer

The Volumizer module takes as its input the geoms of the treatment objects from HYPER/Plan.

However, Volumizer only cares about the objects associated with the patient anatomic structures,

and it ignores the geometry of the applicator and the absolute and relative positions of the

patient and the applicator. This is because the function of Volumizer is to generate a patient

volumetric representation, and the model is in canonical HYPER/Plan coordinates (i.e. the

x and z coordinates are in the transverse planes through the patient, and the y coordinate

is in the head-to-toe--or vice versa-direction). Furthermore, the reference frame of the

volumetric representation is the same as the patient's reference frame in HYPER/Plan. The

patient volumetric model generated by Volumizer is a tissue type AVSfield, with the data

value of each field point corresponding to a specific tissue type; for example, tumor is designated

by 11. (Tissue type data-and nominal tissue property values for each tissue type, including

acoustic absorption, perfusion, and thermal conductivity-are found in the file designated by

the $HoTPEStissueProperties Unix shell variable. Module use of the data in this file

is in general transparent to the user.) Volumizer has several options for the coordinates of the

output tissue type field. The default output field, from the right output port, is a uniform field

with coordinates spanning the bounding box of the imaged patient volume, i.e. the rectangular

parallelepiped volume defined by the maximum x, y, and z extents of the patient surface model;

the grid resolution, i.e. the distance between adjacent grid points, is adjustable. The alternative

output field, which is also from the right output port, has coordinates defined by an optional

input template AVSf ield.

The Volumizer control panel is shown in Figure 6-3. Much of the area of the control panel
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Figure 6-3: Volumizer module control panel.

concerns actions associated with the vo lumi z ed_1 i s t structure which organizes the triangles

that make up the patient anatomic surface representations. With a click on the Kill Vlist button,
the volumi z ed_ i s t (if present) can be flushed from the memory of Volumizer. Read Vlist
and Write Vlist read and write the volumize_list to the file selected in the file browser.

Clicking on the Generate Volumized Field button creates the tissue type AVSfield. Its

coordinates comprise a uniform grid of the selected Grid Resolution if the Ignore Template

Field button is depressed or if there is no optional template field present, or the grid of the

template AVS f i eld otherwise.

One final capability of Volumizer is to crop an optional input AVSfield so that its

coordinates do not extend beyond the patient bounding box. The AVS f ield to be cropped is

connected to the optional left input port, the Generate Cropped Field button is pressed, and

the cropped AVS f ield (with its original data, not necessarily tissue type data) is created at the
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left output port.

A variation of the Contour module (the Contour module will be described shortly) can be

used to depict the patient volumetric representation generated by Volumizer. A sample output

can be revisited in Figure 2-4 on page 45.

SAR

The SAR module is designed to perform SAR calculations specific to the FSUM heating device,

and its control panel is given in Figure 6-4. It takes as input the tissue type AVS f ield generated

by Volumizer, and assigns nominal acoustic absorption properties based solely on the tissue

type. Clicking on the Calculate SAR button predicts the SAR field in an AVSf ield with the

same coordinates as the input tissue type AVS f i eld. SAR calculation uses the acoustic models

developed in Chapter 4 and implemented as described in Section 5.2.2. (The file specified by

the $HpApplicatorFSUM3 Unix shell variable gives FSUM transducer coordinates, relative

maximum power values, and nominal Gaussian beam widths. Module use of this data is

transparent to the user.) If the Show Beams button is depressed prior to the initiation of

SAR field calculation, then the resulting field simply corresponds to the union of the nominal

beam paths of the powered transducers; in this case the output AVSfield takes on data values

of 1 where field points reside in one or more nominal acoustic beams (i.e. within a cylinder

of radius 2 cm about the beam axis, and extending up to 30 cm from the transducer surface),

and 0 elsewhere. The FSUM transducer power settings are given in one of two ways: if the

Read Power File is depressed, then the power settings are taken from the selected file; if not,

then transducers selected by the Transducer Array window of HYPER/Plan-see Figure 2-2,

page 39-are considered powered at maximal levels, and other transducers are not powered at

all. Currently the SAR field is normalized to its maximum value.

Wobulation is taken into account by the Wobulation Number. If this integer n < 1, then the

FSUM spherical shell is considered stationary. If n > 2, then the quasi-precessional wobulation

motion of the spherical shell is divided into n equally spaced positions within one cycle of

rotation, and the SAR field is averaged over these positions.
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Figure 6-4: SAR module control panel.

FBEM

The FBEM module performs the FBEM thermal model calculations. Its sole input is a vector

AVSf ield that must contain at a minimum tissue type and SAR data, but it can also contain

thermal conductivity and perfusion data. If thermal conductivity or perfusion are not supplied,

then they take on nominal values according to tissue type. The output of the module is again

a vector AVSfield containing the temperature and temperature elevation fields at the same

coordinates as the input AVSfield. The Compute Temperature Field button initiates the

thermal field calculation.

In the sample AVS network depicted in Figure 6-1, scalar tissue type and SAR input

AVSfields are joined into a single vector AVSfield by the combine scalars module,

and similarly the vector temperature and temperature elevation output AVS field is trimmed

into a scalar AVS f ield of the chose "channel" (temperature or temperature elevation) by the

extract scalar module.

FBEM has several settings that govern the speed and accuracy with which thermal calcu-

lations are performed, as indicated in Figure 6-5. A slider bar labeled Source Size is used

to select the radius of the finite power sources used in thermal calculations; likewise, a slider

bar labeled Integration Size is used to select the radius of the volume around each thermal
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field point within which finite power sources are considered to contribute to the temperature

elevation at that field point. Computational speed increases and accuracy decreases as the source

size increases or the integration volume decreases. Nominal settings' that give a reasonable

compromise between speed and accuracy are a source size of 5 mm and an integration size of

three perfusion lengths (3/A). If the integration size is less than seven perfusion lengths there is

a Perform Error Correction button that can be depressed to increase accuracy as well.2

Figure 6-5: FBEM module control panel.

The FBEM thermal model requires that the nearest thermal boundary and its geometry

(i.e. planarity, or concavity and radius of curvature) be known at each thermal field point.

FBEM performs these geometric calculations if they have not already been performed. If a file

containing the boundary information already exists, it can be ignored by pressing the Ignore

Boundary Data File button, in which case FBEM will calculate it anew; or it can be considered

by pressing theRead Boundary Data File button. If the user wishes to save newly calculated

'These settings were suggested by Dr. Gregory T. Martin.

2According to Dr. Martin, the use of this button is not generally necessary.
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boundary information, the Write Boundary Data File button is pressed.

Contour

The Contour module is used to display thermal fields in transverse cross-sections. Two elements

give anatomic context to the thermal field: first, a gray plane slices the patient anatomy in the

selected transverse anatomic plane; and second, the thermal field is actually displayed on a

second plane, and organ contours are superimposed over the over the displayed thermal field.

Both of these planes appear in the Geometry Viewer, and the latter plane can be spatially

manipulated by the mouse or the Geometry Viewer Transformation Editor.

Using the Contour visualization tool, Figure 6-6 shows cross-sections through the predicted

SAR and temperature fields in a hypothetical treatment plan. The Contour control panel is

given in Figure 6-7. Trilinear interpolation is performed to determine thermal field values on

a regular grid of the selected Grid Resolution. A smaller grid resolution value increases the

apparent smoothness of the displayed thermal field cross-section, but does not actually affect

accuracy. The color of the organ contour lines is adjustable to improve contrast between the

lines and the colored thermal field; viz., contour lines are colored according to the selected RGB

values, each ranging from 0 to 1. The slice number is the number in the <. ima> file of the

chosen transverse cross-section. This number may increase in the head-to-toe direction, or vice

versa; at this time there is no convenient way for the Contour module to know explicitly which

of these two patient orientations is correct, so a Flip Head and Feet button is available to alter

the orientation of the patient if necessary.

Tumor Dosimetry

The purpose of the Tumor Dosimetry module is to generate a volumetric thermal field suitable

for display as a graph in the AVS Graph Viewer. Specifically, the fraction of the tumor volume

over which the thermal field exceeds an index value is plotted as a function of the index value

in the Graph Viewer. This can be a powerful visualization tool because in a single glance the

user can obtain a general sense of the thermal "coverage" of the tumor by the thermal field.

Tumor Dosimetry takes as input two AVSf ields. The left input port is the thermal field, e.g.

SAR, temperature, or thermal dose field; and the right input port is the tissue type field. The
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Figure 6-6: Transverse cross-sections of predicted SAR (top) and temperature (bottom) fields

using the Contour tool.
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Figure 6-6: Transverse cross-sections of predicted SAR (top) and temperature (bottom) fields

using the Contour tool, in color.
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Figure 6-7: Contour module control panel.

format of the output AVS field is a 2-D field comprising the (x, y) coordinates of the points

plotted in the Graph Viewer. The right output port gives output for the SAR, temperature, or

temperature elevation field; and when temperature is the input thermal field, the left output port

gives output of the thermal dose rate field. Figure 6-8 shows a sample Graph Viewer output,

which corresponds to the predicted temperature field in the simulated treatment depicted earlier

in Figure 6-6. This module has no control panel.

6.2 Thermal Reconstruction

Thermal reconstruction is performed by fitting to thermal measurements the functional forms of

the predicted thermal fields. In this framework, the simplest reconstruction method is to perform

a LS fit between measurements and predicted thermal field values at sensor sites. For SAR field

reconstruction the most obvious fit is for a constant of proportionality a, i.e. the measured

SAR field is the product of the fit constant and the predicted SAR field. For temperature field

reconstruction, it may be desirable to fit to a constant of proportionality a and an offset b.

Thermal reconstruction does not yet follow a specific, well-defined protocol, and it will be the

object of future work to determine how best to perform thermal reconstructions. In this section a

simple thermal reconstruction AVS module is described, an illustrative SAR field reconstruction
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Figure 6-8: Tumor volume fraction above index temperature vs. index temperature.
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is performed, and limitations of thermal reconstruction are discussed.

Extract Points

The Extract Points module is used to perform rudimentary thermal reconstructions based on a

predicted field and thermometric data. The input port takes a thermal AVSfield. The control

panel of the module, shown in Figure 6-9, consists entirely of a file browser. The selected file

contains sets of four numbers, corresponding to the (x, y, z) sensor coordinates (in the patient's

reference frame) and measured thermal parameter value of the thermometric sensors. Extract

Points trilinearly interpolates input field values at the sensor coordinates, and outputs a file with

sets of five numbers: (x, y, z) sensor coordinates, sensor measurements, and predicted thermal

field value at sensor coordinates.

Figure 6-9: Extract Points module control panel.

The interpolated values can be fit by LS to the measured data, and an example of this
fitting is given in Figure 6-10. In this particular example, a single constant of proportionality

was determined over all sensors to minimize the LS error between measured and predicted
SAR values, and the reconstructed SAR field was taken to be the product of that constant of

proportionality and the predicted SAR field. Wobulation was used for this particular treatment,

but for illustrative purposes reconstructions were performed both with and without the use of

wobulation. The agreement between the measured and reconstructed SAR values is not very

good, and several aspects of the discrepancies will be used to pedagogical advantage here. Three
14-sensor thermal probes were used. The spacing between adjacent sensors was 5.0 mm for
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Figure 6-10: SAR reconstruction with three 14-sensor thermal probes, showing measured SAR

values, reconstructed SAR values assuming wobulation, and reconstructed SAR values assuming

no wobulation.

Probe #1, and 7.5 mm for Probes #2 and #3, so the relative widths of the probes represented in

Figure 6-10 are accurate. For the moment ignore the SAR reconstruction without wobulation

(dotted lines).

The first observation concerning these reconstructions is that the reconstructed SAR values

appear to be translated relative to the probes, particularly for Probes #1 and #2, by what appears

to be about 10 sensors (5 cm) for Probe #1 and about 4 sensors (3 cm) for Probe #2. A substantial

part of these offsets probably correspond to an error in the relative position and orientation3

of the FSUM device and the patient. These are significant offsets, assuming the probes are

perpendicular to the FSUM acoustic beam; but if the probes are oblique the actual positional

3In the interest of parsimony, for the remainder of this section "position" will in general be taken to mean
"position and orientation."
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error between the device and the patient may be considerably less than the apparent offsets,

especially if the probes are close to parallel to the beam. These offsets can be used to better

estimate the relative position of the device and patient.

These offsets reflect the need to accurately position the patient and applicator, so that

treatment administration closely follows the treatment plan; and the need to know the relative

position of the patient and applicator, so that thermal reconstruction is accurate. Stereotactic

principles [2] are used to locate anatomic structures very precisely (with an accuracy of 1 mm

or less) in various cranial radiosurgical and radiotherapeutic procedures, and if they could be

applied to hyperthermia it would greatly improve accuracy in patient and device positioning.

Unfortunately there are good reasons why stereotaxy has not been applied very much to most

anatomic sites below the neck: this anatomy is generally soft and movable. Stereotactic

radiosurgery and radiotherapy succeeds because head anatomy is relatively fixed, particularly

when the skull is oriented in a fixed position by the stereotactic frame. For tumors in the body

in general, however, use of a stereotactic frame is impractical and it would be ineffective. In

the case hyperthermia treatment of a tumor in the body, the patient moves even when trying to

remain still. Even if the patient could control fidgeting for the duration of the treatment, about

30 to 60 min, he or she must still breathe.

Ultrasound heating devices (or extensions of the devices) alter the shape of the patient,

pressing against the patient's surface to improve ultrasound transmission. Even if the patient

could remain perfectly still, this deformation of the patient can be recognized as a geometric

discrepancy between the patient representation (based on the patient image) and the true patient

geometry. Furthermore, it is assumed that the patient was in precisely the same anatomic

position while imaged as while treated.

Another issue related to patient geometry is that the patient anatomy can actually change

between imaging and treatment-e.g. some tumors can grow substantially in a matter of a week.

If this issue is considered important, of course, the time between imaging and treatment can be

shortened (although given the amount of time required to generate organ contours and surfaces,

it may not be realistic for imaging and treatment to take place in the same day).

For FSUM treatment, accuracy of the relative position of applicator and patient is a nominal

2cm. And, for reasons already mentioned associated with patient movement, the error in
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relative position is not constant during treatment. If probes were inserted prior to imaging,

then their location relative to the patient would be fairly accurate.4 Thus for accurate thermal

reconstruction an approach is needed which dynamically and continually reassesses the relative

position to obtain the most accurate reconstruction.

Moving beyond issues of treatment geometry, there are certainly other sources of error in

thermal reconstruction. For SAR field reconstruction, tissue acoustic absorption is known to

about 10% or 20% [35], but this assumes the tissue type is accurately identified. Once the

patient and applicator positions are reasonably well established, the acoustic absorption field

could be adjusted to decrease error between the predicted and measured SAR values at sensor

sites. A likely implementation would assume that absorption is uniform in each organ and each

tissue type, but those uniform values could be adjusted independently. For temperature field

reconstruction, a similar adjustment could be made with the perfusion field.

For multi-transducer applicators like the FSUM, different transducers may couple to the

patient with different efficiencies. This is especially true with odd anatomic geometries. If

transducers were excited incoherently then transducer power setting could be related to measured

SAR in a linear matrix equation, and the equation could be solved for the efficiency of ultrasound

transmission (i.e. what fraction of the emitted ultrasound power reached the patient). For the

FSUM device, or other devices with coherently excited or phased array transducers, a more

difficult non-linear matrix equation would relate transducer power setting to measured SAR.

The non-linearities arise because the measured SAR is based on acoustic pressure amplitude,

and the acoustic pressure from multiple coherently excited transducers is the complex sum of the

pressure contributions from each transducer. Solution of this non-linear matrix equation may

be difficult.

The acoustic model of the FSUM device has limitations. At this time is does not take into

account acoustic reflections, and does not really address acoustic phenomena at soft tissue-bone

interfaces. In many treatment geometries these issues may not be important, but in some they

will. It may often be possible to choose a treatment geometry such that acoustic interfaces do

not significantly affect the acoustic fields.

4If a probe is substantially oblique or essentially perpendicular to the transverse planes of the patient image,
then inaccuracies in probe location along the axial direction of the probe would be on the order of the distance
between adjacent image slices-usually 0.5 or 1.0 cm.
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Another aspect of the FSUM acoustic model is that it predicts a "smoother" pressure am-

plitude field than that observed by measurement (cf. Figure 4-25, page 136, with Figure 4-27,

page 140). This is also reflected in Figure 6-10, in which the measured SAR clearly exhibits

local peaks along the probes, whereas the reconstructed SAR values show a single peak each.

This observation suggests that it may be advisable to smooth the measured data in some fash-

ion, e.g. averaging each measurement with its adjacent neighbors, prior to performing thermal

reconstruction. (This may be more relevant for SAR field reconstruction than temperature field

reconstruction-see the quote on page 145.)

An interesting observation concerning the SAR profiles along the probes pertains to the

differences in the reconstructed fields with and without wobulation. Probes #1 and #3 have

remarkably similar profiles, but Probe #2 has an interesting contrast, with a steeper SAR

gradient without wobulation. This is expected, given the device design goal that wobulation

"smooth out" the thermal fields; but what may be surprising is this phenomenon is only really

visible in one of the three probes. This kind of observation has potential consequences for

treatment planning, and may help determine when the use of wobulation is desirable.

There is flexibility in the method of calculation of the constant of proportionality a (and

offset b, if present). For the results shown in Figure 6-10, a single value of a was calculated

throughout the treatment volume. However, there may be appropriate ways to divide up the

treatment volume, and fit the reconstructed field to different values of a in different subvolumes.

For example, different anatomic structures may be fit to different values of a; or subvolumes

around different thermal probes may be fit to different values of a.

Thus far, most of the discussion of thermal reconstruction was either general (for SAR

or temperature field reconstruction) or specific for SAR field reconstruction. Temperature

field reconstruction has issues all its own, however, the most important of which is how to

characterize the perfusion field. Acoustic absorption and thermal conductivity can vary from

tissue type to tissue type and from patient to patient, but the variations are still relatively small.

Perfusion, in contrast, can vary enormously between different tissue types, different regions of

the same organ, different patients, different times at a single location, and in response to heating,

pharmaceuticals, etc. This points to a need for perfusion measurements and physiologic models

of perfusion in order to perform accurate temperature reconstruction.

207



Chapter 7

Conclusions

A good time to finish up old tasks.
- From a fortune cookie after dinner, April 5, 1997

Conclusions concerning this thesis will fall into two categories: SAR modeling, and clinical

integration. Just as results and discussions related to SAR modeling (Chapter 4) preceded those

of clinical integration (Chapters 5 and 6), conclusions related to SAR modeling will precede

those of clinical integration. Lastly, areas of future related work will be discussed.

7.1 SAR Modeling

The SAR modeling results have interesting implications for both the understanding of the power

deposition characteristics of the FSUM applicator in particular, and the design of ultrasound

power applicators in general. Du and Breazeale [25] indicated an appreciation of the simple

characteristics of the pressure amplitude field of a Gaussian acoustic source, and this simplicity

has the potential to go far in acoustic modeling, for several reasons. First, this simplicity

facilitated the construction of a parametric model of the acoustic beams of the FSUM transducers

(Section 4.2), which, in turn, led to a tremendous increase in the speed of pressure field

calculation, compared with solution of the diffraction integral. The potential computational

advantage of a parameterized beam is clearly great, Gaussian beam or not; but the complex

geometry of the many peaks and troughs typical of the pressure amplitude near fields of uniformly

vibrating sources hinders the construction of parametric beam descriptions (although it does not

necessarily make it impossible).
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Second, a potentially serious drawback in the use of non-Gaussian sources, from the perspec-

tive of this thesis, is that a non-Gaussian source (parametrically described or otherwise) might

not accommodate the application of the FAM (Section 4.4). Preliminary results with uniformly

vibrating sources suggest that the pressure amplitude field may be appropriately transformed by

the FAM (although in some cases the acoustic field maintained its general shape, but acoustic

peaks shifted position slightly), but the pressure phase field validation of the FAM for these

transducers was not performed.

Third, the lack of side lobes (see Footnote 9 on page 73) in the Gaussian acoustic beams

makes it easier to control the location of regions of greatest acoustic intensity. In the area

of phased arrays, which focus energy by manipulating the relative phase of different source

elements instead of using geometric focusing, typically a single focus is desired; however other

lesser foci, called grating lobes, are generally observed as well. Grating lobes and side lobes

are both essentially regions in which acoustic wave interference is general constructive, and it is

possible that the use of Gaussian sources in phased arrays may reduce the size of grating lobes.

This strategy is distinct from the one pursued by Hutchinson et al. [44, 45], in which linear

phased array source elements where constructed in two sizes, and the sizes were arranged in a

random pattern. Perhaps for maximal effect, both strategies-Gaussian sources and randomly

sized sources-could be used together.

The FSUM is an interesting and difficult device to model acoustically. It is not a phased

array, but it is coherently excited; thus it has constructive and destructive interference patterns,

like a phased array, but it lacks the electrical focusing ability of a phased array. From the

perspective of acoustic modeling, if a multi-element device is not going to be used like a

phased array, modeling is simpler if the elements are excited incoherently-i.e. by exciting

different transducers at different frequencies, or exciting different transducers with different

(non-overlapping) duty cycles.

Another unusual feature of the FSUM is its quasi-precessional mode of motion called

wobulation (Sections 5.2.2 and B.7). This mode was conceived to extend the focal region from

the geometric focus of the spherical shell toward the transducers and to smooth out hot spots that

would occur in the absence of wobulation. Conceptually wobulation is not difficult to model, but

the current modeling solution--dividing the precessional circuit into n equally spaced discrete
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positions, and averaging the SAR field from all position-increases the SAR computational

burden by a factor of n. Perhaps an extension of the FAM, or a parametric description of the

time-averaged acoustic beam of an FSUM transducer undergoing wobulation, could reduce the

computation difficulty of SAR field calculation with wobulation.

7.2 Clinical Integration

A newly validated power deposition model of the FSUM device and a previously validated ther-

mal model were integrated with a geometric treatment planner, together forming an interactive,

integrated clinical thermal visualization system. This system can be used to investigate ther-

mal reconstruction protocols to better estimate the thermal fields that occur during hyperthermia

treatment administration. A number of sources of error in thermal reconstruction were identified,

probably the most important of which is inaccuracies in the relative position and orientation of

the patient and the power applicator. Other important sources of error include inaccurate values

for tissue properties-most notably acoustic absorption (for SAR reconstruction) and perfusion

(for temperature reconstruction)-and inconsistent acoustic coupling between the patient and

the applicator.

With better thermal reconstruction come powerful system benefits. The relationship between

planned thermal fields and reconstructed fields can be investigated; where there are discrepancies,

it may be possible to influence treatment planning in such a way that the thermal fields achieved

during administration are closer to the planned ones. This closes a clinical loop: planning

influences treatment, which then influences planning. Treatment simulations can be used to

to provide insight into where and how many thermal probes should be placed in the treatment

volume.

3-D thermal modeling opens the door for the use of more quantitative methods in clinical

hyperthermia, such as calculation of volumetric treatment descriptors. Quantitative techniques

will help make hyperthermia therapy a more scientific, reproducible practice.

And finally, an integrated clinical system can be used to help design treatment devices. In

particular, care should be taken to make the applicator as easy as possible to model acoustically.

As mentioned in the previous section, Section 7.1, Gaussian acoustic sources have a number of
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attractive features, from the perspective of modeling. But even with this starting point, there

are many variables in transducer geometry and excitation strategy that should be considered in

device design, and an integrated system can be used to assist in design evaluation.

7.3 Future Work

An exhaustive list of related future work would be overwhelming, so only a few areas will be

touched on here. First, it is clear that more work needs to be done in thermal reconstruction.

Of paramount importance is a reasonably automatic way to determine the relative position and

orientation of the patient and the applicator. A conceptually simple method that would be

relatively straightforward to implement is to repeatedly perturb the position of the applicator

about its nominal location and perform the reconstruction; whichever perturbed position gives

the best reconstruction (i.e. the smallest error between the reconstructed field and measurements

at sensor sites) indicates the applicator position.

Second, a worthy goal for the hyperthermia clinic is real-time reconstruction, for quantitative,

volumetric treatment monitoring. This requires rapid communication between four different

systems: the power applicator, thermometric, locating, and modeling systems. (The third listed

system, the locating system, is necessary to locate rapidly and accurately the applicator and the

thermometric sensors in the patient reference frame.) Real-time thermal reconstruction would

allow the clinician to alter hyperthermia administration in the middle of a treatment, giving

greater dynamic treatment capability.

And third, the FSUM acoustic model can be improved in several ways. For example, there

is a subset of transducers that have not been directly characterized in terms of their modified

Gaussian beam parameters. In addition, the current model implementation does not really

address acoustic transmission and reflection and soft tissue-air and soft tissue-bone interfaces.

To reiterate what has been accomplished here: A consistent, complete, integrated clinical

tool has been developed for hyperthermia treatment planning and evaluation. The next steps,

which can be taken in parallel, are to improve the accuracy of the models in this clinical tool,

and to apply this tool to improve therapy delivery for maximal patient benefit.
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Appendix A

Temporal Oscillation of Temperature for

Improved Thermal Dose Deposition

A.1 Abstract

The use of sinusoidal temporal oscillation of tissue temperature elevation was investigated as

a hyperthermia treatment strategy. The time-averaged thermal dose rate generally increased

with the amplitude of these oscillations. The amplitude of the oscillations was attenuated as

they propagated away from heated regions. Hyperthermia treatments were simulated in two

idealized simple tumor geometries, with power deposited only in the tumor volume and at

the tumor boundary. Different tumor and normal tissue perfusion levels and tumor sizes were

investigated. Two comparative dose metrics were conceived to evaluate the theoretical efficacy

of oscillating heating in the simulations. The results of the simulations indicated dose deposition

can be improved up to 50% (over constant temperature elevation) with oscillating temperature

elevation for some of the configurations simulated. The magnitude of improvement was most

dependent on and increased with the level of tumor perfusion. Oscillations about a nominal

baseline temperature elevation of 44 or 45°C in the tumor most improved dose deposition, with

the amplitude of oscillation ranging from 2°C for low tumor perfusion to 3.5 or 4oC for high

tumor perfusion. Oscillations about 43oC, in contrast, worsened dose deposition.
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A.2 Introduction

The treatment objective in hyperthermia is to deposit power preferentially in tumor tissue,

elevating the tumor temperature to therapeutic levels, while trying to minimize temperature

elevation in the surrounding normal tissue. Generally heating involves three phases: an initial

temperature ramp-up, during which power is deposited principally to raise the tumor temperature;

a middle plateau, during which power is administered to maintain tumor temperature elevation

and to compensate for conductive and convective power losses in the tumor; and cool-down,

during which power deposition is stopped and the tumor cools.

Thermal dose is used to quantify the therapeutic effect of local heating. Dewey et al. [23]

and Gibbs [34] have suggested metrics for thermal dose for which dose rate is exponentially

related to temperature, and both metrics have been used in clinical studies [22, 23, 34, 84, 87].

A hyperthermia treatment strategy in the middle phase of heating is suggested that exploits

the positive exponential relationship between dose rate and temperature. By sinusoidally os-

cillating temperature elevation about a nominal baseline elevation, time-averaged dose rate can

be increased, compared to the dose rate achieved by simply maintaining tumor temperature

elevation constant at the nominal baseline value. The amplitude of these oscillations is attenu-

ated as they propagate away from the heated volume. This means time-averaged dose rate can

be increased in regions of large oscillations (i.e. inside the heated volume), whereas the time-

averaged dose rate is more modestly increased in regions of small oscillations (i.e. outside the

heated volume). The potential advantage of oscillatory heating is viewed from two perspectives.

First, the dose deposited in the tumor volume, relative to the dose deposited in the normal tissue,

may be increased. Second, the heating margin, i.e. the spatial extent of the tissue margin around

the tumor which receives a thermal dose above a given threshold, may be decreased.

Several groups [50, 70] have recognized that hyperthermia treatment administered by

scanned focused ultrasound results in oscillations in temperature elevation, and these oscil-

lations can increase dose deposition. In both cases the effects of these temperature oscillations

on dose deposition were investigated in the focal plane only.

Sinusoidal oscillation of power deposition or temperature elevation has also been used for

tissue blood perfusion measurement [3, 4, 81]. This class of perfusion measurement device

measures the phase lag between power and temperature oscillations, which is related to tissue
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perfusion, as well as driving frequency of the power deposition and tissue material properties.

Ocheltree and Frizzell [78] investigated the transient power deposition required to ramp up

tumor temperature linearly and then maintain it constant. This approach is used here as well.

Treatment simulations were performed to investigate the effects of temperature oscillations on

dose deposition throughout the tissue volume. Treatment geometry and power deposition were

kept simple to allow analytic solution of the heat transfer equations.

A.3 Theory

The simulated patient is divided into a tumor region (signified by the subscript t) and a normal

(non-tumor) region (signified by n). Tissue properties are considered homogeneous and constant

in each region, but need not be the same in both regions.

A temporally oscillating but spatially uniform temperature profile in the tumor is specified,

and power is deposited only in the tumor volume and at the tumor boundary. From these

considerations, the cyclic steady-state temporal and spatial temperature profile in the normal

tissue is determined. In addition, the power deposition necessary to achieve that temperature

profile is determined, along with physical constraints on that power deposition. Finally, an

analysis is performed of the time-averaged thermal dose rates achieved inside and outside the

tumor volume.

The two geometries explored are a Cartesian one-dimensional (l-D) case, in which the tumor

is modeled as a slab of finite thickness embedded in an infinitely wide patient (see Figure A-1);

and a spherical 1-D case, in which the tumor is a finite sphere in an infinite patient (Figure A-2).

In both cases, heat transfer is modeled by the bioheat transfer equation:

1 0 Q.1)O= V 2 0 - A2 0 + (A.1)a 0t k
where 0 is temperature elevation above arterial blood temperature, a is tissue thermal diffusivity,

t is time, A is the tissue inverse perfusion length, Q is volumetric power deposition, and k is

tissue thermal conductivity. A2 = WpblCbl/k, where w is tissue perfusion, Pbl is blood density,

and cbl is blood specific heat capacity. The Q term does not include metabolic heat generation

explicitly, because Equation A.1 considers temperature elevation above the unheated baseline

temperature, and that unheated baseline temperature is determined by basal metabolism.

214



A.3.1 Temperature Field Solutions

Assume a heating field that produces a spatially uniform tumor temperature elevation Ot{t}:

Ot (t = 01 + 02 sin wt (A.2)

(How to actually achieve this heating will be discussed shortly.) Given 9t{t}, it is desired to

determine the cyclic steady-state normal tissue temperature elevation field O, {t}, assuming the

power deposition in the normal tissue Qn = 0.

~ -i.:ii-i is-ii II III

Figure A-1: Cartesian l-D patient geometry-tumor slab (II) sandwiched between two semi-

infinite regions of normal tissue (I and III).

In the Cartesian l-D geometry, thermal boundary conditions on the normal tissue are:

8n{0, t} = Ot{t} = O1 + 02 sinwt and 8(oo, t} = 0 (A.3)

The solution to the bioheat transfer equation (Equation A.1) with these boundary conditions is:

Oc {x, t} = 9Oe- *nx + 02e - ,Ax sin(wt - # 2x) (A.4)

where A2 = wnPblCbl/knl , 2 ( 1
4  Q(w n)2 + A• ) and r 2

2  ( (w/4n)2 - A2)

In the spherical l-D geometry, thermal boundary conditions on the normal tissue are:

Os {R,t} = O{t} = O1 + 02sinwt and Ons{oo,t} = 0

The solution to the bioheat transfer equation with these boundary conditions is:

Ons{r, t} = R {Oe-An(rR) + 02e-3(r-R) sin[wt - 02(r - R)]}

(A.5)

(A.6)

(See Appendix B.8.1 for temperature field derivations.)
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Figure A-2: Spherical 1-D patient geometry-spherical tumor (II) in infinite normal tissue

region (I).

A.3.2 Physical Constraints on Heating

The heating necessary to achieve the desired tumor temperature profile can be divided into two

components: volumetric power generation throughout the tumor volume, and surface flux at the

boundary between the tumor and normal tissues [77, 85]. The first component, the volumetric

power Qt, is necessary to overcome the convective cooling effect of tumor perfusion wt, and

to change the internal energy of the tumor tissue (in the case of oscillating Ot). The second

component, the tumor boundary heat flux 4b, is necessary to overcome thermal conduction of

energy from the tumor into the normal tissue volume.

For the purposes of the current investigation, physical constraints are imposed on Qt and

q4; specifically, they are both constrained to be non-negative, as a violation of either constraint

would imply administration of negative thermal energy, or the removal of thermal energy.

Though negative 4b' can be easily performed on the external surface of the patient by surface

cooling, the geometries of the idealized simulated patient have no external surface.

Given the tumor temperature t({t} = 01 + 02 sin wt, the bioheat transfer equation can be

solved for the volumetric power deposition Qt {t}:

Qt{t} = kt [At2 + /t22 sin(wt + ýt)] (A.7)

where 3t2 = xA4 + (o;/t) 2 and tan t = w . Thus Qt is found to be a function of w, and
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constraining Qt to be non-negative translates into a constraint on w:

_2 1 tt PblCbl 2
Qt {t} > 0 when w < w = at A2  2 Pt 2 - 1 (A.8)

where A2 = wtPblCbl/kt. w* is the critical angular velocity which w cannot exceed without

allowing Qt to become negative, at least during part of its oscillatory cycle. Since wt is

physically constrained to be positive and real, Equation A.8 implies the additional constraint

01 > 02. Figure A-3 illustrates how wt varies as a function of 01/02 for various values of wt

spanning the physiological range of perfusion.

Given the temperature field solution (Equation A.4 for the Cartesian 1-D geometry, or

Equation A.6 for the spherical 1-D geometry), the tumor boundary heat flux Q"{t} is easily

determined. In the Cartesian 1-D case, 4•c {t} is given by

I"c { = kn [An9 1 + Oc02 sin(wt + Vpc)] (A.9)

where 3c = 1+ + -2 = 2 4 + (W/an)2 and tan pc = 0,1/02. In the spherical l-D case,

4s{t I is given by:

b's {t} = kn [(R-1 + An)01 + Os92 sin(wt + 'ps)] (A.10)

where 3s = (R - + 31)2 + fl22 and tan ps = (R - + 31)/f02. Like Qt, 4b is seen to be a

function of w. Constraining 4" to be non-negative yields, in the Cartesian 1-D geometry:

A .(,,)4 4
c Jt} > 0 when _ < __ =On 2 1 =a nn - 14

02 PnCn 92 -1 (A.(0)

and, in the spherical 1-D geometry:

'{t} > 0 when w<w* = (A.12)

B B4- A4 + 2R- 2(2B 2 + A2 + R -2)

- 2R-1 2B6 + (5R-2 + 2A,~)B 4 + 4R- 2(A + R- 2)B 2 + R- 4 (2A2 + R -2)

where B = R-1 [(I + RAn) 01/02]2 - 1

The ultimate constraint on w is w < w*, where w* = w* = min(wt*, w0) in the Cartesian 1-D

geometry, and w* = w* = min(wt , wbs) in the spherical 1-D geometry. Usually wt < w&; and

Wb < wc always, with limR. wos = Wýc. (See Appendix B.8.2 for derivations concerning

heating constraints.)
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A.3.3 Comparative Dosimetry

The exponential thermal dose relationship described by Dewey et al. [23] was used to perform

dosimetry based on the temperature solutions obtained above. Accordingly, dose rate D as a

function of tissue temperature T is given by:

T = R 4 3 -T/oC EQ43/min where R = 0.25, T <43 0C13)
0.5, T > 430C

The units of D are equivalent minutes at 430C per minute, or EQ43/min.

When temperature is constant at T = T1, the dose rate D{T1 } is simply a function of Tl.

When temperature is varied sinusoidally as T{t } = T + T2 sin wt, the time-averaged dose rate

D{TI, T2} is a function of both T1 and T2. To simplify nomenclature, D will imply oscillating

heating, and D will imply constant heating.

Two comparative metrics are used to compare the dosimetry of the oscillating and non-

oscillating heating cases. Both metrics are designed to provide measures of the percent im-

provement in dose deposition of oscillating heating over non-oscillating heating. The first

metric M 1 compares the volume-averaged dose deposition in the normal tissue volume with

and without oscillations. Specifically, M 1 is the percent improvement in volume-averaged

normalized dose deposition of heating with oscillations over heating without oscillations:

1 J dV- 1J dV
MI = D VV f x 100% = 1 -

V V Dt
100% (A.14)

The relevant tissue volume V is the volume of normal tissue in which the time-averaged

temperature is greater than 400 C, which is taken to be the nominal threshold for non-trivial

thermal damage to tissue. For the metric M 1, dose deposition is normalized to dose deposition

in the tumor.

The second metric M 2 compares the width of the margin of heating around the tumor between

heating with oscillations and heating without oscillations. For heating without oscillations the

margin width d50 is defined as the distance outside the tumor at which the dose rate equals half

the dose rate of the tumor, i.e. Dn{d} = !Dt; for heating with oscillations the margin width d50

is defined as the distance outside the tumor at which the time-averaged dose rate equals half the
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time-averaged dose rate of the tumor, i.e. D)(dso} = - Then:

d5o- d5o 350M2 d = 0  x 100% = 1- d- x 100% (A.15)
d50 d50o

The metrics M 1 and M 2 were both calculated for the cases tumor tissue perfusion Wt = 10,

20, 40 ml/min-100g (W and w are both measurements of perfusion, related by pW = w);

normal tissue perfusion Wn = 20, 40 ml/min-100g; tumor radius R = 1, 2, 4, oo cm (R = oo

corresponds to the Cartesian 1-D geometry); T1 = 42 to 460 C in 0.250 C increments; and T2 = 0

to as large as possible in 0. 10'C increments. Other tissue properties and blood properties are

given in Table A. 1. Perfusion is the only tissue property that was allowed to differ between tumor

and normal tissue in this analysis. Lastly, w was set to w* to maximally attenuate oscillations in

the normal tissue.

Table A. 1: Tissue and blood properties.

tissue thermal conductivity k 5.5 mW/cm-0 C

tissue density p 1.07 g/cm3

tissue specific heat capacity c 3.1 J/g-oC

blood density Pbl 1.00 g/cm3

blood specific heat capacity cbl 4.18 J/g--C

T2 has an upper bound because as T2 increases, w* decreases (see Equations A.8, A. 11, and

A.12). Although increasing T2 increases D{TI, T2}, reducing the time necessary to administer

a treatment, w* decreases more quickly than D{TI, T2 } increases. To achieve a total treatment

thermal dose DTX, the duration of treatment tTX is given by:

2irN DTX
tTX = - -- (A.16)

w D{T, ,T 2}

Here 27r/w is the period of oscillation, and N is the number of cycles of heating. The minimum

period of oscillation is 2lr/w*. By setting DTX < 60 EQ43 and N = 1, then, T2 was implicitly

constrained.

Time-averaged dose rates were determined by integrating the instantaneous dose rate over

one cycle, using the quad8 function in Matlab 4.1 (The Mathworks, Inc., Natick, MA). This

function used an "adaptive recursive Newton Cotes 8 panel rule," and performed integrations
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to an accuracy of 0.1%. Dn and D, were calculated at 0.01 cm intervals in the normal tissue.

To calculate M 1, Dn and Dn were weighted by r2 (the square of the radial coordinate) and

summed. (For the Cartesian 1-D case the weighting was uniform.) To calculate M 2, D/ and

.n were linearly interpolated in the relevant spatial interval.

A.4 Results

Figure A-4 shows a family of curves relating the time-averaged dose rate D{T1,T 2 } to T2 ,

with each curve corresponding to a different T1. When T2 = 0 then T{t} = T, is a constant,

and D{T1,0}= D{TI }. In general temperature oscillations are seen to increase the time-

averaged dose rate D{TI, T2}, with the exception of oscillations of magnitude T2 < IC about a

baseline temperature in the range 42.50 C < TI < 43.5°C. Furthermore, increasing T2 generally

increases D{T1 , T2} without limit (with the small exception just noted). A constraint imposed

on T2 during the generation of the curves in Figure A-4 was that T1 - T2 > 370 C, ensuring that

T{t} exceeds the unheated baseline temperature 370 C. (As previously observed, however, T2 is

further constrained in practice.)

Figure A-5 shows the same data as Figure A-4, but D{TI, T2 } is normalized by D{T1 }; thus

Figure A-5 plots D{T1, T2}/D{T1 } as a function of T2. Again, each curve corresponds to a

different T1 . Parts of many of the curves overlap, and all the curves would lie on top of each

other if R in Equation A. 13 were not a function of temperature. Figure A-6 is an enlargement

of the region of small T2 of Figure A-5. In this region it is seen that all curves with T1 < 420 C

essentially overlap, and all curves with TI > 43oC also largely overlap, but curves in the region

42°C < TI < 43°C make the transition between the two extreme curves.

A sample heating profile, obtained using Equation A.6, is given in Figure A-7. For this

case, Wt = 10ml/min-100g, Wn = 20ml/min-100g, R = 2cm, Ti = 44.50C, T2 = 20 C, and

w = w = = = 7.77 x 10- 3 rad/s. In Figure A-7A, the solid line shows the time-averaged

temperature, and the dashed lines bound the temperature oscillations. Note that r < 2 cm

corresponds to tumor tissue, and r > 2 cm to normal tissue. The solid line in Figure A-7B

shows the time-averaged tissue dose normalized to the time-averaged tumor dose, Dn,/),

as a function of position, for the sinusoidal tumor temperature Tt = 44.5°C + 20 C sin wt; the

220



dashed line shows tissue dose normalized to tumor dose, )n/Dt, as a function of position, for

the constant tumor temperature profile Tt = 44.50 C. Figure A-7C shows the ratio R of the

normalized time-averaged tissue dose rate with sinusoidal heating (Dn/Dt) to the normalized

tissue dose rate with constant heating ()n/!D), 1? = ~ The shape of the curve shown (a

local minimum in 1? near the tumor boundary, a local maximum further from the tumor, and an

asymptote with lir•.~ 7? < 1) is typical when TI > 43.50 C, but other variations are possible.

When TI = 430C, there is a maximum in R near the tumor boundary, and the asymptote is

lirm•_, R > 1 for small values of T2 and lim~_, 1 < 1 for large T2. When TI < 42°C, the

curve decays approximately exponentially from the tumor boundary for small values of T2, and

has a maximum in R near the tumor and an asymptote limro 7 < 1 for large values of T2.

Figure A-8 shows a set of comparative dose metric curves; Figure A-8A shows M 1, and

Figure A-8B shows M 2, and each curve is labeled according to its T1. These sets of curves

exhibit several characteristics found in all the simulations performed in the specified ranges of

Wt, Wn, and R. First, the T1 = 430 C curves show poor performance, regardless of T2. Second,

when T1 < 430 C, the curves have maxima at small values of T2, and the smaller T, is the smaller

the value of T2 at which maximizes the curve; in addition, as T2 increases the comparative dose

metrics go negative. Finally, when T1 > 44'C the curves nearly coincide, and the curves for

lower values of T1 are able to extend to higher values of T2, and usually to higher values of the

comparative dose metrics as well.

Table A.2 gives the (TI, T2) pairs that maximize M 1 and M 2 for all the Wt, Wn, and R

configurations. R = oo corresponds to the Cartesian 1-D geometry. For Wt = 10 ml/min-100g)

two maxima are given for M 1 for each Wt and R configuration. The one with T1 > 440C is

a local maximum, and the one with T1 = 42 0C is a global maximum within the constraint

420C < T1 < 460C.

A.5 Discussion

The idiosyncratic behavior exhibited in Figures A-7 and mboxA-8 and in Table A.2 can in

large part be attributed to the "kink" at 430C in the temperature-thermal dose relationship. If

in Equation A.13 the base R were constant at R = 0.5 over the entire temperature range of
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interest, then the normalized time-averaged dose rate D(TI, T2}/D(TI } would be a function of

T2 only, and it would essentially follow the curves associated with T1 = 470 C in Figures A-5

and A-6. In this case, oscillating temperatures would improve dose deposition (as measured

by comparative dose metrics M 1 and M 2) for any T1 and T2, and the larger the value of T2

the larger the improvement in dose deposition would be. (T2 would still be constrained by

Equation A.16, however, so it could not be arbitrarily large in practice.)

For the regular temperature-thermal dose relationship (Equation A. 13), several general con-

clusions can be drawn from the treatment simulations:

1. The optimal TI is in the 44 to 450 C range, nearly independent of Wt, Wn, and R. M 2

is typically maximized at TI = 44°C, and M 1 is maximized at slightly higher values

of T1. A potentially significant exception is the simulation configurations for which

Wt = 10 ml/min-100g, for which T1 = 420 C maximizes M 1 (but not M 2).

2. A poor choice for T1, regardless of simulation configuration, is T1 = 43°C.

3. For the simulation configurations studied, Wt is the most influential parameter over the

value of the optimal T2 and the magnitude of the maximized comparative dose metrics.

The larger Wt, the larger the optimal value of T2, and the larger the values of the metrics.

4. For a given simulation configuration, the maximum value of M 2 registers approximately

50-100% higher than the maximum value of M 1.

Several observations can be made from the heating field solutions presented in Figure A-7.

First, temperature rapidly falls off beyond the edge of the tumor, which results in an even more

precipitous fall-off in dose rate and time-averaged dose rate. In the case presented in Figure A-7,

the margins of heating d50 and dso are about 0.5 mm, and the margin width was sub-millimeter

in all the heating configurations analyzed. This tight margin was possible because the power

deposition field was so sharply defined. A more realistic power deposition field will probably not

be so sharply defined, so temperature and dose rate and time-averaged dose rate will not fall off

from the tumor boundary so quickly. Thus dso and d50 may increase substantially, although the

difference d50 - d5o may not change much; this could lead to reduced values of the comparative

dose M 2, compared to the ideal power deposition field. In contrast, M 1 might not change very

much.
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A second observation from Figure A-7 concerns the ratio R = A. Where 7 is less

than, equal to, or greater than 1, local dose deposition with oscillatory heating is less than,

equal to, or greater than local dose deposition without oscillations, respectively (for the same

dose deposition in the tumor). Thus in regions in the normal tissue where dose deposition is

significant, the treatment objective is to achieve 1Z < 1. In the case depicted in Figure A-7C,

R < 1 near the tumor boundary (r = 2 cm) and distant from the tumor, but R > 1 in the middle

region. Because the vast majority of the dose deposited in the normal tissue occurs in the region

nearest the tumor boundary, where R > 1, this heating pattern is a good one. In regions where

dose deposition is low, the value of 7 is unimportant for practical purposes.

M 2 compares d50 and d50, where local dose deposition is 50% that in the tumor. But if

M 2 were based on d1o and dl 0, for example, where local dose deposition is 10% that in the

tumor, the message conveyed by M 2 would change dramatically. Returning to the case shown

in Figure A-7C, d50 > d50 yields M 2 = 5%; but d10 < d10o would yield M 2 = -3% -a

qualitatively different result. If the administered dose DTx has a substantial effect on tissue, it

is reasonable to assume that !DTX could have a significant effect as well. 9-1DTx is quite a bit

smaller, however, and may not have much clinical importance. Thus M 2 was based simply on

d50 and d50.

For tissue configurations with low tumor perfusion levels (viz. Wt = 10ml/min-100g),

Table A.2 indicates that T1 = 42°C gave slightly superior values of M 1 to those obtained when

T, > 430 C. TI was constrained to be between 42 and 460 C in Table A.2. It is possible values for

M 1 can be even further increased by allowing T1 < 420 C, but it cannot be increased by allowing

T1 > 46°C (unless DTX is increased). There is a distinct clinical disadvantage to administering

hyperthermia treatment with T1 < 420 C: to administer a thermal dose DTX = 60 EQ43 would

take three or more hours. Thus heating patterns based on T1 < 420 C were excluded from

Table A.2, and those with TI = 420 C were included for thoroughness.

The cyclic steady-state and constant steady-state analyses ignored the effects on dose de-

position of the transient heating patterns-both the transients associated with the first phase

of heating, ramp-up, and the third and final phase, cool-down. The issue of dose deposition

during ramp-up can be ignored by essentially injecting a bolus of volumetric thermal energy.

The required field of injected volumetric thermal energy is Q = pcO1, where 01 is the tissue
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temperature elevation field at the start of cyclic or constant steady-state temperature elevation.

(Note that t = 0 does not necessarily correspond to the start of treatment. For example,

Ot{t} = 01 + 02 sin wt indicates Ot{0} = 01, but this is not meant to imply 90 = 01 in the tumor.)

Ocheltree and Frizzell [78] model a bolus injection of thermal energy over the time span of

6 min, but theoretically it could be done essentially instantaneously. For this instantaneous

bolus strategy there is no dose deposition at all during ramp-up.

During cool-down local dose deposition largely depends on the phase of the temperature

elevation. Generally speaking, if heating is stopped when On {t} near the tumor boundary is close

to the minimum of its cycle, relatively little dose will be deposited in that region. The phase

of On{t} near the tumor lags slightly behind the phase of Ot{t} (by 0 2 x rad and l2 (r - R) rad

for the Cartesian and spherical 1-D cases, respectively), so if the t {t} is near its baseline 81 at

the start of cool-down, it is expected there would be less dose deposition in cool-down in the

normal tissue near the tumor if the oscillatory heating strategy were used than if it were not.

Scanned focused ultrasound is a popular technique for administering power in hyperthermia

treatment. The temperature oscillations induced by this mode of treatment are not sinusoidal, but

tend to have an exponential rise and a longer exponential decay in a single oscillatory cycle [50].

For the same time-averaged temperature, this type of oscillation is generally superior to a pure

sinusoid, in terms of time-averaged dose deposition, because the difference between the peak

and mean temperature elevation is greater than the difference between the mean and minimum

temperature elevation. Thus scanned focused ultrasound has the potential to substantially benefit

from the temperature oscillations intrinsic to the technique. The longer the scan time (i.e. the

time to complete one cycle of scanning) is, the greater the size of the temperature fluctuations,

and the more significant the potential effect of the temperature oscillations on dose deposition.

The magnitude of the temperature fluctuations increases close to linearly with tissue perfusion

and scan time. Moros et al. [70] calculated theoretical temperature fluctuations from less than

1 to several OC for various tissue perfusion levels and scan times from 5 to 30s; for tissue

perfusion of 30 ml/min-100g and scan time of 30 s, for example, temperature fluctuations (i.e.

the difference between peak and minimum temperatures) were 3oC. This is comparable to

experimental results obtained by Hynynen et al. [50], who measured temperature fluctuations

of about 5°C in in vivo animal experiments.
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In these scanned focused ultrasound treatments [50] and simulations[70], the presented

temperature fluctuations occurred at locations where the focus passed. Fluctuations at other

locations in the heated volume were considerably smaller, however. The comparative dose

metrics M 1 and M 2 were used to compare dose when the dose deposition in the tumor volume

is uniform, but variations on these metrics could be used for inhomogeneous dose deposition as

well. For example, Equation A. 14 could be modified by substituting volume-averaged tumor

dose rates for Dt and Dt (i.e. Dt = fv D dVt/Vt and D• = fv D dVt/Vt, where Vt is the tumor

volume). With such metrics scanning patterns could be simulated and optimized to enhance

dose deposition by exploiting the effects of temperature oscillations on time-averaged dose rate.

Table A.2: The optimal comparative dose metrics M 1 and M•2 (%), and the (TI, T2) pairs (°C)

that achieve them, for all Wt (ml/min-100g), Wn (ml/min-100g), and R (cm) configurations.

R = oo corresponds to the Cartesian 1-D geometry. For Wt = 10 ml/min-100g two solutions

are given for M 1, including one at TI = 420C.

Wt R Wn = 20 W n = 40

M_1  Tl T2  .M 2  TI T2  MA1  TI T2  M 2 TI T2
10 1 14 44.75 1.9 29 44.00 2.3 15 44.25 2.2 30 44.00 2.3

15 42.00 1.1

2 15 44.75 1.9

16 42.00 1.1

4 15 44.75 1.9

17 42.00 1.1

00 16 44.25 2.2

18 42.00 1.1

16 42.00 1.2

16 44.25 2.2 32 44.00 2.3

17 42.00 1.2

16 44.25 2.2 35 44.00 2.3

17 42.00 1.2

17 44.25 2.2 34 44.00 2.3

18 42.00 1.2

20 1 24 45.00 2.5 40 44.00 3.1 24 44.00 2.8 41 44.25 3.0

2 26 44.50 2.8 43 44.00 3.1 26 44.25 3.0 44 44.00 3.1

4 27 44.50 2.8 44 44.00 3.1 27 44.25 3.0 46 44.00 3.1

00 28 44.50 2.8 46 44.00 3.1 28 44.25 3.0 46 44.00 3.1

40 1 37 45.00 3.3 52 44.00 3.9 36 44.50 3.6 52 44.25 3.7

2 39 44.50 3.6 55 44.00 3.9 37 44.50 3.6 54 44.00 3.9

4 40 44.50 3.6 57 44.00 3.9 38 44.50 3.6 57 44.00 3.9

00 42 44.50 3.6 59 44.00 3.9 39 44.50 3.6 57 44.00 3.9
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Figure A-3: w* as a function of 01/02. Each curve is labeled according to its wt (in s-').
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Figure A-4: Time-average dose rate D{T1 , T2} (EQ43/min) as a function of temperature oscil-

lation amplitude T2 (0 C). Each curve is labeled according to its nominal baseline temperature

T1 (0C).
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Figure A-5: Normalized time-averaged dose rate D{T1, T2 )}/{TI } as a function of temper-

ature oscillation amplitude T2 (0C). Each curve is labeled according to its nominal baseline

temperature T1 (°C).
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Figure A-6: Enlargement of previous figure-normalized time-averaged dose rate

D{T1 , T2}/D{T1 } as a function of temperature oscillation amplitude T2 ('C). Each curve

is labeled according to its nominal baseline temperature T1 (oC).
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Wt=1O, Wn=20, R=2
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Figure A-7: Temperature and thermal dose profiles in the spherical 1-D case, with

Wt= 10ml/min-100g, Wn = 20ml/min-100g,

w = w* = 7.77 x 10- 3 rad/s.

R = 2cm T1 = 44.5°C, T2 = 20C, and
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wt=1O, wn=20, R=2

T2 (C)

0 0.5 1 1.5 2 2.5 3 3.5
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Figure A-8: M 1 and M2 VS. T2, for the case where Wt = 10 ml/min-100g,

Wn = 20 ml/min-100g, and R = 2 cm. Curves are labeled according to their respective values

of T1 .
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Appendix B

Supplementary Derivations

This appendix includes a number of derivations meant to supplement the material in the main

chapters. These appendicular sections are cited in their respective corresponding areas of the

main text, and vice versa.

B.1 Geometry and Volumizer

This section describes in detail the method used in Volumizer to determine the equation of a

line in a 2-D plane, and the equation of a plane in 3-D space (see Section 2.4.1, page 47).

Figure B-1A, taken from Figure 2-5C on page 46, shows a triangle APQR in the yz-plane.

The point P has coordinates 1 = (ps, Py, Pz), and likewise for Q and R. Any point (y, z) on the

line PQ satisfies:

Pzy -pP (z - pz) (B.1)qz - Pz
Rearrangement yields:

(qz - Pz) y + (Py - qy) z = (qz - pz) Py + (Py - qy) Pz (B.2)

This equation is in the same form as AR y + BR z = CR, and gives the constants AR, BR, and

CR.

By my convention, if a point (y, z) lies inside the projection of APQR, then AR y + BR z >

CR. Take the point R as a test point. If AR ry + BR rr > CR the convention holds. If

AR ry + BR rz < CR, then multiply AR, BR, and CR by -1, and then the convention will hold.
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AQy + BQz = CQ

Apy + Bpz = Cp

AAx + BAy + CAz = DA
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Figure B-1: 2-D and 3-D geometry of triangles.
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(If AR ry + BR rz = CR, the triangle is degenerate because R is on the line PQ.) This same

procedure is performed for sides PR and QR.

The equation of the plane in which APQR lies in 3-D space is AA x + BA y + CA z = DA,

as shown in Figure B-1B. Let n' be a vector normal to the plane, O the origin, and W the unique

point in the plane closest to the origin. For any point X - (x, y, z) in the plane, the dot product:

i = i| ||cosO = I'll' (B.3)

where 0 is ZWOX. The important thing to note here is that the final result, Inll1 1, is a

constant for the plane (as long as we stick with a specific n'), and that constant can be given

by n' - , for example. A perfectly reasonable way to calculate n' is by the cross product

E = ( 7- q) x (p'- F'). The equation of the plane, nr £ = i. j , can be expressed by:

nx x + ny Y + nz Z = nx px + n7 py + nz Pz (B.4)

which is of the same form as AA x + BA y + CA z = DA. By my convention, if IF is in the

+x direction of the plane, then AA x + BA y + CA z > DA. This is ensured if AA > 0; if

AA < 0, then multiply AA, BA, CA, and DA by -1. (If AA = 0, then the plane is parallel to

the x-axis. In this case it is desired that BA > 0. If BA = 0, meaning the plane is parallel to

both the x- and y-axes, then it is desired that CA > 0.)

B.2 Rayleigh-Sommerfeld Diffraction Integral

The Rayleigh-Sommerfeld diffraction integral relates the velocity potential 'P to the velocity

of a planar acoustic source embedded in an otherwise infinitely rigid plane (see Section 3.1.3

on page 65). This equation' is an important one, and it pervades the literature in ultrasound

physics. Despite its ubiquity, however, the author located but a single derivation, in Morse and

Ingard [71], and that derivation was difficult, convoluted, and abstract. A shorter and sweeter

(more direct and physical) derivation follows.

A hemispherical source is placed on an infinitely rigid plane, and radiates into a semi-infinite

medium. By symmetry, the velocity potential in the medium is given by the velocity potential

1 Though called the Rayleigh-Sommerfeld diffraction integral, this term colloquially refers to the entire equation
(Equation 3.23, page 65, and Equation B.9, page 235).
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solution of a spherical source in an infinite medium, Equation 3.20, which is repeated here:

{r, t} = R-aj{R}ej(wt-kr) (B.5)
r

The velocity from a spherical source is also given in Equation 3.20, and it can be solved to find

the velocity at the source surface:

ur{R, t} = jk(1 - j/kR)a,{R}ej (wt - kR)  (B.6)

Equation B.6 can be substituted into Equation B.5 to give:

{jr, t} = R Ur{R, t} ejk(R-r) (B.7)
r jk(1 - j/kR)

For sufficiently small values of R (R < A), the hemispherical source is equivalent to a planar

source (located within the rigid plane and radiating into the semi-infinite medium) with the same

surface normal velocity (u,{t} = Ur{R, t}) and surface area (A = 21rR 2) as the hemispherical

source. Taking the limit as R - 0, and letting A - dA, Equation B.7 is transformed into:

{Tr, t} = e-jkr dA (B.8)27r

Since the wave equation (Equation 3.8) is a linear homogeneous equation, and the boundary

condition is homogeneous (by symmetry 9'F/On = 0 everywhere on the planar boundary except

at the source location), the solution for T for a non-trivial planar source is the sum (or integral)

of Y solutions for the simple (or differential) sources that make up the non-trivial planar source:

'{V, t}J = un e-jkd dA (B.9)

where A is the source surface, dA is a differential part of A, and d is the distance between the

field point of interest and dA. Equation B.9 is the Rayleigh-Sommerfeld diffraction integral.

B.3 Visibility of Cylindrical Wedge Source from Field Point

Figure B-2 illustrates which parts of the cylindrical wedge are visible to a given field point, with

the case of the convex radiator (i.e. sound waves radiate outward from the source, in the direction

of increasing r) in Figure B-2A, and the concave radiator in Figure B-2B (see Section 4.1.5 on
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page 108). This figure shows the projections of the cylindrical wedge (heavy, solid circular

arc) and field point on the xy- and rO-plane. To avoid certain special cases, the constraints

0 < o< 7r and -7r < p, 7r are made. Tangent lines from the shown circle (on which the

projection of the cylindrical wedge lies) to the field point intersect the circle at the angles 0p, 3,
where cos / = R/rp.

For there to be a line of sight between the cylindrical wedge and the field point in the case of

a convex source (Figure B-2A), rp > R by necessity. If this condition is met, then the visible ra-

diating surface extends through the interval 0min < < < max, where Omin = max(-ao/2, Op - #/)

and max = min(ao/2, ,Op + 0). (N.B.: The conditions co - / < -ir and ao + 3 > 7r can occur

and are allowed.) It is possible this interval does not exist at all, e.g. in the case (rp, Op) = (2R, 7r);

in such cases no portion of the cylindrical wedge is visible to the field point, so the entire cylin-

drical wedge does not contribute to the sound pressure field at the field point.

The story is somewhat more complicated in the concave case (Figure B-2B). If rp • R

the field point is visible to the entire cylindrical wedge, i.e. Omin = -U0/2 and Om, = ce/2.

If rp > R, what happens depends on which of five intervals around the circle contains Op.

If -r0/2 < 9, < a0/2, no portion of the cylindrical wedge is visible to the field point. If

Op < -ue/2 - ir/2 or 0, > ao/2 + 7r/2, the entire cylindrical wedge is visible to the field point.

In the remaining two intervals, r, is defined as the length of the part of the ray 0 = Op up to the

intersection of the ray with the tangent on the circle at +0e/2. (If -ao/2 - 7r/2 < Op 5 -o,/2,

cos(-ro/2 - ,Op) = R/r,; if ao/2 < Op < cTo/2 + 7r/2, cos(9, - uo/2) = R/rp. These two

expressions can be combined into a single expression for r,: r, = R/cos(10,I - ao/2).) In these

two intervals, if rp < r, the entire cylindrical wedge is visible to the field point. Otherwise,

if -ae/2 - r/2 9 ,p < -ce/2, as in Figure B-2B, -min = -Ue/2 + 2[(0, + /) - -oe/2] =

2(0, + /) + u0/2, and Omax = T0/2; and if os/ 2 < Op 5< ro/2 + 7r/2, Omin = -Ue/2 and 0max =

r0/2 - 2[co/2 - (9, - 0)] = 2(0, - 3) - u0/2. Table B.1 summarizes how to determine

which part of the cylindrical wedge is visible to the field point.
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Table B. 1: Determination of the interval min < 0 < Omax, the portion of the cylindrical wedge

visible to the field point. If Omin Omax, or Omin and nax are given as -, there is no visible part of

the cylindrical wedge to the field point. If the rp condition is given as -, rp, 0; if the O, con-

dition is given as -, -7r < Op 7. 0 < ao < r, cos / = R/rp, and rp' = R/cos(IOp, - uo/2).

r, condition

convex radiator

0<r <R

r, > R

concave radiator

0 < r, < R

p- pR < rp < rp,rp > rp,
R < r, < rp

rp > rp,

p, condition Omin Omax

max(-ao/2, O, - 3) min(uo/2, O, + 3)

-ao/2 < Op, < ao/2

-7 < Op, < -uo/2 - /2

uo/2 + 57/2 < Op < 7r

-a/2- 7r/- </2 Op < -o/2

co/2 < Op < uo/2 + 7/2

-aU/2

-a0/2
-ce/2

-Ue/2

2(,Op + ) + ao/2

-Uo/2

-ae/2

ao/2

ao/2

uo/2

uo/2

uo/2

( -/2

2(O, - /) - ao/2
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B.4 Mathematical Adjustment of Coordinates of

FSUM Transducers

This appendicular section details the determination of the FSUM transducer coordinates (see

Section 4.3.1, page 133). The objective here is to rotate an FSUM transducer about its center C

so that the central axis of its beam passes through O', the observed point of peak pressure in the

focal plane, instead of through O, the designed point of peak pressure in the focal plane, and

the origin of the canonical FSUM coordinate system (see Figure 4-23 on page 133).

Figure B-3 depicts the geometry. The prime symbol (') will denote quantities related to the

observed geometry, and the lack of prime symbol to quantities related to the designed geometry.

The coordinates of the center of a transducer ' (in the FSUM reference frame) are determined

from the coordinates of the corners of the transducer. From the geometry of the FSUM, the ideal

ultrasound beam axis is a ray from ' through 0 (the origin of the FSUM coordinate system), so

the normal vector of the ideal transducer surface is given by n' = -c. For the real beam axis,

which is a ray from cthrough A~' = (xoff, Yoff, 0), the vector normal vector of the real transducer

surface is given by n' = -'+ A•.

The best (but not only) way to rotate the transducer about its center so that its surface normal

is transformed from n' to -' is to rotate the transducer about the line CD, which is perpendicular to

both CO and CO'. The direction of this line is given by ~2 = n'x n"'. e' = n' e' is perpendicular

to both n' and £2, and rounds out a non-canonical local coordinate system (i, A2, e3) related to

the designed transducer geometry. Similarly, 3' = n' x 2 is perpendicular to both n' and

e2, and rounds out a non-canonical local coordinate system (0', 2, 3) related to the observed

transducer geometry. The matrix transformations Ge (for going from the (*, '2, e3 ) to the FSUM

coordinate systems) and Ge, (for going from the (n', '2, 3') to the FSUM coordinate systems)

are then given by:
n 0 A'0

e2 0 e2 0Ge 0 and Ge , 2 0 (B.10)
e3 0 3

-c 1 - 1

where X - &/IIj 5| is the unit vector in the 5' direction.

Finally, the desired rotation of an arbitrary point, e.g. a transducer corner vertex, from
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Figure B-2: Projected cylindrical wedge and field point in the rO- and xy-plane. (A) illustrates

the convex radiator case, (B) the concave radiator case.

Figure B-3: Geometry of transducer rotation about the transducer center.
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designed coordinates to observed coordinates is accomplished by:

F = Gj'Get (B.11)

B.5 Trilinear Interpolation

This appendicular section presents the ubiquitous trilinear interpolation algorithm (see Sec-

tion 4.4.1, page 147, and Section 4.4.2, page 147). Trilinear interpolation, as its name suggests,

is essentially a linear interpolation technique, except it is applied to 3-D instead of 1-D geome-

tries. It is a pervasive method for interpolating field values between grid points on a rectilinear

lattice, with known field values at each lattice point. A lattice point (i, j, k) is associated with

the location (x{i}, y{j}, z{k}), or equivalently (xi, yj, zk). Similarly, the field f is given at

each lattice point by f {i, j, k} or f {xzi, yj, k }.

Figure B-4 illustrates how to find f{fI}, the trilinearly interpolated field value at the arbitrary

location P. First the voxel, or cell, in the lattice that contains P must be identified. (For cases

in which P lies on the boundary between two or more voxels, any one of these voxels can be

chosen.) In the figure, the voxel (i, j, k) is observed to contain P.

(i,j+1,

(ij,

1,j+1, k)

1,j,k) Y

z•

Figure B-4: A voxel, or cell, in a rectilinear lattice.

An arbitrary px value between xi and xi+1 can be linearly interpolated as follows: px(t,} =

lin(xx, x 1+l, tx), where lin(xo, zx, t) =_ o + (xt - xo)t, where 0 < tx, 1. (Px{0} = xi and
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P{l } = xzi+.) Analogous equations can be expressed in the y and z coordinates, giving:

pX = xi + (xi+l - xi)tx

Py = Yi + (Yi+I - yi)ty where 0 < tx, ty, tz 1. (B.12)

Pz = Zi + (zi+1 - zi)tz

Thus given the coordinates of P and the relevant lattice points, the vector t= (tX, ty, tz) can be

found.

Seven linear interpolations are then required to perform the trilinear interpolation:

1: fbackbottom = lin(f{i,j, k },f{i + 1,j, k },tX)
2: fbacktop = lin(f{i,j + 1, k }, f{i + 1, j + 1,k },)
3 : fback = lin(fback bottom , fback top , ty)

4: ffrontbottom = lin(f{i,j, k + 1}, f{i + 1,j, k + 1}, t) (B.13)
5: ffronttop = lin(f{i,j + 1, k + 1}, f{i + 1, j + 1,k + 1}, t)
6 : ffront = lin(ffront bottom , ffront top , ty)

7 : f{f} = lin(fback , ffront, tz)

Trilinear interpolation fits the field within the voxel to the functional form:

f {x, y, z} = (ai + a2x)(a 3 + a4y)(a 5 + a6 z) (B.14)

or, equivalently:

f {x, y, z} = b, + b2x + b3y + b4z + b5zy + b6 xz + b7yz + b8syz (B.15)

where al,..., a6 and bl,..., bs are constants.

B.6 Geometry of Validation Conditions

Two geometries associated with are investigated in this appendicular section: spherical and

planar (see Section 4.4.2 on page 161). In particular, a ray is cast from the origin through a field

point of interest. In the spherical geometry, we would like to know the distance from the origin

to both points of intersection (if they exist) of the ray with the sphere. In the planar geometry,

we would like to know how to transform the equation of the plane by rotation and translation,

and also the distance from the origin to the intersection (if it exists) of the ray with the plane.
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B.6.1 Spherical Geometry

The sphere geometry is shown in Figure B-5A. The sphere has radius r and center Q. O is the

origin, and P is the field point of interest. If the ray OP intersects the surface of the sphere at

S and T, we would like to know the lengths al = a2 = 1, and b = 1ST = a2- a,.
Figure B-5B shows a 2-D cross-section of the 3-D geometry in the plane containing O, P, and

Q. For simplicity, define p = OP and q = OQI. 0, the angle LPOQ, is given from the dot

product: pq cos 0 = P - Q. If r > q sin 0 then OP intersects the circle, but if r < q sin 0 then it

does not. If there is intersection, then using the law of cosines and the quadratic formula:

al,a2 =qcos0 ±- T2 --(q sin0)2 (B.16)

and:

b = Re(a 2 - a,) = 2 r2 - (q sin0)2t~ 0
r > q sin
r < q sin 0

(B.17)

(A) (B)

Figure B-5: 3-D and 2-D geometry of a sphere intersected by a ray.

B.6.2 Planar Geometry

A plane is defined by Ax + By + Cz = D (see Equation B.4). This equation can be expressed

in matrix form:

(B.18)x y z 1 A =0
B
C

-D
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or symbolically:

£yT = 0 (B. 19)

where £ = Ix y z 1I is an arbitrary vector that falls in the plane, and a = A B C - DI is a 4-D

vector that defines the plane.

If the coordinate system is transformed by G, then I is transformed to Y' = £G, and a' is

transformed to i'. Now:

YdT = iGG-'~T = lT G-1~T = yIdfT = 0 (B.20)

which easily demonstrates d• = G-'a-.

Figure B-6: Geometry of a plane intersected by a ray.

The planar geometry is shown in Figure B-6. The equation describing the plane is Ax +

By + Cz = D. Once again, O is the origin, and P is the field point of interest. The ray OP

intersects the plane at S. In this reference frame, with origin 0, g'and p are proportional to each

other-i.e. ' = ap, where a is simply a scaling factor. Recognizing that (sX, sy, sZ) satisfies the

equation of the plane:
Da = (B.21)

Apx + Bpy + CPz

If the denominator of Equation B.21 equals zero then the line OP is parallel to the plane, lying

entirely in the plane if D = 0, and not intersecting the plane at all otherwise. If 0 < a < 1 then

the infinite line OP intersects the plane on the line segment OP, if a > 1 it intersects beyond

P, and if a < 0 it intersects beyond O.
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B.7 FSUM Coordinate Transformation Under Wobulation

The object of this section is to determine how to transform coordinates between the FSUM

rigid housing and spherical shell reference frames, given the angular position of wobulation,

Owob = Wwobt. The geometry of the problem is given in Figure B-7, which is borrowed with

minor changes from Figure 5-2 on page 176. (See Section 5.2.2 on page 174 for background.)

housing ' a spherical
a91 arm shell

16.8 cm
',23.8cm

flexible cover -- ,' -

O' 'O"
- 1 I+-

1.1 cm

Figure B-7: Geometry of wobulation mode of FSUM.

A number of coordinate transformations will be made. All reference frames considered will

have the z direction either straight down in Figure B-7, or tilted at 90, depending on the specific

reference frame. There are also three relevant reference frame origins to consider, labeled O,

0', and 0". The necessary transformations necessary to go from the housing reference frame

to the spherical shell reference frame are:

1. Start in the housing reference frame, rotate by +0wob around the a-axis (the 00' line) to

transform to the arm reference frame (this transformation is symbolized by G1).

2. Tilt by 90 around O' to transform to the uncounterrotated spherical shell reference frame

(G2).

3. Rotate by -Owob around the a'-axis (the 0'0" line) to transform to the counterrotated

spherical shell reference frame (G3).
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The term counterrotation here denotes the dynamic that, while the arm is rotating relative to the

housing, the spherical shell is rotating relative to the arm at the same speed in (essentially) the

opposite direction. The combined transformation matrix Grh-ss from the rigid housing reference

frame to the spherical shell reference frame is given by Grh-ss = G 1G2G3.

Now G1 and G3 can be obtained in a straightforward manner, as they are simple rotations

about the z-axis in the relevant reference frame:

coS 0wob

- sin 0wob
0

0

+sin 0wob

COS 0 wob

0

0

00
00
10
01

cos 0wob

+sin 0wob
and G3 -

0

0

- sin 0wob

COS 0 wob

0

0

00

00

10

01

G2 requires a little more work, however. This is because the origin of the housing reference

frame is O and the origin of the spherical shell reference frame is 0", but the tilting associated

with G2 is about O'. This tilting can be broken down into three simple transformations:

A. Translate 7.1 cm from the O origin to the 0' origin (G2A).

B. Tilt by 90 about 0' (G2B).

C. Translate 7.1 cm from the 0' origin to the 0" origin (G2C).

Then G2 is given by G2 = G2AG2BG2C, and:

10 0 0 cos9 0 0 +sin9' 0 1 0
0100 0 1 0 0 01

G2A = 01 0 0 G2B 0  , and G2C -00 1 0 -sin 9° 0 cos 9' 0 00
00 +7.1 1 0 0 0 1 00

Observations concerning the component transformations of Grh-ss include

G 2A = G2C, and G, and G3 depend on 0wob but G2 does not.

0 0

00

1 0
-7.1 1

GI = G3- 1

B.8 Oscillatory Heating

This appendicular section is actually a rare appendix to an appendix! Specifically, the derivations

presented refer to various sections of Appendix A, page 212.
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B.8.1 Temperature Field Solutions

These derivations expand on discussions and derivations in Section A.3.1 (page 215).

B.8.1.1 Steady-State Solution in Cartesian 1-D Geometry

In this case the objective is to determine the steady-state solution for nc {x, t} in the Cartesian

l-D geometry, with 0t{t} = 01, where 01 is a constant. With no volumetric power deposition,

the bioheat transfer equation in the Cartesian 1-D geometry becomes:

1 aon V2 21 = ncV2n - A 0= %n c (B.22)
a n  at = n  n n2

In the steady-state, this reduces to:

d0 2nc (B.23)0 dx2  n

This equation, taken with the boundary conditions:

nc {0, t} = Ot{t} = 01 and Onc1 oo, t} = 0 (B.24)

easily yields the steady-state solution:

On {(x, t = 01e - nx  (B.25)

B.8.1.2 Cyclic Steady-State Solution in Cartesian 1-D geometry

In this case the objective is to determine the cyclic steady-state solution for nc{x, t} in the

Cartesian l-D geometry, with O{t}f = 02 sin wct, where 02 is a constant. For this case, the

boundary conditions are:

Onc{0, t} = O{t} = 02sinwt and ncoo, t} = 0 (B.26)

If the normal tissue were unperfused (meaning wn = 0, and consequently An = 0), the

regular heat diffusion equation would prevail:

c V20n = 20n (B.27)
an Ot a x2
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The cyclic steady-state solution of this equation given the oscillating boundary condition is

well-known:

Onc{x, t} = 02 e- Onx sin(wt - 3nx) (B.28)

where /n2 = w/2an.

In the perfused case, a solution of the form:

Onc {, t} = 02e - , 1x sin(wt - 02x) (B.29)

is assumed. Substitution of this form into the bioheat transfer equation (Equation A.1)

demonstrates this is a valid solution, with 0/2=•(j4 + (w/an) 2 + A )  and

22= (\n4 +- (u/an)2 -- 2).

B.8.1.3 Cyclic Steady-State Solution with Offset in Cartesian 1-D Geometry

In this case the objective is to determine the cyclic steady-state solution for Onc {, t} in the

Cartesian l-D geometry, but now with Ot{t} = 01 + 02 sinwt, where 01 and 02 are constants. For

this case, the boundary conditions are:

Onc{0, t} = Ot{t} = 91 + 02 sin wt and 0nc{oo, t} = 0 (B.30)

Since the bioheat transfer equation is homogeneous, and the boundary conditions in the steady-

state (Equation B.24) and simple cyclic steady-state (Equation B.26) sum up to the current

boundary conditions, the current solution is given by the sum of the steady-state and simple

cyclic steady-state solutions (Equation B.25 and Equation B.29):

Onc {, t} = Oie - Anx + 92 e-P1x sin(wt - 32 x) (B.31)

B.8.1.4 Cyclic Steady-State Solution with Offset in Spherical 1-D Geometry

In this case the objective is to determine the cyclic steady-state solution for ns {x, t} in the

spherical l-D geometry, with 0t{t} = 01 + 02 sin wt, where 01 and 02 are constants. With

no volumetric power deposition, the bioheat transfer equation in the spherical l-D geometry

becomes:
1 09 820ns 20
I ns 2s = - A928ns  + s2 dOS - A ns  (B.32)

an at Or2 r Or
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With the substitution On = rTns, the spherical 1-D bioheat transfer equation (Equation B.32) is

transformed into:
1 90_n  920 n

n Ot Or 2 An (B.33)

which has the same form as the Cartesian 1-D bioheat transfer equation (Equation B.22). The

boundary conditions for the spherical 1-D problem are:

ns {R, t} = 8{t} = 081 +82sinwt and Ons {o, t} = 0

Expressed in terms of qn, the boundary conditions become:

On {R, t} = R(81 + 02 sin wt) and n{oo, t} =O 0

(The second boundary condition on On, i.e. On{(oo, t} = 0, is determined as follows: Although r

increases linearly with r, O8s {r, t} decays exponentially, so On{oo, t} = lim_,_ rOns {r, t} = 0.)

Using the solution in Equation B.3 1, and making the substitution 8ns = On/r, the spherical

1-D solution is obtained:

(B.36)Ons{r , t{_} '- {oe-An(r-R)+ -2 6 3 1(r-R) sin[wt - 2(r - R)]
r

B.8.2 Constraints on Heating

These derivations expand on discussions and derivations in Section A.3.2 (page 217).

B.8.2.1 Tumor Volumetric Heating

In the tumor volume the bioheat transfer equation (Equation A. 1) is:

1 8A
(B.37)= t - t t +at at kt

where A3 = WtPblCbl/kt. For the specified heating pattern, 08 = 01 + 02 sinwt, 08t/Ot =

w0 2 cos wt, and V 20t = 0. With substitution and rearrangement, this yields:

t {t} = kt [t281, 82 At2 sin wt + -
oat

cosWt)]

= kt [A:8 1 + t282 sin(wt + ot) ] (B.38)
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where ft 2 = A4 + (wlat)2 and tan ot = 2 To ensure Qt{t} > 0 it is necessary that

At201 > (03t{w}) 202. Solving this inequality results in the constraint on w:

2 2 lCbl
when w t o<w aA -l=wt1c1 ( l2 2 1

02J)-
(B.39)

B.8.2.2 Tumor Boundary Heating in Cartesian 1-D Geometry.

The tumor boundary heat flux is easily given by "bc {t} = -knVOnIb = -knOOnc/dxIx=O+.

(Vnc lb refers to the gradient of Onc at the boundary, and 80nc/x lx=o+ refers to the first

derivative of ,nc in the limit as x goes to 0 from the positive (i.e. x > 0) direction.) Given

nc { x, t} from Equation A.4:

(c{t} = kn [An 1 + 02 (/31 sin wt + 32 cos wt)]

where tc = /32 + 2/3

= k n [An '
1 + /3 C2 sin(wt + 5oc)]

-- •4+ (wO/n) 2 and tan pc = /31/32.

(B.40)

As above, q({t} > 0 when

An9 1 O/3C{w}02, which yields:

when w < w& = anAn
0 1 2

= wblCbl  01 4

pnCn (02)

B.8.2.3 'ITumor Boundary Heating in Spherical 1-D Geometry.

Now 4~(s {t} = -kn•Vns b = -knOOns/Oar,=R+. With the same analysis as performed for the

Cartesian 1-D geometry, in the spherical l-D case:

+ 02 [(R-1 + /) sin wt

+ /392 sin(wt + SOs)]

where Os = V(R -' + 3)2 +232 and tan ýs = (R-1 + 31)/32.

(R-1 + An) 01 > S{W(}0 2 , which yields:

+ /32COS wt]

(B.42)

Again, 's"{t} -> 0 when

0 when w < ws= (B.L

- 2R 2B6 + (5R2 + 2)B 4 + 4R 2 + 4(2- -)

-2R-' /B6+(5R - 2 + 2A 2)B 4 + 4R-Z(A 2 + R-2)B 2 + R-4(ZA2 + R - 2 )
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= kn (R-' + An)91

= kn [(R-1 + An)01

(s {t}

{B

43)

Qt {t) > 0

d \d,~T~--3/rr~3 1 \31 ~--2\



where B = R-' [(1 + RAn) 01 /2]2 - 1

B.8.2.4 Demonstration that wc > wt Usually

(See Equations B.39 and B.41, respectively, for definitions of w'* and w*c.) Combining Equa-

tions B.39 and B.41 yields:

*= PtCt (=2 + 1 (B.44)
Wt PnCn 0 2

Tissue material properties (viz. p and c) are typically very similar in normal and tumor tissue,

wt is rarely significantly larger than wn, and (01 /92)2 + 1 > v2.

B.8.2.5 Demonstration that w* > wc Always

(See Equations B.41 and B.43, respectively, for definitions of c* and w* .) Equation B.40

provides an expression for b"c {t}, and Equation B.42 for 's {t}. Rearranging the latter equation,

substituting the former, and noting that 0t{t} > 0 (because 01 > 02) yields:

4s {t} = kn {(R '- An)O1 + 02 [(R- 1 + ) sin wt -+ 2 cos wt]

= kn { [An0 1 + C02 sin(wt + pc)] -+ ' ( 1 + 82 sin wt)}

'c {t} + knR-'0tIt} > q1c {t} (B.45)

If w = wcc, then Os => =b 0. This implies w can exceed wco while maintaining , soIfW* w .*
bs bc"
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Appendix C

Power Deposition and Thermal Model

Parameters

This appendix contains two tables related to power deposition and thermal modeling. Table C. 1

provides nominal tissue property values for power deposition and thermal models, viz. acoustic

absorption, thermal conductivity, and blood perfusion. (This table contains most of the informa-

tion in the file designated by the $HoTPES_tissueProperties Unix shell variable-see

Section 6.1). Table C.2 comprises data associated with the geometry and acoustic power char-

acteristics of FSUM transducers. (See Sections 4.3.2, 4.3.3, and B.4 for related material.)
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Table C.1: Nominal acoustic absorption a, thermal conductivity k, and blood perfusion W

values of different tissue types.

Tissue Type

Bladder

Bone

Bowel

External Volume

Heart

Implant

Kidney

Liver

Lung

Prostate

Rectum

Stomach

Tumor

0.05 Np/cm

2.5

9.0

0.05

0.05

0.0

0.05

0.05

4.5

0.05

9.0

0.05

0.05

5 mW/cm-°C
5
5
5
5
6
5
5
5
5
5
5
5

10 ml blood/min-100 ml tissue

1
10

10

150

1

200

110

10

10

10

50

9
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Table C.2: Various data associated with the transducers of the FSUM. The columns are transducer

number (#), normalized maximum pressure amplitude Pma, x and y offsets (cm), and Gaussian

beam width ab (cm) in the focal plane of the device. Pma, x, and y data are courtesy of Jorgen

L. Hansen.

0

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Pmax
.877

.946

.738

.536

.562

.865

.769

.0

.674

.713

.771

.771

.604

.778

.768

.853

.700

.947

.702

.697

.813

.723

.0

.670

.801

1.

.909

.695

Ax Ay

-0.5 2.0
0.9 0.0

1.7 2.0

-0.9 1.9

-0.5 1.2
0.0 1.4

0.7 0.8

-0.7 0.5

-0.5 0.2
-0.2 0.5

0.0 0.5

0.5 -0.3

0.4 -0.2

0.5 -0.1

0.0 0.0

-2.1 0.0

-1.2 0.0

-0.4 0.1
0.4 0.0

0.5 0.2

1.0 -0.3

1.7 -0.1

0.0 0.3

-1.3 0.0

-1.0 -0.3

-0.3 -0.6

ab
0.75

0.76

0.77

0.74

0.79

0.84

0.80

0.68

0.80

0.73

0.90

0.72

0.75

0.72

0.75

0.76

0.78

0.78

0.78

0.79

0.75

0.66

0.67

0.74

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

Pmax
.800

.545

.639

.916

.917

.570

.870

.650

.707

.805

.525

.720

.864

.894

.916

.911

.886

.758

.853

.725

.836

.600

.852

.532

.719

.941

.644

.738
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Ax Ay

0.5 0.0

1.0 -0.8

1.5 -0.2

0.0 0.0

-2.3 -0.3

-0.5 -0.3

-1.2 -0.8

-0.6 -0.6

-0.3 -0.5

0.0 -0.8

0.2 -1.0

1.2 -1.0

1.5 -0.8

-1.2 -0.6

-0.5 -0.5

-0.6 -1.0

-0.3 -1.1

0.0 -1.0

0.6 -1.2

1.0 -1.1

-1.0 -1.2

-0.9 -1.1

-0.5 -1.1

-0.5 -1.1

0.8 -1.2

-1.0 -3.4

-0.1 -2.0

0.4 -2.3

rb
0.75

0.88

0.80

0.75

0.80

0.83

0.86

0.80

0.77



Appendix D

Hyperthermia Therapy Systems

What follows are short descriptions of several hyperthermia treatment systems that have a history

of clinical use. All of these systems have been reported in the literature within the last seven

years, with the exception of the Steered, Intensity Modulated, Focused Ultrasound (SIMFU)

hyperthermia system, which appeared earlier. This list is not meant to be comprehensive.

* The HTS-100 (Tokyo Keiki Co., Ltd.) is a relatively low frequency (430 MHz) microwave

heating device that uses a lens to focus power deep in the patient [67, 68]. Treatment

planning is minimal with this system, as is feedback of thermal measurements during

treatment. Nevertheless the system has been used clinically in Japan.

* The Dartmouth MIMO Adaptive Hyperthermia Controller, a system that is not yet used

clinically, learns adaptively how to control each power transducer to optimize the temper-

ature elevations measured during treatment administration [40, 41]. This type of system

has several advantages. First, it is a relatively simple system, both in terms of computer

hardware and software and treatment planning. Second, it is flexible in that it can use dif-

ferent types and numbers of power transducers and thermometric instrumentation. And

third, it has the potential to deal easily with patient movement. An obvious criticism,

however, is that it gives the desired heating only at the thermal measurement sites, and the

heating that is achieved elsewhere is not known.

* Helios (Varian Associates) is a commercial ultrasound hyperthermia system designed for

deep heating [76]. This system uses ultrasound for imaging as well as power deposition.
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Hynynen et al. have developed an intracavitary ultrasound hyperthermia system that takes

advantage of both ultrasound functional modalities as well [49]. The on-line imaging

capability of these systems ensures the power transducers are well situated for reasonably

accurate power deposition over the anatomy of interest, and it is conducive to quick

treatment planning and preparation. But without thermal modeling the temperature field

that results in treatment is not well known.

* Scanned focused ultrasound (SFUS) describes systems that focus ultrasound, generally

through the use of multiple geometrically focused power transducers, and move the

focal point through the patient target volume by translating and rotating the transducers

together. The Sonotherm 6500 (Labthermics Technologies Inc.) is a 6-transducer SFUS

system typical of the genre [37]. It has an ultrasound imaging transducer located at the

center of the gantry carrying the power transducers. The path the transducers follow is

defined prior to treatment, and it can be modified within treatment by the system operator

based on invasive temperature measurements taken during treatment. A genealogically

related SFUS system uses more sophisticated planning procedures to predict the SAR

and temperature fields that would result from a given transducer excitation pattern, and

to determine the optimal trajectory of the transducer gantry [60]. Both systems have seen

clinical use.

* The Stanford 3D Hyperthermia Treatment Planning System (S3DHTPS) is based on the

Sigma-60 Applicator of the BSD-2000 Hyperthermia System (BSD Medical Corp.), a

microwave device for hyperthermia treatment [92]. In treatment planning the predicted

SAR field is determined on a patient-specific basis, and it can be displayed on CT slices of

patient anatomy as iso-SAR contours or in pseudocolor. This 2-D visualization is probably

one of the most sophisticated uses of patient visualization in clinical hyperthermia today,

but it still lacks the benefits of 3-D visualization. In addition, knowledge of the SAR field

is not an end in itself, but rather a means to obtain knowledge of the temperature field;

thus the S3DHTPS is limited in clinical prospective planning because it does not predict

temperature field. Another potential problem with this system is the difficulty in gauging

the accuracy of its predicted SAR field. This difficulty exists because the SAR field that

was actually achieved in treatment is not measured.
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* The Steered, Intensity Modulated, Focused Ultrasound (SIMFU) system was used to treat

hundreds of cancer patients in the MIT Hyperthermia Center [58, 59]. This system could

be categorized as a SFUS device, although it lacks ultrasound imaging capability, and it

uses a lens to focus ultrasound from a single transducer (in contrast to multiple transducers

focused by their geometric arrangement). To control treatment, multiple thermal probes

are used with a protocol that results in copious measurement sites, but thermal modeling

and thermal visualization are not used. The SIMFU system requires considerable support

staff to operate, but treatment results were superior.

* The Focused Segmented Ultrasound Machine (FSUM) (Labthermics Technologies Inc.)

was designed for heating of deep tumors in the DFCI hyperthermia clinic [38]. It uses

56 independently controllable ultrasound transducers arranged on a spherically focused

gantry. It is similar to standard SFUS systems, but it heats a region by adjusting the

size and shape of the diffuse focus rather than moving a sharp focus through a trajectory.

Although treatment planning involves patient 3-D visualization through HYPER/Plan,

thermal modeling has not yet been incorporated into treatment planning or evaluation

procedures. Nevertheless, the 3-D patient anatomic visualization by itself distinguishes

this treatment system from the other systems mentioned above.
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