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Abstract

Voice mail users often feel frustrated when having to wait through long messages from
slow speakers. Increasing the playback speed of the messages helps, but care must be
taken so that messages from the fastest speakers remain intelligible. The system can be
made even more efficient with the use of a speech rate detector. By analyzing each mes-
sage with the speech rate detector, the playback speed could then be adjusted for each
message, ensuring that all messages can be played back as quickly as possible while
retaining intelligibility. While previous research has produced accurate speaker rate detec-
tion systems in the laboratory, some problems are encountered when adapting them to the
voice mail system.
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Chapter 1

Introduction

Although much of the focus and attention on speech processing these days is in the
field of speech recognition, there are other important application areas. One such applica-
tion is speaker rate detection, that is determining how quickly someone is speaking or the
rate of information flow. Speaker rate detection shares many of the challenges of speech
recognition, notably robustness to different speakers and the variability of the environ-
mental conditions the speaker is in. Similar to speech recognition systems, the control of
the environment and speaker dependence decreases, the problem can become substantially
harder [1] [6]. But speaker rate detection is free of a very difficult part of continuous
speech recognition - determining precisely which phonemes and words are being spoken.
A rate detection system then is very similar to the "front end" of a speech recognition sys-
tem which must reduce the complex speech input into discrete units (such as phonemes or
syllables), which in the case of rate detection would then be counted over some time inter-
val rather than looking them up and matching them with entries in the system’s vocabu-
lary. By avoiding all the "back end" issues of actually interpreting what is being spoken, it
is hoped that a simple and efficient system can be designed for accurate speech rate detec-
tion, while avoiding all the cost and complexity of a complete continuous speech recogni-

tion system.

The primary interest in speaker rate detection for this thesis lies in voice mail applica-
tions, more specifically for retrieval of messages. As a voice mail user, it can be very frus-
trating to wait for slow speakers to complete their messages, particularly when busy or

traveling. This can be remedied to some extent by increasing the playback speed of the



messages or by using a more complicated time compression technique that preserves
pitch. The problem here is that different people speak at different rates, and we would like
to optimize the playback speed of each message individually to match its speaker. If a sin-
gle playback speed were to be applied to all messages, those messages from people with a
very high speech rate may become unintelligible while the recipient may still end up hav-
ing to wait impatiently through a message from the slowest speaker. By analyzing each
voice mail message with an accurate speech rate detection algorithm prior to playback, the
voice mail system could then compute the appropriate playback speed that should be
applied to each message. This will make the process of getting one’s voice mail as effi-

cient as possible.

Speaker rate detection is useful in other applications involving human-computer inter-
faces as well. Even if the words being spoken and their meaning are not known, speech
rate can still provide valuable cues. For example, when designing a system where a com-
puter is dictating a series of instructions or directions to a human, the speech rate of the
user can be used as an indicator of his or her understanding of the instructions or ability to
process them. A sudden burst of quickly spoken words may mean that the user didn't have
time to write something down or just couldn't hear the machine clearly the first time so the
instruction could be repeated, while a very slow rate could be interpreted as acceptance by

the user.

In this thesis, the syllable is chosen as the basic unit of recognition. This decision is
based in part on previous work with automatic segmentation of speech into syllables. That
research produced an algorithm with a reported error of only 6.9% syllables missed (rela-
tive to the total number of syllables), and 2.6% extraneous segments that did not corre-

spond to actual syllables [3]. The algorithm presented below is a variation on that work
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and is designed to determine the speech rate, expressed in syllables per second. It has also
been adapted to work with the available voice mail system.

For this voice mail application, the speaker rate detection scheme must be tolerant of
not only each speaker's characteristics, but also the conditions related to each particular
call. Calls from different telephones (or possibly even the same telephone at different
times) will be affected differently in terms of speech dynamics, background noise, and dis-
tortion. The limited bandwidth of the analog cables will have a filtering effect on the audio
that depends on the length of the cable run. Meanwhile, newer digital transmission tech-
niques, such as speech coding for wireless telephone networks, may impart very different
qualities on the speech. As time progresses and new technologies come into being, even
more variability may be thrown into the mix. Gaining independence over all of these vari-

ables may prove to be a daunting task, but it is essential for reliable performance.

11



12



Chapter 2

Methods

2.1 Introduction

In order to segment continuous speech into syllables, information must be extracted
from the speech waveform. Syllables are generally defined as a period of voiced speech,
i.e. a vowel, preceded and/or followed by a consonant. The energy in the segment of
voiced speech is referred to as the sonorant energy. Segmentation techniques can try to
locate the occurrences of this energy in a variety of ways. One approach is to examine the
amplitude envelope or intensity of the time-domain waveform, guided by the thinking that
the voiced speech will be characterized by sustained periods of large amplitude while con-
sonants are not as prominent and more transitory in nature. The syllables would then be

determined by tracking the peaks and transitions in the envelopes.

An alternate technique for locating syllables would be to break the speech into voiced
and unvoiced segments. A number of different indicators can be used to determine the
voicing state. Examining the signal energy in a low frequency band from 60 to 400 Hz is
one possibility [2]. Voiced segments are also characterized by their self-correlation in time
as well as harmonic and formant structure in the frequency domain. Wide-band energy or
sharp transients would hint at unvoiced speech. With a reliable voicing detector, the transi-
tions between voiced and unvoiced states, along with periods of silence, would then define
the syllable boundaries. Additional syllable boundaries may then be found by momentary
drops in amplitude or power during the longer segments of voiced speech [5].

A third approach, and the approach used in this thesis, is to create a "loudness" func-
tion, as suggested by Mermelstein [3]. In this case, the short-time power over a selected

frequency band is summed to produce the loudness function. The precise frequency band

13



is chosen to fall in areas where the sonorant energy is strongest so that the syllables mani-
fest themselves as peaks in the loudness function. This loudness function is then seg-

mented to locate the syllables.

2.2 Computing the Loudness Function

The loudness function is created using very common signal analysis techniques. The
speech sequence is windowed, that window of data is processed, and then the window
advances. For each window of speech data, the short-time power spectrum is then com-
puted with a Fast Fourier Transform (FFT). The signal energy could also be obtained with
computation on the actual time sequence or filtering, but using the FFT makes it very easy
to quickly view the energy in a particular frequency band and to weight certain frequen-
cies more than others. The time domain processing would account for the energy over the
entire spectrum which is not necessarily desirable. In this thesis, all data was weighted
with a Hamming window. The typical length of the time window used in this work was 16
milliseconds, with a frame increment of 8 milliseconds so that each frame overlaps with

half of the previous frame.

Each point of the loudness function corresponds to one windowed frame of the speech
data. The value of the loudness function is created simply by summing up the power spec-
trum over the selected frequency range and applying a logarithmic compression. When
analyzing a series of speech recordings, the peak loudness level in each recording was
normalized. This sequence is then smoothed with a fifth order, linear phase low pass filter,
designed with a cutoff frequency at 200 Hz. The newly smoothed loudness function bears
a strong resemblance to the amplitude envelope of the speech segment. Figure 2.1 displays
the waveform for a sample phrase and its spectrogram is shown in Figure 2.2. The initial
loudness function and the smoothed version are presented in Figure 2.3 and Figure 2.4

respectively.
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algorithm to count five syllables when there are only four. By reducing the upper limit of
the frequency band, that extra peak in the loudness can be reduced so that the algorithm

correctly locates only four syllables, as shown in Figure 3.4.
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Figure 3.1: The phrase "My vacation."
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Figure 3.2: Spectrogram of "my vacation."

Loudness

100 1 1 1 1 1 1 L
20 40 60 80 100 120 140 160
Time (sec.)

Figure 3.3: Loudness function for "my vacation" with a wide-band analysis.
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The final component is to label portions of the loudness function as silence. A silence
threshold is defined, and any points in the loudness function that fall below that threshold
are then set to the threshold value while larger values are left unchanged. This step is an
attempt to discard the variations in the noise of the system or other very quiet sounds

which might incorrectly be labelled as syllables in the segmentation process.

2.3 Segmentation with a Convex-Hull

Once the loudness function has been created, the convex-hull algorithm is used for
segmenting it into syllabic components. The algorithm proceeds by recursively dividing
the loudness function into two smaller components at locations where the differences

between local maxima and minima are large.

The convex-hull is defined as the minimum magnitude curve, with respect to the func-
tion being segmented, that is strictly monotonically non-decreasing moving from the end-
points of the function to the point of maximum value, behaving much like an ideal peak
detector circuit. The largest difference between the convex-hull and the function being
segmented is noted. If this difference exceeds a defined segmentation threshold, the func-
tion is then segmented into two smaller functions at that point of the maximum difference.
Both of the new segments of the function are then segmented by another convex-hull.
This process is repeated recursively until the maximum difference between the convex-
hull and the function being segmented falls below the defined threshold and is deemed
insignificant, or when the only minima are at the endpoints. For the rate detection system,
the segmentation threshold is selected so that it reduces the loudness curve into syllabic
units. The number of segments produced when the recursion can go no further is the num-

ber of syllables. An example of the convex-hull in action is illustrated in Figure 2.5.
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Figure 2.5: An example of the convex-hull applied to an arbitrary function.

The function being segmented is drawn in black in Figure 2.5 and segmentation begins
with the segment (a-c). The initial convex-hull is the solid gray line, with the peak value
falling at point b. The largest difference between the convex-hull and the function occurs
at point a’ and has a value of d. This difference is larger than the segmentation threshold
so the segment is divided into two - the segment (a-a’) and (a’-c’). The first segment does
not have a minimum between the endpoints and is not segmented any further. The second
does have a local minimum, and its convex-hull is drawn as the dashed gray line. The
maximum difference for this segment, d’, is located at point e. This difference is below the

threshold so the segment is not divided any further.

2.4 Computing the Speech Rate
The simplest method of computing the speech rate is to take the total syllable count

and divide by the message length in seconds, however this is not the ideal method. A glo-

bal rate such as that will be strongly affected by long pauses or lack thereof. In general, the
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speech rate over the course of a message will not be constant. Long pauses that reduce the
global speech rate would suggest an increase in the playback speed which may make cer-
tain portions of the message unintelligible. It is most important to find the portion of the
message with the highest rate over some shorter time interval and determine the playback

speed on that rate.

Computing the maximum rate over too short of a region can be problematic as well. A
very short window would be likely to fall on a large, polysyllabic word. Such words tend
to have a lower information density than monosyllabic words. For example, people very
often drop a syllable when saying "probably" or "everybody" and yet the words can be
fully understood. Polysyllabic words can be sped up towards unintelligibility more so than
monosyllabic words and still be interpreted properly. Also, since any interval was only
permitted to have a integer number of syllables, results for shorter intervals will have
much more quantization of the data points. The maximum speech rate reported in this the-

sis is based on a five second interval.
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Chapter 3

Dealing With Sources of Errors

3.1 Introduction
Ideally, all the peaks in the loudness function will be strictly due to the sonorant

energy in the speech. However there are other audio elements present in voice mail mes-
sages that have enough energy to create large peaks that may mistakenly be counted as
syllables. Some of these errors in the loudness function are quite common, but can be con-
trolled to some degree by carefully refining the process of computing the loudness func-
tion. But as it turns out, not all the errors are quite that simple to deal with and will require

some additional work to compensate for.

3.2 Consonants

The English language is made up of several groups of phonemes. The vowels and
their sonorant energy are only one of these groups, and any algorithm must be prepared to
handle energy due to other phoneme families. In the family of consonants, the fricatives,

affricates, and plosives are the most significant contributors to false peaks in loudness.

When blindly computing the loudness function across the entire spectrum, strong fri-
catives can produce peaks in the loudness comparable to the peaks from the sonorant
energy. Notable examples are the hard consonants like the /k/ in call (plosive) or the /t[/ in
church (affricate). The energy in these and some other fricatives is concentrated in the
higher frequencies, so relying less on this frequency band when computing the loudness
function can help prevent errors. Figure 3.1 through Figure 3.4 present an example of this
problem with the phrase "my vacation" and how lowering the upper bound of the fre-
quency band improves things. The loudness function shown in Figure 3.3, which uses a

wide frequency band, has a significant peak due to the /k/ in vacation, which caused the
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algorithm to count five syllables when there are only four. By reducing the upper limit of
the frequency band, that extra peak in the loudness can be reduced so that the algorithm

correctly locates only four syllables, as shown in Figure 3.4.

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Figure 3.1: The phrase "My vacation."
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Figure 3.3: Loudness function for "my vacation" with a wide-band analysis.
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Figure 3.4: Loudness for the "my vacation” using a narrower-band analysis.

Unfortunately, not all consonants are created equal. While peaks from the hard /k/ can
generally be identified and eliminated, other plosives such as the /p/ in put and the /t/ in
too are quite a bit harder to deal with. The energy of plosives such as these is more evenly
distributed across the entire frequency spectrum and are not simply isolated in a small fre-
quency band. Figure 3.5 displays the time waveform for the word "chat" where the closing
plosive is heavily emphasized. The spectrogram in Figure 3.6 shows the plosive’s wide-
band energy distribution while the opening affricate’s energy is concentrated in the high
frequencies. With a wide-band analysis, the loudness function for the word contains an
extra peak for both the affricate and plosive, producing two false syllables as shown in
Figure 3.7. The loudness function that results by narrowing the frequency band in the
analysis is presented in Figure 3.8. In a manner similar to the previous example, the loud-
ness peak due to the affricate is reduced so that it is not mistaken for a syllable, but the
effect on the plosive is minimal. The algorithm still produces the incorrect syllable count.

Plosives like this do seem to happen less often than the fricatives and affricates however.
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Figure 3.6: Spectrogram of the word "chat."
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Figure 3.7: Loudness function for "chat" with a wide frequency analysis band.
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Figure 3.8: Loudness function of "chat" generated using a smaller frequency band.

22



3.3 Breaths

One of the frequent non-speech sounds that appear in voice mail messages is breath-
ing. Breaths are similar to the plosives discussed in the previous section in that their
energy is typically very wide-band and not easily isolated by ignoring a specific frequency
band. A brief speech segment that includes a deep inhalation is shown in Figure 3.9. The
spectrogram in Figure 3.10 displays the wide-band nature of the breath, although the
energy is a bit more concentrated in the higher frequencies. For this particular case, the
loudness of the breath, shown in Figure 3.11, has enough variation to be counted as multi-

ple syllables.

Figure 3.10: Spectrogram of "birthday" and the inhalation.
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Figure 3.11: Loudness function of "birthday" and the inhalation.

3.4 Callers Hanging Up

Working with the telephone system brings in new sources of noise that wouldn’t be a
problem in other applications. Perhaps the most significant such noise comes from the
callers hanging up the phone after completing their message. As the handset is returned to
the cradle of the phone, a series of "clicks" and "clunks" may be recorded while the line is
still open. A segment of a message ending with the words "take care, bye," followed by
the hang up noise is shown in Figure 3.12, where the first three bursts are the speech. Its

spectrogram is presented in Figure 3.13

As can be seen in the loudness function for this example (Figure 3.14), these clicks
tend to happen in rapid succession, which may cause the algorithm to report an exces-
sively large speech rate. However, out of the fifteen messages containing hang ups that
were used to generate the results in the following chapter, the noise affected the algo-
rithm’s results in only one case. (The ten other messages did not have any noise due to
hanging up. It is unknown at this time if those files were edited by a previous researcher.)
This suggests that this problem is not very severe, which is reasonable considering that
people do tend to speak more slowly as the complete their messages and there is usually a

period of silence between the last words and hanging up which will reduce rate of energy
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bursts. The algorithm was later modified to reduce the chances of the error actually hap-
pening by simply ignoring the last few seconds of each message. This solution is not
ideal since the length of time over which the noise is generated will vary from one call to
the next. Perhaps a special filter or modification to the algorithm could provide a better

solution.
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Figure 3.13: Spectrogram of "take care, bye" and hang up noise.
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Figure 3.14: Loudness function for "take care, bye" and hang up noise.
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3.5 Nullifying Loudness Peaks

Rather than trying to select the frequency analysis band to prevent loudness peaks due
to consonants and plosives, other means could be used to selectively nullify the loudness
peaks due to those sounds during the segmentation process. One possibility is using a zero
crossing detector. The zero crossing density is a crude indicator of high frequencies which
might reveal the location of consonants. This way, if the desired frequency band used for
capturing the sonorant energy does overlap with the energy of the consonants, those con-

sonants could be found without restricting the sonorant energy range.

Some work was done with a zero crossing detector to nullify peaks due to breaths and
certain plosives, but it was not used as it was quite difficult to keep the detector adaptive
enough to cope with different speakers. In one particular case, the voice mail message
being analyzed had significant distortion and the zero crossing densities were quite abnor-
mal. It was also very important to eliminate any DC component in the speech segment or
else the zero crossing densities computed would be lower than the actual values. The
simplicity in the implementation of the zero crossing detector makes it an attractive
option, but a significant amount of complexity would be needed to make it a reliable tool.
Other methods for finding the consonants and plosives that were not explored in detail
would be looking for even distributions of energy across the entire spectrum or brief

bursts of energy with a uniform onset time that accompany plosives.

The segmentation algorithm could also be enhanced by enforcing a minimum syllable
length. It was found that when working with a wide range of speech rates that many of the
peaks due to syllables were themselves quite brief, and it becomes difficult to accurately
discriminate between actual and false syllables on the basis of segment length alone. The

idea may be worth investigating further however.
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3.6 Other Considerations
Selecting the frequency range should also take the effects of the telephone system into

account. The filtering effects of the system can reduce the frequencies present in the
speech. This is a concern since each message may be affected differently. Given the mix of
digital and analog hardware these days, the true bandwidth of the telephone channel can
vary which could cause problems if the rate detection algorithm relies heavily on frequen-
cies may be present in some messages, but not all of them. A typical medium-range tele-
phone channel (180-725 miles) has a bandwidth near 2400 Hz, somewhere in the range of
300 to 2700 Hz [4]. It would be desirable for the algorithm operate well in the worst case,
but even if it does, the coloration induced by the phone system could still be an issue since
the magnitude of the transfer function still varies to some degree. The only way to truly
eliminate this variable would be to have the phone system perform some type of channel
negotiation at the beginning of a call to determine the channel characteristics, much like
modems do.

For the particular application of adjusting the playback speed of voice mail messages,
if significant errors in the rate calculation are unavoidable it would be preferable to have
the rates in error be larger than the actual values. If the rates were reported as being lower,
it would imply using a higher playback speed which may make the message unintelligible.
Calculated rates that are too large will merely cause the message to be played slower than

necessary, and while not as efficient as possible, it will keep the speech understandable.
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Chapter 4

Experimental Results

4.1 Introduction
A total of 25 different voice mail messages were used to evaluate the performance of

the rate detection program. The particular voice mail system used stores all messages on
disk in mu-law encoded format with a sampling rate of 8000 Hz. The messages were also
subject to power normalization prior to the rate analysis. No more than three files were
from any one speaker, and only three of the speakers were represented with more than one
message. Twelve of the messages were spoken by males, and thirteen by females. The
messages were chosen from a set to have a variety of different recording environments,
noise levels, and distortion levels, as well as higher quality, clean recordings. All mes-
sages were manually segmented to locate all the spoken syllables and compute the actual
speech rates. The exact locations of the syllables were strictly enforced when determining
the algorithm’s syllable counting accuracy. When computing the loudness function, it was
found that using a frequency band starting in the range of 550 to 650 Hz. with an upper
bound between 2500 Hz. and 3000 Hz. seemed to work well. The exact range used to pro-
duce the results below was from 550 Hz. to 2700 Hz. These values were chosen based on
an extensive series of tests with the algorithm. The length of time required to for the algo-
rithm to perform speech rate analysis was roughly 140% of the actual message length in

seconds on a Sparc 10 workstation.

4.2 Results
The ideal case is to have all the data points fall on a line through the origin with the

slope of one. The best results obtained, in terms of the total mean squared error and the

mean squared error of the points that fall below the ideal line (based on the thought that
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the low data points which lead to faster playback rates are more critical), is shown in Fig-
ure 4.1.

The results do exhibit the desired correlation to some extent, but there is a substantial
variance in the computed rate for messages with the same or very similar speech rates, and
the output range is considerably less than the input range. Although the program may be

of some use as is, the distribution is really not tight enough for critical applications.

Actual vs. Computed Speech Rate
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Figure 4.1: The experimental results

In order to achieve something this close to the desired results, the silence threshold

was essentially removed entirely. This means that the loudness function may have con-
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tained many more artifacts due to noise. For some of the voice mail messages, this had
very little or no effect as far as counting too many syllables since there was a smooth and
level noise floor, but in other cases it did cause the recognition of false syllables. It turns
out to be rather difficult to apply a silence threshold that works reasonably well for all
messages. In order to prevent syllables from falling below the silence threshold, a number
of peaks in loudness not due to syllables had to be accepted. The lack of consistency in the
variability of the noise floor between messages is most likely a substantial reason for the
large variance in the computed speech rates.

The variance in the output of the rate detector can also be seen by looking at the algo-
rithm’s performance as a syllable counter. The performance is rather poor. Missed sylla-
bles are generally less than 20% of the actual, but extra syllables ranged from zero to 50%,
and in a couple of cases, beyond even that. So in terms of total syllable tallies for each
message, the results in almost every case exceeded the actual count, often substantially.
This is not to say that the program is strictly terrible for syllable counting purposes how-
ever. With more conservative parameters, the missed and false syllable counts can be
tamed and the total syllable counts can be kept between about 80% and 110% of the actual
count. But with those settings, the computed speech rates were notably worse than shown
above. Computing the maximum short-time speech rate is not necessarily the same as
counting all the syllables. An extremely accurate syllable segmentation algorithm should
perform well when adapted for rate detection, but a good rate detector only needs to work
well in just one segment of the message. It appears to be very difficult to achieve the best
syllable counting performance simultaneously with the best rate detection performance
with the current implementation of the algorithm.

Even with better management of the silence threshold, some of the voice mail mes-

sages are just very difficult to examine accurately. The most significant outlier in Figure
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4.1 is particularly tricky because of the noise present. The noise isn’t from the phone sys-
tem, but rather the speaker. Besides a hard consonant and plosive, a number of other
sounds and clicks resulting from lip smacks or other actions are clearly spotted. A rapid

succession of such sounds is enough to throw the rate estimate way off the mark.

The next most significant outlier has a similar problem as well. Although two clicks
could be removed with a properly place silence threshold, a breath causes two false sylla-
bles, and fricatives are more prominent in loudness than many of the actual syllables. This
is a clear case where simply restricting the high frequencies in the analysis band is not

enough.

Moving on to the pair of most significant outliers that fall under the desired values, a
different problem is found. The speech is quite fast and the cues to locate the syllables are
not as obvious. This appears to be at least partly due to the fact that the speaker is talking
so fast that the existing consonants aren’t getting enough empbhasis to introduce valleys in
the loudness (and the hard fricatives that produce peaks in the loudness are almost non-
existent). The groupings of adjacent syllables with vowel sounds become difficult to dif-
ferentiate. Perhaps the most obvious question is, what happens when you increase the time
resolution with a shorter window? This can indeed make some gentle dips in the loudness
more significant and introduce some new ones. But this effect is seen pretty much
throughout the loudness curve whether they actually correspond to syllable boundaries or
not. The configuration parameters for the algorithm become much more sensitive, some-
times resulting in more variance in the computed rates.

This algorithm is not sophisticated enough to find these subtle syllable boundaries
right now. The solution may be to take a closer look at the spectrum rather than just sum-
ming up the power. The vowel changes should be reflected by the spectral trajectories and

the formants and looking for where the sonorant energy is concentrated and how that con-
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centration changes over time could provide some meaningful information to improve the
syllable recognition. Of course some measures will need to be taken so that the dipthongs
are not mistakenly counted as more than one syllable. Perhaps it is possible that the spec-
tral trajectories of the common dipthongs could be programmed into the algorithm to pre-
vent this while improving the overall syllable detection.

Obviously, any algorithm will have limits on just how high the speech rate can be and
still be accurately determined. Eventually the time resolution won’t be fine enough to pick
out all of the necessary cues, if the cues are still present. However, I think it is clear that

this algorithm as currently presented is not hitting that wall.

33



34



Chapter 5

Discussion

5.1 Comparison to Previous Work

When the algorithm discussed above is finely tuned to certain messages, excellent per-
formance means that the missed and false syllables are under twenty percent of the actual
syllable count. Yet Mermelstein has reported only 6.9% syllables missed and 2.6% incor-
rectly found syllables. That is a massive disparity, for which there are a number of likely
causes.

First of all, the actual speech rates that Mermelstein was using with his algorithm is
not exactly known. He reported that his algorithm was tested on "continuous, reading-rate
speech,” but no specific measurements were stated so it's hard to judge if the voice mail
messages used in this work are comparable. Almost certainly, at least some of the speech
rates found in the voice mail would be greater than what he described. If the voice mail
messages with the highest speech rates were not used to test the algorithm in this thesis, it
could have been optimized with a different set of parameters that may have improved the

performance at least by a little.

Aside from the speech rate that Mermelstein’s work dealt with, the manner in which
the subjects were speaking could also be a significant factor. If Mermelstein's speech seg-
ments were taken from people reading aloud (as implied by his description of the speech
rates involved), the intonation and pronunciation of the speech could be very different
than what will be found on a voice mail system. When someone is given a document to
read, particularly if sitting in front of a microphone and knowing the he or she is being
recording for a specific purpose, the chances are good that the speech will not be very nat-

ural. With a voice mail system, the speakers are more likely to be in a comfortable envi-
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ronment since they have become accustomed to leaving messages for people. And callers
are also talking off the top of their heads without any written cues. That alone may allow
people to speak much more quickly since no optical recognition and reading delay are
involved. Perhaps this could be alleviated a bit if the voice mail system were to simply
inform the callers that their message would be processed by a computer and to please
speak clearly. This might make the caller a little more conscious about how he or she is

speaking, resulting in messages that are easier to analyze accurately.

Another possibly important difference between Mermelstein's work and this thesis
could be the recording environment, which again is not documented. Presumably, the
speech recordings took advantage of the luxury of a controlled environment. Using the
same hardware system for the recordings will probably keep the noise level in the record-
ings relatively consistent. The speech dynamics could probably be controlled more and
distortion in the speech could be all but eliminated. With the telephone system however,

these advantages are lost. The real world is very different than the laboratory.

The actual recording hardware may also be very important. The proximity of the
microphone in a telephone handset to the speaker’s mouth may well capture information
that wouldn’t be seen if the microphone were place several feet away. For example, with a
telephone, the speaker's breathing tends to create turbulence as the air flows across of the
mouthpiece, but what if the mouthpiece wasn’t so close? Breaths were very prominent in
almost all of the voice mail messages examined in this work and they were a contributor to
the computed maximum speech rate in eleven of the messages. It could be argued that a
breath alone could be counted as a syllable as it does carry some information about the
speech rate and typically does not coexist with spoken words. But even so, in several
instances a single inhalation or exhalation had a very irregular loudness and was seg-

mented as more than one syllable. The microphone’s proximity may also make other
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sounds such as lip smacks, clicks produced by the mouth when opening or closing, and
wetting ones lips much more prominent in the loudness than they would be with the
microphone further away. Again, the most significant outlier in the data plotted above
ended up there because of sounds like these. Incorporating a declicker into the rate detec-
tion algorithm or for pre-processing the audio files may eliminate these sounds and per-

haps those of the phone hanging up as well.

There is one more difference between this voice mail system and Mermelstein’s sys-
tem, but it is likely inconsequential. The difference is the sampling rate of the audio.
Although not explicitly listed, Mermelstein was working with audio sampled greater than
8 kHz since he mentions weighting frequencies above 4 kHz, which is the Nyquist fre-
quency in this voice mail system. The higher sampling rate would surely provide some
additional information, but it is not going to close the performance gap between Mermel-
stein’s implementation and the one presented here. However the bandwidth differences in
the hardware may have a measurable effect. As more things go digital, the telephone sys-
tem’s speech quality should improve, but it will take years, if ever, before everything can

be upgraded.

5.2 Alternative Implementations

In cases where real-time operation is required, the above algorithm would need to be
altered. Even when the computation can be completed in a duration shorter than the mes-
sage length, the convex-hull segmentation algorithm requires that the entire speech seg-
ment be stored in memory before running. A new segmentation algorithm could be used
or the speech could be stored into a buffer until a long enough pause is detected, and then

that segment could be analyzed in quasi-real-time.
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One possible thought for future work might be intelligently deciding which portions of
messages are more critical for the rate analysis. For example, a number of voice mail mes-
sages tended to have high speech rate at the beginning of a message, and then the speech
slows down a bit. This may be more practical when there is a very accurate rate detection

scheme that is very computationally intensive.

Perhaps rate detection could be combined with a speaker recognition system so the
system could then look up the typical speech rate for a frequent caller. Then the rate could
be altered over time by the voice mail recipient as well so if one individual generally has

nothing important to say, his messages can be played faster.

It might also be interesting add a little twist on the message playback system, such as
adjusting the playback speed while the message is be heard. Or it may be relatively simple
and effective to automatically edit out the pauses in a message prior to playback to stream-

line things a bit more.

5.3 Conclusions

Developing a rate detection algorithm for processing voice mail turned out to be a
tricky problem that requires more than a relatively simple algorithm. There is quite a bit of
variability between speakers and in the hardware that makes up the telephone network as
well. And unfortunately there seems to be a lack of publications that deal directly with
speech rate detection algorithms. Before proceeding with future work, several items
should be seriously addressed.

1. There needs to be a robust mechanism for dealing with the various clicks, breaths,
and other sounds so they are not incorrectly counted as syllables.

2. The algorithm needs to be adaptive to the variation in both the noise level of the

phone system and the dynamics of the speech. The lack of a silence threshold may not be
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a significant factor in some cases, but tailoring it to all messages effectively will reduce
the variance of the computed rates.

and 3. The expected maximum speech rate should be defined beforehand. This will
determine the required complexity of the algorithm, and even if it is lower than real world
values, it may be easier to enhance a system that performs well at these rates to handle

higher rates.
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