
An I/O Port Controller for the MAP Chip

by

Albert Ma

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degrees of

Master of Engineering

and

Bachelor of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1997

@ Albert Ma, MCMXCVII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis

document in whole or in part, and to grant others the right to do so.

A uthor
Department of Electrical Engineering and Computer Science

May 23, 1997

Certified by.,
/

William J. Dally
Professor

S~---'T1~sis SuDervisor

Accepted by............
Arthur C. Smith

Chairman, Department Committee on Graduate Students

An I/O Port Controller for the MAP Chip

by
Albert Ma

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 1997, in partial fulfillment of the

requirements for the degrees of
Master of Engineering

and
Bachelor of Science in Electrical Engineering and Computer Science

Abstract

This thesis describes the design and implementation of the I/O port controller for the
MAP chip as part of the M-Machine project. The I/O port controller is responsible
for managing the I/O port, which is used for communication between the MAP chip
and external devices. The I/O port is intended to be connected to an off-chip module
that then connects to other peripheral buses, such as SCSI or SBUS. The I/O port
controller is implemented in Verilog HDL and synthesized to a standard cell library.

Thesis Supervisor: William J. Dally
Title: Professor

Acknowledgments

There are many without whom this thesis would not be possible. First of all I would

like to thank God for the life he gave me and to give him all the glory. I would

also like to thank Professor Bill Dally for giving me the opportunity to work in his

group. The past year has been the most grueling but most rewarding time for me

at MIT. I learned so much by working on this real world type project. Many thanks

go to Steve Keckler and Andrew Chang for being so patient with me and all of my

questions. Also, thank you to Keith Klayman for his work on the GCFG and help

with the synthesis and timing analysis.

The greatest thanks go to David Um, Hong Min, and James Won who prayed

for me throughout this time. Especially to Hong who gave me rides and brought

late-night food.

Contents

1 Introduction

1.1 Architectural Overview .

1.2 Thesis organization .

2 I/O Port Controller Architecture and Interfaces

2.1 Design constraints and considerations

2.2 Off-chip Interface

2.2.1 Physical link design

2.2.2 Low-level transmission protocol

2.2.3 Mid-level protocol .

2.2.4 High-level protocol

2.3 MAP interface

2.4 Software model

2.4.1 Software Flow control

2.4.2 I/O Address space

2.4.3 Extensions

3 Interfaces and Timing

3.1 Interfaces .

3.1.1 Off-chip interface

3.1.2 GCFG/MSW data interface

3.1.3 GCFG/MSW handshake interface

3.1.4 GCFG/CSW data interface

11

12

12

13

13

14

15

16

18

19

20

21

21

22

22

22

23

23

25

3.1.5 GCFG/CSW handshake interface

3.2 Tim ing . 27

4 Logic and RTL Design 30

4.1 Overview 30

4.2 Non-pipeline modules 30

4.2.1 IODEC 32

4.2.2 SYNCFSM 33

4.2.3 IO_PORTKCTL 34

4.3 Output pipeline 34

4.3.1 IO -CTOUT 35

4.3.2 IO_DPOUT 35

4.3.3 O1FSM 37

4.3.4 02FSM 37

4.4 Return pipeline 38

4.5 Input pipeline 39

4.5.1 IODPIN 39

4.5.2 I1FSM 41

4.5.3 I2FSM 43

5 Verification 44

5.1 RT L . 44

5.2 Tim ing . 46

5.3 Electrical Rules 50

6 Conclusion 51

A Test Programs 52

A.1 Non-burst mode test 52

A.2 Burst mode test 56

List of Figures

1-1 The M-Machine architecture. 9

1-2 The MAP architecture. 10

1-3 IO Port Overview 10

2-1 I/O Port protocol 15

2-2 I/O Port Packet Structure 17

2-3 I/O Port Interfaces 19

2-4 I/O Pointer structure. 21

3-1 I/O Port protocol and timing 28

4-1 Structure of the IO Port 31

4-2 State diagram of the SYNCFSM module 33

4-3 State diagram of the IO_PORT_CTL module 35

4-4 Logic diagram of the IOCTOUT and IODPOUT modules 36

4-5 State diagram of the O1FSM module 37

4-6 Logic diagram of the RTNPIPE module. 40

4-7 Logic diagram of the IODPIN module. 41

4-8 State diagram of the I1FSM module 42

4-9 Timing diagram of I1FSM select lines 43

4-10 State diagram of the I2FSM module 43

5-1 Wire capacitance as a function of fanout 47

5-2 I/O output signal timing 49

List of Tables

2.1 I/O memory instruction set architecture

3.1

3.2

3.3

3.4

3.5

3.6

3.7

I/O Port off-chip interfaces

GCFG/MSW data interface .. .

Operation type identifiers

GCFG/MSW handshake interface

GCFG/CSW data interface . . .

Table of CSW transfer types . . .

GCFG/CSW handshake interface

5.1 Critical path timing for receiving data.

S 23

. 24

S 24

S 24

S 25

S 26

S 26

Chapter 1

Introduction

This thesis presents the design and implementation of the I/O port controller on the

M-Machine[2]. The M-Machine is an experimental multicomputer being built by

the Concurrent VLSI Architectures Group in the Artificial Intelligence Laboratory at

the Massachusetts Institute of Technology. It is being developed to test architectural

concepts motivated by the constraints of modern semiconductor technology and the

demands of programming systems.

1.1 Architectural Overview

The M-Machine consists of a collection of computing nodes interconnected by a bi-

directional 2-D mesh network, as shown in Figure 1-1. Each six-chip node consists of

a multi-ALU (MAP) chip and 1 MW (8 MBytes) of synchronous DRAM (SDRAM)

with ECC. The MAP chip includes the network interface and router, and provides

bandwidth of 800 MBytes/s to the local SDRAMs and to each network channel. A

user accessible message passing system yields fast communication and synchronization

between nodes. Rapid access to remote memory is provided transparently to the user

with a combination of hardware and software mechanisms.

As shown in Figure 1-2, a MAP contains: three execution clusters, a memory

subsystem comprised of two cache banks and an external memory interface, and a

communication subsystem consisting of the network interfaces and the router. The

X-dir .

T--IT

Figure 1-1: The M-Machine architecture.

multiple function units are used to exploit both instruction-level and thread-level

parallelism. Two crossbar switches interconnect these components. Clusters make

memory requests to the appropriate bank of the interleaved cache over the M-Switch

(MSW). The C-Switch (CSW) is used for inter-cluster communication and to return

data from the memory system.

Words on the M-Machine are 66-bits wide. This is comprised of 64 data bits,

1 synchronization bit, and 1 pointer bit. The synchronization and pointer bits are

unique to the M-Machine. They allow it to more efficiently implement synchroniza-

tion and memory protection.

The MAP architecture includes global condition code (CC) registers. Similar to

data registers, each global CC register has an accompanying scoreboard bit. These

values are broadcast to the three clusters. Based on the CC register values, conditional

branches and assignment operations can be executed.

In order to provide communications between the M-Machine and the outside

world, I/O devices will need to be connected to the M-Machine. For this purpose,

a dedicated I/O port is provided on the MAP chip on each node of the M-Machine.

The I/O port is intended to be connected to an off-chip slave, perhaps implemented

in an FPGA, that then connects to other buses, such as SCSI or SBUS. These in

turn would connect to mass storage devices such as hard drives or to host interfaces.

Figure 1-3 shows the above relationships.

1/0

C

Figure 1-2: The MAP architecture.

host

SBUS

SCSI

Figure 1-3: IO Port Overview

I/O Bus

DIAG

The I/O port controller is responsible for managing the I/O port. It implements

the software interface that allows programs to access the I/O port and the low-level

communications protocols that allow the MAP chip to communicate with the off-chip

slave I/O processor.

My role in the M-Machine project was to design and implement the I/O port

controller in Verilog HDL as well as verifying its correctness in all aspects.

1.2 Thesis organization

The thesis shall be organized as follows. Chapter 2 describes the architecture of the

I/O port controller and its interfaces. Chapter 3 details the I/O port interfaces and

presents the timing design. Chapter 4 describes the implementation and design of

the I/O port controller in Verilog. Chapter 5 discusses the verification. Chapter 6

concludes the thesis.

Chapter 2

I/O Port Controller Architecture

and Interfaces

This chapter discusses the architecture of the I/O Port Controller in terms of the in-

terfaces between the controller and the off-chip slave, the MAP chip, and the software.

2.1 Design constraints and considerations

A major design consideration was the intended use of the I/O port. The port will be

used primarily to communicate with two classes of devices. The first class consists of

storage devices, especially disk drives. The second class consists of interfaces to the

outside world, for example, a console display or a host interface. These two classes

have very different requirements and properties. Disk drives require high-bandwidth

and are block oriented. Thus the port needs to be able to transfer a large amount

of data at a high data rate. Host interfaces require low-bandwidth and are character

oriented. Thus the port ought not impose a large overhead for character transfers in

terms of bus utilization and latency. In addition, the port needs to be flexible enough

to handle a wide range of devices beyond these two classes and thus should not make

arbitrary assumptions about what is being connected to it.

Another major consideration in the design of the architecture was to make the

I/O port controller as decoupled from the rest of the MAP chip as possible. The I/O

port controller was one of the last modules to be specified and designed on the MAP

chip and so had to be designed in a way that would not require modifications to the

rest of the MAP chip.

2.2 Off-chip Interface

The design of the off-chip interface follows a layered approach; this is similar to

the way networks are designed. First, the physical link and low-level protocol are

designed. These are concerned with getting information from the MAP chip to the off-

chip slave and vice versa. Built upon this are the mid-level and high-level protocols.

These structure and give meaning to the information transmitted. These protocols

are all implemented in the I/O port controller hardware. Higher level protocols can

be easily implemented on top of this in software and on the off-chip slave.

2.2.1 Physical link design

The link uses a 18-bit bi-directional bus running at half the system clock rate, that

is, 50 MHz. We chose this clock rate because running the wires at 100 MHz is both

difficult and unnecessary. In addition, it would be very hard to run the off-chip

slave processor at 100 MHz, especially if it were to be implemented on an FPGA.

Also, running the bus between 50 MHz and 100 MHz would require the bus to be

run asynchronously, which adds some complexity to the design. Finally, running at

anything less than 50 MHz would be a waste of pin bandwidth.

Using an 18-bit bus allows us to transfer a full 66-bit word in 4 I/O clock cycles.

This gives a peak bandwidth of 12.5 MW/s or 100 MB/s. We decided this to be

a good bandwidth, sufficient for its planned use but, at the same time, not overly

wasteful. In comparison, ultra-wide SCSI II has a peak bandwidth of 40 MB/s, 400

MHz FireWire has a peak bandwidth of 50 MB/s, and PCI has a peak bandwidth of

132 MB/s. We expected most traffic to be one-way bursts of data, as in reading or

writing from/to a drive; thus, we chose a bi-directional bus to save 18 pins.

2.2.2 Low-level transmission protocol

The low-level transmission protocol needs to guarantee three conditions to prevent

data from being lost. First, it must ensure that both sides do not try to drive the bus

simultaneously. Second, when one side transmits, the other side must know to grab

data off the bus. Third, when one side cannot receive, as when its buffers are full,

the other side must know not to transmit so that data does not get lost.

To maximize bus utilization, we chose to use a synchronous transmit/ready pro-

tocol. Transmit indicates the availability of data to be transmitted on the next I/O

clock cycle. Ready indicates the availability of resources to receive data on the next

I/O clock cycle. A side is able to transmit if both its own transmit line is high and

the other side's ready line is high. If only one side is able to transmit, then that side

goes ahead and transmits on the next I/O cycle. In addition, the other side latches

the data at the end of that cycle. If both sides are able to transmit, a bit of state

determines which side gets to transmit. This bit is duplicated on the MAP and on

the off-chip slave processor. On reset, the bits are set so that the MAP has priority.

When either side transmits, the bit is reset so that the other side gets priority. This

scheme guarantees that, when both sides want the bus, both sides get the bus exactly

half the time. This is important to ensure that both sides make progress and cannot

be locked out. Figure 2-1 shows an example of the protocol.

Several alternative protocols were considered. The leading candidate was trans-

mit/acknowledge. In this protocol, the acknowledge signal indicates that data was

successfully received on this cycle. The advantage of this protocol over the chosen

protocol is that it is simpler. It does not require that either side knows that its buffers

will be free on the next cycle, just whether its buffers are free on the current cycle.

The disadvantage of this protocol is that some bus bandwidth is wasted when both

sides want to transmit but only one side is able to receive. We reasoned that the

extra complexity of the chosen design is minor and is warranted by the improved

performance.

A minor variation compresses the transmit and ready lines onto a single wire that

is clocked at the system clock rate; the transmit and ready signals would be driven on

system clock

1/O clock

MAP
transmit

MAP
ready

I/O Slave
transmit

1/O Slave
ready

data MAP data / Slave data

Figure 2-1: I/O Port protocol. The first transaction is sent by the MAP chip; the
second transaction is sent by the I/O chip.

alternate system clock cycles. The advantage of this is that two signal pins (and up to

two ground pins) are saved. The disadvantages are tighter timing constraints, extra

logic complexity, and more difficult external debugging from reduced observability.

The tighter timing and reduced observability favored eliminating this variation.

2.2.3 Mid-level protocol

The mid-level protocol organizes consecutive 18-bit packets into variable length words.

The top two bits ([17:16]) of the first packet of a word indicates the number of packets

there are in the word. This can be one to four. The mid-level protocol needs to be

implemented in hardware for performance reasons. If the software was responsible

for sending each packet, it would have to issue an I/O instruction on average every

two system clock cycles to fully utilize the I/O bus. This is tricky to write in software

and would waste much precious M-Switch and C-Switch bandwidth. By organizing

the packets into words, an I/O instruction need only issue on average every eight

cycles to fully utilize the I/O bus. Alternatively, we could eliminate the count bits

and always send a four packet word. This would save one pin. However, this wastes

bandwidth when the words are actually fewer than four packets long.

2.2.4 High-level protocol

The high-level protocol implements a memory-mapped I/O abstraction with an ex-

tension for burst transfers. In this abstraction, all I/O is performed through loads or

stores to memory locations in an I/O address space; all I/O devices are mapped onto

that address space. For example, we could map an entire 4 GB drive onto the range

of addresses 4 GB through 8 GB, console output to address 0, keyboard input to ad-

dress 4, and so on. The assignment of addresses is completely up to the higher-level

protocols.

To implement this, three I/O word types are defined; they are: address words,

data words, and burst count words. The address word can be one, two, or three

packets long. An address word contains the I/O address (up to 42 bits long because

of the software layer) to load or store to. In addition, it contains 2 bits of command

information. Bit 15 of the last packet of the word indicates whether the operation

is a load, indicated by 1, or a store, indicated by 0. Bit 14 of the last packet of the

word indicates whether the operation is a burst initiate instruction. The address is

stored in a little-endian format in the packets as shown in figure 2-2.

The data word can be one to four packets long. Bits 17 and 16 of the last packet

are the synchronization and pointer bits of the word. In the case of a 1-packet word,

the synchronization is assumed to be 1 and the pointer bit is assumed to be 0. The

data bits are stored in a little-endian format in the packets as shown in figure 2-2.

The burst count word can be one to four packets long, though rarely does it actu-

ally exceed one packet. It is similar to a data word, but without the synchronization

and pointer bits.

Every transaction begins with an address word from the MAP chip; the off-chip

slave cannot initiate a transaction. If the transaction is a load (non-burst initiator)

instruction, the off-chip slave, at some point in the future, responds with a data word

which is the result of the "load" from the address indicated by the address word. It

is up to the off-chip slave processor, and thus the higher-level protocols, to decide

the size of the data words that it returns. If the transaction is a store (non-burst

initiator) instruction, the address word is followed by a data word from the MAP chip.

ADDR

LENGTH ADDR[15:0]

RESERVED ADDR[31:16]

RESERVED US burst RESERVED ADDR[41:32]

2 1 4 10

US burst always on the last packet

DATA / BURST COUNT

LENGTH DATA[15:0]

RESERVED DATA[31:16]

RESERVED DATA[47:32]

MSZ PTR DATA[63:48]

2

MSZ/PTR always on the last packet, defaults to 2'b10 for packet length 1

L/S

0 STORE
1 LOAD

burst

0 normal
1 initiate burst

Figure 2-2: I/O Port Packet Structure

number of bits

number of bits

LENGTH

00 1
01 2
10 3
11 4

This data word is "stored" at the I/O address indicated by the address word.

If the transaction is a burst initiator, the address word is followed by a burst-

count. In addition, if it was a load burst initiator, the off-chip slave, at some point in

the future, responds with some number of data words as the result of the load. The

number of data words is indicated in the burst-count transmitted by the MAP chip.

If the transaction is a store burst initiator, the MAP chip, following the burst-count,

sends out some number of data words as indicated by the burst-count.

The reason for the burst commands is to maximize bandwidth on block data

transfers, as to a disk drive. Without burst commands, we would have to send an

address word for every data word sent. The current scheme thus increases available

bandwidth by 75%, assuming 3 packet address words and 4 packet data words.

2.3 MAP interface

There is no mechanism available to do DMA (direct memory access) transfers of

data between memory and the I/O port. To add one would have required hooks in

the external memory interface and in the cache banks and throughout the memory

system. This was far too costly in terms of design time. Therefore, I/O transfers

had to go through the register files. The most natural and easy way was through

software I/O. A load or store has to be issued for every word of data transferred

through the I/O port. Doing I/O through software avoids countless problems with

synchronization and scoreboarding and makes for an extremely clean interface with

the rest of the MAP chip.

For the most part, the datapath already existed for this to happen. Memory

instructions (that access I/O) are issued in the clusters, go through the M-Switch,

and get picked up by the I/O port controller. Data coming in through the I/O port is

sent by the I/O port controller through the C-Switch, into the clusters and are written

into the register files. What was missing, though, were the ports on the M-Switch and

C-Switch for the I/O port to connect to. Thus we had two alternatives, to create the

extra ports, or to share the ports with another module. The first alternative wasn't

really an option, as it would mean changing to many things in the design including

the switch datapaths. Thus we chose to share the port with the GCFG. This was a

natural choice. The GCFG is very rarely accessed, so it ports are generally free. In

addition, it had room in its address space to accommodate the I/O address space.

Sharing the ports mean that the GCFG and the I/O controller need to be physically

close to one another. Figure 2-3 shows the the relevant datapaths and interfaces

MAP chip IO_CLK 0- IO_CLK

IO_AD[17:0]

IO_MTX
IO_MRDY

IOJTX
IOIRDY

MSW

cluster

Figure 2-3: I/O Port interfaces. The I/O Port is accessed through memory operations
which map onto global config space, part of which is dedicated to I/O. GCFG/IO
Memory operations are issued in the cluster, sent through the MSW, and are received
in the GCFG. Any results, as for loads, are returned across the C-Switch and written
back into the register files or cc registers.

2.4 Software model

To minimize the impact on the memory-instruction pipeline, the I/O reuses existing

instructions but in some cases uses the fields differently. There are seven MAP instlruc-

tions instructions recognized by the I/O port; these are: LD, ST/FST, STSU/FSTSU,

and STSCND/FSTSCND. LD, ST, and FST are the normal single word load and store

operations. FST is the floating-point register version of ST. STSU/FSTSU are sim-

ilar to ST/FST except that, in addition, they return a CC (condition code) value.

This is provided for software flow-control. The number of packets sent for the ad-

dress and data words are determined by the upper bits of the address accessed by

the instruction as will be explained in subsection 2.4.2. A special encoding indicates

that no address packets are to be sent; only data packets are to be sent or received.

This is the mechanism to use to send or receive each data word of a burst transfer.

STSCND/FSTSCND initiate burst transactions. The postcondition bit in this case

indicates whether it is a load or a store. The source data indicates the size of the

transaction in words. These also return a CC value for software flow-control. The

commands are summarized in table 2.1.

Table 2.1: I/O memory instruction set architecture. Src/srcl is the register that
holds the source of the operation. For loads this is a pointer, for stores this is data.
Dest is the target register for loads and the target pointer for stores. Src2 holds
the postincrement field as described in the MAP ISA reference.[1]. The pre fields are
always ignored. The post field only has meaning for the stscnd/fstscnd instructions,
indicating the direction of the burst transfer. CCdest is the CC register to which is
written the flow-control bit.

2.4.1 Software Flow control

As mentioned above, flow control is built into the software model to facilitate smooth

operation without tying up resources. Flow control for loads come for free. Any

operation on the loaded register will freeze the thread until the load completes. Flow

control for stores are done using the STSU/FSTSU instructions. Since the destination

CC register is marked invalid on issue, subsequent store operations can be condition-

ally executed on ccreg true, and will stall waiting for the CC register to be written

back. The CC value is returned when the I/O port is ready to receive a new packet

memu [cond cr] Id srcl, [src2,] dest
memu [cond cr] st srcl, [src2,] dest
memu [cond cr] fst srcl, [src2,] dest
memu [cond cr] stsu pre, post, src, dest, ccdest
memu [cond cr] fstsu pre, post, src, dest, ccdest
memu [cond cr] stscnd pre, post, src, dest, ccdest
memu [cond cr] fstcnd pre, post, src, dest, ccdest

from the cluster. If not for the software flow-control, too many packets would be sent

to the I/O port controller at once. This would fill the I/O port controller pipelines

and then the GCFG C-Switch input pipeline. At that point, the GCFG is blocked

from receiving either GCFG or I/O requests, though no requests are lost because of

the hardware flow control.

2.4.2 I/O Address space

To access the I/O port, memory instructions need to use special pointers that point

into the I/O address space. The structure of an I/O pointer is shown in figure 2-4.

The memory system sees bits [53:3]. Of these, the top 5 bits are reserved by the

GCFG. A special encoding indicates a pointer destined for the I/O subsystem. Of

the remaining bits, 2 bits encode the address length in packets, and 2 bits encode the

data or burst count length in packets; this allows more efficient utilization of the I/O

bus bandwidth. This leaves a total of 42 address bits. This can still easily map entire

drives. An address length of 112 indicates that no address packets are to be sent.

Address Length Data Length

I11xx I segment Length 110001 I0 Address 000
bit position 63 60 59 54 53 49 48 47 46 45 44 3 2 0

Figure 2-4: I/O Pointer structure.

2.4.3 Extensions

Note that by using the no-address-packet addresses, the high-level communication

protocol can be bypassed because arbitrary words can be transmitted or received

through the I/O port. This is a side benefit of the design. I do not expect the I/O

port to be used in this manner because the existing protocol ought to be general

enough. However, the capability exists to create a software protocol layer completely

replacing the high-level protocol layer.

Chapter 3

Interfaces and Timing

This chapter details all the I/O port controller interfaces and discusses the timing of

the major signals.

3.1 Interfaces

The I/O Port controller communicates with two separate modules. The I/O port

controller talks with the off-chip module through the I/O bus and the protocols

described in section 2.2. It also talks to the M-Switch and C-Switch through the

arbitration of the GCFG. For this it uses a pair of data interfaces and a pair of

handshake interfaces.

3.1.1 Off-chip interface

A total of 23 signals are used to communicate between the I/O Port and the off-chip

I/O module. An additional 19 signals are are used to communicate between the I/O

port and the pads. These are summarized in table 3.1. These signals are used in the

implementation of the low-level protocol described in section 2.2.2.

signal width direction function
IOCLK

IO_MTX

IOMRDY

IO_ITX

IOIRDY

IOAD

io_data_out

oe

1 input a 50 MHz clock obtained by dividing the system
clock by 2. This becomes the clock for the off-
chip I/O module

1 output MAP transmit. MAP chip has data to transmit
on the next I/O clock cycle.

1 output MAP ready. MAP chip is ready to receive data on
the next I/O clock cycle.

1 input I/O chip has data to transmit on the next I/O
clock cycle.

1 input 10 chip is ready to receive data on the next I/O
clock cycle.

18 bidir a bi-directional bus between the MAP and the
off-chip module.

18 output This is the data input to the I0_AD drivers. Only
when oe is high is this value driven onto the bus.

1 output output enable signal controlling the direction of
the IOAD bus. This signal goes to the I•AD
pads, but not off-chip.

Table 3.1: I/O Port off-chip interfaces

3.1.2 GCFG/MSW data interface

The GCFG/MSW data interface is shown in table 3.2. These inputs come from the

MSW and are p-latched in the GCFG. The GCFG holds this data until the I/O

controller is ready to receive them. This p-latch is shared between the GCFG and

the I/O and can be considered the first pipeline stage into both pipelines. When

this input latch is full and cannot advance in the pipeline for some reason, the MSW

ready line goes low and stays low until the pipeline advances. This blocks anybody

from issuing any MSW request to the GCFG, preventing buffer overflow.

3.1.3 GCFG/MSW handshake interface

The GCFG/MSW handshake interface is shown in table 3.4 These signals form the

handshake between the GCFG and I/O controller to pass MSW packets to the IO

pipeline. As soon as the I/O controller indicates that it has received that data (by

signalling mswack.v2), the GCFG can load new data into the MSW input p-latch.

signal width direction function

signal width function
inop 6 specifies the memory operation to be performed. see ta-

ble 3.3 [4]
inpost 1 postcondition bit. This is normally used by memory system

to set the synchronization bit after performing a synchroniz-
ing memory operation. Used by the I/O to determine the
direction of burst transfers.

in rtnclst 2 The cluster to which the result is to be returned
intslot 3 The V-Thread id of the thread to which the result is to be

returned
in rf 1 The register file bit. 1 indicates floating point. 0 indicates

integer.
in-reg 4 The id of the register to which the data result is to be

returned.
in rtncc 4 The id of the CC register to which the CC result is to be

returned.
inaddr 51 The source or target address of the memory instruction.
insync 1 The synchronization bit of the source data.
indata 65 The pointer bit and source data.

Table 3.2: GCFG/MSW data interface

operation op type
ST 100000
FST 100000
STSU 101100
FSTSU 101100
STSCND 101010
FSTSCND 101010
LD 110000

Table 3.3: List of instructions recognized by the I/O and their corresponding type
identifiers.

signal width direction function
iodav_v2 1 input Data is available to be loaded on the rising edge of

system clock (clk). Needs to be valid very early
in the cycle.

mswackv2 1 output Data will be loaded on the rising edge of system
clk. This signal is independent of iodavv2 and
is a don't care when iodav.v2 is low.

Table 3.4: GCFG/MSW handshake interface

3.1.4 GCFG/CSW data interface

The GCFG/CSW data interface is shown in table 3.5. These outputs are n-latched in

the GCFG. The GCFG holds this data until the cluster is ready to receive it and the

CSW resources are available to send it. This n-latch is shared between the GCFG and

the I/O and can be considered the last pipeline stage of both pipelines. Handshaking

prevents this buffer from overflowing. In the event both pipelines want to use the

n-latch simultaneously, the I/O pipeline gets priority.

signal width function
out rtnclst 2 The cluster to which the result is to be returned
out _mb 1 Memory barrier flag. When asserted indicates that the re-

ceiver should decrement its memory barrier counter as a
side result of receiving this transfer. Always 0 from the I/O

out xfrtype 3 CSW transfer type. This field indicate the type of transfer
in progress. The meaning of the transfer type code varies
depending which slot is addressed, as shown in table 3.6 [3]

out_sclst 2 sender cluster ID. Identifies the cluster that generated the
transfer. Always 0 from the I/O

outsslot 3 sender slot ID. Identifies the slot that generated the trans-
fer. Always 0 from the I/O

outtslot 3 The V-Thread id of the thread to which the result is to be
returned

out.rf 1 The register file bit. 1 indicates floating point. 0 indicates
integer.

out-reg 4 The id of the register to which the data result is to be
returned.

out-cc 1 The CC result to be written to the condition register.
out rtncc 4 The id of the CC register to which the CC result is to be

returned.
out.sync 1 The synchronization bit of result word
outdata 65 The pointer bit and result data.

Table 3.5: GCFG/CSW data interface

3.1.5 GCFG/CSW handshake interface

The interface is shown in table 3.7. These signals form the handshake between the

GCFG and IO to pass CSW packets from the IO pipeline.

XfrType Meaning
[2:0] dstSlot 0-5 dstSlot 6

(Threads) (IFU-Queue)

000 abort transfer
001 data only transfer Message Enqueue (unordered) /

Event Enqueue
010 cc only transfer Message Enqueue (ordered)
011 data and cc Netout State Read/Write
100 reserved GTLB Read/Probe
101 reserved GTLB Write
110 reserved IFU: Normal Return
111 Command in data field IFU: Cancelled Return

Table 3.6: Table of CSW transfer types

width direction function
cswdav_2 1 output Data is available at the beginning of the current

system clk cycle.
cswack.2 1 input Data will be loaded sometime in the current sys-

tem clk cycle. Must only be high when cswdav_2
is high. Must be valid by about the middle of the
system clk cycle.

Table 3.7: GCFG/CSW handshake interface

signal

3.2 Timing

Figure 3-1 shows the timing of the I/O Port. The IO_MTX and IO_MRDY signals originate

in the system clock (clk) domain and are stretched another half cycle by n-latching

with clk. The outputs are then stretched another half IO_CLK cycle by n-latching

with IOCLK. The point of the first n-latch is to guarantee that the hold time of the

following n-latch is met, even when IO_CLK may be significantly skewed. This scheme

tolerates up to 5 ns of skew between the system clock and the IO0CLK as seen by the

second n-latch. The point of the second n-latching is to more-or-less center the rising

edge of IO_CLK around IOMTX and IO.MRDY and to provide a generous skew margin

between the IO_CLK and IO.MTX/IO_MRDY. As will be shown later, for IOMTX, this

gives a skew margin of about 3 ns before the setup time of IOCLK and 10 ns after

the hold time of IO_CLK. The latter margin is especially important as IO_CLK becomes

skewed in the clock distribution of the off-chip slave processor.

The output enable signal (oe) is n-latched with clk to create a system clock cycle

long pulse more or less centered around the rising edge of IO_CLK. This means that

the IOAD bus will be driven approximately starting 5 ns before IO_CLK rises, and

stopping 5 ns after IO_CLK rises. This protects from bus conflicts and provides a

generous skew margin around IO_CLK in either direction. In addition, even when the

tri-state drivers are turned off, the capacitance of the transmission line maintains the

voltage until it is driven to a new value. This gives about ten more nanoseconds to

latch the data off the bus if IO.CLK is very skewed.

On the I/O chip side, all outputs are to be valid well before the rising edge of

IOCLK. The IOAD bus is to be driven on the second half of the IOCLK cycle. The

reason the IOAD bus is only driven for half an IOCLK cycle is to prevent bus conflicts,

even when there is significant IO_CLK skew.

All inputs (on either side) are to be sampled on the rising edge of IOCLK. The

reason IO_CLK is used to sample data coming onto the MAP chip is that it is skewed

from the system clock. This helps relax some of the time constraints in transmitting

data from the off-chip slave to the MAP chip. IO_CLK is guaranteed to go high before

MAP Chip

clk

10O CLK
(pad)

10 MTX
(int)

10 IRDY
(pad)

IO ITX
(pad)

10 MRDY
(int)

10 AD
(pad)

10 Chip

10CLK
(int)

10 MTX
(pad)

10 IRDY
(int)

IO ITX
(int)

10 MRDY
(pad)

10 AD
(pad)

Figure 3-1: I/O Port protocol and timing. The first
chip; the second transaction is sent by the I/O chip.

transaction is sent by the MAP

the data from the off-chip slave goes invalid, so there are no hold time problems,

though setup time can still be violated. The alternative would be to use the falling

edge of the system clk to sample the data. This has the advantage of relaxing some

time constraints but is not guaranteed to work if we stretch out the system clock.

Chapter 4

Logic and RTL Design

This chapter discusses the design and implementation of the I/O port controller in

Verilog HDL.

4.1 Overview

Physically, the I/O port controller is a submodule of the GCFG. There are a total of

11 modules in the design. The majority of the modules form three major pipelines in

the design. They will be called the output, the input, and the return pipelines. Each

pipeline runs independently from the other pipelines. The output pipeline holds data

and state required to transmit data off-chip. The input pipeline holds data and state

required to receive data from off-chip. The return pipeline holds information required

to generate CSW replies. It is loosely coupled with the input and output pipelines

through a pair of handshakes. In addition to the modules that form the three major

pipelines, there are three modules that do not go into any pipeline. These non-pipeline

modules help control and coordinate the three pipelines. A top level diagram showing

the interconnections is shown in figure 4-1.

4.2 Non-pipeline modules

The non-pipeline modules are IODEC, SYNCFSM, and IOYPORT_CTL.

in-op
ingost
inaddr[45:42]

IO_CLK

10_MTX

IO_ITX
IO_IRDY

oe

IO_CLK

IO_MRDY

in_rtnclst
intslot
in rf

insync inaddr[41:0 inreg
indata[64] in_data[63:01 inrtncc

-------------------- I

Figure 4-1: Structure of the IO Port. Except where noted, all latches and flip-flops
are clocked by system clk

4.2.1 IODEC

This module is purely combinational. It decodes the MSW request passed to it by the

GCFG and creates nine control signals which are used by the the input and control

pipelines.

hasaddr This signal indicates whether this I/O instruction will generate an address

word. Every instruction generates an address word unless its I/O address in-

dicates a length of 112. These are the data words of burst transfers, which are

not accompanied by address words.

hasdata This signal indicates whether this I/O instruction will generate a data or

burst count word. Every store and burst-initiate instruction does this.

Is This signal indicates whether the transaction type is load or store. Recall that on

burst-initiate instructions, the postcondition holds this information. Otherwise,

the instruction type holds this information.

hasctl This signal indicates that the instruction will use the return pipeline. Every-

thing uses the return pipeline except non-flow-controlled stores.

hasad This signal indicates that the instruction will use the output pipeline. This

is the logical OR of hasaddr and hasdata.

addrlen This two bit signal indicates the length of the address word to transmit.

datalen This two bit signal indicates the length of the data word to transmit. Recall

that this forms part of the I/O address.

bypass This signal indicates whether the instruction uses the special bypass path in

the return pipeline. This will be discussed later in the description of the return

pipeline in section 4.4. The STSCND and STSU instructions use this.

burst This signal indicates that the instruction is a burst initiate.

4.2.2 SYNCFSM

This module synchronizes the output and return pipelines. It ensures that the each of

the pipelines read their respective portions of the MSW request exactly once. A new

MSW request cannot be received unless all the pipelines have read any data destined

to them. This is implemented as a 3-state FSM (finite-state machine) as shown in

figure 4-2. The FSM keeps track of which pipeline has read their data. State 00

indicates that neither pipeline has read the current request. State 01 indicates that

only the return pipeline has read the request and the output pipeline needs to read

the request. State 10 indicates that only the output pipeline has read the request

and the return pipeline needs to read the request. Recall that some instructions may

use only one of the two pipelines.

iodav &
(loadctl I -hasctl) &
(loaddata I -hasdata)
/ack_v2

loaddata I -hasdata iodav & loaddata &
/ack_v2 -loadctl & hasctl

-loaddata & hasdata

01 00 10

-loadctl & hasctl

iodav & loadctl & loadctl I -hasctl
-loaddata & hasdata / ackv2

Figure 4-2: State diagram of the SYNCFSM module. rst is omitted for clarity. On
rst it goes to state 00. Transitions occur on the rising edge of system clk.

SYNCFSM communicates with each of the GCFG, the output pipeline, and the

return pipeline through handshake signals, one pair for each.

iodavv2 This input from the GCFG indicates that there is data available in the

GCFG MSW latch that needs to be read.

mswack_v2 This output to the GCFG indicates that the I/O port controller has

read the data in the latch. Upon getting the ack, the GCFG either loads a new

instruction into the latch or deasserts iodav_v2. Mswack.2 is a don't-care when

iodav_v2 is low.

data_day This output to the output pipeline indicates that there is data available

in the GCFG MSW latch that needs to be read by the output pipeline.

loadol This input from the output pipeline indicates that it has read the data from

the latch. This signal can only be high when datadav is high.

ctl_dav This output to the return pipeline indicates that there is data available in

the GCFG MSW latch that needs to be read by the return pipeline.

loadctl This input from the return pipeline indicates that it has read the data from

the latch. This signal can only be high when ctldav is high.

4.2.3 IOPORT_CTL

This module is the FSM that manages the I/O port bus. It directly implements the

low-level protocol described in section 2.2.2. The FSM is shown in figure 4-3. The

FSM keeps track of which side transmitted last. State 0 indicates that the off-chip

module was the last to transmit and that the MAP will get priority. State 1 indicates

that the MAP was the last to transmit and that the off-chip module will get priority.

4.3 Output pipeline

The modules of the output pipeline are organized first into two classes. The first class

holds only the actual pipeline registers and muxes. This class is further divided among

two modules, IOCTOUT and IO.DPOUT. A logic diagram is shown in figure 4-4.

These modules are designed in a datapath style, with very regular patterns. There

is no control logic to mess up the regularity. This way, if it was desired to do so,

these modules can be placed and routed manually with minimal effort for greater

area efficiency and speed. The second class holds all the control logic. There are two

modules, one for each pipeline stage.

oksend = transmit & other_ready
otheroksend = othertransmit & ready

-io_clk I (-oksend & -otheroksend)

io_clk & -oksend &
other_oksend

/ load

io_clk & other_oksen

/ load

io_clk & oksend

Idrive

io_clk & oksend &
-other_oksend

/ drive

-ioclk I (-oksend & -otheroksend)

Figure 4-3: State diagram of the IOPORT_CTL module. rst is omitted for clarity.
On rst it goes to state 0. Transitions occur on the rising edge of the system clk.

4.3.1 IOCTOUT

This module contains pipeline registers required to generate the top 2 bits of the data

output, which are multiplexed between length and sync/ptr bits. Each register stage

either loads new data or holds old data depending on the control signals from O1FSM

and 02FSM respectively.

4.3.2 IO_DPOUT

This module holds pipeline registers required to generate the bottom 16 bits of the

data output, which are multiplexed between the different packets of the address and

data using a pair of shift registers and muxes. There are two pipeline stages. The

second stage may require up to 14 cycles to finish transmitting the data. The first

stage serves as a buffer to keep the second stage always full without needing to stall

the entire GCFG for long periods of time. This allows full IO bandwidth utilization

going off-chip. The first stage is controlled by O1FSM through the loadol signal.

The second stage is controlled by 02FSM through loaddo2, holddo2, shiftdo2,

IO_CTOUT

in_addr[45:44]

in_addr[43:42]

in_sync
in_data[64]

indata[63:0]

Is
burst

in_addr[41:0]

io_data_out

IO_DPOUT

Figure 4-4: Logic diagram of the IO.CTOUT and IO_DPOUT modules. All flip-flops
are clocked on the rising edge of the system clk.

- I

loadao2, holdao2, and shiftao2. The first three signals control the top set of

shift registers, which hold the data and burst count words. The last three signals

control the bottom set of shift registers, which hold the address words.

4.3.3 O1FSM

O1FSM is a simple FSM that manages the first stage of the output pipeline. It

keeps track of whether the stage is empty and whether it needs to be loaded. It

communicates with SYNCFSM and with 02FSM using a pair of handshakes. The

state diagram is shown in figure 4-5.

-iodav iodav I ~-oado2

-IUUCXV L IU(LUC.r

Figure 4-5: State diagram of the O1FSM module. rst is omitted for clarity. On rst
it goes to state 0. Transitions occur on the rising edge of system clk.

4.3.4 02FSM

02FSM is the FSM that manages the second stage of the output pipeline. It keeps

track of whether the stage is empty and whether it needs to be loaded or shifted. It

communicates with O1FSM and with IO_PORT_CTL with a pair of handshakes.

oldav This input signal from O1FSM indicates that stage 1 of the output pipeline

has data.

loado2 This output signal to O1FSM indicates that stage 2 is going to load data at

the end of the current cycle. This signal indicates to OIFSM to load new data

or deassert oldav. This signal is independent of oldav.

transmit_2 This output signal to IO_PORT_CTL indicates that in two cycles it will

have a data packet to transmit. This is not always known in advance. When it

is unsure, transmitl2 is low to prevent underflow.

drive This input signal from IO_PORT_CTL indicates that on the current cycle and

on the next cycle, data is being driven on the bus. Data is to be stable during

these two cycles. A new data packet should be loaded at the end of the next

cycle.

To do this, 02FSM keeps track of two pieces of state. The first is the number

of address packets it still needs to transmit. The second is the number of data (or

count) packets it still needs to transmit. In the chosen encoding, three bits are used

to represent each. The address state is a three-bit shift register with four legal states.

This encoding wastes a register but saves on some logic and is faster compared to

the compact 2-bit encoding. The data state is a two-bit decrementing counter plus

a valid bit. Transmit is asserted when there will be valid data in either the data

pipeline registers or the address pipeline registers. When there is data in both, the

address is sent first. This occurs for store and burst initiate instructions.

4.4 Return pipeline

The entire return pipe, including both pipeline registers and control is implemented

in the RTNPIPE module. Its basic logic is shown in figure 4-6. There are five pipeline

stages; this is to keep track of 2 transactions going out, 2 transactions coming in, and

1 transaction in flight off-chip. The pipeline has the capability to squash pipeline

bubbles. This is required since transactions do not generally arrive on each cycle and

the CSW may be blocked. This is implemented in the load chain on the left side of

figure 4-6. Each stage loads if the next stage loads or the current stage is empty.

There is a normal path (for loads) and a bypass path (for flow-controlled stores);

non-flow-controlled stores and burst initiators do not use this pipeline at all. If there

is something in the bypass path, then it is ready to advance when the first stage of

the output pipeline will be free on the next cycle. This guarantees that if another

I/O instruction is issued, there is space in the pipeline for it without blocking the

GCFG. When a transaction can go to the CSW from either path, the normal path

has priority. This shortens a very long combinational path in the design. It is much

faster to tell if the normal path is ready to issue a CSW request since it is just an

AND of two register outputs. The bypass path logic is much more complex. If the

priority was reversed, outnorm would have to wait until readybyp was resolved, even

though the cswack_2 could come earlier. Outnorm feeds the load chain in RTNPIPE

as well as the IO..MRDY signal that goes off-chip. Both paths are extremely long and

tight on timing.

RTNPIPE also synchronizes with the input pipeline so that data is presented to

the GCFG when both pipelines are ready. RTNPIPE communicates with SYNCFSM,

the GCFG, and I2FSM through three pairs of handshakes. The SYNCFSM interface

is described in section 4.2.2. The GCFG interface is described in section 3.1.5. The

I2FSM interface is shown below.

i2dav This input from I2FSM indicates that there is data available in that stage.

outnorm This output to I2FSM indicates that the GCFG is going to latch the data

from I2FSM at the end of the current cycle. This indicates to I2FSM that it

should load new data or deassert i2dav. Outnorm is only high when i2dav is

high.

4.5 Input pipeline

The input pipeline is organized much like the output pipeline. There is a datapath

module and then a control module for each pipeline stage.

4.5.1 IO_DPIN

IO.DPIN holds the pipeline registers. This holds state required to generate the data

portion of the CSW return packet. The four sets of Positive-edge-triggered D-Flip-

Flops (PDFF's) connected to iodatain load in sequence to latch in the different

packets as they arrive. In addition, they also have the ability to be zeroed at the

proper times to zero-pad data that is less than 4 packets wide. A logic diagram

iodav & bypass

loadol

rst

iodav & -bypass

inrtnclst
in_tslot
inrf
in_reg in_rtncc

outxfrtype outrtnclst out_rf out_rtncc
out_reg out_tslot

Figure 4-6: Logic diagram of the RTNPIPE module. All flip-flops are clocked on the
rising edge of the system clk

is shown in figure 4-7. There are two pipeline stages; this allows the MAP chip

to continue receiving data even while the CSW is blocked for several cycles. The

first stage of IODPIN is controlled by the signals HO-H3 and LO-L3. HO through H3

indicate that the respective register is to hold its data. LO through L3 indicate that

the respective register is to load new data. For any register, if neither is asserted,

then the register is zeroed. It is illegal for both to be asserted simultaneously. The

second stage is controlled with the loadi2 signal.

2'blO

out_sync o PDFF PDFF io_data_in[17:16]
roi

out_data -

II 1-
I6:8 1 rr I rII

147:32] PDFF

131:16] PDFF

II :1
L15:u_ DnlEE II I

io_data_in[15:0]

Figure 4-7: Logic diagram of the IODPIN module. All flip-flops are clocked on the
rising edge of system clk.

4.5.2 I1FSM

I1FSM is the FSM that manages the first stage of the input pipeline. It keeps

track of whether the stage is empty or full; it communicates with I2FSM and with

IO_PORT_CTL with a pair of handshakes.

ildav This output to I2FSM indicates that this stage is full.

-"0I

I '"' ' I

PDFF

loadi2 This input from I2FSM indicates that stage two is loading the data from

stage one. This tells IIFSM to deassert ildav. Loadi2 is independent of ildav.

ready_2 This output to IO_PORT_CTL indicates that the stage will be empty in four

cycles. This is not always known in advance. When uncertain, the ready.2 is

low to prevent overflow.

loadil This input from IOPORT_CTL indicates that the stage should be loaded at

the end of the next cycle.

I1FSM is implemented as a 3-bit 5-state FSM as shown in figure 4-8. Based on the

states, the load and hold signals are generated. The sequencing of these signals is

shown in figure 4-9.

clear = -io_clk & loadi2 & (len == state[1:0])

-clear & -loadil -clear & -loadil

-clear & loadil
101

clear & loadil

loadil

S000)-.e

100

-clear & loadil

110 clear& -loadil

-loadil

111 -clear & loadil

-clear & -loadil

Figure 4-8: State diagram of the I1FSM module. rst is omitted for clarity. On rst
it goes to state 0. Transitions occur on the rising edge of system clk.

INVoe,Z.,
C'Ne

ITEST/mapOl dk

/TEST/mapO/ IO_CLK

ffEST/mapO/ IO_AD[17:0]

/TEST/mapO/gcfgO/IoQ/ loadil

/TEST/mapOlgcfgOioO/ Ioadil2

ITEST/mapO/gcfgOiloG 10

JTEST/mapOgcfgO/iof I1

/TEST/mapO/gcfgOIAoO 12

ITEST/mapOgcfgOlo0/ 13

ITEST/mapOlgcfgOdioO/ hO

/TEST/mapo/gcfgro/oO/ hl

/TEST/mapO/gcfgoioOW h2

/TEST/map01gcfgO/ioO/ h3

Ii I i 9~0 1I 'I I I I i I I i Il , I , I

Figure 4-9: Timing diagram of I1FSM select lines

4.5.3 I2FSM

I2FSM is a simple FSM that manages the second stage of the input pipeline. It keeps

track of whether the stage is empty and whether it needs to be loaded. The state

diagram is shown in figure 4-10. It communicates with I1FSM and with RTNPIPE

with a pair of handshakes.

il dav

-ildav
-outnorm I ildav

Figure 4-10: State diagram of the I2FSM module. rst is omitted for clarity. On rst
it goes to state 0. Transitions occur on the rising edge of system clk.

VULIIVIIII I L1I 1UIaV

J1-F1-FLdLFLF-LFLV LF -Ft

Zz 7 33002 30000 1 135000 38003

.. ..

I--I

I--I
I 1
I I l_ J
L _ IL I
SI__ -- _I -- 1 __ 1 - l __ 1 -

Chapter 5

Verification

There are three aspects to verification: source-level (RTL) verification, timing verifi-

cation, and electrical rule verification.

5.1 RTL

To help test the I/O port controller, a Verilog model of the off-chip slave I/O processor

was written. The off-chip model knows the communication protocols and responds

to requests from the MAP chip as would the real thing. This allows us to test all the

pipelines in the controller and to ensure that they are working correctly in concert.

For load requests, the data returned is formed by combining the source address with

the value of an internal counter. This ensures that all the data returned are unique.

The synchronization and pointer bits are also taken from the internal counter so that

all combinations of those can be exercised. The length of the result word in packets

is determined by two bits in the address. This allows the the variable length word

features to be tested. In addition, the off-chip model logs all requests it receives.

The controller code was tested first only with the off-chip model. We applied test

input patterns that tested all the different transactions that exist. This helped flush

out bugs in both the controller and the off-chip model.

After the isolation testing, we integrated the RTL model of the I/O port controller

with the RTL model of the rest of the MAP chip. The MAP chip model was already

set up to log all register writes. This allows us to see what is coming back off the

I/O port without looking at dumps. Two test programs in assembly were written

to exhaustively test the I/O controller. The first test exercises all the non-burst

transactions. The second test exercises all the burst transactions.

The non-burst test (see appendix A.1) first issues a series of loads. There are

a total of twelve loads, each testing a different combination of source address word

length (one to three) and result data word length (one to four). This is an exhaustive

testing of the load control and datapaths. Next, there are twelve non-flow-controlled

stores, each testing a different combination of target address word length and source

data word length. This is an exhaustive testing of the store (non-flow-controlled)

control and datapaths. Finally, there are twelve flow-controlled stores, similar to the

non-flow-controlled tests. Again, this is an exhaustive test.

The burst test (see appendix A.2) first issues a series of burst loads. There are a

total of four loads, each testing a different combination of source address word length,

data word length, and result data word length. All four result data word lengths

are used. Next, there are twelve non-flow-controlled stores, each testing a different

combination of target address word length and source data word length. All four

source data word lengths are used. Finally, there are twelve flow-controlled stores,

similar to the non-flow-controlled tests. Together, these tests exercise all combinations

of address length and count length on burst initiators, and all data lengths for burst

loads and stores. This makes a exhaustive test, testing all the control and datapaths

related to burst mode transfers.

The results of the tests proved the I/O bus could be saturated from software,

showing that end-to-end communication could occur at the full 100MB/s. For one

packet and two packet words, a word can be received on the MAP every 5.7 cycles, for

bandwidths of 35 MB/s and 70 MB/s respectively. With small words, the software

loop becomes the limiting factor in I/O performance. This figure can be improved by

software pipelining four requests instead of the current two requests. This is expected

to improve the one packet performance to a word every 3 cycles, for a bandwidth of

66 MB/s, and two packet performance to a word every 4 cycles, for a bandwidth of

100 MB/s. For three and four packet words, a word is received every 6 and 8 cycles

respectively, which is the theoretical maximum of 100 MB/s. With the larger packets,

the I/O bus becomes the limiting factor in I/O performance. There are similar results

for stores, with non-flow-controlled stores performing somewhat better, being able to

saturate the bus with 2 packet words.

The tests also showed the software and hardware flow control working. For the

loads and flow-controlled stores, the issue rate of memory instructions is slowed down

enough such that the GCFG is always ready to accept a new request immediately.

Thus the hardware flow control at the M-Switch does not get activated. For the

non-flow-controlled stores, the issue rate is initially too high for the I/O to handle,

thus filling the pipeline. As a result, the GCFG M-Switch buffer gets filled up, thus

activating the hardware flow control.

We then modified the MAP chip model to delay C-Switch grants for 16 cycles.

This was intended to test the back-pressure paths. Data from the off-chip slave starts

to fill up the input pipeline as the first piece of data sits at the head of the pipeline

waiting for the C-Switch to be granted. As expected, once the input pipeline filled

up, the IOMRDY went low to stop the off-chip slave I/O processor from sending any

more data.

As a final test, we synthesized the GCFG and I/O controller and tested that with

the rest of the MAP chip using the two tests we wrote. As expected, it behaved

identically with the HDL version on a cycle-by-cycle basis.

5.2 Timing

The GCFG/IO were synthesized together as a monolithic block. The lengths of

combinational paths were analyzed using the PrimeTime static timing analysis tool.

Since this timing was done before the final place and route of the GCFG, PrimeTime

cannot properly take into account wire capacitance in doing its timing analysis. By

default, PrimeTime assumes zero wire capacitance. To get more realistic results, the

capacitances were manually specified on nodes believed to be on the critical path

from initial traces. The capacitance was estimated from the fanout of the node. The

function used is the same function used during synthesis, which is somewhat rough

and arbitrary. Figure 5-1 shows this function. The reason the curve is convex is

that the router builds trees to span the connected pins. The marginal cost, in wire

length, of adding a new pin decreases since each new pin is probably close to one of

the existing pins or to the tree spanning them.

aLLQ

0 02 04 0 07 09 0
0 10 20 30 40 50 60 70 80 90 100

Fanout -- number of pins

Figure 5-1: Wire capacitance as a function of fanout

According to PrimeTime, the there were some long paths through the I/O which

don't make the 100 MHz specification. All these paths have in common the path that

starts from clk and goes to cswack_2. It was reported to take 8.3 ns. This would

be a problem because cswack_2 feeds many more fairly long combinational paths.

Analysis of this path showed that loado2 was in the critical path and that its logic

could easily be moved to the previous cycle. Modifying the logic reduced the time to

generate cswack_2 to 5.343 ns.

The most critical path in the I/O is to the data input of the return pipeline stage

1 state register. This path includes the load signal chain in RTNPIPE, of which each

stage takes 1.042 ns. Including setup time, the entire path requires 10.44 ns. If it

were required to do so, there would be several ways to make up the remaining half

nanosecond. The least painful thing to do would be to re-synthesize the GCFG/IO

with a timing constraint on that path. This is very likely to work. Another approach

would be to accept a little pipeline inefficiency and eliminate one of the stages in the

load signal path; the best one would be the load2 signal, replacing it with load3.

This reduces the length of the path by 1.042 ns. In addition, one could argue that the

.44 ns is in the noise, especially given the guesses that went into the wire capacitance

model. Finally, optimizing this path would be useless since there are longer paths in

other parts of the chip.

The three important off-chip outputs are the transmit, ready, and oe signals.

A timing diagram for these signals is shown in figure 5-2. Transmit reaches the off-

chip drivers 1.892 ns after the falling edge of clk. Ready reaches the off-chip drivers

11.195 ns after the rising edge of clk. Oe reaches the off-chip drivers 1.088 ns after

the falling edge of clk. These signals are sent, along with the I0_CLK signal, to the

off-chip module and are latched by the rising edge of IO_CLK. Io_clk (the signal that

goes into the driver that produces IOCLK) rises about 1.5 ns after the rising edge

of clk. Thus, transmit has about 3.6 ns of skew tolerance and oe has about 4.4 ns.

However, the timing for ready signal is tight, with a negative skew tolerance. We

actually need I0_CLK to be delayed about one nanosecond relative to ready so that

ready will be sampled correctly. Unless the off-chip module employs a phase-locked

loop to generate its clock, the delay from IO_CLK on the MAP and on the off-chip

module is guaranteed to be more than a nanosecond because the pad receivers on

the off-chip module are going to take about a nanosecond, and then IO_CLK needs

to buffered up and distributed throughout the chip. The only concern is if I0_CLK

is delayed by a significant portion of the clock cycle; I0_AD only tolerates about 5

ns of skew in either direction as it is only driven for half the I/O cycle. Should the

clock skew be too great, a solution would be to PDFF oe instead of n-latching it.

This delays oe by another half system clock cycle and brings it more in line with the

timing for ready.

clk

ioclk

transmit sampling window

ready samplingwindow

oe sampling window

setup time

Figure 5-2: I/O output signal timing

Coming on-chip, the timing is tight for the data signals (IODAD). The IO_IRDY and

IO_ITX signals have an extra 10 ns because they start on the rising edge of IO0CLK

whereas I0_AD starts being driven on the falling edge of IO_CLK. The critical path is

the time it takes to send IO_CLK to the off-chip module plus the time it takes to send

data back to the MAP. Table 5.1 are rough the estimates of the components of that

path.

This path must fit within half a IOCLK cycle, or 10 ns. This means the clock

distribution skew needs to be within about 2 ns. If the skew is too great, the data

does not arrive in time for the rising edge of IO_CLK, which latches the data on the

MAP chip. Originally, there was more time because the data was to be latched on a

delayed IO_CLK, specifically the output of the pad driver. This gives an extra 2.5 ns.

This was abandoned because of wiring congestion problems. Still, there are several

solutions. The first solution is for the off-chip module to generate the output enable

on the rising edge of IO_CLK with some small delay. The delay ensures that there is

no bus contention, as data from the MAP chip necessarily stays past the rising edge

i

Pad driver input to Pad output
Inter-package flight time
Pad receiver input to signal output
Clock distribution skew
Output enable logic
Pad driver enable to Pad output
Inter-package flight time
Pad receiver setup time
Total

2.50
0.25
1.00

0.50
2.50
0.25
1.00

8.00 + ????

Table 5.1: Critical path timing for receiving data. The clock distribution skew is
unknown.

of IO_CLK. The second is to stretch out the clock cycle. There is some clock speed at

which this is guaranteed to work because the timing is designed to work even with

zero delays. Since the MAP chip is already going to run at a lower clock rate for other

reasons, nothing needs to be done and the timing should work without modification.

5.3 Electrical Rules

For reliable operation, highly capacitive nodes need to be properly driven. The effect

of under-driven nodes is poor rise and fall times. This causes high transient currents

through the gates with under-driven inputs because both the nmos and pmos chains

in the gates are partially on, providing a low-impedance path from power to ground.

Synergy takes this into account when synthesizing modules, so theoretically all

nodes should be properly driven. However, there may be problems with the specifi-

cations interfaces between the synthesized modules. In addition, verifying the design

gives an extra level of security. PrimeTime was used to verify the design both on the

module level and on the inter-module level. No particularly slow nodes were found.

Chapter 6

Conclusion

In this thesis, I described the design and implementation of the I/O port controller

for the MAP chip. The I/O port controller is responsible for managing the I/O port,

which is used for communication between the MAP chip and external devices. The

I/O port is intended to be connected to an off-chip module that then connects to other

peripheral buses, such as SCSI or SBUS. The I/O port controller was implemented

in Verilog HDL and synthesized to a standard cell library.

The I/O port controller was fully tested using both the original Verilog HDL and

synthesized forms. Code was written which was able to fully utilize the 100 MB/s

bandwidth of the I/O bus using 48-bit and 64-bit words. Timing was verified using

a static timing analyzer and found to meet the desired specifications. Therefore the

I/O port controller meets all its objectives and specifications.

I learned many things from this project. First, I learned how to carry out the

design and implementation of a critical component from beginning to end. Second,

I learned to keep things simple. The hardware ought to be as simple as possible yet

allow complex things through higher level layers. Third, I learned to optimize only

where it matters in order to devote time to more important aspects, such as testing.

A part that works at a slow speed is better than one that does not work at all.

Appendix A

Test Programs

A.1 Non-burst mode test

#include "test.h"
#define IOPTR OxC8221FFFFFFE0000

#define ALENO
#define ALENI
#define ALEN2
#define ALEN3

#define DLENO
#define DLEN1
#define DLEN2
#define DLEN3

#define SIZEO
#define SIZE1
#define SIZE2
#define SIZE3

Ox0000000000000000
Ox0000800000000000
Ox0001000000000000
Ox0001800000000000

Ox0000000000000000
Ox0000200000000000
Ox0000400000000000
Ox0000600000000000

Ox0000000000000000
Ox0000000000008000
Ox0000000000010000
Ox0000000000018000

text;

SETIREGPTR((IOPTR ALENO DLENO
SET_IREG_PTR((IOPTR ALENO DLEN1
SETIREG_PTR((IOPTR ALENO DLEN2
SETIREGPTR((IOPTR ALENO DLEN3
SETIREGPTR((IOPTR ALENI DLENO

SIZEO), i2)
SIZE1), i3)
SIZE2), i4)
SIZE3), i5)
SIZEO), i6)

SET_IREG_PTR((IOPTR ALEN1I DLEN1 SIZEl), i7)
SET_IREG_PTR((IOPTR ALENI DLEN2 SIZE2), i8)
SET_IREG_PTR((IOPTR ALENI DLEN3 SIZE3), i9)
SET_IREG_PTR((IOPTR ALEN2 DLENO SIZEO), i10)
SET_IREG_PTR((IOPTR ALEN2 DLEN1 SIZE1), ill)
SET_IREG_PTR((IOPTR ALEN2 DLEN2 SIZE2), i12)

SET_IREG_PTR((IOPTR ALEN2 DLEN3 SIZE3), i13)

instr memu Id i2, i14;

instr memu Id i3, i15;

instr ialu mov i14, iO

memu Id i4, i14;

instr ialu mov i15, iO

memu Id i5, i15;

instr ialu mov i14, iO

memu Id i6, i14;

instr ialu mov i15, iO

memu Id i7, i15;

instr ialu mov i14, iO

memu Id i8, i14;

instr ialu mov i15, iO

memu Id i9, i15;

instr ialu mov 114, iO

memu Id i10, i14;

instr ialu mov i15, iO

memu Id ill, i15;

instr ialu mov i14, iO

memu Id i12, i14;

instr ialu mov i15, iO

memu Id i13, i15;

instr ialu mov i14, iO;

instr ialu mov i15, iO;

SETIREG(0x1000010000100000, i14)
SETIREG(OxO0001000100010001, i15)

instr ialu addu i14, i15, i14
memu st i14, i2;
instr ialu addu i14, i15, i14
memu st i14, i3;
instr ialu addu i14, i15, i14
memu st ii14, i4;
instr ialu addu ii14, i15, i14
memu st i14, i5;

instr ialu addu i14,

memu st i14, i6;
instr ialu addu i14,
memu st i14, i7;

instr ialu addu i14,
memu st i14, i8;
instr ialu addu i14,
memu st i14, i9;
instr ialu addu i14,

memu st i14, ilO;

instr ialu addu i14,

memu st i14, ill;
instr ialu addu i14,
memu st i14, i12;

instr ialu addu i14,
memu st i14, i13;

i15, i14

i15, i14

i15, i14

i15, i14

i15, i14

i15, i14

i15, i14

i15, i14

instr ialu addu i14, i15, i14
memu stsu i14, i2, ccO;
instr ialu addu i14, i15, i14
memu ct ccO stsu i14, i3, ccO;

instr ialu addu i14, i15, i14
memu ct ccO stsu i14, i4, ccO;
instr ialu addu i14, i15, i14
memu ct ccO stsu i14, i5, ccO;
instr ialu addu i14, i15, i14
memu ct ccO stsu i14, i6, ccO;
instr ialu addu i14, i15, i14
memu ct ccO stsu i14, i7, ccO;
instr ialu addu i14, i15, i14
memu ct ccO stsu i14, i8, ccO;
instr ialu addu i14, i15, i14
memu ct ccO stsu i14, i9, ccO;
instr ialu addu i14, i15, i14
memu ct ccO stsu i14, ilO, ccO;
instr ialu addu i14, i15, i14
memu ct ccO stsu i14, ill, ccO;
instr ialu addu i14, i15, i14
memu ct ccO stsu i14, i12, ccO;
instr ialu addu i14, i15, i14
memu ct ccO stsu i14, i13, ccO;

HALT
SPIN
end;

A.2 Burst mode test

#include "test.h"
#define IOPTR OxC8221FFFFFFE0000

#define ALENO
#define ALEN1
#define ALEN2
#define ALEN3

#define DLENO
#define DLEN1
#define DLEN2
#define DLEN3

#define SIZEO
#define SIZE1
#define SIZE2
#define SIZE3

Ox0000000000000000

Ox0000800000000000

Ox0001000000000000
Ox0001800000000000

Ox0000000000000000

Ox0000200000000000

Ox0000400000000000

Ox0000600000000000

Ox0000000000000000

Ox0000000000008000

Ox0000000000010000

Ox0000000000018000

text;

SETIREGPTR((IOPTR I ALENO I DLENO I SIZEO), i2)
instr ialu imm ##16, i3;
instr memu stscnd ua, 1, i3, i2, ccO; /* initiate burst load */

SETIREG_PTR((IOPTR I ALEN3 DLENO I SIZEO), i2)
instr ialu br input;
instr ialu imm ##OxlO00, i9;
instr memu leab ii, i9, i9;
instr memu lea ii, #4, i4;

SETIREG_PTR((IOPTR I ALEN2 I DLEN1 I SIZE1), i2)
instr ialu imm ##16, i3;
instr memu stscnd ua, 1, i3, i2, ccO; /* initiate burst load */

SET_IREGPTR((IOPTR I ALEN3 I DLENO I SIZEO), i2)
instr ialu br input;
instr;
instr;
instr memu lea ii, #4, i4;

SETIREGPTR((IOPTR I ALEN1 I DLEN2 I SIZE2), i2)
instr ialu imm ##16, i3;
instr memu stscnd ua, 1, i3, i2, ccO; /* initiate burst load */

SETIREGPTR((IOPTR I ALEN3 I DLENO I SIZEO), i2)
instr ialu br input;
instr;
instr;
instr memu lea ii, #4, i4;

SETIREGPTR((IOPTR I ALENO I DLEN3 I SIZE3), i2)
instr ialu imm ##16, i3;
instr memu stscnd ua, 1, i3, i2, ccO; /* initiate burst load */

SETIREGPTR((IOPTR I ALEN3 I DLENO I SIZEO), i2)
instr ialu br input;
instr;
instr;
instr memu lea ii, #4, i4;

SETIREGPTR((IOPTR I ALEN1 I DLENO I SIZEO), i2)
instr ialu imm ##8, i3;
instr memu stscnd ua, 0, i3, i2, ccO; /* initiate burst store */

SETIREGPTR((IOPTR I ALEN3 I DLENO I SIZEO), i2)
instr ialu br outputnoflow;
instr ialu imm ##OxlO00, i9;
instr memu leab ii, i9, i9;
instr memu lea ii, #4, i4;

SETIREGPTR((IOPTR I ALENO I DLEN1 I SIZE1), i2)
instr ialu imm ##8, i3;
instr memu stscnd ua, 0, i3, i2, ccO; /* initiate burst store */

SETIREGPTR((IOPTR I ALEN3 I DLEN1 I SIZEO), i2)
instr ialu br outputnoflow;
instr;
instr;
instr memu lea il, #4, i4;

SET_IREGPTR((IOPTR I ALEN2 I DLEN2 I SIZE2), i2)
instr ialu imm ##8, i3;
instr memu stscnd ua, 0, i3, i2, ccO; /* initiate burst store */

SETIREGPTR((IOPTR I ALEN3 I DLEN2 I SIZEO), i2)
instr ialu br outputnoflow;
instr;
instr;
instr memu lea ii, #4, i4;

SETIREGPTR((IOPTR I ALEN1 I DLEN3 I SIZE3), i2)
instr ialu imm ##8, i3;
instr memu stscnd ua, 0, i3, i2, ccO; /* initiate burst store */

SETIREGPTR((IOPTR I ALEN3 I DLEN3 I SIZEO), i2)
instr ialu br outputnoflow;
instr;
instr;
instr memu lea ii, #4, i4;

SETIREGPTR((IOPTR I ALEN2 I DLENO I SIZEO), i2)
instr ialu imm ##8, i3;
instr memu stscnd ua, 0, i3, i2, ccO; /* initiate burst store */

SETIREGPTR((IOPTR I ALEN3 I DLENO I SIZEO), i2)
instr ialu br output_flow;
instr ialu imm ##0x200, i9;
instr memu leab il, i9, i9;
instr memu lea ii, #4, i4;

SETIREGPTR((IOPTR I ALEN1 I DLEN1 I SIZEO), i2)
instr ialu imm ##8, i3;
instr memu stscnd ua, 0, i3, i2, ccO; /* initiate burst store */

SETIREGPTR((IOPTR I ALEN3 I DLEN1 I SIZEO), i2)
instr ialu br outputflow;
instr;
instr;
instr memu lea ii, #4, i4;

SETIREGPTR((IOPTR I ALENO I DLEN2 I SIZEO), i2)

instr ialu imm ##8, i3;
instr memu stscnd ua, 0, i3, i2, ccO; /* initiate burst store */

SET_IREGPTR((IOPTR I ALEN3 I DLEN2 I SIZEO), i2)
instr ialu br outputflow;
instr;
instr;
instr memu lea ii, #4, i4;

SET_IREGPTR((IOPTR I ALEN2 I DLEN3 I SIZEO), i2)
instr ialu imm ##8, i3;
instr memu stscnd ua, 0, i3, i2, ccO; /* initiate burst store */

SETIREGPTR((IOPTR I ALEN3 DLEN3 I SIZEO), i2)
instr ialu br outputflow;
instr;
instr;
instr memu lea ii, #4, i4;

HALT
SPIN

/* stream i3 (must be even & >= 4) words in,
* store to memory pointed to by i9 */
/* use pointer i2 to access IO0 space */
/* return via pointer i4 */
/* trahes i3, i5 and i6 */
/* i9 points past end of memory */

input:

instr ialu ule i3, #4, ccl
memu Id i2, i6;

_loopi:
instr ialu cf ccl br _loopl
memu Id i2, i5;
instr memu st i6, #8, i9;
instr ialu sub i3, #2, i3
memu Id i2, i6;

instr ialu ule i3, #4, ccl
memu st i5, #8, i9;

instr ialu jmp i4
memu Id i2, i5;
instr;
instr memu st i6, #8, i9;
instr memu st i5, #8, i9;

/* stream i3 (must be even & >= 4) words out,
* load from memory pointed to by i9 */
/* use pointer i2 to access IO space */
/* return via pointer i4 */
/* trashes i3, i5 and i6 */
/* i9 points past end of memory */

output_noflow:

instr ialu ule i3, #4, ccl
memu Id i9, #8, i6;

_loop2:
instr ialu cf ccl br _loop2
memu Id i9, #8, i5;
instr memu st i6, i2;
instr ialu sub i3, #2, i3
memu Id i9, #8, i6;
instr ialu ule i3, #4, ccl
memu st i5, i2;

instr ialu jmp i4
memu Id i9, #8, i5;
instr;
instr memu st i6, i2;
instr memu st i5, i2;

outputflow:

instr ialu ule i3, #4, ccl
memu Id i9, #8, i6;
_loop3:

instr ialu cf ccl br _loop3

memu Id i9, #8, i5;

instr memu ct ccO stsu i6, i2, ccO;

instr ialu sub i3, #2, i3

memu Id i9, #8, i6;

instr ialu ule i3, #4, ccl

memu ct ccO stsu i5, i2, ccO;

instr ialu jmp i4

memu Id i9, #8, i5;

instr;

instr memu ct ccO stsu i6, i2, ccO;

instr memu ct ccO stsu i5, i2, ccO;

end;

Bibliography

[1] William J. Dally, Stephen W. Keckler, Nick Carter, Andrew Chang, Marco Fillo,

and Whay S. Lee. The map instruction set reference manual v1.53. CVA Memo 59,

Massachusetts Institute of Technology, August 1996.

[2] Marco Fillo, Stephen W. Keckler, William J. Dally, Nicholas P. Carter, Andrew

Chang, Yevgeny Gurevich, and Whay S. Lee. The M-Machine Multicomputer.

Artifical Intelligence Laboratory Memo 1532, Massachusetts Institute of Technol-

ogy, 1995.

[3] Marco Fillo and Whay S. Lee. The architecture of the MAP intercluster switch.

CVA Memo 86, Massachusetts Institute of Technology, 1996.

[4] Parag Gupta. The design and implementation of the memory unit. CVA Memo 82,

Massachusetts Institute of Technology, 1996.

