
A Fault Tolerant Transportation
Controller

by

Scott D. MacGregor

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Computer Science
at the Massachusetts Institute of Technology

May 28, 1997

Copyright 1997 Scott D. MacGregor. All rights reserved

The author hereby grants to M.I.T. permission to reproduce
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

OCT 2 HO, 199

Author A.~,c,
Department of Electrical Engineering and Computer Science

May 28, 1997

Certified by
Richard D. Thornton

" upervisor

Accepted by ,... .•
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

A
Fault Tolerant

Transportation Controller
by

Scott D. MacGregor

Submitted to the
Department of Electrical Engineering and Computer Science

May 28, 1997

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

A distributed fault tolerant controller is designed and implemented which could be used for
controlling systems such as personal rapid transit (PRT) or baggage delivery systems. The
emphasis is placed on designing a communication backbone capable of quickly detecting and
reacting to faults among the distributed components. A simple set of control protocols are
introduced to verify and test the functionality of the communication backbone. A small scale
prototype has been implemented to develop the ideas introduced in the communication backbone
and controller design. The prototype system has been shown to handle multiple failures of
communication lines and processors.

Thesis Supervisor: Richard D. Thornton
Title: Professor, Electrical Engineering and Computer Science

To my grandfather
Richard Fisher

and

In memory of
David A. MacGregor

Table of Contents
1. IN TR O DU CTIO N .. 8

1.1 THE TRANSPORTATION CONTROLLER ... 8
1.2 THE PROBLEM ... 9
1.3 FAULT TOLERANCE.. 10
1.4 M AKING IT FAULT TOLERANT... 10

1.4.1 Zone Controller.. 11
1.4.2 The W atchdog Circuit .. 12
1.4.3 Neighbors .. 13
1.4.4 Comm unication Backbone 13
1.4.5 Robust Protocols .. 13

1.5 ORGANIZATION.. 13

2. DESIG N .. 15

2.1 NETW ORK TOPOLOGY .. 15
2.1.1 Multidrop Communication Network...15
2.1.2 Point to Point Networks.. 17

2.2 COMMUNICATIONS BACKBONE 17
2.2.2 M essages .. 19
2.2.3 The Router ... 19
2.2.4 M essage Handlers.. 22
2.2.5 Port Handlers.. .. 23
2.2.6 Ping Protocol .. 26

2.3 DEVELOPMENT TOOLS...... 28
2.3.1 Event Handler ... 28
2.3.2 Vehicle M anager .. 29

2.4 PROTOCOLS ... 30
2.4.1 Virtual Vehicle Protocol... 31
2.4.2 Vehicle Exchange .. 32

3. IM PLEM EN TATIO N .. 35

3.1 HARDW ARE ... 35
3.1.1 M ain Processor ... 36
3.1.2 Auxiliary Processor.. 38
3.1.3 D UART .. 38
3.1.4 LCD D isplay .. 39
3.1.5 DIP Switches ... 39

3.2 SOFTWARE IMPLEMENTATION OF THE COMMUNICATION BACKBONE... 40
3.2.1 The Router 40
3.2.2 M essage Handler 41
3.2.3 SCI Port Handler 44
3.2.4 D UART Port Handlers 46
3.2.5 Ping Protocol................ ... 49

3.3 DEVELOPMENT TOOLS.. ... 51
3.3.1 Event H andler 51
3.3.2 Vehicle M anager.. 53

3.4 CONTROL PROTOCOLS................ .. 56
3.4.1 Virtual Vehicle Create.. 56
3.4.2 Vehicle Exchange .. 57

3.5 M AIN LOOP 59

4. FURTHER STUDY ... 60

4.1 EXPANDING THE CONTROLLER ALGORITHMS ... 60

4.2 ZONE CONTROLLER VOTING... 60
4.3 ADDING A CENTRAL CONTROLLER... 62
4.4 STATISTICS .. 62
4.5 DYNAMICALLY DOWNLOAD NEW CODE ... 62
4.6 ADDING THE WATCHDOG CIRCUIT... 63

5. CONCLUSION ... 64

6. REFERENCES ... 66

7. ACKNOWLEDGMENTS .. 67

8. APPENDIX A: PROTOTYPE SCHEMATICS ... 68

9. APPENDIX B: CODE LISTING.. 76

List of Figures

FIGURE 1-1. A BASIC DISTRIBUTED TRANSPORTATION CONTROLLER...
FIGURE 1-2. COMMUNICATION FAILURE BETWEEN BLOCKS ... 12
FIGURE 2-1. MULTIDROP COMMUNICATION NETWORK TOPOLOGY ... 16
FIGURE 2-2. POINT TO POINT NETWORK TOPOLOGY .. 17
FIGURE 2-3. OVERVIEW OF COMMUNICATION BACKBONE SYSTEM 18
FIGURE 2-4. M ESSAGE FORMAT.. 19
FIGURE 2-5. BLOCK CONTROLLER ROUTING TABLE .. 21
FIGURE 2-6. UPDATED ROUTING TABLE... 21
FIGURE 2-7. Two LAYER PORT HANDLER ... 24
FIGURE 2-8. THE PING PROTOCOL ... 27
FIGURE 2-9. SNAPSHOT OF AN EVENT LIST.. 29
FIGURE 2-10. UPDATE EVENT LIST 29
FIGURE 2-11. VIRTUAL VEHICLE CREATION PROTOCOL.. 32
FIGURE 3-1. CONTROLLER BLOCK DIAGRAM... 36
FIGURE 3-2. DEFAULT ROUTING TABLE ... 41
FIGURE 3-3. VIRTUAL VEHICLE CREATE MESSAGE... 56
FIGURE 4-1. VOTING ON THE ZONE CONTROLLER 61
FIGURE 4-2. SYSTEM HIERARCHY WITH A CENTRAL CONTROLLER.. 62

List of Tables

TABLE 3-1. DIP SWITCH SIGNALS 40
TABLE 3-2. VALID PING SOURCE AND DESTINATION PAIRINGS ... 49

TABLE 3-3. SUMMARY OF POLLED VARIABLES FOR LOOP DRIVER.. 59
TABLE 3-4. SUMMARY OF INTERRUPT SOURCES 59

1. Introduction

A lot of recent research and funds have been funneled into designing automated transportation

systems. As this push continues, more emphasis will be placed on designing fault tolerant, safe

transportation control systems. Current transportation control systems are still very primitive. For

example, conventional trains today rely on mechanical switches known as track circuits to

determine if a stretch of track has been cleared ahead. These systems could have a better

throughput if train engineers had the ability to precisely determine the distance to the train in front

of them. [2]. A good transportation controller could also be useful in efforts to build autonomously

controlled cars. The controller system can make sure a car does not enter the next segment of the

road unless the road is clear. This thesis is aimed at developing a communication backbone which

would support the construction of complex distributed controllers. The backbone and the controller

must be fault tolerant and flexible enough to be useful in various applications such as subway

systems, baggage delivery or autonomously controlled cars.

1.1 The Transportation Controller

A common technique for real-time control systems involving continuous control and observation

uses distributed systems where individual processing units are responsible for monitoring /

controlling a part of the system [6]. This technique can be applied to the transportation controller.

Consider a distributed system with multiple processors where each processor is associated with a

segment of track. The processor controls any vehicle on its track segment and is responsible for

communicating with the processor in charge of adjacent segments of track to coordinate the

vehicle's move from one segment to the next. The communication between the two processors

ensures that a vehicle does not prematurely enter the next track segment. For instance, Figure 1-1

shows a basic distributed controller. If processor A wants to move the vehicle in its track into the

track segment of processor B, A must communicate with B to determine if B's track segment is

clear. In this case, B would inform A to slow its vehicle down because B's track is not clear. Thus,

the system depends on bi-directional communication between processors which in turn control

vehicles on the tracks.

Track Segment
Vehicle

rack Control
ines 9

Figure 1-1. A Basic Distributed Transportation Controller

Each processor receives information from the track. The processor also has the ability to control

vehicles on its segment of the track. The communication link between neighboring processors

allows them to coordinate the vehicles.

It is important to note that the idea of a "vehicle" and a "track" can be abstracted away from this

general transportation system. The vehicles could be as diverse as automated cars, subway trains

or even bags of luggage. In the same sense, the "tracks" could be highways, subway tracks or

luggage conveyers. Thus, the details associated with objects which are moved and the medium

used to move them can be removed from the discussion and analysis of the system for the purposes

of this thesis.

1.2 The Problem

A system which meets just the above criteria is very easy to design. However, what happens when

one or more of the processors fails or becomes inoperative? Suddenly, a processor cannot ask its

neighbor if the next track segment is open or not. For the case of a luggage system, the

consequence might be no more than an inconvenience. However, in the case of a subway system

the results could be disastrous. Imagine the loss of life in a severe subway crash during rush hour!

Clearly, changes must be made to the transportation model we have introduced.

This thesis will attempt to introduce a high level of fault tolerance into the system. The system will

be able to:

* Quickly detect processor failures.

* Quickly detect communication failures.

* When dealing with a few processor failures, gracefully keep the system in operation while

notifying a central unit.

* Gracefully handle disruptions in the communication lines between the processors by re-routing

messages when possible.

* In the face of many processor failures, safely but not necessarily gracefully, handle the

situation.

* Minimize the number of false alarms.

* Avoid collisions.

* Maintain service.

For instance, if a single processor fails, the system should have the ability to move vehicles out of

the bad processor's track and continue service. If many processors suddenly fail (a large power

failure or accident) then the system could slow all vehicles to a halt. This event would be an

example of a non-graceful but safe handling of a serious failure.

1.3 Fault Tolerance
Some of the different applications for transportation controllers have high availability needs (e.g. a

subway system). High availability systems in general have the properties that they can quickly

detect faults, report them, mask them and continue service while the fault is fixed [3]. As we can

see, these are goals of our system as well. In order to meet these goals, the system must be fault

tolerant.

Fault tolerant design typically incorporates the following techniques [3]:

* Modularity - The system is composed of modules.

* Independent failure modes - faults in one module should not cause faults in other modules.

* Redundancy and repair - make it easy to replace modules in the system.

The fault tolerant transportation controller design discussed in this thesis demonstrates these

fundamental principles of fault tolerant design.

1.4 Making it Fault Tolerant

Taking the basic distributed model introduced in Section 1.1, the system must be modified to

introduce multiple ways of detecting failures and dealing with them in order to become fault

tolerant. The four techniques introduced in this thesis are:

We are going to need to introduce multiple ways of detecting failures in order to make the system

fault tolerant. The primary ways are:

* Zone Controller

* Using neighbors to detect failures.

* Fault Tolerant Communication Backbone

* Watchdog

* Robust Protocols

1.4.1 Zone Controller
Consider an additional layer of processing units which would sit on top of the basic processing

units introduced in section 1.1. These new processing units are considered zone controllers and

they manage the basic processing units which act as block controllers. Every zone controller can

communicate with the blocks in its zone. Furthermore, block controllers keep their zone controller

up to date with the status of their track segment. For example, a block controller notifies the zone

controller whenever vehicles enter or leave its track segment. The block controllers have a very

detailed localized view of the vehicles and the track. With the information the zone controller

receives from its blocks, it has a general, global view of the system. Adding zone controllers to the

system can improve the fault tolerance of the system by providing redundancy and independent

failure modes. In addition zone controllers can be used for actually controlling the system.

The zone controller provides redundancy in the communication links. If the communication link

between two blocks in a zone goes down, messages between the two blocks can be re-routed

through the zone controller since each block has a separate means of communicating with the zone

as illustrated in Figure 1-2.

The zone controller also provides an independent failure mode by maintaining a global view of the

system. Without the zone controller, if a block processor faults, then a neighbor block could not

determine if the track ahead was clear or not. Since the neighbor has no knowledge about the status

of the crashed block's state, it must stop moving vehicles from its block to the crashed block. This

in turn backlogs vehicles coming into the neighbor processor. Thus, the failure of one block

controller eventually succeeds in bringing a large portion of the transportation system down.

However, with a zone controller, when one block fails, the neighbor asks the zone controller about

an appropriate behavior. The zone controller, using its global state has knowledge with regards to

the track of the failed block being cleared or not to instruct the block controller. If the track is

actually clear then the zone can disable the bad controller, and the vehicle can be accelerated and

allowed to coast through the bad block. Now, the failure of a block controller does not cause the

entire system to fail by losing service. It is important to note that the zone controller must have the

ability to diagnose, reboot, reload and disable block controllers.

Figure 1-2. Communication failure between blocks

1.4.2 The Watchdog Circuit
Watchdog circuits can be used to help quickly detect block controller processors which have

faulted. A traditional watchdog circuit, as the name suggests, watches a processor, making sure it

is alive. In fact, sophisticated watchdogs can actually monitor correct processor behavior.

Traditional watchdogs usually work by monitoring a signal from the processor. If the processor

does not "hit" the signal every fixed number of time units then the watchdog assumes the processor

has faulted. On the processor side, a common mistake is to hit the watchdog via an interrupt. An

interrupt goes off every fixed number of time units causing the processor to stop whatever it is

doing and "hit" the watchdog signal. Unfortunately, this simple technique alone is not a good way

to monitor the status of the processor. The interrupt process might be functioning while the

processor program has faulted (i.e. caught in an infinite loop). Thus, the watchdog in this form

might think the processor is alive and well even when it has faulted. However in severe cases

where the processor has completely halted all operations, it is a reliable means to test the status of

the processor.

So the watchdog circuit needs to be more powerful than this. Another way to check proper

functioning of the processor is to have a more complicated exchange between the watchdog and the

block controller. For example, the watchdog circuit might exchange information with the

processor. The processor is then required to reply in some form to this message. If the watchdog

does not receive a proper response from the processor, then it concludes that the processor has

faulted and notifies the zone controller. Again, the purpose of the watchdog is to help quickly

detect block controller failures.

1.4.3 Neighbors
Effective use of neighboring block controllers is critical towards detecting faults. If a block

controller sends a message to one of its neighbors and does not receive a reply, it can send a higher

priority message (just in case the other processor just hadn't had time to respond to the first

message). If that fails, then the neighbor concludes that the processor has failed.

1.4.4 Communication Backbone
A communication backbone must be established between the block and zone controllers not only to

send and receive messages but also to quickly detect at faults in the communication lines. A fault

tolerant communication backbone has the capability of continuing service by automatically re-

routing messages over different communication links to the original destination. When the

communication lines are later repaired, the communication backbone must automatically detect the

connectivity of the link and route messages back though the link.

1.4.5 Robust Protocols
In addition to providing fault tolerant communication, a transportation controller must also provide

robust control protocols. These protocols are used to perform high level communication and

coordination of vehicle exchanges between block controllers. The complexity of these protocols

depends on the complexity of the desired control algorithms. These protocols must be fault tolerant

with regards to messages not being delivered. Since the communication backbone does not

guarantee message delivery, protocols must be written using acknowledgments and other

techniques to handle messages that are dropped by the communication backbone.

1.5 Organization
Chapter 2 introduces the design of a fault tolerant transportation controller. The desigp

incorporates issues such as the network topology which supports communication between block

and zone controllers, the fault tolerant communication backbone and a simple robust set of

protocols for controlling vehicles. Chapter 3 focuses on an actual prototype that was developed

using this design. Chapter 4 discusses areas of future work followed by concluding remarks in

Chapter 5.

2. Design

The design is broken down into four main components. The first involves defining the network

topology to be used. Second is the construction of the communication backbone which lies on top

of the network topology. The communication backbone is a set of constructs used by block and

zone controllers to provide fault tolerant communication via message passing. The third component

is a set of support tools for high level protocol design. Finally, several high level protocols are

developed for the system. These protocols actually provide the actual controller for the system

whereas the first three components are geared towards producing a fault tolerant communication

system. These protocols lie on top of the communication backbone and protocol support tools. This

chapter is broken down into discussing these four modules. Combined, they form a fault tolerant

transportation controller.

2.1 Network Topology
A well chosen topology for the network is critical for designing a fault tolerant communication

system. In our system, the topology specifies the number and type of communication links between

block and zone controllers. A good topology must be able to handle multiple communication link

failures while still keeping blocks and zones in communication with each other. Furthermore, a

good topology should be able to scale as the number of elements (blocks and zones) in the system

increases. There are at least two possible topologies which could be used in the network controller:

a multidrop communication network and a point to point network. Multidrop communication

networks such as Ethernet function on the principle of a single broadcast medium which all

network elements broadcast on. Point to point networks rely on point to point connections between

the elements. We will now examine the advantages and disadvantages of each one.

2.1.1 Multidrop Communication Network
Implementations of multidrop communication networks are found on many computer networks

(e.g. Ethernet) used today. As illustrated in Figure 2-1, in this topology, all network elements share

the same communications link. Ethernet controllers (ECs) are used with each element to interact

with the medium. Data needing to be communicated is broadcast on the Ethernet. Every network

element listens to the message on the medium and determines if they are the intended recipient. If it

is not the intended recipient, the network element ignores the message. Since every element shares

the Ethernet, only one network element can broadcast a message at a time [4]. On some multidrop

communication networks, network collisions occur when two or more elements broadcast at the

same time. In the case of these collisions, both network elements stop, wait a random delay time

and attempt to transmit again.

Neighbor to Neighbor
Communication

°............°........°.............o.......°............o.....

Ethernet Communication Link

Figure 2-1. Multidrop communication network topology

This topology has a very nice property. It scales very well as the number of network elements

grows since no structural changes need to be made. You simply add one more element to the

Ethernet.

Unfortunately, the multidrop communication network has several serious drawbacks. The nature

that allows it to scale so well also makes it very poor with regards to fault tolerance. Since every

network element shares the same medium for communication, if the medium goes down then all

communication with the zone controller ceases. Furthermore, having an Ethernet as part of the

topology introduces a high hardware cost as each network unit must be equipped with an Ethernet

controller. The effective bandwidth is constrained by the number of elements in the system. As the

number of elements increases, so do the number of collisions.

2.1.2 Point to Point Networks
A point to point network provides a point to point communication link between the zone controller

and each block controller. Figure 2-2 demonstrates a point to point network as it applies to our

network. The solid lines represent the point to point communication lines. The dotted lines are the

already existing block to block communication lines. The point to point network is very easy to get

started as it does not require extra hardware like the multidrop communication network. Moreover,

communication between a block and zone controller is isolated. Failure of a link does not effect the

communication between other blocks and the zone controller.

Unfortunately, a point to point network does not scale very well. The number of communication

links which must be added to the zone increases directly with the number of blocks added to the

zone. Adding a communication link incurs a cost at the zone controller end as the zone controller

must add more hardware to handle the new link.
XT-!----LL---- - '.T-! __LL

Figure 2-2. Point to Point network topology

The dependency of the multidrop communication network on a single medium for communication

of all the network elements was deemed to high for a risk for a fault tolerant system. As such, the

star network was chosen as the network topology for communication between blocks and zones.

The subsequent sections on the communication backbone will assume this topology.

2.2 Communications Backbone

The communication backbone is responsible for sending messages, receiving messages, and

passing received messages to appropriate protocol routines. It also has the responsibility of

providing fault tolerant communication between block and zone controllers. If a communication

link between two elements in the network fails, it is the responsibility of the backbone to detect the

failure and reroute future messages. The following subsections will describe how the backbone

accomplishes each of these goals by constructing routers, message handlers, and port handlers in

conjunction with the development of a ping protocol.

All communication within the system comes in the form of messages. Unformatted data is never

exchanged between the different components. These messages are passed between the processors

found in the block and zone controllers.

By forcing all data to be transmitted in the form of messages, we can abstract the specifics of

message passing between the components from the actual protocols and action routines. The

communication backbone can be decomposed into: the protocol level, the routing level, the message

handler and the port handler level. Figure 2-3 illustrates the relationships between the different

components.

2.2.1.1

Figure 2-3. Overview of Communication Backbone system

A port handler is in charge of a particular communication link. When a complete message is

received from a particular port, the message is placed into the message handler. The message

handler examines the type of message received and calls an appropriate protocol routine to deal

with the message. On the other side of the system, when a protocol routine has generated a

message, it passes the message and a destination (Zone Controller, Left Neighbor, Right Neighbor)

to the router. The router decides which port handler should actually transmit the message based on

the condition of the systems communication links. The port handler transmits the message over its

associated communication link. In addition, the port handler adds error detection code to allow

detection of errors which might occur during transmission of the message. The following sections

discuss messages, the router, the message handler and port handlers in greater detail.

2.2.2 Messages
As a message passes through the different layers of the communication backbone it is modified and

extended. At the very top level (protocol layer) a message is created by a protocol routine. A

protocol fills the message, giving it a message code (MessCode), destination ID (MessDest), source

ID (MessSrc), message size (MessSize), and any message specific information. Figure 2-4

summarizes this basic message format.

MessCode MessDest MessSrc MessSize MessData

Figure 2-4. Message Format

As each subsequent layer of the communication backbone is analyzed, the layers added or removed

to this basic message format will be discussed. But this portion of the message structure will be

here after referred to as the end-message as it contains the message data for the end layers (the

protocols).

2.2.3 The Router

Block and zone controllers must be able to correctly route new messages they have created or

messages that may have been received and need to be forwarded to another destination The first

case is the common case during normal operation. The latter case only occurs when one or more

communication link failures occur, forcing communication between two components to be re-

routed.

The router's primary duty is to map a message destination to a particular port. It takes in a

message and a destination as inputs. The router then maps the destination to a particular port on

the processor, handing the message off to the appropriate Port Handler (discussed later) for

transmission. This section describes how the router directs messages to destinations through

different ports. It introduces the concept of a routing table which is used to map message

destinations to communication ports on the processor. Finally, updating the routing table is

discussed.

2.2.3.1 Routing Table
Mapping destinations to ports must be a dynamic mechanism as message destinations and physical

ports cannot be bound together since the mappings may change in the presence of failures. A

routing table can be generated such that every possible message destination is a column entry and

the source forms the row. Each entry in the table refers to a particular communication link

available to the processor. Now, when a message needs to be routed, the destination ID and source

ID are examined in the table. Their corresponding entry refers to the specific port on the processor

which should be used to transmit the message.

This routing table solution can be simplified by taking into consideration an important facts. First,

block controllers only have four communication links with the outside world. Namely, the

* Left Neighbor

* Right Neighbor

* Zone Controller

* Auxiliary Processor

Now the number of table columns is reduced to four entries.

With no communication link failures, a normal routing table for the main processor in a block

controller might look something like Figure 2-5. The ports specified happen to correspond to those

used in the prototype.

If a message is intended for the zone controller, the router looks up the zone controller ID in the

table and determines to send it via the SCIPort. The router then passes the message to the SCIPort

Handler which is responsible for actually transmitting the message.

Zone Controller Left Neighbor Right Neighbor Aux. Processor

Source SCI Port UART 1 Port UART 2 Port SPI Port

Figure 2-5. Block controller routing table

This routing scheme only works if the routing table is actually kept up to date. If failures force

messages to be re-routed to different destinations, the routing table must reflect these changes.

Consider the case where the physical link for the SCI Port has been damaged. Messages for the

zone controller must be re-routed. The routing table must be updated to reflect this new

information where messages intended for the zone controller are now forwarded to the left

neighbor. It may now look like Figure 2-6.

Zone Controller Left Neighbor Right Neighbor Aux. Processor

Source UART 1 Port UART 1 Port UART 2 Port SPI Port

Figure 2-6. Updated Routing Table

Now, the block controller will route any messages intended for the zone controller through the

UART 1 Port.

2.2.3.2 Updating Routing Information
The routing table for the block controller is designed to be small and simple. Since a block

controller only has four communication links which are static, it is not necessary to provide the

ability to add additional destinations to the routing table. However, it is essential that the entries in

the routing table be kept current to reflect the current state of the communication network.

The routing table is updated after a communication link failure is detected. Detection of

communication failures is handled by the ping protocol discussed in Section 2.2.6. However, once

the failure is detected, the routing table must have the capability of updating entries. These update

messages include the destination ID and a field which corresponds to the appropriate

communication link to be used in forwarding messages to the destination. In addition, the router

has the ability to restore entries when the a link becomes available again.

Updating the routing tables is always handled through the zone controller. The zone controller is

responsible for sending update messages to block controllers under its zone. These update

messages include the destination ID and a field which corresponds to the appropriate

communication link to be used in forwarding messages to this destination. The zone controller has

more information available to it with regards to the overall state of the communication network.

More specifically, the status of all the blocks in the zone is available to the zone controller.

Permitting the zone controller to handle all routing updates allows complex routing schemes to be

installed to take advantage of this information.

One final note with regards to the routing table. It is possible in the case of severe communication

failures that a block controller is presented with a message to forward whose destination ID is not

in its routing table. The default behavior is to always forward the message on to the zone controller

as the zone controller has the most information available to it for properly routing the message.

2.2.4 Message Handlers
The message handler has three main responsibilities: to place received messages from the different

port handlers into priority message queues and to examine the messages at the head of the queues,

routing them to appropriate protocol routines. In addition, the message handler forwards messages

whose destination ID do not match that of the controller.

Since messages are arriving from multiple sources, and can be arriving faster than they can be

processed, the message handler must have a way to store received messages until they can be

processed. One solution is to require each port handler to have a large buffer which stores multiple

messages. This way, the port handlers have the responsibility of storing messages and not the

message handler. Unfortunately, this requires large buffer structures for each port handler since

large bursts of messages can be received from each port handler.

A more memory efficient solution involves priority queues. The message handler has multiple

queues ordered by priority. High priority messages received by the port handlers are placed in the

high priority queue while low priority messages are placed in the lower priority queues. Messages

are always placed at the tail of the queue. The priority of a message is determined by the type of

message. Certain messages have a higher priority than others.

The other responsibility of the message handler involves routing received messages to protocol

routines. Using the priority queues, this involves taking a message from the head of the highest,

non-empty priority queue. The message type is extracted and used to determine the appropriate

protocol routine to call by the message handler. The message is then given to the protocol routine.

2.2.4.1 Forwarding Messages
In the face of communication link failures, it is possible that a controller receives a message not

intended for it. Forwarding messages is a critical component of the communication backbone as it

helps insure connectivity between the modules when the original communication line between the

modules has gone down. Before a message is passed on to the appropriate handler, the message

handler examines the destination ID. If the destination ID does not match that of the controller,

then the message must be forwarded to the actual destination. A call to the router with the message

destination ID and the message contents actually forwards the message.

2.2.5 Port Handlers
Port handlers are used to separate the mechanics of the specific communication port being used

(SPI, SCI, off chip UARTs, etc) from the rest of the software. This separation allows the message

handler and router to be implemented without any dependency on the specifics of the actual ports

being used for communication. This abstraction is particularly useful as only the port handlers

need to be modified if the system uses different processors with different ports. As such, there is a

port handler for each communication port on a processor. A port handler must support a common

interface for the message handler and router to interact with. This common interface allows the

router to transmit messages and the message handler to receive message. Since the port handler has

responsibility for interacting with the communication lines, it is their responsibility to detect

transmission errors.

Port handlers can be decomposed into two separate layers. The bottom layer deals solely with port

specific information, providing packets to the top layer. A message packet is defined as the unit of

data received or transmitted from the port at a time. For most ports, a packet is typically a byte.

The top layer, or management layer has three responsibilities. First, it handles message packets as

they arrive, assembling them into complete message and notifying the message handler. In addition,

the management layer takes a complete message from the router, breaks it down into packets and

passes each packet down to the bottom layer. Finally, the management layer must add error

detection code to messages before they are transmitted. Figure 2-7 illustrates the relationship

between the two layers in conjunction with the message queues which are discussed later. Receive

and transmit buffers will be discussed in the following two sections followed by the error detection

techniques employed by the port handlers.

Figure 2-7. Two Layer Port Handler

2.2.5.1 Transmitting
When the router is ready to have a message transmitted to a destination, it instructs the particular

port handler to transmit the message. The port handler is then responsible for storing the message,

breaking it down into packets which can be transmitted over the particular port and inserting a

header byte as discussed in Section2.2.5.3.

The port handler maintains a small queue for storing messages. Messages are added to the end of

the queue and transmitted from the head. This transmit message queue (TMQ) allows the router to

send multiple messages to the port handler without waiting for the first message to actually be

transmitted. Without a TMQ, performance of the system would be degraded as the router could

never finish its job until the particular port handler had finished transmitting the message. With a

TMQ, the router can add messages to the end of the queue without waiting for messages to be

transmitted. The port handler then transmits message packets while the system as a whole can

move forward. Figure 2-7 shows a possible TMQ state. The grayed portion indicates packets that

still need to be transmitted. The white portion of the buffer signifies that it is empty.

During actual message transmission, the port handler inserts a header byte to the beginning of each

message. The header byte is used by the receiver to determine the start of a message and is an

important tool for detecting errors coming over the transmission link.

2.2.5.2 Receiving
In order to receive multiple messages without requiring the message handler to process the first

message, the management layer maintains a receive message queue (RMQ). Where the handler

queue stores messages, the RMQ stores message packets as they are received from the lower layer.

Figure 2-7 shows a possible state of the RMQ. Grayed packet slots indicate packets that have been

received, the white slots are empty. Eventually enough packets will be received to complete a

message. At this time, the port handler informs the message queue that it has at least one completed

message. The message handler then copies the message into the larger message handler queue.

In addition, the management layer responsible for receiving messages must also watch the packets

coming in. Upon receipt of a header packet, signifying the start of a new message it must determine

if the previous message being received was completed or not. If the message was not complete,

then an error during the transmission must have occurred. The port handler then discards the

remains of the partial message. Thus, the port handlers (which form the link/transport layer) do not

guarantee delivery of messages. The higher level protocols (which are discussed later) must take

responsibility for this.

2.2.5.3 Error Detection
By interacting with the physical communication links, the port handler accepts responsibility for

detecting transmission errors. These transmission errors come in two forms: bit errors and

incomplete messages. As such, the port handler employees two techniques to detect these errors:

checksums and header bytes.

Incomplete messages can occur when the communication line goes down during reception of a

message. At some later point, data is received again. However, this data may not be part of the first

message that was partially destroyed. As such, the partial message should be discarded to prevent

the high level protocol routines from dealing with them. Port handlers deal with this problem by

inserting header packets in front of each message before transmission. The header packet signifies

the start of a new message and allows the receiving layer of the port handler to discard any partial

data received before the header packet.

While a useful tool, header packets complicate the data transmission process. Since the header

packet must have an identifiable value, message packets cannot share the same value or they will

be confused with header packets. Port handlers solve this problem by breaking each message byte

into two packets. For example, if the packet size is a byte then the high and low nibble of the byte

would be transmitted separately. This leaves the high nibble empty for all the data bytes

transmitted. The header byte is chosen such that it fills the high nibble of a data byte. Now the

header packet can be distinguished from data packets. However, this does incur a cost in that the

amount of data transmitted is doubled.

Unfortunately, using header packets to discard partially received messages is not good enough to

ensure that the end layers will never see erroneous messages. Consider the case of a message

corrupted during transit. That is a complete message which is received but during transit the data

is altered. To handle this scenario, port handlers attach checksums on the messages before they are

transmitted. When a message is received, the message handler computes a checksum for the

message and compares the result with the checksum attached to the message. If they do not match,

then the port handler discards the message. Otherwise, the message is treated as a complete and

verified message.

There are various levels of complexity for implementing a checksum algorithm. The simplest is to

add up the value of each byte in the message. The end result is a checksum. If any one bit in the

message is changed, the checksum will not add up properly and an error is detected. However, in

the case of multiple bit failures, it is possible that the checksum will fail to notice that the message

is corrupted. More involved checksum algorithms could be implemented to handle multiple bit

failures in a message.

2.2.6 Ping Protocol
In order to help insure proper message delivery, the underlying communication backbone on each

controller must verify the correctness of the routing table. Thus, the controller must periodically

examine the port connections. A ping protocol was developed for this purpose. The ping protocol is

actually a special low level protocol tied to the communication backbone. Unlike any of the control

protocols (discussed later), the ping protocol actually has a direct access to the port handlers. The

abstraction between destination (e.g. zone controller, left neighbor) and the message route (e.g. SCI

Port, SPI Port) is broken. The ping protocol sends messages to particular routes and not

destinations. This abstraction violation is justified by the fact that the goal is to test the connection

of the route and not the connection with a particular destination.

As summarized in Figure 2-8, the ping protocol begins when a controller issues a ping request

message for each port handler. With a valid connection, the processor at the other end of the link,

receives the ping request, acknowledging the request with a ping response message. The initiator of

the ping request then processes the response, noting that the port connection is active. After a

determined amount of time, the protocol generates a time-out at which point all the ping responses

are examined.

A B

Ping Request

Ping Response

Ping Timeout X

I
Figure 2-8. The Ping Protocol

2.2.6.1 Ping Time-out
After a pre-determined time interval starting from the time of the initial ping request, the ping

requester must determine which routes have returned ping responses. At this time, any route which

has not received a ping response is considered down. The routing table must be updated with a new

route to be used for the destination that was previously associated with the route.

Once a communication line has been determined to be down, the ping protocol notifies the zone

controller of the failure. The zone controller may then chose to update the block's routing tables

with a forwarding locations.

F

2.3 Development Tools
To facilitate the construction of the control protocols, event and vehicle handlers are provided. The

event handler serves as a timing abstraction barrier. Using an event handler, the control protocols

do not have to worry about interrupts when attempting to determining time-outs or other protocol

events. The event handler takes care of these details when a protocol routines creates a pending

event. The vehicle handler keeps track of vehicles currently in the block. The following sections

describe these two mechanisms in more detail.

2.3.1 Event Handler
The event handler is used to manage events such as a time-outs for protocols or vehicle position

updates. The basic idea is to keep a list of all pending events in the system. Pending events are

defined as events which will occur at a specific time in the future. Pending events are added to the

list by protocol routines which specify the time for the event to occur relative to a processor

specific time source and a flag. When it is time for a pending event, the event handler sets an

appropriate flag to notify the protocol routine which created the event.

Without an event handler, each protocol would require its own time measuring mechanism so that

it could set and monitor time for its event. The event handler elegantly abstracts the timing

mechanism away from the protocols. Now, protocols can be written without worrying about

monitoring interrupts or timer modules which are processor specific. The following two sections

describe adding and updating events.

2.3.1.1 Adding an Event
When adding an event to the event handler, a protocol routine provides the event handler with a

flag to be set when the event occurs and a time value which denotes when the event will occur. The

time value is a number relative to the time till the event handler polls pending events. Every time

the pending events list is polled, the time count is decremented by one. When the time count reaches

zero, the flag is set for that event. The event handler takes the flag and the time count value and

constructs an event record. This record is then placed in the event handler list.

For example, the ping protocol discussed in Section 2.2.6 uses the event handler to manage ping

time-outs. If a ping time-out with a time till event count of one and a flag called PingTimeout is

added to the event list which already has a pending event with a time count of 5 and a flag called

FooTimeout, it might look as follows:

Event Record 1 Event Record 2 Any other event
TimeCnt: 1 TimeCnt: 5 Records
Flag: PingTimeout Flag: FooTimeout

Figure 2-9. Snapshot of an Event List

2.3.1.2 Updating Event List
At periodic time intervals, the event handler parses the event list and decrements the time count for

each active record. Eventually the time count for a particular pending event will reach zero. At this

time, the event handler sets the flag which it was provided with when the event was added. If the

flag is later poled by the appropriate protocol routine, it will see that the event has occurred and it

is then up to the protocol routine to act accordingly.

Consider the previous example, but now one time count has gone by. The event handler has just

decremented the time count for each record in the event list. This leaves us with the event list

shown in Figure 2-10.

Event Record 1 Event Record 2 Any other event
TimeCnt: 0 TimeCnt: 4 Records
Flag: PingTimeout Flag: FooTimeout

Figure 2-10. Update Event List

The time count for the ping time-out has reached zero. The event handler now sets the flag

PingTimeout and removes the record from the event list by clearing its entries. The event in record

2 has still not occurred yet so it is left unchanged. Thus, the event handler manages pending events

for the protocol routines. As will be demonstrated in the protocols section, it is still the

responsibility of the protocol or the main loop routine to periodically poll the flag.

2.3.2 Vehicle Manager
The vehicle manager runs on each block controller and facilitates vehicle control for the protocols.

It keeps track of all vehicles currently in the block. The vehicle manager can also be used by the

zone controller to create virtual vehicles within the blocks under the zone. This capability is a very

useful mechanism for verifying the functionality of the fault tolerant control system. The vehicle

manager supports several operations: adding a vehicle and updating vehicle positions, and

removing vehicles. The following three sections describes these two operations.

2.3.2.1 Adding a Vehicle
The vehicle manager for a block keeps a list of all vehicles currently in the block's segment. For

each active vehicle, the manager stores a record containing an identifier (VID), position (VPOS)

and velocity (VVEL). A vehicle is added to this list as a result of a vehicle exchange protocol or a

create virtual vehicle protocol which is initiated by the zone controller. The zone controller

provides the VID, VPOS and VVEL for the vehicle. The vehicle manager creates a record for the

new vehicle, storing these three pieces of information in that record. The other method of creating a

vehicle in the block is in response to a vehicle moving from one block to the next. During the

transition, the vehicle information is received from the previous block and a vehicle record is then

instantiated for this vehicle in the new block. This protocol is discussed in Sectiof.4.2.

2.3.2.2 Updating a Vehicle
Storing vehicle information in the vehicle manager list is not enough. Since the vehicles are

presumed to be moving, their positions are going to change. For each vehicle in the list, an event is

created for the next position change. The time till the position change is determined by VVEL and

as such it differs for each vehicle. Since each vehicle has a pending event in the event list (time till

next position change), the vehicle manager must keep a separate flag for each vehicle in the list.

The flag is set by the event handler when the vehicle's position needs updated.

To update the vehicle position, the vehicle manager must update the VPOS field for the vehicle and

then based on the velocity of the vehicle determine the event time until the next position update. An

event is then created for this and the process repeats. A block's track has a limited number of

positions associated with it. When a vehicle reaches the last position in the block, the vehicle

manager removes it from the vehicle list. The vehicle exchange protocol insures that the vehicle is

then added to the vehicle list of the next block.

2.3.2.3 Removing a Vehicle
Eventually, a vehicle will need to be remove from the vehicle manager as it leaves the block's

segment of track. The vehicle manager takes a VID and scans its list for any vehicle with that VID.

The entry is then cleared.

2.4 Protocols
Rudimentary yet robust protocols can be designed for the fault tolerant communication backbone.

These protocols are not intended to be used in an actual transportation system. They are intended

to demonstrate the viability of the fault tolerant system. More complex and efficient protocols

should be constructed. In addition, the control in these protocols runs between block controllers. In

an actual system, the zone controller would coordinate much of the control. The protocols make the

following assumptions about the vehicles and the tracks:

* A segment of track under a block controller can hold multiple vehicles.

* Vehicles always move from the left neighbor to the right neighbor.

* A block has one left neighbor and one right neighbor. There are no multiple merging points

where multiple tracks meet.

* Block controllers internally divide their tracks into positions. A vehicle occupies one position.

* These positions are long enough that a vehicle can come to a complete stop within one position.

The following sections describe protocols which can be used to create virtual vehicles on the

system, coordinate the exchange of a vehicle between blocks and a protocol to keep the zone

controller notified of the current state of each block controller. A general overview is given for each

protocol including a description of the messages used. Each protocol is then examined for

robustness when used in conjunction with the communication backbone.

2.4.1 Virtual Vehicle Protocol
The virtual vehicle protocol is a two message protocol used to create virtual vehicles on block

controllers. Creating virtual vehicles provides a means to simulate and test the fault tolerant

controller system in a simulated vehicle environment without actually attaching real vehicles to the

system.

The protocol is initiated by the zone controller which sends a virtual vehicle create (VVC) message

to a block controller. The VVC message provides the VID, VPOS and VVEL for the virtual

vehicle in the data field of the message. A VCC time-out is added to the zone controller's event list.

Upon receiving a VVC message, the block controller creates a vehicle through the vehicle manager

with the provided vehicle traits. The block then responds with a VVC acknowledgment. If a VCC-

ACK is not received by the zone controller before the time-out, then the VCC message is resent.

The protocol is simple but is also very robust.

2.4.1.1 Robustness
There are three possible outcomes for the VCC message. First, the VCC message arrives at the

block controller, the vehicle is created and a VCC-ACK is sent back to the zone controller before

the time-out. In this scenario, the protocol successfully completes.

The second outcome occurs when the VCC message never arrives at the block controller. Since a

VCC-ACK is then never received by the zone controller, the VCC time-out must resend the

original VCC message and the protocol starts at the beginning.

The third case is pictured in Figure 2-11. Notice, that the original VCC message is received and a

virtual vehicle is created. However, the VCC-ACK is never received by the zone controller.

According to the protocol, the VCC message is resent to the block. However, this results in another

virtual vehicle being created. In order to prevent this, the block controller must examine the VIDs

of all vehicles in the vehicle list. If an existing vehicle has the same VID as the one in the VCC

message, then the message is ignored. This feature of the protocol provides at-most once semantics

for virtual vehicle creation.

Zone Block
Controller Controller

VCC Timeout

Vehicle is created

VID match,
creation ignored

Figure 2-11. Virtual Vehicle Creation Protocol.

2.4.2 Vehicle Exchange
A critical feature of any distributed transportation controller is to be able exchange vehicles

between blocks. In particular, it is used to coordinate the exchange as a vehicle moves from one

block to the next. In a fault tolerant system, the protocol must be designed to account for messages
which might be lost by the communication network.

A very simple vehicle exchange protocol acts in a similar fashion to the virtual vehicle protocol.

When a vehicle reaches the end of a block, the controller initiates a vehicle exchange message with

a neighboring block (the target). The vehicle exchange message contains an identifier unique to the

vehicle in conjunction with the vehicle's velocity. A pending event is then created for a vehicle

exchange time-out.

Upon receiving a vehicle exchange message, the target controller determines if the first track

position in the block is free or not. If the track is clear, a vehicle exchange acknowledgment

message is sent back to the originator and the vehicle information in the exchange message is used

to create an entry in the vehicle manager. At this point, this block controller has responsibility of

the vehicle and its vehicle manager handles updating the new positions for the vehicle. However, if

the track is not clear, the controller does not return an acknowledgment nor does it add the vehicle

to the vehicle manager list. By not returning an ACK, the target does not commit to the exchange.

Upon receipt of a vehicle exchange acknowledgment, the originator removes the vehicle from its

vehicle manager and ends its responsibility for the vehicle. Or, if an ACK is not received by the

vehicle exchange time out, the originator stops the vehicle in the last position of the block, and

resends a vehicle exchange message. It could also notify the zone controller of the problem.

2.4.2.1 Robustness
The protocol, while simple is surprisingly robust. Possible failure points occur when messages are

dropped by the network, disrupting the exchange.

Assume the original exchange message is lost by the network. After the time-out, the message is

transmitted again and the protocol repeats. If the message is received by the target, but the

acknowledgment is lost by the network, then the original vehicle exchange is retransmitted as in the

previous case. However, the target has already received and possibly added the vehicle. Another

vehicle should not be added to the vehicle manager of the target. Actual implementation of the

protocol must insure that at most once semantics are enforced at the target end. One possibility

involves scanning the vehicle manager's list of vehicles searching of the VID of the vehicle to be

added. If the VID is already in the list, then one can conclude that the vehicle was already added.

This functionality can be built into the vehicle manager whenever it adds vehicles. By enforcing at

most once semantics, multiple vehicles are not created from one original vehicle exchange message.

Thus, the protocol adequately handles dropped exchange and acknowledgment messages. However,

it does create a large amount of transmission traffic if the track is not clear as the originator

continually resends the exchange message. The protocol can be improved by adding blocking

control where the target later informs the originator when the track becomes clear. This is a slightly

more complicated protocol.

3. Implementation
A small scale prototype was implemented to illustrate the design concepts of the distributed fault

tolerant transportation controller. The prototype also serves as a test bed for demonstrating the

systems' ability to cope with simulated faults. It is hoped that the prototype can be used to develop

more complicated control algorithms in conjunction with eventually being hooked up to a physical

transportation system.

The overall topology consists of a single zone with two blocks. Circuit schematics were

constructed for zone and block controller modules. PCB boards were manufactured based on the

associated layouts for the two designs. Due to the symmetry of the chosen topology, the zone

controller hardware is identical to the block controller hardware because the communication port

constraints are the same. Thus, a board can be configured as either a zone or a block controller

depending on its software configuration. For larger scale systems, this symmetry will no longer

hold and modifications must be made to the zone controller layout. In particular, as the topology is

expanded and more block controllers are added, the zone controller hardware will have to be

modified to provide more communication ports. This poor scaling issue is because of the pint to

point network topology chosen for block and zone controller communication.

Software was developed to implement the communication backbone. After the backbone was

satisfactorily constructed and tested, simple control protocols were implemented to demonstrate the

functionality of the fault tolerant system. The following sections discuss the hardware

implementation of the controllers followed by the software for the communication backbone, the

development tools and finally the control protocols.

3.1 Hardware
As previously mentioned, due to the symmetry of the chosen topology, the zone and block

controllers share the same hardware. This section frequently refers to the block controller hardware

but it actually applies to both. Refer to Appendix A for detailed schematics of the hardware

components described here.

The block controller decomposes into the following modules:

* Main Processor
* Auxiliary Processor

* DUART
* DIP Switches
* LCD Display
* Power Disconnect Indicators

The main processor performs the bulk of the controller work including serving as the

communication backbone and performing most of the routing protocols. The auxiliary processor

acts as the glorified watchdog for the main processor. It also has the ability to disconnect the

control module from any power electronics. A DUART is used to provide two extra

communication channels to communicate with left and right neighbors. DIP switches are placed

between critical signals, giving the ability to simulate faults by "breaking" a signal. The LCD is

used to display pertinent information (e.g. error messages, vehicle simulations). Figure 3-1

illustrates the hardware components of the system. The shaded objects are off-board connections to

other controllers. The DIP switch connections are not shown for clarity.

Figure 3-1. Controller Block Diagram
Each of these components will now be discussed in more detail.

3.1.1 Main Processor
The Motorola MC68HC912B32 (the HC12) is used as the main processor because of its
combination of processing, memory and peripheral capabilities. The HC 12 runs at 14.74MHz with
32Kbytes of FLASH EEPROM, 768 bytes of EEPROM and 1K of RAM. The 32K Flash
EEPROM provides a large code space with the potential to later be dynamically updated while the

system runs in place. The 1K of RAM provides enough variable space for the communication

backbone structures and protocol routine storage variables.

3.1.1.1 HC12 Communication Capabilities
The HC12 must be able to communicate with the auxiliary processor, the zone controller and the

adjacent block controllers (referred to as the left and right neighbors). The HC 12 has two hardware

ports: an SPI (Serial Peripheral Interface) port and an SCI (Serial Communication Interface) port

available for use. The SCI port is used to communicate with the zone controller. The SPI port is

used to communicate with the auxiliary processor. Communication with the neighbors is handled

via an external DUART.

The SCI port utilizes two signals: RxD (Receive Data) and TxD (Transmit Data) for receiving and

transmitting data to and from the zone controller. Complications do arise however, as the auxiliary

processor also uses the same two physical lines to receive and transmit messages with the zone

controller. This problem is actually dealt with by the software and is discussed in more detail later.

The SPI port is used to communicate with the auxiliary processor. A hardware SPI port acts like a

16 bit register where 8 bits reside on each SPI port. During a transfer, data is rotated from one

register to the next. SPI ports use four signals. Two signals are used for receiving and transmitting

data. The third is used by one of the SPI ports to generate a clock signal (SCK) to coordinate the

exchange. The fourth is a transfer enable pin. Refer to the Motorola documentation on the

MC68HC912B32 for more information on how an SPI port works.

3.1.1.2 Background Mode
The HC12 has a nice feature in that it can be placed into a background mode. When in background

mode, the HC12 can single step through code and display register and memory contents to a PC. In

order to place the HC12 in BDM (background debug mode), a special BGND header was added.

The BGND header allows the reset and BDM pins on the HC12 to be controlled by the PC via a

cable which plugs into the header. The background mode is used only for development and debug

purposes.

3.1.1.3 Programming Code
Most of the code resides inside the 32K Flash EEPROM. In order to program code into the

FLASH, it is necessary to provide a 12V programming voltage to the Vfp pin. Through the use of

a diode and a resistor this pin is normally +5V until a 12Volt supply is connected to Vfp. This

provides the programming voltage. Unfortunately the Flash has a limited lifetime of about 100

erases. The EEPROM has on the order of 10,000 erases until it goes bad. However, it is only 768

bytes. Thus, code could not be stored inside the EEPROM.

3.1.1.4 Resetting the HC12
There are actually two sources of reset for the HC12. The auxiliary processor has the ability to

reset the HC12 since the AP is acting like a glorified watchdog. Furthermore, the PC can assert

reset as part of the background debug mode. These two sources are combined through a PAL. If

either signal is asserted then the PAL asserts the actual HC12 Reset line, resetting the processor.

3.1.2 Auxiliary Processor
A Motorola MC68HC705C8A (HC05) was chosen as the auxiliary processor for several reasons.

First, it is a simple processor. Fortunately, the functionality requirements of the auxiliary processor

are also quite simple. Moreover, an HC705C8A emulator board and software development tools

were readily available. This was the largest factor. Many other processors (e.g. PICs) could have

been used instead.

The HC05 serial peripheral interface port (SPI) is connected to the corresponding SPI port of the

HC12, forming a communication link. In addition, the receive line of theHC05 SCI Port is

connected to the receive line of the HC12 SCI Port. For a block controller, this line is the transmit

line from the zone controller. Thus, if necessary, the HC05 can receive data from the zone

controller. However, this feature is currently unimplemented, but the ability exists.

Unfortunately, the HC0O5 emulator cannot emulate the SPI Port. Without the SPI Port to

communicate with the HC12, the auxiliary processor becomes a very poor watchdog. As such, the

HC05 was not populated on the final prototype.

3.1.3 DUART
Since the main processor requires 4 communication links and it has only two hardware ports, an

off-board DUART was added. A DUART contains two Universal Asynchronous Receiver

Transmitters (UARTs). The DUART actually used was the PC16552D by National

Semiconductor. It was chosen because it allows baud rates in excess of 560.8kbaud. This is well

above the bandwidth needed in the current implementation. This particular DUART gives

flexibility should the bandwidth needs increase.

Each UART acts as an independent receive and transmit channel. Each channel has its own

interrupt line in conjunction with receive and transmit lines. The receive and transmit lines for

channel one are connected to an RJ 11 connector which holds a link to the left neighbor. Four-wire

telephone cable is used to connect the two data lines plus two ground lines via the RJ 11 connector

to a corresponding RJ11 connector on the left neighbor. A pull up resistor was placed on the data

input line leading into the UART. The pull-up resistor insured that garbage data is not received by

the DUART when the connection is open. The data lines for channel 2 of the DUART were

configured in a similar fashion except they led to an RJ11 connector linked to the right neighbor.

Both DUART channels interact with the HC12 via interrupts and the data bus. Each channel has

its own interrupt line. These lines are connected via a PAL which ORs their values together

producing a final signal which is connected to the HC12 interrupt request line (IRQ). Thus, it is the

responsibility of the software to actually determine which channel generated the interrupt. The

DUART data bus is connected to the HC12 data bus via the HC12's Port A. The HC12 controls

the DUART by control lines tied to Port B in conjunction with a separate DUART enable pin

which is not part of the data bus. This hardware configuration allows the software to write

DUART commands to the high byte of the data bus, and read or write data via the low byte of the

data bus.

3.1.4 LCD Display
A Seiko L4042 LCD Display is attached to the HC12 to provide information regarding the current

state of the system. It is attached to the HC12 in the same fashion as the DUART. Port A on the

HC12 is connected to the LCD's data bus. Command signals for the LCD are tied to Port B on the

HC 12. Finally, the LCD Enable pin is connected to a separate non-data bus pin on the HC 12. With

this configuration, the LCD can be controlled by writing the desired command into Port B, the data

value (if any) to Port A and then toggling the LCD enable pin.

3.1.5 DIP Switches
Many of the critical signals on the block controller were routed through a set of DIP switches

giving the ability to simulate faults by opening or closing connections. Table 3-1 lists all of the

signals routed through DIP switches.

For example, if the DIP switch between VDD (+5V) and the power to HC12 is open then the

HC12 no longer receives power. This effectively provides a processor failure. The overall system

can then be analyzed to see how it handles this failure. Similar analysis applies to each of these

signals. In order to simulate a communication fault between the current block controller and its

right neighbor, open the DIP switch between the right neighbor input and the DUART SIN 2. Now

the block controller no longer receives communication from the right neighbor.

Input to DIP Switch Output from DIP Switch

+5V Power Supply Power to the HCl2

+5V Power Supply Power to the HCO5

+5V Power Supply Power to the DUART

Left Neighbor Data Input DUART SIN1 (serial input channel 1)

Right Neighbor Data Input DUART SIN2 (serial input channel 2)

Zone Controller Data Input RxD line to the HC12 and HC05

Data Output to the Zone Controller (TxD) TxD line to Zone Controller

+5V Power supply Low Power Detect

Table 3-1. DIP Switch Signals

3.2 Software Implementation of the Communication Backbone
The software implementation of the backbone controller consists of software construction of the

router, the message handler, porthandlers, and the ping protocol. Each one of these modules will be

discussed in detail with regards to their actual software implementation. Frequent references are

made to Appendix B which contains the code developed for the communications backbone. The

code was written to run on the HC12.

3.2.1 The Router
The router bridges the gap between destinations (e.g. the zone controller) and the four

communication ports on the main processor. The routing table is a data structure four bytes long.

Values corresponding to destination sources were designed to map directly as offsets from the first

byte of the routing table. When this source is looked up in the routing table, the entry 1 byte off

from the start of the table holds the communication link to be used for the left neighbor.

3.2.1.1 Initializing the Router
Initializing the router entails loading the default configuration for the routing table. The default

configuration for the routing table is summarized in Figure 3-2. The default configuration matches

the expected state of the communication ports and destinations when all the links are alive.

Zone Controller Left Neighbor Right Neighbor Auxiliary Proc.

Source SCI Port UART 1 Port UART 2 Port SPI Port

Figure 3-2. Default Routing Table

3.2.1.2 Routing a Message
When a protocol routine is ready to route a message, it calls the route message routine. Routing a

message requires a destination source and the address of the first byte in the message to be

transmitted. The router then uses the destination source as an offset into the table to obtain the

destination port. Based on the destination port, the router makes a transmit message call to the

appropriate port handler.

3.2.1.3 Updating the Routing Table
Assuming the ping protocol successfully detects communication link failures, the router must

support a mechanism for updating its internal routing table. The update routing table routine takes

as arguments, the destination source and the new port associated with that source. The updater

then uses the destination source as an offset into the routing table, replacing the entry with the new

port. This routine is called by either the ping protocol routine after it detects a communication

failure or it may be called from the update routing table protocol.

The router also supports the ability to restore entries in the routing table. When a previously down

communication link becomes available again, the ping protocol calls the restore entry routine.

Restoring an entry takes the destination ID whose port should be restored. The port assigned to the

destination is then modified to the default value. The default value is dependent on the actual

topology.

3.2.2 Message Handler
The message handler was implemented using a single message queue for the prototype. The queue

structure contains the queue, a pointer to the head, a pointer to the tail and the size of the queue. It

adheres to the first in, first out (FIFO) strategy. Messages are added to the tail of the queue and

handled from the head of the queue.

The queue was implemented as a buffer whose size is a multiple of an end-message with a head

and a tail pointer. The head and tail of the queue wrap around to the front when they reach the end

of the buffer. Keeping the queue size a multiple of a complete message insures that messages will

not be wrapped around the actual buffer and it reduces the overhead of adding/removing messages

since the head and tail do not need to be checked for wrap around until after reading or writing

entire messages. However, this decision makes variable message length difficult.

In order to initialize the queue, the head and tail pointers must be initialized to point to the first

byte in the queue buffer. The underlying queue buffer is cleared as well. The message handler

supports the following routines: adding a message, handling a message, removing a message and

forwarding messages.

3.2.2.1 Adding a Message
In its simplest form, the addMessage routine is called by a port handler after it has successfully

received a complete message. In an early version of the code, the port handler computed and

verified the checksum for a received message. However, this lead to a lot of redundant code since

all port handlers must verify the checksum on received messages. Hence, as an optimization, the

checksum verification process was moved to the add message routine in the message handler.

Verifying the checksum is accomplished by stripping off the checksum appended to the message.

(The checksum is the last two bytes of the message.) A checksum is then computed on the

remaining message contents by summing the value of each byte. If the computed checksum does

not match the checksum attached to the message then the message has been corrupted, otherwise

the message is assumed to be intact. The addMessage routine discards any corrupted message. It

does keep track of the number of bad checksums in a variable for statistical purposes. Every

checksum failure does result in an appropriate error message being displayed to the LCD.

If the checksum verifies correctly then addMessage routine copies the message (sans checksum)

into the message queue starting at the end of the queue. The tail is incremented as each byte of the

message is copied. After copying the entire message, the tail is checked for wrap around.

3.2.2.2 Message Forwarding
Before a message is passed to an appropriate handler, the destination ID of the message is checked

against the identification numbers used by the controller. Refer to the identifiers section for more

discussion about which identifiers a controller responds to. If the destination ID does not match

any of these identifiers, the message must be forwarded to the actual destination. The message

handler calls the router passing the destination ID and the message as arguments. The router treats

the message as an ordinary message in determining which port it should be sent to.

The only messages not subject to forwarding are ping protocol messages. Since the ping protocol is

attempting to determine the connectivity of a communication link, they do not use real destination

IDs in the message.

3.2.2.3 Handling a Message
Whenever the queue has at least one message, handle message is called by the main loop driver to

actually process the message. In order to process a message, the handler must examine the first

message in the queue which can be determined from the head of the queue pointer. The message

type found in the message dictates the protocol routine which should handle the message.

Currently, this part of the handler routine is implemented as a set of compare and jump statements.

Given a message code, the handler checks it against a message type, if they match it jumps to a

pre-determined handler for that message type. The process repeats for all known message types

until a match is found. If a match is not found, the message is ignored and removed from the queue.

Unfortunately, with this implementation every time a new message type is developed (e.g. by a user

writing a new protocol on the system), the handle message code must be modified to include the

new message type. A potentially better solution would involve generating a table in RAM at run

time which has the mapping of message codes to appropriate protocol routines. The message

handler could then provide an interface allowing dynamic generation of entries in the table.

Unfortunately, this would use more RAM which is a more valuable resource than the 32K Flash

ROM where the code resides. But it is an option that could be considered for handling messages.

Once the appropriate routine has been called to handle the message, the message must be removed

from the queue.

3.2.2.4 Removing a Message
A message is removed from the queue by incrementing the head by the size of the message.

Afterwards, the head of the queue is examined to check for wrap around. It is set to the first

address in the queue buffer if wrap around is necessary.

3.2.3 SCI Port Handler
The Serial Communication Port (SCI) port handler is interrupt driven. The SCI Port itself is

configured to trigger transmit empty and receive data interrupts on the HC12. The port is

initialized with one stop bit, zero parity bits, transmit enabled, receive enabled, and receive

interrupt enabled. The transmit interrupt enable is turned on when data is actually written into the

transmit message buffer. The SCI Port is initialized with a baud rate of 19200bps.

The SCI Port handler can be broken down into two modules: interacting with the physical SCI Port

and the management structures which sit on top of the port. Interacting with the Port involves

writing control registers, and reading and writing the SCI data register.

The management routines are responsible for transmitting and receiving entire messages in

conjunction with processing SCI interrupts. Upon receiving an SCI Port interrupt, the SCI port

handler must determine if the interrupt cause was an empty transmit buffer or received data. Based

on the interrupt source, the interrupt handler calls either the transmit or receive management layer.

The following sections describe both the management portion and the low level port details for

transmitting and receiving message

3.2.3.1 Transmitting
When the router decides to transmit a message over the SCI Port, it calls the SCI handler transmit

routine. In preparation of sending, the handler normally computes a checksum, appends it to the

message, breaks up the high and low nibbles of each packet, and adds a header packet. As

discussed previously, as an optimization the checksum is computed by the router since every port

handler requires a checksum. The actual size of this new message with the data nibbles separated

is now:

2*(EndMessage Size+Checksum Size)+1.

This formula is derived from the fact that the checksum (which is two bytes on the prototype) is

appended to the end of the message generated from the protocol routines. Each byte in the resulting

message is broken into two packets, doubling the size of the message. Finally, the SCI Port

Handler adds a header byte to the front of the message to identify the start of a message.

After preparing the message for transmission, the message is added to the TMB by copying each

byte in the message to the end of the TMB, pointed to by the TMB tail. The tail is advanced by the

number of bytes in the prepared message. If the message was placed into an empty buffer then the

transmit enable for the SCI Port is turned on to allow the message to be transmitted. Otherwise, the

transmit enable would already be on since there were message bytes previously in the buffer.

The low level byte transmission process is interrupt driven. The current byte to be transmitted from

the TMB is placed into the data register of the SCI Port. Once this byte begins being transmitted,

the SCI Port sets a transmit buffer empty bit which in turn generates an SCI interrupt on the

HC12. The SCI interrupt handler verifies that the transmit buffer empty flag has been set and then

calls a routine to transmit the next byte. To transmit the next byte, the management layer of the

port handler advances the TMB head pointer and checks for wrap around. If there are still bytes in

the TMB, then the value pointed to by the head is then loaded into the SCI data register and the

process repeats. On the other hand, if the TMB is empty, the transmit empty interrupt enable bit is

turned off reduce unnecessary interrupts.

3.2.3.2 Receiving
Receiving messages is more complicated than transmitting. Received bytes must be assembled into

messages and stored in the RMB. When a message is completely assembled, the port handler

notifies the main event driver that it now holds a complete message.

Message bytes are received from the low level SCI Port via the data register. Reception of a

message byte triggers an SCI receive interrupt. The SCI interrupt handler verifies that a SCI

receive interrupt has occurred and calls the receive message portion of the SCI port handler. The

received message byte is then read in from the SCI data register.

At this point, the management layer of port handler steps in and takes the received byte. The byte is

inserted into the RMB. The RMB has three variables associated with it: head pointer, start pointer

and the tail pointer. The head pointer always points to the first valid byte in the buffer. The start

pointer always points to the first byte of the message currently being received and the tail points to

the next free spot in the buffer.

As the message bytes are received, the handler assembles them into messages, storing them in the

RMB. First, the byte must be checked to see if it is a header byte. If it is in fact a header byte, the

tail of the RMB is reset to the start of the current message. If a message is partially received and a

header byte arrives then there was a transmission problem with the partial message. By resetting

the tail, the contents of the partial message are discarded. Since the communications backbone does

not guarantee message delivery, this is an acceptable solution. After resetting the tail, the header

byte is discarded and the duties of the port handler are done for this byte.

If the received byte is not a header byte, it must be integrated into the stored message. Since the

transmit portion of the SCI converts a byte of data into two bytes (high nibble, low nibble), the

receive portion must reconstruct the original data value. A nibble flag is used to determine if the

received byte contains the high or low nibble of a data byte. The nibble flag is set to denote a high

nibble after a header byte is received. Thus, for the next received byte, the port handler treats it as

the high nibble of the first data byte. The nibble flag is then toggled such that the next received byte

becomes the low nibble of the data byte. When the high and low nibble for a data byte are received,

they are combined and the resulting byte is placed into the RMB and the tail is advanced. The

process repeats for the next data byte.

By keeping track of the number of completed data bytes received and comparing that number to the

number of bytes in the message, the port handler can determine when a completed message has

been received. Upon completion of the message, the port handler increments a variable which keeps

track of the number of received messages in the SCI RMB. The main loop driver which is

discussed in Section 3.5. polls this variable periodically. When the variable is non zero, the loop

driver instructs the port handler to give the oldest message to the message handler.

3.2.4 DUART Port Handlers
DUART port handlers are responsible for interacting with the external DUART. Since the

DUART has two channels for receiving and transmitting data, there are two port handlers

associated with it. Both port handlers have exactly the same functionality with the exception that

one port handler interacts with channel 1 on the DUART and the other port handler interacts with

channel 2 on the DUART. With regards to the overall topology, for a block controller, channel 1 is

a direct link to the block's left neighbor and channel 2 is a direct link to the block's right neighbor.

The following discussion about a DUART port handler applies to both port handlers.

The DUART port handlers must be able to send and receive data bytes to the DUART in

conjunction with properly handling interrupt requests from the DUART chip.

3.2.4.1 Initializing UART 1 Port Handler
Initializing the DUART port handlers involves initializing the appropriate TMBs and RMBs and

their associated pointers. Furthermore, each channel on the DUART must be initialized as well. A

DUART channel is initialized with a baud rate of 19.2 kbaud in order to be compatible with the

baud rate chosen for the HC12. As with the SCI Port, the DUART channels use 1 stop bit, eight

data bits and no parity bit. Thus, a packet for the DUART is defined as a byte.

3.2.4.2 Handling DUART Interrupts
A single DUART interrupt handler is used for both DUART port handlers. Two DUART events

cause a single interrupt on the HC 12, informing the system of an event on channel 1 or an event on

channel 2. The DUART port handlers are responsible for IRQ interrupts as these are generated by

the DUART. The interrupt handler must first determine which DUART channel caused the

interrupt. This determination is accomplished by reading the interrupt identification register (IIR)

for each channel from the DUART. For a given channel, the IER lists any current interrupts. In

particular, the interrupt handler checks to see if a transmit holding register or a received data

available interrupt has occurred. If the IER for a channel shows that one of these interrupts has

occurred, the interrupt handler calls the appropriate transmit or receive routine for the port handler

in charge of the particular channel.

3.2.4.3 Transmitting
The management layer of the DUART port handler is similar to that of the SCI port handler. When

the router has a message to transmit over a DUART channel, the appropriate DUART port handler

is given the message. The port handler then breaks the high and low nibble of each data byte into

independent bytes. Finally, the header byte is tacked on to the beginning of the message and the

message is placed into the port handler's TMB. The TMB is 90 bytes long so it can hold two

messages where each message waiting to be sent has a size determined by the formula in Section

3.2.3.1. Adding a message to a full TMB currently results in the message being dropped. Due to

the large size of the TMB relative to the infrequency of transmitted messages it is an unlikely

occurrence. Since this layer does not guarantee message delivery, a more complicated scheme does

not seem worth the effort. If the TMB is initially empty, the transmit holding register empty (TRE)

interrupt is enabled on the DUART for the particular channel. Thus a DUART byte transfer causes

an interrupt which forces the DUART interrupt handler to call the transmit byte routine.

The low level transmission of bytes via the DUART is more complicated than the SCI Port.

Assuming the transmit holding register for the particular channel is empty, the data must be sent

over the data bus. This simple fact complicates usage of the data bus. Any other routine with code

that uses the data bus must place within its code a critical section with interrupts disabled around

the data transfer code. Otherwise, transmitting a byte over a DUART channel may actually

interfere with the other routine's transfer since both routines use a shared data bus. Fortunately, the

LCD is the only other module that uses the data bus.

In order to give the data byte to the DUART, the port handler loads the data byte into Port A of the

HC12. Commands for writing the data byte to the data register for the DUART channel are loaded

into PortB. The DUART chip select pin is then asserted. At this time, the DUART reads the

commands and the data value is loaded into the transmit buffer. The TMB tail pointer is then

incremented to the next data byte with an appropriate wrap around check. When the byte has been

transmitted, the DUART will generate a transmit holding register empty interrupt which causes the

process to repeat again. After transmitting a byte, the port handler turns off the TRE interrupt if

the TMB becomes empty. This action prevents unnecessary interrupts from occurring on the

HC12.

3.2.4.4 Receiving
The management layer of the receive portion of the DUART port handler is similar to that of the

SCI port handler. Refer back to section 3.2.3.2 for details about how the management layer

processes a received data byte.

Receiving a data byte begins when the DUART generates a received data available (RDA)

interrupt. This causes an HC12 IRQ interrupt. The DUART interrupt handler determines which

channel actually has the RDA and calls the appropriate port handler receive routine. The handler

generates a command byte in PortB. Toggling the chip select for the DUART results in the newly

received data byte being placed onto Port A. The handler then reads in the new data byte and stores

it in the RMB.

3.2.5 Ping Protocol
Implementing the ping protocol requires four separate protocol routines. The first one generates

ping requests. The ping requests are processed by a ping request handler which responds with a

ping response. In turn another routine handles ping responses by marking that they were received.

Finally, the last component of the ping routine handles the ping time-out. These four routines are

now discussed in more detail.

3.2.5.1 Ping Requests
Ping request messages are generated at periodic intervals and sent to each communication port. A

ping request message currently contains no other message information besides the message code

(PingReq), the ID of the message destination, the message source and the message size. The

message data portion is currently left unfilled. The message destination is not the ID of the

destination controller. Instead, since the protocol has knowledge of the actual communication links

used, it contains an identifier corresponding to the port which lies at the other end of the

communication link. In the same sense, the message source contains an identifier for the actual port

the sender is giving the message to for transmission. Valid message source and destination

identifiers include UART 1, UART 2, SCI Port, and SPI Port. Table 3-2 summarizes the possible

message source and destination pairings based on the physical topology that has been established

for the prototype.

Message Source Message Destination

UART 1 UART 2

UART 2 UART 1

SCI Port UART 1

SCI Port UART2

SPI Port SPI Port

Table 3-2. Valid Ping Source and Destination Pairings
For a block controller, a ping request message is sent to each of the four port handlers with an

appropriate message source and message destination for that pairing.

In order to keep track of which ports have responded to the ping and which ones have not, the ping

request routine also prepares a variable called ALIVE. Each bit in ALIVE corresponds to a

communication port. The idea is to record which ports have replied to the ping by setting that bit.

So by starting a ping request, the ALIVE variable must be bit cleared, denoting each link as down

until proven otherwise. As ping response are received, the appropriate bits in ALIVE are set.

Finally, the ping request routine creates an event for the ping time-out. Ping time-outs currently

happen every .25 seconds. The flag for the ping time-out is actually bit seven of the ALIVE

variable as this bit is currently unused. Thus, the address of the ALIVE variable is added to the

event record in conjunction with a flag bit mask which only sets bit seven when the event occurs.

The ping time-out event is then placed in the event handler.

3.2.5.2 Handling Ping Requests
Upon receiving a ping request message, the controller must acknowledge the ping by generating a

ping response. A ping response message has a message code for the ping response. The message

source and message destination fields are the opposite of what they were in the ping request. For

example, if the destination on the ping request was UART 1 and the message source was UART 2,

then for the ping response, the destination becomes UART 2 and the source becomes UART1. This

information allows the recipient of the ping request to easily determine which communication port

to send the response to. The data field of the ping request message is left empty. The ping request

message is then sent back through the port it was received from.

3.2.5.3 Handling Ping Responses
Upon receiving a ping response message, the ping response handler checks the message destination.

The corresponding bit in the ALIVE variable is then set, acknowledging that the communication

link is alive. Returning to the example, if the initial ping request went to the UART 1 port, then the

message destination field found in the ping response should be UART 1. This would result in the

controller recognizing that the UART 1 port is alive.

3.2.5.4 Handling Ping Time-outs
When the event handler sets the ping time-out flag, the main loop driver eventually poles the flag

which is now set and calls the ping time-out handler. At this time, if a ping response has not yet

been received for a communication link, the link is considered down. This process is quickly

performed by checking the bits in the ALIVE variable. If the bit for a particular port has not been

set then a ping response was not received. Currently the system prints an error message to the LCD

stating that the communication link is down. Another protocol must then be started to actually

update the routing table with a new communication link for the actual destination which was

connected to the broken link. If the bit is set for a link then no error is reported and the routing

table remains unchanged.

Pinging the communication links is a continual process. The last action of the ping time-out handler

is to generate another ping request by calling the ping request routine.

3.3 Development Tools

3.3.1 Event Handler
The event handler has two primary responsibilities: it allows protocol routines to add events and

when these pending events occur, the event handler sets an appropriate flag.

For each event, the event handler stores an event record. This event record is a five byte data

structure where the first two bytes form an address for the flag associated with the event. The next

two bytes form a time count value. The time count value is a 16-bit number which is used to

determine when the event has occurred. It is expressed in terms of the number of delay interval

counts. The last byte is actually used as a bit mask for the flag. The bit mask is used to determine

which bits in the flag byte should be set when the event occurs.

Given an event record for each pending event, the event handler keeps track of all these records in

an event buffer. The buffer size is a multiple of the event record size to insure that only complete

records are stored in the buffer. The buffer currently holds ten event records so it is fifty bytes

long. This size has proved to be adequate in the prototype. Based on the delay interval count, the

event handler updates the time counts for each pending event. When an event record in the buffer

gets a time count of zero, the event handler must set the appropriate flag bits.

The following sections describe the actions of the event handler including the determination of the

delay interval count, adding an event, and the event handler interrupt.

3.3.1.1 The Delay Interval Count
An interrupt is generated at fixed intervals via a compare module on the HC12. The compare

module holds a 16-bit value and continually compares the value to the running 16 bit system timer.

When the values match, the interrupt is triggered. The timer is incremented every 134nsec. If an

interrupt is desired every x seconds, the number of timer increments until the interrupt is

x/134nsec. If this number is added to the current timer value and stored in the compare module,

then an interrupt will occur in x seconds. For the event handler, the delay interval count can be

changed by calculating a new value to be added to the timer module. For the prototype, the

designed delay interval count is 500useconds. Hence, every 500usecs an interrupt is generated for

the event handler. It is important to note that the value of the delay interval count dictates the

number protocol routines load their time count values with.

3.3.1.2 Initializing
Initializing the event handler involves clearing all the records in the event buffer. Furthermore, the

event handler interrupt must be initialized. This is done by setting the timer module 5 in output

compare mode on the HC 12. The interrupt generated by this timer module is initially left off since

the buffer has no pending events after initialization. Adding an event to an empty event buffer turns

on the interrupt.

3.3.1.3 Adding an Event
When a protocol routine wishes to add a pending event, it calls the add event routine. The

arguments for adding an event are a two byte address for the event flag, a two byte time count and

a one byte flag mask. These arguments must be pre-loaded into a temporary event record before

calling add event.

In order to add the event, the event handler must parse through the event buffer to find an empty

record position. Empty records have flag address fields of 00h. If an empty record slot is found, the

record data is copied into the empty slot. Finally, if there were no elements previously in the buffer,

the EH event delay interval is added to the current timer value and loaded into the compare module

and the interrupt for the compare module is turned on.

If the event buffer happens to be full, then adding an event will result in an event buffer full

(EHBufferFull) error code being returned. Interrupts are disabled while modifying the event buffer.

This action protects against the event handler interrupt occurring while modifying the event buffer

which would lead to an inconsistent state of the buffer.

3.3.1.4 Event Handler Interrupt
Handling an event handler interrupt involves scanning the buffer for pending events. Any event

whose address field is not 00h is a pending event. For each of these events, the time count is

decremented. For each event whose time count reaches zero, the flag mask in the event record is

combined with the address of the event flag to determine which bits in the flag should be set. The

event handler then sets these bits and clears the record from the buffer by setting the record's flag

address to 00h.

As an optimization, if there are currently no events in the buffer, the event handler interrupt routine

turns the EH interrupt off. This prevents unnecessary interrupts from occurring in the system. Of

course, this implies that add event always turns the interrupt back on.

3.3.2 Vehicle Manager
The vehicle manager keeps track of all the vehicles currently in the block by storing a vehicle

record for each vehicle in a vehicle manager buffer. The vehicle manager takes responsibility for

maintaining the current position of each vehicle within the block.

A vehicle record is a five byte data structure where the first byte contains a vehicle identification

number (VID), the next byte is the vehicle's position (VPOS) relative to the current block and the

following two bytes are used to store the vehicle's velocity (VVEL). The last byte was not initially

planned on during the design phase. It is a variable used to denote a blocked vehicle (VBLOCK). If

a vehicle is waiting for the next track position to become free, the vehicle manager marks the

vehicle by setting the blocked flag in the record. These records are stored in the vehicle manager

buffer. The buffer currently holds eight records. So a block can only hold eight vehicles at once on

the prototype. The vehicle manager also reserves a bit flag for each record in the buffer. These

flags are actually used to determine when a vehicle needs its position updated.

On the current prototype, the segment of track controlled by a block controller is divided into ten

positions. The position field is simply a number which varies between 0 and the maximum number

of positions in a block (10). The vehicle velocity is actually a special number tied to the prototype.

Instead of storing an actual velocity value, it currently stores the number of event counts until the

position should change. The vehicle manager is responsible for using this number to create a

vehicle update event. By directly correlating the value stored in VVEL with the value used by the

event handler, it is possible to have higher level routines change the velocity of a vehicle and have

this automatically change the rate at which the vehicle position is updated.

The vehicle manager supports the following routines: initialization, adding a vehicle, updating

vehicle positions and removing vehicles. Initializing the vehicle manager is quite simple. The

manager clears all vehicle records in the buffer by setting each VID field to 00h. The following two

subsections will discuss adding, updating vehicles and removing vehicles.

3.3.2.1 Adding a Vehicle
When a protocol routines decides to add a vehicle to the block controller (for example after

receiving a vehicle from a neighbor), it invokes the add vehicle routine. Add vehicle requires the

VID, VPOS and VVEL for the new vehicle. These arguments are passed into add vehicle via a

temporary vehicle record. If the vehicle is successfully added, a VehicleAdded flag is returned.

Otherwise, a vehicle blocked or track full message may be returned.

In order to provide at most once semantics for the vehicle exchange protocol, the add vehicle first

scans the list for a vehicle that shares the same VID as the one to be added. If there is a match, a

VehicleAdded flag is returned but the vehicle is not re-added to the list. If the vehicle is not already

in the list, the add routine checks to see if VPOS for the vehicle is already occupied. The position

status variable has a bit set for each occupied position. If the bit for VPOS is set, then add vehicle

returns a position occupied flag and the vehicle is not added.

Actually adding the vehicle involves scanning the vehicle manager list, searching for an empty

record in the list. Again, empty records have VID tags of 00h which makes this process

straightforward. The vehicle information from the temporary record is then copied into the first

available free slot in the buffer. Interrupts are turned off while modifying the vehicle record buffer

to maintain a consistent state, insuring that no two routines are modifying the buffer at the same

time.

Once the vehicle has been added, the vehicle manager adds an event to the event handler where the

event is a vehicle position update. The time count used is simply the VVEL value for the vehicle.

The flag set by the event handler is actually the bit flag the vehicle manager has reserved for this

vehicle buffer slot.

3.3.2.2 Updating Vehicle Positions
One or more bits in the vehicle status register are set by the event handler when it is time to update

a vehicle position. The bits set in vehicle status correspond to the entry in the vehicle list where the

vehicle record to be updated exists. It is up to the main loop to pole the vehicle status flags.

Updating vehicle positions involves scanning the vehicle list, and finding any non-empty vehicle

record whose corresponding vehicle status flag is set. Normally, the vehicles position is updated

by one, and the position status variable is adjusted to reflect the new occupied position. A new

event is created and added to the event handler for the next position update with the event time

count proportional to the vehicle's velocity. The flag address is the vehicle status variable and the

flag mask selects the entry position in the vehicle list. In other words, the nth entry in the list has

the nth vehicle status bit set by the event handler.

However, there are two special cases to be considered: first, the vehicle is already in the last

position of the block and second, the next position is already occupied. If the vehicle occupies the

last position in the block, the vehicle manager initiates a vehicle exchange protocol. The vehicle is

then left in the last position until it is removed by the protocol. In the second case, the vehicle

position cannot be updated because the next position is already occupied. The vehicle record is

marked as blocked an event for the next position update is not done.

Finally, after the update routine has updated the appropriate vehicle records, another pass is made

through the list. This time, the manager only looks at vehicles which are blocked. If their desired

update position is now free, the vehicle position is updated, the blocked flag is cleared, the position

status variable is updated and an event is added to the event handler for the vehicle's next position

update.

3.3.2.3 Removing Vehicles
The vehicle manager also supports a remove vehicle routine which is used by the vehicle exchange

protocol. When it is time to remove a vehicle from the block, this routine is invoked with the VID

for the vehicle as an argument. The list is scanned starting at the beginning checking each record

VID with the target VID. If a match is found, the position status bit for the vehicle's position is

cleared and the VID field is set to zero, effectively removing the vehicle.

3.4 Control Protocols
Two control protocols were implemented to test the viability of the system as a whole. A virtual

vehicle create protocol is used by the zone controller to place vehicles into the system. Vehicle

exchange protocols are then used by the blocks to exchange vehicles.

3.4.1 Virtual Vehicle Create
The create virtual vehicle protocol (VVC) has five associated protocol routines. Two are used to

generate VVC and VVC-ACK messages. Each message type in the protocol has its own handler.

Finally a routine handles the VVC time-out event. Only one pending virtual vehicle create can be

created at a time. The protocol routines share a one byte VV flag. Bit 7 of this flag is set by the

event handler when a time out occurs. Bit 0 is used to store the reception of a VCC-ACK. These

five routines are now discussed.

3.4.1.1 Virtual Vehicle Create Message
When initiating a virtual vehicle create message, the caller loads the temporary vehicle record with

the desired vehicle attributes including VID, VPOS and VVEL. The VVC generator takes this

information and produces a message as follows;

Vehicle
Create ID of ID of MessSize VID VPOS VVEL
Code Dest. Sender (2 bytes)

Figure 3-3. Virtual Vehicle Create Message

This created message is then passed on to the router for actual transmission to the destination.

Finally, the routine also creates an event for a VCC time-out. Currently VCC time-outs happen .25

seconds after the VCC message is transmitted. This value is controlled by a VCC constant called

VVMTimeCnt and is the time count value used in the event record. The virtual vehicle flag address

and bit mask are also loaded into the event record such that bit 7 of the VV flag will be set when

the time out occurs.

3.4.1.2 VCC Acknowledgment
The VCC handler takes the VCC message and creates a vehicle record out of the vehicle

characteristics in the data portion of the message. An attempt is made to add the vehicle to the

vehicle manager. If the manager cannot add the vehicle because the position is blocked, a VCC-

ACK is not returned. Otherwise, a call is made to generate a VCC-ACK.

When a vehicle is successfully added, a VCC acknowledgment message is sent to the sender. The

data field of the VCC-ACK is left blank. The sender is determined by examining the original

message. The source ID is taken from the destination field of the VCC message.

VCC-ACKs are handled by setting bit zero of the virtual vehicle flag. This bit is examined by the

time-out handler in order to determine if the VCC message succeeded or not.

3.4.1.3 VCC Time Out
Processing a VCC time out event involves checking bit zero of the virtual vehicle flag. If the bit

has been set, then a VCC-ACK has been received, the time-out clears the virtual vehicle flag and

returns. Otherwise, an VVC failure message is displayed to the screen indicating that the vehicle

was not created or that a reply was not received.

3.4.2 Vehicle Exchange
In its initial implementation, the vehicle exchange protocol is very similar to creating a virtual

vehicle. It is introduced as a separate protocol with the understanding that it will be modified and

expanded in the future. It is a two message protocol with five associated routines for generating

and handling the two messages in conjunction with a time out handler. Only one vehicle exchange

can be initiated at a time between two blocks.

3.4.2.1 Vehicle Exchange Message
When the vehicle manager updates the position of a vehicle already in the last track position for the

block, it initiates the vehicle exchange (VE) protocol. The routine for generating a VE message

takes in a pointer to a vehicle record which contains the vehicle's statistics. Since vehicles always

flow from the right to left, the message destination is always the identifier for the block's right

neighbor (LNID). The source, is then the identifier the block uses to identify itself to the left

neighbor which is MYIDLN. The VID and VVEL for the vehicle to be exchanged are placed in the

data field of the message. The VID and VVEL for the vehicle are also stored in two variables set

aside by the vehicle exchange protocol. If the message needs resent later, these values are used to

reconstruct the vehicle data.

The message is then passed to the router with the LNID as the destination. An event is then added

to the event handler for a vehicle exchange time-out. The time-out duration is currently .25s and is

controlled by a constant, VehExchCnt.

3.4.2.2 Handling a Vehicle Exchange Message
Upon receiving a vehicle exchange message, the VID and VVEL are extracted from the data field

and placed into a temporary vehicle record. Since the vehicle is going to be entering the block, the

position field is set to the first position of the block's track. Once the vehicle record is prepared, a

call is made to the vehicle manager to add the vehicle. If the vehicle is added successfully a VE-

ACK is generated, otherwise no response is sent.

3.4.2.3 Vehicle Exchange Acknowledgment
The vehicle exchange acknowledgment is constructed using information from the original VE

message. The message code is a VE-ACK. The destination ID is the source ID in the VE message.

The source ID for the block is the destination ID in the VE message. The VID of the added vehicle

is then placed in the data field. The resulting message is then sent to the router for transmission.

3.4.2.4 Handling a Vehicle Exchange Acknowledgment
When a VE-ACK is received, the controller sets bit zero of the vehicle exchange flag. This bit is

later examined by the time-out handler. Furthermore, the controller must now remove the vehicle

from its vehicle manager as the vehicle is no longer in the block. The VID of the vehicle is removed

from the VE-ACK data field and passed along as an argument to the vehicle manager's remove

vehicle routine.

3.4.2.5 Vehicle Exchange Time-out
When processing a VE-time-out, bit zero of the vehicle flag is examined. If the bit is set, then an

acknowledgment has been received and processed. In this case, the vehicle exchange flags are

cleared and the routine terminates. Otherwise, an acknowledgment was not received and the

protocol must be started again. The VID and VVEL of the vehicle to be exchanged are extracted

from their storage variables (they were stored during the generate vehicle exchange routine) and

placed into a temporary vehicle record. The time-out routine calls a generate vehicle exchange

message which begins the protocol over again.

3.5 Main Loop
The main loop for both block and zone controllers is based on poling and interrupts. The main loop

iterates through all the flags which require polling. If a flag is set, then a handler is called for that

flag. When the end of the list is reached, the main loop driver starts over again. Table 3-3

summarizes all of the polled flags, the source of the flag and the routine called to handle the flag.

The source of a flag is the routine responsible for setting the flag. The handling routine is

responsible for actually acting on the flag.

Poled Flag Source Handling Routine Description

RxSCICnt SCI Port AddSCIMessage SCI Port handler has at least one received
Handler message. Add it to the message queue.

RxUA1Cnt UAl Port AddUA1Message DUART Channel 1 has at least one received
Handler message. Add it to the message queue.

RxUA2Cnt UA2 Port AddUA2Message DUART Channel 2 has at least one received
Handler message. Add it to the message queue.

Qsize Handle Message HandleMessage The message queue has at least one message.
Handle a message.

ALIVE.7 Event Handler HanPingTimeout A ping response time-out has occurred. Process
it.

VVMFlag.7 Event Handler HanVVTimeout A virtual vehicle create time-out has occurred.
Process it.

Vehicle Event Handler UpdateVehicles At least one vehicle in the vehicle manager
Status needs updating.
VehExch Event Handler HanVehExchTimeO A vehicle exchange time-out has occurred.

ut Process it.
BannerFlag Event Handler UpdateBanner Update the banner display.

Table 3-3. Summary of polled variables for loop driver

In addition to the poled loop flags, there are several interrupts which occur in the system Table 3-4

summarizes these interrupts and their respective handlers

Interrupt Handler Description
SCI Interrupt SCI Port Handler A receive data or transmit data empty interrupt

has occurred.
IRQ DUART Port Handler Channel 1 or 2 has a receive data or transmit

empty interrupt.
Timer Compare Module 5 Event Interrupt Handler Time to update the event list.
Timer Compare Module 7 LCD Interrupt Handler Print next character to LCD.

Table 3-4. Summary of interrupt sources

4. Further Study
There are many areas of further study in which this thesis could be extended. The following

subsections touch upon several of these areas. They are by no means inclusive.

4.1 Expanding the Controller Algorithms
The scope of the thesis quickly converged to designing and constructing a fault tolerant

communication backbone upon which high level control algorithms and protocols could be written.

The control protocol actually designed and implemented was quite simple and was used primarily

to demonstrate the correctness of the communication network. Much more research can be done on

developing more complicated protocols for managing vehicles including merging and vehicle re-

routing.

In particular, more control should be placed at the zone controller level. Since there are fewer zone

controllers (by an order of magnitude) it makes sense to place the control at their level. The zone

controllers can then be designed with high reliability. The block controllers would then have act as

monitors, relaying vehicle status back to the zone controller and responding to commands from the

zone controller. There are many block controls. By keeping their responsibilities light, they can be

designed more cheaply without an emphasis on high availability.

4.2 Zone Controller Voting
The zone controller is a critical component of the system. Block controllers rely on the zone

controller for guidance when they detect failures. If the blocks lose contact with their zone

controller, they can always have a prepared emergency back up such as stopping all vehicles. But

this is not very graceful. Hence, it is important to ensure that the zone controller behaves properly

and has high availability.

In order to make the zone controller more reliable, a level of redundancy must be added. A

common technique involving passive redundancy is to use multiple controllers which

simultaneously control the system in a cooperative fashion [1]. For example, the zone controller

could be implemented with three processors. A voting scheme would then be utilized to determine

decisions sent to the block controllers. For voting, all three zone processors receive information

(e.g. a track processor has faulted). If everything worked perfectly, all three processors would

agree on the same course of action. However, what if one of the zone processors faults, and does

not respond or gives a bad decision. With the voting scheme, as long as the other two processors

agree on a course of action, a majority vote will hold and the correct course will still be taken. As

a result of voting, a zone controller can withstand the loss of one of its processors without bringing

the entire zone controller down. The following figure illustrates what the zone controller would

look like.

Incoming
Messages

Outgoing
Messagges

Figure 4-1. Voting on the Zone Controller.

Using a voting system in conjunction with multiple processors is a technique known as Byzantine

architecture [5]. The problem with a Byzantine architecture involves synchronizing all three

processors to produce outgoing messages at the same time. The implementation of this type of

voting mechanism would be very difficult and was beyond the scope of this thesis but does warrant

more research.

Another interesting approach for voting on the zone controller is to allow the block controllers to

actually act as the voter. As in the previous example, the zone controller could consist of three

processors. However, now each processor sends what it thinks the proper action is back to the

block controller. The block controller examines the three responses and chooses to act on the

majority if the responses differ. This type of voting mechanism has a huge advantage when applied

to the system developed in this thesis because it requires no hardware changes other than additional

communication links. Three zone controllers could act as the three processing units. A block

controller sends messages to all three zone controllers and waits for responses from all three. If one

of the zone controller units faults or goes down, the block will still get good information from two

units and this forms a majority.

4.3 Adding a Central Controller
There is actually another layer which sits on top of the zone controllers. A single central controller

could be designed which had a communication link with each zone controller. The rest of the

network would remain unchanged. Figure 4-2 illustrates what the new network would look like

with the addition of a central controller.

Figure 4-2. System hierarchy with a Central Controller.

The central controller now has knowledge of the entire transportation system. With this

information, it could construct a global model of the transportation system. This global model has

several good uses. First of all, any error or fault messages can be propagated up to the central

controller. Human monitors could be at the central controller and take appropriate action based on

the type of error or fault (e.g. sending a repairman to a Block controller and replacing it).

Furthermore, a software model could be constructed at the central controller end which modeled

the physical transportation. The model could display vehicles which correspond to real vehicles on

the track along with their movements. This software model would facilitate the analysis of traffic

and merging algorithms.

4.4 Statistics
Despite the construction of a fault tolerant controller, an in depth performance analysis is essential

to measuring the effectiveness of the system as a whole. Moreover, extended analysis and testing of

the system would allow us to determine valuable fault tolerant statistics such as the mean time to

failure (MITF) and the mean time between failures (MTBF).

4.5 Dynamically Download New Code
The ability for block controllers to download and receive code updates while the system is in

operation would be a nice but not an essential feature of the system. It would allow the system to

update the code without losing service.

4.6 Adding the Watchdog Circuit
Due to the problem with the HC05 hardware emulator, a watchdog circuit was not created for each

block and zone controller. It is still an important feature of the system. The watchdog provides

another source for detecting processor failures. In addition, the watchdog could be constructed to

receive messages from the zone controller by the same communication lines as the main processor.

In the case of a main processor failure, the watchdog can be instructed to reboot the main

processor.

5. Conclusion
In conclusion, a distributed fault tolerant transportation controller was designed and a small scale

prototype was implemented. Emphasis was placed on a high reliability communication backbone.

The actual control protocols were intended to demonstrate the functionality of the backbone.

Together, they produced a system which could quickly detect and handle processor and

communication errors.

The system needed to be able to quickly detect processor and communication failures. A ping

protocol was developed for this purpose. With all the elements in the network running the ping

protocol, controller failures are immediately noticed by at least two neighbors and the zone

controller because the failed processor no longer responds to pings. In the case of a communication

line failure, using the ping protocol, modules at both ends of the link quickly detect the

communication failure and can notify the zone controller.

Noise and disturbances on the communication lines are dealt with by port handlers using

checksums and header packets. Effective use of acknowledgments and time-outs in the message

protocol design stage handles the case where messages are not delivered.

Once the errors have been detected, the system had to handle them. Dynamic routing tables and

message forwarding by the message handlers were introduced to cope with handling

communication failures. By updating the routing table, messages can be sent over different

communication lines and forwarded by other network elements until the message reaches its final

destination. When the communication link is repaired, the routing table is updated, restoring

communication on the link.

Adding the zone controller and keeping it up to date with a global view of all the block allows

processor failures to be dealt with. By placing control at the zone controller level, if a block fails,

the zone controller can determine an appropriate course of action and instruct neighboring block

controllers appropriately.

It is hoped that this research will become part of a much larger system with more complicate

control algorithms at the zone controller level in addition to being attached to an actual

transportation system. The thesis has shown that a distributed fault tolerant controller can be

constructed to meet the needs of transportation systems.

6. References

[1] Cho, Young and Bien, Zeungnam. "Reliable control via an additive redundant controller."
International Journal of Control, vol. 50, July 1989. p 385-398.

[2] Dooling, Dave. "Technology 1996: transportation". IEEE Spectrum, vol. 33, January 1996.
p. 82-86.

[3] Gray, Jim. "High-Availability Computer Systems."Computer. September 1991.

[4] Metcalfe, Robert M and Boggs, David. Ethernet: Distributed packet switching for local
computer networks. Communications of the ACM. July 1976.

[5] Nanya, Takashi and Goosen, Hendrik. "The Byzantine Hardware Fault Model." IEEE
Transactions on Computer-Aided Design. vol. 8, November 1989. p. 1226-1231.

[6] Piuri, Vincenzo. "Design of Fault-Tolerant Distributed Control Systems." IEEE Transactions
on Instrumentation and Measurement, vol. 43, April, 1994. p 257-264.

7. Acknowledgments
This thesis would not have been possible without the guidance and support of many people. I
would like to take this time to thank some of the people and groups involved in helping me.

Prof. Richard D. Thornton Professor of Electrical Engineering at MIT
Prof. Thornton was my advisor and mentor. I also had the privilege of serving as a teaching
assistant for him in the Fall of 1996. I cannot thank him enough for giving me the opportunity to
work on this project. It has been a very rewarding and enjoyable experience.

Dr. Brian Perreault Doctoral Student at MIT
Brian gave me irreplaceable guidance and support. Brian, thank you for all the advice and
resources you gave me. And thank you for putting up with me while trying to get your Ph.D. done
at the same time. Good luck with MagneMotion.

Dr. Tracy Clark and the people at MagneMotion
Tracy and the rest of the people at MagneMotion Inc. gave me the financial resources to
manufacture the PCB boards in conjunction with helping me generate the goals for this project. I
wish MagneMotion the best of luck. And Tracy, thank you for taking the time to read and correct
my thesis.

Joel L. Dawson, Doctoral Student at Stanford University
Joel, you have been a great friend through out this entire process. I appreciated your many late
night visits in lab when I was tired and needed a break. I also appreciated your fresh perspective.
Thanks for allowing me to bounce ideas off you. And thanks for the advice on the analog circuitry
as well. Good luck at Stanford!

Mom
Thank you for letting me call you late at night in lab when I needed someone to talk to. You do not
know how much your confidence and faith helped me get through this process. Thank you.

People at the Laboratory for Electromagnetic and Electronic Systems
Working at LEES has been a wonderful experience. I never thought working on hardware could be
so much fun. I have really enjoyed getting to know some of the people in lab.

P&E MicroComputer Systems Inc.
P&E Microcomputer systems was kind enough to let me use an Alpha software release of their
HC12 development system. The code developed for this thesis would not have been possible
without their support.

Motorola University Support
The HC 12 is a new microcontroller which has just recently become widely available to the public.
Motorola University Support was kind enough to donate enough samples to me for constructing the
prototype.

8. Appendix A: Prototype Schematics
A brief description of the hardware used for the prototype block and zone controllers is described

in Chapter 3. This appendix contains a complete listing of the schematics used to construct the

prototypes.

Block Controller and Duart

XIR>

RN\36R/W 36

29
28

ECLK -
HC12 IRQ 26

LCD

BK(

EXTAL<
XTAL 0

RESET

PE.0/ XIRQ
PE.1 / IRQ
PE.2 / R / W
PE.3 / LSTRB
PE.4 / ECLK
PE.5
PE.6
PE.7/DBE

PAD.0 / ANO
PAD.1 / AN1
PAD.2 / AN2
PAD.3 / AN3 PD
PAD.4 / AN4 PD
PAD.5 / AN5
PAD.6 / AN6
PAD.7/ AN7

PP.0 / PWO
PP.1 / PW1
PP.2 / PW2
PP.3 / PW3
PP.4
PP.5
PP.6
PP.7

PT.0 / IOCO PS.4
PT.1 / IOC1PS.5 /
PT.2/ IO02
PT.3 / IO03 P
PT.4 / IOC4
PT.5 / IOC5
PT.6 / IOC6
PT.7 / IOC7 / PAI
BKGD

PA.0
PA.1
PA.2
PA.3
PA.4
PA.5
PA.6
PA.7

PB.0
PB.1
PB.2
PB.3
PB.4
PB.5
PB.6
PB.7

LCO/ DLCRx
LC1 / DLCTx

PDLC2
PDLC3
PDLC4
PDLC5
PDLC6

VSSX1
VDDX1

68HC912B32

PC16552D

IUART SIN1

)UART SIN2

-D[0..7]

Power to HC12

Decoding DUART
Instructions:

I
0

GND VSS1 VSS2 VSSA

Communication Processor

I
0

IT

COMM.SCH

Communication Processor for Block Controller

o HC05

TxD

d +5v

1000 uF

GND VSS

R"'''

DIP Switch

Left Neighbor Input

Right Neighbor Inp

RxD from Zone Contro

Tx
SW DIP-9

ontroller

ect

C30
.luF

GND

I C14

10kOhms

IT

PAL and LCD
("I + 4 c

C19

PAL HEADER

+5V VCC

+5V JP6

VE

GND VAR RES

GND VSS

Decoding LCD Instructions:

RS R/W NC NC NC NC NC NC

PB.7 PB.6 PB.5 PB.4 PB.3 PB.2 PB.1 PB.0

D7 D6 D5 D4 D3 D2 D1 DO
PA.7 PA.6 PA.5 PA.4 PA.3 PA.2 PA.1 PA.O

onne

c

on

Communication
Connections

»Left Neighbor Input

GND JP2

Left Out >>) 3 4 LGND

RJ11 To Left Neighbor

»>Right Neighbor Input
GND JP3

Right Out 3 4 GND

RJ11 to Right Neighbor

to Zone Controller

TxD to Zone

RxD from Zone Controll--

RS232 RxD
MAX232_

01

JP10
RxD

RxD from Zone Controller
+5V VCC

GND VSS

Power Electronics

+5V

C29 . C20
.luF 1200uF

GND

R2 R3

VCo<-vV-- Power Disconnect 1

R LEDO
ND

J7

+54 2
3

CON3
+12V

-C

-C

-C

-C

-C-C--C

w-- CC--C

C--C(

--

R4 R5

VCCi • -• • «-Power Disconnect 2

R LED1

JP1 1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Power Rail

GNDA

K~-
JP12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

GND Rail

A

Header Connections

BKGD 1 2 -GND
3 4 6--- <<BKGD HC12 Reset
5 6 aVDD

BKGD Mode Header

+5V VDD

PP[O..7]

Rvw
=tS

9. Appendix B: Code Listing
A brief description of the code written to implement the block and zone controllers is included in

the implementation discussion in Chapter 3. All code is written for the HC 12 microcontroller. This

appendix contains a full, commented listing of the following code segments:

Constants and Variables:
HC 12Equ.H, Messages.H, EventHan.H, Vehicles.H, Ident.H, Virtual.H, Vars 12.H

Inits and Main Loop:
Shell 12.ASM, Init.ASM

Communication Backbone
MessHand.ASM, Router.ASM, SCI12.ASM, UART1.ASM, UART2.ASM

Protocol Tools
EventHan.ASM, Vehicle.ASM

Protocols
Ping.ASM, Virtual.ASM, VehExch.ASM

Miscellaneous
Display.ASM, CheckSum.ASM, LCD.ASM, Banner.ASM, Misc.ASM

Constants and Variables:
; HC12EQU.h
; Constant Equates Used by the modules.

MESSAGE_SIZE
ChkSumSize
QueueSize

PingDelay

EQU $16
EQU $02
EQU 8*$14

EQU $7DO

; including checksum 22 bytes

; holds 8 messages

; ping every .5seconds (1000 * 500useconds)

; Timer increments every 135nsec. Value of $FAO implies that event
; handler is called every 500 useconds

EHDelayInterval EQU $FA0

; Routing
DestField
PortField
EntrySize

Table Constants
EQU $00
EQU $01
EQU $02 ; every 2 bytes

$IF ZONE_CONTROLLER
DefaultTableSize EQU $06
$ELSEIF
DefaultTableSize EQU $04
$ENDIF

ZoneController
CentralController
LeftNeighbor
LeftBlock
RightNeighbor
RightBlock
CoProcessor
RouteTableEntries
RouteTableSize

TrackChar
VehicleChar

; Routing
SCIPort
SPIPort
DUART1
DUART2

RAM
ENDRAM
EEPROM
FLASH

Table -- >
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

$00
$05
$01
$02
$02
$01
$03
$06
$0C

; Either Main Processor or Auxiliary Proc.

; # bytes in the routing table (6 entries)

EQU $02
EQU $00

Entry
$00
$01
$02
$03

$0800
$0OBFF
$ODOO
$8000

constants (port handlers)

; only valid for Main Processor
; only valid for Main Processor

; first RAM address

; first EEPROM address (ends at $0OFFF)

HeaderByte EQU $3F ; first byte in a message

; LCD Buffer Information
LCDBufferSize EQU $40
ClearDispCode EQU $FF
ChgAddrCode EQU $FE

; DUART2 Port Handler
UA2MessageSize EQU 2*Messagesize+l
UA2RMBSize EQU 2*Message_size
UA2TMBSize EQU $5A

; DUART1 Port Handler
UAlMessageSize EQU 2*Message_size+l
UAlRMBSize EQU 2*Message_size
;UA1TMBSize EQU *(2*Message_Size+l)
UAlTMBSize EQU $5A

;SCI Port Handler Related
SCIMessageSize EQU 2*MESSAGE_SIZE+l
SCITMBSize EQU $5A
SCIRMBSize EQU 2*MESSAGE_SIZE

;SPI Port Handler Related Equates
SPIMessageSize EQU 2*MESSAGE_SIZE+l
SPITMBSize EQU MESSAGE_SIZE
SPIRMBSize EQU 2*MESSAGE_SIZE

; 64 character buffer
; code used in buffer entry to clear display
; used in buffer entry to signify change addr

; RMB can hold 2 messages
; TMB holds 2 messages

; convert 2 ASCII + 1 header byte

; Banner Constants
WindowSize EQU
BannerBufSize EQU
BannerInterval EQU

$14
$28
$320

; 40 character buffer
; .1 seconds (200 * 500usec)

; Messages.h
; Block / Zone Controller --> HC12 --> Message Code listing

; Gives the message codes used to identify message types.

; Current supported
Print_Data EQU
PingRequest EQU
Ping_Response EQU

VirtualVehGen
VVACKMess

EQU
EQU

VehicleExchange EQU
VehicleExchACK EQU
VehicleExchBLK EQU
VehicleExchCont EQU

; Current offsets from
MessCode EQU
MessDest EQU
MessSrc EQU
MessSize EQU
MessData EQU
MessChkSum EQU

message types
$01
$02
$03

$04
$05

$06
$07
$08
$09

start
$00
$01
$02
$03
$04
$14

of the message to fields

; message has 16 bytes of data
; so checksum falls as last 2 bytes

; Timeout Delay Values for protocols
VVMTimeCnt EQU $1388 ; .25s timeout period
VehExchCnt EQU $1388 ; .25s

; EventHan.h
; Block & Zone Controller --> HC12 --> Event Handler Definitions

; Constants used by the event handler.

; Each event record is five bytes. The first two bytes specify the
; event time. The next two bytes specify the address of the byte flag
; associated with the particular event. The 5th byte is a flag mask. The
; mask is used to determine which bits in the flag byte should be
; set when the event time has expired.

EventRecSize
EHFlagMask
EHTime
EHFlagAddr
NumEvents
EHBufferSize
EHBufferFull

EQU
EQU
EQU
EQU
EQU
EQU
EQU

$05 ; each event record is five bytes
$04
$02
$00
$0OA ; number of recs EH can hold
EventRecSize*$OA
$01 ; error code for buffer full

'---------------------'----------------------------------
; Vehicle.h
; Block Controller --> HC12 --> Vehicle Handler --> Definitions file

--
; Each vehicle record is 5 bytes long. The first byte is the VID,
; the 2"d byte is VPOS and the last two bytes are VVEL. The last byte is
; a flag reserved for use by the vehicle manager and is set when a
; vehicle is blocked from moving forward.

; Error message returned by
PositionOccupied EQU
VehicleAdded EQU
TrackFull EQU
Blocked EQU
Free EQU

VehicleRecSize
VID
VPOS
VVEL

EQU
EQU
EQU
EQU

AddVehicle:
$00
$02
$03
$01
$00

$05
$00
$01
$02

; each record is 4 bytes

EQU $04

LastPosition
NumPositions
MaxNumVehicles
;VehicleBufferSize
VehicleBufferSize
VehicleVel

EQU
EQU
EQU
EQU
EQU
EQU

$80
$80 ; when pos. == $80, in last slot
$08 ; at most, 8 vehicles in a block
MaxNumVehicles*VehicleRecSize
$28
$1388 ; corresponds to a .25sec

; Character codes
VehicleBack
VehicleFront
TrackBack
TrackFront

for printing
EQU
EQU
EQU
EQU

vehicles and track
$00
$01
$02
$03

; Ident.h
; Destination and Source Identification Numbers used by the system.
; Values depend on whether the code is compiled for LB, RB or ZC

$IF RIGHT_BLOCK
MYIDRN EQU $04
MYIDLN EQU $05
ZCID EQU $01
LNID EQU $02
RNID EQU $03
$ENDIF

$IF LEFT_BLOCK
MYIDLN EQU $03
MYIDRN EQU $02
ZCID EQU $01
LNID EQU $04
RNID EQU $05
$ENDIF

$IF ZONE_CONTROLLER
MYIDLN EQU $01
MYIDRN EQU $01

; I NEED TO KNOW THE
LB_ID1 EQU $02
LB_ID2 EQU $03
RB_ID1 EQU $04
RB_ID2 EQU $05
LNID EQU $02
RNID EQU $04
$ENDIF

; i am 04 to my right neighbor
; i am 05 to my left neighbor

ALIASES USED BY RB AND LB TO PROPERLY FORWARD MESSAGES

'-------'--
; Varsl2.h

; Block /ZoneController --> HC12 --> Variable definition file

; Variable definions for the HC12 shell code and related routines

ORG RAM
; LCDBuffer Related Variables
LCDBuffer
LCDHead
LCDTail
VVMFlag
ALIVE
ALIVEOld
MessBuffer
TimerFlag

DS
DS
DS
DS
DS
DS
DS
DS

TimerFlag2 DS 1

; Vehicle Handler
PositionStatus DS
VehicleBuffer DS
VehicleCnt DS
VehicleStatus DS
VehicleRec DS

LCDBufferSize
2
2
1
1
1

MessageSize
1

related variables
1
VehicleBufferSize
1 ; # vehicles in the block

VehicleRecSize

; Variables used by Vehicle Exchange Protocol
VehExchFlag DS 1 ; bit 0 used for vehexch timeout

VBLOCKED

ExchVID
ExchVVEL
PendingVID

; Event Handler related variables
EventHanCnt DS 1
EHRecord DS EventRecSize
EHBuffer DS EHBufferSize

; Routing Variables
RouteTable DS
RouteMessPort DS

; Message
QUEUE
QueueHead
QueueTail
QSize

; # pending events in the EH buffer

; the buffer for pending events

RouteTableSize

Queue Related Variables
DS QueueSize
DS 2
DS 2
DS 1

ChkSumHi I
ChkSumLo I
ChkSumFailures L

; UART1 Related
UA1TMB DS
UA1RMB DS
RxUAlHead DS
RxUAlTail DS
RxUAlStart DS
TxUAiHead DS
TxUAlTail DS
RxUAlHiLo DS
RxUAlCnt DS
TxUAlCnt DS

; UART2 Related
UA2TMB DS
UA2RMB DS
RxUA2Head DS
RxUA2Tail DS
RxUA2Start DS
TxUA2Head DS
TxUA2Tail DS
RxUA2HiLo DS
RxUA2Cnt DS
TxUA2Cnt DS

Variables
UA1TMBSize
UAIRMBSize
2
2
2
2
2
1
1
2

Variables
UA1TMBSize
UA1RMBSize
2
2
2
2
2
1
1
2

; Banner Related Variables
BannerFlag
BannerBuffer
WindowHead
BannerTail
BannerChars

; SCI Port
SCITMB
SCIRMB
TxSCIHead
TxSCITail
TxSCICnt
RxSCIHead
RxSCIStart
RxSCITail
RxSCICnt
RxSCIHiLo

Related
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS

1
BannerBufSize
2
2
1

Variables
SCITMBSize
SCIRMBSize
2

; buffer for transmitting messages
; buffer for received messages

; first addr. of the current message

; 1 if high nibble received, 0 if low nibble

Inits and Main Loop:

; Shelll2.ASM
; Block / Zone Controller --> HC12 --> Shell

; Shell for the HC12 code.

$SET INCLUDE_FLASH

;$SET ZONE_CONTROLLER
$SETNOT ZONE_CONTROLLER

;$SET RIGHT_BLOCK
$SETNOT RIGHT_BLOCK

$SET LEFT_BLOCK
;$SETNOT LEFT_BLOCK

$include "hcl2\HC12EQU.h"
SELFID EQU ZoneController
;SELFID EQU LeftBlock
;SELFID EQU RightBlock
$include "hcl2\ident.h"
$include "hcl2\hcl2reg.h"
$include "hcl2\eventhand.h"
$include "hcl2\vehicles.h"

; now include variable files
$include "hcl2\varsl2.h"

org FLASH
$include "hcl2\init.asm"
$include "hcl2\lcd.asm"
$include "hcl2\misc.asm"
$include "hcl2\checksum.asm"
$include "hcl2\scil2.asm"
$include "hcl2\router.asm"
$include "hcl2\messhand.asm"
$include "hcl2\display.asm"
$include "hcl2\actions.asm"
$include "hcl2\ping.asm"
$include "hcl2\uartl.asm"
$include "hcl2\uart2.asm"
$include "hcl2\eventhan.asm"
;$include "hcl2\spil2.asm"
$include "hcl2\virtual.asm"
$include "hcl2\banner.asm"
$include "hcl2\vehicle.asm"
$include "hcl2\vehexch.asm"

org EEPROM

INIT
SEI ; disable interrupts
; initialize the stack pointer
LDS #ENDRAM ; stack grows down from end of RAM
JSR InitFLASH ; common routines initiaized in the FLASH now.

CLI

MAIN
JSR InitPingProtocol
JSR InitBanner
JSR InitVehExch
JSR Delay5ms
JSR DisplayTrack
JSR GenPingReq

$IF ZONE_CONTROLLER
LDY #VehicleRec
LDD #$1200
STD VVEL,Y
LDAA #$02
STAA VID,Y
LDAA #$01
STAA VPOS,Y
LDAA #LBID1
JSR GenVVMess

$ENDIF

LBRA WaitLoop ; iterate through the message loops

; Interrupt Handlers

SCIIntHandler

LDAA SCOSR1
BRSET SCOSR1,$20,SCIIntHandler_Rx
JSR TxNextSCI
RTI

SCIIntHandler_Rx
JSR RxMessageSCI ; otherwise, it was a receive interrupt
RTI

SPIIntHandler
JSR RxMessageSPI
RTI

TC5IntHandler
JSR HandleEHInt
RTI

TC6IntHandler ; compare module used by the Ping Protocol
JSR HandlePingInt

RTI

TC7IntHandler ; compare/capture module 7 interrupt
JSR HandleLCD
RTI

ResetHandler
LBRA INIT

; Active Interrupt and Reset Vectors (in EEPROM space)

org RESET
LBRA ResetHandler

ORG IRQ_INT
LBRA HandleDUARTInt

ORG SPI_INT
LBRA SPIIntHandler

ORG SCIINT
LBRA SCIIntHandler

ORG TC5_INT
LBRA TC5IntHandler

ORG TC6_INT
LBRA TC6IntHandler

ORG TC7_INT
LBRA TC7IntHandler

; Interrupt and Reset Vector table (in FLASH PROM SPACE)

$IF INCLUDE_FLASH
org _RESET
FDB RESET

ORG _IRQ_INT
FDB IRQ_INT

ORG _SPI_INT
FDB SPI_INT

ORG SCIINT
FDB SCI_INT

ORG _TC5_INT
FDB TC5_INT

ORG _TC6_INT

FDB TC6_INT

_TC7_INT
TC7_INT

; Init.ASM
; Block / Zone Controller - HC12 4 Calls to Init routines + main loop
; Basic Initalization routines which are stored on FLASH.

$IFNOT INCLUDE_FLASH
InitFlash
InitContinue
VersionString
WaitLoop
$ELSEIF

PriorityLoop ;call this routine to perform a check of the port handlers
WaitMessO

LDAA RxUA2Cnt
BEQ WaitMessl
JSR AddUA2Mess

WaitMessl
LDAA RxUAlCnt
BEQ WaitMess2
JSR AddUAlMess

WaitMess2
LDAA RxSCICnt
BEQ WaitMess3
JSR AddSCIMess

WaitMess3
RTS

WaitLoop
JSR PriorityLoop
LDAA QSize
BEQ WaitMess5
JSR HandleMessage

WaitMess5
BRCLR ALIVE,%10000000,WaitMessA
JSR HanPingTimeout
JSR PriorityLoop
JSR GenPingReq
JSR PriorityLoop

VVMFlag,%01000000,WaitMessB
VVMFlag,%10000000,WaitMessB
HanVVTimeout
PriorityLoop

VehicleStatus
WaitMessD
UpdateVehicles
PriorityLoop

VehExchFlag,$80,WaitMessE
HanVehExchTO ; vehicle
PriorityLoop

; vvm ping pending
; virtual vehicle timeout?

; vehicle manager update?

exchange timeout

VehExchFlag,$40,WaitMessC
HanVehExchContTO

BannerFlag,%00000001,WaitMess6
UpdateBanner

WaitLoop

#$FF,DDRA
#$FF,DDRB
#$FF,DDRP
#$00,DLCSCR
#%01111100,DDRDLC
#$FF,TimerFlag

ORG
FDB

$ENDIF

WaitMessA
BRCLR
BRCLR
JSR
JSR

WaitMessB
LDAA
BEQ
JSR
JSR

WaitMessD
BRCLR
JSR
JSR

WaitMessE
BRCLR
JSR

WaitMessC
BRCLR
JSR

WaitMess6
BRA

InitFlash
MOVB
MOVB
MOVB
MOVB
MOVB
MOVB

h

3

MOVB #%00010000,PORTP

JSR InitLCD
JSR InitSCIHandler
JSR InitRouter
JSR InitMessHandler
JSR InitUAlHandler
JSR InitUA2Handler
JSR InitEventHandler
JSR InitVehicleList

RTS

$ENDIF

Communication Backbone:
; MessHand.ASM
; Block / Zone Controller --> HC12 --> Message Handler

; The message handler is in charge of the message queue. The message type
; of messages in the queue are examined here and sent to the appropriate
; action routine based on the message type.

; Public Methods: InitMessHandler
; Private Methods:

$include "hcl2\messages.h"

$IFNOT INCLUDE_FLASH
InitMessHandler
RemoveMessage
HandleMessage
AddMessage
$ELSEIF
-----------------------'---------------'-------------------

; InitMessHandler: Intializes the message handler including the message
queues. Assumes first byte in queue space is addr. QUEUE
Also uses constant: Queue size

; Modifies: ACCA, X, Head, Tail
`---
InitMessHandler:

; empty out the queue
LDX #Queue
LDY #QueueSize
JSR ClearBuffer

CLR
LDX
STX
STX
CLR
RTS

ChkSumFailures
#Queue
QueueHead ; initialize head and tail addresses to top of queue
QueueTail
QSize ; variable for # messages in the queue

---------------------- End of InitMessHandler-----------------------------

AddMessage -

Arguments:
Assumes:

Modifies:

Adds a message to the queue. If the queue is full, calls
HandleMessage then adds the message to the Qeueue.
Typically called by a Port Handler when it has received
an entire message

AddMessage now performs a checksum check on each message
being added to the Queue. If the checksums do NOT match,
the message will not be added to the queue and the bad
message count will be updated.

X contains address of first byte.
Messages are a fixed size (Message Size). Always copies
MESSAGE_SIZE bytes.
ACCA,X,QUEUE,TAIL,AddMessage_CNT,AddMessage_SRC

AddMessage
; First, compute a checksum on the message to be added and verify
; result. Assumes the last 2 bytes in the message hold the original
; checksum.
TFR X,Y ; copy source in Y
LDAA #Message_Size-$02
LDAA #MessageSize-#ChkSumSize
; X already has the address of the first byte
JSR CompChkSum

; Y has index into current source
TFR Y,X ; now X has address of first message byte
LDAA MessChkSum,X
CMPA ChkSumHi ; check the high byte of the
BNE ChkSumFailure
INX
LDAA MessChkSum,X
CMPA ChkSumLo ; check the low byte of the c
BNE ChkSumFailure ; we failed a checksum
BRA AddMessage 0 : checksums -assed so conti

checksum

:hecksum

iue processing

ChkSumFailure

• -

INC ChkSumFailures
JSR UpdateChkFail
RTS ; return, do not add the message to the queue

Y still holds address of first source byte
AddMessage_0O
; Assumes Tail is currently pointing to the next available free slot
; LDAB #Message_Size-#ChkSumSize ; we have copied 0 bytes so far
LDAB #Message_Size-2

AddMessage_l
LDAA ,Y
LDX QueueTail
STAA ,X
INX

; CPX #QUEUE+#Ql
CPX #QUEUE+$A(
BNE AddMessage.
LDX #QUEUE

; load a byte

; store the byte in the queue

UEUE_SIZ
0
_2

E

; wrap the tail around to the front of the queue

AddMessage_2
STX QueueTail ; store the new tail
INY ; increment source
DECB ; dec # bytes copied so far
BNE AddMessage_l ; do we have more bytes to copy?
INC QSize
RTS
------------------------------End of AddMessage------------------------

'---'---
; HandleMessage: Assumes there is at least one message in the queue.

Examines the message type and calls an appropriate action
routine.

; Modifies: ACCA, X, Head

Additions: If the message Code is not a Ping request or Ping ID,
the destination field is examined. If it does not match
the current IDs of the controllers, the message is
forwarded to the appropriate destination. Forwarding
occcurs by calling the RouteMessage routine with the
message destination ID and the address of the Queue head
as arguments.

; Currently supports the following routines: PingReq, PingRes,VirtualVehGen,
VVACKMess, VehicleExchange,VehicleExchangeBlk,VehicleExchangeCont,
and VehicleExchACK.

HandleMessage
LDX QueueHead ; X points to the first byte in the message
LDAA MessCode,X ; load the message code (one byte)

HandleMessage_0
CMPA #Ping_Request
BNE HandleMessage_l
JSR HandlePingReq
BRA HanMessDone

HandleMessage_1
CMPA #Ping_Response
BNE HandleMessage_forw
JSR HandlePingRes
BRA HanMessDone

; We must now determine if the message needs forwarding.
HandleMessage_forw

LDAA MessDest,X ; load the destination ID
CMPA #MYIDLN ; compare to the ID I use with my left neighbor
BEQ HandleMessage_2 ; message for us?
CMPA #MYIDRN ; compare to the ID I use with my right neighbor
BEQ HandleMessage_2 ; message for us?

; if we got this far, the message is not for us. We should
; forward the message to the appropriate destination
TFR A,X ; load destination ID
LDY QueueHead ; make sure Y points to the start of the message
JSR RouteMessage ; Route the message
BRA HanMessDone

; if the message is intended for us, we can now handle it
HandleMessage_2

LDAA
CMPA
BNE
JSR
BRA

MessCode,X
#VirtualVehGen
HandleMessage_3
HandleVVGen
HanMessDone

HandleMessage_3
CMPA #VVACKMess
BNE HandleMessage_4
JSR HandleVVAck
BRA HanMessDone

HandleMessage_4
CMPA #VehicleExchange
BNE HandleMessage_5
JSR HanVehExch
BRA HanMessDone

HandleMessage_5
CMPA #VehicleExchACK
BNE HandleMessage_6
JSR HanVehExchACK
BRA HanMessDone

HandleMessage_6
CMPA #VehicleExchBLK
BNE HandleMessage_7
JSR HanVehExchBLK
BRA HanMessDone

HandleMessage_7
CMPA #VehicleExchCont
BNE HandleMessage_8
JSR HanVehExchCont
BRA HanMessDone

HandleMessage_8
HanMessDone

JSR RemoveMessage
HanMessDone_0

RTS

; RemoveMessage - Advances the Head of the Queue. Typically called after
a message has been acted upon.

; Modifies: HEAD,ACCA,X

RemoveMessage
; Assumes QUEUESIZE is always a multiple of the message size
LDD QueueHead
ADDD #MESSAGE_SIZE-$02

; ADDD #MESSAGE_SIZE-ChkSumSize
TFR D,X
CPD #QUEUE+$AO

; CPD (#QUEUE+#QueueSize)
BNE RemoveMessage_0
LDX #QUEUE ; wrap the head of the queue around to the front

RemoveMessage_0
STX QueueHead
DEC Qsize
RTS

---------------------- End of RemoveMessage---------------------------
$ENDIF

; Router.ASM

; Block / Zone Controller --> HC12 --> Router

; The Router is responsible for keeping track of the relationships between
; ports and destinations. It keeps this information in a routing table and
; provides tools to update this routing table if necessary.
; The router also takes a message and a destination code and routes it to
; the appropriate PortHandler to be transmitted.

$IFNOT INCLUDE_FLASH
InitRouter
RouteMessage
UpdateEntry
RestoreEntry

$ELSEIF

; RestoreEntry:

; Arguments:

; Modifies:

A holds an identifier in the table. This routine
restore the default port associated with this destination.
This routine should be called after a the ping protocol
has detected that a link has been restored.
A holds the ID of the destination. The destination is
in the routing table.
RouteTable

RestoreEntry
LDX #RouteTable
LDAB #EntrySize
LDY #$00

; make a linear search of the routing table, searching for the entry
RestoreEntry_next
CMPA DestField,X
BEQ RestoreEntry_match
INY ; advance index into default table
ABX
CPY #DefaultTableSize
BNE RestoreEntry_next
BRA RestoreEntry_fin ; Destination not in table!

RestoreEntry_match
LDAB DefaultTable,Y
STAB PortField,X

RestoreEntry_fin
RTS

; UpdateEntry:

; Arguments:

; Modifies:

we found the match
; load default value
; update the entry with the default value

; we are done

Given ID1 in B and ID2 in A, changes the destination port
of the entry for IDI to that of ID2. Call this routine
when communication should be re-routed from one destination
to another. ID2 must be prepared to forward the message.
B holds destination ID to be updated. A holds ID of destination
to use.
RouteTable

UpdateEntry
; First, scan through the list of entries, finding ID2 (in A) and
; then save its port.
PSHB ; Save ID2
LDAB #EntrySize
LDY #RouteTableEntries
LDX #RouteTable

UpdateEntry_0
CMPA DestField,X
BEQ UpdateEntry_match
ABX
DBNE Y,UpdateEntry_0O
; otherwise, we have reached
LDX #BadDestStr
JSR PrintStrToBanner
RTS

; we found the entry

end of list...destination not listed!!!

UpdateEntry_match ; we found the entry, get its destination port
LDAA PortField,X
; now we need to scan the table AGAIN, this time looking for ID1
; when we find it, we want to store the new PortField
PULB ; restore ID2
EXG A,B
PSHB ; save port field

LDY #RouteTableEntries
LDX #RouteTable
LDAB #EntrySize

UpdateEntrynext
CMPA DestField,X
BEQ UpdateEntry_2 ; we found the entry
ABX
DBNE Y,UpdateEntry_next
; otherwise, we have reached end of list...destination not listed!!!
LDX #BadDestStr
JSR PrintStrToBanner
RTS

; - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - -

UpdateEntry_2
PULB
STAB PortField,X
RTS

; we found the entry to update
; restore port field
store the value

; InitRouter: Initialize the entries in the table. Default entries are
currently initialized at the code level and not via messages.

; Modifies: RoutingTable, ACCA,X

InitRouter

; router is a buffer of 12 characters. Each entry pair takes two
; bytes. the first byte is the Destination ID and the second byte
; is a constant the corresponds to the port to use.
; if the entry has a destination ID == 0, then it is empty.

LDX #RouteTable
LDY #RouteTableSize
JSR ClearBuffer

LDY #$00
LDAB #EntrySize
LDX #RouteTable

$IF ZONE_CONTROLLER
LDAA #RBIdl
STAA DestField,X
LDAA DefaultTable,Y
STAA PortField,X
ABX
INY

LDAA #RBId2
STAA DestField,X
LDAA DefaultTable,Y
STAA PortField,X
ABX
INY

LDAA #LB_Idl
STAA DestField,X
LDAA DefaultTable,Y
STAA PortField,X
ABX
INY

LDAA #LB_ID2
STAA DestField,X
LDAA DefaultTable,Y
STAA PortField,X
ABX
INY

LDAA #CoProcessor
STAA DestField,X
LDAA DefaultTable,Y
STAA PortField,X
ABX
INY

LDAA #CentralControl
STAA DestField,X
LDAA DefaultTable,Y
STAA PortField

$ELSEIF ; then we arc
LDAA #ZCID
STAA DestField,X
LDAA DefaultTable,Y
STAA PortField,X
ABX
INY

LDAA #LNID
STAA DestField,X
LDAA DefaultTable,Y
STAA PortField,X
ABX
INY

ler

filling in a block controller (has 4 entries)e

LDAA
STAA
LDAA
STAA
ABX
INY

LDAA
STAA
LDAA
STAA

$ENDIF

RTS

#RNID
DestField,X
DefaultTable,Y
PortField,X

#CoProcessor
DestField,X
DefaultTable,Y
PortField,X

; last 2 entries are left blank for block controllers

----------------------- End of InitRouter-----------------------------------

; RouteMessage: Takes a destination code in X and the starting address
of the message in Y. Determines appropirate PortHandler
and initiates a transmission of the message with the
PortHandler.

RouteMessage also tacks a checksum on to the end of the
message. The last 2 bytes of the message buffer passed in
must be empty and available as storage for the checksum.

; Modifies: ACCA,X,Y

RouteMessage
PSHY
TFR X,A
LDY #Rou
LDAB #Ent:
LDX #Rou

teTableEntries
rySize
teTable

destination field is now in A.

RouteMessage_0O
CMPA DestField,X
BEQ RouteMessage_l
ABX
DBNE Y,RouteMessage_0
; otherwise, we have reached end of list...destination not listed!!!
LDX #BadDestStr
JSR PrintStrToBanner
PULY
RTS

RouteMessage_l
LDAA PortField,X
STAA RouteMessPort
PULY
JSR SendMessage
RTS ; we are done

; we found the entry

BadDestStr FCB 'Bad Dest. ',0

; SendMessage: Takes the message pointed to by Y and the actual
port in RouteMessPort variable. Appends a checksum
and routes the message to appropriate port.]

;Arguments RouteMessPort, Y has address of first message byte
and the message buffer has room for the checksum at
the end.

`---------'--
SendMessage

; First, compute a checksum and append it to the end of the message
LDAA #MESSAGE_SIZE-ChkSumSize ; # bytes to be computed in ChkSum

LDAA #MESSAGE_SIZE-2
TFR Y,X ; prepare X argument
JSR CompChkSum ; compute checksum

TFR Y, X
LDAA ChkSumHi
STAA MessChkSum,X

INX
LDAA ChkSumLo
STAA MessChkSum,X

; X now points to starting address of message
; load high byte of calculated checksum
; store high byte of the checksum

; store low byte of the checksum

; Now route and transmit message at the appropriate port
TFR Y,X ; load X with first address byte

LDAA RouteMessPort
; Determine which port will
CMPA
BEQ
CMPA
BEQ
CMPA
BEQ
CMPA
BEQ
BRA

#SCIPort
RtMessSCI
#DUART1
RtMessDUART1
#DUART2
RtMessDUART2
#SPIPort
RtMessSPI

RtMessSCI

RtMessSCI
JSR TxMessageSCI
RTS

RtMessDUART1
JSR TxMessageUAl
RTS

RtMessDUART2
JSR TxMessageUA2
RTS

RtMessSPI
JSR TxMessageSPI

RTS

handle the message
; use SCI Port?

; use DUART1?

; use DUART2?

; use SPIPort

; default transmission port.

; SCI Port Handler
; transmit message

; SPI Port Handler

--------------------- End of SendMessage--------------------------------

; RouteToPort: Takes a message address in Y and a destination in X.
Bypasses current state of the routing table, using
the original links between the elements. This routine
will need to be changed if the network topology changes
as well.

- -

RouteToPort
LDAA DefaultTable,X
STAA RouteMessPort
JSR SendMessage
RTS

$IF ZONE_CONTROLLER
; columns are:
DefaultTable FCB

$ELSEIF
; columns are:
DefaultTable FCB
$ENDIF

$ENDIF

; load desired destination port

RB1ID, RB2ID, LB1ID, LB2ID, AP, CC
DUART2,DUART2,DUART1,DUART1,SPIPort,SCIPort

ZC ID, LN ID, RN ID, AP
SCIPort,DUART1,DUART2,SPIPort

; SCIl2.ASM
; Block / Zone Controller --> HC12 --> SCI Port Handler Code

; Routines for the Serial Communications Interface (SCI) used to communicate
; with the zone controller.

; Public Routines: InitSCIHandler, TXMessageSCI, RXMessageSCI, AddSCIMess
TxNextSCI

$IFNOT INCLUDE_FLASH
RxMessageSCI
TxMessageSCI
AddSCIMess
InitSCIHandler
TxNextSCI
$ELSEIF

; RxMessageSCI: Call after receiving a RDRF interrrupt on the SCI port.
Copies packet into a message buffer. If last packet in the
message, call PrintString. EVENTUALLY: place the completed
message in a message handler queue

; Application Note: This routine is called as an interrupt handler!
It is based on the RDRF Flag

; 05/06/97 Assumes message is in ASCII format and has a header byte

RxMessageSCI:
LDAA SCOSR1 ; clear receive flag
LDAA SCODRL ; load in the received byte
LDX RxSCITail ; address of where to put the new packet

; Examine if received byte was a HeaderByte or not.
CMPA #HeaderByte
BNE RxMessSCI_0 ; not a header byte so process normally

; otherwise we have received a header byte in the middle of
; receiving another message. ADD ERROR HANDLER CODE HERE AT LATER DATE
LDX RxSCIStart ; start at beginning of current message
STX RxSCITail ; add new bytes at this location
MOVB #$FF,RxSCIHiLo ; reset hi/lo nibble flag for next message

; since we do NOT want to actually store the header byte,
; we are done at this point as the system is ready to receive the new
; message.
BRA finish_sci

; Process the received byte
RxMessSCI_0

; Test RxSCIHiLo to determine if the received packet is a high or low
; nibble. Add the nibble appropriately to the Tail.
BRCLR RxSCIHiLo,$01,RxMessSCI_1 ; branch if it is the low nibble
LSLA
LSLA
LSLA
LSLA ; rotate the nibble into the high nibble
STAA ,X ; store the high nibble in the buffer
BCLR RxSCIHiLo,%00000001 ; toggle flag for next byte
BRA finishsci ; we are done

RxMessSCI_1 ; we have just received a low nibble, incorporate it
ANDA #$OF ; make sure the high nibble is zeroed out
ORAA ,X ; combine high nibble in B with low nibble in A
STAA ,X ; store the complete packet back into the buffer
BSET RxSCIHiLo,%00000001 ; toggle flag for next byte

; Now we need to load up and increment the Tail
LDX RxSCITail
INX
STX RxSCITail ; inc tail of the rmb
LDD RxSCITail
SUBD RxSCIStart
CPD #Message_Size ; is it a complete message?
BNE finish_sci ; if not, our job is done

; otherwise we need to make sure the Tail is not at the end of the
; SCIRMB (if so, we need to wrap it around) AND we need to alert
; the event driver that we have a message to add to the queue
INC RxSCICnt ; we have received a complete message
MOVB #$FF,RxSCIHiLo ; set Hi/lo flag for next incoming message

LDX RxSCITail
STX RxSCIStart
CPX #SCIRMB+SCIRMBSIZE

CPX #SCIRMB+$2C
BNE finishsci

LDX #SCIRMB
STX RxSCITail
STX RxSCIStart

finish_sci
RTS

; record new start addr of the next message

; end of buffer?

; wrap the tail around
; wrap around start addr of next message

S-----------------------End of RxMessageSCI------------------------------

; InitSCI: Initialization routine for the SCI Port
Baud Rate = 19200bps. RIE, TE, RE interrupts are all turned on
Transmit and Receive lines are also enabled.
SCI Port packet length is one byte.

InitSCI
MOVB #$00,SCOBDH
MOVB #$18,SCOBDL ; sets baud rate of 19200bps
MOVB #%00000000,SCOCR1 ; 8 data bits, 1 start, 1 stop, NO PARTIY
; enable appropriate interupts (TIE,TCIE,RIE,TE,RE)

MOVB #%00101100,SCOCR2 ; right now, just turn on RIE,TE,RE
RTS ; Initialization is Complete

; InitSCIHandler: Initializes the SCI Data Port Handler
Clears out SCI receive and transmit buffers.
Modifies A and X,SCIRMB,SCITMB,RxSCIHead,RxSCITail,RxSCIStart

; 05/06/97 Current Implementation uses ClearBuffer

InitSCIHandler
JSR InitSCI ; initialize the port
LDY #SCITMBSize
LDX #SCITMB
JSR ClearBuffer

LDY #SCIRMBSize
LDX #SCIRMB
JSR ClearBuffer

CLR RxSCICnt ; clear number of unprocessed receive messages
MOVB #$FF,RxSCIHiLo ; clear flag
LDX #SCIRMB
STX RxSCIHead ; always points to first message in the buffer
STX RxSCITail ; always points to the next available buffer entry
STX RxSCIStart ; addr into buffer of first byte of current message

LDX #SCITMB
STX TxSCIHead
STX TxSCITail
LDD #$00
STD TxSCICnt

RTS
------------------------ End of InitSCIHandler-------------------------------

---------------------------------------'----------'----'---
; TxMessageSCI - Transmit message to the SCI port. Assumes the address of the

first message byte is in X and that the message length
is MESSAGE_SIZE. It will copy the message into its own
buffer. SCITMB must be at least 2*MessageSize+l.

; Modifies: SCITMB,Y,X,A,
; Current Implementation: Procedure blocks! Waits until entire message has

been transmited before it returns to caller.
In the future this will be interrupt driven.

; 04/26/97 Now transmits data in ASCII format.
So SCITMB must be twice as long as MESSAGE_SIZE

; 04/29/97 Added Header byte to transmissions
'---
TxMessageSCI
LDY TxSCITail
; place address of destination in X
JSR PrepareMessage
; We need to make sure the tail does not need wrapped around.
LDD TxSCITail
ADDD #SCIMessageSize
CPD #SCITMB+$5A
BNE TxMessSCI_1
LDD #SCITMB

TxMessSCI_1
SEI
STD TxSCITail
; increment # bytes to be transmitted
LDD TxSCICnt
ADDD #SCIMessageSize
STD TxSCICnt

; now we need to make sure transmit empty holding register is on
BSET SCOCR2,%10000000
CLI

RTS ; we are all done
------------------------- End of TxMessageSCI------------------------------

; TxNextSCI: Called after a TDRE interrupt on the SCI Port. Takes the
next byte in the TMB and loads it into the shift register.
If the TMB is empty, turns of the transmit interrupt flag.

; Modfies TxSCIHead, SCITMB, TXSCICnt
'---
TxNextSCI
LDD TxSCICnt

; if we have no bytes to transmit

; otherwise we have at least one byte to load into the shift register
LDY TxSCIHead
LDAA ,Y
STAA SCODRL ; write value to be transmitted into SC Data Register
LDX TxSCICnt
DEX
STX TxSCICnt
INY
STY TxSCIHead
CPY #SCITMB+$5A
BNE TxNextSCI_fin ; wrap around test
LDY #SCITMB
STY TxSCIHead
BRA TxNextSCI_fin

TxNextSCI_1 ; no bytes to transmit, so turn off interrupts
BCLR SCOCR2,%10000000

TxNextSCI_fin
RTS

; AddSCIMess: Called by the event handler to actually take a message in the
scirmb (receive message buffer) and place it in the message
queue (by calling AddMessage)

; Modifies: A,X,RxSCIHead
; ------------------------------ '--------------------------
AddSCIMess

; First, copy the message contents into the queue
LDX RxSCIHead ; address of first byte in message
JSR AddMessage ; add the message to the queue

; now
LDD
ADDD
CPD
CPD
BNE
LDD

advance RxSCIHead to next part of the SCIRMB
RxSCIHead
#MESSAGE_SIZE ; increment by the length of the message
#SCIRMB+SCIRMBSIZE ; are we at the end of the scirmb?

#SCIRMB+$2C
AddSCIMess_0
#SCIRMB ; wrap the head around

AddSCIMess_0
STD RxSCIHead
DEC RxSCICnt
RTS

; store new head of the queue
; we just removed an SCI message..

; -------------------------- End of AddSCIMess-------------------------------

$ENDIF

-----------------------------'----'---------------'--------
; UART1.ASM
; Block / Zone Controller --> HC12 --> UART 1 Port Handler Code

; Routines for controlling the first UART on the DUART chip.

; Public Routines: InitDUlHandler, TXMessageDU1, RXMessageDU1, AddDUlMess
; Private Routines: InitDU1, TXDU1, RXDU1
:---

Details:
For transmitting, we have a buffer UA1TMB which MUST be a multiple of
2*MESSAGE_SIZE+1. The buffer has a head and a tail. Both wrap around.
Messages are added to the buffer by starting at the tail location.
The next byte to transmit is chosen by the head pointer.

; For receiving, we have a buffer UA1RMB which MUST be an multiple of
; MESSAGE_SIZE. The buffer has a head

$IFNOT INCLUDE_FLASH
InitUAlHandler
TxMessageUAl
AddUAlMess
InitDUART1
RxMessageUAl
TxNextUAl
HandleDUARTInt
$ELSEIF

BEQ TxNextSCI_1

; InitUAlHandler: Initializes the DU1 Data Port Handler
Clears out DUl receive and transmit buffers.
Modifies A and X

; Notes: MR -- > PDLC2, CS -- > PP4, CHSL = PB.5, A2..AO = PB4..2
RD --> PB1 WR --> PBO

----------------------------'----------'----'----------'---
InitUAlHandler
JSR InitDUARTl

; Now that UART1 has been initialized, clear out our transmit and
; receive buffers.
LDY #UAlTMBSize
LDX #UA1TMB
JSR ClearBuffer

LDY #UAlRMBSize
LDX #UA1RMB
JSR ClearBuffer

CLR RxUAlCnt ; clear number of unprocessed receive messages
;NOTE: FOR RxUAlHiLo, bit 7 is used to record the presence of a header
; packet for receiving. bit 0 is used to determine if the next nibble
; is going to be a hi or lo nibble
MOVB #$01,RxUAlHiLo ; clear flag
LDX #UA1RMB
STX RxUAlHead ; always points to first message in the buffer
STX RxUAlTail ; always points to the next available buffer entry
STX RxUAlStart ; addr into buffer of first byte of curren message

LDX #UA1TMB
STX TxUAlHead
STX TxUAlTail
LDX #$00
STX TxUAlCnt ; 2 byte number for # of packets in transmit buffer

RTS

'------------------------------'------------------------
; TxMessageUAl - Adds a message to the offboard UART1 transmission queue.

Actual tranmission occurs by TxNextUAl. UA1TMB must be a
multiple of 2*MessageSize+l. Also enables ETHREI for UART1
as we now have data to transmit. Interrupts are disabled
for this action.

; Arguments: X holds the address of the first byte of the message.
Message must have length Message_Size

; Modifies: UAlTMB,Y,X,A,TxUAlCnt,TxUAlTail
-----------------------------'---------------'------------

TxMessageUAl
;first, make sure buffer has space for the new message
LDD #UAlMessageSize

; First, copy the message contents into UA1TMB
LDY TxUAlTail ; place address of destination in Y
JSR PrepareMessage ; add header byte, convert to ASCII, copy into UA1TMB

; since UA1TMB is a multiple of 2*Message_size+l, after copy each message,
; we need to check for the tail needing wrapped around.

; we need to make sure the tail does not need to be wrapped around
LDD TxUAlTail
ADDD #UAlMessageSize
CPD #UAlTMB+UAlTMBSize

CPD #UAlTMB+$5A
BNE TxMessUAl_1
LDD #UA1TMB ; wrap to beginning
STD TxUAlTail

TxMessUAl_l
SEI ; turn off interrupts (one cycle delay)
STD TxUAlTail

; increment # bytes to be transmitted
LDD TxUAlCnt
ADDD #UAlMessageSize
STD TxUAlCnt

; Now we want to make sure the ETHREI is set because we have

; data to transmit.

MOVB #$00,DDRA
MOVB #$FF,DDRB
MOVB #%00100101,PORTB
BCLR PORTP,%00010000
LDAA PORTA
BSET PORTP,%00010000
ORAA #%00000010
STAA PORTA
MOVB #$FF,DDRA
MOVB #%00100110,PORTB
BCLR PORTP,%00010000
BSET PORTP,%00010000
CLI

; want to read in IER

; load IER values into A
; turn DUART back off
; set ETHREI, leave rest unchanged

; want to write to IER

; turn interrupts back on

RTS ; we are all done

'-----------'---
; AddUAlMess: Called by the event handler to actually take a message in the

ualrmb (receive message buffer) and place it in the message
queue (by calling AddMessage)

; Modifies: A,X,RxUAlHead

AddUAlMess
; First, copy the message
LDX RxUAlHead
JSR AddMessage

; now
LDD
ADDD
CPD

CPD
BNE
LDD

contents into the queue
; address of first byte in message
; add the message to the queue

advance RxUAIHead to next part of the UA1RMB
RxUAlHead
#MESSAGE_SIZE ; increment by the length of the message
#UAlRMB+UAlRMBSize ; are we at the end of the ualrmb?

#UAlRMB+$2C
AddUAlMess_0
#UA1RMB ; wrap the head around

AddUAlMess_0
STD RxUAlHead
DEC RxUA1Cnt
RTS

; store new head of the queue
; we just removed an UA1 message..

'----'---------------------'-------------------------------
; InitDUART1: Initialization routine for the UART 1.

Baud Rate = 19200bps. Receive and Transmit Com. Int. Enabled
8 bit data, 1 stop bit, no parity

%00010000
DRP
DRP
ORTP,%00010000

PORTDLC,%00000100 ; assert Master Reset
; MR must be asserted for at least 500ns.

PORTDLC,%00000100

T1

D
D
P

; make PortP.4 an output (/CS for DUART)
; make sure chip select intially turned off

MOVB #$FF,DDRA
MOVB #$FF,DDRB

; set
MOVB
MOVB
BCLR
BSET

up the Line Control
#%10000011,PORTA
#%00101110,PORTB
PORTP,%00010000
PORTP,%00010000

; configure ports A and B as outputs

Register
; 8 data bits, 1 stop bit, no parity, DLAB = 1
; A2..AO = 011 for Line Control, CHSL=1,WR=0
; make the command active

; now that DLAB is high, access the baud rate divisors
MOVB #$18,PORTA ; low byte of divisor for baud rate generator
MOVB #%00100010,PORTB ; access Divisor Latch (low byte)

InitDUAR
LDAA
ORAA
STAA
BSET

BSET
NOP
NOP
NOP
NOP
NOP
NOP
BCLR
NOP
NOP
NOP
NOP
NOP

BCLR PORTP,%00010000
BSET PORTP,%00010000

MOVB #00,PORTA ; high byte of divisor for baud rate generator
MOVB #%00100110,PORTB
BCLR PORTP,%00010000
BSET PORTP,%00010000

MOVB #%00000011,PORTA ; we need to clear the DLAB bit now
MOVB #%00101110,PORTB ; access line control register
BCLR PORTP,%00010000
BSET PORTP,%00010000

; Now, setup the interrupts we wish to have enabled
MOVB #%00000001,PORTA ; enable Received Data interrupt
MOVB #%00100110,PORTB ; write to the IER
BCLR PORTP,%00010000
BSET PORTP,%00010000
RTS

--
; RxMessageUAl: Call to handle RDAI interrupt from UART1. Copies the

received packet into a message buffer. If last packet in the
message, increments RxUAlCnt to notify event handler that
a completed message has been received.

; Modifies UA1RMB, RxUAlStart,RxUAlTail,X
'--
RxMessageUAl

; load in the received byte
MOVB #$0O,DDRA
MOVB #$FF,DDRB
MOVB #%00100001,PORTB ; want to read Receive Buffer Register
BCLR PORTP,%00010000
LDAA PORTA ; load in received byte
BSET PORTP,%00010000

LDX RxUAlTail ; address of where to put the new packet

; Examine if received byte was a HeaderByte or not.
CMPA #HeaderByte
BNE RxMessUA1_0 ; not a header byte so process normally

; otherwise we have received a header byte in the middle of
; receiving another message. ADD ERROR HANDLER CODE HERE AT LATER DATE
LDX RxUAlStart ; start at beginning of current message
STX RxUAlTail ; add new bytes at this location
MOVB #%0000001,RxUAlHiLo ; bit 7 acks header byte, bit 0 resets hi/lo

; since we do NOT want to actually store the header byte,
; we are done at this point as the system is ready to receive the new
; message.
BRA RxMessUAl_fin

; Process the received byte
RxMessUAl_0

; if we have not received a header packet, ignore this packet
BRCLR RxUAlHiLo,$80,RxMessUAl_fin

; Test RxUAlHiLo to determine if the received packet is a high or low
; nibble. Add the nibble appropriately to the Tail.
BRCLR RxUAlHiLo,$01,RxMessUA1_1 ; branch if it is the low nibble
LSLA
LSLA
LSLA
LSLA ; rotate the nibble into the high nibble
STAA ,X ; store the high nibble in the buffer
BCLR RxUAlHiLo,$01
BRA RxMessUAl_fin ; we are done

RxMessUAl_1 ; we have just received a low nibble, incorporate it
ANDA #$OF ; make sure the high nibble is zeroed out
ORAA ,X ; combine high nibble in B with low nibble in A
STAA ,X ; store the complete packet back into the buffer
BSET RxUAlHiLo,$01

; Now we need to load up and increment the Tail
LDX RxUAlTail
INX
STX RxUAITail ; inc tail of the rmb
LDX #RxUAlStart

LDD ,X
ADDD #MESSAGE_SIZE
CPD RxUAlTail
BNE RxMessUAl_fin

; load addr of first byte in current message

; is it a complete message?
; if not, our job is done

; otherwise we need to make sure the Tail is not at the end of the
; UA1RMB (if so, we need to wrap it around) AND we need to alert
the event driver that we have a message to add to the queue

INC RxUA1Cnt ; we have received a complete message
MOVB #$01,RxUAlHiLo ; clear header flag and set hi/lo nibble flag

LDX
STX

CPX
CPX
BNE

RxUAlTail
RxUAlStart
#UAlRMB+UAlRMBSize
#UAlRMB+$2C
RxMessUAl_fin

LDX #UA1RMB
STX RxUAITail
STX RxUAlStart

RxMessUAl_fin
RTS

; TxNextUAl

; record new start addr of the next message

; end of buffer?

; wrap the tail around
; wrap around start addr of next message

Sends the next byte to be transmitted to the the offboard
UART1. This routine should be called to handle a UART1
transmitter holding register empty interrupt. If there are no
more bytes to be transferred, it turns off ETHREI from
the DUART. Assumes any other off chip devices using the
data bus are inactive (i.e. they are critical sections)

; Modifies: UA1TMB, TxUAlHead, A,Y, TxUA1Cnt

TxNextUAl
LDD TxUAlCnt
CPD #00 do we have any bytes to transfer?
BEQ TxNextUAl_0

; otherwise we have at least
MOVB #$FF,DDRA
MOVB #$FF,DDRB
LDY TxUAlHead
LDAA ,Y
STAA PORTA
MOVB #%00100010,PORTB
BCLR PORTP,%00010000
BSET PORTP,%00010000
LDX TxUA1Cnt
DEX
STX TxUA1Cnt
INY
STY TxUAlHead
CPY #UAlTMB+UAlTMBSize
CPY #UAlTMB+$5A
BNE TxNextUAl_finish
BNE TxNextUAl_0
LDY #UA1TMB
STY TxUAlHead
BRA TxNextUAl_finish

one byte we can load into UART1

execute the command

record that we have transmitted a byte

have we gone past the buffer?

wrap around

TxNextUAl_0 ; No more bytes to transmit so disable UART1 interrupt
MOVB #$00,DDRA
MOVB #$FF,DDRB
MOVB #%00100101,PORTB ; want to read in IER
BCLR PORTP,%00010000
LDAA PORTA ; load IER values into A
BSET PORTP,%00010000 ; turn DUART back off
MOVB #$FF,DDRA
ANDA #%11111101 ; clear ETHREI, leave rest unchanged
STAA PORTA
MOVB #%00100110,PORTB ; want to write to IER
BCLR PORTP,%00010000
BSET PORTP,%00010000

TxNextUAl_finish
RTS

; HandleDUARTInt: Assuming an interrupt was received from the IRQ line,

process it. The int is either an empty transmit buffer
or a receive character interrupt.

; Modifies:

HandleDUARTInt
; Check Channel 1 for source of interrupt, then Channel 2
MOVB #$00,DDRA
MOVB #%00101001,PORTB ; Want to read IER
BCLR PORTP,%00010000 ; execute the command
LDAA PORTA
BSET PORTP,%00010000
MOVB #$FF,DDRA

CMPA #04
BNE HandleDUARTInt_0
JSR RxMessageUAl
RTI

HandleDUARTInt_0
CMPA #02
BNE HandleDUARTInt_1
JSR TxNextUAl
RTI

HandleDUARTInt_1
MOVB #$00,DDRA
MOVB #%00001001,PORTB
BCLR PORTP,%00010000
LDAA PORTA
BSET PORTP,%00010000
MOVB #$FF,DDRA

; test for receive interrupt
; it wasn't a Channel 1 received data interrupt
; it was, so retrieve new data

; Check Channel 2 interrupts

; Want to read IER for channel 2
; execute the command

CMPA
BNE
JSR
RTI

#04
HandleDUARTInt_2
RxMessageUA2

HandleDUARTInt_2
CMPA #02
BNE HandleDUARTIntfin
JSR TxNextUA2

HandleDUARTInt_fin
RTI

$ENDIF

; test for receive interrupt
; it wasn't a Channel 1 received
; it was, so retrieve new data

; empty transmit buffer message?

; UART2.ASM

; Block / Zone Controller --> HC12 --> UART 2 Port Handler Code

; Routines for controlling the second UART on the DUART chip.

; Public Routines: InitDU2Handler, TxMessageUA2,RxMessageUA2 AddUA2Mess,
TxNextUA2

; Private Routines: InitDUART2

; Details:
; For transmitting, we have a buffer UA2TMB which MUST be a multiple of
; 2*MESSAGE_SIZE+1. The buffer has a head and a tail. Both wrap around.
; Messages are added to the buffer by starting at the tail location.
; The next byte to transmit is chosen by the head pointer.

; For receiving, we have a buffer UA2RMB which MUST be an multiple of
; MESSAGE_SIZE. The buffer has a head

$IFNOT INCLUDEFLASH
InitUA2Handler
TxMessageUA2
AddUA2Mess
InitUART2
RxMessageUA2
TxNextUA2
$ELSEIF

'-----------'---------- - -- -- -- - -- -- -- - -- -- -- - -- --
; InitUA2Handler: Initializes the DU1 Data Port Handler

Clears out DU1 receive and transmit buffers.
Modifies A and X

; Notes: MR -- > PDLC2, CS -- > PP4, CHSL = PB.5, A2..AO = PB4..2
RD -- > PBI WR -- > PBO

data interrupt

InitUA2Handler
JSR InitDUART2

; Now that UART2 has been initialized, clear out our transmit and
; receive buffers.
LDY #UA2TMBSize
LDX #UA2TMB
JSR ClearBuffer

LDY #UA2RMBSize
LDX #UA2RMB
JSR ClearBuffer

CLR RxUA2Cnt ; clear number of unprocessed receive messages
;NOTE: FOR RxUA2HiLo, bit 7 is used to record the presence of a header
; packet for receiving. bit 0 is used to determine if the next nibble
; is going to be a hi or lo nibble
MOVB #$01,RxUA2HiLo ; clear flag
LDX #UA2RMB
STX RxUA2Head ; always points to first message in the buffer
STX RxUA2Tail ; always points to the next available buffer entry
STX RxUA2Start ; addr into buffer of first byte of curren message

LDX #UA2TMB
STX TxUA2Head
STX TxUA2Tail
LDX #$00
STX TxUA2Cnt ; 2 byte number for # of packets in transmit buffer

RTS
------------------------ End of InitUA2Handler-------------------------------

'----'---
; TxMessageUA2 - Adds a message to the offboard UART1 transmission queue.

Actual tranmission occurs by TxNextUA2. UA2TMB must be a
multiple of 2*MessageSize+l. Also enables ETHREI for UART1
as we now have data to transmit. Interrupts are disabled
for this action.

; Arguments: X holds the address of the first byte of the message.
Message must have length Message_Size

Modifies: UA2TMB,Y,X,A,TxUA2Cnt,TxUA2Tail

TxMessageUA2

; First, copy the message contents into UA2TMB
LDY TxUA2Tail ; place address of destination in Y
JSR PrepareMessage ; add header byte, convert to ASCII, copy into UA2TMB

; since UA2TMB is a multiple of 2*Messagesize+l, after copy each message,
; we need to check for the tail needing wrapped around.

; we need to make sure the tail does not need to be wrapped around
LDD TxUA2Tail
ADDD #UA2MessageSize
CPD #UA2TMB+UA2TMBSize

CPD #UA2TMB+$5A
BNE TxMessUA2_1
LDD #UA2TMB ; wrap to beginning
STD TxUA2Tail

TxMessUA2_1
SEI ; turn off interrupts (one cycle delay)
STD TxUA2Tail

; increment # bytes to be transmitted
LDD TxUA2Cnt
ADDD #UA2MessageSize
STD TxUA2Cnt

; Now we want to make sure the ETHREI is set because we have
; data to transmit.

MOVB #$00,DDRA
MOVB #$FF,DDRB
MOVB #%00000101,PORTB ; want to read in IER
BCLR PORTP,%00010000
LDAA PORTA ; load IER values into A
BSET PORTP,%00010000 ; turn DUART back off
ORAA #%00000010 ; set ETHREI, leave rest unchanged

100

PORTA
#$FF,DDRA
#%00000110,PORTB
PORTP,%00010000
PORTP,%00010000

; want to write to IER

; turn interrupts back on

; we are all done

; AddUA2Mess: Called by the event handler to actually take a message in the
ualrmb (receive message buffer) and place it in the message
queue (by calling AddMessage)

; Modifies: A,X,RxUA2Head
'---
AddUA2Mess

; First, copy the message
LDX RxUA2Head
JSR AddMessage

; now
LDD
ADDD
CPD

CPD
BNE
LDD

contents into the queue
; address of first byte in message
; add the message to the queue

advance RxUA2Head to next part of the UA2RMB
RxUA2Head
#MESSAGE_SIZE ; increment by the length of the message
#UA2RMB+UA2RMBSize ; are we at the end of the ualrmb?

#UA2RMB+$2C
AddUA2Mess_0
#UA2RMB ; wrap the head around

AddUA2Mess_0
STD RxUA2Head
DEC RxUA2Cnt
RTS

; store new head of the queue
; we just removed an UA2 message..

; InitDUART1: Initialization routine for the UART 1.
Baud Rate = 9200bps. Receive and Transmit Com. Int. Enabled
8 bit data, 1 stop bit, no parity

InitDUART2
LDAA #%00010000
ORAA DDRP
STAA DDRP ; make PortP.4 an output (/CS for DUART)
BSET PORTP,%00010000 ; make sure chip select intially turned off
BCLR PORTDLC,%00000100 ; make sure MR is off

MOVB #$FF,DDRA
MOVB #$FF,DDRB

; set
MOVB
MOVB
BCLR
BSET

up the Line Control
#%10000011,PORTA
#%00001110,PORTB
PORTP,%00010000
PORTP,%00010000

; now that DLAB is high,
MOVB #$18,PORTA
MOVB #%00000010,PORTB
BCLR PORTP,%00010000
BSET PORTP,%00010000

MOVB #00,PORTA
MOVB #%00000110,PORTB
BCLR PORTP,%00010000
BSET PORTP,%00010000

MOVB #%00000011,PORTA
MOVB #%00001110,PORTB
BCLR PORTP,%00010000
BSET PORTP,%00010000

; Now,
MOVB
MOVB
BCLR
BSET
RTS

; configure ports A and B as outputs

L Register
; 1 stop bit, no parity, DLAB = 1
; A2..AO = 011 for Line Control, CHSL=1,WR=0
; make the command active

access the baud rate divisors
; low byte of divisor for baud rate generator

; access Divisor Latch (low byte)

; high byte of divisor for baud rate generator

; we need to clear the DLAB bit now
; access line control register

setup the interrupts we wish to have enabled
#%00000001,PORTA ; enable Received Data interrupt
#%00000110,PORTB ; write to the IER
PORTP,%00010000
PORTP,%00010000

; RxMessageUA2: Call to handle RDAI interrupt from UART1. Copies the

STAA
MOVB
MOVB
BCLR
BSET
CLI

RTS

; Modifies

received packet into a message buffer. If last packet in the
message, increments RxUA2Cnt to notify event handler that
a completed message has been received.

UA2RMB, RxUA2Start,RxUA2Tail,X

RxMessageUA2:
; load in the received byte
MOVB #$0O,DDRA
MOVB #$FF,DDRB
MOVB #%00000001,PORTB ; want to read Receive Buffer Register
BCLR PORTP,%00010000
LDAA PORTA ; load in received byte
BSET PORTP,%00010000

LDX RxUA2Tail ; address of where to put the new packet

; Examine if received byte was a HeaderByte or not.
CMPA #HeaderByte
BNE RxMessUA2_0 ; not a header byte so process normally

; otherwise we have received a header byte in the middle of
; receiving another message. ADD ERROR HANDLER CODE HERE AT LATER DATE
LDX RxUA2Start ; start at beginning of current message
STX RxUA2Tail ; add new bytes at this location
MOVB #%10000001,RxUA2HiLo ; bit 7 acks header byte, bit 0 resets hi/lo

; since we do NOT want to actually store the header byte,
; we are done at this point as the system is ready to receive the new
; message.
BRA RxMessUA2 fin

; Process the received byte
RxMessUA2_0

; if we have not received a header packet, ignore this bit
BRCLR RxUA2HiLo,$80,RxMessUA2_fin

; Test RxUA2HiLo to determine if the received packet is a high or low
; nibble. Add the nibble appropriately to the Tail.
BRCLR RxUA2HiLo,$01,RxMessUA2_1 ; branch if it is the low nibble
LSLA
LSLA
LSLA
LSLA ; rotate the nibble into the high nibble
STAA ,X ; store the high nibble in the buffer
BCLR RxUA2HiLo,$01
BRA RxMessUA2_fin ; we are done

RxMessUA2_l ; we have just received a low nibble, incorporate it
ANDA #$OF ; make sure the high nibble is zeroed out
ORAA ,X ; combine high nibble in B with low nibble in A
STAA ,X ; store the complete packet back into the buffer
BSET RxUA2HiLo,$01

; Now we need to load up and increment the Tail
LDX RxUA2Tail
INX
STX RxUA2Tail ; inc tail of the rmb
LDX #RxUA2Start
LDD ,X ; load addr of first byte in current message
ADDD #MESSAGE_SIZE
CPD RxUA2Tail ; is it a complete message?
BNE RxMessUA2_fin ; if not, our job is done

; otherwise we need to make sure the Tail is not at the end of the
; UA2RMB (if so, we need to wrap it around) AND we need to alert
; the event driver that we have a message to add to the queue
INC RxUA2Cnt ; we have received a complete message
MOVB #$01,RxUA2HiLo ; clear header flag and set hi/lo nibble flag

LDX
STX

CPX
CPX
BNE

RxUA2Tail
RxUA2Start
#UA2RMB+UA2RMBSize

#UA2RMB+$2C
RxMessUA2_fin

LDX #UA2RMB
STX RxUA2Tail
STX RxUA2Start

RxMessUA2_fin

; record new start addr of the next message

; end of buffer?

; wrap the tail around
; wrap around start addr of next message

102

RTS

-----------------------'------'---------------------------
;TxNextUA2 Sends the next byte to be transmitted to the the offboard

UART1. This routine should be called to handle a UART1
transmitter holding register empty interrupt. If there are no
more bytes to be transferred, it turns off ETHREI from
the DUART. Assumes any other off chip devices using the
data bus are inactive (i.e. they are critical sections)

UA2TMB, TxUA2Head, A,Y, TxUA2Cnt

TxNextUA2
LDD TxUA2Cnt
CPD #00 do we have any bytes to transfer?
BEQ TxNextUA2_0

; otherwise we have at least one byte we can load into UART1
#$FF,DDRA
#$FF,DDRB
TxUA2Head
,Y
PORTA
#%00000010,PORTB
PORTP,%00010000
PORTP,%00010000
TxUA2Cnt

TxUA2Cnt

TxUA2Head
#UA2TMB+UA2TMBSize

#UA2TMB+$5A
TxNextUA2_finish
#UA2TMB
TxUA2Head
TxNextUA2_finish

; execute the command

; record that we have transmitted a byte

; have we gone past the buffer?

; wrap around

TxNextUA2_0 ; No more bytes to transmit so disable UART1 interrupt
MOVB #$00,DDRA
MOVB #$FF,DDRB
MOVB #%00000101,PORTB ; want to read in IER
BCLR PORTP,%00010000
LDAA PORTA ; load IER values into A
BSET PORTP,%00010000 ; turn DUART back off
MOVB #$FF,DDRA
ANDA #%11111101 ; clear ETHREI, leave rest unchanged
STAA PORTA
MOVB #%00000110,PORTB ; want to write to IER
BCLR PORTP,%00010000
BSET PORTP,%00010000

TxNextUA2_finish
RTS

$ENDIF

103

; Modifies:

MOVB
MOVB
LDY
LDAA
STAA
MOVB
BCLR
BSET
LDX
DEX
STX
INY
STY
CPY

CPY
BNE
LDY
STY
BRA

Protocol Tools:'-----------'---------------------'-------------------------
EventHan.ASM

; Block / Zone Controller --> HC12 --> Event Handler Code

; Supported Routines: InitEventHandler, HandleEHInt, AddEvent

; Code to support the event handler. Events are added to the EH buffer. Each
; event has an associated time value in terms of the smallest time increment.
; At every minimum time increment, the EH (Event Handler) decrements the time
; field for each record. When a time field for a record turns to zero, it is
; time for the event to occur. The EH then sets the appropriate bits for
; specified flag.

; An Event Record in the buffer is 5 bytes. The first 2 bytes specify the
; address of a one byte flag. The next 2 bytes hold the time count till the
; event. The last byte is used as a mask for the flag. When the time count
; goes to zero, the EH uses the mask to set the appropriate bits on the
; particular event flag.

; The flag mask works as follows: every bit that is set in the mask will cause
; the corresponding bit to be set when the time count reaches zero. Any bit
; in the mask that is zero implies that that bit in the flag will be untouched.

; Note: If the ADDRESS for the flag is zero then the associated record is
; considered empty. We can only have NumEvent events pending.

$IFNOT INCLUDE_FLASH
InitEventHandler
AddEvent
HandleEHInt
$ELSEIF

'----'---
; InitEventHandler -- Sets up the EH buffer, clearing all the records and

setting up the compare module to be used for the timer.
; Note: TC5 is used as a compare module for the event handler

InitEventHandler
; initialize the variables
LDX #EHBuffer
LDY #EHBufferSize
JSR ClearBuffer ; clear the EH buffer
CLR EventHanCnt ; clear number of pending events

; now initialize TC5 which is going to be used ONLY by the event handler
BCLR TCTL1,%00001100 ; disconnect Channel 5 from its output pin
BCLR TMSK1,%00100000 ; Turn OFF the interrupt enable for now
BSET TIOS,%00100000 ; Channel 5 is now in compare mode

RTS

'----'---
; AddEvent -- Finds an available slot in the EHBuffer and places the event in

the slot. Does NOT add the event if the EHBuffer is full, we
will eventually want to add an error handling routine here.
Interupts are briefly turned off while the buffer is modified.

; Args: The event information must be stored in an event record
(EHRecord) before calling AddEvent. As such, you can NEVER
load EHRecord while inside an interrupt!!! Otherwise, you
could be trashing a value used by another caller.
EHRecord must be filled as follows:
First two bytes are the address for the flag to be set,
next two bytes are time count for the event expressed in number
of EHMinimumDelay counts. Last byte is the flag mask

; Returns: ACCAA has a value of 1 if the event record could not be added
because the buffer was full. It returns 0 otherwise

--
AddEvent

LDAA EventHanCnt
CMPA #NumEvents
BEQ AddEventfull ; no more space in the event buffer

; otherwise, search for first free record slot in the buffer by starting
; at the start of the buffer (offsetting by 2 so we can look at the tag/
; flag address field

104

LDX #EHBuffer
AddEvent_0

LDY ,X
BEQ AddEvent_l
LDAB #EventRecSize
ABX
BRA AddEvent_0

; we have found the empty
AddEvent_1

SEI
LDY #EHRecord
LDD ,Y
STD ,X

LDD 2,Y
STD 2,X

LDAA 4,Y
STAA 4,X

LDAA
BNE
LDD
ADDD
STD
BSET

EventHanCnt
AddEvent_2
TCNT
#EHDelayInterval
TC5
TMSK1,%00100000

AddEvent_2
INC EventHanCnt
CLI
LDAA #$00
BRA AddEventfin

AddEventfull
LDAA #EHBufferFull

AddEvent_fin
RTS

; HandleEHInt:

; load in flag address value

; increment x to the next record

record so insert event data stored on the stack.

; disable interrupts while we modify EHBuffer

; store flag address

; extract time count for the event
; store time count for event

; extract flag mask
store flag mask

; test if there are already pending events

; enable EHHandler interrupt

; no errors

Handle event handler interrupt by decrementing the count
field for each pending event in the queue. If the count
field is zero after the decrement then set the appropriate
flag bits ana clear the event record.

HandleEHInt
LDAA EventHanCnt
BEQ HandleEHInt_5 ; any pending events?

; otherwise, parse through buffer, examining each record and adjusting the
; count

; LDX #EHBuffer-#EventRecSize
LDX #EHBuffer-$05

HandleEHInt_0
LDAB #EventRecSize
ABX

; CMPX #EHBuffer+EHBi
CPX #EHBuffer+$32
BEQ HandleEHIntf
LDD ,X
BEQ HandleEHInt_0

; if it is not empty,
; has reached zero or
; of the record.
LDY 2,X
DEY
STY 2,X
BNE HandleEHInt_0

LDAA 4,X
LDY ,X
ORAA ,Y
STAA ,Y
LDD #$00
STD ,X
DEC EventHanCnt
BRA HandleEHInt_0

ufferSize

in

; if record is not empty, process it

advance to time count, decrement it and test if it
not. X holds address of flag and is at the start

; load time count value

; store it
; if it was not zero, move on to next event

; load the flag mask
; handle extra level of indirection
; apply the mask to the flag
; store updated flag

; clear out the flag address to clear record
; we just removed a pending event...

105

HandleEHInt_5 ; no active records in the event handler so turn int. off
BCLR TMSK1,%00100000 ; turn off the interrupt

HandleEHInt_fin
; reload timer
LDD TCNT
ADDD #EHDelayInterval ; add time till next interrupt
STD TC5 ; store next interrupt time
RTS

$ENDIF

-------------------------'------'--------------'------------
; Vehicle.ASM

; Block / Zone Controller --> HC12 --> Vehicle Creation / Display Code

; Routines: InitVehicleList, AddVehicle, UpdateVehicles
I--
; Overview:
; A vehicle is represented as a vehicle record. In a vehicle record, the first
; byte is a vehicle ID (VID), second byte is vehicle postion (VPOS) and the last
; two bytes are for the vehicle velocity (VVEL). VVEL is expressed in terms of
; the number of 50usec counts until it moves to the next position. VPOS is
; expressed in terms of the position on the track segment for the current
; block.

; The vehicle manager has been augmented to manage vehicles and their
; positions on the track. The vehicle manager uses a PostionLocked flag
; to determine if a particular position is locked or not. Each bit in the
; flag corresponds to a track position. Bit 0 is position zero and bit 7 is
; position 7. When updating a vehicle position, if the next position is
; locked (occupied) by another vehicle, the manager sets a blocked flag
; or the blocked vehicle. If a vehicle is blocked, its velocity value
; is no longer used to form an event. The vehicle is considered stopped!!
; Every time a position is unlocked, the vehicle list is scanned for blocked
; vehicles and their position is updated, with an event being set
; for in the next position update.

; NOTE: VID = 0 is used to designate an empty vehicle record

$IFNOT INCLUDE_FLASH
InitVehicleList
AddVehicle
RemoveVehicle
UpdateVehicles
UpdateBlkVehicles
$ELSEIF
------------------------'--------------'-------------------

; InitVehicleList: Clears vehicle record list. Clears VehicleCnt and
VehicleStatus.

;Arguments None
; Modifies: VehicleList, VehicleCnt,
'------------------------- - ------------- -----------
InitVehicleList
LDX #VehicleBuffer
LDY #VehicleBufferSize
JSR ClearBuffer

CLR VehicleCnt
CLR VehicleStatus
CLR PositionStatus ; 0 = free, 1 = occupied. Each bit = a position
RTS

VPosString FCB 'VPOS: ',0

:--
; RemoveVehicle -- Takes a VID in A and removes it from the vehicle list

also updates position status. VPOS is stored in B.
Remove vehicle if VID and VPOS match arguments

; Arguments: VID in A, VPOS in B
; Modifies: VehicleBuffer, PositionStatus
:--
RemoveVehicle

LDX #VehicleBuffer
LDY #$08 ; eight entries to be examined

RemoveVeh_0
CMPA VID,X
BNE RemoveVeh_cont

106

CMPB VPOS,X
BNE RemoveVeh_cont

RemoveVehfou
; otherwise we have found a match
DEC VehicleCnt
LDAA VPOS,X
EORA PositionStatus
STAA PositionStatus
LDAA #$00
STAA VID,X
LDAA VPOS,X
JSR ClearVehicle

JSR UpdateBlkVehicles ; update any vehicles waiting on us to move
BRA RemoveVeh_fin

RemoveVeh_cont
PSHD
LDAB #VehicleRecSize
ABX
PULD

DEY
BNE RemoveVeh_0

RemoveVeh_fin
RTS

; UpdateVehicles:

; Note:

; Modifies:

Called to process one or more of the vehicle status bits
being set. Updates the vehicles position. The vehicle record
is cleared from the list if the new positioin is at the end
of the block (i.e. >= NumPositions).
The vehicle is not advanced if the next position is occupied.
Instead, the vehicle is blocked.
VehicleStatus, VehicleBuffer, VehicleCnt

UpdateVehicles
LDAA VehicleCnt
LBEQ UpdateVehicles_fin

; otherwise, parse through buffer, examining each record and its associated
; status bit. If the status bit for a record is high, we need to update
; its position.

; A is going to keep track of the current status bit. We will shift these
; out to the right such that bit 0 always holds the status of the current
; record being examined.

; B is going to keep track of the current flag position which can be
; used as a flag mask later

#$01
VehicleStatus

VehicleStatus
; load status bits

; LDX #VehicleBuffer-#VehicleRecSize
LDX #VehicleBuffer

UpdateVehicles_0
LSRA ; rotate record status bit into carry bit
BCC UpdateVehicles_cont

; otherwise we have a vehicle we can update
PSHD

; make sure the record is not empty (vehicle removed before event)
LDAA VID,X
BNE UpdateVehiclesA
PULD
BRA UpdateVehicles_cont

UpdateVehicles_A
LDAA VPOS,X
CMPA #LastPosition
BEQ UpdateVehicles_l1 ; for now, just erase vehicle when it

; reaches the end

; first, make sure position is free for the new position

107

SEI
LDAB
LDAA
CLR
CLI

LDAA VPOS,X
LSLA ; shift over one position
ANDA PositionStatus
BEQ UpdateVeh_free ; position is free

; otherwise, we must mark ourselves as blocked and remark the position as
; locked
STAB PositionStatus ; restore position status

LDAA #Blocked
STAA VBLOCKED,X
PULD
BRA UpdateVehicles_cont

UpdateVeh_free
LDAA VPOS,X
PSHX
JSR ClearVehicle
PULX

; need to clear out current position
LDAA VPOS,X
EORA PositionStatus ; any 1-1 pair becomes a 0, rest unchanged
STAA PositionStatus

LDAA
LSLA
STAA
ORAA
STAA

VPOS,X
; advance over one spot

VPOS,X
PositionStatus
PositionStatus

LDAA VPOS,X
PSHX
JSR DisplayVehicle
PULX

; lastly, create a new event record
PULD
LDY #EHRecord
STAB EHFlagMask,Y ; store our fli
PSHD
PSHX
LDD VVEL,X ; load the velocit
STD EHTime,Y
LDD #VehicleStatus
STD EHFlagAddr,Y
JSR AddEvent
PULX
PULD
BRA UpdateVehicles_cont

ag mask

UpdateVehicles_l ; vehicle has reached end so initiate a vehicle exchange
PSHX
JSR GenVehExch
PULX
PULD

UpdateVehicles_cont ; advance to next entry
PSHB
LDAB #VehicleRecSize
ABX ; update X to next record
PULB
LSLB ; update mask to next record
TBNE A,UpdateVehicles_0
JSR UpdateBlkVehicles

UpdateVehicles_fin
JSR UpdateFirstPos
RTS

; UpdateFirstPos: After updating vehicles, checks if first position is free
or locked. If it is free and Pending VID exists, calls
routine to generate a vehicle exchange continue

UpdateFirstPos
BRSET PositionStatus,$01,UpdateFirstPos_fin
LDAA PendingVID
BEQ UpdateFirstPos_fin ; abort if no pending VID
; otherwise, call GenVehExchCont
JSR genvehExchCont

108

Y

UpdateFirstPos_fin
RTS

; UpdateBlkVehicles: Called after a vehicle position has been updated.
Runs through the list and frees any vehicle that
was blocked but whose next position is no longer
blocked.

; Modifies: PositionStatus, VehicleBuffer

UpdateBlkVehicles
LDAA VehicleCnt
BEQ UpdateBlkVeh_fin
LDAB #$01 ; b is our index into the buffer, when it reaches

; zero, we have examined all vehicles
LDX #VehicleBuffer

UpdateBlkVeh_0
LDAA VID,X
BEQ UpdateBlkVeh_next ; if VID == 0, then empty slot
LDAA VBlocked,X
BEQ UpdateBlkVeh_next ; if vehicle is not blocked, ignore it

have found a blocked vehicle
VPOS,X

PositionStatus
UpdateBlkVeh_next ; if not zero, position
VPOS,X

JSR ClearVehicle
PULX
LDAA VPOS,X
EORA PositionStatus
STAA PositionStatus

LDAA VPOS,X
LSLA
STAA VPOS,X
ORAA PositionStatus
STAA PositionStatus

is still occupied

; clear current position

; free our position

; store new position

LDAA VPOS,X
PSHX
JSR Display
PULX
LDAA #Free
STAA VBlockt

; now create
LDY #EHRe
STAB EHFla
PSHD
PSHX
LDD
STD
LDD
STD
JSR
PULX
PULD

PULB

Vehicle

ed,X

an event for it
cord
gMask,Y ; sto

VVEL, X
EHTime,Y
#VehicleStatus
EHFlagAddr,Y
AddEvent

; vehicle is NOT blocked anymore

re our flag mask

load the velocity

UpdateBlkVeh_next
PSHB
LDAB #VehicleRecSize
ABX
PULB
LSLB
TBNE B,UpdateBlkVeh_0

UpdateBlkVeh_fin
JSR UPdateFirstPos
RTS

--- --- -- ------ -- --- --- -- --- -----' -----------------' ----------------
; AddVehicle: Takes vehicle data from VehicleRecord, finds an empty entry

in the vehicle buffer and inserts the new vehicle. It then
inserts the new vehicle in the empty slot. If we have reached

109

; we
LDAA
LSLA
ANDA
BNE
LDAA

PSHB
PSHX

; Arguments:
; Modifies:
; 05/25/97

MaxVehicleCnt then the vehicle is NOT added.
If VID of new vehicle is already in vehicle list, then
we do not add the vehicle but DO return VehileAdded message.
This is used to enforce at most once semantics on vehicle
additions.
new vehicle data stored in VehicleRec
VehicleCnt, VehicleBuffer
If VPOS is locked by another vehicle, add vehicle fails and
returns a PositionOccupied error message. Returns
VehicleAdded if vehicle was in fact added

AddVehicle
LDAA VehicleCnt
CMPA #MaxNumVehicles
BEQ AddVehicle_full

LDX #VehicleRec

LDY #VehicleBuffer
LDAB #$08

AddVehicleDuplicate
LDAA VID,Y
CMPA VID,X
BEQ AddVeh_dupFound
PSHB
LDAB #VehicleRecSize
ABY
PULB
DBNE B,AddVehicleDuplicate
BRA AddVehicleNoDup

AddVeh_dupFound
LDAA #VehicleAdded
RTS

AddVehicleNoDup
; make sure the position for the new vehicle is not locked
LDAA VPOS,X
ANDA PositionStatus
; now, since only one bit in VPOS is set, the exclusive or will return
; zero if the bit set in VPOS matches the one set in PositionStatus. It
returns 1 otherwise.

BEQ AddVehicle_A
; otherwise we cannot add the vehicle
LDAA #PositionOccupied
RTS

AddVehicle_A ; we are ready to add the vehicle
; First, mark the position as being taken
LDAA VPOS,X
ORAA PositionStatus
STAA PositionStatus

; ACCB is going to keep track of the available slot we are going to insert
; the new vehicle into. i.e. bit n means inserting into record n
LDAB #$01 ; B is going to keep track of the entry we insert into

; search for first free record slot in the list
LDX #VehicleBuffer

AddVehicle_0
LDAA VID,X ; examine VID for current record
BEQ AddVehicle_l1
LDAA #VehicleRecSize ; advance to next record
EXG A,B
ABX
EXG A,B
LSLB ; adjust bit flag
BRA AddVehicle_0

AddVehicl
SEI
; copy
LDY
LDAA
STAA
LDAA
STAA
PSHD
LDD
STD
LDAA

e_1 ; we have found an empty record
; turn interrupts off while we modify the buffer

the vehicle information into the available slot (pointed to by X)
#VehicleRec
VID,Y
VID,X
VPOS,Y
VPOS,X

VVI
VVI
#$c

EL, Y
EL, X
00

110

STAA VBlocked, X ; currently vehicle is not blocked
PULD

INC VehicleCnt
CLI

; we also need to add the vehicle position change to the event handler
; we only do this if the velocity is non-zero!!! otherwise the vehicle
; does not move
LDY VVEL,X
BEQ AddVehicle_cont

LDY #EHRecord
STAB EHFlagMask,Y ; store our flag mask
LDD VVEL,X ; load the velocity
STD EHTime,Y
LDD #VehicleStatus
STD EHFlagAddr,Y
PSHX
JSR AddEvent
PULX

AddVehiclecont
; for now, display new vehicle position to the screen
LDAA VPOS,X
JSR DisplayVehicle
LDAA #VehicleAdded ; set return code
RTS

AddVehiclefull
LDAA #TrackFull
RTS

$ENDIF

111

Protocols:

; Ping.ASM

; Block / ZoneController --> HC12 --> Ping Protocol Routines

These routines are used to implement the Ping Protocol. The ping protocol
is a SPECIAL low level protocol which periodically checks the connection
for each Port Handler. If the ping generator, does not receive a response
from the host connected at the other end of a port handler, then the
connection is reported as being down and the routing table is updated
with a new connection. Subsequent initiations of the Ping Protocol will
attempt to re-establish contact with the port.

; Flags: ALIVE bit 7: Ping Timeout
bit 6: Ping Pending
bit 0: SCI Port Response
bit 1: DUART 1 Port Response
bit 2: DUART 2 Port Response

$IFNOT INCLUDE_FLASH
HandlePingReq
ClrRTStr
ZCDownStr
HandlePingInt
HandlePingRes
GenPingReq
InitPingProtocol
HanPingTimeout
$ELSEIF

; GenPingReq: Sends out ping requests to all known sources.
Also clears the flags in the ALIVE variable. ALIVE
should be examined after appropriate time has been
given for message replies.

; Modifies: ACCA,X,MessBuff

GenPingReq
LDAA #%00001000
EORA PortDLC ; HACK!!! Toggle HC12 bit here
STAA PortDLC
LDX #MessBuffer
LDY #Message_Size
JSR ClearBuffer

LDX #MessBuffer
LDAA #Ping_Request
STAA MessCode,X ; store message code

; gen ping request is different for each element in the system
$IF ZONE_CONTROLLER
LDAA #ZoneController
STAA MessSrc,X
; send to original comm link used between ZC and Left Block
LDAA #LeftBlock
STAA MessDest,X
LDX #LeftBlock
LDY #MessBuffer
JSR RouteToPort ; special router call, routes to default link

LDX
LDAA
STAA
LDX
LDY
JSR

#MessBuffer
#RightBlock
MessDest,X
#RightBlock
#MessBuffer
RouteToPort

LDX #MessBuffer
LDAA #CentralController
STAA MessDest,X
LDX #CentralController
LDY #MessBuffer
JSR RouteToPort

$ELSEIF
; block controllers have
LDAA #RightNeighbor
STAA MessSrc,X
LDAA #LeftNeighbor

right and left neighbors, ping them

; ping link to left neighbor

112

STAA MessDest,X
LDX #LeftNeighbor
LDY #MessBuffer
JSR RouteToPort

LDX
LDAA
STAA
LDAA
STAA
LDX
LDY
JSR

#MessBuffer
#LeftNeighbor
MessSrc,X
#RightNeighbor
MessDest,X
#RightNeighbor
#MessBuffer
RouteToPort

; special router call, routes to default link

; ping link to right neighbor

; special router call, routes to default link

; the only catch is that the LB and RB must be distinguished when
; pinging their respective lines to the zone controller. So their
; block position comes into play
LDX #MessBuffer
LDAA #ZoneController
STAA MessDest,X
LDAA #SelfID ; are we a right or left block?
STAA MessSrc,X
LDX #ZoneController
LDY #MessBuffer
JSR RouteToPort

$ENDIF

; We want to place a timeout into the Event Handler. Our flag will
; be bit 7 of ALIVE
LDX #EHRecord
LDAA #%10000000
STAA EHFlagMask,X ; store flag mask (high bit in this case)
LDD #PingDelay
STD EHTime,X ; store delay count
LDD #ALIVE
STD EHFlagAddr,X ; store address of flag variable
JSR AddEvent
MOVB #%01000000,ALIVE ; clear our flags, but set bit 6 (ping pending)
RTS

---------------------- End of GenPingReq----------------------------------

; HandlePingReq:

; Modifes:

Called to handle reciept of a PingRequest.
A PingRequest message has the sender's represenation
with respect to us in the 2nd byte. We simply send
a Ping Response to the specified source.
Assumes HEAD points to the first byte in the message
which is of size Message_Size

ACCA,X,MessBuff

HandlePingReq
LDX #MessBuffer
LDY #Message_Size
JSR ClearBuffer ; get rid of any residue in the MessBuffer
LDX #MessBuffer
LDAA #Ping_Response ; message code for the response
STAA MessCode,X ; store the message code

; we want to send the ping response back to the sender
LDY QueueHead
LDAA MessSrc,Y
STAA MessDest,X

; now we need to fill in the source. What is our relationship
; with the sender? (ZC, LB, RB, LN, RN, CC)
TFR A,X
LDAB ConvertTable,X ; determine what we are with respect to the source

LDY #MessBuffer
STAB MessSrc,Y ; store what we are

; reload destination into X
TFR A,X ; A holds destination
LDY #MessBuffer
JSR RouteToPort ; transmit the message
RTS

; use message source to look into this table to determine what we
; represent from the sender. i.e if source is our right neighbor,
; the we are the sources left neighbor.

113

--

$IFNOT ZONE_CONTROLLER
ConvertTable FCB Self ID

FCB RightNeighbor
FCB LeftNeighbor

SELSEIF
ConvertTable

$ENDIF

FCB ZoneControlle
FCB ZoneControlle
FCB ZoneControlle

; if src = ZC, we are RB
; if src was a LN, we are the RN
; if src was a RN, we are the LN

r
r ; if src was LB, we are ZC
r

; HandlePingRes: Examines source of the ping response and sets the
appropriate bit in the ALIVE flag, acknowledging that
the source is alive.

; Modifes: ACCA,X,MessBuffer,ALIVE

HandlePingRes
LDX QueueHead
LDAA MessSrc,X ; load in the source of the message

; If we are the ZC, sources are CC (set bit 0), LB (set bit 1) and RB
(set bit 2)

$IF ZONE_CONTROLLER
; based on this value, set appropriate bits in ALIVE register.
CMPA #CentralController
BNE HandlePingRes_0
BSET ALIVE,%00000001

HandlePingRes_0 ; Did our left neighbor report in?
CMPA #LeftBlock
BNE HandlePingRes_l
BSET ALIVE,%00000010

HandlePingRes_l
CMPA #RightBlock
BNE HandlePingRes_2
BSET ALIVE,%00000100

$ELSEIF
; based on this value, set appropriate bits in ALIVE register.
CMPA #ZoneController
BNE HandlePingRes_0
BSET ALIVE,%00000001

HandlePingRes_0 ; Did our left neighbor report in?
CMPA #LeftNeighbor
BNE HandlePingRes_l
BSET ALIVE,%00000010

HandlePingRes_l1
CMPA #RightNeighbor
BNE HandlePingRes_2
BSET ALIVE,%00000100

$ENDIF

HandlePingRes_2
RTS

; InitPingProtocol -
; Note:

unknown type

Right now, we only have to initialize ALIVE variables.
Bit 7 of ALIVE is set whenever TC6 interrupt is
generated. Bit 6 is set whenever a GenPingReq
is issued. The remaining bits signify response
status from ports. GenPingReq actually turns on the
interrupt.

InitPingProtocol
MOVB #%00111111,ALIVE ; clear bit flags.
MOVB #%00111111,ALIVEOld

; we also want to report all links as down to start off with all links up
LDAA #$9B
JSR SetLCDAddr

$IFNOT ZONE_CONTROLLER
LDX #ClrStrLN
JSR Print
LDX #Clr•
JSR Print

$ELSEIF
LDX #Clr6
JSR Print
LDX #Clrh
JSR Print

$ENDIF
LDAA #$DB

tString
3trRN
:String

StrLB
:String
StrRB
:String

114

JSR Set
$IFNOT ZOI
LDX #C1
JSR Prj

$ELSEIF
LDX #C:
JSR Prj

$ENDIF
LDX #AI
JSR Prj
RTS

ClrStrZC
ZCDownStr
ClrStrLN
LNDownStr
ClrStrRN
RNDownStr
APDownStr
ClrStrAP

:LCDAddr
NE_CONTROLLER
LrStrZC
intString

LrStrCC
intString

?DownStr
intString

FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB

'ZC:
'ZC:
'LN:
'LN:
'RN:
'RN:
'AP:
'AP:

Up ',0
Dn ',0
Up ',0
Dn ',0
Up',0
Dn',0
Dn',0
Up' ,0

; zone controller strings
ClrStrLB FCB 'LB: Up ',0
LBDownStr FCB 'LB: Dn ',0
ClrStrRB FCB 'RB: Up',O
RBDownStr FCB 'RB: Dn',O
ClrStrCC FCB 'CC: Up ',0
CCDownStr FCB 'CC: Dn ',0

Isolated FCB 'Isolated!',O

; HanPingTimeOut: Called to handle a timer interrupt where it is time to
examine responses from a ping request.

HanPingTimeOut
BRCLR ALIVE,%01000000,HPTOut_finl
BCLR ALIVE,%11000000
BRA HanPingTimeoutCont

HPTOut_finl
MOVB ALIVE,ALIVEOLD
BCLR TMSK1,%01000000
CLR ALIVE

; make sure a ping request was issued

; turn off interrupt enable

HanPingTimeoutCont
; exclusive OR the old value and the new value...if 0 then no change so
; don't PRINT anything!!
LDAA ALIVEOLD
EORA ALIVE
STAA ALIVEOLD

HPTOut_ZC
; First examine the zone controller
BRCLR ALIVEOLD,%00000001,HPTOutLN ; determine if there has bee:
; if there has been, then we need to act on it
LDAA #$DB
JSR SetLCDAddr
BRSET ALIVE,%00000001,HPTOut_ZCup ; Test zone controller (SC
; if it is not set, we need to print appropriate information

$IFNOT ZONE_CONTROLLER
; if zone controller is down, try routing through one of the
; neighbors.
; try right neighbor first

; BRCLR ALIVE,%00000100,ZCDN_RBDN ; test if RB is up
; LDAA #RNID

LDAB #ZCID ; update zone controller entry
; JSR UpdateEntry ; map messages through RB

BRA ZCDown
;ZCDNRBDN
; since right and zone controllers are down, try re-routing through
; left neighbor

; BRCLR ALIVE,%00000010,ZCDown ; test if RB is up
; LDAA #LNID

LDAB #ZCID ; update zone controller entry
; JSR UpdateEntry ; map messages through RB

BRA ZCDown
;ZCDown
LDX #ZCDownStr ; print the down string

n a change

I Port)

115

$ELSEIF
LDX #CCDownStr

$ENDIF
JSR PrintString
BRA HPTOut_LN

HPTOut_ZCUp
$IFNOT ZONE_CONTROLLER
; LDAA #ZCID
; JSR RestoreEntry
LDX #ClrStrZC

SELSEIF
LDX #ClrStrCC

$ENDIF
JSR PrintString

; print out updating routing table string

; test left neighbor or left block link
HPTOutLN ; Test if Left Neighbor Out

BRCLR ALIVEOLD,%00000010,HPTOutRN ; determine if there has been a change
LDAA #$9B
JSR SetLCDAddr
BRSET ALIVE,%00000010,HPTOut_LNUp

$IFNOT ZONE_CONTROLLER
; if the left neighbor is currently down, try to route through the
; right neighbor, if the right neighbor is down, try though the
; zone controller...otherwise we are isolated
BRCLR ALIVE,%00000100,LNDN_RNDN
LDAA #RNID
LDAB #LNID
JSR UpdateEntry
BRA LNDN_RNDN_ZCDN

LNDN_RNDN
BRCLR ALIVE,%00000001,LNDN_RNDN_ZCDN
; otherwise, we will forward through zone controller
LDAA #ZCID
LDAB #LNID
JSR UpdateEntry ; change entry to route through right neighbor

LNDN_RNDN_ZCDN ; otherwise we are isolated
LDX #LNDownStr

$ELSEIF
; if the left neighbor is currently down, try to route through the
RB. First, make sure RB is alive

BRCLR ALIVE,%00000100,LBDN_RBDN ; test if RB is up
LDAA #RNID
LDAB #LB_ID1 ; update Left neighbor entry
JSR UpdateEntry
LDAA #RNID
LDAB #LB_ID2
JSR UpdateEntry

LBDN_RBDN
LDX #LBDownStr

$ENDIF

JSR PrintString
BRA HPTOut_RN

HPTOutLNUp
$IFNOT ZONE_CONTROLLER

; we need to restore
LDAA #LNID
JSR RestoreEntry
LDX #ClrStrLN

$ELSEIF
; we need to restore
LDAA #LB_IDI
JSR RestoreEntry
LDAA #LB_ID2
JSR RestoreEntry
LDX #ClrStrLB

$ENDIF
JSR PrintString

HPTOut_RN

; map messages through RB

the routing table values for the left block

the routing table values for the left block

; BRCLR ALIVEOLD,%00000100,HPTOut_fin
LDAA #$A2
JSR SetLCDAddr
BRSET ALIVE,%00000100,HPTOut_RNUp
; if bit is not set, we need to print down information

116

$IFNOT ZONE_CONTROLLER
; if right neighbor is down, try routing through the left neighbor
BRCLR ALIVE,%00000010,RNDNLNDN
LDAA #LNID
LDAB #RNID
JSR UpdateEntry
BRA RN_AllDown

RNDN_LNDN ; both neighbors are down, try through zone controller
BRCLR ALIVE,%00000001,RN_A11Down
LDAA #ZCID
LDAB #RNID
JSR UpdateEntry ; change entry to route through right neighbor

RN_AllDown
LDX #RNDownStr

; every connection is down, we are isolated.

$ELSEIF
; if the right is currently down, try to route through the
; LB. First, make sure LB is alive
BRCLR ALIVE,%00000010,RBDN_LBDN ; test if LB is up
LDAA #LNID
LDAB #RB_ID1 ; update Left neighbor entry
JSR UpdateEntry ; map messages through RB
LDAA #LNID
LDAB #RB_ID2
JSR UpdateEntry

RBDN_LBDN
LDX #RBDownStr

$ENDIF

JSR PrintString
BRA HPTOut_fin

HPTOut_RNUp
$IFNOT ZONE_CONTROLLER

; we need to restore
LDAA #RNID
JSR RestoreEntry
LDX #ClrStrRN

$ELSEIF
; we need to restore
LDAA #RB_ID1
JSR RestoreEntry
LDAA #RB_ID2
JSR RestoreEntry
LDX #ClrStrRB

$ENDIF
JSR PrintString

HPTOutfin
MOVB ALIVE,ALIVEOLD
BCLR TMSK1,%01000000
CLR ALIVE
RTS

; the right neighbor / block is up!

the routing table values for the right neighbor

the routing table values for the right block

; turn off interrupt enable

$ENDIF

; Virtual.ASM

; Block / Zone Controller --> HC12 --> Virtual Vehicle Protocol routines

; Overview: Protocol routines for creating a virtual vehicle. Typically, the
; zone controller begins the protocol by sending a VV-Gen message to
; a block controller. The VV-Gen message type contains information for
; a vehicle record. Upon receiving a VV-Gen message, the block controller
; calls the vehicle manager, giving it the vehicle record stored in the
; message. The block controller then replies to the zone with a VV-Ack
; message. Currently, if the ZC has not received a VV-Ack by a time-out,
; then an error message is displayed to the LCD.
'-------------------------'--------------------------------
$IFNOT INCLUDE_FLASH
GenVVAck
HandleVVGEN
HandleVVACK
HanVVTimeout
GenVVMess
$ELSEIF

117

; GenVVMess:

; Arguments:

Generates a VVMess and sends it to the specified block
controller. Also loads an event for the VV timeout.
Assumes that the caller is the zone controller
A contains the message destination, and the vehicle data
is stored in Lemporary vehicle recrod: venhclemec.

; Modifies: MessBuffer

GenVVMess
PSHA ; save destination
LDX #MessBuffer
LDY #Message_Size
JSR ClearBuffer
PULA ; restore destination

LDX #MessBuffer
LDAB #VirtualVehGen
STAB MessCode,X

STAA MessDest,X
LDAA #MYIDLN
STAA MessSrc,X

LDAA #Message_Size
STAA MessSize,X

; now copy vehicle event
LDY #VehicleRec
LDAA VID,Y
STAA MessData,X
INX
LDAA VPOS,Y
STAA MessData,X
INX
LDD VVEL,Y
STD MessData,X

; store message type

; store destination
; store source ID

record information into data field of message

; now transmit the data
LDY #MessBuffer
LDAA MessDest,Y
TFR A,X
JSR RouteMessage

; add add event record for the timeout
; bit 7 is the flag given to the event handler, bit 6 is to signify that
; there is a timeout pending and bit 1 is set when an ACK is received.
MOVB #%01000000,VVMFlag ; we are going to have a timeout pending

#EHRecord
#%10000000
EHFlagMask,Y
#VVMTimeCnt
EHTime,Y
#VVMFlag
EHFlagAddr,Y
AddEvent

; use bit 7 as the timeout flag

; generate timeout in .25s

RTS ; we are now done

; HandleVVAck - To acknowledge the VV-ACK, we must set the VVMFlag ACK
received bit which is bit 0. Remember, bit 7 is set by the
event handler when the timeout occurrs.

; Arguments - QueueHead points to the ACK message
; Modifies - VVMFlag bit 0

HandleVVAck
; make sure a timeout was pending
BRCLR VVMFLAG,%01000000,HandleVVAck_fin
BSET VVMFlag,$01

; ignore if no timeout pending

HandleVVACK_fin
RTS

- -

; GenVVAck: With a VVGen message pointed to by QueueHead, this routine
generates a VV-ACK message and sends it back to the gen sender.

; Arguments: VVGen message pointed to by QueueHead
; Modifies: MessBuffer

118

LDY
LDAA
STAA
LDD
STD
LDD
STD
JSR

GenVVAck
LDX #MessBuffer
LDY #Message_Size
JSR ClearBuffer

LDX #MessBuffer
LDY QueueHead
LDAA #VVAckMess
STAA MessCode,X ; store message type
LDAA MessSrc,Y
STAA MessDest,X

LDAA MessDest,Y
STAA MessSrc,X ; sender knows who we are so use that as source
LDAA #Message_Size
STAA MessSize,X

; the data field is left empty
LDAA MessSrc,Y
LDY #MessBuffer
TFR A,X
JSR RouteMessage
RTS

; HandleVVGen: Handles a VV-Gen message by loading the data contents
into VehicleRec and invoking add message of the vehicle
manager. Also calls GenVVAck.

; Arguments: Message starts at QueueHead

HandleVVGen
LDY #VehicleRec
LDX QueueHead
; copy vehicle data contents into vehicle Rec
LDAA MessData,X
STAA VID,Y
INX
LDAA MessData,X
STAA VPOS,Y
INX
LDD MessData,X
STD VVEL,Y
JSR AddVehicle ; call the vehicle manager and add the vehicle

JSR GenVVAck
RTS

; HanVVTimeout - Handles the virtual vehicle creation timeout. If bit 0
of VVMFlag is not set, we print an error to the screen.

; Modifies: VVMFlag, LCD Display
; Arguments: None

HanVVTimeout
BRSET VVMFlag,$01,HanVVTimeout_0
; otherwise we did not receive the ACK
; print out an error message
LDAA #$CO
JSR SetLCDAddr
LDX #VVMString
JSR PrintStrToBanner

HanVVTimeout_0
CLR VVMFlag
RTS

VVMString FCB 'VVC Failed!',0

$SENDIF

; VehExch.ASM
; Block Controller --> HC12 --> Vehicle Exchange Protocol Routines
- -

$IFNOT INCLUDE_FLASH
GenVehExch
GenVehExchAck
HanVehExch

119

HanGenVehExchAck
HanGenVehExchTO
GenVehExchBlock
HanGenVehExchBlock
$ELSEIF

; time out

; GenVehExch: Generate a Vehicle Exchange Message. This message is always
sent to the left neighbor as vehicles flow from left to
right. It begins the protocol of exchanging a vehicle
between two blocks.

;Arguments: X points to a vehicle record for the vehicle to be exchanged.
the vehicle is in the last position of the current block.

; Modifies: MessBuffer

GenVehExch
PSHX
LDX #MessBuffer
LDY #Message_Size
JSR ClearBuffer
PULX

TFR X, Y
LDX #MessBuffer
LDAA #VehicleExchange
STAA MessCode,X

LDAA #LNID
STAA MessDest,X
LDAA #MYIDLN
STAA MessSrc,X

LDAA VID,Y
STAA MessData,X
STAA ExchVID
INX
LDD VVEL,Y
STD MessData,X
STD ExchVVEL

LDX #LNID
LDY #MessBuffer
JSR RouteMessage

copy pointer of vehicle data

; add timeout to the event handler
LDX #EHRecord
LDAA #$80 ; msb of flag is the VehExch time out pending flag
STAA EHFlagMask,X
LDD #VehExchCnt
STD EHTime,X
LDD #VehExchFlag
STD EHFlagAddr,X
JSR AddEvent

RTS

; HanVehExch Called to handle reciept of a vehicle exchange message.
Takes the vehicle information, forms a vehicle record and
calls addvehicle. Then returns a VehExchACK

HanVehExch
; BSET VehExchFlag,$40 ; acknowledge block cont
LDX QueueHead
LDY #VehicleRec
LDAA MessData,X ; extract the VID
STAA VID,Y
INX
LDD MessData,X
STD VVEL,Y
LDAA #$01
STAA VPOS,Y
; now that vehicle record is ready, call AddVehicle
JSR AddVehicle
; test return value
CMPA #PositionOccupied

; BEQ GenVehExchBlock ; position was blocked, g

; otherwise, vehicle was added
BRA GenVehExchACK

inue if applicable

enerate block message

120

; GenVehExchAck

; Modifies

Acknowledging successful exchange. Recipient can now delete the
vehicle from the list. Message is sent from the right
neighbor to the left neighbor.
Also assumes queuhead points to a vehicle exchange message

MessBuffer

GenVehExchACK
CLR PendingVID ; we no longer have anyone waiting for first position
LDX #MessBuffer
LDY #MessageSize
JSR ClearBuffer

LDX #MessBuffer
LDAA #VehicleExchACK
STAA MessCode,X
LDAA #RNID
STAA MessDest,X
LDAA #MYIDRN
STAA MessSrc,X

LDY QueueHead
LDAA MessData,Y
STAA MessData,X

LDY
LDX
JSR
RTS

; extract the VID

#MessBuffer
#RNID
RouteMessage

; HanVehExchACK - Process a vehicle exchange acknowledgment by removing the
vehicle from the track. Calls remove message on the VID
contained in the ACK messsage

; Modifies: Vehicle list

HanVehExchACK
BSET VehExchFlag,$01 ; acknowledge receipt of the message
LDX QueueHead
; we want to skip over to the message data portion
LDAA MessData,X ; extract the VID
LDAB #LastPosition
JSR RemoveVehicle
CLR ExchVID
LDX #$00
STX ExchVVEL
RTS

---------------------------------------'----------'--------
; HanVehExchTO: Vehicle Exchange time out handler. If bit 0 or eventually,

bit 1 is set, do nothing, an ACK has been received.
Otherwise resend the message.'--------------'---

HanVehExchTO
BRSET VehExchFlag,$01,HanVehExchTO_fin
LDX #VehicleRec
LDAA ExchVID
STAA VID,X
LDD ExchVVEL
STD VVEL,X ; genvehexch expects X to hold the pointer
JSR GenVehExch ; resend request
LDX #VehExchString
JSR PrintStrToBanner

HanVehExchTO_fin
BCLR VehExchFlag,$01
BCLR VehExchFlag,$80
RTS

VehExchString FCB 'V ',0

; clear veh exch timeout pending bit

; GenVehExchBlock: Generated in response to a failed attempt to meet
a vehicle exchange because the position was blocked.
Does NOT require an ACK, as the original sender will
timeout and re-send VehExch if there is a failure

; Arguments: Assumes Queuehead points to a VehExch message'----'--------------------'---------------------------------
GenVehExchBlock

LDX QueueHead

121

; -- --- --- --- --- --- --- --- --- ---- --- --- --- --- --- --- --- --- ---

LDAA MessData,X ; extract the VID
STAA PendingVID ; we have a pending block

LDX #MessBuffer
LDY #Message_Size
JSR ClearBuffer

LDX #MessBuffer
LDAA #VehicleExchBLK
STAA MessCode,X
LDAA #RNID
STAA MessDest,X
LDAA #MYIDRN
STAA MessSrc,X

LDY QueueHead ; store VID in first byte of data field
LDAA MessData,Y
STAA MessData,X

LDY #MessBuffer
LDX #RNID
JSR RouteMessage
RTS

; HanVehExchBLK: Handles a VehicleExchBLK message
Toggle the VehExch timeout flag (bit 7) to acknowledge
the response. Nothing else.

; Arguments: Message pointed to by queue head

HanVehExchBLK
BSET VehExchFlag,$01 ; acknowledge response
RTS

; GenVehExchCont: Generates message instructing the right neighbor to
continue with the previously blocked exchange. Call
only when the first position in in the block becomes free.
Set a timeout on this message to make sure receiver gets
it. Receiving a Vehicle Exchange message clears this flag.

; Arguments: None. PendingVID holds VID of incoming vehicle

GenVehExchCont
LDX #MessBuffer
LDY #Message_Size
JSR ClearBuffer

LDX #MessBuffer
LDAA #VehicleExchCont
STAA MessCode,X

LDAA #RNID
STAA MessDest,X
LDAA #MYIDRN
STAA MessSrc

LDAA PendingVID
STAA MessData,X

LDY #MessBuffer
LDX #RNID
JSR RouteMessage

; now create timeout
LDX #EHRecord
LDAA #$40 ; 6th bit is the VehExchCont time out pending flag
STAA EHFlagMask,X
LDD #VehExchCnt
STD EHTime,X
LDD #VehExchFlag
STD EHFlagAddr,X
JSR AddEvent

RTS

- -

; HanVehExchCont Resend HanVehExch Message
; Arguments None

HanVehExchCont
LDX #VehicleRec

122

LDAA ExchVID
BEQ HanVehExchCont_fin ; if VID == 0, we do NOT have a vehicle to send
STAA VID,X
LDD ExchVVEL
STD VVEL,X ; genvehexch expects X to hold the pointer
JSR GenVehExch ; resend request

HanVehExchContfin
RTS

; HanVehExchContTO: Vehicle Exchange continue time out handler. If we time out,
clear flags, and transmit vehicle continue again

; Arguments: None
; Modfies:

HanVehExchContTO
BRSET VehExchFlag,$40,HanVehContTO_fin
JSR GenVehExchCont ; resend request
LDX #VehExchContString
JSR PrintStrToBanner

HanVehContTO_fin
BCLR VehExchFlag,$01
BCLR VehExchFlag,$80
RTS

VehExchContString FCB

; clear veh exch timeout pending bit

'C ',0

; InitVehExch: Initializes the vehicle exchange protocol
; Modifies: VehExchFlag

InitVehExch
CLR PendingVID
CLR VehExchFlag
CLR ExchVID
LDD #$00
STD ExchVVEL
RTS

123

Miscellaneous:

; Display.ASM

; Display Routines: Specific routines for the LCD Display

; Public Methods: PrintStatus, UpdateQSize,
; All methods assume InitLCD has previously been called

$IFNOT INCLUDE_FLASH
PrintStatus
UpdateQSize
UpdateChkFail
DisplayVehicle
ClearVehicle
DisplayTrack
SELSEIF

; DisplayVehicle: Prints a vehicle on the track
; Arguments: The track position (0-0A) is stored in ACCA
; Modifies: nothing

DisplayVehicle
; need to convert the vehicle position which is a binary number
; to an actual address. i.e. having bit 1 set implies address of 1
; for printing the vehicle
CMPA #$00
BEQ DisplayVehicle_fin
LDAB #$00

DisplayVehicle_0
LSRA
BCS DisplayVehicle_l1
INCB
BRA DisplayVehicle_0

DisplayVehicle_l1
; when done, B has address to load into LCD
TFR B,A
JSR SetLCDAddr ; assumes A already holds the vehicle position
LDAA #VehicleChar
JSR PrintChar

DisplayVehicle_fin
RTS

; ClearVehicle: Replaces vehicle with the track character
; Arguments: ACCA holds bit position to be cleared
; Modifies: Nothing

ClearVehicle
CMPA #$00
BEQ ClearVehicle_fin
LDAB #$00

ClearVehicle_0
LSRA
BCS ClearVehicle_1
INCB
BRA ClearVehicle_0

ClearVehicle_l1
TFR B,A
JSR SetLCDAddr ; assumes A already holds the position to be cleared
LDAA #TrackChar
JSR PrintChar

ClearVehicle_fin
RTS

;DisplayTrack: Prints the track to the screen. Namely, prints 8 track
characters to the screen starting at 0.

; Modifies: Nothing

DisplayTrack
LDAA #$00
JSR SetLCDAddr
LDY #$08

DisplayTrack_0
LDAA #TrackChar
JSR PrintChar
DBNE Y,DisplayTrack_0

124

RTS

; PrintStatus - Prints the status of the system to the screen.
Status information includes: the number of messages
currently in the Queue,

; Modifies: ACCA,X,ACCB

PrintStatus
JSR LCDClrDisp ; clear display and place cursor in the home position
LDAA #$1E
JSR SetLCDAddr
; First print out "QSize" String
LDX #QSIZE_STRING
JSR PrintString

; Print the Qsize string
JSR UpdateQSize

; Print the Check Sum Error String
LDAA #$DE ; print string at start of second line
JSR SetLCDAddr
LDX #ERRORSTRING
JSR PrintString
JSR UpdateChkFail
RTS

----------------------- End of PrintStatus----------------------------------

; UpdateQSize: Prints the number of messages in the queue
; Assumes: The qsize is in variable: QSize
; Modifies: ACCA, X
------------------------'--------------'------'------------

UpdateQSize
; set the appropriate characters position
LDAA #26 ; ninth character on the line
JSR SetLCDAddr
LDAA QSIZE
JSR PrtNum ; print the qsize
RTS

;----------------End of UpdateQSize--

; UpdateChkFail: Prints the number of checksum failures
; Assumes: # failures is in the variable ChkSumFailures
; Modifies: ACCCA,X
'------------'--
UpdateChkFail

LDX #Error_String
JSR PrintStrToBanner
LDAA ChkSumFailures
JSR PrtNumToBanner
RTS

;---------------------End of UpdateChkFail-------------------------------

QSIZESTRING FCB 'Q Size: '
FCB 0

ERROR_STRING FCB 'ChkSum: '
FCB 0

$ENDIF

; CheckSum.ASM
; Block Controller --> HC12 --> Checksum Routines

; Public Methods: CompChkSum
; Private Methods: None
:---

; CompChkSum: Computes a 2 byte checksum on a message. Result is passed back
with high byte in A and low byte in X

; Arguments: X contains the address of the first byte of the message
ACCA contains the number of bytes to be computed in the
checksum.

Note: Result is returned in ChkSumHi and ChkSumLo. SHARED VARIABLES!!
So this routine cannot be called from within an interrupt.

; Modifies: ChkSumHi, ChkSumLo, ACCA,ACCB,X
--

125

CompChkSum
CLR ChkSumHi
CLR ChkSumLo ; clear our two byte accumulator
CMPA #00
BEQ CompChkSumDone ; 0 bytes needed to be computed

CompChkSum_0
LDAB ,X
ADDB ChkSumLo ; add to low byte
STAB ChkSumLo
CLRB
ADCB ChkSumHi ; add carry bit to high byte of checksum
STAB ChkSumHi

INX ; advance to next byte to be computed
DECA
BNE CompChkSum_0 ; finished?

CompChkSum_Done
RTS ; return result

; LCD.ASM

; LCD Routines: InitLCD, PrintString, PrintChar, PrintNum, LCDClrDisp
SetLCDAddr

$IFNOT INCLUDE_FLASH
HandleLCD
InitLCD
LCDClrDisp
SetLCDAddr
PrintChar
Delay5ms
PrintString
PrtNum
$ELSEIF

'----'---
; HandleLCD: Called to handle a Timer 7 interrupt. We must examine contents

of the LCDBuffer and determine if there are commands or actions
to perform. Also updates compare register for T7 to next
appropriate value. (Turns it off, if buffer is empty)

; Modifies: TMSK1,LCDBuff,LCDHead,X,Y,ACCD

HandleLCD
LDX LCDHead
CPX LCDTail
BEQ HandleLCD_Empty ; make sure buffer has something to send

; So buffer is not empty. Display first character in buffer.
LDAA ,X
CMPA #ClearDispCode
BNE HandleLCD_0
; otherwise, clear the display
JSR LCDClrDisp_
BRA HandleLCD_4

HandleLCD 0
CMPA #ChgAddrCode
BNE HandleLCD_1 ; if it isn't, it must be a char
INX
; CPX #LCDBuffer+LCDBufferSize
CPX #LCDBuffer+$40
BNE HandleLCD_1A
LDX #LCDBuffer

HandleLCD_1A
LDAA ,X
JSR SetLCDAddr_
BRA HandleLCD_4

HandleLCD_1
JSR PrintChar_

HandleLCD_4
INX
STX LCDHead

; CPX #LCDBuffer+]
CPX #LCDBuffer+
BNE HandleLCD_f:
LDX #LCDBuffer
STX LCDHead

; need to load the new address to go to
; load the new address

; done
; otherwise, it is a character, so display the char.

; now increment head to next value, testing for wraparound

LCDBufferSize
$40
in

126

HandleLCD_Empty ; the buffer is empty
BCLR TMSK1,%10000000 ; turn off interrupt for T7.

HandleLCD_Fin
RTS

'---
; PrintString --> Copy the null terminated string into the LCDBuffer.

Assumes X has the address of the first byte in the string
; Modifies LCDBuffer,LCDTail,
·--
PrintString
LDY LCDTail

PrintString_0
LDAA ,X ; load character
BEQ PrintString_2 ; test if value is NULL
STAA ,Y
INX
INY
; test for wrap around
CPX #LCDBuffer+LCDBufferSize

CPY #LCDBuffer+$40
BNE PrintString_l
LDY #LCDBuffer ; wrap tail around

PrintString_l
STY LCDTail ; store new value for Tail
BRA PrintString_0

PrintString_2
BRSET 7,TMSK1,PrintString_fin
BSET TMSK1,%10000000 ; otherwise, turn the timer on

PrintString_fin
RTS

; PrintChar Places a single character held in ACCA and puts it into the
LCDBuffer.

; Modifies LCDBuffer,LCDTail
'---
PrintChar
LDX LCDTail
STAA ,X
INX
; test for wrap around
CPX #LCDBuffer+LCDBufferSize

CPX #LCDBuffer+$40
BNE PrintChar_1
LDX #LCDBuffer ; wrap tail around

PrintChar_1
STX LCDTail ; store new value for Tail
; otherwise, turn interrupt on
BRSET 7,TMSK1,PrintChar_fin
BSET TMSK1,%10000000 ; otherwise, turn the timer on

PrintChar_fin
RTS

'-------------------'-------------------------------------
; PrintChar_ Actually prints the character currently pointed to by LCDTail,

to the LCD Display. Assumes the LCD is NOT busy.
; Arguments: ACCA has the value of the character to be printed·---
PrintChar_
MOVB #$FF,DDRA
MOVB #$FF,DDRB
STAA PORTA
MOVB #%10000000,PORTB
BSET PORTP,%00100000 ; enable entry mode set
BCLR PORTP,%00100000
LDD TCNT ; load current time
ADDD #Add50us ; time until next operation on LCD can be performed
STD TC7
RTS

--
;LCDClrDisp - Inserts command to clear the LCD display and place the cursor

in the home position into the LCDBuffer.

; Modifies: LCDBuffer,LCDTail
----------------------------- -------------------------------

LCDC1rDisp

127

LDAA #ClearDispCode
LDX LCDTail
STAA ,X ; store command in buffer
INX increment tail

; test for wrap around
CPX #LCDBuffer+LCDBufferSize

CPX #LCDBuffer+$40
BNE LCDClrDisp_0
LDX #LCDBuffer ; wrap tail around

LCDClrDisp_0
STX LCDTail ; store new value for Tail
BRSET 7,TMSK1,LCDClrDisp_fin ; test if interrupt is on or not
BSET TMSK1,%10000000 ; otherwise turn the interrupt on

LCDClrDisp_fin
RTS

t---
; LCDClrDisp_ Actually performs a clear display. Assumes the LCD is NOT busy

performing any operations.

; Modifies LCDBuffer,LCDHead,ACCA,X
'----'---------------------'-------------------------------
LCDClrDisp_

MOVB #$FF,DDRA
MOVB #$FF,DDRB
LDAA #%00000001
STAA PORTA
CLR PORTB
BSET PORTP,%00100000 ; enable entry mode set
BCLR PORTP,%00100000
LDD TCNT ; load current time
ADDD #Add2ms ; delay until next operation can be performed on LCD
STD TC7
RTS

'----'--------------- - - -- -- -- -- -- -- -- - -- - -- -- -- -
; SetLCDAddr: Places command and address into the LCD Buffer for execution
; Arguments: ACCA holds the desired address where 00 = home position and

$CO = first position of 2nd row.

SetLCDAddr
LDAB #ChgAddrCode
LDX LCDTail
STAB ,X ; store command in buffer
INX increment tail
; test for wrap around
CPX #LCDBuffer+LCDBufferSize

CPX #LCDBuffer+$40
BNE SetLCDAddr_0
LDX #LCDBuffer ; wrap tail around

SetLCDAddr_0
STX LCDTail ; don't store new tail till ALL the data is stored
STAA ,X ; store the address
INX
; test for wrap around
CPX #LCDBuffer+LCDBufferSize
CPX #LCDBuffer+$40
BNE SetLCDAddr_1l
LDX #LCDBuffer

SetLCDAddr_1
STX LCDTail
BRSET 7,TMSK1,SetLCDAddr_fin ; test if interrupt is on or not
BSET TMSK1,%10000000 ; otherwise turn the interrupt on

SetLCDAddr_fin
RTS

:--
SetLCDAddr_: Sets the DGRAM address for the LCD.

; Arguments: ACCA holds the desired character position where 00 = the
home position and CO = the first char of the 2nd row.
Assumes LCD Display is NOT busy.

; Modifies: ACCA, X
'--
SetLCDAddr

MOVB #$FF,DDRA
MOVB #$FF,DDRB
ORAA #%10000000
STAA PORTA
CLR PORTB
BSET PORTP,%00100000 ; enable entry mode set
BCLR PORTP,%00100000

128

LDD TCNT
ADDD #Add50us
STD TC7
RTS

; load current time
; time until next operation on LCD can be performed

InitLCD: Initilization routines for the LCD Display. Also prepares the
LCDBuffer which is where applications place characters to be
displayed to the screen.

Assumes: 15ms have passed since Vcc rose to 4.5V
Interrupts are turned OFF!!!!
A and X are expendable
RS --> PB.7, R/W --> PB.6, Enable --> PP.5, DO:D7 --> PAO:PA7

InitLCD
JSR InitLCDLow
JSR LoadVehicleChars
; Now prepare the LCDBuffer
LDX #LCDBuffer
LDY #LCDBufferSize
JSR ClearBuffer
LDX #LCDBuffer
STX LCDHead
STX LCDTail

; low level routines

; now initialize Timer 7 to be in Compare mode. Give it a value
; to
BSET
BCLR
BSET
BCLR
BCLR

trigger an interrupt
TSCR,%10010000
TMSK2,%00001111
TIOS,%10000000
TCTL1,%11000000
TMSK1,%10000000

RTS

InitLCDLow
BCLR PORTB,%11000000
MOVB #%00110000,PORTA
BSET PORTP,%00100000
BCLR PORTP,%00100000

JSR DELAY5ms

BSET PORTP,%00100000
BCLR PORTP,%00100000
JSR DELAY5MS

BSET PORTP,%00100000
BCLR PORTP,%00100000
JSR delay5ms

MOVB #%00111100,PORTA
BSET PORTP,%00100000
BCLR PORTP,%00100000
JSR delay5ms

; Turn Display Off
MOVB #%00001000,PORTA
BSET PORTP,%00100000
BCLR PORTP,%00100000
JSR delay5ms

; Clear Display
MOVB #%00000001,PORTA
BSET PORTP,%00100000
BCLR PORTP,%00100000
JSR delay5ms

after every 40us (min. time for LCD).
; make sure timer is enabled with fast flag c
; timer ticks every 125nseconds

; Ouput compare for channel 7
; disconnect Channel 7 from output pin logic
; Leave Timer 7 interrupt off for now

; generate enable pulse

; enable the instruction again

need to kill 100us

; enable the instruction a third time

function set
; enable the function set

; enable the function set

; enable clear display

; Entry Mode Set --> Increment, shift,
MOVB #%00000110,PORTA
BSET PORTP,%00100000 ; enable entry mode set
BCLR PORTP,%00100000

MOVB #%00010100,PORTA
BSET PORTP,%00100000
BCLR PORTP,%00100000

JSR delay5ms
MOVB #%00001100,PORTA
BSET PORTP,%00100000

; cursor/display/shift
; enable cursor/display/shift

; display on, cursor off, blink off
; enable cursor/display/shift

129

lear

BCLR PORTP,%00100000

RTS

; VehicleChars - Write the CGRAMS for the vehicle and for the track.

LoadVehicleChars
JSR delay5ms

; set up character for vehicle (VH1)
BCLR PORTP,%00100000
BCLR PortB,%11000000
MOVB #$40,PORTA
BSET PORTP,%00100000
BCLR PORTP,%00100000
BSET PORTB,%10000000
JSR Delay50usec

MOVB #$1F,PORTA
JSR Delay50usec
MOVB #$15,PORTA
JSR Delay50usec
MOVB #$15,PORTA
JSR Delay50usec
MOVB #$1F,PORTA
JSR Delay50usec
MOVB #$15,PORTA
JSR Delay50usec
MOVB #$15,PORTA
JSR Delay50usec
MOVB #$1F,PORTA
JSR Delay50usec
MOVB #$OO,PORTA
JSR Delay50usec

MOVB #$02,PORTA
JSR Delay50usec
MOVB #$1F,PORTA
JSR Delay50Ousec
MOVB #$01,PORTA
JSR Delay50usec
MOVB #$01,PORTA
JSR Delay50usec
MOVB #$01,PORTA
JSR Delay50usec
MOVB #$1F,PORTA
JSR Delay50usec
MOVB #$02,PORTA
JSR Delay50usec
MOVB #$OO,PORTA
JSR Delay50usec

; track character
MOVB #$1F,PORTA
JSR Delay50Ousec
MOVB #$11,PORTA
JSR Delay50usec
MOVB #$11,PORTA
JSR Delay50usec
MOVB #$11,PORTA
JSR Delay50usec
MOVB #$11,PORTA
JSR Delay50usec
MOVB #$11,PORTA
JSR Delay50usec
MOVB #$1F,PORTA
JSR Delay50usec
movb #$00,porta
JSR Delay50Ousec
RTS

; top row, back part of vehicle

; back wheel

; front car

; Delay5ms - Performs a 5ms Delay.

DELAY5MS

outer
inner

LDAA #$CO
CLRB
DECB ; DEC and BNE take 3 cycles each or 6 cycles (6*lus)
BNE inner ; execute inner loop 256 times (256*6*1us)
DECA
BNE outer ; want to repeat the inner loop 32 times (49.44ms)

130

RTS

Delay50usec ; also transmits data
BSET PORTP,%00100000
BCLR PORTP,%00100000
CLRB

L1
DECB
BNE L1
RTS

; PrtNum: Takes a 1 byte number, and displays the hex equivalent to the
current screen position

; Arguments: ACCA contains the number to be printed
; Modifies: ACCA, X

PrtNum
TAB ; place copy in B
ANDA #$FO ; mask off the low nibble
LSLA
LSLA
LSLA
LSLA
ROLA
TFR A,X
LDAA Nibble2Hex,X
JSR PrintChar ; print high nibble

; print out the low nibble
TBA
ANDA #$OF ; mask of the high nibble
TFR A,X
LDAA Nibble2Hex,X ; look up hex value
JSR PrintChar
RTS

--------------------End of PrtNum--------------------------------------

Nibble2Hex FCB '0'
FCB '1'
FCB '2'
FCB '3'
FCB '4'
FCB '5'
FCB '6'
FCB '7'
FCB '8'
FCB '9'
FCB 'A'
FCB 'B'
FCB 'C'
FCB 'D'
FCB 'E'
FCB 'F'

$ENDIF

; Banner.ASM

; Block/Zone Controller --> HC12 --> Error Banner Routines

; Banner: Part of the second line on the LCD Display is dedicated for
; reporting error messages. Error messages begin printing at the end
; of the banner window and shift every interval time one character
; to the left......
; Current Window Size: 20 characters
; Current Time Till Shift: .Is (using event handler

$IFNOT INCLUDEFLASH
InitBanner
UpdateBanner
PrintStrToBanner
PrintCharToBanner
PrintNumToBanner
$ELSEIF

; InitBanner - Clears banner display on LCD, clears banner buffer and

sets tail and head pointers appropriately
; Assumptions: LCD must already be initialized!! WindowSize < BufferLength

; Arguments: None
; Modifies: LCD, BannerBuffer, WindowHead, BufferTail, BannerChars

InitBanner
LDX #BannerBuffer
LDY #BannerBufSize
JSR ClearBuffer

LDD #BannerBuffer
STD WindowHead
ADDD #WindowSize
STD BannerTail ; tail must start WindowSize away from head
CLR BannerChars
CLR BannerFlag ; used by event handler
RTS

; PrintCharToBanner Takes a character in A and adds it to the banner
; Arguments: ACCA holds the character to be added.
; Modifies: BannerBuffer, BannerTail

PrintCharToBanner
LDX BannerTail
STAA ,X
INX
; CPX #BannerBuffer+#BannerBuffSize
CPX #BannerBuffer+$28
BNE PCBanner 1
LDX #BannerBuffer

PCBanner 1
STX BannerTail
INC BannerChars
LDAA BannerChars
CMPA #$01
BNE PCBannerfin
; otherwise, we need to create the first event to print the first char.
LDY #EHRecord
LDAA #%00000001
STAA EHFlagMask,Y
LDD #BannerInterval
STD EHTime,Y
LDD #BannerFlag
STD EHFlagAddr,Y
JSR AddEvent

PCBannerfin
RTS

; UpdateBanner: Updates the display by shifiting window over by 1
; Arguments: None
; Assumptions: BannerFlag.0 was set by the event handler
; Modifies: BannerBuffer, WindowHead, BannerChars,
--

UpdateBanner
LDAA BannerChars
BEQ UpdateBanner_fin ; nothing to update

; Set LCD address
LDAA #$CO ; start at 2nd row, first column
JSR SetLCDAddr

LDX WindowHead ; X will act as our marker
INX
CPX #BannerBuffer+$28
BNE UpdateBanner_A
LDX #BannerBuffer

UpdateBanner_A
LDAB #WindowSize

UpdateBanner_0
LDAA ,X
BNE UpdateBanner_OA
; if the character was $00, then we need to convert it to a blank
LDAA #' '

UpdateBanner_0OA ; print the character
PSHB
PSHX
JSR PrintChar
PULX
PULB

132

INX
; CMPX #BannerBuffer+#BannerBuffSize
CPX #BannerBuffer+$28
BNE UpdateBanner_l1
LDX #BannerBuffer ; wrap around

UpdateBanner_l1
DBNE B,UpdateBanner_0 ; any more characters in Window?

LDX WindowHead
LDAA ,X
BEQ UpdateBanner_2
DEC BannerChars ; a character has left the window

UpdateBanner_2
LDAA #$00 ; zero out entry
STAA ,X
INX
; CPX #BannerBuffer + #BannerBuffSize
CPX #BannerBuffer+$28
BNE UpdateBanner_3
LDX #BannerBuffer

UpdateBanner_3
STX WindowHead
; now determine if tail is windowSize away from head...make sure it is
LDAB #WindowSize

UpdateBanner_3a
INX
CPX #BannerBuffer+$28
BNE UpdateBanner_4
LDX #BannerBuffer

UpdateBanner_4
CPX BannerTail
BNE UpdateBanner_5

LDY BannerTail
INY ; increment tail
CPY #BannerBuffer+$28
BNE UpdateBanner_4a
LDY #BannerBuffer

UpdateBanner_4a
STY BannerTail

UpdateBanner_5
DBNE B,UpdateBanner_3a

; if there are still characters to be added, create an event
; LDAA BannerChars

BEQ UpdateBanner_fin
LDY #EHRecord
LDAA #%00000001
STAA EHFlagMask,Y
LDD #BannerInterval
STD EHTime,Y
LDD #BannerFlag
STD EHFlagAddr,Y
JSR AddEvent

UpdateBanner_fin
MOVB #$00,BannerFlag
RTS

--
; PrintStrToBanner: Copies a null terminated string into the banner buffer
; Arguments: X has address of the first byte in the string
; Modifies: BannerBuffer, BannerTail
PrintStrToBanner-------------------------
PrintStrToBanner

PStrBanner_0
LDAA ,X ; load a character
BEQ PStrBanner_1 ; test if null
PSHX
JSR PrintCharToBanner
PULX
INX
BRA PStrBanner_0

PStrBanner 1
; null terminator encountered so we are done
RTS

133

PrtNumToBanner
TAB ; place copy in B
ANDA #$FO ;
LSLA
LSLA
LSLA
LSLA
ROLA
TFR A,X
LDAA Nibble2Hex,X
JSR PrintCharToBanner

; print out the low nibble
TBA
ANDA #$OF ;
TFR A,X
LDAA Nibble2Hex,X
JSR PrintCharToBanner
RTS

nask off the low nibble

; print high nibble

mask of the high nibble

look up hex value

---------------------End of PrtNum--------------------------------------

$ENDIF

Misc.ASM

; Block / Zone Controller --> HC12 --> Miscellaneous Routines

Public Routines: ClearBuffer, PrepareMessage

; ClearBuffer: X has address of first byte in buffer. Y has size of buffer.
ClearBuffer, clears out the buffer

Modifies: the input buffer, X, A and B

ClearBuffer
LDAB #00

ClearBuffer 0
STAB ,X
INX
DEY
BNE ClearBuffer 0

RTS
-------------------------- End of ClearBuffer--------------------------

; PrepareMessage: Copies a message into the destination buffer. In the
process, it adds a header byte and converts the message
to ASCII. It is assumed that the message is of size
MESSAGE_SIZE and the destination buffer is of size
2*message_size+l.

; Arguments: X has src of message. Y has destination of prepared message.
; Modifies: A,X,destination buffer,MessSrc,MessDest,MessSize
; Note: MessDest,MessSize,MessSrc are vars re-used by Chksum routine.
;---
PrepareMessage

; Again, X has the source, Y has the destination address
LDAA #HeaderByte
STAA ,Y
INY

LDAB #Message_Size

; now convert each byte to ASCII and store it
PrepareMessage_0

LDAA ,X
LSRA
LSRA
LSRA
LSRA ; isolate the high nibble
STAA ,Y ; store high nibble
INY

; now
LDAA
ANDA
STAA

in the destination buffer

and shift down

we need to handle the low nibble
,X
#$OF ; mask of low nibble
,Y ; store the low nibble

134

INY
INX
DECB

; determine if we are done yet
BNE PrepareMessage_0O
RTS ; otherwise we are done

135

