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Abstract

This thesis analyzes the various modeling techniques for face recognition that are
available to us within the eigenface framework and experiments with different methods
that can be used to match faces using eigenfaces. It presents a probabilistic approach
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out comprehensive parameter exploration experiments that determine the optimal
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Chapter 1

Introduction

In recent years, there has been considerable progress in the problem of face detection

and recognition. The best results have been obtained for 2D view-based techniques

based on either template matching or matching using eigenfaces - a template matching

method using the Karhunen-Loeve transformation of a set of face pictures.

The idea of using eigenfaces was motivated by a technique developed by Sirovich

and Kirby [16] for efficiently representing pictures of faces using principal compo-

nent analysis(PCA). The scheme was later extended by Turk and Pentland [18] to the

problem of automatic face recognition. Moghaddam and Pentland [11] devised an un-

supervised method for visual learning based on density estimation in high-dimensional

spaces using an eigenspace decomposition. This allowed them to improve head detec-

tion and allow a maximum likelihood technique for detecting heads, thus increasing

recognition accuracy.

In this thesis, we further extend the system by incorporating a Bayesian similar-

ity measure for image matching. We analyze different modeling techniques that are

available to us within the eigenface framework. We also carry out numerous exper-

iments to determine the effect of different parameter values on recognition. Finally

we integrate all these techniques to build a practical face recognition system that

can be used to recognize faces in large databases such as the U.S. Army Research

Laboratory's FERET database.



1.1 Organization of this thesis

This thesis is structured in the following format:

Chapter 2 introduces the problem of face recognition and detection using eigen-

faces. It discusses the previous work done at the Media Lab on this subject. It talks

about some of the problems with the previous system at the Media Lab and how this

thesis addresses them.

Chapter 3 discusses different experiments carried out to determine the optimal

parameters required to build a reliable face recognition system using eigenfaces.

Chapter 4 studies different modeling techniques that are available to us within

the eigenface framework. It provides a detailed study of the performance of each

approach and discusses their relative merits

Chapter 5 presents our final system and its performance on the ARL FERET tests

administered in September 1996. It compares the performance of the final system with

the system used for the FERET I tests held in March 1995.

Chapter 6 discusses the future direction of this work and the limitations of this

thesis.



Chapter 2

Background

This chapter describes previous work in face recognition and detection. It describes

the system that was developed in the Media Lab and discusses some of the problems

that it had which we tried to address in this thesis.

2.1 What are Eigenfaces?

The idea of using eigenfaces was motivated by a technique developed by Sirovich and

Kirby [16] for efficiently representing pictures of faces using principal component

analysis(PCA). Starting with an ensemble of original face images, they calculated

a best coordinate system for image compression, where each coordinate is actually

an image that they termed an eigenpicture. They argued that any collection of face

images can be approximately reconstructed by storing a small collection of weights

for each face and a small set of standard pictures (the eigenpictures). The weights

describing each face are found by projecting the face image onto each eigenpicture.

The scheme was later extended by Turk and Pentland [18] to the problem of

automatic face recognition. They reasoned that if a multitude of face images can be

reconstructed using a small collection of eigenpictures and weights, then an efficient

way to learn and recognize faces would be to build up the characteristic features by

experience over time and recognize particular faces by comparing the feature weights

with the weights associated with a known individual. Each individual, therefore would



Figure 2-1: Some of the first few eigenfaces computed from a large database

be characterized by the small set of feature or eigenpicture weights needed to describe

them.

In the language of information theory, we want to extract the relevant information

in a face image, encode it as efficiently as possible and compare one face encoding

with a database of models encoded similarly. A simple approach to extracting the

information contained in an image of a face is to somehow capture the variations in

a collection of face images, independent of any judgment of features and compare

individual face images.

In mathematical terms, we wish to find the principal components of the distribu-

tion of faces, or the eigenvectors of the covariance matrix of face images, treating an

image as a point (or vector) in a very high dimensional space. The eigenvectors are

ordered, each one accounting for a different amount of the variation among the face

images.

These eigenvectors can be thought of as a set of features that together characterize

the variation between face images. Each image location contributes more or less to

each eigenvector, so we can display the eigenvector as a sort of ghostly face which we

call an eigenface. Some of the eigenfaces are shown in the figure 2-1.

Each individual face can be represented exactly in terms of a linear combination



of these eigenfaces, however normally the set of faces is approximated using only

the "best" eigenfaces - those that have the largest eigenvalues, and which therefore

account for the most variance within the set of face images.

2.2 Calculating Eigenfaces

Given a set of m-by-n images, {Ij},7 J, we can form a training set of vectors {xt},

where x E RN=mn, by lexicographic ordering of the pixel elements of each image I t .

The basis functions in a Karhunen-Loeve Transform(KLT) [6] are obtained by solving

the eigenvalue problem

A = TTCE (2.1)

where E is the covariance matrix of the data, D is the eigenvector matrix of E

and A is the corresponding diagonal matrix of eigenvalues. In PCA, a partial KLT

is performed to identify the largest-eigenvalue eigenvectors and obtain a principal

component feature vector y = 0'TR where R = x - x is the mean-normalized image

vector and OM is a submatrix of 0 containing the principal eigenvectors. PCA can

be seen as a linear transformation which extracts a lower-dimensional subspace of the

KL basis corresponding to the maximal eigenvalues.

2.3 Detecting Heads in an image

Moghaddam and Pentland [11] devised a method for estimating probability densities

in a high-dimensional space using eigenspace decomposition. Their method is outlined

in the appendix. The following section is also from that paper.

The density estimate P(xlQ) can be used to form probabilistic saliency maps for

target detection. This done by computing the likelihood estimate at each spatial

location in the input image

S(i, j; Q) = P(x t jQ) (2.2)



where x i j is the observation vector obtained by vectorizing the local subimage

centered at location (i, j) in the input image. The maximum likelihood estimate of

the spatial position of the target is then obtained by

(i*, j*) = argmaxiS(i, j; Q) (2.3)

Thus each test region in the image is projected onto the eigenspace and then tested

to see if it is a head or not. This method is repeated for different scales and the head

with the highest maximum likelihood score is selected.

Once the head has been selected, a similar search is carried out for the eyes, nose

and mouth and all the scores from the searches are combined to provide a better

estimate of the location of the head.

2.4 Recognizing Faces using Eigenfaces

The approach to face recognition involves the following initialization operations:

1. Acquire an initial set of face images (the training set).

2. Calculate the eigenfaces from the training set, keeping only the M images that

correspond to the highest eigenvalues. These M images define the the face space.

3. Calculate the corresponding distribution in M-dimensional weight space for

each known individual by projecting their face images onto the "face space". So each

face image is now converted to a set of coefficients. In the original system, there were

100 eigenfaces and hence there were 100 coefficients.

Having initialized the system, the following steps are then used for recognizing

face images.

1. Project each input image (which is a face already normalized for scale and

contrast) on the M eigenfaces and determine the projection coefficients.

2. If it is a face, classify the weight pattern as either a known person or as

unknown. This is done by a nearest neighbor method, by finding the Euclidean

distance between the input face coefficients and all the other projected known faces

in face space.



Attentional Subsystem

Multiscale Feature
I HeadSearch Search

I i , - - - - - - - - - - -

IWarp W N KL Projection Rnco1n
Image Normalization

II 'I

Object-Centered Representation i Feature Extraction I Recognition & LearningI
Figure 2-2: The face processing system.

Figure 2-2: The face processing system.

(a) (b)

(c) (d)

Figure 2-3: (a) original image, (b) position and scale estimate, (c) normalized head
image, (d) position of facial features.

2.5 The Media Lab Face Detection and Recogni-

tion System

This section is from [11]. The block diagram of the system is shown in figure

2-2 which consists of a two-stage object detection and alignment stage, a contrast

normalization stage, and a feature extraction stage whose output is used for both

recognition and coding.

Figure 2-3 shows the operation of the detection and alignment stage on a natural

test image containing a human face.

The first step in this process is illustrated in Figure 2-3(b) where the ML (max-

imum likelihood) estimate of the position and scale of the face are indicated by the

(a) (b)



(a) (b) (c)
Figure 2-4: (a) aligned face, (b) eigenspace reconstruction (85 bytes)(c) JPEG recon-
struction (530 bytes).

Figure 2-5: The first 8 eigenfaces.

cross-hairs and bounding box. Once these regions have been identified, the estimated

scale and position are used to normalize for translation and scale, yielding a standard

"head-in-the-box" format image (Figure 2-3(c)). A second feature detection stage

operates at this fixed scale to estimate the position of 4 facial features: the left and

right eyes, the tip of the nose and the center of the mouth(Figure 2-3(d)). Once the

facial features have been detected, the face image is warped to align the geometry and

shape of the face with that of a canonical model. Then the facial region is extracted

(by applying a fixed mask) and subsequently normalized for contrast. The geometri-

cally aligned and normalized image (shown in Figure 2-4(a)) is then projected onto a

custom set of eigenfaces to obtain a feature vector which is then used for recognition

purposes as well as facial image coding.

Figure 2-4 shows the normalized facial image extracted from Figure 2-3(d), its

reconstruction using a 100-dimensional eigenspace representation (requiring only 85

bytes to encode) and a comparable non-parametric reconstruction obtained using a

standard transform-coding approach for image compression (requiring 530 bytes to

encode). This example illustrates that the eigenface representation used for recogni-

tion is also an effective model-based representation for data compression. The first 8

eigenfaces used for this representation are shown in Figure 2-5.



Figure 2-6: Photobook: FERET face database.

Figure 2-6 shows the results of a similarity search in an image database tool called

Photobook [14]. Each face in the database was automatically detected and aligned by

the face processing system in Figure 2-2. The normalized faces were then projected

onto a 100-dimensional eigenspace. The image in the upper left is the one searched

on and the remainder are the ranked nearest neighbors in the FERET database. The

top three matches in this case are images of the same person taken a month apart and

at different scales. The recognition accuracy (defined as the percent correct rank-one

matches) on a database of 155 individuals is 99% [10].

2.6 Problems with the Media Lab face recogni-

tion system

The results of the Media Lab face recognition system in two categories of the FERETI

tests are summarized in the tables 2.1 and 2.2. These results suggested that the

performance of the Media Lab system could be improved substantially. (It should

be mentioned here that the tests were adminstered in March 1995 and was taken in

November 1995 by Rockefeller).

There are a number of ways that the Media Lab face recognition system can be

improved. (A brief description of the Rockefeller and USC methods are given later

in this chapter).

nnnn
n,ý



Table 2.1: FA vs FB results on the FERET I tests

Institution Recognition Rate

Rockefeller (November 1995) 96
USC (March 1995) 92
MIT Media Lab (March 1995) 88

Table 2.2: Duplicate Scores on the FERET I tests

Institution Recognition Rate

Rockefeller (November 1995) 62
USC (March 1995) 58
MIT Media Lab (March 1995) 40

1. The head detection scheme can be improved by incorporating a training system

that learns negative examples of heads and uses that within a Bayesian framework to

detect heads more accurately.

2. The present face matching system uses a nearest neighbor approach with a

Euclidean distance metric within the face space. This has been criticized in the past.

Critics have argued that the eigenface approach takes into consideration the most

expressive features for classifying faces. This according to them is inferior to the

approach using most discriminating eigenfeatures. Basically what this means is that

in the Euclidean distance metric, you weigh all the projection coefficients equally. This

is not the best approach since some eigenfaces capture the most representative axis

among faces but these eigenfaces are not necessarily the best ones for classification.

3. Other important and often ignored aspect of all face recognition systems is the

effect of different parameters on recognition. Parameters like the number of eigenfaces

used, the effect of masks, the effect of using different regions of the faces and the effect

of different databases for training. Tweaking of these parameters can help build a

practical and very robust face recognition from the already existing one.



2.7 Other work on Face Recognition

There has been an incredible amount of work done in face recognition in recent years.

In this section, we try to give a very brief description of some of the work done in

this field (though it is impossible to mention all the work).

The Rockefeller system developed at the Laboratory of Computational Neuro-

science has developed factorial coding into a mathematical theory for visual process-

ing. They report that their model has been found to account quantitatively for much

of the observed spatio-temporal and color coding properties of neurons. In addition

they claim that the theory has been used to derive "learning algorithms" which allow

a computer to generate factorial codes for any ensemble of complex images such as

faces. [1]

The University of Southern California presents a method for recognizing objects

(faces) on the basis of just one stored view, inspite of rotation in depth. It is not

based on the construction of a three-dimensional model for the object. This achieved

with the help of a simple assumption about the transformation of local feature vec-

tors with rotation in depth. The parameters of this transformation are learned on

training examples. This was the abstract in a paper by the developers of the system,

Christroph Malsburg and Thomas Maurer [8].

John Weng also worked on a discriminant eigenfeatures for recognition, which uses

a version of the Fisher discriminant for classifying between clusters of different people

[17].
Among other significant work include that of Tom Poggio at MIT and Rama

Challappa at University of Maryland.

2.8 Goals of this thesis

This thesis tries to address the problems discussed in the previous section. It tries to

build a practical and robust face recognition system for improved accuracy.

It studies different modeling techniques for matching faces within the eigenface



framework and tries to come up with different methods that can appropriately weigh

the different eigenfaces for better matching. It ultimately comes up with a Bayesian

approach to matching that converts the face recognition problem into a classical

binary classification problem where faces are characterized as a known person or an

unknown person according to the a posterior probabilities associated with clustering

of the database into intra and extra personal groups.

It also carries out comprehensive parameter exploration experiments that help

determine optimal parameter values for recognition.

Finally it lays down some foundation for future work for improvements in face

detection wherein a similar Bayesian framework can be implemented for detection.

In such a system, positive and negative examples of faces can be incorporated into

the training system and the system can automatically learn and classify heads and

non-heads more accurately.



Chapter 3

Modeling Parameters

In recent years, there has been considerable progress made in the problems of face

detection and recognition using eigenfaces. However there has not been too much

effort spent on general parameter exploration. There are a lot of ways that the prob-

lem of face detection and recognition can be modeled within the eigenface framework.

This chapter attempts to explore certain parameters such as what regions of the face

are essential for recognition, how many eigenfaces are optimal for recognition, how

to incorporate negative examples into training and how to improve performance on

duplicate images. We will try to integrate all these modeling parameters and build a

system that provides increase performance.

3.1 Number of Eigenfaces

An important parameter for recognition is the number of eigenfaces used for repre-

sentation of the faces. The original eigenface technique of Turk and Pentland [18]

used 7-10 eigenfaces. More recent work by Pentland et al [10] used 100 eigenfaces.

Although Kirby and Sorvich [16] and others realized the importance of the number

of eigenfaces on the performance of recognition, there has been no systematic effort

to investigate exactly how many eigenfaces are optimal for recognition.

One reason for using fewer eigenfaces is computational efficiency, however an even

more important reason is generalization. A classifier based on all the information



within a training set is inevitably able to to use random correlations specific to that

training set to improve classification; e.g., if all the males in the database had beards,

it is relatively easy to discriminate males from females for that training set, but

such a rule does not work in general. By restricting ourselves to the large variance

eigenvectors, we experimentally find much better generalization to other datasets.

This is well-known in applications such as image coding and neural networks [7].

In the next section, we describe a few experiments that will help us determine the

optimal number of eigenfaces needed for recognition.

3.1.1 Varying the number of Eigenfaces

For these experiments, we used a 1274 face database (which we called the bank). This

database included several images of the same person under different pose, lighting

condition and facial expression. The database was divided into two parts - the half

bank and the reverse half bank. In all the experiments, we describe in this chapter,

we use the intra/extra modeling method (also discussed in this thesis).

Our first experiment was to train on the full bank and then use that training

information to test on the full bank itself. We tried this for different number of

eigenfaces ranging from 50 to 500 eigenfaces at regular intervals of 25. The results of

our experiments are summarized in the figure 3-1 and in table 3.1.

These results show that increasing the number of eigenfaces increases recognition

when you test on the training set. There are however a few points that one should

notice while analyzing the results: We can see that recognition increases with the

number of eigenfaces but only to a certain point. Thus the performance using 200

eigenfaces are the same as the performance using 500 eigenfaces. Therefore there

is a limit above which using more eigenfaces does not help recognition. The very

high recognition obtained in this test must be considered with caution because we

are testing on the training set. Issues of generalization and over-fitting must be

considered.

A much better experiment is to train on the half-bank database, test on the

reverse half-bank database and vice versa and analyze the results. The results are
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Figure 3-1: Testing on Training set while varying the number of eigenfaces used



Table 3.1: Recognition rates for different numbers of eigenfaces
training data

Number of Eigenfaces Used Recognition Rate

75 93.87 (1196/1274)
100 98.12 (1250/1274)
125 98.98 (1261/1274)
150 99.61 (1269/1274)
175 99.69 (1270/1274)
200 99.84 (1272/1274)
225 99.84 (1272/1274)
250 99.84 (1272/1274)
300 99.84 (1272/1274)
400 99.84 (1272/1274)
500 99.84 (1272/1274)

Table 3.2: Training on reverse half bank and
number of eigenfaces

used. Testing on

testing on half bank while varying the

Number of Eigenfaces Used Recognition Rate

100 93.89 (599/638)
125 94.20 (601/638)
150 93.10 (594/638)
175 92.63 (591/638)
200 92.00 (587/638)
300 90.28 (576/638)
500 76.65 (489/638)

summarized in the following two figures 3-2 and 3-3 and in the tables 3.2 and 3.3:

These experiments give us very interesting insights. We can see that the recogni-

tion rate increases with the number of eigenfaces used but only till a certain point.

After that point, the recognition rate falls pretty dramatically. For our database, the

recognition rate seems to be best when we use 125 eigenfaces.

It is interesting to compare the performance of the 500 eigenface method in the

two tests. It performs admirably on the first test but fails in the next tests. This

supports our speculation on over-fitting and generalization to different databases.
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Figure 3-2: Training on reverse half bank and testing on half bank for different
numbers of eigenfaces
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Figure 3-3: Training on half bank and testing on reverse half bank for different
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Table 3.3: Training on half bank and testing on reverse half bank while varying the
number of eigenfaces

Number of Eigenfaces Used Recognition Rate

100 93.71 (596/636)
125 93.87 (597/636)
150 94.02 (598/636)
175 92.76 (590/636)
200 92.77 (590/636)
300 91.04 (579/636)
400 88.21 (561/636)
500 80.19 (510/636)

3.2 Training with a larger set

One of the experiments we carried out was increasing our training from 300 images

to 2000 images. So instead of forming the original eigenfaces from 300 images, we

calculate the eigenfaces from a training set of 2000 images.

The results of increasing the training set are shown in figure 3-4. The results are

as one would expect. We can see that the 2000 Bank eigenfaces show a substantial

improvement in recognition using both the Euclidean distance metric as well as the

Intra/Extra modeling method. The Intra/Extra modeling method in particular shows

a dramatic improvement. This is because the 2000-bank eigenfaces span more of

the relevant variations among faces then the 300-bank eigenfaces and this leads to

improved performance.

The first twenty 2000-bank eigenfaces are shown in figure 3-5:

3.3 Investigating Which Regions of the Face are

Important for Recognition

We carried out a few experiments to determine which regions of a face are important

for face recognition. We designed different masks and tested them for recognition.

The results of our experiments are summarized in the figure 3-6. These experiments



Figure 3-4:
compared

0 5 0 15 20 25 30 35 40 45 50
Rank

Performance of the training with 300-bank and training with 2000-bank

_ __ __ __ __ __ __



Figure 3-5: The first 20 eigenfaces built from a 2000 face database

31



Figure 3-6: Different Masks and their performances

Figure 3-7: An image containing only the eyes

were carried out using the 300-bank eigenfaces and using the Euclidean distance

metric.

The results suggests that a mask that allows some of the hair in an image performs

better than the a tight-mask which is what was originally used in our system. This

result is very suggestive and more experiments are needed to make further claims.

3.3.1 Using Only the Eyes

It is generally believed that over a period of many years, the eyes undergo very little

change. We carried out an experiment to test how our system recognizes faces given

just the eyes of a person. An example of the images that we fed into the system is

given in figure 3-7.

The recognition results obtained using just the eyes is 91.05% which is remarkable

considering how much less visual information the eye contains compared to the entire

face. What would be interesting to test would be the performance of using only eyes

on images taken years apart. Most recognition systems using the entire face fare very

poorly on such images (referred to as dupes). This might be due to lack of sufficient

training examples which represent the changes in a person's face over a period of time.

However, if eyes do undergo very little change over time, then maybe recognition on



dupes can be improved substantially using only the eyes.

3.4 Summary

In this chapter, we presented numerous experiments that explore some of the parame-

ters that affect our recognition system. We found out that the best recognition results

are obtained with a 125-dimensional eigenspace. We found out that a large training

sample gives better results and investigate which regions of the face are important

for recognition.



Chapter 4

Recognition

Once every face has been projected onto facespace, we are ready to "recognize" or

match them against each other. For every test image (which we will call the "probe")

we match it against each face in our database (which we will call the "gallery") scoring

it with an appropriate function and thresholding the end scores to actually recognize

the image.

Each face is projected onto the 125 dimensional facespace. So at this stage our

faces are transformed to 125 floats which are simply the projection coefficients.

There are a number of ways one can match different faces. In this chapter, some

of the techniques for feature extraction and image matching are analyzed. The first

few sections describe the different approaches while the latter sections describe a few

experiments and analyze the performance of the different methods.

4.1 Euclidean distance metric

One can find the euclidean distance between the probe and all the gallery images and

find the nearest neighbor to the test image. Thus if p and g are vectors representing

the probe and gallery points, in a n-dimensional space, the Euclidean distance dE(x, y)

between the two points is:



n

dE(x,y) = lp- ql = [E(xi- y,)211/2 (4.1)
i=1

The probe is recognized by choosing the gallery image that is nearest to it.

This is perhaps one of the simplest methods for matching images. The probability

of error for this nearest neighbor decision rule is bounded above by twice the Bayes

probability of error [2] if there is an infinite number of samples. This simple measure

of similarity is often used because it does not require a satisfactory estimation of the

distribution function, which in many cases is impractical in a high dimensional space.

The obvious disadvantage with the Euclidean distance metric is that it does not

take into consideration the underlying probability distribution of the faces. It thus

attaches equal weights to all the projection coefficients.

4.2 Using Intra/Extra Personal Variations

The nearest-neighbour rule based on a Euclidean distance metric to match probe

and gallery images ignores the underlying probability distribution and so cannot be

expected to perform as well as a method that uses a Bayesian framework to classify

faces.

The problem can be formulated in a Bayesian fashion as follows: Two distinct and

mutually exclusive classes are defined: QI representing the intrapersonal variations

between multiple images of the same individual (e.g. with different expressions, poses

and lighting conditions) and OmegaE representing the extrapersonal variations among

two different individuals.

Once we have characterized the probability distributions of the two different

classes, we can try to classify a face as being in the intra or extra class according

to some decision boundary.

Both classes are assumed to be Gaussian distributed and the estimates of the

likelihood functions P(OUII) and P(UJIE) are obtained for any given test face vector

One difficulty with this approach is that face image vectors are very high-dimensional



with 1 E RN where N = O(103). Thus we typically lack sufficient training data to

compute reliable 2nd-order statistics for the likelihood densities (i.e. singular co-

variance matrices will result). Even if we were able to estimate these statistics, the

computational cost of evaluating the likelihoods is formidable. Also the computation

would be inefficient since the intrinsic dimensionality or major degrees of freedom of

U for each class is most likely much smaller than N.

As explained in the beginning of this chapter, at this point all the faces have been

projected onto the principal components or eigenfaces, so at this point we are dealing

with with 125-dimensional vectors so we can get quite accurate 2nd-order statistics

since our training set comprises about 2000 faces.

Once we have defined these mutually exclusive clusters of intra and extrapersonal

variations, we can try to classify a face as belonging to one of those clusters.

4.2.1 Quadratic Classifiers

We will use a Bayesian likelihood ratio test for classification. The decision rule is of

the form:

W1

( Y)= <2 A (4.2)
pylw2 JW2)

Lets say that the vector y from the ith class has a mean mi and a covariance Ki

and are characterized by a Gaussian density, then we can rewrite equation 4.2 as

W1
K11 1 1Y

(]) = 1[ (- m9)WK -1( -)T) + (9 - m 2 ) T2-1( 2 A (4.3)
IK21 2 2

which can be written as:

h() = ( - mi)T •(i1 - mi) - ( - m)T - ) + InI2 W2 T (4.4)
1K2 1



which can be expressed as follows:

h(9) = (ý)TAý + bTy + cW2 T (4.5)

where

A = K -1 - K2- 1 (4.6)

b = 2(K2-1m2 - Ki 1-ml) (4.7)

c = (miTKIlmi - m 2TK 2 -1m 2 + in JK) (4.8)IK21

The decision rule 4.5 is called the Gaussian or quadratic classifier and it essentially

the Mahalanobis distances to the mean of each class using the class covariance matrix

and compares them to a threshold.

One can assume (incorrectly) that the class covariance matrices are diagonal and

calculate the mahalanobis distance metric as follows

(x' - mT)A-' (x' - m') = C (4.9)

However this decision boundary does not take into account the relative orientations

of the two different clusters.

4.2.2 Linear Classifiers

If we assume that K1 = K2 = K, then the matrix A of equation 4.5 becomes equal

to 0 and the 4.5 reduces to

h(g) = bT + C2 T (4.10)

where

b = 2K-1 (m 2 - mi) (4.11)

c = miTK -l m j - m 2TIK - lm 2 (4.12)



This decision boundary is a linear hyperplane.

4.2.3 Intra/Extra Eigenvectors

Thus we can also classify the faces into the intra/extra clusters by first performing a

separate PCA on each class, projecting each test faces on the intra/extra eigenvectors

and using a MAP classification rule.

We can use an appropriately weighted sum of the distance in intra/extra space as

a suitable score to classify the faces.

We then have:

A . exp (- ! J i 1l 2
P(UIQ) = [( ( 2%= Ai) ½  (4.13)

where PF(U) is the true marginal density in F. Here F is either the intra or

the extra space. Since we can estimate the marginal densities, we can define the

similarity score between a pair of images directly in terms of the intrapersonal a

posteriori probability as given by Bayes rule:

P(OjfI)P(f2I)P()IIU) = (4.14)
P(UJf2I)P(f2t ) + P(UI E)P(lE)

This method is equivalent to the quadratic classifier described earlier. This

Bayesian formulation casts a face recognition task into a classical binary pattern

classification problem which can then be solved using the maximum a posteriori

(MAP) rule - i.e. two facial images are determined to belong to the same individual

if P(QIIj) > P(fEIU).

An efficient density method was proposed by Moghaddam & Pentland [12]. They

break down the vector space ~•g into two complementary subspaces using an eigenspace

decomposition. A low dimensional estimate of the the probability distribution using

only the first M principal components (where M << N) obtained by Principal Com-

ponents Analysis (PCA) [4]. This is shown in Figure 4-1 which shows the orthogonal

decomposition of the vector space RN to the principal subspace F comprising the



Figure 4-1: Decomposition of RN into the principal subspace F and its orthogonal
complement F for a Gaussian density

M principal components and the orthogonal complement F. The component of the

orthogonal subspace F is the so-called "distance-from-feature-space"(DFFS), which

is equivalent to the PCA residual error. The component of U which lies in the fea-

ture space F is refereed to as the "distance-in-feature-space" and is a Mahalanobis

distance for Gaussian densities.

As derived in [11] and in the Appendix A, the complete likelihood estimate can be

written as the product of two independent marginal Gaussian densities or equivalently

as an appropriately weighted sum of the DIFS and DFFS.

P(UIQ) =

(4.15)

= PF(UIQ) PP(UnQ)

where PF(I|Q) is the true marginal density in F and (P)F(UI|•) estimated marginal

density in the orthogonal complement F, yi are the principal components(eigenvectors)

and 02 (U) is the residual (or DFFS). The value of p is bound by AM+, as discussed



in [11]

4.3 Performance of different methods

In this section we discuss the performance of the different methods described earlier

on our Media Lab database. The database known as bank consists of a total of 1273

faces, including multiple images of the same person with different lighting, pose and

expressions. The database was divided into two parts, half bank and reverse half

bank respectively. The system was trained on one part and tested on the other. The

other test carried out was training and testing on the full bank. The results obtained

for the various methods are summarized in 4.1:

Table 4.1: Performance of the different methods on different databases

Method Used Performance on Performance on Performance on
half bank reverse half bank full bank

Euclidean 89.18(569) 87.26(555) 86.1(1096)
Linear Classifier 0.3(2) 1.0(6) 4(51)
Quadratic Classifier using
only diagonal elements of
covariance matrix 88.56(565) 88.68(564) 88.06(1121)

Quadratic Classifier 94.2(601) 93.87(597) 98.98(1261)
Intra/Extra Eigenvectors 94.2(601) 93.87(597) 98.98(1261)

4.4 Analysis

In this section, we will analyze the performance of the different methods on the

database.

4.4.1 Euclidean

The performance of this method is very impressive considering its simplicity. It how-

ever does not take into account the underlying probability distribution of the images



and weights all the coefficients equally and this is the reason why its performance is

not as good as some of the other methods described.

4.4.2 Linear Classifier

This method posts some incredibly low scores. The simple explanation for the poor

performance is that the intra/extra clusters are not linearly separable.

If we plot the first three principal components for the intra I1 class versus the

extra class SfE as shown in figure 4-2, we see that they are not linearly separable. Thus

simple linear discriminant techniques cannot be used with any degree of reliability.

The proper decision boundary is inherently nonlinear (quadratic in fact) and is best

defined in terms of the a posterior probabilities.

Visual interpretation of figure 4-2 is misleading since we are dealing with low

dimensional hyper-ellipsoids which are intersecting near the origin of a very high-

dimensional space. The key distinguishing factor between the two distributions is

their relative orientations. In figure 4-2, we calculate the angle between the major

axes of the two hyper-ellipsoids by computing the dot product between their respective

first eigenvectors. The angle between them was found to be 68 deg, implying that that

the orientations are indeed different.

4.4.3 Quadratic Classifier Using only Diagonal Elements of

Covariance Matrix

The performance of the quadratic classifier using only the diagonal elements of the

covariance matrix is better than the Euclidean distance metric. This is because it

weights the different coefficients by the variance along that direction. However it still

does not take into account the relative orientations of the clusters and ignores the

cross correlation terms. Thus it does not perform as well as the Quadratic Classifier

using the full covariance matrix.
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Figure 4-2: (a) distribution of the two classes in the first 3 principal components
(circles for %I, dots for QE) and (b) schematic representation of the two distributions
showing orientation difference between the corresponding principal eigenvectors.

4.4.4 Quadratic Classifier Using the Full Covariance Matrix

This method has the best performance of all the methods used. This Bayesian for-

mulation casts the recognition problem into a classical binary pattern classification

problem which is then solved by using the maximum a posterior (MAP) rule.

4.4.5 Intra/Extra Eigenvectors

This method performs as well as the Quadratic classifier with the full covariance

matrix method. The two methods are actually equivalent. Both methods characterize

the distribution of the intra and extra classes and use the same classification technique

to match images.

The intra/extra eigenvectors are diagonal however the quadratic classifier is less

computational intensive.

It is interesting to view the intra/extra eigenfaces in the original facespace. This

allows us to visualize what features are prominent for the intra class and what features

are prominent for extrapersonal variations. The first 15 intra and extra eigenfaces

are shown in the figures 4-3 and 4-4 respectively.

We can see that most of the variations among the intrapersonal group is around

I

QI

I



Figure 4-3: The first 15 intra eigenvectors viewed in the original facespace

the mouth region. This makes sense because most images of the same person are

similar except for differences in facial expression, pose and glasses. For the extra

personal group, the differences are more varied and this can be seen by studying the

extrapersonal eigenfaces.

4.5 Summary

In this chapter, we presented several ways of matching the face coefficients for recog-

nition. We found that a Bayesian approach to classification outperformed other meth-

ods of matching faces. This work is very similar to that of Pentland et al [9]. However

this is different in that uses just the projection coefficients, instead of the deformable

intensity surfaces ((x, y, I(x, y)) that was used before.

One idea that we did not have time to explore is to use only the intra-eigenvectors

in the original facespace. So instead of having a two-sided test, we have a one sided

test. The recognition results might not be as accurate (though it should be pretty



Figure 4-4: The first 15 extra eigenvectors viewed in the original facespace

close), but the computation is cut into half.

Another interesting test would be to carry out the intra/extra modeling in the

original image space instead of in face space and see if the differences in performance.



Chapter 5

The FERET tests

As part of the Face Recognition Technology (FERET) program, the U.S. Army Re-

search Laboratory (ARL) conducted a series of supervised government tests and eval-

uations of automatic face recognition algorithms. The goal of the tests was to provide

an independent method of evaluating algorithms and assessing the state of the art in

automatic face recognition systems.

This chapter provides a brief summary of the performance of our system in the

FERET II tests compared against other face recognition systems available. We de-

scribe our final system, analyze its performance and compare its performance against

our older system which participated in the FERET I tests.

5.1 THE FERET Database

Images of a person were acquired in sets of 5 to 11 images, collected under relatively

unconstrained conditions. Two frontal views were taken (fa and fb); a different facial

for the second view. The images were collected at different locations so there is some

variation in illumination from one session to another. There is also variation in scale

and pose. The test uses both gallery and probe images. The gallery is the set of

known individuals while the set of unknown faces to be tests are called the probes. A

duplicate image (called dupe) is defined as an image of a person whose gallery image

was taken at a different date from the probe.



(a) (b)

Figure 5-1: Examples of FERET frontal-view image pairs used for (a) the Gallery set
(training) and (b) the Probe set (testing).

In the September 1996 FERET test, the gallery set contained 3323 images while

the probe set contained 3816 images. The probe set consisted of all the images in the

gallery set plus rotated images and digitally modified images. The digitally modified

images had variations in illumination and scale. To obtain a copy of the official

government report on the FERET program and test results [15], contact Jonathan

Phillips at jphillip@nvl.army.mil

An example of the faces in the FERET is given in figure 5-1.

5.2 Our Final System

Our final system for the September 1996 FERET test used a 125 dimensional eigenspace

and used intra/extra eigenface modeling for the matching method. It was trained on

the 2000-bank database at the Media Lab. It was not trained with marginal data nor

was it trained with duplicate images. The head detection scheme was the same one

that was used in the previous system (described in the second chapter).



5.3 Performance on the FERET tests

The performance of our system on the FERET I test is presented in the tables 5.1

and 5.2. The March 1995 Media Lab method used the Euclidean distance metric to

match faces in a 100 dimensional facespace while the August 1996 Media Lab method

(our current method) used intra/extra modeling in a 125 dimensional facespace.

Table 5.1: FA vs FB results on the FERET I tests

Institution I Recognition Rate

MIT Media Lab (August 1996) 96
Rockefeller (November 1995) 96
USC (March 1995) 92
MIT Media Lab (March 1995) 88

Table 5.2: Duplicate Scores on the FERET I tests

Institution Recognition Rate

MIT Media Lab (August 1996) 69
Rockefeller (November 1995) 62
USC (March 1995) 58
MIT Media Lab (March 1995) 40

One should note the dramatic improvement of the August 1996 Media Lab perfor-

mance over the March 1995. The improvement for the duplicate images is an amazing

29% !

The results for the FERET II tests which were administered in September 1996

is summarized in the figures 5-2, 5-3, 5-4 and in the table 5.3

These tests show the superiority of the intra/extra modeling technique over the

previous Euclidean distance metric. It also tests our recognition system very exten-

sively under more or less practical applications.
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Table 5.3: Variations in performance over 5 different galleries of fixed size(200) on
duplicate probes. Algorithms are order by performance (1 to 7). The order is by
percentage of probes correctly identified (rank 1). Also included in the table is average
rank 1 performance for all algorithms and number of probes scored

Algorithm gallery 1 gallery 2 gallery 3 gallery 4 gallery 5

ARL Eigenface 6 6 3 2 5
ARL Correlation 7 4 4 4 6
Excalibur Corp. 2 3 2 3 1
MIT Sep 96 1 1 1 1 1
MIT Mar 95 4 2 5 6 7

Rutgers Univ. 3 4 7 5 4
Univ. of Maryland 4 6 6 7 1
Average 0.220 0.587 0.626 0.512 0.653
Number of Probes Scored 143 64 194 277 44

Duplicate images taken at least one year apart
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Chapter 6

Conclusion and Future Directions

With these preliminary experiments, the advantages of the Bayesian framework for

matching faces are clear. We have addressed the problems with our previous recog-

nition system at the Media Lab and improved our recognition results. The biggest

performance increase was on duplicate images where we topped our previous mark

by a 30% margin. We have generated optimal values for various parameters and

have demonstrated the superiority of our system over other existing systems through

thorough testing on the FERET database.

However there are a lot of further improvements that can be made to the face

recognition system.

6.1 Head Detection: The need for a real time

system

The system we have is not a real time system. For a lot of practical applications, there

is the need for a real time system that can identify and recognize a face instantly.

Examples of applications include security clearance and even entertainment. The

bottleneck in our system is the multiscale face detection module which takes a couple

of seconds to produce the best detection.

The system can be speeded by very easily by integrating it with a real time face



detection and tracking system. Such a system developed by Oliver and Pentland[13]

called LAFTER already exists in the Media lab. This is a real-time system for finding

and tracking a human face and mouth. It has been tested on hundreds of users and

demonstrated to be extremely reliable and accurate. We can feed the input the head

images obtained by the LAFTER system into our feature detection module and then

in to our recognition system. This will provide not only real time recognition but

also allow us to accurately recognize faces in situations which are less restrictive than

mug-shots. We can also integrate the system with the STIVE [19] system in the

Media Lab's "Smart Desks" project. This system tracks heads and hands in 3-D at

a very casual environment. Another useful application would be to use a wearable

computer to track and locate a head [5].

We can also incorporate negative examples into our face detection scheme. At

present, we estimate the probability distribution of the cluster of heads and use a

maximum likelihood score to find the best head. This is a one-sided test though and

we can imagine getting better accuracy using a two-sided test where we distinguish

with positive examples and negative examples of training heads.

6.2 Improving performance on Duplicate Images

and Rotated Images

The performance of most face recognition systems on duplicate images is dismal.

This might be due to a lack of good training data which means that we do not have

examples of the changes in someone's face over a number of years. Getting training

data would be a good place to start. It will also be interesting to see which facial

regions undergo the least change over the years (as we mentioned earlier, there is

widespread speculation that the eyes undergo very little change with age).

The performance of most systems on rotated images (half, quarter, and profile

views) also leaves a lot to be desired. The best performance on profile views is about

40% and that means that a lot of work needs to be done in this region. This problem

probably needs more advanced representation of faces. 3-D models of heads might be



appropriate where the 3-D can be reconstructed from images and compared to known

individuals. There is a lot of work being done at the moment on 3-D pose estimation

and reconstruction [3].

To me, the perfect face recognition system will be one that can be used in a very

casual environment (for example your living room) and can detect and recognize faces

in a crowded environment instantly. With all the work that is being done today, this

is not an impossibility and we might reach that goal very soon.



Appendix A

Probabilistic Visual Learning for

Object Detection

This appendix is derived from [11]. It describes a maximum likelihood estimation

framework for visual search and target detection.

We begin by consider a Gaussian density whose mean t and covariance E have

been robustly estimated from a training set x t . The likelihood of an input pattern x

is given by

exp [-(x- 1 )TE-'(x - )]
P(xlI) = exp 2 ( R - (A.1)

(27r)N/2 JE11/2

The sufficient statistic for characterizing this likelihood is the Mahalanobis distance

d(x) = RTE-ik (A.2)

where R = x - R.

Using the eigenvectors and eigenvalues of E, we can rewrite E-1 in the diagonalized

form
d(x) = TE:T-1j

= :T [A-1OT] j (A.3)
= yTA-ly

Here y = #T T are the new variables obtained by change of coordinates in a KLT.



Because of the diagonalized form, the Mahalanobis distance can be expressed as

N 2y
d(x) = E (A.4)

i=1

An estimator for d(x) using only the M principal components is:

d (x) E1 Y  + - E Y2
d= bdai P i-M+ (A.5)

= + 12()X

where the term E2(X) is the DFFS and can be computed as :

N M

62(x) = Y = Il' 2 - E Y (A.6)
i=M+l i=1

Thus we can write the liklihood estimate based on d(x) as the product of two

marginal and independent Gaussian densities:

P(xI)=

= PF(XI|) Pp(xlj)

where PF(XIQ) is the true marginal density in F-space and Pp(xlQ) is the estimated

marginal density in the orthogonal complement F-space. The optimal value of p can

now be determined by minimizing a suitable cost function J(p).

exp A.
(21rp)(N-M) (A.7)
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