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ABSTRACT

ZnSe-based II-VI semiconductors represent an area of intense research, due to their
promise as blue emitters for high-density optical storage systems and a range of other
applications. The state-of-the-art ZnSe-based injection laser diodes that have been
demonstrated to date are primarily pseudomorphic structures grown on GaAs substrates
with GaAs epitaxial buffer layers. Recent electrical degradation studies have led to a
growing consensus that defects arising from the ZnSe/GaAs interface presently play the
limiting role in the lifetime performance of these devices. Various reports have also
suggested that different nucleation procedures can lead to significant changes in the
structural properties of the ZnSe overlayer. In this study, we have examined the effects of
the GaAs surface reconstruction and the use of Zn or Se pre-exposure on the resultant
defect densities observed in 1 p.m ZnSe films grown by molecular beam epitaxy.

In order to examine the role of lattice-mismatch on the ZnSe defect density, we have also
studied ZnSe grown on lattice-matched novel buffer layers of (In,Ga,A1)P on GaAs
substrates. It is possible to grade the lattice constant of the buffer layer from that of GaAs
to that of ZnSe. The study of these buffer layers is further motivated by their use as a p-
type ohmic contact to a p-type ZnSe overlayer. We have also studied defect generation in
ZnSe epilayers grown on relaxed graded buffer layers of (In,Ga)P with the phosphide
surface capped with 8 monolayers of GaAs. In this manner, surface chemistry is removed
as a variable while achieving a buffer layer that is lattice-matched to ZnSe. These studies
have indicated that growth of ZnSe on (2x4)-reconstructed GaAs results in a defect
density significantly lower than for growth of ZnSe on c(4x4)-reconstructed GaAs.
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Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1: Introduction

1.1 Introduction

Over the past ten years, intense research has resulted in fantastic breakthroughs in

the area of II-VI compound semiconductor blue/green light emitters. The large bandgap

of the II-VI semiconductors allows for the possibility of developing blue light emitting

devices. The wide direct room temperature bandgap of ZnSe (2.67 eV) makes ZnSe-

based devices ideal for use in short wavelength light emitters. With a wavelength

approximately one-half of the wavelength of the present lasers that are used in compact-

disc players, ZnSe-based laser diodes will at least quadruple data density. ZnSe light-

emitting diodes will also provide the missing blue color necessary for full three color

displays, which are presently satisfied to a limited extent by GaN blue light emitting

diodes.

Figure 1.1 shows the II-V and II-VI material systems. The large number of

materials available for incorporation into ZnSe growth, most notably the group II

materials Be, Mg, and Cd, and the group VI materials S and Te, allow for the growth of a

highly confining active region in ZnSe-based light emitters. Such a region can

significantly improve the external quantum efficiency of the diode and can yield a narrow

emission spectra, resulting in sharper color output.
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Figure 1.1: Bandgap versus lattice constant diagram for II-VI and III-V binary materials.
The ellipse in the middle indicates the spectral sensitivity of the human eye. The edge of
red light detection is at 1.8 eV; the edge of blue light is at 3.1 eV.

1.2 History of ZnSe

ZnSe-based laser diodes have a long, interesting history. Research of

semiconductor materials began about thirty years ago. Numerous difficulties in II-VI

semiconductors, however, caused III-V semiconductor research to surge ahead of the II-

VI research in the late 1970s, when the research of II-VI semiconductors was largely

relegated to academia.

In the early 1980s, research was aimed at determining the ideal growth technique

for epitaxial II-VI films. Several techniques were pursued, most notably molecular beam
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Several years of research elapsed before a p-type doping source was discovered.

Early p-type doping utilized Li, but the high diffusivity of Li resulted in a maximum

carrier concentration of only lxl0'7 cm73. Nitrogen-doping was also studied as a

candidate because it is a shallow level acceptor and has a high solubility limit in ZnSe. In

1990, Park et al. discovered a novel means of N doping whereby active nitrogen was

produced by a plasma discharge [3]. By these means, p-type doping of ZnSe of up to

1x10'8 cm3 became immediately possible.

Thus, by 1991, the materials necessary to grow a ZnSe p-n junction diode was

available. A few months later, a group at 3M Company announced the fabrication of the

first II-VI laser diode [5]. The device emitted coherent light at a wavelength of 490 nm

from a ZnSe-based structure under pulsed current injection at 77 K. Shortly thereafter,

similar results were announced by a group of Brown/Purdue University researchers [6].

After this breakthrough, new problems arose, causing long delays before room

temperature continuous wave (CW) operation was announced by the Sony Corporation in

1994 [7]. This delay was primarily due to the difficulty of obtaining an ohmic contact to

p-type ZnSe. Initial contacts utilized Au, but they exhibited high contact resistance. The

first room temperature CW operation of a II-VI laser diode used Pd/Pt/Au ohmic metals

to reduce the operating voltage of the device. Au is required as a contact to external

devices and the Pt acts as a barrier between the Pd and Au layers to keep the Au from

diffusing into the device.

The present thrust of the II-VI saga is to increase the lifetime of the laser diodes,

primarily by decreasing the defect densities in the active region of the devices. The first

room temperature (RT) diode from Sony Corp. operated for 9 seconds [7]. In February



1996, this same group announced a lifetime of 100 hours under room temperature CW

operation with a constant light output power of 1mW [8]. The defect density of this laser

diode was reported to be 3x10 3 cm -3 .

1.3 Alternative Materials Systems--GaN

There are, in fact, two strong contenders in the race for blue light emitting

devices. Research groups are working on both II-VI ZnSe-based light emitting devices

and, separately, on III-V GaN-based devices.

Nichia Chemical Industries has become globally renowned since its

announcement on November 29, 1993 that it had developed a bright blue, GaN-based

blue LED and would soon sell the device commercially. The first single-crystal GaN

material was produced at the David Sarnoff Research Center in the early 1970s [ 11].

Even after this breakthrough, few groups showed interest in the material, primarily due to

the seemingly hopeless tasks of finding both an acceptable substrate and a p-type dopant.

Two people are primarily responsible for the progress of GaN devices. Isamu

Akasaki of Meijo University has been working on GaN development since 1974. While

working at Nagoya University in 1986, he was able to produce high quality GaN using an

A1N buffer layer [12]. Then, in 1989, he accidentally discovered that Mg can be used as a

p-type dopant for GaN [13].

Shuji Nakamura began working at Nichia Chemical Industries in 1975 and began

his search for a blue light source in 1988. To avoid patent problems with Akasaki,

Nakamura used GaN as a buffer layer, and found that he was able to grow high quality

GaN with very good electrical properties. Nakamura was able to improve Akasaki's p-



type doping technique and, in March 1991, Nakamura produced the first blue light

emitter [14]. The light output of this early device was very low. Two and a half years

later, Nichia publicly announced 1000 mcd blue LEDs. Nakamura is now working to

develop a blue GaN laser.

Since Nichia's public announcement, the number of groups researching GaN-

based devices has multiplied dramatically. Neither ZnSe nor GaN-based devices

presently has a clear advantage. The greatest problem with GaN devices is the lack of a

lattice-matched substrate, which results in a very high defect density in the devices. Most

GaN growth is performed on A120 3 (sapphire) substrates which have a lattice constant

14% larger than GaN and a thermal expansion coefficient almost twice as large as that of

GaN. In order to grow high quality devices on these substrates, thick (several gm) buffer

layers of AIN or GaN are grown. Even so, the Nichia blue GaN LEDs have dislocation

densities in excess of 1010 cm -2 [15].

Since the Fermi level of the GaN is not pinned, dislocations have a smaller or

even nonexistent effect on GaN surface properties, and thus do not seem to degrade LED

lifetime by acting as non-radiative recombination sites, as occurs in other III-V materials

and in ZnSe-based LEDs. Many people still believe that the GaN dislocation density will

have to be dramatically reduced before a GaN laser diode can be developed. The high

GaN defect densities have led some researchers to consider growth on other substrates,

most notably SiC, which has a closer lattice-match to GaN. Another possibility is ZnO,

which has an even closer lattice match, but ZnO substrates are not yet commercially

available.



Presently, the maximum lifetime of a II-VI blue laser diode at room temperature

CW is just slightly above 100 hours [6]. The maximum lifetime of a I1-V GaN laser is

about one hour [1 ]. LEDs of both materials have lifetimes of tens of thousands of hours

[16,17].

Only time will tell which material system will prove to be best for blue laser

operation. (see references 9, 10, and 11 for further reading)

1.4 Outline of Thesis

The primary limitation of II-VI-based laser diode structures is their high defect

densities, which leads to rapid degradation of devices. The long-term goal of this

research is to produce ZnSe-based LEDs using novel I-V buffer layers with bandgap

energies between those of ZnSe and GaAs to act as hole-injection layers. The shorter-

term goal of the research is to optimize the growth of MBE-ZnSe on such I-V buffer

layers, and to eventually apply the technique to the growth of ZnSe-based LED structures.

A recent report stated that the density of the lifetime-limiting extended defects in a ZnSe

epilayer to be as low as 1 x 105 cm-2 [18].

The growth technique of choice for the II-V buffer layers is gas source molecular

beam epitaxy (GSMBE) and for ZnSe, the growth technique of choice is molecular beam

epitaxy (MBE). These epitaxial growth processes are described in detail in Chapter 2.

The I-V buffer layers have a significant impact on the growth quality of the ZnSe

overlayer. Pre-growth calculations and a discussion on the lattice match and the band gap

energies are given in Chapter 3.



Chapter 4 describes the growth characterization by the analysis of defect density

and presents the primary results of this research. Cathodoluminescence (CL) imaging

was the most instructive characterization technique used, providing clear proof of a

reduction in defect density of ZnSe epilayers grown on III-V buffer layers with highly

controlled surface stoichiometry at the II-VI/III-V heterointerface.

The characterization techniques are discussed in the Appendix. These techniques,

both structural and electrical, were used to determine the optimum growth conditions for

use in future research.



Chapter 2: Molecular Beam Epitaxy of ZnSe

2.1 Crystal Structure of ZnSe

ZnSe is an ionic compound. Like most II-VI compounds, it crystallizes in the

zincblende structure. This structure is similar to the diamond lattice, which consists of

two interpenetrating face-centered cubic Bravais lattices or a single FCC Bravais lattice

with two atoms associated with a single lattice point. In the zincblende structure, the

atoms in the center of the unit cell are different from those at the corners and on the faces.

ZnSe consists of Zn atoms in the interior of the unit cell and Se atoms on the edges, such

that four Zn atoms tetrahedrally surround one Se atom and four Se atoms tetrahedrally

surround one Zn atom. The lattice constant, or side length of the unit cell, of ZnSe is

5.6676 A.

2.2 Theory of Molecular Beam Epitaxy

The past two decades have been an era of large-scale development of

semiconductor heterostructures. In the simplest sense, a heterostructure consists of one

semiconductor deposited on to another, chemically different, semiconductor.

In order to improve the properties of heterostructure devices, the process of

epitaxial growth is the subject of intense research.

Molecular Beam Epitaxy (MBE) has many advantages over other techniques, such

as Liquid Phase Epitaxy (LPE). MBE allows for the growth of abrupt interfaces and



doping profiles. It also allows the epilayers' thickness to be controlled on the scale of a

single monolayer.

MBE involves the thermal deposition of molecules or atoms onto a heated

substrate in an ultrahigh vacuum environment.

The material needed for growth is placed in crucibles, which are in turn placed in

effusion cells. The generation of a molecular beam involves heating the effusion cell to

increase the vapor pressure of the material. Each effusion cell has a tantalum shutter in

front of the crucible, which are used to block atoms from the substrate surface. When the

shutter is opened, the molecules travel in the ultrahigh vacuum without collisions until

they are deposited onto the substrate.

The flux of atoms or molecules leaving the effusion cell crucible per second is

PANa PA
F = - 3.51x1022 molecules / s [19]42nMRT T rM

where M = molecular weight, Na = Avagadro's number, P = pressure (torr) inside the

effusion cell, R = gas constant, T (K) = temperature of the cell, A = area of the aperture.

This flux must be carefully monitored. The ratio of the flux of the group II element to

that of the group VI element plays a significant role in the growth rate of the compound

semiconductor as well as in the quality of the epitaxy. This ratio is the flux ratio. For

ZnSe, a high flux ratio causes zinc atoms to hinder the surface diffusion of the selenium

adatoms [20].

The ability of a MBE system to produce uniform epitaxial growth is highly

dependent upon its geometry. The source-to-substrate distance must be sufficiently short

that molecules do not collide with other molecules of a different species before reaching



the substrate surface. Specifically, the mean free path of the molecules must be longer

than the source-to-substrate distance. Another source of surface non-uniformity is due to

the placement of effusion cells. Because of the nature of the process, it is not possible to

place effusion cells containing two different materials at precisely the same location. The

difference in the angle between the cells and the substrate results in non-uniform

deposition [21]. To minimize this effect, the substrate is rotated during growth.

2.3 Epitaxial System and Experimental Setup

Figure 2.1 schematically shows the heteroepitaxial system in use at MIT for II-VI and

III-V compound semiconductor growth. An ultrahigh vacuum (UHV) chamber connects

with a GSMBE I-V system (Riber CBE32P) to a MBE II-VI system (custom built with

parts from Emcore). The UHV transfer chamber allows for II-VI materials to be grown

on III-V buffer layers, as described in this research.

Growth Preparation

All growths were performed on full 2" epi-ready GaAs wafers from AXT Crystal,

Inc. The epi-ready GaAs wafer is first placed in a molybdenum block (which is

previously baked at 4500C for two hours) and loaded into the introduction chamber (see

figure 2.1). The sample is then moved via a mechanical arm in the transfer chamber to a

bake station where it is baked at 210 0C for one hour. The baking process reduces the

water and adsorbed gases from the substrate prior to its introduction into the I-V system.

After the bake, the sample is moved to the III-V growth chamber.



III-V GSMBE Growth

The growth of the III-V buffer layers is performed by GSMBE. GSMBE is based

on the general principles of MBE as discussed above, but utilizes gaseous sources for the

group V elements. Effusion cells are used for the group III elements (In, Ga, and Al) and

are heated to temperatures of 7500C to 12000C, depending on the element. The group V

elements are generated by "cracking" the hydride gases AsH3 and PH3. These hydrides,

in conjunction with mass flow controllers (MFCs), simplifies the problem of flux control

associated with the high vapor pressure elements As and P. The hydrides are thermally

decomposed in a high temperature, low pressure cracker. The MFCs are used to precisely

control the gas flow onto the substrate surface.

II-VI MBE Growth

In the II-VI system, a vacuum pressure of about 10'9 Torr is achieved by a

combination of four pumps: ion, cryogenic, diffusion, and a titanium sublimation pump.

A reflection high energy electron diffraction (RHEED) (see appendix) screen is

mounted in the center of the chamber to allow simple in-situ surface characterization.

Eight 6" flange positions are available around the circumference of the reactor. Three

positions are used for effusion ovens from EPI Corporation. These ovens contain

elemental ultra-high purity (6N) Zn as the cation species, elemental (6N) Se as the anion

species, and ZnC12 for Cl doping. For ZnSe growth, the Zn effusion cell is heated to

about 310 0 C and the Se effusion cell is heated to about 190'C, which results in a flux



ratio of about Fzn/Fse = 0.7, as measured by a water-cooled crystal quartz oscillator. The

quartz crystal oscillator is located about 2 cm below the substrate position.

Smaller flange ports contain an optical pyrometer, a CCD camera, and viewports to

assist in sample manipulation. A nitrogen plasma source from Oxford Research (LN2-

cooled CARS25) is the p-type dopant source. The nitrogen flow into the reactor is

controlled by a variable leak value. An RF power of approximately 350 W is used.

Neither Zn nor Se exhibits a unity sticking coefficient. Therefore, a unity flux ratio

requires careful control of the material fluxes and the substrate temperature.

Temperatures are measured simultaneously by a thermocouple and by a pyrometer. The

substrate temperature was calibrated with the Au-Ge eutectic transition (356 0 C). The

pyrometer emissivity was adjusted at the transition to yield an accurate reading. The

offset of the thermocouple at this point was noted. All growth temperatures in this thesis

refer to that of the calibrated pyrometer. Oscillations of the pyrometer temperature during

growth provide a convenient and accurate technique for monitoring the ZnSe thickness.
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Figure 2.1: Schematic diagram of the MIT heteroepitaxial system: III-V GSMBE
chamber, II-VI MBE chamber, and a UHV transfer chamber for II-VI/III-V growth.
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2.4 N-Type Doping Using ZnCl2

As discussed previously, shallow n-type doping of ZnSe using ZnC12 has been in

use since 1986 when a carrier concentration of 1x10 19 cm-3 was achieved by heating a

ZnCl2 effusion cell to 2500 C during growth. In our laboratory, solid, anyhydrous ZnCl2 is

used in an effusion cell to achieve n-type doping in ZnSe by MBE. The effect of the

ZnCl2 cell temperature on the [Cl] concentration, as shown in figure 2.2, was determined

by secondary ion mass spectroscopy (SIMS) [22], which was performed by Charles Evans

and Associates.
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:rsus ZnCl2 effusion cell temperature, as determined by SIMS analysis.

As seen in the semilogarithmic plot, with other parameters constant, chlorine

concentration has an exponential dependence on the ZnCl2 effusion cell temperature.
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2.5 P-Type Doping Using an RFNitrogen Plasma Source

P-type doping of ZnSe-based materials proved to be much more difficult than n-

type doping. The problems encountered in realizing low-resistivity p-type ZnSe films

were due to self-compensation of acceptor impurities. For many years, this self-

compensation was explained as the result of doping-activated native defects [23]. It is

now thought that the mechanism for self-compensation of acceptors in ZnSe is the large

atomic relaxation in the vicinity of acceptor impurities which affects the electrical

properties of the material [24]. The realization of high-concentration p-type doping up to

the 1018 cm "- range using nitrogen was made independently by Park et al. [3] and Ohkawa

et al [25].
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The N concentration in ZnSe increases with both increasing RF power [26] and

increasing aperture area of the plasma cell [27]. For the experiments described in this

thesis, the doping concentration was determined from SIMS analysis of previously grown

samples with differing RF power and aperture configurations. This data is reproduced in

figure 2.3 (plot from ref. 17).





Chapter 3: Materials Design

3.1 Lattice Match

All things equal, growth of a lattice-matched layer is of higher quality than one

that is lattice-mismatched. When the lattice constant of two semiconductors are matched,

and the nucleation procedure is optimized, the epilayer can grow very smoothly, as shown

in figure 3.1 below.

aepi=asub

asub

Figure 3.1: An epilayer grown on a lattice-matched substrate. The in-plane lattice
constants of the two materials are equal.

Materials with different in-plane lattice constants behave differently. The inherent

strain in a thick epilayer is released as misfit dislocations. However, since releasing

strain as misfit dislocations requires energy, thin epilayers (pseudomorphic) will be

totally elastically strained. At the critical thickness, the strain energy released by misfit

dislocations equals the energy required to form the misfits. Beyond this critical thickness,

misfit dislocations form, relaxing the strain in the layer.

The critical thickness is given by

h, = 4ab/f, b is the Burgers vector of the defect, a is a geometrical

factor,f is the lattice-mismatch.



Figures 3.2 and 3.3 show a relaxed and a pseudomorphic epilayer grown on a

lattice-mismatched substrate.

Figure 3.2: A relaxed epilayer on a substrate.
epilayer is larger than that of the substrate.

a II =aepi asub

4-

all=asub

a 11=asub

Figure 3.3: A pseudomorphic epilayer on a lattice-mismatched epilayer. The in-plane
lattice constant of the epilayer is larger than that of the substrate, so, for thin layers, the
lattice is strained to match the substrate.

3.2 (In,GaAI)P:

Lattice Constant:

Pre-Growth Calculations and Analysis

Calculations

Due to the formation of misfit dislocations at the ZnSe/GaAs interface as a result

of the 0.27% lattice mismatch [28], a series of samples were grown with an additional

Misfit
dislocation

The in-plane lattice constant of sub

The in-plane lattice constant of the



InGaP buffer layer inserted between the GaAs and the ZnSe. With the proper

composition, InGaP can be lattice matched to both GaAs and ZnSe.

By lattice-matching the InGaP buffer layer to the underlying GaAs buffer layer and to

the overlying ZnSe layer, misfit dislocation in the ZnSe layer can be dramatically

reduced. To achieve the high degree of lattice match necessary, the initial InGaP must be

grown with the same in-plane lattice constant as GaAs, namely 5.653A and the final

monolayers of InGaP must be grown with the same in-plane lattice constant as ZnSe,

namely 5.668A.

The linear variation in lattice constant with respect to composition for such a ternary

alloy is described by Vegard's Law. For Ini-xGaxP, this relation is given by:

a = 5.869 - 0.418x

This relationship between lattice constant and mole fraction is shown in figure 3.4.

U.5:

InP

0.58
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8 0.56

S 0.55

AlP, GaP
054nU. J-t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Mole fraction, x

Figure 3.4: Lattice constant as a function of composition (reproduced from ref. 11).

As seen in the figure, the ternary alloys InGaP and InAlP both have a vs. x lines that

pass through those of both GaAs and ZnSe, showing that these alloys can be lattice-



matched to GaAs and to ZnSe. By linearly grading this III-V buffer layer from the lattice

constant of GaAs to that of ZnSe, the lattice mismatch between the III-V buffer layer and

II-VI layer can be minimized. The effect of a linearly-graded InGaP buffer layer is the

formation of a misfit dislocation network that is uniformly distributed in the buffer layer.

Due to this effect, dislocations are more spread out than in step-graded buffer layers,

resulting in a larger degree of relaxation [29].

The alloy constant, x, of a III-V ternary layer is determined by the effusion cell

temperatures and the hydride flow rates. A linearly-graded alloy composition can be

obtained by stepwise linearly grading one of the effusion cell temperatures over the same

time period as in the case of InGaP or InAlP.

The flux from an effusion cell can be determined experimentally by using

reflection high energy electron diffraction (RHEED) oscillations. For GSMBE growth of

III-V materials, the temperature, and hence the flux, of the group III element is critical.

Initially, the growth rate versus the temperature of the group III element is determined.

The material's growth rate is simply related to the alloy fractions. The relevant equations

for InGaP are:

tI' inGa Ga= 1In

%In = xlI',/jl . where r' is the rate of deposition in ýtm/hr.

Below are RHEED oscillations for the growth of GaAs and then for InGaP. Since

the growth rate is limited by the group III elements, the deposition rate of Ga and (In,Ga)

can be obtained from RHEED oscillations during the growth of GaAs and InGaP,

respectively. At the onset of growth, one oscillation occurs for every deposited



monolayer. The growth rate is therefore calculated using the period of the oscillations,

the lattice constant, and the time over which the oscillations are recorded.

24 sec
14 oscillations

Figure 3.5a: RHEED oscillations during growth of GaAs. r-IGa = 0.596 jim/hr.

5.5 sec
7 oscillations

k-A-

Figure 3.5b: RHEED oscillations during growth of InGaP. t-11nGa = 1.113 pm/hr.



From these plots, -1' -Ga '1Ga = 1.113 - 0.596 = 0.517 jtm/hr = -1'I

"- %In = 0.517/1.113 = 46%

InGaP lattice-matched to GaAs requires the indium mole fraction to be 0.49 and

to be lattice-matched to ZnSe, the indium mole fraction must be 0.52. Thus, this sample

had a lattice constant smaller than that of GaAs.

Lattice Constant: Analysis

The degree of lattice match between ZnSe and the underlying III-V buffer layer

can be determined by x-ray double crystal diffraction (XRDCD, see appendix). When

ZnSe is grown on a relaxed III-V buffer layer, it may be affected by strain in two

directions. d1 is the spacing between the lattice planes in the direction perpendicular to

the layer surface and dll is the lattice spacing within the planes. The degree of lattice-

match, though, can be determined from the (400) XRDCD scan.

Figure 3.6a shows the x-ray rocking curve from a sample of ZnSe grown directly

on a GaAs buffer layer. The peak on the left is due to diffraction off the ZnSe layer. The

sharper, higher, peak towards the center is due to diffraction off the GaAs layer. The 350

sec separation between the peaks represents a lattice-mismatch of 0.27%, since both

layers were grown to be fully relaxed.

Figure 3.6b shows the x-ray rocking curve from a sample of ZnSe grown on a

graded III-V InGaP buffer layer. Diffraction from the InGaP layer begins at about -3500

sec, where the InGaP is nearly lattice-matched to the GaAs, which has a peak at -3200
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Energy Gap

A large amount of research on ZnSe LEDs has been done on ZnSe grown on

GaAs substrates. However, the large valence band discontinuity results in the generation

of an energy spike at the heterointerface. This spike acts as a barrier for hole conduction,

and a voltage drop occurs.

It is possible to change the bandgap of a ternary or a quaternary semiconductor by

changing the alloy's composition. Equations relating energy gap to composition at 300K

have been calculated and can be found in several sources [30]. The equations for the

direct energy gap (eV) of In,xGaxP and for In,.AlyP are given below.

In;,,GafP 1.351 + 0.643x + 0.786x2

In;,.AlP 1.351 + 2.23x

To provide both lattice match and a small valence band discontinuity to ZnSe,

another degree of freedom is needed. These requirements have led to the research in the

(In,Ga,Al)P material system as a buffer layer, as shown in figure 3.7.

To find a composition of (In,Ga,Al)P that is lattice-matched to GaAs, a region is

formed by lines joining GaP, AlP, and InP. Any point directly vertical to GaAs will have

the same lattice-constant as GaAs. Then, to obtain an energy gap between that of InGaP

and that of InAlP, the ratio of the In, Ga, and Al concentrations are varied, while

maintaining the GaAs lattice constant. In this case, an increase in the aluminum

concentration increases the energy gap of the system. The precise ratio is calculated by

mathematical equations which have been determined for a broad range of compounds.
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Figure 3.7: Energy bandgap (eV) versus lattice constant (a) for the (In,Ga,Al)P II-V
material group and for GaAs and ZnSe.

Thus, the reason for research into the use of InGaAlP as a buffer layer is to obtain

lattice-matching at both the GaAs and ZnSe interfaces as well as to minimize the valence

band offset at these interfaces.

3.3 Nucleation

High quality growth of a semiconductor material by GSMBE or MBE requires a

high degree of precision. Small deviations in effusion cell temperatures or fluxes result

in drastic changes in the material's surface morphology. Too much or too little of one

element yields an ensemble of dislocations. These dislocations have been thoroughly

studied and described elsewhere [31]. Those that are most prevalent in ZnSe are shown

and described below.

AlP ZnSe
GaF

~.InP
GaAs: II II

SI

I I



Poor quality ZnSe growth is generally characterized by a large concentration of

paired stacking faults bounded by Shockley-type partial dislocations. These dislocations

are nucleated at or near the II-VI/GaAs interface. Figure 3.8a is a schematic of such a

dislocation structure; figure 3.8b shows how the dislocation appears in plan-view TEM.

ZnSe

GaAs

Figure 3.8a: Schematic of a pair of stacking faults surrounded by Shockley dislocations
nucleated at the GaAs/ZnSe interface.

/g,200XII



600 misfit dislocations arise due to the 0.27% lattice-mismatch between GaAs and

ZnSe. These interfacial dislocations, as discussed previously, are introduced in ZnSe

epitaxial layers in which the ZnSe thickness is larger than about 120 nm (the critical

thickness of ZnSe) [32], to relax the misfit strain in the sample. Misfit dislocations

appear in two forms, regular (straight) and irregular (zig-zag). It has been suggested that

misfit dislocations form from dislocation half-loops which are nucleated at the film

surface and glide along { 111 } planes to the ZnSe/GaAs interface, where they form misfit

dislocations [33]. The strain in the sample is directly related to the spacing between the

60' misfit dislocations, with large distances between misfits, suggestive of low strain.

Figure 3.9 shows a plan-view TEM schematic of misfit dislocations.

g220

Figure 3.9: Schematic of plan-view TEM image of misfit dislocations in a ZnSe/GaAs
structure.

Finally, threading dislocations are a key problem in ZnSe-based devices.

Dislocations form during growth due to differences in the thermal expansion coefficients

of growth materials, introduction of substitutional impurities, and simply from non-ideal

stoichiometry of the interface materials [34]. The GaAs substrate inherently has about

103 defects cm-2 . Figure 3.10 schematically shows the formation of threading



103 defects cm-2. Figure 3.10 schematically shows the formation of threading

dislocations, in which stress has caused a column of atoms to slip out of place, resulting

in the threading dislocation, or gap in the material.

0 0 0 0 0 0 0
0000000
0 0 0 0 0 0 0 slip plane

..... .-..o..o..o. o.. 0o... o ...
0 O0 000 0
00 0 0 0 00

Figure 3.10: Threading dislocation formed along a slip plane (dashed line).



4.1 ZnSe/(In,Ga,Al)P/GaAs: Effect of Bandgap Match

As discussed previously, growth of ZnSe on a graded layer of (In,Ga,Al)P has the

potential of providing a lattice-matched, bandgap-matched structure. This structure

would inherently have few misfit dislocations in the ZnSe layer, given the lattice-matched

condition. By doping the (In,Ga,Al)P p-type with beryllium, and growing a layer of p-

type ZnSe:N and then a layer of n-type ZnSe:C1, the EI-V layer could potentially provide

a p-type ohmic contact to the ZnSe LED, eliminating the difficulty of obtaining an ohmic

contact to p-type ZnSe. Figure 4.1 shows the effect on band offset that such a scheme is

assumed to have.

Ec

Ev

Figure 4.1: Theoretical valence band offsets for the GaAs/ZnSe structure and the
GaAs/(In,Ga,Al)P/ZnSe structure. GaAs/ZnSe has a 0.96 eV valence band discontinuity;
InAlP/ZnSe has a 0.35 eV valence band discontinuity.

Chapter 4: Growth and Characterization
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Initial growths of ZnSe/(In,Ga,Al)P/GaAs proved that the nucleation technique

used in these growths was not ideal. Photoluminescence (PL) measurements [35] (see

appendix) on these samples suggested that the ZnSe epilayers were of poor quality and

were highly dislocated, primarily based on the intensity of the Yo feature, which is

suggestive of extended defects [36]. Figure 4.2 shows the photoluminescence spectra of

a sample of a 1ltm ZnSe epilayer grown on a layer of (In,Ga,Al)P, such that the III-V

buffer layer is graded from the lattice constant of GaAs to that of ZnSe. The broad deep

level luminescence band is indicative of a highly dislocated structure.

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
Energy (eV)

Figure 4.2: Photoluminescence scans of 1 Lm ZnSe grown on InAlP. The top figure
shows the scan for pseudomorphic ZnSe (not relaxed). The bottom figure shows the scan
for relaxed ZnSe with a deep level centered around 2.3 eV.
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To verify and further analyze the InAlP/ZnSe structure, cathodoluminescence

(CL) imaging was also performed (see appendix). This non-destructive technique allows

the user to obtain a spatial map of the radiative and non-radiative recombination in a

sample. The regions of radiative recombination appear bright; the regions of non-

radiative recombination appear dark. Thus, threading dislocations appear as dark spots.

Individual defects cannot be seen due primarily to the high diffusion constant of the

electrons, and due to the sample being at room temperature.

CL scans were obtained for a group of five samples, each of which had the same

basic structure of 1 pm MBE-ZnSe epilayers grown on 4pm relaxed GSMBE-(In,Ga,Al)P

buffer layers on GaAs. In each case, the growth of ZnSe was initiated by simultaneously

opening both the zinc and the selenium shutters. Table 4.1 shows the III-V buffer layers

used for the samples and the lattice constants associated with each. The notation,

aGaAs)aZnSe, refers to a layer of (In,Ga)P with an in-plane lattice constant graded from

that of GaAs to that of ZnSe.

Sample # (In,Ga,Al)P Buffer Lattice constant, a

1 (In,Ga)P a = aGaAs

2 (In,Ga)P a = aGaAs" aZnSe

3 (In,Al)P a = aGaAs

4 (In,Al)P a = aGaAs"aZnSe

5 (In,Ga,Al)P a = aGaAs'aznse

Table 4.1: (In,Ga,Al)P layers used as buffers for 1 gm ZnSe epilayers.



The CL images in figure 4.3 show the similarity between the radiative

recombination in each of the described samples. The first image is of sample 2 (figure

4.3a), which has a III-V (In,Ga)P buffer layer that is graded from the lattice constant of

GaAs to that of ZnSe. Such a structure should have a low density of misfit dislocations

in the ZnSe. The image of sample 3 (figure 4.3b), which has an (In,Al)P layer with the

lattice constant of GaAs, shows a very similar recombination structure to that of sample

2, even though this sample contains a 0.27% lattice-mismatch and includes aluminum at

the III-V/II-VI heterointerface. Finally, sample 5 (figure 4.3c) is a lattice-matched

(In,Ga,Al)P structure. The images of samples 3 and 5 look nearly identical, showing the

small role that lattice match plays in the defect density of these samples, since sample 3 is

lattice-mismatched and sample 5 is lattice-matched.

Figure 4.3a: CL of Sample #2--lCtm ZnSe on 4ptm relaxed graded layer of (In,Ga)P.
T = 300K; Mag = 1700x.



5tm

Figure 4.3b: CL of Sample #3--lCtm ZnSe on 4ptm relaxed stepped layer of (In,Al)P.
T = 300K; Mag = 1700x.

5 m

Figure 4.3c: CL of Sample #5--1itm ZnSe on 4jpm relaxed graded layer of (In,Ga,Al)P.
T = 300K; Mag = 1700x.



To determine the actual defect density for these structures, etch pit density

measurements were performed (see appendix). The defect density in each of these

samples was greater than 10' cm-2. Thus, initial CL characterization of ZnSe on lattice-

matched (In,Ga,Al)P surfaces indicated the presence of an unexpectedly high density of

dislocations. The origin of such a high density of defects was speculated to be due to the

surface chemistry and to the ZnSe nucleation conditions.

An atomic force micrograph is shown in figure 4.4 for sample 5 (see appendix).

20

500 nm

Figure 4.4: Atomic force micrograph of l gm ZnSe film grown by MBE on 4jtm linearly
graded (In,Ga,A1)P buffer layer. The mean roughness value over a 500 nm x 500 nm area
was 4A.

Though the corresponding CL image of sample 5 shows a large percentage of non-

radiative recombination, the AFM results are indicative of a very smooth growth front

U



based on the low Ra value (the mean value of the height of the sample's surface) of 4A.

The lack of correlation between the defect density and the strain in the samples, however,

suggests that the problem with these growths is primarily due to the details of the

nucleation. Several ZnSe/GaAs nucleation studies have been recently reported [37].

4.2 ZnSe/GaAs: Effect of Nucleation

A nucleation study is complicated by the many factors involved. At a particular

interface, each material can be rich in any one of its constituent elements. Growth of the

overlying layer can begin after an exposure to any one of its elements. Thus, the

(In,Ga,Al)P/ZnSe heterointerface has numerous nucleation possibilities. To simplify the

situation, the ZnSe/GaAs nucleation process can be studied first, to determine the ideal

growth parameters in terms of the defect density of the overlying ZnSe. Then this

structure, using a very thin layer of GaAs, can be grown on a graded (In,Ga,Al)P buffer

layer. In this way, the lattice-match afforded by an (In,Ga,Al)P buffer layer can be used,

while taking advantage of the previously studied ZnSe/GaAs nucleation. A very thin,

pseudomorphic layer of GaAs will be strained to maintain the lattice constant of the

underlying (In,Ga,Al)P.

GaAs

GaAs can be terminated such that it is either Ga-rich or As-rich, and the

percentage in each case may be intentionally varied. These different terminations create

different GaAs surface reconstructions, which can be monitored by RHEED (see

appendix).



different GaAs surface reconstructions, which can be monitored by RHEED (see

appendix).

All of the GaAs was grown at a substrate temperature of 600 0 C, as determined by

an optical pyrometer. After the growth of the buffer layer at 6000 C , the surface exhibited

an As-stabilized (2x4) reconstruction. As the substrate temperature decreased to 5300C

with the sample exposed to an As flux, the (2x4) surface reconstruction changed to a

c(4x4) reconstruction. This reconstruction remained stable even after the arsine flow into

the chamber was terminated at 3500C. To prepare a buffer layer exhibiting a (2x4)

reconstruction at room temperature, the substrate temperature and the As flux were

simultaneously lowered after growth. The arsine flow was reduced to 0.1 sccm, which

was sufficient to maintain the (2x4) reconstruction. The RHEED pattern was closely

monitored during this process, as seen by the similarity of the post-growth (2x4) RHEED

patterns at a high and a low temperature in figure 4.5.
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Figure 4.6a: Top view and side view of c(4x4)-reconstructed GaAs (100% arsine surface
coverage). (reproduced from ref. 38)

(Top View)

(Side View)
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Figure 4.6b: Top view and side view of (2x4)-reconstructed GaAs (75% arsine surface
coverage). (reproduced from ref. 38)

ZnSe

ZnSe can be grown in several ways on the GaAs underlayer. Growth may include

a pre-exposure of either Zn or Se, for varying periods of time. Another technique that has

been studied over the past few years for ZnSe growth is Migration-Enhanced Epitaxy

(MEE) [39]. MEE involves alternately chopping the beams produced from the effusion

cells in a cyclic fashion. One cycle of MEE represents one opening of each shutter.

Many variables are involved in MEE-each shutter must be opened long enough to fill

all surface sites (to allow a full monolayer of the element to form on the surface) and

enough time must be allowed in the interim between shutter openings to ensure that the

previously deposited atom finds an energetically favorable site to incorporate into the

_I ___~___·~ II
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Figure 4.7: Surface configurations for ZnSe on GaAs. The trend in band offsets is based
on theoretical analysis.

lattice. MEE increases the atom mobility on the surface by allowing time for surface

diffusion prior to incorporating. This technique has been investigated in this study.

ZnSe/GaAs

The surface stoichiometry for the growth of ZnSe on GaAs can be varied in many

ways, as discussed above. One way to vary the surface chemistry is to change the surface

reconstruction pattern of the III-V buffer layer. Another means of varying the surface

chemistry is to start the ZnSe growth with a pre-exposure of zinc or selenium atoms.

Figure 4.7 shows several possible surface configurations, each corresponding to a

different valence band offset between the ZnSe and the GaAs, with the GaAs having a

higher valence band energy, hindering hole injection into the II-VI layer in a ZnSe-based

LED structure. The trend in the band offsets, based on theoretical analysis, is related to

the establishment of neutral interfaces with different atomic configurations [40].
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The top two configurations can result from 1:1 compositions of gallium to arsine

and zinc to selenium at the interface. The lower left configuration shows an arsine-rich

GaAs surface and a zinc-rich ZnSe growth start. The lower right configuration shows a

gallium-rich GaAs surface and a selenium-rich ZnSe growth start.

Thus the variety of possible nucleation processes is evident, even for the

seemingly simple growth of ZnSe on GaAs.

MBE-ZnSe/c(4x4)-reconstructed GaAs

The first set of growths involved ZnSe grown on c(4x4)-reconstructed GaAs, with

and without pre-exposures of Zn and Se. The table below details the growths.

Sample # GaAs Buffer? Pre-Exposure? Pre-Exp Time

6 Yes Se 1 min

7 Yes Zn 2 mins

8 Yes No

Table 4.2: Pre-exposures used in MBE-ZnSe/c(4x4)-reconstructed GaAs growths

These growths were intended to primarily give information about the effect of the

various nucleation techniques on the defect densities in the overlying ZnSe. Therefore,

the growths were primarily characterized by CL and EPD. Figure 4.8 shows the CL

images for each sample. Each has an estimated defect density of over 107 cm 2, as

determined both by CL and by etch pit measurements.





Figure 4.8: (a) MBE-ZnSe/c(4x4)-reconstructed GaAs with Zn and Se shutters opened
simultaneously; (b) MBE-ZnSe/c(4x4)-reconstructed GaAs with a 2 minute Zn pre-
exposure; (c) MBE-ZnSe/c(4x4)-reconstructed GaAs with 1 min Se pre-exposure.

Though the contrast in these three images differs, the percentage of radiative to

non-radiative recombination seems nearly identical. This suggests that the c(4x4)-

reconstructed GaAs surface results in a high defect density (> 107 cm-2), regardless of the

pre-exposure before the MBE-ZnSe growth.

Another means of characterizing the effects of the nucleation conditions is the use

of atomic force microscopy (AFM) (see appendix). Figure 4.9 shows the atomic force

micrograph from a sample of ZnSe grown on c(4x4)-reconstructed GaAs with a two

minute Zn pre-exposure. A mean roughness (RI of 9A was measured over a 500 nm x

500 nm area.



Figure 4.9: Atomic force micrograph of 1 ýtm ZnSe film grown by MBE on a Zn pre-
exposed c(4x4)-reconstructed GaAs buffer layer (sample 7).

MBE-ZnSe/(2x4)-reconstructed GaAs

The second set of growths involved ZnSe grown on (2x4)-reconstructed GaAs,

with two minute pre-exposures of Zn (sample 9). This same structure was grown twice to

strengthen the validity of the results. Figure 4.10 shows the CL image obtained from this

sample.

The CL image of this sample shows that the growth of ZnSe on (2x4)-

reconstructed GaAs results in a much lower density of defects than for the growth on

c(4x4)-reconstructed GaAs. This is clear by the decreased percentage of dark areas,

which are representative of non-radiative recombination sites. The dark area in the upper

left portion of the image is the result of the sample mount.
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Figure 4.10: Room temperature CL image of MBE-ZnSe/(2x4)-reconstructed GaAs with

a 2 min Zn pre-exposure (sample 9); Mag=1700x.

AFM was also performed on this sample and the results are shown in figure 4.11.

The mean roughness (I) value was 7A over a 500 nm x 500 nm area, lower than that

found for ZnSe grown on a c(4x4)-reconstructed GaAs buffer layer.

In other sets of similar films, the R, values from the ZnSe epilayer grown on

c(4x4)-reconstructed GaAs were consistently larger than the values measured from the

ZnSe epilayers grown on (2x4)-reconstructed GaAs.

Etch pit density (EPD) measurements of ZnSe grown on (2x4)-reconstructed

GaAs reveal an EPD of less than 106 cm-2, a factor of ten lower than that of ZnSe grown

on c(4x4)-reconstructed GaAs.



Reduced defect densities in ZnSe epilayers grown on (2x4)-reconstructed GaAs

agrees with another recent study [41]. The complexity of the ZnSe/GaAs interfacial layer

makes it difficult to isolate the reason for the reduced defect density in ZnSe grown on

(2x4)-reconstructed GaAs surfaces compared to ZnSe grown on c(4x4)-reconstructed

GaAs surfaces. A contributing factor for the difference is that a more charge neutral

interface is formed on a (2x4)-reconstructed GaAs surface as opposed to a c(4x4)-

reconstructed GaAs surface. A completely charge neutral interface can be formed if the

anion plane is 50% As and 50% Se. (2x4)-reconstructed GaAs has, on average, a 75% As

surface coverage, which is lower than the 100% surface coverage of c(4x4)-reconstructed

GaAs [42].

20 nm

500 nm

Figure 4.11: Atomic force micrograph of 1 }.m ZnSe film grown by MBE on a Zn pre-
exposed (2x4)-reconstructed GaAs buffer layer (sample 9).
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Migration Enhanced Epitaxy

Characterization of the set of MEE-initiated samples did not demonstrate a

noticeable difference in defect densities between the MBE and the MEE growth of ZnSe

on GaAs exhibiting a (2x4) reconstruction. The MEE growth was performed at 2600 C,

following a one minute Zn pre-exposure. Each cycle consisted of 3 seconds of Se, a 2

second delay, and 3 seconds Zn. Ten cycles were performed at the initial low

temperature, and then 24 more cycles were performed as the substrate was ramped to the

growth temperature of 3000 C. The corresponding CL images are shown in figure 4.12.

Figure 4.12a: lI m ZnSe grown on c(4x4)-reconstructed GaAs with a one minute Zn pre-
exposure followed by ten cycles of MEE (cycle = 3 sec Se, 2 sec delay, 3 sec Zn) at
2600 C and 24 more cycles of MEE while ramping to the growth temperature.

--



Figure 4.12b: 1 jm ZnSe grown on (2x4)-reconstructed GaAs with a one minute Zn pre-
exposure followed by ten cycles of MEE (cycle = 3 sec Se, 2 sec delay, 3 sec Zn) at
2600 C and 24 more cycles of MEE while ramping to the growth temperature.

The CL images shown above do not demonstrate a noticeable difference between

growth of ZnSe with an MEE initiation on c(4x4)-reconstructed GaAs and growth on

(2x4)-reconstructed GaAs. In addition, the CL images of ZnSe grown directly on (2x4)-

reconstructed GaAs show a lower defect density than that of ZnSe grown on (2x4)-

reconstructed GaAs with an MEE growth initiation. This suggests that it is not

advantageous to employ the MEE growth technique.

4.3 ZnSe/GaAs/(In,Ga)P: Effect of Lattice Mismatch

Once the growth of ZnSe on GaAs had been significantly improved by pre-

exposing a (2x4)-reconstructed GaAs to Zn before MBE-ZnSe growth, the effect of



lattice mismatch on defect density could be studied. A pseudomorphic layer of GaAs will

grow on a relaxed (In,Ga)P graded buffer layer without altering the lattice constant of the

topmost monolayers of (In,Ga)P. Such a pseudomorphic layer of GaAs assumes the

lattice constant of the underlying layers.

Samples in this study utilized buffer layers constructed from 4pm relaxed graded

layers of (In,Ga)P, with a pseudomorphic eight monolayer GaAs cap. The (In,Ga)P was

graded from the lattice constant of GaAs to that of ZnSe. Thus, the final monolayers of

(In,Ga)P had a lattice constant close to that of ZnSe. The degree of lattice match was

analyzed by X-Ray Double Crystal Diffraction. The pseudomorphic layer of GaAs

grown on the (In,Ga)P was necessarily under tensile strain, since the relaxed lattice

constant of GaAs is 0.27% smaller than that of ZnSe.

In order to compare these samples to those used in the nucleation study, two

growths were performed. The sample structures are shown schematically in figure 4.13.

Sample 10 Sample 11

1 gm ZnSe

2 min Zn pre-exposure

8 monolayers GaAs
c(4x4) (2x4)

4gim graded (In,Ga)P

0.75itm GaAs

Figure 4.13: Schematic of growths used to study the effect of lattice-mismatch.
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Each structure includes a graded layer of (In,Ga)P such that there is no lattice-mismatch

at the II-V/II-VI heterointerface. Sample 10 has a c(4x4)-reconstructed GaAs cap and

sample 11 has a (2x4)-reconstructed GaAs cap.

To ensure that ZnSe growth on the GaAs cap was not impeded by the inclusion of

a graded layer of (In,Ga)P, transmission electron microscopy (TEM) was used to compare

the interfaces of sample 9, which simply involved the growth of MBE-ZnSe on a Zn pre-

exposed (2x4)-reconstructed GaAs surface, and that of sample 11, which incorporated the

graded (In,Ga)P buffer layer. To enable direct comparison, each of the TEM micrographs

were taken under the 220 bragg condition. These results are shown in figure 4.14.

GaAs

ZnSe

Figure 4.14a: TEM micrograph of sample 9 (1 pm ZnSe on (2x4)-reconstructed GaAs).
Micrograph is about 4gpm wide. TEM courtesy of Jody House.



GaAs
ZnSe

Figure 4.14b: TEM micrograph of sample 11 (1Cpm ZnSe on (2x4)-reconstructed GaAs
on a graded (In,Ga)P buffer layer). Micrograph is about 2.5gtm wide. TEM courtesy of
Jody House.

These micrographs verify that the growth of MBE-ZnSe on a pre-exposed surface

of (2x4)-reconstructed GaAs was not hampered by the underlying graded (In,Ga)P buffer

layer of sample 11. This conclusion is based on the similarity of the features in the two

micrographs, each showing a fairly smooth growth initiation with no visible threading

dislocations or stacking faults.

Given the high magnification of TEM imaging, the technique does not reveal any

threading dislocations in these samples, requiring other techniques to measure defect

density. Room temperature CL images are shown (figures 4.15a and 4.16a) for each

sample, with their corresponding etch pit density Nomarski photographs (figures 4.15b

and 4.16b). Etch pitting (see appendix) was performed with a bromine-methanol solution

consisting of 1% bromine. The samples were each placed in the etchant for one second to
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Figure 4.15b: EPD photograph of l m ZnSe film grown by MBE on 4jim linearly
graded (In,Ga)P buffer layer with a two minute Zn-exposed eight monolayer c(4x4)-
reconstructed GaAs layer between the (In,Ga)P and ZnSe (sample 10). Mag=400x.
EPD=3x10 7 cm2.

In contrast, the CL image of sample 11 (figure 4.16b) primarily exhibits misfit

dislocations with faint features due to various types of irregularities in the crystal lattice.

Since CL imaging shows enhanced contrast at misfit dislocations, these represent the

dominant form of dislocations is this film. This suggests that the growth of ZnSe on

(2x4)-reconstructed GaAs minimizes threading dislocations arising from the II-VI/III-V

nucleation such that the slight lattice-mismatch in sample 11 plays the primary role in the

dislocation process. The average spacing of the misfit lines is approximately 3p.m,

indicative of the close lattice-match [44], wihich is confirmed by x-ray diffraction

measurements. CL and EPD measurements both suggest a threading dislocation density

of 106 cm 2 in this sample. The remaining dislocations are speculated to arise either from

~



Figure 4.16a: Room temperature CL of l tm ZnSe film grown by MBE on 4Wim linearly
graded (In,Ga)P buffer layer with a two minute Zn-exposed eight monolayer (2x4)-
reconstructed GaAs layer between the (In,Ga)P and ZnSe (sample 11). Mag= 1700x.

Figure 4.16b: EPD photograph of ltm ZnSe film grown by MBE on 4tm linearly graded
(In,Ga)P buffer layer with a two minute Zn-exposed eight monolayer (2x4)-reconstructed
GaAs layer between the (In,Ga)P and ZnSe (sample 11). Mag=400x. EPD=1.6x10 6 cm -2.



reconstructed GaAs layer between the (In,Ga)P and ZnSe (sample 11). Mag=400x.
EPD=1.6x10 6 cm -2 .
the fully strained pseudomorphic GaAs cap layer or from the relaxed III-V/III-V buffer

layer [45].

To further characterize these samples, AFM was performed. These results are

shown in figure 4.17. The AFM plots show that ZnSe grown on the (2x4)-reconstructed

GaAs surface results in a much smoother ZnSe layer (R, - 3A) as compared to ZnSe

grown on the c(4x4)-reconstructed GaAs surface (R - 7A).

MEE was also performed on a sample with the same structure as sample 11. A

one minute Zn pre-exposure was performed, followed by forty cycles of MEE at the

growth temperature. The CL and AFM images from this sample looked very similar to

the samples grown by MBE.

Figure 4.17a: Atomic force micrograph of 1 gm ZnSe film grown by MBE on 4gtm
linearly graded (In,Ga)P buffer layer with a Zn-exposed 8 monolayer c(4x4)-
reconstructed GaAs layer between the (In,Ga)P and the ZnSe (sample 10). RI = 7A.



Figure 4.17b: Atomic force micrograph of 1 tm ZnSe film grown by MBE on 4lpm
linearly graded (In,Ga)P buffer layer with a Zn-exposed 8 monolayer (2x4)-reconstructed
GaAs layer between the (In,Ga)P and the ZnSe (sample 11). Ra = 3A.

4.4 Characterization by Photolumiscence

Another characterization technique that is widely used to prove that growth was of

high quality is low temperature, 10K, photoluminescence. Photoluminescence (PL) is a

sensitive, non-destructive technique for gaining an understanding of the optical properties

of the semiconductor. Photoluminescence spectra displays the energies of the radiative

recombination of photogenerated pairs, which are created by illumination above the

bandgap of the material (see appendix).

Photoluminescence scans of each sample were taken to verify the correlation of

defect density with nucleation. Figure 4.18 shows the PL spectra of the two samples

consisting of 1 tm ZnSe grown on a GaAs buffer layer with a Zn pre-exposure. In the



first case (figure 4.18a) the GaAs displayed a c(4x4) reconstruction, and, in the second

(figure 4.18b), the GaAs displayed a (2x4) reconstruction.
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Figure 4.18a: 10K photoluminescence scan
on c(4x4)-reconstructed GaAs (sample 7).
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Figure 4.18b: 10K photoluminescence scan of 1 tm ZnSe grown with a Zn pre-exposure
on (2x4)-reconstructed GaAs (sample 9).
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The large peak around 2.8 eV is the free exciton feature, DX; the peak around 2.6

eV is Yo; the broad peak around 2.3 eV is a deep level band. The Yo feature has been

correlated to extended structural defects [46], as has the deep level band. By normalizing

the Yo intensity with the DX intensity, the variation in the DX intensities from sample to

sample can be factored out, allowing for comparison among samples, shown in table 4.3.

Table 4.3: Correlation between Yo and deep level transitions measured by 10K PL, and
dislocation density, DD (cm-2), measured by CL and EPD, of samples 7 and 9.

As seen in table 4.3, higher defect densities resulted in higher normalized

intensities of the Yo and deep level PL features. Thus, PL is consistent with the previous

theory that MBE growth of ZnSe on (2x4)-reconstructed GaAs results in fewer

dislocations than grown on c(4x4)-reconstructed GaAs.

PL measurements were also performed on samples 10 and 11, which incorporated

graded layers of lattice-matched (In,Ga)P. Sample 10 had a thin capping layer of c(4x4)-

reconstructed GaAs; sample 11 had a thin capping layer of (2x4)-reconstructed GaAs.

The PL spectra are shown in figure 4.19.

Again, a normalized comparison of the PL defect levels is shown in table 4.4.

Sample Yo/DX Deep Level/DX DD (cm 2 )
10 6.3x10 -2  5.1x10 3  3x10 7

11 1.2x10 -2  3.3x10 -  2x10

Table 4.4: Correlation between Yo and deep level transitions measured by 10K PL, and
dislocation density, DD (cm-2), measured by CL and EPD, of samples 10 and 11.
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Figure 4.19a: 10K photoluminescence scan of 1 gm ZnSe grown with a Zn pre-exposure
on a graded (In,Ga)P buffer layer with a c(4x4)-reconstructed GaAs cap (sample 10).
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Figure 4.19b: 10K photoluminescence scan of l gm ZnSe grown with a Zn pre-exposure
on a graded (In,Ga)P buffer layer with a (2x4)-reconstructed GaAs cap (sample 11).
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As can be seen from table 4.4 and from the PL spectra, sample 11 (ZnSe grown on

graded (In,Ga)P with a (2x4)-reconstructed GaAs cap) has a lower defect density than

sample 10 as well as lower normalized intensities of the Yo feature and the deep level

band as measured by 10K PL. This data strengthens the previous result that growth of

ZnSe on (2x4)-reconstructed GaAs yields fewer dislocations in the ZnSe epilayer than

ZnSe growth on a c(4x4)-reconstructed GaAs surface.





Chapter 5: Future Research

5.1 LED Structure: Design and Analysis

As discussed, the ultimate goal of this research is to develop a light emitting diode

with a III-V ohmic contact using a graded layer of (In,Ga,A1)P.

Thus far, the only tested device has been a standard pn diode consisting of ZnSe

grown directly on c(4x4)-reconstructed GaAs without a pre-exposure of Zn or Se. Figure

5.1 schematically shows the design of the diode.

IContact = In

Contact = AuZn

Figure 5.1: Schematic of pn diode showing doping and composition of each layer.

The threshold voltage of this pn diode, determined from the I-V plot in figure 5.2,

is approximately 20 V. This is a very large value for such a device and must be

significantly reduced. However, the large threshold was expected for this device. There

is a 1 eV valence band offset between the ZnSe and the GaAs, which was not minimized

n-type ZnSe
TznCl2 = 2600 C; [Cl] = 2x10 20 cm 3

Thickness - 1 jtm

p-type ZnSe
Vm = 3.6 V; [N] = 3x1017 cm3

Thickness - 1.5 gim

p-type III-V
III-V Buffer: GaAs; [Si] - 1017 cm-3

Thickness - 0.5 glm
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Figure 5.2: Current versus applied voltage characteristic of a ZnSe p-n diode consisting
of ZnSe grown on c(4x4)-reconstructed GaAs.

In comparison, the 100 hour laser diode achieved by Sony Corporation had a

threshold voltage of about 8 V with a defect density on the order of 3x103 cm-2 [8]. The

diode described here had a threshold voltage of about 20 V with a defect density greater

than 107 cm-2.

5.2 Recent Advances

As discussed in the previous section, the nucleation technique used in the growth

of ZnSe on GaAs plays a significant role in the quality of a ZnSe-based LED. It is for

in this case by the insertion of a III-V buffer layer with an intermediate bandgap energy.

Also, the ZnSe was simply grown on a c(4x4)-reconstructed GaAs surface, which has

been shown to result in a significantly more dislocated epilayer than growth on (2x4)-

reconstructed GaAs.
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this reason that the greater part of this research focused on nucleation techniques. These

studies have demonstrated that ZnSe grown on (2x4)-reconstructed GaAs (75% As

surface coverage) has a lower defect density than that of ZnSe grown on c(4x4)-

reconstructed GaAs (100% As surface coverage) [38]. This nucleation can also be used

for a lattice-matched III-V buffer layer, by first growing a thin, pseudomorphic, layer of

(2x4)-reconstructed GaAs on the III-V buffer layer. These conclusions are based on a

variety of characterization measurements, most notably cathodoluminescence, etch pit

density measurements, and atomic force microscopy.

5.3 Future Pursuits

The next stage of research will involve the electrical characterization of the

optimized growth of ZnSe/(2x4)-reconstructed GaAs, with a variety of III-V buffer

layers. Assumedly, the threshold voltage of a ZnSe LED grown on (2x4)-reconstructed

GaAs will have a lower threshold voltage than the LED discussed above. If this is the

case, the threshold voltage will more precisely reflect the effects of varying degrees of

valence band offset. Ideally, a low-threshold voltage ZnSe LED may be realized by using

an optimized nucleation technique to grow ZnSe on a lattice-matched (In,Ga,Al)P III-V

buffer layer with a low valence band offset to ZnSe.





APPENDIX

Appendix A: In-Situ Characterization Techniques

A.1 Reflection High Energy Electron Diffraction (RHEED)

An in-situ RHEED apparatus, located within the MBE chamber, is used to
determine if growth is proceeding as expected. The apparatus consists of a high energy
beam of electrons (5-40keV) directed at a low angle (20) to the surface of the material
[47]. Given these conditions, the de Broglie wavelength of these electrons is such that
the penetration is low. Thus, the diffraction pattern is the result of the arrangement of the
atoms on the surface of the layer.

The RHEED diffraction pattern yields information on the smoothness of the
material's surface. Spot-like diffraction is due to the diffraction of the electron beam by a
three-dimensional lattice (a rough surface). A smoother, two-dimensional lattice from a
surface is characterized by a streaky RHEED diffraction pattern.

The surface reconstruction can also be determined. The reconstruction of the top
layer is described by (a x b), where a and b indicate that the unit cell on the surface is a x
b larger than that of the bulk crystal. Each reconstruction is characterized by a different
RHEED pattern. The number of RHEED beams observed on the RHEED screen depends
on the azimuthal direction of the electron beam. From this information, the ratio of the
elements on the surface of the semiconductor is determined. For instance, for ZnSe, a
(2xl) surface reconstruction occurs when the surface is Se-rich. A c(2x2) surface
reconstruction occurs when the surface is Zn-rich. These surface reconstructions are
shown below.

I l l I I
Se-rich, (2x1) Zn-rich, c(2x2)

in <110> in <100>

Figure A.1: ZnSe surface reconstructions for the Se-rich and Zn-rich cases.

RHEED oscillations at the onset of growth are also used to characterize the
growth. When growth is initiated, the intensity of RHEED features is oscillatory. Each
consecutive peak is due to the completion of a new monolayer. Thus, a measure of the
number of peaks that occur in a known amount of time yields the growth rate. A lack of
oscillations is often a warning of poor surface morphology.



A.2 Auger Electron Spectroscopy

The auger electron spectroscopy (AES) technique for analysis of the surface
composition of a compound is based on the process of auger electron emission. As
shown below [34], Auger electrons are generated when a focused beam of high energy
electrons (20-5000eV) bombards the surface of the compound.

KL2L3 AUGER ELECTRON
A

VALENCE
BAND

L3

LI

INITIAL
SIONIZATION

Auger Electron Emission

Figure A.2: Schematic of the theory of auger electron emission.

Auger emission requires three electrons. Hence, elements with fewer than three
electrons cannot be detected by AES. When an incident electron hits the surface (top
50A) of a solid, an electron is emitted from the K-shell of an atom in the compound. An
electron from the L2 level of the atom then relaxes into the K-shell, which results in the
emission of a photon. Sometimes, this photon will then drop to the L3 level of the atom,
causing the emission of an Auger electron.

The Auger electron is emitted with energy EA, given by
EA = EK(Z)-ELI(Z)-EL2(Z+A)-c, [47]

where Z is the atomic number of the atom, (D is the workfunction of the surface, and A is
due to the charged state of the atom when the electron is in the L2 level.

Each element of the periodic table emit auger electrons at characteristic energies.
The most intense Auger emissions are due to the KLL, LMM, and MNN transitions
because electronic interactions are strongest among electrons in adjacent shells.
Characterization of a compound is accomplished by comparing the energies of the Auger
emission from a particular sample to a library of AES scans from standards, which show
the principal Auger electron energies of each element of the periodic table (beginning
with Lithium, element 3) for each of the three different Auger processes.

For quantitative measurements, the sensitivity of each element to the auger
emission process must be taken into account.
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Appendix B: Structural Characterization

B.1 X-Ray Double Crystal Diffraction

X-Ray double crystal diffractometry (XRDCD) is a convenient post-growth
technique used to determine the lattice mismatch between epitaxial layers. XRDCD can
be performed immediately after growth with little preparation.

The XRDCD configuration has improved resolution over single crystal x-ray,
because wavelength dispersion is eliminated [48]. XRDCD involves monochromatic x-
rays of wavelength X incident on a crystal. The rays will reflect from a plane of the
crystal such that the reflected angle is equal to the incident angle, 0. Since each plane of
the crystal is separated by its perpendicular lattice constant, d, the ray must travel an
additional 2dsin0 to strike a subsequent plane.

From diffraction studies, two rays will be in phase when their path lengths differ
by an integer number of wavelengths. From this comes Bragg's law:

2dsinB, = nX, where O, is the Bragg angle.
Epilayers may be effected by strain in two directions. d1 is the spacing between

the lattice planes in the direction perpendicular to the layer surface and d1l is the lattice
spacing within the planes. When the x-ray diffraction is symmetric with respect to the
surface, the reflection angle, OB, is determined only by d1 . Often, though, both d, and dll
are necessary to characterize the strain.

The strain of such a material may be determined by performing X-Ray analysis in
two directions, represented by hkl. In this work, the (400) and (511) directions will used.
The (400) direction allows the determination of d1 . With this information, the (511)
direction allows the determination of d1l.

A material's diffraction peaks are mathematically related to its lattice constant by
the equations below. AO is the difference in angle between the diffraction peak of the
substrate and the layer. The substrate's lattice constant, dsub, and its Bragg angles in both
the (400) and (511) directions, 0 B,400 and 0 B,511, must be known.

d± = dsub sin(0 ,4 0 0) / sin(OB,400 + A0 400)
2 sin(aB,400) (dsub/ 4 ) = 2 sin(0, 511 + A0511) / [(h2 + k2)/dll + P/d)]1/2

Finally, the relaxed lattice mismatch is determined by the strain components, d1l
and d1 , and by the materials' Poissons' ratio, v. For the III-V buffer layers used in this
research, v is estimated to be 0.36.

(Ad/d)reaxed = dsub{ [(1-v)/(l+v)][(d±-dsub)/ d1 ] + [2v/(1 + v)][(d -dsub)/dsub] + 1 }

After growth, XRDCD was used in this research to determine whether the buffer
layers were accurately grown with the desired lattice constants, and, in some cases, the
amount of strain present in the sample.



B.2 Photoluminescence

Photoluminescence (PL) is a sensitive, non-destructive technique for measuring
the optical properties of the semiconductor. Photoluminescence spectra displays the
energies of the radiative recombination of photogenerated pairs, which are created by
illumination above the bandgap of the material [49]. Typically, the spectra is generated
when the sample is at cryogenic temperatures, in order to produce improved resolution
and intensity of the output signal.

The primary features that are present in photoluminescence spectra are shown
schematically below in figure B.1. The transitions observed are: CV, transitions from
the conduction band to the valence band; X, free excitons; CoX and AOX, excitons bound
to neutral donors and acceptors, respectively; CA, transitions from the conduction band to
an acceptor; DA, transitions from donors to acceptors [47]. These recombinations are
discussed in more detail elsewhere [50].

Conduction band--electrons

cisnirtnI

Photoexcitatiori'

Valence band--holes

Figure B. 1: Primary features seen in PL spectra of ZnSe epilayers.

B.3 Cathodoluminescence

Cathodoluminescence (CL) is a mode of scanning electron microscopy that
produces materials characterization based on the emission of light due to electron
bombardment. Theoretically, a cathodoluminescence spectra should yield similar results
to that of a photoluminescence spectra.

Of greater interest than the luminescence spectra, is the microcharacterization of
defects in semiconductors using cathodoluminescence. To image a sample by CL, first
the energy of the electron beam is adjusted to determine the energy of maximum
luminescence. Then, at that energy, the luminescence of the sample is imaged. In
cathodoluminescence imaging of defects, contrast is generally due to the enhanced
nonradiative recombination at dislocations in the crystal. Thus, it is possible to estimate
the defect density.

k



Dislocation contrast appears as dots (due to threading dislocations) and as lines
(due to misfit dislocations) [51]. Even further differentiation is due to the doping level.
In lightly doped semiconductors, threading dislocations appear as very dark dots, with
little contrast. Heavily doped semiconductors show hazier dots with greater contrast at
these dislocation sites.

There are many difficulties making it impractical to rely on cathodoluminescence
results for accurate determination of the defect density. One problem is that certain types
of dislocations produce CL, while others do not [52]. Balk et al. reported contrast that is
inversion likely due to localized heating effects at high beam currents, which may have
led to the enhanced nonradiative recombination and a decrease in the CL signal [53].
However, in conjunction with other defect studies using Transmission Electron
Microscopy (described below) or etch pit studies, CL imaging can be very enlightening.

B.4 Atomic Force Microscopy

Atomic Force Microscopy was developed in 1986 by G. Binning et. al. [54]. The
instrument senses minute forces (10-12 - 10-8 N) between a sharp tip and the surface of a
sample. AFM provides a method for non-destructive surface profilometry with atomic
resolution. AFM relies on a small electrically conducting silicon cantilever, which bends
due to the force exerted by the sample on the tip. The tip-to-sample distance is adjusted
to maintain a constant cantilever deflection. In this way AFM is used to measure surface
contours at very high resolution.

AFM was used in this research with a Digital 3000 Nanoscope in the tapping
mode in air. Tapping Mode AFM was developed as a means of achieving high resolution
without inducing destructive frictional forces. In tapping mode, the cantilever is
oscillated near its resonant frequency as it is scanned over the sample surface. Contact
with the sample results in a reduced oscillation amplitude, which allows the sample
height to be calculated.

Surface morphology is sometimes characterized by the average roughness value
(R) determined by AFM analysis. This value represents the average height of the
sample.

B.5 Transmission Electron Microscopy

Transmission Electron Microscopy (TEM) is based on the diffraction of electrons
through a very thin sample. The electron diffraction patterns seen in TEM imaging are
spots for crystalline films, rings for randomly oriented films, and superimposed rings and
spots from large grain polycrystalline films [47]. In terms of studying dislocations, TEM
is the ideal technique. Each type of dislocation results in a different contrast effect that
are seen in TEM images. These contrast effects, describe the extent of the various defects



in a sample and give a precise means of determining defect density and a way of
comparing a series of samples.

Perhaps the best use of TEM is that of cross-sectional analysis. This technique
allows one to study each layer of a structure simultaneously. By studying the defects
present in each layer, the origination point of the defects can be determined and the
growth process can be systematically varied to better understand and to eventually reduce
these defects.

Unlike the other characterization techniques discussed, TEM requires a
complicated preparation process before the technique may be applied. It is also a
destructive technique, such that the sample must first be thinned in a particular manner,
making it unacceptable for any future use. The difficulty of preparation and the extensive
time required make TEM a tedious characterization technique.

In order to improve the throughput and precision of the preparation of cross-
sectional TEM samples, R. Anderson et al. from IBM recently developed the Tripod
Polisher [55]. Cross sections of material specimens with few artifacts and a large area
available for analysis can be prepared with this tool. The process involves mounting the
specimen to the Tripod Polisher and mechanically polishing the specimen with
progressively finer grit diamond films. The angle of the Polisher allows a wedge-shaped
specimen to be prepared, which nearly eliminates the need for ion milling.

B.6 Etch Pitting

Etch pit characterization is a technique often used to reveal defects in solid
materials. By slowing etching a solid with a specific etchant, pits can form at a point
where dislocations intersect the solid surface. The pits are due to accelerated etching at
dislocation sites. This technique has been discussed in great detail as a means of
estimating defect density in solids [31]. Etch pit density (EPD) measurements do not
necessarily reveal the precise dislocation density in a material, though. Etching often
reveals point defects due to minute surface particles and other features not due to
dislocations [36]. There is, however, significant evidence for a relationship between
point defects and dislocations in semiconductors.

Bromine-methanol is the most common etchant for EPD studies of ZnSe-based
materials. A correlation between the EPD found by this technique and the defect density
as measured by TEM is well established. EPD measurements in this research were based
on a one second etch of ZnSe in a 1% bromine solution of bromine-methanol at room
temperature [56]. Such a one second etch removed 250 nm of ZnSe from the sample,
revealing ovular pits at threading dislocations, as seen in figure B.2.



Figure B.2: Image of etch pits in sample of 1 ptm ZnSe/GaAs. One second etch with 1%
bromine solution of bromine-methanol-250nm. EPD = 9x107 cm-2.
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Figure C. 1: Injection of electrons and holes under forward bias with ND>NA.

The concentration of holes in the n-region is negligible compared to the
concentration of electrons in the p-region. Thus, to first order, the current is determined
only by carriers injected from the heavily doped n-region to the more lightly doped p-
region. The electrons diffuse and recombine as they cross the depletion region into the p-
region. This forward current is described mathematically by the following relation.

J,= Jo exp(eVA/kT); Jo = (-eDnni,)/(L,NA)

D, is the electron diffusion coefficient, L, is the diffusion length of electrons, and n, is the
intrinsic concentration of electrons, NA is Avogadro's number.

C.2 ZnSe Light-Emitting Diodes

Light-emitting diodes are fully described by the basic concepts of a forward
biased pn-junction diode. By forward biasing the pn-junction, electrons injected from the
n-type region to the p-type region recombine with holes in the p-type region, resulting in
photon emission. To maximize the radiative recombination, a direct gap semiconductor

Appendix C Electrical Characterization

C.1 ZnSe pn-junction Diodes

Due to the current status of dopant capabilities of ZnSe, n'-p junction diodes are
grown rather than p'-n diodes. Under forward bias, the current is determined by the
number of electrons that can be injected into the p-type material. An applied voltage, VA,
positive at the p-type terminal of the pn-junction, reduces the potential drop across the
barrier. This results in a lower barrier to diffusion and a lower drift field. Thus, more
electrons and holes can cross the depletion region than in thermal equilibrium. This can
be seen in figure C.1.

Diffusion/Recombination



material is required. High-quality material is needed to minimize nonradiative
recombination due to interface defects [57].

n-ZnSe p-ZnSe

000
Ec (D. hv Ec

Ev

Figure C.2: Theoretical ZnSe LED with ND>NA.

A primary design constraint of LEDs is the need for a close lattice-match to the
buffer layer to minimize misfit dislocations which have nonradiative centers and thus
reduce injection.

C.3 I-V Measurements

In order for a pn-junction under forward bias to conduct current and emit light,
carriers must be able to pass from one side of the junction to the other without
recombining. It is this requirement that constrains the number of defects at the junction.
A pn-junction diode has the property of rectifying alternating currents. The diode allows
current to flow in only one direction. Figure C.3 shows a typical plot of the I-V
characteristics of a II-VI semiconductor LED. The threshold voltage, VT, marks the
voltage in the forward direction required for large currents to begin to flow. Ir is the
reverse leakage current, and Vr is the reverse breakdown voltage [58].

rI, V

Figure C.3: General form of a current versus voltage characteristic for a p-n junction
diode.
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Optimally, the threshold voltage, the reverse breakdown voltage and the reverse
leakage current are all low. By comparing I-V curves of different structures, electrical
optimization can be obtained.

The first step in obtaining electrical measurements is to provide the sample with
ohmic contacts. The formation of low resistance ohmic contacts is very important to the
utility of a device, by allowing lower working voltages and lower power dissipation
levels. The principles of ohmic contacts were established by Sze in the 1970s [50].
AuZn provides a good ohmic contact to p-type GaAs. A significant amount of research
has been done to obtain a good ohmic contact to n-type ZnSe. Indium metal was first
proposed in the 1960s [59]. Though it has somewhat low reliability due to its high
contact resistance [60] and poor wetting [61], it can form an ohmic contact to n-ZnSe.
Since this study simply required the ability to measure the relative threshold voltage and
to correlate these values with the growth processes of the diodes, In served as the contact
of choice. In order to attain a more accurate threshold voltage value, a structure was
grown to measure the schottky voltage of n-ZnSe with In as the contact. Two microns of
n-ZnSe were grown on n-GaAs. The n-GaAs was contacted with AuGe.

Ohmic contacts to the GaAs substrate were formed by evaporating the necessary
metal in a thermal evaporator and annealing the metal in a rapid thermal annealler (RTA).
The evaporation currents and the anneal times are given in Table C.1. To form Indium
ohmic contacts on the n-ZnSe, the In was first etched by a solution of HCl:DiH20. The
n-type ZnSe sample was then heated to 1900 C and small pieces of indium were placed on
the heated surface of the ZnSe for ten minutes to allow the metal to adhere to the
semiconductor. The sample was then annealed in an RTA as described in table C. 1.

Contact metal Evaporation current RTA Temperature Anneal time
AuGe 15 A 420 10 sec
AuZn 15 A 375 30 sec
In NA 250 10 min

Table C. 1: Details of evaporation and thermal annealing for contacts to n-type and p-type
GaAs and to n-type ZnSe.
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