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Chapter 1

Introduction

COMSAT Laboratories has a contract to design and build a multicarrier demultiplexer.

The inputs to the demultiplexer unit are carriers that are multiplexed in frequency. The

demultiplexer must separate the carriers, filter them, and pass them on to a demodulator.

1.1 Project Specifications

The inputs to the demultiplexer consist of carriers that are multiplexed in frequency.

These carriers are transmissions of binary digital data. In order to transmit the data, the

modulation scheme employed is quadrature phase-shift-keying (QPSK). The protocols of

the carriers are defined by the INTELSAT Earth Station Standard (IESS) [IESS 308, IESS

309]. Some of the inputs may be digitized voice signals, some may be binary computer

data signals, and some may be digitized video signals. The specifications for the unit are

as follows:

1. 36 MHz bandwidth: This corresponds to half the bandwidth of a standard INTELSAT

transponder.

2. Flexible frequency plan: The demultiplexer must be able to handle a wide variety of

arrangements of carriers within the 36 MHz band. However, engineering constraints

such as the specifications of the demodulator chip being used prevent the

demultiplexer from handling every possible arrangement of carriers. This is

acceptable.



3. Various data rates: The demultiplexer must be able to handle all INTELSAT Business

Services (IBS) and Intermediate Data Rate (IDR) data rates from 64 kbits/s to 2.048

Mbits/s.

4. On-the-fly switching: The demultiplexer must be able to work with one frequency plan

at one time ("at bat") and have another waiting in memory to put into operation ("on

deck"). The specification on the performance of the switching is that continued

carriers must be maintained uninterrupted. That is, the carriers that are not changed by

a switch from one frequency plan to another should continue to be demultiplexed and

demodulated without interruption. The kinds of switches allowed are adding carriers

and deleting carriers. It is permissible for the demultiplexer and demodulator to take a

few seconds to acquire any newly added carriers.

5. Use MCD-1 demodulator ASIC: This refers to COMSAT's MCD-1 demodulator

application-specific integrated circuit (ASIC). It has already been designed, emulated,

built, tested, and used in other projects. Each chip can demodulate 24 carriers

simultaneously. The inputs and outputs are time-division multiplexed (TDM) digital

data. The inputs are 8 bit, two's complement binary data corresponding to QPSK

symbols. A unique feature of the chip is that the inputs do not need to arrive at an

integer number of samples per QPSK symbol. Rather, they need to be between 2 and 4

samples per symbol. The MCD-1 then uses COMSAT's patented Detection Sample

Estimation (DTSE) algorithm in the demodulation process. The demodulator chip has

already been shown to successfully handle on-the-fly switching successfully, with no

interruption of continued carriers.



1.2 Design Approach

After considering other architectures to implement the demultiplexer, COMSAT engineers

developed a design using the technique of fast convolution with a shared FFT. An analog

front end down-converts the input signal to baseband frequencies and an analog-to-digital

(A/D) converter feeds digital input to the demultiplexer.

The demultiplexer itself is entirely digital. First, it performs a fast Fourier transform

(FFT) to convert all the carriers of the input to frequency coordinates. Then it uses filters

in frequency coordinates to separate and shape the carriers. Finally, it performs several

inverse fast Fourier transforms (IFFTs) to convert the carriers back to time coordinates.

To make sure these IFFTs are of sequences whose lengths are powers of 2, the filtered

points are zero-padded. The amount of zero-padding is chosen in order to accommodate

the specifications of the demodulator, which requires that its input be between 2 and 4

samples per QPSK symbol.

The FFT and IFFT operations are performed by seven chips made by the company

Butterfly DSP. These are the BDSP 9124 chips. In order to work with a stream of input

data, the demultiplexer takes FFTs of overlapping chunks of the input. At the output, 50%

of the samples must be discarded. Each demultiplexer unit is designed to handle a 9 MHz

bandwidth. Engineers at COMSAT found that this is an excellent match to the

demodulator ASIC, which can handle 24 channels. Four demultiplexer and demodulator

units put together are capable of handling a 36 MHz bandwidth.



1.3 Accomplishments of Thesis

Given the hardware architecture as designed by John Snyder, the purpose of this

master's thesis was to simulate the demultiplexer hardware. The accomplishments of the

thesis are as follows:

1. Simulation of hardware: The hardware architecture was simulated down to the level of

each bit using SPW and C source code for BDSP 9124.

2. Generation of patterns for transforms: In order to apply the mixed radix FFT and IFFT

algorithms to the specific BDSP 9124 hardware, all the patterns were developed for

50% overlap addressing, digit reversal, twiddle coefficients, reshuffling addresses, and

50% discard addressing.

3. Generation and verification of timing and control signals: All the timing and control

signals for the BDSP 9124 chips and the memory chips were simulated and verified.

4. End-to-end simulation: The data was carefully simulated at each step of the

communication link, from the generation of baseband data for each carrier, to the

modulation and multiplexing processes, to the workings of the demultiplexer. The

simulated output of the demultiplexer was fed into the emulator for the demodulator.

Finally, the demodulator's output was tested against the original input data and bit

error ratio (BER) curves were plotted as a function of signal-to-noise ratio.

5. Verification of bit precision adequacy: Since the BER curves were acceptable, the

decisions about how many bits of precision to use at each stage of the project were

verified as adequate. This includes the A/D converter precision, internal processing

stages, and coefficient precision for the FFT and IFFT. The analysis was done as a

function of input white Gaussian noise.



1.4 Structure of Thesis

This thesis describes technical background and discusses simulations that have been done

so far. It consists roughly of three parts.

Part 1 is background material. Chapter 2 describes relevant ideas in communications.

Chapter 3 discusses alternative architectures for the demultiplexer and describes why the

fast convolution approach was taken. Having motivated the fast convolution architecture,

chapter 4 describes the relevant ideas in digital signal processing and relates them to the

demultiplexer project and the INTELSAT carriers being accommodated.

Part 2 is about software and algorithms. Chapter 5 is about the SPW software used for

the simulation, as well as the C source code for the BDSP 9124 chips. chapter 6 is about

applying the mixed radix FFT algorithm to BDSP 9124 chips and includes a discussion of

addressing patterns for the transforms. While Chapter 6 is about the FFT algorithm and

the BDSP 9124 chips, chapter 7 is about how the algorithm and the chips fit together to

achieve the demultiplexing operation.

Part 3 is about the simulated data at various stages of the simulation, from the

baseband data for individual carriers, to the modulated and multiplexed data that enters the

demultiplexer, to the results from the demodulator emulation. Chapter 8 describes the

procedure for generating baseband data for each carrier and combining data from many

carriers to form the input to the demultiplexer. Chapter 9 is about the demultiplexer

simulation, including the 50% overlap buffer, the FFT, the filter, the IFFT, and the 50%

discard at the end. Chapter 10 is about the end-to-end simulation and the BER curves.

Chapter 11 is about remaining items and things that need to be worked on.





Chapter 2

Communications Background

2.1 System Overview

The task of a communication system is to transmit a message over a noisy channel to a

receiver, as illustrated in broad overview in Figure 2.1 and in some more detail in Figure

2.2. For overseas communication, television broadcasts to large areas, and

communication in many countries which don't have advanced wired infrastructures,

satellite communication is heavily used.

INTELSAT is the International Telecommunications Satellite Organization, with 135

member nations. INTELSAT provides voice, video, and other services, mostly in digital

format, where the input to the communication system is a bit stream at a fixed information

rate. Most of the information rates in the INTELSAT system are multiples of 64 kbit/s.

Each member nation that signed the treaty creating INTELSAT is a signatory to

INTELSAT. In the United States COMSAT Corp. is the designated representative and

acts, under the direction of the U.S. Department of State, as the U.S. Signatory to

INTELSAT. COMSAT Laboratories performs research, development, technical support,

Figure 2.1: System Overview

input estimate of
data transmitter receiver input data

Data from a source is encoded and modulated by a transmitter. It is sent over a noisy channel. The receiver's job is to estimate
what the original signal was.



and consulting for COMSAT Corp. and for a variety of national and international

companies and government organizations.

2.2 Transmitter

The job of the transmitter is to add codes to the input, modulate the signal, and then send it

over a channel, which is noisy. Figure 2.2 shows the major blocks in the transmitter and

the corresponding blocks in the receiver.

The most widely used modulation in the INTELSAT system is quadriphase shift-key

(QPSK) modulation. It is a method of transmitting digital data over, for instance, a

satellite link. In this discussion, the manipulations of a QPSK modulator are described

and the baseband spectrum of the QPSK signal briefly discussed. Then the undesirable

phenomenon of intersymbol interference (ISI) is discussed, and the filters used to

minimize ISI are described. Then the QPSK modulator is described in more detail,

including the techniques by which the signals are shifted to radio frequencies. The output

of the QPSK modulator is characterized in time and frequency.

2.2.1 Baseband QPSK

For each pair of bits in the input data, a QPSK modulator produces one symbol for

transmission. This symbol can have one of four phases, providing a way for the

demodulator to determine what pair of bits was sent. In the study of QPSK modulation at

baseband frequencies, each bit may be considered independently. However, the actual

block diagram of the QPSK modulator, which does not operate only at baseband

frequencies, will show how the two bits are combined to form one symbol.



Figure 2.2: System Block Diagram

Other

input
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Data from a source is tagged with framing information. It is augmented with forward error correcting (FEC) codes. Sometimes a Reed/Solomon (R/S) code is used as an outer FEC code. A
convolutional FEC code is always used. Then the digital data is sent to a QPSK modulator and transmitted over a noisy channel.

including
satellite



The input data is a series of non-return to zero (NRZ) pulses. A "0" bit in the input

data is converted by analog electronics to have a voltage of +A and a "1" bit is converted

to have a voltage of -A.

To understand the spectrum of this signal, it is helpful to use mathematical

representation with box cars and impulses. The input data can be written as the

convolution of a box car with an sequence of impulses. An impulse corresponding to a

positive amplitude integrates to +A, and an impulse corresponding to a negative amplitude

integrates to -A.

With this representation, the spectrum of the baseband signal can be analyzed. The

convolution in time corresponds to a multiplication in frequency. The transform of the

box car is a sinc function (sinc(x) x). Thus the envelope of the transform of the

signal is a sinc function, and it extends infinitely across the entire spectrum. If the signal

were shifted up to higher frequencies, its tails would still spread across all frequencies.

However, most of the energy of the signal is concentrated over a small range of

frequencies. In order to enable many carriers to be sent and to make an environment

where frequency-domain multiplexing is possible, the signals are deliberately band-

limited. However, the band-limiting must be done very carefully in order to make a signal

that the receiver can still decipher.

2.2.2 Intersymbol Interference

In general, passing a data signal through a band-limiting filter causes intersymbol

interference (ISI) because the signal is convolved with the impulse response of the filter.

The output signal at any one time has contributions from the input signal at many times.

Energy from one symbol is smeared into the time-region for other symbols, and there is no

way for the receiver to recover the data.



One System That Minimizes ISI

One system that minimizes ISI is a l/sinc compensating filter followed by a brick wall

filter, as illustrated in Figure 2.3.

There are three steps in designing this system. First, the operation of the electronics

must be known. Second, the 1/sinc compensating filter must be designed, with its

frequency response based on the timing of the electronics. Third, the brick wall filter must

be designed, with its impulse response based on the timing of the electronics.

First, the electronics outputs NRZ pulses. These can be modeled as an impulse train

(not necessarily periodic) convolved with a box car. The impulses are spaced Tsymb apart,

and the box cars span a period of Tsymb. In frequency, the output is the transform of the

impulse train times a sinc function, which is an envelope. The continuous time Fourier

transform of the box car is:

Tsymb

M(C) = e-jdt
-Tsymb

After integrating, substituting in the evaluation points, and combining the complex

exponentials, this is seen to be a sinc function:

2 sin (mb)
M(C) = co



Figure 2.3: Minimize ISI with 1/sinc Compensation and a Brick Wall Filter
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Second, the 1/sinc compensating filter must be designed. The purpose of this filter is

to get rid of the effect of the sinc envelope in frequency from the NRZ signals.

C(w) =
OTsymb2 sin( 2y )

Although this function goes to infinity, the third part of the design will place limits on

the extent of the frequency variable for the 1/sinc compensation filter. The 1/sinc filter

only needs to have its 1/sinc shape over a limited bandwidth, because after that the low-

pass filter has such a small amplitude that it doesn't matter what the 1/sinc filter does at

those frequencies.

Third, based on spacing of Tsymb, the brick wall filter can be designed. Its impulse

response is a sinc function whose periodic zeros must have the right spacing. The

following Fourier transform pair does the trick:

sin( IT )
Tsymb < Brick Wall with cutoffs at ±+ symb

Rt 2

Due to the periodic zeros in time, there is one point when the output depends only on

the input from one instant and there is no intersymbol interference. The time when the

receiver must look is called the detection point, and there must be clock synchronization

between the transmitter and the receiver so the receiver can know when to look. Although

this system works in theory, the brick wall filter is extremely sensitive to timing jitter

(imperfect synchronization between the clocks of the transmitter and receiver.)

A More Robust System That Minimizes ISI

Fortunately, there are also other 0 ISI filters besides the brick wall filter. Any filter with



the anti-symmetric properties shown in Figure 2.4 also has 0 ISI. This theorem, due to

Nyquist, is discussed in [Feher]. The impulse response is computed by taking the inverse

continuous time Fourier transform of the frequency response. Using the anti-symmetry

properties of the filter, it is possible to show that the impulse response has periodic zeros.

The raised cosine filters are a family of 0 ISI filters. They are formed by adding the

frequency response of a brick wall filter to an anti-symmetric frequency response, and the

resulting shape is shown in Figure 2.5. The impulse response of the raised cosine filters

has 0 ISI because it is equal to the sum of two impulse responses with 0 ISI.

The raised cosine filters are not as sensitive to timing jitter as the brick wall filter. In

fact, there is a trade-off between excess bandwidth and robustness in the face of timing

jitter. For the INTELSAT carriers this demultiplexer must accommodate, the rolloff

factor, r, is 0.4, meaning that 40% excess bandwidth is used beyond the bandwidth of the

Figure 2.4: Another Type of 0 ISI Filter

This filter has 0 ISI, as is shown in [Feher] by computing the impulse response. The sum of this frequency response and that of
the brick wall filter is the raised cosine filter, which also has 0 ISI.



brick wall filter. In practice, the filters are split into a square root raised cosine filter at the

transmitter and an identical filter at the receiver. That way, the transmission is over a

limited bandwidth and the receiver eliminates out-of-band noise. The demultiplexer must

implement this square root raised cosine filter. These filters can be achieved to a high

degree of approximation using either analog or digital filters. See [Poklemba], for

example.

Figure 2.5: The Raised Cosine Filter

constant

cosine
(raised and shifted)

zero

rhere is a family of raised cosine filters. For the INTELSAT carriers serviced by the demultiplexer, the rolloff parameter, r, is
).4. They are known as 40% raised cosine filters, because they occupy 40% excess bandwidth beyond the underlying brick wall
ilter.



2,2.3 QPSK Modulator with Filters to Minimize ISI

A block diagram of a QPSK modulator is shown in Figure 2.6. The modulator combines

two bits into one symbol for transmission.

Phase Space Interpretation

Two bits are represented by one symbol, so there must be four different symbols. The

characteristics of the symbol are best understood by ignoring the filters upon first

examination, and are presented that way in Figure 2.7.



carrier

1, 1

0, 1

0,0
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Figure 2.7: Time and Phase Plots of the Mapping in QPSK Modulation
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Each pair of bits gets encoded as a sinusoid. The information about which pair of bits was sent is in the phase of the sinusoid. On
the left is the signal that actually gets sent out. On the right is a representation of the mapping in phase space, where each vector
is a sinusoid rotating at a frequency corresponding to the frequency of the modulator's oscillators. The phase of the vector has the
information about which pair of bits was sent. The demodulator's task is to recover that phase.

In a time plot, each QPSK signal is a section of a sinusoid. The information about

which pair of bits was sent is contained in the phase of that sinusoid, as compared to the

phase of the carrier. The demodulator has a carrier recovery loop, and then proceeds to

compare the signal's phase to the carrier's phase in order to recover the input bits.

Another helpful way to think of QPSK modulation is in terms of phase space. The

idea is that a pair of bits gets mapped to one of four points in phase space. The signal

itself is a vector rotating at a rate given by the frequency of modulation. The starting

position of the vector is its phase. In the phase plot, the decision region for each symbol is

seen to be formed by the two axes.
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Spectrum of QPSK Signals

From the block diagram of the QPSK modulator in Figure 2.6, the spectrum of the QPSK

signal can be explored. This provides the way to calculate how much bandwidth each

QPSK signal occupies, and how the spectrum should be allocated for multiplexing many

carriers in frequency.

First, consider the spectrum as though the compensation filters and the data shaping

filters were in Figure 2.6 were not present. Each branch of the QPSK modulation scheme

would consist of a non-return-to-zero (NRZ) pulse times a sinusoid. The NRZ pulse can

be analyzed as an impulse train convolved with a box car. Thus the whole signal in time is

as follows:

(impulse train * box car) * sinusoid

In frequency, that is:

(transform of impulse train * sinc)*two impulses

Thus in frequency, there are two replications, one at the positive frequency and one at the

negative frequency of the sinusoid. At each, the envelope for the spectrum is a sinc

function. When the filters are added, the envelope becomes band-limited, but in a way that

will not cause ISI.

2.2.4 Carrier Specifications for the Transmitter

In the transmitter, each block that adds codes affects the bit rate of the transmitted

data. Table 2.1 lists the carrier specifications, including overheads, for the carrier types

that were simulated.



Table 2.1: Carrier Specifications

Trans. Trans.
Info Service Frame Framed FEC Bit Symbol Occupied Allocated
Rate Rate * Bandwidth Bandwidth

(kbits/s) Type Type (kbist/s) Specs* Rate Rate(kbits/s) (ksymb/s) (kHz) (kHz)
384 IDR IBS 409.6 0.75/R 614.4 307.2 368.6 382.5
768 IDR/IBS IBS 819.2 0.75 1,092.3 546.1 655.4 787.5

1544 IDR IDR 1,640.0 0.75 2,186.7 1,093.3 1,312.0 1552.5
2048 IDR IDR 2,144.0 0.50 4,288.0 2,144.0 2,572.8 2992.5

* Reed-Solomon Outer Coding also used; increases transmitted bit rate for the same information rate

Framed Rate

For many carriers in the INTELSAT system, framing signals are added according to he

INTELSAT Business Services (IBS) or Intermediate Data Rate (IDR) specifications. The

framing adds overhead to the signals. A signal with IBS framing must be transmitted at

16/15 times the information rate. The exception to this figure is for signals with an

information rate of 1544 kbits/s, in which case the framed rate is arbitrarily set equal to the

framed rate for a carrier with an information rate of 1536 kbits/s. For an INTELSAT IDR

carrier, framing adds a fixed overhead of 96 kbits/s. [IESS 308, IESS 309, Snyder].

FEC Specifications

Forward error correcting (FEC) coding is added to improve bit error rates at a given

signal-to-noise ratio. As with the framing protocols, the coding adds overhead, and it is

necessary to boost the transmitted bit rate accordingly.

One layer of coding is always used: convolutional coding with Viterbi decoding. For

a "Rate 1/2" convolutional code, the entire signal must be transmitted at 2 times the

information rate while for a "Rate 3/4" convolutional code, that overhead ratio is 4/3

[IESS 308, IESS 309, Snyder].



Sometimes an outer layer of Reed-Solomon (R/S) coding and interleaving are also

used for better performance. This is an apt combination because the Viterbi decoder tends

to make burst errors, and the deinterleaver and R/S decoder are good at correcting burst

errors. There is additional overhead from the R/S coding. The ratio is 126/112 for

information rates up to and including 1024 kbit/s, 225/205 for an information rate of 1544

kbit/s, and 219/201 for an information rate of 2048 kbit/s [IESS 308, IESS 309, Snyder].

Transmitted Rates

The transmitted bit rate is computed by multiplying the information rate, the ratio for

protocol codes, and the ratio for all the FEC codes. In QPSK modulation, where each

symbol encodes two bits, the symbol rate is half the transmitted bit rate.

Bandwidths

The occupied bandwidth of the QPSK signal is determined by the type of raised cosine

filters used. For these INTELSAT carriers, the filters are 40% raised cosine filters.

INTELSAT documents say that the occupied bandwidths for these carriers is 1.2 times the

symbol rate.

The allocated bandwidths for the carriers is the smallest multiple of 22.5 kHz that is at

least as large as 1.4 times the symbol rate. The allocated bandwidths for carriers with R/S

coding is the same as for otherwise identical carriers without R/S coding. [IESS 308,

IESS 309].



2.3 Channel

2.3.1 Channel Model

In satellite communications, the channel consists of the atmosphere and space between the

ground station and the satellite for the uplink, and between the satellite and the other

ground station. The signal from the transmitter is degraded as it travels over the channel.

It is attenuated due to spreading and atmospheric absorption, and noise is added to it.

Spreading occurs because an earth station or satellite broadcasts energy out into space,

and only some of it is aimed directly at the receiver. The rest spreads out into space and is

lost.

The vast majority of thermal noise occurs at the input to the antennae. At this location,

there are two sources of thermal noise. The first is the out-of-band noise picked up by the

antenna from the sky. The second is due to the random motion of atoms in the antennae

and in the electronic circuits [Feher]. By using the central limit theorems from probability

theory, it is surprisingly simple to summarize the effect of all this thermal noise with a

single parameter. The idea is that a random variable can be used to describe the amount of

thermal noise that each atom has on the signal. The sum of all these random variables is

another random variable, and a central limit theorem justifies the conclusion that the

probability distribution of that sum can be approximated by a Gaussian random variable.

The mean value of the noise is 0 and the only parameter is its variance. Since the noise is

an independent process, its autocorrelation is an impulse and its power spectral density is a

constant (i.e. it is white noise).



It is important not to take the concept too literally. Pure white noise has an infinite

amount of energy, and the noise in real systems does not. However, the power spectral

density of the noise in real systems is usually much broader than the signal of interest, and

it is approximately flat across the band of interest.

2.3.2 Probability of Error for QPSK Modulated Signals

Claude Shannon derived the fact that for a channel with additive white Gaussian noise, the

maximum possible bit rate fb is Wlog2 (l1 + ), where w is the full bandwidth used for

transmission, P is the average power of the transmitted signal, and No is the single sided

noise power per Hz. This bit rate can in theory be achieved with an arbitrarily small

number of bit errors.

Figure 2.8: Channel Model

from transmitter to receiver

white Gaussian noise with variance N:

fz(z)= 1 2"N

Based on one of the central limit theorems of probability, the fact that the spectrum of the noise is typically much broader than the
spectrum of the signal, and the fact that the noise is an independent process, a good model of the channel is that it has additive
white Gaussian noise.



Figure 2.9: Theoretical Bounds and Probability of Error for QPSK Modulation
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dB). In theory, if the signal-to-noise ratio is 0.73 dB or greater, error-free communication

can be achieved.

In the actual implementation, there is a trade-off between simplicity and performance.

Based on the actual encoding and decoding scheme for QPSK modulation shown in

Figure 2.7, there is an engineering bound, and the probability of error can be computed. It

is reduced if Gray coding is used for the mapping from bit pairs to symbol phases, because

that way an error in one symbol most likely only results in an error in one bit, not two bits.

If the energy of each bit is denoted as Eb, then an error occurs if the noise, z, is greater

than f/Eb, and the probability of error is Q , where

Q(x) - e d.
X=x

It is popular to use No, the single sided noise power per Hz, instead of N. Using the

fact that 2N =No the probability of error can be rewritten as Q . Although this is

only a good derivation of the probability of error for a two-phase modulation scheme (i.e.

BPSK), [Feher] shows that it is also valid for a QPSK system.

2.4 Receiver

The functions of the receiver are to accept the signal from the channel, down-convert it to

baseband frequencies, demultiplex the carriers, and demodulate them.

Figure 2.10: Receiver

Analog
from Front Demultiplexer Demodulator estimate of
channel End 1 -'transmitted data

The signal from the channel enters the analog front end, which processes it and converts it to a digital signal. The carriers in the
signal are separated out by the demultiplexer and then demodulated.



2.4.1 Analog Front End

The analog front end converts the incoming signal down to baseband frequencies

using complex down conversion, also known as quadrature down conversion.

Frequency Manipulations of the Analog Front End

The down converter uses the incoming signal twice. It mixes the signal with a sinusoid. It

also uses the signal a second time and mixes it with another sinusoid that is a quarter wave

out of phase with the first. It produces two down-converted outputs: one called the real

output and one called the imaginary output. Effectively, the input signal is multiplied by a

complex exponential:

output = input -ej ot

which can also be written as:

Figure 2.11: Analog Front End

to
demultiplexer

from
channel

The analog front end has circuitry for a band pass filter (BPF) and a quadrature down-conversion. Each low pass filter (LPF) is
both a filter to eliminate unwanted intermodulation products from the mixer and an anti-aliasing filter preceding the A/D
converter.



output = input * (cos(wt) + jsin(wt))

Even though the physical mixers only use real sinusoidal waves, the input signal has, in

effect, been multiplied by a complex exponential. The ramifications are that the spectrum

of the input signal is convolved with only a single impulse in frequency and is simply

shifted in frequency. All purely real time signals have a spectrum that is conjugate

symmetric. However, the pair of outputs from the complex down converter together form

a complex signal whose spectrum is not conjugate symmetric. Complex downconverters

can use half the sampling frequency of real downconverters for the same signal. Another

way to look at it is that in complex downconversion, there are two outputs, and in real

downconversion, there is only one output. Thus the use of a lower sampling frequency

makes sense and is justified. The other advantage of quadrature downconversion is that

the local oscillators do smallernot have to be synchronized with the carrier.

These two signals enter analog-to-digital (A/D) converters and after that, they are

handled by digital hardware, which implements complex arithmetic. A major question to

be answered by simulations was whether 8 bits of precision in the A/D were enough.

Two Options for the Anti-Aliasing Low Pass Filters

The low pass filters perform two functions. First, they eliminate undesired

intermodulation products that appear at the output of the mixer. Second, they perform

anti-alias filtering, so that the signal entering the A/D converters is sufficiently

bandlimited (i.e., satisfies the Nyquist sampling criteria.) For this particular

demultiplexer, the filter must be designed with a passband edge of 4.5 MHz and a

stopband edge of 5.76 MHz. A rule of thumb is that a filter stopband attenuation should

be 40 dB or more.



There are two alternative ways to perform the low pass filtering in order to achieve

these two function: an all analog approach or a combined analog and digital approach. If

the filters are all analog, then elliptic filters are required to achieve the sharp cut-off edges.

However, a complication arises because these filters have a group delay that is not nearly

flat. This can be compensated for by all-pass filters that serve as group-delay equalizers.

The output of the group-delay equalizers is then passed to the A/D converters.

With current technology, the elliptic amplitude filters and group-delay equalizing

filters can be designed using software programs such as Superstar, which takes into

account the finite Q for inductors and generates ideal values for the resistors, capacitors,

and inductors. On an actual board with analog circuitry, these configurations can be made

to work, but it can require difficult debugging.

The second way to perform the filtering is to use an analog filter, then the A/D

converter at a higher sample rate, another digital filter, and a downsampler. In this case,

the requirements for the analog filter are lax. It can be designed so as to have relatively

constant group delay across the frequencies of interest, so no equalizer is needed. The

sampling frequency of the A/D converters is pushed to 2Fsamp so there is no aliasing even

though the first analog filter is not very sharp. Next, the digital signal is processed with a

digital filter which has a finite impulse response (FIR). It is designed to be symmetric, so

the group delay is perfectly constant. It has enough taps in its impulse response so that it

has a sharp frequency response. Simulations with software called the Signal Processing

Workstation (SPW) have shown that a filter with 55 taps would be more than sufficient.

After the filtering, a down-sampling operation is performed in which half of the digital

samples are discarded. The signal thus effectively has the sampling rate Fsamp.



Samples Per QPSK Symbol

After the A/D converter, each carrier is represented by digital samples. A ratio that comes

up frequently is the number of samples per symbol. If the transmitted symbol rate is

Fsymbol and the A/D converter sampling frequency is Fsamp then the number of samples

per symbol at the input to the demultiplexer is Fsamp/Fsymbol. The MCD-1 demodulator

ASIC can demodulate signals that are between 2 and 4 samples per symbol. The

demultiplexer must make sure its output is within that range for each carrier.

2.4.2 Demultiplexer

The demultiplexer separates the carriers that arrive together and are frequency-

multiplexed. It applies up to 24 square root raised cosine filters to the signal and produces

time-multiplexed signals at its output. It operates not by directly convolving the input

signal with the impulse responses of the filters but instead by a much more efficient

method called fast convolution. It takes a fast Fourier transform (FFT) of the input signal,

applies the filters via multiplication in the frequency domain. Then it performs many

inverse FFTs (IFFTs) to convert each signal back to time coordinates.

In this implementation, the filters come at the first stage of the IFFT. This is because

the BDSP 9124 chips used for the FFT and IFFT operations have a function for

multiplying the incoming data by a set of coefficients.



Figure 2.12: Demultiplexer Overview

from real
analog
front
end imag

50%
overlap
buffer

FFT IFFT

First
stage of
IFFM
includes
filters

50%
discard

There is a FFT, a filter, and an IFFT. The first stage of the IFFT is where the filters are implemented.
imaginary parts of the data are represented by two's complement binary numbers.

real
to

demodulator
imag

At each stage, the real and





Chapter 3

Survey of Architectures

In this chapter, the FFT' architecture is compared to alternative architectures with the same

performance to contrast the hardware complexity.

3.1 Our Approach: Fast Convolution with FFT

The fast convolution approach with a shared FFT and individual IFFTs permits an

architecture with only one analog front end. It provides a very convenient way to shift all

the signals to baseband by doing so directly in the frequency domain. Furthermore, it is

well suited to handle the mix of unrelated carrier sizes that characterize the INTELSAT

IBS and IDR carriers.

Figure 3.1 shows the overall block diagram from the simulation of the demultiplexer.

It shows the 50% overlap buffer, the FFT, the IFFT (the filtering is done in the first stage of

the IFFT), and the 50% discard buffer.

3.2 Alternate Approaches to Downconversion

If the FFT is not used, some method must be found to bring each carrier to baseband in

preparation for the filtering.



Figure 3.1: Demultiplexer Architecture: Simulation Block Diagram
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This block diagram from the simulation shows the architecture of the demultiplexer. At the left, digital data enters a 50% overlap buffer. It is processed through the FFT stage, which consists
of 3 BDSP 9124 chips and RAMs. The frequency samples are filtered in the first stage of the IFFT and passed through the rest of the IFFT to the 50% discard buffer. At the far right of the
simulation, 5 signal sink blocks act like logic analyzers, capturing the data for graphical display. The two blocks at the bottom generate timing and control signals for the hardware in the FFT
and in the IFFT, respectively. They are attached to the BDSP 9124 and RAM blocks by connectors. In this high level block diagram, the words for the connectors cannot be seen and are merely
shown as rectangles.



3.2.1 One Analog Front End per Carrier

The demultiplexer could be done 24 separate times, with no resources shared. There

could be 24 separate analog front end boards, with programmable local oscillators for

quadrature downconversion. The A/D converter sampling frequencies could be set for

each carrier so that the number of samples per symbol is between 2 and 4, as required by

the demodulator. The output of the A/D converters could be passed to FIR or IIR filters.

The requirement of 24 analog front end boards immediately makes this an undesirable

alternative.

3.2.2 Combination of Analog and Digital Tuners

One analog downconverter could be used, and the carriers could undergo another

downconversion by digital methods so that they could each be brought to baseband. After

the analog front end, the digital signals would be used 24 times, so fan-out problems

would have to be avoided, for instance by using a bank of registers.

To continue the downconversion, each replica from the analog front end output could

be multiplied by a digital complex exponential signal at the proper frequency to convert it

to baseband. This would require the generation of 24 different complex exponentials and

the use of 24 different digital multiplication units. They could operate in parallel and be

followed by FIR or IIR filters. To achieve on-the-fly switching, 48 signal generators for

complex exponentials and 48 multipliers would be needed. A design with a bank of

registers, 48 signal generators, 48 multipliers, and 24 filters (48 parts at minimum, as

discussed below), could not be fit on one board.



3.3 Alternate Approaches to Filtering

In this section, the assumption is that some method from section 3.2 has been used to

get the desired signal to baseband at a number of samples per symbol that is between 2 and

4, to meet the requirement of the demodulator. FIR and IIR filters are explored as

alternative ways of implementing the data shaping filter. The comparison yields an

interesting gauge on the capability of the demultiplexer's filters in terms of equivalent FIR

and IIR filters.

3.3.1 FIR Filters

The infinite impulse response for the raised cosine filter can be truncated to form an

IIR filter. As a way of considering the imperfections that are introduced in doing so, two

equivalent systems are compared, as illustrated in Figure 3.2.

The impulse response of the FIR filter is typically generated by computing the ideal

impulse response and truncating it (i.e., using a rectangular window in time). This leads to

nonzero ISI, as can be seen by considering the reconstruction filter in figure Figure 3.2.

The portion of the FIR filter that was knocked out by truncation would otherwise have

made the filter have 0 ISI. The combination of that missing portion with the sinc function

that is the impulse response of the reconstruction filter makes for nonzero ISI.

Fortunately, whereas the brick wall filter's impulse response (a sinc function) falls off as

1/n, which would lead to an infinite amount of ISI, the impulse response of the square

root raised cosine filter falls off faster, so the ISI is bounded.



Figure 3.2: Two Equivalent Systems for the Data Shaping Filter
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Ideally, the continuous time filter (shown above) and the discrete time filter system (shown below) are equivalent. The digital
filter can be approximated by truncating the ideal impulse response and using an FIR filter. However, by truncating the impulse
response, the digital system has ISI at the output of the reconstruction filter. This model is used as a way of assessing the
performance of the FIR filter.

A rule of thumb is that if the FIR filter has taps that extend over 6 symbols, then the

degradation is acceptably small. If the input were at 2 samples per symbol, then 12 taps

would be acceptable. If the input were at 4 samples per symbol, then 24 taps would be

acceptable. This size impulse response can be implemented by one chip, so the filters

could be implemented in 24 different chips.



3.3.2 IIR Filters

Pole-zero approximations for analog implementations of the square root raised cosine

filters were studied in depth in [Poklemba]. The ideal shape is unachievable because it is

perfectly flat in the passband and totally attenuated in the stopband. Therefore, Poklemba

used the following criteria for acceptable deviation: a peak error ripple of 0.5 percent in

the passband and 40 dB of attenuation in the stopband. Each corresponds to a degradation

of about 0.005 dB in the bit error ratio curve. Poklemba found that the 40% square root

raised cosine filter can be acceptably approximated by a system with 4 zeros (2 pairs of

complex conjugates that are all purely imaginary) and 8 poles (4 pairs of complex

conjugates).

Since IIR filters in general do not have constant group delay, an equalizer is needed,

but this also cannot be implemented exactly. Using the same criteria for acceptable error,

Poklemba found that the group-delay equalizer could be approximated by an all-pass

system with 6 roots, corresponding to an analog filter with 6 zeros and 6 poles.

The impulse invariance technique can be used to create an IIR digital filter with the

same magnitude response as the analog filter. The IIR filter would also have 8 poles,

which would be mapped directly from the s-plane to the z-plane. However, the impulse

invariance technique does not guarantee anything about the mapping of zeros from the s-

plane to the z-plane. Therefore, the group delay of the magnitude filter and the equalizer

would not be predictable based on the analog design. The new group delay of the

magnitude filter in IIR form would have to be evaluated, and an appropriate equalizer

designed.

The following discussion of the structure for implementing the magnitude portion of

the IIR filter is drawn from [OS], with modifications for the specific filter in this case. The



poles are complex conjugate pairs, so a cascade form implementation is appropriate. The

cascade form can be designed to have much smaller error due to coefficient quantization

than direct form IIR filters of the same order.

Suppose one pole pair consists of the complex conjugates d and d*. To get a cascade

form implementation, first pair the poles as follows: 1/[(1 -dz-')(1 -d*z-')]. This can be

rewritten as follows: 1/(1 - 2Re(d)z-1 + d12 z-2) . Note that the coefficients are all real. Then

new variables can be introduced: a, -2Re(d) and a2 --d12l. Then the pair of poles can be

written as follows: 1/(1 -az- - a2z -2). Finally, since there are 4 complex conjugate pole

pairs total, an extra index can be introduced and the transfer function for the magnitude

response of the filter can be written as follows:

4

H(z) = _1 -2
S= 1-a l iz -a 2iZ

The signal flow diagram to implement the transfer function is shown in Figure 3.3.

The number of ways to arrange the 4 stages is 4 factorial. In order to minimize the

sensitivity of the filter to noise at the input and to data overflows, a rule of thumb is to

arrange the second order sections so that the poles are arranged in either increasing or

decreasing magnitude, but not in some other order.

Figure 3.3: IIR Filter Implemented as a Cascade of Second Order Sections

y[n]

The cascade structure can be used to implement the 4 complex conjugate pole pairs for the magnitude portion of the IIR filter.



For implementation, 8 multipliers, 8 adders, and 8 delay registers are needed for each

of the 24 carriers. These figures need to be doubled to 16 for a system capable of on-the-

fly switching. If they are implemented as separate chips, this is 576 parts for the

magnitude portion of the filter alone.

3.3.3 Polyphase Filters

Polyphase filters are limited to carriers of the same size. It is possible to cascade

polyphase filters in different ways to handle a few related carrier sizes, but this would not

suit the diverse carrier sizes in the INTELSAT specifications [Thomas].



Chapter 4

Signal Processing Background

The overlap save technique of fast convolution was used for the demultiplexer. In this

chapter, the equations for the family of Fourier transforms are listed and the specifications

for the INTELSAT carriers are connected to techniques for using discrete time signal

processing. Finally, the location of the good samples in the overlap save operation is

discussed.

4.1 Transforms

Two widely used coordinate systems for representing signals are time coordinates and

frequency coordinates. There exist mathematical transformations to convert a signal from

one set of coordinates into the other, as shown in Figure 4.1.

In the demultiplexer that is the subject of this thesis, the signals are all discrete. The

signals come out of the A/D converter and are discrete in time. The electronic hardware

that transforms the signals into frequency coordinates is limited to taking a finite number

of samples in frequency; the frequency samples in the demultiplexer are discrete in

frequency also. The type of transformation that applies to these kinds of signals is the

Discrete Fourier Series, and the related Discrete Fourier Transform (DFT) for signals that

have finite support, and are zero outside of a specified range of index values.

4.2 INTELSAT Carrier Specifications and DSP

Table 4.1 shows parameters in the spreadsheet for each carrier that are relevant to the DSP

details discussed in this chapter.



Figure 4.1: Fourier Transforms for Continuous and Discrete Signals
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x signal in time
X signal in frequency

t continuous time
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Continuous and periodic in Frequency

Example:
A/D converter output
Name of Fourier transformation:
Discrete Time Fourier Transform

00 -j(fnl

X(o) = I x[n].e

x[n] = j X(o).ejndo
<217>

Signal characteristics:
Discrete and periodic in Time
Discrete and periodic in Frequency

Example:
a computer's FFT of sampled data
Name of Fourier transformation:
Discrete Fourier Series

-j2ickn

X[k]= Xx[n] e N
<N>

j21ckn

x[n] = X[k e
<N>



Table 4.1: INTELSAT Carrier Specifications and Manipulations for DSP

Info Trans. Samples Symbols Samples Number of
Rate Symbol per per block IFFT per
bitss) Rate Symbol of 4096 Size Symbol carriers of

(kbits/s) (ksymb/s) after A-to-D samples after FF this type

384 307.2 37.50 109.2 256 2.34 23
768 546.1 21.09 194.2 512 2.64 11

1544 1,093.3 10.54 388.7 1024 2.63 5
2048 2,144.0 5.37 762.3 2048 2.69 3

Transmitted Symbol Rate

This column is copied over from Table 2.1.

Samples per Symbol after A-to-D

This column is the A/D converter sampling rate (11.52 MHz) divided by the transmitted

symbol rate.

Symbols per Block of 4096 Samples

This column is the number of FFT samples (4096) divided by the number of samples per

symbol after the A/D.

IFFT Size

This column is a power of 2, and it is adjusted so that the next column is between 2 and 4.

Samples per Symbol After FFT

This column is the number of IFFT samples divided by the number of symbols per block

of 4096 samples. The entries in the column must be between 2 and 4, as required by the

demodulator.



Number of Carriers of This Type

In general, the demultiplexer will work with different types of carriers. However, if the

carriers were all the same type then this column lists the number of carriers that could be

accommodated. There are three constraints at work:

1. Demodulator handles 24 carriers: The demultiplexer output is the demodulator input.

COMSAT's MCD-1 is a shared demodulator ASIC with 24 demodulators. The

maximum number of carriers that can be handled is therefore 24.

2. 9 MHz bandwidth: The demultiplexer is designed to accommodate a 9 MHz bandwidth.

The total allocated bandwidths of the carriers must be no greater than 9 MHz.

3. 8192 IFFT points: The IFFT operation has 8192 clock cycles. Within those cycles,

there must be room for the samples in the IFFT.

4.3 Filter Design Technique

4.3.1 Filter Shape

The filter design is based on the equivalent systems shown in Figure 4.2. The digital

data shaping filter is not actually identical to the analog one. Using the fast convolution

and FFT approach for the demultiplexer, the filter is implemented by multiplying FFT

samples (frequency coordinates) by filter coefficients (also frequency coordinates). In

other words, the filter is sampled in frequency. This results in aliasing in the time domain

since the ideal impulse response is not time-limited. It is exactly analogous to sampling a

signal in time and producing frequency aliases if the signal was not band-limited. That

time-aliasing means that the filter cannot have strictly 0 ISI, but the contribution from all

the aliasing is acceptably small.



Figure 4.2: Equivalent Systems for Filtering in the Receiver

4.3.2 Location of Good Samples

In the overlap save method, some of the samples must be discarded. The location of the

good samples can be seen by considering the impulse response of the filter. Even though

that impulse response is not explicitly calculated or worked with, it comes into play in

considering the location of the good samples.

Since the frequency filter is purely real, the impulse response is conjugate symmetric.

For the overlap save operation to work with a 50% overlap, the assumption is that the

impulse response is all 0 or sufficiently small for 50% of its samples. Since the filter is

Analog square root
raised cosine filter

(doubles as an anti-
aliasing filter)

From

Digital square root
raised cosine filter

The filter design is based on the equivalence of these two systems. On top, the filtering is done by analog hardware. Underneath,
it is done by digital hardware, and the filter ideally has the same shape. However, in the fast convolution and FFr approach, the
filter in the digital system consists of samples of the desired frequency response. This corresponds to aliasing in time, which
corresponds to nonzero ISI.



sampled in frequency, the impulse response is periodic in time. The convolution and the

resulting location of good samples is shown in Figure 4.3.

After the circular convolution operation, the non-aliased samples are left in the middle

half of the output. If it were desired to change this location, the impulse response could be

shifted (convolved with an impulse). Since the filter is being implemented via the

frequency coefficients, they would have to be multiplied by a complex exponential in

order to change the location of the good samples.

Figure 4.3: Location of Good Samples

output of overlap save
operation falls in this
region

location of
good samples

alI

flip x[n] and slide it along
h[n] to see the convolution

Non-aliased samples are produced when the flipped signal, x[-n], only overlaps one segment of non-zero h[n] samples. The
impulse response, h[n], is known to be conjugate symmetric, so it must have non-zero values clustered near the n-axis and zeros
outside of that region. The impulse response is periodic because the frequency response is sampled in frequency.



Chapter 5

SPW and Simulation Software

5.1 SPW
The demultiplexer simulation was written and run using the software program called

Signal Processing Worksystem (SPW). In SPW, one draws a block diagram of a system

and then runs the simulation. Blocks are connected to each other through wires,

connectors, or ports. Wires are direct connections. Ports are connections that appear at

one spot and then again at another spot, and are identified by their name. Ports are for

connecting the external inputs and outputs of a block to the internal workings of a block.

Some SPW blocks are built in and fundamental. Others are based on the fundamental

SPW blocks. The user can define new SPW blocks. These can be based on other SPW

blocks or on external C code. In this simulation, most of the blocks were actually calling

external C code, so that the exact operations the blocks performed could be specified. The

memories were based on simple external code. The BDSP 9124 DSP chips were

simulated by external code as well. In that case, the code came from the BDSP company,

whose software engineers wrote the code specifically to simulate the BDSP 9124

hardware chip. By using this exact simulation chip, every bit of the input and output of the

chip could be simulated. Issues such as quantization errors are thus taken into account by

the simulation. Also, the simulation can serve as a generator for test vectors and can be

used to help debug the hardware. This reduces the risk of the project, which was one of

the goals of the customer.



After the user enters the block diagram and gives SPW the command to run, SPW

examines the connections in the block diagram and generates a program to generate data

at the beginning of the simulation, process it at each stage of the simulation, and store

output where the user has placed a device such as a signal sink, which is analogous to an

oscilloscope. If a block diagram has already been examined, and a program already

written and compiled, and only certain changes have been made to the block diagram, then

the block diagram does not need to be re-examined and re-compiled. The pre-existing one

can be used instead -- and this savings of time can be very convenient for complex

simulations.

The clock timing in the simulation is somewhat different from the clock timing in

hardware. In hardware, the timing is based on the rising edge of signals. In the

simulation, this level of detail is not simulated. Instead, at each iteration of the simulation,

trigger signals are examined, usually to see if they are 0 or 1. If they are 0, this is

considered not a clock. If they are 1, this is considered a clock active signal. The main

clock in this simulation is a signal that is 1 at every iteration. The slower clocks are

signals that are 1 every second cycle, and every fourth cycle, respectively.

In the hardware, there is propagation and contamination delay. In the simulation, these

are not present. A block functions by looking at its inputs, running code, and producing

outputs. These all happen in one iteration. Any dependencies of the input of one block on

the output of another are arranged by the SPW simulation scheduler so that the outputs of

the previous block are computed and updated before the next block is considered.

5.1.1 Professional Software Package

The SPW software program by Cadence has thorough documentation. The manuals

contain examples and they have indexes that are cross-referenced. In addition, the



technical support from Cadence is very helpful. For instance, through technical support it

was learned that in order to make simulations that call external C code that has more than

just standard C functions, the standard SPW simulator could not be used. Instead, the

other kind of simulator, the Code Generation System (CGS) had to be used. In CGS, SPW

takes longer to compile the simulation because it generates actual C code from the block

diagram, and then compiles that code. However, it has advantages over the standard

simulator because that compiled simulation then runs faster than the standard simulator.

In another instance, the technical support from SPW was helpful when they made it clear

that SPW's built-in bidirectional ports cannot be used in custom-coded blocks.

5.1.2 Powerful Signal Display Tool

SPW has a SigCalc display tool which can display complex signals by showing their real

and imaginary parts or by showing their magnitudes and phases. It allows users to zoom

in or out in scale. It allows the user to easily copy and paste signals, and to combine two

signals by operations such as addition, multiplication, and convolution. It has buttons for

performing filter operations on signals, for taking transforms of signals, and for making

eye diagrams.

5.1.3 Simulation Scheduling Performed by SPW

Another extremely useful feature of SPW is that it performs simulation shceduling. The

user only needs to draw blocks, connect them, and sometimes, specify a fundamental node

in the block diagram. However, the user does not need to write functions that call other

functions with arguments, worry much about the type of variable being used, or worry

about what functions are calling what other functions. All this is performed in a

systematic way by SPW.



5.1.4 Useful Blocks Built In

Many of SPW's built-in blocks were very helpful, and they are described here.

SPW has many blocks to be the source of data. For instance, there are blocks that

generate random patterns of l's and O's. These were used to generate random bit patterns.

Another SPW block that is based on these random bit blocks is the random QPSK source

block. It provides an output which is a complex number that is a multiple of (1,1), (1,-1),

(-1,-1), or (-1,1). One parameter this block takes is the signal power. This can be used to

ensure that the signals of various bit rates have the same energy per bit.

The raised cosine filter block was very helpful, and it was used extensively to make

simulated baseband data. It can optionally include a 1/sinc response, which is useful for

simulating the output of a modulator. It has the option of making its filter a full or square

root raised cosine shape. For simulating only the modulator, the square root shape was

used. It accepts as a parameter the sampling frequency of the input and also the percent

roll-off of the filter. Thus it was easy to specify that the filters should be 40% raised cosine

filters.

The A/D converter block was used to quantize the floating point data as a way of

simulating the effect of A/D converters. The number of bits of quantization can be set as a

parameter. The A/D converter block handles overflow properly by clipping the data if it

overshoots the maximum allowable value. The block also allows the user to set the

maximum amplitude and it sets its thresholds accordingly.

The complex spectral shift block was used many times, in simulating the input data. It

takes an input signal and multiplies it by a complex exponential digital signal, which is the

equivalent of shifting the signal in frequency. It takes as parameters the sampling

frequency of the incoming signal and the desired shift frequency. It was used in order to



perform the frequency multiplexing, to move the signals to different frequencies before

they were added together.

Finally, there were two kinds of file input/output blocks that were used extensively.

One was the various signal source blocks and the other was the signal sink blocks.

The signal source blocks are used to read data from a file and provide them as input

data for an SPW simulation. There are signal source blocks for files with real or complex

data. There are also signal source blocks for reading a file with a real or complex constant.

Unfortunately, these only read the first line of a file and held it for one iteration of the

simulations. Thus when it was desired to have a constant read from a file for the entire

simulation, it was necessary to put that signal - read from a constant - into a register and

then to hold that value for the entire simulation. This issue arose because if a file with a

constant is changed, then the simulation does not need to be recompiled, but if a built in

block that does hold a constant for the duration of the simulation was used, and it was

necessary to change the value of that constant, then the simulation had to be recompiled.

For the entire simulation, this took 14 minutes.

These source files can contain data in binary or ASCII form. The ASCII form takes

about eight times as much disk space, but the file contents can be read with a conventional

text editor.

Similar to the signal source blocks were the signal sink blocks. These blocks are

analogous to oscilloscopes. They store incoming data into files, which can be viewed with

the SigCalc signal viewer. They can store real or complex signals in ASCII or binary

format. In addition to storing signals for display, the signal sink blocks were useful in

another role as well. Many of the signals used as sources were generated in an SPW

simulation and written to files with the signal sink. Then they were read with the signal

source blocks for a different simulation.



5.1.5 Blocks Can be Built Based on Other SPW Blocks

One feature of SPW is the ability to put together some SPW blocks and make another,

higher level SPW block. The higher level block can then be used in another block

diagram. If the underlying block diagram is changed, that is automatically reflected in the

higher block. This can proceed for many levels, so that a complex system can be built up

from simpler underlying layers.

In this thesis, one block built up from other SPW blocks is the divide-by-n clock. This

block takes in a clock signal and a parameter for the division. The output is another clock

signal. It is arranged so that it meets two constraints. First, it is a slower clock signal than

its input, by a factor of n, the parameter. Second, it is synchronized with its input. To

relate this to the way these blocks are used in the simulation, the fastest clock is one all the

time; the next fastest block is one every other cycle; the slowest clock is one every fourth

cycle. The two slowest clocks are synchronized, meaning that when the slowest clock is 1,

the middle clock is one also. This simulates the clocks that are used in the hardware,

where the slower clocks are phase locked to the fastest clock.

5.1.6 Using External C Code

The capabilities offered by SPW's built in blocks, and the other blocks which can be

constructed from them, was not enough for this project. In fact, it was necessary to write

custom coded blocks for most of the blocks used in the simulation. These include the

RAMs, PROMs, and the blocks that simulated the BDSP 9124 DSP chip.

SPW provides two ways of using blocks whose behavior is specified by external code.

In the first way, one can continue to use the standard SPW simulator. However, this way is

limited to using C code in the standard C libraries.



In order to use blocks which are specified by external code which is not part of the

standard C library, one can no longer use the standard SPW simulator. Instead, it is

necessary to use another SPW simulator called the Code Generation System (CGS).

When SPW uses CGS, it examines the block diagram and actually writes C code for the

simulator. It then compiles that code and runs it. The simulations take longer to prepare,

but they run faster.

5.2 BDSP 9124 C Source Code

5.2.1 Software Code

Unfortunately the simulator for the BDSP 9124 did not work on the workstations running

the Unix operating system. It could not multiply two numbers, unless one of them was 1

or -1. However, this correct operation was traced to lines in the source code that handle

those special cases. Other multiplications were giving completely unsatisfactory results.

The test code, which tested the simulator against the actual hardware, was examined and

found to contain a very limited number of function codes. In particular, it did not contain

the function codes that involve multiplications.

The software was tried on a personal computer running MS-DOS, and it worked.

Ultimately, the problem was chased down to an endian error, meaning, a difference in the

order in which bytes are stored on the different computer systems. For long integers with

4 bytes of storage, the MS-DOS and the Unix operating system place the bytes in opposite

order. The C source code routine for multiplication was studied and a type of variable

called a union was found. That union held 4 bytes. Sometimes, they were treated as a

long integer; sometimes they were treated as two short integers. The order in which the

two short integers was accessed was different in MS-DOS (in which the code was written)



and the Unix operating system, which is run by the workstations -- and those workstations

have and run the SPW software.

The original code was backed up, and eight lines of code were changed to alter the

workings of the union variable. The software was run on the PC and the workstation with

the same inputs and the function codes being used for the demultiplexer simulation (as

well as one other function code: the CMUL (complex multiplication) function code). The

outputs were identical to the last bit, and the conclusion was that the software had been

successfully modified for the workstation.

5.2.2 Using the C source Code with SPW

The BDSP 9124 C source code was successfully integrated with the SPW simulation. A

figure was made to symbolically represent the inputs to and outputs from the BDSP 9124.

That figure is associated with a parameter file which indicates how many of the BDSP

9124's 24 bits should be passed on to the output. The other file the figure is linked to is a

file with the extension .expr, and the code in that file is the first layer in the code for

simulating the BDSP 9124 chip.



Real and imaginary data signals enter the chip at the left and coefficients enter at the

bottom. Other signals also enter at the left, including the enable signals, the function code,

and the StartStop signal. Other signals at the output include the data scale factor output

and the block floating point output. The two issues of timing for serial and parallel data

streams and structures in the C language came up in interfacing the SPW simulation to the

BDSP 9124 C simulator. To make the interface work, the simulation works with three

layers of code.

Timing Issues

There are three layers of code to write about: the layer that interfaces with SPW, the layer

that calls, parallelizes, and serializes data, and the layer that calls the bdsp 9124 C source

code functions. The code that calls the BDSP 9124 source code from SPW is in the form

Figure 5.1: The BDSP 9124 Block Symbol
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This figure shows the symbol made to represent the BDSP 9124 DSP chip, as it was used to simulate the second stage of the FFT.
Data inputs come into the chip at the left and coefficients come in at the bottom. Other signals enter at the left, such as the enable
signals, the function code, and the StartStop signal. Other signals are also at the output on the right, such as the data scale factor
output and the block scale factor output.



of an interface, for two reasons. There are two issues here. One is that the SPW

simulation works with serial data whereas the BDSP 9124 C source code works with

structures, and works with data sets in chunks of 4 or 16 pieces of data at a time. The

other is that the interface which works with structures itself needs an interface, since SPW

blocks apparently cannot explicitly work with structures.

The first issue is the issue of serial verses parallel data. The C source code that

simulates the BDSP 9124 chip works with the data in datasets of 4 or 16 points at a time,

depending on the function code. In order to call it from SPW, the C source code for the

BDSP 9124 block must funnel its input data into the structures, and call the BDSP 9124 C

source code functions with inclusions of pointers to the input and a pointer to the output.

This interface code must then funnel the data from the output structure into the serial

format of the SPW simulator.

SPW and Structures in C

The other issue is an issue about structures. It is not a general issue, but rather, it is

peculiar to SPW. Even though SPW allows users to use the CGS system and call their

own custom coded C blocks, it has a restriction. Unfortunately, there is no ability to define

structures and use them in the code that interfaces directly with SPW. All efforts to do so

failed.

It was necessary to get around that by defining a three tier system of code. First, there

is the code that interfaces directly with SPW. It takes in input and gives out output. That

first layer sends values to the second layer. The second layer has a clock and keeps track

of incoming and outgoing data. It puts incoming data into a structure and selects data

from the output structure and serializes it. In other words, this second layer parallelizes

the input and serializes the output. It uses structures, but it is shielded from SPW by the



first layer interface. This second layer calls the third layer, which is the BDSP 9124 C

source code. It takes in the structure with input data, and the control signals such as the

function code. It computes the exact output of the BDSP 9124 chip and puts those

quantized numbers in the output structure. That output structure is received by the second

layer and serialized.

First Layer of Code

The first layer of code calls the second layer of code every iteration of the simulation when

the clock to the BDSP 9124 chip is active. For the BDSP chips in the IFFT, this occurs

every iteration of the simulation but for the BDSP chips in the FFT, this occurs only every

other iteration.

Another shortcoming in the BDSP 9124 C source code simulator is that it does not

have any provision for accepting and acting on the enable A or the enable B signals. It

simply reads all of its control signals every time it is called. Therefore, the functionality of

the enable A and the enable B signals was added to this first layer of code. The

functionality was simulated based on the description of the functionality in [9124 UG].

Second Layer of Code

The second layer of code calls the third layer of code every 16 or 4 times it is called,

depending on whether the function code is BFLY16 or something else. The BFLY16

function code is the only one for which the BDSP 9124 chip simulator calls works with

data in datasets of 16 at a time. For all other function codes, the chip simulator works with

datasets of 4 at a time.



Third Layer of Code

The third layer of code is the BDSP 9124 code itself. This has only one function that the

user interfaces with: the ProcessData function. The second layer of code prepares the

structures and, based on its clocking, decides whether to call the ProcessData function to

run the simulator.

This three layered system would not have been necessary if the code that interfaces

with SPW could handle structures. In that case, a two layered system would have sufficed:

one layer to interface with SPW, to the parallelization to the input and the serialization to

the output, and handle structures in order to call the BDSP 9124 C source code functions.

5.3 Other Simulation Efforts

Before the decision to carry out the simulation in SPW with an interface to the BDSP 9124

C source code was reached, other ideas were considered.

5.3.1 Ptolemy

This well developed software is a work in progress. It is a project by communications

professors and graduate students at the University of California at Berkeley. It is similar to

SPW in many ways. It provides a way of making a graphical simulation with symbolic

block diagrams. Data is exchanged between blocks by connecting them with wires. There

are many built-in blocks and the facility to write custom coded blocks as well. In fact, the

libraries of Ptolemy are more extensive than those of SPW. In addition, Ptolemy has more

than one domain for handling signals, which may have made the simulation of the parallel

inputs to the BDSP chip simulator easier. Finally, Ptolemy is freely available, and there

are no licensing restrictions on how many copies can be running at a time. It can be used



by any number of engineers at once. In SPW, licenses must be purchased for each

subsystem (e.g. the Block Diagram Editor, the Signal Calculator), but one can download

all of Ptolemy from the Internet.

That is also the reason why it was not chosen for the demultiplexer simulation. It is

not officially supported in the same way that SPW is supported by Cadence. In addition, it

was felt that it is not an industry standard in the same way that SPW is.

5.3.2 SHARP's Real Time Simulator

Before the decision to purchase the BDSP 9124 C source code simulator, SHARP's Real

Time Simulator (RTS) was considered. This software for simulating the BDSP 9124 was

distributed along with the BDSP 9124 user's guide by SHARP. Similarly, a program for

simulating the BDSP 9320 address generator was distributed with the user's guide for that

chip. (The 9320 address generator was not used in the demultiplexer project because it

could not support a multicarrier situation in the demultiplexer.) Unfortunately, these

software products were unusable for several reasons.

First, there were pages missing from the RTS simulator manual. The RTS simulator

for the BDSP 9124 came with the ability to do a custom simulation and the ability to

perform prepackaged examples. Of special interest for the demultiplexer project, the RTS

software had an example about doing a 4096 point FFT and another example about using

the chip for fast convolution. However, the pages describing how to view and use these

examples were not in the manual for the RTS software. Because of this, another manual

for the software was ordered. However, in that second manual, the same pages were

missing. SHARP made the DSP chip and the software to simulate it. They passed the

product on to BDSP for development, sales, and customer support in the early 1990s.



After that, SHARP did not support its RTS software. In fact, SHARP directed inquiries to

BDSP.

Second, assuming the software could have been used without aid from the manual, the

examples included with the software were limited and did not include all the kinds of

mixed radix transforms needed for the demultiplexer. In an effort to use the software for

custom configurations, address files were made using the 9320 chip simulator from sharp,

in the format described by the manual. However, these were not accepted by the 9124

RTS simulator software. The address files that were output from the 9320 software were

in binary and it was not clear what was wrong or how to correct the files so that they could

be accepted by the 9124 RTS software. The format for the binary files was not

documented by either manual (for the 9124 or the 9320 simulator).

Third, and far more critical, it would not have been feasible to use the RTS software

with the SPW simulation. For one thing, the RTS software runs only on PCs. So to use it

with SPW, data would have had to be sent over the network. The network was not

designed for such intensive data transfer and was already overloaded. But even more

critical was the fact that the command to run the RTS software could not be executed

remotely from the workstation running the SPW simulation. Instead, the RTS software

could only be executed via a .com command that invoked a menu. From this menu, it was

possible to load data and coefficient files from disk and run them through the 9124

simulator. The output could be stored on disk. Worse still, this applied to only one

transform, whereas each simulation of the demultiplexer involved seven chips, each

performing several hundred transforms. This means that for each transform, the

simulation user would have had to walk from the workstation to the PC with the RTS

software, load up the new data, invoke the command to simulate, store the output, and put



that into the workstation simulation. This kind of sneaker net was not deemed a wise way

to carry out the simulation.

5.3.3 High Level Simulation

Before the low level simulation of the demultiplexer (complete with all the twiddle

coefficient addresses and data reshuffling address, and calls to the BDSP 9124 C source

code simulator) was carried out, a high level simulation was constructed. It encompassed

an attempt to simulate the demultiplexer with many built-in blocks, as well as an effort to

learn about SPW thoroughly enough to construct the low level simulation.

The high level simulation had the same three clocks as the fully detailed simulation

and the hardware. It had an input with frequency multiplexing and a flexible plan. The

input went through a 50% overlap buffer and then a Fourier transform was taken. The

transform was based on built in SPW blocks. It could handle a 4096 point transform all at

once and did not need external twiddle coefficients (since those complex numbers were

generated by the software), digit-reversed inputs, or patterns for data reshuffling. The

output was sent to a separator block. This was an exercise in writing a block that called

custom C code, where that code used functions outside of the standard C libraries. Thus it

was necessary to use the CGS compiler. The separator applied the square root raised

cosine filters to transformed data. The output was captured by signal sinks.

The SigCalc tool was used to examine the filtered data. This was not efficient and not

useful for long simulations, but it was a way to check the overall algorithm by making eye

patterns and seeing that there was indeed no intersymbol interference.



Figure 5.2: High Level Simulation of the Demultiplexer in SPW
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Many steps were involved. For each carrier, the filtered data was reordered into

transform order. Zeros were inserted in between for zero padding. Then the inverse

transform was taken. Since the inverse transform was taken on only a select group of the

filtered samples, the carrier was in that way converted to baseband. Only the middle 50%

of the samples (the location of the good samples) from each transform were retained in the

output. That output was compared to the corresponding input from the same carrier. By

viewing both signals in magnitude-phase space, the constant phase shift between the two

signals could be calculated. This phase was subtracted off from the output. Finally, eye

patterns of the adjusted output were made, and they had negligible intersymbol

interference. Thus it was concluded that the manipulations in the algorithm were

understood.

In conclusion, the experiences with Ptolemy and SHARP'S RTS were instructive but

had little to do with the final, low level simulation. The high level simulation effort was a

means of learning thoroughly about SPW and verifying the overall algorithm.





Chapter 6

FFT Algorithm and Addressing for the BDSP 9124

The discussion in this chapter begins with a description of the function codes of the BDSP

9124 chip that are used in this project. Then there is a more general derivation of

equations needed for more complicated FFTs. The ideas are developed in an order that is

based on the algebra of the transform, and not from, say, the first stage of the transform to

the last. This algebra is used to derive the patterns for twiddle coefficients, data

reshuffling, and digit-reversed inputs. Sample blocks of code are presented to illustrate

how to create those patterns in the context of the BDSP 9124 chip being used to perform

the FFT calculations. Since nearly all of the patterns are implemented via write addresses

instead of read addresses, the issue of remapping is discussed. Furthermore, since the

BDSP 9124 has a special structure for performing the radix-16 operations, the way to

derive the special twiddle coefficients for that block is presented. Finally, all these ideas

are put together in an example, and all the patterns for the 32 point transform are shown.
-Jo_

Throughout the chapter, the notation WN is used to represent the quantity e N for

convenience. The built in operations in the BDSP 9124 chip that are used in this project

are BFLY2, BFLY4, and BFLY16 for transforms of sizes 2, 4, and 16 respectively, and

BWND2 and BWND4 for transforms combined with multiplication of the input data by

coefficients. The equations describing the output-input relationships for these function

codes can be found on pages 3-4 to 3-14 of [9124 UG].

6.1 Toy Example: A 4 Point FFT

The purpose of presenting this toy example is to show the general line of thought involved



in creating all the patterns for larger transforms. Furthermore, the presentation of items

for larger transforms is streamlined, but the context is set in the description of this toy

example. The goal of the example is to show how to compute a 4 point DFT of a sequence

with the following hardware setup:

Here is the equation for each of the 4 terms of the transform:

(6.1)X[k] = x[n]W 4nk

n=

However this can be rewritten as follows:

X[k] = x[n]W 4nk+ Ix[n]W4nk
n even n odd

(6.2)

By introducing a new variable, this can be rewritten as follows:

1 1

X[k] = x[2m]W4
2 mk + x[2m+ ]W4(2m + 1)k

m= m=0

This can be rewritten as two 2 point DFTs:

X[k] = x[2m]W 2mk+ W 4k x[2m+ 1]W2 mk

m=O m=O

(6.3)

Figure 6.1: Hardware for Toy Example

Stage 1 Stage 2



Each summation in equation (6.3) is a 2-point DFT, and the term W4k in front of the

second summation is a twiddle factor which must be provided by the hardware to the

BDSP 9124 chip after the pointer in Figure 6.1.

Intermediate variables can be defined as the output of the two 2 point DFTs in

equation (6.3). The equations with intermediate variables are as follows:

X[k] = A[k] + W4kB[k]

A streamlined picture of the hardware to the left of the pointer now looks like this:

The functions A[k] and B[k] repeat when k gets to 2. Also, the twiddle coefficient

w4
k changes sign when k gets to 2. Using these properties, the equation about the way to

combine values of A[k] and B[k] can be simplified. In fact, they are actually 2 point DFTs

themselves, and can be computed using the same hardware as the first stage. They can be

written as follows:

Figure 6.2: Calculations in Toy Example to the Left of the Pointer

Stage 1

x[0] Radix 2 A[0]

x[2] Operation A[1]

x[1] Radix 2 B[O]

x[3] Operation B[1]
x[3] B[1]



X[O] = A[0] + W4 B[0]

X[2] = A[O] - W 4
0 B[0]

X[1] = A[1]+W 4 B[1]

X[3] = A[1]-W 41B[1]

Recognizing that these equations are equivalent to two 2 point DFTs, the hardware

diagram to the right of the pointer from Figure 6.1 can be presented, in streamlined form,

as follows:

Scanning the figures from left to right, there are several things to point out. First, there

are no twiddle coefficients needed for the first transforms. These are pure DFTs and there

is no twiddle coefficients for them called for by the algebra. Second, the output of the first

stage must be reshuffled in order that it is put into the second stage properly. Third,

twiddles are needed for the second stage, and the are shown alongside the data in Figure

6.3. Fourth, the output of the second stage must also be reshuffled.

In the actual hardware, the radix sizes used to perform the transforms are as shown in

the following tables.

Figure 6.3: Calculations in Toy Example to the Right of the Pointer

Stage 2

A[0], 1 Radix 2 x[0]

B[0], W40 Operation x[2]

A[1], 1 Radix 2 x[1]

B[1], W41 Operation x[3]



Table 6.1: Radix Combination for the FFT

size stage stage stage
1 2 3

4096 16 16 16

Table 6.2: Radix Combinations for each IFFT Transform Size

6.2 Double Sum

The idea of breaking the large transform into smaller ones is now developed more

formally and more generally. Suppose we wish to calculate an N point DFT, where

N = NIN 2.

The steps are to define new indices, rewrite the DFT in terms of them, and then

analyze that expression. The ideas here are from [OS], page 611. The indices are defined

as follows:

size stage stage stage stage
1 2 3 4

32 2 16 1 1

64 4 16 1 1

128 2 16 1 4

256 4 16 1 4

512 2 16 4 4

1024 4 16 4 4

2048 2 16 16 4



n = N2nl +n2 0:0 n1 N , - 1
05n25 <N 2 - I

k = k, +Njk 2  {:5 k1 < N N, - 1
0:5 k2 N2 -1

Using these indices and the properties of powers of w,, the DFT can be written as

follows:

,-N , -2 N 1

X[k] = X[k, +Nzk 2] = 2 Nx[Nn +n]kWN 'Wk Wk2kn (6.4)
n2 = O L = 0O

G[n 2, k1]

The inner summation represents the Ni point DFTs that are performed in previous

stages. The term WN kn2 is for the twiddle coefficients, and the outer summation represents

the combination of the results of the smaller transforms. As with the toy example, the

outer sum is actually a collection of N2 point DFTs. The way this equation is used in this

thesis is to start by considering the entire transform to be performed. The transform is

broken into two pieces, where the second piece is size 2, 4, or 16. Twiddle coefficients

and reshuffling patterns are generated. Then the same equation is used to work on the first

of the two transforms, breaking it into one transform and a second one of size 2, 4, or 16.

The process continues until the first transform is size 2, 4, or 16, and the entire transform

can be performed by the BDSP 9124 chips.

6.3 Twiddle Coefficients

The twiddle coefficients come from the double sum equation. Since the outer sum is over

n2 , with k1 held constant for each of the transforms at the final stage. The exponent for

the desired twiddle coefficient can be generated from the following pseudo code:



for k1 = 0 to (N1 - 1)
for n2 = 0 to (N2 - 1)
exponent = kl*n2
next n2
next k1

The twiddle coefficients stored in memory correspond to the coefficients for the largest

transform size being performed. For other transforms, the exponent can be scaled by the

ratio of the size of the largest transform being performed to the size of the smaller

transform, for which the twiddle coefficients are desired.

6.4 Twiddles for Radix 16 Operations

The BDSP chips can perform a radix 16 operation. The reshuffling address patterns for

this function are as discussed above. However, the twiddle coefficients are different. The

chip performs a radix 16 operation by accepting 16 inputs, performing four radix 4

operations, and putting the results into four more radix 4 operations to obtain the final

output. Although it seems as though there are 32 twiddle coefficients needed, only 16 are

needed. The reason why and the way to generate the twiddle coefficients needed are

explored in this section.

In the rest of the chapter, the discussion moves from the final output stage backward

towards the inputs. Here, it is the opposite. Given that there is a radix 16 operation as part

of the structure of a transform, this discussion moves forward through that radix 16

operation, showing how it can be recomposed as eight radix 4 operations.

First of all, if there is a radix 16 transform as part of the transform, the twiddles

entering it are all powers of a single base twiddle, which will be called w, here. This can

be seen by looking at the code for generating twiddles, in which all the exponents are



multiples of a single base exponent. As we break the radix 16 transform into eight radix 4

transforms, it is crucial to note this simplification in the twiddles in the radix 16 transform.

The equation for the radix 16 operation, including the twiddles, is as follows:

15

X[k] = x[n] W1 6nkWTn
n=0

After separating this into four sums (each including every fourth point), introducing a

new index variable m, pulling out twiddle factors, and reducing the base twiddle factor,

we obtain:

X[k] =

3

Sx[4m] W 4 mkWT 4 m
m=0

3

+ (WTW16k) x[4m + 1]W 4 mkWT 4 m

m=0

3

+ (WT 2
W16

2
k) x[4m + 2] W4mk WT

4 m

m=0

3

+ (WT3 W16 3k)  x[4m + 3]W 4mkW,
4 m

m=0

The four summations are the first four radix 4 operations. They all have the same

twiddles: WT' . Thus it makes sense that the BDSP 9124 chip only requires one copy of

those coefficients. It requires 4 numbers instead of 16.

The twiddles for the second set of four radix 4 operations can be seen by doing

manipulations similar to those used in the 4 point toy example. First, some intermediate

functions are defined and x[k] is rewritten as follows:

X[k] = A[k] + (WTW1 6k)B[k] + (WT2W 162k)C[k] + (WT3W 163k)D[k]



Then the twiddles can be seen by writing the first four values of X[k]:

X[O] = A[O] + (WTW16)B[O] + (W,2W 16o)C[O] + (WT 3W16 )D[O]

X[1] = A[1] + (WTW16)B[l] + (WT2W 162)C[1] + (WT W 163)D[1]

X[2] = A[2] + (WW16 2)B[2] + (WT 2W164)C[2] + (W,3W 166 )D[2]

X[3] = A[3] + (WW163)B[3] + (WT2W 166)C[3] + (W,3W 169)D[3]

The other 12 terms fill out the four 4 point DFTs, due to the periodicity of the

intermediate functions when k is a multiple of 4, and due to the properties of W16 raised to

powers of 4. From this list, the twiddle coefficients for the second stage are can be read

off. The twiddle coefficients for the first of the four radix 4 operations is in the row with

x[0], the twiddles for the second of the four operations is in the next row, and so forth.

The conversion from twiddles for a radix 16 operation to twiddles for 8 radix 4 operations

is shown in Figure 6.4. In particular, the 16 coefficients that are required by the chip are

circled.

6.5 Reshuffling

The double sum also shows that there is a need for reshuffling the data between stages and

at the output of the transform. Reshuffling is necessary because the stage with N1, point

DFTs produces outputs G[n2, kl], with n2 constant in each radix operation and k1

incrementing. However, for the next stage, each block of radix N 2 block requires inputs

with a fixed k, and an index of n2 that increments. The code required for input reshuffling

is therefore:



for kl = 0 to (NI - 1)
for n2 = 0 to (N2 - 1)
read_adr = N1*n2 + kl
next n2
next kl



Figure 6.4: Equivalence of a Radix 16 Operation and Eight Radix 4 Operations

WT
0

WT
I

WT
2

WT
3

WT
4

WT
5

WT
6

WT
7

WT
8

WT
9

WT
10

WT
11

WT
12

WT
13

WT
14

WT
15

Radix
16



6.6 Digit-Reversed Input

In the toy example of a 4 point FFT, the inputs to the first stage were not in sequential

order. The proper order for them can be seen from the way equation (6.1) was rewritten as

equation (6.2) or equivalently, as equation (6.3). In general, if an N point DFT is being

broken down into N, point DFTs, followed by N2 point DFTs, then the read order for the

inputs is given by the following code:

for n2 = 0 to (N2 - 1)
for n1 = 0 to (N1 - 1)
read_adr = N2*nl + n2
next n1
next n2

When the N, point DFTs are broken down into smaller radix operations, it is

necessary to perform another, similar manipulation on the order of the inputs. The

previous stages are dealing with transforms that have fewer points. The patterns are

generated by the code and then they repeat, with an offset address tacked on. Note that it

is necessary to compute the digit-reversed addresses for each of the two radix 4 operations

when the radix 16 function code is used.

6.7 Multiple Mappings

The digit-reversed patterns require more than one mapping. The code to implement one

mapping after another is straightforward. Suppose one routine has been run to generate

"pattern 1," and another routine has generated "pattern2". Then the following pseudocode

will perform the desired mapping:



for i = 0 to (N-l)
k = pattern2(i)
read_adr = patternl(k)
next i

6.8 Remapping

The patterns for manipulating data are generated as read addresses. However, in the

hardware, most of the patterns are implemented as write addresses. For a few special

patterns, the read addresses are the same as the write addresses but in general they are

different. Therefore, it is necessary to do a remapping.

Suppose that the patterns are in an array called "read," which has N. Then the

following pseudocode will create the proper write addresses:

for i = 0 to (N-1)
index = read(i)
write(index) = i
next i

6.9 Example: Patterns for the 32 Point Transform

Taking the 32 point transform as an example, all the algorithms developed above are used

here to generate the proper patterns for digit-reversed inputs, twiddle coefficients, and data

reshuffling. Table 6.2 shows that the 32 point transform is performed by a radix 2

operation (performed 16 times), followed by a radix 16 operation (performed 2 times).

This fits into the pseudocode by assigning N1 to be 2 and N 2 to be 16. The results of

creating all the patterns are shown in Table 6.3.



Table 6.3: Derived Patterns for the 32 Point Transform

Index "Stage 0" Stage 1 Stage 2

RAM BDSP 9124 RAM BDSP 9124 RAM

Digit-Reversed Twiddle Reshuffling Twiddle Reshuffling
Input Addresses Addresses Addresses Addresses

remapped remapped remapped

read adr. write adr. read adr. write adr. read adr. write adr.

(col. 1) (col. 2) (col. 3) (col. 4) (col. 5) (col. 6) (col. 7) (col. 8) (col. 9)

0 0 0 0 0 0 0 0 0

1 16 8 0 2 16 0 16 2

2 4 16 0 4 1 0 1 4

3 20 24 0 6 17 0 17 6

4 8 2 0 8 2 0 2 8

5 24 10 0 10 18 0 18 10

6 12 18 0 12 3 0 3 12

7 28 26 0 14 19 128 19 14

8 1 4 0 16 4 256 4 16

9 17 12 0 18 20 384 20 18

10 5 20 0 20 5 256 5 20

11 21 28 0 22 21 512 21 22

12 9 6 0 24 6 768 6 24

13 25 14 0 26 22 384 22 26

14 13 22 0 28 7 768 7 28

15 29 30 0 30 23 1152 23 30

16 2 1 0 1 8 0 8 1

17 18 9 0 3 24 256 24 3

18 6 17 0 5 9 512 9 5

19 22 25 0 7 25 768 25 7

20 10 3 0 9 10 64 10 9

21 26 11 0 11 26 128 26 11

22 14 19 0 13 11 192 11 13

23 30 27 0 15 27 192 27 15

24 3 5 0 17 12 384 12 17

25 19 13 0 19 28 576 28 19

26 7 21 0 21 13 320 13 21

27 23 29 0 23 29 640 29 23

28 11 7 0 25 14 960 14 25

29 27 15 0 27 30 448 30 27

30 15 23 0 29 15 896 15 29

31 31 31 0 31 31 1344 31 31



Digit-Reversed Input

The sum for the entire 32 point DFT can be rewritten as a combination of 4 different 8

point DFTs, in the same way that equation (6.1) was rewritten as equations (6.2) and (6.3).

The pseudocode for digit-reversed input addresses can be used to generate a first set of

digit-reverse values.

Next, each 8 point DFT can be rewritten as a combination of 4 different 2 point DFTs.

The pseudocode for digit-reversed input addresses can be used again to generate a second

set of digit-reversed values. The two patterns can be combined using the pseudocode for

multiple mappings, and the result is shown in column 2 of Table 6.3. The values in

column 2 are the final read addresses for digit-reversal, and they can be remapped to the

write addresses in column 3.

Twiddles for Stage 1

The twiddle coefficients for first stage are all 1, or w32
0 . Thus the address to get the right

exponent is 0, as displayed in column 4 of Table 6.3. In fact, the twiddle coefficients for

the first stage are always all 1. This fact is shown by example in equations (6.2) and (6.3).

In those equations, the summations for the first stage have no twiddles that are not already

part of the BDSP 9124 chip radix operations. The twiddle coefficients in equation (6.3)

are for the second stage of computation.

This rule that the twiddle coefficients to the first stage are always 1 is very handy. It

means that when the first stage is a BWND2 or a BWND4 operation, the combination of

non-twiddle and twiddle coefficients is trivial, which makes it easier to work with filter

coefficients. The exception to this rule is when the first stage is radix 16, and it is in a

sense two stages. Then the twiddle coefficients are not all 1.



Reshuffling Between Stages 1 and 2

After the operations in stage 1, it is necessary to reshuffle the data in preparation for stage

2, and the pseudocode can be used to generate the addresses. The resulting pattern is

shown in column 6. The multiple mapping of column 5 followed by column 6 is shown in

column 7, and is simply the same as column 5. Once these reshuffling steps have been

performed, the read addresses can be remapped to write addresses using the pseudocode.

The result is shown in column 6.

Twiddles for Stage 2

The twiddles for stage 2 can be generated according to the pseudocode, and then must be

altered for the radix 16 operation. The alterations necessary are illustrated in Figure 6.4.

The values shown in Table 6.3 in column 7 are scaled exponents. They are scaled because

the twiddles for all the IFFTs (all the transform sizes except 4096) are stored in a common

memory. All the twiddles for the 2048 point transform are in that memory. In order to get

only the subset needed for the 32 point transform, it was necessary to scale all the

exponents for the twiddles by 2048/32, or 64.

Reshuffling After Stage 2

Finally, reshuffling must be performed after stage 2, according to the pseudocode. The

resulting read addresses are shown in column 8. They are remapped to write addresses, as

shown in column 9.



Chapter 7

Software for Generating Address Patterns

The patterns needed for the demultiplexer are patterns for twiddle coefficients and for

data reshuffling. In the FFT, most (but not all) of these patterns are independent of the

frequency plan. In the IFFT, the patterns do depend on the frequency plan. Software on a

host PC needs to be given the frequency plan and generate patterns accordingly. All this

software has been written and tested. It takes about 5 seconds to run. File names were

made eight characters or fewer, so that they can be transferred from the unix workstations

where they were made to a PC. The programming was done in ANSI C. The information

given about each carrier is the transmitted bit rate, the allocated bandwidth, and the center

frequency.

Two issues which seemed to be unrelated before the software was written were

actually intimately tied up with one another. These were the different latencies of the

different BDSP 9124 function codes being used, and the addresses for data reshuffling.

They are related in the sense that addresses for data reshuffling take into account the

different latencies for the different function codes.

Many of the address manipulation ideas that are discussed here were described in

general in Chapter 6. Here, they are extended so that they apply to the specific

configuration of the demultiplexer hardware. The tables below show the types of

addressing which are performed by the software at each stage. Then these manipulations

are described in subsequent sections.



7.1 Input to FFT: 50% Overlap

The samples from the A/D converter are pumped sequentially into data RAMs at the clock

rate, Fs. The data is read out at 2F s, and the RAMs are used as circular buffers. This is the

only place where the address pattern is used as a read address. In subsequent stages of the

project, patterns that are generated must be suitable for use as write addresses.

The patterns for reading data out are independent of the frequency plan. They involve

two manipulations: digit reversal and overlapping. The overlapping is achieved by

copying the digit-reversed patterns and adding an offset.

Table 7.1: Addressing for Circular Buffer

RAM RAM
write read

sequential overlapping

digit-reversed

Digit Reversal

The digit reversal depends on the radix structure of the transform operation. For the FFT,

the radix structure is fixed; all three stages perform a radix 16 operation, and the digit-

reversed addresses must be computed according to the pseudocode in section 6.6.

Overlapping

In order to implement the overlapping, the PROMs which contain the patterns for this

stage have 16,384 address locations. They repeat a pattern of 4096 addresses, slightly

modified, four times. They have the patterns for reading "AB," "BC," "CD," and "DA."

First, the software computes the digit-reversed pattern for one set of 4096 points, using

addresses 0 through 4095. The next 4096 addresses are equal to the first 4096, with 2048



added to each address. This is for reading the "BC" parts of the buffer. The next two sets

of 4096 points are similarly copied from the first and shifted.

7.2 FFT Addressing

The addressing for the first two stages of the FFT does not depend on the frequency plan.

Thus the address patterns are stored in PROMs

Table 7.2: Addressing for FFT Stage 1

BDSP 9124 RAM RAM
coefficients write read

twiddle coeffs. BFLY latency: fixed sequential

reshuffled

remapped

Table 7.3: Addressing for FFT Stage 2

BDSP 9124 RAM RAM
coefficients write read

twiddle coeffs. BFLY latency: fixed sequential

reshuffled

remapped

7.2.1 Twiddles in the FFT

Twiddle Factors for the BDSP 9124 Chip

The twiddle factors in the FFT are lookup tables for the functions cos (4096) and

sin4 096', where k is an integer from 0 to 4095. Note that the argument of the functions

can be thought of as an angle that decreases from 0 down to almost -2n . Alternatively,



the lookup tables are x and y coordinates on a unit circle as a vector from the origin to the

point (1,0) sweeps around in the clockwise direction. The cosine function is the same no

matter whether the vector moves clockwise or counterclockwise, but the sign of the sine

function is reversed, a fact which is included in the software. The literature from BDSP

describes each function code and for the BFLY2, BFLY4, and BFLY16 codes. The BDSP

literature says that there is a negative sign table assumed for the imaginary data of a

forward FFT. However, this is misleading. The negative sign table is provided in the

simulation, and if the BDSP 9124 simulation software is an accurate simulation of the

hardware, then the6.4 negative sine table must indeed be provided, and is not assumed.

FFT Twiddle Patterns Combined Together Into Final Pattern

In the IFFT, the twiddle coefficients are stored in order and they are called in the order

they are needed according to a pattern. In the FFT, however, the pattern in which the

twiddle coefficients are needed does not depend on the frequency plan, so a few steps can

be rolled into one memory device. One memory device, which is read sequentially, can

hold the twiddle coefficients, and it can also hold them in the order they are needed for the

transform. The twiddle coefficients are generated according to the pseudocode in section

6.3 and 6.4.

7.2.2 Reshuffling in the FFT

The data reshuffling patterns follow the pseudocode in section 6.5 and the remapping is

done according the pseudocode in section 6.8.



7.3 From FFT Stage 3 to IFFT Stage 1

At this crucial stage of the demultiplexer, the addressing manipulations which need to be

performed are numerous. First, the output of the FFT must be handled. Then, there are

many manipulations that must be performed on the samples for each carrier. Finally, the

data is put into memory, and the address to that memory increments in a staccato manner,

instead of incrementing steadily. The patterns for all these come from the software and are

downloaded into the RAMs for each frequency plan. As in nearly all other stages of the

hardware, the addressing is controlled via the write addresses. Since there are so many

manipulations to be done, and since they are typically discussed in the literature in terms

of read addresses, all the addressing is done with read addresses, which can be cascaded

using the pseudocode for multiple mappings in section 6.7. The last step is to remap these

to write addresses.

The number of samples from each FFT is 4096. In contrast, the number of cycles in

the IFFT is 8192. At the end of the FFT, 4096 samples are pumped into memory. The

IFFT needs to read in 8192 samples. This is feasible because the IFFT uses a clock rate of

4Fs, whereas the FFT uses a clock rate of 2F s. However, the question arises of where the

extra samples come from.

These extra samples consist of the zero padding. While these are read into the IFFT,

the read address to the memory with FFT output samples remains constant. When it is

necessary to read a new sample from the FFT output, the read address to the memory is

incremented. In this context, the manipulations on samples of the FFT are described.



Table 7.4: Addressing for FFT Stage 3

BDSP 9124 RAM RAM
coefficients write read

twiddle coeffs. BFLY latency: fixed staccato

reshuffled

natural freq. order

for each carrier:

transform order

zero-padding

digit-reversed

remapped

crunched

7.3.1 Manipulations for the Entire FFT Output

Reshuffling

The data emerge from the FFT butterflies and are not in sequential order. They are in

staggered order since the actual hardware is serial, not parallel. It is necessary to reshuffle

them.

Natural Frequency Order

The data at the output of the FFT is in transform order, meaning that the first sample is the

sample at frequency 0. The next samples are for positive frequencies, and the last half of

the samples are for negative frequencies. These must be rearranged into natural frequency

order so that carriers can be separated. For instance, it is quite possible that a carrier

straddles the 0 frequency. Either the data must be explicitly reordered or the subsequent

data manipulation must take into account the fact that the data is in transform order. In

this implementation, explicit reordering is performed to simplify subsequent stages.



7.3.2 Manipulations for Each Carrier

The software knows the frequency plan. Once the data for the entire FFT are handled, the

software generates patterns to work with samples from each individual carrier. By

handling the samples for each carrier this way, the carriers are each converted to baseband.

The beat frequencies are eliminated, assuming that the local oscillators on the transmitter

and receiver are operating at the proper frequency.

The individual carriers have zero padding for the IFFT, but there is room for all that

because there are 8192 cycles in the IFFT and only 4096 cycles in the FFT.

The software inserts the FFT samples corresponding to the allocated bandwidth from

one carrier. The decision was made arbitrarily to include the smallest frequency of the

allocated bandwidth and all the samples up to the highest frequency, but not including the

sample for the highest frequency, for that is the sample at the lowest frequency for the next

carrier. This has a slight effect because some of the carriers exceed their allocated

bandwidths and their data shaping filter coefficients are greater than 0.0 at the edges of the

allocated bandwidths.

Thus a major shift occurs here. Previously, all manipulations worked with the entire

FFT. Here, the software is using its knowledge of the frequency plan to select samples

from the allocated bandwidths. The software has to know the location and bandwidth of

the band for the carriers to do this.

Now that each carrier has been separated, there are many more manipulations to be

done. The software works on each carrier individually and retains the proper offset

addresses based on the number of frequency samples in each carrier.



Transform Order

At this point, each individual carrier is in natural frequency order. However, to prepare the

sample for the IFFT, they must be placed in transform order.

Zero Padding

At this point, the software needs to do zero padding. This is because the FFT samples are

selected according to the allocated bandwidths; the number of FFT samples for each

carrier is in general not a power of two. However, the size of the IFFT must be a power of

two in the BDSP 9124 chips. Thus the sequence of FFT samples is extended by adding

zeros to it. The number of zeros added to the FFT sequence is designed to meet the

constraints of the demodulator, whose input must be between 2 and 4 samples per symbol.

The zeros are added by using a coefficient of 0.0 in the first stage of the IFFT. When it

is time to add a zero, the address to the data memory in the FFT is held constant. At the

same instant, the RAM under the coefficients calls the coefficient from the coefficient

memory at address 0.

Another option for implementing the zero-padding was considered but rejected

because of uncertainty in the BDSP 9124 chip specifications. That was to implement the

zero padding by using the BDSP 9124 chip's data zero in (DZI) pin. When the signal to

this pin is active, the data entering the BDSP chip is nullified. However, the source code

for the BDSP 9124 simulator was examined and a concern about this approach was raised.

The simulator takes inputs that are in groups of 16 (for the BFLY16 function code) or in

groups of 4 (for all other function codes). In the simulator, when a DZI signal is received,

the entire group of 16 or 4 data points are nullified. That is not the behavior desired in

hardware. If the software is an accurate simulation of the hardware in this detail, then the

DZI pin is not suitable. Perhaps the software does not match the hardware in this detail,



and the hardware DZI pin would have been suitable. However, either method requires one

control bit, and where one strategy of multiplication by a coefficient of 0.0 is well

understood, the other is uncertain and was avoided.

Digit Reversal

Since the data for each carrier is about to enter a transform, it must be digit-reversed since

this is required for the fast transform algorithm. Digit reversal depends on the structure of

the radices in the transform. Therefore, for each carrier, the radix structure must be looked

up and the digit-reversal computed accordingly.

Remapping

Since the patterns for handling the data are implemented via write addresses, and all the

previous work has been done with read addresses, the patterns must be remapped for use

as write addresses.

Crunching

Since the number of cycles in the IFFT is 8192 but the number points at the output of the

FFT is only 4096, the software needs to do crunching. It needs to take the patterns it

generated for the 8192 points in the IFFT and extract only the addresses having to do with

the FFT samples. It needs to exclude those address having to do with zero padding. It is

left with only the addresses for FFT points that fall within the allocated bandwidth of the

carriers used in the frequency plan. That is far fewer than 4096 points. In fact, it is fewer

than 3200 points, since the 4096 points of the FFT correspond to a 11.52 MHz band, but

the input only has signals on a 9 MHz band.



Staccato Read-Address-Increment Signal

While the software crunches down the addresses for the data, it builds up a sequence of l's

and O's for the read-address-increment signal. This read-address-increment signal takes

into account all the manipulations that were performed on the addresses, so it is not a

steady block of ones followed by zeros. When the samples for a carrier are read out, the

read-address-increment bit changes from 1 to 0 in an irregular pattern. Since it is not one

steadily but only in bursts, it is called the staccato bit.

7.4 Filter Coefficients in the First Stage of the IFFT

The coefficients in the first stage of the IFFT are not twiddle coefficients. They are

coefficients for the data shaping filters. The filter coefficients have to match the input to

the IFFT: they must be in transform order, they must include the zeros for zero-padding,

and they must be digit-reversed.

Table 7.5: Addressing for IFFT Stage 1

BDSP 9124 RAM RAM
coefficients write read

filter coeffs. BFLY latency: variable sequential

transform order reshuffled

zero-padding remapped

digit-reversed

Transform Order

The coefficients must come out of the memories and up to the BDSP 9124 chips in

transform order. Only half the coefficients are stored, since they are symmetric. First,



they are read in one direction. After the zero-padding is inserted, the coefficients are read

in the opposite direction.

Zero-Padding

For each carrier, the IFFT is made of some samples from the FFT and some samples that

are zero pads. When a zero-pad occurs, the read-address for the memory with FFT output

samples does not increase, and the 0 th address for the coefficient memory is called, in

order to multiply the input to the BDSP 9124 chip by 0.0.

Digit-Reversal

The data at the start of the IFFT are digit-reversed, and the coefficients must also be digit-

reversed. The digit-reversal pattern depends on the radix structure of the transform being

performed. The filter coefficients are all stored in one memory in hardware, so the address

patterns must call them in the proper order. Also, each filter corresponds to a known

transmitted bit rate, and a known IFFT size. Therefore, in retrospect, the software could

have been written to access a file with the address patterns pre-computed, including the

transform order arrangement, the zero padding, and the digit-reversal. However, as the

software evolved, it was written to recompute the filter coefficients in floating point, make

decisions about which addresses to include for filter values of 1.0, intermediate filter

coefficient values, zero padding, intermediate coefficient values, and values of 1.0, and

then to digit-reverse those addresses. However, this does not take very much time so the

difference between the implemented software and the possible software is worth pointing

out but not worth changing.
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Twiddle Coefficients All 1

Finally, there is the fortuitous fact that the twiddle coefficients to the first stage of the IFFT

are all 1, so the operation to combine the twiddle coefficients with the filter coefficients is

trivial. This is in contrast to the twiddle coefficients for the first stage of the FFT, which

were not all 1. That was because the BFLY16 function code was used in the FFT. In that

function code, there are actually two sets of four radix-4 transforms being performed.

That second set of transforms was why the twiddles were not all 1.

In the IFFT, where the window multiplication function codes are used at the first stage,

the only window multiplication function codes available are BWND2 and BWND4.

There is no BWND 16 because of the unique arrangement of coefficient inputs for that

function code.

7.5 IFFT Addressing

7.5.1 Twiddles for IFFT Stages 2, 3, and 4

In the IFFT in stages 2, 3, and 4, the coefficients are twiddle coefficients. They are

computed according to the formulas from the DSP background chapter and the twiddles

for radix-16 structures are computed according to the formulas from this chapter, where

the specific implementation of the BFLY16 function is discussed.

The twiddle coefficients for the transform being performed, at the particular stage

where the memories are, are culled up from a file in memory and put into the pattern. If

there is a second carrier, then there follows the addresses for the proper twiddle

coefficients. Finally, when there are no more carriers, the pattern for twiddle addresses



simply calls the 0 address until the end of the 8192 point cycle. These don't do anything

since the StartStop signal on the chip is not active.

The twiddle coefficients stored in memory for IFFT stages 2, 3, and 4 are for a 2048

point transform. For smaller transforms, the appropriate set of twiddle coefficients is a

subset of the coefficients for a 2048 point transform. The 2048 coefficients correspond to

trigonometric lookup tables for an angle that moves clockwise around the unit circle in

increments of 2n/2048. For a smaller transform, the increments of the angle are

proportionately larger. Therefore, the same twiddle coefficients can be, and are, reused for

all 2048 point and smaller transforms.

7.5.2 Data Reshuffling in IFFT Stages 1, 2, and 3

Table 7.6: Addressing for IFFT Stage 2

Table 7.7: Addressing for IFFT Stage 3

BDSP 9124 RAM RAM
coefficients write read

twiddle coeffs. BFLY latency: variable sequential

reshuffled

remapped
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Incorporate 9124 Chip Latency

The first thing the data reshuffling addresses must do is to handle the BDSP 9124 chip

latency. This depends on which function code is used. Thus the software has a lookup

table. The software knows the frequency plan, so it knows the sizes and radix structures

and function codes for the IFFTs. Therefore it can refer to a table and look up the chip

latency for the function code being used.

For increasing addresses in the reshuffling pattern, at first there is no pattern. Once the

latency has been waited out, the addresses of the reshuffling pattern have contents that are

the write addresses for the BDSP 9124 chip outputs.

Reshuffling

The contents for each transform are read from a file which has the pattern for the

transform to be run individually. The way the software puts them all together is by using

offset addresses.

Remapping

The reshuffling addresses must be remapped since the hardware uses write addresses

instead of read addresses to implement data reshuffling. The files that the software refers

to for each individual transform already have the patterns in remapped order.

Data Scale Factor Output in IFFT Stages 1, 2, 3, and 4

From the BDSP 9124 chips, one clock cycle when the data scale factor output (DSFO) is

valid is after the last output data point has been pumped out. This value tells by what

power of 2 the output of the chip needs to be scaled down in order to prevent overflow in

the next BDSP chip. It is meant for architectures with cascaded BDSP 9124 chips. The
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DSFO value can serve as the data scale factor input (DSFI) input to the next BDSP 9124

chip. That chip examines the DSFI value and the function code. Different function codes

lead to different combinations of the input data and different amounts of overflow that are

possible. Therefore the next BDSP 9124 chip considers both the DSFI value and the

function code and decides by what power of two it needs to scale down the input before

carrying out the function code.

The original plan for the project was to read the DSFO from one chip into the data

RAMs and then read it into the next BDSP 9124 chip. The simulation software and SPW

block diagram were developed with that plan in mind. The DSFO came out after the last

data value. At the corresponding address in the data reshuffling coefficients, the contents

caused the DSFO to be written into the data RAM before the addresses where the data was

placed.

There was to be a switch in the hardware to accommodate the DSFO. In the

simulation, the switch's two inputs were the BDSP 9124's imaginary output and the BDSP

9124's DSFO value. The output of the switch fed into the ram that held the imaginary

data. Most of the time, the switched control caused the BDSP 9124 imaginary output to

be connected through to the data RAM. However, after the last data value of a transform

the control bit caused the switch to change and connect the BDSP 9124's DSFO to the

memory RAM, allowing the DSFO value to be fed through. At that moment, the address

in the reshuffling pattern causes the DSFO value to be written to a location before the

other transform outputs.

However, the extra switch in the circuit caused an unacceptably large delay and has

been removed from the hardware design. Instead, the DSFO is pumped into a first-in-first-

out buffer (FIFO) whose value is then fed into the BDSP 9124 in the subsequent stage.
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The software for the old system can remain the same for the new hardware, since it will

now just put a meaningless value before the data in the data ram.

7.6 Addressing for 50% Discard

The data reshuffling addresses for IFFT stage 4 are very similar to the reshuffling for

stages 1, 2, and 3.

Table 7.8: Addressing for IFFT Stage 4

BDSP 9124 RAM RAM
coefficients write read

twiddle coeffs. BFLY latency: variable sequential

remapped

50% discard

remapped

The write addresses must include a reshuffled pattern since this is the final stage of a

transform. The write addresses help implement the 50% discard. They write the bad

samples to addresses that are so high that they will not be looked at by the demodulator.

Finally, the patterns must be remapped for use as write addresses.

7.7 Tests of Patterns

As the software was being written, many tests were performed in order to ensure that what

was being done was right. The entire software project almost certainly would never have

come together if these tests had not been performed and the results examined to root out

bugs and ensure proper operation at each stage along the way.

105



7.7.1 Checking Each Transform Individually

Each size of transform was tested individually to verify the patterns for digit-reversal at

the input, twiddle coefficients, data reshuffling coefficients, and staggering at the output.

The C source code simulator for the chip was so long in coming that these tests were

actually run with an ad hoc floating point simulator of the simulator, the major function of

which was called "simsim." It was written based on the description of the function codes

BFLY2 and BFLY4, and the equations for them in the BDSP 9124 User's Guide. The

BFLY16 function code was also included, and its algorithm consisted of eight calls to the

BFLY4 function. The MOVD function was also simulated, with outputs that were equal to

inputs.

These four function codes themselves were tested. The MOVD function was tested by

making sure the outputs were equal to the inputs. The BFLY2, BFLY4, and BFLY16

functions were tested by taking two 2, one 4, and one 16 point transforms, respectively,

and testing the output against the equations and the output of SPW's built-in mechanisms

for computing FFTs. Each chip received input data, coefficients, and a function code, and

each produced output.

Once the operation of simsim was verified, it was used for transforms from size 32

through 4096. A cascaded architecture of four chips was used for the simulation of the

first seven transforms. An architecture of three chips was used for the simulation of the

4096 point transform.

The same input that was fed into these systems was also put through a built in FFT

operation by SPW. The outputs were compared and when they were not identical, the

patterns for digit reversal, twiddle coefficients, data reshuffling, and staggering were
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examined and corrected. The small transforms were tested first, and insights from fixing

those patterns were applied to fixing the patterns for the large transforms.

These tests did not include the BWND2 or BWND4 functions, any timing parallelizer

or serializer, the transfer of data from the FFT to the IFFT, or the 50% discard at the

output. The test of the 4096 point transform included a test with blocks to produce a 50%

overlap at the input. Also, none of the tests for sizes 32 through 2048 were explicitly

testing IFFTs. The assumption was that if the FFT test worked, then the IFFT would work

once the conjugation of the input and output were in place. Fortunately, this was valid and

there were no snags about this point.

When the C source code simulator for the BDSP 9124 did arrive, it was flawed but

examined and fixed and tested. Once the serializer code was in place, the exact C source

code simulator was used in the same way that simsim was used; namely, to verify the

digit-reversal, twiddle coefficient, data reshuffling, and staggering patterns. Since those

patterns were known to be working, this was really a test of whether the C source code for

the BDSP 9124 was being successfully integrated into the SPW environment and whether

the parallelizer and serializer in the BDSP 9124 SPW block were working properly.

7.7.2 End to End Simulation Tests

Finally, after including a 50% overlap buffer, arranging to transfer the data from the FFT

to the IFFT, taking steps to allow the IFFT to work with many carriers, and including the

50% discard, the demultiplexer output was fed into the demodulator. After a lot of effort,

the bugs associated with these last stages were rooted out one by one until the

demodulator emulation software could recover the input data for any chosen carrier. Then

noise was added and the signal-to-noise ratio was calibrated carefully.
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This end-to-end simulation, from the simulated input through the demultiplexer and

through the demodulator, provided a test on all the demultiplexer work because the

resulting bit error ratio (BER) curves look as expected. The degradation due to a single

carrier passing through the demodulator alone was known. The demultiplexer was using

so much bit precision that it was not expected to add much degradation.
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Chapter 8

Input to Demultiplexer

The input to the demultiplexer was painstakingly simulated. First, data for many baseband

carriers was generated. These carriers correspond to a few of the rows on the spreadsheet

of INTELSAT IBS and IDR carrier specifications. In the simulation itself, these baseband

carriers were modulated to frequencies within the 9 MHz band that the demultipexer

accepts. They were added together, and then passed through a partial simulation of part of

the analog front end. Signals at radio frequencies were not simulated.

In the partial simulation of the analog front end, the signals were sent through a

lowpass anti-aliasing filter. They were then processed by an A/D converter, which

converted the signal amplitudes from highly precise double floating point numbers to

amplitudes that were quantized to 8 bits (256 levels).

Signal sink blocks in SPW were used as oscilloscopes to record the input signals so

that they could be examined. Signal-to-noise ratios were calculated and the total levels

were monitored to make sure there was no danger of saturation or cutoff in the A/D

converters.

8.1 Generating Baseband Data

The generation of baseband data entailed a partial simulation of a modulator. First, a bit

stream was created. It is passed through a data shaping filter and stored in a file for later

use.
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Figure 8.1: Generating Baseband Data for a Carrier

Design Tools Options Window

EDIT ** ASnty Instance :t

Random data patterns are generated and stored. They are also filtered with square root raised cosine filters. Due to the
upsampling, the inputs to the filter are already impulses, and there is no need for a 1/sinec compensation filter. This filtered signal
simulates the processing of the modulator. It is stored in a file and used to form the input to the demultiplexer.

Figure 8.1 shows the SPW block diagram that was used to generate baseband data for

the carriers. The block entitled "QPSK source" generates a random symbol pattern. The

output of the block is a multiple of one of the following four complex numbers: (1,1), (1,-

1), (-1,-1), or (-1,1). In the QPSK source block, the user can set a parameter for the signal

power, and that determines the amplitude of the output signal. The block can be replaced

by other blocks that generate more well-defined patterns, such as square waves or



constants. These were used to test various stages of the demultiplexer simulation while it

was being constructed.

This four-valued signal is used for two purposes: it is stored for use with the

demodulator emulation software and it is filtered to simulate a modulator's output.

Storing the Signal for Use with the Demodulator Emulation Software

One branch of the output of the QPSK source block is quantized and then written to a

binary file. This is by no means the only way to perform this task. For instance, in

retrospect it is all to clear that the quantizers (called midtread blocks) are not necessary.

The whole point is to perform a mapping:

I

1

1

-1

-1

Q

1

-1

-1

1

mapping
to

binary

Ox 0 1 0 1

Ox 0 1 f f

Ox f f f f

Ox f f 0 1

This is the binary format used by the software that emulates the demodulator ASIC.

The overall purpose is to create binary data for a carrier and store the original signal. The

signal is then modulated, multiplexed, sent over a noisy channel, demultiplexed, and

demodulated. The demodulator output for this carrier should match the original signal.

They are compared and the number of errors is counted and watched closely.

Filtering to Simulate a Modulator's Output

The other function of the SPW block diagram shown in Figure 8.1 is to simulate the
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modulator. The translation to radio frequencies is not simulated: only the modulating

filter.

A complication arises because after the A/D converter in the receiver, there is not an

integer number of samples per QPSK symbol. Care must be taken to make sure that the

simulation of the output of the A/D converters is realistic.

To that end, the signal was oversampled, filtered, and then downsampled. The data-

shaping filter also served as an interpolating filter. The final downsampled signal was at

the right number of samples per symbol. In order to figure out how much to upsample and

downsample, the number of samples per symbol in the INTELSAT carrier specifications

was computed as a fraction, as shown in Table 8.1. To perform the filtering, an SPW block

was used. It performs filtering by transforming its input to the frequency domain,

multiplying by the frequency response for a raised cosine shape, and transforming the data

back to time domain. One of the parameters it requires is a number of taps for the filter.

This must be a power of two, because the size of the transform is a power of two. In order

to make the filter serve as a suitable interpolating filter for the upsampled input, the

number of taps in the filter was specified to be the power of two that was the ceiling of

(10 -upsampling term). Thus 10 symbol lengths were included in the filter, which is long

enough to be considered ideal.

Since the symbols were upsampled, they were impulses and not NRZ square pulses.

Therefore it was not necessary to use a 1/sinc filter. A square root filter was used since

that is what is performed by the modulator.

This method of upsampling, filtering, and downsampling is highly inefficient and can

be made much more efficient by writing code to simulate the filter. The code could use

two tricks. First, most of the samples in the upsampled signal are 0 and the filter does not

need to consider those in a multiply-and-add convolution operation. Second, most of the
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outputs are thrown away and do not need to be computed in the first place. These ideas

were not considered when the system to generate baseband data was constructed. The

system was made to work, and runs were performed overnight. Once the data was

generated, it was saved and used for many different simulations of the demultiplexer. If it

is desired to generate more simulations of baseband data, for instance for all the carriers

on the spreadsheet, then it would be wise to replace the system of upsampling, filtering,

and downsampling with efficient code.

8.2 INTELSAT Carrier Specifications

Table 8.1 shows the INTELSAT carrier specifications, including columns for generating

input data.

Transmitted Symbol Rate

This column is copied over from Table 2.1.

Samples per Symbol After the A/D Converter

These columns take into account the 11.52 MHz sampling frequency of the A/D in the

analog front end. They present the data in fractional form, which corresponds to the

upsampling and downsampling ratios to be used in generating baseband data for each

carrier.
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Table 8.1: Carrier Specifications in a Form for Simulating Input

Info Trans. Samples per
Symbol Symbol after A-to-D in Fractional Form

Rate Rate

(kbits/s) (ksymb/s) Numerator / Denominator

384 307.2 75 / 2

768 546.1 675 / 32

1544 1,093.3 432 / 41

2048 2,144.0 360 / 67

Figure 8.2: Modulating and Multiplexing the Inputs

CONTEXT ** Afinity Instance 'I

1ll Is

Baseband data from many different carriers can be modulated and multiplexed. The chart at the left contains the information
about the frequency plan. The actual numbers cannot be read at this viewing scale and are represented by rectangles. On the
right, in the block diagram, there is a bank of source blocks which read the baseband data from files. Then there are blocks to
multiply the data by a file constant, in order to alter its power. Next, there are complex spectral shift blocks to modulate the data.
Finally, the modulated data is added together to form the input to the next stage, which is the channel model where noise is added.



8.3 Modulating and Multiplexing

8.3.1 Blocks Involved in Modulating and Multiplexing

The simulated carriers are generated at baseband and stored in files. In another SPW

block diagram, Figure 8.2, which is part of the simulation of the demultiplexer itself, the

baseband carriers are modulated to various frequencies and added together (multiplexed).

The chart at the left of Figure 8.2 has 24 rows. This is where the user can enter

parameters for up to 24 carriers. For instance, in the tests run for this thesis, up to five

carriers were multiplexed. Thus the first five lines of the chart are used to specify

information about carriers, and there are five sets of three blocks at the right.

The two parameters for each row are the name of the file containing baseband data and

the center frequency to which that data is to be modulated.

Figure 8.3 shows the three blocks for each carrier. On the left is a signal source block.

The parameter chart dictates the name of the file from which this source reads. When the

hold signal of this block is active, the block does not read new data from the file. Instead,

it holds the last value.
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Figure 8.3: Larger Diagram of Modulating and Multiplexing Blocks

I' I I Pl
CONTEXT ** Afflnity I Instance c73
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In this larger view of the block diagram elements from Figure 8.2, it is easier to see the source blocks, the blocks for scaling by a
constant, the complex spectral shifters, and the adders that make up the modulation and multiplexing system.
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The hold signal is arranged so that the source block reads a new value every four

cycles. The clock of the entire simulation is 46.08 MHz but the clock of the A/D converter

is only 11.52 MHz, so one new value comes from the A/D converter every four ticks of the

46.08 MHz clock. This allowed smaller files to be generated. It would have been possible

to generate files with the same data repeated four times, and that kind of data could have

been read without the need for hold signals. However, that kind of file would have taken

four times as much memory as the files used. The files used already took of the order of

20 megabytes each, which was a lot given the other memory required by the simulation

files and the available memory on hard drives. Repeating each entry of the signal four

times would have been a significant waste.

The block in the middle is for multiplying the data by a constant. That constant is

stored in another file and controls the amplitude and power of the signal. The block

entitled "file constant" is where the SPW simulation reads an external file to get a

coefficient for multiplying the noise. This arrangement allows the coefficient in the

external file to be changed without the need for recompiling the SPW simulation, which

takes 14 minutes. Other simulation software such as Ptolemy offers an easy way to

dynamically link the changed blocks to the rest of the simulation, but that possibility in

SPW was not readily available to the user, and any hacking to get it to work was not

explored. Instead, whenever information needed to be changed frequently, that

information was relegated to external files.

At the right is the complex spectral shifter. It also has parameters that depend on the

chart of parameters. The block multiplies its input by a digital complex exponential, so

the output is shifted in frequency (the signal is convolved with an impulse in the frequency

domain). The complex spectral shift block also required another parameter: a sampling
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frequency. That was set to 46.08 MHz because the entire simulation is running at that

frequency.

8.3.2 Gating the Output by the Fs Clock

The outputs of the complex spectral shifters were added together and then gated by the Fs

clock, as is shown near the bottom right of Figure 8.2 and Figure 8.3. The gating was

done by multiplying the signal by the complex number 0+0i when Fs was inactive, and by

1+0i when Fs was active.

The gating was done because otherwise, the multiplexed input would have had a sinc

window on its spectrum. By gating, the multiplexed input is instead made into the

upsampled version of the input. This introduces spectral images, but they are removed by

the anti-aliasing filter. The fact that there are images can be seen by comparing two

signals: one used as a reference and the other an upsampled version of the reference

signal.

Derivation of Equation for Spectral Images Due to Upsampling

Consider a discrete time signal x[n] which has a discrete time Fourier Transform (DTFT)

denoted by X(o). The idea is that if y[n] is an upsampled version of x[n], then Y(co) is

closely related to x(co). The steps are to define upsampling precisely, to write an equation

for the DTFT of the upsampled variable, to rewrite that DTFT by substituting in quantities

related to the original signal, and lastly, to write the relationship between X(co) and

Y(co).

First, a precise definition of upsampling is in order. If y[n] is defined as the result of

upsampling x[n] by M, then the values for y[n] are as follows:
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]X- M n is a multiple of M
y[n] Li

0 otherwise

The DTFT of the upsampled signal is as follows:

Y(w) = Y[n]e-Jn

n=-oo

This equation can be rewritten because y[n] is zero except when n is a multiple of M. It is

helpful to define a new variable, p, such that n = Mp. Then the equation for Y(c) can be

rewritten as follows:

Y(w) = y(Mp)e-J(COM)P
p = -,,

Even though the sum does not include all the values in the signal y[n], it does include all

the values of y[n] that are nonzero, so it is still a valid expression for Y(Co). With that

sticky but important detail handled carefully, the rest of the work can proceed.

Using the fact that y[Mp] = x[p], the equation for Y(o) can be rewritten as follows:

Y(w) = x[p]e-J(O)M)P

As expected, this is very closely related to the DTFT of x[n]: Y(o)= X(oM).

Note that the energy in x[n] is the same as the y[n], and similarly, the energy in x(o)

is the same as the energy in Y(wo). This can be seen from the figure by realizing that the

images are all only 1/M as wide as the images in X(o), but there are M times as many of

them.
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8.4 Model of the Channel and Analog Front End

The modulated, multiplexed data was combined and put together in an SPW block called

"Frequency Plan," which appears in Figure 8.4. Noise is added to it, and the combined

signal is passed first through anti-aliasing filter and then through A/D converters, which

provide the simulated input to the demultiplexer.

8.4.1 Generation of Noise

In Figure 8.4, the basic block that generates noise is the block entitled "Complex White

Noise." However, there is a lot of other machinery associated with it. The function of

those other blocks is to adjust the power of the noise being added to the signal.

The block entitled "file constant" is where the SPW simulation reads an external file to

get a coefficient for multiplying the noise. This arrangement allows the coefficient in the

external file to be changed without the need for recompiling the SPW simulation. It is

very similar to the block in the modulating and multiplexing which multiplies the signals

by a file constant in order to adjust the signal power.

There is a multiplication by a constant done by a circular block entitled "k." That fixed

constant is 0.5. Then there is a square root function. The purpose of these is to make the

data entry for the noise power intuitive. The total output power of the block entitled

"Complex White Noise" is 2 units of energy per second: 1 unit in the real domain and 1

unit in the imaginary domain. The desired power is divided by 2 and then the square root

is taken.



Figure 8.4: Model of Channel and Analog Front End

EDIT ** Aff Instance c3

Wrote plot file to /hosts/chekov/local/users/msaginaw/plot.out
Wrote plot file to /hosts/chekov/local/users/msaginaw/plot.out
Wrote plot file to /hosts/chekov/local/users/msaginaw/plot.out

In ,

The modulated and multiplexed signal comes from the box called "Frequency Plan." White Gaussian noise is added to simulate the channel. The signal is passed through anti-aliasing filters
and sent to A/D converters.

S.- lW l1-1 IN



In an external file, a noise power N is written. The coefficient to the noise block

output is JNK72. The noise from the noise block has power 2. Thus the variance of the

product is (N/2)2, or N. Thus the user enters a number which corresponds to the noise

power. The manipulations via SPW blocks are in place for the purpose of simplifying the

input. That white Gaussian noise, with power controlled by a coefficient from an external

file, is added to the signal. The carrier powers are also controlled by coefficients from an

external file.

8.4.2 Anti-aliasing Filters

The anti-aliasing filters have the job of retaining signals in the 9 MHz band from -4.5 MHz

to 4.5 MHz, and cutting off signals whose frequencies are less than -5.76 MHz or greater

than 5.76 MHz. In software, the action of the filters was simulated by using digital filters.

A built-in SPW block was chosen. It was a digital FIR filter with 55 taps. The large

number of taps made possible a sharp amplitude response. The use of a symmetric FIR

filter made possible a filter with a flat group delay. The extra images of the upsampled

input signal were cut off by the filter, and only the central image remained.

8.4.3 A/D Converter

The A/D converters were simulated by SPW blocks which are quantizers. The entire

simulation is already working with digital signals. The simulation of the A/D converters

do not sample a continuous time signal and convert the signal to a discrete time one;

rather, they quantize the signal. Previous to the A/D converters in the simulation, the

signals are all double precision floating point numbers. Afterwards, they are quantized, in

this case to 8 bits. That parameter of quantization is easy to change, thus offering the

opportunity to try out many different levels.
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The A/D converters also have a setting for the maximum amplitude of their inputs, and

they simulate clipping at saturation and cut off at low levels.

In the demultiplexer simulation, the A/D converters have an input amplitude maximum

of 4.0 and 8 bits of quantization are used. Thus if the input is less than -4.0, then the

output is -4.0 (0x80 in two's complement binary). If the input is more than 3.96875, then

the output is 3.96875 (0x7f in two's complement binary). If the input magnitude is less

than 0.00390625, then the output is 0.0 (0x00 in two's complement binary).

To avoid saturation or cutoff, a 2-bit backoff from the A/D converter's maximum was

used. Thus the signal power and noise power are adjusted by the coefficients so that the

total amplitude is about 1.0. In the real hardware system, the power of the signal and noise

will be fixed but the gains of the electronics will be controllable, as will be the setting for

the maximum amplitude accepted by the A/D.

8.4.4 Dithering

In the context of A/D converters, dithering refers to the phenomenon where small

signals are not cut off even though they are below the A/D threshold, because they are

combined with larger signals. For instance, if the A/D threshold is 0.00390625, a signal

from a narrow band carrier might have a root mean squared amplitude of only 0.001 and

would be cut off by the A/D converter. However, if the signal were combined with a

second carrier that had a root mean square amplitude of 1.0, then the sum would pass the

threshold. After the demultiplexer performs the FFT and separates and filters the carriers,

the narrow band signal can be converted back to the time domain in the IFFT.

8.4.5 Calculating the Signal-to-Noise Ratio

The quantity Eb/No had to be computed to make BER plots, and a method for doing so is
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given in [Feher]. For simplicity, suppose there was just one carrier. The noise was turned

off and the carrier passed through the anti-aliasing filter. The power of the carrier, C, was

measured after the anti-aliasing filter. Since the carriers contain unwanted images in their

spectra due to being upsampled, it was necessary to look at the signals after the anti-

aliasing filters took out the images. Note that Eb= CTb = C/fb .

Let N be the noise power that passes through the filter, which was measured by turning

off all the carriers and passing the noise through the filter. Then No= N/Bw , where BW

is the noise equivalent bandwidth of the filter, which was measured in three different ways

and know to be 9,635,668 Hz. The best measurement came from passing an impulse

through the filter (since it is a digital filter in the simulation), computing the energy in the

response, and using Parseval's theorem to equate that to the noise equivalent bandwidth.

Finally, the equations can be divided to obtain: Eb  C BW
N o N fb
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Chapter 9

Chosen Architecture

In this chapter, the structure of the demultiplexer hardware is described, and block

diagrams from the SPW simulation are discussed.

9.1 Clocks

The hardware has three different clocks: one at 46.08 MHz, one at 23.04 MHz, and one at

11.52 MHz. These clock rates were chosen based on three constraints: the requirements

of the demodulator, ease of implementation of frequency filters, and hardware speed.

Requirements of the Demodulator

The 23.04 MHz frequency is the frequency at which output data samples are clocked into

the demodulator ASIC. That is appropriate since the demodulator can handle clocks up to

25 MHz.

Ease of Implementation of Frequency Filters

Given a clock speed for the demodulator of a little less than 25 MHz, what is the best

sampling rate for the A/D converters? The answer is intimately tied up with the frequency

filters. They can be simplified by a wise choice of sampling frequency.

If the FFT samples are not spaced properly, then they will not span the allocated

bandwidth slots snugly. For each frequency plan, it would be necessary to compute the

filter coefficients, based on where the FFT samples fell. Those coefficients would have to
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be downloaded to one piece of hardware, while an identical piece of hardware was read to

obtain the coefficients of the frequency plan being used.

This can be simplified if the FFT samples span the allocated bandwidth slots just right.

In that case, there is only the need for one memory unit to hold the coefficients for all

types of carriers. In fact, there is another advantage too. If an FFT sample falls on the

center frequency of the carrier, and if the filter coefficients are all real, then the filter

coefficients (which are discretely spaced in frequency) are symmetric. They only need to

be computed and stored in hardware once. They can be called twice, and this saves on the

memory needed.

The bandwidths used in the INTELSAT system must be analyzed in order to figure out

how to space the FFT frequency samples just right. In the INTELSAT system, allocated

bandwidths are always multiples of 22.5 kHz and center frequencies are always multiples

of 11.25 kHz. This is tied in with the spacing of FFT samples in the frequency domain.

The samples are spaced one every Fs/4096 Hz. So if the center frequencies need to fall on

the sample points, then the following equation must hold: 11, 250 = k -Fs/4096 , where k is

an integer. If k is 4, then Fs is 11.52 MHz and 2F s is 23.04 MHz. This is a good match to

the demodulator. Given this choice of clock speed, the simplest way to divide up the 36

MHz band of frequency is to divide it into 4 slots of 9 MHz. Each demultiplexer, with an

A/D sampling rate of 11.52 MHz, can handle a 9 MHz sub-band.

Hardware Speed

The 11.52 MHz sampling rate means that the fastest clock, for the IFFT, runs at 46.08

MHz. It is necessary to make sure that the hardware can run at that speed. Actually, this

high speed has many implications for the hardware design and makes it difficult.
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First, it is necessary to make sure that the FFT DSP chips can run at 46.08 MHz. Most

commercial FFT chips can not run that fast. One special line of chips from BDSP runs at

50 MHz. It comes in a special package called a super ball grid array (SBGA), presumably

because this package reduces lead inductance substantially and is therefore better for high

speed operation. At this time, the SBGA package is new in the industry and very few

people have experience with it. Because the pins on the SBGA package are not available

on the sides of the chip, it is necessary to get special adapters for the chip for testing and

debugging.

Furthermore, by the time all the path latencies are taken into account, it is difficult to

meet the setup and hold times of the chips. For this reason, some parts which were

planned as PROMs will actually be implemented as RAMs, which run faster. These will

be loaded once with data and afterwards used as though they were PROMs.

Another step necessary to meet the hardware timing requirements was to add extra

registers to break up some of signal flow paths between unclocked components. These

were not simulated, so there will be small differences in the exact timing between the

simulation and the final hardware. It is anticipated that these will not be a problem,

however, because the timing differences can be easily done away with by tweaking the

Altera programmable logic device (PLD) clocks by a few cycles once the actual hardware

is being tested.

9.2 BDSP 9124 FFT Chips

The six different function codes of the BDSP 9124 chip which are being used in the

demultiplexer, along with their latencies, are listed in Table 9.1.
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Table 9.1: BDSP 9124 Function Code Latencies

Function Latency
Code (cycles)

BFLY2 18

BFLY4 18

BFLY16 68

BWND2 20

BWND4 20

MOVD 18

The BDSP 9124 has 24 bits of input each for real and imaginary data, and real and

imaginary coefficients, all using two's complement notation. It also has a StartStop pin,

an enable A pin, and an enable B pin.

Suppose a BDSP 9124 is to be used for a 32 point transform. Then the StartStop

signal needs to go from inactive to active when the first data and coefficient values arrive.

The StartStop signal remains active as the data and coefficients are clocked in. It needs to

go inactive when the last data and coefficient values arrive. The enable A signal causes the

BDSP 9124 to read the function code signal and needs to go active two cycles before the

data and coefficients arrive. The enable B signal causes the BDSP 9124 to read the two

scale factor input signals and needs to go high at least one cycle before the data and

coefficients arrive.

9.3 Overlap Buffer

The 50% overlap buffer is between the A/D converters and the FFT operation. It is

implemented as a circular buffer. The buffer needs to have at least 8192 locations. Let the
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memory be divided into groups of 2048 locations labelled 'A,' 'B,' 'C,' and 'D.'

To illustrate how the circular buffer operates, imagine that 'A' and 'B' are full of data.

As one sample is read into 'C,' two samples are read out of 'A.' After 4096 cycles of

operation, 'C' is filled just as the last sample of 'B' is being read out. At that point, the

writing begins in 'D' and the reading begins from the beginning of 'B.' The samples from

'B' are overlapped. This procedure continues, as shown in Table 9.2.

Table 9.2: Operation of 50% Overlap Buffer

Read Write

none A

none B

A, B C

B, C D

C, D A

D, A B

A, B C

etc. etc.

This is the only stage of the demultiplexer where the RAM write addresses are

sequential and the read addresses come from a pattern in a PROM. In all other stages, it is

the other way around: the write addresses are according to a pattern and the read addresses

are sequential. This is because in the early stages of the hardware design, the idea was to

use RAMs with addressable write and sequential read, where those RAMs had an internal

counter and no pins for a read address, and are therefore smaller. At a later stage in the

hardware design, this idea was dropped due to the need to get any RAM that was fast

enough and had small enough access time to meet the hardware timing constraints.
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However, the hardware schematic wiring for variable write addresses and sequential read

addresses was already underway, as was the software development effort. Therefore, the

software development continued based on RAMs with addressable writing and sequential

reading, even though this made the software somewhat more complicated.

As mentioned, this 50% overlap buffer is the one exception, and the RAMs have a

sequential write address and a read address according to a pattern. It is necessary to have

a read address according to a pattern because of the overlapping way in which the input

data is used. That overlapping effect must come from read addresses, and the write

address may as well be sequential. In addition, the read addresses also are arranged for

digit reversal and for reshuffling, so they are different for the first use of a set of 2048

points than they are for the second use. This different arrangement could not be achieved

by a write address according to a pattern coupled with a sequential read, so the read

address had to be according to a pattern.

9.4 FFT

After the 50% overlap buffer, the next major section of the demultiplexer is the FFT.

This section uses three stages with BDSP 9124 chips to take a 4096 point DFT of its input.

The transformed data is then filtered at the first stage of the IFFT.



Figure 9.1: Simulation of the FFT

The 50% overlap buffer is implemented via the read addresses of the RAMs at the input. The data is passed through three radix 16 stages and the 4096 point FFT is computed. The patterns for
digit-reversal, twiddle coefficients, and reshuffling addresses are independent of the particular frequency plan.
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Figure 9.2: Stage 2 of the FFT
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Data enters the BDSP chip figure at the left and twiddle coefficients enter at the bottom. The outputs are fed into RAMs. Since
the patterns for twiddle coefficients and data reshuffling are independent of the frequency plan, they may be stored in PROMs.

9.4.1 The BDSP 9124 Chip in the FFT

Each stage of the FFT has a BDSP 9124 chip and PROMs that feed in twiddle coefficients.
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These memory units can be PROMs because the FFT twiddles do not depend on the

frequency plan. They are fixed, and the contents of the memory do not need to change for

different frequency plans. Also, the FFT clock only runs at 2F s, which is slow enough to

allow use of the PROMs, even though they have slower access times than the RAMs that

are used in the IFFT. A sequential counter, to come from an Altera PLD in the actual

hardware, feeds a sequential address to the PROMs.

In the FFT, all the signals to the BDSP 9124 chips are independent of the frequency

plan. Each chip runs the BFLY16 function code all the time, so these signals can be hard-

wired. The StartStop, enable A, and enable B signals are all periodic and occur once every

4096 of the 2F s cycles. These can come from Altera PLDs and do not need to come from

the host PC.

9.4.2 Preparing Data for the Next Stage

After the BDSP 9124 chips, the data enters memory RAMs: one for the real data and one

for the imaginary data. The write address is determined by a PROM with 8192 points. As

was the case with the twiddle coefficient address patterns, the data reshuffling address

patterns are independent of the frequency plan. This fact, coupled with the fact that the

FFT clock is only running at 2Fs means that the addresses can come from PROMs.

The 8192 addresses involved in data reshuffling work in ping-pong fashion. The first

4096 addresses all are addresses for the lower half of the data RAMs. The next 4096

addresses are for the upper 4096 points of the data RAMs. Just as was the case with the

PROMs with twiddle coefficients, the PROM with data reshuffling addresses gets its

address input from a counter that will come from an Altera PLD.
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9.5 IFFT

9.5.1 Using the FFT to Compute IFFTs

In order to perform an IFFT operation, the same hardware and algorithms can be used as

were used for the FFT, since the formulas are so similar. One way to do an IFFT is to

change the twiddle coefficients so that the sign of the imaginary part is positive. Another

way is to use the same twiddle coefficients as the FFT and also to use a trick. Take the

complex conjugate of the input data, take the FFT, and then take the complex conjugate of

the output. For these kinds of manipulations, the BDSP 9124 has one control pin for

taking the complex conjugate of the input, and another control pin for taking the complex

conjugate of the output.

The mathematics behind why this trick works involve a few manipulations of complex

conjugates. Since the input signal is conjugated, the FFT twiddle coefficients are used,

and the output signal is conjugated, the transform operation can be written as follows:

(X[k])*(ez jJ

The complex conjugate of the sum equals the sum of the complex conjugates:

N -j2kkn

The complex conjugate of each product equals the product of the each complex conjugate:

N j27tkn

, X[k]e N

k=l

This is indeed the inverse DFT of X[k], so the method of computing it by using the FFT

with conjugation manipulations is justified.
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The simulation of the IFFT involves four stages. The data shaping filters are applied in

the first stage, where the function codes BWND2 and BWND4 are used to multiply the

incoming data by the appropriate filter coefficients. The subsequent stages of the IFFT

transform the filtered data back to time coordinates, one carrier at a time. Finally, at the

output, the addressing is arranged to provide a 50% discard of the data.

In each stage of the IFFT, there is a BDSP 9124 chip with coefficients, and data RAMs

with reshuffling address patterns.

9.5.2 Filter Coefficients in First Stage of IFFT

In the first stage, the coefficients to the BDSP 9124 are not twiddle coefficients but rather

filter coefficients. In the simulation, there is only a set of real coefficients below the BDSP

9124 chip, since the imaginary coefficients are all 0. The memory holding the coefficients

has all the coefficients for all the filters for all the INTELSAT carriers handled by this

demultiplexer.

The subsequent stages are all similar to each other. They have the BDSP 9124 chip

with twiddle coefficients. Then the data passes into data RAMs.

9.5.3 The BDSP 9124 Chip in Each Stage of the IFFT

In each stage of the IFFT, there is a BDSP 9124 chip along with apparatus to provide it

with coefficients. For stages 2, 3, and 4, these coefficients are twiddle factors for the

transform operation. The memories below the BDSP 9124 chip contain the 2048 twiddle

coefficients in order.
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Figure 9.3: Simulation of the IFFT

The data shaping filter is implemented by multiplication in the first stage of the IFFT. The four stages put together perform the IFFT, and the addressing at the output discards the 50% of the
samples that are invalid.
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Figure 9.4: Stage 3 of the IFFT
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In the FFT, the patterns for twiddle coefficients and data reshuffling were independent of the frequency plan but in the IFFT they
are not. The twiddles operate in a two tier structure. First, all the 2048 complex coefficients that could possibly be needed are
stored in one set of memories, shown under the BDSP 9124 chip. Underneath of those memories, other memories have the
addresses for the twiddle coefficients for the particular frequency plan. A switch is in place for changing between two frequency
plans on-the-fly. There are also two RAMs with different patterns for data reshuffling, which also depend on the frequency plan.
Each RAM holds the patterns for one plan, and they can be switched in and out on-the-fly. Finally, there is one extra switch to
funnel the BDSP 9124's DSFO output signal into the data RAM. However, this is no longer part of the hardware design because
it introduced too much propagation delay.
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In the FFT, there is just one set of memory with twiddle coefficients in the order

needed for the transform, but in the IFFT, the twiddles needed depend on the size of the

transform. Therefore the structure of memories is different: it is a two-tier structure. The

first stage is the memories with the lookup tables of trigonometric functions. The second

stage is the RAM that is programmed by the host PC. It contains the patterns describing

which twiddles are needed in the IFFT.

Furthermore, there are two of these RAMs with patterns of twiddle coefficients. One

is for the frequency plan being used by the hardware, the one which is "at bat." There is

also another RAM with patterns for another frequency plan, and it can be switched in

when a change in the frequency plan occurs. This second RAM holds the twiddle

coefficients for the frequency plan that is "on deck." Each of these two RAMs receives a

sequential address from a counter, which in hardware will be provided by an Altera PLD.

9.5.4 Data Storage and Reshuffling in Each Stage of the IFFT

The output of the BDSP 9124 chip feeds into data RAMs for the real and imaginary data.

The write address for these RAMs is controlled by patterns from a RAM that is

programmed by the host PC. These reshuffling patterns must match the frequency plan.

As with the twiddle coefficient addresses, there are two RAMs with data reshuffling

coefficients. Only one controls the actual write address, and this is dictated by a switch.

The control signal for the switch comes from the programmable logic which generates

control signals for the hardware.

Now the flow of one particular frame of data during 8192 cycles is described, using

stage 3 of the IFFT as an example. At first, data for all the carriers is stored in the memory

that precedes the BDSP 9124. One carrier at a time, the data is passed through the BDSP
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9124 chip and collected into the memory which follows. After the 8192 cycles, data for

all the carriers for that frame are stored in the memory following the BDSP 9124.

In the FFT, it was clear that a memory size of 8192 points between each BDSP chip

was adequate. The memory was used in ping-pong fashion. In the IFFT, this is less

apparent but still true: the number of storage locations needed for each memory between

the BDSP 9124 chips is 8192.

There are three pointers to think about, as shown in Figure 9.5: the average write

pointer, the actual write pointer, and the read pointer. The average write pointer starts at 0

and proceeds sequentially to 8191, and then rolls over to 0. The actual write pointer does

not proceed so smoothly. It bounces forward and backward around the average write

pointer, because it reshuffles the data from each carrier to a different order. However, all

the data from one carrier remains in a clump with the other data from the same carrier.

Finally, there is the read pointer. It starts 4096 clock cycles after the write pointer. It

lags the average write pointer by 4096. The key question to ask is whether the actual write

pointer will ever be less than the read pointer. In fact, it will not even come close, because
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Each bracket represents the IFFT samples associated with a carrier. Even though there are 8192 IFFT samples, there is no need to
do ping-pong addressing and only 8192 memory locations are needed in the data RAMs in the IFFT. Even in a worst case
scenario, the actual write pointer would never be less than the read pointer



the largest IFFT size is 2048. The largest jump backwards that the actual write pointer

could take, relative to the average write pointer, is a jump of 2048. However the read

pointer lags the average write pointer by 4096, so there is no danger of the actual write

pointer being less than the read pointer. To summarize, the read pointer will never try to

read something which has not yet been properly written.

Similarly, after the writing of a batch of 8192 points is done, the average write pointer

rolls over to 0 and proceeds forward again. It lags the read pointer by 4096. The actual

write pointer jumps around the average write pointer, but only by 2048 points at most.

Thus it will never be greater than the read pointer. To summarize, the actual write pointer

will never jump ahead so far as to overwrite something that the read pointer has not read

yet.

9,5.5 Timing Issues

Writing to and Reading from the Final RAM

At the final RAM, data is clocked in at a frequency of 4Fs. However, half of that is

effectively discarded since it is written to an address that is never read. The read address

to the RAM only increments at a rate of 2Fs, and the signals are sent to the demodulator at

that rate.

Switching on a Rollover Boundary

For each memory unit for twiddles and data reshuffling, the plan switches must occur as

the address to the memory rolls over from 8191 to 0.
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Suppose that carrier 2 in Figure 9.6 is supposed to be continued as the frequency plan

changes. For the first plan, there is a group of addresses for carrier 1, and another group of

addresses for carrier 2. For the second plan, there is only a group of addresses for carrier

2. Suppose that while frequency plan 1 was active and carrier 2 was being processed,

there was an attempt to switch in plan 2. Then the addresses in plan 2 would be way

beyond the clump of values for carrier 2. Frequency plan changes can only occur as the

counters roll over from 8191 to 0.

The demodulator is able to accept on-the-fly switches also at this boundary, so the two

hardware units are consistent.

9.5.6 Radix Structure

At each stage of the IFFT, the BDSP 9124 chips may be called upon to perform certain

operations by giving them certain function codes.
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The switch in frequency plan must come as each RAM -- with patterns of twiddle coefficient addresses and data reshuffling
addresses -- rolls over from 8191 to 0. If it happened in the middle of the address sequence, the continued carrier would not be
handled properly.



Table 9.3: Operations and Function Codes at Each Stage

Stage 1 Stage 2 Stage 3 Stage 4

Radix Function Radix Function Radix Function Radix Function
Code Code Code Code

2 BWND2 16 BFLY16 1 MOVD 1 MOVD

4 BWND4 4 BFLY4 4 BFLY4

16 BFLY16

These function codes are put together to perform each size of transform needed, from

32 to 2048, as shown (repeated from Table 6.2 for convenience) Table 9.4.

Table 9.4: Radix Combination for Achieving Each IFFT Transform Size

Because the filtering occurs in the first stage of the IFFT, the function codes there

involve multiplication of the input data by a set of coefficients. Conveniently, the first

stage of the IFFT has twiddles that are all 1, so there is no need to combine the coefficients

with any non-trivial twiddle coefficients. (In the FFT, the first stage would have had

twiddles that were all 1. However the BFLY16 function code was used, and that function
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code combines two stages of BFLY4 operations into one stage, so the twiddle coefficients

for the first pair of radix-4 stages were not all 1.)

9.6 Discarding Data

At the end of the IFFT, all the samples have been converted back to time coordinates.

However, some of them are invalid due to aliasing, and must be discarded. This occurs at

the end of stage 4 of the IFFT. The addressing is different. The valid samples are put in

the first 4096 points of the memory and the invalid samples are put elsewhere. Only the

first half of the memory is read. The read address is sequential but it only runs from 0

through 4095. The counter only advances at a frequency of 23.04 MHz.

9.7 Hardware Bits

9.7.1 Bit precision

Every stage of the project works with two's complement notation for positive and negative

numbers. For instance, the A/D converters with 8 bits of precision have outputs that range

from -128 to 127. (However, the control signals do not use two's complement.) The

demultiplexer was planned with an A/D converter with 8 bits of precision for the real and

imaginary parts. The BDSP 9124 chips can carry out transforms with 24 bits of precision.

In the demultiplexer, only 16 bits of precision are used. This includes every stage of data

in the FFT, the twiddles in the FFT, the handling of data in the RAMs, the transfer of data

from the FFT to the IFFT, the filter coefficients, and the twiddles in the IFFT, all of which

are precise to 16 bits.
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At the output, however, only 8 bits are passed on to the demodulator. The ideal signal

level for the demodulator is 32, for the height of a binary 1. The demodulator can handle a

range of input signal levels. It accepts 8 bits of input, so only 8 bits of the demultiplexer's

output are passed on to the demodulator.

The issue of which 8 bits to pass on to the demodulator is a thorny one. For each IFFT

size, there is a path of radices of transforms. Each radix operation involves multiplication

and addition of the input and makes the output generally bigger than the input. There is a

barrel shifter at the output of the demultiplexer to pass on a selected 8 bits from the

demultiplexer to the demodulator. If the wrong group of bits is selected, the demodulator

will be saturated or will cut off. In either event, it will not demodulate properly. Since the

host PC knows what kind of transform is being executed, it should be able to send the right

control signal to the barrel shifter. Exactly which amounts of shifting for which carriers

must be determined empirically through use of the simulation.

9.7.2 Control Bits

At each stage of the IFFT, there are two RAMs which receive their contents from the host

PC. The primary purpose of the RAMs under the BDSP 9124 chips is to provide

addresses for the twiddle coefficients. Similarly, the primary purpose of the RAMs under

the data RAMs is to provide reshuffling patterns for the write address. However, these

RAMs that are programmed by the host PC have 16 bits, and not all of those are needed

for the primary purposes. The extra bits are needed as control bits, mostly for the BDSP

9124 chip.

Bit Allocation for IFFT Stage 1

The StartStop bit of the BDSP 9124 is either 0 or 1, so its value can come in
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straightforward fashion from the RAM. However, the function code bit is encoded. There

are only two options for the function code bit at this stage: BWND2 and BWND4. So all

that is needed to indicate which function code is appropriate is a single bit. However, this

bit must be decoded in an Altera PLD and then sent to the BDSP 9124 chip.

This stage has two unusual details: an unusual enable B signal and a schizophrenic bit

that serves as a control signal for the previous stage.

Table 9.5: Bit Allocation for IFFT Stage 1

Coefficient RAM Data RAM

Signal Bits Signal Bits

select from 5048 13 write address for 13
filter coeffs data reshuffling;

8192 locations in RAM

schizophrenic bit: 1 unused 3
FuncCode and stage 3

BDSP 9124 StartStop 1

BDSP 9124 Enable A 1

total 16 total 16

For this stage, the enable B signal is independent of the frequency plan. The signal

only needs to go active once every 4096 FFT clock cycles, when an FFT is completed and

a new scale factor is ready. Since it is periodic, it can come from an Altera PLD.

The schizophrenic bit serves two purposes. It is both the function code bit for the

BDSP 9124 and also a signal for the RAM in stage 3 of the FFT. Fortunately, there is no

offset in the counter between these two functions, however there may be low level

hardware registers which will make a difference in the timing of these two functions.
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Bit Allocation for IFFT Stage 2

No bits are needed for the function code of the BDSP 9124 chip because it is always

BFLY 16 in this stage of the IFFT.

Table 9.6: Bit Allocation for IFFT Stage 2

Coefficient RAM Data RAM

Signal Bits Signal Bits

select from 2048 11 write address for 13
twiddle coeffs data reshuffling;

8192 locations in RAM

BDSP 9124 StartStop 1 unused 3

BDSP 9124 Enable A 1

BDSP 9124 Enable B 1

unused 2

total 16 total 16

Bit Allocation for IFFT Stage 3

In this stage, two bits are needed for the function code for the BDSP 9124 chip because it

can have three different values: MOVD, BFLY4, or BFLY16.
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Table 9.7: Bit Allocation for IFFT Stage 3

Coefficient RAM Data RAM

Signal Bits Signal Bits

select from 2048 11 write address for 13
twiddle coeffs data reshuffling;

8192 locations in RAM

BDSP 9124 StartStop 1 unused 3

BDSP 9124 Function Code 2

BDSP 9124 Enable A 1

BDSP 9124 Enable B 1

total 16 total 16

Bit Allocation for IFFT Stage 4

Table 9.8: Bit Allocation for IFFT Stage 4

Coefficient RAM Data RAM

Signal Bits Signal Bits

select from 2048 11 write address for 12
twiddle coeffs data reshuffling;

4096 locations in RAM

BDSP 9124 StartStop 1 unused 4

BDSP 9124 Function Code 1

BDSP 9124 Enable A 1

BDSP 9124 Enable B 1

unused 1

total 16 total 16

In this stage, there are two possibilities for the function code for the BDSP 9124.

Therefore one bit is needed to distinguish between them. In the programmed RAM under
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the data RAMs, there are only 12 bits required for the address because there are only 4096

points being used in the data RAMs.

9.7.3 Delay Through Project

The goal here is to trace a data point as it moves through the project to see how long a

delay is introduced by the project. Imagine that 2048 points from the A/D converter have

been stored in the overlap buffer. Then another 2048 points from the A/D converter need

to be pumped into the overlap buffer. This takes 2048 cycles at Fs. Then 4096 points from

the overlap buffer are pumped through the BDSP 9124 chip into another memory chip.

This takes 4096 cycles at the 2Fs clock.

Table 9.9: Delay Through Demultiplexer Stages

Number of
ClockStage of hardware samples to

handle

from A/D converter into overlap buffer 2048 Fs

FFT stage 1: through BDSP 9124, into data RAM 4096 2F s

FFT stage 2: through BDSP 9124, into data RAM 4096 2Fs

FFT stage 3: through BDSP 9124, into data RAM 4096 2Fs

IFFT stage 1: through BDSP 9124, into data RAM 8192 4Fs

IFFT stage 2: through BDSP 9124, into data RAM 8192 4Fs

IFFT stage 3: through BDSP 9124 into data RAM 8192 4Fs

IFFT stage 4: through BDSP 9124 into data RAM 8192 4Fs

Once a sample is input, it takes 8 clumps of 2048 cycles

milliseconds before it is ready to be read by the demodulator.

of the Fs clock, or 1.42
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Chapter 10

Results

Once the end-to-end simulation was completed and the signal-to-noise ratio computed,

data could be collected for making bit error ratio (BER) curves. Noise was added at the

input to the demultiplexer and the demultiplexer outputs were fed into the demodulator,

which came up with an estimate of the original bit stream for each carrier. This estimate

was compared with the original signal to find the number of errors. BER curves were then

plotted as a function of signal-to-noise ratio.

10.1 Description of Trials for Results

10.1.1 Types of Plans Tested

The tests were performed with a variety of carriers at a variety of power levels. The

allocated bandwidths of the carriers were tightly packed, to maximize the effects of

interchannel interference. For example, one of the plans tested is shown in Figure 10.1.

10.1.2 Criteria for Good Points on Result Curves

In the BER curves, some of the points are labelled as "good points" and the rest as "other

points." There are two criteria for a point to be a "good point." First, there had to be at

least 100 errors between the input and demodulator output. That ensured good statistics

for the error rate. Second, the "good points" had to be from a carrier that was surrounded

on both sides. For example, in Figure 10.1, the carriers b1544 and c384 had interchannel
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interference from both sides, but the other two channels only had interchannel interference

from one side.

10.1.3 Limits on Sizes of Tests

It was difficult to test carriers at low bit rates. When the bit rate is low, it takes a long time

for a significant number of errors to occur, and this taxes the computer's time. In order to

run simulations over such long stretches, many samples of input data must be generated

for each carrier, and these large files tax the computer's memory. For the demultiplexer

simulation, it took 80 minutes to run 2 million samples into the simulator. For each

carrier, the files with 2 million samples took about 20 MBytes. To work with five carriers

at once meant reading from 100 MBytes of hard drive space. Hard drive space became a

scarce commodity.
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Figure 10.1: A sample of a Test Plan

ivagniruue

ttt frequencyt t t t(kHz)
-3,375 -2,205 -1,237 450

768 1544 384 2048
kbits/s kbits/s kbits/s kbits/s
info info info info
rate rate rate rate

6 dB 2 dB 2 dB 3 dB
EBNo EB/N Eb/O E

Carriers were spaced so that their allocated bandwidths were adjacent, in order to maximize effects of interchannel interference.



There are three regimes of signal-to-noise ratios. The first is where the ratio is so low

that the demodulator can't lock on. The second is intermediate, where the demodulator

can lock on and many errors can be recorded. The third is where the ratio is so high that it

is difficult to measure a large number of errors.

The specification on the demodulator is that it should be able to lock onto the signal at

signal-to-noise ratios of 2 dB, where signal-to-noise ratios are measured as the energy per

bit, divided by the noise power per Hz (Eb/No).

For the sizes of the simulations chosen, the highest rate carriers (e2048) were about

4.3 Mbits/s transmitted bit rate and could give good points with more than 100 errors at

signal-to-noise ratios as high as 6 dB EJ/N o.At the other extreme, the low bit rate carrier

(c384) had a transmitted bit rate of about 614 kbits/s, and good points with more than 100

errors at signal-to-noise ratios only up to 4 dB Ei/N o.

10.2 Result Graphs

For these four types of carriers, data was run through the demultiplexer and demodulator

end-to-end simulation. The carriers were chosen so as to span a wide range of bit rates.

The "b1544" carrier was included because the 1544 kbit/s information rate is the only one

in the system that is not a multiple of 64 kbits/s.

The carrier with an information rate of 768 kbits/s was always used on the edge, at the

lowest or highest frequency. It never had interchannel interference from both sides, so

there are no "good points" for that carrier. The results are shown for comparison.
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Table 10.1: Carrier Types That Were Tested

Trans.
Info

Bit
Rate Rate

(kbits/s) (kbts(kbits/s)
64 45.5

384 614.4

768 1092.3

1544 2186.7

2048 4288.0

The hash-marked triangle in all graphs is the specification that the combined

demultiplexer and demodulator system has to meet. There is an allowable degradation of

1 dB Eb/N o at BERs of 10-2, 10"3 , and 10-4.
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Figure 10.2: BER Curve for Carrier with Information Rate of 2048 kbits/s

Signal-to-Noise Ratio EbNo (dB)
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

100

10-1

10-2

OA
Ir
0 10-3

w

10-4

10-5

10-6

154

.-

1.0 2.0 3.0 4.0 5.U0 b. 1.0U .U 9.U
Signal-to-Noise Ratio EbNo (dB)

I a

100

10-1

10-2

4-0

10-3 0

10-4

10-5

10-6



Figure 10.3: BER Curve for Carrier with Information Rate of 1544 kbits/s
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Figure 10.4: BER Curve for Carrier with Information Rate of 384 kbits/s
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Figure 10.5: BER Curve for Carrier with Information Rate of 768 kbits/s
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10.3 Frequency Offset

If there is a frequency offset due to an offset error in the local oscillator of the transmitter

or the receiver, then there will be a small beat frequency in the data at the end of the IFFT.

The demodulator can handle small offsets, up to +2.5% of the symbol rate or 5.5 kHz,

whichever is less. The demodulator is known to meet these specifications for single

carriers with no demultiplexer. Two sample test runs with a maximum permissible

frequency offset showed no extra degradation.
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Chapter 11

Remaining Items

Seven items remain. They are described here in roughly decreasing order of importance.

11.1 On-the-Fly Switching

This is a major requirement of the demultiplexer. The demodulator is capable of handling

it and the demultiplexer must be also. Although blocks for this were built into the

simulation, there was not enough time to test this capability.

In order to add this capability to the simulation, the output of the demultiplexer

simulator must be made more sophisticated. Currently, it feeds the signal from each

carrier into a separate file, for examination by the demodulator. However, to test on-the-

fly switching, the demultiplexer would have to send its output to one file and also send

control signals to the demodulator, marking off the time divisions between blocks of data

for different carriers.

Furthermore, the blocks which have been placed in the simulation for testing on-the-

fly switching would have to be provided with control signals for switches and put to use.

The necessity of thinking through these control signals in the simulation would provide

background for implementing them in hardware.

Currently, the thinking is that on-the-fly switching will work, but the whole point of

the simulation is the test things out before unexpected difficulties arise in the hardware.
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11.2 BDSP Chip Latency

The C source code simulator for the BDSP 9124 chip works with data in groups of 16 for

the BFLY16 function code and in groups of 4 for all other function codes. The SPW

simulation is built around this. For the BFLY16 function code, 16 data points must be put

into the C source code simulator and at the moment when the last point is put in, the first

point of output is ready. The latency for BFLY16 in the software is therefore 15.

Similarly, the latency for all other functions is 3.

The lookup table in the software that generates address patterns for data reshuffling

actually uses these skewed values. The "latency" is 15 for the BFLY16 function code and

3 for all other function codes. These values do not match the hardware.

The software that generates actual addresses for the hardware must have the values in

the lookup table changed. This is a very simple matter; in fact, the real values that

correspond to the hardware latency are in comments in the code, next to the spot where

they belong. However, it does mean that there is a discrepancy between what code is used

for simulation and what code is used for hardware.

Although it seems difficult to modify the parallelizer and serializer to make the

simulation of the BDSP 9124 act more like the actual chip in terms of latency, it may be

worthwhile because then at least the same code used for simulation can be reused -

without modification - for the hardware. That way, debugging can be simplified, and there

would be no worries that any errors that come up in the hardware debugging are due to this

discrepancy.

11.3 Order of Data Entry for BFLY2 and BWND2

In [9124 UG], the figure on page 3-6 for the BFLY2 (and the similar diagram for



BWND2) shows the data going in and coming out in the following order: A, C, B, D. This

is different from the order used in simulation, which was A, B, C, D. However, this may

be a misinterpretation of the diagram. The diagram may mean that A and B are indeed the

first two data samples to enter the chip, and the interpretation of the drawing may be

wrong. These is likely because the user's guide for the BDSP 9124 and the BDSP 9320 do

not mention anything about the order of data entry. Their patterns for reshuffling and

twiddles do not make it seem that the order is anything but sequential. However, it is

something to keep in mind when debugging of the hardware, in case it slipped by the SPW

simulation and the simulation using the BDSP 9124 C source code.

11.4 Scaling Issue

Fortunately, this is an issue that seems to be solved now. To illustrate the scaling issue,

consider two sets of data which enter an inverse transform. One is slightly larger than the

other and the DSFO values tell the BDSP chips to kick the level down to prevent overflow.

At the output, this slightly larger signal appears only about half as large as the subsequent

block of data. The worry was that these sudden changes in amplitude would cause bursts

of errors in the demodulator.

One idea for fixing this was to use not only the DSFO and DSFI signals but also the

BFPO and BFPI signals (block floating point input and output). The DSFO and DSFI

values specify how much to reduce the input to a BDSP 9124 chip in order to prevent

overflows in calculations. On the other hand, the BFPO and BFPI values are designed to

keep track of the accumulated exponent, and can be used for normalization at the end of

the demultiplexer. These values are used in a barrel shifter that controls the input levels of

the signals entering the demodulator.
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The FIFO in the hardware for the DSFO values has 9 bits, and this is perfectly

matched to the DSFO and BFPO values, which have 3 and 6 bits respectively. Thus both

can be passed from stage to stage and used to control the signal levels. Simulations using

both of these signals appear to be working and eliminate the scaling problem.

11.5 Frequency Offsets

As mentioned in the chapter about results, this issue has been explored in a couple of

simulations. Frequency offsets within the allowable specification appear to pose no

problem to the demultiplexer/demodulator system. However this exploration has been

tentative and a more methodical exploration would be more satisfying.

11.6 Different Precision Levels in the A/D

For this project, the precision levels at all stages including the A/D converter appear to be

completely satisfactory. However, it may be a good idea to run simulations with different

precision levels in the A/D converters for two reasons. First, actual A/D converters are not

ideal and according to some data sheets, an 8 bit A/D converter at 11.52 MHz only

provides 7! bits of resolution. Thus it might be a good idea to simulate a 7 bit A/D

converter to get a lower bound on performance. Second, it would be interesting to see how

sensitive the demultiplexer/demodulator system is to variations in the A/D converter

precision. Since the degradation with an 8 bit A/D converter is only a few tenths of a dB

Eb/N o, it may not be worthwhile to consider a 10 bit A/D converter because that may only

provide negligible improvement. However, if a 7 bit A/D converter proves to be much

worse than an 8 bit A/D converter, then it may be wise to use a 10 bit A/D converter to stay

far away from a region of bad performance.
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However the issue of various precision levels is somewhat removed from this

demultiplexer and more applicable to other projects. This is a ground based project where

power is not a concern. For other projects slated to go on board satellites, power is a

precious commodity. The idea is to use the simulator for these other projects and see how

many bits can be cut away without degrading performance unacceptably. For instance,

maybe the IFFT needs less than 16 bits of precision. Every bit that can be cut is a power

savings.

11.7 User-friendly software

Finally, the current software for inputting the frequency plan is awkward and based on text

files. Worse, it requires the user to understand the constraints on the number of carriers

that can be handled by the demultiplexer. It is easy to imagine a windows-oriented

program in which a user can use a mouse and get feedback from a graphical screen display

in order to input a new frequency plan. The program could automatically check the user's

inputs against the constraints and inform the user if the selections were okay or not, and if

not, why not. This software could then generate a text file in the form that is currently

used by the software that generates the addressing patterns. The windows program could

call the program and have it generate addressing files automatically.
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