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Chapter 1

Introduction

This thesis is about the fundamental need for computers to manage our information.

It is about how to embed information retrieval into everything we do. The growth

of networked computers has created an information overload problem. People are

overwhelmed by both the supply of and demand for information. By expanding the

scope and accessibility of current information management tools, new applications can

be built which ease this information burden. In particular, not enough information

is being kept about our personal information, the documents we read and write, yet

this is precisely the type of information which is so often sought after. There are

many solutions for managing much larger corpa, such as the set of World Wide Web

documents or the set of Wall Street Journal articles; yet there are few tools which

facilitate robust management of our personal information. This thesis describes our

implementation of a prototypical personal information manager. Our solution involves

combining software agents and an information retrieval system. We show how, in the

right environment, this combination of technologies is a powerful tool for building a

variety of new information enabling applications.

1.1 The Problem

The growing presence of networked computers is dramatically increasing the amount

of information we generate and consume as well as our dependence on this infor-



mation. Computers are quickly becoming a crucial component of many workplace

functions. More and more paper forms are being converted to online equivalents.

Indeed, the possibility of the paperless office is almost realistic; document scanners

will soon outnumber document printers. With this growth of information accessibility

will come both new applications and new problems. The growth and popularity of

the Internet and World Wide Web (WWW) have provided a glimpse into this future.

New technologies and applications are emerging which harness the power of these

networks. Electronic banking and commerce, new forms of communication, and the

ability for anyone to publish on the Web are just a few examples of these new services.

However, this tremendous growth has created an entirely new sort of problem: there

is too much information. Although all of this information is what ultimately empow-

ers and enriches our online experiences, it can also overwhelm us and over-complicate

simple tasks. How then can we gain control over this information? From the very

start of the Web, at the 10,000 document level, indices were found to be useful. As

the Web has grown to the level of 100 million documents, this has not changed.

Indeed, a whole new industry has emerged based on the need for tools capable of

searching the Web. These Web sites use a variety of different information retrieval

techniques to build what is essentially an index of all the documents they can find

on the Web. Given the Web's unstructured nature and enormous size, these search

engines have been crucial in making the Web usable. Without any sort of central

authority or hierarchy, it is often quite difficult to say where a user should start looking

for a document. Hence, Web sites such as Lycos[18] and Yahoo[19] each routinely get

over 5 million search requests in a day'. Given the advertising and licensing revenues

these sites generate, Internet search engines are here for the foreseeable future. So,

while these tools and technologies have gained a handle on the vast wilderness of

the Web, are our information problems solved? In the future will natural language

queries be answered by powerful Internet search engines which will quickly scour the

'These sites are free services which allow users to perform keyword searches of the entire Web.
They were both initially developed in academic environments, but became commercial sites due to
the huge demand for their services. They generate revenue by displaying an advertisement to each
user.



billions of documents available on the Web and return the list of the 10 documents

which best answer our questions? Certainly this technology is excellent at answering

questions such as, "What is the population of Ohio?" 2 The ability to quickly find

answers to questions like this is one of the reasons the Internet is such a powerful

resource.

But what about some other sorts of questions we might be interested in asking?

Consider questions such as "What was that paper I read about robots last week?"

and "Has Michael read it?" These questions do not want to search the entire Internet

for a document. They require a more personalized data store. They represent an

entirely new kind of information retrieval which we feel has been largely ignored to

date. For the most part, this stems from the fact that computers fundamentally lack

any real knowledge about their users. True, they do keep lists of frequent e-mail

contacts, hotlists of favorite Web sites, schedules, financial information, and so on.

But they don't ever use this knowledge on their own. While computers may have

become a unified data store of all our personal information, they rarely make use

of this information in any way beyond feeding it right back to the user who put it

there in the first place. They don't analyze the data on their own, they don't share

the data with each other in interesting ways, and, most importantly, they don't keep

enough information about their users. Computers "know" nothing about their users'

documents, correspondence, and actions; essentially, the information they create and

consume. Put simply, computers rarely do anything with our data beyond what we

tell them to do.

1.2 Information Retrieval Can Be Better

By keeping this in mind, we can leverage information retrieval to enhance our personal

information interactions. Instead of an information retrieval (IR) system, we would

2In fact, one can currently go to the Infoseek[7] search engine, enter the query "What is the
population of Ohio?" and get back as the best document the 1995 Ohio State of the Environment
Report section on population[l]. This tells us that the 1990 census reports a population of 10,947,115
people.



like an information management (IM) system. We envision the following interaction

with a fictional computerized personal information agent called Oren:

Lynn: Oren, what information do I have about teaching Java.

Oren: Just a moment while I check.

Pause. Then a list of documents with summaries appears.

Oren: There are 3 papers, 2 journal articles, and 13 Web sites you've
already seen. You asked me to remind you about the 1st Web site. Also,
Michael highly recommends the 1st paper and he has new 2 Web sites he
recently saw which he liked. Finally, you have 37 email messages on the

topic.

Lynn: Who else in the Lab might be interested in this?

Pause. Then a new list of documents comes up.

Oren: Besides Michael, Gerry and Hal also have numerous documents

about teaching Java.

While this may seem far fetched, it demonstrates our desire for more personal IM. In

particular, while the natural language interaction is currently unrealistic, in Chapter

4 we describe a system that otherwise could do much of this. Our vision of the

improved information management system includes four attributes:

* Personalized: The IM system should not be limited to the world of informa-

tion available to everyone (i.e. the Internet). It should concern the personal

documents of its user. In this respect the IM system will act like an augmented

memory (or a very efficient assistant who can find everything3 ).

* Ubiquitous: The system should have access to a user's entire online experience.

Simply put, using an IR system as an augmented memory is useless if it doesn't

contain what you are looking for in the first place. In the extreme, such a

system would quite literally see everything its user sees. In practice, we will see

that what is needed is an architecture where it is possible for other programs to

have access to information about the documents used and produced by a user.

O0r like your mother, who can truly find everything.



* Automated: The fact that this system is essentially watching over users' shoul-

ders, capturing and indexing everything they do, should not really be apparent

to users. This is crucial to the system's success. Users should not have to man-

ually enter all of their documents into the system. Basically, that just isn't a

realistic model - users will forget to enter some documents or simply grow lazy.

The goal of the system should be to make information retrieval easier for users,

not harder.

* Networked: Finally, by networking personal information management systems

together, we create a new kind of web of information. This would allow users

to query the information repositories of their colleagues. For searches relevant

to their interests, this would yield a far richer set of documents than a similar

search of the Internet. These types of searches make an excellent intermediate

step between searching your own personal set of documents and searching the

world of documents.

The question now becomes, how do we build such a system? Conventional IR

systems are by no means user friendly; they typically concentrate more on the engine

and less on the interface. Indeed, the online Web search tools are one of the few

examples of genuinely useful deployments of information retrieval systems. Why is

this? It is primarily due to the programmatic accessibility of documents on the

Web. By programmatic accessibility, we mean the ability for programs to easily

interact with documents without having to go through a user interface. In the case

of the Web, this means that programs can fetch HTML documents directly. This

allows Web search engines to effectively seek out and find every document on the

Web. Thus, these systems are working with a well defined and very accessible set

of documents. Furthermore, the hypertext nature of the Web allows for powerful

searching techniques to be applied to this set.

A personal information management system will need a corresponding level of

knowledge about a user's personal documents. Essentially the system will need a way

to track what users are doing on their computers. This is no easy task. Furthermore,



the system will need to provide users with useful interfaces to these documents. Thus,

we propose a marriage of two technologies. We will use software agents to provide the

tools for monitoring the user and generating autonomous and distributed applications.

Information retrieval systems will provide these agents with powerful and easy access

to large data stores. Together, these tools can meet our information needs in novel

ways.

1.3 Thesis Overview

The remainder of this thesis describes a system which satisfies many of these desider-

ata: a personalized, ubiquitous, automated, and networked information management

system. We use the Haystack information retrieval system as the underlying personal

data repository for storing, annotating, and querying data. SodaBot software agents

provide the tools for ubiquitous and automated information capturing. They also pro-

vide us with the connectivity tools for networking as well as the ability to integrate

our system into the existing infrastructure of the Intelligent Room. This integration

allows us to take advantage of the Intelligent Room's multimodal user interface to

create an information retrieval interaction based on a spoken dialog between users

and the Room.

This system is innovative in the following additional ways:

* It is integrated into the user's workspace. It provides a framework for cap-

turing, indexing, and querying a user's personal information space. This is

demonstrated specifically on Web pages, but is more generally applicable to a

range of information sources.

* It supports a grammar for speech based interaction with an information re-

trieval system. This system allows users to verbally query their information

repositories.

* It allows users to query each other's personal information spaces. This new

source of information is normally not readily available for searching.



* It has been modified to provide a multimedia datastore for more than a human's

personal information; it is the information handler for an interactive environ-

ment.

The next chapter provides background on this and other similar works, including

more detail on the problem and approaches taken. Chapter 3 will discuss the specific

projects on which this work builds: the Haystack per-user information environment,

The Intelligent Room and its multimodal user interface, and the SodaBot software

agent environment and construction system. We'll show how we integrate the these

systems and demonstrate our applications in Chapter 4. In Chapter 5, we summarize

our results and evaluate our work. Chapter 6 describes some directions for future

work using these technologies and provides an overall summary.



Chapter 2

Background

There have been two primary motivations for this work. The first is our desire for

a good personal information management system. We have become overloaded with

information yet there are few tools for handling this at a personal level. The second

is more concerned with our research in human computer interaction in the Intelligent

Room at the MIT Artificial Intelligence Lab. We hope to provide the project with

a powerful new tool for information storage and retrieval. The Room is an excellent

example of a system which is empowered by information, yet does not have adequate

means for representing it.

2.1 Personalized Information Management

In Section 1.2, we expressed our desire for an information management system which

was personal, ubiquitous, automated, and networked. In many ways we already have

IR systems which are ubiquitous for a specific domain, automated, and networked -

Web search engines. Systems such as Lycos and AltaVista automatically spider[31]

the Web, attempting to find every document on the Web and index it. Furthermore,

systems such as SavvySearch[9] and the MetaCrawler[40] send queries to multiple

Web search engines and aggregate the results to produce a better result set than any

individual engine does. So, what is it we mean by personalized information retrieval,

and why is it useful?



The key to a personalized information retrieval system is that it should contain all

those and only those documents which its user has already seen. This is very different

from conventional IR systems where the user is normally searching a large unknown

body of documents. Karger and Stein[22] liken this to searching one's bookshelf versus

searching a card catalog at a library. Furthermore, the fact that users have most likely

already seen the document they are looking for enables more powerful queries. For

example the user might be able to place temporal constraints on the query, limiting

the search to only those documents placed in the archive during a certain time period.

However, even for normal queries, the quality of the documents returned is likely to

be far superior to those returned in a search of the global document space. After all,

one does not normally keep bad books on one's bookshelf. The key idea is that the

average document we read tends to be, from our perspective, of a higher quality and

more relevant than the average document on the Web.

Furthermore, by providing facilities to annotate documents, both actively and

passively, we can further increase a given document's perceived utility. By active

annotation we mean giving users the ability to annotate digital documents about

their content or relevance. Taking this one step further, we can let our computers

annotate our documents with meta-information about how we are using them, as in

Hill et al.[16]. This passive annotation requires no explicit action by users and can

provide new metrics for evaluating a document's worth. For example, our system

automatically annotates each Web page we see with the current time. We can then

use this information to constrain future queries. By keeping closer tabs on what we

actually do with our documents, computers will be all the more powerful in trying to

help us find them at a later date.

Such a system is really more than just a bookshelf. In the idealized case, it is a

copy of everything we've ever read, seen, or heard, fully annotated with our thoughts

about them. Its purpose is to augment our own all too frail memories. Moreover,

unlike our memories, certain portions of this bookshelf are open to the public. This

is yet another alternative to searching the entire Internet for a document. Before

going to the library, why not check your neighbor's bookshelves? Furthermore, this



presents an exciting new opportunity for resource discovery - someone with a highly

annotated set of documents about computer architecture is probably an excellent

person to go to for assistance in computer architecture'. Also, users might often have

their questions answered by documents in another person's personal IM system, and

thus not have to directly disturb the other person.

2.2 Role of the Environment

In designing a personal IM system, it becomes clear that the application will need

access to a variety of subsystems. We essentially want our computers to be aware of

what we are doing on them. For instance, the personal IM system will want to "know"

about each document its user accesses. Most applications, and indeed most operating

systems, do not provide this level of service. While several standards for exchanging

information between applications (CORBA[46], Microsoft's OLE, Apple's OpenDoc,

UNIX IPC, etc.) exist, they are certainly not in widespread use. The simple problem

is that there is no single universal interface for applications to communicate with each

other about their activities. What is missing is an common infrastructure to support

these activities.

To examine this problem in more depth, let us continue our example. How could

our personal IM system know which documents we are reading? In general most

programs do not provide a means for other programs to find out what they are

doing. When a document is opened in the emacs text editor, how is the IM system

told about this? One could imagine re-tooling every application we use to provide

such an interface. Indeed, this is not very difficult with a program such as emacs,

which is designed to be highly extensible, and whose source code is freely available for

modification. But what about when we open a document in Microsoft Word, or view a

postscript file, or simply print a postscript file for off-line reading? Another technique

would be to monitor a user's actions at a very low level. For instance, the file system

1 0f course one could easily fill up a bookshelf with books about computer architecture and

annotate each with "I didn't understand this one either." But that would be silly. At the very least

it would still be a collection of documents on Computer Architecture.



could be patched to notify the IM system whenever a file is accessed. Again, this

works fine in an open environment such as Linux, but what about Windows 95? And

what about networking these systems together - this presupposes both the ability to

easily make use of the network as well as the ability to track groups of users. All

together, we are looking for a very complex infrastructure, quite different from the

typical computing environment found today.

2.2.1 The Intelligent Room

However, we have chosen to work in an entirely different environment; one which is

designed to try and understand what its users are doing in it. This is an environment

built around a very powerful and well defined framework of software agents. It is

an environment which is not only aware of what documents are being used in it,

but hopefully one which has an idea of its occupants' intentions. This environment

is the Intelligent Room[45] at the MIT Artificial Intelligence Lab and its system of

SodaBot software agents. The Intelligent Room is an experiment in enhanced human

computer interaction. The Room is designed as an intelligent conference space void of

keyboards and mice, yet fully interactive. The project's goal is to aid the users of the

Room in tasks such as information retrieval, teleconferencing, or strategy planning.

To this end, the Room tries to interpret and contribute to the activities occurring in

it.

The Room uses cameras as its eyes and microphones as its ears. The microphones

are attached to real-time speech recognition systems. The Room also contains a

speech synthesis system which allows it to interact with its occupants in dialogs.

Several output displays are used to show media such as Web pages, videos, camera

views, or arbitrary applications. The Room uses a variety of vision systems such

as a multiple-person tracker, a finger pointing detection system, and a laser-pointer

detection system. These systems provide information about where a person is and

where they are pointing. The pointing system, for example, allows users to control a

virtual mouse pointer projected onto a wall display. By bringing the computer out

into the human's world, we hope to enhance our interactions with it and to use it to



enhance our interactions with each other. This thesis is very much in the spirit of

both these goals.

In fact the Room's architecture is designed to provide the type of information

we desire. The Room is interested in knowing who does what, where, and when.

There are many subsystems each of which can answer part of these questions. The

Room's software agents tie this information together to produce a coherent view of

the activities occurring in it. Furthermore, they provide this view to any other agents

which are interested in it. For example, when a user standing in front of one of the

Room's wall displays says "show the map here," agents need to resolve where exactly

"here" is referring to. In this particular context, the tracking system is used to

locate the speaker in the Room to determine which display to use. Thus, the Room's

architecture typically contains agents which know who is in the Room, what they

are saying (for a limited grammar), what information they are looking at, and some

sense of what they are doing with this information. By working in this environment,

our personal information management system is able to make use of these existing

agents.

2.2.2 The Room as a Testbed

The Intelligent Room has proven to be not only an excellent testbed for new ideas,

but also an inspiration for many of these same ideas. Coen[5] has made the point that

the Intelligent Room is more than a platform for HCI experiments; it is an excellent

environment for conducting core AI research as well. Once we have an environment in

which rich interactions with the computer are possible, a whole new set of applications

will emerge. The key is to develop a stable platform on which we can build these

new applications. Just as the de facto standardization of Microsoft Windows by

corporate America brought about an explosive growth in software development, we

hope that the Intelligent Room will prove to be the launch pad of many new types of

applications. Indeed, in many ways the Room has developed its own new operating

system. Much of this is due to the use of the SodaBot software agent system, which is

discussed in greater depth in Section 3.1. Essentially, the use of agents as a ubiquitous



middleware has provided the Room with a strong framework for building higher level

applications.

Many of the benefits of working in this environment are derived from embedding

computers more firmly in their surroundings. The Room has systems for tracking and

identifying its occupants, for recognizing what they are saying, and for determining

where they are pointing. These systems are accessible to other higher level applica-

tions running in the Room. This provides these programs with both powerful new

means for interacting with their users and a wealth of information about what their

users are doing. By giving applications more access to their operating environments

they can provide more context sensitive information to their users. Enhanced informa-

tion management is a natural application for this environment. Imagine annotating

documents with who was in the Room and what was being discussed at the time

they were displayed. This is in fact largely what we set out to accomplish. We have

leveraged this powerful operating environment by building our personal information

management system in it.

Providing the Intelligent Room with access to its own information management

system is a major contribution of this work. While the Room has an existing interface

for using the START[23] natural language information retrieval system, it is very

limited in its use. All the information in START has to be entered by hand and

is generally high level symbolic information, such as statistical summaries. Thus its

data set is quite limited. Since the Room cannot directly add new information to

the system, we only use it for searching for information we already suspect is in the

system. Our work has given the Room a system for managing the many different

sources of information it has at its disposal. It has given the Room the capability to

search a datastore of documents which it maintains. One of the primary goals of the

Intelligent Room project has been to make the Room more pro-active in providing

information. Instead of users constantly initiating information searches themselves,

the Room should offer relevant information whenever it is appropriate. For instance,

if two occupants are discussing improving the Room's multi-person tracking system,

the Room might bring up a list of relevant documents, such as the design specification



of the current tracking system.2 If we can give the Room's systems access to more

information, then they can provide more information to its occupants. Creating an

integrated information management system for the Room has done just this.

2.2.3 The Room as a User Interface

From a purely human computer interaction standpoint, the Intelligent Room provides

a rich multimodal environment. The physical layout consists of two wall projected

images which act as the Room's primary output displays. There is a video multiplexer

which can route any of a variety of signals to these displays including the output of

three different SGI workstations, two VCRs, and nine camera views of the Room.

Typically, the main display shows a Netscape Web browser from one of the SGIs.

Occupants can point to specific locations on the displays using either their fingers or

a hand-held laser pointer. Furthermore, their locations and trajectories are watched

using a vision-based tracking system. Occupants wear wireless microphones connected

to a speech recognition system which allows them to "talk" to the Room. Conversely,

the Room can "talk" back via a speech synthesis system. When necessary, users can

always fall back to a standard mouse and keyboard.

Thus, there are several means available for any information exchange between the

Room and its occupants. For example, there are many ways to follow a hypertext

link in a Web browser being displayed on the wall. Users can point to the link, with

either their fingers or a hand-held laser pointer, and verbally command the room to

"click here." Alternatively, they can explicitly name the text of the link, as in "follow

the 'MIT Home Page' link."

The Room uses a novel speech recognition control system to provide a rich gram-

mar for most interactions. This system allows the speech recognition system to dy-

namically change its grammar based on the perceived context. For example, when

an agent in the Room asks a "yes-or-no" question, the Room can load a subset of its

2In a simpler scenario, when a user in the Room is browsing the Web and goes to the Web page

which describes the Room's tracking system, the Room offers to play a video clip about how the
tracking system works.



grammar which allows dozens of ways of replying to these types of questions ("yeah,

sure, nope, OK, please do, yes, go ahead," etc.). This is a complex, expressive, and

not very limiting set of responses. However, the output of the speech system which

the agent gets is a simple "yes" or "no." This allows the Room to support complex

input speech grammars with having to support a corresponding complex set of gram-

mars for processing what the speech system outputs. That is, the agents do not have

to worry about synonyms or equivalence classes. At the same time, humans do not

have to worry about memorizing a limited set of commands. This support for natural

interactions is what makes the Room such a novel user interface.

2.3 Enabling Technologies

Before we describe our specific implementation technologies, it is useful to abstractly

describe what exactly software agents and information retrieval systems are to us.

This will provide some basis for evaluating SodaBot and Haystack. It also builds

some background for looking at the other systems described in Section 2.4

2.3.1 Agents

Software agents are a recent class of computer programs which have been given many

definitions. Qualities ascribed to software agents by Etzioni and Weld[11] include be-

ing "autonomous, goal-oriented, collaborative, flexible, self-starting, communicative,

adaptive, mobile, temporally continuous, and having character." This grab-bag of

features describes both a very generic tool as well as a very powerful one. Indeed,

Stein[43] goes as far as to suggest that there isn't a viable definition of agency at all,

that it is simply our individual perceptions of what a program is doing for us which

make it an agent. Agents are what we make of them.

For us, software agents are an important part of a solution to our problems of

information management. They can act as an intermediary, or buffer, between our-

selves and the information we desire. Moreover, they provide the means by which

our computers can take a more active role in serving our information needs. It will



be software agents that take care of sorting through all the data returned by simple

queries, which automatically catalog our personal stores of information, which keep

track of what we do with our computers, and which initiate contact with agents be-

longing to other people, or entities, in search of the answers to our questions. The

act of "initiating" searches or other activities on our behalf is what makes software

agents such a compelling technology for us. Software agents really are many things

for us. They are intelligent middleware - providing the glue which interconnects the

various components of our system. Yet they are an active glue, able to take actions

on our behalf, such as initiating searches. Software agents let us build light-weight

abstract wrappers around complex systems which in turn allows us to create higher

level applications.

2.3.2 Information Retrieval

One way of looking at agents is to say that agents are empowered by information.

They analyze, transport, filter, display, and create information. So the question is,

how can they best make use of this data? Specifically, what should be their interface to

information? By this we mean, how should agents best internally store and represent

the large quantities of information we want them to handle. For this, we turn to

Information Retrieval (IR) systems.

Traditional IR systems essentially analyze data (usually some kind of document,

for example an e-mail message) and place it in some internal index. They then

provide an interface for querying their indices and returning what they decide are the

most "relevant" documents. A basic IR system, for example, would simply return all

documents which contained any word in a given query3 . More advanced systems make

use of word frequencies, semantic structure, or complex query specification languages.

Essentially, IR systems provide a means for accessing large stores of information

through the use of simple, often unstructured, queries. This is important because

it replaces the need for agents to maintain structured representations for all their

3 In the extreme this could be a simple shell script which used UNIX's grep -v on a set of files.



data. By using an IR system to both store and index data, agents gain access to a

tremendous knowledgebase of information with a very simple query interface.

We feel that a crucial component of any IR system should be programmatic access

to the system. We will only begin to see fundamental improvements in information

management applications when we allow other programs to query, parse the results,

and generally make use of multiple IR systems for us. By replacing the traditional

human interface with an API, we enable a whole new level of information retrieval.

So, for us, information retrieval systems are black boxes - the datastore for our

documents. By all means, they are certainly a powerful abstraction. But, we make no

attempt to explore or improve their internal design. We refer the reader to Salton's[39]

excellent overview of this area for a detailed explanation of IR. Thus, the choice of

which IR system to use as our underlying engine is not terrible important, and given

our choice of Haystack, actually not our choice to make. For, while Haystack is

nominally the IR system in our design, it is itself really just an application built

around its own pure IR engine.

2.4 Related Work

There are many earlier works which address portions of the personal information

overload problem. They too typically make use of an IR engine to enhance higher

level applications. Many of these systems are what are called Information Filters -

they are designed to act as a firewall between their users and a stream of incom-

ing information such as email or the Web. Very few have dealt with the issues of

building an integrated personalized information management system. However, given

the multi-faceted nature of our work, these systems are fertile ground for inspiration

and comparison. We divide the works into four categories. These are pure filtering

applications, collaborative filtering, active agents, and personal IR systems.



2.4.1 News, Email, and Web Filters

One of the great inspirations for information filtering is Usenet Net News, the Inter-

net's version of a bulletin board. News filtering applications have attempted to deal

with the fact that with over 30 million Internet users, news groups are overwhelmed

with postings. Yet, for given user only a very small percentage of these articles are

interesting and relevant. These applications typically develop an internal profile of

their user and then try rank news articles according to this profile. The profile is

generally used as an input to a IR engine which contains the set of news articles.

Thus, each person can use their filtering tool to generate an individual view of the

same data. For example, when reading rec.pets, one person might only be interested

in articles about dogs, while another only those about cats. Many of these systems

have been modified to support Web and email filtering as well. Email filtering is

notable because mail tends to arrive sporadically, and thus individual messages must

be evaluated on their own, not necessarily against a larger set. This information

filtering is slightly different from the information retrieval we are interested in. While

our work does not attempt to provide filtering capabilities, the architecture we deploy

both supports and compliments filtering.

The Stanford Information Filtering Tool (SIFT)[50] is an representative example

of the simplest implementations of a news filter. It uses a series of weighted keywords

provided by the user as a profile. These keywords are then given to a customized

IR system which uses a vector space model to find matching news articles which are

"close" in vector space. Users can provide relevance feedback, which the system uses

to improve the users' profiles. In SIFT, users can simply say they "liked" an article;

there is no opportunity for negative feedback.

Relevance feedback is an area of research in and of itself. Essentially, queries

can be improved by making use of keywords from good documents and removing the

keywords from bad ones. Thus, a system such as NewsWeeder[26] has users rate each

article they read using a scale of 1 to 5 (They point out the importance of making

the rating process as simple and unintrusive as possible for the user.) This type of



feedback can greatly improve a search, even with just a single iteration[39].

Our framework enables a slightly different sort of feedback. We are able to make

use of passive observations to determine how useful a document is to the user. While

this may not help an individual search, the goal is to build up information of time

about which documents best answer which queries.

Browse[21] is an X windows based system which uses a neural-net to model its

users. It uses a binary rating system by asking users to either accept or reject articles.

This is not too different from SIFT. However, Browse also supports ad hoc queries

of news and attempts to use its model to help answer the question. This is a step in

the right direction. It is one of the few examples of a tool which uses a model of its

user when answering queries. It is also a direction which we hope our own system will

take. In some sense we already do this by modeling users through their documents.

Letizia[28], WebWatcher[2], and Syskill & Webert[35] all take a personalized ap-

proach to managing the wealth of information on the Web. While Web search engines

have provided a valuable tool for finding sites in general, there is often a lack of lo-

cal searching which makes navigating some Web sites difficult. These systems "look

ahead" of the user and attempt to determine which links on a given page are most

likely to be interesting to the user. The first two work by observing the types of pages

the user goes to and learning a profile of the user. Syskill & Webert has the user first

rank a series of web pages. It then builds a model based on the content of the ranked

pages. Our system is poised to easily support the functionality provided by these

tools. We already have access to the Web pages a user browses, and in fact, we keep

them in an information retrieval system. So, an crude implementation of this type

of tool would be to take the text of each link on a given page and see if the user has

a large number of matching documents in their personal information repository. We

could then highlight those links which seemed interesting by this criteria.

2.4.2 Collaborative Filtering

While developing a profile of an individual user's interests can be a powerful step in

improving their information management, it is often not enough. However, by looking



at the opinions of multiple users, we can provide a more detailed analysis of a given

document. The combination of opinions with textual analysis provides a much better

feel for a document's relative worth. If we know that we are interested in "robotics,"

that knowledge enables us not only to pick out documents about robotics, but to

select good documents about robotics. This is an area we are eager to explore. As we

build networked personal information management systems, it will be possible to use

this collaborative network to enhance the information retrieval process.

The Tapestry[44] project at Xerox PARC is an excellent implementation of this

idea. The Tapestry project focuses on annotating and filtering electronic mail and

recent articles on net-news bulletin boards for a fairly small community of users.

Several Usenet news reading tools[29] were modified to let readers vote on articles

they like and dislike, as well as to annotate these documents with their comments.

The votes are collected, tallied, and distributed using the basic Usenet transport

mechanisms (nntp), and readers can view articles based on their total number of

votes and who voted for them. This allows for some innovative filtering called Virtual

News Groups. A user can essentially choose to see a group as moderated by another

user. Another observation is that documents can become more interesting over time

(i.e. as they gets better reviews). One problem, however, is the system's use of a

rather complex query language, TQL, the Tapestry Query Language. The language

allows users to specify filtering rules which are applied to the set of messages. One

novel idea they describe is to first use binary acceptors to quickly filter articles and

then rate the articles with appraisers. The GroupLens[36] project has similar goals

but is built on a very open framework.

The Agents group of the MIT Media Lab has developed a number of collabora-

tive filtering applications. Maxim[27] is a learning collaborative email reader. It is

noteworthy for being exceptionally easy to use and thus much more geared toward

beginners than Tapestry. FireFly[41] is a collaborative system for recommending

new music selections. It uses a nearest neighbor approach to find other users in the

system with similar likes. The underlying engine has been adapted for the Web in

the form of WebDoggie[32]. An even more general approach is taken in Yenta[12]



which attempts to play the role of match-maker. Yenta attempts to dynamically cre-

ate interest groups by introducing people with similar interests who have never met.

Yenta requires users to explicitly list their interests. We have a similar idea for using

our networked personal information systems to create an expert finder. We envision

searching our neighbors personal information systems to find the ones with the most

relevant set of documents. Kautz et al.[24] have created a such system to automate

the process of finding an expert in a given field. They use "referral-chains" of people

with similar expertise to locate the nearest expert to a searcher. Like our own idea,

they use a set of personal documents to determine an individual's interests.

2.4.3 Agents

There are a growing number of information agents being deployed. This includes

systems on the Web, personal information agents, and "expert" systems for searching

specific knowledge bases. The tendency seems to build an agent which can make use

of several resources (often Web based) and tie them together in useful and easy to use

ways. The University of Washington's collection of Softbots[10] are an example of this

approach. They have build up systems for locating users, shopping assistance, travel

reservations, and searching the web itself. These are exactly the types of applications

which agents are excel at. They make use of a variety of computational resources to

either solve high level problems or solve problems more efficiently.

The University of Chicago's FaqFinder[15] is a system for searching the set of

FAQs (Frequently Asked Questions) associated with many Usenet news groups. These

documents typically are a list of questions and their answers. For a given news group,

they can be very informative. FaqFinder takes a natural language query and uses

the SMART[38] IR system to find relevant FAQs. It then parses the query further

and attempts to find a matching question/answer pair. The START[23] natural

language information retrieval system provides similar functionality for its own limited

knowledgebase about Bosnia. Unfortunately, both systems are quite limited in their

knowledge and tend to have poor failure modes for dealing with queries they have no

answer for. Thus, they are only really useful when you already suspect they have the



answer to your question.

Sheth[42] describes Newt, a news reader which makes use of genetic algorithms

to develop multiple user profiles. These profiles then compete to yield the best set

of keywords to search the news corpus. This work is notable because it describes a

generic framework for using genetic algorithms to deploy information agents. The

information agents then compete to provide their owner with the best information,

regardless of the source. Amalthaea[34] is an attempt to bring a large number of these

information agents together. The goal is to collectively meet a user's information

needs instead of building a large, complex, information system.

2.4.4 Personal Information Retrieval Systems

The Remembrance Agent[37] is the project with the most similar goals to our own

- augmenting human memory. The system attempts to monitor every document its

owner uses and add it to an information retrieval system. By watching windows of

the user's last few keystrokes in the emacs text editor, the system attempts to find

documents in its repository which best match the current context and suggests these

to the users in a side buffer. Its constant stream of suggestions is unique in the field of

personal information retrieval. However its current implementation has limited means

for automatically adding documents to the repository. Furthermore, it is limited to

textual documents saved in the user's file system. It also lacks the networking and

annotating capabilities of our system.

Overall, there are relatively few systems for personal information management.

AltaVista [17] has introduced a personal version of its popular Web search engine.

The program is designed to index a user's hard disk and then provide text based

querying. Glimpse[30] is designed to provide keyword searches of a user's file-system.

It is essentially a more powerful version of UNIX's grep, which itself has been used as a

crude tool for searching personal files for certain words. In fact, even operating system

vendor Microsoft now supports a function for finding all files which contain a given

text string. However, none of these tools provide the ability to annotate documents,

either actively or passively. Furthermore, none of these tools are designed to work in



a collaborative networked environment. Finally, they are not very well integrated into

a user's desktop, watching everything, including documents such as transient email

or Web pages in a browser, which do not get saved to disk.

Of course, we must mention the Haystack project itself. As we describe in Sec-

tion 3.2, its goals are very much in line with and are the inspiration for many of our

own.



Chapter 3

The Enabling Technologies

Our goal is an autonoumous ubiquitous networked personal information managment

system. By providing software agents with an interface to an information retrieval

system, we can leverage the active nature of the agents to provide an intelligent

interface between humans and information. Moreover, by allowing software agents

to easily maintain large stores of data in an IR system, we can simplify the creation

(and growth) of new types of databases. We rely on our agent system to provide

connectivity and logical control and on our IR system to provide a manageable and

annotatable data store. Specifically, we have chosen the SodaBot software agent

environment and the Haystack information retrieval system.

Before we begin a detailed look at these two systems, it is important to note

that this work makes a claim beyond and our central point is independant of their

particulars. It is true that our selection of SodaBot and Haystack is based on the lab in

which this work was conducted. The techniques of combining agents with information

retrieval are certainly generalizable. What we mean is that agents provide us with a

tool which enable a more proactive use of information retrieval technologies. Currently

most information retrieval applications involve users explictly requesting information.

We see agents as autonomously requesting information for us, as the Rememberance

Agent does. As far as our use of Sodabot and Haystack is concerned, we shall see

that the SodaBot interface to Haystack is a well defined application program interface

(API) - one which many other IR systems could be modified to provide. Given our



black-box view of IR systems this is not too surprising. We must note, though, that

Haystack's support for document annotation is not a common feature of most IR

systems.

Is SodaBot necessary? Well, it is certainly required for our interactions with

the Intelligent Room's existing infrastructure of agents. However, there are several

other agent systems which provide similar levels of network accessibility and easy user

interaction. AgentTCL[14], and to some extent TeleScript[48], could be used to build

a similar infrastructure. Given the functionality gained by building our application

in the context of Intelligent Room, SodaBot is the logical choice.

3.1 SodaBot

SodaBot[6] is a software agent environment developed at the MIT Artificial Intelli-

gence Lab. It is designed to simplify the specification of agent interactions. SodaBot

consists of both an agent programming language, SodaBotL, and a runtime environ-

ment to support these agents. One of SodaBot's major strengths is the ease with

which it can programmatically make use of new resources made available to it 1. For

example, SodaBot provides an expect mechanism which allows SodaBot agents to in-

teract in a scripted manner with any application which provides a textual interface.

In developing SodaBot based applications, one often provides access to a given service

- a software device, such as a web browser, or something more physical which has

a software interface, such as a VCR - by encapsulating the service within an agent.

Other agents in the system can then make use of the service without knowing the

specific details of its direct interface. They can simply use a well defined and abstract

set of functions provided by an agent. In a sense, SodaBot allows quick and simple

deployment of network services for applications which themselves are not inherently

networked based. SodaBot abstracts away the distributed networked nature of these

services and allows agents to concentrate on the content of their actions, not the exe-

1 By programmatically we mean that agents are able to make use of other software and hardware
devices without having to use traditional user interfaces such as a GUI.



cution. Thus only the VCR agent need know the complex set of serial-line instructions

for controlling a VCR; other agents can simply use the vcr. play command.

SodaBot consists of two distinct components. The agent programming language,

SodaBotL, is used to code agents. Its syntax is similar to Perl[47], but SodaBotL

has several additions which make it suitable for agent programming. These additions

consist of language primatives which make it simple to specify agent interactions

without having worry about the details of the execution. It is comparable to having a

built in set of routines for fault tolerant network access and RPC[3]. In some respects

SodaBotL is similar to an object oriented language, except that instead of objects, it

has agents. We mean this in the simplest possible interpretation: Agents make use

of other agents, and there is no code which is not part of an agent. Simple procedure

calls are of the form AgentName.FunctionName(Arguments). A typical procedure call

might look like:

VCR.Play('The Cog Clip');

In this case we are calling the Play request2 of the VCR agent with the string 'The

Cog Clip' as the one argument.

The Agent Platform

The second part of the SodaBot system is its runtime environment, the Agent Plat-

form (AP)3 . The AP is essentially the operating system for SodaBot agents. Every

agent runs on an AP, with multiple agents allowed to run on the same AP. If an

agent wants to run on a specific machine, there must first be an AP running there.

Each AP has a name, which defaults to the machine name it is running on. When an

AP starts, it registers with a site server, a special agent which provides agents with

name resolution. These names, which look like Internet email addresses, are of the

form apmname(domainname. So, an AP running on a machine named lovebug in the

2 A request is analogous to a C++ method, a procedure which other agents can call. We use the
term request synonymously with procedure, function, routine, and method.

3 In the original implementation of SodaBot[6], these were known as Basic Software Agents, or
BSAs.



AI Lab is canonically known as lovebug~ai.mit.edu. Agents can specify which AP

they want other agents to run on when making procedure calls. So, the same call to

the VCR agent could look slightly different if the agents were running on different

APs:

VCR.Play('The Cog Clip') [lovebugoai.mit.edu];

Here, we are using the same agent, request, and argument as above. But in this case,

by appending [lovebugfai.mit .edu] to the call, the request will execute on the

lovebug@ai.mit.edu AP. Thus, each agent is uniquely identified by its name and

the name of the AP it is running on. In the above call, the agent is named VCR and

the AP is lovebugoai.mit. edu.

However, SodaBot also allows agents to register aliases for their APs. For instance,

the VCR agent can register an alias of vcr~hciroom for its AP. This makes its actual

location transparent to other machines, since they now use the alias in their procedure

calls:

VCR.Play('The Cog Clip') [vcrQhci-room];

As we shall see, this will prove useful for representing different users. The important

point about the AP and its naming scheme is that it can remove individual machine

dependancies on where agents are running.

3.1.1 SodaBot in the Intelligent Room

SodaBot is currently used as the primary control system for The Intelligent Room. It

provides the computational glue which seamlessly integrates the various components of

the Room by providing both information and control pathways between agents. Each

system in the room is represented by an agent. For example, there is a Netscape agent

for controlling the Netscape web browser and there is a VCR agent for controlling

the Room's two VCRs. There are roughly 20 agents distributed over 10 different

workstations with no centralized thread of control. We call this base level control

system the ScatterBrain[5].



The ScatterBrain represents what are essentially the Room's reflexes - a set of

basic behaviors that are constantly available. For instance, the LaserPointer agent

is always running. It scans one of the displays for the location of the characteristic

signature of a hand-held laser pointer and updates the mouse pointer on the display

to correspond to that location. The agent also recognizes click events and passes them

on to the display. This system, once started, is completely autonomous from the rest

of the agents running in the Room. The design of the Room's architecture calls for

higher level, more complex, applications (such as an information retrieval agent) to

be built on top of the base "reflex" layer. These layers of many agents interacting

in interesting ways was largely influence by Brooks' subsumption architecture[4] and

Minsky's Society of Mind[33]. Coen[5] calls this 2nd tier "intermediate information-

level applications."

An example of such a higher level system is a system for controlling a slide pre-

sentation. The Slide agent is essentially layered on top of the Netscape agent. It

allows a user to define a series of web pages and provides speech control for sequential

and random access. By layering it on the Netscape agent, the Slide agent can use

several of the Room's default behaviors, such as the LaserPointer agent's ability to

send mouse click events to the browser, or a standard vocabulary for browser control

which the Netscape agent sets up in the SpeechIn agent. Making every component

of the Intelligent Room accessible to the common middleware of SodaBot provides a

solid framework upon which to build new high level applications. The ScatterBrain

provides the ability to easily build these high level and more complex applications in

a multi-modal interactive environment. It is also a natural level at which to integrate

our personal IM system into the Room.

3.2 Haystack: Per-User Information Retrieval

The Haystack[22] information retrieval system is an project of the MIT Laboratory

for Computer Science. Its goal, much like our own, is to be a "living" personal

information retrieval system deployed on a community wide basis. Indeed, much of



this work can be viewed as an experimental implementation of many of their goals.

Haystack is more than an information retrieval system however. In fact, it is designed

to be layered on top of more conventional IR systems. The current implementation

is essentially a complex set of wrappers built primarily around the MG[49] textual

IR system. Haystack is trying to provide a usable interface to IR by layering itself

between the complex and difficult IR system and its users. For us, Haystack will

provide the tools for managing our documents. However, Haystack also in many

ways provides us with our inspriration. Thus, it is important to describe all of the

project's goals before describing their current progress towards these goals.

3.2.1 A Bookshelf

Like the mythical information managment system of Section 1.2, Haystack very much

wants to be a bookshelf for its users. To this end, the project has worked on a

number of interfaces for getting all of a user's documents into their Haystack. They

have created a simple Web based interface to Haystack which allows a user to browse

their file system and select documents to add to their Haystack. This same interface

supports a simple query syntax for searching Haystack. Preliminary work had been

done to create some application specific archiving agents. For example, the emacs

RMAIL mode has been modified to let users archive their mail as they read it. There

is also a directory walker program which, much like a web spider, goes through users'

home directories and archives their documents. However, the goal remains the same -

archive whatever the users consume, be it news, email, papers, arbitrary documents,

web pages, or scanned in documents.

3.2.2 Content Aware

One important attribute of Haystack is that it is a content aware system. Haystack

attempts to determine the "type" of each document as it places it in the archive.

This is a very powerful feature. For instance, it would normally be useless to archive

a postscript document in a text based IR system, since the raw text of the file is



completely illegible. Haystack solves this problem through the use of textifiers - pro-

grams which extract the text from non-textual documents such as postscript, HTML,

or even by performing OCR on scanned documents. This allows Haystack to index

documents which other IR systems simply cannot. Once Haystack has determined

the type of a document, it can make use of that knowledge to perform additional in-

formation extraction. Through the use of content-type specific field-finders, Haystack

can extract meta-data about the document. For example, when archiving an HTML

document, Haystack can search the <HEAD> tag for information such as the docu-

ment's author, creation date, or title. Furthermore, the system is extensible, allowing

the easy addition of new content types as necessary.

3.2.3 Annotatable

Haystack not only provides the standard query and archiving mechanisms common

to most IR systems, but it also contains a facility for annotating documents. These

annotations come in the form of searchable user defined description fields for each

document. This feature, for us, is perhaps its greatest strength. Users (or their agents)

can associate each document with a set of arbitrary field name/value pairs. Haystack

allows users to annotate their documents much as they would scribble notes in the

margin of their physical texts. For example, a document might have an annotation

called "UserRating" with a field value of "8 out of 10."

Documents can be annotated with much more than symbolic information about

their content. Imagine attaching usage histories to every document, when was it

read, how long was spent reading it, who it has been forwarded to, or who else has

read it. This type of meta-data enhances both the ability to specify queries as well

as the organize their results. Haystack currently automatically generates a limited

set of annotations for each document, including guesses about author and title for

certain types of messages. This is the feature of Haystack which makes it not only our

inspiration, but also our implementation technology. There are few IR systems which

support annotation. One of the main contributions of our architecture is the ability

to easily automatically generate different types of annotations about a document's



usage. Haystack provides us with a logical location to store these annotations.

3.2.4 User Profiling

One of the goals of the Haystack project is to enhance a given user's IR experience

by using their query history as a guide for future queries. So if a given user typically

makes queries about "software agents," further queries about "agents" won't rank

documents about "travel agents" as highly as those about "intelligent agents." This

can be used both for query construction as well as post query analysis (i.e. in what

order to list the returned documents). This goal is inspired by the fact that many

IR interactions are currently a very iterative process. A user makes an initial query,

and then they keep refining it, by specifying more query terms or relations between

them, until they find a satisfactory document. Often these refinements are simply a

process of providing the IR system with additional context about the user which it

could have retained from previous interactions. A goal of the Haystack project is to

learn these addition contexts about a user and use them to aid future queries.

3.2.5 Multi-User

One of the primary goals of the Haystack system is to support multiple users and

cross-user queries. Allowing users to search each other's Haystacks creates an entirely

new type of information retrieval. They feel that this is an excellent area to apply

learning techniques. For example, a user's Haystack could learn which other users

typically provide good answers for certain types of queries. This can be extended

to create an "expert finder" - by finding other users with Haystacks which contain

many documents on a single topic. The argument has been made that searching other

people's Haystacks is no better than effectively searching the entire Web[20]. We

argue that Haystacks should typically contain documents which cannot be found on

the Web or which cannot be indexed by conventional Web search tools. For example

portions of email, scanned documents, annotated video segments, and simply personal

documents which a user has not taken the time to explicitly make Web accessible will



turn up in users' Haystacks. Moreover, as users annotate their documents, these

types of searches yield a richer, and likely more relevant, result set. This is a set of

information which currently just does not exist in any searchable format.

3.2.6 Haystack: The Current Reality

Unfortunately, many of the higher level goals of the Haystack project have not been

implemented yet. To date, the project has built a subsystem for performing infor-

mation retrieval on a variety of underlying information retrieval engines. While the

primary underlying engine has been MG, experimental versions have supported using

both the Savant IR system from the MIT Media Lab as well as grep. The current

implementation provides basic indexing, querying, and some automatic annotation

functionality with a fairly primitive web based interface. This base level of func-

tionality is necessary before Haystack can tackle some of its more ambitious goals

such as user profiling or multi-user support. Indeed, much of the work in this thesis

can be conceived as a test, or even a validation, of some of these higher level goals.

However, even the base level existing Haystack system provides us with a viable tool

for enhanced information retrieval. What was missing, however, was a programatic

means of using the system that our software agents could interface with. This need

led to the development of the Haystack API.



Chapter 4

Putting Agents and IR Together

In order to achieve our goal of a personal information management system, we need

to develop a number of subsystems. These subsystems will link up our enabling

technologies, SodaBot and Haystack, in the context of the Intelligent Room. We begin

by describing the Haystack API, a clean and stable interface to Haystack designed to

be used by SodaBot. We then present a series of low level support SodaBot agents

which our personal IM system will make use of. These are agents for using Haystack,

manipulating documents, and handling times. This leads to the User agent - the heart

of our personal IM tool. We will describe the implementation details of the User agent

and give some examples of how humans and other agents make use of it. The highlight

of these interactions is the ability to perform spoken language information retrieval.

We further show how to extend this core set of agents to provide the Intelligent Room

with a multi-media datastore.

4.1 The Haystack Application Program Interface

Before we can write SodaBot agents which use Haystack, we need a well defined inter-

face for using Haystack. The existing Haystack system provides a series of command

line functions for accessing its functionality. These are mainly used by Haystack's

Web interface and are geared toward user interaction. For instance, the query func-

tion provides an interactive environment for browsing through the query results. We



simply want a query to yield a list of relevant documents. The interface to the results

should be determined at a higher level. The existing interface consists of a single

shell command, haystack, which provides a number of different functions based on

its first argument. There are three primary functions: server, which starts the Web

interface, archive, which allows command line archiving of specific files or directo-

ries, and query. To create a more programmatic (agent friendly) version of Haystack,

we created an analogous shell command haystack.api. The haystack-api command

implements the set of commands described in Table 4.1.

These commands are all very similar to their cousins under the haystack shell

command. However a key difference is the notion of a document ID number. Internal

to Haystack, every document is assigned a unique archive number. The haystackapi

program simply exposes these ID numbers to other programs to provide handles to

specific documents. Thus, the document function allows programs to request more

detailed information about specific documents. The annotate operation allows pro-

grams to simply specify which documents they want to annotate. Document IDs are

essentially equivalent to unique document names, and within SodaBot, can be though

of as document pointers. The documents command is an optimization for SodaBot

which is essentially a document information server. It listens on its stdin for a series

of Document IDs and returns detailed information about each of then. SodaBot takes

advantage of this by spawning a separate thread just for interacting with this process.

Thus, to get information about a new Document ID, the agent does not have to start

a new process.

4.2 The Support Agents

Currently, the SodaBot system consists of a set of core basic services such as networked

data connections, an expect mechanism, access to the Web, access to other agents,

etc. These basic services are used to create groups of agents which can interact with

each other. Typically, an agent will provide some specific service or skill that other

agents might want to use. For example, all agents make use of the Server agent, which



Table 4.1: The Haystack Application Program Interface

acts as a name server, mapping agent names to machines. To make Haystack and its

functionality available to other agents, we created a series of new agents. Thus both

the personal "user" agents of Section 4.3 as well as agents in the Intelligent Room in

general could make use of a standard set of Haystack functions.

4.2.1 The Haystack Agent

The Haystack agent is designed as an interface to the Haystack API described in

Section 4.1. It consists of a number of requests corresponding to the functions of

the Haystack API. In general these functions handle calling the proper command,

process the I/O, and convert the results into usable representations. The Haystack

agent contains the following requests:

Haystack.Query(QueryString) Calls the haystack_api query function with

QueryString and returns an array of matching document IDs. A typical invo-

cation might be:

CDocumentList = Haystack.Query('robotics'); 1

1SodaBotL inherits Perl's variable type syntax. 0 begins an array variable name, $ a scalar
variable (one which can hold numbers or strings), and % a hash table variable (a symbolically

Name Arguments Returns

query A query string List of relevant documents.
document A document ID number List of annotations for the document.
documents A series of document List of annotations for the documents.

ID numbers. Interactive
annotate A document ID number, 0 on success, 1 on failure.

Field Name, Field Value
archive A filename, directory The Haystack document ID created

or a Haystack DF file for the document.
lookup A filename, directory The Haystack document ID of the

or a Haystack DF file document if it is in your Haystack.
0 otherwise.

environment none Lists Haystack environment variables.



Haystack.Archive(FileName) Calls the haystack_api archive function on

FileName. FileName can be any file, a URL, or a pointer to a Haystack DF file.

The function returns the new Haystack document ID generated for the file. A

typical invocation might be:

$NewDocumentID = Haystack.Archive( 'http://web.mit.edu/');

Haystack.Annotate(DocumentID, FieldName, FieldValue) Calls the

haystackapi annotate function on the DocumentlD and adds the given an-

notation, setting FieldName to FieldValue in the document's Haystack DF file.

A typical invocation might be:

Haystack.Annotate($NewDocumentID, 'time', Time.Now());

Haystack.Document (DocumentID) Calls haystackapi documents function

with the DocumentlD and returns a hash table of document information. These

hash tables contain annotations, pairs of field names and values. Some example

fields are the document's author, title, location, or SodaBot specific annotations.

A typical invocation might be:

%Document Info = Haystack.Document ($MyDocument);

Haystack.DocumentArray(DocumentArray) This request make use of the

haystackapi documents function to get document information for each of the

DocumentlDs in the array and returns an array of hash tables of document

information. This is typically used to get information about about the set of

documents returned by a query:

ORelevantDocs = Haystack.Query('agent theory');

@DocumentInfo = Haystack.DocumentArray(©RelevantDocs);

indexed array). Thus $foo could be a scalar such as 5 or 'hello'. Obar could be an array such as

[1, 2, 'hello', 'world']. . A hash table such as %baz is represented via an array of pairs, as

in ['name', 'amy', 'age', 20]



This simple set of actions is enough to give other agents access to the core function-

ality of Haystack. The goal is that some of the more powerful uses of Haystack, the

collaboration, intelligent searches and annotation, will come from application agents

developed on top of this interface. However, before we go on to show examples of

other agents which use the Haystack agent, it is useful to discuss some other support

agents we developed.

4.2.2 The Document Agent

In the course of developing the functionality of the Haystack agent, it became clear

that SodaBot needs to have some notion of what exactly a document is in the first

place. Since Haystack documents can take many forms (html, text, postscript, e-mail,

etc.), it important for SodaBot to be able to recognize and handle these forms. Thus,

in addition to the Haystack agent, we also built a Document agent. The purpose of

the Document agent is to provide other agents with abstract means for manipulating

documents. The Document agent provides one public2 request, called Display, for

displaying documents to users. It takes as its argument a document information

hash table. The agent has several content specific private procedures for displaying

documents. Thus, the Display request simply determines the content-type of the

document and then calls the appropriate handler procedure. This is done using a map

of content-types to agent function calls, similar to the mime-types convention which

maps content-types to applications suitable for displaying them. It is a useful feature

of SodaBot that both agent names and their requests can be stored in variables.

Actually, the Document agent would perhaps be better named the Media agent.

There is no reason why we cannot support other content-types such as video or audio.

In fact, the current implementation has handler routines for text, HTML, postscript,

Intelligent Room video clips, and even camera views from the Intelligent Room. The

design is easily extensible to have arbitrary agents handle display requests. Indeed, the

many of the current handler routines already make use of other agents. For example,

2 Public requests, like public methods in C++, are accessible to other agents



Content-Type Handler Other Agents Handler Uses
text/plain Document.TextHandler Netscape
text/html Document.HTMLHandler Netscape
application/postscript Document.PSHandler none
application/vcr Document.VCRHandler VCR
application/camera Document. CameraHandler Mux
application/speech Document. SpeechHandler SpeechOut

Table 4.2: Content-Type Handlers in the Document Agent

the VCRHandler procedure parses the document information table and then forwards

the request to play the video to the VCR agent. Table 4.2 provides a summary of

these handlers.

4.2.3 The Time Agent

For a number of reasons, we wanted to have a better means of manipulating times

than the base SodaBot system provides. Initially, SodaBotL contained one primitive

for handling times, time, which returned the number of seconds since January 1,

1970. This makes it easy to compare two times via subtraction. However, we wanted

access to a more useful interpretation of the current system time in both machine

and human readable formats. To provide this, we added two new primitives to the

SodaBotL language. ctime provides a human readable version of the date such as

"Sun Jun 1 17:47:29 EDT 1997" and localtime provides a machine readable version

by returning an array of [second, minute, hour, day, month, year, weekday,

days into the year, a flag for daylight savings time]. Thus now humans

and agents alike can have an idea about what day of the week or what time of day a

given time represents.

The Time agent provides access to these primitives through wrappers called

CurrentTime and PrettyTime. It also provides a library of requests for compar-

ing times with respect to common time periods. For instance there is a Today re-

quest which will return true if a time occurs in the current day. The agent also



has Yesterday, ThisWeek, and LastWeek requests. Finally, to aid in agent human

discourse, there is a TimeOfDay request which converts times into "morning," "af-

ternoon," "evening," or "night." The User agent makes use of this function when it

greets its owner.

4.3 The User Agent

Now that we have established a group of support agents, we can build our personal

information management agent. The User agent is designed with two purposes in

mind. The first is to give the Intelligent Room a representation of its individual

users. The second is to provide these users with a personal information retrieval

agent. This agent will attempt to capture information about its owner's documents,

including their content and how they are used. It will then allow users to search the

set of documents and information it captures. While the User agent is designed to

integrate well with the Intelligent Room, much of its functionality is independent of

the Room. We shall see that its use of Haystack, Netscape, and Zephyr are in fact

completely separate from the Room.

4.3.1 Maintaining the Haystack

One of the primary responsibilities of the User agent is to maintain its owner's

Haystack. When the User agent starts, it starts local copies of both the Haystack and

Document agents for its use. Its goal is to automatically add new documents to its

owner's Haystack, and, where possible, annotate these documents with information

about their usage. The primary implementation of this has been through the use of

the Netscape agent we originally developed for the Intelligent Room.

When the User agent starts, it starts a Netscape agent. The Netscape agent

provides full agent control over the user's Netscape Web browser. This includes the

ability to load documents into the browser and to detect where the browser goes. To

be notified about any new pages the user loads, the User agent sets up a callback

routine with the Netscape agent. This routine is called whenever the Netscape agent



detects the user loading new pages3 . This is done quite simply:

Netscape. URLWatchReg(User. NewUrl, "$UserNameOai .mit. edu");

This calls the Netscape agent's URLWatchReg request and tells it to call the User

agent's NewUrl request whenever the Netscape agent sees a new page. As discussed

below, $UserNameai.mit. edu is the name of the AP the User agent is running on.

This is just a small step in our quest to provide our agents with more information

about what we are doing. However, from even this small bit of information, we can

build useful applications which previously did not exist.

Figure 4-1 shows the User agent's NewUrl request, which gets called by the

Netscape agent. It is actually quite simple. Its purpose is to automatically add

each Web page it gets told about to the user's Haystack. It also timestamps each

entry by adding an annotation, called sodabottime, to the document once it is in

Haystack. The important thing to note is that this all happens transparently to the

actual user. They can surf the web without noticing that their User agent is watching

over their shoulder4 .

4.3.2 Searching the Haystack

The simple act of archiving every Web page a user goes to creates an excellent data set

for querying. It is actually quite a useful data set to be able to search. Web sites are

often browsed very causally, and due to the hypertext nature of the Web, users often

are quite unaware of the URL of the site they are looking at. But they most certainly

are aware of the topic of the site. Why not let them search their Web browsing

history based on content? This is the function of the User. InfoTime request. It

is called with two arguments, a query string called the InfoTopic and an optional

3 This is accomplished through the use of a proxy Web server. The Netscape agent has a thread
which starts this server. The server is a customized version of SFProxy[13], a proxy server written
in Perl. The server outputs information about the pages that browsers request from it. This consists
of the URL being loaded as well as the title of the page and, in one implementation, details about
all the links on each page.

4This of course raises some privacy issues, which we will discuss in more detail in Section 5.4.
For now, caveat browser.



# Callback for handling when user goes to a new web page.
Public NewUrl($URL) {

print "Went to $URL";

$Now = Time.CurrentTime();

$NewDocID = Haystack.Archive($URL);
print " - archived as $NewDocID";

if ($NewDocID) {
Haystack.Annotate($NewDocID, "sodabottime", $Now);

Figure 4-1: The User.NewUrl Request

time predicate called the TimePeriod. When the User. InfoTime request is called,

it first passes the InfoTopic to the user's Haystack agent in the form of a query.

The Haystack. DocumentArray request then builds up document information hash

tables for each document the query returned. If there is a TimePeriod specified, the

sodabottime annotation is used to see which documents satisfy the time predicate.

Once the agent has finalized a list of "good" documents, it then build up a Web page

of choices. This page lists each document's title and any other relevant information

Haystack and the Haystack agent can gleam from the file. Users can then follow the

HTML link to any documents they are interested in seeing. For instance, the Haystack

agent tries to run a simple algorithm for determining the title and author of postscript

papers. Figure 4-2 shows the results of a query looking for all the documents about

"java" the user saw "yesterday."

Due to the novel nature of the interface, we will defer describing the specific means

for initiating searches until Section 4.4. An important point though, is that searches

are currently entirely user initiated. That is, users have to make all information

requests themselves. However, as the Room and its agents, particularly the User

agent, are able to gain a better understanding of the current goals of its occupants,

this will hopefully change. What we want is to have the system place a user's actions



Figure 4-2: Results of Query About Java Documents Seen Yesterday.

in a specific context. Then, in an unobtrusive manner - similar to the Remembrance

Agent - the Room should provide a list of suggested documents which best help the

occupants meet their goals, given the current context. This will be the subject of

future work, as the problem of determining a person's goals is still under study. In

the Room, there are many more cues about occupants' goals than their keystrokes.

In fact, often there are no keystrokes at all.



4.3.3 User Agent Naming

In Section 3.1 we describe the naming syntax for SodaBot Agent Platforms (APs).

Every agent has a unique name and AP pair. By making use of AP name aliasing,

it is straightforward to setup systems of agents which have no hard coded machine

dependencies in them. We have extended this notion to the User agent as well. When

a User agent starts, it registers an alias of username~domainname for its AP. This

should typically correspond exactly to the user's email address. Thus, if another agent

would like to query Michael's Haystack for information about robotics, it would make

the following call:

WDocumentList = User. Query('robotics') [mhcoentai.mit. edu];

This provides a nice mapping from a person's email addresses to their agents. It

follows the original design specification of SodaBot that each user would run their

own AP.

One important side effect of the use of agents to search Haystacks is the property

that the query is sent to the data. That is, when an agent makes a query request of

a specific User agent, the User agent can be running on the machine of its choice.

Presumably, this should be a machine where the user's Haystack data files are kept

locally. This has the effect of reducing network bandwidth, since only the query and

it's corresponding result set need traverse the network. However, it does have the

effect of concentrating the search load on one machine. It would be relatively simple

to create a load balancing set of search agents using SodaBot. The key is that it is

important to have this tradeoff available when designing a large scale system. We

realized a marked improvement in Haystack's performance by storing our data files

on a disk local to the agent instead of the AI Lab's NFS file server.

4.3.4 Summarizing the User Agent

Even with a simple Web based interface for entering queries, we have described an

interesting system so far. The automated archiving of Web pages into Haystack with

annotations about their usage has provided us with a unique data-set about our



Web browsing history. Already we can find Web pages via our remembered ideas

of their content. True, the querying interface is not very exciting. But we can now

build upon the framework of the User agent combined with the Intelligent Room to

improve this. Additionally, we will be able to make use of User agents to open the

door for networked collaboration of personal information.

4.4 A Grammar for Speech Based IR

The current interface for a user to search their Haystack involves using the Intelligent

Room as an input/output device. This was more than an exercise in building another

application in the room. We found this type of interaction to be very rewarding as

compared to the standard HTML forms based interface Haystack provides. Users can

initiate their queries via a spoken language interface. The results are returned as a

combination of a verbal summary as well as the textual descriptions in a Netscape

window as presented above. This multi-modal combination of speech with the display

of information sets up a dialog between the user and the Room. The use of the

displayed list of information allows a common reference point for both the user and

the Room. Thus, users no longer have to click on a document to see it, they can

verbally request that the Room show it to them.

To do this, we developed a simple grammar in the Room's speech recognition

system for information retrieval. Due to the restricted nature of the current speech

recognition system, we limited the topic set to five predefined categories. However,

we anticipate using an unconstrained recognizer as soon as a suitable one can be

properly integrated in the Room. While this will not require changing any of our

existing work, it will very much improve our information retrieval interactions. After

all, information retrieval should not be limited a priori in its scope, especially if there

are no limitations on the document set. By limiting the set of search topics we are

really removing much of the power delivered by an IR system.

The speech grammar for requesting information consists of two production rules

and several word classes. They are detailed in Table 4.3 and Table 4.4. Again, we



<InfoRequest> <InfoTopic>
<InfoRequest> <InfoTopic> I saw <TimePeriod>

Table 4.3: Speech Recognition Rules for Information Retrieval

Class Members

<InfoRequest> I need information about
Show me information about
Show me the document about
Show me the page about I
What information do I have about

<InfoTopic> robotics I agents I isreal I stocks I java
<TimePeriod> today I yesterday I this week I last week

Table 4.4: Speech Recognition Classes for Information Retrieval

use callbacks to register interest. The User agent notifies the SpeechIn and provides

a callback procedure, User. InfoTime, which we described in detail in Section 4.3.2.

When the speech recognition system recognizes a sentence from this subset of its

grammar, it sends calls the request with the "important" text of the statement. In

this case, by important we mean the <InfoTopic> word and the <TimePeriod> if

there is one. The nice thing about this is that while the speech recognition can

support large grammar for rich interactions (i.e. multiple ways of asking for the same

thing), in the end, the agents only want to know about what information topic the

user is interested in, not how they asked for it. Thus for two typical spoken requests:

1. User: Computer, I need information about robotics.

2. User: Computer, show me the page about agents I saw yesterday.

The speech system sends the following to the User agent:

1. <InfoTopic>: robotics:

2. <InfoTopic>: agent: <TimePeriod>:yesterday:



Thus, the request for documents about "java" seen "yesterday" described in Sec-

tion 4.3.2 would now be something like:

Lynn: Computer, show me the page Java I saw yesterday?

Room: Please wait while I search your Haystack.

Pause. Then Figure 4-2 appears.

Room:Your Haystack contains 11 documents about java in this time

range. Please choose one.

Questioner: Computer, show me the third one.

By implementing our personal information management system in the Intelligent

Room, we have been able to provide it with a powerful spoken language interface.

We have also set the stage for more interesting verbal interactions with the Room.

We imagine providing tools for dictating annotations about the documents we get

back from a search or providing verbal feedback about the search. For example, users

could tell the Room that they "like this document because it's also about compilers."

In a simpler example, a user might just be mumbling "this is interesting" about a

document. The key is that the Room's architecture allows us to create high level

systems which combine its many modes of interaction.

4.5 The RoomInfo Agent

The RoomInfo agent is to the overall Intelligent Room what the User agent is to indi-

vidual users. The goal of the RoomInfo agent is to use Haystack to answer questions

about the Intelligent Room itself. For instance, a visitor to the Room might want to

ask "How does the tracking system work?" The Room should be able to answer a

question like this in several ways - by describing the system verbally, by showing a

Web page or paper about the tracker, or even by playing a video segment. Haystack,

with its multimedia support, is the perfect repository for such information.

The actual SodaBotL code for RoomInfo agent is in fact very similar to the User

agent. We added a similar grammar for querying the agent via the speech recognition



system. It essentially consists of different ways to ask about five of the Room's

subsystems: pointing, tracking, its agents, speech recognition, and the Room as a

whole. For each topic, we manually found relevant documents and/or media which

best explained the topic. These were entered into the Room's Haystack. We further

annotated each of these documents with a field called sodabotabouttheroom and

set its value to true. At the same time, we set up the Room's Netscape agent to

automatically archive the web pages displayed on the Room's primary display. This

provided the Room's Haystack with an unconstrained source of documents. The

Haystack contained not only Web pages, but also postscript papers about the Room,

information about video segments about the Room, and even descriptions of various

camera views around the Room.

People in the Room can ask it about its systems verbally. The RoomInfo agent

is notified about the topic and queries its Haystack for documents about this topic.

It then sorts the results into two sets, those documents specifically about the Intelli-

gent Room (i.e. those that are annotated with sodabotabouttheroom = true), and

documents which are about the topic in general. The Room then displays both lists

in the primary Netscape display, as in Figure 4-3. The questioner can now choose to

see any of the returned documents. A sample interaction might be:

Questioner: Computer, how does the tracking system work?

Room: Please wait while I search my Haystack.

Pause. Then Figure 4-3 appears.

Room: I have 5 documents about the tracking system. Please pick one.

Questioner: Computer, show me the second one.

When the questioner requests that a particular document be displayed, the Room-

Info agent uses the Document agent's Display request display the actual document.

For the types of documents in the Room's Haystack, this can involve a number of

actions. For instance, if the questioner wants to see a document which is a video

segment about the tracking system, a number of things occur. First the Room says



Figure 4-3: List of Documents About the Tracking System.

"Please wait while I fetch the segment." Then, while the VCR is cued to the proper

location, the displays are adjusted so that the VCR is now displayed on the primary

display, and the Netscape browser is moved to a secondary display. Finally, the video

segment is played, for the tracking system this is a 30 second segment from the middle

of a tape about the Room. The important thing to note about all of this is that the

RoomInfo agent did not to know how to do any of this. It simply had a document

it wanted to display. In fact even the Document agent had little to do with this. It

simply knew it had a VCR segment to play. So, it passed the request to the VCR

agent. This is where most of the work is performed.



So, we have applied the same base support agents used in our personal information

management system to produce an information management system for the Intelligent

Room. This is very much in the spirit of our goal to embed information retrieval

into everything we do. Having developed a framework for information retrieval and

document management, it was only natural to try and apply this technology in as

many situations as possible. As more and more systems take advantage of the power

to control and search information which IR systems provide, and as these systems are

able to make use of each other, our information problems will subside.

4.6 Networked Haystacks

We have shown how Room users can search their own Haystacks, and the Intelligent

Room now has a multimedia information repository at its disposal. In this section,

we show that the same infrastructure that made this demonstration possible supports

networking these agents together. By providing the User agent with the Query request

in Figure 4-4, we have essentially set up a Haystack query server for each user. The

example in Section 4.3.3 is how we might search another user's Haystack. Thus, if

another agent would like to query Michael's Haystack for information about robotics,

it would make the following call:

DDocumentList = User.Query('robotics') [mhcoen~ai.mit.edu];

To test this, we added a new rule to the speech recognition system for handling

requests such as "What documents does Michael have about agents?" We also took

advantage of context to allow the following type of interaction:

Lynn: Computer, I need information about Java.

Agent: Please wait while I search your Haystack.

Pause.

Agent I'm sorry Lynn, but your Haystack does not contain any docu-

ments about Java.

Lynn: Computer, what about Michael's haystack?



# This request returns an array of document information
# hash tables of documents matching $Topic in user's Haystack.
Public Query ($Topic) {

print "calling query";

QHSDocs = Haystack.Query($Topic);

# get the docinfo for these documents
GHSDocInfos = Haystack.DocumentArray(©HSDocs);

reply(0HSDocInfos);

}

Figure 4-4: The User. Query Request

Pause. Then a list documents appears.

Agent: There are 12 documents about Java in Michael's Haystack. Please

pick one.

These are exactly the types of rich interactions the Intelligent Room is designed for.

Notice how the request to search "Michael's" Haystack does not respecify the search

topic, it is implicit from the dialog context. Moreover, "Lynn" does not have to know

anything more about "Michael" than his name. SodaBot and the AP naming system

take care of finding "Michael's" User agent, and ultimately his Haystack. The system

uses a mapping of names to email addresses to achieve this.

Of course, the sharing of Haystacks raises issues of security and privacy which for

now we have not addressed. Section 5.4 discusses this in more detail.



Chapter 5

Discussion of Results

5.1 Summary

We have demonstrated several systems in this thesis. Primarily, we have constructed

a set of agents which provide an interface between SodaBot and Haystack. Using

these agents, we describe a personal information management system. By situating

this system in the the Intelligent Room, we were able to leverage both the Room's

multi-modal environment as well as its infrastructure of software agents. One of the

results is our ability to use speech recognition as the input to our personal information

management system and the Room's multimodal environment as the output. The

user and the system engage in, what is now, a simple dialog for information retrieval.

Furthermore, this system is integrated into the user's environment. It provides a

framework for capturing, indexing, and querying the user's personal documents. We

have also shown how these same technologies can be applied to provide a multimedia

data store for information about the Intelligent Room.

5.2 Evaluating this work

There are a number of ways we can evaluate this work:

1. Does it satisfy the criteria of the introductory chapter (Section 1.2)? These are

our desiderata for a personal information manager - personalized, automated,



ubiquitous, and networked.

2. Independent of these criteria, is the system useful and helpful?

3. Is it novel? Does the system provide new and unique functionality?

In the following sections we will examine each of these in depth.

5.2.1 Essential Attributes of a Personal IM System

In Section 1.2 we outline the four desiderata we feel are essential in a personal infor-

mation management system. These four attributes (personalized, automated, ubiqui-

tous, and networked) provide a base set of functionality against which we can evaluate

our work.

* Personalized: The User agent is certainly personalized. Indeed, for simple

queries, it can only provide us with documents we have already seen before.

This is what we wanted: a system which performs information retrieval on our

set of personal documents. However, this is too limiting. There is a certain lack

of serendipity in such a system. This is addressed to some degree by providing

accesses to other users' Haystacks, via networked User agents. However, it

is sometimes refreshing to get back a completely unexpected result set when

searching the entire Web. What we probably want is a middle ground where

if the agent fails to find relevant documents in a our personal IM system, it

gracefully degrades to searching, first our neighbors' IM system, and then the

entire web. This solution also provides us with an answer to every question.

Still, in the end, the User agent provides the specified functionality: it is the

efficient assistant who can find the documents we vaguely recall seeing.

* Automated: For the limited world of the Web, the User agent discussed in

Chapter 4, automatically archives every document we see. The key for automat-

ing this process is the development of supporting agents such as the Netscape

agent. These agents need to be aware of what users are doing with specific

applications. The other area of automation which the system demonstrates is



passive annotation. In the case of the Web, it means annotating each docu-

ment with when we viewed it combined with Haystack's attempts to extract

author and title information. As the system is further integrated into users'

desktops, this should grow to include numerous other automatically generated

annotations. For instance, we imagine annotating documents with how long

they are used, who they are sent to or shared with, or any other cue about how

interesting a document is to the user and why it is interesting.

e Ubiquitous: Again, for the limited world of the Web, the User agent archives

every document we see. While this definitely a subset of the documents a

typical user interacts with, our primary concern is that if the User agent is told

about a document, it can index it. That is, as other agents are written which

are aware of other document interactions (e.g. an email agent), the system

can easily make use of them to provide information retrieval. We have briefly

experimented with a Zephyr agent to integrate the Zephyr[8] instantaneous

messaging system with the User agent. Once we had provided the Zephyr agent

with access to each incoming message, having the User agent index each message

was simple. Unfortunately, we encountered problems with Haystack due to the

high rate of archiving. We would typically get bursts of a dozen messages in

less than a minute. The present implementation of Haystack running in a Linux

environment cannot handle such a high rate of indexing.

* Networked: As described in Section 4.6, we achieve most of this goal simply

through our use of SodaBot. User agents are able to query each other using the

same interface they use to query themselves. The main impediment to truly

analyzing this criterion however is the lack of a substantial use community.

So, while the architecture is in place for networked personalized information

retrieval, there is not much more we can say, at this point.

Overall, we feel the User agent embodies these principles and is a fine foundation to

build upon. Section 6.1 discusses some of this future work.



5.2.2 Is it Useful and Helpful?

In limited testing, the User agent certainly tries to fill a definite gap in information

retrieval. For example, in the course of researching much of the previous work cited

in Section 2.4, our User agent watched over our shoulder. This proved useful weeks

later when we wanted to find a reference to, say, Java based agents, that we knew we

had seen before. In this respect the system worked remarkably like the augmented

memory we want it to be.

Unfortunately, without a larger user group it is difficult to analyze the usefulness

and effectiveness of these User agents, particularly the aspects of networked agents.

Without conducting user studies it is hard to claim we have solved the problem of

personal information management. So, while our limited results have been promising,

it is not possible to make an adequate assessment of the systems success.

The limited results we do have suggest that networked queries can be quite useful.

Essentially, networked User agents find things that web searches would not, and

perhaps could not. Consider a search of a colleague's Haystack which yields internal

or unpublished documents. While a good Intranet search engine (of which there are,

as of yet, few) would yield similar results for some queries, it is impossible to also get

colleagues' annotations, whether explicit or implicit. Furthermore, such a search is

again limited to only documents which are explicitly published by their authors.

5.2.3 Is it Novel?

There are few if any existing systems which provide this level of personalized infor-

mation management. As we fill in the gaps in document coverage to capture all of a

user's information interactions, we will truly have a novel system. The closest system

to our own, the Remembrance Agent[37], certainly has similar intentions. However

its strength lies much more in its automated search facilities, not in automatically

archiving documents. The Remembrance Agent basically requires users to hand-pick

which documents to store in their repository. Additionally, they do not support the

networked search capabilities our agents give us.



The key is our architecture, which combines the framework of SodaBot, largely as

deployed in the Intelligent Room, and the power of Haystack to manage information.

This level of information retrieval integration into the desktop' is uncommon, but

clearly valuable. We hope to see our system or a descendant in wider use to further

validate this proposition. Perhaps the most novel aspect of our system is its extensi-

bility. As Section 6.1 describes, we see a great deal of additional functionality being

integrated. This is primarily due to the ability of new agents to easily make use of the

existing set of agents, and visa-versa. SodaBot's design will allow us to create new

agents, such as E-Mail or Net-News agents, and quickly have the User agent make

use of them.

5.3 An Experimental Haystack

Once we had provided SodaBot with an interface to Haystack, we were able to im-

plement several of the higher level goals of the Haystack project in an experimental

system. As we outline in Section 3.2, these goals include being a personalized, content-

aware, annotatable, multi-user, user-profiling information management system. We

have used SodaBot and the Intelligent Room's infrastructure to create a system which

either meets or provides support for all of these goals. Admittingly, we leverage the

annotatable content-aware nature of the existing Haystack implementation. However,

we have both added new automated annotation facilities as well as support for new

content-types such as video and camera views. Moreover, the networked nature of

SodaBot made this a multi-user system with very little additional work. While we

have not done any work towards the goal of supporting user-profiles, we certainly

provide a strong framework upon which to do so.

This is perhaps one of the most valuable results of our work. While our system is

certainly not as complete and "bullet-proof" as the Haystack specification calls for,

it does provide most of the functionality. Or, perhaps more importantly, it provides

an excellent framework for experimentation. For instance, it would be very easy to

'Even if this "desktop" is the rather virtual one in the Intelligent Room.



use the existing User agent to experiment in collaboration and learning. User agents

could learn which other users tend to answer different types of queries best. While

the Haystack project hopes to build such a system, they are currently far away from

the multi-user networked stage. We very quickly have provided them with a tool for

experimenting with new ideas. Moreover, the usefulness of our system has, in a sense,

validated the very idea of Haystack.

5.4 Privacy

One issue we have continually put off has been the utter lack of privacy in our system.

Every page a user browses is both added to their Haystack and is made available to

other users. There are numerous reasons why we would not want other users to

know about every Web page we browse. Consider what would happen if an employer

noticed an employee's extensive browsing of a competitor's "We're Hiring!" page.

Furthermore, as we extend the system to encompass email and other documents,

there is no question that some documents truly are personal for a good reason.

There are a number of ways we can address this issue. In the most optimistic

solution, our User agent is smart enough to know which documents are private (e.g.

letters from friends and family) and which are public (e.g. work related mail or Web

sites). While this is actually not too unrealistic for many situations, there will always

be exceptions. Two other solutions require user intervention, one at archive time,

and one at any later time. Whenever the system adds a document to its index, it

could allow the user to choose the document's specification. This could also provide

a nice interface for entering annotations. However, this goes against our goal of

automatically and unobtrusively archiving every documents. Users will quickly grow

tired of being prompted about each document. One modification would be to have the

user periodically process batches of documents. This too is unsatisfying. We could

provide a tool for browsing a user's document set and assigning visibilities. Again,

this requires both human intervention and processing each document.

A Draconian solution would be to mark each document as private unless otherwise



specified. We prefer a compromise. Allow the system to be in "Private" or "Public"

modes. The system would attempt to use some Al techniques to guess which mode

to be in. However, the user would always be aware of which mode the system was

in, and could easily override it. Furthermore, if a user was about to research about

their upcoming kayak trip, they could set the system in permanent private mode for

the duration of that session. While this is better, it can still lead to mistakes.

Overall, we feel this will be an interesting area for future research. As there are

more networked personalized information management systems this will become more

of a problem.



Chapter 6

Conclusion

We have built a personalized information management system using a system of

SodaBot software agents which make use of the Haystack information retrieval system.

This system has provided us with a new tool for gaining control over the wealth of

information around us. Primarily we now have means for indexing and searching

the set of Web pages we browse. To search even this limited set of documents has

proven to be quite useful. We feel that our system provides an excellent framework

upon which to build a more complete implementation. Furthermore, we also claim

that our work has validated many of the goals of the Haystack project. Personal

information management is not only useful, but soon to be necessary. As individuals

become dependent on information for their workplace needs, a tool such as ours will

be indispensable. Moreover, in the spirit of our first sentence that "this thesis is about

the fundamental need to embed information retrieval into everything we do," there is

still a tremendous amount of data to be mined. As information is more textual and

less structured, it will be by making IR systems more accessible that we enable new

applications.

6.1 Future Work

While our existing system of agents has proven to be quite powerful, it opens more

doors than it closes. We see a number of possible uses of this technology as well as



additions to the existing system. Many of these ideas stem from the power of adding

information retrieval to a active and "aware" environment such as the Intelligent

Room.

Our favorite example of what a future system invovles recording and indexing de-

sign sessions. Imagine a group of engineers in an intelligent conference room designing

a section of an airplane wing. The entire conversation is being recorded, the speech

run through a recognition system, and the video being index with the recognized

speech. Furthermore, the system is saving whiteboard images. We'll ignore the fact

that the engineers are also using an IR system to pull up various design specification

documents and blueprints. What we are interested in is recording the design of this

airplane wing for future recall. For, what happens three years from now when a plane

crashes because its wing snaps? How useful would it be, three years in the future, to

be able to say "How was this wing designed?" and get as a response, not only some

papers and email on the wing design, but also the entire recorded design session? We

think that this will be a major application of the future. The key is to seamlessly

integrate information recording and retrieval into an active environment.

A less ambitious addition to the current system is to build a specialist finder agent.

The premise is simple - given a topic or question, find the person who knows the most

about it. This would involve searching multiple Haystacks for the user with the set

of documents which seems most relevant. This would be tremendously useful and

time saving. Since the person who answers a question is usually the last one we ask,

why not skip the middlemen and make them the first? Such an extension recognizes

the fact that while actual documents and retrieval systems contain a great deal of

knowledge, they cannot hope to compete with the brain of an expert in a given field.

Kautz et al.[24] have built such a system based around a similar User agent to our

own. They make use of users' email and files to develop profiles which agents share

with each other. Given the historical connection of their "visitorbots" [25] to our own

SodaBot, it is no surprise that they too took advantage of their architecture to build

such a system.

We hope to more completely integrate the RoomInfo agent and the Intelligent



Room. We envision automated multimedia tours of the Room, and, meeting one of

the Room's earlier goals, of the entire AI lab. Such a tour would consist of speech

synthesized narration, web pages, and video segments. We could use the Haystack

agent to provide a source of documents about each of these topics to allow users to

get more information about topics they are particularly interested in.

There are several possible additions to our existing use of Netscape and the Web.

As described in Section 2.4.1, we can enhance our Web browsing experience along the

lines of Letizia or Web Watcher. This would involve the User agent looking ahead of

the current page a we are browsing and having it pick the links which are most likely

to be interesting to us. A collaborative version of this could highlight the links our

colleagues have followed.

One important consideration is that the Haystack project itself hopes to one day

encompass much of our current functionality. Keeping our system synchronized with

Haystack will be an important future task. As Haystack begins to provide more fea-

tures, we may be forced to concede some of them to the native system. Furthermore,

it may well prove to be easier to use a simpler, off-the-shelf IR system in place of

Haystack. This remains to be seen. We hope, however, that the two projects continue

to work together.
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