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Abstract

Scattering phenomena due to a rough bottom interface should be studied in order to un-
derstand acoustic propagation in shallow water. The normal mode scattering theory and
code is developed to compute the scattered field from the rough surface considering elastic
layers in the bottom. The extended modal code NMSCAT which was originally developed
by Tracey[40] is an efficient approach to calculate scattering in the low frequency and long
ranges. The accuracy and validation of the extended NMSCAT code are demonstrated by
good agreement within 2 dB error range with the results of the OASS which is based on
the wavenumber integral method to be assumed as a reference numerical solution. The
elastic-layered bottom is proven to be important to the scattered field in the shallow water
waveguide.

The thickness and the properties of one elastic layer affect the scattered field significantly
and its effect on scattering is quite different from the effect on the mean field. Parameter
studies are performed to analyze the effects on the scattered field. The modal analysis of
scattering provides an easy way to understand the scattering phenomena.

The geoacoustic bottom data from an acoustic experiment in the Korea Strait is used
to study scattering in emphasis of the effects of two uncertain parameters on the scattered
field by the model of the multiple elastic layers. The parameters are the thickness of the
first elastic layer and the different elastic properties of the second elastic layer, and the
parameters affect the scattered field distinctly in different patterns with the mean field.

Thesis Supervisor: Professor Henrik Schmidt
Title: Professor of Ocean Engineering
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Chapter 1

Introduction

1.1 Motivation

Ocean acoustics is an extremely diverse field with many different types of problems to pursue.

One way to categorize ocean acoustics is by the type of ocean to be studied, such as deep

water or shallow water acoustics. The different oceans themselves can give some hints to

choose the priority of parameters to study and the proper numerical models for research to

scientists. After a decade spent studying the deep water phenomena like eddies and global

warming, underwater acousticians have turned their interests to shallow water. Following

this trend, we will study shallow water acoustics in this thesis.

The characteristics of shallow water are quite different from deep water in terms of propa-

gation of sound in the waveguide. Although deep water has some stochastic phenomena like

internal wave and the randomness of medium itself, shallow water is more random because

of tides, currents, strong mixing, inhomogeneities of the water itself and the boundaries and

so on.

Interactions between boundaries may be one of the most important characteristics in view

of sound transmission in shallow water along with volume inhomogeneities like turbulence

and solitons[46] as well as sub-bottom inhomogeneities. These complexities challenge sci-



entists to understand scattering in shallow water because scattering becomes important to

wave propagation in shallow water.

Many scientists have recently focused on the study of scattering in relation to seafloor

characteristics[36] [13][37]. In a shallow water waveguide, the acoustic waves interact sig-

nificantly with the boundaries while they propagate. Especially, the bottom interaction

dominates the surface interaction, because shallow water often has a downward refracting

sound speed profile. The bottom is often characterized as being rough in shallow water and

this roughness brings up the issue of scattering in underwater acoustics. The bottom bounced

signals are extremely difficult to analyze due to uncertain knowledge of bottom properties

and roughness statistics. However, inverse methods allow bottom properties to be inferred

from these complicated bottom interacting signals because the signals contain information

about them. Some initial trials have been done to estimate the seafloor parameters by the

sound field[9],[25][39, 38, 3]. Here we will study scattering dependent on various parameters

of elastic ocean bottoms.

There are many numerical models available to solve acoustic propagation problems but

only a few numerical models include scattering. Moreover, most scattering models cannot

deal with elasticity in the sub-bottom layers. However, the OASES scattering module OASS,

which was developed by Schmidt[31] is based on the wavenumber integral method and con-

siders elastic layers in the bottom. Although this model is very versatile, it requires heavy

calculation at long ranges. To compensate for this, Tracey[40] developed a modal theory

and code NMSCAT which is more efficient for low frequency and at long ranges than OASS.

The modal approach also gives intuitive understanding of the physics of scattering. However

Tracey didn't consider arbitrary elastic layers in the sub-bottom structure but elasticity was

included only in an elastic half space bottom. In order to study more realistic bottom, effects

of the elastic layers on scattering are here included in the numerical model.

The motivation of this thesis is in the development of the theory and numerical code to

include arbitrary elastic layers in the sub-bottom structure, based on the modal approach

extending the work of Tracey. With this scattering code developed, we will study the effects



of geo-acoustic parameters of layers on scattering in a shallow water waveguide.

1.2 Review of Related Studies

Some recent relevant studies are reviewed in this section along with some numerical models

which compute scattering.

Ellis[11] developed a phenomenological normal mode reverberation model which is based

on empirical scattering functions. While the normal mode model can provide a good solu-

tion to the reverberation problem in shallow water, two major difficulties have to be over-

come to include both time dependence and scattering. This normal mode reverberation

method was first introduced by Bucker and Morris[8] and was developed in the some Chi-

nese literature[45][35]. A bistatic shallowater sonar model based on normal modes has been

developed and implemented by Ellis[12][10]. He showed that the the results from normal

mode model are remarkable agreement with ray-based model. He showed that downward re-

fracting sound-speed profile gives more bottom scattering than surface scattering because of

the lower grazing angle. A distinct difference was noted from the different bottom properties,

including high loss and low loss bottoms. He illustrated the analysis of bottom reverberation

by modes.

He also summarized the merits and limits of other numerical models to solve scatter-

ing. There are several ray-based models of reverberation like RASP model[15], the Generic

Sonar model[42] and MOCCASIN model[34] but all these models were developed to study

deep water and are not adequate for shallow water because of the multipaths effects. Other

approaches to the shallow-water reverberation problem are the angular spectrum method,

parabolic equation methods and finite-difference techniques. The normal mode scattering is

quite computationally efficient, easy to understand and easy to extend to other environments.

The angular spectrum method can be used to extract backscattering strengths. Parabolic

equation methods can deal with range dependence but not include the time dependence of

the various paths. Finite-difference techniques are easy to implement for complicated envi-



ronments but computationally intense.

Essen[13] studied scattering from a rough sedimental seafloor containing shear and lay-

ering. A first-order perturbation approach based on the Born approximation was devel-

oped. For a shear-supporting or layered seafloor, both monostatic and bistatic scattering

were considered where power law wave-number spectra was formed to be appropriate for

backscattering rather than a Gaussian spectrum as used for sand or harder seafloor. For

grazing angles below critical, shear-wave velocities faster than 350 m/s had an effect on

scattered strength. For Lambert's rule, comparison with the experimental results is very

simple and needs only one parameter of backscattering strength at normal incidence. But

it cannot derive the physical process to relate backscattering strength to seafloor parameters.

Anand et al.[1] studied normal mode sound propagation in an ocean with random narrow-

band waves. The authors give an excellent review of random rough surface scattering, but

they considered only limited environments such as an isovelocity ocean with random narrow-

band surface waves using perturbation theory.

Stephen et al.[37] developed the finite-difference method(FDM) for seismo-acoustic prob-

lems. FDM has several advantages such as versatility to include rigidity, body and interface

waves, both forward and backward scatter, volume heterogeneity and a wide range of fre-

quencies pulse beams at low grazing angles. It has disadvantages such as heavy computation

and the difficulty of confirming accuracy for complex problems, which are quite crucial to

the scattering computation. They pointed out that the scattered field from a rough and

laterally heterogeneous seafloor is required to know the bottom-interacting ocean acoustics.

Recent studies have shown that the physics of seafloor scattering can be quite complex with

energy converting between waves in the water and seafloor. For a very rough, basalt seafloor,

conversion of energy from compressional waves in the water to shear and interface waves at

the seafloor is an important physical mechanism for generating strong backscatter. Unsed-



imented rough basalt has stronger backscatter at low grazing angles and at near normal

angle. Another comment was that secondary scattering into interface waves(Stoneley and

Scholte) is a loss mechanism with scattering converting into shear-body waves.

Rouseff and Ewart[30] studied the effect of random sea surface and bottom roughness

on propagation in shallow water using the Parabolic Equation(PE) method. They showed

that surface roughness is closely related to bottom scattering for sufficiently rough inter-

faces. They mentioned that volume randomness like soliton and solibores, turbulence, and

sub-bottom inhomogeneities can affect the surface and bottom scattering. They insist that

the lack of knowledge of the environment is more critical to simulate shallow water propa-

gation than the quality of the acoustic modeling. In shallow water, the stochastic effects of

the water column, bottom, sub-bottom, and the surface could easily dominate deterministic

effects. Deep-water field experiments have shown that the environment plays the primary

role in understanding acoustic propagation. Even for deep water, the stochastic ocean phe-

nomena can dominate the deterministic features. They dealt with a simple scenario in the

deep ocean but results are very interesting showing coupling between surface and bottom

scattering.

Kuperman and Schmidt [22] [23] [33] developed a self-consistent scattering theory based

on the wavenumber integral method to incorporate this theory into the OASES numerical

code. They developed a boundary operator by perturbing the rotated boundary coordinate.

This theory and code was developed to consider arbitrary elastic layers in the ocean bottom.

Although this theory and code has many advantages, the heavy computation is inevitable

especially in the long range. They concluded that the rough interface scattering conversion

into shear waves contributes significantly to transmission loss. This theory will be reviewed

in Chapter 2.

Tracey [40, 41] reformulated the K/S scattering theory into modal terms to make an



efficient code to calculate the scattered field in the waveguide. The scattered field calculated

by the NMSCAT modal code is in good agreement with the one calculated by OASS, and

has greater computationally efficiency. The modal approach is proven to be a good way to

study scattering not only by computational efficiency but also by simplicity of scattering

physics. The modal theory is easy extension to other environments i.e. range dependent

problems. However Tracey didn't consider arbitrary elastic layers, only an elastic half space.

This theory will also be reviewed in more detail in Chapter 2.

1.3 Contributions

The main result of this thesis is the development of a normal mode scattering theory and code

which makes it possible to consider arbitrary elastic layers in the sub-bottom. Additionally,

bottom scattering is studied for a shallow water waveguide using this numerical model. The

normal mode scattering theory and code were originally developed by Tracey [40] and this

thesis is an extension of his work. We developed the code as subroutines added to NMSCAT

code as an option in order to use Tracey's integrated modal scattering code which can

deal with rough surface scattering and volume scattering in the waveguide. Therefore all

the options and statistics of NMSCAT can be used to combine with an option to consider

arbitrary elastic layers.

We justify our study by showing how one elastic layer has a distinctive effect on the

scattered field by comparing the scattered field from one limestone layer over a basalt half

space to a limestone and a basalt half space case. We validate the results by comparing the

scattered field by NMSCAT with the one by the OASS. There is at most a 2 dB difference

in the scattered amplitude over all ranges and all depth in the water except at short ranges.

The interference patterns over ranges and depths show very good agreement.

We also show the effects of layer thickness and bottom properties on the scattered field.

For a 30 m thick limestone layer, the scattered field is maximized because the scattered field

is driven by mode 6 which is resonant for this limestone layer. The interference pattern



reflects the 6th mode shape when we look at the scattered field vs. depth. We do not

see these resonant phenomena in the mean field. We may infer from this that the modal

approach can provide better experimental design through mode excitation of a particular

mode to study scattering and easy understand of its physics. The scattered field can be a

good tool to study bottom properties, because the scattered field is more sensitive to the

bottom.

We investigate the effects of bottom properties on scattering by changing the sound speed

and density. We used the same attenuation coefficient for all cases in order to avoid the

illusion of overwhelming attenuation effects. The scattered fields resulting from different

bottom properties are distinct, although there is not much difference in the mean fields. We

might get more information by studying both the scattered and mean fields because they

contain different information.

The extended NMSCAT can also model the bottom as a multiple elastic layered sub-

bottom. This multiple layer model contains some assumptions and restrictions. The inability

in computing the displacement and stress amplitudes of the mean field in the elastic layers

by KRAKENC[29] leads to error in the scattered field because the mean field is used as a

source of the scattered field. If we consider the thick elastic layer or high attenuation bottom

type in the first or second layer which gives small errors in the mean field, the multiple elastic

layer model then gives the quite accurate scattered field. This error could be easily corrected

if a normal mode code like ORCA[43] is used to compute the mean field in the elastic layers.

Data based on measured bottom properties from the Korea Strait Experiment is used

to study the scattering phenomena in shallow water. We model the bottom as 2 elastic

layers over a moraine half space based on the experimental geoacoustic data. We study

how the scattered field is affected by two uncertain parameters in the layered bottom. The

two parameters are the thickness of the 1st elastic layer and the bottom properties of the

second layer. The scattered fields by two parameters are distinct and different from the

mean fields and are well explained by modal study. We also study the scattering by other

parameters such as the sound speed profile, single mode excitation, cross-modal coherence,



and other parameters and statistics. We may infer from these results that the modal study

of the scattered field may provide a good tool to study physics of scattering from the elastic

bottom.

1.4 Organization

We review several related theories used for this thesis in Chapter 2. The normal mode theory

for an unperturbed field is given first and followed by the rough surface scattering. After

a brief mention of Kirchhoff theory and small perturbation theory, the K/S self-consistent

perturbation scattering theory and modal formulation of this theory are summarized. Then

we develop the generalized modal formulation of scattering in the water column considering

arbitrary elastic layers over a half space.

In Chapter 3, we show the numerical results from modal theory developed in chapter 2

considering one elastic layer over a half space. We compare the results of the extended version

of NMSCAT code with the ones of OASS. The effects of one elastic layer on the scattered

field is shown. We study the effects of thickness and bottom properties of the elastic layer

on the scattered field and continue to research the effects of other acoustic parameters on

the scattered field.

The multiple elastic layered bottom is considered in Chapter 4. Some assumptions and

restrictions are shown for computation of the scattered field considering multiple elastic

layers. A comparison of the results with OASS results is given for two elastic layers and is

followed for more elastic layers. A simulation of Korean experiment is given by modeling

the sub-bottom as 3 elastic layers. We focus on the variations of the scattered fields by the

first layer thickness and bottom properties of the second layer.

Finally, we summarize the work in this thesis and give some suggestions for future work

in chapter 5.



Chapter 2

Scattering Theories

2.1 Overall

The title of this thesis 'Normal mode acoustic wave scattering considering elastic layers

over a half space' reflects theories such as normal mode, acoustic wave scattering, and their

connection and relationship with elastic layers. The explanation is required to specify the

terms and meaning and make it clear the objective of this thesis.

Wave scattering theory has ramifications such as volume scattering and surface scattering

determined by the types of the scatterer considered. Volume scattering is produced by

marine life and inhomogeneities of the ocean and the bottom. Surface scattering is applied

to two dimensional distributions of scatterers, usually from sea surface and sea floor[14]. We

will concentrate on the study of surface scattering from the ocean bottom in this thesis.

Rough surface scattering is usually studied by the approximate but tractable theories

like Kirchhoff theory and perturbation theory, because the rigorous formal theories, such

as integral equation techniques, variation methods, and Green's function approaches, lead

to difficulties in application of realistic scenarios. Perturbation theory and and Kirchhoff

theory have advantages to use numerical simulation techniques which become feasible in a

few decade. These numerical techniques make it possible to determine the regimes of validity



of approximate theories and to extend to more realistic scattering problems[26]. We will use

a self-consistent scattering theory which was based on the perturbation theory.

Scattering in a ocean waveguide is driven by the propagation of the mean field. The

numerical models to compute the mean field are necessary to calculate the scattered field.

There are several numerical methods to get the mean field in a waveguide, such as ray

tracing, parabolic equation, wavenumber integral, and normal mode methodetc..

The wavenumber integral method is known to provide accurate reference solutions for eval-

uating the performance of new numerical models. This method also has the advantage of con-

sidering arbitrary fluid-elastic layers. Kuperman and Schmidt[22] extended OASES/SAFARI

the wavenumber integral code, to compute the scattered field for any number of elastic layers.

But this method requires many calculations, especially at long ranges since the computation

time is a function of range. The efficiency of computation is quite important in modeling

the scattered field because the scattered field usually requires heavy calculation.

The normal mode method is efficient for long ranges or low frequencies, because compu-

tation time depends on the number of modes but independent of range. Normal modes also

give us an easy understanding of the physics of waveguide propagation and a sufficiently

accurate solution for the mean field. The other advantage of this method is its relatively

easy extension to consider range dependent environments. Recently, the theory and code to

compute the scattered field by modal approach was developed by Tracey [40]. This modal

approach is very efficient in computation time, but it can deal with only an elastic half space.

In this thesis, we make a generalization of the normal mode scattering theory and code to

consider arbitrary elastic layers with some restrictions.

A generalization of normal mode scattering is shown in this chapter. We begin with

the normal mode theory to get the unperturbed field first. We then review rough surface

scattering which includes small perturbation theory and the Kuperman and Schmidt(K/S)

self-consistent scattering theory. Then normal mode theory is incorporated into the K/S

scattering theory for the generalized normal mode scattering.



2.2 Normal Mode Theory for the Unperturbed Field

The method of normal modes is one of the significant methods to solve the wave equation and

understand the physics of ocean acoustics in a waveguide. Since Pekeris [27] developed this

method in the field of ocean acoustics, it is one of the preferred methods among many ocean

acousticians because of several advantages. This theory was originally developed for range-

independent environments and extended to handle range-dependent environments. Some

normal mode code can deal with realistic sound speed profiles and multiple ducts, to model

elastic bottom layers, to find seismic interface modes, and to model propagation at short

ranges accurately. The modal theory has also been developed to handle geoacoustic inversion

for wide ranges of environmental inputs and frequency bands[43].

Let us start from the derivation of the wave equation. The acoustic wave equation is

derived from inviscid, compressible fluid mechanics without heat conduction using hydro-

dynamic equations. Euler's equation(Newton's 2nd law), the equation of mass conserva-

tion, and the adiabatic equation of state are linearized and incorporated to obtain a wave

equation[16].

The standard wave equation is obtained from a linearized wave equation assuming ambient

density p(r) is constant and sound velocity co(rl is independent of time.

1 82 p
V 2p )P( t) =0 (2.1)

where P(i', t) is the excess acoustic pressure about the ambient pressure as a function of

space and time and co(rl is the sound velocity.

The time harmonic solution is assumed as P(Fi, t) = p(f)eiwt and is replaced in Eq. 2.1.

If we assume the ocean waveguide is stratified horizontally and the sound velocity depends

only on the depth, the wave equation including the source f(i) is expressed as

[V 2 + kI(z)]p(r) = f (r) (2.2)
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where ko(z) = c is the medium wave number at radial frequency w.

For a plane wave problem within a two dimensional Cartesian coordinate system(x, z),

the inhomogeneous Helmholtz equation for a line source at (0, z,) is

02 02
[x2 +02 + k2(z)]p(x, Z) = -6(x)5(z - Z,) (2.3)

The above equation can be transformed to the wave number domain by Fourier transform

in order to reduce the dimension,

f(x,7z) J f (k, z)ei-kxdk (2.4)

f (k, z) 2 f (x, z)eikxdx (2.5)

Then the depth-separated wave equation with the depth-dependent Green's function

which is defined as p(k, z) = -G,(k, z) is obtained with the boundary conditions in the

spectral domain.

a2  6(z - z,)
[z2 + (k(z) - k2)]G~(k, z) = 2 (2.6)

B[P(k, zj)] = 0 (2.7)

where B is the boundary operator and j = 1, - --, N is the number of boundaries.

This depth-separated wave equation with the boundary conditions is an eigenvalue prob-

lem. The delta function can be expressed as a sum of modes and the Green's function is also

a sum of modes

6(z -z,) = Zam'IJm(z) (2.8)
m

Gw(k,z) = Ebm m(z) (2.9)
m



We can find the two coefficients am, bm by applying the following integral operator and

the orthogonality property.

D () dz (2.10)0 p(z)

Finally, we can get Green's function after some algebra[19].

G,(k, z)= 1 2 (Zs)Tm(Z) (2.11)2rp(zs) m k -

The above Green's function has singularities at k = ±km.

If we take the inverse Fourier transform of the spectral Green's function, the pressure

field in the spatial domain is obtained. We have to use Cauchy's theorem to evaluate the

integral because the Green's function has simple poles at k = ±km. The contour of the

integral should be chosen in the lower half plane for the positive traveling waves since the

traveling waves in the positive x direction are poles on the positive k axis. For attenuation

of the waves, the complex wavenumber can be introduced but the imaginary part of the

wavenumber must be negative in order to avoid the field blowing up as x goes to positive

infinity for a positive k.

By this integral method, the pressure field is given by the sum of the residues of all poles

and is normalized by the pressure at 1 meter.

p(x, z) - ei(k - / 4 ) E m(Zs)m(Z) -ikmx (2.12)
p(z,) m km

The pressure field in cylindrical coordinates is obtained in a similar way. In the far

field(kr > 1), the asymptotic form of Hankel function is used and the normalized field is

given



p(r, z)= (Zs) i(ko-/4) m ikmr (2.13)p (Z,) r m km

When the bottom is composed of elastic layers, we apply an impedance boundary con-

dition. Even a simple Pekeris waveguide possesses the discrete spectrum which is a sum of

proper modes, and the continuous spectrum which corresponds to leaky modes. The con-

tinuous spectrum is modeled by an approximate false bottom method by putting a pressure

release boundary deep in the bottom in the normal mode theory. Both proper and leaky

modes play an important role in rough surface scattering problems.

The mean field at the rough surface which can be calculated from normal mode theory

is used as a source of scattering in the waveguide. We need to make a connection between

normal mode theory and the scattering theory to formulate the normal mode scattering

theory. Before we discuss the connection in detail, we summarize rough surface scattering

theories.

2.3 Rough Surface Scattering

All surfaces in the real world are rough and the roughness causes scattering which is a func-

tion of frequency and angle of the incident wave. A random rough surface is usually described

by two statistical functions, surface height distribution function and surface correlation func-

tion. From these functions, root mean square height and correlation length are determined,

which are important parameters for representing the statistics of a random rough surface.

The most widespread theories of scattering by statistically rough surfaces are the Kirchhoff

method and the small perturbation method[2]. Before we follow the mathematical formula

of the self-consistent scattering theory, we review briefly the two approximations, especially

in regard to their validity and limitations.

The Kirchhoff theory has two main advantages for studying the scattering from rough

surfaces: easily understandable physical basis and relatively simple analytical expressions



for the scattered field amplitudes. This theory assumes that any point on a scatterer is part

of an infinite plane, parallel to the local surface tangent, which leads to en exact solution

for an infinite, smooth, plane scatterer. The restrictions of Kirchhoff theory caused by these

assumptions non self-consistency and lack of energy conservation. The latter arises through

neglect of multiple scattering and propagating modes such as surface wave. The former

leads to inaccurate calculation of the field away from points on the scatterer. In spite of the

inaccuracies of the theory, Kirchhoff theory is one of the most widely used theories in the

study of rough surface scattering. The accuracy usually depends on the shape and dimensions

of the mean surface and the roughness of the surface. Since the Kirchhoff theory is not easy

to extend to more complex environments, we will here use the self-consistent theory which is

derived from the perturbation method after a brief review of the basic perturbation methods.

The basic idea of small perturbation method is that the boundary conditions at a rough

surface can be transferred to the mean surface by expanding them into a powers of the

roughness height. This method assumes that a rough surface deviates only slightly from a

mean surface and has sufficiently small slopes, meaning,

kly(x,y)l <K 1 (2.14)

TVy(x,y)( < 1 (2.15)

where k is the wavenumber of the incident wave and the -y(x, y) is the height of the rough

surface in 2 dimension. The mean surface usually assumes the plane which is zero height

so that Taylor expansion can be applied. Then the perturbation method can be applied

to study wave scattering. The foundation of wave scattering at a rough surface becomes

equivalent to a radiation problem by the distribution of virtual sound sources.

The Rayleigh theory is an example of a perturbation approach. This theory was originally

developed to calculate scattering from irregular sinusoidal rough surfaces. Later this was

extended to deal with random rough surfaces. The scattered field is represented as a sum of

outgoing plane waves. The coefficients in this summation are determined from the boundary
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Figure 2-1: General shallow water scenario. Rough surface at the fluid-elastic interface.

conditions on the surface. The restrictions of this method are that multiple scattering

effects cannot be considered because of the assumption of only outgoing scattered waves,

and that only slightly rough surfaces can be solved because of the convergence of the series.

The Rayleigh method is claimed to be good for periodic corrugated surfaces in the regime

0 < aA < 0.34 and 0 < ka < 4.1, where a is the amplitude of the surface corrugations, A is

the surface period and k is the incident wave vector[44].

A self-consistent perturbation theory which is based on the perturbation theory is pre-

sented in detail in the next section.

2.4 Self-consistent Perturbation Scattering Theory

A self-consistent perturbation approach for normal mode propagation has been introduced

by Kuperman and Ingenito[21] to incorporate rough surface scattering into the propagation

problems. Kuperman and Schmidt[23] made a generalization of a self-consistent scatter-

ing theory to deal with arbitrary fluid or elastic rough interfaces in stratified fluid and



elastic layers. They combine the waveguide perturbation problem with Schmidt's elastic

full-wave propagation[32] by which a boundary matrix operator is employed to make use of

the OASES[31] algorithm for the unperturbed problem.

Let us summarize the K/S scattering theory in a two dimensional ocean for a one di-

mensional rough surface for simplicity. The boundary conditions are represented in a local

rotated coordinate system on the rough surface since the rough surface has nonzero slope

and finite curvature.

We will study the case of a rough surface is at the fluid-elastic interface(Fig. 2-1), but we

will develop a generalized theory for a rough surface at an arbitrary interface.

If we assume the slope of the rough surface is small, the rotated boundary operator on

the rough interface(at zj) becomes,

B1j(p) = B(pj) + 7' o bj(pj) (2.16)

where y is the surface height function and 7' = '(x) and 1•y' < 1 is assumed here. And
Ox

the operator o is the various vector operations.

The total field(p) is divided into coherent field(< p >) and incoherent scattering field(s).

pj = < pj > +sj (2.17)

We insert Eq. 2.17 into Eq. 2.16 and expand Eq. 2.16 in a Taylor series around the rough

interface(at zj) to the second order in y:

a -Y2 a2 a
B;(py) = (I+y +z 2 z2)Bj*(pj) =z + (+1 7+ )Bj(sj)l:zz =0 (2.18)

The scattered field is assumed to be order of y and Eq. 2.18 is averaged over y with the

average properties of the operators < B*(< pj >) >= B3 (< py >) and < B3 (sy) >= 0.



< 2 > 02  Bj (sj)< Bj(pj) > = (1+ 2 >z 2)B j(< pj >)+ < 7'o bj(sj) > + < >
2 0z2  Oz

= 0 (2.19)

If we take the difference between the above two equations Eq. 2.18 and Eq. 2.19, we get

the boundary conditions for the scattered field,

Bj (s) + O + ' o bj(< p, >) = 0 (2.20)

The surface correlation function N(q) is used to solve the above equation with the stochas-

tic variable of roughness. The surface roughness spectrum P(q') is obtained by taking a

Fourier transform of the correlation function,

N(q) = < y(x')y(x) > (2.21)

< 2 > P(q') = f N(q)eiq qd2q (2.22)

Performing a Fourier transform on Eq. 2.20 and applying some algebraic operations[23],

the scattered field is as follows,

Bj(q)J = -I (q - k)Tj(q, k) < 15j(k) > (2.23)

where

B ((k)
Tj (q, k) a- i(q - k) - b(k) (2.24)

We can solve this equation by multiplying Bj- (q) on both sides. Bj is the global interface

condition matrix and must be invertible.



Then a self-consistent boundary condition for the mean field is derived by Fourier trans-

forming the equation for the mean field(Eq. 2.20) and inserting the solution of the above

equation(Eq. 2.24), we then get the mean field equation as follows,

( <7)'2> o2 fB(k)

B(1(k) + 2 0 z2 'k) + (k) + I2(k) < p(k) > = 0 (2.25)

where,

11(k) = - > d2qP(q - k) (q) (q, k) (2.26)
2r 8Oz

12(k) = < 2•'> /d2qP(q - k)j(q - k) -b(q)bj 1 (q)Tj(q, k) (2.27)
27

We can easily confirm that the above self-consistent boundary condition is the same with

the mean field in Eq. 2.7 if we set < )-y2 >= 0. The roughness of the surface acts as a

damping force in the mean field. Self-consistent perturbation obviously does not require

that we solve for the scattered field explicitly to calculate the mean field.

2.5 Modal Formulation of Kuperman/Schmidt Scat-

tering Theory

Tracey[40] developed a modal formulation of K/S scattering theory. First we begin with a

fluid-fluid rough interface in a two dimensional ocean and extend to the fluid-elastic bound-

ary. The scattered field at some distance from the rough surface may be obtained by the

incorporation of the effective field on a smooth surface into the source free Helmholtz integral

formula[26] as

SG(x,z,xo,zo) s(xo zo) xZozo (2.28)(X, z) = dSo[s(xo, zo)a(z Ioo) (o, zo) G(,z, xo, zo)] (2.28)so Ono Ono
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Figure 2-2: Helmholtz integral theorem for penetrable bottom. The surface integral is

deformed to run along both sides of the rough surface(from Tracey,1996).

where no is the unit outward normal to the scattering surface So, xo, zo are the coordinates on

the surface, G,(x, zlxo, zo) is the acoustic Green's function representing the effect at (x0o, zo)

of a point force at (x, z).

This is valid for all smooth surfaces but not valid for a rough surface since the Green's

function is found for smooth interfaces. Therefore, the surface integral must be taken along

the rough surface.

Taking a waveguide with a smooth surface and rough fluid-fluid bottom, the only line

integral along the rough surface back and forth(dotted lines in Fig. 2-2) are to be used to get

the scattered field. If the continuity and reciprocity of Green's functions are applied in the

line integral to represent the field in the water, the scattered field is obtained as follows[40]

s(x, z) = dxo[(si(xo, zo) - S2(, Z))OG(x, zxozo)

a8s (XO, zo) P1 a82 0X, Z )
( Zo) P 2(xo Z )G,(x, z Io, zo)] (2.29)

Ozo P2 0zo

31
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This equation means that the scattered field can be calculated from the discontinuities in

the scattered field and its derivative at the rough surface. Taking the Fourier transform of

the above equation, we obtain the wavenumber domain equation,

9(q, z) = 2G[A(q) (q,z, zo) - 2(q)G(q, z, zo)] (2.30)
Ozo

AI (q) 1 S"(q, zo) - s 2(q, zo) (2.31)

Osi (q, zo) Pi 02(q, zo) (232)
A2(q) (2.32)Ozo P2 dzo

where A, (q) and A2(q) are the discontinuity of the scattered field and momentum across the

rough interface, respectively. This equation is for the fluid-fluid rough interface but it can

be extended to a fluid-elastic rough interface after some complicated algebra involving the

compressional and shear potentials.

Finally the scattered field can be given in the general form after applying K/S theory to

find the forcing terms A, (q) and A2(q) and the incident field by modal sums. The result is

1 J (z amn(q, k)
9(q, z) = ý)2 dk mE ý(q - k)n(z) (k2 _ (2.33)

-(2 00 m,n - k - n)(2  q)3

where

-NM ',I (zo)
amn(q, k) - [A ) (q, k) + A (q, k),Fn(zo)] (2.34)

p(zo)p(Z) 8zo

NM is the normalized field at 1 m which comes from the normalized incident field. This

equation tells us that the incident wave is driven by the scattered field.

In order to get the scattered field in the spatial domain, the inverse Fourier transform

should be taken.

--00s(X, z) = dq§(q, k)e-iqx
27 -oo



S(2r)31f dqdkdxo (y (xo)ei(q-k)xnI(z)o (k2 a km(q) e (2.35)
mn

The integrand has simple poles at k = ±km and q = +qn and the integrals over k and

q can be calculated as a sum of residues using Cauchy's theorem. The positive poles are

forward propagating waves and the negative poles are backward-propagating waves for both

mean field and scattered field.

We can compute scattering only from the outgoing mean field of the source which means

when k = km. Then the outgoing scattered field can be given by

s(,) dq d (o)eikm amn(q, km) e-iq(x-x0) (2.36)
(2wr)2 m,n 2km(q - qe

Both forward(q = q,) and backward(q = -qn) scattering can be obtained from the above

equation by applying the Cauchy's residue theorem for evaluating the integral.

2.6 Generalization of Modal Formulation for Arbitrary

Elastic Layers

Tracey[41] developed a modal formulation consider only a half space elastic bottom. But his

modal approach can be easily extended to consider arbitrary elastic layers below the fluid

bottom over an elastic half space if we want to know the field in the fluid. Although the

algebra is somewhat complicated, the theoretical idea and approach are almost the same.

Let us consider a 2 dimensional waveguide with N elastic layers below the water column over

a half space, Fig. 2-1. We assume the rough surface is at the fluid-elastic interface for the

first step.

The field in the j-th elastic layer has the Helmholtz integral representation with the

time harmonic dependence eiwt under the assumption of plain strain with Lame constants

Aj, pj. Using local coordinate system to avoid the instability to solve global matrix, the



compressional and shear wave fields are written as,

Oj(x,z) = (z-z[ + te-)k (zz-ij) (k)eacz(z-z)]-eikdk (2.37)

4j (X, z) = Jo[ (k)e-PJ(z-zJi_) + / (k)eP(zi-z)] -ikxdk (2.38)

where a = k2 and y = k2 - k with kpI and k,j are the compressional and
shear wavenumbers, respectively. The superscript + and - represent up-going and down-
going wave components, respectively.

Since the fluid doesn't support shear waves, we can neglect the second equation in the
water column.

(x, z) = j [0-(k)e-ooz + 0+(k)eaoz]e-ikxdk (2.39)

where Co = yk2 - k2 with ko the compressional wavenumber.

In the elastic half space, the upgoing waves don't exist because the down-going waves
never return. Then the half space field can be given as,

On(x, z) = _00 n (k)e-an(Z-zn-1)e-ikxdk (2.40)

n (x,7z) = /-1(k)e- n(z-zs1)e-ikxdk (2.41)

We can get displacement and stress relationship[5] in the j-th layer which can be repre-
sented as a matrix,



-ik -ik

-aj aj

pjt(2k 2 - ki2) Mj(2k 2 - k .)
2ipykaj -2iupjkac j

2tj (2k 2 - kpi) 2/j(2k 2 - k•i)

0,7(k)e-j,(zj-1)

3 j

-ik

2ipjk 3j
-,j (2k2 - ks )

4ij k/j

-1j

-ik

-2ipljkfj
,uj(2k2 - k )

-4ip jk j

The boundary conditions must be satisfied at all boundaries with the kernels in the

integral representations. There are 4 boundary conditions between two elastic layers. They

are continuity of normal stress azz, tangential stress a.x, horizontal displacement u, and

vertical displacement w. Three boundary conditions must be satisfied at the fluid-elastic

interface. The normal stress in the elastic layer must be equal with the negative pressure

in the fluid which is expressed as azz = -Pw. The continuity of vertical displacement is

expressed by w2w .And no tangential stress aXz = 0.
Po Oz

For a n + 1 layered waveguide including half space, the 4n + 2 unknown wave-field ampli-

tudes in the elastic layers with one known mean field(Im(zo, k)) at the fluid bottom interface

can be collected in a column vector.

p(k) =

Jm(zo, k)
$7(k)

(k)

O;(k)
On (k)

(2.43)

,where "m, is the modal value of the field at the fluid-elastic interface.

iij(k, z)
-j (k, z)

&zzj(k,z)
&zzj(k, z)

••j (k, z) - -zzj(k, z) '2.42)



Then the global boundary matrix B becomes 4n+3 square matrix to satisfy the all bound-

ary conditions.

po 3 x 4 0 0

B= (0 4x4) (4x4) 0 (2.44)

o O 4x4) 0

0 0 0 (4x4) (4x2)

,where O is 4 x 4(4 x 2 for the last column) zero matrices. The other matrix components

can be obtained by the boundary matrix given Eq. 2.42.

The depth derivation of boundary matrix( -) can be obtained by multiplying the columnsaz
-•' -1,--11, a,, 01, • I •,-an,--On.

The rotation operator b(k) can also be derived in a similar way from the field parameter

discontinuities. They are the horizontal and vertical displacement discontinuities, tangential

stress discontinuity, and the discontinuity of differences of two normal stresses for the elastic

interface.

-ux:j + ux:j+l

fvxk - Wvx:j+l

-2Oxz:j + 2&xz:j+l

Ozz:j - xx:j - -zz:j+1 + Uxx:j+l

(2.45)

For the fluid-elastic interface, the discontinuity of the vertical displacement is removed

for two-dimensional P-SV propagation in one-dimensional rough surface.

The depth derivative of boundary matrix and the rotation operator are used in the K/S



equation[23]. The incident mean field is written as a sum over modes m and it is used as a

source of scattered field,

B(q)s(q) =
-NMi- j dm(zs)

(27)2p Zs) o m k - k2

[ (k) i(q - k)b(k)1 0z

_ -NM oj d A dk ý(q - k)
(27r)2p Zs) Jo M

a,(2)(q, k)

a(13) (q, k)

0

0

X m (Zo)

km

~nm

am) (q,

a( 2) (q,

am3 ) (q,
am4 (q,

(2.46)

(2.47)

where m, :Fm are the mean field amplitudes by modes in the j-th elastic layer. They are

the up- and down-going wave components for compressional and shear stress waves in the

j-th layer. The best way to get these components is from a normal mode code like ORCA[43]

which can give the field value in any elastic layers. However we use KRAKENC[29] to get

the value of 'm(zo, k), because ORCA code was not available at the initiation of this work.

KRAKENC cannot compute the other wave components in the elastic layers.

We must compute these unknown coefficients by modes in the elastic layers to solve the

equation Eq. 2.46. We can compute them by solving the mean field boundary conditions,

Bp = 0 combining Eq.2.43 and 2.44. There are 4n + 2 unknown coefficients but 4n + 3

equations in this matrix equation. We neglect the 2nd row in the matrix equation to minimize

errors from the depth derivation in order to solve this matrix equation. Then we make a

t



4n + 2 square matrix by moving Im(zo, k)) term which is given by KRAKENC to the right

hand side of the matrix equation. If we solve the matrix equation with the source 'm(zo, k),

we can get the modal coefficients of up- and down-going waves in elastic layers. We usually

encounter a floating point error to solve this matrix equation through a standard matrix

solver when two or more layers are considered. Therefore we cannot get the exact mean

fields by modes for many elastic layers using KRAKENC. However this approach to solve

the matrix equation can sill be applied with some approximations. We will discuss this in

detail in Chapter 4.

The terms like a(1,12,13) in Eq. 2.47 are the sum of all mean field components which are

used as a source of scattering from one rough surface in the scattering equation(Eq. 2.47).

But up- and down-going wave components in the first layer dominate the other components

in the layers below. Therefore we can use only these dominant components of the mean field

as a source in the scattering equation even when we consider many layers. Generally, this

approximation works well with some limitations which we will examine in detail in Chapter

4.

The rough surface has so far been assumed to be only at the fluid-elastic interface. We

can easily have roughness at an arbitrary elastic interface if a normal mode code to solve for

the mean fields in elastic layers were available. If the amplitude of up- and down-going waves

in the elastic layers is obtained by modal code, a3 -4 at the j-th rough surface in Eq. 2.47

can be calculated. We don't consider this case because the modal code was not available to

us at the initial stage of this work.

If we solve the scattering equation(Eq. 2.47), we can get the impedance form of the

equation with unknowns of the scattered field in the fluid.

s(q, zo) - Zo(q) O>(q, zo) = R,(q) (2.48)

where,



p (2q 2 - k -)2 - 4q2a(q)&(q)Zo(q) 2

pl W2 a(q)k2

R,(q) - (2=)•p(z) dk E (q - k) A)(q, k) + )(q, k)Zo(q)
k2 - 2•

AMA(1)

A( 2)m

Sa(1 )(q, k) + iq2(2q 2 
- k - 2a(q)/(q))

S-plam 2)(q, k)

(2.51)

(2.52)

9(q, zo) is the scattered field in the fluid-elastic rough surface and the R,(q) is the forcing

term.

A wavenumber domain solution to this equation can be written down following Kudryashov

[20]

s(q,z)

7(q)

- Rs(q)I(q, z)
-(q)

= s(q, zo) - Zo(q) 8(q, zo)
Oz

(2.53)

(2.54)

Transforming to the spatial domain and summing of the residues for the forward-scattering

poles q = qn, the forward scattered field is given by

Sf (x, z)
NM

2rp(z,) j dxo IE y(xo)ei(qn - km)xo T n(z)
S m,n 2qn (2.55)

(2.56)
[A() (qn km) o) + A(,(zo

x Oz 2+ (qnkm)n(Z°)] --iqnx
2km

and

(2.49)

where

(2.50)



and the backscattered field(q = -qn) at the source range is written as,

Sb(O,) =
NM I odo E 1 Xo)ei(- qn - k m )xo I n (z)

27p(zs) -0o m,n -2qn

[A') (-q, kmin (zo) + a1)(-q, km) (n(zo)]
x az e-iqnx

2km

These two equations are the same as the equations for a fluid-fluid rough surface in Eq.

2.35 and 2.36. Therefore the two procedures are proven to be the same.

Therefore all Tracey's formula and code including statistics in his thesis[40] can be used

to study scattering in a waveguide by developing subroutines which incorporate elastic layers

in his NMSCAT modal code.

We will study scattering in a shallow water waveguide by this modified NMSCAT code

in the following chapters.

(2.57)

(2.58)



Chapter 3

Scattering Considering an Elastic

Layer Over a Half Space

In this chapter, the theory developed in Chapter 2 is implemented demonstrated. The code

NMSCAT which was originally developed by Tracey[40] is extended to deal with multiple

elastic layers in the bottom. Parameter studies in surface and volume scattering were shown

in Tracey's work for a fluid, a rigid and an elastic half space. Since the basic theory is

the same even when the elastic layers are considered, the extended code should be able to

reproduce Tracey's results.

We will not repeat all Tracey's parameter and statistical studies of coherence here. Instead

we will concentrate on rough bottom scattering. We will study how the elastic layers affect

rough surface scattering by modal analysis.

We will show numerical results of the extended version of NMSCAT considering only one

elastic layer over a half space in this chapter. First, a comparison with the reference solution

from OASS will be given to show the accuracy of the modal approach calculating rough

surface scattering from a bottom with a single elastic layer over a half space. We will show

differences of the scattered field between one layered bottom model and a half space bottom

model. The effects of an elastic layer on the scattering will be studied by varying some



acoustic parameters, like thickness, density and sound speed. The studies of scattering will

be presented using modal concepts.

3.1 Comparison with OASS Model

The first test case scenario has a limestone elastic layer over a basalt half space as shown

in Fig. 3-1. The fluid-elastic interface is rough and the lower interface is smooth to avoid

multiple scattering. The sound speed in the water is constant. The sound speeds and the

densities of the limestone and basalt are taken from Computational Ocean Acoustics[19]. The

attenuation coefficients are 0.1 dB/A for the compressional wave and 0.2 dB/A for the shear

wave for both limestone and basalt. Real sediments in shallow water are usually composed

of clay, silt or sand for the first layer and moraine and chalk for the subbottom although

this varies regionally. These bottom types are relatively soft compared with limestone or

basalt. There are several reasons for a limestone-basalt bottom to be considered. One is

for convenience to compare the results with previous work by others. The field scattered

by hard bottom is usually so strong that we can magnify the effects of scattering by each

parameter, giving a more clear and distinct understanding. The interface waves are also

easily identified and studied.

Fig. 3-2 shows the results of two numerical models. The RMS height and correlation length

is 1 m and 20 m, respectively at the fluid-elastic rough surface. A Goff-Jordan[17] roughness

spectrum is assumed. The Goff-Jordan spectrum and one of its realizations are shown in

Appendix A to be compared with Guassina spectrum. The thickness of the limestone elastic

layer is 20 m. A point source in 2 dimensional ocean is at 50 m depth and the frequency

is 50 Hz. The expected scattered intensities are shown in Fig. 3-2 as a function of range

for a receiver at 50 m depth. The solid line is the result from the OASS code and the

dashed line is the result from the NMSCAT. The expected scattered field intensity has the

same interference pattern over all ranges and is within 2dB except at short range. The

accuracy of the scattered intensity at short range is known to be dependent on the ability
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to model the continuous spectrum. The normal mode model has inherent errors in modeling

the scattered field at short range because normal mode theory cannot calculate continuous

spectrum correctly. Other possibilities of error might lie in the computation of the modal

derivative of the mean field at the rough surface and the modal displacement and stress

components in the elastic layers because the scattered field is very sensitive to the mean

field. But this error should be very small in the one elastic layer scenario. We will look at

this error in more detail later when multiple layers are considered in Chapter 4.

Fig. 3-3 shows the scattered field as a function of depth and range from OASS and

NMSCAT. These two results are almost the same both in amplitude and interference pattern

except near the source. The amplitude differences are smaller than 3 dB over all range and

depth. The high amplitudes near the bottom are due to the Scholte wave. It decays rapidly

in the depth direction so that we can observe these interfacial wave effects only within 10 m

from the bottom at this frequency.

We can conclude from these agreements that the NMSCAT code provides a good ap-

proximation to the scattered field. The efficiency in computation time is shown in Tracey's

thesis[40] and this trend is the same in this extended version of NMSCAT because the modal

code is dependent only on the number of modes.

3.2 The Effects of an Elastic Layer

Real ocean bottoms are often composed of several elastic layers. Most elastic layers have in-

homogeneities with random roughness but are generally thought of as horizontally stratified.

The scattered field is strongly influenced by the acoustic parameters of these elastic layers and

roughness statistics. The roughness statistics have been studied by many scientists[6][18][26].

The waves scattered from a rough surface propagate through the elastic bottom layers

and interact with the elastic interfaces and layers. When we model the bottom as an elastic

half-space, we neglect any possible layers below the first elastic interface and therefore expect

errors in the predicted acoustic field.
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Figure 3-3: Comparison of results from OASS and NMSCAT. The upper picture is from

OASS and the lower picture is from NMSCAT. Same scenario as Fig. 3-2.
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In this section, we will study how much one elastic layer affects the scattered field. We

assume that only the fluid-elastic layer is rough and the other lower layers are smooth, which

means that the source of the scattered field is only from that rough surface.

Fig. 3-4 shows the scattered fields calculated from a limestone half space(solid line) and a

basalt half space(dashed line) and one 10 m limestone layer over a basalt half space(dotted

line). The magnitude of the scattered field from one layer model is higher than the one from

the limestone half space, and smaller than the one from the basalt half space except at very

short range. The intensity of the scattered field is similar to that from the basalt half space

near the source but it becomes similar to that of the limestone half space at long range. At

short range, the waves enter into the bottom at steep angles. The steep-angle waves are

not affected strongly by the limestone layer because its thickness is shorter than one wave

length(30 m). The specular angles from the first and second interfaces are almost the same

when the angles are steep. Therefore we can see strong intensity at short range because the

scattered waves from the 1st interface are added constructively to the reflected waves from

the second interface. But at long ranges, the incident grazing angles at the rough surface

become lower. Then the field in the limestone becomes more evanescent and consequently

does not see the basalt. Therefore, the scattered field becomes similar to the scattered field

from a limestone half space.

The interference patterns are different from one another although the one layer model

may become similar to the limestone half space at long range. These interference and phase

differences are thought to be related to the thickness of the limestone layer, the incident

angles of the wave, the acoustical parameters, and coupling effects of two elastic layers.

From these distinct differences in the expected scattered fields, we can conclude that

incorporating the effects of a layer can dramatically affect the scattered field. These effects

include the interactions of scattered and scattered-reflected waves from two interfaces. This

is the reason we should model the bottom as multiple layered for more realistic and accurate

scattered. One can conjecture that the inclusion of more layers in the model will also

significantly enhance scattered field predictions in realistic layered bottoms.
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Figure 3-4: Effect of an elastic layer on the expected scattered field at z=50 m. The solid line

is from the limestone half space, the dashed line is from the basalt half space, and the dotted

line is from one limestone layer(h=10 m) over a basalt half space. The other parameters are

the same as in Fig. 3-1.
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3.3 Thickness Effects

We have examined how one elastic layer affects the scattered field in the previous section as

a validation of our efforts in extending Tracey's NMSCAT code. Now we move to the effects

of the thickness of the elastic layer.

Fig. 3-5 shows the expected scattered field intensity as a function of range and thickness

of the elastic layer. All the environmental parameters are the same as in the scenario shown

in Fig. 3-1 except the depth of the second interface which is varied. The maximum intensity

of the scattered field appears at a thickness of 30 m except near the source. The scattered

field converges to scattering from a limestone half space as the thickness becomes more than

10 wavelengths(A = 30m). If we consider that the attenuation coefficients of compressional

and shear waves are 0.1 and 0.2 dB/A, respectively, this is what we expect.

We investigate the 30 m case in more detail in Fig. 3-6. The scattered field shows the

distinct modal pattern in the depth direction. Looking at the mode shapes in the lower

picture, we see that the 6th mode shape is the same as the modal pattern of the scattered

field. The 6th mode corresponds to an incident angle of about 22.20 . The waves incident

on the limestone layer at 22.20 angle resonate with the reflected waves from the basalt half

space. This resonant mode in the limestone layer strongly excites scattering to give the

maximum intensity. We can easily observe this resonant phenomenon in the the 6th mode

shape in the limestone layer. Therefore the scattered field is dominated by mode 6. This

explanation by mode shapes makes understanding of the scattered field easy. It is one of the

advantages of the normal mode approach.

Interestingly, we cannot observe these phenomena in the mean field; there are only phase

differences as shown in Fig. 3-7.

We can infer from these facts that the scattered field is a good way to study the thickness

of the elastic layer because the scattered field is much more sensitive to changes in the depth

of the elastic layer. Further, a modal approach is an intuitive way to explain the physics of

the scattered field.
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Figure 3-5: Effect of thickness of one elastic layer on the scattered field at the receiver z=50

m.
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Table 3.1: Geoacoustic properties of three different elastic layers.

Bottom type Density(g/cm3 ) c (m/s) cs(m/s) ap(dB/A) a,(dB/A)

Moraine 2.1 1950 600 0.1 0.2

Chalk 2.2 2400 1000 0.1 0.2

Limestone 2.4 3000 1700 0.1 0.2

Basalt 2.7 5250 2500 0.1 0.2

3.4 The Effects of Bottom Properties

We have shown the effect of layer thickness on the scattered field in the last section. Now

we will examine how the different properties of the elastic layer affect the scattered field.

In order to determine the effects of bottom properties, the elastic layer thickness is set

to 30 m in this section. The acoustic parameters for the materials of each elastic layer are

taken from Computational Ocean Acoustics[19] and are shown in Table 3.1. We use the same

attenuation coefficient(0.1 and 0.2 dB/A for compressional and shear wave, respectively) to

avoid effects of the attenuation. The attenuation affects the scattering very strongly but

these effects may be linearly added because the attenuation is a linear function of range and

the coefficients[4].

Fig. 3-8 and Fig. 3-9 are the mean and scattered intensities,respectively, for different

acoustic properties. The solid line is for the limestone layer, the dashed line is for the chalk

layer, and the dotted line is for the moraine layer.

We can easily observe that the trends of the scattered fields are different from the ones

of the mean fields. The limestone and moraine layers(solid and dotted line, respectively)
give almost the same intensity over all ranges in the mean field although the interference

pattern is different. In the scattered field, the fluctuations of the dotted line(moraine layer)

is bigger than the ones of the solid line(limestone layer) and the amplitude differences are
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Figure 3-8: Mean fields for 3 types of the elastic layer over a basalt half space. The solid

line is for limestone, the dashed line is for chalk, and the dotted line is for moraine.
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bigger at long ranges. For the chalk layer, the mean field intensity is the smallest compared

with the other two types but the scattered field is the biggest. The mean fields are similar at

1 km range but the differences increase with range. The range dependence of the scattered

field is reverse. These differences between the mean and the scattered field are because the

scattered field is a function of the mean field and its derivative at the rough surface, and the

discontinuities in the scattered field and its derivative at the rough surface as shown in Eq.

2.34.

We can conclude that the scattered field is affected by bottom properties significantly

and the patterns of changes in the mean and the scattered fields are quite different. If we

compare the mean and scattered fields together, we might be able to get more information

about the elastic layer in the bottom.

3.5 Modal Studies

Now we can study the scattered field using modes to understand the physics more easily and

clearly. Although it is hard in practice to excite only one propagating mode in a shallow

water waveguide, some scientists have studied how to excite s single mode and how this

mode couples with other modes after excitation[7][28]. The single mode excitation gives us

good insight about the mechanics of the scattered field.

Fig. 3-10 shows the scattered power vs. mode number and range for the 30 m thick

limestone over a basalt half space. All the proper modes except the Scholte wave(mode 1)

excite mode 6 strongly as shown in the upper picture in Fig. 3-10. This tells that all proper

modes transfer energy to mode 6 by mode coupling. This is the same results as was observed

due to thickness variations earlier in this chapter in Fig. 3-6. But incident mode 7, which is

the last proper mode, excites the 7th mode but decays so quickly that it does not influence

the scattered field at long range. When incident mode 6 is excited, it excites not only mode

6 itself but also mode 5 strongly. This means that two modes are coupled and energy is

exchanged between two modes. All analyses by mode shapes and single mode excitation
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Figure 3-10: Single mode excitation for mode 5, 6 and 7. The colors show the scattered

power vs. mode and range. 30m thick limestone over a basalt half space.

56

0.0007

0.00063

0.00056

0.00049

0.00042

0.00035

0.00028

0.00021

0.00014

7e--5

0.002

0.0018

0.0016

0.0014

0.0012

0.001

0.0008

0.0006

0.0004

0.0002

0.00012

0.00011

0.0001

9e-05

7--05

7e--05

5e--05

40--05

3e--05

2C--05

le--O5-OSM1
_-os

II • I IJI . .. . . . . . . . . . .

----- ---- ----
f-ng ~lrresa~H8P~o8gn~nss~~r~~L ~. . . . . . . . .



show consistent explanation of resonance of mode 6 which drives the scattered field strongly.

There is another useful way to look at the scattered field by modal statistics. Fig. 3-

11 shows the cross-modal coherence at 0.5 km, 4 km, and 50 km for the 30 m limestone

layer over a basalt half space. The left pictures are the normalized total field cross-modal

coherence and the right ones are normalized forward-scattering field cross-modal coherence.

At 0.5 km, all modes are highly coherent for the total field because forward propagating

scattering is not significantly yet. For the scattered field, modal coherence is much less than

the total field even at short ranges. At 4 km, only proper modes are highly coherent. The

higher modes of the mean field are stripped, which means that the scattered modes dominate

incoherent. The 1st mode is Scholte wave so it dies quickly to be incoherent. Mode 3 is

incoherent even though this is a proper mode while the 2nd mode is highly coherent with

other modes both in total and scattered field. Modes 5 and 6 in the scattered field show

a little higher coherence because of modal energy transfer by coupling as was shown in

Fig. 3-10. At long range(50 km), all modes are almost totally incoherent both in total and

scattered field. This means that the scattered fields become dominant in the total fields at

this range. The cross-modal coherence is a function of range so we can determine at a given

range whether or not cross-modal coherence and the attribution of the scattered field are

important.

These two modal studies could explain the scattering mechanisms. These studies could

also be applied to a real experiment involving single mode excitation and data process-

ing such as matched-field processing(MFP) and matched-mode processing(MMP) for cross-

modal coherences[41].

3.6 Other Parameter Studies

Here we study some physics which are important or interesting in the scattered field in ad-

dition to the bottom properties and thickness. The parameters such as correlation length,

the sound speed profile of water are studied with the effects of leaky modes, the forward and
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backward scattering contributions, the K/S self-consistent theory vs. the Born approxima-

tion in this section.

We mentioned the importance of modeling of the continuous spectrum. In order to see

the importance of the leaky modes involved in computing the scattered field, we compare

the scattered field calculated with and without leaky modes. In Fig. 3-12, the solid lines are

calculated with all modes and the dashed lines represent the field computation without the

leaky modes. The thickness of the limestone elastic layer is 30 m in this figure. At short

range, the effect of the leaky modes is strong both in the mean field and the scattered field

because the leaky modes are not attenuated yet. But at long ranges the leaky modes do not

affect the scattered field significantly and the total field is mainly determined by the discrete

spectrum. The leaky modes seem to have an important role in the scattered field relatively

compared with the mean field though it is not distinct.

Next, we will show the effects of correlation length on the scattered field. The forward

scattering becomes strong as the correlation length becomes large. We can easily see these

effects in Fig. 3-13. The forward scattered fields (thin lines) do not vary significantly be-

tween three different correlation lengths while the backward scattering(thick lines) is more

sensitive to the correlation length. When the correlation length is small compared to one

wavelength(30 m), the forward scattering and backward scattering is of the same order of

magnitude(seen in the two solid lines). When the correlation length is large compared with

one wavelength, the forward scattering is much bigger than the backward scattering(seen

in dotted lines). The longer correlation length scatters most of the energy to the specular

direction because each section of rough surface acts like an array of coherent virtual sources

which are added in coherently over the surface length. The short correlation length spread

the scattered energy to large wavenumbers because the rough surface acts like a collection

of random diffractions.
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Figure 3-12: Leaky mode effects on the mean fields and the scattered fields from all modes

and proper modes only. The solid lines are for proper modes and the dashed lines are for all

modes. The top two curves are the mean fields and the lower two curves are the scattered

fields in case of 30 m limestone layer over a basalt half space
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Figure 3-13: Effect of correlation lengths. The thick lines are the backward scattering and

the thin lines are the forward scattering at 4 km range. The solid lines are for CL=10 m,

the dashed lines are for CL=20 m, and the dotted lines are for CL=100 m. The RMS height

is 1 m.



Next we analyze how much the forward and backward scattering affect the total field as

a function of range. In Fig. 3-14, the forward scattering converges to the total field at long

range because backscattering becomes smaller at long range. But at short range, backscat-

tering is bigger than or comparable to the forward scattering.

Now we examine the effect of the sound speed profile(SSP) on the scattered field. For a

downward refracting SSP, the scattered field intensity is known to be high because the waves

interact a lot with bottom. This is shown in Fig. 3-15 using thin curves, where a 10 m lime-

stone layer over a basalt half space was used. The thin solid line is the expected scattered

field from an iso-velocity profile and the dotted line is from the downward refracting profile.

The expected scattered field intensity is 2 - 3 dB bigger for the realistic downward refracting

profile as we expected. However, for the 30 m limestone layer case, the downward refracting

sound speed profile(thick solid line) gives a small scattered field intensity compared with the

isovelocity profile(thick dashed line). The reason is thought that the scattered field is driven

by resonant mode 6 for the isovelocity SSP but mode 6 is somewhat away from resonance

when the downward refracting profile is used to calculate the scattered field. Scattering is

quite a complicated phenomenon which involves many parameters and physics of environ-

ment.

For computational reasons, we have used the Born approximation so far to calculate the

scattered field but we developed the self-consistent theory in Chapter 2. We can apply the

self-consistent theory to calculate the scattered field by using both OASES and KRAKEN to

consider modal scattering loss in the mean field. The mean field from self-consistent calcu-

lations become smaller than the one from the Born approximation because of the scattering

loss in the mean field. This is shown in the mean fields in Fig. 3-16. The mean and the

scattered fields from self-consistent theory give smaller intensities because the mean field

includes the scattering losses. But for this one limestone layer scenario, the effects of fast

decay or growing in the scattered field are not distinct as shown in Tracey's thesis [40].
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Figure 3-15: Effect of sound speed profile of water column on the scattered field intensity.

The thick lines are for 30m limestone layer over a basalt half space. The thin lines are for

20 m layer. The thin solid line and the thick dashed line are from isovelocity sound speed

profile(SSP), the thick solid line and the thin dotted line are from downward refracting

SSP(linear slope from 1500 m/s for top to 1480 m/s for bottom).
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Figure 3-16: Mean and scattered field intensities from self-consistent and Born approximation

calculations. The solid lines are Born approximation and the dashed lines are self-consistent

theory. The upper two lines are the mean fields and the two lower lines are the scattered

fields.



3.7 Summary

In this chapter, we apply the theory developed in Chapter 2 to study scattering. The

extended NMSCAT code was used to calculate the scattered field considering one elastic

layer over a half space. The comparison with OASS shows good agreement and validates

this theory and code to study scattering. The inclusion of one elastic layer over a half

space can compute more realistic scattered fields compared with the half space model. This

tells the importance of a layered bottom model for the scattered field. The thickness and

different bottom types of the elastic layer also affect the scattered field significantly. The

scattered field is more sensitive to change in the depth and properties of the elastic layer.

If we study the scattered field with the mean field, we might get more information about

these parameters in the bottom. Using modal analysis, we showed that the modal approach

is very good way to study scattering mechanisms. Other parameter studies which affect the

scattered field were also shown in this chapter.

However, the real ocean bottom has many layers. The inclusion of more layers in the

model is required to predict the scattered field more accurately. We will pursue the study of

the effects of multiple layers in the next chapter.



Chapter 4

Scattering Considering Multiple

Layers in the Bottom

In chapter 3, we showed that one elastic layer could affect the scattered field significantly.

The inclusion of one elastic layer can yield more realistic results compared with the half space

case. However the structure of the real ocean bottom has many elastic layers. Moreover, all

interfaces in the real bottom have roughness. It is hard to consider all the rough interfaces

and elastic layers in a numerical model. In order to consider many rough surfaces, we need to

consider multiple scattering. The multiple scattering phenomena are not clearly understood

yet and can be neglected in many cases or can be estimated by the single scattering problem

because the problem of multiple scattering of waves is a kind of a linear version of the

many-body problem[4]. Here we also neglect the multiple scattering which means that only

one interface has roughness. We developed the theory to consider any rough surface in the

bottom, but here we assume only fluid-elastic interface has roughness because the modal

code to calculate the mean field in the elastic layers are not available now.

We have used some more assumptions and restrictions to model the bottom as multiple

layers. In the following section, we will discuss those assumptions and restrictions. The

scattered fields from the multiple layered model is compared with the reference solution



from OASS. Then we will simulate the scattered field with the geoacoustic bottom data

from the Korea Strait experiment.

4.1 Modeling of Scattering from Multiple Layers

4.1.1 Assumptions and Restrictions

In addition to the general assumptions of horizontally stratification and range independence,

we have to use another assumption in calculating the expected scattered fields in the water

column for the case of multiple elastic layers. We calculate the scattered field only in the

water column, which is the field of significance to sonar systems.

We need to use the mean fields as a source of the scattered field as in Eq. 2.46. Unfor-

tunately, the normal mode code KRAKENC cannot calculate the displacement and stress

amplitudes of the mean field in arbitrary elastic layers. Therefore we obtain the mean fields

by solving the boundary matrix equation as stated in Chapter 2. We used the standard

matrix solver to compute this matrix equation but the solver becomes unstable when many

layers are considered. The Direct Global Matrix solver[19] can make the solution stable even

when many layers are considered.

If a modal code to compute the displacement and stress in the elastic layers were available,

we can compute the mean fields and replace them in the right hand side of Eq. 2.46. Then we

can compute the scattered field correctly. We can also get rid of the restriction that only the

fluid-elastic layer has roughness. We can easily modify the NMSCAT code to calculate the

scattered field in the water column from any rough interface in the elastic layers. Moreover,

we can calculate the scattered fields in the elastic layers. If we get the scattered field by

using the impedance boundary conditions in Eq. 2.48, we also can replace that field in the

water in Eq. 2.47 and solve the matrix. Then we can get the scattered fields in all elastic

layers.

Since this advanced modal code was not available at the initial stage of this work, we



assume that the components of the mean fields as computed by the current modal code

are the same whether we consider many elastic layers or one elastic layer over a half space.

This assumption is unjustified when the first layer is very thin and the attenuation is small.

However, when the loss in the first or second layer is large enough, the assumption is valid,

because the differences come from up and downward components of the waves in the second

elastic layer and these errors should be very small.

Therefore we can calculate the scattered field in the fluid reasonably well with the restric-

tions when the first or second elastic layer is quite thick or the attenuation of the 1st or 2nd

layer is high enough not to affect the modal components of the up and down waves in the

first layer. We show these in detail in the following sections.

4.1.2 Scattering from Two Layers Over a Half Space

In order to maintain consistency with the previous chapter, we put another elastic layer

between the limestone and the basalt half space. The density of this elastic layer is 2.5 g/cm3

and the compressional and shear wave speeds are 4000 m/s and 2000 m/s, respectively. The

attenuation coefficients are assumed to be the same as in the limestone and the basalt.

Fig. 4-1 shows the scattered fields calculated by considering 2 elastic layers over a basalt

half space. The first and the second layer thicknesses are 10 m in this calculation. The solid

line is from NMSCAT and the dashed line is from OASS. The overall differences are about

5 dB between these two models but the overall pattern of two results is similar. The main

source of error is thought to results from the incorrect calculation of the mean fields in the

first elastic layer as we described in the previous section. If this is true, the results of the

two models should become similar as the thickness of the first layer is increased, because the

upgoing and downgoing components of the waves in the first layer are not greatly affected

by layers below when the first layer is thick enough or attenuated highly.

In order to verify this, the thickness of the first elastic layer is changed to 30 m and that

of the second layer is changed to 20 m. In Fig. 4-2, the differences between two models are
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Figure 4-1: Comparison of the scattered fields from OASS and NMSCAT in the case of a

bottom with 2 elastic layers over a half space. The thickness of each of the two layers is 10

m. The solid line is from NMSCAT and the dashed one is from OASS.
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Figure 4-2: Comparison of the scattered field from OASS and NMSCAT. Properties are the

same as in Fig. 4-1 except that the layer thicknesses are 30 m for the 1st and 20 m for the

2nd. The solid line is from NMSCAT and the dashed one is from OASS.
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Figure 4-3: Comparison of the scattered field vs. range and depth from OASS and NMSCAT

when the first and second layers are 50 m thick. The upper picture is from OASS and the

lower one from NMSCAT.
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smaller and the interference pattern looks similar. The differences are about 3 dB at all

ranges. When the first limestone layer is 50 m thick, they are almost the same amplitude

except at short range as shown in Fig. 4-3. These results confirm the hypothesis that errors

in the computation of the mean field are responsible for the discrepancy between NMSCAT

and OASS.

We can also examine the effects of the second layer. We changed the thickness of the

second layer to 40 m while maintains the thickness of the first layer at 10 m. Fig. 4-4 shows

good agreement of the two scattered fields in both amplitude and interference pattern except

at short range. It also supports our hypothesis that the up and downgoing waves in the first

layer are not affected by the second layer when the second layer acts like a half space. This

fact tells us that we can use this code to calculate the scattered field in the fluid when the real

bottom has a thick or high attenuated 1st or 2nd layer. We considered bottom types such as

limestone and basalt which have low attenuation and high impedance. Realistic bottom types

which are usually high attenuation and low impedance surely give more accurate scattered

fields, because the mean field of the first layer is not affected significantly.

4.1.3 Scattering from Multiple Layers

Here, we add more elastic layers between the limestone and basalt as shown in Table 4.1.

First, another elastic layer is put right above the basalt half space. The acoustic parameters

of each layer are bounded by those of the basalt and limestone. All the layers over the basalt

half space are 10 m thick each. As we expect, the scattered field is not error-free due to

the incorrect mean field calculation as shown in Fig. 4-5. The error is in fact a little bigger

than in Fig. 4-1. That is because the error of the mean field grows when more layers are

considered. The error is about 5 dB range because up and downgoing waves in the first layer

are mainly determined by the first two layers in this example. The error range seems to

be almost the same when 4 layers are considered(Fig. 4-6). This is thought that the layers

below the third layer do not affect the first layer.
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Figure 4-4: Comparison of the scattered fields from OASS and NMSCAT in the case of a

bottom composed of 2 elastic layers over a basalt half space. The second layer is 40 m thick

while the first layer is 10 m. The solid is from NMSCAT and the dashed line is from OASS.
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Figure 4-5: Comparison of the scattered fields from OASS and NMSCAT in the case of a

bottom with 3 elastic layers(10 m thick) over a basalt half space. The solid line is from

NMSCAT and the dashed one is from OASS.
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Figure 4-6: Comparison of the scattered fields from OASS and NMSCAT in the case of a

bottom with 4 elastic layers(10 m thick) over a basalt half space. The solid line is from

NMSCAT and the dashed one is from OASS.
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Table 4.1: Geoacoustic properties of the 10 elastic layers to be used for multi-layered bottom.

As the thickness of the first elastic layer is increased, the results from OASS and NMSCAT

are almost the same as a function of depth and range(Figs. 4-7 and 4-8). We can see a little

big difference in this case compared with Fig. 4-3 because of the bigger error of the mean

field components.

The trend continues in the case of 10 layers. The properties are shown in Table 4.1. In

Fig. 4.9, the interference patterns are almost the same except at short range while amplitude

differences exist.

It is interesting to observe the scattered fields as a function of the number of layers.

Although we cannot find any consistent pattern of change, the scattered fields are distinct

for each number of elastic layers. We can conclude that the scattered field can be predicted

more realistically when the bottom is modeled as multiple layers.

No. of layer Density(g/cm3 ) Cp(m/s) c,(rnm/s)

1(limestone) 2.40 3000 1700

2 2.45 3500 1800

3(2 layered model) 2.50 4000 2000

4 2.55 4250 2100

5(3 layered model) 2.60 4500 2200

6 2.62 4600 2250

7(4 layered model) 2.64 4700 2300

8 2.66 4800 2350

9 2.68 4900 2400

10(basalt) 2.70 4250 2500
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Figure 4-7: Comparison of the scattered fields from OASS and NMSCAT vs. depth and

range in the case of a bottom with 3 elastic layers with 50 m thickness for the first layer.

The upper picture is from NMSCAT and the lower one is from OASS.
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Figure 4-8: Comparison of the scattered fields from OASS and NMSCAT in the case of a

bottom with 4 elastic layers with 50 m thickness for the first layer. The upper picture is

from NMSCAT and the lower one is from OASS.
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Figure 4-9: Comparison of the scattered fields from OASS and NMSCAT in the case of a

bottom with 9 elastic layers (10 m for each) over a basalt half space. The solid line is from

NMSCAT and the dashed one is from OASS.



4.2 Simulation of the Scattered Field in the Korean

Experiment

Up to now, we have dealt with unrealistic hard bottoms to aid in understanding the scattering

physics. Usual shallow water bottoms are composed of unconsolidated sediments such as clay,

silt or sand for the first layer and moraine or chalk for the basement. We will study scattering

in the Strait of Korea using measured bottom properties.

The ACT III(The Third Acoustic Characterization Test) was performed in the Strait of

Korea in summer in 1995. The Strait of Korea is a typical shallow water environment; it

is very complicated, with strong tides, currents, the fronts, and internal waves. During this

experiment, geoacoustic data of the bottom were collected by the grab samples and 3.5 kHz

precision depth recorder data and the Japanese seismic lines. After analysis of all historical

and experimental data, Lynch et al.[24] suggest that the bottom can be modeled as three

layers including a moraine half space as seen in Fig. 4-10. For the bottom statistics of

RMS height and correlation length, we choose the same values as in the previous chapter

because they are not stated in Ref. [22]. The RMS height and the correlation length are

quite important to know exactly but they are not variable for one experiment site. We will

examine layer effects of the bottom to affect the scattered field because others already study

the effects of rough statistics numerically[41][23]. There are two main parameter's to be

examined: one is the thickness of the first layer(10 - 20 m)[24] and the other is the wave

velocity of the second layer(1760 ± 80 m/s). We will study how these uncertainties affect

the scattered field. First, we need to show that NMSCAT is an appropriate model for this.

NMSCAT is believed to be adequate to calculate the scattered field with two layers over a

moraine half space because the attenuation in the first layer is quite high and the second layer

is quite thick. In order to make sure, the scattered field calculated by NMSCAT is compared

with one by OASS. Fig. 4-11 shows the results from NMSCAT and OASS. Although there is

a 2 dB difference, NMSCAT is quite good model to study the scattering in the Korea Strait

experiment because the error lie within 2 dB of each other which is acceptably low and the
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interference patterns are exactly the same over all ranges.

First, we will find how the thickness of the first shelly silty sand layer affects the scat-

tered field. From the two curves in the lower part in Fig. 4-12, we can see a difference of

more than 2 dB at long ranges while relatively good agreement exists at short ranges. The

scattered field from 10 m shelly silty sand layered bottom is 2-3 dB higher than in the 20

m case at long ranges. This is exactly what we expect because the higher attenuation of

scattered waves in the first layer. The interference patterns are similar although they are

not identical. It is very interesting to look at the difference in the mean fields of the two

models, which is small at short ranges but increases with range. The overall amplitude is the

same but only the amplitude of the wiggly components are somewhat different. It is quite

different feature from the scattered fields. We can observe that the thickness of the first layer

affects the mean and scattered fields in different ways. This suggests that if we study the

mean and scattered fields together, we may get more information about the thickness of the

first elastic layer although it is not easy to determine the thickness of each layer at this stage.

The geoacoustic parameters for the first elastic layer are usually known in the shallow

water by grab samples and other direct or indirect measurements. The basement subbottom

properties are also identified by historical data and acoustical measurements. On the other

hand, the properties of the second or the other layers may not be available in many cases.

We can research the effect of the second elastic layer in the Korea Strait experiment.

We assume that we know the thickness and acoustic parameters of the first elastic layer

but are unsure about the second layer. In order to remove the attenuation effects, the same

attenuation coefficients are used for the second layer. The density and compressional and

shear speeds of the second layer are set to 2.00 g/cm3 , 1788 m/s, and 600 m/s, respectively.

The results are shown in Fig. 4-13.

The scattered field from the new second layer is 3 dB or more higher than the original

scenario over all ranges. The harder bottom yields more intense scattering as expected. We

cannot see much effects of the harder bottom in the mean field, Rather the mean field from
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Figure 4-12: Effect of thickness of the first shelly silty sand layer on the mean and scattered

fields. The upper two curves are the mean fields and the lower two curves are the scattered

fields. The solid lines are for 10 m thickness and the dashed ones are for 20 m thickness.
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Figure 4-13: Effect of the elastic properties of the second layer on the mean and the scattered

fields. The upper two curves are the mean fields and the lower two curves are the scattered

fields. The dashed line is for a new second layer while the solid one is for the Korea Strait

scenario. p = 2.0g/cm3 , c, = 1788m/s, c, = 600m/s for new second layer while p

1.95g/cm3 , cp = 1760m/s, c, = 400m/s for the Korea Strait scenario.



harder bottom is slightly smaller. The interference patterns are quite different between two

models, both for the mean and scattered fields. The different material in the second layer

affects the mean and the scattered fields significantly.

We can see these differences at all depths and ranges in Fig. 4-14. The two pictures at the

top of Fig. 4-14 show thickness effects. The amplitude and the interference pattern at short

range are almost the same. As the range increases, the scattered intensities from the 20 m

thick layer become 2 dB smaller or more. In the lower picture, we can see the strong modal

features at all depths and ranges. The intensities are 2-4 dB higher than in the original

Korea Strait scenario. We expect the scattered field in this case to be strongly driven by

one or two modes as we discussed it in Chapter 3. We now examine these modal shapes.

For the Korea Strait scenario, we get 6 proper modes out of 20 modes calculated by

KRAKENC. The first mode is the Scholte wave whose phase speed is lower than the fluid.

We get 19 modes for a 20 m 1st layer scenario and 16 modes for a new 2nd layer scenario.

Both have 6 proper modes and one Scholte wave mode. We show only 10 modes in Fig. 4-15.

The proper modes from 2 to 6 mode are almost the same but the last proper mode 7 and

the three leaky modes are quite different as shown in Fig. 4-15. If we observe the bottom

pictures(a new 2nd layer) of Figs. 4-14 and 4-15, we can easily notice that the pattern of the

scattered field is similar to the 8th mode shape, the first leaky mode. This means that the

scattered field is strongly driven by mode 8 in this scenario.

For the middle picture(20 m 1st layer) of Figs. 4-15, we can see that mode 7 and 8 are

weak. We cannot observe the modal patterns in the middle picture of Fig. 4-14. For the Ko-

rea Strait scenario, we can see weak modal pattern up to about 3 km range as shown in the

upper picture of Fig. 4.14. The 8th mode shape in upper picture of Fig. 4.15 is weaker than

the new 2nd layer scenario. The modal approach provides a simple and clear explanation of

physics of scattering.

There is another approach to look at the scattered field using modes. A single mode

excitation gives us easy and simple physical insights to know how the scattered field is affected
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Figure 4-14: Scattered fields of three different scenarios. The upper picture is for the Korea

Strait scenario, the middle one is for a 20 m 1st layer, and the last one is for a new 2nd layer.
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Figure 4-15: Mode shapes for the three scenarios. The upper picture is for the Korea Strait

scenario, the middle one is for a 20 m 1st layer, and the last one is for a new 2nd layer.



by modes as stated in Chapter 3. Fig. 4-16 shows the scattered field modal amplitudes for

excitation by modes 7,8 and 9 in the new 2nd layer scenario. All the proper modes excite the

8th mode strongly and the first leaky mode (9th mode) excites the 9th and 8th mode but

they die out quickly. This results is consistent with the previous modal shape explanation.

In this scenario the 8th mode is strongly excited by all proper modes and drives the scattered

field.

We can also see similar phenomena in the Korea Strait scenario in Fig. 4-17. In this case,

the 7th mode is excited strongly by the proper modes instead of the 8th mode. Compared

with Fig. 4-16, the amplitude is small and dies quickly with range. The other adjacent modes

are also excited although their amplitudes are smaller. That is the reason we cannot see

strong modal patterns in the scattered field in Fig. 4-14. For 20 m 1st layer scenario, any

particular mode is not excited strongly in Fig. 4-18. Instead all modes are excited and the

amplitude is small compared with the two other scenarios as shown in Figs. 4-16 and 4-17.

This also matches with the previous explanation.

The cross-modal coherence is another systematic way of looking at acoustic fields. The

normalized total and forward-scattered fields are shown in Fig. 4-19. These pictures are

from the original Korea Strait scenario. At 0.5 km range, the proper modes are not yet

distinguishable in the total field so the coherence of all modes is high. In the scattered field,

the modal coherence is not as high as in the mean field even at short ranges. At 4km range,

the leaky modes become incoherent and only proper modes show high coherence in the total

field. We can observe the 7th and 8th modes are relatively coherent with proper modes for

the scattered field. At 50 km, only a few proper modes show some coherence for both the

mean and scattered fields. All modes are totally incoherent, as evidenced by the fact that

only diagonal terms are left. At this range the scattered fields become dominant in the total

fields.

Although we tried to show the effects of the 1st layer thickness and the different type

of the second layer on the scattered field, the scattered field is a more complex function of
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the sound speed profile in the water and the correlation length and RMS roughness heights,

etc.. That means that the other parameters could affect the scattered field strongly and

the thickness of the different bottom types might be hidden behind the more important

parameters in some cases. We need to know the environmental parameters as precisely as

possible. We also used many assumptions like range-independence, 2-dimensional scattering

and neglect of multiple scattering from two or more rough surfaces etc.. However, we can

conclude from these facts that the modal study of scattering is a good way to explain the

scattered field and its mechanism.

4.3 Summary

We showed that extended version of NMSCAT can deal with arbitrary elastic layers to cal-

culate the scattered field with some restrictions. These restrictions would be easily removed

if a normal mode code were available to compute the mean fields in the elastic layers. The

comparison with OASS results proved that NMSCAT can calculate the scattered field ac-

curately in the case where the first or second elastic layer is thick enough or have strong

attenuation.

We applied the extended NMSCAT to study the scattered field in the Korea Strait Ex-

periment. Because the attenuation is quite high in the shelly silty sand layer which has 10

m thickness below the water column, we can use NMSCAT to model the experiment and

the results show a quite good agreement with ones from OASS.

We can easily see the differences in the scattered field when the thickness of the first layer

is changed from 10 m to 20 m. The properties(density, the sound speeds) of the second layer

also affect the scattered field significantly. The scattered field is driven by the 8th mode

because this mode is resonant in the elastic layer. The modal approach gives good and easy

explanations of these scattering phenomena.

This means that the scattered field is proven to be a good way to study the thickness of

the elastic layer. If we study the mean fields and the scattered fields together, it will provide



more information about the thickness of the first elastic layer. We propose as further study

to extract the thickness of the first elastic layer from the scattered and mean fields by an

inverse method.



Chapter 5

Conclusion and Future Study

5.1 Conclusion

The main contribution of this thesis is to develop the extended version of the normal mode

scattering code NMSCAT and to use this code to study scattering considering the elastic

layers in the waveguide. This code can deal with any arbitrary elastic layers to calculate the

scattered field with some restrictions. The scattered fields computed by NMSCAT are in

good agreement with the ones by our benchmark, OASS, except at short range. The error is

within 2 dB when we consider one limestone layer over a half basalt space. The restrictions

on the validating regions come from errors in the calculation of the mean fields in the elastic

layers using the normal mode code KRAKENC. This restriction could be removed easily if

a normal mode code like ORCA is used to compute the displacement and stress of the mean

fields in the elastic layers. Although NMSCAT has these restrictions currently, it is still a

good way to study scattered fields if we model the first two elastic layers as thick or having

high attenuation. In these cases, the error is quite small when we compare the results with

OASS. The Korea Experimental geoacoustic data is used to simulate the scattered field. The

bottom in the Korea Strait is composed of 3 elastic layers including a moraine half space.

We studied the effects of the thickness of the 1st layer and the different bottom properties



in the 2nd layer on the scattered field. Their effects are quite distinct and are analyzed by

the modal approach.

The modal approach to study the scattered fields is shown to have some advantages. One

is the computational efficiency at the long ranges as compared with OASS, which is the wave

number integral method. Although the computational efficiency of normal mode scattering

is not the focus of this thesis (see reference [40]), efficient computation is very important in

studying the scattering because scattering requires heavy computation.

Another merit of modal scattering is the intuitive understanding of the underlying physics

that it can provide. The mode shapes keep interpret the physics of scattering as do single

mode excitations and cross-modal coherences. Moreover, the modal analysis may provide

good hints to plan the acoustic experiments to study the bottom properties by prescribed

modal excitation and cross-modal analysis.

The scattered fields are strongly affected by thickness and the properties of elastic layers.

We can infer from these facts that the scattered fields may provide a good way to study

the bottom properties such as thickness and the sound speed of the layer. This is because

the scattered fields are driven by both the mean fields themselves, and the derivative of

the mean fields at the rough interface with the discontinuities of the scattered field and its

derivative at the rough surface. The scattered field is usually more sensitive to thickness,

sound speeds, number of layers or other properties than the mean field. The pattern of

change of the scattered fields as a function of these parameters do not agree with the one

in the mean fields. Therefore, if we study the bottom properties by the scattered fields and

the mean fields together, we can get more information about the bottom.

5.2 Future Study

The extended NMSCAT is an integrated modal code to calculate the scattered field in the

waveguide considering arbitrary elastic layers. Although it is a versatile tool to study the

statistical scattering, it involves some assumptions and restrictions.



First, we have to calculate the displacement and stress vectors of the mean field by modes

in the elastic layers in order to get rid of the restraints discussed in Chapter 2 and 4. Then we

can compute the scattered field in the water column accurately for arbitrary layers without

any restrictions. We can also deal with any rough surface in the elastic layers. The scattered

fields in the all elastic layers could also be calculated if we obtain each up- and down-going

wave components. Then a versatile and applicable modal code could be completed. The

integrated modal code will be very helpful to study the scattering mechanism and physics.

One of the advantages of a modal approach is the easy extension to other environments like

range-dependent and 3 dimensional environments. Shallow water is highly range dependent

because of the bottom topography and the inhomogeneities in the water itself in the form of

wave fronts, solitons and solibores with strong currents and tides. The normal mode code

for the mean field propagation can incorporate these complex environments so the modal

scattering code might also involve these complex environments although more research is

necessary. For the shallow water waveguide, the range dependence would often be important.

Scattering might be affected significantly by the range dependence. Then the scattering

theory could be modified in the same way as adiabatic or coupled mode theory for the

mean field. For high frequency scattering at short ranges, the 3 dimensional scattering could

be important for accurate calculation of the scattered field. Although the initial approach

was suggested by Tracey with cylindrical coordinates, a further study should be focused on

non-symmetric environments for full 3 dimensional scattering.

We suggested that the bottom properties might be studied by scattering with mean field

in the shallow water waveguide. We just showed that the scattered field is affected strongly

by the bottom properties, such as thickness, bottom properties and number of layers. We

can infer from this fact carefully that the bottom properties might be extracted by the

scattering signals using inverse methods. Forward problems should be studied first with

many parameter studies. The scattering prediction is more dependent on the environment

than the mean field prediction. Therefore the consideration of many parameters is absolutely

necessary for prediction.



Finally, experimental data should be compared with the scattered field calculated by nu-

merical models using measured environmental parameters. Although many unknown effects

of some parameters and their effect on scattering are not well understood yet, intelligent

approximations, restrictions and careful selection of the most important parameters should

make it possible to compute the expected scattered field and compare it favorably with the

experimental data. Then we can understand the mechanisms and the physics of scattering

more clearly.



Appendix A

Realization of the Rough Surfaces

A.1 Realization of the Rough Surfaces

When we describe the rough surface in the stochastic theory, two main functions are required

to represent roughness in the 1 dimensional rough surface. One is the correlation function

and the other is the RMS height function. The power spectrum of the rough surface is

usually used on this purpose.

The Goff-Jordan[17] showed that the power law spectra can represent the real rough

bottom better than the Gaussian spectra because the power law can use different scales and

include higher frequency terms. The Gaussian spectra have some advantages to incorporate

its formula with other mathematics in a simple way so it is still valid and useful in some

problems.

The Gaussian spectrum and the Goff-Jordan spectrum used in this paper are expressed

by,

P(k) = V/2FLe - (kL)2  (A.1)

P(k) = rL[(kL)2 + 1]-1.5 (A.2)
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Figure A-i: Realization of the rough surfaces for two types of spectra. Solid line is for the

Goff-Jordan power spectrum and the dashed line is for the Gaussian spectrum.

where L is the correlation length k is the wave number.

As Fig. A-1 shows two spectra, the Goff-Jordan spectrum includes high energy in the high

wavenumbers. One of the realizations from two power spectra is shown in this figure, too.

The RMS height is 1 m in the realization. As we can expect, the higher order oscillation are

observed in the realization of the rough surface from the Goff-Jordan spectrum. The effects

of the higher order on the scattered field were mentioned in Tracey's thesis[40].
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