
Interactive Web Shopping:

Building Trust through Storytelling

and Interface Cues

by

Jonathan E. Shoemaker

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 23, 1997

Copyright 1997 Jonathan E. Shoemaker. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce,
to distribute publicly paper and electronic copies of this thesis,

and to grant others the right to do so.

wuthor_
Department of Electrical Engineering and Computer Science

May 23, 1997

Certified by.
Glen L. Urban

Dean, MI 01oan isor

Accepted by
S.-thur eith

Chairman, Department Committee on Gradu eses

OCT 2 9197

IA

Interactive Web Shopping: Building Trust through

Storytelling and Interface Cues

by
Jonathan E. Shoemaker

May 23, 1997

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

Companies are becoming increasingly excited about the marketing potential of

the Web. Consumers, however, remain wary about the potential problems with

conducting transactions over the Internet and view retail Web sites with suspi-

cion. Many of the current sites lack interface cues that could build trust with

consumers and entertain them while they shop. In the following thesis, I discuss

the concept of trust and how to improve current sites using trust building cues
and interactive interfaces. I also describe the development and implementation
of the Java software framework that I designed for a prototype site and its poten-
tial for expansion. Lastly, I explore the possibilities of adding role playing scenerios
to retail Web sites and introduce further topics for research.

Thesis Supervisor: Glen L. Urban
Title: Dean, MIT Sloan School of Management

Acknowledgments

I dedicate this thesis to my family, whose financial support allowed me to

come to MIT and whose emotional support helped me to survive the past five

years. My parents, Harold and Sandy Shoemaker, taught me the importance of

hard work and always applauded my efforts, despite the outcome. I would like

to thank my sister, Susan Shoemaker, for always listening to my problems and

giving good advice.

I would also like to thank MIT's La Maison Frangaise for five years of friend-

ship, good food, and laughter. It has always been my "home" at MIT, and I will

miss it in the years to come.

I am also extremely grateful for Jeffry Kahle, my best friend, for his emo-

tional support. For nearly three years he has managed to keep me sane, despite

my engineering studies and workload.

Lastly, I would like to thank my associates at the MIT Sloan School of Man-

agement. I greatly appreciate the guidance and assistance of Dr. William Qualls

and Dr. Glen Urban, with whom I have had the honor of working during the past

year. Ahmed Benabadji and Frank Days have also been valuable to me while I

worked on the project. I thank them for their friendship and moral support.

Contents

Chapter 1 Introduction

Web Marketing Opportunities 8
Shortcomings of Current Retail Web Sites 8
Suggestions for Improvements 10
Recent Research 11
Thesis Goals and Overview 12

Chapter 2 The Issue of Trust in Online Marketing 15

A Definition of Trust 15
The Composition of Trust 16
Qualities of a Trustworthy Individual 16
Trust in a Software Agent 17
A New Model for Trust in Online Marketing 18
Applying the Model to Web Content 20
Suggestions for Site Improvements 21
Introduction of Our Prototype Site 24

Chapter 3 The Overall Plan for the Prototype 26

Following the Cascade Model of Trust 26
The Four Main Modules 26
Remaining Topics 29

Chapter 4 Marketing and My Software Experience 31

Marketing and Its Interest in Computers
"Information Acceleration" Multimedia Surveys
The Task at Hand
Relevant Experience with IA Surveys
Problems with AML and the Surveys
Some Pros and Cons of Using the Web
Deciding How to Implement the Framework
An Initial Java Feasibility Test
Further Java Research

Table of Contents

Chapter 5 Quick Introduction to Java Basics 41

Syntax, Garbage Collection, and Basic Object Features 41
Variable Types 41
Built-in Code Libraries 42
More About the java.awt Package 42
The java.awt.image Package and Image Effects 44

Chapter 6 The Evolution of the Framework 46

Early Conflicts with the AWT Layout Managers 46
The Original Object Hierarchy and Its Problems 47
Screen Sequences and Memory Problems 50
Further Conflicts with the AWT Layout Managers 52
Scrapping the Dashboard for a Better Interface 54
Design of Better, More Flexible Image Buttons 56
Work in Progress 58

Chapter 7 Java Framework Class Descriptions 59

Class Hierarchy
Class Functionality Descriptions

CarApplet
CarLayout
DashImageFilter
AppFrame
Screen (and its subclasses)
Border and ImageButton (third-party)
ScreenButton
MyButton
MyButtonSet
CheckBoxButton
CheckBoxButtonSet
RadioButton
RadioButtonSet
GoButton

Classes in Progress

Table of Contents

Chapter 8 Reflections and Further Research Directions 70

Lessons Learned 70
Further Java Development and Interface Ideas 72
The Possibilities of Role Playing Games 73
Trust and Role Playing Games 75
Current Limitations 75

Appendix A Partial List of Trust Building Cues 76

Appendix B Java Source Code 77

CarApplet.java 78
CarLayout.java 80
DashlmageFilter.java 81
AppFrame.java 82
Screen.java 86
IN_Ol.java 91
MyButton.java 92
MyButtonSet.java 97
GoButton.java 98
CheckBoxButton.java 101
CheckBoxButtonSet.java 103
RadioButton.java 104
RadioButtonSet.java 106
Border.java 107
ImageButton.java 111
ScreenButton.java 117

References 118

List of Figures

Chapter 3 The Overall Plan for the Prototype

Figure 3.1: The prototype's four main modules 26
Figure 3.2: An overall flowchart for the prototype 28

site

Chapter 4 Marketing and My Software Experience 31

Figure 4.1: Chip allocation test screen 33

Chapter 5 Quick Introduction to Java Basics 41

Figure 5.1: A method of creating transparent 45
regions in Java images

Chapter 6 The Evolution of the Framework 46

Figure 6.1: Original object hierarchy, by 47
containment and functionality

Figure 6.2: First test with the dashboard object as a 48
Canvas subclass

Figure 6.3: The dashboard as a simple Object with 49
a transparent image

Figure 6.4: Dashboard with the gas pedal as a 53
three-dimensional image button

Figure 6.5: Template for each screen's interface 55
Figure 6.6: Transformation of the SEEK dashboard 56

button to GO

Chapter 7 Java Framework Class Descriptions 59

Figure 7.1:
Figure 7.2:

Class inheritance hierarchy
Class containment hierarchy

Introduction

Web Marketing Opportunities

A report by Alba et al. (1996) predicts that Web-based sales will sum

from 5 to 300 billion dollars by the year 2000. Many retailers, hearing

these predictions, are rushing to the Web to capture a chunk of the ex-

panding market of middle- to upper-income Internet users. Their target

consumers typically have high disposable incomes and have little time to

spend comparison shopping.

Shortcomings of Current Retail Web Sites

The methodology and interface of most retail Web sites face some

serious drawbacks. Instead of taking advantage of the potential that the

Internet offers, in terms of interactivity and information collection, most

sites simply provide online electronic catalogs. Often, these catalogs only

include a short description of the item, a price, and an order number. If a

consumer knows precisely what he wants and knows that he definitely

wants to order it through a particular merchant, then the online catalog

works well.

Unfortunately, for some goods, a consumer has little or no knowl-

Chapter 1: Introduction

edge about what he really wants. Online catalogs do little to help him

decide to buy a particular good since he may have no idea what product

by any single manufacturer will best serve his needs while fitting within

his budget. For example, a first-time car buyer may not have brand pref-

erences and may be looking for a specific type of vehicle (e.g., sports

utility), but knows nothing about the available products on the market. In

this case, he would probably want to talk to his friends, family, or a knowl-

edgeable salesperson (Alba, 1996). He would probably not want to visit

the Web sites of ten to fifteen different auto manufacturers, collect all the

statistics of the available models, and decide from those what to buy.

In addition, the consumer must trust that the Web site provides him

with accurate information and can deliver on its promises. Many current

retail sites give only a phone number to call for placing an order or for

asking questions. Sometimes, when the consumer does call to order a

product, he finds that its real price is not the one quoted on the site.

Furthermore, if he sends his credit card information over the Internet to

purchase the item, he must trust that he will be charged the stated price

and that his credit card information will not be misued. Due to these

issues, consumers remain wary about purchasing products over the Web.

Chapter 1: Introduction

Suggestions for Improvements

The model retail Web site should build consumer trust, especially if it

attempts to sell high-priced durable goods, such as automobiles. Trust-

building should be its first priority, since consumers will be more likely to

purchase from the site if they know they can trust it. Depending on the

products the site tries to sell, the effort required to gain consumer trust

could be substantial.

The model site should also provide a service to the consumer. It

should offer assistance and guidance, and it should be fun and easy to

use. Instead of hiding long product and price lists under layers of nested

Web pages (as many sites do to discourage comparison shopping), a site

should smoothly guide the consumer through the shopping process, par-

ticularly if he has no idea what he wants to buy (Alba, 1996). Conversely,

if the consumer knows what he wants, it should also provide easy access

to information about the product's price and availability.

The whole entire selection process, therefore, must be quick and

relatively painless, yet also thorough and trustworthy enough that a buyer

feels he is sufficiently maximizing the utility he will gain through the pur-

chase. Some recent studies have shown that computer users typically

Chapter 1: Introduction

spend less than ten minutes at a particular site unless it is particularly

entertaining or interactive. Thus, except for shoppers who have already

decided on a particular purchase, any site which nests long lists of items

and hides prices without an interactive search or selection mechanism

likely loses market share of undecided or casual shoppers.

Examining these factors, the main research question is this: How

may one best design and implement interactive, Web-based marketing

systems which are at once fun, trustworthy, easy to use, and fast enough

to keep the interest of casual shoppers and Web surfers?

Recent Research

In late 1996, Glen Urban, Dean of the Sloan School of Management,

proposed a project to study the usage and effects of an interactive site

including the ideal elements described above. The prototype site would

allow the user to shop for a pickup truck from any manufacturer several

different ways, depending on the level of guidance that he required or

desired. Both Ahmed Benabadji (an MBA student at Sloan) and I worked

together with Dean Urban on the project since December 1996, and Frank

Days (another MBA student) joined the team in February 1997. Ahmed

and Frank developed the site's trust-based marketing model and its gen-

11

Chapter 1: Introduction

eral flow, while I studied the technical issues, made implementation deci-

sions, and designed a software framework for it.

Thesis Goals and Overview

In this thesis, I address problems with current retail Web sites, intro-

duce interface cues and tools that may build consumer trust in a site, study

previous marketing multimedia projects in relation to the Web, and present

a modular framework for creating an interactive retail site. While I do not

imply that my framework is the only one or the best available, it can easily

be extended from its present form to encompass most large projects.

Chapter Two discusses the concept of trust and relates it to online

marketing. It also lists some broad trust building cues that may build

consumer trust in a site. Among the cues, it presents the notion of

storytelling and how it may be used to make a site more fun and attractive.

Chapter Three summarizes the marketing design of the prototype

Web site that we developed. It includes a flowchart of the user's journey

through the site. It also discusses the purposes for the site's four main

modules and the services that they offer to the user.

Chapter Four reviews past history with multimedia marketing surveys

and describes how some of their elements could be extended to the Web.

12

Chapter 1: Introduction

It explores the Java programming language as an option and discusses its

pros and cons. Lastly, it provides evidence of the feasibility of Java for use

with interface controls.

Chapter Five quickly introduces Java basics with comparisons to C++.

Readers familiar with C++ (or other object-oriented languages) but unfa-

miliar with Java may find this short chapter helpful for understanding the

terminology in Chapters Six and Seven and the code in the Appendix.

Chapter Six outlines the evolution of the software framework for the

site. It provides a journal of the changes over a five-month period that led

to the final prototype design. The end of the chapter briefly discusses

work in progress at the time of this writing, and explains how the frame-

work might be extended.

Chapter Seven describes the Java classes that form the software frame-

work for the site. It does not include any code but shows the ancestral

and functional hierarchies of the classes and outlines their major pur-

poses.

Chapter Eight concludes the thesis. It reflects on the lessons I learned

while working on the project and introduces ideas for future research

directions. It delves into the possibilities of RPGs as it contemplates the

Chapter 1: Introduction

potential of the Web within the next three to five years.

The Issue of Trust in Online Marketing
A Definition of Trust

To define trust as it pertains to Web shopping, I will refer heavily to

Ahmed Benabadji's MBA thesis (Benabadji, 1997). Ahmed was a student

at the MIT Sloan School while working with me on the project, and for his

thesis he studied the concept of trust in the electronic marketplace. He

designed a new model for how trust affects purchase decisions on the

Internet and how online businesses may effectively build consumer trust.

Benabadji cited Deutsch (1958) for the following definition of trust as

"an expectation of interpersonal events":

"An individual may be said to have trust in the occurrence of an

event if he expects its occurrence and the expectation leads to

behavior which he perceives to have greater negative motivational

consequences if the expectation is not confirmed than positive

motivational consequences if it is confirmed."

Deutsch also suggested that trust is an issue when some future course of

action is yet ambiguous, when others affect the outcome, and when nega-

tive effects of the outcome outweigh positive effects.

Chapter 2: The Issue of Trust in Online Marketing

The Composition of Trust

To further describe some aspects of trust, Benabadji mentioned Hosmer

(1997), who proposed a set of trust characteristics:

"1. Trust is generally expressed as an optimistic expectation

on the part of an individual about the outcome of an event

or the behavior of a person.

2. Trust generally occurs under conditions of vulnerability to

the interests of the individual and dependence upon the

behavior of other people.

3. Trust is generally associated with willing, not forced, coop-

eration and with the benefits resulting from that coopera-

tion.

4. Trust is generally difficult to enforce.

5. Trust is generally accompanied by an assumption of an

acknowledged or accepted duty to protect the rights and

interests of others."

Qualities of a Trustworthy Individual

But what characterizes a trustworthy individual? What qualities make

a given person more trustworthy than another? To answer those ques-

Chapter 2: The Issue of Trust in Online Marketing

tions, Benabadji quoted five aspects from an analysis by Butler and Cantrell

(1984):

"1. Integrity - the reputation for honesty and truthfulness on

the part of the trusted individual.

2. Competence - the technical knowledge and interpersonal

skills needed to perform the job.

3. Consistency - the reliability, predictability, and good judg-

ment in handling situations.

4. Loyalty - benevolence, or the willingness to protect, sup-

port, and encourage others.

5. Openness - mental accessibility, or the willingness to share

ideas and information freely with others."

Trust in a Software Agent

The above qualities likely help to build trust in interpersonal relation-

ships, but what about trust between an individual and an electronic ser-

vice or a software agent? Personal computers and the Web have not yet

provided the technical capability for high-quality video and audio interac-

tion between people on the Internet. Furthermore, most businesses can-

not afford to staff Web sites with hundreds of people around the clock.

17

Chapter 2: The Issue of Trust in Online Marketing

For the next few years, they will have to rely on software agents for most

online consumer interaction. Benabadji cited Van Slyke (1996), who said

that trust between a user an a software agent is determined by the follow-

ing:

"1. The user's knowledge (domain and technical).

2. The predictability of the agent. (The agent performs con-

sistently on frequent tasks.)

3. The dependability of the agent (expectation that the agent

will help if needed).

4. The technical competence of the agent, or his ability to per-

form the tasks.

5. The 'fiduciary' responsibility of the agent.

6. The level of control given to user to monitor his agent.

7. The frequency of use."

A New Model for Trust in Online Marketing

To summarize the remainder of his work, Benabadji created a new

model for trust with respect to Internet commerce because previous mod-

els proved to be inadequate. He called it the "cascade model of trust." In

his view, consumers must pass a certain trust "threshold" in each stage of

18

Chapter 2: The Issue of Trust in Online Marketing

the shopping process before they can proceed. He cited four stages in all,

including the following: trust in the channel, trust in the agent, trust in the

information, and trust in the fulfillment.

The first three stages occur before the consumer decides to purchase

a product, and the last occurs afterwards, primarily affecting merchandise

returns and repeat purchases. The first stage, trust in the channel, implies

that the consumer must trust the method by which he shops for a product.

When shopping over the Internet, the consumer wants assurance that his

transactions are safe and that his private information remains private. The

second stage, trust in the agent, suggests that the consumer must believe

that the software agent (or live salesperson) wants only to serve his needs

as well as possible.

The third stage, trust in the information, progresses when the con-

sumer accepts the credibility of the agent and believes the information he

receives. The consumer reaches the fourth and last stage in the process

after he has decided to make the purchase and relies on the agent to

honor his promises, deliver the product, and guarantee its worth. How

the agent performs during the last step affects whether the consumer will

return to purchase again.

Chapter 2: The Issue of Trust in Online Marketing

Applying the Model to Web Content

Relating the cascade model to Web site content, Benabadji promoted

trust building cues, or "signals in the environment that result in a higher

perception of trustworthiness by the consumer." Through focus group

studies and surveys, he concluded that the five following dimensions of

trust were the most important to online shoppers:

"1. 'I trust what I understand.' Consumers want predictability

and consistency from an agent. They also want to be able

to assess its relative competence in providing recommen-

dations.

2. '1 trust processes and information that I control.' The con-

sumer should be able to roam the site freely, feeling that

the site caters to his needs. He wants to see only what he

cares about, and does not want to have a lot of useless

information or advertising "pushed" at him.

3. '1 trust Web sites that provide positive and negative infor-

mation.' Consumers want honesty, integrity, and openness.

4. '1 trust people.' The site must emphasize likeability and

friendliness, just like many successful salespeople.

5. '1 trust independence.' Consumers value benevolence and
20

Chapter 2: The Issue of Trust in Online Marketing

dependability when assessing the trustworthiness of an

information provider."

The fifth point, "I trust independence," was repeated many times by

the focus groups, who referred to Consumer Reports and the Edmunds

Web site. They praised those sources for not taking money from manufac-

turers or advertisers and for being open and honest about prices, features,

specifications, and quality.

Suggestions for Site Improvements

Using Benabadji's five major dimensions of trust, I will attempt to

suggest improvements that Web sites can implement to build consumer

trust throughout the three pre-purchase shopping steps. The first step,

trust in the channel, implies that the consumer has to believe that the

Internet will protect his privacy, including his name, address, and credit

card information. To build this trust, a site could show that it provides

complete encryption of transactions (as the Dell Computer site currently

does) and promise that no information would be given to anyone not

involved with a particular transaction. A company could back up these

statements with its own address and contact information (including a toll-

free number) for verification and for legal purposes should it break its

Chapter 2: The Issue of Trust in Online Marketing

promises.

Building trust past the second threshold can be very difficult for Web

sites, since the agent is primarily text and images on a computer screen.

Instead of interpreting facial and vocal cues from a live salesperson, a

consumer must rely on only what he sees (or might hear) on the site. He

must be able to control his experience, instead of the site controlling it for

him. Just as when a shopper tells a pushy salesperson "I'm only looking,"

in order to be left alone, the consumer should be able to avoid an agent if

he so desires.

Furthermore, to emulate successful salespeople, the interface of the

site must be friendly and interactive. The graphics should be pleasing and

comforting, yet brilliant and exciting. Background images that provide a

nice backdrop or give some reference point for the site can be very effec-

tive. Hsu (1996) suggests that blue objects reduce eye strain, and focus

group results from Benabadji (1997) imply that blue is a very "trustworthy"

color. In addition, all controls should be intuitive and easy to use. Users

hate bulky, non-descript controls that never respond or react after a long

delay. The design of interactive controls should not be so ambitious that

a modern computer cannot quickly draw them or respond to them.

Chapter 2: The Issue of Trust in Online Marketing

As sites progress, their agents or interfaces can include "storytelling"

elements. As salespeople tell stories and give personal accounts to famil-

iarize themselves with customers, so could a Web site. It could provide a

backdrop, or environment in which the consumer feels confortable as

soon as he enters. The consumer should be able to talk to any agent to

which he feels he might relate and to shop freely with its help. The agent,

of course, may not have to follow the consumer on every step of his

"journey" through the site, but he can "drop by" from time to time and

should return quickly when needed. As the technology progresses, sites

may even provide animated agents in the absence of real individuals.

Chapter Eight of this thesis discusses possible spin-offs from the storytelling

idea.

Building trust to the third threshold is perhaps conceptually easier to

do, but many sites miss some of the subtleties. If a site provides a service,

and does not sell but suggests products, it should remain independent

from all manufacturers and provide non-biased reviews. Consumers ex-

pect to find both positive and negative reviews; if they do not see any

negative comments, they will lose confidence in the information source.

Since communication within newsgroups often represents contrasting opin-

Chapter 2: The Issue of Trust in Online Marketing

ions, a site could support threaded discussions among its users to provide

views from all sides. Furthermore, if a manufacturer wants to build trust in

the information it presents on its site, it should also give its own positive

and negative reviews of its products, and honestly show how each rates to

the competition on all valid points. Obviously, most manufacturers can

create unique lists of attributes that set their products apart from all others.

Consumers sometimes see past this particular ploy and lose confidence.

Consumers greatly respect sites, however, that have undergone third-

party verification and have received rave reviews. Successful sites are just

now beginning to proclaim their awards from trade magazines and evalu-

ation firms. They also have reciprocal links to other well-known and

trusted sites to assure their users that they will provide legitimate services.

Sites that stand alone and reference no other sites seem to falter unless

they have already secured a large following through other arenas, such as

print media or television.

Introduction of Our Prototype Site

Considering these cues, our research team designed a prototype site

that would build consumer trust. We chose to study automobile shopping

because automobiles were expensive durable goods and their salespeople

24

Chapter 2: The Issue of Trust in Online Marketing

were considered to be notoriously untrustworthy (Benabadji, 1997). We

limited the vehicle selection to pickup trucks to reduce complexity. The

following chapter presents the marketing design and layout of the site and

its main modules.

The Overall Plan for the Prototype

Following the Cascade Model of Trust

The marketing model for our prototype followed Benabadji's cascade

model of trust, and implemented some of the ideas mentioned in the last

chapter. (The Appendix contains a list of some specific trust building cues

we considered for the prototype and for future versions of the site.) While

we would have liked to have used all of them, we could not fully develop

them all in time for the June 1997 prototype, nor did we have sufficient

evidence supporting the relative effectiveness of the ideas.

The Four Main Modules

As shown in the figure below from Benabadji (1997), the site con-

tained the following four modules: expert advisor's questions and an-

Figure 3.1: The prototype's four main modules

26

/ Pr Micro-communit

> Expert Q&A --o• • Virtual Showroom L

"- Knowledge Database-4-'

E: : >1

Figure 3.1: The prototype's four main modules

26

Chapter 3: The Overall Plan for the Prototype

swers, microcommunity, virtual showroom, and knowledge database. At

any time, the user could choose to visit any one of the four modules,

although we preferred that the user take advantage of the advisor first. At

the onset of the expert advisor module, we allowed the user to choose an

advisor from a panel of "experts."

Once the user had chosen his advisor, the advisor would present him

with a series of questions about his preferences and planned usage, as

shown in Figure 3.2, courtesy of Frank Days. After the user had answered

all of the questions, the advisor would calculate best-fit matches between

the response data and the available trucks and it would present the re-

sults. (Days and Dean Urban together formulated the flow of the ques-

tions and developed the matching algorithm.) The user could then take

the results and enter the virtual showroom (or virtual "auto show") to look

at the selected vehicles. If he did not yet want to see them, he could visit

the other modules instead.

The prototype virtual showroom module contained specifications and

pictures for a small subset of vehicles. In future versions, however, the

virtual showroom could include full three-dimensional models, similar to

or better than those currently shown on sites like Honda's or BMW's. The

Chapter 3: The Overall Plan for the Prototype

Site Map

Figure 3.2: An overall flowchart for the prototype site

user could look at the vehicles, check out third-party comments, and get

pricing details. In addition, the user could even order a vehicle directly

from online dealers who promised to honor the prices shown.

The microcommunity module in the prototype asked the user some

· .
· (

Chapter 3: The Overall Plan for the Prototype

additional questions about his vehicle preferences so that it could deter-

mine a market segment in which to place him. It would then assign him

to a particular newsgroup corresponding to his segment. If he did not like

the group the module chose, it would also allow him to choose another

group from the entire list. Once in a group, the user could read comments

from others or post his own. Our site would not censor the remarks, so

readers could find both positive and negative comments. We hoped to

build trust in the site through this cue of contrasting reviews, as suggested

by Benabadji (1997).

Lastly, the knowledge database would provide the user with any in-

formation he desired about a particular vehicle. We decided that the

easiest way to implement it for early versions would be as a hierarchy of

HTML pages. Later versions could add a search engine to simplify the

lookup of an obscure item, and could offer movie clips describing the

operation and maintenance of various vehicle components.

Remaining Topics

With a month remaining at the time of this writing before the demon-

stration of the prototype, I hesitate to include further details which could

later be incorrect. The rest of this thesis discusses my programming back-

29

Chapter 3: The Overall Plan for the Prototype

ground, the evolution of my software framework for the site, and the

framework's final implementation.

Marketing and My Software Experience

Marketing and Its Interest in Computers

The idea of using a trustworthy, user-friendly interface for marketing

purposes is certainly not new. Marketing analysts have already been us-

ing computers for quite a few years to collect consumer preference data

about new and existing products and services. Due to the ever increasing

cost of developing and producing new products, especially high-tech du-

rable goods, many companies want to know before they commit to a large

investment what features consumers want most and how much they might

be willing to pay.

"Information Acceleration" Multimedia Surveys

One approach, described by Urban et al. (1996) as information accel-

eration (IA), uses a multimedia survey to present a potential product to a

user as if it already exists. The interactive survey gives the user some

information about the product and its concept and then allows him to

peruse some advertising, a few mock news releases, and even several

"word-of-mouth" interviews, in which current owners (or subscribers to a

service) talk about the aspects they like or dislike. The respondent must

Chapter 4: Marketing and My Software Experience

then answer a series of questions about the product, particularly his pref-

erences for some of its features, how he favors it versus other products in

its class, and how much he might be willing to pay. While the advertise-

ments, news releases, and interviews are often created specifically for the

surveys, they are not intended to sway the respondent toward buying the

product but rather to gain valuable information about what may yet be

changed about the product to make it more desirable to a greater chunk of

the market.

A couple of these surveys have been produced for GM (Urban, 1996),

and for the French electric utility Electricit6 de France (EDF). Typical

interfaces for these programs include visual controls for preference indica-

tion, much like the example shown in Figure 4.1 on the next page. To

distribute points among the items, the respondent may use the arrows

(small arrows for allocating one point at a time, large for ten) or he may

click directly on the scales. The current levels of the scales are repre-

sented by red arrows on the scales and numbers in the boxes beneath the

scales (not shown in the figure). This particular interface shows a spatial

relationship of the preference allocation through the arrows in addition to

the abstract, quantitative relationship given by the numbers at the bottom

of the screen.

Chapter 4: Marketing and My Software Experience

Figure 4.1: Chip allocation example screen

To reduce clutter and complexity, each of the different questions

usually gets its own "screen," unless several questions in a row are of the

same type and can be combined. The screens use large icons, pleasing

background colors, and intuitive visual clues to reduce the risk of confu-

sion (Hsu, 1996). The ideal retail Web site, especially one attempting to

use IA methodology to gain marketing information, should include some

of these ideas in its interface.

Chapter 4: Marketing and My Software Experience

The Task at Hand

The task to create a unique, interactive Web shopping experience

dictated that I search for an implementation beyond plain-vanilla HTML

pages. Many corporate Web sites used them and seemed to be little more

than electronic catalogs, which consumers consulted only to get price and

purchase information. We wanted, however, to attract users to our site

and to keep them as long as possible by making it fun and interactive. I

needed to design a flexible framework that would help us attain that goal.

Relevant Experience with IA Surveys

My previous multimedia software development experience aided me

greatly in that task. After completing my senior thesis at the Media Lab, I

worked on two IA projects during 1996, the EDF and the Salsa projects.

When I took on the EDF project, it had mostly been finished, but I changed

a few final specifications at the request of EDF before finally sending it to

France. The Salsa survey, designed to study the effects of marketing on

consumers' perceptions, shipped near the end of 1996. I wrote all of the

code for it, and designed the screens and media to suit the survey ques-

tions.

Through programming both surveys, I learned much about the Apple

34

Chapter 4: Marketing and My Software Experience

Media Language (AML). It was a very object-oriented language, even

though its syntax was much like that of normal speech. It provided a

framework of objects to handle multimedia easily and consistently. Dis-

play-sized containers called screens held and manipulated media elements

such as images, text blocks, text fields, and movies. I could subclass any

of the media elements to create non-standard effects.

Problems with AML and the Surveys

AML gave me power and flexibility, although it had its limitations.

The first was that the programming environment seemed to need an up-

grade with each new Macintosh operating system. Old surveys would not

run on newer systems, while new surveys would not work with older

systems. Furthermore, AML could not handle very complex tasks. It did

provide hooks to external functions written in C, which meant that I could

write C code for complicated routines, but they were unwieldy and often

unpredictable. Lastly, the AML surveys would only work on the Mac or

the PC, and creating one for both systems meant using the short, standard-

ized ("8 dot 3") DOS filenames.

While these surveys were relatively easy to produce for use on single

Macintoshes or PCs, they were limited by the chosen platform and the

35

Chapter 4: Marketing and My Software Experience

localized storage of data. The IA project for EDF, in particular, experi-

enced problems with the latter limitation, partly due to assistants who

conducted the surveys while not adequately understanding the data backup

procedures. Web-based implementations, however, could prevent such

mishaps in the future, since data files could be stored securely on the site's

Web server itself, under the supervision of the original designers and pro-

grammers. In addition, with the aid of the Java programming language by

Sun Microsystems, a programmer can now write a single application that

can run on any computer with a Java-equipped Web browser installed.

Some Pros and Cons of Using the Web

Despite the benefits, however, using the Web is not an altogether

easy solution to program distribution and data collection problems. While

Java has revolutionized Web programming by providing powerful abstrac-

tions for passing information over the Internet, download time for com-

plex Java applets (or "tiny" applications meant to be run within a Web

browser) can be quite lengthy, perhaps up to ten minutes over poorer

connections. Once the applet downloads, it runs reasonably quickly, but

a typical Web surfer will probably not bother to wait ten minutes, even if

the applet could be very useful. He may wish to get the same services

36

Chapter 4: Marketing and My Software Experience

from a different source without the wait, even if the alternate source is not

as good. If a site must extensively use the power and flexibility of Java to

accomplish its goals, rather than using plain HTML or forms, then it should

also consider the potential problem of long download times and possible

solutions.

Deciding How to Implement the Framework

When considering tools for building the framework, I originally avoided

Java, because I had thought that it would be too slow, complicated, buggy,

and ambitious for the prototype site. I thus began by studying plain HTML

but found that it could not handle the data storage and calculations that

we would need to provide an online shopping advisor. I also considered

CGI scripts, since they could provide storage and perform calculations,

but found that I could not easily implement interactive controls with them.

I briefly looked at ActiveX, but since it was limited to WindowsTM-based

machines and we wanted to reach as many users as possible, I discarded

it from the consideration set. With no other viable options left at the time,

I then researched the capabilities of Java.

Java fulfilled the most important objectives. It would allow me to

Chapter 4: Marketing and My Software Experience

create a unique interface with interactive controls, to store data, and to

calculate best fits between customers' stated needs and available products.

It did, however, complicate the design of the site. Furthermore, once I

decided to create the entire interface in Java, the site became much less

flexible to change than it would have been with a hybrid of Java and

HTML. Java added power while it increased complexity, so building a site

with it demanded careful use of modularity and abstraction. In addition,

due to the aforementioned problems with long applet downloading times,

I had to be even more wary.

An Initial Java Feasibility Test

Before I ventured too far with Java, I tried an initial feasibility test. I

took the complicated chip allocation example "screen" from a multimedia

survey (the same as in Figure 4.1) and attempted to port it to Java. The

code to handle the mouse clicks in each scale, to calculate the values of

each scale, and to move the value indicators was the most complex and

lengthy of any code in the surveys, so it should have represented the most

complicated functionality that the project would ever need.

The Java applet version performed beautifully. It loaded extremely

quickly in both Netscape NavigatorTM and Microsoft Internet ExplorerTM

38

Chapter 4: Marketing and My Software Experience

and reacted immediately to every click, doing as well as the original ver-

sion in AML on the same test machine. In addition, since Java simplified

offscreen image buffering, I used it to do all of the drawing offscreen

before displaying it, so the graphics updated without flashing. Thus, ex-

cept for the browser window, the Java applet looked and acted just like

the screen from the original survey in AML. I was very encouraged by the

results and began to brainstorm a Java-based framework for the site.

Further Java Research

Before I could thoroughly design the framework, however, I needed

to learn more about Java and its capabilities. I bought several books

(referenced at the end of the thesis) and a Java compiler from Metrowerks,

whose CodeWarriorTM compilers have repeatedly earned my trust. Sun's

JavaSoft corporate Web site provided additional information and tips about

Java's built-in libraries and linked to several other third-party sites with

additional libraries for multimedia and database applications. With these

references and resources at my disposal, I began to fully explore Java and

understand what it could and could not do for an interactive Web site.

The evolution of the prototype design and its Java framework after

the initial test can be found in Chapter Six. Chapter Seven summarizes the

39

Chapter 4: Marketing and My Software Experience

purposes of each of the classes, and the Appendix includes the full source

code.

Quick Introduction to Java Basics

Syntax, Garbage Collection, and Basic Object Features

Java's syntax looks a lot like that of C++. A Java class has a construc-

tor method (or function), like a C++ class, but has no true destructor.

Since Java garbage collects its objects, unlike C++, it has no need of de-

structors that purge and delete extraneous objects. (If a programmer does

want to aid garbage collection, however, he can override an object's final-

izeO method, which the garbage collector may or may not execute.) As

with C++, the programmer can subclass any class and override any of its

non-static and non-final methods.

Variable Types

For basic variable types, Java provides the boolean type and the

Unicode 16-bit character type in addition to the usual sets of byte, integer,

and floating-point types. To avoid ambiguity, the boolean type may only

hold true or false values, instead of zero and non-zero values, as in C++.

As an extra feature, newly declared variables are by default set equal to

zero, false, or null, depending on the type. This feature allows the pro-

grammer to skip variable initialization in many instances that he might

have otherwise forgotten and regretted if using C++.

41

Chapter 5: Quick Introduction to Java Basics

Built-in Code Libraries

Java has many built-in classes, arranged in packages. The ones which

I used for the basis of the framework are the following: java.lang, java.awt,

java.awt. image, andjava.applet. The java.lang package groups all of the

language's basic classes, such as Object, Class, String, and Thread. The

java.awt package (where awt stands for Abstract Windowing Toolkit) con-

tains platform-independent interface classes, such as Event, Frame, Image,

Button, Font, Menu, and Window. Java.awt.image provides image filter

and color model classes, and java.applet holds the basic applet class.

More About thejava.awt Package

Sun designed the java.awt package to be extremely platform-inde-

pendent, so that even though windows, buttons, and menus may look

different on PCs than on Macs, they can all be created with the same Java

code and work correctly. Java accomplishes this feat through the use of

layout managers which automatically size and place all common interface

objects (components), such as buttons and checkboxes. The layout man-

agers guarantee that all components will appear on the screen and will

not overlap, despite the GUI differences from system to system, so that the

programmer can rest assured that his application will look decent and will

42

Chapter 5: Quick Introduction to Java Basics

work correctly on any system that supports Java. Although different lay-

out managers abstract placement to varying degrees, the programmer no

longer needs to place components at precise pixel coordinates. (Some

may argue that Sun overdesigned in this particular case, since program-

mers often want to specify precise coordinates to ensure a particular "look."

In external windows other than a browser window, designating coordi-

nates for components and having them take effect requires a few convo-

luted hacks.)

Containers in the AWT, such as panels, frames, and dialogs, are com-

ponents that hold and organize other components. Since containers are

also components, they can hold each another as well. The panel, a basic

container, only helps to organize other components within a window or

another panel. The frame, however, is a fully functioning window, com-

plete with a title bar and pull-down menus. The dialog fills in the gap

between the frame and the panel. It is a small pop-up window often used

for confirmation requests or temporary messages.

The complete list of basic AWT components are the following: but-

tons, labels, checkboxes, radio buttons, lists, choices, text fields, text ar-

eas, menus, canvases, and scrollbars. While most of their names describe

Chapter 5: Quick Introduction to Java Basics

them adequately, a few are less clear. Labels are simple text strings that

serve no other purpose than displaying themselves on the screen. Lists

provide scrolling lists of items, similar to a file selection list, and allow the

user to select single or multiple items from the set. Choices are simply

pop-up menus of textual items. Lastly, canvases have no special function-

ality but give the programmer flexibility to create custom graphic compo-

nents by overriding their basic event handling and painting methods.

Thejava.awt.image Package and Image Effects

The filters in the java.awt. image package can crop images and create

interesting image effects, including color cycling and transparency. For

example, I can create with an art application a non-rectangular object that

should be painted seamlessly over some background. (Typically, Java

would paint a rectangular image to the screen, and any non-rectangular

object in the image would have a visible border.) If the art application

does not support transparency, I can surround the object with some color

that it does not use, such as pure green, and save the image. Using a color

filter from java.awt.image, I can then filter the image for shades near pure

green and convert those pixels from opaque to completely transparent.

Java will then recognize the transparent pixels whenever it draws the new

44

Chapter 5: Quick Introduction to Java Basics

image, and the object should appear to lay seamlessly over the back-

ground.

As an example, the figure below shows each of the steps. The natu-

ral background image in the figure is a 50% gray tone. The color used to

signify transparency for the filter (such as pure green) appears here as

100% black.

Art Program

To make the
image suitable

for transparency,
open it in an art
program, paint
the area around
the button some

unique color, and
resave it.

Code Environment

ublic cla MyFilter extends RGBlm aePllter

In the Java code,
create an image

filter that searches
for pixels with the
unique color and

makes them
transparent.

Use the filter to
create a new image
from the original.

Java Window

Now, whenever
Java paints the
new image, only
the button covers
the background.

Figure 5.1: A method of creating transparent regions in Java images

Java Window

Without using
transparency,

the entire
rectangular

image
obscures the
background,
which should
show here as
gray around
the button.

The Evolution of the Framework

Early Conflicts with the AWT Layout Managers

Early during the initial planning, I concluded that I would need to

circumvent the AWT layout managers to achieve the "look" that we wanted

for the site. I found as I created some example question screens with

buttons and text fields that consistency was hard to achieve with the lay-

out managers. I could not place the components anywhere near where I

had intended over the background image, despite my choice of layout

manager.

Since we wanted to layout the components ourselves in an exact way

so that we could guarantee they would look the same on any system, the

layout managers presented a problem. Besides, in my earlier experience

with multimedia surveys, I had custom-built and placed components on

the survey screens so that they would look as good as possible. I had

hoped to be able to build on my successful survey programming experi-

ences while designing this site. I wanted to find a way to avoid using the

built-in layout managers, despite their advantages.

While working with test applets inside the browser window, I was

able to disable the layout managers by setting each applet's layout man-

46

Chapter 6: The Evolution of the Framework

ager equal to null. I could then specify exact coordinates for the compo-

nents and have them take effect. Since this worked so well for all of the

components in the browser window, I began to design a framework for

putting the interface in an external applet window (or frame). (I would

discover later, however, that the same trick did not work within applet

windows that were separate from the browser.)

The Original Object Hierarchy and Its Problems

The original object hierarchy (in terms of containment and function-

ality) looked much like that shown below in Figure 6.1. The parent applet

that would run inside the browser window created the independent frame

and the child applet that would run inside the frame. Screens could be

added to the frame as panels, and hold other components, such as but-

tons, choices, text fields, and the dashboard canvas object (which existed

because we originally wanted the interface to look like a car dashboard

Figure 6.1: Original object hierarchy, by containment and functionality

47

Chapter 6: The Evolution of the Framework

and windshield). We adopted the prototype dashboard image from the

AutoByTel Web site. The original test looked like Figure 6.2 below.

Figure 6.2: First test with the dashboard object as a Canvas subclass

While the hierarchy worked, I had overlooked that canvases could

not overlap transparently over panels (using the then current Java AWT

libraries). While I had used an image filter to make the border transparent

around the non-rectangular dashboard image, I could only see the back-

ground of the canvas behind the dashboard. As displayed above in Figure

6.2, the canvas unfortunately covered the image on the screen panel un-

derneath it.

Chapter 6: The Evolution of the Framework

A couple of solutions to the transparency problem presented them-

selves, although neither were attractive. I could detract slightly from the

modularity and use the dashboard image without containing it in a canvas,

or I could paint the background screen image within the canvas before

painting the dashboard image in it. Since at that time I had never tried to

crop images in Java, and since I expected that the extra step would add a

noticeable delay to screen updates, I chose the former solution.

The dashboard canvas disappeared and became an Object subclass.

The new dashboard could contain an array of images and could either be

enabled or disabled by the parent screen. Depending on the dashboard's

Figure 6.3: The dashboard as a simple Object with a transparent image

49

Chapter 6: The Evolution of the Framework

status, its images could be drawn or ignored during drawing updates. The

solution worked well, as shown in Figure 6.3. Until we discarded the

dashboard interface several months later, it remained as described.

Screen Sequences and Memory Problems

Continuing from that success, I began adding example screens con-

taining just background images so that I could test the correctness of the

screen transition code. After a few minor bug fixes, the screens seemed to

flow well from one to another. Each screen preloaded the following

screen, so that it would display quickly whenever the user decided to

continue, and each screen removed all records of itself whenever it disap-

peared, so that it would be garbage collected. The first few screens

transitioned quickly, but later screens began to change over much more

slowly, until the application finally died. I added some code to display

available memory at the end of each transition and found a memory leak

with each new screen. The application always ran out of available memory

and crashed, despite the choice of the test platform or the browser. What

had initially looked like success had instead become another roadblock.

I scoured the code for the removal of each screen to make sure that

all records of the screen and its images would be garbage collected. The

50

Chapter 6: The Evolution of the Framework

code was very consistent, and should have cleared all traces of the passing

screens. The problem mystified me for about two or three weeks as I

looked for solutions. The answer finally came from Sun's documentation

for the Image class.

The AWT documentation revealed that all images have aflushO method

that flushes all resources that they might hold. The full description was as

follows:

"public abstract void flush()

Flushes all resources being used by this Image object.

These resources include any pixel data that is being cached for

rendering to the screen as well as any system resources that are

being used to store data or pixels for the image.

The Image object is reset to a state similar to when it was first

created so that if it is again rendered, the image data must be

recreated or fetched again from its source."

The facts that images cache their data with system resources and that

the flushO method exists suggested that garbage collection of the Image

object might not touch the cached data. Indeed, some tests with a few

rotating screens showed that the first pass through the set was slow due to

Chapter 6: The Evolution of the Framework

image loading but additional passes that should have been just as slow

proceeded much more quickly. I added the flushO call to the code for the

removal of each screen, and retested the long sequence of screens.

The test sequence completed without any errors. The flusbO method

solved the memory leak problem. I then continued to optimize the vari-

ous modules and began to test interface components inside the external

applet window.

Further Conflicts with the AWT Layout Managers

The first component that I tried came from a third-party library for

partially interactive three-dimensional image buttons. I had read about

them and decided to try one for the gas pedal/continue button in the

dashboard. The library's programmer had chosen to implement the but-

tons as canvases. The canvases could intercept mouse events and could

paint one of a set of button images with an arbitrarily thick three-dimen-

sional border, depending on the button state. The original trial looked

good (Figure 6.4), but I had great difficulty placing the component in the

window with exact coordinates.

At first, with its container's layout manager disabled, the button would

not appear on the screen, even though it had definitely been added to the

52

Chapter 6: The Evolution of the Framework

Figure 6.4: Dashboard with gas pedal as a three-dimensional image button

container. When I reenabled the container's layout manager, the button

appeared in the correct place, but would not remain there. Rather inel-

egantly, I responded to that by overriding the button's painting and layout

methods to force it to reset its coordinates with every update. It worked,

but I as tested some basic components a week later, I found that they too

suffered from the same problem. I thus had to find a better and more

elegant solution than subclassing and overriding painting and layout meth-

ods for every basic component.

Since the components required a layout manager inside the applica-

tion window, the easiest compromise was to create a new layout manager

53

Chapter 6: The Evolution of the Framework

that would accept custom-placed components. As an initial test, I subclassed

the simplest layout manager, FlowLayout, named it CarLayout, and over-

rode its layoutContainerO method. A container using CarLayout would

call the new layoutContainerO method whenever it needed to layout all

of its components. The first version of the new method looped through

all of the container's components and called ReshapeButtonO for any three-

dimensional image buttons. With CarLayout as the layout manager for its

container, the gas pedal appeared where it belonged in the window and

remained there from screen to screen. (The code for the original CarLayout

layout manager is in the Appendix and is currently being extended to

apply to other basic components.)

Scrapping the Dashboard for a Better Interface

During this period of testing and optimization the marketing design

team and I had not yet cemented the final look of the user interface. We

disliked the gas pedal button, since its placement in the dashboard was

utterly non-intuitive, but we could not agree on a better place for it. Al-

though we wanted to continue the dashboard/windshield metaphor, the

gas pedal had to go. We finally met to brainstorm a new interface design.

At the meeting, we introduced both an acceptable modification to the

54

Chapter 6: The Evolution of the Framework

original design and a completely novel idea, based on role playing games

(RPGs). Since we concluded that proceeding with the RPG idea without

first doing marketing studies was a bit risky, we decided to modify the old

design for our June prototype and to perform the necessary marketing

studies over the summer.

After a few days of work, the modified interface eventually appeared

as shown below in Figure 6.5. With the help of PhotoshopTM filters, the

"artistic" windshield became a cloudy, blue sky. The dashboard disap-

peared completely, and a dual-directional GO button replaced the gas

Figure 6.5: Template for each screen's interface

55

Chapter 6: The Evolution of the Framework

pedal as the screen transition button. Since we wanted the GO button to

look as realistic as possible to match the new background, I digitized a

SEEK button from a picture of a General Motors dashboard and altered it

in PhotoshopTM to look like the GO button as shown below.

PhotoshopTM

Figure 6.6: Transformation of the SEEK dashboard button to GO

Design of Better, More Flexible Image Buttons

After designing the GO button, however, I realized that the three-

dimensional image button class that I had been using would not be suffi-

cient for it. Since the GO button was non-rectangular and since it needed

to be able to handle requests for both reverse and forward directions, the

image button class could not satisfy it. Even if it had been subclassed and

extended, the old image button class could not handle the transparency

and additional button states without an extensive overhaul. I thus had to

devise a new image button class.

Since I already had an ImageButton class, I named the new class

MyButton. I designed it to be even more flexible than the third-party

three-dimensional image buttons, so that transparency would work cor-

~R~L~ ~ ~sl~i~s~
II e· F 7 - '4"

Chapter 6: The Evolution of the Framework

rectly, and so that any button could handle an arbitrary number of states.

Each MyButton included its background image and an array of images for

its states. It also had its own image filters and variables for its current

state, origin, and dimensions.

By this time, I had become extremely familiar with Java's syntax,

strength, and power. The MyButton class worked well for the GoButton

class, which only needed to add a few extra methods to handle the extra

status of the two different directions and to notify the frame that the user

had requested a screen transition. As with buttons to follow, it also over-

rode the following three standard methods: InsertButtonlmagesO,

PaintButtonO, and ChangedStateO. The MyButton class provided enough

abstractions that only those three methods needed to be overridden for

most simple buttons.

Next, I wanted to create custom, interactive radio and checkbox but-

tons for the site using the same ideas behind GoButton. I subclassed

MyButton to create the RadioButton and CheckBoxButton classes. While

the ChangedStateO methods for both classes were a bit complex, debug-

ging them took little time. As with GoButton, they only needed to over-

ride InsertButtonlmagesO, PaintButtonO, and ChangedStateO. Except

Chapter 6: The Evolution of the Framework

for the original implementations being a bit too large, they functioned as

desired and looked great.

Work in Progress

I began to write this section for the thesis after finishing the custom

button classes, and left in progress the following classes: Databank and

ChipModule. Databank would collect and store the data from the compo-

nents of each screen for use with the expert advisor algorithm, and

ChipModule would provide a flexible abstraction for adding the 100-point

"chip allocation" module to a screen. At the same time, I also researched

third-party database frameworks to hold all of the car specifications for the

prototype's expert advisor algorithm. All of these would be finished be-

fore the demonstration of the first prototype in June 1997, since the proto-

type would need the database and the Databank module to show an

actual best-fit calculation.

The next chapter summarizes each of the classes that I wrote or bor-

rowed from third-party sources, and the Appendix includes the entire

code library as it existed while I finished this thesis.

Java Framework Class Descriptions

Class Hierarchy

The framework at the end of May 1997 contained all of the classes

shown in Figure 7.1 below. The hierarchy of the diagram represents the

geneology of the classes, with subclasses drawn below their ancestors. All

of the classes that had been scrapped by the end of May are not included.

The italicized class names in the diagram are built-in Java classes, the bold

names are my classes, and the plain-text names are third-party classes.

Figure 7.1: Class inheritance hierarchy
(Italic: Java base classes; bold: my extensions; plain-text: third-party extensions)

59

Chapter 7: Java Framework Class Descriptions

The next figure shows the main subset of the classes grouped by

function and hierarchical placement. Objects contained by other objects

appear below their containers. For example, components placed within

screens are grouped below screens. Screens then fall under the applet

frame, and so on.

Figure 7.2. Class containment hierarchy

Class Functionality Descriptions

Descriptions of the classes follow. Complete source code for the

classes is given in the Appendix.

Chapter 7: Java Framework Class Descriptions

CarApplet

The CarApplet class extended the Applet class. Its main functions

were to initialize the main applet frame and to place a copy of itself inside

the frame. The copy (or child applet) ran inside the frame and took

responsibility for coordinating the redrawing of everything within the frame.

CarLayout

The CarLayout class extended the FlowLayout layout manager class.

Its job was to ensure that components consistently placed themselves at

exact pixel coordinates within their containers. It provided only one im-

portant method, layoutContainerO.

DashImageFilter

I originally designed the DashImageFilter class for the dashboard, but

even though the dashboard concept died, the filter remained useful. Like

the CarLayout class, the DashImageFilter has only one responsibility and

one major method. DashImageFilter extended the RGBImageFilter class

and overrode its filterRGBO method to change opaque, nearly pure green

pixels in an image from opaque to transparent. Practically every custom-

made, non-rectangular interface item used this class.

Chapter 7: Java Framework Class Descriptions

AppFrame

The AppFrame class extended the basic Frame class. Since I would

only need one instance of the frame at a time, I piled a lot of functionality

into it to save valuable memory space. It was thus one of the largest

classes and provided many useful methods. The AppFrame held the child

applet and any components added to it by the screens. It provided essen-

tial methods that performed screen transitions, distributed mouse events,

loaded images, and added items to special lists.

Screen (and its subclasses)

The Screen class simply subclassed Object. It contained variables to

reference the last and next screens, to indicate if it had already been

visited, to hold an array of images, and to affect the behavior of the GO

button. Its methods provided the means to change any of the variables, to

add or remove buttons from the applet within the frame, to add concur-

rent screens to the frame for preloading, to paint all images, and to flush

all images (including those of buttons) during screen transitions. It also

included a method to compare a new screen subclass with the next screen,

so that if the next screen had already been visited and the two subclasses

were equivalent types the applet would not initialize another copy of the

Chapter 7: Java Framework Class Descriptions

screen.

Subclasses of the Screen class, such as IN_01 (the first introduction

screen) and EX_01 (the first expert advisor screen), usually overrode only

the PresetCharacteristicsO and the AddAllNextScreensO methods. The

former would initialize all of the images that the screen would need, and

the latter, in addition to providing the frame with an initialized list of all

possible following screens, would finally add the images and any needed

components for display. Athough I had not included the code by the end

of May 1997, I had also planned a standard method to override for use

during screen transitions to store component state data. (The data would

first determine the choice of the next screen, if there were several possible

choices, and it would later support the expert advisor's vehicle selection

algorithm.)

Border and ImageButton (third-party)

The Border and the ImageButton classes came from DTAI, Incorpo-

rated. The ImageButton class extended the Canvas class to provide three-

dimensional buttons with images instead of text. Border worked with

ImageButton, and handled the allocation and drawing of an arbitrarily

thick three-dimensional border around an ImageButton's current image.

Chapter 7: Java Framework Class Descriptions

An ImageButton could choose among different images for each of its states,

so that disabled buttons could look different from enabled buttons, and so

on.

ScreenButton

The ScreenButton class extended the ImageButton class to make it

suitable for use with screens. It initially included code to update the

button in the frame's offscreen image buffer, rather than onscreen. Since

the button did not have "on" or "off' states like radio buttons or checkboxes,

it later provided a method to notify its "parent" screen of clicks.

MyButton

The MyButton class supplemented the ImageButton class. It pro-

vided a flexible framework for highly interactive image buttons. It only

subclassed Object, not Canvas, so it fully supported image transparency

over screen backgrounds and thus permitted non-rectangular buttons.

MyButton contained methods to initialize its background, images, com-

panion buttons, filters, and state. It also had methods to determine if a

mouse event occurred inside of it and if the event changed its state, to

paint an image corresponding to its current state, and to flush its images

Chapter 7: Java Framework Class Descriptions

when removed by its parent screen. MyButton optimized updates due to

state changes by providing UpdateButtonO, which would only redraw the

rectangular region of the background image behind the button instead of

the entire background.

MyButtonSet

The MyButtonSet class allowed grouping of similar MyButton instances.

It extended Object to hold arrays for a set of MyButtons and their origins.

It first initialized a single button with all of its images and then "cloned" it

as many times as desired to complete a set. The clones would all refer-

ence the same images as the first button, so only one set of the images

would eat up memory, instead of n sets, where n would be the number of

buttons. MyButtonSet would then loop through the array of initialized

buttons and make them all companions, since they all belonged to the

same set. In addition, since MyButtonSet grouped individual buttons in a

higher-level set, it provided an abstraction method to inquire if any of its

buttons had changed state, so the applet frame could distribute the mouse

events to whole sets instead of individual buttons. It also gave an abstrac-

tion method for painting all of its buttons, so that the applet could redraw

all the buttons in a set with one call.

Chapter 7: Java Framework Class Descriptions

CheckBoxButton

The CheckBoxButton class extended MyButton. It defined the eight

following states that a fully interactive checkbox button would require:

off, on, off with mouse over, on with mouse over, off and pushed, on and

pushed, off and disabled, and on and disabled. To create the images for

the individual states of this button (as well as the other buttons described

below), I took a button from a General Motors dashboard picture and

altered it with PhotoshopTM. CheckBoxButton overrode the

InsertButtonlmagesO method of MyButton to load its specific images, the

PaintButtonO method to paint the correct image with each state, and the

ChangedStateO method to specify its particular state transition behavior.

CheckBoxButtonSet

The CheckBoxButtonSet class extended MyButtonSet to provide a

container for checkbox buttons. It overrode InitOriginalButtonO and

InitClonesO to suit the specific initialization requirements of checkbox

buttons.

Chapter 7: Java Framework Class Descriptions

RadioButton

The RadioButton class subclassed MyButton much like the

CheckBoxButton class. It included the same eight states, but needed ad-

ditional message handling capabilities, since radio buttons in a set are

mutually exclusive. Thus, in addition to the methods that CheckBoxButton

also overrode, RadioButton redefined HandleMessageO and used

NotifyCompanionsO within ChangedStateO to allow radio buttons within

a set to communicate. For the images, I again took a button from a

General Motors dashboard picture and altered it with PhotoshopTM.

RadioButtonSet

The RadioButtonSet class extended MyButtonSet to provide a con-

tainer for radio buttons. Like the CheckBoxButtonSet, it overrode

InitOriginalButtonO and InitClonesO to satisfy the particular initialization

requirements of radio buttons.

GoButton

Lastly, the GoButton class subclassed MyButton. GoButton defined

twelve specific states, needing four more than the other buttons since it

was a bidirectional switch. To be fully interactive, it had to display mouse

events over both the reverse or forward sides of the switch. Since some

67

Chapter 7: Java Framework Class Descriptions

screens would not allow the user to move in both directions, it also pro-

vided status variables and methods to separately enable or disable the

reverse and forward sides of the switch. As with the other button types, it

overrode the usual image initialization and state description methods. Lastly

and most importantly, it included the NotifyGoO method to inform the

applet frame whenever a user clicked it so that the frame could initiate an

appropriate screen transition.

Classes in Progress

Classes in progress at the end of May 1997 included the ChipModule

class, an all-purpose, interactive, 100-point "chip allocation" module de-

signed for marketing questions, and the Databank class, a convenient re-

pository for all of the screens' component state data. I intended the

ChipModule class to be extremely flexible, providing a single abstraction

to permit easy management of a variable number of sliding scales. The

scales themselves could be any uniform size and could be placed arbi-

trarily far apart.

In contrast to the complex ChipModule, the Databank class would be

very simple, containing only large arrays of records and the methods needed

to access them. Each screen that collected component data would call the

Chapter 7: Java Framework Class Descriptions

main Databank instance with its data while transitioning. Methods in

Databank would then use the particular screen subclass as an index into

the array of records and would store the data in the appropriate record.

Reflections and Future Research Directions

Lessons Learned

Working on this project taught me four important lessons. The first

was to never rush to implement a software framework before fully under-

standing the basics. I discovered this bit of wisdom two months into the

development of the project, after I had spent a couple of weeks reorganiz-

ing and repairing my class framework.

The second lesson was to never assume anything about Java. Since

few programmers at the time had written such complex Java applets, I

could barely find texts that discussed more than the basics. I took what

examples I could find and extrapolated, assuming that everything would

work as it had on a smaller scale. The memory problems I had with

images, however, proved otherwise. It took me so long to uncover the

cause of the memory leaks that I learned to test each of my assumptions

separately before combining them with the framework.

The third lesson was to require specifications to be as concrete as

possible before implementing them. I spent countless hours rewriting and

repairing my framework after each revision of the specifications. If I had

waited until they stabilized before continuing or had forced the issue ear-

Chapter 8: Reflections and Future Research Directions

lier with the rest of the team, I might not have had to change as much

code as I did.

The fourth lesson was to build a flexible system. Having concrete

specifications at the very beginning of a project is a engineer's dream;

rarely is it a reality. Since most designs transform as they develop, a

programmer should provide enough abstraction so that he will only need

to change a few small modules instead of an entire framework. Only as I

designed my last few classes did I begin to appreciate the efficiency of

abstractions.

If I had known at the beginning what I know now, I might not have

chosen to use Java for the prototype. When I began, I knew little about

the competing technologies that might have provided easier alternatives.

Repeatedly during the development of the framework I wondered if Java

was worth the trouble. CGI scripts could have collected, stored, and

calculated the data we needed, and HTML pages could have presented a

limited interface. I often felt that I might have been a bit ambitious to

choose Java, an emerging and unproven technology.

That feeling built as I had to move the project from our Apple

MacintoshTM 8100/80s to a PC with a 200 MHz Pentium ProTM. At some

Chapter 8: Reflections and Future Research Directions

point, the Java interpreter for the Macs could no longer handle the de-

mands of the project. By the end of May 1997, only Microsoft Internet

ExplorerTM on the PC ran the applet as it was envisioned. Netscape Navi-

gatorTM could not redraw the partially transparent buttons as quickly or as

unnoticeably as Explorer, which updated them almost instantaneously.

Since one of Java's hallmarks is its compatibility with all major sys-

tems, I felt some regret that the project only ran well on the best systems.

The concepts behind it were great, but they were perhaps a bit ahead of

their time. My teammates reminded me, however, that I was building a

prototype for a site three years in advance. During that time, computers,

network connections, and Java interpreters would likely improve so that

most users would be able to enjoy the site as it was intended.

Further Java Development and Interface Ideas

Due to all of the roadblocks that I encountered, the prototype site left

many stones unturned. With more time, I could have included more

complicated Java classes and dealt with efficient client-server communica-

tion, data storage, and animation sequences. The team might have also

considered adding more trust cues to the interface and tried less conven-

tional approaches to online marketing.

72

Chapter 8: Reflections and Future Research Directions

During one particularly eventful meeting, Frank Days, Salman Khan

(an undergraduate researcher), and I brainstormed interface ideas. One

that we came up with but temporarily discarded was called "Trucktown."

A user entering the site would feel as if he were driving into Trucktown.

The interface would suggest a small rural town, complete with streets,

buildings, and people. The user would meet a friend upon entering the

town and would use a map, similar to those found in video games, to

navigate to any building within the town.

All of Trucktown's buildings would have special purposes, from the

Town Hall, where the user might find preliminary information, to the

Caf6, where he could interactively chat with other online users. Trucktown's

residents included automobile experts, salespeople, librarians, and "nor-

mal everyday folk." Anything that the user could possibly want while

shopping for a truck he could find inside Trucktown.

The Possibilities of Role Playing Games

The Trucktown concept implied the role playing genre of video games

(RPGs). In RPGs, the user becomes a "persona" in some make-believe

context, often portrayed as another country, world, or planet far away in

place or time. Younger consumers, perhaps in their mid-twenties, have

73

Chapter 8: Reflections and Future Research Directions

grown up understanding and enjoying RPGs. The young consumers with

Internet connections typically have a reasonable amount of money to spend

but have little patience with boring retail Web sites, especially when they

contain nothing but redundant pages of text. A site which could success-

fully wrap its marketing in a RPG could perhaps become very popular

.- ~ ~i~t hr~~lm c i rthll tc~r d k th~,k 3 i t s~tl3 d i thrr it l~r
WILL AoL3Ulm LLIL 1 sLa LL • 1•IIL ALLL J UmnaLI nIL..L..LI.. 11a La6em.s n IL . 1_.s11 P

enough to consider purchasing a product.

If the RPG idea could work well for the younger generation, what

about the other segments who do not like science-fiction? When we first

thought about that, we responded with Trucktown, which we thought

would appeal to an older generation. Further ideas suitable for other

segments (and for products other than automobiles) include Earth cities

and towns, magical fantasy worlds, swashbuckling adventure worlds, and

many others. For example, children enjoy stories and they like cartoon

characters. To suit them, a site could have a make-believe world with

talking animals and a storyline with "good guys" and "bad guys." Any one

of these ideas could be expanded to appeal to various consumer segments

and keep them "glued" to the site.

4..,"

Chapter 8: Reflections and Future Research Directions

Trust and Role Playing Games

The RPG concept, however, does not address the trust issue very

well. We originally rejected the Trucktown idea because we wondered if

we, as consumers, would actually trust a RPG site. For example, would a

consumer trust a cartoon more than a real person? Would a synthetic

image inspire more trust than a real picture? We did not know the answers

to those and other similar questions. Future marketing studies with focus

groups and surveys could test the RPG concept to determine if users would

enjoy playing with the system but not trust it enough to consider making

a purchase from it.

Current Limitations

The RPG concept requires sophisticated computational power. While

a Trucktown prototype could be implemented with Java now, the obvious

extensions to animated figures, artificial intelligence, and high-quality two-

way communication require several more years of technological improve-

ments. Further research for electrical engineers and computer scientists

could include studying the evolving systems, languages, and tools that

could someday provide the required improvements.

Appendix A: List of Trust Cue Ideas
(This list comes from A. Benabadji's

notes for a meeting in early May
1997.)

Channel-Based Trust
Concept
Description and justification of process
Endorsement of past users
Endorsement of a celebrity
Awards
Clear pricing policy
"Clean interface"

Guarantees
Brand name
Satisfaction guaranteed
External audits

Dependability
Identity of the system's sponsors
Statement of independence from

manufacturers

Control
Security of payments
Privacy assurance
Interactive storytelling
Non-linearity (menu, sub-menu, etc.)
Selection of expert
Selection of microcommunity
User-friendly interface
Ability to return later

Expert-Based Trust
Credibility
Professional appearance
Description of expert and area of

expertise
Acknowledgment of weaknesses

Objectives, Motivations, and
Incentives

Explanation of motives and incentives
Explanation of deliverable

Microcommunities
Avatars
Background of people
Ratings by users of messages posted by

other users
User-driven chat room
Scheduled chat conferences

Information-Based Trust
Communication Style
No time pressure
Simple language
Ability to change an answer
No personal questions until later
No price discussion until later
User can quit easily
First name basis

Fairness/Openness
Tells the good and the bad
Acknowledges not knowing the answer

to a question
Provides links to other sites

Understanding the Customer's
Needs

Frequent restatement of needs
Open-ended questions
Questions are based on earlier answers
User leads the whole process of

questioning
User defines how he wants the

information displayed and what data
he wants

Appendix B: Java Source Code

CarApplet.java 78

CarLayout.java 80

DashImageFilter.java 81

AppFrame.java 82

Screen.java 86

IN_01.java 91

MyButton.java 92

MyButtonSet.java 97

GoButton.java 98

CheckBoxButton.java 101

CheckBoxButtonSet.java 103

RadioButton.java 104

RadioButtonSet.java 106

Border.java 107

ImageButton.java 111

ScreenButton.java 117

IA Jim:Deaktop Folder:thesiscode:CarApplet.java
Friday, May 23, 1997 / 6:43 AM
// CarApplet.java
// This class provides the applet in the browser
// and within the frame. It is responsible
// for all redrawing within the frame.

import java.applet.*;
import java.util.*;
import java.awt.*;
import java.awt.image.*;
import java.net.*;

public class CarApplet extends Applet {
boolean standalone = false; // Supposed to indicate if we're

// the first or second applet.
boolean gotFrame = false; // True when we have a frame.
AppFrame theFrame = null; // References the current frame.
int desiredW = 720; // Size is defined here (and only here).
int desiredH = 540; // Other references come from these.
CarApplet parentApp = null; // References the first applet.
Databank storage = null; // References the global databank.

// Initializes the applet
public void init ()

super.init();
if(!standalone)

// The parent is the first applet to run. It
// has to allocate and open the frame, make a
// copy of itself, and stick it inside the frame.
parentApp = this;
init2() ;

Page: 1 IA Jm:Desaaktop Folder:thesiacode:CarApplet.java
Friday, May 23, 1997 I 6:43 AM

return gotFrame;

public void HasFrame(boolean hf)

gotFrame = hf;

public void SetFrame(AppFrame inF)

theFrame = inF;
HasFrame(inF != null);

public int GetDesiredWidth()

return desiredW;

public int GetDesiredHeight()

return desiredH;

public void SetParentApp(CarApplet theP)

parentApp = theP;

// On refreshes, if we're the parent and we have no frame,
// make one.
public void start()

super.start() ;
if((parentApp == this) && (gotFrame == false))

init2() ;

public boolean GetStandalone()

return standalone;

public void SetStandalone(boolean sa)

standalone = sa;

public AppFrame GetFrame ()

return theFrame;

public boolean GetHasFrame ()

// only parentApp calls init2()
private void init2()

SetStandalone (true);
if(theFrame != null)

return;

storage = new Databank();

CarApplet cApplet = new CarApplet();
if(cApplet != null) {

theFrame = new AppFrame(this, cApplet, "MIT Car Expert System",
desiredW, desiredH) ;

if(theFrame != null) {
gotFrame = true;

theFrame.show();

// Paint Screen images first and then added components.
public void paint (Graphics g)

if((this != parentApp) && (theFrame != null))

// Get and paint all images for the current screen.
Screen currentScreen = theFrame.GetCurrentScreen();
if(currentScreen != null)

Page: 2

IA Jim:Desktop Folder:thealscode:CarApplet.java Page: 3
Friday, May 23, 1997 I 6:43 AM

currentScreen. PaintImages (g);

// If we have a go button, paint it.
GoButton goBtn = theFrame.GetGoButton();
if(goBtn != null)

goBtn.PaintButton(g);

// If we have any "MyButton" sets, paint them too.
if(currentScreen != null)

currentScreen. PaintAllMyButtonSets (g);

// Be courteous and call the parent's method.
// (Probably not necessary)
super.paint(g);

// Called whenever the applet needs to update itself.
// If it's the child (second) applet, call the above
// paint method with the offscreen buffer as the
// Graphics argument.
public void update (Graphics g)

if((this != parentApp) && (theFrame != null))

if(theFrame.offImage != null)

Graphics offG = theFrame.offImage.getGraphics();

paint(offG); // paint Screen images, Dash images, and components
g.drawImage(theFrame.offImage, 0, 0, this);

public Databank GetDatabank()

return storage;

// This is called when packing/laying out the container.
// The child applet should return its full desired size, whereas
// the parent in the browser can be small.
public synchronized Dimension preferredSize()

if(this != parentApp)
return new Dimension(desiredW, desiredH);

else
return new Dimension(10,10);

0b

0

4t

IA JIm:Desktop Folder:thesiscode:CarLayout.java Page: 1
Friday, May 23, 1997 / 6:44 AM
// CarLayout.java
// This class subclasses FlowLayout and overrides
// layoutContainer() so we can custom-place components
// within a frame.

import java.applet.*;
import java.util.*;
import java.awt.*;
import java.awt.image.*;
import java.net.*;

public class CarLayout extends FlowLayout

// Initializes the layout manager.
public CarLayout()
I

super();

// This version makes components lay themselves
// out. It can be extended by subclassing other
// components and adding extra if (curComp instanceof ...)
// statements.
public void layoutContainer (Container target)

int nmembers = target.countComponents();
int index;
Component curComp = null;

for(index = 0; index < nmembers; index++)

curComp = target.getComponent(index);
if(curComp != null)

if (curComp instanceof ImageButton)
((ImageButton) curComp) .ReshapeButton() ;

'I1

0D

(uP

0

IA Jim:Desktop Folder:thesiscode:DashlmageFilter.java Page: 1
Friday, May 23, 1997 i 6:44 AM
// DashImageFilter.java
// Source for a transparency image filter.

import java.applet.*;
import java.util.*;
import java.awt.*;
import java.awt.image.*;
import java.net.*;

class DashImageFilter extends RGBImageFilter
public DashImageFilter ()

// The filter's operation does not depend on the
// pixel's location, so IndexColorModels can be
// filtered directly.
canFilterIndexColorModel = true;

// This method returns 0 (transparent if alpha bits are 0) for
// primarily green colors.
public int filterRGB(int x, int y, int rgb)

if (((rgb & Oxff0000) < 0x300000) && ((rgb & Oxff00) > 0x8000)
&& ((rgb & Oxff) < 0x30))

return 0:
else

return rgb;

0b

0d

cQI
CT1

IA Jim:Desktop Folder:thesiscode:AppFrame.java
Friday, May 23, 1997 I 6:45 AM
// AppFrame.java
// This is the source for the applet window. It is
// primarily responsible for screen transitions.

import java.applet.*;
import java.util.*;
import java.awt.*;
import java.awt.image.*;
import java.net.*;

public class AppFrame extends Frame {
CarApplet parentApp, childApp; // references the two applets
Image offImage; // references the offscreen buffer
GoButton goBtn; // references the global go button
Screen currentScreen, lastScreen;
Screen[] nextScreens; // an array of all possible next screens
int totalNext, desiredNext; // total next screens, and the desired one
int frameWidth, frameHeight; // (probably not necessary)
boolean mousedown = false; // holds mouse state

// This initializes the frame, the child applet, and the first screen
// I'll admit that I could abstract a few pieces of this method.
public AppFrame(CarApplet pApp, CarApplet cApp, String s, int inW, int inH)

super(s);

parentApp = pApp;
childApp = cApp;

framewidth= inW;
frameHeight = inH;

// sizing the frame
// picking my layout manager (null does not work well)
resize(inW, inH);
setResizable (false);
setLayout (new CarLayout());

// creating an offscreen image
offImage = pApp.createImage(inW, inH);
if(offImage == null)

System.out.println("Null offscreen image.");

// initializing the child applet
cApp.SetStandalone (true);
cApp. SetParentApp (pApp);
cApp.SetFrame(this);

cApp.init();
cApp.start() ;
add(cApp);
cApp.reshape(0, 0, inW, inH);
cApp.setLayout (new CarLayout());
pack() ;

// initializing the array of next screens
totalNext = 0;
nextScreens = new Screen[l];
desiredNext = -1;
lastScreen = null;
currentScreen = null;

Page: 1 IA JIm:Desktop Folder:thesiscode:AppFrame.java
Friday, May 23, 1997 / 6:45 AM

// allocate the go button
goBtn = new GoButton(cApp);

// add first screen to list of next screens
// load its items
// choose first screen as next screen
// transition to next screen
IN_01 firstScreen = new IN 01(this);
AddNextScreen (firstScreen);
PreloadNextScreens ();
PerformScreenTransition(GoButton.PUSH_FWD);

public CarApplet GetParentApplet()

return parentApp;

public CarApplet GetChildApplet()

return childApp;

public int GetFrameHeight()

return frameHeight;

public int GetFrameWidth()

return frameWidth;

public Screen GetLastScreen()

return lastScreen;

public Screen GetCurrentScreen()

return currentScreen;

public Screen[] GetNextScreens()

return nextScreens;

// Starts preloading the images for all possible next screens.
public void PreloadNextScreens()

int index;

for(index = 0; index < totalNext; index++)

// If we've already visited this screen,
// we need to replace a few values
if (nextScreens[index] .AlreadyVisited())

nextScreens [index] .SetScreenFrame (this);
nextScreens [index] .PresetCharacteristics ();

Page: 2

IA Jim:Desktop Folder:theslscode:AppFrame.java
Friday, May 23, 1997 / 6:45 AM

nextScreens [index) .BeginPreloading ();

// Checks if any of images for the possible next screens
// is still preloading.
public boolean AnyBusyPreloading()

boolean temp = true;
int index;

for(index= 0; index < totalNext; index++)

if(nextScreens[index] != null)

temp = temp & nextScreens[index] .FinishedPreloading();

else

temp = false;
break;

// temp is now true iff all have loaded
// thus !temp is false iff all have loaded

return !temp;

// This looks for a particular screen reference in the
// array of possible next screens and sets the desiredNext
// index to it. If it can't find the screen, it returns
// false.
public boolean SetNextScreen(Screen nextS)

int index;
int tempSave = desiredNext;

desiredNext = -1;
for(index = 0; index < totalNext; index++)

if(nextScreens[index] == nextS)

desiredNext = index;
break;

// If it's not here, revert desiredNext to its old state
// and return false.
if(desiredNext < 0)

desiredNext = tempSave;
return false;

return true;

Page: 3 IA Jim:Desktop Folder:thesiscode:AppFrame.java
Friday, May 23, 1997 / 6:46 AM

if(nextS == null)
return;

if(totalNext == 0)

desiredNext = 0; // If only one screen, it's not necessary
// to use SetNextScreen().

nextScreens[0] = nextS;

Screen tempList[] = new Screen[totalNext + 1];

System.arraycopy(nextScreens, 0, tempList, 0, totalNext);
tempList[totalNext] = nexts;

nextScreens = tempList;

totalNext++;

// Removes all possible next screens and resets the list.
public void PurgeNextScreens()

int index;

for(index = 0; index < totalNext; index++)

if(nextScreens[index] != currentScreen)
nextScreens[index].CleanUpAfter();

totalNext = 0;
nextScreens = new Screen[l];

// !!Important Method!! This method transitions screens.
public void PerformScreenTransition(int dir)

// remove currently visible screen (and its items)
if(currentScreen != null)

currentScreen.CleanUpAfter();
lastScreen = currentScreen;

// If we're going forward, wait if we're still
// preloading the images.
if(dir == GoButton.PUSH_FWD)

if(!nextScreens[desiredNext].FinishedPreloading())
nextScreens [desiredNext] .WaitForImages();

currentScreen = nextScreens [desiredNext];

if(lastScreen != null)
lastScreen.SetNextScreen(currentScreen);

currentScreen.SetLastScreen(lastScreen);

// This adds a screen to the list of possible next screens.
public void AddNextScreen(Screen nextS)

// Do reloading of last screen here.
Screen oneBack = currentScreen.GetLastScreen();

Page: 4

IA Jim:Desaktop Folder:thesiscode:AppFrame.java
Friday, May 23, 1997 I 6:46 AM

if(oneBack != null)

oneBack.SetScreenFrame(this);
oneBack. PresetCharacteristics () ;
oneBack.BeginPreloading() ;
if(!oneBack.FinishedPreloading())

oneBack.WaitForImages ();
currentScreen = oneBack;

// If no previous screen, reload current screen. (In case of errors...)
else

currentScreen.SetScreenFrame (this);
currentScreen.PresetCharacteristics ();
currentScreen.BeginPreloading () ;
if (!currentScreen.FinishedPreloading())

currentScreen.WaitForImages();

// Don't revise the "last screen" field... We want to preserve ordering.

// Reset the list of possible next screens.
PurgeNextScreens();

// add next screen (and its items)
currentScreen.DisplayAndReady();

// All components other than buttons belong to
// the specific screens, so the current screen
// is allowed to intercept actions before passing
// them up the line.
public boolean action(Event evt, Object what)

if(evt.target instanceof ScreenButton)

if(currentScreen != null)

if(currentScreen.action(evt, what))
return true;

Page: 5 IA Jim:Deaktop Folder:thesiscode:AppFrame.java
Friday, May 23, 1997 / 6:46 AM

return handled;

// If we have a mouseDown event in the frame,
// check to see if it changed the status of
// a "MyButton" instance before sending it up
// the line.
public boolean mouseDown(Event evt, int x, int y)

boolean handled = false;

mousedown = true;
if(currentScreen != null)

Point loc = new Point(x, y);
if (currentScreen.UseGoButton())

handled = UpdateGoIfChanged(loc);
if (!handled)

handled = currentScreen.updateMyButtonsIfChanged(mousedown, loc);

return handled;

// If we have a mouseMove event in the frame,
// check to see if it changed the status of
// a "MyButton" instance before sending it up
// the line.
public boolean mouseMove(Event evt, int x, int y)

boolean handled = false;

if(currentScreen != null)

Point loc = new Point(x, y);
if (currentScreen.UseGoButton())

handled = UpdateGoIfChanged(loc);
if(!handled)

handled = currentScreen. UpdateMyButtonsIfChanged(mousedown, loc);

return super.action(evt, what); return handled;

// If we have a mouseUp event in the frame,
// check to see if it changed the status of
// a "MyButton" instance before sending it up
// the line.
public boolean mouseUp(Event evt, int x, int y)

boolean handled = false;

mousedown = false;
if(currentScreen != null)

Point loc = new Point(x, y);
if (currentScreen.UseGoButton())

handled = UpdateGoIfChanged(loc);
if(!handled)

handled = currentScreen.UpdateMyButtonsIfChanged(mousedown, loc);

// This is an abstraction to ask the go button if a given
// point and mouse state changed its current state.
public boolean UpdateGoIfChanged(Point pt)

if(goBtn != null)

if(goBtn.ChangedState(pt, mousedown))

goBtn.UpdateButton();
return true;

return false;

public GoButton GetGoButton()

Page: 6

IA Jim:Deaktop Folder:thesiscode:AppFrame.Java
Friday, May 23, 1997 / 6:46 AM

Page: 7 IA Jim:Deaktop Folder:thesiscode:AppFrame.java
Friday, May 23, 1997 I 6:47 AM

return goBtn;

// This is an abstraction to ask the parent applet to grab
// an image. The child applet could do it if I changed
// its allocation slightly... (A future improvement.)
public Image GrabImage (String s)

return parentApp.getImage (parentApp.getDocumentBase(), s);

// The following list handling routines will probably
// be placed in a global toolbox. They were originally
// put here since we'd usually only have one copy of a
// frame at a time.

public Point[] AddPointToList(Point[] existingList, Point newPt)

Point[] tempPList;
if(existingList != null) {

tempPList = new Point[existingList.length + 1];
System.arraycopy(existingList, 0, tempPList, 0, existingList.length);
tempPList[existingList.length] = newPt;

else {
tempPList = new Point[l];
tempPList[0] = newPt;

return tempPList;

public Image[] AddImageToList (Image[] existingList, Image newImage)

Image[] tempIList;
if(existingList != null) {

tempIList = new Image[existingList.length + 1];
System.arraycopy(existingList, 0, tempIList, 0, existingList.length);
tempIList [existingList.length] = newImage;

else {
tempIList = new Image[l];
tempIListl0] = newImage;

return tempIList;

public ScreenButton[] AddScreenButtonToList (ScreenButton[] existingList,
ScreenButton newButton)

ScreenButton[] tempSBList;
if(existingList != null) {

tempSBList = new ScreenButton[existingList.length + 1];
System.arraycopy(existingList, 0, tempSBList, 0, existingList.length);
tempSBList[existingList.length] = newButton;

else (
tempSBList = new ScreenButton[l];
tempSBList[O] = newButton;

return tempSBList;

// This is needed to allow the window to close by clicking the
// close box. Eventually, we will want to save state before
// closing the window.
public boolean handleEvent(Event e) {

// Window Destroy event
if (e.id == Event.WINDOW_DESTROY) {

if(parentApp != null)
parentApp. SetFrame(null);

childApp = null;
dispose();
return true;

return super.handleEvent(e);

public synchronized Dimension preferredSize()

return new Dimension(framewidth, frameHeight);

Page: 8

IA Jim:Deaktop Folder:thesiscode:Scraen.java
Friday, May 23, 1997 / 6:47 AM
// Screen.java
// This is the superclass of every screen instance,
// containing common code for all screens.

import java.applet.*;
import java.util.*;
import java.awt.*;
import java.awt.image.*;
import java.net.*;

public class Screen extends Object {
AppFrame theFrame = null;
MediaTracker theTracker = null;
Screen lastScreen = null;
Screen nextScreen = null;

ScreenButton[] buttons = null;
int totalButtons = 0;

MyButtonSet[] myButtons = null;

boolean useGoBtn = true;
boolean allowFwd = true;
boolean allowRev = true;

Image[] images = null;
Point[] imageCoords = null;
int totalImages = 0;

boolean visited = false;
boolean proceed = false;

Page: 1 IA Jim:Desktop Folder:thesiscode:Screen.java
Friday, May 23, 1997 / 6:47 AM

int index;
boolean oneChanged = false;

if(myButtons != null)

for(index = 0; index < myButtons.length; index++)

oneChanged I
=

myButtons[index] .AnyChangedState(loc, mousedown);

return oneChanged;

// Array of ScreenButtons
// (unnecessary)

// Array of MyButtonSets

// Do we use the Go button?
// Fwd enabled?
// Rev enabled?

// Array of images
// Origins of the images
// (unnecessary)

// Visited before?
// User allowed to proceed?

// Adds a MyButtonSet to the list.
public void AddMyButtonSet (MyButtonSet btnSet)

int index;

if(btnSet != null)

if (myButtons == null)

myButtons = new MyButtonSet [l];
myButtons[0] = btnSet;

else

MyButtonSet tempList[] = new MyButtonSet[myButtons.length + 1];
System.arraycopy(myButtons, 0, tempList, 0, myButtons.length);
tempList [myButtons.length] = btnSet;
myButtons = tempList;

// Don't bother doing anything if we don't have a
// frame reference.
public Screen()

// With a valid frame, initialize everything.
public Screen(AppFrame f)

if(f == null)
return;

InitAll (f);

// Abstraction to paint all of the MyButtonSets.
public void PaintAllMyButtonSets (Graphics g)

int index;

if(myButtons != null)

for(index = 0; index < myButtons.length; index++)
myButtons [index] .PaintAllButtons(g) ;

// Abstraction to forward events to buttons in all sets.
// An improved method could break from the loop on a change.
public boolean UpdateMyButtonsIfChanged(boolean mousedown, Point loc)

// Flushes the images and references of all MyButtons
// in the screen.
public void RemoveAllMyButtonSets()

int index;

if(myButtons != null)

for(index = 0; index < myButtons.length; index++)

myButtons[index] .FlushMyButtonSet() ;

myButtons = null;

public boolean AlreadyVisited()

return visited;

public void SetVisited(boolean v)

visited = v;

Page: 2

IA Jim:Desktop Folder:thesiscode:Screen.java
Friday, May 23, 1997 I 6:47 AM

public void AllowProceed(boolean p)

proceed
=
p;

SetGoButton();

// When initializing, reset fields to their defaults
// and add images to the frame for preloading...
public void InitAll(AppFrame f)

if(f == null)
return;

theFrame = f;

PresetCharacteristics () ;
ResetFields ();

visited = true;

// Override this in subclasses if desired.
public void ResetFields()

// This should always be overridden
public void PresetCharacteristics()

for adding screen images, etc.

public void SetLastScreen(Screen s)

lastScreen = s;

public Screen GetLastScreen()

return lastScreen;

public void SetNextScreen(Screen s)

nextScreen = s;

public Screen GetNextScreen()

return nextScreen;

public void SetScreenFrame(AppFrame f)

theFrame = f;

public AppFrame GetScreenFrame()

return theFrame;

Page: 3 IA Jim:Desktop Folder:thesiscode:Screen.java
Friday, May 23, 1997 / 6:48 AM

public boolean UseGoButton()

return useGoBtn;

// I think this is a vestigial method. It can probably disappear.
public void InitImageList(int listLength)

totallmages = 0;
images = null;
imageCoords = null;

public boolean OkayToProceed()

return proceed;

// Add an image to the image list.
public void AddImage(Image anImage, Point origin)

if(anImage !=null)

images = theFrame.AddImageToList (images, anImage);
imageCoords = theFrame.AddPointToList(imageCoords, origin);
totalImages++;

// Add a ScreenButton to the list.
public void AddScreenButton(ScreenButton theButton, Point coords)

if((theButton != null) && (theFrame != null))

buttons = theFrame.AddScreenButtonToList (buttons, theButton);
totalButtons++;
if(coords != null)

theButton. SetPosition (coords);

// The addition/removal routines should also
// eventually call some other abstraction, just
// in case the implementation changes.

// Add all of the ScreenButtons to the child applet for display.
public void AddAllButtons ()

int index;
CarApplet childApplet = null;

if(theFrame != null)

childApplet = theFrame.GetChildApplet();
if(childApplet != null)

Page: 4

IA Jim:Desktop Folder:thasiscode:Screan.Java
Friday, May 23, 1997 / 6:48 AM

for(index = 0; index < totalButtons; index++)

childApplet.add(buttons[index]);

// Remove all of the ScreenButtons from the child applet.
public void RemoveAllButtons ()

int index;
CarApplet childApplet = null;

if(theFrame != null)

childApplet = theFrame.GetChildApplet();
if(childApplet != null)

for(index = 0; index < totalButtons; index++)

childApplet.remove (buttons[index]) ;

// Add a single ScreenButton to the child applet.
public void AddSingleButton(ScreenButton theButton)

int index;
CarApplet childApplet = null;

if(theFrame != null)

childApplet = theFrame.GetChildApplet();
if(childApplet != null)

for(index = 0; index < totalButtons; index++)

if (theButton == buttons[index])

childApplet.add(buttons [index]);
break;

// Remove a single ScreenButton from the child applet.
public void RemoveSingleButton(ScreenButton theButton)

CarApplet childApplet = null;

if(theFrame != null)

childApplet = theFrame.GetChildApplet();
if(childApplet != null)

childApplet.remove(theButton);

Page: 5 IA JIm:Deaaktop Folder:thesaicoda:Screen.java
Friday, May 23, 1997 / 6:48 AM

// Begin preloading all of the images with a
// new MediaTracker.
public void BeginPreloading()

int index;

theTracker = new MediaTracker(theFrame);

for(index = 0; index < totalImages; index++)

theTracker.addimage(images[index], 0);

theTracker.statusID(0, true);

public MediaTracker GetTracker()

return theTracker;

// Are we done preloading images?
public boolean FinishedPreloading()

if(theTracker != null)
return theTracker.checkID(0, true);

else
return false;

// Wait for all images to finish preloading.
// Note: We will want to do something with the
// exception eventually.
public void WaitForImages()

try {
theTracker.waitForID(0);

catch (InterruptedException exc)

// This makes the last few changes to
// the screen that had to wait until the
// frame transitioned to it.
// Override ONLY if appropriate.
public void DisplayAndReady()

CarApplet childApp = null;

if(theFrame != null)

SetGoButton();

AddAllButtons();

childApp = theFrame.GetChildApplet();
if(childApp != null)

Page: 6

IA Jim:Desktop Folder:thesiscode:Screen.java
Friday, May 23, 1997 I 6:48 AM

childApp. layout() ;
theFrame.repaint();

AddAllNextScreens ();
theFrame.PreloadNextScreens () ;

// This allocates and adds all possible next
// screens to the frame.
// Override in all screens.
public void AddAllNextScreens ()

// This is an abstraction for adding possible
// next screens to the frame.
public void AddNextScreen(Screen s)

if(nextScreen != null)

if(s != nextScreen)

if (CompareToPrevNext((s.getClass ()) .getName()))

theFrame .AddNextScreen (nextScreen);
s.CleanUpAfter() ;
return;

theFrame.AddNextScreen (s);

// Only a screen can set the go button with respect
// to its enable flags.
private void SetGoButton()

GoButton goBtn = theFrame.GetGoButton();
if(goBtn != null)

goBtn. Show(useGoBtn);
if (useGoBtn)

if (proceed)

goBtn. EnableRev (allowRev) ;
goBtn.EnableFwd (allowFwd) ;

goBtn.EnableButton(false);

Page: 7 IA Jim:Desktop Folder:thesiscode:Screen.java
Friday, May 23, 1997 / 6:49 AM

for(index = 0; index < totalImages; index++)

g .drawImage (images [index], imageCoords [index] .x,
imageCoords [index] .y, theFrame);

// Clean up all references and be sure to flush
// ALL images.
public void CleanUpAfter()

int index;

for(index = 0; index < totalImages; index++)

images [index] .flush();

// Clean up ScreenButtons.
RemoveAllButtons();
for(index = 0; index < totalButtons; index++)

buttons [index] .CleanUpImages() ;

// Clean up MyButtonSets.
RemoveAllMyButtonSets();

theFrame = null;
theTracker = null;
images = null;
imageCoords = null;
buttons = null;
totalImages = 0;
totalButtons = 0;

// Force a garbage collection.
System.gc();

// This will compare the desired next screen to the previously
// visited next screen. If they're of the same type, we want
// to know so we don't make another one.
public boolean CompareToPrevNext(String s)

if(nextScreen != null)

System.out.println((nextScreen.getClass ()) .getName ()) ;
System.out.println(s);
if (s.equals((nextScreen.getClass ()) .getName()))

System.out.println("Match. We've seen this before.");

return true;

return false;// Paint all of the screen's images.
public void PaintImages(Graphics g)

int index; // This can get called for any action (not just ScreenButton events).

Page: 8

IA Jim:Desktop Folder:thesiscode:Screen.java Page: 9
Friday, May 23, 1997 / 6:49 AM

// evt.target gives us the particular button.
// Override action() to respond to the various buttons.
public boolean action(Event evt, Object what)

return false;

}3

%O

pa

C,,

CD

tCb

IA Jim:Desktop Folder:thesiacode:IN_01.java
Friday, May 23, 1997 / 6:49 AM
// IN_01.java
// This is an example screen. It loads a background image,
// creates two sets of buttons, disables the reverse option
// of the Go button, and allocates one screen as the next screen.

import java.applet.*;
import java.util.*;
import java.awt.*;
import java.awt.image.*;
import java.net.*;

public class IN_01 extends Screen {
// Just call super(). We don't want any special initializations.
public IN 01(AppFrame f)

super(f);

// Don't worry about adding MyButtonSets here, since
// they're only given events if this screen is the "current"
// screen.
// ScreenButtons, however, should be added in AddAllNextScreens().
public void PresetCharacteristics()

// Get and add the background image.
Image screenImg = theFrame.GrabImage("Screens/IN_01.jpg");

AddImage(screenImg, new Point(0,0));

// Set flags for the Go button.
proceed = true;
allowRev = false;

// Make an array of points for the origins of 4 radio buttons.
Point[] origins = new Point[l4];
origins[0] = new Point(100, 100);
origins[l] = new Point(100, 180);
origins[2] = new Point(100, 260);
origins[3] = new Point(100, 340);

// Add a set of 4 radio buttons with the above origins.
AddMyButtonSet(new RadioButtonSet(theFrame.GetChildApplet(),

screenImg, 4, origins));

// Make an array of points for the origins of 4 checkbox buttons.
Point[) origins2 = new Point[4];
origins2[0] = new Point(300, 100);
origins2[l] = new Point(300, 180);
origins2[2] = new Point(300, 260);
origins2[3] = new Point(300, 340);

// Add a set of 4 checkbox buttons with the above origins.
AddMyButtonSet (new CheckBoxButtonSet (theFrame.GetChildApplet() ,

screenImg, 4, origins2));

// Add the next screens to the frame for preloading.
// Add ScreenButtons here, since they're added immediately
// to the child applet.
public void AddAllNextScreens()

Page: 1 IA Jim:Desktop Folder:thesiscode:IN_01.java
Friday, May 23, 1997 / 6:50 AM

if(! CompareToPrevNext (new String(
"IN_

02")))
AddNextScreen(new IN_02(theFrame));

else
AddNextScreen(nextScreen);

Page: 2

IA JIm:Deaaktop Folder:theaiscode:MyButton.java
Friday, May 23, 1997 / 6:50 AM
import java.applet.*;
import java.util.*;
import java.awt.*;
import java.awt.image.*;
import java.net.*;

public class MyButton extends Object {
Image background; // background region the

// same size as the button
Image images[]; // the array of button images

Point origin; // the origin of the button
Dimension size; // the button's size

DashImageFilter filter; // the transparency filter
CropImageFilter cropFilter; // the crop filter for the background
CarApplet theApp;
AppFrame theFrame;
int state; // the current state
// savedState is used whenever another button is being
// pushed and others need to temporarily submit to it.
// If the button is actually pushed, state will not revert
// to savedState, but will remain the new state.
int savedState;
boolean inTemp = false;
// Type: rect, round, rounded rect. RECT is default.
int type = RECT;

boolean show = true;
boolean enabled = true;

MyButton companions[] = null; // The button's
// companions

int totalImages; // (unnecessary)

public static final int RECT = 0; // Constants for the shapes
public static final int ROUND =1;
public static final int ROUNDRECT = 2;

public static final int MSGeNULL = 0; // Constants for message types
public static final int MSGPUSHBEGIN = 1;
public static final int MSG_STATESET = 2;
public static final int MSGCOMMIT = 3;
public static final int MSG_ABORT = 4;

// room for more message types

// If we do not get any information, don't bother initializing anything.
public MyButton ()

// If we get the information we need, initialize everything.
public MyButton(CarApplet inApp, Image screenImage, int numImages,

Point org, Dimension s)

theApp = inApp;
if(inApp != null)

theFrame = inApp.GetFrame();
if(theFrame != null)

Paga: 1 IA JIm:Desktop Folder:thesiacode:MyButton.java
Friday, May 23, 1997 I 6:50 AM

totalImages = numImages;
origin = org;
size = s;

if(screenImage == null)
screenImage = theFrame.GrabImage("Buttons/template.jpg");

if (InitFilters()) ;
InitImages (screenImage);

// Reset the button to a base state.
public void ResetButton()

inTemp = false;
state = 0;

// This might be useful for radio buttons that
// temporarily turn off while another is pushed.
// (If the push is aborted, we can easily switch back.)
//
// Actually, it's useful for any aborted push.
public void BeginTemp(int tempState)

savedState = state;
state = tempState;

inTemp = true;

// If other action did not commit, revert to old state.
public void EndTemp(boolean commit)

if(!commit)
state = savedState;

inTemp = false;

// Should be used only to coerce a button to an initial state.
// We notify companions to simplify initialization of a set.
// This way, if doing "radio buttons, " we only need to set one.
public void SetState(int s)

state = s;
NotifyCompanions(MSG_STATESET, new Integer(s));

public int GetState()

return state;

// Tests if a given button is a companion.
public boolean IsCompanion(MyButton btn)

boolean test = false;
int index;

Page: 2

Ct)

0C

0

pl

.1

IA Jim:Desktop Folder:thesiscode:MyButton.java
Friday, May 23, 1997 I 6:51 AM

if(companions != null)

for(index = 0; index < companions.length; index++)

if(companions[index] == btn)
test = true;

return test;

// Makes another button a companion.
public void AddCompanion(MyButton btn)

if (companions == null)

companions = new MyButton[l];
companions[0] = btn;

MyButton tempList[] = new MyButton[companions.length + 1);
System.arraycopy(companions, 0, tempList, 0, companions.length);
tempList[companions.length] = btn;
companions = tempList;

// Removes a button from the companion list.
public void RemoveCompanion(MyButton btn)

// Assumes companion is only in here once.
int index;
int where = 0;
boolean inThere = false;
MyButton tempList[];

if(companions != null)

for(index = 0; index < companions.length; index++)

if (companions [index] == btn)

where = index;
inThere = true;

if(inThere)

tempList = new MyButton[companions.length - 1];
System.arraycopy(companions, 0, tempList, 0, where);
System.arraycopy(companions, where + 1, tempList, where,

tempList.length - where);

// Resets the companion list, removing all companions at once.

Page: 3 IA Jim:Desktop Folder:thesiscode:MyButton.java
Friday, May 23, 1997 / 6:51 AM

public void RemoveAllCompanions ()

companions = null;

// Sends a message to all companions.
public void NotifyCompanions(int msgType, Object data)

int index;

if(companions !=null)

for(index = 0; index < companions.length; index++)

if(companions[index] != null)
companions [index] .HandleMessage (this, msgType, data);

// Sends a message to a single companion.
public void NotifyOneCompanion(MyButton btn, int msgType, Object data)

btn.HandleMessage(this, msgType, data);

// Override as necessary.
// The data can be any convenient data object for the specific button type.
public void HandleMessage(MyButton btn, int msgType, Object data)

public int GetType()

return type;

public void SetType(int t)

type = t;

public void Show ()

show = true;

public void Show(boolean s)

show = s;

public void Hide()

show = false;

public boolean IsShown()

return show;

Page: 4

IA Jim:Deaktop Folder:theslscode:MyButton.java
Friday, May 23, 1997 / 6:51 AM

public void EnableButton(boolean en)

enabled = en;

public boolean Enabled()

return enabled;

public void SetApplet(CarApplet inApp)

theApp = inApp;

// Return a reference to one of the button's state images.
public Image GetImage(int index)

if (index >= 0) && (index < images.length))
return images[index];

else
return (Image)null;

// Change/Set one of the button's state images.
public void SetImage(int index, Image img)

if((index >= 0) && (index < images.length))
images[index] = img;

// Override as necessary with each button type.
public void InsertButtonImages (Image [tempImages)

// Flushes all of the button's images.
public void FlushA1()

int index;

for(index = 0; index < images.length; index++)

if(images[index] != null)
images [index] .flush();

if(background != null)
background.flush();

SecondaryFlush() ;

// Removes references to other objects.
public void SecondaryFlush()

RemoveAllCompanions) ;

images = null;

Page: 5 IA Jim:Deaktop Folder:thesiscode:MyButton.java
Friday, May 23, 1997 / 6:51 AM

background = null;
theApp = null;
filter = null;
cropFilter = null;
origin = null;
size = null;

// Initializes both the transparency and the crop filters.
public boolean InitFilters()

// We'd probably like an exception or error if not loaded.

InitDashImageFilter();
InitCropImageFilter();

return ((cropFilter != null) && (filter != null));

public void InitDashImageFilter()

filter = new DashImageFilter();

public void InitCropImageFilter()

cropFilter = new CropImageFilter(origin.x, origin.y,
size.width, size.height);

// A call just to PaintButton() assumes that the background
// has been already drawn behind the button, as in a full redraw
// of the display.
// UpdateButton() should be used whenever one just wants to
// redraw the button and not the rest of the display.

// Override as appropriate.
public void PaintButton(Graphics g)

// Note that this must change if the offscreen buffer ever moves
// from AppFrame.
public void UpdateButton()

if(!show)
return;

if(theApp != null)

if(theFrame != null)

if((theFrame.offImage != null) &&
(cropFilter != null))

// The following is not really necessary for the first three
// states, but we're just being careful...

Graphics g = theFrame.offImage.getGraphics();
g.drawImage(background, origin.x, origin.y, theApp);

PaintButton(g);

Page: 6

IA Jm:Desaktop Folder:thesiscode:MyButton.java
Friday, May 23, 1997 I 6:51 AM

// Just copy the rectangular region around the
// button from offscreen to onscreen instead
// of the whole buffer. Is this faster?
Image tempImage = theApp.createImage(new

FilteredImageSource(
theFrame.offImage.getSource(),
cropFilter));

if(tempImage != null)
theApp.getGraphics () .drawImage (tempImage, origin.x,

origin.y, theApp);

else // If we don't have an offscreen image, paint it onscreen.

PaintButton(theApp. getGraphics());

public Point GetOrigin()

return origin;

public Dimension GetSize()

return size;

public void SetOrigin(Point org)

origin = org;

public void SetSize(Dimension s)

size = s;

// This initializes all of the button's state images.
// Most buttons should only have to override InsertButtonImages().
public void InitImages(Image screenImage)

Image tempImages[] = new Image[totalImages];

images = new Image[totalImages];

if((images == null) II (tempImages == null))
return;

ForceScreenImageLoad(screenImage);
MakeBackground(screenImage);
ForceLoadNewBackground();

InsertButtonImages (tempImages);
FilterButtonImages (templmages);
ForceLoadAllImages(tempImages);

FlushTempImages (tempImages);

Page: 7 IA Jm:Desaaktop Folder:thesiscode:MyButton.java
Friday, May 23, 1997 / 6:52 AM

// Runs the state images through the transparency filter.
public void FilterButtonImages(Image[] tempImages)

int index;
boolean nullTest = false;

images = new Image[totalImages];

for(index = 0; index < totalImages; index++)

if(templmages[index] == null)
nullTest = true;

if(!nullTest && (images != null))

for(index= 0; index < totalImages; index++)

images[index] = theApp.createImage(
new FilteredImageSource(

tempImages [index] .getSource() ,
filter));

// Forces all images to load.
public void ForceLoadAllmages (Image[] tempImages)

MediaTracker theTracker;

if((theFrame != null) && (images != null) && (tempImages != null))

theTracker = new MediaTracker(theFrame);
if(theTracker != null)

int index;

for(index = 0; index < images.length; index++)

if(tempImages[index] != null)
theTracker.addImage (tempImages [index], 0);

if(images[index] != null)
theTracker .addImage (images [index], 0);

WaitForImages(theTracker, 0);

// Waits for all images to load.
public void WaitForImages(MediaTracker theTracker, int id)

theTracker.statusID(id, true);
try {

theTracker.waitForAll () ;

catch (InterruptedException exc)

Page: 8

IA Jim:Deasktop Folder:thesiscode:MyButton.java
Friday, May 23, 1997 1 6:52 AM

// Forces the new background to load.
public void ForceLoadNewBackground()

MediaTracker theTracker;

if((theFrame != null) && (background != null))

theTracker = new MediaTracker(theFrame);
if(theTracker != null)

theTracker.addImage (background, 0);
WaitForImages (theTracker, 0);

Page: 9 IA Jim:Daaktop Folder:thesiacode:MyButton.java Page: 10
Friday, May 23, 1997 / 6:52 AM

public boolean InsideButton(Point loc)

if((ioc.x > origin.x) && (loc.x < origin.x + size.width) && (loc.y > origin.y)
&& (loc.y < origin.y + size.height))

return true;
else

return false;

// Override as appropriate.
public boolean ChangedState(Point loc, boolean pushed)

return false;

// Flushes an array of temporary images. (Nice tool/abstraction.)
public void FlushTempImages (Image[] temps)

int index;

if(temps != null)

for(index = 0; index < temps.length; index++)

if(temps[index] != null)
temps[index] .flush();

// Crops the full background to the region behind the button.
public void MakeBackground(Image screenImage)

if((screenImage != null) && (theApp != null))

background = theApp.createImage(
new FilteredImageSource(screenImage.getSource(),

cropFilter));

// Forces the background screen image to load.
public void ForceScreenImageLoad (Image screenImage)

MediaTracker theTracker;

if((theFrame != null) && (screenImage != null))

theTracker = new MediaTracker(theFrame);
if(theTracker != null)

theTracker.addImage (screenImage, 0);
WaitForImages (theTracker, 0);

// Checks if a point is inside a button.
// Add additional algorithms for other shapes if desired.

IA Jim:Desktop Folder:thesiscode:MyButtonSet.java
Friday, May 23, 1997 / 6:53 AM
// MyButtonSet.java
// Combines similar MyButtons into a single set.

import java.applet.*;
import java.util.*;
import java.awt.*;
import java.awt.image.*;
import java.net.*;

public class MyButtonSet extends Object {
int setSize = 0; // (unnecessary)
Point origins[] = null; // list of button origins
MyButton buttons[] = null; // list of buttons
boolean validSet = false; // is this set valid?

// Do not initialize without any information.
public MyButtonSet ()

// Override to initialize a specific type of MyButtonSet
public MyButtonSet(CarApplet inApp, Image screenImage,

int numBtns, Point(] orgs)

public boolean IsvalidSet()

return validSet;

// override to create original button with new items
public boolean InitOriginalButton(CarApplet inApp)

return true;

// override to clone the original buttons 'x' times
public boolean InitClones()

return true;

// Makes all of the buttons in the set companions.
public void MakeAllCompanions ()

int indexl, index2;

if(buttons != null)

for(indexl = 0; indexl < buttons.length; indexl++)

for(index2 = 0; index2 < buttons.length; index2++)

if(indexl != index2)
buttons [indexl] .AddCompanion (buttons [index2]) ;

Page: 1 IA Jim:Desaaktop Folder:thesiscode:MyButtonSet.java
Friday, May 23, 1997 / 6:53 AM

// Flushes all images from all buttons in the set.
public void FlushMyButtonSet()

int index;

if(buttons != null)

buttons [0] .FlushAll ();

for(index = 1; index < buttons.length; index++)

buttons[index] .SecondaryFlush();

buttons = null;

// An abstraction that passes events to each button in the set.
public boolean AnyChangedState (Point loc, boolean mousedown)

int index;
boolean oneChanged = false;

if(buttons != null)

for(index = 0; index < buttons.length; index++)

if(buttons [index] .ChangedState(loc, mousedown))

buttons [index] .UpdateButton () ;
oneChanged = true;
break;

return oneChanged;

// An abstraction that paints all of the buttons in the set.
public void PaintAllButtons(Graphics g)

int index;

if((g != null) && (buttons != null))

for(index = 0; index < buttons.length; index++)
buttons[index] .PaintButton(g);

Page: 2

IA Jim:Desktop Folder:thesiscode:GoButton.java
Friday, May 23, 1997 / 6:53 AM

// GoButton.java
// This is the source for the global Go button.

import java.applet.*;
import java.util.*;
import java.awt.*;
import java.awt.image.*;
import java.net.*;

public class GoButton extends MyButton {
int leftLimit = 26; // Defined HERE
int rightLimit = 56; // Defined HERE

boolean revEnabled = true; // Defaults are
boolean fwdEnabled = true; // fully enabled.

public static final int DEFAULT = 0; // Constants for states
public static final int OVER_REV = 1;
public static final int OVER_FWD = 2;
public static final int PUSH_REV = 3;
public static final int PUSH_FWD = 4;

public static final int ALLOFF = 0;
public static final int ALLON = 1;
public static final int FLITRON = 2;
public static final int FPUSH_RON = 3;
public static final int RLITFON = 4;
public static final int RPUSH FON = 5;

public static final int FONROFF = 6;
public static final int FLIT ROFF = 7;
public static final int FPUSH_ROFF = 8;
public static final int RONFOFF = 9;
public static final int RLITFOFF = 10;
public static final int RPUSH_FOFF = 11;

public static final int NUM IMAGES = 12;

public GoButton()

super();

// Initialize if given an applet reference.
public GoButton(CarApplet inApp)

super(inApp, null, NUM_IMAGES, new Point(320, 440),
new Dimension(80, 44)); // Traits defined HERE.

// Enable/Disable forward. If both directions are disabled,
// disable the entire button, else, enable the entire button.
public void EnableFwd(boolean enable)

fwdEnabled = enable;
if(!fwdEnabled && !revEnabled)

enabled = false;
else

enabled = true;

// Enable/Disable reverse. If both directions are disabled,

Page: 1 IA Jim:Desktop Folder:theslscode:GoButton.java
Friday, May 23, 1997 / 6:54 AM

// disable the entire button, else, enable the entire button.
public void EnableRev(boolean enable)

revEnabled = enable;
if(!fwdEnabled && !revEnabled)

enabled = false;
else

enabled = true;

// Enables both directions.
public void EnableAll(boolean enable)

EnableFwd(enable);
EnableRev(enable);

public boolean GetFwdEnabled()

return fwdEnabled;

public boolean GetRevEnabled()

return revEnabled;

// Called on initialization. It loads all of the state images.
public void InsertButtonImages(Image[] tempImages)

int index = 0;

if(tempImages != null)

tempImages[index++) = theFrame.GrabImage("Buttons/alloff.jpg");
tempImages[index++]) = theFrame.GrabImage("Buttons/allon.jpg");
tempImages[index++] = theFrame.GrabImage("Buttons/flitron.jpg");
tempImages[index++] = theFrame.GrabImage("Buttons/fpshron.jpg");
templmages[index++) = theFrame.GrabImage("Buttons/rlitfon.jpg");
tempImages[index++] = theFrame.GrabImage("Buttons/rpshfon.jpg");
tempImages[index++) = theFrame.GrabImage("Buttons/fonroff.jpg");
tempImages[index++] = theFrame.GrabImage("Buttons/flitroff.jpg");
tempImages[index++] = theFrame.GrabImage("Buttons/fpshroff.jpg");
tempImages[index++] = theFrame.GrabImage("Buttons/ronfoff.jpg");
tempImages[index++] = theFrame.GrabImage("Buttons/rlitfoff.jpg");
tempImages[index++] = theFrame.GrabImage("Buttons/rpshfoff.jpg");

// A call just to PaintButton() assumes that the background
// has been already drawn behind the button, as in a full redraw
// of the display.
// UpdateButton() should be used whenever one just wants to
// redraw the button and not the rest of the display.
public void PaintButton(Graphics g)

if(!show)
return;

if((g != null) && (theApp != null))

if(!enabled)

Page: 2

IA Jim:Desaktop Folder:theasiscode:GoButton.java
Friday, May 23, 1997 / 6:54 AM

g.drawImage(images [ALLOFF], origin.x, origin.y, theApp);
else

switch(state)

case DEFAULT:
if(revEnabled && fwdEnabled)

g.drawImage(images[ALLON], origin.x, origin.y, theApp);
else if (!revEnabled)

g.drawImage (images[FON_ROFF], origin.x, origin.y,
theApp) ;

else if(!fwdEnabled)
g.drawImage(images [RON_FOFF], origin.x, origin.y,

theApp);
break;

case OVER_REV:
if (revEnabled)

if(fwdEnabled)
g.drawImage(images[RLITFON], origin.x,

origin.y, theApp);
else

g.drawImage (images [RLITFOFF] , origin.x,
origin.y, theApp);

else if(fwdEnabled)
g.drawlmage(images[FON_ROFF], origin.x,

origin.y, theApp);
// another else shouldn't occur here.

break;
case OVER FWD:

if (fwdEnabled)

if (revEnabled)
g.drawImage(images [FLIT RON], origin.x,

origin.y, theApp);
else

g.drawImage(images[FLIT ROFF], origin.x,
origin.y, theApp);

else if(revEnabled)
g.drawImage (images [RON_FOFF], origin.x,

origin.y, theApp);
// another else shouldn't occur here.

break;
case PUSH_REV:

if (fwdEnabled)
g.drawImage(images [RPUSH_FON], origin.x, origin.y, theApp)

else
g.drawImage (images[RPUSH_FOFF], origin.x, origin.y, theApp

break;
case PUSH FWD:

if (revEnabled)
g.drawImage(images [FPUSH_RON], origin.x, origin.y, theApp)

else
g.drawImage(images [FPUSH_ROFF], origin.x, origin.y, theApp

break;

Page: 3 IA Jim:Desktop Folder:thesiscode:GoButton.java
Friday, May 23, 1997 / 6:54 AM

// The logic is greatly simplified since we ignore mouseDrag
// events. Right now we don't have to check if we're already
// pushing the button for forward or reverse, since mouse movements
// while the mouse button is down are not the usual mouseMove
// events but are mouseDrag events.
public boolean ChangedState(Point loc, boolean pushed)

int oldState = state;

if(!enabled)
return false;

if(InsideButton(loc))

// We're inside the button...
if((loc.x < origin.x + leftLimit))

if(revEnabled)

// This will be referenced once on
// a mouseDown event over the REV region.
if (pushed)

state = PUSH_REV;
else

// This section executes whenever we're over
// the REV region with the mouse up.

// If we were previously pushing REV,
// change the screen.
if(state == PUSH_REV)

Noti fyGo (PUSH_REV) ;
state = OVER REV;

// If it's not enabled, just give the default.
else

state = DEFAULT;

else if((loc.x > origin.x + rightLimit))

if (fwdEnabled)

// This will be referenced once on
// a mouseDown event over the FWD region.
if(pushed)

); state = PUSHFWD;
else

// This section executes whenever we're over
// the FWD region with the mouse up.

// If we were previously pushing FWD,
// change the screen.
if(state == PUSH_FWD)

NotifyGo(PUSH_FWD);
state = OVER_FWD;

// If it's not enabled, just give the default.
else

Page: 4

P);

);

P);

IA Jim:Desktop Folder:thesiscode:GoButton.java Page: 5
Friday, May 23, 1997 / 6:54 AM

state = DEFAULT:

// We're not over REV or FWD, so give the default.
else

state = DEFAULT;

// We're not inside the button, so give the default.
else

state = DEFAULT;

// Return TRUE if the state has changed so the button can be redrawn.
return (oldState != state);

// Notify the frame that the user has requested a screen transition.
private void NotifyGo(int direction)

if(theApp != null)

AppFrame theFrame = theApp.GetFrame();
if(theFrame != null)

switch(direction)

case(PUSH_REV) :
theFrame.PerformScreenTransition(direction);
break;

0 case(PUSH FWD):
O theFrame.PerformScreenTransition(direction);

break;

C,,
O

Ii

0

0o

_ ·

IA Jim:Dasktop Folder:thesiscode:CheckBoxButton.java
Friday, May 23, 1997 I 6:55 AM
// CheckBoxButton.java
// The source for all custom checkbox buttons.

import java.applet.*;
import java.util.*;
import java.awt.*;
import java.awt.image.*;
import java.net.*;

public class CheckBoxButton extends MyButton {
public static final int DEFAULT = 0; //
public static final int OFF = 0;
public static final int OFF_OVER = 1;
public static final int OFFPUSH = 2;
public static final int ON = 3;
public static final int ON OVER = 4;
public static final int ONPUSH = 5;

Page: 1 IA Jim:Desktop Folder:thesiscode:CheckBoxButton.java
Friday, May 23, 1997 / 6:55 AM

if (!show)
return;

if((g != null) && (theApp != null))

if(!enabled)
if(state == ON II state == ON_OVER)

g.drawImage(images(ON_DISABLED], origin.x,
origin.y, theApp);

Constants for states g.drawImage(images[OFFDISABLED], origin.x,
origin.y, theApp);

if((state >= 0) && (state < 6))
g.drawImage(images[state], origin.x, origin.y, theApp);

public static final int
public static final int

OFFDISABLED = 6;
ON_DISABLED = 7;

public static final int NUM IMAGES = 8;

public CheckBoxButton()

super () ;

// Initialize with the specified origin.
public CheckBoxButton(CarApplet inApp, Image screenImage, Point org)

// The size needs to be fixed.
super(inApp, screenImage, NUM_IMAGES, org, new Dimension(40, 39));
SetType(RECT);

// Load all of the button's state images.
public void InsertButtonImages (Image[] tempImages)

int index = 0;

if(tempImages != null)

tempImages[index++]
tempImages[index++]
tempImages[index++]
tempImages[index++]
tempImages[index++]
tempImages[index++]
tempImages[index++]
tempImages[index++]

theFrame.GrabImage("Buttons/cboff.jpg");
theFrame.GrabImage("Buttons/cboffov.jpg");
theFrame.GrabImage("Buttons/cboffovp.jpg");
theFrame.GrabImage("Buttons/cbon.jpg");
theFrame.GrabImage("Buttons/cbonov.jpg");
theFrame.GrabImage("Buttons/cbonovp.jpg");
theFrame.GrabImage("Buttons/cdisoff.jpg");
theFrame.GrabImage("Buttons/cdison.jpg");

// A call just to PaintButton() assumes that the background
// has been already drawn behind the button, as in a full redraw
// of the display.
// UpdateButton() should be used whenever one just wants to
// redraw the button and not the rest of the display.
public void PaintButton(Graphics g)

g.drawImage(images[OFF], origin.x, origin.y, theApp);

// Decides if the button's state has changed.
public boolean ChangedState(Point loc, boolean pushed)

int oldState = state;

if(!enabled)
return false;

if(InsideButton(loc))

if (pushed)

switch (state)

case ON OVER:
state = ON_PUSH;
break;

case OFF OVER:
state = OFF_PUSH;
break;

else

// if we were pushing it, show new change
// else show as being over (whether already on or off)
switch(state)

case OFF PUSH:
case ON:

state = ON_OVER;
break;

case ON_PUSH:
case OFF:

state = OFF OVER;
break;

Page: 2

IA Jim:Deasktop Folder:thesiscode:CheckBoxButton.java
Friday, May 23, 1997 / 6:55 AM

else

// when mouse is let go outside, return to previous state
if(!pushed)

switch(state)

case ONPUSH:
case ON OVER:

state = ON;
break;

case OFF PUSH:
case OFF OVER:

state = OFF;
break;

// Return TRUE if the state has changed so the button can be redrawn.
return (oldState != state);

Page: 3

IA Jim:Desktop Folder:thesiscode:CheckBoxButtonSet.java
Friday, May 23, 1997 I 6:56 AM
// CheckBoxButtonSet.java
// Combines checkbox buttons into a set.

import java.applet.*;
import java.util.*;
import java.awt.*;
import java.awt.image.*;
import java.net.*;

public class CheckBoxButtonSet extends MyButtonSet {
// Init the set.
public CheckBoxButtonSet(CarApplet inApp, Image screenImage,

int numBtns, Point[] orgs)

setSize = numBtns;

if(orgs != null)
origins = orgs;

else
return;

buttons = new CheckBoxButton[numBtns];
if (buttons == null)

return;

if (InitOriginalButton(inApp, screenImage))

0 if (InitClones(screenImage))

validSet = true;
return;

Page: 1 IA Jim:Daaesktop Folder:thesiscode:CheckBoxButtonSet.java
Friday, May 23, 1997 / 6:56 AM

for(index = 1; index < buttons.length; index++)

buttons[index] = new CheckBoxButton();
if(buttons[index] == null)

return false;

buttons[index] .theApp = buttons[0] .theApp;
buttons [index] .theFrame = theFrame;
buttons[index] .origin = origins[index];
buttons [index] .images = buttons[0.] images;
buttons[index] .size = buttons[0] .size;
buttons[index] .filter = buttons[0] .filter;
buttons[index] .state= buttons[index] .savedState

= CheckBoxButton.OFF;
buttons[index] .type = MyButton.RECT;

buttons[index] .InitCropImageFilter() ;
if (buttons [index] .cropFilter == null)

buttons[index] = null;
break;

buttons[index] .MakeBackground(screenImage);
buttons [index] .ForceLoadNewBackground() ;

MakeAllCompanions();
return true;

else
return false;

System.out.println("Null handle while initializing checkbox buttons.");
if(buttons[0] != null)

buttons[0].FlushAll();

origins = null;
buttons = null;

// Initialize the original button with its images and filters.
public boolean InitOriginalButton(CarApplet inApp,

Image screenImage)

buttons[0] = new CheckBoxButton(inApp, screenImage, origins[0]);

return (buttons[O] != null);

// Clone the button and make all of the buttons companions.
public boolean InitClones(Image screenImage)

int index;

if((buttons[0] != null) && (screenImage != null))

AppFrame theFrame = buttons[0] .theFrame;
if(theFrame == null)

return false;

Page: 2

IA Jim:Daaktop Folder:theaiacode:RadloButton.java
Friday, May 23, 1997 / 6:56 AM
// RadioButton.java
// This is the source for all custom radio buttons.

import java.applet.*;
import java.util.*;
import java.awt.*;
import java.awt.image.*;
import java.net.*;

public class RadioButton extends MyButton {
public static final int DEFAULT = 0; // Constants for states
public static final int OFF = 0;
public static final int OFF_OVER = 1;
public static final int OFFPUSH = 2;
public static final int ON = 3;
public static final int ON_OVER = 4;
public static final int ON_PUSH = 5;

public static final int OFFDISABLED = 6;
public static final int ONDISABLED = 7;

public static final int NUM_IMAGES = 8;

public RadioButton ()

super();

// Inits the radio button at the specified origin.
public RadioButton(CarApplet inApp, Image screenImage,

Point org)

super(inApp, screenImage, NUM_IMAGES, org,
new Dimension(40, 39));

SetType(ROUND) ;

// Loads the button's state images.
public void InsertButtonImages (Image[] tempImages)

int index = 0;

if(tempImages != null)

templmages[index++] = theFrame.Grablmage("Buttons/rboff .jpg");
tempImages[index++] = theFrame.GrabImage("Buttons/rboffov.jpg");
tempImages[index++] = theFrame.GrabImage ("Buttons/rboffovp. jpg");
tempImages[index++] = theFrame.GrabImage ("Buttons/rbon. jpg");
tempImages[index++] = theFrame.GrabImage ("Buttons/rbonov. jpg");
tempImages[index++] = theFrame.GrabImage("Buttons/rbonovp.jpg");
tempImages[index++] = theFrame.GrabImage("Buttons/rdisoff.jpg");
tempImages[index++] = theFrame.GrabImage("Buttons/rdison.jpg");

// The data here is the state of the button sending the message.
public void HandleMessage(MyButton btn, int msgType, Object data)

int prevState = state;

if(btn != null)

Page: 1 IA Jim:Deaaktop Folder:thesiacode:RadioButton.java
Friday, May 23, 1997 / 6:56 AM

if(IsCompanion(btn))

switch(msgType)

case MSGCOMMIT:
if(((Integer)data).intValue() == ON)

state = OFF;
break;

case MSG_STATESET:
if(data != null)

if(((Integer)data).intValue() == ON)
state = OFF;

break;

if(state != prevState)
UpdateButton();

// A call just to PaintButton() assumes that the background
// has been already drawn behind the button, as in a full redraw
// of the display.
// UpdateButton() should be used whenever one just wants to
// redraw the button and not the rest of the display.
public void PaintButton(Graphics g)

if(!show)
return;

if((g != null) && (theApp != null))

if (!enabled)

if(state == ON II state == ON OVER)
g.drawlmage(images[ONDISABLED], origin.x,

origin.y, theApp);
else

g.drawImage(images[OFFDISABLED], origin.x,
origin.y, theApp);

if((state >= 0) && (state < 6))
g.drawImage(images[state], origin.x, origin.y, theApp);

else
g.drawImage(images[OFF], origin.x, origin.y, theApp);

// Decides if the state of the radio button has changed.
public boolean ChangedState(Point loc, boolean pushed)

int oldState = state;

Page: 2

IA Jim:Desktop Folder:thesiscode:RadioButton.java Page: 3
Friday, May 23, 1997 / 6:57 AM

if(!enabled)
return false;

if (InsideButton(loc))

if (pushed)

switch(state)

case ON_OVER:
state = ON_PUSH;
break;

case OFF_OVER:
state = OFF_PUSH;
break;

else

// if we were pushing it, notify companions of commit
// else, show as being over (whether already on or off)
switch(state)

case ON PUSH:
case OFF PUSH:

NotifyCompanions (MSGOCOMMIT, new Integer (ON));
Scase ON:

ostate = ONOVER;
break;

case OFF:
state = OFF_OVER;
break;

else

// when mouse is let go outside, return to previous state
if (!pushed)

switch (state)

case ON_PUSH:
case ON OVER:

state = ON;
break;

case OFFPUSH:
case OFF OVER:

state = OFF;
break;

// Return TRUE if the state has changed so the button can be redrawn.
return (oldstate != state);

t'b

0

0n

0

r0

IA Jim:Desktop Folder:thaasiscode:RadloButtonSet.java
Friday, May 23, 1997 I 6:57 AM
// RadioButtonSet.java
// Combines radio buttons into a complete set.

import java.applet.*;
import java.util.*;
import java.awt.*;
import java.awt.image.*;
import java.net.*;

public class RadioButtonSet extends MyButtonSet {
// Init the set.
public RadioButtonSet(CarApplet inApp, Image screenImage,

int numBtns, Point[] orgs)

setSize = numBtns;

if(orgs != null)
origins = orgs;

else
return;

buttons = new RadioButton[numBtns] ;
if(buttons == null)

return;

if(InitOriginalButton(inApp, screenImage))
-

O if(InitClones (screenImage))

validSet = true;
return;

Page: 1 IA JIm:Desktop Folder:thesalcode:RadioButtonSet.java
Friday, May 23, 1997 I 6:57 AM

for(index = 1; index < buttons.length; index++)

buttons[index] = new RadioButton();
if(buttons[index] == null)

return false;

buttons[index].theApp = buttons[0] .theApp;
buttons[index] .theFrame = theFrame;
buttons[index] .origin = origins [index];
buttons[index] .images = buttons[0] .images;
buttons[index] .size = buttons[0] .size;
buttons[index]. filter = buttons[0]. filter;
buttons [index] .state = buttons [index] .savedState

= RadioButton.OFF;
buttons[index] .type = MyButton.ROUND;

buttons[index] .InitCropImageFilter () ;
if(buttons[index] .cropFilter == null)

buttons[index] = null;
break;

buttons [index] .MakeBackground (screenImage);
buttons [index] .ForceLoadNewBackground() ;

MakeAllCcmpanions ();
return true;

else
return false;

System.out.println("Null handle while initializing radio buttons.");
if(buttons[0] 1= null)

buttons [0] .FlushAll();

origins = null;
buttons = null;

// Initialize the original button with all of its images and filters.
public boolean InitoriginalButton(CarApplet inApp,

Image screenImage)

buttons[0] = new RadioButton(inApp, screenImage, origins[0]);

return (buttons[O] != null);

// Clone the button and make all the buttons companions.
public boolean InitClones (Image screenImage)

int index;

if((buttons[0] != null) && (screenImage != null))

AppFrame theFrame = buttons[0] .theFrame;
if(theFrame == null)

return false;

Page: 2

IA Jim:Desktop Folder:thesiscode:Border.java
Friday, May 23, 1997 / 6:58 AM
// Border.java
// Third-party library class for 3-D borders.

/**

* Copyright(c) 1997 DTAI, Incorporated (http://www.dtai.com)

All rights reserved

* Permission to use, copy, modify and distribute this material for
* any purpose and without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies, and that the name of DTAI, Incorporated not be used in
* advertising or publicity pertaining to this material without the
* specific, prior written permission of an authorized representative of
* DTAI, Incorporated.

* DTAI, INCORPORATED MAKES NO REPRESENTATIONS AND EXTENDS NO WARRANTIES,
* EXPRESS OR IMPLIED, WITH RESPECT TO THE SOFTWARE, INCLUDING, BUT
* NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR ANY PARTICULAR PURPOSE, AND THE WARRANTY AGAINST

INFRINGEMENT OF PATENTS OR OTHER INTELLECTUAL PROPERTY RIGHTS. THE
* SOFTWARE IS PROVIDED "AS IS", AND IN NO EVENT SHALL DTAI, INCORPORATED OR
* ANY OF ITS AFFILIATES BE LIABLE FOR ANY DAMAGES, INCLUDING ANY
* LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES RELATING
* TO THE SOFTWARE.

*/

import java.awt."*;
import java.awt.image.*;
import java.net.*;

* Border - draws a configurable border

*@author DTAI, Incorporated
*/

public class Border implements Cloneable {

public
public
public
public
public
public
public

private
private
private
private
private
private
private
private
private

static
static
static
static
static
static
static

final
final
final
final
final
final
final

int NONE = 0;
int LINE = 1;
int THREED_IN = 2;
int THREED_OUT = 3;
int ETCHEDIN = 4;
int EMBOSSEDOUT = 5;
int ROUNDRECT = 6;

int type = NONE;
Color border = null;
int topMargin = 0;
int leftMargin = 0;
int bottomMargin = 0;
int rightMargin = 0;
int minMargin = 0;
int maxMargin = 0;
int borderThickness = 0;

private static final double BRIGHTER.FACTOR = 0.8;
private static final double DARKERFACTOR = 0.65;

/Returns a brighter version of this color.
* Returns a brighter version of this color.

Page: 1 IA JIm:Desktop Folder:thesiscode:Border.java
Friday, May 23, 1997 I 6:58 AM

* Replaces the "awt.Color" function brighter to use, in my opinion,
* a better factor (awt used FACTOR = 0.7)

Page: 2

* @param color the color to which to apply the factor
* @return the new, brighter color
*/

public static Color brighter(Color color) {
Color newcolor = new Color(Math.min((int) (color.getRed() * (l/BRIGHTER_FACTOR)), 255

Math.min((int) (color.getGreen()* (1/BRIGHTER_FACTOR)), 255),
Math.min((int)(color.getBlue() *(l/BRIGHTERFACTOR)), 255));

if (newcolor.equals(color)) (
return Color.white;

return newcolor;

* Returns a darker version of this color.
* Replaces the "awt.Color" function brighter to use, in my opinion,
* a better factor (awt used FACTOR = 0.7)

* @param color the color to which to apply the factor
* @return the new, darker color
*/

public static Color darker(Color color) (
Color newcolor = new Color(Math.max((int) (color.getRed()

Math.max((int) (color.getGreen()*DARKERFACTOR), 0),
Math.max((int) (color.getBlue() *DARKER FACTOR), 0));

if (newcolor.equals(color)) (
return Color.black;

return newcolor;

*DARKER_FACTOR), 0),

* Returns a clone of this Border

* @return the new, identical Border
*/

public Object clone() {
Border newborder = new Border();
newborder.type = type;
newborder.border = border;
newborder.topMargin = topMargin;
newborder.leftMargin = leftMargin;
newborder.bottomMargin = bottomMargin;
newborder.rightMargin = rightMargin;
newborder.minMargin = minMargin;
newborder.maxMargin = maxMargin;
newborder.borderThickness = borderThickness;
return newborder;

/**
* sets all margins and thicknesses to zero
*/
public void setNoInsets() {

topMargin= 0;
leftMargin = 0;
bottomMargin = 0;
rightMargin = 0;
minMargin = 0;

IA Jim:Desktop Folder:thesiscodoorde:Bordr.java
Friday, May 23, 1997 I 6:58 AM

maxMargin= 0;
borderThickness = 0;

/**
* Returns the border type (e.g., Border.LINE)

* @return the border type id
*/

public int getType) {
return type;

/**
* Sets the border type (e.g., to Border.LINE)

* @param type the border type
*/

public synchronized void setType(int type) {
this.type = type;

/**

Page: 3 IA JIm:Deaktop Folder:thasiacode:Border.java
Friday, May 23, 1997 I 6:58 AM

* @return the bottom margin
*/

public int getBottomMargin() {
return bottomMargin;

/**

* Returns the current border color. If null (the default), a border color is
* dynamically derived from the current background (passed to the "paint" function) .

* @return the current Color value for the border
o */
0 public Color getBorder ()

return border;

/**
* Sets the current border color. If null (the default), a border color is
* dynamically derived from the current background (passed to the "paint" function).

* @param border the new border color
*/
public synchronized void setBorder(Color border) {

this.border = border;

/**
* Returns the top margin.

* @return the top margin
*/
public int getTopMargin() {

return topMargin;

* Returns the right margin.

* @return the right margin
*/

public int getRightMargin() {
return rightMargin;

/**
* Used internally to calculate the minimum/maximum margin values.
*/

private void resetMinMaxMargin() {
maxMargin = topMargin;
maxMargin = Math.max(maxMargin, leftMargin);
maxMargin = Math.max(maxMargin, bottomMargin);
maxMargin = Math.max(maxMargin, rightMargin);
minMargin = topMargin;
minMargin = Math.min(minMargin, leftMargin);
minMargin = Math.min(minMargin, bottomMargin);
minMargin = Math.min(minMargin, rightMargin);

* Sets all margins (top, left, bottom, and right) to

* @param margin the margin
*/
public synchronized void setMargins(int margin) {

topMargin = margin;
leftMargin= margin;
bottomMargin = margin;
rightMargin = margin;
resetMinMaxMargin() ;

/**
* Sets all margins (top, left, bottom, and right) to

* param top the top margin
* @param left the left margin
* @param bottom the bottom margin
* @param right the right margin

Returns the left margin.

* @return the left margin
*/

public int getLeftMargin() {
return leftMargin;

public synchronized void setMargins(int top, int left, int bottom, int right) {
topMargin = top;
leftMargin = left;
bottomMargin = bottom;
rightMargin = right;
resetMinMaxMargin();

* Sets the top margin
* Returns the bottom margin.

Page: 4

the same, given value.

the given values.

IA Jim:Desaaktop Folder:thesaaiscode:Border.java
Friday, May 23, 1997 i 6:59 AM

@param top the top margin
*/

public synchronized void setTopMargin(int margin) {
topMargin = margin;
resetMinMaxMargin() ;

/**
* Sets the left margin

* @param left the left margin
*/

public synchronized void setLeftMargin(int margin) {
leftMargin = margin;
resetMinMaxMargin() ;

* Sets the bottom margin

* @param bottom the bottom margin
*/
public synchronized void setBottomMargin(int margin) {

bottomMargin = margin;
resetMinMaxMargin();

* Sets the right margin

* @param right the right margin
*/

public synchronized void setRightMargin(int margin) {
rightMargin = margin;
resetMinMaxMargin() ;

* Returns the current setting for the border thickness

* @return the border thickness
*/
public int getBorderThickness())

return borderThickness;
I

* Sets the border thickness

* @param borderThickness the border thickness
*/

public synchronized void setBorderThickness(int borderThickness) (
this.borderThickness = borderThickness;

/**
* returns the left, right, top, and bottom insets of the background of the
* current style, taking into account thickness and margins.

* @return an Insets object containing the inset values
*/public Insets get

public Insets getInsets() {

Page: 5 IA Jim:Deaktop Folder:thesiscode:Bordar.java
Friday, May 23, 1997 I 6:59 AM

int top = borderThickness + topMargin;
int left = borderThickness + leftMargin;
int bottom = borderThickness + bottomMargin;
int right = borderThickness + rightMargin;
return new Insets(top, left, bottom, right);

/**
* returns the left, right, top, and bottom insets of the background of the
* current style, taking into account thickness and margins.

* @param g the Graphics in which to paint
* @param background the current background color (or null), used if available to

calculate the border color if that is null.
* @param x the x location of the upper-left point of the border
* @param y the y location of the upper-left point of the border
* Sparam width the width of the rectangle in which to draw the border
* @param height the height of the rectangle in which to draw the border
*/

public void paint(Graphics g, Color background, int x, int y, int width, int height) {
if (border == null) I

if ((type == LINE) I
type == ROUND_RECT)) {

if (background == Color.black) {
border = Color.white;

else {
border = Color.black;

else (
if (background == null) {

border = Color.lightGray;

else {
border = background;

if (border != null) (
g.setColor(border);

Color brighter = null;
Color darker = null;

switch(type) {

case THREED_IN:
case THREEDOUT:
case ETCHED IN:
case EMBOSSED OUT:

brighter = brighter(border);
darker = darker(border);
break;

for (int idx = 0; idx < borderThickness; idx++) {
if (type == LINE) {

g.drawRect(x + idx, y + idx,
((width - 1) - (idx * 2)),

Page: 6

IA Jim:Desktop Folder:thesiscode:Border.java
Friday, May 23, 1997 / 6:59 AM

((height - 1) - (idx * 2)));

else if (type == ROUNDLRECT) {

Page: 8Page: 7 IA Jim:Desktop Folder:thesalacode:Border.java
Friday, May 23, 1997 I 7:00 AM

g.drawLine(x +
y +
x +
y +

g.drawLine(x +
y +
x +
y +

arcSize = (minMargin * 8 - (idx * 2));
rrx = x + idx;
rry = y + idx;
rrw = (width - 1) - (idx 2);
rrh = (height - 1) - (idx* 2);

idx,
((height - 1) - (idx)),

(width - 1) - (idx)),
(height - 1) - (idx)));
(width - 1) - (idx)),

idx,
((width - 1) - (idx)),
((height - 1) - (idx)));

g.drawRoundRect(x + idx, y + idx, rrw, rrh, arcSize, arcSize);
if ((idx + 1) < borderThickness) {

g.drawRoundRect(rrx, rry, rrw, rrh - 1, arcSize - 1, arcSize);
g.drawRoundRect(rrx + 1, rry, rrw, rrh - 1, arcSize - 1, arcSize);
g.drawRoundRect(rrx, rry, rrw - 1, rrh, arcSize, arcSize - 1);
g.drawRoundRect(rrx, rry + 1, rrw - 1, rrh, arcSize, arcSize - 1);

else {
Color top = brighter;
Color bottom = darker;

if ((type == THREED_IN)
type == FTCHED_IN)) {

top = darker;
bottom = brighter;

if ((type == ETCHEDIN)II
type == EMBOSSED_OUT)) {

if (idx >= (borderThickness / 2)) {
Color temp = top;
top = bottom;
bottom = temp;

if ((idx == (borderThickness - 1)) &&
(type == THREED_IN)) {

g.setColor(darker(top));

else {
g.setColor(top);

g.drawLine(x +
x +
y +

g.drawLine(x +
x +
y +

idx, y + idx,
idx,
((height - 1)
idx, y + idx,
((width - 1)
idx);

- (idx)));

(idx)),

if (((idx == (borderThickness -1)) &&
(type == THREED_IN))
(idx == 0) &&
(type == THREED_OUT)))

g.setColor(darker(bottom));

else {
g.setColor(bottom);

IA JIm:Desktop Folder:theslscode:lmageButton.java
Friday, May 23, 1997 I 7:00 AM
// ImageButton.java
// Third-party library class for a button with an image instead of text.

// Note that I have made changes to the code in a few places.
// Plain subclasses would not have worked well without an overhaul
// because the author used "private" methods throughout.

/**

* Copyright(c) 1997 DTAI, Incorporated (http://www.dtai.com)

All rights reserved

* Permission to use, copy, modify and distribute this material for
* any purpose and without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies, and that the name of DTAI, Incorporated not be used in
* advertising or publicity pertaining to this material without the
* specific, prior written permission of an authorized representative of
* DTAI, Incorporated.

* DTAI, INCORPORATED MAKES NO REPRESENTATIONS AND EXTENDS NO WARRANTIES,
* EXPRESS OR IMPLIED, WITH RESPECT TO THE SOFTWARE, INCLUDING, BUT
* NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR ANY PARTICULAR PURPOSE, AND THE WARRANTY AGAINST

* INFRINGEMENT OF PATENTS OR OTHER INTELLECTUAL PROPERTY RIGHTS. THE
* SOFTWARE IS PROVIDED "AS IS", AND IN NO EVENT SHALL DTAI, INCORPORATED OR
* ANY OF ITS AFFILIATES BE LIABLE FOR ANY DAMAGES, INCLUDING ANY
* " LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES RELATING
* TO THE SOFTWARE.
*/

import java.awt.*;
import java.awt.image.*";

/**
* ImageButton - A button component with an image in it

* @author DTAI, Incorporated

public class ImageButton extends canvas {

public static final int UNARMED = 0;
public static final int ARMED = 1;
public static final int OVER = 2;
public static final int DISABLED = 3;

private static final Border defaultUnarmedBorder =
new DefaultImageButtonBorder(false);

private static final Border defaultArmedBorder =
new DefaultImageButtonBorder(true);

private MediaTracker tracker;

private Image images[] = new Image[4];
private Border borders[] = new Border[4];

private boolean generatedDisabled = false;
private boolean mousedown = false;

private int buttonState = UNARMED;

Page: 1 IA Jim:Desktop Folder:thesiscode:lmageButton.java
Friday, May 23, 1997 / 7:00 AM

// added 03/12/97 by SHOE
public Point

/**

where = new Point(0,0);

* Constructs an ImageButton
*/

public ImageButton() {
tracker = new MediaTracker(this);
setUnarmedBorder(defaultUnarmedBorder);
setArmedBorder(defaultArmedBorder);

/**
* Constructs an ImageButton with the given image.

* @param image the image for all states of the button
(until other images are assigned)

*/
public ImageButton(Image image) {

this();
setUnarmedImage(image);

/**
* Used internally to add the Image to the array and the MediaTracker,
* start loading the image if necessary via the tracker's "checkID", and
* repaint if necessary.

* @param id the buttonState id (also used as image id for the MediaTracker)
* @param image the image, which is not supposed to be null
*/

private synchronized void setImage(int id, Image image) {
if (images[id] != image) {

images[id] = image;
if (image != null) {

tracker.addImage(image, id);
tracker.checkID(id, true);

if (buttonState == id) {
repaint();

/**
* Sets the image to display when the button is not pressed or hilited
* because of a mouse-over. This image is also used in those other cases
* if no alternative image is requested.

* @param image the unarmed image
*/

public void setUnarmedImage(Image image) {
setImage(UNARMED, image);
if (images[ARMED] == null) {

setArmedImage(image);

if (images[OVER] == null) {
setOverImage(image);

if ((images[DISABLED] == null)
generatedDisabled) {

Page: 2

IA Jim:Desktop Folder:theslscod:limageButton.java
Friday, May 23, 1997 / 7:00 AM

setDisabledImage(null);

/**
* Sets the image to display when the button
* is still over the button.

* @param image the armed image
*/

public void setArmedImage(Image image) {
if (image != null) {

setImage(ARMED, image);

else {
setImage(ARMED, images [UNARMED]) ;

/**
* Sets the image to display when the button
* is over the button.

* @param image the over image

public void setOverImage(Image image) {
- if (image != null) {

setImage(OVER, image);

else {
setImage(OVER, images[UNARMED]);

is pressed and the mouse

Page: 3 IA Jim:Desktop Folder:thesiscode:lmageButton.java
Friday, May 23, 1997 / 7:01 AM

* Gets the image to display when the button is pressed and the mouse
* is still over the button.

* @return the armed image

public Image getArmedImage() {
return (images[ARMED]);

/**

* Gets the image to display when the button is not pressed and the mouse
* is over the button.

* @return the over image

public Image getOverImage() {
return (images[OVER]);

is not pressed and the mouse

* Sets the image to display when the button is disabled.

* @param image the disabled image

public void setDisabledImage(Image image) {
generatedDisabled = false;
if ((image == null) &&

(images[UNARMED] != null)) {
generatedDisabled = true;
image = createImage(new FilteredImageSource(images[UNARMED].getSource(),

new DisableImageFilter()));

setImage(DISABLED, image);

* Gets the image to display when the button is not pressed or hilited
* because of a mouse-over. This image is also used in those other cases
* if no alternative image is requested.

*@return the unarmed image

public Image getUnarmedImage()
return (images[UNARMED]);

* Gets the image to display when the button is disabled.

* @return the armed image
*/

public Image getDisabledImage() {
return (images[DISABLED]);

* Used internally to add the Border to the array and repaint if necessary.

* @param id the buttonstate, used to index the array
* @param border the Border, which is not supposed to be null
*/

private synchronized void setBorder(int id, Border border) C
if (borders[id] != border) {

borders[id] = border;
if (buttonState == id)

repaint();

/**

* Sets the border to display when the button is not pressed or hilited
* because of a mouse-over. This border is also used in those other cases
* if no alternative border is requested.

* @param border the unarmed border
*/
public void setUnarmedBorder(Border border) {

setBorder(UNARMED, border);
if (borders[ARMED] == null) {

setArmedBorder(border);

if (borders[OVER] == null)
setaverBorder(border);

if (borders[DISABLED] == null)
setDisabledBorder(border);

Page: 4

`"'

IA Jim:Desktop Folder:thesiscode:lmageButton.java
Friday, May 23, 1997 / 7:01 AM

* Sets the border to display when the button is pressed ar
* is still over the button.

* @param border the armed border
*/

public void setArmedBorder(Border border) (
if (border != null) (

setBorder(ARMED, border):

else {
setBorder(ARMED, borders [UNARMED]);

/**
* Sets the border to display when the button is not press:
* is over the button.

@param border the over border

public void setOverBorder(Border border) {
if (border != null) (

setBorder(OVER, border);

)- else {
-A setBorder(OVER, borders[UNARMED]);

setBorder(OVER, border);

* Sets the border to display when the button is disabled.

* @param border the disabled border
*/

public void setDisabledBorder(Border border) {
if (border != null) (

setBorder(DISABLED, border);

else {
setBorder(DISABLED, borders[UNARMED]);

if (buttonState == DISABLED) {
repaint();

nd the mouse

ed and the mouse

* Gets the border to display when the button is not pressed or hilited
* because of a mouse-over. This border is also used in those other cases
* if no alternative border is requested.

* @return the unarmed border
*/
public Border getUnarmedBorder() {

return (borders[UNARMED]);

ts the border to display when the button is pressed and the mouse
* Gets the border to display when the button is pressed and the mouse

Page: 5 IA Jim:Desktop Folder:thesiscode:lmageButton.java
Friday, May 23, 1997 / 7:01 AM

* is still over the button.

* @return the armed border

public Border getArmedBorder() {
return (borders(ARMED]);

* Gets the border to display when the button is not pressed and the mouse
* is over the button.

@return the over border
*/
public Border getOverBorder() {

return (borders[OVER]);

* Gets the border to display when the button is disabled.

* @return the armed border

public Border getDisabledBorder() {
return (borders[DISABLED]);

* Gets the current buttonState id for the button

* @return the button state integer id
*/

public int getButtonState() {
return buttonState;

* Sets the current buttonState id for the button

* @param buttonState the button state integer id
*/
protected void setButtonState(int buttonState) {

if (buttonState != this.buttonState)
this.buttonState = buttonState;
repaint() ;

/**
* Overrides awt.Component.disable() to also set the button state.
*/

public void disable() {
setButtonState(DISABLED);
super.disable ();

O* verrides awt.Component.enable() to also set the button state.
*/

public void enableo()
setButtonState(UNARMED);
super.enable();

Page: 6

IA JIm:Daaktop Folder:thesiscodo:lmageButton.iava Pag
Friday, May 23, 1997 I 7:01 AM

/**
* Overrides awt.Component.paint() to paint the current border and image.

*param g The Graphics in which to draw
*I
public void paint(Graphics g) {

Dimension size = size();
borders[buttonState] .paint(g, getBackground(), 0, 0, size.width, size.height);
try (

if (! tracker.checkID(buttonState)) {
tracker.waitForID(buttonstate);

if (! tracker.isErrorID(buttonState)) {
Insets insets = borders [buttonstate] .getInsets ();
int imageWidth = images[buttonState] .getwidth(this);
int imageHeight = images[buttonState] .getHeight(this);
int x = insets.left +

(((size.width - (insets.left + insets.right)) -
imagewidth) / 2);

int y = insets.top +
(((size.height- (insets.top + insets.bottomn)) -

imageHeight) / 2);
g.drawImage(images[buttonStatel, x, y, this);

-I catch (InterruptedException ie) {
J I

* Overrides awt.Conmponent.preferredSize () to return the preferred size of the button.
* This assumes the images (if more than one) are all the same size. It also calculates
* the maximum insets from all borders and adds them to the image dimensions.

* Oparam g The Graphics in which to draw

public Dimension preferredSize ()
Dimension pref = new Dimension();
try {

if (! tracker.checkID(buttonState)) {
tracker.waitForID(buttonState);

if (! tracker.isErrorID(buttonState)) {
Dimension size = size();
pref.width = images[buttonState].getwidth(this);
pref.height = images[buttonState] .getHeight(this);

int maxWidthAdd = 0;
int maxHeightAdd = 0;
for (int i = 0; i < DISABLED; i++) {

Insets insets = borders[i] .getInsets ();
maxWidthAdd = Math.max(maxWidthAdd, insets.left+insets.right);
maxHeightAdd = Math.max(maxHeightAdd, insets.top+insets.bottom);

pref.width += maxWidthAdd;
pref.height += maxHeightAdd;

catch (InterruptedException ie) {}

a: 7 IA Jim:Deaktop Folder:thaessoode:lmagaButton.Java
Friday, May 23, 1997 / 7:02 AM

return pref;

* Overrides awt.Component.mouseDown() to arm the button.

* param evt The mouse down event
* param x The mouse x position
* param y The mouse y position
* Oreturn true if the event was handled
*/

public boolean mouseDown(Event evt, int x, int y) (
mousedown = true;
setButtonState(ARMED);
return true;

/**
* Overrides awt.Component.mouseExit() to disarm the button if the mouse is
* down, or unhilite it if a special OVER image and/or border was set.

* 6param evt The mouse exit event
* 6param x The mouse x position
O* param y The mouse y position

* Oreturn true if the event was handled
*/

public boolean mouseExit(Event evt, int x, int y) (
setButtonState(UNARMED);
return true;

* Overrides awt.Component.mouseEnter() to rearm the button if the mouse is
* down, or hilite it if a special OVER image and/or border was set.

* Sparam evt The mouse enter event
O* param x The mouse x position

* param y The mouse y position
* Oreturn true if the event was handled
*/

public boolean mouseEnter(Event evt, int x, int y) {
if (mousedown) {

setButtonState(ARMED•);

else {
setButtonState(OVER);

return true;

/**
* Overrides awt.Component.mouseUp() and invokes "action" if the button was ARMED
* (because the mouse was over the button when it was released).

O* param evt The mouse up event
O* param x The mouse x position

* param y The mouse y position
* Oreturn true if the event was handled
*/

public boolean mouseUp(Event evt, int x, int y) {
mousedown = false;
if (inside(x, y)) {

Page: 8

IA Jim:Desaaktop Folder:thesiscode:ImageButton.java
Friday, May 23, 1997 / 7:02 AM

setButtonState(OVER);
if (i action(evt, evt.arg))

Container parent = getParent();
while ((parent != null) &&

(! parent.action(evt, evt.arg))) {
parent = parent.getParent();

return true;

// added by SHOE, 03/08/97
public void CleanUpImages ()

int index, index2;
boolean flushedBefore;

for(index = 0; index < 4; index++)

if(images[index] != null) {
flushedBefore = false;
for(index2 = 0; index2 < index; index2++)

if(images[index) == images[index2])
flushedBefore = true;

if(!flushedBefore)
images[indexl .flush();

for(index = 0; index < 4; index++)

images[index] = null;
borders[index] = null;

// added by SHOE, 03/13/97
public Point GetDesiredPosition()

return where;

// added by SHOE, 03/21/97
public void layout()

ReshapeButton();

// added by SHOE, 03/21/97
public void SetPosition(int inX, int inY)

where.x = inX;
where.y = inY;

// added by SHOE, 03/21/97
public void SetPosition(Point coords)

if(coords != null)
where = coords;

Page: 9 IA Jim:Desktop Folder:thesiscode:ImageButton.java
Friday, May 23, 1997 I 7:02 AM

// added by SHOE, 03/21/97
public void MoveButton()

move(where.x, where.y);

// added by SHOE, 03/21/97
public void ReshapeButton()

Dimension size = preferredSize();
reshape(where.x, where.y, size.width, size.height);

* DisableImageFilter - an RGBImageFilter that "greys out" an image by "blanking out"
* every other pixel.

class DisableImageFilter extends RGBImageFilter

* Constructs a DisableImageFilter. The canFilterIndexColorModel is set to false
* because the pixel index is important during filtering.

public DisableImageFilter() {
canFilterIndexColorModel = false;

* Called when a disabled image is created to alter the pixels to be blanked out.

@param x the x position of the pixel
* @param y the y position of the pixel
* @param rgb the rgb value of the pixel
*/
public int filterRGB(int x, int y, int rgb) {

if (((x% 2)
^

(y% 2)) == 1) {
return (rgb & Oxffffff);

else {
return rgb;

* DefaultImageButtonBorder - a Border, subclassed to set the default border values.
*/

class DefaultImageButtonBorder extends Border {

public DefaultImageButtonBorder(boolean armed) {
setBorderThickness(2);
if (armed) I

setType(THREED_IN);
setMargins(4, 4, 2, 2);

else I
setType(THREEDOUT);
setMargins(3);

Page: 10

- -

A
ppendix B

: Java S
ource C

ode
Im

ageB
utton.java

C
L

e
06n c.0
:sý

116

IA Jim:Desktop Folder:thesiscode:ScreenButton.java
Friday, May 23, 1997 / 7:03 AM
// ScreenButton.java
// This subclasses ImageButton for special use on screens only.

import java.applet.*;
import java.util.*;
import java.awt.*;
import java.awt.image.*;
import java.net.*;

public class ScreenButton extends ImageButton {
private Screen parentScreen = null;
boolean selected = false; // never actually used

public static final int NONE = 0; // btn type, still unused
public static final int SURROUND = 1;
public static final int LIGHT = 2;
int selType = NONE;

// None of the methods below really require much explanation.

public ScreenButton() {
super();

public ScreenButton(Screen s)

super();
SetParentScreen(s);

public ScreenButton(Image image) {
super(image);

public ScreenButton(Screen s, Image image)

super(image);
SetParentScreen(s);

public ScreenButton(Image image, int inX, int inY)

super(image);
SetPosition(inX, inY);

public ScreenButton(Screen s, Image image, int inX, int inY)

super(image);
SetPosition(inX, inY);
SetParentScreen(s);

Page: 1 IA Jim:Deaktop Folder:thesiscode:ScreenButton.java
Friday, May 23, 1997 / 7:03 AM

public int GetSelectionType()

return selType;

public void SelectButton()

selected = true;
getParent() .repaint ();

public void DeselectButton()

selected = false;
getParent() .repaint() ;

public boolean IsSelected()

return selected;

public void update(Graphics g)

if(parentScreen != null)

AppFrame f = parentScreen.GetScreenFrame();
if(f != null)

if(f.offImage != null)

Graphics offG = f.offImage.getGraphics();

paint(offG);
g.drawImage(f.offImage, 0, 0, this);

public void SetParentScreen(Screen s)

parentScreen = s;

public Screen GetParentScreen()

return parentScreen;

public void SetSelectionType(int type)

if((type >= 0) && (type < 3))

selType = type;

Page: 2

References
Alba et al. (1996), "Interactive Home Shopping and the Retail Industry,"

Report for the Marketing Science Institute, (July), 1.

Benabadji, Ahmed (1997), "Building Trust in the Electronic Marketplace,"

Master of Business Administration thesis, MIT Sloan School of

Management, Massachusetts Institute of Technology.

Boone, Barry (1996), Java Essentials for C and C++ Programmers, Addison-

Wesley Developers Press, Reading, MA.

Boone, Barry and Dave Mark (1996), LearnJava on the Macintosh, Addison-

Wesley Developers Press, Reading, MA.

Butler, J. K., and R. S. Cantrell (1984), "A Behavioral Decision Theory

Approach to Modeling Dyadic Trust in Superiors and Subordinates,"

Psychological Reports, 55.

Deutsch, M. (1958), "Trust and Suspicion," Journal of Conflict Resolution.

Hosmer, L. T. (1995), "Trust: The Connecting Link between Organizational

Theory and Philosophical Ethics," Academy of Management Review,

Vol. 20, No. 2.

118

References

Hsu, James M. (1996), "Programming Surveys for the MIT Information

Acceleration Project," Master of Engineering thesis, Department of

Electrical Engineering and Computer Science, Massachusetts Institute

of Technology.

Newman, Alexander, et al. (1996), Special Edition Using Java, Que

Corporation, Indianapolis, IN.

Sun Microsystems, JavaSoft Home Page, http://www.javasoft.com.

Urban, Glen L., Bruce D. Weinberg, andJohn R. Hauser (1996), "Premarket

Forecasting of Really-New Products," Journal ofMarketing, 60 (January),

47-60.

Van Slyke, C. (1996), "Trust Between Users and Their Intelligent Agents,"

Working paper, University of South Florida.

Withers, John (1997), Developing Java Entertainment Applets, John Wiley

& Sons, Inc., New York, NY.

119

