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Abstract

Current methods of manufacturing microelectronic chips use microlithography to
transfer a pattern from a photographic image of circuit geometry to the surface of a
semiconductor wafer. An important step in this process is the deposition of a thin
coating of photoresist from which the lithographic mask is made. The photoresist
layer is typically 1 pm thick with a thickness variation of less than 25 A(within 3 a).
In addition, coating defects greater than 0.2 microns must be kept to a minimum.
Although the current coating method - spin coating - can achieve these demanding
specifications, it wastes over 95% of the photoresist applied. Therefore, the semicon-
ductor industry is looking for ways to reduce the amount of photoresist used. This
thesis discusses extrusion-spin coating, a new coating method which has the potential
to waste as little as 50% of the photoresist applied. Before extrusion-spin coating can
be used effectively, however, solvent evaporation must be reduced and fluid deposition
in the wafer center must be improved.

Thesis Supervisor: Jung-Hoon Chun
Title: Edgerton Associate Professor of Mechanical Engineering
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Chapter 1

Introduction

The use of electronic equipment has expanded tremendously in the past several

decades. The invention of the transistor has led to an intense competition among

device manufacturers to make the smallest, fastest, cheapest microelectronic chips.

The rate of this technological advancement is often limited by particular manufac-

turing processes. One such process is microlithography, the method used to transfer

a chip design onto a semiconductor substrate.

1.1 Microlithography

Microlithography is the process used to construct three-dimensional microelectronic

devices using a sequence of planar processes[34]. Each planar process adds one layer

to the microelectronic circuit geometry. Twenty or more layers are needed to complete

complex circuit geometries. Figure 1-1[37] shows the steps required to complete each

layer. First, a thin layer of photoresist, on the order of one micron thick, is applied to a

semiconductor substrate. Second, the photoresist is irradiated through a mask which

contains the pattern to be reproduced on the substrate. The source of irradiation

can be photons (photolithography), electrons (e-beam lithography), or x-rays (x-ray

lithography) [34]. Third, the photoresist film is developed, removing photoresist which

is not a part of the pattern transferred through the mask. For negative photoresists,

the unexposed region is removed, while for positive photoresists the exposed region

is removed. Fourth, the photoresist is baked to harden it onto the substrate. Fifth,

one specific process (etching, deposition, oxidation, doping, etc.) is used to add to



or remove material from the exposed parts of the substrate. Sixth, the photoresist is

stripped from the substrate in preparation for the next layer.

1.2 Coating Requirements

Producing a defect-free, uniform photoresist film is critical to the microlithography

process because the film affects the quality of every layer of the microelectronic de-

vice. Other constraints on the application of photoresist film include coating time

requirements and efficiency requirements.

1.2.1 Coating Materials

Much research has been focused on the discovery and characterization of the pho-

toresists needed to construct microelectronic devices. New coating methods must be

able to use currently-available photoresists as well as have the flexibility to be used

with new developments.

Photoresist Properties

Photoresist (often called resist) is usually composed of three elements: a polymer base;

photosensitizer; and solvent [37, 44]. The composition is roughly 15-30% base, 1-5%

photosensitizer, and 65-85% solvent by mass[1l]. The solvent serves as a carrier for

the rest of the photoresist and evaporates almost entirely during the coating process.

The polymer base material (also called resin) provides the mechanical properties of
the final film. The photosensitizer (a photoactive compound) is activated in response

to a particular wavelength of light, making the photoresist sensitive or resistant to a
developer solution (for a positive or negative photoresist respectively).

The properties of photoresist which are important for modeling the coating process
are viscosity, density, surface tension, mass fraction of solids, and solvent diffusivity.
Some of these properties for several typical photoresists are shown in Table 1.1, along
with the properties of water for comparison. These physical properties of photoresist
change dramatically during the coating process. In the liquid state the solvent prop-
erties are dominant, while in the final film, the base polymer properties are dominant.
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Photoresist Viscosity Solids Fraction Density Surface Tension
(mPa-sec) (g/cm3 ) (dyne/cm)

Shipley SPR2 19-46 22-29 1.06
Shipley SPR500-A 0.53-5.1 16-32 1.05
Shipley 510A 26.5 23 1.06 22
Shipley XP-90236 5.2-15.6 18-22 1.04
AZ 1512 19.4 26 1.04 32
AZ 1518 36.1 30 1.06 32
AZ DX 1200 P 11 20 1.00 30
Water (at 700 F) 1.0 0 1.00 74

Table 1.1: Typical photoresist properties.

Viscosity Meyerhofer[33] modeled photoresist viscosity, v, for Newtonian fluids as

a function of solid (base + photosensitizer) concentration. Sukanek[42] later used a

non-dimensional form:

P l (1 p0) C)
n

= 0 +  1- (1.1)
0 v0  v 0 1 CO1

where n is non-dimensional viscosity, vo is the initial viscosity, Pv is the liquid (solvent)

viscosity, c is the mass fraction of solids, co is the initial mass fraction of solids, and

n is a constant. Sukanek found that the ratio vll/vo did not significantly change his

calculations. He used lt/vo=0.01 and n=4. Flack et al. modeled photoresist viscosity

for non-Newtonian fluids[22].

Diffusivity Flack[22] modeled solvent diffusivity as a function of solids concentra-

tion as:

D Do exp c) (1.2)
DKI + K2c

where Do is the initial diffusivity and K1 and K 2 are temperature-dependent pa-

rameters. Bornside[10, 11] and others have modeled diffusion using finite element

formulations.



Density The density of the polymer mixture can be modeled as:

p = pO(1 - c) + psC (1.3)

where p, is the liquid density and p, is the solid density.

Surface Tension Surface tension is much more difficult than the other properties

to model. In this thesis, surface tension will only be used for theoretical calculations

involving liquid photoresist. Therefore, it is assumed that surface tension remains

constant even when a small amount of solvent evaporates from the photoresist.

Coating Substrates

Thin photoresist films must be applied to a variety of materials and topographies

during semiconductor processing. The base substrate is normally a flat, polished

silicon or GaAs wafer. These wafers are typically 10-20 cm in diameter and approxi-

mately 1 mm in thickness. Wafers 30 cm in diameter are now being used in research

facilities. Materials typically applied to the surface of a semiconductor wafer include

semiconductor materials, metal films, and insulators [44]. As semiconductor devices

are layered on the wafer, the surface properties and surface topography of the wafer

are modified by thin film deposition, oxidation, and diffusion[37]. Consequently, the

photoresist coating process must produce a consistent film for a range of surface prop-

erties and topographies. Sometimes, when the underlying topography is very rough,
an extra coating must be applied or chemical-mechanical polishing must be used to

planarize the surface before subsequent lithographic steps[41].

Before coating, the surface must be cleaned thoroughly to remove defect-causing

particles and films. Next, the wafer is baked to remove moisture, and the wafer surface

is primed with a chemical vapor to promote adhesion of the photoresist. Finally the

wafer is cooled to the desired temperature immediately before coating[37].



1.2.2 Film Thickness

The photoresist film thickness required depends on the desired defect protection, step

coverage, and resolution[44]. Thicker films provide better adhesion, greater protection

for reactive ion erosion, and improved defect protection. However, thicker films also

result in lower resolution because they take longer to expose and develop. Photoresist

film thicknesses used in current semiconductor manufacturing are typically 0.5-4 pm

thick [37].

1.2.3 Film Thickness Uniformity

Excellent photoresist film thickness uniformity is required to maintain good trans-

fer of the mask pattern to the photoresist. Uniformity is important to maintain a

constant exposure level across the surface of the wafer. Nonuniformities cause posi-

tion overlay errors when optical steppers attempt to sense alignment marks beneath

the photoresist film[37]. Nonuniformities also change the reflectivity of a photoresist

deposited over an oxide.

Uniformity measurements can be classified into two categories: film thickness

variation across a single wafer and mean film thickness variation among wafers in a

production run. Usually good wafer-to-wafer uniformity is more difficult to achieve

than good uniformity on a single wafer.

The small critical dimensions of microelectronic devices require photoresist coating

thickness to be uniform to within 25 A (3 a). As the critical dimension decreases

further, even better uniformities will be required.

1.2.4 Defect Limits

Defects in photoresist films must be eliminated since they can lead to failure of mi-

croelectronic devices. These defects develop in several ways. Wafers can be contam-

inated with particles or surface films when a wafer is not properly cleaned before

coating. Airborne particles can contaminate photoresist films-especially before they

are dried. Photoresist composition can change due to freezing, high temperatures, or
aging. Thin photoresist films may lead to high pinhole density and increased problems
with small particles in the photoresist[18].

Even a small number of defects in each layer of a complex microelectronic circuit
can lead to a large number of defective chips when the defects of all layers are con-



sidered. In 1986 a typical chip had an area of 0.25 cm 2 and a defect density of 5

defects/cm 2 per layer. These defects led to a yield of only 30% good chips[37]. Dur-

ing more complex manufacturing procedures, the number of process steps increases,
and the number of defects must be even lower to maintain the same chip yield. Any

decrease in chip yield for a new coating process would cost far more than the savings

from a reduction in photoresist usage. Therefore, new coating methods must at least

maintain the defect levels of spin coating.

1.2.5 Coating Time Limits

The cycle time for coating a wafer must be short enough to meet the production rate

requirements. Cycle time includes loading a wafer into the coating module, applying

photoresist to the wafer, spinning the wafer, and removing the wafer from the coating

module. Typical coating times for spin coating range from 30 to 45 seconds.

1.2.6 Photoresist Use Efficiency

Photoresist use efficiency is defined as the fraction of photoresist solids applied to a

wafer which remain on the wafer after the coating process is complete:

V = (1.4)
Vo c

where Vdry is the volume of dry photoresist on a wafer after coating, Vo is the initial

(wet) photoresist volume applied to a wafer, and c is the solids concentration in Vo.

The amount of photoresist that must be used at 100% efficiency is:

Vmin - Vdry _ 7rR 2hdry (1.5)
C C

where R is the radius of the wafer and hdry is the desired final dry coating thickness.

The minimum average wet coating thickness (before the solvent is evaporated) is:

hmin Vmi hdry (1.6)
7rR 2  c

For a typical photoresist with 23% solids, only 0.14 mL is needed to coat a 20-cm

wafer to a final dry thickness of 1 pm. Such a coating requires a 4.34-pm wet coating

thickness. Any excess resist is wasted. Figure 1-2 shows the progressive increase in

photoresist coating efficiency assuming 25% solids fraction[37, 36].
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Figure 1-2: Photoresist use efficiency history.

1.3 A New Coating Method

Many methods which have been proposed for coating wafers include dip coating,
meniscus coating, spray coating, patch coating, bubble coating, chemical vapor de-

position, and spin coating. Only a few of these methods produce films with the

thicknesses and uniformities required for semiconductor production. Of these, only

spin coating has a production rate fast enough to meet the demands of chip manufac-

turers. One major shortcoming of spin coating, however, is that it wastes over 90% of

the photoresist applied to the wafer surface. About one million gallons of photoresist

are consumed each year at a cost of $400 million. This represents approximately 3%

of the material costs of the lithography process[36]. As the critical dimension of semi-

conductor devices becomes smaller, new deep UV photoresists will be used. These

new photoresists can cost five or more times the cost of the i-line photoresists used

currently. Therefore, a new coating method is needed which wastes less photoresist

while producing uniform, defect-free coatings at a rate comparable to that of spin

coating.
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The objective of this thesis is to develop a new coating method which meets the

following criteria:

* uses existing photoresists

* produces photoresist films approximately 1 pm thick

* produces thickness uniformities equal to or better than those attained by spin

coating

* produces the same number or fewer defects than those produced by spin coating

* produces a complete coating in less than one minute

* has a photoresist use efficiency between 25 and 50% or greater

1.4 Overview of Thesis

The remainder of this thesis describes a new method for coating wafers more effi-

ciently than traditional spin coating. In Chapter 2, an inefficiency in spin coating is

identified, and an approach to eliminating this inefficiency is proposed. Chapter 3

describes the extrusion slot coating process, a partial solution to spin-coating inef-

ficiencies. In Chapter 4, spin coating and extrusion coating are combined to obtain

extrusion-spin coating, an efficient coating method which is described in detail. Chap-

ter 5 investigates in detail the effects of extrusion ring overlap, one potential problem

with extrusion-spin coating. Chapter 6 describes the design of an extrusion-spin

coater prototype. In Chapter 7, the results of extrusion-spin coating experiments are

presented, and the strengths and weaknesses of extrusion-spin coating are discussed.

In Chapter 8, conclusions about the extrusion-spin coating process are made, and

future developments are described.



Chapter 2

More Efficient Spin Coating

A number of coating methods were examined in the search for a coating process to

replace spin coating. Although a few of these methods could meet one or more of the

coating requirements, none could meet all of them. Consequently, spin coating was

examined to determine if any modifications could improve its efficiency.

2.1 Spin Coating Description

Spin coating uses centrifugal force to spread photoresist over the surface of a semi-

conductor wafer and produce a thin film of photoresist. The process has three phases:

photoresist is dispensed onto a wafer, the photoresist is spread across the wafer, and

the wafer is spun at a high angular speed to decrease the thickness of the photoresist

to the final film thickness and uniformity.

2.1.1 Dispensing Photoresist onto Wafer Surface

During the first phase, a small volume of photoresist is dispensed onto the wafer

surface. The amount of photoresist dispensed does not affect the final film thickness

as long as there is sufficient photoresist[16]. In practice, the minimum volume which

results in consistent uniformity is used[18]. Figure 2-1 shows the three primary ways

photoresist is dispensed. For the first method, called static dispense, the photoresist

is dispensed directly into the center of a stationary wafer, producing a circular pool

of photoresist, or the entire surface of the wafer is flooded with photoresist[44]. Often

the wafer is rotated slowly after a static dispense to begin spreading the photoresist

over the wafer surface. The second and third methods are called dynamic dispenses



because the wafer is rotating slowly while the photoresist is dispensed. During forward
radial dispense, the dispense nozzle is initially located at the center of the wafer and
moves radially outward as the photoresist is deposited. For reverse radial dispense,

the dispense nozzle begins at the edge of the wafer and moves radially inward. Both

forward and reverse radial dispenses produce a spiral pattern of photoresist. The

geometry of the spiral (number of turns and volume of photoresist per unit length

along the spiral) is determined by the angular rotation of the wafer, the radial velocity

of the nozzle with respect to the wafer, and the volumetric flow rate of the photoresist

during the dispense. Dynamic dispenses use less photoresist[37], but static dispenses

produce a more uniform film[44, 16].

2.1.2 Establishing Initial Coating Layer

In the second phase of spin coating the wafer is accelerated to create a centrifugal

force which spreads the photoresist toward the edge of the wafer. Sometimes the

wafer is spun at an intermediate speed for a few seconds before being accelerated to

the final high-speed spin. For both fast and slow spin speeds the interface between the

photoresist and the wafer surface is unstable. Daughton and Givens[16] used high-

speed photography to capture rotating "arms" of photoresist which flow quickly off the

wafer when the wafer is accelerated rapidly. These arms of photoresist have narrow

areas of uncoated wafer between them which are covered as the arms advance. When

the wafer is accelerated slowly, the photoresist tends to flow outward along narrow

paths called rivulets as shown in Figure 2-2. These rivulets are much narrower than

the arms described by Daughton and Givens. Fraysse and Homsey[23] found that

rivulet formation for a spinning drop begins after a critical radius is reached. The

critical radius, as well as the number of rivulets formed, are highly dependent on

the surface tension and contact angle. The photoresist front between the rivulets

advances at a slower rate than the rivulets until the entire surface of the wafer is

covered. High-speed photography shows that it takes only a few tenths of a second

to spread the photoresist over the entire wafer surface [16]. When the bulk of the

photoresist reaches the edge of the wafer, most of it is flung off in many tiny droplets

[10].
Flack et al.[22], Daughton and Givens[16], and Sukanek[42] shows that higher

acceleration rates do no affect the final film thickness. Flack, however, shows that

higher acceleration rates do tend to produce more uniform films.
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Figure 2-1: Methods of photoresist dispense. (a) Static dispense, (b) Forward radial
dispense, (c) Reverse radial dispense.



Figure 2-2: Rivulet formation in spinning fluid.
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2.1.3 Thinning of Photoresist Layer

In the third phase of spin coating the wafer continues to spin at the final high speed.

During this phase there are two mechanisms by which the photoresist film thins to its

final thickness. At first the photoresist continues to flow outward and off the wafer

in concentric "waves" which can be observed using polarized light. Simultaneously

the solvent in the photoresist evaporates quickly because of the high convection over

the wafer surface. As the solvent fraction in the photoresist decreases, the viscosity

of the photoresist gradually increases (see Equation 1.1), causing the outward flow of

photoresist to diminish until it almost ceases. Subsequent thinning of the photoresist

comes almost entirely from solvent evaporation[ll, 42]. When the solvent is mostly

evaporated (typically after 30 seconds), spinning is stopped and the wafer is soft

baked at a high temperature to evaporate the remaining solvent from the photoresist.

Non-uniform evaporation leads to variations in the photoresist viscosity which in

turn reduce the final film thickness uniformity. The primary cause of non-uniform

evaporation is uneven air flow over the wafer surface. This can arise from poorly

designed exhaust systems or from turbulence which develops at the outer edges of

spinning wafers[8].

2.1.4 Empirical Spin Coating Results

Empirical investigations have found that the final thickness of the photoresist layer

depends primarily on initial solvent concentration, initial photoresist viscosity, final

spin speed, total spin time, and solvent evaporation. It does not depend on dispense

volume, dispense speed, or spin acceleration[30, 16].

Spin coating final thickness uniformity is determined largely by spin speed, spin

time, spin acceleration, dispense quantity, dispense technique, type of solvent, pho-

toresist viscosity, photoresist temperature, exhaust flow rate, and non-uniform evap-

oration due to turbulent flow over the wafer[9].



2.2 Spin Coating Models

Emslie et al.[19] developed the first model of spin coating which most subsequent

models have followed. Their model, based on the axisymmetric lubrication approxi-

mation of the Navier-Stokes equations, assumes the following:

* an infinite rotating plane

* no radial gravitation component (because the plane is horizontal)

* an initial radially symmetric liquid layer so thin that differences in gravitational

potential are negligible when compared to centrifugal forces

* Newtonian fluids

* negligible Coriolis forces

* no evaporation

* no surface tension effects

Based on these assumptions, a partial differential equation is derived to describe fluid

motion on the spinning disk:

Ah 02 1 S(a 2 2) (2.1)
at 3v r hr

where h is the thickness of the fluid, r is the radial distance from the center of the

spinning disk, t is time, Q is angular spin speed, and v is the kinematic viscosity of

the fluid. The solution is a set of two equations which define the surface contour of

the fluid surface with time:

( 4f2h 2t - 1/ 2

h = 1+ 4 ho (2.2)

r= ro + 42h 3 /4  (2.3)

where ho is the initial fluid thickness at a radial distance ro from the center of the disk.

This model predicts that uniform fluid coatings will stay uniform and non-uniform

coatings will tend to become more uniform during spinning.
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Figure 2-3: Comparison of new coating method with spin coating.

Other investigators have used the Emslie model as the basis for improved spin

coating models. Acrivos et al.[2] investigated non-Newtonian fluids. Meyerhofer

[33] investigated the effects of evaporation. Many other models improve on early

developments by modeling other phenomena such as fluid and gas-phase resistance to

solvent diffusion[8], the effects of topography[41], and the effects of relative humidity

in the air flowing over the wafer[7, 13].

2.3 Spin Coating Inefficiencies

The efficiency of spin coating can be improved by isolating and eliminating the aspects

of the process which waste photoresist. As discussed in Section 2.1, most of the

photoresist is spun off the substrate during the second phase of the spin coating

process when the photoresist is spread from the dispensed shape into an initial thick

coat. Therefore, any method which applies this initial coat while using less photoresist

eliminates the worst inefficiency. Figure 2-3 compares this new approach with spin
coating.



None of the available spin coating models effectively addresses the inefficiencies

of the spreading phase of spin coating. Modeling the spreading phase is very difficult

because of the unsteady, dynamic spreading of photoresist. Instead, current models

assume that an initial thick coating of photoresist exists on a disk before spinning

begins. Any excess photoresist is simply thrown off the substrate and has no effect on

the final coating thickness[16]. Because they do not model the spreading of photoresist

from deposition until an initial thick layer is established on the disk, these models

cannot predict the minimum amount of photoresist needed to coat a wafer.

2.4 Pre-Spin Coating Uniformity Requirements

A second limitation of the current models is their inability to predict coating uni-

formity. As before, this limitation arises from assuming the existence of an initial

coating. Since the non-uniformities of an assumed coating are unknown, the mod-

els cannot predict how these non-uniformities will evolve during the final high-speed

spin or what the final uniformity will be. If, however, the initial coating uniformity

were known, the final uniformity could be predicted. Within its limitations, the Em-

slie model could be used to predict the evolution of the thickness of a thin film at

various points on a spinning disk. From these thickness predictions the minimum ini-

tial uniformities which lead to the final required uniformities can be estimated. The

minimum initial uniformities can then be used to evaluate whether potential coating

methods are sufficiently uniform to replace the deposition and spreading phases of

spin coating.

Based on the Emslie model, Figure 2-4 shows the initial uniformities required to

achieve thickness variations less than 20 A in a final coat with a thickness between

1 /m and 5 Am. Since the Emslie model does not include the effects of evaporation,

the actual results are probably somewhere between the 5 Am final coating thickness

(which assumes no evaporation) and the 1 Am final coating thickness (which assumes

complete evaporation and no viscosity change for a photoresist with 0.2 solids con-

tent). The figure shows that the allowable variations in the initial thickness decrease

for thinner initial coats. An initial coating thickness of 10 Am, for example, requires

thickness variations less than 0.02-2 pm (depending on the effects of evaporation).

Because the Emslie model assumes nearly uniform initial coatings, it will produce

inaccurate results when used with coatings that have large initial thickness varia-

tions. Wang and Yen[43] also investigated the effects of non-uniformities in the initial
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Figure 2-4: Allowable thickness variation before final high-speed spin to achieve less
than 20-A variation in the final coating thickness.

coating thickness. The results of their study are similar to the results of Emslie and

indicate that small evaporation effects do not change the basic mechanism of spin

coating which causes non-uniform films to become more uniform.

2.5 Pre-Spin Coating Requirements

Because of the inherent inefficiency of the current spin coating method, a new method

must be developed to replace the dispense and spread phases of spin coating. This new

method, in conjuction with a final high-speed spin, must satisfy all the requirements in



Section 1.2 at least as well as spin coating. To satisfy the uniformity requirement, the

new method must produce initial coatings so sufficiently uniform that the smoothing

mechanism of spin coating will produce the final required uniformities.

A number of coating methods were investigated to determine if they were suitable

to produce the desired initial coatings. Of all the methods investigated, extrusion

slot coating was most promising.



Chapter 3

Extrusion Slot Coating

Extrusion slot coating is one member of the class of pre-metered coating methods. For

each of these coating methods, all of the fluid delivered to the coating head becomes

a part of the final coating[25]. Consequently, the coating thickness is controlled by

the fluid dispense rate, the efficiency is near 100%, and the thickness uniformity is

very good.

3.1 Description of Extrusion Slot Coating

In extrusion slot coating (also known as slot or bead coating), fluid is forced (ex-

truded) onto a substrate through a narrow slot, as shown by the cross-sectional view

in Figure 3-1. The sides of the slot are made of two parallel plates which become

narrow at the end of the slot, forming two narrow "lips" which direct the fluid onto

a substrate. The gap between the lips and the substrate (the coating gap) is filled

with a bead of coating fluid coming from the slot. When the substrate is moved

perpendicular to the slot, keeping the coating gap constant, fluid is drawn out of the

bead and remains as a thin film on the substrate. The width of the extruded film,
w is approximately equal to the length of the extrusion slot. The thickness of the

extruded film, h, is:

h= Q  (3.1)
WV

where v is the coating speed and Q is the fluid dispense rate. The menisci at the
leading and trailing edges of the coating bead are pinned to the corners of the extru-
sion die lips[25]. According to Fahrni and Zimmermann[21], these corners must have
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Figure 3-1: Cross-section of the lips of an extrusion slot coating die with a substrate
moving beneath them.

a radius of curvature less than approximately 50 um to keep the menisci pinned. The
capillary, viscous, and inlet pressures in the coating bead must balance the external

pressure to maintain stability in the coating bead[27]. A slight vacuum at the leading
edge of the coating bead can be used to stabilize it when coating thinner films or at

higher coating speeds[5]. Usually the coating lips are of equal length (G 1 = G2) and
the extrusion slot is perpendicular to the substrate. For very thin coatings, however,
it is sometimes beneficial to have one of the lips extend beyond the other (G 1 5 G2 )
or to have the extrusion slot slightly tilted from perpendicular to the substrate[25].

3.2 Extrusion Die

Figure 3-2 shows an extrusion die, constructed of a U-shaped shim sandwiched be-
tween two flat plates[24]. Photoresist enters the extrusion die through a hole in the
top of the back plate. The hole directs the photoresist to a cavity which is open to the
inner surfaces of the plates and is as wide as the inner width of the shim. The void
created by the U-shape of the shim leaves a narrow gap (the slot) between the two
plates through which photoresist can flow. This gap (the slot gap) has a width equal
to the thickness, d, of the shim. At the base of the extrusion die, the plates narrow
to form two lips on each side of the slot gap, as shown in Figure 3-1. Photoresist is
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extruded out of the slot gap into the coating gap, G, between the extrusion die lips

and the substrate.

3.3 Coating Materials for Extrusion Slot Coating

Extrusion slot coating has been used with a variety of fluids and substrates. Much

of the experimental work has been done using a spinning roller. The coating fluid

is applied on one side and removed on the other to maintain a continuous coating

process[31]. A common application of extrusion slot coating is applying thin films to

flat panel displays using a coating die the width of the display[3]. The substrate must

be very flat to produce thin coatings using this method.

A wide range of viscosities have been used with extrusion slot coating. Some of

the experiments have ranged from 10 mPa-sec[31] up to 130 Pa-sec[3]. Photoresist

has been found to work well with extrusion slot coating, attaining uniformities of less

than 2%[3].

3.4 Minimum Coating Thickness and Maximum

Coating Speed

The minimum coating thickness and the maximum coating speed are both constrained

by the same phenomenon, the low-flow limit of coatability[15]. Coating defects appear

when higher coating speeds or smaller coating thicknesses are attempted.

3.4.1 Effect of Coating Gap

Lee et al.[31] found that at high coating speeds, the minimum coating thickness (and

maximum coating speed) is very sensitive to the coating gap, but at low coating

speeds the gap has little influence on the minimum coating thickness. The boundary

between these two regimes is defined by a critical Capillary number (Ca = v/la). By

correlating the data from Lee's experiments, the critical Capillary number, Ca* can

be determined approximately as:

Ca* = 0.78G - 0.08 (3.2)

where G = G1 = G2. Lee et al. showed that above the critical Capillary number,



the minimum coating thickness was approximately proportional to the gap, except at
low viscosities. Below the critical Capillary number, the minimum coating thickness

decreases as the Capillary number decreases.

3.4.2 Effect of Fluid Viscosity

Lee et al. found that the minimum coating thickness can be reduced or the maximum

coating speed increased with lower fluid viscosities, especially at larger coating gaps.

3.4.3 Effect of Slot Gap

Lee et al. found that the slot gap, d, has little effect on the minimum coating thickness
because viscosity forces in the coating gap are much greater than the forces from the
momentum change of fluid coming out of the slot gap.

3.4.4 Models

Ruschak[39] modeled the minimum coating thickness for extrusion slot coating. Ac-
cording to his analysis, the minimum coating thickness depends primarily on the
surface tension forces in the coating bead. With no bead vacuum present, the mini-
mum coating thickness is:

hmin= 1.338 Ca2/3 ( (3.3)

where a is the dynamic surface tension, 0 is the dynamic contact angle between the
upstream meniscus and the substrate, and G = G1 = G2 is the gap. Lee et al[31]
showed by experiment that Rushak's model was valid for Capillary numbers below the
critical Capillary number when the coating gap was 1 mm and the dynamic contact
angle was between 0 and 900.

Higgins and Scriven[27] derived an improved model for extrusion coating by in-
cluding viscous forces. They identified two primary flows within the coating bead.
First, a Couette flow is created by the motion of the substrate relative to the extrusion
die. Second, a Poiseuille flow is driven by the pressure drop between the inlet slot and
the edges of the coating bead. To maintain a constant coating bead the Poiseuille
and Couette flows must exactly cancel each other in the leading edge of the coating
bead. In the trailing edge of the coating bead, the difference between the Poiseuille
and Couette flow rates equals the total flow rate.



The minimum coating thickness predicted by the Higgins and Scriven model for

a flat coating surface with no bead vacuum present is:

h6 Ca L, G2 (L 2 (G 1 
2  2ho

mn mi + cos 0 (G G LI G2 G J
where:

hoi, = 1.34Ca2/3 G (3.5)
1 + cos 0

and G1 ,G2,L 1, and L 2 are defined in Figure 3-1. The predicted minimum wet thick-

ness from Equations 3.4 and 3.5 is shown in Figure 3-3 for two coating gaps and

two dynamic contact angles. The experiments by Lee et al. verified this model for

Capillary numbers below the critical Capillary number when the gap was 0.2 mm and

dynamic contact angle was near 450.

3.4.5 Coating Bead Vacuum

When small gaps and high coating speeds are used, the coating bead becomes unstable

unless a vacuum is imposed at the leading edge of the coating bead. The vacuum

creates a pressure drop across the coating bead which helps balance the viscous forces

in the coating bead. The actual magnitudes of the gaps and coating speeds are

dependent on the viscosity. The model of Higgins and Scriven[27] predicted the

minimum and maximum operating pressures across a coating bead on a flat coating

surface to be:

pm = 1.34Ca2/3 (1 + cos0) 6pUvL 1 [+ (L2) (G1 • 2 2h (3.6)
h G2  G ~ L 11 G2  G,

and:

a a(I - cos 0) 6pvL1 I (L2) (G1i)2 2h

Apmax = 1.34Ca2/3 + 1 + (3.7)
h G2 G L i L G2  G

where h is defined in Figure 3-1. Sartor[40] experimentally validated the model of

Higgins and Scriven, developing a "window of coatability" which shows the pressure
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limits for stable coating beads. If the upper bead vacuum limit is exceeded, fluid

is sucked out of the bead. Below the lower bead vacuum limit, ribbing and rivulets

develop.

Most of the pressure drop across the bead comes from the viscous forces. With

a small gap and a high coating speed, the allowable pressure range is very small.

For a 14 mPa-sec fluid coated to 10 pm at 50 cm/sec the allowable pressure drop is

26.2 - 29.1 kPa.

The dynamic contact angle, 0, between the substrate and the upstream meniscus

is an important parameter for these models that is difficult to predict or measure[40].

Sartor showed apparent dynamic contact angles between 1100 and 1400 for glycerin-

water mixtures. Hens and Mues[26] found that the dynamic contact angle was less

than 1200 for the case of low Capillary number with no bead vacuum. Cohen and

Gutoff[15] found that the dynamic contact angle should be a function of the Capillary

number, the Physical Properties number (Pp = pa3/g/y4), and the dimensionless ratios

of any important properties (such as P/Pair or P/pair).

3.4.6 Experimental Thicknesses and Speeds

The maximum coating speed found in the literature for coatings on the order of

50pm is 5 cm/sec[14], with speeds up to 12.7 cm/sec cited as being possible. At

these coating speeds, the Capillary number is generally below the critical Capillary

number, and the minimum coating thickness depends only slightly on the gap.

3.5 Coating Uniformity

The uniformity of extrusion slot coatings has been the work of experimental investiga-

tion. Gutoff[24] stated that extrusion slot coaters were used extensively with coating

thickness variations under 2%. Bagen and Newquist[3] obtained coating thickness

variations between 1.3 and 1.7% for individual coatings of a 0.019 mPa-sec viscosity

fluid. The overall coating thickness variation for all of their coatings was 2.04%.



3.6 Coating Time

The coating time for extrusion slot coating depends on the area to be covered and

the width of the extrusion die. If the extrusion die is wide, large areas can be coated

very quickly. If the extrusion die is small, however, the coating time would be higher.

3.7 Coating Efficiency

The coating efficiency of extrusion slot coating approaches 100%. The only wasted

fluid is the fluid needed to flush the air bubbles from the extrusion die and the fluid

dispensed off the coating substrate.

3.8 Coating Defects

Gutoff and Cohen[25] describe a number of coating defects that occur in extrusion

slot coatings. The following list of coating defects follows their summary.

Chatter is the appearance of evenly-spaced thickness variations oriented perpen-

dicular to the coating direction. It can be caused by fluctuations in the fluid flow

rate, mechanical disturbances, vacuum fluctuations, or system hydrodynamics[40].

Ribbing is evenly-spaced thickness variations oriented in the coating direction,
caused by system hydrodynamics. Bixler's mathematical analysis of ribbing[6] shows

that ribbing can be reduced by using lower viscosity fluids, lower coating speeds,

greater coating thicknesses, and smaller coating gaps. Ribbing is more likely to occur

when the extrusion die lips are at an angle such that the upstream lip is closer to

the substrate than the downstream lip. Ribbing can also occur when the upstream

or downstream lip is too rounded. This creates the same problem as the extrusion

die angle described above.

Neck-in arises when surface tension draws the edges of the coating bead together,
causing the width of the coating bead to decrease. It is most pronounced at wide

coating gaps, high surface tension, high viscosities, and in highly viscoelastic liquids.

Neck-in is most severe near the limits of coatability. Edge guides are often used to

reduce its effect.



Scalloped edges occur when the edge of the coating bead moves in and out from

the edge of the extrusion die. This defect is more common for thin coatings, high

coating speeds, and wide coating gaps. It is more common in viscoelastic fluids, such

as photoresist.

Rivulets occur when the coating bead splits into two or more segments, resulting

in two or more stripes of photoresist separated by dry regions. This defect occurs at

high coating speeds and large coating gaps.

Edge Beads cause the edge of the extruded coating to be thicker than the center

of the coated area. Gutoff shows that surface tension is the source of edge beads

primarily at low viscosities, low coating speeds, low coating thicknesses, and wide

coating gaps.

Air Entrainment beneath the coating bead is an important limit to the maximum

coating speed[25]. Joos et a1.[28], and Mues et a1.[20] predict that air entrainment

begins when the dynamic contact angle reaches 180'. They found the critical air

entrainment velocity, v*, to be:

v* = (3.8)
4p

where a is the surface tension and y is the viscosity.

3.9 Evaluation of Extrusion Slot Coating

Extrusion slot coating meets all the criteria of Section 1.2. It can be used with

photoresist on flat substrates. It can produce uniform, thin coatings very efficiently.

If the extremes of the coating limits are avoided, very few defects are formed. One

problem it has, however, is the inability to coat substrates that vary in width. If this

problem is solved, extrusion slot coating can replace the dispense and spread phases

of spin coating.



Chapter 4

Extrusion-Spin Coating

Extrusion-spin coating combines the efficiency of extrusion-slot coating with the uni-

formities of spin coating. The extrusion coating method is used to apply an initial

fluid coating on a wafer, which is then spun at high speeds to reduce the thickness of

the fluid layer and improve the thickness uniformity.

4.1 Description of Extrusion-Spin Coating

Coating a flat disk using extrusion coating is difficult because the substrate does not

have a constant coating width. To solve this problem, we can use a small extrusion

slot coating die with a coating width much less than the disk radius, R. The extrusion

slot is oriented along the diameter of the disk as shown in Figure 4-1. The disk is

rotated at angular speed Q, creating a relative velocity, v, between the extrusion

head and the disk surface. As the disk is rotated, the extrusion head is moved along

the diameter of the disk at a velocity, u. Rotating the disk at a rate proportional

to the extrusion head speed creates a spiral-shaped coating, as shown in Figure 4-2.

Coating geometries other than a spiral can be created by using other disk rotation

rates and extrusion head speeds. Once the entire surface of the disk is coated with

fluid, the disk is spun at high speed (as in the usual spin-coat method) to attain the

final coating thickness.

4.1.1 Spiral Motion

To coat a disk using extrusion-spin coating, a geometric pattern which covers the

whole surface of the disk must be used. A spiral is perhaps the simplest method of



Figure 4-1: Extrusion-spin coating motion.

Figure 4-2: Extrusion-spin coating spiral pattern. Outline of disk (-), edge of spi-

ral rings (- -). Shaded regions show wasted photoresist at outer edge and double

photoresist thickness at center.



of doing so with an extrusion die that has a width between one tenth and one third

of the disk diameter.

Spiral-shaped coatings are made by moving an extrusion head radially along the

diameter of a turning disk. In this section all the equations developed are for radially

inward motion of the extrusion head (from the edge of the disk toward the center),
although radially outward motion is equally applicable.

Only small dispense volumes (between 0.1 and 0.2 mL) are required to produce

thin coatings. The dispense rate of fluid is correspondingly small. Because precise,
variable-rate pumps with low flow rates are not available, it is better to use a constant

fluid dispense rate. To obtain a uniform-thickness coating using a constant dispense

rate, the tangential velocity between the extrusion head and the disk must also remain

constant. The tangential velocity of any point on the surface of a disk, at a distance

r from the axis of rotation shown in Figure 4-1 is:

v = Qr (4.1)

where Q is the rotational speed of the disk (in radians per second). If we locate the

outer edge of an extrusion die slot at a position r, we can make a spiral shape by

moving the extrusion die inward one length of the extrusion slot for each revolution

of the disk. The extrusion die speed along the diameter of the disk is then:

u = - (4.2)
27

where w is the width of the extruded coating. Solving for Q from Equation 4.1 and

substituting it into Equation 4.2 yields:

wv= r- (4.3)
2rr

For radially inward motion, u = -dr/dt, and a differential equation for the position

of the extrusion head can be obtained as:

dr wvdr = rWV (4.4)
dt 2rr

Integrating this equation using the initial condition r = ro at time t=O yields:

wvr = r - - t (4.5)7r"



where ro is the initial position of the outer edge of the extrusion die. (In order to

make the spiral in Figure 4-2, the extrusion die must begin off the edge of the disk

at an initial position ro = R + w.)
Substituting Equation 4.5 for r in Equations 4.1 and 4.3, the disk rotation speed

and the extrusion die speed can be derived as a function of time as:

V

2- = (4.6)ro-

and:

WV
2- = (4.7)TO-

The angle of the wafer, 0, (in radians where Q = dO/dt) can be determined by

integrating Equation 4.6 using the initial condition 0 = 0 at time t = 0 as:

0= ro - 1 t t< (4.8)

4.1.2 Center Adaptation to Spiral Motion

The equations describing spiral motion (4.5 - 4.8) have a singularity at the center of

the disk. As the outer edge of the slot approaches the center of the disk, both the disk

rotation rate and the extrusion head speed should increase without limit to maintain a

constant tangential coating speed. Because this is impossible, the spiral motion must

be modified to stay within reasonable velocities. One method of accommodating

the center singularity is to maintain a constant disk rotational speed after the speed

reaches a critical maximum, or when the extrusion die reaches a critical radius. The

constant disk rotation rate and extrusion die speed after reaching a critical radius r,

are:

Uc (4.9)

and:

Vc = - (4.10)
rc



One logical position at which to fix the maximum rotation rate is when the inner

edge of the extrusion slot reaches the center of the disk. At this position, the outer

edge of the extrusion die is at a radius r = w, and the corresponding extrusion head

speed and disk rotation rate, shown in Figure 4-3, are respectively:

V = (4.11)
2w

and:

v
Q2 = - (4.12)

W

4.2 Coating Time

Solving Equation 4.5 for t, the coating time, T, can be computed as:

T = (r° -r) (4.13)
wv

where rf is the final radial position of the outer edge of the extrusion slot.

When the modified spiral discussed in Section 4.1.2 is used, the coating time

increases. The time required to complete the exact spiral from the critical radius

r = rc to the center is:

KT2
Tcenter = Crr (4.14)

wv

The time required to complete the modified spiral from the critical radius r = rc to

the center is:

re rc 2Trr 2
Tcenter,mod =_• _ r _ _ 2irr (4.15)

Uc 2c WV

The excess time required to complete the modified spiral can by found by subtracting

Tcenter from Tcenter,mod:

27rrT2 717T2 7r 2
Tcenter,excess 2Wr - = _ (4.16)

WV WV WV
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Figure 4-4: Coating time for extrusion-spin coating. Exact spiral (-), modified spiral
when r, = w (- -), modified spiral when r, = 2w ( ... ). v = 10 cm/sec, w = 2 cm.

Adding this excess time required to complete the modified spiral to the total coating

time for the normal spiral gives the total coating time for the modified spiral as:

2 2

Tmod = + (4.17)
WV WV

Figure 4-4 shows the coating time as a function of coating velocity for a 20-cm diam-

eter disk (ro = 12 cm).



4.3 Thickness and Thickness Uniformity

In extrusion-spin coating, the spiral shape of the initial wet coating creates thickness

variations, overlap bumps, and an excess pool of fluid in the center of the disk.

4.3.1 Wet Coating Thickness

As discussed in Chapter 3, the wet thickness, h, of an extruded film is:

h = - (4.18)
vw

where Q is the fluid dispense rate, w is the width of the extruded film, and v is the

relative tangential velocity of the extrusion head with respect to the coating surface.

Because of the spiral motion in extrusion-spin coating, however, the relative velocity

between the substrate and the extrusion head is not uniform across the extrusion

head. Substituting Equation 4.18 into Equation 4.1, the thickness at any point along

the radius can be found:

h = Q  (4.19)
Qrw

The thickness difference, Ah, between the inner and outer edges of the extrusion head

is then:

Q Q Qw
Ah Q Q Qw (4.20)Q(r - w)w Qrw Q(r - w)r

Two factors should make the actual thickness difference less than that of the value

value predicted by Equation 4.20. First, higher fluid velocities at the outer edge of

the extrusion head create a lower pressure which directs more of the fluid to the outer

edge. Second, surface tension will tend to even out the coating surface after it is

applied.

4.3.2 Fluid Overlap Between Extrusion Rings

Two spiral rings extruded during subsequent revolutions of a disk being coated can be

deposited next to each other in three ways: separated by a gap, exactly matched, or

overlapped. For each of these conditions, the desired result is a continuous, uniform

photoresist coating.
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Figure 4-5: Fluid cross section for (a) a valley created when a gap is left between
extruded rings and (b) a bump created when two extruded rings overlap. Surface
shape changes show how surface tension might spread the valley or bump over a
larger area.

When a small gap separates two rings, fluid must flow into the gap to join the

rings into a continuous fluid layer. There are three potential forces which might force

the fluid into the gap. First, gravity forces could cause a flow into the gap. Since

the coatings are extremely thin, it is unlikely that gravity would overcome the more

dominant surface tension forces. Second, when the fluid wets the substrate, surface

tension forces could cause the edges of the fluid to be drawn across the substrate

until the spiral rings are joined. Such processes are highly dependent on surface

characteristics which vary greatly with surface material, temperature, vapor prime,
cleanliness, etc. Once two rings join together, surface tension forces will tend to make

the resulting "valley" become shallower and wider as shown in Figure 4-5(a). As a

result, the thickness of the coating tends to become more uniform. The third force

which could cause the fluid to flow into the gaps is the inertial force on the fluid

during high-speed rotation of the substrate. Such flows are difficult to model because

of their unsteady dynamics. If the gap is not completely closed, pin holes can form.

If the edges of the spiral rings matched each other exactly, the fluid layer would be

theoretically uniform. In practice, however, extruded layers have thickness variations

near their edges which lead to "bumps" or "valleys" in the photoresist film at the

intersection of the two rings. In addition, the edges of a spiral ring are not exactly

straight because of minute variations in process parameters such as resist flow rate,
wafer to extrusion die gap, coating speed, temperature, and surface properties. These

variations can lead to alternating gaps and overlaps of the spiral rings.

When the spiral rings are overlapped, a "bump" in the fluid is created. These

bumps spread into the surrounding fluid by the same three phenomena which bridges

gaps between spiral rings. To attain the desired coating thickness uniformities, these



bumps must be spread out before a final high-speed spin. Figure 4-5(b) shows a

polynomial bump profile as it spreads.

Creating Overlap Between Extrusion Rings

A nominal overlap, Aw, between spiral rings can be created by using a width, w',

smaller than the actual width, w, to calculate the motion of the extrusion die. The

result is that the extrusion die moves more slowly across the diameter of the disk,

creating a nominal overlap which is less than the actual overlap when neck-in occurs.

The new effective width, w', which must be used in Equations 4.2 to 4.20 to obtain

an overlap is:

w' = w - Aw (4.21)

4.3.3 Fluid Deposition at the Spiral Center

The fluid profile at the center of a disk before a high-speed spin greatly affects the

final coating. During the high-speed spin, any excess fluid flows over the fluid on the

rest of the disk. Similarly, any thin areas in the center can remain due to a lack of

fluid. Therefore, it is important to characterize the fluid profile produced by spiral

coating at the center of the disk.

Spiral Center Fluid Overlap

Because the extrusion head has a constant width, the inner ring of a spiral-coated

disk overlaps the previous ring as shown in Figure 4-2. The volume of extra fluid in

this overlap, Vcenter, is approximately:

rw w2 h 7r'2 ( rwQcenter = = (4.22)6 6 wv 6v
When the spiral is completed, the overlapped fluid is off-center and can cause

uniformity problems.



Excess Fluid in Center of Modified Spiral

When a modified coating spiral is used, as discussed in Sections 4.1.2 and 4.2, the

coating time is increased for the center portion of the spiral. This increase in coating

time results in a corresponding increase in the volume of resist deposited:

AVmod = QATcenter,excess = Qr (4.23)
wv

This extra fluid adds to the excess already created by the center overlap.

4.3.4 Extrusion-Spin Coating Thickness Uniformity

Calculating the thickness uniformity of extrusion-spin coats requires three steps.

First, the thickness of the wet coating produced by extrusion coating must be deter-

mined over the entire coating surface. Second, the spreading of the wet coat before

the final high-speed spin must be calculated. Third, the change in thickness during

the high-speed spin much be characterized.

Wet Thickness Uniformity

The wet thickness of the extruded coating depends on the fluid deposition parameters

discussed above: spiral ring thickness variation, spiral overlap, center fluid deposition,
and possibly gap variation. According to Choinski[14], however, the gap variation is

not critical to extrusion slot coating as long as the gap remains below a certain critical

value. Therefore, variation in the gap is not considered in this analysis.

Figure 4-6 shows a typical fluid thickness distribution across the diameter of an

extrusion-coated disk. The thickness variation is greatest toward the center where the

coating velocity across the length of the extrusion die is the highest. Spiral overlaps

would introduce even more fluid at the intersection of the extrusion rings.

Wet Coating Uniformity Improvement

It is important to understand how the wet coating thickness evolves over time to see

if uniformities improve. Surface tension forces cause areas on the fluid surface with

high curvature to spread out. Since this problem requires more detailed analysis, it
is discussed separately in Chapter 5.
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Figure 4-6: Fluid thickness along the diameter of a disk with a 20-/m nominal coating
thickness.



Evaporation Effects on Final (Dry) Thickness Uniformity

During the high-speed spin fluid accelerates radially outward as described in Sec-

tion 2.1. During this phase the coating becomes thinner and variations in the coating

thickness become less and less. Because of the spiral coating technique, however,

evaporation has a much more pronounced effect than for spin coating. As the solvent

evaporates, the viscosity of the fluid increases according to Equation 1.1, leading to

thicker films after the final high-speed spin. Therefore, if evaporation is not uni-

form across the substrate, non-uniformities in the final film thickness will also be

present. Appendix B shows the derivation of the mass transfer rate per unit area for

evaporation from a spinning disk:

*1 _, 0.585pDa, / 1

0.6/Sc + 0.95/Sc1 /3  asIn 1 - m,,,(4.24)

where Das is the air-solvent diffusion coefficient, Sc (= vas/Das) is the Schmidt num-

ber, Q is the rotational speed of the disk, vas is the viscosity of the solvent-air mixture

over the disk, and m,,, is the mass fraction of the solvent at the surface of the fluid

film on the disk (determined by the partial pressure of the solvent at the surface). To

obtain an upper bound on solvent evaporation, a fluid layer of 100% solvent will be

assumed. This assumption neglects any liquid-phase resistance to solvent diffusion.

Because the mass transfer coefficient is independent of radial position, the evaporation

rate is uniform over the entire surface of the disk.

The total solvent evaporation at any point on the disk can be calculated by using

Equation 4.12 to substitute for Q in Equation 4.24. The mass of evaporated fluid per

unit area is:

T
Am" = rh"dt (4.25)

where T is the total coating time and to(r) is the time at which fluid is first deposited

at radius r on the disk. The fraction of solvent evaporated from the fluid surface is:

e= (4.26)
ph

where p is the fluid density and h is the fluid thickness.

Figure 4-7 shows solvent evaporation for a 25-pm spiral coated from the edge of

the disk to the center. Evaporation is nearly an order of magnitude higher at the edge
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Figure 4-7: Solvent evaporation for a 25-/pm thick wet coating for coating velocities
of 6, 8, 10, 12, and 14 cm/sec (top to bottom).

of the disk than at the center. Higher coating speeds actually lower the evaporation

because coating takes less time. We can thus expect that higher evaporation rates

at the edge of the disk will cause the edge of the disk to have higher viscosities and

greater film thicknesses than those at the center of the disk.

Figure 4-8 shows the total evaporation effects at the edge of a 20-cm diameter

disk. Thinner films have a greater fraction of fluid evaporated because they have less

fluid to begin with. Therefore, evaporation has a greater effect on thinner coating

films. The results of this model predict that the edges of extrusion-spin coated disks

will be thicker than the center, unless solvent evaporation is inhibited significantly.
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4.4 Extrusion-Spin Coating Efficiency

The extrusion coating process wastes fluid in several ways: lost fluid at the wafer

edge, a double layer of fluid at the center, overlap of spiral rings, and fluid thickness

in excess of the minimum required thickness. Waste calculations in this section are

based on a spiral coating geometry. Figure 4-2 shows the waste that occurs at the

outer edge of a disk when a spiral shape starts off the edge of the disk. The volume

of fluid wasted in this outer region is approximately half a ring of fluid:

AVLdge = 7rRwh (4.27)

where R is the disk radius, w is the width of one spiral ring, and h is the thickness

of the extruded fluid. A second fluid waste is the double layer created by the spiral

pattern at the center of the wafer, also shown in Figure 4-2. The excess volume of

fluid in the double layer is approximately:

AVcenter = (4.28)
6

Thirdly, each spiral ring is overlapped with the rings next to it, creating an extra

"bump" of fluid (see Figure 4-5(b)) that has an approximate volume of:

AVoeriap = rR2 h (-) (4.29)

where Aw is the overlap. Fourthly, the uniformity requirements discussed in Sec-

tion 2.4 require the wet fluid thickness, h, after the initial coating to be thicker than

the minimum required wet thickness, hmin. This allows for uniformity improvement

during a high-speed spin. The excess fluid is the difference between the actual volume

used and the minimum theoretical volume of fluid needed to coat a wafer:

AVthickness = 7 R2 (h - hmin) (4.30)

where hmi,(= hdry/c) is the minimum theoretical fluid thickness. (See Section 1.2.6.)

Fifthly, the excess fluid that is deposited in the center due to the modified spiral

shape is:

AVmod = 7wrrh (4.31)



Using these wasted volumes, it is evident that the overall efficiency, defined as the

fraction of the fluid consumed which actually remains on the wafer after the coating

is complete, is:

xR2 hminE= rR2h (4.32)
rRwh + rR 2h (#w) + + R2 (h- hmi,) + 7rR 2 hmi, + irr 2h

The second, third, and fifth waste volume terms are negligible when there is a small

overlap, spiral ring width is less than half the radius of the wafer, and r, 5 w.

Figure 4-9 shows the efficiency when these term are ignored and the efficiency reduces

to:

hdry R (4.33)
hc w+R

4.5 Defects in Extrusion-Spin Coating

A number of defects can arise when using extrusion-spin coating. Some of these

are the same as those which are encountered in extrusion slot coating, while others

develop because of the spiral shape of extrusion-spin coating. Only those defects

which arise because of the unique features of extrusion-spin coating are discussed

below.

4.5.1 Gap Variations Due to Misalignments

Coating defects may arise when the coating gap does not remain constant. In practice,
misalignments in extrusion-spin coaters introduce two kinds of errors in the coating

gap. First, there is an absolute gap error, AG. Second, there is an angle, q, between

the extrusion die lips and the substrate, which causes a difference in gap, AGO(=

w sin q), between the ends of the extrusion die lips.
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Figure 4-10: Gap error when extrusion die lips are not parallel to the substrate.

Extrusion Head Misalignment with Horizontal Motion Axis

When the extrusion die lips are not parallel to the direction of the motion of the

extrusion die, the gap between the extrusion die and the substrate is inconstant.

Figure 4-10 shows that the difference in gap from one end of the extrusion slot to

the other will be:

AGO = aw (4.34)

where a is the angle between the extrusion die lips and the substrate.

Spinner Chuck Runout

When the axis of rotation of the disk being coated is not perpendicular to the extrusion

die lips, the gap from the extrusion die to the disk varies periodically as shown in

Figure 4-11. The magnitude of the gap variation, AG(O), is:

AG(O) = -r tan(/) cos(2w0) (4.35)

where 0 is the misalignment angle. The angle between the disk and extrusion die

will also vary periodically, causing the gap to vary from one end to the other by a

distance:

AG 4 = w tan(3) cos(2w7) (4.36)

Ir



Figure 4-11:
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Gap error when the coating surface is not perpendicular to the axis of

0 = 0o, (b) 0 = 1800.
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If a sensor is used to actively control the disk-extrusion die gap, the angle variation

will still remain, but the absolute gap error becomes much smaller. The remaining

gap error, AG(O), is Abbe error which causes periodic gap variation as shown in

Figure 4-12:

AG(O) = -(b + w) tan(f) cos(27rO) (4.37)

where b is the distance between the sensor measurement point and the inner edge of

the extrusion die lips.

Spinner Chuck Axis Misalignment with Horizontal Motion Axis

When the disk rotational axis is not perpendicular to the axis of motion of the extru-

sion head by an angle, y, the gap increases linearly with the extrusion head position

only when no sensing is used, as shown in Figure 4-13:

AG = (ro - r) tan(y) (4.38)

Total Misalignment Error

When there is no active control of the gap, the gap error at any radius r is:

AGr(8) = -r tan((0) cos(0) + (ro - r) tan (4.39)

where ro is the initial radial position of the extrusion die and the angles a, 3, and y

are defined in the figures in Section 4.5.1. When a sensor is present, the gap error is:

AGr (0) = -(d + w) tan(0) cos(8) (4.40)

where w is the extrusion die width and d (=1.5cm) is the distance from the sensor

position to the inner edge of the extrusion die. There is also a component of gap

change due to the angle of the wafer, which is the same with or without a sensor:

AG4 (O) = w tan(a) + w tan(3) cos(8) + w tan(7) (4.41)

The angle of the extrusion die with respect to the wafer (for small angles) is then

AG - a +/ 3cos(O) + 7 (4.42)
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Figure 4-12: Gap error when the coating surface is not perpendicular to the axis of
rotation, and a sensor is used to track the coating surface. (a) 0 = O0, (b) 0 = 1800.
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Figure 4-13: Gap error when the axis of rotation is not perpendicular to the axis of
extrusion die motion.

From this we can calculate the gap error at the leading edge of the extrusion die,
AG,_,(0), (when a sensor is used) as:

AGr-w(9) = AGr + AGO = -dtan(/)cos(0) + w(tan(-y) + tan(a)) (4.43)

4.5.2 Center Defects Due to Misalignment

To get a complete coating, the path of the extrusion slot must pass directly over the
axis of rotation of the disk. When the extrusion slot misses the axis of rotation, a
round area which has a radius equal to the misalignment is left uncoated. This spot
can cause severe defects over the whole surface of the disk during the final high-speed
spin.

4.5.3 Overlap Errors

In practice, there are two problems which cause the spiral overlaps to increase or
decrease as the spiral develops. First, the overlap changes when the ratio between
the extrusion head speed and the chuck rotation rate is inconstant. As the ratio
changes, so the overlap changes proportionally according to Equations 4.6 and 4.7.

The second source of overlap changes is a misalignment of the extrusion head
with the axis of rotation of the disk. This problem arises because the extrusion



head velocity and the disk spin speed must both be inversely proportional to the

radial position, r, of the extrusion head in order to produce a perfect spiral. (See

Equations 4.1 and 4.3.) In practice, however, a controller is used to calculate the disk

and extrusion head positions. If the actual radial position of the extrusion head is

greater than the position used by the controller to calculate the disk and extrusion

head speeds, the overlap will increase. If the actual radial position is less than the

controller's position, the overlap will decrease. When the extrusion head begins its

motion at position ro + Aro instead of the nominal position, ro, away from the disk

rotation axis, the actual motion of the extrusion head will no longer be described by

Equation 4.5. Different initial conditions (r = ro + Aro instead of r = ro at time

t = 0), cause the actual position of the extrusion head to be:

wv
r' = (ro + Aro) 2 -- t (4.44)

where r' is the actual position of the extrusion head. Because the angular position of

the disk is calculated by the controller based on the nominal position ro, however, the

chuck angular position is still described by Equation 4.8. By inverting Equation 4.8,

the time, t(O), for any radial position of the chuck can be found as:

Trr 2 WO 2
S2rr ]  (4.45)

The overlap, Aw(O), at any angular position along the spiral can then be calculated by

taking the difference between two spiral positions one revolution apart and subtracting

the extrusion width:

Aw(0) = r'(0) - [r'(O - 27r) - w] (4.46)

where 0 is measured in revolutions. Figure 4-14 shows the growth in the overlap error

for several misalignment values. The final overlap error can be significant even for

small initial errors. Figure 4-15 shows the final overlap errors once the leading edge

of a 2-cm extrusion head reaches the center of a 20-cm disk. The overlap errors are

independent of coating velocity.



U.L

0.7

0.6

E

0.5

a-

"C 0.4
0

0

0~0.3

L.J

0.2

0.1

n

0 1 2 3 4 5 6
Disk angular position [revolutions]

Figure 4-14: Extrusion overlap error for extrusion die misalignments of 0.01, 0.02
0.05, and 0.1 cm (bottom to top).

AC·



U,

E 0

0
0CD

LO>0
o
L

0L-
>0
0
ot-

0
w O

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Extrusion head misalignment in direction of motion [cm]

Figure 4-15: Extrusion overlap errors after 5 revolutions (i.e., when the leading edge
of the extrusion die reaches the center of the disk). w = 2.

A-·



4.6 Evaluation of Extrusion-Spin Coating

Using many of the analyses in this chapter and Chapter 3, a coating window for

extrusion-spin coating can be developed, as shown in Figure 4-16. Efficiency requires

the coating thickness be less than the maximum allowed by Equation 4.33. The

maximum time requirement mandates a minimum coating speed, as discussed in

Section 4.2. Evaporation is also decreased at higher coating speeds, as discussed in

Section 4.3.4. The low-flow limit of coatability puts a limit on the maximum coating

speeds and minimum coating thicknesses, as discussed in Chapter 3. Within these

limits acceptable extrusion-spin coatings can be made.
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Chapter 5

Fluid Spreading Models

Because the fluid thickness is not uniform after extrusion spiral coating, a simple

model is needed to describe the spreading of "bumps" or "valleys" created during

coating. The overlaps between spiral rings will be investigated in particular. To de-

termine which physical phenomena should be included in the model, the dimensionless

groups which show the relative importance of each phenomenon can be compared.

The Bond number represents the ratio of gravitational forces to surface tension forces:

Bo =pga2  (5.1)

where p is the density, g is the acceleration due to gravity, a is the characteristic

length, and a is the surface tension. The Weber number is the ratio of inertia to

surface tension forces:

We = pU2a (5.2)

where U is the characteristic velocity. The Capillary number is the ratio of viscous

to surface tension forces:

Ca = LU (5.3)

where p is viscosity.

Both the Weber and Capillary numbers depend on the unknown characteristic

fluid velocity in the bump. To determine the relative importance of the three pa-

rameters, their magnitude can be plotted as a function of the velocity. Figure 5-1

shows that the Weber number (i.e., inertial force) dominates at high velocities, the



Capillary number (i.e., viscous force) dominates at medium velocities, and the Bond

number (i.e., gravitational force) dominates at very low velocities.

During spreading, a bump progresses through each of these three spreading re-

gimes. When first created, a bump or valley has a high radius of curvature, and

thus a large pressure gradient from surface tension forces. The initially large pressure

gradient leads to large fluid velocities dominated by inertial forces. As the bump or

valley spreads, the curvature of the fluid decreases dramatically, and the viscous forces

slow down the fluid. At lower velocities the viscous retarding forces become more

significant than the inertial forces. Eventually as the spreading velocity decreases

to near zero, the gravitational forces become significant. Since dominance of the

inertial forces occurs only at high velocities, the inertial spreading time should be

much smaller than the spreading time under the dominance of viscous forces. Thus

we can approximate bump spreading by using a model which balances the spreading

force due to surface tension with the retarding viscous force.

5.1 Two-Dimensional Spreading Model

To develop a model for spreading due to surface tension, locally fully-developed vis-

cous flow was assumed for the case when two fluid layers overlap. Other assumptions

were made as follows:

* no air is trapped beneath the two layers

* the two layers join to form an isotropic fluid bump

* far from the bump the fluid has uniform thickness, h

* the fluid does not evaporate

* surface tension is uniform across the surface of the fluid
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Figure 5-2: Coordinates for bump spreading model.

If the spiral is approximated as circular, cylindrical coordinates can be used for the

spinning disk shown in Figure 5-2 and the flow can be approximated as axisymmetric.

Most of the inertial terms and the viscous terms can be eliminated from the Navier-

Stokes equations in the 0 and z directions to obtain:

2 p 82U
- p 2  • - + 2  (5.4)

Or 19z2
and:

0= - pz (5.5)

where u is the fluid velocity in the r direction, p is the pressure, p is the fluid viscosity,

p is the density, and g is the acceleration due to gravity. Assuming small changes in

fluid thickness, h, at the fluid surface (z = h), the boundary condition is:

02h
Patm - Pin = Or 2  (5.6)

where Patm is the atmospheric pressure outside the fluid layer and Pi, is the pressure

just inside the fluid surface. Equation 5.5 can be integrated to obtain:

P2h
p = patm + pg(h - z) - a 2 (5.7)

Or
2



Differentiating Equation 5.7 with respect to r, substituting into Equation 5.4, and

integrating twice with respect to z give an equation for the fluid velocity:

u = -PgA - p 2r - Za + hz (5.8)

Then integrating from z = 0 to h leads to an expression for the fluid flow rate:

27rrh3 ( Oh 3 h'
Q = - Pg - p_ 2r - aor (5.9)3 1 1r r3)

Satisfying the continuity of a fluid element of width Ar and height h requires:

(27rrArh) + -r Ar = 0 (5.10)9t 0r
Canceling Ar and substituting for Q, a differential equation is obtained for the fluid

height as a function of time:

Oh 1 A Oh a 3 0 h
[-h3 P ( P 2[M rf 3  (5.11)

Ot 3-prr r O r • 35r r 11)

This equation is only valid for thin fluid layers with small changes in fluid height

that satisfy the following requirements:

- <<1 (5.12)
VT

uh 2u- << 1 (5.13)
va

(h) 2 << 1 (5.14)

where v is the kinematic viscosity, T is the timescale of fluid motion, and a is the
length scale in the r direction over which the fluid motion occurs.

The order of magnitude of the timescale for spreading due to surface tension can
be calculated by equating the first term in Equation 5.11 to the surface tension term

(on the right side). This yields:

S a4
7 • ah a  (5.15)uh3



Table 5.1: Order of magnitude values of bump spreading time constant, T [seconds].

where 7 is the timescale of spreading for a bump. From this time constant it is

apparent that spreading is faster when bumps are narrower, when the fluid thickness

is greater, when surface tension is greater, and when viscosity is smaller. Since r

increases and h decreases as the bump spreads, it is expected that the bump spreading

speed will decrease even faster as the bump spreads.

Table 5.1 lists values of the time constant for a photoresist having a viscosity of

26.5 mPa-sec and a surface tension of 22 dyne/cm. For an initial bump half-width, a,

of 10 jtm and a coating thickness, h, of 10 pm, the time constant is very small, and

spreading is very fast. As the bump spreads to a 100 pm half-width, the height of the

bump decreases to approximately 1 ,um, and the spreading time constant increases

by a factor of 10'. Thus it is evident that the rate of bump spreading changes

dramatically as the height of the bump changes.

5.2 Average Flow and Pressure Model

In the region where viscous forces are dominant in balancing the surface tension forces,

the bump spreading flow can be modeled in the following manner:

* assume a reasonable shape for the bump

* calculate the surface tension forces which arise from the curvature of the fluid

surface

* calculate the pressure gradient created by the surface tension forces

* calculate the flow rate which would occur in a thin layer of fluid with an equiv-

alent pressure gradient and thickness



* using the flow rate, calculate a new bump profile with a similar shape

* repeat the above process in small time steps to determine bump profile evolution

* use several profile shapes to determine how much the assumed shape affects the

outcome

5.2.1 Polynomial Shape

Figure 5-3 shows a forth-order polynomial bump on a thin layer of fluid. To get a

reasonable shape, it is assumed that the bump is symmetric and has zero slope at its

edges. The equation which describes its shape is:

- 2+1- 2 - +1a (5.16)

where 1 is bump thickness, a is the half-width of the bump, and h is the thickness of

the film on which the bump is located. Integrating the profile yields the area of the

bump:

8
A= la (5.17)

15

The curvature of the bump surface at a distance, x, from the center is:

12X2 4a4 - a2

S1+ 12 (4 4)2] 3/2

Z

Figure 5-3: Coordinates for bump evolution of a polynomial shaped profile.
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The pressure drop across the fluid surface due to surface tension forces is then:

Ap = p - Po= -UK a (5.19)

By taking the derivative of the pressure drop with respect to x and integrating from

x=O to x=a, the average pressure gradient along the profile can be found:

x ~ a o Ox a a
avg

Assuming constant density, conservation of mass for the photoresist in the bump

results in:

dQ, dzdQx= dz (5.21)
dx dt

where Qx is the flow rate of photoresist in the x-direction. By integrating d twice

from x=0 to x=a and dividing by a, the average flow rate for a change in bump

thickness can be found. Using Equation 5.17 to simplify the result yields:

a dl
Q = a (5.22)

6 dt

The average thickness of the bump can be found by integrating z from x=0 to x=a

and dividing by a:

- 8 1 (5.23)
15

Using the average pressure, flow rate and bump thickness, the evolution of the bump

thickness can be calculated by using the viscous flow approximation:

S-( + h)3  p(5.24)
Q = ) avg24)

Substituting Equations 5.20, 5.22, and 5.23 into Equation 5.24 yields a first order

differential equation for the bump thickness:

dl 16, 384 l5  81 + h (5.25)
- +-lh (5.25)

dt 16,875 pA4 (15

Using fourth-order Runge-Kutta numerical integration, the bump thickness was

calculated as a function of time. Figure 5-4 shows that bumps which are initially

thicker take longer to spread, but the differences in spreading time are small compared



to the overall spreading time. Figure 5-5 shows that the photoresist overlap has a

significant effect on the spreading time. The time needed to reduce a 10-t/m bump to

a thickness of 0.2 pm is only 2 seconds if the overlap is 20 im, but it takes 37 seconds

if the overlap is 40 jim. Thus the overlap must be as small as possible.

5.2.2 Sinusoidal Shape

Using a sinusoidally-shaped bump with the same coordinates as in Figure 5-3, the

equation which describes the bump is:

z= 1 cos ( ) + ] (5.26)2 a
where 1 is bump thickness, a is the half-width of the bump, and h is the thickness of

the film on which the bump is located. Integrating the profile, the area of the bump

can be found to be:

A= -la (5.27)
2

By the same method as the polynomial bump, the average pressure gradient along

the profile can be determined:

(Op) - - r2al (5.28)
Savg a3

Assuming constant density, conservation of mass for the photoresist in the bump

results in:

dQx dz=- (5.29)dx dt

where Qx is the flow rate of photoresist in the x-direction. By integrating d_• twice

from x=0 to x=a and dividing by a, the average flow rate for a change in bump

thickness can be found. To do this, Equation 5.17 is used to simplify the result:

7 2 - 4 dl
Qx= ad (5.30)472 dt
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The average thickness of the bump can be found by integrating z from x=O to x=a

and dividing by a:

1= 1 (5.31)
2

Using the average pressure, flow rate and bump thickness, the evolution of the bump

thickness can be calculated by using the viscous flow approximation:

- ( + h)3 (&)
Q(x =- h)3  (5.32)

Substituting Equations 5.28, 5.30, and 5.31 into Equation 5.32 yields a first order

differential equation for the bump thickness:

dl 7r2 1a5  1 )3
= - 24( 1 + h (5.33)

dt 24(ir2 - 4) pA 4 2

Figure 5-6 compares the polynomial and sinusoidal models. Since both models

produce similar bump spreading rates, it appears as if the assumed shape of the bump

does not significantly affect the results.

5.3 Summary of Fluid Spreading Results

The bump spreading models indicate that fluid bumps will spread rapidly during

the initial stages after they are created, but that the spreading will slow significantly

after several seconds. More experimental investigation must be done to determine the

actual rates at which these bumps spread out and their effect on the coating thickness

after the final high-speed spin.
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Chapter 6

Extrusion-Spin Coater Prototype

The experimental coater developed for testing the extrusion-spin coating process con-

sists of many components linked together by control equipment. The coater consists

of an x-z positioning system mounted on top of a spin coating module. The x-z posi-

tioning system positions an extrusion die relative to the spinner while photoresist is

dispensed through the die from a pump. Each system is described below.

6.1 Spinner Module

The spinner for the extrusion-spin coater is an SVG 90SE coater module (one com-

ponent of an SVG 90SE Wafer Processing Track). The heart of the coater module is

a spinner assembly consisting of the spinner servomotor connected to a long, vertical

shaft which supports a Teflon vacuum chuck. The entire spinner assembly can be

moved vertically using another servomotor (chuck elevator motor). The chuck is sur-

rounded by a catch cup at the lowest position of the spinner assembly. The catch cup

serves three purposes: it catches and drains waste photoresist flung off the wafer; it

has an exhaust vent through which evaporated solvent is removed; and it directs the

flow of air over the wafer to avoid turbulence. (See Figure 6-2.) A centering device

at the top of the coater module has eight Teflon pins for centering wafers on the

chuck and three vertical pins for supporting loose wafers before and after processing.

Sensors on the coater module indicate chuck vertical home position, vacuum state

(on/off), and centering pin position.



6.2 Positioning System

On top of the coater module is an aluminum base plate 50 cm deep by 81 cm wide

which supports the positioning system shown in Figures 6-1, 6-2, and 6-3. Two

vertical aluminum plates 38 cm high on top of the base support a cross-support

81 cm long on which a two-axis positioning system is mounted. The positioning

system consists of two Parker Daedal Motion Tables capable of 25 cm of motion

driven by 5-pitch ball screws. The "z-axis" positioning table is mounted on the

carriage of the "x-axis" positioning table. The x-axis table moves in a horizontal

direction parallel to the surface of the wafer, and the z-axis table moves in a vertical

direction perpendicular to the surface of the wafer. The extrusion head is mounted

at the bottom of an aluminum support mounted on the z-axis table. The extrusion

head can be positioned above the base plate or moved down into the spinner area of

the coater module through a 25 cm-by-25 cm hole in the base plate.

6.3 Control System

6.3.1 Control Hardware

Control of the experimental extrusion-spin coater is divided into two systems: the

positioning controller and the spinner controller. The main controller is a Parker

Compumotor AT6450 Controller, a Pentium-based card which has four channels of

servomotor control, an analog to digital converter, and digital inputs and outputs.

Two servomotor outputs control the x and z-axis positioning table motion using

Parker Compumotor SM232 brushless servomotors and Parker Compumotor TQ10

torque (current) amplifiers. A third servomotor output controls the spinner elevator

motor. The optically isolated digital inputs of the controller allow input of vac-

uum on/off status, centering pin in/out position, manual positioning commands, and

start/stop and error communication with the spinner controller. The digital out-

puts of the controller send signals to the spinner controller, dispense pump, vacuum

solenoid, centering solenoid, z-axis motor brake, spinner elevator motor brake, and

photoresist on/off valve. A 14-bit AD converter records the voltage from a Philtec

RC140L optical sensor which measures the gap between the extrusion head and the

wafer. The sensor voltage is updated in the controller every 3.5 ms. Programs down-

loaded from a PC to the controller produce the desired coating motion.



Figure 6-1: Photograph of Extrusion Coater. Scale: 1 cm = 7.25 cm.

88



Wafer-Extruder

Parallelism Adjustment/

Z-Motion Table

Motor and Base'

X-Motion -
Positioning Table

Solvent Exhaust Liquid Waste

Drain

Figure 6-2: Front view of extrusion coater.



X-Motion Table
Cross Support Centering Pins Motor and BaseCrs\upr etrn isMtradBs

Fastening Bolts

Fastening

Plate

X-Motion

Positioning Table

Z-Motion

Positioning Table

Z-Motion Table

Motor and Base

Extruder Head

Support Mounts

Front Vertical

Support

Extrusion Head Wafer-Extruder Vacuum Center Hole
Support Parallelism Adjustment Chuck in Base Plate

Figure 6-3: Top view of extrusion coater.

Positioning 

Syst 
m



A Pacific Scientific SC 755 is the secondary controller used to set the spinner an-

gular speed and position. Appendix A shows that the uncertainty in spinner speed

was 8.2% (1 a), and the uncertainty in spinner position was 0.026 radians (1 a). This

controller runs coating and spin cycles in response to digital inputs and outputs con-

nected to the main controller. A simulated encoder signal generated by this controller

allows electronic gearing of the spinner speed with the x-axis of the main controller.

Programs written for the Pacific Scientific controller are also downloaded from the

PC.

The Philtec RC140L sensor is a reflectance compensated optical displacement

sensor. It shines a light on the surface of the wafer, measures the reflected light,
and generates a voltage proportional to the intensity of the measured light. The

spot size of the sensor is 6 mm and it has a DC-100 Hz bandwidth. Although the

voltage-distance curve of the sensor is non-linear, it has a linear region when the

sensor-wafer distance is between 5.51 and 6.17 mm. The sensor is positioned so that

all measurements fall within the linear range.

6.3.2 Gap Control

During the coating motion, the gap between the extrusion die and the wafer is main-

tained at a constant distance by a simple control loop. The gap is measured using

the sensor input and compared with the desired gap to obtain the gap error. The

z-axis positioning table is commanded to move the distance required to correct the

gap error. After the motion is complete the loop is repeated. Appendix A shows that

there was an absolute gap error of -2.6 /m with an uncertainty of 7.2 pm (1 a), with

an additional periodic amplitude variation of 3.6 pm ± 0.42 pm (1 a).

6.4 Photoresist Dispense System

The photoresist flow rate is mainly controlled by a Millipore Gen 2 displacement pump

with a Gen 2 plus controller. Photoresist in a high-density polypropylene bottle flows

through the pump, through 3.2-mm ID Teflon tubing, and into a Teflon shutoff valve.

A 1.6-mm ID Teflon tube leads from the shutoff valve to a tee. One branch of the

tee leads directly to the extrusion die while the other leads to a shutoff valve and a

needle valve in series before going to the waste bottle. The needle valve is used to

precisely drain off part of the flow from the pump in order to get lower flow rates
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than the minimum flow rate of the pump.

To calibrate the flow rate, 1-2 ml of photoresist was dispensed and weighed at

known positions of the needle valve for each type of photoresist. A negligible percent-

age of the photoresist evaporated between dispense and weighing. Figure 6-4 shows

the calibration curves for the two photoresists. The uncertainty in the flow rate is

was 2.5-4% for the i-line photoresist and 11.5-16.9% for the deep UV photoresist.

The extrusion die (described in Section 3.1) had a nominal coating width, w, of

2 cm. This size was chosen because it was large enough so that the coating time was

not too long, yet small enough that the thickness variation across the width of each

extruded ring was not too large.
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6.5 Alignment System

The extrusion head and motion tables must be aligned with respect to the wafer to

obtain uniform coatings. Three alignments are needed. The first alignment adjusts

the path of the extrusion slot so that it passes directly over the center of the chuck.

This is necessary for a complete coating in the center of the wafer. The extrusion

head is positioned over the center of the wafer by sliding the vertical supports forward

or backward over the base. The motion of the vertical supports is constrained by a

guide on the base. Adjustment bolts at the back of each of the vertical supports allow

fine-tuning of their position before they are fastened in place. The uncertainty of this

alignment was within approximately 0.5 mm.

The second alignment adjusts the angle of the x-axis until it is parallel to the

wafer surface. This alignment is necessary to maintain a constant gap between the

wafer and the extrusion head as the x-positioning table changes position. The angle

of the x-axis with respect to the wafer surface can be changed by rotating the motion

system support about the pivot at one end. (See Figure 6-5.) Fine and coarse

adjustment bolts allow adjustments of the angle between the x-axis and the wafer

surface of 1.64x 10- radians per turn of the fine adjustment bolt. The angle of the

x-axis with respect to the wafer surface can be determined by scanning across the

wafer with the optical sensor close to the wafer surface. During the scan, with the

z-axis fixed, measurements of the sensor output and the x-position are recorded. A

linear regression of these data pairs gives the angle between the wafer and the x-axis.

Appendix A shows that during experiments this angle was 2.4 x 10- 4 radians with

an uncertainty of 2.8 x 10- radians (1 a).

The third alignment adjusts the bottom edge of the extrusion head until it is par-

allel with the x-axis and the wafer surface. This alignment is crucial for maintaining

a constant gap across the width of the extrusion head. The angle between the bottom

edge of the extrusion head and the x-axis can be adjusted using the wafer-extruder

parallelism adjustment bolt shown in Figure 6-5. This bolt pivots the extrusion head

support about a pivot at the base of the z-motion table. The angle between the

x-axis and the bottom of the extrusion head can be measured using an LVDT sensor.

The LVDT sensor is secured to the wafer surface with the measurement tip pointing

vertically up. Next, the extrusion head is lowered until the lips of the extrusion slot

move the LVDT sensor to a reference position. After the x and z-table positions are

recorded the procedure is repeated for several other positions along the extrusion head



lips. The slope of the extrusion head with respect to the x-axis is determined using

a linear regression of these data pairs. Appendix A shows that during experiments

this angle was less than 1 x 10- 4 radians from parallel.

6.6 Calibrations

Two steps are required to calibrate the optical sensor input voltage with the gap

distance between the wafer and the extrusion head. First, the zero-gap voltage is de-

termined by measuring the sensor voltage at many small gap distances using precision

shims. A linear regression analysis of the gap distance and sensor voltage data calcu-

lates the sensor voltage at a zero gap. Second, the constant of proportionality of the

sensor voltage versus the movement of the z-positioning table is determined by mov-

ing the z-positioning table away from the wafer in 12.7-pm increments and recording

the sensor voltage at each position. A linear regression of the data pairs provides the

voltage versus z-position slope. It is important that the wafer be aligned parallel with

the extrusion head before the sensor is calibrated so that errors will not arise from

the angle between the extrusion head lips and the wafer surface. Appendix A shows

that the uncertainty in this calibration was 5.7 pm (1 o).
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Chapter 7

Experimental Results and

Discussion

Experiments to determine the feasibility of extrusion-spin coating were carried out

using two kinds of photoresist: AZ 1512 (an i-line photoresist) and AZ DX 1200 P (a

deep UV photoresist). The two photoresists have similar densities and surface tension,
but the viscosity of the i-line photoresist is 19 mPa-sec while that of the deep UV

photoresist is 11 mPa-sec. For each photoresist there are two sets of experimental

results. The first set shows the limits on the wet coating (before the final spin),
and the second set shows the characteristics of the final (dry) coating. No bead

vacuum was used for these experiments. The experimental parameters evaluated for

the wet coating were the coating gap, neck-in, maximum coating speed, minimum

coating thickness, extrusion ring overlap, and the effect of coating parameters on the

photoresist profile in the center of the wafer. For the final (dry) coating, each of

the requirements for a new coating method was examined as well as extrusion ring

overlap effects.

7.1 Experimental Procedure

Before each set of extrusion-spin coating experiments, the alignment was checked, the

sensor was calibrated, the extrusion die was cleaned, and the photoresist pump was

primed. Each individual coating was produced by the following procedure:

* The chuck was raised through the base plate, and the wafer was placed on the

chuck, as shown in Figure 7-1(a)



* The wafer was centered on the chuck using the coater module's centering pins

* The chuck vacuum was turned on to secure the wafer to the chuck

* The wafer was lowered into coating position

* The extrusion die was positioned at the edge of the wafer with the inner edge

of the extrusion slot exactly above the outer edge of the wafer, as shown in

Figure 7-1(b)

* The gap between the wafer and the extrusion die lips was adjusted to a specified

distance

* The spinner began rotating at an initial rotational speed corresponding to the

specified coating speed

* The photoresist shutoff valve was opened

* The pump began dispensing photoresist at the specified flow rate

* Photoresist was dispensed for several seconds to remove bubbles from the ex-

trusion slot opening

* During all subsequent motion of the extrusion die along the surface of the wafer,

sensor feedback was used to maintain a constant gap by controlling the position

of the z-axis positioning table

* The extrusion die moved inward along the diameter of the wafer at a speed pro-

portional to the spinner speed (This was accomplished by electronically gearing

the x-axis position as a slave of the spinner angular position.)

* The coating speed (the relative tangential speed between the extrusion die and

the wafer) was kept constant by increasing the spinner rotational speed and

extrusion die speed

* When the leading edge of the extrusion die lips reached the center of the wafer,

the spinner stopped accelerating and remained at a constant speed for the rest

of the coating process

* The extrusion die continued moving across the wafer at a constant speed until

it reached a specified position (Figure 7-1(c) shows the trailing edge of the

extrusion die lips reaching the center of the wafer.)



* The photoresist pump stopped dispensing and the shutoff valve was closed (ei-

ther before or after the extrusion die stopped moving)

* The spinner stopped rotating

* The wafer was lowered into the catch cup and the extrusion die was removed

from the coating area, as shown in Figure 7-1(d)

* The wafer was accelerated very rapidly to a high-speed spin which was main-

tained for an extended period of time

* After the wafer stopped spinning, it was raised up through the base plate and

the vacuum was turned off

7.2 Experimental Conditions

During all experiments the extrusion-spin coater was located in a clean hood which

constantly forced filtered air to flow downward over the extrusion-spin coater. The

temperature in the room was unregulated and ranged from 19 to 270 C. The relative

humidity was also unregulated between 24 and 49%.

7.3 Pre-Spin (Wet Coating) Results

To understand the extrusion-spin coating process, the maximum coating gap, the

minimum coating thickness, and the maximum coating speed were investigated using

a number of experiments which characterized the important process parameters of

the extrusion part of extrusion-slot coating.

7.3.1 Gap and Neck-in

The maximum coating gap was measured by maintaining a constant coating speed and

constant dispense rate while increasing the coating gap until it became unstable. Near

the limits of stability, neck-in increased dramatically and scalloped edges developed,

as described in Section 3.8. Finally as the gap was increased even more, rivulets

developed, leaving two or more paths of photoresist separated by dry regions. At

even larger gaps, the coating bead remained together, but its width grew and shrunk



(a) (b)

(c) (d)

Figure 7-1: Extrusion-spin coating process. (a) Wafer is placed on vacuum chuck.
(b) Wafer is lowered into coating position and extrusion die is positioned at the outer
edge of the wafer. (c) Wafer is rotated as the extrusion die moves along the diameter
of the wafer until the extrusion die completely crosses the center of the wafer. (d)
Extrusion die is removed, and wafer is lowered into the catch cup and rotated at high
speed.



with large, periodic oscillations. It was observed that the coating bead could remain

stable at larger gaps if the extrusion-ring overlap was increased sufficiently to make

up for the lack of photoresist in the coating bead.

Figure 7-2 shows that the maximum coating gap increased as the wet coating

thickness increased. Higher coating speeds tended to decrease the maximum coating

gap. The lower viscosity (11 mPa-sec) deep UV photoresist allowed higher coating

gaps than the high-viscosity (19 mPa-sec) i-line photoresist.

At all coating gaps there was some neck-in. Neck-in was measured by increasing

the nominal overlap of the extrusion rings until the actual overlap was zero. Deter-

mining the actual zero overlap point was difficult because the extrusion rings often

joined together along some of their edges but not along others. For the purpose of

the measurements in these experiments, the zero overlap condition was defined as the

point when there were about five or fewer small strips where the extrusion rings were

not joined together.

In Figure 7-3, the neck-in for the experiments is plotted versus the thickness to

gap ratio. The figure shows that as the thickness to gap ratio was decreased, the

neck-in increased slowly until the gap neared its maximum stability limit. As the

thickness to gap ratio was decreased even further, the neck-in increased rapidly and

the coating bead lost stability. The figure shows that neck-in was greater at higher

coating speeds and higher viscosities. The lower viscosity photoresist was able to

reach a thickness to gap ratio of less than 0.1 before becoming unstable. The scatter

in the data shows that neck-in probably also depended on other factors, such as wafer

surface conditions, which are not as easily controlled.

Several generalizations can be drawn for coating conditions which correspond to

those in the experiments. First, the coating bead is stable when the thickness to

gap ratio remains above a certain critical limit (dependent on viscosity and coating

speed). This is consistent with the work of Choinski[14]. Second, for a constant

gap, lower viscosity fluids and slower coating speeds produce lower minimum wet

thicknesses. Third, the trend in the maximum gap data seems to indicate that as

the coating thickness is decreased,the maximum coating gap would reach zero before

the minimum wet thickness reached zero. This indicates that there is probably a

minimum thickness below which no coatings can be made.
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Figure 7-2: Maximum coating gap. i-line photoresist coating speeds: 6 cm/sec (o),
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Figure 7-3: Neck-in of coating bead. i-line photoresist coating speeds: 6 cm/sec (o),
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7.3.2 Maximum Coating Speed and Minimum Wet Thick-

ness

As discussed in Chapter 3, the maximum coating speed and the minimum coating

thickness are limited by the same phenomenon. This limit was measured by main-

taining a constant fluid flow rate while increasing the coating speed until coating de-

fects developed. Figure 7-4 shows the maximum coating speed for both photoresists.

Above the maximum coating speeds, streaks of uncoated wafer appeared. Usually

these streaks developed at the outer edge of the extruded rings where the tangen-

tial speed between the wafer and the coating die was highest. The thickness of the

coating at the maximum speed was computed using Equation 4.18. The extruded

width, w, used in the equation was calculated by subtracting the neck-in from the

extrusion die width. The figure shows that the lower viscosity of the deep UV pho-

toresist allowed much higher coating speeds and thinner coatings than the speeds and

thicknesses attained by the i-line photoresist. As the coating thickness increased, the

maximum coating speed also increased. The dotted lines in the figure indicate the

lowest flow rate the pump could deliver for each photoresist. The only coating speeds

and thicknesses which could be produced by the experimental equipment were those

below the maximum coating speed and above the minimum flow rate of the pump.

The experiments indicated in the figure were designed to examine the highest coating

speeds and the lowest coating thicknesses in order to attain the minimum coating

times and maximum coating efficiencies possible with the experimental equipment.

7.3.3 Wet Thickness Uniformity

The uniformity of the wet coating was not measured directly, but a number of obser-

vations were made. First, color variation across each extruded ring indicated that the

extruded rings were thinner toward the outer edge and thicker on the inner edge, as

described in Section 4.3. There was a large bead of photoresist around the outer edge

of the wafer which was two or more times the thickness of the rest of the coating. For

thin coatings, this edge bead spread toward the center of the wafer when there was

a time delay between the initial coating and the final high-speed spin. In the center

of the wafer, there was a pool of photoresist which had a shape dependent on the

coating speed and photoresist dispense rate.
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Figure 7-4: Experimental limitations on maximum coating speed and minimum wet
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speed for the deep UV photoresist (- - e - -), minimum flow rate ( ... ), experimental
conditions for i-line experiments (x), experimental conditions for deep UV experi-
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Figure 7-5: Coating bead merging with previously extruded ring.

7.3.4 Overlap of Spiral Rings

The overlap of the spiral rings was set by using Equation 4.21. The actual extrusion

width, w, was determined by subtracting the neck-in from the length of the extrusion

die lips. It was observed that the thickness of the bumps created by extrusion ring

overlap was much thinner than the coating thickness. Although it is possible that

the surface tension forces spread out the overlaps, a more likely explanation is that

the coating bead joined with the edge of the spiral ring deposited during the previous

revolution of the wafer, as shown in Figure 7-5, spreading any excess fluid over a

much wider area than had been expected.

7.3.5 Wet Coating Defects

Two kinds of defects were observed in the wet extrusion-spin coating. The first type

were general defects associated with the extrusion coating process. The second type

of defects were those in the center of the wafer, created by the spiral adaptation to

extrusion coating.

General Defects

Of the coating defects described in Section 3.8, neck-in, scalloped edges, rivulets,
and edge beads were observed as described in the sections above. A small amount
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of chatter was present but the visible thickness variations disappeared quickly after

coating. It is likely that the chatter was created by the coating velocity fluctuations

described in Appendix A. Pin holes in the coating were observable when air bubbles

were present in the dispense line.

Defects Associated with the Spiral Center

An excess or deficiency of fluid in the center of a wafer during extrusion-spin coating

created defects and thickness variations. The volume and distribution of photoresist

in the wafer center depended on the spinner rotational speed, extrusion die position,

dispense rate, and gap while the center part of the spiral is coated.

Center Defect Mechanisms There are three mechanisms in the center pool of

fluid which caused defects in the final coating. First, bubbles often remained in the

pool of photoresist after the coating bead was broken by removal of the extrusion die.

It was likely that one bubble was formed when the final point of the extrusion spiral

was coated. If the extrusion die passed over this point too quickly, air was trapped

beneath the coating layer. Another possible source of bubbles was suckback from the

pump at the end of the dispense. (Suckback is the small reversal of flow at the end of

a dispense to keep the extrusion die from dripping after it is lifted from the substrate

surface.)

Second, a small indentation was left in the wet film when the extrusion die was

lifted from the substrate. This indentation may have arisen because the extrusion die

lips were below the surface of the center photoresist pool before the die was lifted.

Changing the speed at which the die was lifted from the surface did not noticeably

affect the indentation.

Third, the photoresist pool was not centered on the wafer when the extrusion

die was moving during the final rotation of the wafer. Because the photoresist was

pulled along by the extrusion die, the spinner had to rotate a full revolution after the

extrusion die had stopped moving to center the photoresist pool.

Center Defect Elimination Two categories of solutions were used to address the

problems associated with the center. In the first category the amount of photore-

sist was reduced to decrease the effect of the center photoresist pool. One way this

was accomplished was by ending the photoresist dispense before the end of the coat-

ing motion, allowing the photoresist left in the bead to spread over the remaining
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uncoated wafer surface. This method effectively reduced the amount of photoresist

in the center, but when the dispense was ended too soon, there were areas of the

center left uncoated. Another method was to reduce the flow rate of photoresist as

the extrusion die approached the center. This method was attempted using manual

dispense control without much improvement. Low-flow, variable-rate pumps must be

developed before this method can be used effectively.

In the second category, the shape of the photoresist pool was changed so that

it caused fewer problems during the high-speed spin. One method was to stop the

extrusion die motion slightly before the end of the spiral. This technique caused

the center overlap to be more centered on the wafer and led to fewer visible thick-

ness variations. Another method was to turn the wafer an extra rotation after the

extrusion die stopped moving, spreading the photoresist over a greater area in the

center. Although this technique spread the photoresist effectively, it also left circular

streaks when the extra rotation occurred at high speed. A third method was to raise

the extrusion die slowly during the final rotation of the wafer so that the surface in

the center of the wafer was smoother. This method effectively eliminated most of

the rough spots left behind when the extrusion die was raised while the wafer was

stationary.

7.4 Final (Dry) Coating Results

A set of experiments were done with each of the two photoresists to test the effective-

ness of extrusion-spin coating. The wet coating thicknesses and the coating speeds for

all of these experiments are found in Figure 7-4. After the wet coating was applied,

each wafer was accelerated at 5000 RPM/sec to a rotational speed of 3000 RPM.

Next, after spinning for 40 seconds, each wafer was baked at 110 0 C for 30 minutes.

7.4.1 Coating Thickness

For each experiment, the final (dry) coating thickness was measured using a Prometrix

spectral interferometer. A typical 49-point map of the photoresist thickness is shown

in Figure 7-6. The thickness maps for most of the wafers had a low center region

with increasing thickness towards the edges. A significant number of the wafers

coated with i-line photoresist had a bump or indentation at the center of the wafer

(probably due to the center problems discussed above). Most of the large center non-
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Figure 7-6: Map of final (dry) coating thickness.

uniformities were eliminated for the wafers coated with deep UV photoresist. The

average coating thickness for the experimental conditions in Figure 7-4 are shown in

Figures 7-7 and 7-8. These figures show that for both types of photoresist, slower

coating speeds and thinner wet coatings tended to produce thicker dry films. These

results agree with the model in Section 4.3.4 which indicates that evaporation effects

are greatest for thinner films and slower coating speeds. More evaporation makes the

photoresist viscosity increase and leads to a thicker film after the final high-speed

spin. A 9.5-second delay between coating and the final high-speed spin for one i-line

photoresist coating resulted in a much higher final coating thickness, indicating again

that evaporation is the cause of thicker films.

To compare extrusion-spin coating with spin coating, one wafer was coated for

each photoresist using a center dispense and traditional spin coating. The same ac-

celeration, spin speed, and spin time were used as those in the extrusion-spin coating

experiments. The mean photoresist thicknesses on these spin-coated wafers are shown
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in Figures 7-7 and 7-8 for comparison. The mean thickness for all coating experiments

with i-line photoresist was 1.44 pm with a standard deviation of 0.024 pm. This is

slightly below the spin-coating comparison test (1.46 pm) and slightly above the thick-

ness predicted by AZ photoresist (1.42 pm) for a final spin speed of 3000 RPM[12].

The mean thickness of the deep UV photoresist extrusion-spin coatings was 0.735 pm

with a standard deviation of 0.020 pm. This mean was slightly above the spin-coating

comparison test (0.728 pm). The thickness map for traditional spin-coating looked

very similar to most of the extrusion-spin coating maps (low center with upward-

sloping edges). This indicates that evaporation effects are also present in traditional

spin coating but are more pronounced in extrusion-spin coating, especially for thin

coatings and long coating times (corresponding to slow coating speeds).

7.4.2 Thickness Uniformity

Thickness uniformity of the final (dry) coating was calculated from the thickness

map for each wafer. Uniformity, measured by the coefficient of variation of the

thickness data1, is shown in Figure 7-9. The figure shows that thickness variation

increases (uniformity decreases) as the coating thickness decreases and as the coating

speed decreases. Just as for coating thickness, the variation in thickness increases

when evaporation effects are greater. The results concur with the discussion in Sec-

tion 4.3.4 which predicted poorer uniformities at lower coating speeds and thinner

films. Coating uniformities were between 0.5 and 2% for i-line coatings with no delay

and between 1 and 11.3% for deep UV coatings.

7.4.3 Coating Time

The total time required to process a wafer through a coating cycle depends on the

wet coating time as well as the time required to load a wafer, move the extrusion

die into position, remove the extrusion die after wet coating, complete the final high-

speed spin, and unload the wafer. All these time requirements are constant for each

of the experiments except the wet coating time. Figure 7-10 shows that the wet

coating time depended mainly on the coating speed, decreasing as the coating speed

increased. This is in agreement with Equation 4.13. Larger overlaps also increased

the wet coating time slightly because part of the width of the extruded film was used

1 The coefficient of variation equals the standard deviation as a percentage of the mean[25]
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Figure 7-9: Final (dry) coating thickness uniformity. Coating speed = 6cm/sec (o),
8 cm/sec (*), 10 cm/sec (x), 12 cm/sec (+), 14 cm/sec (0), and 16 cm/sec (e).
Traditional spin coating is indicated by (- -) for i-line photoresist and ( .. ) for deep
UV photoresist.
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Figure 7-10: Coating time for
extrusion ring overlap (+), and
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deep UV photoresist (o), i-line photoresist with no
i-line photoresist with 1000/m overlap (x).

to coat areas of the wafer that had already been coated, requiring more rotations to

completely coat the wafer surface. The wet coating times for the experiments were

from 15 to 41 seconds. Because the prototype coater was designed for experimental

purposes, the positioning time was not a realistic measure of the actual time that

would be required for a commercial extrusion-spin coater. Assuming 15 seconds are

required for moving the wafer and the extrusion die in and out of position and 30

seconds are required for the final high-speed spin, the total coating times would have

ranged from 60 to 86 seconds.
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Figure 7-11: Photoresist use efficiency for deep UV photoresist (o), i-line photoresist
with no extrusion ring overlap (+), and i-line photoresist with 1000-,tm overlap (x).

7.4.4 Coating Efficiency

Coating efficiency was calculated using Equation 1.4, dividing the volume of photore-

sist actually on the wafer (coated surface area times mean thickness) by the total

volume of photoresist solids used to coat the wafer. Figure 7-11 shows that the effi-

ciency increased as the thickness decreased. The discontinuity in efficiency between

the i-line and deep UV photoresists was due to the difference in solids fraction. The

efficiencies were between 10 and 16% for the i-line photoresist and between 12 and

34% for the deep UV photoresist.
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7.4.5 Visible Coating Defects

Several types of coating defects were observed in the final dry film. The most frequent

coating defect was streaks from the center of the wafer toward the edges. It is likely

that these streaks were caused by excess photoresist from the center flowing across the

wafer surface during the final high-speed spin. The centers of some wafers had thin

regions which probably developed when the center pool of photoresist was off-center

or when the spiral did not sufficiently cover part of the center. On some wafers,

streaks from a particular radius outward developed when the spiral rings did not

overlap, leaving thin lines of uncoated wafer.

7.5 Extrusion Overlap Effects

To determine whether the overlaps between spiral rings led to thickness non-uniform-

ities, an ellipsometer was used to measure the thickness of several wafers at 635-pm

intervals along their diameters. Figure 7-12 shows the thickness measurements for

two wafers coated with a wet photoresist thickness of 9.9 pm-one with a 500-pm

overlap and one with zero overlap. These tests were done at a very thin coating

thickness where thickness variations from overlaps should have had the greatest effect.

If the 500-pm overlap had spread to 1 pm thick, it would have spread to a width of

approximately 5000 pm. Such an area would have resulted in thickness changes at

in least 7 consecutive measurements. Since the thickness profiles of the two thickness

measurements were essentially the same, apart from slope differences, they showed no

evidence of thickness variations corresponding to extrusion ring overlap. Therefore,

it appears that the extrusion ring overlaps had little if any effect on final coating

uniformity. The overlaps did, however, affect overall coating thickness and thickness

uniformity because of the increase in coating time required and the associated increase

in evaporation, when the overlaps were present. The presence of overlaps also slightly

decreased efficiency by applying more photoresist than necessary.
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Chapter 8

Conclusion

It has been shown that extrusion-spin coating is a viable method for coating round,

flat substrates. To be an effective coating method to replace spin coating, however,

extrusion-spin coating must meet each of the criteria established in Section 1.2. Each

is discussed below.

8.1 Coating Materials

The experiments show that extrusion-spin coating produces good coatings using at

least the two photoresists tested. Other fluids with similar properties could also be

used. In particular, fluids with viscosities lower than 10 mPa-sec could be used to

produce good coatings at speeds above 14 cm/sec and wet thicknesses less than 15 pm.

Fluids with higher viscosities could be used for thicker wet films or at slower speeds.

Higher speeds and thinner films could probably be obtained with higher viscosities if

a bead vacuum were used.

8.2 Coating Thickness

The experiments demonstrated that final (dry) coating thickness was determined

almost entirely by the viscosity of the photoresist, although other factors such as the

final spin speed also have an effect (which was not tested in these experiments). Higher

initial viscosities result in thicker final films. Because the viscosity of the photoresist

is also a major determinant of the maximum coating speed and the minimum coating

thickness, thicker final coatings can only be attained at longer coating times and
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lower coating efficiencies. Adding a vacuum to the coating bead may reduce these

limitations. From the data obtained in the experiments it appears that it would be

difficult to meet the efficiency and coating time requirements for thicknesses above

1.5 pm when no coating bead vacuum is present.

8.3 Thickness Uniformity

The experiments showed that thickness uniformity is highly dependent on the amount

of evaporation which occurs while the wet coating is being applied. Unless this

evaporation can be inhibited, the extrusion-spin coating method does not meet the

uniformity requirement. If, however, the evaporation which occurs while the wet

coating is being applied can be significantly reduced or eliminated, extrusion-spin

coating can meet the uniformity requirement.

8.4 Coating Time

The experiments indicated that wet coating time was determined almost entirely

by the coating speed. The maximum coating speed is mainly determined by the

photoresist viscosity but is also limited by the wet coating thickness. Therefore, to

meet the coating time requirement while maintaining a thin wet coating thickness,

a photoresist of sufficiently low viscosity must be used. The experiments indicate

that viscosities of 10-20 mPa-sec or lower could be used to attain wet coating times

of 20 seconds or less. Shorter coating times could be attained with higher-viscosity

photoresists if a coating bead vacuum were used to increase the coating speed or if a

wider extrusion die were used. Using a wider extrusion die, however, might lower the

uniformity or efficiency.

8.5 Coating Efficiency

The experiments showed that photoresist use efficiency is limited mainly by the wet

coating thickness. The minimum wet coating thickness is limited by the viscosity

of the photoresist and the required coating speed. Therefore, the efficiency require-

ment has the same viscosity limitations as those for the coating time requirement.

As the viscosity of the photoresist is decreased, the efficiency can be increased by
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using thinner coatings. At some unknown point, probably above 50% efficiency, the

thickness uniformity will begin to decrease because there is insufficient photoresist to

improve the uniformity during the fluid spreading which takes place during the final

high-speed spin. For photoresist viscosities between 10 and 20 mPa-sec, efficiencies

between 10 and 35% can be expected. Optimal efficiencies are likely to occur with

viscosities below 10 mPa-sec.

8.6 Coating Defects

The experiments showed that, except for the center region, very few defects developed

when the coating speeds and wet coating thicknesses were within the limits of bead

stability. The extrusion die does, however, have a tendency to leave an extra pool of

photoresist at the center of the coating spiral. When the coated wafer is spun, the

center photoresist pool can leave defects behind as described in Section 7.3.5. If this

center pool of resist can be eliminated or spread out uniformly, the defect requirement

will be met.

8.7 Extrusion Overlap

Because the extrusion overlap had no effect except a slight increase in coating time

and a slight decrease in efficiency, it is recommended that the overlap be set to a

small value (10-20 /um). This overlap avoids uncoated lines between extrusion rings
which can cause defects.

8.8 Future Work

Extrusion-spin coating has been shown to be a viable alternative to spin coating if
a few challenges can be overcome. It can be used to produce uniform coatings at
thicknesses below 1.5 /im in approximately one minute at efficiencies of 25% or more.

There are two important aspects of extrusion-spin coating which must be solved
before it can replace spin coating. There is also a third aspect which could improve
the coating process even more. First, to attain sufficient uniformities, a method must
be found to greatly reduce or eliminate solvent evaporation during the wet coating
motion. Second, to attain a defect-free final coating, coating parameters must be
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identified which produce a uniform fluid distribution in the center of the wafer. Third,

to use photoresists with viscosities above 10-20 mPa-sec, a method for using a coating

bead vacuum with extrusion-spin coating must be developed.

If these three challenges can be met, extrusion-spin coating will be an effective

replacement for spin coating.
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Appendix A

Uncertainty Analysis

A.1 Gap Errors

There are two components of the error in the coating gap: errors in the absolute

gap distance and errors in the angle of the extrusion die lips with respect to the

substrate. The sources of these errors are sensor inaccuracy, calibration errors, and

machine misalignments (discussed in Section 4.5.1).

The sources of uncertainty in the coating gap, G, come from the uncertainties in

all the machine misalignments listed in Section 4.5.1 as well as the uncertainties in

calibration and in the sensor measurement itself.

The angle a can be determined from the alignment data. Alignments were done

so that the uncertainty in parallelism alignment of the x-axis with the extrusion head

was less than 2 tm over 2 cm. Therefore a < 1 x 10- 4 .

Figure A-1 shows a typical plot of the z-axis position as a function of the x-axis

position during an extrusion-spin coating spiral. The two dashed lines in the figure

form angles with the horizontal from which we can determine the angles - and P. The

angle y equals the average of the two angles formed by the dashed lines (i.e., - equals

the general slope of the data). The angle / equals half of the total angle formed

by the two lines. The angle y changed slowly during experimentation, probably

due to thermal expansion of the supporting structure. For a series of 16 extrusion-

spin coating experiments, the average values of these angles were y = -1.3x 10- 4

1.2x10 - 4 (1 a) and / = 2.4x10 - 4 ± 2.8x10 - 5 (1 a).
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Since the component of the error due to P is oscillatory, it was quantified sep-

arately. The gap error due to machine misalignment (excluding /) was AGr~- =

-2.6 pm with an uncertainty of 4.4 pm (1 a). The angle P caused an additional

periodic error in the gap of 3.6 pm ± 0.042 pm (1 a). The maximum angle between

the extrusion die and the substrate was €max = 4.7 x 10- 4 radians with an uncertainty

of 1.5 x 10- 4 radians (1 a).

The uncertainty in gap due to calibration error was estimated to be 5.7 pm (1 a),

and the gap uncertainty due to sensor error was 0.472 pm (1 a). The gap uncertainty

due to z-positioning table errors is 0.015% and was considered negligible. When these

errors are added up in the Pythagorean sense[4], the total increase in gap uncertainty

due to calibration and sensor errors was is 5.7 pm (1 a).

The total error in the gap was -2.6 pm with an uncertainty of 7.2 pm (1 a), with

an additional oscillatory component of 3.6 pm ± 0.042 pm (1 a).

A.2 Spinner Speed Uncertainty

Figure A-2 shows a typical plot of the average rotational speed of the spinner. The

extrusion die speed was proportional to the spinner speed. The uncertainty from the

specified rotational speed was 8.2% (1 a), and the uncertainty in the proportionality

of the tracking of the extrusion die to the spinner speed was 0.19% (1 a). The

uncertainty in the spinner position was 0.026 radians (1 a).

A.3 Pump Flow Rate Uncertainty

Uncertainties in flow rate were evaluated by computing the standard deviations of

the calibration data from the calibration curves in Figure 6-4. The flow rate of the

i-line resist had a standard deviation of 8.5 x10- 4 mL/sec (2.5%) at low flow rates

and 0.0025 mL/sec (4%) at high flow rates. The standard deviation of the flow rate

of deep UV resist was 0.0021 mL/sec (16.9%) at low flow rates and 0.0035 mL/sec

(11.5%) with all flow rates considered.
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A.4 Wet Thickness Uncertainty

The wet thickness uncertainty can be calculated by using Equation 4.18. Using a

Pythagorean summation[4], we know that the error in thickness is:

= +(A.1)h Q v w
The error in w is equal to the error in establishing the neck-in value. This error was

approximately 50 pm (0.25%). The uncertainty in wet coating thickness measurement

was 9.1% (1 a) for the i-line resist and 18.8% (1 a) for the deep UV resist.
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Appendix B

Evaporation from a Spinning Disk

Following Lienhard[32], we can calculate the mass transfer rate per unit area, rh",
from:

rhi" = g ln(1 + B,) (B.1)

where g is the mass transfer coefficient at zero net mass transfer and B, is the mass

transfer driving force. (All liquid-phase resistance to solvent diffusion is neglected in

this model.)

When solvent is the only species transferred (i.e. no air diffuses into the solvent):

BS = mr,e - m., (B.2)
ms,s - 1

where ms,e is the mass fraction of solvent in the air far away from the fluid surface

and m,,, is the mass fraction of solvent in the air just above the fluid surface. If we

assume that any evaporated solvent gets carried away quickly, then mr,e=0. If we

assume that there is pure solvent at the liquid surface, we can find mr,, from the

saturation pressure of the solvent. Then we can find the properties of the air-solvent

mixture by using the procedure detailed by Lienhard.
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The mass transfer coefficient, g, can be found by using an analogy between con-

vective heat transfer and mass transfer which is only valid for low mass transfer rates.

The heat transfer from a rotating disk in a laminar flow can be found from[17]:

0.585Re1 /2

0.6/Pr + 0.95/Pr1 /3  (B.3)

where Nur is the Nusselt number, Pr is the Pradtl number, and Re is the Reynolds

number:

Qr 2

Re = (B.4)

The transition to turbulence (when Equation B.3 becomes invalid) begins at

Retr = 2.4 x 105.

Using this analogy we can replace the Nusselt number and Prandtl number with

the Sherwood number and the Schmidt number[35]:

gr 0.585Re1 /2

Shr (for any Sc) (B.5)pDas 0.6/Sc + 0.95/Sc1 /3  (for any Sc) (B.5)

where Sc = v/Das, Das is the diffusivity between air and the solvent on the disk

surface, and g is the mass transfer coefficient. Solving for the mass transfer coefficient

yields:

0.585pDas / 1/2

0.6/Sc + 0.95/Sc 1/ 3  (B.6)

This result is very similar to that of Kreith, Taylor, and Chong[29].

The air-solvent diffusion coefficient can be estimated using the Kinetic Theory of

Gases by the methods of Chapman and Enskog[38].
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