
A Surface Texture Modeling System for
Solid Freeform Fabrication

by
John G. Nace

B.S. Mathematical Sciences
Pennsylvania State University

1985

Submitted to the Department of
Mechanical Engineering in partial Fulfillment of

the Requirements for the
Degree of

Master of Science

at the

Massachusetts Institute of Technology
September 1997

© 1997 Massachusetts Institute of Technology
All rights reserved

Signature of Author
Depa ent of Mechanical Engineering

S. July • 997

Certified by
Prof. Emanuel M. Sachs

Professor, Mechanical Engineering
Thesis Supervisor

Certified by
Cbrof. Duane Boning

Associate Professor Ectrical Engineering

Accepted by
i Afn Al Sonin

Chairman, Graduate Committee

¢..~

AtJG c3~1997

A Surface Texture Modeling System for
Solid Freeform Fabrication

by
John G. Nace

Submitted to the Department of Mechanical Engineering
on July 30, 1997

in partial fulfillment of the requirements for the degree of
Master of Science of Mechanical Engineering

Abstract
Solid Freeform Fabrication, SFF, is a set of manufacturing processes that fabricates parts

as a bonded stack of individual layers. The Three Dimensional Printing process, 3DPTM process, is
an SFF technology developed at MIT. It builds layers by ink jet printing binder onto the surface of
a bed of powder. The bed of powder is lowered and fresh powder is spread onto the bed. As
subsequent cross sections of the part are printed, the part exists, submerged in the powder bed.

Access to the individual layers as they are fabricated gives access to the interior structure of
the part. This approach allows the part to have high geometric complexity.

In this work a designer centric Computer Aided Design system is proposed to allow the
interactive creation of functional surface texture on mechanical parts. This system is structured to
behave like a VLSI CAD system, which offers substantial process capabilities.

The requirements for a Mechanical CAD, MCAD, system to behave like VLSI CAD are
determined to be: 1. That the informational model of the unit cell of texture be separable into
distinct logical subsets.2. That manipulations on either subset not violate the logical consistancy of
the other subset.

This thesis shows that geometric dimensions and tolerances carry the essential information
of the model of a unit cell of functional texture.

A variety of Unit Cell editors are evaluated according to their ability to meet the desired
system criteria. A tool, Swiss Solid Geometry, SSG, for the design of unit cells of functional
texture is developed, that fullfills requirement #1. SSG is an approach to MCAD modeling that
combines geometric primitives in the manner of Constructive Solid Geometry, however the
primitives of SSG, are different. They consist of simple objects such as lines, but includes the
spatial envelope around them of a fixed offset. Also, they are used to represent both positive and
negative regions of space.

The placement of the individual replications is established by a mesh, that covers the
intended 3D surface region. A meshing algorithm is developed that regularizes the mesh by directly
utilizing the dimensional tolerances specified in the process of Unit Cell design. The geometric
dimensions are instantiated as standalone geometric entities that push and pull on the nodes of the
mesh in order to bring their length into dimensional tolerance. This method fullfills requirement #2,
and it is implemented into a CAM software called Vari 4.

The modularity of the CAM software, Vari 4, is described in detail.

Thesis Supervisor: Professor Emanuel Sachs
Title: Professor of Mechanical Engineering

Acknowledgment

Jeanette Marie Nace, my wife, has supported me throughout this endeavor. She has
carried the heavy burdens of raising our sons and maintaining our household during my
extended absence. She has sustained an island of normalcy for me in hectic times. Her faith
in me, gives me the strength to aspire. Without her loving support, I would be much
poorer.

Justin Gregory Nace and Joseph William Nace, my sons have demonstrated much
patience. It is hard enough to be a teenager, without having a missing father. It is hard to be
a father, seeing them grow almost as a stranger would. Their pride, inspires me to do my
best.

Prof. Emanuel Sachs for personal and professional guidance. Our relationship has
many facets. As an academic advisor, he has helped me to see both the forest and the trees.
As a business negotiator, he has always bargained in good faith. As a friend, he has
listened politely to all of my mid-life angst.

The Pfaltzgraff Co. for extending this sabbatical and even before that, for creating
an environment where people can strive to do their best. The Pfaltzgraff company has
always been an interesting place to work.

MIT for being what it is. Anyone who has known me for long, knows of my
lifelong obsession with MIT. It has always represented the epitome of human intellectual
endeavor, to me. The opportunity to work and learn here, is a source of great satisfaction.

Haeseong Jee and John Lee blazed the trail that I have endeavored to follow.

Professors Gossard, Boning, and Patrikalakis have all contributed their time to help
guide me through this program.

The staff and students of the 3DPTM project. While they each have their own
project, they share with and support the others around them. I have enjoyed their company.

In particular, I appreciate that David Brancasio has noticed, that I don't talk like
other people.

Table of Contents

Abstract
Acknowledgments
Table of Contents
List of Figures

1. Introduction
1. Description of Solid Freeform Fabrication, SFF

1. The manufacturing concept
2. Variations on the theme

1. StereoLithography, SLA
2. Selective Laser Sintering, SLS
3. Laminated Object Manufacturing, LOM
4. The Three Dimensional Printing Process, 3DPTM Process

2. The Capabilities of 3DPTM Processs
1. Functionally Gradient Materials, FGM
2. Textured Surfaces
3. Speed

3. Relationship of SFF to the Product Development Cycle
1. The Cycle
2. The Potential

2. The Organization of this Thesis
1. The Beginning
2. The Middle
3. The End

3. Previous Work
1. Alain Cordeau
2. Haeseong Jee

1. Texturing Process
2. Discussion
3. Style

3. Sang-Joon John Lee
1. Printing Process
2. Other Tools
3. Style

4. Data Processing Background
1. The role of CADCAM in SFF
2. Relationship of visualization to manufacturing

1. Pipelines
2. Feature Implementation

3. Current Situation
1. File Formats
2. Vendor supplied softwares
3. Third Party Software

5. The Design Process
1. VLSI Paradigm
2. Mechanical Design Abstraction

1. Level 1

2. Level 2
3. Level 3

3. Design Libraries
4. Opportunities

6. Surface Texture
1. A Taxonomy of surface texture
2. Functional Texture

7. Unit Cell Geometry
1. Constructive Solid Geometry, CSG
2. Checkerboard
3. Abacus
4. Swiss Solid Geometry

1. Swiss Cheese
2. Positives and Negatives
3. Primitives

1. Description
2. Motivation/Utility

4. Disambiguation
5. Applicability to 3DPTM Process
6. Applicability to VLSI MCAD

8. Dimensional Tolerances
1. Trivariate Free Form Deformation
2. Utilitization for Texture Mapping
3. Separation of the Dimensions from the Geometry
4. Logical Consistancy of the Constraints

9. Mesh Regularization
1. Terminology
2. Classic Optimization Algorithms
3. Displacement Algorithms

1. Example 1 - Relaxation
2. Example 2 - Iterated Function System of Contractive Transformations

4. This Algorithm

10. The Implementation Specifics of Vari 4
1. Modularity
2. Module Integration
3. Module descriptions

1. Mesh
2. Pattern
3. Surf
4. Dimens
5. Unit

4. Porting Path

11. Future
1. Alternative Surface Texturing Techniques

1. Dithering
2. Filters
3. Repeated Subdivision
4. Cellular Automatons

2. Alternative Cell Editors
3. Incorporate other Functionalities

1. Conformal Cooling Channels
2. Functionally Gradient Materials

4. Mesh Issues
1. Boundary
2. Dislocations

Index/Glossary

References

List of Figures and Tables

Figure 1.1 This is the CAD Representation of a part, for discussion.

Figure 1.2 This is the computer representation of a slice of the part.

Figure 1.3 This is the slice of the part, that has been isolated for individual fabrication.

Figure 1.4 This is an idealization of how the slices are stacked after individual fabrication

to build the whole part.

Figure 1.5 This is a representation of the SLA process.

Figure 1.6 This is a representation of the SLS process.

Figure 1.7 This is a representation of the LOM process.

Figure 1.8 This is a graphic representation of the 3DPTM Process.

Figure 1.9 This chart shows how the commercial acceptance of SFF parallels the Product

Development Cycle.

Figure 3.1 Haeseong Jee's Process

Figure 3.2 Current 3DPTM Process Map

Figure 4.1 Graphics Pipeline

Table 4.2 This table indicates the location in the build pipeline where different process

capabilites are best implementationed.

Figure 5.1 Levels of Abstraction

Figure 7.1 This is a complex object contructed from simpler geometric primitives.

Figure 7.2 This is an example of the method that Alain Cordeau used to represent texture

patterns.

Figure 7.3 This is how the checkerboard unit cell is displayed.

Figure 7.4 This is the Abacus unit cell, the individual cells represent the target area of the

3DPTM printing process, and the markers indicate the actual location of droplets.

Figure 7.5 This shows the irregular cell spacing that occurs along a line drawn at an

arbitrary location and orientation in the print bed.

Figure 7.6 This is an arbitrary section of the print bed of the 3DPTM process.It

demonstrates how complex such a region is to manage at a cellular level.

Figure 7.7 This shows how the small displacement of a few printing primitives, creates a

void in the print bed.

Figure 7.8 This graphic representation of the displacement of primitives in 3D is how the

unit cell Swiss Cheese got it's name.

Figure 7.9 This is a 2D representation of the relationships between positive, negative,

and ambiguous regions.

Figure 7.10 This shows how printing primitives can be located by their centers.

Figure 7.11 The analytic geometry involved in the calculation of a tool tip point from a

contact point, in 3 axis machining using a ball end mill.

Figure 7.12 This shows the unusual shape of the tool path relative to the part surface

from which it is generated.

Figure 7.13 An offset surface calulated from a part surface, which is a step in the process

of determining a "tool tip" surface.

Figure 7.14 This is a 3D unit cell of Swiss Solid Geometry.

Figure 7.15 This shows how print decisions are made for each print location by the

Dilation Principle.

Figure 8.1 These are some of the primitive geometric objects used for Constructive Solid

Geometry.

Figure 8.2 This shows how a Bezier map is used to represent a surface, from control

points.

Figure 8.3 This shows how Free Form Deformation is used to shape simple objects into

more comlex objects.

Figure 8.4 This demonstrates how a single unit cell is copied in order to fill a mesh.

Figure 8.5 This demonstrates how the interior of a region is mapped by FFD, the edge of

the pattern does not match the boundary of the control polygon.

Figure 8.6 This shows that for an FFD of degree 1, the boundary points of the initial cell

do get mapped to the boundary of the final cell.

Figure 8.7 This is a representative technical drawing showing the usage of geometric

dimensioning and tolerancing.

Figure 8.8 This shows how geometric dimensions vary when they have been copied by

an FFD into a mesh.

Figure 8.9 This is a conceptualization of the definitive information that is contained in a

unit cell, ie the dimensions, by themselves.

Figure 9.1 This compares an irregular mesh to a regular mesh.

Figure 9.2 There are two views of the elements of a mesh, the nodes and the cells.

Figure 9.3 Each vector is a mesh node displacement, and each is a partition from the

generalized n-vector, X.

Figure 9.4 This shows how a mesh can be folded if the nodes of adjacent cells are

pushed past each other.

Figure 9.5 This is a representative structural problem.

Figure 9.6 These are examples of contractive linear transformations, and the orbit of an

arbitrary point under their influence, as they move to a common limit point.

Figure 9.7 This is a linear affinity with the orbits of several points are marked.

Figure 9.8 This is the compact set of points that an point in the plane will move onto

under the influence of an IFS. It is a Chaotic Attractor.

Figure 9.9 The displacement calculation of a node based on the correction needed for

dimensional accuracy.

Table 10.1 These are the modules that plug into the main program, Vari_4

Figure 10.2 Program Structure

1. Introduction

1.1 Description of Solid Freeform Fabrication (SFF)
1.1.1 The manufacturing concept

Traditionally, industrial parts are made by material removal processes such as

sawing, drilling, turning and milling . These processes are subtractive in nature. Part

fabrication starts with a block of raw material, whose shape is indefinite. The desired shape
of the part is achieved by a succession of machining operations. The initial operations

remove relatively large amounts of material leaving behind a coarse approximation of the

desired shape. Progressive operations remove less material as they work to achieve the

final shape at finer levels of detail. This process works from the outside in.

The number and the complexity of this series of operations is driven by the

complexity of the desired part geometry: the more complex the shape of the part to be

made, the more complex the fabrication process. This translates into increased cost and
increased lead time.

Also, parts fabricated this way will be largely homogenous in terms of material

composition; which sets a limit on the parts functionality.

Recently, a different manufacturing concept has emerged that is additive in nature.

Solid Freeform Fabrication (SFF) is a manufacturing concept, where parts are built by the

incremental accumulation of material from the bottom up. The process starts with a 3D
CAD representation of the part to be fabricated.

Figure 1.1 This is the CAD Representation of a part, for discussion.

0

Conceptually, there are three steps that are repeated to build the part. First, a cross

section of the CAD model is calculated at a particular depth, Z value.

Figure 1.2 This is the computer representation of a slice of the part.

A machine utilizes the cross section information in order to construct a layer of

some material, or materials.

Figure 1.3 This is the slice of the part, that has been isolated for individual fabrication.

Then the machine stacks and bonds this layer onto the previously built layers.

Figure 1.4 This is an idealization of how the slices are
stacked after individual fabrication to build the whole part.

__ I __

Physically there are many variations of this concept that utilize different types of

materials, different stacking techniques, and different profiling methods.

The layering/stacking operation is the primary process that is referred to as SFF.

This process fully defines the shape and composition of the part. Generally, only a

limited amount of post processing is required after the primary fabrication process. These

post processes are used to improve or modify the material properties, the surface finish, or

to remove other artifacts of a particular implementation of SFF.

Since each layer of the part is constructed at a fine level of detail, very complicated

geometry can be built in this one process. Furthermore, since each layer is fully accessible

at each step of the process; internal channels and cavities are constructed simultaneously.

The complexity of the geometry has only a minor influence on the time and expense

of building the part. The time element of the build cost is basically composed of two parts;

the time required to prepare a blank, fresh layer and the time required to transfer the cross

section of the part into the layer. A more complicated cross section will take longer to

transfer to a layer, but generally, this factor is smaller than the cost of the additional

subtractive processes that would have been required to achieve the same level of detail.

1.1.2 Variations on the Theme

There are nearly as many ways to classify SFF processes as there are variations of

the basic layering concept. With the exception of SLA, the processes described here are the

ones that have been utilized to fabricate ceramic parts. Since 3D Systems was the first to the

demonstrate SFF with SLA, no discussion would be complete without it.

1.1.2.1 - Stereo

Figure 1.5 This is a representation of the SLA process.

The key element in SLA is the liquid photo-curable resin. When a laser beam traces

the cross sectional information onto the surface of the resin, the resin solidifies locally;

bonding to any adjacent solid material. However, if there is no adjacent solid material, then

the locally solidified material may float out of location. Also, the part may be structurally

unstable while it is incomplete. These conditions require that SLA parts have support

structures added to the CAD model of the part, in order to mechanically stablize the part

during the fabrication process. Then, in turn, the support structures require a post process

to remove them.

An additional post process, is the curing of the part in a UV oven. This finishes the

curing that the laser beam started.

1.1.2.2 Selective Laser Sintering, SLS

111111111 ZIZ I

Figure 1.6 This is a representation of the SLS process.

SLS is conceptually similar to SLA. The liquid photo curable resin is replaced by a

LIYIL~LIL~*~LI*~CILI~~LILICILILIL~
~ r ~rn r -r rrrrrrrrrrrrrrrrrrr xr rrsrrr
*~rl*ILI*ILILI~~*I*~LILIL~Cn~lLIL~

~ I t·~ Il r. rrrrrrrrrrrrrrrrr~r t~- ~s r~rrr
L·~lflL~LIL rl*L~I~UIILILILIL · IJTI L~LIL~
r ~ ~r r ~ r ri~ ~rL~~w r r r r r ·jp-~,,,.,.

CT;L~: iF~JICI*ICIL·I
·) rVnrw~~rsrr

~r Z r ·r I ~ r 'I r 1TC ·r r t· C T r ~ r ·r r ~ r Z r t· r
~15/r·/,`~~rlL,~11;'"~LICILILILI~~*ILI*I

~ r~n/~rsrrrrrr rs rrrrprrTrrrrrrrrr
iLaLi LI·~CI*I~~*ICILIL~

~r~t~r~Plrle~r~r~r~rrr~~Lr~T~i ~a~IL~L·I~I*L~r~rY·LIL a LiL~L·lea~l~r~, I, r~

m

heat fusible powder. A laser beam traces the cross section of the part on the surface of the

powder bed, sintering the powder together. Aside from soft, low melting point materials;

this process has been extended to a wider range of materials, by coating them with softer

materials.

1.1.2.3 Laminated Object Manufacturing, LOM

Figure 1.7 This is a representation of the LOM process.

LOM uses an adhesive backed paper. After it is fed onto the stack, a heated roller

bonds it to the stack; and then a laser cuts the cross section into the new layer.

The laser also cuts the extraneous material into squares, that stack up to be cubes.

This facilitates removing the part from the compact, but cavities can still be difficult to

open.

LOM has been extended to ceramic materials through the utilization of tape casting.

1.1.2.4 3 The Three Dimensional Printing Process, 3DPTM
U

I I
Figure 1.8 This is a graphic representation of the 3DpTM Process.

Figure 1.8 This is a graphic representation of the 3DPTM Process.

pL A0l A6A & AL A L AL AL AL A LA LA Ik,• Vr r• -v rr~ •F r r•r r r*r v r
0 16 A d L , NL AL& A• 16 AJ .1 16A LA LA & A&

5 r -r r vr r -fr V r v r -r r vr r r- r- r -wr w r
L&: A 4 A. 164 I, LA L A L Ji ,LA LA L A 16 L A LA
rP7 rr vr vr r r r r rr- vr vr

L 16 A4 LI A LA LA LA LA 164 LALA16A LA

iL~LY L L LI~J L L LAL·L·LILI

S• r v r - Pr rv r r rvr r-vrvr
r ~r l I~ c~- ~&-E- -ý I b IA 11 a b I & J

m

The 3DPTM process utilizes a bed of powder, but the cross section of the part is

created by the inkjet printing of a binder, instead of being traced by a laser. Depending on

the material system of the particular application the part may require sintering, after removal

from the powder bed.

1.2 The Capabilities of the 3DPTM Process
The 3DPTM printing process has many unique capabilities, the examples discussed

here are not comprehensive.

1.2.1 Functionally Gradient Materials, FGM
The utility of the parts made by many of the SFF processes is limited by the

availability of materials with the correct properties to work with the process. The earliest

uses of SFF were to create prototypes of parts, that would ultimately be produced by other

conventional methods.

The 3DPTM process, however, is applicable to a wide range of materials, since

virtually anything can be produced in powder form. Furthermore, these powders do not

require extensive preperation; many powdered materials can be used directly as they are

supplied commercially .

The ink jet, also deposits material into the layer; providing a unique opportunity to

mix materials at any point within or on the surface of the part. In addition to defining the

shape of the part, the 3DPTM printing process microscopically defines the composition of

the part.

Functionally Gradient Material, indicates the utilization of this concept to produce

parts of heterogenous composition, that have a specific combination of physical properties

that no individual material would posses on its own. A whole new category of

multifunctional parts is being enabled.

1.2.2 Textured Surfaces
One characterization of the different SFF processes is based on how the part is

supported during the fabrication process. The 3DPTM process is "self supporting", which

means that no additional supports have to be added to the part. Any layer can possess any

number of small islands, disconnected within the layer; connected only to other layers of

the part above or below.

This property of the process, combined with the fine resolution of ink jet printing;

facilitates the creation of finely textured surfaces. In addition to bumps and crevices, these

surfaces can even have a controlled porosity, open channels and undercuts.

Conventionally, part surfaces are textured with a variety of post processes, such as

sand blasting and acid etching. Texturing is an additional subtractive process, that is limited

in it's capabilities. This makes the the printing of textured surfaces, by the 3DPTM process

an attractive alternative.

1.2.3 Speed
The processes that use a laser beam require the laser to trace an entire cross section

of the part. The speed of this trace is limited by the amount of energy that needs to be

transferred into the material, in order to solidify or to cut it. Speeding up the process

requires more powerful lasers.

In the 3DPTM process it is easy to scale up the layer building process by using a

printhead with multiple nozzles. A complicated cross section can be transferred into the

powder bed, much more rapidly.

The variation of the 3DPTM process commercialized by The Soligen Co. uses a

wide print head containing 128 nozzles, in order to build large parts in a reasonable amount

of time.

The Rapid Prototyping variation of the 3DPTM process, recently commercialized by

The Zcorp Co., is an order of magnitude faster than it's commercial competition.

1.3 Relationship of SFF to the Product Development Cycle

1.3.1 The Cycle
There is a strong link between SFF and the Product Development cycle. Many new

products are being designed with CAD systems, which makes those products primary

candidates to utilize SFF. The initial acceptance of SFF has been to build prototypes of

parts and products. This reduces not only the cost of prototyping, but also the lead time of

prototyping.

Some companies have begun to use these prototypes as patterns to fabricate short

run, test tooling. This represents a step up along the Product Development Cycle. Another

step up the cycle is being pursued by some companies, that are adapting SFF to build

tooling directly. The continuing exploration of SFF is expanding its capabilities, so that

SFF technologies will continue to step up the Product Design Cycle.

AcceptFncof '-FF
pro0tot~ s ----...-

p i I ot r-----

val ide.t ion a-
nes pro'duot I o .

EreDesi gn

Figure 1.9 This chart shows how the commercial acceptance
of SFF technologies is related to Product Development Cycle.

The Product Development Cycle as drawn in Figure 1.9 demonstrates the process

when a product is scaled up to large mass production. Recent business trends are pushing

companies to manufacture products in smaller batches, and to custom design products for

individual customers. These trends are shortcutting the cycle, since a pilot run of a custom

product, may fullfill the entire order. This situation is causing manufacturing costs to soar,

due to two things; the cost of new custom tooling, and the down time due to frequent

changeovers.

1.3.2 The Potential

SFF will dramatically alter the way in which products are designed and produced.

There are several mechanisms by which this will happen. The first impact will be to reduce

the lead time required to design new products, through the utilization of rapid prototypes.

Further gains in lead time will occur when iterations are eliminated, altogether, by the VLSI

design paradigm discussed in Chapter 5.

The most profound impact of SFF is that it is a manufacturing technique that

requires no tooling. Parts are fabricated directly from CAD models, the way that pages are

printed by a Word Processing document. Tooling costs and tooling lead times will be

dramatically reduced. Production changeovers will only consist of download time, being

almost instantaneous.

This new industrial revolution is coming, Specific Surface corporation, a licensee

of the 3DP process, is now shipping fully functional products manufactured by an SFF

process. Their product is high temperature air filters for industrial furnaces.

2. The Organization of this Thesis

The organization of this thesis is ordinary, there is a beginning, a middle, and an

end. The particular subject of this chapter is the rational for the content of those sections, a

justification for that which is included and for that which is not.

The primary goal of this project is to build a Computer Aided Design system for the

fabrication of fuctionally textured surfaces using Solid Freeform Fabrication technologies.

A multiplicity of minor decisions are made in the course of a project of this scope.

While such decisions can be merely expedient; if they are made within a framework of

incidental goals, the overall utility of any project can be greatly enhanced.

The incidental goals include:

The quality of the software implementation. This software should be easy to use

and easy to understand. It should provide information and visual cues to the user as directly

as possible. The level of quality should be high enough that this software could be released

in some form to the SFF community. In turn, this indicates that the code should be portable

to different computing platforms.

This software should be extensible. It should provide a foundation that future

researchers can build upon, as they develop new SFF technologies, new 3DPTM

capabilities, and new CAD paradigms.

The design process that this CAD system represents should be robust. The designer

should be free to create sophisticated designs, while constrained from building

unmanufacturable designs. There should be a one way flow of information from CAD to

CAM, that eliminates the cycle of product development iterations.

The system should represent texture at the finest possible resolution, without

limiting the range of texturable surfaces.

A list of incidental goals not only provided direction during the development of this

project, but continues to tie together the various topics of this thesis.

2.1 The Beginning
Previous Work - I am not the first person to consider the creation of textured

surfaces, several researchers have been involved with this idea. This chapter is meant to

indicate the ideas in their projects, that have been relevant to my own project; and to give

credit where credit is due.

The sections on computer coding are not meant to be critical; as a programmer, I

have my own idiosyncracies. The intention of these sections is to give additional

perspective to any readers who may want to examine these other codes. A cold reading of

any unfamiliar computer code can be difficult.

Data Processing Background - This is a discussion that attempts to put the state of

the art in data processing, for SFF, into a broader context. The goal is to build a conceptual

framework that encompasses the many issues of data processing, so that new ideas can be

readily positioned within the current technological dialog.

The Design Process - The VLSI design paradigm with its one way flow of

information is presented and its key enablers are identified. Then two equivalent

requirements are established that need to be fullfilled in order for a VLSI-like design

paradigm to be implemented within the domain of mechanical part design, VLSI MCAD.

Surface texture - This section is motivational. Texture is a ubiquitous natural

phenomenon, there are many ways to describe and create texture. In this section, the

particular approach to surface texture, undertaken in this project, is developed.

2.2 The Middle
This section contains my results. Pricipally, that a VLSI MCAD is feasible. One

requirement for such a design methodology is fullfilled by the Unit Cell type refered to as

Swiss Solid Geometry, SSG. The other requirement is met by the computational algorithm

described in Mesh Regularization.

While a key idea is developed in Dimensional Tolerances, Unit Cell Geometry is

presented first because it preceded that development historically. It was during the

evaluation of unit cell geometries that the key idea of managing dimensional tolerances,

independant from their associated geometry, emerged.

Unit Cell Geometry - This section is an evaluation of CAD modeling stlyes that can

be applied to create a feature level description of texture. It concludes with a description of

Swiss Solid Geometry, a unit cell that fullfills one of the requirements of VLSI MCAD.

Dimensional Tolerances - This is a discussion of geometric dimensioning and

tolerancing. Dimensional relationships are central to the process of ensuring

manufacturability. Recognizing the manner in which these relationships represent

information, is the first step towards enabling VLSI MCAD.

Mesh Regularization - The idea developed in Dimensional Tolerances is

demonstrated by the creation of a mesh regularization algorithm that is driven solely by the

multiple instantiations of the Dimensional Tolerances throughout the mesh. This algorithm

satisfies the other requirement of VLSI MCAD

Implementation Specifics - A key deliverable of this project is the software that

implements the ideas developed in this thesis. In order to facilitate that delivery, this section

contains additional documentation that does not fit well into the body of the computer code.

Software documentation is a complex issue. In my way of thinking, it would be ideal if the

source code and the thesis could be combined into one document, by an editor that mixes

text and graphics, and also computer code that is operational. This is the "tangle and

weave" concept of computer program editing. Obviously, that is beyond the scope of this

project.

2.3 The End

The Future - This is a discussion of alternative approaches to surface texturing that

are more stochastic than, and less regular than, the approach used in this project. Some

interesting meshing issues are also presented.

Glossary - The glossary should facilitate this acronym laden discussion. It also

serves to establish specific meanings for words and phrases that could have a variety of

meanings. For example, the word "cell" should not occur without one of the adjectives

"mesh" or "unit".

This is a very rich field of intellectual endeavor. Nearly everyone that I discuss this

subject with, immediately has ideas on the topics of Rapid Prototyping and/or surface

texturing.

Several fortuitous coincidences have greatly enhanced my pleasure in this work.

The close relationship between the 3DPTM process and traditional computer graphic

techniques; and the relationship between the commercial acceptance of SFF and the new

product introduction process. Continued incremental improvements in SFF will lead

directly to continued improvements in product life cycles.

3. Previous Work

3.1 Alain Cordeau

Alain demonstrated the practical application of textured surfaces to orthopaedic

implants. He developed parameters for pore size, for post processing, and for metal

casting; appropriate to the manufacture of cobalt chrome steel bone implants by metal

casting into a 3DPTM printed ceramic casting shell.

Alain printed his textures using a "spreadsheet" approach to the data issues. He

meticulously hand coded the printing transitions needed by the 3DPTM process for a single

cell on each layer, and then used spreadsheet software to replicate the instructions. This

limited him to certain regular surfaces, such as planes and cylinders.

3.2 Haeseong Jee
3.2.1 Texturing Process

I worked with Haeseong during his last semester at MIT. His work is the

immediate predecessor to this work.

Haeseong developed several tools for the creation and manipulation of surface

texture with the specific objective of linking manufacturing constraints into the design

process. His tool kit demonstrates the basic concept that texture can be managed by

Computer Aided Design during the design process. Haeseong created 3D CAD programs in

C, using the IRIS GL library. His user interface consists of a combination of GL menuing

and command line input.

He built a CAD process consisting of a pipeline of computer programs and

computer files. See figure 3.1 on the next page.

The part that is to be dressed with texture is referred to as "start.stl". ViewSTL is

used to reapproximate a portion of the stl file as a nurb surface. This is a 3D interactive

process that requires the user to create the control points of the nurbsurface, by using the

mouse to point to the displayed stl object. The user must indicate locations in a row-column

format, where the number of rows and columns matches the order of the intended surface

approximation. When the process is finished, ViewSTL writes out a file called "wig.dat",

that contains the X,Y,Z values of the control points.

ýt[

I tce I pr i m_4. dat steitcellI

Macro- Surf ace
Texture Modu ies
per Haeseong Jee

Isoftware modulel

datfil

fi nal .[dat

24

tcell is an interactive 3D tool to design a single unit cell of texture. The unit cell

consists of a collection of regular quadrilateral "voxels". tcell writes several files when the

unit cell design process is complete. "spec.dat" and "prim_in.dat" describe the unit cell.

"prim_4.dat" is a file that contains a side by side arrangement of four copies of the unit cell.

ste is an interactive 3D program that renders the group of unit cells defined by

"prim_4.dat". Its purpose is to aid the designer, in regards to the manufacturability of the

unit cell; by providing visual feedback of the cell "as printed". ste simulates the 3DPTM

printing process and displays the unit cell with spheres and cylinders representing the

droplets and passes of the process. The user can rotate the unit cells around, while the

orientation of the print bed remains static, in order to view the "as printed" cells, as they

may be printed at various orientations in the powder bed.

nt brings together the nurb approximation of the part from "wig.dat" and the unit

cell from "prim_in.dat" and "spec.dat"; by building a mesh on the surface, and then

copying the unit cell into the mesh cells, using a trivariate free form deformation. nt writes

"jeli.dat", which is the vertex information for the voxel primitives, as they are copied in the

mesh cells.

raster calculates the printing instructions, for the 3DPTM process, necessary to print

the part as it is described in "start.stl", and the texture as it is described in "jeli.dat".

3.2.2 Discussion

Since the quality of the mesh controls the quality of the copies of the unit cell,

Haeseong uses an Energy Minimumization algorithm to produce a regularized mesh, as

orthogonal as possible given the constraint of lying on the surface. He associated an elastic

potential energy to the mesh, by conceptually connecting the nodes of the mesh with

springs. As the energy of the network of springs is minimized the shape of the cells is

regularized.

The droplets of binder that the 3DPTM process ink jets, create discrete primitive

features, usually represented by circles, on the surface of the powder bed. Haeseong, then

checks manufacturability by examining the copies of the cells in the mesh to see if each of

the mapped voxels can contain at least one of these primitive features. He outlines a

procedure to ensure manufacturability, that specifies that the entire mesh should grow in

size, in order for each mesh cell to meet this criteria.

Global regularity means that the mesh will grow in order to accommodate the most

constrained mesh cell.

3.2.3 Style
Haeseong's programs are monolithic, not modular. He created many very similar

versions of the same basic program, by saving his work frequently with new names.

Unfortunately, I could not discern a naming convention. I picked one version of each to

study, but they may not have been his final, best effort.

3.3 Sang-Joon John Lee

3.3.1 Printing Process
John developed the software that is currently in operation to process parts into a

format, for the 3DPTM process. He created a pipeline of sequential programs that

progressively converts an STL file into the correct format for the 3DPTM process. See

figure 3.2 on the next page. He also developed debugging tools for each stage of the

translation. John wrote his programs in C, using the Motif toolkit for menuing, and using

the Motif DrawingArea widget for drawing. These programs are inherently two

dimensional.

The process starts with an STL file. The 3DPTM consortium has worked on projects

from many industrial sources, and the STL file has been used as the standard.

Unfortunately, the STL representation of a 3D CAD object is neither accurate, nor robust,

see Chapter 4. John had to put a lot of effort into compensating for bad STL files, hence

the need to examine the part files at each stage of the process.

In fact, before translation begins the STL file is verified and properly positioned in

the print bed using commercial software from Cubital. Solider has the capability to make

some repairs to a bad STL file. If the STL file is usable, another Cubital product, solislice,

is used to slice the 3D STL object into layers of 2D polygons. The layer information is

stored in an SLC file.

(st

Current
Process Map

for 3DP

softWare module

Cub ita[

-7

~data file)

raster

> I 3dpView
>13dpExpand

PART

27

I

I

Next, the 2D polygons are rasterized. In this process, rasterization consists of

replacing the 2D polygons, on each layer with scan lines across the polygons. Each scan

line represents the passage of an individual ink jet over the print bed. For each pass, the

location of the pass, and the location of the ON/OFF print commands along each pass are

written into an RST file.

Then, the raster file is encoded. The passes are associated with particular jets in the

printhead. The boundary segments are traced by deflection of the ink jet droplets, and the

interior regions are filled with print patterns. The 3DPTM printing process is not fixed to a

rigid raster; the droplets can be deflected along the slow axis, to improve the quality of edge

tracing; this technique is refered to as "Proportional Deflection". Other special printing

styles such as "Exits Only" are specified in the encoding process. Lastly, all of this

information is written into the a binary file format, that the alpha machine reads, as printing

instructions.

3.3.2 Other Tools
The debugging tools, slcView and 3dpView are used to graphically visualize their

respective part files. rstExpand and 3dpExpand display specific numeric information

contained in the part files, in human readable form.

The slcConstruct and 3dpConstruct, which where originally used to debug the file

processing pipeline; remain in use to build specialized test parts for student projects. Each

of these programs accepts a text file that is properly formatted, and directly writes a binary

file of the appropriate format.

John also created several programs to modify SLC files; such as slcOffset which

compensates the 2D polygons for the size of the print primitives, and slcRepair which

allows the user to interactively modify the vertices and the orientations of individual

polygons.

3.3.3 Style
John's code is highly organized. He used a motif like naming convention for his

functions and parameters. He likes to store data in lists. There are very few bugs, I was

surprised to find any. John had to concern himself with portability between a DEC

workstation and an SGI workstation that utilize different byte orders. His utilities, list,

byte, file handling, etc. are in modules; but he did not use makefiles.

John installed his code on Pesta, as the operational tools. He was also the

administrator of Pesta, so he was selective about which versions he left behind.

4. Data Processing Background

This chapter does not contain a description of how to create a file, for the 3DPTM

process, that information is included in 3.3 Sang-Joon John Lee.

Design and business opportunities relating to improved data formats are discussed

in Chapter 5 The Design Process.

4.1 The role of CADCAM in SFF

CADCAM is the technology that enables SFF. Not only does an SFF process start

with a 3D CAD model of a part, but CAM is the only reasonable way to provide the large

amounts of data required by the process. A file of operation codes needed to control an

SFF machine can easily reach 100 megabytes.

In manufacturing, there is a large number of disparate processes by which a part

can be fabricated. Additionally, there is a multiplicity of machines of different make and

model available for each process. This level of complexity is managed by an operational

separation between CAD systems and CAM systems. CAD systems are used to create a

model of the part; in particular, the geometry of the part. CAD systems are also used to

document the non-geometric properties of a part, via markups and part lists. This is the

extent of the design process.

CAM systems take the CAD model, and create the NC instructions required to

operate a specific manufacturing machine. Such a program, also allows the visualization of

the manufacturing process, and reports areas of the part that can not be fabricated with a

particular machining operation. This information is used for process planning, so that

another machining operation can be applied to finish the part.

Sometimes, the design is deemed problematic. In this situation the part needs to be

redesigned in order to be manufacturable. Iterations are inherent in this process.

Surface quality and composition are part properties that are not represented

geometrically. Generally, surface quality is marked on a drawing of the part, and

composition is indicated in the bill of materials. Each representation of a part property is

meant to facilitate communication in the most useful form, the most direct as to the

manufacturing process. Surfaces are treated as geometric ideals, slick, because there has

been no way to manufacture texture under numerical control. Likewise, there has been no

way to numerically control the microstructure of a part.

With the emergence of Solid Freeform Fabrication, it is now possible to

numerically control surface quality and composition. However, in order to utilize these new

capabilities, new CAD and CAM tools are needed. There are two aspects to this need;

fundamentally, there needs to be a way to represent these features in a CAD system,

geometrically; and there needs to be a way to exchange this information between CAD and

CAM systems.

4.2 Relationship of Visualization to Manufacturing

4.2.1 Pipelines
While a CAD system represents the geometry of a part with a few floating point

numbers, it displays the part with a large number of integer values. The information has to

be converted from a very compact form, to a form that represents instructions to the display

device. Computer graphics is a well developed field, and a specialized method has been

refined to perform this process. See the chart, figure 4.1, on the next page.

Starting with a surface or solid representation of the part, the part is approximated

as a collection of planar facets, tessellated. An object list determines which surfaces and

solids are to be displayed. Then each facet is projected onto a 2D plane, that represents a

view of the part. The parameters of the projection are contained in a display matrix.

Rasterization, refers to the numerical approximation of the floating point values used so far,

into integer values. A zbuffer keeps track of which facet is closest to the view plane, when

it is rasterized, so that the correct 3D logic is maintained.

The display pipeline is implemented for speed; this is a large task, that has to

happen quickly; so the algorithms have been optimized and specialized hardware has been

developed. Many of the operations are performed in parallel, so that the exact execution

does not proceed in whole large pieces.

Graphic Pipeline
CAD Model Tesselation

List of

Objects

Projection
Display

Metr i x

Rasterization
Zbuffer

etc

Build Pipeline
CAD Model Tesselation

List of

Objects

Intersection
Bui Id

Funct ion

Discretization
"Hit"

buffers

~

The "Build Pipeline" by which CAD models are converted to SFF machine formats

is entirely analogous to the display pipeline. This is especially true for the 3DPTM process,

because of the discrete nature of ink jet printing. For each build, a number of parts are

placed into the printbed, with some orientation; that determines the cut plane. The principal

difference is that the 3D facets are intersected by a cut plane, instead of projected onto a

view plane. Another difference is that there is a stack of cut planes instead of one view

plane.

A "hit buffer" can be used to count the exact number of particular types of droplets,

as instructions to print them are generated. This would be useful for medical applications,

that need precise compositions; or statistically driven algorithms, that control such things as

color printing. Currently, there is no "hit buffer", but it is just one of the many ideas that

are suggested by the build pipeline analogy.

4.2.2 Feature Implementation

native CAD .stl .soli .slc .rst .3d.
files collection of collection of lavers of layers of .printing pass

3D trian s, 3D polyns 2D gons raster lines transitions

Exits Only X X
acro Drops_ X

texture X X X
Color X

Table 4.2 This table indicates the location in the build pipeline
where different process capabilites are best implementationed.

Whether it is explicitly implemented or not, this conceptual pipeline is a convenient

tool to discuss issues of the software capability.

The position in the pipeline at which a feature is implemented affects its capabilities.

For any particular range of the pipeline, only certain data objects are available for

modification. Aside from the basic translation from one data type to another, the pipeline

also allows additional process information to be incorporated at each stage. For these

reasons, it is more appropriate to implement some features at one place than at another.

Many of the process planning improvements implemented by John Lee, are implemented in

the .slc, .rst, and .3dp formats, low level processes.

Texture, however, is a fully 3D issue; and needs to be dealt with at a higher level,

in a CAD, .stl, or .soli format. In this project, texture is handled at the stl format level.

Vari_4 reads an stl file; and then writes a modified stl file.

4.3 Current Situation
The current situation consists of a collection of heterogeneous tools, developed one

at a time to satisfy one specific need. While prototypes are being fabricated rapidly, there is

not enough consolidation of effort and awareness of larger issues; to produce an industrial

metaphor of CADCAM for SFF.

The National Science Foundation is supporting the search for more robust formats.

It hopes to see a Solid Interchange Format, SIF, and a Layered SIF, LSIF, format

developed. These hypothetical formats are intended to solve two issues: representation and

exchange. Representation is the ability to describe the new capabilities of SFF. Exchange is

the ability to communicate more information about the part, in a more robust fashion.

4.3.1 File Formats
The development of file format standards is lagging far behind the development of

new SFF technologies. Since 1989, when 3D Systems first made the STL file format

available, very little has changed. The STL format is a simple list of 3D triangles, it does

not contain any topological information regarding the structure of the list. There is no way

to verify the accuracy of the file. Files in this format are frequently corrupt, and unusable

without "repair". STL files for complex parts are large, which makes them difficult to

exchange and to process. None the less, the simplicity of the format and the lack of

alternatives, has led to the widespread adoption of the format by the SFF community.

The current CAD exchange, IGES, is not capable of satisfying the conditions of

representation and exchange, in other than a trivial extension. The emerging standard,

STEP, may be extensible to the needs of SFF, but that work will not be available in the

near future.

4.3.2 Vendor Supplied Software
There is no standardization of the CAM software. Each manufacturer of SFF

equipment supplies their own software to operate their machine. Typically, they accept an

STL file, and slice it; then they convert it into lowlevel instructions to operate their

machine. At this level they implement process specific capabilities, such as 3D Systems,

Starweave. Starweave fills solid regions with a particular pattern that reduces the amount of

work that the laser beam needs to do, yet still produces a stable part.

Even though the many SFF processes are very different at the lowest level, there

are many similar processing steps; that could be captured in a standardized format.

Examples of this would be Automatically Programmable Tool, APT which captures the

lowlevel movements of a machine tool in a generic format; that many different machine

tools can utilize. Another example are page description formats such as Postscript, which

describes a page to a printer, in a format that many printers can interpret.

4.3.3 Third Party Software
While, some CAD suppliers have incorporated STL output into their programs,

many have not. This has allowed third party companies such as Imageware and Deskartes

to enter the market with softwares that convert CAD models in a variety of different formats

into STL format. While these softwares are at the best position along the build pipeline to

establish SIF type formats, there is little incentive for third party vendors to add features to

a CAD model.

5. The Design Process

5.1 VLSI Paradigm
The Computer Aided Design of VLSI circuits is an information intensive process,

the behavior of tens of thousands of individual circuit elements has to be specified. Then

these circuits have to be accurately fabricated in order to create a functional device. In spite

of this situation, ECAD techniques have been developed that guarantee that a functional

device can be built on the first pass, without iteration.

Some of this capability comes from the large flexibility of modern electronic part

fabrication technologies; however, a lot of this capability comes from the VLSI design

pardigm.

Several concepts in the electronic part design process make this possible.

Principally, the process from CAD to CAM is broken into separate conceptual levels of

abstraction. Abstract design components, are defined at each level, whose behavior is

appropriate to that level. Furthermore, this behavior is constrained so that the component

behaves correctly at lower levels of abstraction. For example, transistors are a primitive

design component at one level of abstraction; but they are fabricated as a sophisticated

geometric combination of materials, at a lower level.

5.2 Mechanical Design Abstraction
5.2.1 Level 1

CAD techniques for the utilization of SFF, and the 3DPTM process can be

developed to several levels of sophistication. The initial work in this field has been to

enable the basic functionality of Rapid Prototyping. These tools are described in Chapter 4.

From the point of view of current commercial CAD systems, SFF technology has been

treated as an alternative output, via the writing of an STL representation of existing CAD

data. At the other end of the spectrum, is the work being done to improve the machine

control pertinent to specific SFF technologies. These approaches preserve the status quo.

5.2.2 Level 2

The next level of development is represented by CAM software. In Numerically

Controlled machining specialized software packages are used to process a part down the

path from design to manufacture. While both levels create NC instructions, the distinction

of this level from the previous level, is the amount of information that is added to the part

description. Functional Features that may have been annotations to the part in the CAD

system are instantiated in terms of specific machining operations and the "additional"

geometry that supports such operations. This extra geometry is "additional" from the point

of view of the designer, but it is essential to the detailer.

A CAM software for SFF should accept the geometry of a part from another CAD

software, then detail the part with additional geometric information, and then create

machine operations for the fabrication of the part. This process is the mechanism that

enables the utilization of the advanced capabilities that SFF offers.

This is the level of SFF machine vendors and third party software suppliers.

Figure 5.1 shows this level of abstraction on the build pipeline. The chart shows

how the data flows from design to fabrication. "Driver" is a low level software, that

provides an Applications Programmable Interface, API. The chart also shows how

information must be conveyed up level, in order for the previous processings to be

accurate. The issues of Solid Interchange Format, Features, and Droplet Control are

positioned logically across the bottom of the chart. The boundaries are not precise different

implementers such as SFF machine vendors, and third party software developers position

them differently.

The data format issue discussed in Chapter 4 of representation can be handled

internally by the CAM software; and the issue of exchange can be ignored; for input, by the

utilization of existing standard formats, such as STL; and for ouput, by considering it to be

machine specific, or even proprietary, from the point of view of machine vendors.

This is the level that is implemented in this project. A higher level of implementation

is beyond the scope of this project.

'Hit'

buffers . X 3*

CAD
System "S[icer" "Dr i ver "

STL fi le S1 ice fi le

Solid Interchange Format

List of

Objects

But Id

Funct Ion

Feature
Capabi ii ties
/ Limits

Machine
Capabilities
/ Limits

Features Droplet Control

5.2.3 Level 3

There is, however, another level of development that mechanical CAD systems

should evolve to, and that is the level suggested by the VLSI paradigm.

Among the many benefits of SFF is its wide flexibility. In particular, the 3DPTM

process, with its capability to control composition at microscopic levels, is a fabrication

process of unprecedented flexibility. This flexibility is one of the two key enablers of the

VLSI design paradigm.

The other enabler of the VLSI paradigm is the identification of levels of abstraction

for the design process. While this is not a trivial problem, the microstructural capabilities of

the 3DPTM SFF process by which parts can be fabricated with the specific control of

individual functional features, allows the problem domain of part design to be separable.

Prior to the development of these capabilities, all of the physical properties of a part, such

as weight, strength, and heat capacity; were determined entirely by just two parameters, the

part geometry and the bulk composition. In this situation the physical properties of the part

are codependant on each other, so that the problem of designing a part with specific

properties is complex, and is based on "trade offs" between the properties. This

separability of the problem domain has been demonstrated by Xiarong Xu, in his work on

the design of conformal cooling channel functional features.

For the topic of functional features such as surface textures, where composition is

not currently being modified, the situation can be described as follows:

As noted in the discussion above on NC CAM, there is geometry, and then there is

geometry. In order to have multifunctional parts designed at a high level of abstraction it is

necessary to develope geometric models of functional features that have two modes of

behavior. The higher mode, for conceptual design, is simpler; it is managed with a

relatively small number of parameters, and it is represented by a subset of the complete

description. The lower level mode is a full description of the feature, sufficient to fabricate

the feature.

In order to be a successful abstraction, there are two criteria:

1. That the parametric information of the holistic, complete model of the feature be

separable into logically distinct subsets.

2. That any processing or calculation performed on or with one subset is consistent

with the parameters of the other. This consistancy is a generalization of the concepts of

Design Rules, and of Manufacturing Constraints.

This is similar to the facility that many CAD systems have, to design a family of

parts, using parametric geometry. The geometry of some part, such as a screw, is stored

with parametric dimensions for such featuress as heighth, width, and thread pitch. When a

user wants to define a specific screw, they assign values to the parameters that meet their

concurrently desired design criteria. There are two differences; first is the conceptual range

of the parameters, they are typically established for the gross geometric features of a part,

not for microstructure, and not for composition. The second difference is that the

parameters are not constrained by, nor carry with them, the manufacturing constraints

required to fabricate the feature.

5.3 Design Libraries
There is a new discipline implicit in this discussion. These abstract descriptions

need to be created and maintained. In order to create these descriptions there needs to be

robust modeling tools that satisfy the two criteria given in the previous section. In order, to

maintain, to organize, and to make available to designers; libraries of these models of

functional features need to be established.

5.4 Opportunities
When such models of functional features are defined, it will be possible to design

and to fabricate parts utilizing a one way flow of information similar to VLSI. This will

eliminate the iterative nature of mechanical design.

The NSF has even proposed that generic mechanical part manufacturers could be

established, since the tight coupling of design for manufacturing would no longer exist. It

would be possible to fabricate functionally equivalent parts, while utilizing totally different

SFF processes, operated by totally distinct concerns.

It will take some time for industry to adjust to these concepts. There may be some

professional resistance to the introduction of ambiguity, that working at a high level of

abstraction introduces. Traditionally, the designers of mechanical parts have been intimately

involved with the manufacturing methods, used to fabricate their designs.

6. Surface Texture

6.1 A Taxonomy of Texture

Physical surfaces, whether natural or man made, differ from the CAD idealization

of them. A taxonomy has been developed for the descriptions of these surfaces, based on

two key parameters. [RAV nn] First there is the measure of the uniformity versus the

randomness of the texture, which forms a scale with three primary categories:

Roughness refers to the situation where the distribution of the surface features is

fully randomized.

Texture refers to the situation where the distribution of the surface features is

partially randomized, like swirls on a stucco wall.

Pattern refers to the situation where the distribution of the surface features is

completely regular, like a checkerboard.

The other parameter is the scale of the texture. At some scale, every physical

surface is composed of discrete particles; and at the other end of the scale, every surface

has some finite extent. The scale of the texture for a surface lies within that range. At the

lower end of the range, the surface features that constitute the texture can be the discrete

particles of the physical surface. At the upper end of the range, texture is not an appropriate

description for a surface feature whose scale approaches the over all size of the surface.

A complete description of a particular texture requires that two things be specified,

the surface feature that comprises the primitive unit of texture, and the manner in which that

primitive unit is distributed on the surface.

In this taxonomy, the textures created in this project would be more accurately

refered to as patterns. The word, texture, however, is used broadly in computer graphics

literature to describe a broad range of surfaces; as it will be here.

6.2 Functional Textures

In mechanical part design, the surface quality of the finished part contributes to the

functionality of the part. While smooth surfaces are useful for reducing friction between

moving parts, other surfaces can contribute other functionalities. Javier Banos has

demonstrated that the texture of the surfaces of heating and cooling channels enhances the

heat transfer between the working fluid and the mass of the part. Alain Cordeau has

demonstrated that a surface with a controlled porosity enhances the boney ingrowth of

orthpaedic implants.

The consideration of functionality, imposes additional constraints on the methods of

design and fabrication of particular surface textures. Principally, the geometric dimensions

of the texture primitives must be controlled. The size of negative features, voids such as

pores, is as important as the size of the positive features.

Additionally, the topological issues of connectedness and completeness (the lack of

flaws), are important in the formation of functional features, such as a network of

capillaries.

These considerations, lead to the specific methodology for the design of surface

texture, utilized in this project. A regular grid, a mesh, is used to position the features on

the surface; so that the features are uniform in size, regularly spaced, and nonoverlapping,

yet adjacent. Furthermore, the grid will be composed of quadrilateral elements, not

triangular elements. This insures a correct orientation of adjacent cells, so that the

topological connectivity of the cells, can be maintained. This also facilitates the design

process, designing a unit cell of texture, and anticipating the complete texture, is more

natural with four sided domains, than it is with three sided domains.

7. Unit Cells

In order to model texture as a repitition of primitive elements, a model of an

individual unit cell is required.

Many different unit cell concepts were considered in the course of this project.

There are many conflicting goals to consider when choosing a model for the unit cell. One

consideration is the applicablity of a unit cell to differing surface regions. There are non-

trivial differences between planar regions and highly curved free form surfaces. Even

amoung planar regions, differences in orientation in the print space, are very complex.

Another important consideration is the resolution of the cell. The more closely that

geometric cell primitives resemble process primitives, the more difficult the cell is to map

onto a surface without error. This problem is further exacerbated by the level of abstraction

that is intended. A generic cell model that would serve the SFF community, will not take

advantage of the finest resolutions of which the 3DPTM process is capable. A model that

closely mimics the 3DPTM process will be too specific for widespread SFF usage.

In terms of the 3DP TM process, the most dificult element to manage is the contiguity

and noncontiguity of printed features. When a unit cell is mapped, and then discretized; it is

difficult to maintain the topological connectedness of primitives that are meant to be

connected, and to maintain open pores where they are intended.

In Chapter 8. Dimensional Tolerances, the idea of separating the dimensional

information from the geometric information, for separate processing is presented. Some of

these unit cells are readily adaptable to such an approach, some are not.

7.1. Constructive Solid Geometry
CSG is the approach to solid modeling that many full featured CAD systems

utilize, to represent complex solid objects. A complete system consists of primitive

elements such as cubes, spheres, cylinders, and cones; together with operations to combine

these primitives into more complex objects such as unions and intersections.

Figure 7.1 This is a complex object contructed from simpler geometric primitives.

One thing that has to be considered with this unit cell, is the integrity of the

geometric forms. There are two possible approaches. The CSG primitives can be treated as

exact surface definitions in the unit cell, and then allowed to take on whatever form the

mapping gives them as they are replicated across the surface region. This is easy to

implement, but the elements of the textured surface could be quite odd.

The alternative is to map the locations and spatial relationships of the CSG

primitives onto the surface; and then instantiate exact geometric objects there. The size

parameters of these objects would be the nominal values of the objects as they are defined

in the unit cell. This method motivates the separation of the geometric information from the

dimensional information.

While this process captures the design intent, it is difficult to visualize the ultimate variation

in the texture that will occur; during the design process. In this situation, the CSG

primitives will stay the same size and shape that they started out with.

This unit cell is abstract enough to be useful to the SFF community.

Haeseong implemented a subset of CSG modeling as his unit cell model, using the

first approach above. He used regular quadrilaterals, that he refers to as voxels. In order to

insure manufacturability, and to constrain the design process, he developed relationships

between voxels and 3DP TM process primitives. The minimum size of each voxel is

constrained so as to be able to contain a printing primitive regardless of the orientation of

the voxel. He used a discrete placement scheme, dimensional stoppers, to control voids,

negative spaces.

7.2 Checkerboard

-P

A unit cell editor implemented in this project is the checkerboard. It was inspired by

Alain Cordeau's graphical short hand to describe patterns.

IO OCIO 10
U. 0O." 0

C N
cx~ QOXO0 OO0r 0i 0 ", ',,

Figure 7.2 This is an example of the method that
Alain Cordeau used to represent texture patterns.

The different symbols in the pattern not only indicate different heights, some of

them indicate the occurance of occluded voids.

The checkerboard accomplishes the same effect, by indicating the presence or

absence of a voxel, at different height levels. As such, the checkerboard is a 3D binary

object, which is easy to implement. The checkerboard is conceptually very similar to the

cell that Haeseong implemented, however its manipulation is quite different.

Figure 7.3 This is how the checkerboard unit cell is displayed.

The difficulty with the checkerboard is that the size of the voxels is uniform, while

the minimum sizes of positive features and the minimum sizes of negative features, for the

I I~-1 - I -- I

3DPTM process, are different. The checkerboard needs to be constrained to represent the

smaller of the features, and to build the larger from finite collections of voxels. The

checkerboard is implemented so as to join adajcent regions, insuring the contiguity of

positive regions. Dimensions can be associated with collections of voxels, in order to

capture the design intent of the particular arrangement of individual voxels.

7.3 Abacus

Abacus is a unit cell concept that is specific to the 3DPTM process. It is an ambitious

concept to control the low level printing of individual process primitives. The idea is

inspired by pixel editors in paint programs, and adapted to represent the proportional

deflection capabilities of the 3DPTM process. Proportional Deflection is the ability to deflect

a droplet in a direction normal to the direction of the movement of the print head.

As explained in Section 3.3.1, the data for the 3DPTM process is organized, first by

layers that represent Z values, typically spaced 170 microns apart. Then it is organized by

raster lines, that represent ink jet passes. The location of these raster lines represent Y

values, typically spaced 170 microns apart. Then the spacing of the individual ink jet

transitions, that control the droplets, represent X values; typically they are 10 microns

apart. Finally, the proportional deflection transitions themselves represent y values, and

typically are in 10 micron increments.

To summarize, the location of droplets in the print bed are represented by addresses

that look like Z.Y.X.y. An accuracy of 10 microns is available for both X and Y.y; for X it

is every 10 microns, but for Y.y only 1 in 17 locations is addressable.

Abacus, then, represents a planar print region as a grid with an aspect ratio of 1:17,

and each grid cell contains one marker to represent the proportional deflection of an

individual droplet.

Figure 7.4 This is the Abacus unit cell, the individual cells represent the target area
of the 3DPTM printing process, and the markers indicate the actual location of droplets.

The difficulty with this approach is that it is severely limited in its applicability. It

can not be mapped to arbitrary surface regions. In fact, this method does not support

arbitrary planar regions. In order to have a one to one mapping of voxels to print primitives

there has to be a regular repetitious spacing of available print locations along the region to

be textured. As the figure 7.6 indicates there is a limited number of available exact angles

where for which there is such a rational, mxn, spacing. This introduces severe constraints

on the part design process. While, it is possible to introduce leap rows, that the system

could insert periodically, to increase the number of available angles, arbitrary precision is

unattainable.

Figure 7.5 This shows the irregular cell spacing that occurs along a line
drawn at an arbitrary location and orientation in the print bed.
drawn at an arbitrary location and orientation in the print bed.

~ ~ ~ ~ ~ ~ ~

In 3D space, the design process of a unit cell becomes untenable, for an arbitrary

planar region:

Fast

Figure 7.6 This is an arbitrary section of the print bed of the 3DPTM process.
It demonstrates how complex such a region is to manage at a cellular level.

This unit cell concept is too specific to be of value to SFF community at large.

7.4 Swiss Solid Geometry
Swiss Solid Geometry, SSG, is a powerful and highly flexible representation for a

unit cell, that evolved out of any earlier concept referred to as Swiss Cheese. SSG is

scalable to different levels of resolution, at low resolution it can model functional texture

for any SFF process, and at higher resolution it can model the features constructed with the

printing primitives of the 3DPTM process.

7.4.1 Swiss Cheese
The initial concept of Swiss cheese is based on the idea that in the 3DPTM printing

process, negative features can be arbitrarily small. It requires only a small disturbance of a

few primitives to create a void.

5Low AX.is

Figure 7.7 This shows how the small displacement of a few
printing primitives, creates a void in the print bed.

This leads directly to the idea that the negative spaces should be explicitly modeled.

It is very easy then to start with a filled region of primitive elements and push some of them

around, in order to perforate the surface.

Figure 7.8 This graphic representation of the displacement of primitives
in 3D is how the unit cell Swiss Cheese got it's name.

While interesting, this approach is limited by its inability to model positive features.

Since parts and the tools that form parts, are negative images of each other, a designer may

want to work back and forth between positive and negative modes. The important thing

about this concept was that it was the first time that the idea of modeling the negative

features is made explicit.

7.4.2 Positives and Negatives
Once both positive and negative regions are explicitly modeled it becomes much

easier to manage the contiguity of the replicated cell. Cell editing schemes that treat the

negative region as the complement of the positive region, or vice versa; are much more

difficult to verify in terms of manufacturing constraints.

Arrbig •us Regj ion

Fs ti ve Regioni - f-49atl ye Re1 on

Figure 7.9 This is a 2D representation of the relationships
between positive, negative, and ambiguous regions.

This unit cell consists of three basic entities: positive regions, negative regions, and

ambiguous regions, that are undeclared. The applicability of the cell is manageable and

visualizable, during the texture design process, by the allowance made between positive

and negative features, ie. the extent of the ambiguous regions. The more ambiguity allowed

the more flexible the unit cell, the less ambiguity allowed the less flexible the unit cell.

7.4.3 Primitives

7.4.3.1 Description
There are three simple primitives, and their offset regions. First there is the point,

and the offset region around it is a sphere, whose radius is the offset. Next, there is a line,

whose offset region is a cylinder. Then there is the convex quadrilateral planar region, and

its offset region. A square is an example of the last, and when the offset is equal to 1/2 of

the square's size; the offset region is a cube. When combined with boolean addition, this

collection is very expressive, especially since some of the primitives are the boundaries of

others. A flat ended cylinder is generated by a line segment, a capped cylinder is generated

by a line segment that includes its endpoints. Unlike CSG, boolean subtraction is not

included, and is not necssary since the negative spaces are modeled separately.

In 2D (the same is true for 3D), offset curves are conceptualized in two different,

yet consistent ways. First, points on an offset curve are defined by the normal vector to the

curve at some point, and the length of the normal vector is equal to the offset. Alternately,

IIC·LI L~L·LIL··JTILI ~LILLILLI IA & L & J& A16 A& A4M A ýJ LA L L L AL AA.

LJ ý7 , A A ýa 1A

A L A & A L 4 A& &

r V r V r Wr

Sr V r r v.2* r ý r 7 r IC r * r 7
A & a & A I. A Ua A& LA
-rF r vrvrvr rvrvr

A 8. A L A L A 16 4 & A A A L A L A
CXXrrr rZXMC~~lrrr- - - - -rr

the offset of a base curve is the envelope of all circles of fixed radius whose center is on the

curve. For curves of infinite extent these definitions are fully equivalent. For curve

segments the closure of the ends of the offset region is different. In SSG, the first concept

is used, which allows the designer to choose the closure, by including specific elements for

the boundary or not.
-I

Figure 7.10 This shows the dual methods used to construct offset curves
(This also shows how printing primitives can be located by their centers.)

These primitive objects can be specified by points, one point, two points, or four

points; which means that their locations and sizes are readily specified with geometric

dimensions as discussed in Chapter 8.

While positive and negative tolerances are used for locations; the basic idea of SSG,

that positive and negative regions are separated by ambiguity, means that only one sided

tolerances are used for offset values. In order for a feature, positive or negative, to exist

there must be a smallest offset, but to specify a maximum offset conflicts with the concept

of the utility of the ambiguous region. The minimum offset for a positive feature is the size

of the printing primitive, while the minimum offset for a negative feature is much smaller,

as indicated by the original idea of swiss cheese. For the 3DPTM process, the minimum

negative value is about three times larger than the powder size.

As the examples indicate, curves, and surface patches could be included; but some

issues with the distances between such objects would need to be resolved

7.4.3.2 Motivation/Utility
A 3 axis milling machine positions a cutter and a work piece relative to each other,

based on 3D information about the location of the tool tip. The position on the cutter that

Drr've

represents a part surface is not relevant to the cutting of material, from the point of view of

the machine tool. An NC toolpath, then, consists of a sequence of movements from one

valid tool tip location to another valid tool tip location.

From the point of view of an NC CAM software, a valid tool tip location for a

finishing operation is one for which the tool is just making contact with the part surface.

The CAM software selects contact points, in order to trace the geometry of the part, and

then calculates the tool tip location that corresponds to each contact point.

Center ~ o1 nt

TooL Tip Poi

rtact Po i nt

Figure 7.11 The analytic geometry involved in the calculation
of a tool tip point from a contact point, in 3 axis machining using a ball end mill.

Specifically, for a ball end mill, it calculates the normal vector to the surface at the

contact point, and then using the radius of the cutter finds the center point of the ball that

forms the end of the cutter. The center point is then translated down in Z by the radius of

the cutter. The final shape of the tool path is an unusual looking distortion of the part

geometry.

,•n, To t Path

Figure 7.12 This shows the unusual shape of the tool path relative
to the part surface from which it is generated.

I, like many NC programmers, have had difficulties verifying my tool paths.

~

Typically, we were taught to select points at random, or in regions of concern, and ditto a

copy of the tool geometry to that location; then we intersect the tool geometry with the part

geometry. If the result of the intersection is one point of contact, then it is a good point.

Seeking an alternative to this tedius process, especially for 3D freeform surfaces, I

developed the following technique. I realized that the dual nature of surface offsets, as

shown in figure 7.10 means that the center point of the ball end of the cutter is always

located on the offset surface of the part surface, for which the offset matched the tool tip

radius. In order to verify a tool path, I calculate the offset surface of my part surface as

shown in figure 7.13,

UrTtf•e. Sur

Figure 7.13 An offset surface calulated from a part surface,
which is a step in the process of determining a "tool tip" surface.

Finally, I translate the entire offset surface down in Z, by the radius of the cutter.

This "tool tip" surface then has the exact shape, that the tool path has stepwise

approximated. Any point on this surface is a valid tool tip location, and furthermore any

curve on the surface represents a valid tool path.

The point is that a difficult problem in terms of the contact relationship between

spheres and part surfaces is greatly reduced by the dual nature of offsets as presented in

figure 7.10.

Amoung the many benefits of this simple relationship are:

The distance between two offset regions can calculated as the distance between the

center, or spine, of the two offset regions minus the offset value of each region. This is

much simpler because the entire geometry from the unit cell does not need to be processed

by an FFD, only the central spine of the geometry is needed.

Interferance testing between objects is a simple extension of the above diatance

calculation, a negative distance implies interference.

Inclusion testing, to see if a particular point in 3D space is included within such a

primitive is also reduced to testing the distance from the point to the spine of the region to

be tested for.

SSG is capable of fully modeling the functional elements of a unit cell, capturing

the entire design intent, that is usually only implicit in the creation of positive and negative

regions.
..... - - - - - - - - i OI'o·°..

Figure 7.14 This is a 3D unit cell of Swiss Solid Geometry.

7.4.4 Disambiguation
While the ambiguity is useful as a modeling tool, it must eventually be resolved

before the part reaches the end of the pipeline. Computationally, there are different methods

by which the SSG representation can be utilized to calculate lower level information. The

designer should select this method as part of the process of designing a unit cell of texture

with SSG. While maximum offsets are not allowed, these modes offer additional control of

the final result.

The inclusion test mentioned in the last section, can be utilized to treat a region as a

gauge. A region used as a guage, is not used to create geometry, but it is interference

checked with the other geometry, to see if it "fits" between the other regions.

The first mode occurs when the primary intention of the design, is to model positive

features. In this case the calculations can proceed as follows:

First the 3D region on the surface is treated as empty, and the positive features are

rll - - IP

built on this region. Then the negative features are used as gauges to check the

manufacturability of the intended functional texture.

When the primary intention of the design is to model a pore space, then the

computation would be: The region near the surface is closed in so as to be interior to the

part, and the negative features are used to build geometry that perforates this region. Then,

the positive features are used to verify the integrity of the resulting pore space.

There is a third mode that is particular to the 3DPTM process, that captures the high

resolution of the 3DPTM process.

This technique is applicable to SFF as well as the 3DPTM process. For SFF an STL

file can be written for the final textured surface, with the assurance that it is manufacturable

regardless of method; providing that correct parameters are used to limit the feature sizes

within the unit cell.

7.4.5 Applicability to the 3DPTM Process
In the 3DPTM process, as was mentioned in section 3.2.2 the print primitives are

conceptualized as spheres. This makes the use of the offset space natural; in fact, figure

7.10 is a reasonable representation of the actual printing process.

There is a third mode that is particular to the 3DPTM process, that captures the high

resolution of the 3DPTM process. This mode consists of examining each available print

location within the ambiguous region. A dilation function can be used to determine whether

or not a droplet should be placed at that location, based on the ratio of the distances of that

print location to the nearest positive feature and to the nearest negative feature. The designer

controls this process by selecting a desired ratio for the function. In this mode the positive

and negative features swell to fill the entire region and do become mutual complements. To

ensure manufacturability this would be done after an interferance check of the positive and

negative regions.

Pc iti ve Reg i on

....7egat Region

Figure 7.15 This shows how print decisions are made
for each print location by the Dilation Principle.

7.4.6 Applicablity to VLSI MCAD

SSG is a tool that fullfills the separability requirement of VLSI MCAD, while being

fully descriptive of both design and fabrication information. A functional surface texture,

such as velcro can be described by a positive region resembling a hook, and a negative

region can be included to ensure that the hook does not "close up" during fabrication. A

product designer, though, does not have to be aware of the negative feature, nor even all of

the positive features, in order to use velcro from a design library. That information,

however, is carried along to the fabrication process, so that velcro will be accurately

fabricated.

This capability comes from the behavior of the geometric primitives, that these

primitives are directly specified by geometric dimensions; and from the explicit

representation of positive and negative features. A complete description of a unit cell of

functional surface texture consists of a list of dimensional relationships; and such a list is

easy to separate into functional groups.

SSG is capable of representing many things. Physically isolated pore spaces can be

built within such a unit cell, and capallaries with specific directions and topologies can be

maintained, all while manufacturability is insured.

8. Dimensional Tolerances

8.1 Trivariate Free Form Deformation
Free Form Deformation is a technique of Computer Aided Geometric Design to

extend the range of objects that can be described by Constructive Solid Geometry.

Figure 8.1 These are some of the primitive geometric objects
used for Constructive Solid Geometry.

This technique utilizes bezier maps from a parameter space to the object modeling

space. Typically, bezier maps are used to represent surfaces in a 3D CAD system. These

surfaces are characterized by Control Points, and each point on the surface is a weighted

average of the control points. The parameters u and v are the weights, and since the bezier

map is continuous; the mapping of the unit square in parameter space, results in a

continuous 3D surface.

V
1-

n -

rj
0

I L
t

Figure 8.2 This shows how a Bezier map is used
to represent a surface, from control points.

When the parameter space of a bezier map is Trivariate, 3D, then the map represents

a transformation of 3D space. The control points of the map make these transformations

easy to visualize. Furthermore, the convex hull property of the bezier map insures that the

region contained within the control points in the parameter domain is mapped to the region

contained within the control points in the object space.

Figure 8.3 This shows how Free Form Deformation is used to shape
simple objects into more comlex objects.

Obviously, geometric forms are distorted; under the mapping, lines are not straight

and circles are not circular. This distortion complicates the prediction of distances in the

object space from the parameter space. The best method to measure the objective distance

between two points in parameter space, is to map those points into the object space; and

then apply the euclidean metric to the transformed points.

8.2 Utilization for Texture Mapping
In this project, texture is created by replicating a unit cell of texture throughout the

cells of a surface mesh. Each mesh cell is a separate Free Form Deformation of the unit

cell.

Figure 8.4 This demonstrates how a single unit cell is copied in order to fill a mesh.

_ __ · _I __ ~1 _· _·~

~I~

This is achieved by creating an FFD, for each mesh cell, that has two control points

in each dimension. A one to one relationship is established between the corners of the unit

cell, and the corners of each mesh cell.

This particular utilization of FFD has an additional benefit. The degree of a bezier

map is 1 less than the number of control points. In general the convex hull property is a

bounding principal, and is not an exact statement.

Figure 8.5 This demonstrates how the interior of a region is mapped by FFD,
the edge of the pattern does not match the boundary of the control polygon.

However when the degree of the map is 1, the convex hull property is stronger. For

this case the boundary of the unit cube (square) is mapped directly to the surface of the

control polygon; and the interior of the unit cell is directly represented by the interior of the

control polygon. In 2D, the control polygon is formed by connecting the control points

with line segments.

D
Figure 8.6 This shows that for an FFD of degree 1, the boundary points

of the initial cell do get mapped to the boundary of the final cell

W-V .

Generally, in 3D, the faces of the control polygon are not planar; but the boundary

property remains true. This property is important, because it insures that when a unit cell of

texture is replicated into the adjacent cells of a surface mesh (see Chapter 9. Meshing) the

resulting texture is contiguous.

8.3 Separating the Dimensions from the Geometry

Dimensions are marked on the drawing of a part in order to capture design intent.

These dimensions represent the important features of the part. Since some variation always

occurs during fabrication, tolerances are established to set limits on the range of acceptable

finished part dimensions. These tolerances are determined so as to insure the fabrication of

functional parts.

Figure 8.7 This is a representative technical drawing showing
the usage of geometric dimensioning and tolerancing.

In process planning, these dimensional tolerances are used to determine the

appropriate methods of part fabrication. The tolerances are compared to the constraints of

different processes in order to choose among them.

The creation of an accurate, functional, surface texture requires these same

considerations. Since the FFD distorts each copy of the unit cell differently, each mesh cell

needs to be examined to see if it is within tolerance.

Figure 8.8 This shows how geometric dimensions vary
when they have been copied by an FFD into a mesh.

In a machine shop, finished parts are inspected by measuring the size of and

location of certain critical features. Good parts are those for which these measurements are

within the tolerance range specified on the drawing. This inspection does not consider

every nuance of the geometry, especially for parts that have some freeform surfaces; only

the values of these measurements are important.

A similar inspection can be implemented to validate the quality of the mesh cells, if

the geometric features in the unit cell have been dimensioned and toleranced. This

inspection would be relatively quick because it does not require that all of the geometry be

mapped from the unit cell to the mesh cell, just the dimensions need to be mapped.

Figure 8.9 This is a conceptualization of the definitive information
that is contained in a unit cell, ie the dimensions, by themselves.

8.4 Logical Consistancy of Constraints
If a dimensioned drawing is stretched in one direction then all of the dimensions

parallel to that direction are stretched consistantly, by the same proportion. Dimensions that

are perpendicular to the stretching are undisturbed, and so they have the same logical

I

Ir

consistancy that they had originally.

Dimensions that are at an angle to the stretch will have an amount of distortion that

is between the proportion of the stretch and none. Logical consistancy is again preserved

because the original dimension can be written as a linear combination of unit vectors

perpendicular to and normal to the stretch; and the final dimension is the same linear

combination of the unit vectors after the streching.

The FFD is an area preserving transformation. Logical conditions such as

inclusion, exclusion, and lying on the boundary; are preserved under such a mapping. This

logical relationship between dimensions, means that parallel dimensions are redundant in

their ability to represent the stretching of the mesh cell. Ultimately, this means that only a

few dimensions need to be specified to indicate the correct behavior of the mesh cell; and

alternately that operations performed with the entire set of dimensions will not violate the

few.

The decoupling of the dimensional tolerances of a geometry from the actual

geometry, has several benefits. First, design rule checking can be performed with an

element of abstraction that does not involve the complexities of a particular unit cell

modeling paradigm. As long as the key dimensions can be specified, virtually any type of

unit cell model can be utilized with some assurance of manufacturability. This element of

abstraction facilitates meeting the requirements on MCAD to be VLSI-like. It also, greatly

enhances the modularity of software implementations of functional surface texturing.

9. Mesh Regularity
As the previous chapters have explained, functional surface texture is created when

a unit cell of texture is copied, by FFD into the cells of a mesh that lies on a surface. The

accuracy of the finished texture is determined by the extent to which a mesh cell is not

shaped exactly like the unit cell. To insure the quality of the texture, a mesh is required for

which each cell is as much like the unit cell as possible.

Figure 9.1 This compares an irregular mesh to a regular mesh.

Haeseong approached this problem by utilizing a physical analogy. He treated the

mesh as though it were a box spring. Once he connected the mesh nodes with ideal

springs, he was able to formulate a total elastic potential energy for the mesh. Then, his

routine seeks a configuration of the mesh, such that this potential energy is minimized. This

is an indirect approach to the ultimate problem of ensuring texture quality, in that it is after

the mesh is regularised, that it is examined for accuracy.

A more direct approach is to use the functional conditions on each cell in the

regularisation algorithm. Feed back is immediate, and is available to other algorithmic

processes that could utilize this functional information to make other adaptations.

9.1 Terminology
There are alternate ways to visualize the mesh, and it is sometimes necesary to shift

perspective. In 2D, a mesh can be viewed as an organized collection of nodes or as an

ordered set of cells.

Nodce; CDL L CL L

CeI I Ce L I

Figure 9.2 There are two views of the elements of a mesh, the nodes and the cells.

There is a consistancy to the different perspectives. On the one hand, each mesh cell

is delineated by four comers, mesh nodes; and adjacent cells have some mesh nodes in

common. On the other hand, successive pairs of mesh nodes define a mesh cell.

The best data representation is to store the 3D locations of the nodes in an array,

that has an index for each direction that the mesh spans. In this project, the mesh

considered is one layer of cells, so that there are two layers of nodes.

9.2 Classic Optimisation Algorithms
Generalized theories of optimisation are formulated in terms of an objective function

for which an optimum value is sought. These algorithms are iterative, they start in some

initial state, Xo, and then progress through a series of states, Xi, to reach a solution, Xf.

Typically, X is a treated as a vector in an n dimensional vector space.

This progression of states is computed by analyzing the objective function to

calculate a change to X, dX. If correct dX's are found at each step, then the sequence of

states Xi converges to the solution. Divergency is characterized by one of two conditions:

the state "blows up", the magnitude of Xi, IXil increases toward infinity; or the states

oscillate, a sequence of states, Xi..Xj, repeats.

The analysis is based on the methods of multivariate calculus, the minimum is at a

location where the derivative of the objective function is zero; and entities such as Jacobian

and Hessian matrices are calculated in order to determine the direction and magnitude of

dXi in n dimensional space.

9.3 Displacement Algorithms

Manipulations of an n-vector are not readily visualizable for n greater than three.

Since, the classical algorithms rely heavily on the theoretical basis of calculus to acheive

their results; there is little room for intuition.

In some formulations, such as this project's surface mesh, the dX changes between

states have a natural geometric interpretation. The n dimensional vector, dX, can be

partitioned into 3D displacements for each mesh node; dXi is readily visualized as the

change in locations of the mesh nodes between steps Xi, and step Xi+l.

/

Figure 9.3 Each vector is a mesh node displacement,
and each is a partition from the generalized n-vector, X.

This conceptualization, also, asserts itself in the implementation of a mesh

regularization algorithm. A first partition of X, occurs when the mesh nodes are stored as

3D values in the array described above. A further partitioning is implicit in the topology of

the mesh, the displacement of an individual node is based on its relationship with the nodes

to which it is connected. The total displacement of a mesh node is an average of individual

displacements that are calculated by looping through the mesh and the pairwise comparison

of the current node with its surrounding nodes.

An alternative to the classical approach is available in this situation. Instead of

formulating the algorithm in terms of an objective function, and then deriving dXi; it is

possible to formulate the algorithm directly from the easily visualized displacements. As

long as the displacements meet the conditions of direction and magnitude, convergence will

be assured. In the classical formulation convergence is observed as the diminishing of the

magnitude of Xi, in the displacement formulation the convergence is visible as the

diminishing motion of the nodes. The objective function does not need to be explicitly

I

stated. The nodes will move to stationary locations even if individual residual

displacements aren't all zero, once the accumulated displacement for each node is zero.

This is equivalent to the classical situation when the minimum of the objective function is

not at zero.

The primary condition on displacements for convergence are that the nodes move

with progressively smaller steps. The condition on the displacements to avoid "blowing

up" is that the steps are never so large as to fold the mesh.

Figure 9.4 This shows how a mesh can be folded
if the nodes of adjacent cells are pushed past each other.

Along with easy visualisation comes the facility to use physical analogies. Any

devised displacement can be modeled as a force, and the square of any displacement can be

modeled as potential energy; by associating a spring constant to the displacement. If

desired, an object function can always be constructed. It can be useful to work between the

classical point of view and the displacement point of view.

In order for the algorithm to not oscillate the system needs to be stiff, slow, or

dampened.

In terms of displacements these are all equivalent to limiting or scaling the size of the

displacement.

This is an alternative way to view Haeseong's energy minimization routine.

9.3.1 Example 1 - Relaxation

Relaxation is a technique that was originally devised to calculate stresses in

structures. Given an initial framework, the distortion of the framework when a load is

applied is calculated by progressively reducing the residual forces in the joints of the

structure.

6 tons

Figure 9.5 This is a representative structural problem.

At each stage of the calculation, the largest residual stress is reduced by calculating

appropriate pin joint displacements. The pin joint locations converge to final locations, even

if the residual stresses can not be totally eliminated.

The final shape of the structure can be solved for, even though an objective function

has not gone to zero.

9.3.2 Example 2 - Iterated Function Systems of Contractive
Linear Transformations

IFS is a technique that has been developed to compress computer graphic images. It

uses the property that the orbit of a point under the influence of a collection of linear

transformations can condense to a compact set, under the condition that all of the

transformations in the collection be contractive. [BAR]

Contractive refers to the property that the net scaling of the transformation is less

than 1. The images of X0, AN.Xo as N goes to infinity is a finite point, a limit point.

~1 I 1

4

I
, L 2 3

Figure 9.6 These are examples of contractive linear transformations, and the orbit
of an arbitrary point under their influence, as they move to a common limit point.

1. An isotropic scaling.
2. A nonisotropic scaling, the x scale does not equal the y scale factor.
3. A nonotropic scaling combined with a rotation.
4. An isotropic scaling combined with a rotation.

Another example is a linear affinity, which is a transformation that pulls points to a

line, along the normal vector from the point to the line.

S I Il I 1
I I I, 1 I

t 1 r 1 t 1

Figure 9.7 This is a linear affinity with the orbits of several points are marked.

The interesting thing is that a similar property exists for a collection of such

transformations. The orbit of a point under the influence of a collection of contractive affme

transformations converges to a compact point set; even though the transformations are

applied in random order. The limit set of points is refered to as a chaotic attractor.

Figure 9.8 This is the compact set of points that an point in the plane
will move onto under th influence of an IFS. It is a Chaotic Attractor.

9.4 This Algorithm

An algorithm has been developed for this project, that utilizes the multiple copies of

the dimensional tolerances, that are shown in figure 8.8. The dimensions contained in each

mesh cell are used to calculate displacements for the mesh nodes that are the comers of each

cell.

Once the value of the dimension has been determined by calculating the distance

between the limit points that mark the ends of the dimension, that value can be compared to

the nominal value of the dimension as declared in the unit cell. The gross displacement of

the limit points that is needed for the measured value to match the nominal value is

calculated next. For each of the mesh cell's corner nodes, this gross displacement is scaled

according to the parallel distance that the node is from the central point between the two

limit points.

Figure 9.9 The displacement calculation of a node based
on the correction needed for dimensional accuracy.

t

'r

This calculation is equivalent to the linear affinity show in figure 9.6.

The tolerances are used to dampen the process. When a dimension is within

tolerance, it is turned off, so that it does not disturb any nodes. However, if the nodes are

disturbed by the dimensions in a neighboring cell, then it can become active again. The

width of the tolerance range of the dimension determines the amount of disturbance that the

current mesh cell can absorb.

This absorption process dampens the algorithm, and can provide a shortcut

stopping mechanism, in those cases where there are no residual stresses.

While not implemented this way, it should be possible to make this algorithm

behave entirely like relaxation, by starting with arbitrarily large tolerances, so that only the

worst dimensions are active, and then progressively tightening the tolerances down to the

designer specified values.

10. The Implementation Specifics of Vari 4
The texture modeling techniques discussed in this work are implemented in a

software called Vari 4. Vari 4 is the name of the main program in C, that the functional

modules plug into, as in figure 10.2; and it is the name of the executable software. This is a

modal software, in the sense that one 3D window is used to manipulate either the part

geometry or the cell geometry. These modes are conceptually related, but in fact represent

different spaces. The cell mode is like a geometric detail that is to be dittoed into a master

workspace, the part mode.

10.1 Modularity
There are many well known reasons to write computer code in a modular style. A

modular style was utilized for this project in order to make this program extensible. It

should be possible to add functionality to the base software, continuously; as new concepts

and new technologies are developed by the students and staff of the 3DPTM Consortium.

The modular style of the computer code was useful during the system development,

also. Modules were developed and tested in isolation from the main program, which

simplified the debugging process.

The program is organized so that each module represents a different operating

functionality of the overall design process. In this structure, each module is responsible for

a particular data structure.
Module Data nitialization Geometric Display Parameter Control

urf 2 -P I draw SURFACE

xis 2 IS .uild AXIS -callobi-
nesh 4 ESH draw_MESH install MESH

op MESH

nit 2 JNIT ouild UNIT --callobj- install UNIT
Ro2-UNIT

"imen 4 IMIT nitialize DIMENS draw DIMENS install DIMENS
map DIMENS DO DIMENS

patt 2 ATTERN nitialize PATTERN draw PATTERN install PATTERN
apPATTERN popPATTERN

lice 4 nitialize SLICE draw SLICE install SLICE
draw HATCH pop SLICE

Table 10.1 These are the modules that plug into the main program, Vari 4.

A limited form of version control is used in the naming of the modules, mesh_4 is

the fourth version of the MESH handling routines.

A naming convention is used to name particular functions in each module. This

introduces some commonality to each of the modules. Some of the geometric objects are

static and some are dynamic. The static objects are registered as GI objects with build

routines and then those objects are displayed by the GI routine, callobj. The dynamic

objects are displayed using a draw_ or a map_ routine. A draw_ routine is used to display

an object in it's native mode, part or cell. A map_ routine is used to display an object

replicated throughout the cells of the mesh, in space mode. The dynamic objects are

initialized by initialize_ routines. The dynamic geometric objects allow the user to modify

their key parameters through the use of popup windows. A popup window is established

with an install_ routine, and it is displayed, or put away, with a pop_ routine.

10.2 Module Integration
Vari_4 and the functional modules are structured so that the functions can be

"plugged in" to the main program. See Figure 10.2 Program Structure, on the next page.

An arbitrary module, XXXX_n.c, is shown in figure 2. The header file

XXXX_n.h, is structured so that the data structure XXXX is declared in XXXX_n.c, and

defined as EXTERN to the main program. In the most complete case, that XXXX is a

displayable geometric object with modifiable parameters, XXXX_n.c is responsible for the

five particular subroutines shown. The boxes show where the functions are coded, and the

arrows show from where the functions are called.

The main program manages the interactive behavior of the application. It provides a

menuing system for the modules to hang their controls, it keeps track of the visibility of the

different geometric objects, and it converts mouse input in the graphic region into graphic

motions. While the main app loop handles the menuing, Gldraw() handles the graphic

display.

Since, every geometric object has it's own unique visual quality, each module provides an

appropriate function to display the object; that it "registers" with Gl_drawo. Then,

Gl_draw is made public by Vari_4, so that as the parameters of the geometric object are

modified, the graphic display can be updated.

XXXXn. h

var i _4. c

main() i ncl ude

/* declaration */

xxxx

insta[[_XXXX ()

G _draw ()

73

/* build menus */

/* initi

/* main

Not shown in figure 10.2, is the internal linkages within vari_4.c and XXXX_n.c.

In Vari_4, Gl_draw() is called by the graphic area's input callback function; so that the

display updates in response to mouse input. In XXXX_n.c, modify_XXXX() is usually

called by the popup window that is defined in install_XXXX().

10.3 Module Descriptions
Points are represented by the data type, pt type 3, which is a structure of three

floating point values, X, Y, Z; declared in points.h.

Misc contains four functions that facilitate the usage of TextField with numeric

values:

get int and get dbl take handles to TextField widgets and return numeric values.

is int and is dbl takes handles to TextField widgets and tests whether or not the

TextField represents a valid numeric value.

10.3.1 Mesh
The data structure of the MESH is an array[i][j][k] of points. The indices, i and j,

span the region to be textured, while the index, k, is normal to the region. The index, k, is

allowed to have only two values; k = 0 is the set of mesh nodes that are on the surface, and

k = 1 is the matching set of nodes that are offset from the surface.

draw MESH displays the mesh by drawing line segments between adjacent node

points of the mesh.

The mesh popup controls the size, nxm of the mesh, by calling

do_MESH_size_OK, which calls initialize mesh and gl draw. The popup can also execute

two different mesh regularization routines; energy MESH which is an implementation of

Haeseong Jee's energy minimization routine, and constrain MESH which is the

implementation of the algorithm described in Chapter 9. The regularization routines are

readily adaptable to different surface types by replacing the single call in each of

surface projection.

Mesh also supplies the functions:

transform t, which is the implementation of the Trivariate Free Form Deformation

discussed in section 8.1. It used by the routines map DIMENS, and map PATTERN.

10.3.2 Pattern
PATTERN is the Checkerboard model of a unit cell of texture, described in section

7.2. The data structure is an array[i][j][k] of O's and l's, stored as integers. This scheme

facilitates conditional operations through the usage of the existential state value, 1.

The pattern popup controls a layer of the PATTERN with a grid of voxels that the

user can interactively select and deselect. Up and down arrows navigate the layers that

comprise the third dimension of the PATTERN.

draw PATTERN renders the PATTERN in the cell mode, which is 3D, by

displaying polygons for each of the six faces of an instantiated voxel.

map PATTERN renders the PATTERN throughout the cells of the MESH.

For both draw PATTERN and map PATTERN, faces are suppressed between

adjacent active voxels.

Pattern also supplies the routine:

write PATTERN which writes out an STL file of the PATTERN, where each of

the six faces of an active voxel, are split into two triangles.

Internally, pattern uses the routine initialize CORNER to calculate the 3D floating

point values of the corners of the voxels, based on the physical dimensions of UNIT, and

the nxmxk subdivisions into which the PATTERN breaks the unit cell.

10.3.3 Surf
The public data of the surface module represents the control points of a bezier

surface.

draw SURFACE uses the Gl function nurbssurfaceo to display the surface. The

knot sequences are simplified to nx0's followed by nxl's to get the intended behavior.

Surf also supplies the functions:

surface point takes in u and v parameters and returns a point on the surface.

surface norm is an extension of surface point that returns, in addition, the normal

vector to the surface at the calculated point, surface point and surface norm are used by

initialize MESH.

surface projection takes an arbitrary point in space and calculates the surface point

that is the projection of that point. It also accepts and returns the u and v values of the

calculated point. The accepted u and v values are used to seed the iterative algorithm.

surface projection is used by the mesh regularization routines energy MESH and

constrain MESH.

Internally, surf uses the functions bezier and beztan, which are implementations of

Aitkin interpolation to different depths.

10.3.4 Dimens

The public data of the dimens module are two limit points that represent the caliper

points of a dimension; and two tolerance values, the minimum and maximum allowable

distance between the limit points. The nominal length, the distance between the two limit

points as they are declared within the unit cell, is also stored, for computational

convenience.

The dimens popup allows the limit points to be edited, calculates the nominal

length, and then allows the tolerances to be edited.

draw DIMENS displays the DIMENS in the unit cell as line segments drawn

between the limit points.

map DIMENS displays the DIMENS as line segments throughout the MESH. It

also color codes the line segments: yellow for line segments whose length is within the

tolerance, and red for those that are not in tolerance.

10.3.5 Unit
The public data of the unit module are the physical dimensions of the unit cell. The

usage of the identifiers X, Y, and Z, is redundant to pt_type_3, but not the same data type.

The unit popup allows the dimensions of the unit cell to be edited.

10.4 Porting Path
This software is implemented on a workstation because of the demands of 3D

graphics and because of the large file sizes, that can be encountered in SFF and in the

3DPTM process. Currently, Vari_4 runs on an IBM RS6000 with AIX 3.2.5, and an SGI

INDY with IRIX 5.2.2. This is possible because these two environments support three

things in common: the C language, Motif 1.2, and IRIS Gl.

In this regard, this application is directly related to the work of John Lee, who used

C and Motif; and to the work of Haeseong Jee, who used C and IRIS G1.

Porting this software to other platforms will require some upgrading of the code.

The first step should be to upgrade IRIS GI to OpenGl. OpenG1 is supported on a large

number of different workstations, as is Motif; so that Vari_4 could be run on many

different workstations. Since Motif was used for the user interface and mouse events, only

a small subset of the IRIS GI are involved. A porting tool such as toogl, may be able to

port this code on the first pass.

The next step along the path is not as clearly defined, and will be more involved.

PC's running some version of WindowsTM continue to gain in power and popularity;

however replacing the Motif commands with WindowsTM commands will be more difficult.

Fortunately, OpenGl is supported by both Windows 95TM and Windows NTTM.

11. Future

11.1 Alternative Surface Texturing Techniques
In Chapter 6, a particular approach to texture, based on certain concepts of

functionality is chosen from the vast range of all descriptions of texture. Here are some

other approaches to surface texturing, that could, under experimentation, demonstrate

useful functionality.

11.1.1 Dithering
Points on the surface could be chosen purely at random, and then they would be

perturbed normal to the surface by some randomly chosen value. This could be

implemented as a post process applied to an existing file, for the 3DPTM process. The

texture would be characterized by two parameters, the extent to which the algorithm is

allowed to run, and the average perturbation.

11.1.2 Filters
The dithering approach could be modified with the use of filters. Digital images are

processed by filters that examine a group of cells in order to modify an individual cell,

typically one in the middle of the group. When the dithering process selects point location

to modify, the nearby print locations could be "filtered" in order to determine a

perturbation. Partially randomized patterns would emerge at larger scales, similar to swirls

on a stucco wall; based on the "shape" of the filter.

11.1.3 Repeated Subdivision
One variation of meshing covers an irregular region with small triangles. At each

stage of the process, it determines the size of each existing triangle and subdivides the

triangle if it is too large. A simple pattern could be created by printing only those small

triangles that were created by an odd number of subdivisions. More sophisticated patterns

could be created by using rules that establish a state for each triangle at each stage, based on

other properties of the subdivision process.

11.1.4 Cellular Automatons

In one sense, the approach to texture in this work has been a global process. The

compensation for the curvature of a region to be textured is calculated before texture

mapping occurs. A local process would walk along a region; and then based on the local

curvature, and the history of what it has recently printed; would decide what to print next.

11.2 Alternative Cell Editor

While it is more natural to design unit cells that are four sided, the STL file format

is based on triangles. A unit cell editor that produces useful three sided texture cells, would

be able to capitalize on the existing STL format. In fact, the STL format allocates storage

for two arbitrary parameters for each triangle that are seldom used. These parameters could

be used as pointers into a table of a variety of three sided texture cells, that would be

utilized during the printing process.

11.3 Incorporate Other Functionalities
Ideally, all of the new functionalities enabled by SFF and the 3DPTM process

should be designed into a part with one software package. I would like to see Vari_4 be the

ancestor of that software. The functionalities that will be the easiest to incorporate are those

that are most similar to surface texturing.

11.3.1 Conformal Cooling Channels
In one sense, conformal cooling channels are subsurface textures. Small capillaries

that are finely divided from larger capillaries, repeated just below a surface so as to create a

particular amount of thermal transfer. The work of Xiarong Xu could provide design rules

that could determine the appropriate design parameters for such a "texture".

11.3.2 Functionally Gradient Materials
Todd Jackson is working on new CAD representations for the structure of a solid

object so that the microstructure of a part can be assigned throughout the interior of the

part. The goal is to facilitate the creation of parts that are composed of Functionally

Gradient Materials.

One of the approaches that Todd is considering is a volumetric meshing of the part,

that includes the assignment of properties to individual volume elements. This approach to

functionally gradient materials could fit well with this projects approach to surface

texturing.

11.4 Mesh Issues
11.4.1 Boundary

The mesh could follow the boundary better. The array that is being used to store the

mesh elements, should be replaced with a data structure, that has two bidirectional

linkages. The one linkage would be used to represent the adjacency in the u direction and

one linkage would be used to represent adjacency in the v direction. This data structure

would allow new cells to be added or deleted, around the edge, as the overall mesh

contracts or expands, respectively.

The mesh would be able to follow more complex, even nonconvex, boundaries.

An interesting approach to mesh regularisation is suggested by this idea. The mesh

could start with just one cell, and then in stages, cells could be added around the edge of

the existing mesh. At each stage, the mesh is regularized. Since the first cell can be created

in a regular fashion, any disturbance to regularity is encountered by the expanding edge of

the mesh. If at some stage the mesh can not be satisfactorly regularized, then bad surface

regions are immediately identified.

11.4.2 Dislocations
In nature, crystals organize into nearly perfect structures by introducing point

dislocations in the structure. It would be interesting to rewrite Haeseong Jee's energy

algorithm to pop out or pull in additional mesh nodes, if the local spring energy were to

exceed some threshold value. Schemes would have to be found to collapse the data

structure around such dislocations.

Index/Glossary

3DPTM Process - The Three Dimensional Printing Process - This is a registered
trademark of MIT.

API - Applications Programmable Interface

APT - Automatic Programmable Tool

CAD - Computer Aided Design

CADCAM - a generic term used to discuss information issues, in a broader context
than either CAD or CAM inplicate by themselves.

CAM - Computer Aided Manufacturing

CSG - Constructive Solid Geometry

ECAD - CAD for the design of Electronic devices

FFD - Free Form Deformation

Freeform is the usage by the SFF community
Free Form is the usage by the CAD community

FGM - Functionally Gradient Materials

IFS - Iterated Function System

LOM - Laminated Object Manufacturing

MCAD - CAD for the design of Mechanical devices

MIT - Massachusetts Institute of Technology

NC - Numerical Control

NSF - National Science Foundation

Part - Any single object. refers alternately to the physical and the CAD model ...

Post Process - Those processes that are required to complete the functionality of a
part after a primary shaping operation.

Printing Primitive - The smallest feature printable by the 3DPTM process.
Conceptually a droplet, typically represented as a circle or a sphere.

SLA - Stereo Lithography

SLS - Selective Laser Sintering

SFF - Solid Freeform Fabrication

SSG - Swiss Solid Geometry

Tooling - a collection of parts used to manufacture other parts A high volume
process or to shape materials that are not readily cut.

Voxel - A Volume Pixel, which is an abstract concept for the smallest feature
buildable, by an SFF process, or by the 3DPTM process.

VLSI - Very Large Scale Integration

VLSI MCAD - Mechanical CAD that behaves like VLSI

References

[ALL 54] Relaxation Methods, D.N. Allen
McGraw-Hill, 1954 (QA225.A425)

[ANG 87] High Resolution Computer Graphics Using Fortran 77, Ian Angell and
Gareth Griffith, 1987 McMillan

[BAR 88] Fractals Everywhere, Michael Barnsley
Academic Press, 1988

[BEI 76] Applied Geometric Programming, Charles Beightler and Donald Phillips
1976 Wiley (T57.825.B44)

[COR 95] "Three Dimensional Printing of Ceramic Molds with Accurate Surface
Macro- Textures for Investment Casting of Orthopaedic Implants", Alain Curodeau,

PhD Thesis in Mechanical Engineering, MIT, Sept. 1995

[CHU 74] Elementary Probability Theory with Stochastic Processes, Kai Lai Chung
Springer-Verlag, 1974

[HEN 90] Discrete Relaxation Techniques, Thomas Henderson
Oxford University Press, 1990

[HAR 88] Computer Graphics, A Programming Approach, Steven Harrington
1988 McGraw Hill

[JAC 92] Rapid Prototyping & Manufacturing, Paul F. Jacobs
Society of Manufacturing Engineers, 1992 (TS 155.6.J33)

[JAH 93] Digital Image Processing, Bernd Jahne
1993 Springer Verlag (TA1632.J34)

[JEE 96] "Computer-Aided Design of Surface Macro-Textures for Three
Dimensional Printing", Haeseong Jee
PhD Thesis in Mechanical Engineering, MIT, April 1996

[KUM 95] "An Assessment of Data Formats for Layered Manufacturing", Vinod
Kumar, Debasish Dutta

to be published in Advances in Engineering Software, Elsevier Apllied
Sciences

[LEE 96] "Computer-Aided Process Planning for Surface Quality in Point-Wise
Constructive Manufacturing by Three Dimensional Printing", Sang-Joon

Lee
PhD Thesis in Mechanical Engineering, MIT, Sept. 1996

[LUE 84] Linear and Nonlinear Programming, David Luenberger
1984 Addison-Wesley (T57.7.L948)

[NSF 96] "NSF Workshop on Design Methodologies for Solid Freeform Fabrication
June 5-6, 1995"
Engineering Design Research Center Carnegie-Mellon University, 1996

[PRE 89] Numerical Recipes in Pascal, WH Press
1989 (Q76.73.P2.N87)

[RAV 90] A Taxonomy for Texture Description & Identification, A Ravishankar Rao
1990 Springer Verlag

[SAC 94] "Design Automation for Solid Freeform Fabrication", Emanual Sachs,
Michael Cima, Duane Boning, Subra Suresh, David Gossard

Proposal to the NSF, June 1994

[SAH nn] "Heterogeneus Process Simulation Tool Integration", Zakir H. Sahul,
Kenneth C. Wang, Ze-Kai Hsiau, Eugene W. McKenna, Robert W. Dutton

to be published, Stanford University

[SAI 94] "Meshing of Engineering Domains by Meitotic Cell Division", Kazuhiro
Saitou, Mark Jakiela

Proceedings of the Fourth International Workshop on the Synthesis and
Simulation of Living Systems, The MIT Press, July 1994

[SHI 92] "Computational Methods for Physically-based FE Mesh Generation", Kenji
Shimada, David Gossard
Proceedings of the IFIP TC5/WG5.3 8th International Conference on
PROLAMAT, June 1992

[TAH 71] Operations Research, Hamdy Taha
MacMillan 1971 (T57.6.T128)

[ULI 87] Digital Halftoning, Robert Ulichney
MIT Press, 1987 (T385.U45)

[WHI 87] Relaxation Techniques for the Simulation of VLSI Circuits, Jacob White,
Alberto Sangiovanni-Vincentelli
Kluwer Academic Publishers, 1987 (TK7874.W48)

