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ABSTRACT

Recent satellite constellation developers have increasingly considered non-traditional
medium altitude circular and elliptical orbits. These projects will track their satellites using
the GPS system, which has been used on LEO satellites for several years. But can GPS be
used as the sole input for the orbit determination of satellites in these medium altitude
eccentric orbits? To determine the feasibility of such a process, a program was constructed
to produce simulated GPS navigation solutions. These simulated navigation solution were
used in place of actual solutions that do not exist. The simulation included realistic error
models for the GPS satellite clocks and for ionospheric delays, and it evaluated the
visibility between the GPS satellites and their target. The navigation solutions were
computed using all GPS signals received by the target satellite. To increase the speed of
calculation, the simulation used a modified version of the self-scheduling architecture for
parallel processing and implemented it using the MPI Standard. The orbits used in this
simulation were the Ellipso Borealis, Ellipso Concordia, and Molniya orbits. The
navigation solutions produced from these orbits were used as the input to an orbit
determination process that employed the Goddard Trajectory Determination System
(GTDS) program. This orbit determination process was performed using the differential
corrections function of GTDS. The determined orbit was compared to the orbits used in
the production of the simulated navigation solutions. The results of this comparison
implied that the orbits could be reproduced from GPS navigation solutions if the precise
force models were used in the determination process. Testing was conducted to examine
the effects of force mismodeling on the orbit determination process.
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Chapter 1

Introduction

Until the 1990's, most space vehicles were the property of governments [34,41]. The

U.S. and Russia each competed to accomplish space milestones before the other could.

Military and government organizations used satellites for exploration, surveillance, and a

secure means of communication. However, there were a significant number of commercial

space applications in operation at that time.

The commercial market for space has increased dramatically in the past decade. The

primary commercial application has been the field of communication [41]; more

communication satellites are in orbit than ever before, and the number is continuing to

grow. Private companies have also become interested in space exploration, and are

launching vehicles to pursue the knowledge they desire.

All satellites must have a place to reside. A satellite's orbit is selected based on the

mission requirements, the benefits and hazards of various altitudes, and the availability of

space at its desired altitude. The most popular orbits to date have been low Earth (LEO)

and geosynchronous (GEO) orbits. Of these two, LEO is more frequently chosen for at

least one of the following three reasons: first, a launch vehicle can place a more massive

satellite into a lower orbit; second, there is a lower cost associated with placing a satellite

into LEO; and third, having a satellite in LEO allows the possibility of maintenance and

repair. The main appeal of the GEO orbits is that the satellite remains above the same area

of the Earth at all times, with a secondary benefit of being able to view an entire

hemisphere.

Early satellites were sent up into LEO to perform experiments and allowed to die on

orbit with no concern about de-orbiting the vehicles. Some of these satellites have been



damaged and have had pieces break off. There have also been accidents throughout the

history of space launches and satellite operations, including explosions and collisions with

debris or other satellites. These accidents produce large amounts of debris, which in turn

can cause more collisions. Due to the minute size of most of the debris fragments, most

collisions go unnoticed. Other contributions to this debris field are the rocket bodies of

multistage launch vehicles, which were ejected from their vehicles above the altitude where

they would fall back to Earth. With the current populous of objects (debris and satellites,

active or dead) in the LEO altitudes and the advent of new systems that use large numbers

of satellites, like Globalstar(48) [61], Iridium(66) [59], and Teledesic(288) [60], there are

some serious concerns about the increased likelihood of satellites colliding with other

satellites [65] or debris [66].

Eccentricity is another important issue in the selection of an appropriate orbit. All

orbits are eccentric, just to different extents. Most satellites travel in nearly circular, low

eccentricity orbits. But higher eccentricity can be used to accomplish specific mission

objectives. For example, the Russian Molniya constellation used a highly eccentric orbit

design to produce extended duration passes over Russia and North America on a daily

basis [19,34]. The new Ellipso constellation is also using an elliptical orbit for two of its

three planes to economically provide increased coverage of the northern hemisphere

[14,15]. These are just two examples of systems that used or will use elliptical orbits.

Another potential use of eccentric orbits is to allow a satellite to perform its required

operations in LEO while limiting its exposure to the high debris environment.

As more new systems are developed, designers may want to use higher and more

eccentric orbits than the current norm. Their reasoning may be debris avoidance, satellite

interference, system cost, or other higher-level mission requirements. Regardless of their

reasons, the operators of the systems will still need to track their satellites.

In recent years, the Global Positioning System (GPS) has seen a tremendous surge

in popularity. GPS receivers (GPSR) can be purchased by anyone who wants one. They



are available in hand-held units or in units that can be mounted on cars, boats and airplanes.

They have even been mounted on satellites and the Space Shuttle. In fact, satellites

equipped with GPS receivers were flown as early as 1982 [8]. These satellites all flew in

LEO orbits. The earliest of these satellites were used to test GPS and to evaluate how well

GPS receivers could determine the satellites' positions. Using GPS onboard a user satellite

basically gives that user satellite some ability to track itself, and from this data, the

satellite's orbit can be determined and predicted.

Until now, GPS receivers have not flown in medium (MEO) or high Earth orbits

(HEO), but they are being tested for performance on GEO satellites. Also, they have flown

in very few elliptical orbits [17]. GPS performance in these orbital cases is questionable.

Is it possible to use GPS for the determination and prediction of these types of orbits? That

is the question behind this thesis.

1.1 The GPS System

GPS is the global positioning system that was developed by the U.S. Armed Forces [46].

It is a high-precision navigational system that works on the concept of radio ranging. The

following sections will describe the operational segments of the GPS system, how the

system operates, and the errors associated with its operation. Throughout these

descriptions, the term satellite will refer only to a GPS satellite. This discussion of GPS

focuses on the civilian user. In particular, the discussion does not include information

about the precision (P) code, only the coarse acquisition (C/A) code.



GPS System Segments

The GPS system consists of three operational segments [53]: the Control segment, the

Space segment, and the User segment. If either of the first two segments are not operating

properly, the performance of GPS is degraded. A failure in the User segment would only

affect the individual user and could be corrected easily.

The Control segment [23,53] consists of a series of ground-based monitoring

stations and a master control station. The monitoring stations measure the pseudoranges

and carrier phases of the GPS satellites and their transmitted signals. The data is sent to the

master control station to verify accurate operation. The pseudorange and carrier

information are processed to remove known sources of error. The smoothed data is used

as input to a Kalman filter that predicts the GPS satellites' positions using a linearized

model of their motion. This linearized model uses the sum of the reference states and their

residuals in place of the current state. The reference states are taken from the reference

trajectories, which are produced by propagating from known states with the non-linear

model of motion. To prevent the reference states from deviating too far from the actual

states, these reference trajectories are updated when they fail linearity tests. The Kalman

filter uses the residuals from one-half hour before the upload time and the partial derivatives

from the reference trajectories to produce the ephemeris estimates by propagating through

the entire time span of the upload. The residuals between the ephemeris estimates and the

reference trajectories are divided into segments that correspond to the fit intervals from the

time of upload. These segments of the residuals are processed through a weighted least

squares fit to generate corrections that are applied to the previously predicted Keplerian

elements. The new Keplerian elements are converted to the coefficients that the GPS

satellites transmit in their navigational messages [23,51]. These values are used by the

GPS receiver to calculate the position of the GPS satellite that sent the signal. On at least a

1.1.1



daily basis, the master control station sends updates to the GPS satellites that include this

data.

The Space segment [53] is a constellation of 24 semisynchronous satellites that are

disbursed in six evenly-spaced orbital planes; within the planes, the satellites are unevenly

spaced to reduce the effects of satellite outages. These satellites continuously transmit a

coded signal toward the Earth. The coding of these signals indicates which satellite sent the

transmission. This coding can also be used to determine the time of signal transmission.

The signal contains a message with data that the users' receivers need to calculate their

positions.

The User segment [53] was originally limited to the military, but it has expanded to

the general public. Anyone with a GPS receiver can make use of the navigational signals.

However, the signals received by the general public differ from those received by military

users. Based on their level of access, the GPS receivers take the messages received from

the satellites and process the data to determine the users' positions.

1.1.2 Operation

Each satellite transmits a signal toward Earth. The signal is encoded using a pseudorandom

noise (PRN) code that is unique to the satellite [30]. The code changes the phase of the

carrier by 1800 (Figure 1.1) and is relatively easy to isolate from the carrier. The signal's

message is the navigational data required for a GPS receiver to determine the location of the

source of the signal and the corrections to the clock and range measurements [51]. This

data includes the coefficient values for: the clock correction polynomial; the ephemeris of

the sending satellite that are accurate for 2-3 hours from time of transmission [51]; the

satellite almanac, for satellite selection purposes; translation of GPS time to UTC time; and



corrections for ionospheric delay. The GPS satellite receives an update, on at least a daily

basis, for the data it transmits in the message.

A GPS receiver is capable of receiving multiple signals simultaneously; its signal

capacity is dependent on its construction. The receiver identifies the satellites through their

signals' PRN codes and estimates the time of signal transmission based on the phase of the

PRN code (Figure 1.2). Each signal is isolated and processed individually. The signals

are decoded and demodulated to retrieve the data. The transmission time is corrected using

the clock correction polynomial equation and the coefficients contained in the message [51].

The equation is:

Atsv = afo + a,(t-toc)+ af2(t- to)2 + At R

where

t = tsv + Atsv = GPS time of transmission

2 R-V
At = Fe-AsinEk 2 2 = the relativistic correction

c

tsv = the PRN phase time at time of transmission

afo, afP, and a = the correction coefficients

toc = the reference time for clock correction

F = -2 --24 = -4.442807633 x 10-10 s/ml/2c2
= Earth universal gravitational parameter

c = speed of light

R = instantaneous position vector of satellite

V = instantaneous velocity vector of satellite

e = eccentricity of satellite orbit

A = semimajor axis of satellite orbit

and Ek = eccentric anomaly of satellite orbit

The receiver also calculates the position of each satellite from known constants and

the data it received. The GPS orbit is modeled as an elliptical orbit with correction terms
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for perturbations related to radius, argument of latitude, inclination angle, and right

ascension. The data in each GPS signal contains the coefficients for the modified

Keplerian equation [51] for its orbit, and they consist of:

Mo  Mean anomaly in semicircles

An Mean motion difference from computed value in semicircles

e

(A) 1/ 2

(OMEGA)0

io

Eccentricity of the orbit

Square root of semimajor axis in m/2

Longitude of ascending node in semicircles

Inclination angle in semicircles

Argument of perigee in semicircles

OMEGADOT

IDOT

Cuc

Cus

Crc

Crs

Cic

Cis

and Toe

Rate of right ascension in semicircles/second

Rate of inclination change in semicircles/second

Amplitude of argument of latitude cosine correction term in radians

Amplitude of argument of latitude sine correction term in radians

Amplitude of orbit radius cosine correction term in meters

Amplitude of orbit radius sine correction term in meters

Amplitude of inclination angle cosine correction term in radians

Amplitude of inclination angle sine correction term in radians

Reference time for ephemeris in seconds (subscript 0 refers to this
time)

Included with these coefficients is the issue of data-ephemeris (IODE) parameter. This

parameter is used to verify data consistency within the GPS message. Table 8 in [51]

presents the equations used to compute the GPS ephemeris from this data.

After estimating the satellites' positions and transmission times, the pseudoranges

are calculated. The base value of a pseudorange is computed by multiplying the time of

transit and the speed of light. This value may be corrected for ionospheric effects [36,51].

One equation that models ionospheric delay with a half cosine approximation is:

(t) = F(E) 5 x 10-9 + AMP(L)cos day

F(E)(5 x 10- 9 )lnight

(1.2)



where

F(E) = Obliquity factor as a function of elevation angle, E

AMP(L) = Amplitude of half cosine

PER(L) = Period of half cosine

The amplitude and period of the half cosine approximation are both cubic functions of the

geodetic latitude of the user. The satellites include the coefficients for these cubic functions

in their messages. The receiver can correct the pseudoranges for ionospheric delay if the

equations are included in its program, but the manufacturer may have opted to ignore the

ionosphere.

Once the pseudoranges of at least four satellites have been calculated, the receiver

has all the information it needs to determine its position. There are a number of different

algorithmn, for determining the position of a GPS receiver [1]. Some of these are filtering

prtoc,•%e that require knowledge of the dynamics of the user. The most elementary

algonthnim Ibr position determination is a least squares solution to the linearized observation

L'qL~IXon:

Ap = GAx + As (1.3)

thcrc

T iGx Abu AS-P2A R.[AY] - AX AG~ .1EAb ~ J A [Ap

and ir,_ irb

i - Iu u u p i pi

The caret marks indicate the predicted values for satellite position, clock bias, and

estimated error contributions. The values to calculate are Ax, the vector of the change in



position and time bias from the a priori values. The change in estimated errors vector, AEp,

is assumed to be zero mean and is, therefore, neglected from the least squares solution.

The change in pseudorange, Ap, is difference between the predicted and measured

pseudorange. G is the geometry matrix of the satellite positions, which consists of the line-

of-sight unit vectors (1 's) between the satellites and the predicted position of the user and

l's for the clock bias term. Usually, G is not a square matrix, so it does not have a true

inverse. But the Moore-Penrose generalized inverse can be used to solve this equation.

The accuracy of this algorithm is dependent on the quality of the measurements and

the geometry of the satellite positions. The measurement quality depends on the variance of

the measurement error; the variance is influenced by the error conditions and can vary from

0.3 to 30 meters [1]. The satellite geometry can cause dilution of precision (DOP), which

will be described in the next section.

1.1.3 GPS Related Errors

GPS is not a perfect system. There are errors associated with the operation of the system.

These errors can be grouped in three classifications: environmental, inherent, and

intentional. These error classifications and their members are described below.

1.1.3.1 Environmental errors

The environmental errors are the delays caused when the signals pass through different

layers of the atmosphere. The layers of the atmosphere that are the main contributors to

these errors are the ionosphere and the troposphere, in that order [47]. The errors caused

by both of these layers of the atmosphere are intensified for lower elevation angles, because

the signals have a longer path through these regions to reach their destination.



The ionosphere is the layer of the atmosphere that is populated by higher

concentrations of free electrons and ions [36]. The ionosphere is broken down into four

regions (D, E, Fl, and F2), based on increasing altitude and electron density (Figure 1.3);

the highest region's electron density rises to a maximum value, then its density decreases

with altitude. The lower three regions are strongly dependent on ionizing radiation from

Protonosphere
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Figure 1.3 Layers of the Ionosphere



the sun and do not exist at night while F2 decreases in density and raises its altitude of

maximum density during the night. Each region has a different effect on radio wave

propagation. Region D has no impact on GPS frequencies; region E has negligible effects

on these frequencies. The time delay caused by region Fl, with the small contribution

from E, is approximately 10% of the entire ionospheric delay experienced by GPS. The F2

region, which is primarily composed of atomic oxygen and its ions, is responsible for most

of the radio propagation problems at GPS frequencies. Above region F2 is the

protonosphere, a region of ionized hydrogen that extends to approximately GPS orbital

height. It has an unknown electron density and can contribute 10% to the time delay during

the day or 50% at night. These effects cause errors in pseudorange that vary from a few

meters to several tens of meters. The pseudorange can be corrected for this time delay from

the coefficients sent in the GPS message, if the receiver's program includes ionospheric

correction.

The troposphere is the collection of dry gases and water vapor that exist close to the

Eanrth' %urfacc [52]. This layer of the atmosphere can affect GPS signals through

attenution. %cintillation, and signal delay. These effects are caused mainly by the nitrogen

and ox% .en in the atmosphere, but the water vapor has a noticeable effect on the signal

delay The firt two effects change the strength of the signal, and they are relatively minor

unic,, th-c cleation angle is less than 50. The signal delay is caused by refraction of the

,ini h\ the atmosphere. This refraction is dependent on the local temperature, pressure,

and hunudit\. This effect changes the speed of the radio wave from its speed in vacuum,

and extend- the transit time of the signal. This delay corresponds to a pseudorange error of

2.3 - 3.1 meters [52]. The dry atmosphere portion of this effect can be modeled and

accounts for a majority of the error, but this model for error correction may not be included

in the GPS receiver program.



1.1.3.2 Inherent errors

Since perfection is unattainable, every system that has ever been built has some inherent

errors in its operation. Some of these errors are due to design constraints while others are

natural limitations of physics. For the GPS system, these errors occur in five aspects of

operation: ephemeris data, satellite clock, multipath reception, receiver operation, and

geometric dilution of precision. Each of these sources contributes a small amount of error.

The ephemeris data that is transmitted by the GPS satellites is produced from a least

squares fit over a 4-6 hour period of ephemeris residuals described in Section 1.1.1 [23].

This ephemeris compression process was devised in order to 1) limit the amount of data to

be transmitted from the GPS Master Control Station to the GPS satellites, 2) limit the

amount of data to be transmitted by the GPS satellites to the user, and 3) simplify the

ephemeris calculations performed in the user's GPS receiver. A satellite could not send

enough information in its message to include the parameters required for the precise

position, but it could handle the reduced number of parameters for the fit of the precise

position. The parameters for two weeks worth of fits are sent to the satellites in their

regular updates; the two-week period was selected for emergency situations when the

satellites cannot be contacted. The fits are less accurate, but the error stays reasonably

close to the precise solution.

The error in the satellite clock is dependent on the quality of the clock. All the

satellites use atomic clocks that have an accuracy rating of approximately 1 part per 1013.

These clocks are the most precise tools for time measurement. At this accuracy, the error

accumulated in a day's time (86400 seconds) would be 8.64 x 10-9 seconds or about 2.6

meters. In 1984, the error was reported to be 4.1 meters for 24-hour predictions. The

clocks are synchronized daily or more frequently, which prevents the further accumulation

of error. Because the standard deviation's growth is reported to be quadratic with time, the

expected average error is on the order of 1-2 meters for 12-hour updates [47].



Multipath reception arises from the fact that electromagnetic waves and beams

reflect off surfaces [4]. A reflected GPS signal will continue to travel and may be received

by a GPS receiver that has already received the same, unreflected signal. This occurrence

distorts the signal and degrades the positioning accuracy. The effects of multipath can be

mitigated in a number of ways. First, the receiver's antenna can be mounted on an rf-

absorbing surface; this option is not really feasible for a mobile receiver. Another option is

to polarize the antenna to receive right-hand circularly polarized signals; this technique does

not block signals of other polarization, but it does reduce their strength. A third way to

deal with multipath is to design the antenna's gain pattern to have low gain in the directions

that are most likely to produce reflected signals. Other methods are being devised to cope

with this problem. In extreme cases, this phenomenon can contribute 15 meters of ranging

error. The effects of multipath reception cannot be eliminated, but they can be minimized.

Receivers have seen a tremendous improvement from the time of their original

design, but they still have limitations. Their clocks are high quality, but not as good as the

satellite clocks. The microprocessors have the ability to produce the desired precision for

positioning, but the output is only as good as the software onboard. The receiver can also

introduce range errors due to thermal noise. These limitations do not contribute much to

the total error, only 0.5 meters in bias and 0.2 meters in noise [47].

The geometry of the GPS satellites that are used for determining the user's position

can have a greater impact on the accuracy of the solution than the ranging errors [1,47]. A

poor selection of satellites can result in a dilution of the accuracy. This quantity is

measured through a number of different dilution factors, of which GDOP and PDOP are

the most common. PDOP is the position dilution of precision factor and it measures the

dilution of the position accuracy. GDOP is the geometric dilution of precision and it

incorporates the dilution of the position and the clock bias. The calculation of GDOP and

PDOP begins with Equation 1.3. The solution of this equation for Ax is:



Ai= (GTG)IGTAP

where (GT G) -' G T is the equivalent of the Moore-Penrose generalized inverse that was

mentioned in the discussion of Equation 1.3. To get the error covariance of the solution,

the expectation operator E can be applied to the product of the solution and its transpose as

follows:

E[ Ai T = E[(GTG)'G TAp ApTG(GTG)] (1.5)(1.5)

= (GT G G TE[Ap ApT]G(GTG)'

The geometry matrix G has no random components, so all instances of G can be

move out of the expectation operation. Under the assumption that the range errors are

uncorrelated and have equal variance, the expectation operation E[Ap APT ]becomes (L2

and Equation 1.5 reduces to:

E[A• Ai T ] = (2(G'G)' (1.6)

The diagonal of this covariance matrix corresponds to the variances in the

components of the solution. GDOP is the square root of the trace of (GT G)1 , and PDOP is

the square root of the sum of the first three diagonal elements. The error magnitudes are

estimated as the products of the dilution factor and Y. For example, the total position error

magnitude is estimated to be ( x PDOP. Because of the assumption that the measurement

errors are uncorrelated and are statistically alike, this value is only an approximation.

Dilution can be reduced by using more satellites. This tactic improves the satellite geometry

for position estimates.

(1.4)



1.1.3.3 Intentional errors

Because GPS is a military asset, the U.S. Government has restricted access to the more

precise navigational data. To accomplish this, GPS has been seeded with intentional

errors, which are referred to as Selective Availability (SA) [47,54]. These errors are built

into the data that is transmitted by the satellites. The two potential recipients of these errors

are the ephemeris data and the satellite clock.

The ephemeris data may be modified from the best available predicted values. The

errors would be embedded in the coefficients that the satellite transmits for the purpose of

calculating the satellite's position. By adding more errors to the satellite positions, the

navigational algorithm produces a solution that is less accurate. Ephemeris errors change

slowly with time, so the effectiveness of SA on the ephemeris is limited [47].

The satellite clocks are definitely being altered for SA. The clocks are being

dithered to vary the range errors (Figure 1.4). The user position computed from these

modified ranges wanders around the true location, and the position errors become

uncorrelated in a matter of minutes. There is no correlation between the errors produced by

different satellites. The only way to determine the behavior of SA is through direct

observation. Models can be developed that are statistically similar, but there is no model

that reproduces this dither exactly. Therefore, these models cannot be used by

"unauthorized" users to remove SA from the satellite clock.

1.2 Eccentric Orbits and GPS

Why is GPS performance questionable for elliptical orbits? As stated earlier, GPS

receivers have been flown mainly on satellites with nearly circular orbits at LEO altitudes

[17]. These orbits experience very little variation in their altitudes and velocities. In
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Figure 1.4 Ranging Errors from Satellite Clock Dither [54]

eccentric orbits, the altitudes and velocities are continuously changing; the more eccentric

the orbit, the greater the range of variation. These variations could have a significant

impact on GPS performance. For instance, as the altitude of the receiving satellite

increases, visibility between the receiver and GPS satellites may become a problem. In

addition, if a downward facing antenna is used at these higher altitudes, the signals

received by this antenna may be affected by ionospheric interference to a much higher

extent than is experienced by upward facing antennas. These are some of the problems that

can seriously impact the performance of GPS.



1.2.1 Visibility Issues

As a satellite's altitude rises in an elliptical orbit, visibility between the GPS satellites and

the receiving satellite can become a problem. This problem arises from the design of the

GPS transmission array and the limitation on the GPS receiver's antenna.

The GPS transmission array was designed to transmit a signal in a beam with a

21.30 half-beam angle from the nadir direction [50]. This signal is transmitted at a distance

of 26,561 kilometers from the center of the Earth. With this beam configuration and the

placement of the satellites, the GPS constellation provides full coverage of an invisible

sphere centered at the Earth with a radius of 9650 kilometers. This coverage is more than

adequate for performance at any Earth location, which is why the system was designed. If

the previously mentioned sphere were increased in size beyond the radius of 9650

kilometers, the beam from each individual satellite no longer covers the entire surface of the

larger sphere it faces. As the radius of the sphere increases, the surface coverage on this

sphere by an individual beam reduces in size. At each location on this invisible sphere, the

number of GPS satellite contacts begins to drop and gaps begin to develop in the four-way

coverage.

Figure 1.5 shows an example of the gaps in coverage from the target's point of

view. In other words, the figure looks at the target and asks, "Where can a GPS satellite

be and still be able to see the target?" The pictures in this figure are a planar cut through the

target and the center of the Earth. Rotating these pictures about the position vector of the

target produces the sphere of visibility. Figure 1.5A shows a surface target. This target

can be seen by any GPS satellite that is above the dotted line. Figure 1.5B shows a target

satellite at an altitude of 6,000 kilometers. Since the geometry is symmetric about the

target's position vector, only one half of the plane is presented. In this figure, the dotted

lines indicate the edges of the GPS transmission cone or the line of sight between the target
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and GPS satellites at the edge of the Earth's shadow. The GPS satellite boundary positions

are connected to the Earth's center to produce the shaded areas. All angles presented in

Figure 1.5B are measured from the target satellite's position vector. After rotating the

figure, the shaded regions become a circle above the target satellite and a ring on the far

side of the Earth. Any GPS satellite on the surface of the shaded regions in this picture can

see the target satellite.

The visibility regions described above vary with altitude. Figure 1.6 was created

by repeating the examination of a target satellite for other altitudes. It depicts how these

regions of visibility vary, starting from an altitude of 3270 kilometers. The sizes of the

regions are scaled as a percentage of the surface area of a sphere with the same radius as the

GPS orbit. As the target rises, the shaded regions become smaller. For the upper region,

the circle's radius decreases and approaches zero as the target gets closer to GPS altitude.

The ring's radii each become smaller for the lower region, but the region of visibility

approaches 2% of the GPS sphere as altitude approaches infinity. There is no overlap

between these regions above 3270 kilometers altitude, so the total visible surface area is the

sum of the areas of the two regions.
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Reception is not constrained solely by the location of the transmission's source.

The target's reception is also dependent on its receiving antenna's orientation. For

example, the target in Figure 1.5A can receive a signal from any GPS satellite in the

indicated region, provided that its receiver is equipped with a hemispherical antenna and its

view is not blocked by terrain. In Figure 1.5B, the target has three choices for antenna

orientation. If the antenna faces nadir, the only signals that the target could receive are

those transmitted by GPS satellites on the surface of the ring. For a zenith facing antenna,

the same condition holds for GPS satellites on the surface of the circle. The third

alternative for antenna positioning is to face it normal to the radial direction. This

alternative results in the ability to receive signals from a hemisphere of the sum of the two

previous options.

As stated earlier, the visibility problem is also affected by the limitations of the

receiving antenna. The discussion of Figure 1.5 assumed that the antenna being used was

hemipherical. However, there are no space-rated GPS receiver antennas that cover an

entire hemisphere. The best antenna in this class can receive signal up to 700 from the

antcnna', axis. or 1400 across the diameter of the reception cone. In Figure 1.5B, this

decr•a•e an reception angle does not impact the first two options, but it affects the third. If

thek antenna a, left normal to the radial direction, the target satellite would lose 200 from the

ede, ot tohe hemisphere. This effect can be altered by reorienting the antenna. The final

orientation of the antenna depends on which of the two regions has more value for the

application.

The discussion of antenna orientation to this point has looked at the pictures in

Figure 1.5 as static cases in altitude, but the altitude of an elliptical orbit is constantly

changing. As the target satellite approaches perigee, a nadir facing antenna would be

useless; the Earth would block almost the entire cone of reception. As it approaches

apogee, a zenith facing antenna would not be blocked by the Earth, but the circle of



visibility may become so small that the receiver cannot obtain four signals. The third

alternative cannot provide the maximum number of available satellites at any time as the

other two options can, but it may provide a more balanced number of satellites than either

of the others.

1.2.2 lonospheric Interference

When operating a GPS receiver on the Earth's surface or in LEO, the incoming GPS

signals are delayed by ionospheric interference. If a receiver is operated above the

ionosphere, the effects of the ionosphere could be increased or decreased, depending on

antenna orientation. An antenna pointing upward will see none of the ionosphere, but a

downward-facing antenna can look through the full depth of the ionosphere twice.

For a ground-based GPS receiver, the ionosphere slows the signal as it descends.

The delay associated with the ionosphere is dependent on the electron density and the

length of the path through the ionosphere. The shortest path through the ionosphere is in

the radial direction from the Earth's center and through the receiver's position, and the

longest path is tangent to the Earth's surface at the receiver's location (Figure 1.7). These

paths have include ionospheric path lengths of 790 km and 2059 km, respectively.

The worst case of ionospheric delay is experienced when the GPS signal grazes the

inner edge of the ionosphere (Figure 1.8). This path through the ionosphere has a length

of 6643 km, better than three times longer than the worst path for a ground based receiver.

The delay resulting from this pass can have an effect of up to 400 m in the pseudorange for

that one signal. This error, compounded with the other known errors, may degrade the

performance of GPS to the point where it is unsuitable for use in orbit determination.

There are three ways to deal with the higher level of ionospheric effect associated

with looking past the Earth: ignore the effects and live with the degradation; compute a

correction for the ionospheric delay; or dismiss GPS signals that have made the long



journey through the ionosphere. The first option is the simplest, but may result in an

unacceptably high error. The second option is the most complex and computationally
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demanding. The third option removes the increased error and only requires the method to

identify the signals that will not be used. The first and third options are investigated in this

thesis.

1.3 GPS and Orbit Determination

The concept of using GPS for orbit determination is not new. In fact, there have been

several suggestions on how to use GPS data in orbit determination processes. Some

methods use GPS data as a portion of their input, and some require the assistance of

ground stations for the corrections used in differential GPS (DGPS) or for data processing.

Sonme of these methods are presented here, followed by a description of the orbit

determlination method that was used in this project.

1.3.1 Review of Past Concepts

In I '?. Stephen Lichten and Jeffrey Estafan proposed a method of orbit determination for

clhpucial III() satellites [38]. This method was specifically targeted for used on spaceborne

cr' Iong basecline interferometry (VLBI) stations that were scheduled to launch in the mid

to laIte tM'), in particular, the stations of interest were the Japanese VLBI Space

Obcrn attorv Program (VSOP) MUSES-B and the International VLBI Satellite (IVS). This

methtod uses a combination of two-way Doppler tracking, GPS tracking from the ground,

and GPS tracking from the satellite. The GPS ground tracking data is used to calibrate the

tropospheric delay experienced by the two-way Doppler signals. The GPS satellite

tracking data and the calibrated two-way Doppler data are processed using a Kalman filter.

The VSOP satellite, which was renamed HALCA, was launched on February 12,

1997. To date, most of the orbit determination for HALCA has been handled by the Jet



Propulsion Laboratory (JPL). The orbital solutions have been produced using just two-

way Doppler. Due to recent HALCA trouble, the testing of the on-board GPS receiver has

not started yet and no GPS data is available [3]. As a result, this method has not been

tested.

In 1995, R. Fennessey, et al. conducted an evaluation to see if GPS navigation

solutions could be used as the input for orbit determination for LEO satellites [17]. This

evaluation revealed that an orbit determination technique using GPS navigation solutions

and the TRACE computer program [67] produced as good an orbit, or better, as one

determined from the Space Ground Link System (SGLS) [68] range, azimuth, elevation,

and range-rate (RAER), which had been the standard source of data at the time. It also

indicated that, for higher accuracy, additional software modifications would be necessary to

implement an orbit determination capability using differential GPS, and that additional

studies should be conducted to determine the costs and performance of orbit determination

using GPS.

In his thesis in 1996, Scott Carter also investigated the possibility of using GPS

navigation solutions as input for orbit determination, but the approach was slightly different

[8]. With a minor amount of preprocessing, the navigation solutions were, again, used

directly in the orbit determination process. But the orbit determination was performed

using the Draper version of the Goddard Trajectory Determination System (GTDS)

software, which could perform the process using either precise mean or osculating

elements.

To achieve the desired accuracy, modifications to the GTDS were required. The

first change was the inclusion of two previous improvements to GTDS that had been

developed separately and had not been merged into a common version of GTDS. These

improvements were: changes associated with the Radarsat project, and the ability to

increase the size of the gravity potential field model to degree and order of 50. On top of



these modifications, a model for lunar and solar solid Earth tides and a more modem

inertial reference frame were introduced into GTDS.

After these modifications were completed, the GTDS was able to take in the GPS

navigation solutions and perform the orbit determination process. The output produced

from the orbit determination of TOPEX indicated a fit accuracy of 9.5-10.5 meters over

five days, and predictions with an error growth rate of 10-15 meters per day over the

following two days. This result showed that GPS solutions could be used to accurately

determine the orbit of a LEO satellite without the high complexity and cost associated with

the differential GPS process.

In an AIAA paper at the 1997 Astrodynamics Specialist Conference, S. Lichten, et

al. presented two methods for orbit determination of higher altitude satellites using GPS as

input [39]. These methods were devised to provide alternatives to the traditional zenith-

facing GPS receivers, which have a more difficult time acquiring enough GPS signals as

their altitude increases. The main focus of this paper is on geosynchronous satellites.

The first method, known as GPS-enhanced tracking (GET), uses a satellite-

mounted beacon that sends a signal similar to those sent from GPS satellites. This beacon

is received, along with GPS signals, by ground-based GPS receivers. The data that was

simultaneously acquired by these receivers is used to determine the positions of the GPS

satellites and, with some modifications, the remaining satellite in question. This method

has been tested on two Tracking and Data Relay Satellites (TDRS).

The second method employs a downward looking GPS receiver instead of the

traditional upward looking. For geosynchronous satellites, nadir-facing GPS receivers

would only receive signals from 1 or 2 GPS satellites. This amount is inadequate for the

standard position calculations. By using a more precise model of orbital motion at

geosynchronous altitudes, a solution is calculable using fewer GPS satellites. The

performance of this method has not been tested yet, but an experiment using this technique

is due to be launched in 1999.



In the MOMS/Priroda Camera Experiment, the mission requirements forced the

implementation of a high accuracy orbit determination process [37]. Standard GPS

positions provided adequate input data to meet most of the requirements, but the high

resolution graphics processing required more accurate inputs for the orbit determination.

To provide this higher accuracy, a differential GPS (DGPS) method was implemented

using a ground-based GPS receiver that received GPS signals from the same satellites

simultaneously. With the aid of precise GPS ephemerides and clock offsets, the data from

the ground receiver and the receiver on Priroda could be processed to produce the required

accuracy.

In 1998, Peter Melvin presented a refinement of GPS orbit determination for LEO

satellites [42]. It used pseudorange corrections and double differencing between a LEO

satellite and one or more ground stations to produce smaller residuals in the least-squares

solution to the orbit. The solution was processed in a Kalman filter and generated positions

that were consistently accurate to within ten meters.

1.3.2 Current Project

The work presented in this thesis builds on the work of Scott Carter [8]. However, Carter

had empirical data from several spacecraft (TOPEX, TAOS, and EUVE) to test his

processes against. There is no GPS data for MEO satellites in eccentric orbits, so the data

must be simulated. The simulation designed in this project includes the GPS errors that

contribute the most to the navigation solution errors. The output of the simulation is ECEF

position only. As in Carter's work, only the batch least-squares method of data processing

is investigated, but the software designed for this project is flexible enough to allow for

filtering or other methods.

This project examines several antenna facings for the GPS receiver, including nadir

facing. It also looks at the benefits of using more than one GPS antenna. Three antenna



configurations are investigated to characterize their performance in different orbital

situations.

After evaluating the performance of the orbit determination process for these orbits

using perfect force modeling, an investigation is conducted on the effects of force

mismodeling on this performance. The forces that are mismodeled and the level of

mismodeling are selected based on the characteristics of the orbit being determined.

1.4 Thesis Overview

The purpose of this chapter was to present the rationale behind the question posed in this

thesis, and to provide information on the problems associated with the pursuit of its

answer. This chapter also describes previous means of orbit determination using GPS data

and how the proposed process differs. The remainder of this document will provide a

description of the approach taken to address the question, a history of the tools used to

facilitate its completion, a detailed explanation of the simulation developed for this task, and

an analysis of the data collected from that simulation.

Chapter 2 presents the concept of parallel processing, and explains how it has been

used in previous applications for computing the motion of constellations of satellites and

how it is used in this project. Chapter 3 describes the navigation solution simulation and

data generation processes, and provides a detailed description of the algorithms used in the

simulation. Chapter 4 explains the simulation architecture and its unique features. Chapter

5 displays the results of the data analysis and explains the observed performance. Chapter

6 presents the conclusions and topics for future research.



Chapter 2

The Computation of Satellite Constellation Motion
via Parallel Processing

The planning and operation of multi-satellite constellations results in more stringent

requirements for orbit propagation. One approach to solving this problem is the

implementation of parallel processing.

This chapter discusses the principle of parallel processing. It describes the two

methods of parallel processing that have been employed by Draper Laboratory and some

past implementations of these methods. Finally, it explains how parallel processing was

applied to the current problem.

2.1 Parallel Processing

In the past decade, scientists and engineers have begun to perform more tests through the

use of simulations. These simulations can accurately reproduce phenomena that cannot be

predicted correctly through analytical theory and are prohibitively expensive or hazardous

for laboratory experimentation. Traditionally, these simulations have been operated on

supercomputers, but the demand for increased capacity in these machines has driven up

their cost dramatically.

An alternative to the use of single-processor supercomputers is parallel processing

[28]. This concept started as an experiment, but it has seen great acceptance recently. The

concept behind parallel processing is to use a group of processors working simultaneously

on different parts of the same problem instead of one large processor performing all the

calculations sequentially. Teamwork between processors working in parallel can result in



more tasks being accomplished than the sum of the tasks that each processor could

complete individually. And as mentioned before, larger single-processor computers

increase in cost, but at a higher rate than they increase in power. Computer manufacturers

realized the power of parallel processing and began to make parallel supercomputers that

provide a large number of processors within a single machine. But the price of these

parallel supercomputers is still prohibitively high. So rather than purchasing a

supercomputer, many sites have implemented programming that allows them to use their

networks of workstations as a parallel computer. The success and cost effectiveness of this

practice have resulted in the purchase of networks of workstations that are dedicated to the

parallel jobs that once ran on a supercomputer.

But there are obstacles to parallel processing in the areas of hardware, algorithms,

and software. The main hardware problem is communication; the higher-speed computers

need a communication environment that can keep up with them. Advances in this area have

developed a better balance between computation and communication in parallel computers,

and should soon be extended to workstations as well. The difficulty with algorithms

comes from trying to identify the levels of independence of individual tasks from the rest of

simulation, based on physics, mathematics, and programming ingenuity. Software is the

biggest obstacle to parallel processing. Part of the trouble with software is that

automatically parallelizing compilers do not work well in all instances; the best results in

parallel software still come from programs that provide their own parallel algorithms [28].

Other problems with parallel software come from the compromises between

expressiveness, efficiency, and portability in the mechanism for communicating the

algorithm to the computer.

There are a number of different computational models for parallel processing.

These models represent the operation of the program, but do not limit the implementation to

a specific machine or programming language. All of these models could be implemented

on any hardware through the use of the correct software. Some of these models are:



Data parallelism
Shared memory
Message passing
Remote memory operations

Data parallelism is based on one concept; the parallelism is limited to the data. This model

processes multiple sets of data through the same sequential program. In the shared

memory model, all processors have access to one shared address space and memory

operations are controlled through a locking system; this means that an individual memory

location is locked by the processor accessing it to prevent other processors from changing

its value. For message passing, all processors have only a local address space, but they

can communicate with the other processors and relay information to them; to accomplish

this communication, each processor must perform a send or receive operation. The

controlled access employed by the shared memory model and the cooperative local memory

transfer of the message passing model are the two extremes, and the remote memory

operation model resides somewhere between them; it allows one processor to explicitly

access the memory location of another without the other's cooperation. These models are

not the only ones that exist, but they are representative of the major concepts in parallel

processing.

The requirement for cooperative communication in the message passing model

provides a level of memory control that is very desirable. For this reason, message passing

has been the selected parallel model for a number of different constellation applications.

The next two sections present descriptions of two approaches to the message passing

model: the Parallel Virtual Machine (PVM), and the Message Passing Interface (MPI).

2.1.1 Parallel Virtual Machine (PVM)

PVM is one approach to the message passing model for parallel processing [24]. It is a

software framework that allows a collection of computers to be viewed as a single machine;



these computers need not be of the same design. It was designed to operate primarily on

Unix operating systems, but it is capable of running on systems with similar functionality.

Its construction is based on the following concepts [24]:

* User-configured host pool: The user can define which machines will be used to
execute a particular program. The pool of machines may be modified during
program operation.

* Translucent access to hardware: Programs may view the hardware as a
collection of similar processors, or they can take advantage of the unique
characteristics of each processor for enhanced performance.

* Process-based computation: Work is broken down into tasks that operate
independently and alternate between communication and computation. A single
processor is not limited to execution of a single task.

* Explicit message-passing model: Tasks communicate cooperatively by sending
and receiving messages explicitly.

* Heterogeneity support: PVM supports the interaction between heterogeneous
machines and networks. During communications, PVM performs data
conversion for message compatibility.

* Multiprocessor support: To make best use of the hardware, PVM utilizes the

internal message-passing structure in multiprocessor machines.

i'VM consists of two parts: the library and the daemon. The library contains the

lunctional routines required for the interactions between the different processors. These

nrutwkn are ucr-callable and perform message-passing functions, spawn new processes,

contrt I the ,ynchronization of the tasks, and alter the configuration of the virtual machine.

Tlh dx-non resides in each processor that is a component of the virtual machine. It is

basicall% the path of communication between an individual processor and the rest of the

virtual machine.

PVM has been used in past applications for parallel processing of satellite

constellations, but it was not used during this project. It was the first widely released

software package for parallel processing with the message passing model and is used in

applications around the world. However, PVM's flexible program structure reduces the



portability of its applications. These applications are usually customized to the

environments in which they were developed, taking advantage of the unique functionality

of these environments. With a more controlled program structure, applications would not

rely on the functions of an individual environment and would be more portable. The

Message Passing Interface (MPI) appeared to employ some of that control.

2.1.2 Message Passing Interface (MPI)

MPI is another example of the message passing model for parallel processing [28]. Its

initial development was completed over a two-year period, from April of 1992 to May of

1994. The development began as a result of a workshop on message passing standards

that was sponsored by the Center for Research in Parallel Computation. This workshop

spawned the realization that many people had good ideas for implementing the message

passing model, and that people were willing to coordinate efforts to define a standard. A

committee was formed to undertake this task at the Supercomputing '92 conference [69].

The goals of this committee were:

* Define a portable standard for message passing. This standard would not be
official, like the ANSI standard, but it would be attractive to implementors and
users.

* Maintain an open-door policy. The development process would be open to
anyone to offer ideas, participate in discussions, attend meetings, or monitor e-
mail.

* Complete the standard in one year.

The participants in this development effort came from computer vendors, software

producers, and academic institutions. The MPI committee met every six weeks until the

standard was completed.

Since MPI is an example of the message passing model, it has all the characteristic

of such a model. It has the ability to work well with both the parallel supercomputers and



the workstation networks. It is a useful model for expressing parallel algorithms and

provides the control that is lacking in data-parallel and compiler-based models. The

communication process has an anthropomorphic flavor to it, which can cause some people

to visualize workers performing the tasks and talking to each other; this visualization can be

very helpful in the development of a parallel algorithm [28]. The controls on

communication in the message passing model facilitate the detection of faulty reads and

writes that cause unexpected overwrites of data, a major cause of errors in these programs.

Message passing also provides high performance by associating specific data with

processes and allowing the memory-management hardware to operate at full capacity.

MPI is still a compromise between expressiveness, efficiency, and portability, but

its development was influenced by the knowledge of these goals. Because it was designed

to be the standard for message passing, MPI is portable. There is nothing intrinsic to the

design that causes reduced efficiency. And as was mentioned in the advantages of the

message passing model, it is quite convenient for expressing parallel algorithms. For a

compromise, it has struck an excellent balance.

MPI is not a wholly new construction, but a compilation of best features from

preexisting message passing systems that have been modified when necessary and

standardized. It is not a language, but a library where all of the subroutines and functions

for its operation are stored. When a program that uses MPI is compiled, it is linked to the

MPI library. MPI's features are limited to those that address its computational model.

The MPI standard establishes a level of control on the structure of the parallel

program; this feature is nonexistent in PVM. The standard was also constructed with the

implementors and programmers in mind. It provides complex functions as utilities for the

programmers that are not available in PVM. And it provides a better balance between

efficiency, portability, and expressiveness than PVM. In 1995, Scott Wallace identified

these benefits of MPI over PVM [56]. But MPI was relatively new, and there was no



guarantee that it would receive wide acceptance. PVM was the more widely accepted

application, so he opted to use it in his application.

2.1.2.1 MPI functions

MPI has a series of functions to perform tasks during its operation. The basic six functions

are:

MPI_INIT
MPI_COMM_SIZE
MPI_COMM_RANK
MPI_SEND
MPI_RECV
MPIFINALIZE

These are the only six functions that are really necessary for most programs. The other

functions all improve performance in some way, but are not needed for simple operation.

The two functions that are mandatory for every MPI program are MPI_INIT and

MPI_FINALIZE. MPIINIT initializes the MPI environment and can only be call once

during the operation of a program. It returns an error code, which will either be

MPI_SUCCESS or an error code that is defined in the implementation. At the completion

of the program, MPI_FINALIZE must be called by all processes to terminate the MPI

environment. No more MPI functions may be called after this one.

The two functions that include the string COMM are communicator related

functions. The communicator is responsible for relaying the messages within a group of

processes. The two COMM functions are used to identify the size of the group and the

identity of each process within the group. MPI_COMM_SIZE returns the value numprocs,

which is equal to the number of processes in the group. MPICOMM_RANK returns

myid, which is the process identifier of the process that called the function; this function is

normally called by all processes toward the beginning of the program as an initialization

step.



The remaining two functions are the heart and soul of MPI. Without these

functions, the program might as well be written sequentially. These functions are

MPISEND and MPI_RECV. The MPISEND function is called in Fortran with the

following sequence:

call MPI_SEND(buf, count, datatype, dest, tag, comm, ierr)

where buf is the memory location of the data being sent, count is the number of data,

datatype is self-explanatory, dest is the rank of the process that is the messages destination,

tag is a nonnegative integer of arbitrary value that is used to restrict receipt of the message,

comm is the identifier of the communicator, and ierr is an error code variable. The

matching MPI_RECV call is:

call MPI_RECV(buf, count, datatype, source, tag, comm, stat, ierr)

where buf is the memory location where the message will be stored, count is the maximum

number of data that this call is allowed to receive, source is the rank of the process that is

sending the message, stat is the status array of the received message, and datatype, tag,

comm, and ierr are the same as above. The MPISEND call must have specific values for

all inputs, but MPIRECV can use wildcard values for source and tag

(MPI_ANY_SOURCE and MPI_ANY_TAG). Using this method allows a repetitive

function to receive messages from multiple sources as the function returns to this call. The

source, tag, and actual length of the message received can be retrieved from the status

array.

Some of the advanced functions provide convenient ways of performing collective

operations. These functions can broadcast a message for all processes to receive, or gather

data from all process, or compare the values in the processes' buffers. Other advanced

functions improve the flexibility, modularity, and accuracy of the MPI programs that use

them. These functions can be used for more advanced applications, but are not used in this

thesis.



2.2 Applications of Parallel Processing to
Constellation Motion

In the past five years, a number of parallel processing applications for the orbit propagation

of constellations have been developed. Three such applications were produced by Draper

Fellows: Scott Wallace, Naresh Shah, and Brian Kantsiper. But other people who are not

connected with Draper Laboratory were also working to construct similar applications.

At the present time, there are two parallel processing applications for constellations

in development at Draper Laboratory. One of these applications is being developed by

Draper Fellow James Smith. The other is the topic of this thesis.

The next three sections present brief descriptions of the past and present parallel

processing applications. The first of these sections describes the parallel processing

applications developed at Draper Laboratory. The second section presents a couple of past

applications developed external to Draper Laboratory. The last section discusses how

parallel processing is used in the current project.

2.2.1 Applications at Draper Laboratory

In 1995, Scott Wallace developed a parallel orbit propagator using the Draper Semianalytic

Satellite Theory (DSST) Standalone Orbit Propagator in conjunction with PVM [55,56].

PVM was selected for its portability and its ability to accept the preexisting code with few

changes. The PVM/DSST was used to model the evolution of the Teledesic constellation,

which was projected to consist of 840 satellites at that time. In addition, genetic algorithms

were incorporated into the application to produce an optimization tool that could be used in

orbit design.

In 1997, the Automated Station-Keeping Simulator (ASKS) was developed by

Naresh Shah [49,70]. This simulator uses the MPI Standard as the basis for its parallel



processing. It propagates all satellites in the constellation simultaneously using the DSST

Standalone Orbit Propagator. It assigns one process to each satellite and one to the

"ground station," which is responsible for monitoring these satellites. When the orbital

element variations reach an established level of error, the simulation processes a correction

to them. It can use several targeting methods to determine how much correction the

elements need.

ASKS was used in a station-keeping evaluation of the Ellipso constellation. In this

evaluation, ASKS demonstrated its capability to be an autonomous maneuver planner. It

was also able to optimize the maneuvers based on its method of targeting. Through the use

of this maneuver optimization and some coverage algorithms designed by Brian Kantsiper

[35,71], ASKS was able to provide a lifetime analysis of the fuel consumption and

coverage for the Ellipso constellation.

In the past year, Proulx, et al. employed MPI coupled with the Parallel Genetic

Algorithm Package (PGAPack) [72] to refine the orbits and evaluate the coverage for the

Ellipso Gear Array [73]. More recently, J. Smith is employing MPI/PGAPack to develop

globally optimal path-constrained satellite station-keeping maneuver strategies [74].

2.2.2 Applications External to Draper Laboratory

The Navy and the Air Force have facilities that are responsible for maintaining a catalog of

the objects in orbit. As part of this maintenance, these facilities monitor the space objects

as they pass overhead. The observations obtained in this activity are processed to update

existing objects in the catalog or to find new ones.

In 1996, S. Coffey, et al. altered the Search and Determine (SAD) program, an

orbit determination program developed by Naval Space Command that is used to determine

the orbits of unknown objects from uncorrelated observations [12]. This alteration was

undertaken to reduce the computational resources required to process large numbers of



observations. SAD processes pairs of points to create candidate orbits for the unknown

objects, and refines these candidate orbits through an iterative process of performing

differential correction fits of the observations, predicting the locations of additional

observations, and acquiring observations near these predictions. The fits and predictions

are performed using the PPT2 analytical propagator. The alteration to the program

consisted of constructing a parallel processing framework that could be used with the

algorithm. Because of its portability to a large number of systems, PVM was selected for

the parallel processing implementation. The result of this modification was that SAD could

process twelve times more data than before in a period of hours instead of days, and it

increased its production of acceptable orbits by twenty-five percent.

In 1997, H. Neal, et al. performed a similar alteration on SPeCIAL-K, a special

perturbations numerical propagator used by the Naval Research Laboratory [43]. This

alteration was accomplished to demonstrate the feasibility of using a numerical propagator

as the tool for maintaining the entire space catalog, not just a few select satellites. Prior to

this effort, the space catalog was maintained through the use of the SGP4 and PPT3

analytic propagators, and SPeCIAL-K's operation was limited to the few objects that

required more accurate orbit predictions, like weather satellites and objects in the decay

phase of their orbits. Through the implementation of a parallel processing environment,

SPeCIAL-K now has the capability of performing orbit determination on several objects

simultaneously. Tests on the new SPeCIAL-K application showed a measurable

improvement in the accuracy of the orbits over those produced using SGP4. The parallel

processing environment reduced the required computer resources to the point where it is

reasonable to use SPeCIAL-K to maintain the entire catalog.

Although these two applications do not specifically handle constellations of

satellites, they do process a large number of objects in orbit. In fact, the objects that they

process could be considered a very loosely structured constellation. An extension of their

functions to include more structured constellations would not be difficult.



Current Application

In the current project, the application of parallel processing involves the simulation of the

GPS navigation solutions for satellites in medium altitude, elliptical orbits. These

navigation solutions are produced by simulating the GPS constellation and the target

satellite. In the original concept, the pseudoranges and positions of the GPS satellites

would be computed in parallel and combined to calculate the navigation solution.

However, the final implementation processes the entire constellation for each time step, and

the time steps are evaluated in parallel. This application has the ability to use the DSST,

just like the other Draper applications.

2.3 Improved Draper Semianalytic Satellite
Theory (DSST) Standalone Orbit Propagator

The DSST Standalone Orbit Propagator has been the main propagator for use in the parallel

processing environments at Draper Laboratory. It has the advantage of rapid operation

without the loss of accuracy associated with the purely analytical propagators. Its rapid

performance and the ease with which it could be integrated into these parallel environments

made it a good candidate for use in these applications.

There have been changes to the DSST Standalone since it was first used in a parallel

processing application. Presented here is a brief history of the DSST Standalone, and its

current capabilities.

2.2.3



2.3.1 History

The DSST was created during the advanced development of GTDS. It has existed in two

different forms: as a component of GTDS, and as the Standalone Orbit Propagator

Package. The history of the DSST is contained within the histories of GTDS and the

Standalone. GTDS's history is presented in Appendix B, so the remainder of this section

will describe the Standalone.

The Standalone DSST program was created in 1984. Its functionality was limited

to the functions that exisied in the DSST section of GTDS at the time of its derivation. The

program has been revised several times to improve its performance within specific projects.

The Standalone was initially developed for use at Aerospace Corporation and was

delivered in 1984 [9]. This initial version included the complete DSST models for the

mean motion and a portion of the DSST short-periodic models (the zonals and the tesseral

m-dailies). Aerospace adapted the Standalone to meet their needs. First, the program had

to be modified to allow a better interface with the CYBER mainframe [27]. This alteration

process was documented by G.B. Green; the changes are identifiable and reversible. Then,

R.G. Hopkins developed two program shells that utilized the Standalone for mission

analysis and stationkeeping applications. These shells are the Aerospace Astrodynamics

Department Mean Element Orbit Propagation and Stationkeeping program (MEANELT)

[31] and SATPROP [32]; SATPROP does not have stationkeeping capabilities. These

enhancements enabled the engineers at Aerospace to use the Standalone for their mission

planning projects.

While these modifications were being made at Aerospace Corp., the Standalone

was employed at Draper Laboratory in a navigation study for satellite constellations [29].

Portability of the Standalone to different computer environments was also considered. The

Standalone was ported to VAX, PC [5], and the Sun workstation [6] in the 1989-90

timeframe. In order to improve the accuracy of these ported versions, the program was



altered slightly to compensate for the peculiarities of each machine type. While not all of

the concepts developed during the navigation study and porting exercises were

implemented, all of this experience found application in later efforts. Draper's 1984

proposal to make the DSST Standalone available in the USAF Colorado Springs computing

environment also contributed to this technology [33].

In 1990-92, Draper Laboratory technical staff undertook and completed the

development of a Mission Support Program (L6MSN) for the Landsat 6 program [18].

This program included a Maneuver Planning capability and the DSST Standalone was

selected to be the orbit propagator for this function. Because L6MSN employed a near

real-time, multi-tasking architecture, the top level interface for the Standalone was re-

worked to be file driven. The functionality in the Standalone was also expanded to include

finite rocket burn models compatible with the DSST and the atmospheric density options

were expanded to include the Jacchia-Roberts model [21]. In 1995, the Radarsat Flight

Dynamics System [10] employed a similar version of the Standalone which utilized an

impulsive burn model instead of the finite burn model.

In addition to these modifications, the Standalone has also been upgraded to

improve the maintainability of the source code. This upgrade is the same process that was

suggested for GTDS [7] and has brought the Standalone into conformance with the coding

standard [ 11]. One key aspect of this upgrade was the elimination of COMMON blocks

and their replacement with structured records and modules; the structuring of the records

establishes unique variable names to prevent confusion within the subroutines. The overall

goal of this effort was to prepare for a transition to FORTRAN 90. The improvements

outlined in the upgrade proposal were performed realizing that new computational

paradigms are available and offer opportunities to take advantage of the analytical structure

of DSST.

The computational capabilities of the DSST began to differ between the GTDS

implementation and the Standalone. These differences arose from the fact that DSST



development continued in GTDS from the time of the Standalone's creation while

modifications to the Standalone focused on individual project needs.

A new version of the Standalone has recently been developed. This version

incorporates the major functional changes that have been implemented in the DSST in

GTDS over recent years. The work of D. Fonte and S. Carter was a major portion of the

functional improvement to the DSST. Because Carter's work built on the changes made

during Radarsat development, Radarsat's changes were also a concern. By implementing

these changes, the Standalone gained access to the 50 x 50 geopotential model, the solid

Earth tides models, and the J2000 coordinate systems [44]. Additionally, the DSST

Tesseral Linear Combination model was installed into the Standalone to improve the

perfomiance of the short-periodic model. These modifications make the Standalone

capable of supporting high accuracy osculating to mean element conversion for a broad

ranee of orbit configurations.

2.3.2 Current Functions

The current DSST capabilities in GTDS are based on the initial physical models and the

na di t•cat ions it has undergone since its creation. They include the following models:

Mean 1-lement Equations of Motion

* Central-body gravitational spherical harmonics of arbitrary degree and order
(zonals and tesseral resonance) based on the 50 x 50 geopotential

* J,-squared second order effect (model based on eccentricity truncation)
* Third-body point mass effects (both single and double averaging theories)
* Atmospheric drag with J,/drag coupling
* Solar radiation pressure with eclipsing
* Integration Coordinate System based on the FK4 (B 1950.0) and FK5

(J2000.0) coordinate frames
* Solar and lunar solid Earth tides



Short-Periodic Motion

* Central-body gravitational zonal harmonics of arbitrary degree based on the
50 x 50 geopotential

* Central-body gravitational m-daily sectoral and tesseral harmonics of
arbitrary degree and order based on the 50 x 50 geopotential

* Central-body gravitational high-frequency sectoral and tesseral harmonics of
arbitrary degree and order based on the 50 x 50 geopotential

* J,-squared and J2/m-daily second order short-periodic variations
* Third-body point mass effects [both single (including Weak Time

Dependence) and double averaging theories]
* Atmospheric drag
* Solar radiation pressure

State Transition Matrix

* General concept based on the Generalized Method of Averaging

Mean Element Orbit Determination

* Weighted Least Squares (Batch)
* Kalman Filter

General(applicable to both the mean element and short periodic motion)

* Numerical interpolation techniques
* Modified representations of the Hansen coefficients
* Jacchia-Roberts atmospheric density models
* Multiple output reference frames (including B 1950.0 and J2000.0)

Prior to its most recent improvements, the Standalone contained a majority of the

functions in the DSST for GTDS. The major exceptions to this statement were:

* Solar and lunar solid Earth tides model
* Integration using the FK5 (J2000.0) coordinate frame
* Geopotential size is still limited to a degree and order of 21
* Short-periodic tesseral linear combination terms (a subset of the high-

frequency sectoral and tesseral harmonics)
* J,-squared short periodic variations

With the completion of the new modifications, only the J,-squared short periodic

variations have not been applied to the Standalone [45]. However, two rocket burn models



(finite and impulsive) are present in the Standalone that are absent from GTDS. These bum

models were added to the Standalone during the Landsat 6 and Radarsat projects,

respectively.
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Chapter 3

Construction of GPS Receiver Navigation Solutions
including Realistic Errors - Algorithms

The goal of this project is to determine if GPS navigation solutions can be used to

determine and predict higher altitude elliptical orbits. The deterministic error analysis

approach is employed. This approach requires actual navigation solutions. But these

navigation solutions do not exist for the eccentric orbits of interest. Therefore, they must

be simulated.

A program was written to perform this simulation. In order to produce the

navigation solutions, this program requires a representation of the true path of the target

satellite. This path can be generated using the DSST Standalone [45] or by producing the

precise osculating elements for that orbit via special perturbations.

Figure 3.1 presents the functional data flow that is employed in this project. The

orbital path of the target is generated using special perturbations. This "truth" is used for

two purposes: input to the simulation of the navigation solutions, and a basis of

comparison for the simulated navigation solutions and the determined orbit that is produced

from them. The simulation takes the "truth" and produces simulated C/A navigation

solutions that include realistic errors from selective availability and ionospheric delay.

These navigation solutions are used as observations for the orbit determination process.

"Truth" Antenna DC
Force Models Configuration Force Models

and Simulation
Assumptions

Figure 3.1 Deterministic GPS Navigation Solution Analysis Data Flow



This chapter explains the processes involved in the "truth" orbit generation and the

navigation solution simulation displayed in Figure 3.1. It also provides a detailed

description of the algorithms implemented in the simulation program.

3.1 Generation of the Target Satellite's Orbit

The target orbit that is used in the simulation is assumed to be a true representation of the

target satellite's orbital motion. To produce the best approximation of this motion, the orbit

is generated using a special perturbations propagator. The target orbit is represented by a

file containing the positions and velocities of a precise osculating orbit on a specified time

grid. The production of such a file is a three step process (Figure 3.2). This process

allows the user to characterize the epoch conditions of the target orbit in terms of mean

elements. The process is performed using the Draper version of the GTDS computer

program, which is presented in Appendix B. The special perturbations propagator in this

version of GTDS produces extremely accurate orbits compared to real world conditions.

The first step of the process is to perform an ephemeris generation using the precise

mean elements (PME) of the target's orbit at the desired epoch. This ephemeris generation

uses the DSST propagator and produces the orbit from the sum of the mean elements and

the associated short periodics. The force models used in this ephemeris include:

* Atmospheric drag using the Jacchia-Roberts atmospheric density model

* The JGM2 gravitational potential field with degree and order of 50

* Solar and lunar point masses

* Solar radiation pressure

* Solar and lunar solid Earth tidal effects

These same models are also used through the remainder of the input generation process.

This data is stored in an ORB 1 file [75].



That ORB1 file is used as the input to a differential corrections operation. This

process is run with the Cowell special perturbations propagator. This process and the

previous one form a combination known as the precise conversion of elements (PCE)'.

The output of this operation is the set of initial osculating elements for the orbit at the same

epoch.

The osculating elements are used in the input file for the last step of the input

generation. This step is the Cowell ephemeris generation. The output of this operation is a

highly accurate approximation of the osculating orbit. An ORB 1 file is generated; this file

stores the positions, velocities, and other necessary data for the acquisition of the target's

"truth" position and velocity for each time step in the simulation.

PCE

Figure 3.2 Data Flow of "Truth" Orbit Generation

This process is performed for each target orbit and for each epoch in this project.

During an examination of the effects of mismodelling drag, the input data was recreated

using the Jacchia model for atmospheric density with much noisier data due to the high

geomagnetic instability during that epoch.

Because the GTDS version with the most functionality resides on the VAX, the

"truth" orbit is generated on the VAX/VMS system. But in order to make use of parallel

processing, the simulation was constructed on Draper's Data Center 1 (DC1); DCl is a

Silicon Graphics Origin 2000 computer that uses the IRIX 6.4 operating system and is

This is an unconventional use of the PCE nomenclature. Usually, PCE refers to the generation of
a mean element set from an osculating trajectory.



accessible through an Ethernet connection. So the ORB 1 file is created in ASCII format to

facilitate its porting from the VAX to DC 1 for use in the simulation.

3.2 The Simulation

The simulation was developed to produce reasonable approximations of GPS navigation

solutions for any target satellite. It takes in the target satellite's orbit for a given period of

time, identifies the GPS satellites that are capable of transmitting to the target's location for

each moment, and, if there are enough GPS signals at that moment, computes the

navigation solution of the target's receiver. To produce the navigation solutions, the

simulation must determine the target's time of reception, the time of transmission for each

GPS satellite that the target can receive, and the position of each GPS satellite at its time of

transmission. A minimum of four GPS signals is required to calculate the navigation

solution.

To get an accurate reading of the time of transit from the GPS satellites to the target

satellite, the "truth" positions of all satellites are used in the early portions of the simulation.

The transit time is subtracted from the reception time to determine the time of transmission.

As a part of the simulation, the ionospheric delay and the errors in the satellite clock

are mimicked. These errors result in a realistic level of error in the navigation solutions. To

closely match the effects of these errors, they are added to the GPS times of transmission at

different points during the simulation. The new times correspond to the time that the target

believes to be the time of transmission. These perceived times of transmission are tagged

with the number of the GPS satellite that transmitted the signal. When the times have been

computed for each of the acceptable GPS satellites, the group is time-tagged for the time of

signal reception and passed on to the navigational fix algorithm.



Once the data has been passed to the navigation solution algorithm, the solution can

be computed. It uses the time data to compute the pseudoranges. These pseudoranges and

the positions of the GPS satellites at the perceived time of transmission are processed to

find the target's position. The target's position is time-tagged with the time of signal

reception and placed in a file.

The next several sections contain detailed descriptions of the algorithms used in this

simulation. The software required to implement these algorithms is listed in Appendix A.

3.2.1 Determination of the "Truth" Positions

The navigational solution algorithm does not need the actual positions of the target and

GPS satellites. In fact, its job is to compute the target's position. So, why are these

positions determined in the simulation?

The times of signal transmission are required for the navigation solution algorithm.

The "truth" positions of the target and the GPS satellites must be known to determine these

times. From these positions, the transit times can be calculated; these transit times are

subtracted from the time of reception to produce the times of transmission. The target's

"truth" positions can also be used to measure the accuracy of the navigation solutions and

the accuracy of the solution from the eventual orbit determination process.

To determine the "truth" positions of the target and GPS satellites, their orbital

paths must be established. These paths are realized in different ways for the target and for

the GPS constellation. The target's orbital path can be generated by using the DSST

Standalone or by performing the "trvth" orbit generation described in Section 3.1; at the

current time, the orbit is produced by the latter method. The positions and velocities of the

target satellite are stored in a file with the indicated step size between each state, and are

processed for each time of reception requested in the simulation. For the GPS

constellation, the orbit can be generated from actual information or through an



approximation of the motion. For this simulation, a mean element approximation of the

GPS constellation is used to compute the satellites' orbital paths, but the program can also

support the use of the actual positions; this mean motion approximation includes the effects

of J, zonals. The orbital elements used for the approximation are listed in Table 3.1 [62],

and the epoch for these elements is the epoch of the current run; in this table, AM is the

phase to the adjacent satellite. These elements were applied to arbitrary epochs to produce a

representative distribution of the GPS constellation. Since GPS was designed to provide

longitudinally independent coverage of the Earth, this distribution should provide an

adequate representation of GPS coverage regardless of the epoch used. In addition, the

primary epoch of interest is in the future, and there is no way to know what the exact

locations of the GPS satellites will be.

Nodal motion was not included in the GPS approximation. The average right

ascension node rate of the actual GPS orbits is approximately -7.99x10 9 radians per

second. Over a period of two weeks, the node changes position by about -0.55 degrees.

Since two weeks is the maximum length of a simulation run for this project, this small

change in the position of the right ascension node should have little impact on the results.

But the time for the target's "truth" position is not the same as those for the GPS

positions (Figure 3.3). The target's position is evaluated at its time of signal reception (tQ);

the GPS positions are determined at their times of signal transmission (to), which differ

from satellite to satellite. Their positions are computed individually through an iterative

process that also determines the time of transmission. The process starts from the time of

reception, and computes the GPS satellite's position at that time. The range from the GPS

satellite to the target is computed, as is the first estimate for the time of transmission for the

signal, using the following equations:

d = rG(t1)-rs (3.1)

d = Idl (3.2)



to = ti -

where

rG(t) = the GPS position vector at time t

= the target's position at time of reception

= the difference vector between GPS position and target's position

= the speed of light

t, = the time of reception by target

= the first estimate of the time of signal transmission

Table 3.1 Orbital Elements of the GPS Constellation

Sat ID a (km) i (deg) Q(deg) M(deg) AM(deg)

1 A3 26561.75 55.0 272.847 11.676 103.55
2 A4 26561.75 55.0 272.847 41.806 31.13
3 A2 26561.75 55.0 272.847 161.786 119.98
4 Al 26561.75 55.0 272.847 268.126 106.34
5 BI 26561.75 55.0 332.847 80.956 130.98
6 B2 26561.75 55.0 332.847 173.336 92.38
7 B4 26561.75 55.0 332.847 204.376 31.04
8 B3 26561.75 55.0 332.847 309.976 105.60
9 C1 26561.75 55.0 32.847 111.876 100.08
10 C4 26561.75 55.0 32.847 241.556 129.68
11 C3 26561.75 55.0 32.847 339.666 98.11
12 C2 26561.75 55.0 32.847 11.796 32.13
13 DI 26561.75 55.0 92.847 135.226 100.07
14 D4 26561.75 55.0 92.847 167.356 32.13
15 D2 26561.75 55.0 92.847 265.446 98.09
16 D3 26561.75 55.0 92.847 35.156 129.71
17 El 26561.75 55.0 152.847 197.046 130.98
18 E2 26561.75 55.0 152.847 302.596 105.55
19 E4 26561.75 55.0 152.847 333.686 31.09
20 E3 26561.75 55.0 152.847 66.066 92.38
21 Fl 26561.75 55.0 212.847 238.886 103.54
22 F2 26561.75 55.0 212.847 345.226 106.34
23 F3 26561.75 55.0 212.847 105.206 119.98
24 F4 26561.75 55.0 212.847 135.346 30.00

I
(3.3)



But the GPS signals experience time delays from environmental and mechanical effects.

(The computations of the signal delays are described in section 3.2.3.) These effects need

not be included in the initial estimates for position and time of transmission, but they must

be included in all subsequent estimates. The GPS position is reevaluated at the time of the

time estimate, and the second and subsequent estimates for the time of transmission are

computed from the following equations:

d = rG n-)r (3.4)

t = t0 -(+ Atd_ (3.5)

where

rG (t) = the GPS position for the nt time estimate

to = the n' estimate of the time of signal transmission

Atd = the signal delays

This process is continued until the difference from one time estimate to the next is less than

the established tolerance, the time for light to travel one millimeter. The GPS position

evaluated for the final estimate of transmission time is accepted as the "truth" position for

that GPS satellite and the given time of signal reception.

GPS satellite
Target@t 1

.-@ty

Figure 3.3 "Truth" Positions



Identification of GPS Satellites in View

Once the "truth" positions of all satellites have been determined, the GPS satellite positions

must be tested. The test is to verify that a GPS satellite in that location could send a signal

that would contact the target at its location of reception. Conditions that could prevent the

signal from reaching the target are:

* Earth shadowing

* The target is outside of the satellite's cone of transmission

* The GPS satellite is outside of the reception cone of the target's GPS receiver
antenna.

If any of these conditions occur, the target receives no signal from that GPS satellite.

To test these conditions, the geometry of the two locations must be evaluated; the

third condition also depends on the orientation of the GPS receiver's antenna. The Earth

shadowing is checked by determining the angle between the two position vectors and

comparing it to a maximum. For the transmission cone, the angle between the GPS

position vector and the difference in position vector is measured. The reception cone

condition is tested by evaluating the angle between the difference vector and the antenna's

main axis.

The passing conditions for the Earth shadowing test must be determined for each

time of reception and for each individual GPS satellite because the conditions are dependent

on the magnitudes of the target and GPS satellite position vectors. The passing condition

looks at a triangle with the vertex of vectors with these magnitudes placed at the center of

the Earth. The angle between these vectors is set so that the third side of the triangle is

tangent to the surface of the Earth (Figure 3.4). The angles between the third side and each

of the two vectors are calculated, and their sum is subtracted from 1800. The remainder is

3.2.2



Figure 3.4 Earth Shadowing Test

the maximum allowable angle between the position vectors without Earth shadowing, and

the actual geometry should pass the following condition:

arcco s - G I < 1800s cc S Ir lfroI - - arcsin -E -

IrG I

= the target's position vector at time of reception
= the GPS position vector at its time of transmission
= the Earth's radius

The condition for the GPS transmission cone is a fixed value that corresponds to its

half-beam angle, which is currently 21.30 [50]. The angle between the difference vector

and the GPS position vector (Figure 3.5) is compared to this value, and the inequality is

expressed as follows:

arccos cd -rGI <C x

s( djjrGI
(3.7)

where

d = the difference vector, as defined earlier
(Xmax = the half-beam angle of the GPS transmission

where

arcsin rE (3.6)
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Figure 3.5 Geometry for Verification

The remaining test, the reception cone, requires knowledge of the orientation of the

GPS receiver's antenna. For the purposes of this simulation, the receiver antenna can be

placed in a variety of different orientations. Due to the motion of the target satellite, the

antenna'. main axis vector must be calculated for each time of reception. The first step in

calculating the antenna's axis vector is to establish the target's orbital plane. This step is

simpliied bhy using vectors from an Earth-centered, inertia (ECI) reference frame. This is

the onl% computation in this simulation of GPS data that is affected by reference frame, so

all pfn ition and velocity vectors in these portions of the simulation are in ECI. A cross-

prtduct ol the target's position and velocity vectors from this reference frame produces the

an..ulaLr nulmentum vector, which is normal to the orbital plane. A cross-product of this

nr brnul %cctor and the position vector produces a vector in the orbital plane that is normal to

and icadn.im. the position vector. Using the position vector, the normal to the plane, and the

normul % ithin the plane as principle axes, the antenna can easily be placed into the desired

onentation. For the initial orientation, the antenna's unit vector is mapped on the normal

vector within the orbital plane. From this orientation, a simple rotation about the normal to

the plane or the position vector provides the desired orientation. The equations used to

establish this direction are:

rx x v = hs (3.8)

a



hs x rs = a i  (3.9)

u = R (oca) i  (3.10)
ai

where

rs = the position vector of the target satellite

vs  = the velocity vector of the target satellite

hs = the angular momentum vector of the target satellite

a, = the intermediate axis vector of the antenna

Ua = the unit vector of the antenna's axis

Rn = the matrix for a rotation about the n' principle vector
1) position vector
2) normal vector within plane
3) normal vector to the orbital plane

aa = the desired angle of rotation

After the orientation is established, the test itself is very simple. The angle between the

antenna's axis vector and the difference vector is compared to the reception half-beam

angle, which for these purposes is 700. The condition is tested as follows:

a arccos l : max (3.11)arcsIdlJ-

where

Imax = the reception half-beam angle

If any one of these tests fail, the GPS satellite is unacceptable for the processing of

transmission time. The simulation continues, ignoring this satellite and all others that fail

these tests for the remainder of the individual time step.

Some testing was required to determine the desired orientation of the antenna. The

orientation was selected based on the volume of solutions it could acquire during an orbit.

The first series of tested orientations resulted from rotating the antenna about the normal to

the orbital plane in ten degree increments. The simulation operated for each of these



orientations for a three hour orbit. The navigation solutions were tabulated to determine the

orientations that had the least amount of time when solutions could not be processed.

Figure 3.6 shows the results of this test. In this figure, a positive antenna angle indicates a

rotation about the plane's normal toward the position vector. The data indicates that the

least time is lost in the near-nadir and the most is lost toward zenith.

-180 -135 -90 -45 0 45

Angle (degrees)

90 135 180

Figure 3.6 Lost Time vs. Antenna Angle (within plane)

After evaluating orientations within the orbital plane, the out of plane orientations

were examined. The antenna started in the same initial direction as for in-plane, but the

rotation was about the position vector itself. The angle increments were the same, as was

the length of the runs. Figure 3.7 displays these results. In this case, a positive angle

means a rotation to the target's right. There is a less than thirty minute variation in times

out of plane, as opposed to the two hour variation in-plane, but the least time loss appears

to occur in the region trailing the target's right side.
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Figure 3.7 Lost Time vs. Antenna Angle (out of plane)

in horpes that the lost time could be reduced further, the in-plane and out of plane

anle% that reulted in the minimum time loss were combined into a new orientation.

in c •oer. thi, new orientation had benefits over the near-nadir case.

So. for the higher altitude elliptical orbits, the optimum antenna position appears to

-e a.ppro&nt.utel• ten degrees off of nadir. Because the direction is easier to maintain and

thc 'ari.tion for the optimum is so small, the nadir orientation was selected for the antenna

conflurationm. But a nadir facing antenna provides little or no data near perigee, which is

the more difficult portion of the orbit to determine. Conversely, the zenith facing antenna

acquire,, several solutions near perigee, and few to no solutions at higher altitudes. For this

reason, three antenna configurations were considered throughout the remainder of the

analyses: nadir facing, zenith facing, and a two-antenna configuration including one of

each.



3.2.3 Simulation of Signal Errors

The errors associated with the GPS process are evaluated at different stages in the

simulation. Delays from atmospheric and mechanical effects are calculated during the

estimation of the GPS satellite "truth" positions. The satellite clock errors from SA and

bias are computed after the "truth" time of transmission has been determined and are

applied to that time to produce the time that the target satellite believes the signal was

transmitted. And the GPS ephemeris errors are computed during the calculation of the

GPS positions to be used in the navigation solution algorithm.

Not all GPS related errors are incorporated into this simulation. The inclusion of

errors started with the ones that have the greatest impact on pseudorange and worked

down. This simulation includes the errors due to satellite clock (with SA) and ionospheric

effects. The errors due to tropospheric effects were not included because these errors have

little effect on the pseudorange and the GPS signals will not usually dip that far into the

atmosphere for this application. The multipath errors were left out, partially for its low

effect and partially for the complexity of modeling. The receiver errors have the smallest

impact of all the errors, so their effects are usually ignored. The ephemeris errors, the third

largest error when SA is in operation, were intended to be included, but the question of

how to implement the errors was not addressed in time. Any of these error models could

be added or improved in the future.

3.2.3.1 Clock errors

The explanation of errors in the introduction presented two different types of errors

connected to the satellite clock, the inherent errors in the clock itself and the intentional

dithering of the clock for SA. When SA is in operation, the satellite clock is the most

significant source of error by an order of magnitude. Without SA, the satellite clock has as



much of an effect on range as the ephemeris data and less than the ionosphere. An

assumption was made that SA is always on. This assumption is true at the moment, and if

it were not, SA would still be applied in this simulation for the worst case scenario.

The two types of satellite clock error can be combined into a single model, and have

been in this simulation. The range error effects of the satellite clock are modeled using the

second-order Gauss-Markov model [54], which uses the following equation:

R, + 2P0oo p + C p = cx w (3.12)

where

WO = the natural frequency

3 = the damping factor, which is less than 1

w = white Gaussian noise

Deriving the discrete-time state-space equation from equation 3.12 and the equation

xV = ip produces:

LXp = 1 2X U U1 2 [W (3.13)
xv i. 1 [•12 XV i 0 u22 w2 i

where w, and w2 are Gaussian white noise functions with zero mean and a variance of 1.

The elements of the state transition matrix are calculated from the equations:

= e-PoAT cos(w AT) o sin(,AT)

2 = e-_oAr sin(WAT) (3.14)

04 1 (3.14)A

22ePOoT Icos( o, AT -P Osn(,T



where
01 - 0o 1-32

AT = the update period

The u matrix is the square root of the error covariance matrix of the white noise such that:

[ Q1  Q12  U11  12  11 0
Q21 Q22 J 0 Ua2JU,12 U1)

(3.15)

where the elements of the u matrix are calculated as:

u1 = Q11 Q2 U12 = Q12 U 2 = 22 (3.16)

and the elements of the covariance matrix are calculated as:

2 2
Q,, = 413 e-2[•oAT I 2 cos(2we- AT)

S 2 [e-2•oATl - cos(2o,AT))]
Q12 =-Q21 402

+ p 03 sin(2c, AT)]03o)

(3.17)

S01 sin(2oAT))

(00
Sc2 [ i e-20°o(AT1 p2

Q22 =  - o 1 - e cos(2t, AT)-
4 000 1

where

0o0 =V
(x

range sigma:

3
c = 4f v

velocity sigma: a, = W

The damping factor 3 has a constant value in the Gauss-Markov process. For this

simulation, the values of o0 and C2 are taken from the Radio Technical Commission for

Aeronautics (RTCA) recommendation [54]. These three values are listed below:

(3.18)

(3.19)
C 2Cx = 4'



P = 1 00 = 0.012rad/s c2 = 0.002585m 2  (3.20)

Gaussian white noise generators are used for two purposes in the simulation of the

clock errors. The first purpose is to provide input to the noise term of the state-space

equation as discussed earlier in this section. The second is to produce the initial values of

xP and x v. These values are Gaussian with zero mean and variances of ap and (V

respectively.

The result of this simulation is a representation of the range error and range rate

error on pseudorange caused by the satellite clock. This particular model was selected

because it produces noisier errors than those measured from the actual GPS satellites, so it

can be considered a worst case for SA. However, this representation is statistically similar

to the actual clock errors. How these errors are usually applied to the pseudorange in other

simulations is unclear. For this project, the range error is converted to a time difference by

division by the signal's velocity (the speed of light), and subtracted from the time of

transmission that was computed in the iterative process.

3.2.3.2 Ionospheric effects

Ionospheric interference is caused by free electrons disturbing the propagation of the signal

which results in an increase in the transit time. The degree of interference is dependent on

the density of free electrons in the space through which the signal is traveling [36]. For

ground-based GPS receivers, the signal will always pass through the ionosphere to reach

them and the distance of travel through the ionosphere is only affected by the elevation

angle to the GPS satellite; the lower the elevation angle, the greater the distance through the

ionosphere. For a GPS receiver mounted on a satellite, these constraints do not apply.



The GPS signal may not pass through the ionosphere at all, or it may travel through this

region for a distance greater than the longest path to a receiver on Earth.

The calculation of the ionospheric delay for GPS signals is based on the following

equation [36]:
At=40.3

At = 4. Ndl (3.21)
cf2

where

SNdl = the total electron content (TEC) of the signal path

1 = the length of the path

f = the frequency of the signal

c = the speed of light

This equation requires the length of the path through the ionosphere. To determine

this value, the graze radius must be known. The graze radius is distance of the signal's

closest pass to the center of the Earth. Assuming the ionosphere is a perfect sphere, the

length of the path from the edge of the ionosphere to the graze radius is the same whether

the signal is approaching the graze radius or leaving it (Figure 3.8). This is due to the fact

that the signal path is tangent to a sphere with a radius equal to the graze radius and

concentric with the ionosphere. Figure 3.8 is not drawn to scale for the Earth and the

ionosphere, but is simply a geometric example. The remaining figures in this section are

constructed the same way.

From the graze radius, the length of the path through the ionosphere and its

derivative with respect to the angle from the graze radius are determined as follows:

ro
coso = r graze (3.22)

lion

I = 2ro0 sin 0 (3.23)

dl = 2rio. cosOdO (3.24)

where



0 = the angle between the graze radius and point where the signal
intersects the maximum ionospheric radius

rg, = the graze radius

rion  = the maximum radius of the ionosphere

1 = the length of the path through the ionosphere

Substituting this expression into Equation 3.21 produces:

40.3 0At = J Ncos~d0 (3.25)
0i

where

0 = the angle between the graze radius and the current position

N =N(r) and r = r(O)

.N =N(O)

This equation requires a function for the electron density N as a function of height. This

function is not currently available to this work.

Figure 3.8 Example of Graze Radius

A secondary method of calculating ionospheric delay was devised that models the

ionosphere as having uniform electron density. This model is not very accurate, but it does

provide a starting point from which improvements can be made. This model uses the

worse case scenario for TEC, giving it a value of 1019 electrons/m 2 [36]. This TEC



corresponds with a signal at zero elevation angle passing through the ionosphere during

maximum solar activity. The ionospheric delay is scaled based on path length and this

value of TEC in the following equation:

40.3 1
At = 40.3 TEC 1 (3.26)

cf2  m I x

where

TEC= = the maximum value of total electron content

l = the maximum ionospheric path length for a ground-based GPS
receiver

1 = the actual ionospheric path length of the sign

The last piece of information necessary for this model is the actual path length through the

ionosphere. The positions of the target and the GPS satellite and the value of the graze

radius must be known to compute this length.

The graze radius is calculated from the satellites' positions. The signal path is

basically the difference vector that has been discussed in previous sections. The value of

the graze radius is the determined from a right triangle with a hypotenuse equal to the GPS

radius at the given time (Figure 3.9). The opposite angle from the graze radius is the angle

between the difference vector and the GPS position vector. Simple trigonometry provides

the solution:

rgra = rG sin a (3.27)

where

a = arccos .--- d
(IrcGjdj)

The size of the final angle can be gained through simple subtraction.

There are three possible value ranges for the graze radius: greater than the outer

radius of the ionosphere, within the range of ionospheric radii, and less than the lower



radius of the ionosphere. If the graze radius is greater than the ionosphere's top radius, the

signal does not travel through it and experiences no ionospheric delay. To determine the

length of travel in the remaining conditions, they must be broken down into multiple cases.

Figure 3.9 Determination of Graze Radius

The first major case is: the graze radius is less than the ionosphere's greatest radius.

This case is divided into four subcases, based on the geometry of the satellites. These

cases are depicted in Figure 3.10. These four subcases can be broken into two classes,

target above ionosphere and target within ionosphere. For the target above condition, a test

of the angle between the target and GPS position vectors will determine if the target is at C1

or C4 . If the angle between the position vectors is less than the angle between the graze

radius and the GPS vector, the target is in C, and the signal does not pass into the

ionosphere. If the angle is greater, the target is in C4 and the path length is given by

Equation 3.23. For the target within condition, there is no difference in the equations to

determine their path lengths. The equation is:

1 = ri sin 0 + rs sin(QY- 3) (3.28)

where

rs  = the magnitude of the target satellite's position vector

y = the angle between the satellites' position vectors



P = the angle between the graze radius and the GPS vector

Since the quantity (y - P) is negative in subcase C2 and positive is C3, the equation

produces the correct length for both cases.

C4

Figure 3.10 Subcases of rgra < rionmax

The second major case is the graze radius is less than the lowest ionospheric radius.

If the mignal passes into this region, some portion of the path length may not be affected by

the iono~phcric delay. If the path length is zero when this case is tested, this condition is

ignored. Again. there are four sub cases to this major case, and they are presented in

pgure 3 I I. There are also two classes to these cases, target above lower radius and target

i thin liocer radius. The conditions to test between C5 and C, are the same as those for C,

and ('C,. but the value being calculated is the portion of the previous length that is unaffected

h% ionopheric delay and will be subtracted. The portion excluded from C8 is calculated

using a modAified version of Equation 3.23, but the magnitude and angle used in this case

are different. The equation is:

lr = 2rionminsin0i, (3.29)

where



0in = arccos graze

rionmin

l1 = the portion of the length to be subtracted

rionmin = the minimum radius of the ionosphere

i = the angle between the graze radius and point where the signal
intersects the inner ionospheric radius

The length reduction for cases C6 and C7 can be calculated from the same equation, just as

with cases C2 and C3. In fact, their equations differ in the same way as the equations for

C4 and C8 do. Their equation for length reduction is:

1r = rionn insinO + rs sin(y - 3) (3.30)

The major cases are checked in the order presented above. Upon completion of these tests,

the path length has been computed and can be dropped into Equation 3.26 to find the

ionospheric time delay. This delay is added to the transit time computed in the iterative

calculation for the time of transmission.

Figure 3.11 Subcases of rgraz. < rionmin

3.2.3.3 Ephemeris errors

This simulation allows for three different ways of computing the GPS ephemeris positions

that are used in the navigation solution. They can be calculated from the ephemeris



coefficients that are listed in tables. They can also be computed from coefficients that are

determined during the processing of the program. Or they can be computed as the "truth"

positions were. In the first two cases, the errors are worked into the coefficients for the

ephemeris positions. For the third case, errors must be added to the "truth" positions.

There are 17 pieces of data in the GPS signal for use in determining the ephemeris

position, the 16 coefficients and the IODE parameter [51]. The number of coefficients was

limited to 16 by the size of the GPS message. These coefficients are derived from a least

squares fit of the reference trajectory and are updated on at least a daily basis. The most

frequently used fits are processed for a 4-hour period and have a 3-hour overlap with the

next fit. If the daily update does not occur, the fits for day 2 through day 14 are based on a

6-hour fit of the orbit and an overlap time of 2 hours with the next interval. The accuracies

of these fits are within 0.35 meters and 1.5 meters for a period of 3 and 2 hours from time

of data transmission, respectively [51]. If SA includes intentional ephemeris errors, the

errors are worked into the fit before the coefficients are determined.

For the case of coefficients being drawn from a table, there are two possibilities for

the source of these coefficients. They could be taken from the actual GPS data that was

sent by the satellites. These values are available through sites on the Internet. They could

also be derived from a simulated GPS constellation. These coefficients could be evaluated

beforehand and store in a file that the navigation solution algorithm can access. A similar

method could be used to simulate the coefficients within the program and produce the

second case mentioned in the first paragraph of this section.

Currently, the third case, computing the "truth" and adding errors, was the intended

method for determining the ephemeris positions of the GPS satellites. However, the

ephemeris "truth" is not the same as the "truth" described in Section 3.2.1. The ephemeris

"truth" is computed in the same manner, but it is evaluated at the time that the target satellite

believes the GPS signal was sent rather than the actual time of transmission. This

perceived time includes the effects of the ionosphere, which actually delay the signal, but it



also includes the variations associated with the clock dither. The process introduces errors

without adding anything to the position, but additional errors will be included.

At present, the generation of the additional ephemeris errors is not included in the

simulation. The subroutine that will contains this generation has been created as a stub.

The program also includes all the connections necessary to add the coefficient functionality

to the simulation at some future time.

3.2.4 Producing the Navigation Solutions

All of the data required for a receiver to determine its positions has now been simulated.

This information is presented to the navigational algorithm for processing.

The navigational algorithm in this simulation is a single-point, least squares solution

to the linearized observation equation (1.3) as described in section 1.1.2. The Moore-

Penroe generalized inverse is used to determine the inverse of the geometry matrix G. The

%olution 1% iterated until the change in estimate is smaller than the tolerance.

But thi process requires an initial estimate of the target's position. This a priori

lx,-ton i% used to determine the line-of-sight unit vectors for the G matrix and the

prectdiced peudorange for the calculation of Ap. Without these data, the solution cannot be

%tnrled

3.2.4. I A priori estimate of position

The basic pseudorange equations are reexamined to determine an initial estimate for

the target's position. These equations are [1]:



R = rj -r,+c-b.+e (-.pi(3.31)
-(Xi-X") + (yi- yj) + (Zi - Zu 2 + c -b + epi

where i indicates the number of the GPS satellite and u the user. For the initial estimate,

the error ep is assumed to be zero for all satellites. To produce a set of equations that are

linear with respect to the unknowns, Equation 3.31 is rearranged and squared to produce:

(R - c. b,) 2 = (xi - x) 2-+ (yi - y-) 2 +(Zi ZU) 2  (3.32)

These equations are subtracted from each other to eliminate the squares of the unknown

terms. After simplification the equations now look like:

(xi -x )x + (yi- yyU + (z, -zj)zu-( -p,)c -b2( _ 2 2 2 -p - ) 23.
= xi -xi +y-yj +z-z (p, p) (3.33)

Since the minimum number of satellites for a navigational solution is 4, the initial estimate

must be made with only 4 GPS ephemeris position. This limitation results in only 3

linearly independent equations from Equation 3.33. For this reason, the clock bias is

assumed to be zero. This simplification produces a matrix of 3 equations with 3

unknowns.

(x, -x ) (y, -y 2) (z, -z 2). X 1Z)2- -(2  -
It Ix 2 2 2

(x,-x 3) (y, - y3) (z - Z3) yu 12 - 3  (2
(x-x 4  ( 1 y 4 ) (Z 2 r 2 r 2

(x - 4) (Y - Y4) (zI -Z4)- LzuJ 2LT/ r 1 (9twhere

2) 2 " 9ri = x + y + z2

The initial estimate of the target's position is the solution to this equation, which can be

found by inverting the matrix and multiplying it on both sides of the equation. This



solution can be used as the a priori value to compute the initial geometry matrix and the

vector for change in pseudorange.

3.2.4.2 Satellite selection

There is a satellite selection process performed in all GPS receivers [62]; that selection

process chooses the GPS satellites to be used in the navigation solution. In this simulation,

all satellites in view are used in the navigation solution, but only four are used to determine

the a priori estimate of position. This satellite selection process determines which satellites

should be used for this a priori estimate.

At first, there was no real selection process. Satellites were taken on a first come,

first served basis. This method resulted in a significant problem. On several occasions,

the first four satellites produced a set of equations for the a priori matrix that were linearly

dependent. Subsequently, the erroneous values calculated for the a priori estimate caused

the navigation solution to fail.

To eliminate this problem, a selection process was established. A matrix for a

priori calculation is constructed for each combination of accepted satellites. The

determinant of each matrix is computed and all combinations with a determinant of zero are

discarded. That step alone should eliminate the problem described in the last paragraph.

Rather than just eliminating the combinations that would cause failures, the

selection process should also help the performance of the a priori estimation. The best a

priori estimate would be derived from the best satellite geometry as input. GDOP is a

measure of satellite geometry; smaller GDOP values indicate a better satellite geometry.

Therefore, the satellite combination with the best GDOP would be selected.

Instead of directly computing the GDOP for all of the combinations, an alternative

measure was determined. For a square matrix, the GDOP of the matrix is inversely

proportional to the magnitude of its determinant. The determinant is already being



computed to throw out the bad selections. So, the magnitudes of the determinants are

stored by combination identifier during the elimination process. All satellite combinations

that survive the first test are compared to find the largest determinant magnitude. That

combination is selected for the a priori estimate.

This solution was not entirely successful. On a rare occasion, similar failures crept

into the simulation. The source was identified as a situation where the best determinant in

the selection process was still remarkably small, but non-zero. A new approach was taken

to eliminate the problem. The satellite selection from the previous process is tested for its

geometric distribution. The matrix is separated by rows into three vectors. These vectors

are reduced in magnitude to unit vectors. The normal to the plane of the first two vectors is

determined by taking their cross product. The angle between this normal and the third

vector is calculated from their dot product. If the angle between them is 900, the a priori

estimate and the navigation solution are not computed. To eliminate navigation solutions

with a high GDOP, a tolerance for the proximity of this angle to 900 was selected.

These selection processes have eliminated the problems associated with

unacceptable a priori estimates. They also remove navigation solutions with undesirable

levels of GDOP from consideration.
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Chapter 4

Construction of GPS Receiver Navigation Solutions
including Realistic Errors - Simulation Architecture

While developing the algorithms for the navigation solution simulation, the idea of using

parallel processing was introduced. The base algorithms could be operated in a sequential

program, which would perform the same function, but it would take longer to process the

large number of time steps that were intended to be used. So, parallel processing was the

way to go, but what architecture should be used and in what environment?

The selection of the environment was relatively easy. Past astrodynamics projects

at Draper Laboratory have performed parallel processing using PVM and MPI. Another

current project uses MPI, which means that the required software and some assistance in

learning its operation were readily available. In addition, the structure prescribed in the

MPI standard made the implementation of the program easier.

As for the architecture, a survey of information on parallel processing in general

and MPI in particular revealed an architecture which seemed well suited to this application.

It is the self-scheduling architecture [28]. However, during the design of the simulation,

changes were made to this basic architecture.

4.1 Self-Scheduling Architecture

The self-scheduling, or master-slave, algorithm is one of the most common parallel

algorithms [28]. This selection of algorithm may be popular for the ease of visualizing the

operations. One can picture a manager or foreman with a fist full of tasks that need to be

completed. His workers come up to him at the beginning of the shift to get their initial

assignments. As each worker finishes him task, he returns to the foreman who gives him



the next assignment on the stack. No tasks are reserved for specific workers; they are

simply given the next task. This process continues until the stack is completed or the shift

ends. This description can easily be designed into an MPI program.

This self-scheduling architecture seemed to be a good framework for the navigation

solution simulation. The work could be broken down into smaller tasks and distributed to

the processes.

The original concept for the organization of the simulation was to have the master

process operate the target satellite and the slaves would work on the GPS satellites

individually and for a single time step (Figure 4.1). Once a slave completed the processing

of its satellite, it would return the data to the master. The master would give the slave the

next satellite for processing; if the 24' satellite was just given out, the master advanced to

the next time step and assigned satellite number 1. After the master had received the GPS

data for all 24 satellites in a given time step, it would calculate the navigation solution for

the target satellite. This organization appeared to have a significant problem. The whole

point of using the master-slave architecture was to keep the slaves occupied as much as

possible, but when the master began to process the navigation solution, the slaves would

end up waiting for the master to complete its task.

Assignment

- - - Data

0 0 0 0

Figure 4.1 Architecture #1



The solution to this problem was the incorporation of a new, special slave (Figure

4.2), one whose tasks are restricted to the processing of the navigation solutions. So, the

master continued to operate the target satellite and to assign the satellites in the same

manner. When a slave completed its satellite, it would not send the data to the master, but

to the special slave; then the regular slave would report to the master for its next

assignment. The special slave collected the data from the slaves and stored them in an array

based on their time step. Once it had the data for all 24 satellite for the next time step, it

would process the navigation solution. A new problem arose with this design. The regular

Assignment

N P

Special
Slave

Figure 4.2 Architecture #2

slaves do not complete their work at the same pace. The array was not wide enough to

compensate. The data would wrap around to the incomplete time step, and begin to fill that

section of the array with data from the new time step. This situation would cause the

special slave to compute a navigation solution using data from two different time steps,



which is unacceptable. Increasing the width of the array delayed the onset of this

condition, but it did not solve the problem.

The next modification was inspired by the fact that the number of satellites is small

in comparison to the number of time steps that this simulation will process in a run. This

change did not affect the architecture of the program, only the task assignments. The

master is still operating the target satellite, but now the assignments it gives out are time

steps. Each slave takes its time step and produces the data for all 24 GPS satellites. When

it's finished, the slave passes its data to the special slave and reports for its next

assignment. The special slave waits for the data for the next time step on its list, and

processes the navigation solution as the data comes in. The navigation solution is time

coded and placed in a file, and the special slave goes back to find the next time step. This

change eliminated the wrap-around problem. There was some thought to passing the

navigation solution responsibility on to the regular slaves, but they would not be able to

deposit the solutions into the same file. Also, keeping the navigation solution algorithm

separate makes it easier to debug or to modify the algorithm.

4.1.1 Advantages of this Architecture

The architecture presented above has several advantages in construction and usage. These

advantages fall into two categories, simplicity and flexibility.

Simplicity is first seen in the construction of this architecture. The main structure

consists of a program and three subroutines (Figure 4.3). The program initializes the MPI

environment and establishes the identities of the individual processes and allows the

processes to begin their respective subroutines [28]. The three subroutines correspond to

the three types of processes that exist in this architecture: the master, the regular slave, and

the special slave. Each process chooses its subroutine based on its identity; note that

multiple processes may choose the slave subroutine while only one may choose either the



master or special slave subroutine. The communication is built into the subroutines and it's

kept to a minimum. When execution of the subroutines is completed, the processes return

to the main program, which closes the MPI environment and ends.

Modification of this architecture is also very simple. This feature is seen in the

modification from Architecture #1 to Architecture #2 (Figures 4.1 and 4.2). To accomplish

this change, the subroutine for the special slave was constructed and the new

communication paths were established. This ease of modification also makes this

architecture extremely flexible.

The flexibility of this architecture is not limited to the structure, but is also seen in

its application. The computations required for the simulation in this thesis could be easily

removed from the architecture and replaced with those needed for a different project. Or

the current computations could be modified to increase the accuracy of the simulation.

These computations would not affect the operation of this architecture, only the processing

of the input data.

Master Slave Navslave

Figure 4.3 Program Structure

Another advantage of this architecture is the ease of operation and testing. Because

this architecture was constructed to perform repetitive tasks in the master, slave, and special

slave subroutines, these subroutines were each constructed based on a simple loop. The



structure can be easily tested before any of the computational elements have been added to

the program.

4.1.2 Communications

As mentioned in the previous section, communication within the subroutines is kept to a

minimum. By limiting the amount of communication, most of the run time is devoted to

computation. All communications in this simulation are the simple, straight-forward,

point-to-point communications described in the MPI functions [28]. The following

paragraphs describe the communications from the point-of-view of each subroutine.

The master sends the epoch time and the total number of time steps to the special

slave. Then. it sends the initializing data and the initial assignments to the other slaves, and

be-gin% its lop. Next, it waits to receive a request for tasking from one of the slaves. The

master sends the next task, or a shutdown command if the tasks have all been assigned.

Theln. it waits for the next request. If the master has distributed all assignments and

conmnanded all slaves to shut down, it returns to the main program.

The regular slave accepts the initializing data, begins its loop, and waits to receive

, ni.-, . .'pon receiving the message, the slave reads it to determine if it is an

a,,iLnnont or a shutdown command. If it is an assignment, the slave performs its task,

send, I. tuo mcssages to the special slave, sends a request to the master for its next task, and

%•att-. fr the response. If the message is a shutdown command, the slave returns to the

main program.

The special slave waits to receive the epoch time and the total number of time steps

from the master. Next, it begins its loop and waits for a message from a regular slave that

matches its current time step; this first message tells the special slave how much data will be

arriving in the second message. After receiving the first message, it waits for the second

message with an appropriately sized array. When the second message arrives, the special
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slave processes the data, deposits the results in a file, and begins to wait for the first

message for the next time step. When it has completed the final time step, it returns to the

main program.

In an earlier iteration of the simulation, the master subroutine made use of the

broadcast function to transmit the initial time and time step size to all other processes. This

course was originally taken based on the assumption that the simulation would be

processing evenly spaced time steps during every run. This assumption need not be true,

so the broadcast function was removed to allow greater flexibility in the time assignments.

4.2 Interaction between Architecture and
Placement of Computational Segments

The placement of the computational segments of the simulation is partially dictated by the

architecture, but the reverse is also true. The final architecture of the program was not

selected until some of the basic computational segments were installed. These few

segments gave an idea of the performance characteristics of the structure, which were for

the most part satisfactory. But these characteristics also steered the evolution of the

architecture to its final stage.

The placement process began with the selection of the master-slave concept for the

architecture [28]. For this type of architecture, the most desirable results come from

keeping the slaves as busy as possible. Because the master is the one that assigns the

tasks, it should be ready to provide the next assignment as soon as the slave makes the

request. For this reason, the master should have as few computational responsibilities as

possible.

So, how much responsibility should be given to the slaves? That was one of the

first questions to arise in the placement process. The answer did not come easily. As

stated in the previous sections, the initial tasking for the master was assigning the tasks and

101



processing the navigation solutions. The delay caused by computing these solutions would

have meant a bottleneck as the slaves completed their tasks and came back to find the

master unavailable. The slaves would not be able to start work again until the master had

finished its tasks and started assigning tasks again. The master can only process one

request at a time, so each slave would have to wait its turn. This performance was

unacceptable from the standpoint of keeping slaves busy and the computational segment for

the navigation solution had to be reassigned.

At this point in the development, the slaves were responsible for the processing of

individual GPS satellites and would not be capable of taking on the navigation solution

task. So, the special slave was designed to perform this task and remove the responsibility

from the master.

The next question is basically a subquestion of the first: which subroutine should

process the target satellite's position? The two alternatives were the master and the slaves.

If the master processed the satellite, the calculations would be performed once for each time

step and the data would be passed to the slave in its assignment. This procedure might

have caused the master to be detained from assigning tasks. If the slaves processed the

target, the calculations would be performed each time a task was started and no satellite data

would need to be passed to the slaves. But the multiple processings for the same result

seemed to be a waste of computer time. At that time, the target processing was given to the

slaves.

The next step in the evolution occurred as a result of the wrap-around problem.

This situation was anticipated and the special slave was given an array for storage of these

premature inputs. But the array was not wide enough and the data began to wrap around to

the incomplete time steps. The array was made wider, but this only delayed the problem.

The solution to this problem, changing the assignments from individual GPS satellites to

complete time step, reinforced the decision to place the target satellite's calculations into the

slaves. This change also reduced contact with the master to once per time step. It also
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simplified the data acceptance for the special slave. This increase in assignment size does

not affect the architecture of the program, but it does cause a minor change within the slave

process, the inclusion of a loop.

The following sections present the responsibilities and the internal structure of the

individual processes as they appear in the completed simulation. They describe the roles of

each process in the master-slave-special slave architecture, and briefly mention the

programs used in their construction. In these sections, the special slave is referred to by

the name of its program, navslave. The programs that were created for these structures

were designed to be as simple and straightforward as possible; they were written in Fortran

to make them compatible with the preexisting subroutines that are used in the simulation.'

These programs are described in detail in Appendix A.

4.2.1 The Master's Task

The master subroutine has an extremely light load to handle. By limiting its responsibilities

to a bare minimum, the master has no excuse for any delays in providing new assignments

to the slaves. Its responsibilities consist of:

* acquiring the data for initializing the simulation

* relaying the necessary data to the other processes

* assigning the initial tasks to the slaves

* monitoring the assignments load

* waiting for an assignment request from any slave

* replying to that request

MPI supports programs in Fortran and C computer languages.
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At the current time, the time distribution is restricted to uniform time steps from an initial

start time, so the master has the added task of computing the time that is sent in the

assignment.

The first three responsibilities of the master are its initialization procedure and only

occur once in the course of a run. It acquires the initializing data from a subroutine called

STARTUP. The data consists of the Julian date of the epoch of the simulation, the time

since epoch of the first signal reception, the length of a time step (in seconds), the total

number of time steps, and the input type identifier. The Julian date and the total number of

time steps are sent to the navslave; the Julian date is used in the time tagging of the

observations, and the number of time steps indicates the number of messages to be

received. The time of first signal reception and input identifier are sent to the remaining

slaves; the time of initial reception is needed for the operation of the satellite clock

subroutine, and the input identifier specifies the means by which the target satellite's states

will be calculated (DSST or Cowell). The initial assignments present the time steps to the

slaves in numerical order, which is different from the first come, first served policy in the

loop. These assignments are made before the master enters the loop, and then the policy

takes over.

A majority of the master's time is taken up with waiting. It waits for the slave to

send its request so that the slave does not wait. Once it receives a request, it checks to see

how many assignments have been given out. If there are still some assignments left, the

master computes the next time for the assignment, and sends the assignment. If no tasks

are left, the master sends a message to shut down. Then, it updates the records and returns

to its waiting.

As stated, the master is not terribly taxed. In fact, it does not contain any of

the computational segments that were created for this simulation. In the course of its

operation, it only calls three subroutines and two of those are the MPI communication

functions, MPI_SEND and MPI_RECV (Figure 4.4). The remaining subroutine,

104



Figure 4.4 Master Subroutine Structure

STARTUP, establishes the data described earlier. Within STARTUP, there is only one

subroutine called. That subroutine, JULIAN, converts the epoch to its Julian date for use

in the special slave. The only new programs in this structure are the MASTER and

STARTUP subroutines, indicated by the white boxes in Figure 4.4. The shaded boxes

indicate preexisting subroutines, which may be connected to other subroutines from

GTDS.

4.2.2 The Slaves' Work

The slaves' work is never done. The slave subroutine is the most heavily tasked

subroutine in the simulation. It is responsible for the entire process of producing the

perceived times of transmission. The slave's responsibilities include:
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* initializing its variables

* accepting the initialization data

* receiving its assignment from the master

* determining the target's position and velocity and the position of each GPS
satellite

* testing each GPS satellite's position at its time of transmission for acceptability

* computing the satellite clock errors for each acceptable GPS satellite

* modifying the times of transmission to include the effects of the clock errors

* notifying the navslave of how much data it is about to receive

* passing the data to the navslave

* resetting its memory locations

* requesting its next assignment

Basically, the slave is responsible for operating all of the computational subroutines

necessary for the simulation of GPS signals. It is quite apparent that the slave has a very

full plate.

Most of the slave's responsibilities are addressed through the calling of subroutines

(Figure 4.5). The main jobs of the slave subroutine are to call the computational

subroutines, monitor the loops for completion, store the appropriate data, and communicate

with the other major subroutines.

The operation of the slave is straightforward. Before beginning its primary loop, it

initializes the necessary variables and data structures with INIT_CLOCK and

INIT_SLAVEINFO, and it accepts the input identifier and initial reception time with the

MPI_RECV subroutine. Within the main loop, it receives its message via MPI_RECV. If

the tag on this message is zero, the slave shuts down. Otherwise, it takes the time from the

message and starts its task. First, it determines the target's position at this time (TARPOS)

and uses this time and position to find the time of transmission for each GPS satellite
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(GPSTIME). As part of this calculation of transmission time, each GPS satellite is

evaluated for two-way visibility with the target satellite (VERIFY). The slave computes the

satellite clock error (SATCLOCK) for each GPS satellite that is accepted and alters the

transmission times accordingly. Depending on the ephemeris case, the slave either

calculates the GPS ephemeris position (RECVDGPS) and adds errors to it (ADDERR) or

determines the coefficients necessary to calculate it in the navigation solution algorithm

(EPHCOEF). Once this sequence is complete for all 24 GPS satellites, the slave sends the

navigation solution data to the navslave subroutine, resets its variables, sends a request for

the next task, and returns to the beginning of the main loop.

The subroutine structure is quite involved. In fact, not all of the subroutines within

the slave subroutine have been mentioned here, but they are all displayed in Figure 4.5.

Markings are consistent between the figures. The boxes with diagonals represent

subroutines that do not exist yet, but will be created during an upgrade of the simulation.

4.2.3 The Navslave's Job

The last process is the navslave. This slave is also kept quite busy, but only with the

operations associated with the calculations and output of the navigation solutions. Its name

was derived from navigation slave. It is responsible for the following tasks:

* initializing its variables

* preparing a working file

* accepting the epoch time and number of time steps from the master

* receiving the navigation data from the slaves

* if there is a sufficient amount of data, processing the solutions and storing them

in a file
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This is not a significant load in comparison with that of the other slaves, but if several

regular slaves are operating, the navslave is still kept very busy.

Once again, the first few responsibilities involve the setup of the process and are

handled before the navslave enters its main loop. First the variables are initialized using the

subroutines INITHEADERS and INIT_NAVINFO. Then, a working file that is required

in the file storage process is opened by using GETENV. And just before entering the loop,

the navslave receives (MPIRECV) the epoch data and number of time steps. The epoch

data is needed to produce the time tags for the output file, and the number of time steps

sizes the main loop. These actions are very important to the performance of the navslave,

but they only need to be done once.

The navslave is required to do some waiting. The length of the wait is determined

by the performance of the other slaves. Unlike the first come, first served policy followed

by the master, the navslave must process its steps in sequence. It has to wait for the next

task on the list, even if other tasks are available. So if an individual slave is operating

particularly slowly, later time steps could be piling up before its current task is complete.

Within the loop, the navslave receives (MPI_RECV) the data from a slave. It tests

the data to determine if a sufficient number of visible GPS satellites are available for the

computation a navigation solution. If there are enough, it identifies how the a priori

estimate of position should be performed and passes the data to the navigation algorithm

(NAVFIX). When the algorithm finishes, it advances the loop and starts again.

The NAVFIX subroutine is the primary functional component of the navslave. It

takes the navigation data and, if necessary, computes the ephemeris positions of the GPS

satellites. Then, it selects the four GPS satellites (SELECTSAT and GEOCHECK) or

extrapolates from past data to determine the a priori estimate for the navigation solution

(GMATINV). This a priori estimate is used, along with all of the navigation data, to make

the geometry matrix. A vector of expected changes in pseudorange is also constructed.

The pseudo-inverse of the geometry is calculated using the Moore-Penrose Generalized
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Inverse (GMATINV). The change in the position and time bias vector is the product of the

pseudo-inverse and the vector of pseudorange changes (MATVEC). This process is

repeated for the construction of the geometry matrix on until magnitude of the position and

time bias change is below a specified tolerance. Upon completion of the navigation

solution, it is time coded and stored in a file (OUTNAV). Additional data, including the

solutions range, time bias, and GDOP, are stored in a second file for statistical purposes.

The structure of the navslave is shown in Figure 4.6. A majority of this structure

consists of the NAVFIX substructure, which should be expected from the previous

discussion. The box shaded in the diamond pattern, GMATINV, is not really a new or

preexisting program. It is a modified version of the program MATINV. The modifications

to this program are presented in Appendix A.

4.2.4 Structured Data Files

In addition to the programs that were created, a small set of structured data files was also

constructed. These files were designed to assist with the internal data management of the

processes. Because the master was so limited in its computational load, it did not appear to

need one of these files. The slaves and navslave each have a data file for the frequently

used variables in their lower subroutines.

Access to these files is achieved by using an INCLUDE statement for the desired

file within the subroutine and calling the variable name preceded by the file name and a

period. For example, in the SLAVEINFO.H file there is a variable, INPUTYPE, which

can be retrieved by typing SLAVEINFO.INPUTYPE in a subroutine that includes the file.

For constants, the process is much simpler. Constants are saved as parameters and can be

called by their name alone if the file is included in the subroutine.

An additional structured data file was included in the construction of the slave

process. The CLOCK.H file is used strictly for the maintenance of the 24 GPS satellite

110



Figure 4.6 Navslave Subroutine Structure

chit.'k. iThe design of these files is a convenient way to store and update the variables

a,,s,'ated with the clocks' upkeep. The SATCLOCK and INIT_CLOCK subroutines are

the tinl% prtograms that have access to this file.

4.3 Graphic Processing

The architecture presented above is used as the framework for the simulation, which

produces simulated navigation solutions from a spaceborne GPS receiver. These
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navigation solutions are used as the input for an orbit determination process. The behavior

of navigation solutions and the determined orbit both must be examined.

To better interpret the output from the simulation and the orbit determination

process, it is desirable to have the data presented graphically. The primary tools available

for the production of graphics from this data are Microsoft Excel and Matlab.

Excel was primarily used in the early stages of simulation testing. A smaller

amount of data was being produced and could be easily ported into Excel. In addition, the

calculation capabilities of Excel were used for some minor processing of data for the

included images.

Matlab is the primary tool for producing the graphics used for interpreting the

results. One of the main reasons for its use is that it is capable of handling the volumes of

data being produced in the simulation and orbit determination processes. Another reason is

its programmability. Short programs can be written that will perform calculations on the

data and output the results in sets of figures. This feature is important for the comparisons

between the simulation input and the output of the orbit determination.

Most of the output from the simulation is stored in tabular form in a collection of

files. The data in these files include: the number of satellites in view at all times during the

simulation, the target satellite's actual position, the times of accepted navigation solutions,

their times since epoch, the number of satellites used in the navigation solution, the radial

distance to the navigation solution, the calculated time biases, the GDOPs, and the

geometry parameter used in the selection of the a priori position estimate. Tabular

information can easily be presented for interpretation; plotting on Matlab is a simple process

of identifying the columns of a table to be plotted, which Matlab perceives as the X and Y

components of a graph. So, any functional relationships between these values can be

visualized very quickly.

The output from the orbit determination process and its comparison with the

simulation input is a different story. First of all, the files containing this data are
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incompatible with Matlab. Before the files can be loaded into Matlab, all text must be

removed from them. This task is accomplished through the use of a stripper utility that was

designed for this purpose. Once the files have been loaded, a Matlab program compares

them and produces figures that show the component level differences between the input and

the output over a period of time. Depending on the program, these components could be

Cartesian components, orbital elements, or radius, cross-track, and along-track (RCA)

components. The period of time may be continuous through the all the data, or it may be

broken down into the fit and predict spans. These graphics provide a simple means of

evaluating the quality of the orbit determination from the simulated navigation solutions.

4.3.1 Stripper Utility

The stripper utility was designed to remove the POSITION and VELOCITY tags from the

ASCII files containing the simulation input and the orbit determination output. While

removing the tags, the utility also reorganizes the data for more convenient use by Matlab.

To operate the utility, the desired ASCII file must be copied into a generic file

identified in the stripper's allocation process. Once there, the file must be trimmed until

only the lines with POSITION and VELOCITY tags are present. Finally, a file END

marker must be placed after the last VELOCITY entry. Now, the file is ready for the

stripper.

The stripper utility reads the first line of the file and enters a loop. Upon entering

the loop, the stripper tests the alphanumeric field of the line to see if it is the END marker.

Satisfied that the END has not been reached, the utility reads the next line. The

alphanumeric fields are disregarded and the position and velocity vectors are written, in that

order, on a single line of another generic file. The stripper reads the following line and

returns to the beginning of the loop. This procedure continues until the END is reached.

113



As stated in the preceding paragraph, the position and velocity are stored on the

same line of the output file. By storing them in this manner, the array does not need to be

resized within Matlab and operations can be performed immediately.

This utility was written to process ASCII files with a specific format. It will only

work properly on files that have a series of double lines of related data, with the line format

of a length-eight alphanumeric field following by three numerical fields of size 25.
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Chapter 5

Orbit Determination Error Analyses Results

The goal of this project is to evaluate if GPS navigation solutions can be used to as the

sole input for orbit determination of medium altitude, eccentric orbits. To compensate for

the lack of actual navigation solutions for these orbits, a program was constructed to

simulate these navigation solutions.

Figure 5.1 presents the complete data flow for the simulation and orbit

determination process. The "truth" orbit for the target satellite is generated using the

process described in Section 3.1. This "truth" is used as input to the simulation of the

navigation solution and as the actual satellite orbit for comparison with the orbit determined

from the simulated navigation solutions and with the navigation solutions themselves. The

algorithms and assumptions used in the simulation are explained in Section 3.2. The orbit

determination process and the comparison of the determined orbit with the "truth" are

presented in this chapter. The performance of the orbit determination process is examined

for different target orbits: Ellipso Borealis (both planes), Ellipso Concordia, and Molniya.

The performance is tested using the ideal force models, and with the forces mismodeled;

this is done to test the process's sensitivity to these model errors.

Force Models Configuration Force Models
and Simulation

Assumptions

Figure 5.1 Deterministic Analysis Data Flow
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Before performing the evaluation of the orbit determination process, the methods

used to simulate these navigation solutions must be validated. This validation is

accomplished in two steps: validation of the component algorithms and validation of the

complete simulation. The validation process is also presented in this chapter.

5.1 Validation of the Simulation

Before using the navigation solutions in the orbit determination process, the simulation was

tested to verify proper performance. This testing was conducted on the component level,

on the simulation as a whole, and over the full analysis process.

The first set of tests focused on the performance of the individual algorithms. If

these algorithms do not produce the proper results, the simulation would be of little value.

The alghonithms that were validated are the satellites in view algorithm, the satellite clock

algorithm. and the navigation solution algorithm. To provide a wide range of altitudes to

the --imulation. the Ellipso Borealis orbit with its ascending node at noon was used as the

target torbtit while performing these early tests [14,15]. The Borealis orbit is a critically

incmlined. ,un-%ynchronous orbit with a semimajor axis of 10496.882 km and an

.ecce'ntrlt\ of* 0.332088. The epoch selected for the simulation of the Borealis orbit was

1.4?% AMl April 21. 1999.

After the algorithms have been evaluated, the performance of the entire simulation is

tested. The simulation's performance is tested by comparing the simulated navigation

solutions. with all errors included, to actual navigation solutions. To perform this test, the

simulation was run using TOPEX as the target satellite in a time interval for which actual

navigation solutions were available [8].
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The following sections describe the validation process on the component algorithm,

followed by the validation of the whole simulation. Each section provides a description of

the criteria used in its validation.

5.1.1 The Satellite in View Algorithm

Section 3.2.2 describes the algorithm that identifies the GPS satellites in view. Since a

minimum number of GPS satellites is required for the purposes of the navigation solution,

it is important to know that this algorithm is performing as intended.

At different altitudes, there is an expected performance of the satellite in view

algorithm. These expectations are based on the geometry of the situation, the number of

GPS receiver antennas, their orientation on the target satellite, and their reception angles.

Using the standard single antenna configuration, facing in the zenith direction, the

target satellite can expect to see the most GPS satellites at low altitudes. Also, at these

lower altitudes, any GPS satellite within the line of sight of the target can send a signal

toward the target. As the target gains altitude, it reaches a point (approximately 3270 km

altitude) where the previous statement no longer applies (Figure 5.2). Beyond this altitude,

a band develops in the sphere of the GPS constellation; any GPS satellite within this band

cannot transmit a signal to the target satellite because the target is outside of the

transmission cone. This band expands as the target continues to climb. At one point in this

expansion, the only GPS satellites above the target that are capable of sending a signal to

the it are the ones within the target's reception cone; for an antenna with a reception cone

half-angle of 700, this point occurs at an altitude of approximately 3890 km, only 620 km

above the line of sight boundary (Figure 5.2). But signal reception requires a two-way

view. The locations from which the target can receive signals are restricted to within the

projection of the reception cone onto the sphere of the GPS constellation. This region
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shrinks as the satellite climbs and approaches the GPS sphere, but at a slower rate than the

band grows. Both of these behaviors contribute to the decline in the number of GPS

signals received as the target climbs.

For a nadir facing antenna, low altitude means a lack of GPS contact. The Earth is

in the way of the GPS signals. Nadir facing antennas only start to become effective once

the satellite has climbed high enough for the reception cone to clear the limb of the Earth.

For the 700 reception cone half-angle, this translates to about 410 km altitude. The same

characteristic behavior of GPS viewing the target occurs as with the zenith facing antenna,

but the region of reception for the nadir facing antenna expands as the target climbs. The

vertex of the cone is moving away from the GPS sphere and the shadowing Earth, so the

area of the projection grows. As the target continues to climb, the reception area reaches

the edge of the band described in the previous paragraph (Figure 5.2). Again, the only

GPS satellites capable of sending a signal from below are within the cone of reception.

Using the same antenna, this transition occurs at the same altitude as it does for the zenith

facing antenna, 3890 km; this is the best altitude for GPS reception for a nadir facing

antenna. As the target satellite continues to climb, the region of reception begins shrink.

But the rate of area reduction is slowed by the reduction of the size of the Earth's shadow.

Using two antennas, with one facing in each of the zenith and nadir directions,

results in a combination of the two effects. The poor performance of the nadir antenna at

lower altitudes is compensated by the zenith antenna's best performance, and vice versa for

higher altitudes. At medium and higher altitudes, teamwork between the antennas may

eliminate instances when neither of the antennas could acquire enough GPS signals for the

navigation solution individually. Throughout all the altitudes of interest in this thesis,

navigation solutions available through the use of one antenna can be improved by using

additional signals from the other. Between the teamwork and occasions when each could

produce a navigation solution individually, the combination of the two antennas may

actually provide more or less navigation solutions than the sum of the solutions from each
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antenna. For this discussion, the two antennas are assumed to be collocated. Considering

the size of satellites and the large distances being described, this assumption is reasonable.

From this analysis of the factors affecting the expectations, the satellite in view

algorithm should produce the following results:

* Zenith facing - Larger numbers of GPS satellites in view at the lower altitudes with
a steady decrease in number as altitude increases

* Nadir facing - Least number at low altitudes, increasing as altitude rises, cresting at
approximately 4000 km, and decreasing beyond

* Both - Sum of other two, with higher altitude for last possible navigation solution

The results of the satellite in view algorithm are presented in Figure 5.3 for zenith, Figure

5.4 for nadir, and Figure 5.5 for the combination of the two. The visibility of the GPS

satellite in the algorithm matches the predicted behavior. The maximum number of

satellites for the nadir and combination cases are achieved at an approximate radius of

10300 km from the Earth's center, which is very close to the height predicted in the

analysis. Ellipso Borealis was an excellent choice for this test because its range of altitudes

covered the location of maximum satellite reception for all three antenna configurations, as

well as their decline after the maximum.

The Ellipso Concordia is another orbit that could be considered in this analysis, but

the orbit has such a small variance in altitude that it would produce little data. Concordia is

a nearly circular, nearly equatorial orbit with a semimajor axis of 14428.138 km and an

eccentricity of approximately 0. This orbit cannot use a zenith facing antenna for

computing the navigation solutions unless it is accompanied by a nadir antenna. The zenith

antenna receives only one or two signals from GPS satellites at this altitude, but these

additional satellites could provide the last signal necessary for the determination of the

navigation solution or improve the navigation solution from the nadir antenna markedly.
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Another feature included in the satellite in view algorithm is the ability to identify an

altitude below which no signals may pass. This ability was used to reduce the effects of

ionospheric delay on the navigation solutions. The function is activated by identifying the

altitude to be blocked. The simulation treats this altitude as a soft boundary. This means

that if the target satellite is below the blocked altitude, it may look up through the boundary;

the target can never look down on a path that passes below that altitude. To block the

ionosphere, the altitude is set to 1000 km, the maximum altitude of the ionosphere in the

simulation. By eliminating a downward view through the ionosphere, the worst

ionosphere delays are the same as those experienced by a ground based receiver. The

blockage reduces the number of navigation solutions that can be determined, but the quality

of the ones that can be computed is far superior. This function could be designed into an

algorithm for use in space qualified GPS receivers that are implemented with a nadir facing

antenna.
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The Satellite Clock Algorithm

The satellite clock algorithm is presented in Section 3.2.3.1. This algorithm is an attempt

to produce an error source that is statistically similar to the actual selective availability errors

planted in the satellite clocks onboard the GPS satellites. Figure 5.6 shows a representative

sample of the ranging errors associated with the satellite clock dither.

This algorithm was tested using a separate process driver to operate the clocks and

collect their ranging errors. Using the recommended values for the damping coefficient,

the natural frequency, and c2 [54], the satellite clock algorithm produced the ranging errors

displayed in Figure 5.7. This is only a sample from one of the clocks used in the

simulation, but it demonstrates the similarity to the representative sample of the actual

errors. The simulated errors are noisier than the actual SA errors, but that behavior was

expected from the Gauss-Markov model [54].

5.1.3 The Navigation Solution Algorithm

The navigation solution algorithm was tested to determine the level of error associated with

the least squares fit process. To isolate these errors, the computed error sources were

turned off. The satellite clock errors and the ionospheric delays were overridden and set to

zero. The navigation solutions from the simulation were compared with the target's "truth"

positions.

In order to perform the comparison between the "truth" and the least squares fit, the

"truth" file had to be modified. The "truth" file presented all of the "truth" positions on the

simulation time grid, but the simulation rejected time steps based on the number of GPS

satellites in view and the geometry of those satellites. A utility, MATCHUP, was

constructed that removes the rejected times from the "truth" file to facilitate the comparison.

Since the data in both the "truth" file and the navigation solutions file are in chronological
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Figure 5.6 Ranging Errors from Satellite Clock Dither [54]

Rma Time (in min)
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order, the utility reads the time from the navigation solution file and begins to read the times

of the "truth" file until it finds a match. Once the match has been found, the utility writes

that time and the corresponding position to a new file. This new "truth" file is used in the

comparison with the navigation solutions.

The total position error associated with the least squares fit has a mean value of 1.5

cm and a standard deviation of 3.1 cm (Figure 5.8). However, the maximum error value in

this comparison is on the order of 1.5 m. This maximum value and the other relatively

high error values are a result of poor GPS satellite geometry. This conjecture is supported

by a comparison of the time plots of the total position error and the GDOP factor (Figure

5.9). Each high error value is accompanied by a GDOP value that is well above the mean

GDOP. These higher GDOP values also correspond with low numbers of GPS satellites in

view. This observation confirms the belief that the use of more GPS satellites in the

navigation solution improves its geometry characteristics.

5.1.4 The Entire Simulation

The " inulation was tested by comparing its output to actual navigation solutions produced

bh trc (;'S receiver onboard TOPEX. The comparison of the simulated navigation

slutitin. t t, he actual TOPEX navigation solutions was used to benchmark this first stage

of thc Itnulation's development. It also provides continuity with the past efforts in orbit

deternunation using GPS navigation solutions [8].

To perform this comparison, the simulation had to use the same epoch as the actual

TOPEX data. which was on December 25, 1992 at midnight UTC time. The GPS

constellation used in the simulation was not an exact representation of the GPS

constellation at this epoch. It was an approximation of the constellation that had the same

relative distribution and longitudinally independent coverage characteristics. Since TOPEX

is a LEO satellite, this representative distribution should be sufficient for the purposes of
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the simulation. The TOPEX "truth" orbit was produced by generating an ephemeris from

the osculating elements that were determined in Carter's processing of the precise orbit

ephemerides (POE) [8]. The ephemeris was generated using the same force models that he

used, so it should have been accurate to 1 meter.

Once the simulated navigation solutions were created, the MATCHUP utility was

used on the TOPEX "truth" file. The comparison revealed that the simulated solutions had

a higher mean and a smaller standard deviation, as well as a much lower maximum error

value (Figures 5.10 and 5.11). There are four factors which may be contributors to these

differences. First of all, the simulation does not contain all of the error models; only the

satellite clock errors and ionospheric delays are included at this time. Second, the quality

of the modeled errors could be improved. For instance, the ionosphere has been modeled

with a uniform electron density rather than a density model that varies with altitude. Third,

the GPS receiver used on TOPEX was only capable of handling six simultaneous GPS

signals while the simulation produced solutions using all of the available signals; on several

occasions, the simulation acquired seven signals, and eight signals twice. Finally, the

simulation threw away potential solutions if the GPS satellite geometry was not

satisfactory. All of these elements could have an effect on the statistics of the navigation

solutions.

Even with these differences, the simulation produces navigation solutions that have

a similar "look and feel" to the actual ones. Since this project is only evaluating the

feasibility of using GPS for determination of higher, elliptical orbits, these results indicate

that the simulation is adequate to perform this task. More stringent testing could be

conducted using the actual GPS positions as the GPS "truth" orbits during this epoch;

testing with the actual GPS positions would provide a more accurate assessment of the

simulation's performance.

127



rTe ( Drs)

Figure 5. 10 Comparison between Simulated Navigation Solutions and TOPEX "Truth"

19M TOPEX Nafgalla SdLfin t POE 3-V Pobsiion Oiffe•mnce•
U00

400

E
£ 300

0D

-I

7rIr
tien; 6•.67.

Ma= 39M4 I I

j
o 200 400 600 800B 1000 12C 1400 1.600 1800

Trem (p 4 mpwitinrtais)

Figure 5.11 Comparison between Actual Navigation Solutions and POE

128

TAWosmisa Emnars BetW &NOFeedBst ad rOPSFX r

--- -- ---

I
7

II

N

Ii

I

Ii W

L

! 4
i l"m''V! i I -Ill

• 

-

v 

g

i .. . .. .B- ' ~ '·



5.2 Orbit Determination (OD)

With the simulation's validation completed, the orbit determination process is ready to

begin. But how well can the orbits be determined from GPS navigation solutions?

Carter's work demonstrated that the navigation solutions could be used for orbit

determination of LEO satellites, but these higher, elliptical orbits may be too different for

the process to work.

The navigation solutions are used as the input for the orbit determination process.

This process is performed using the Draper version of GTDS (Appendix B). To facilitate

the use of GTDS, the navigation solutions are stored in an observation file format [75].

These solutions are position vectors only in the ECEF coordinate system.

There are two steps to the orbit determination process (Figure 5.12), the differential

corrections operation and the ephemeris generation. The differential corrections (DC)

operation performs the orbit determination. The DC requires an a priori state, which was

chosen to be the initial state of the generated input. Using the a priori state as the first

approximation, the DC fits the observation data using the weighted least-squares method.

The output from the DC is the converged initial state of the determined orbit, which is used

as the initial state of the ephemeris generation. The ephemeris produced consists of two

parts, the fit span and the predict span. The fit span is the portion of the ephemeris

corresponding to the time of the observations used to determine the orbit. The predict span

is everything that follows the fit. The ephemeris generation stores both spans into a single

ASCII file, like the one created in the generation of the target orbit. This file is ported to

Draper's Data Center 1 (DC 1) for comparison with the "truth" target orbit.

The steps in this process may use any of the orbit propagators available on GTDS.

During this project, the DSST, the Cowell, and time-regularized Cowell propagators were
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used at different times in the processing; in most instances, the propagator of choice was

Cowell. But in each case, the same propagator was used throughout the process.

N2y,9ol.0 DC convereand, EPHEM Orbit Determninedw,
(from sim.) State (for comparison)

Figure 5.12 Data Flow of the Orbit Determination Process

In an attempt to reproduce the target orbits, the same force models were used in the

orbit determination process as the ones used in the generation of the target orbit. Unless

otherwise stated within the section describing a specific orbit, the previous statement

should be assumed. In Section 5.3, the use of different force models is discussed.

To test the sensitivity of the orbit determination to different time considerations,

three different observation files were generated for each orbit and antenna configuration.

These observation files present the navigation solutions at three different measurement

densities. These densities are defined by the amount of time between navigation solution

opportunities: one minute, four minutes, and fifteen minutes. Also the portion of the

observations that was actually read by the DC was varied from one to two weeks.

Before the orbit determination process was performed on any of the target satellites,

there should be knowledge of the errors that can be attributed to the deterministic analysis

process. For this reason, a validation was performed on the analysis process. In this

validation, the analysis errors were isolated from the simulated errors and the errors due to

mismodeling.

5.2.1 Validation of the Deterministic Analysis Process

To perform the validation of the deterministic analysis process, the "truth" orbit of a target

satellite was run through the entire process without introducing any errors, from the

simualtion or from force mismodeling. The simulation was operated with the satellite clock
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and ionospheric delay algorithms turned off. The orbit determination used the exact force

models that were used in the production of the target's "truth" orbit. By not including these

error sources, the remaining errors can be attributed to the normal performance of the

deterministic analysis process.

To expedite the validation, the navigation solutions from the validation of the

navigation solution algorithm were used as the input to the orbit determination process.

The navigation solutions were processed from the Borealis node at noon "truth" orbit with

the errors turned off for purposes of isolating the errors in the navigation solutions that

were associated with the algorithm. These solutions had total position errors with a mean

value of 1.5 centimeters and a standard deviation of 3.1 centimeters.

The orbit determination process was performed using the same set of force models

used in the production of the Borealis NAN "truth" orbit. These force models are:

* Atmospheric drag using the Jacchia-Roberts atmospheric density model

* The JGM2 gravitational potential field with degree and order of 50

* Solar and lunar point masses

* Solar radiation pressure

* Solar and lunar solid Earth tidal effects

The epoch for this process was April 21, 1999 at 1:48AM UTC time. There are no

data on the actual atmospheric density for this future time, so the input to the Jacchia-

Roberts density model used a predicted and smoothed model of solar activity and

geomagnetic indices.

The observations used in the orbit determination had a measurement density of one

navigation solution for every four minutes, and a total duration of two weeks. This

observation set was selected because the DC process would not be able to use all of the

observations presented in the one minute density set for the entire two week period. The
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initial conditions for the DC were the values for position and velocity for the epoch time of

the "truth" orbit.

The results of the comparison between the determined orbit and the "truth" orbit

were remarkable. In the fit span of the determined orbit (Figure 5.13), the errors from the

analysis process were on the order of half a millimeter in total position error and 0.375

micrometers per second in total velocity error. After 16 days of prediction (Figure 5.14),

the errors only reached 4 millimeters in total position error and 3.75 micrometers per

second in total velocity error. This extremely low level of error indicates that the analysis

process contributes very little to the total errors in the output.

With the recognition of its impressive performance, this analysis process was

performed on four different orbit configurations: Ellipso Borealis with the ascending node

at noon, Ellipso Borealis with the ascending node at midnight, Ellipso Concordia, and

Molniya. The result of the orbit determination process for each orbit type is presented in

the next sections.

5.2.2 Ellipso

The Ellipso System is one of the new satellite telecommunication systems that is currently

in development [14,15]. This system is designed to provide nearly global cellular

communication with a direct link from the cellular phones to the satellites. The name

Ellipso was selected from the elliptical orbits used in two of the three planes of the satellite

constellation. The three orbital planes are broken down into two classes: the Borealis

planes, which use the elliptical orbits; and the Concordia plane, which uses a near-circular,

near-equatorial orbit. These classes of orbits were each examined for the possibility of

orbit determination using GPS. The standard epoch for the orbit determination was April

of 1999, at precisely 1:48 AM UTC time.
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5.2.2.1 Borealis

The Borealis portion of the Ellipso constellation consists of two sun-synchronous elliptical

orbits, each containing five satellites. The term sun-synchronous refers to a critically

inclined orbit with a precession rate that matches the Earth revolution rate about the Sun.

As a result, the ascending node of the orbit is consistently at the same local time. The local

time of the ascending node is used in the identification of the Borealis orbits: node at noon

(NAN) and node at midnight (NAM). As the local times indicate, the planes of these orbits

are evenly spaced. The elliptical orbits have a perigee height of approximately 630 km in

the southern hemisphere and an apogee height of about 7600 km in the northern

hemisphere. This configuration results in an extended high-altitude pass over the northern

hemisphere, where a majority of the cellular phone users reside. These orbits in

combination with Concordia provide 24-hour coverage of the Earth, with the exception of

extreme Southern latitudes.

These NAN and NAM Borealis orbits have slightly different behavior

characteristics. This is due to the facts that the shadowing conditions are different and that

the drag environment at perigee is different. To evaluate the orbit determination

possibilities for the Borealis subconstellation, each orbit is examined separately.

As described earlier, the Borealis node at noon orbit was used in the early testing of

the simulation. Because the pieces were already in place when the simulation testing was

complete, this orbit was the first to undergo the orbit determination process. But before

performing the orbit determination process, the error characteristics of the different antenna

configurations were examined (Table 5.1). The error characteristics of the zenith antenna

configuration are similar to those of the TOPEX LEO orbit, only slightly worse in the mean

and standard deviation. For the nadir configuration, the navigation solutions are drastically

affected by the increase in ionospheric delay. The two-antenna configuration has error

characteristics that fall between the other cases, but it leans toward the zenith
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characteristics. By employing the blocking function, the errors in the nadir and two-

antenna cases are reduced significantly; the nadir improves beyond the unblocked two-

antenna, and the blocked two-antenna produces the best results of all (Figure 5.15). From

these statistics, the blocked two-antenna case should produce the best estimate of the true

orbit, followed in order by zenith, blocked nadir, standard two-antenna, and standard nadir

cases.

Table 5.1 Error Characteristics for Borealis NAN (in meters)
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Figure 5.15 Borealis NAN Navigation Solution Errors - Two Antennas, Blocked
Ionosphere
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Antenna Configuration Mean Error Standard Deviation

Zenith 90.1879 76.3855

Nadir 1705.1599 1280.9419

Two Antenna 246.1895 374.7431

Nadir (blocked ion.) 238.1807 249.9126

Two Antenna (blocked ion.) 50.6567 59.5771



The first attempt at orbit determination for the Borealis node at noon orbit was

performed using the densest and longest of the observation files. This file contained the

observations from the two antenna unblocked configuration with the one minute density for

a two-week time period. The simulation only lost five percent of the total times due to too

few GPS signals and rejections for unacceptable geometry. The file was too long for the

DC to accept all the observations; it could only accept 10 days, 13 hours, and 16 minutes

worth of data. The DC quickly converged on a set of initial conditions and the ephemeris

was compared the true orbit. The total position errors in the fit span (Figure 5.16) reached

a maximum value of about 45 meters with a mean of 30 meters, and velocity errors up to

25 millimeters per second with a mean of 13.3 millimeters per second. The error growth in

the predict span (Figure 5.17) was approximately linear for the first 8 days, rising from

about 45 meters to about 75 meters in position and from about 25 to about 60 millimeters

per second in velocity; by the end of 19 1/2 day predict span, the total errors rose to 225

meters and 0.25 meters per second.

The second set of observations had the one minute data density for two weeks

using two antennas, but the ionosphere had been blocked from the observations. This

blocking reduced the number of observations by another nine percent. The DC still could

not accept all the observations, but it did take 11 days, 14 hours, and 21 minutes. Again,

the DC converged quickly, but the comparison with the "truth" showed a significant

improvement in both the fit and predict spans. The total position errors in the fit span

(Figure 5.18) only reached 3 meters with a mean of 1.9 meters, and the total velocity errors

up to 1.65 millimeters per second with a mean of 0.889 millimeters per second. The

growth rate in the predict span (Figure 5.19) is not linear, but the errors only grow from 3

meters to about 45 meters in position and from 1.65 to approximately 45 millimeters per

second in velocity, both over a period of 18 1/2 days. From the examination of the error

characteristics, this result was expected.
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At this stage in the testing, the point was made that the one minute measurement

density may not be realistic. The amount of data accumulated from attempting to generate

navigation solutions every minute may be too unwieldy for the target satellite to transfer to

its ground stations. From this point on, the maximum observation density for the orbit

determination process was once every four minutes.

All antenna configurations and blocking conditions were examined for the four

minute density with two weeks of observations (Tables 5.2 and 5.3). The four minute

density cases produced results that were as good as or better than the better of the one

minute density cases (Figures 5.20 and 5.21); neither of the nadir facing antenna cases are

included in that statement. The poor performance of the blocked nadir case is somewhat

puzzling. Its error statistics are comparable with those of the unblocked two antenna case,

but the errors in the predict span are much worse. As a result of the blocked ionosphere,

Table 5.2 Borealis NAN OD Position Errors (in meters) - 4 Minute Density

Fit Span Predict Span
Antenna Configuration Mean Std. Dev. Max Max
Zenith 6.9195 2.9415 12.7 47.8

Nadir 340.1995 61.8215 459.0 596.6

Two Antenna 28.3662 5.5568 36.9 46.1

Nadir (blocked ion.) 12.8306 4.7638 27.4 184.4

Two Antenna (blocked ion.) 2.1947 0.5194 3.7 8

Table 5.3 Borealis NAN OD Velocity Errors (in millimeters/sec) -4 Minute Density
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the nadir blocked configuration has the lowest number of observations, 26.7% of the total

time steps. This low number of observations may be the reason for this poor performance.

The remaining tests on the Borealis NAN orbit determination focused on reducing

the amount of observations without severely impacting the results of the process. The

density of the observations was dropped to once every fifteen minutes (Tables 5.4 and

5.5). Since the two-antenna cases were producing the best results, their configuration was

chosen to be the baseline of the tests. In another test, the duration of the fit span was also

reduced by half while maintaining the fifteen minute observation density. In each case, the

error characteristics of the fit span were barely affected by the reducing in density or

duration (Figures 5.22 and 5.23). Reducing the density of the navigation solutions had

little effect on the predict span of the unblocked case, but the blocked case's predict

changed notably (Figure 5.24). Reducing the length of the fit span resulted in a more rapid

growth in the predict span (Figures 5.24 and 5.25).

Table 5.4 Borealis NAN OD Position Errors (in meters)
Antennas

- 15 Minute Density, Two

Fit Span Predict Span
Duration Mean Std. Dev. Max Max
2 Weeks (unblocked) 32.3277 6.3456 41.9 62.4

2 Weeks (blocked) 3.1340 1.3868 6.2 66.0

1 Week (unblocked) 34.1481 6.5670 48.4 1021.6

1 Week (blocked) 3.0046 0.7776 5.6 180.8

Table 5.5 Borealis NAN OD Velocity Errors (in millimeters/sec) - 15 Minute Density, Two
Antennas

Fit Span Predict Span
Duration Mean Std. Dev. Max Max
2 Weeks (unblocked) 14.0618 4.416 24.0 28.8

2 Weeks (blocked) 1.5293 0.68994 3.6 58.9

1 Week (unblocked) 14.9208 4.8668 27.8 963.7

1 Week (blocked) 1.4505 0.59502 3.2 169.5
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Although they have some behavioral differences, node at noon and node at

midnight are similar orbits. Their error characteristics are not identical, but they are

relatively close to each other (Table 5.6). For this reason, the results of the node at

midnight were not expected to deviate terribly from those of the node at noon.

Table 5.6 Error Characteristics for Borealis NAM (in meters)

Antenna Configuration Mean Error Standard Deviation

Zenith 88.1328 69.367

Nadir 1789.8352 1594.9881

Two Antenna 221.1131 286.6109

Nadir (blocked ionosphere) 227.45 244.3582

Two Antenna (blocked ion.) 48.2728 51.0939

The Borealis node at midnight was examined using the same antenna configurations

and blocking conditions for its two weeks of observations at four minute density. The

results of these orbit determination processes were reasonably comparable with those for

the node at noon; the zenith configuration produced a more accurate sixteen day prediction

than the two antenna case with the ionosphere blocked (Tables 5.7 and 5.8). The two

antenna case provided a more accurate prediction for the first week, but its error growth

rate was higher than that of the zenith case (Figures 5.26 and 5.27). Since most orbit

prediction applications are interested in the shorter term predictions, the two antenna

blocked configuration was still considered the better case.

5.2.2.2 Concordia

Although Concordia [14] is not an elliptical orbit, it does fall into the other category

mentioned in the thesis title: medium altitude. Concordia is a near-circular equatorial orbit

with a radius of approximately 14428 km. Also, all Ellipso satellites will be identical,
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regardless which plane they are occupying. So, the Concordia orbit must also be evaluated

for orbit determination with GPS.

Table 5.7 Borealis NAM OD Position Errors (in meters) - 4 Minute Density

Fit Span Predict Span
Antenna Configuration Mean Std. Dev. Max Max
Zenith 6.1099 2.0821 11.9 14.6

Nadir 356.0985 46.4418 442.9 680.9

Two Antenna 23.6153 5.4592 39.0 232.7

Nadir (blocked ion.) 12.0079 4.0728 22.9 91.1

Two Antenna (blocked ion.) 1.6343 0.66936 3.4 45.1

Table 5.8 Borealis NAM OD Velocity Errors (in millimeters/sec) - 4 Minute Density

Fit Span Predict Span
Antenna Configuration Mean Std. Dev. Max Max
Zenith 2.6041 0.99305 5.9 9.4

Nadir 148.2219 47.1231 267.9 523.3

Two Antenna 10.0798 3.2317 20.3 204.6

Nadir (blocked ion.) 6.0267 3.6439 15.2 68.9

Two Antenna (blocked ion.) 0.84285 0.44096 2.9 41.3

Because of the high altitude, the zenith configuration never receives enough GPS

signals to produce a navigation solution. The nadir configuration acquires enough signals

for solutions about half of the time, but the solutions exhibit the same levels of error as

usual. The two antenna configuration is more likely to acquire GPS satellites with a good

geometric distribution. Besides these considerations, the previous paragraph states that the

Ellipso satellites are identical and the Borealis planes achieve their best orbit determination

performances using the two antenna arrangement. So all Concordia processes used the two

antenna configuration.
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Because the Concordia orbit does not have the large changes in velocity and

altitude, its initial orbit determination tests were performed with an observation density of

fifteen minutes. Using one or two weeks worth of observations, the orbits produced from

this fifteen minute data provided outstanding predictions for periods of three or two weeks,

respectively (Tables 5.9 and 5.10). Blocking the ionosphere produces even better result

(Figures 5.28 and 5.29). The error growth in the predict span of each case is nearly linear

throughout the span (Figure 5.29). The density was increased to one measurement every

four minutes to observe Concordia's reaction, but there was no appreciable difference in

the performance.

Table 5.9 Concordia OD Position Errors (in meters) - Two Antennas, 15 Minute Density

Fit Span Predict Span
Duration Mean Std. Dev. Max Max
2 Weeks 31.0344 13.3512 49.0 54.8

2 Weeks (blocked ion.) 2.7979 1.2307 5.7 11.4

1 Week 33.0769 13.6223 50.8 105.5

1 Week (blocked ion.) 3.0825 1.6249 7.8 35.8

Table 5.10 Concordia OD Velocity Errors (in millimeters/sec) - Two Antennas, 15 Minute
Density

Fit Span Predict Span
Duration Mean Std. Dev. Max Max
2 Weeks 11.1336 4.9501 17.3 17.9

2 Weeks (blocked ion.) 0.90264 0.34468 1.8 2.8

1 Week 11.8743 4.9582 18.5 33.1

1 Week (blocked ion.) 1.059 0.54869 2.5 11.4
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5.2.3 Molniya

The Molniya class of orbit is a favorite of the former Soviet Union. The Russians have

placed many communication and surveillance satellites in this type of orbit [34]. A Molniya

is a highly eccentric orbit with a period of twelve hours. The name Molniya comes from

the Russian word for lightning, and it was given to these orbits for the high velocity at

which they passed through perigee (as low as 400 km altitude). The main feature of this

type of orbit is its nearly critical inclination. This orbit reaches apogee at approximately

40,000 km altitude, which is well above the altitude of the GPS satellite's orbit (20,200

km). Because of this extremely high altitude, orbit determination based on the use of GPS

measurements was expected to be more difficult.

For the Molniya target orbit, the perigee and apogee altitudes are 450 km and 39730

km, respectively. The error characteristics from the simulation were not extraordinarily

high (Table 5.11), but the measurements were sparse; this scarcity of observations was due

to the extended duration that the satellite spends at very high altitude. Using the two

antenna configuration, the simulation only produced solutions about ten percent of the time

during this orbit's processing; the single antenna cases only produced half of that amount.

With two antennas, these solutions can be calculated from altitudes as high as 17,000 km

or even 33,000 km (from the far side of the GPS constellation) (Figure 5.30).

Table 5.11 Error Characteristics for Molniya (in meters)

Antenna Configuration Mean Error Standard Deviation

Zenith 88.6468 78.6841

Nadir 2689.4688 3909.29

Two Antenna 1034.898 3343.3516

Nadir (blocked ionosphere) 304.6109 346.0166

Two Antenna (blocked ion.) 72.1693 133.7917
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Figure 5.30 Number of Satellites in View for the Molniya (both antennas)

The full set of antenna configurations and blocking conditions were tested for their

performance. The observations from the full two weeks were input with a four minute

density, and the propagator for the orbit determination process was time-regularized

Cowell. The epoch used for this orbit was January 1, 1995 at 11:03 AM and 28.656576

seconds. The atmospheric density used for this epoch was smoothed in a similar way as

the density for the April 1999 epoch. The results were similar to those of the other orbits,

but the cross-track error appeared to dominate the total; the total errors for each case

appeared as a band with the approximate size of the cross-track errors (Figure 5.31) and

very little variation throughout the fit and predict spans (Figures 5.32 and 5.33). Because

of the shortage of input data, this performance seemed impressive. To determine if the

results would improve with more data, the two-antenna cases were reprocessed using one

minute observation density for the full two weeks. There was no apparent improvement

with the higher data density.
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Table 5.12 Molniya OD Position Errors (in meters)
Obs.

- 4 Minute Density, 2 Weeks of

Fit Span Predict Span
Antenna Configuration Mean Std. Dev. Max Max
Zenith 37.3140 16.1638 63.5 64.7

Nadir 961.6131 414.1428 1474.7 1421.9

Two Antenna 119.6393 55.3957 189.1 261.0

Nadir (blocked ion.) 132.7123 64.1570 204.1 263.2

Two Antenna (blocked ion.) 16.2870 7.5542 25.3 23.7

Table 5.13 Molniya OD Velocity Errors (in millimeters/sec) - 4 Minute Density, 2 Weeks
of Obs.

Fit Span Predict Span
Antenna Configuration Mean Std. Dev. Max Max
Zenith 3.2251 1.9364 14.0 53.6

Nadir 87.4423 64.3121 370.0 568.4

Two Antenna 11.6337 9.2528 51.8 217.9

Nadir (blocked ion.) 11.0520 7.5251 29.8 217.1

Two Antenna (blocked ion.) 1.3552 0.85256 3.3 11.2

Crss-TrraPAbsionra (nt aCo )

S2 4 6 8 10 12 14
Time from Jenuar 1,1995 11:03 AM (in DaIs)

4
Time from Januwy 1, 1995 11:3 AM (in Days)

Figure 5.31 Crosstrack Errors in Molniya - Two Antennas, Blocked Ionosphere, 4 Minute
Density, 2 Weeks of Obs. (Fit Span)
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5.3 Effects of Mismodeling

In the initial orbit determination processes, the GTDS operations are set up to duplicate the

models used in the generation of the target orbit. This type of test is conducted to evaluate

the accuracy of an orbit that was determined using the exact force models. But in reality,

the models used in the orbit determination will not match the actual forces experienced by

the spacecraft. So, in a selected number of cases, the orbit determination process was

repeated using a different variant of some of the force models. Some of these variations

were:

* employing the GEMT3 geopotential field instead of JGM2

* reducing the degree and order of the current geopotential model (either JGM2 or
GEMT3), in one case to as low as 12

* using a different atmospheric density model

* varying the coefficients of drag or solar radiation pressure between the fit and predict

spans of the ephemeris

In the cases when the coefficients were changed between the fit and predict spans, the

ephemeris generation had to be initiated for each of the spans and each span was stored in a

separate file.

Each of these model changes tests the sensitivity of the orbit to that type of force

model error. For instance, a LEO orbit or an eccentric orbit with a low perigee height is

extremely susceptible to changes in atmospheric density and drag characteristics.
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5.3.1 Borealis

The Borealis orbits were the subject of the most mismodeling experiments. The size and

model of the geopotential field were changed, as were the effects of drag and solar radiation

pressure. The effects of each change were examined individually.

The effects of solar radiation pressure were changed by altering the coefficient of

solar reflectivity by twenty-five percent between the fit and predict spans of the ephemeris.

This alteration causes an increase in position error on the order of 12-14 km after a two

week prediction (Figures 5.34 and 5.35). The same technique was also used on the

coefficient of drag, but this change was only by twenty percent. The change in drag caused

errors of 25 to 35 km, depending on whether the drag was decreased or increased (Figures

5.36 and 5.37).

Drag was mismodeled in more than one way. In addition to the change in the drag

coefficient, the atmospheric model was also changed from Jacchia-Roberts to Harris-

Priester. This model change introduced an error of 200 meters in the fit span and 17

kilometers in the predict span (Figures 5.38 and 5.39). The errors also exhibit an

oscillating behavior through the fit span, ranging from 0 to about 80 meters.

The next drag mismodeling case included a change in the simulation epoch. The

entire analysis process ("truth" generation, simulation and OD) was performed in February

of 1992, during a period of high solar activity and high geomagnetic index instability. The

high solar activity increased the atmospheric density; the geomagnetic index instability

produced significant short-term variations in the atmospheric density. Initially, the orbit

was determined using observations from the unblocked two antenna configuration. For

this epoch, the fits produced with these observations were consistent with each other,

regardless of the density and duration. But this noisy drag environment produced different

levels of error in the predictions depending on the observation density, the length of the fit

span, and which week of the epoch was used in the one-week fits (Tables 5.14 and 5.15).
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The predict spans varied with the length and timing of the fit spans. A two week fit was

followed by a 16 day predict. For the one week fits, the predict span length depended on

which week was used; the predict span was 23 days for the first week fit, and 16 days for

the second.

Table 5.14 Borealis NAN OD Position Errors (in meters) - '92 Epoch

Fit Span Predict Span
Density/Duration of Obs. Mean Std. Dev. Max Max
4 min., 1 week (first) 30.6683 8.9722 46.9 1593.1

4 min., 1 week (second) 27.2374 9.9017 44.0 353.7

4 min., 2 weeks 29.0184 9.5709 48.4 308.8

15 min., 1 week (first) 29.1351 8.151 40.6 282.7

15 min., 1 week (second) 28.686 8.6566 43.3 369.4

15 min., 2 weeks 28.7066 8.1904 41.8 501.3

Table 5.15 Borealis NAN OD Velocity Errors (in millimeters/sec) - '92 Epoch

Fit Span Predict Span
Density/Duration of Obs. Mean Std. Dev. Max Max
4 min., 1 week (first) 14.4609 5.7591 25.2 1470.7

4 min., 1 week (second) 13.035 5.5536 23.6 332.7

4 min., 2 weeks 13.649 5.68 24.4 294.7

15 min., 1 week (first) 13.824 5.6777 29.7 254.6

15 min., 1 week (second) 13.3681 5.2681 24.2 349.3

15 min., 2 weeks 13.3248 5.4992 29.5 473.9

The last of the drag mismodeling cases was a combination of the previous two

cases. This combination of noisy atmospheric density and a less accurate density model

used in the orbit determination process should produce the most severe effects for drag

mismodeling. The case lived up to these expectations. The fit span started with an

extremely high error value of 12 kilometers, but dropped to a more reasonable value within
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the first 3 days; it also exhibited the same oscillating behavior seen in the mismodeling with

Harris-Priester alone, but with an upper bound of approximately 600 meters. The error in

the predict span displayed a rapid growth rate and climbed to a value of 89 kilometers.

The geopotential field was not left out of the mismodeling. Both the field size and

the field model were changed in the course of the tests. The field size had a more

pronounced effect on the orbit than the model type. A change in field size from 50 X 50 to

21 X 21 resulted in a total position error of approximately 3 km over sixteen days of

prediction (Figure 5.42). A change in the field model from JGM2 to GEMT3 only

produced differences of less than 8 meters in the fit span and 153 meters in the predict span

(Figure 5.43 and 5.44).
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5.3.2 Concordia

Some attempts were made to mismodel the forces acting on Concordia, but these attempts

were made in vain. Due to the altitude of the orbit, the effects of the geopotential field and

drag are negligible. The only mismodeled force that affected this orbit is the force due to

solar radiation pressure. However, the effects of this mismodeling were much less

dramatic than those experienced by Borealis. The induced errors were an order of

magnitude smaller (Figures 5.45 and 5.46).

5.3.3 Molniya

The main focus of mismodeling for the Molniya orbit was the geopotential field model. In

the first test, the size of the geopotential field was reduced to a degree and order of 12.

This reduction in the field induced total position errors on the order of 17 km after sixteen

days of prediction (Figure 5.44). These errors swamped all of the other error

contributions. While at this reduced field size, the geopotential model was changed from

JGM2 to GEMT3. But the effects of the reduced field size overwhelmed any errors

associated with this change.

The size for the geopotential field was increased in each subsequent test, from the

initial 12 to 16, to 21, and finally to 36 (Tables 5.16 and 5.17). For each of the second and

third tests, the size of the induced errors was reduced by half. By the time the geopotential

size was brought up to 36, the errors were reduced to the same level as those experienced

using the 50 X 50 geopotential model.
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Table 5.16 Molniya OD Position Errors (in meters) - Mismodeling Geopotential Field

Fit Span Predict Span
Field and Size Mean Std. Dev. Max Max
JGM2, 12 x 12 140.1483 59.3275 316.7 17442

GEMT3, 12 x 12 140.1766 59.3834 319.4 16197

JGM2, 16 x 16 124.3468 55.2783 236.6 7882.1

JGM2, 21 x 21 121.2930 57.4639 210.6 3739.5

JGM2, 36 x 36 113.9074 54.5253 184.4 226.7

Table 5.17 Molniya OD Velocity Errors (in millimeters/sec) - Mismodeling Geopotential
Field

Fit Span Predict Span
Field and Size Mean Std. Dev. Max Max
JGM2, 12 x 12 16.6463 19.5807 231.0 15074

GEMT3, 12 x 12 16.7517 19.9572 234.4 14006

JGM2, 16 x 16 12.3146 9.9974 67.5 6744.4

JGM2, 21 x 21 12.8354 11.9002 101.1 3256.0

JGM2, 36 x 36 11.2981 9.2264 54.9 202.0
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5.4 Disposition of OD Related Data

There are three groups of data that were used in the operation and analysis of the orbit

determination process. They are the observation data, the orbits produced from the OD,

and the files required for the operation of the OD. These data are stored in different

locations in the Draper Laboratory computer environment.

The observation data is stored on DC1. It is placed under the directory

/usr/people/jgn4786/thesis/mpi/data. Included with this data is all of the statistical data that

was collected from the simulation during its operations.

The output from the orbit determination process is also stored on DC1. The

directory for this data is /usr/people/jgn4786/fit. The individual orbits are stored in

subdirectories of this main directory. These subdirectories are named after the orbits stored

within. For example, the determined orbits for Molniya are in the /molniya subdirectory.

Both Borealis orbits are in the /borealis subdirectory. But within that subdirectory, each

have a lower subdirectory named for its node (/nanoon and /namid). The files in these

directories include the output files from the OD process, the ASCII ORB 1 files, and the

stripped files for graphic processing.

The operational files are not on DC1, but on the VAX. These files were

constructed to operate the VAX GTDS, so they were stored where they were most useful.

The directory setup is similar to that described for the OD output files. Each orbit's

operational files are stored in subdirectories of the ELROND$DKAO:[JGN4786.THESIS]

directory. The subdirectories are also named after the orbits, with the same division under

Borealis. To use these files, they must be copied into the thesis directory or the

J2000_SWAT_GTDS.COM file must be copied into the appropriate subdirectory. During

this project, the former was chosen to conserve space on the VAX. Once the operation of

an individual process was complete, the copies of the operational files were removed from
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the thesis directory. After porting the output over to DC1, the output files from the process

were also erased from this directory. If these steps had not been taken, the VAX would not

have been available for the OD processes.
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Chapter 6

Conclusions and Future Work

This work examined the use of GPS navigation solutions as measurements in the orbit

determination process for higher altitude elliptical orbits. Some concerns associated with

this question are the visibility between such orbits and the GPS constellation, and the

increase of ionospheric delay experienced when using a nadir facing GPS antenna. The

current work is an extension of an earlier investigation [8] in which the use of actual

navigation solutions as a measurement source was demonstrated for several LEO orbits

(TOPEX, TAOS, and EUVE).

A prerequisite to the performance of this examination was the production of

simulated GPS navigation solution data for the selected orbit determination process. The

previous application of this method had used actual navigation solution data for several

LEO satellites, but no such data was available for the higher altitude elliptical orbits. A

simulation was constructed to produce an approximation of the GPS navigation solutions

for use in orbit determination.

The simulation requires the true orbit of the satellite as input for determining its

GPS navigation solutions. This orbit was generated using the Cowell special perturbations

propagator in GTDS to compute the precise osculating orbit. The simulation uses this orbit

to identify the true position and velocity of the satellite at any time during the simulation's

run.

The simulation also requires a representation of the GPS constellation. This

representation does not need to be as precise as the orbit of the receiver's satellite, but the

satellite distribution characteristics are required to be similar to those of the actual GPS

constellation. An analytical approximation of the GPS orbit was used with a generic epoch
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for its initial conditions. The positions presented by this GPS approximation are used by

the simulation as the true positions of the GPS satellites.

The simulation uses the positions of the receiving satellite and the GPS satellites at a

given signal reception time to determine the ranges between them. The range between the

receiver and each GPS satellite is converted to a time of signal transit, which includes the

delays associated with passage through the ionosphere. Each GPS satellite's position is

reevaluated based on its time of signal transmission. The geometry between the receiving

satellite and each GPS satellite is evaluated to identify the GPS signals that could reach the

receiving satellite. For each receivable signal, the times of transit are modified by the

addition of realistic errors related to the performance of the GPS satellites' clocks while SA

is in operation. The new transit times are subtracted from the reception time to determine

the times that the receiver believes the GPS satellites began their transmissions. The

positions of the GPS satellites at their perceived transmission times and the pseudoranges

determined from the modified transit times are used as inputs to a navigation solution

algorithm. This algorithm selects the four received GPS signals that have the best

geometry and computes an initial estimate of the position. This estimate and all of the GPS

signals are used as input to an iterative least squares approximation. The result of this least

squares approximation is the GPS navigation solution for the given reception time.

This simulation could have been implemented in a sequential program, but the

number of repetitive computations gave an indication that the simulation was a candidate for

parallel processing. The simulation was implemented using the MPI Standard as the basis

of its parallelization. The architecture selected for this program was a modified version of

the master-slave architecture. The master's primary responsibility is the assignment of

tasks, and all of the computations are left to the slaves. The slaves take their assigned time

of signal reception, determine the target satellite's position, calculate the pseudoranges and

ephemeris positions of the GPS satellites in view, and request their next assignments from

the master. The slaves are not capable of depositing their results in a common file, and
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passing any additional responsibilities to the master would slow its response to a request

for a new assignment. So, a special slave was designed to provide a single point for output

processing. Also included in the special slave's responsibilities is the performance of the

navigation solution algorithm.

The simulation was tested to evaluate the performance of its algorithms and the

quality of the navigation solutions it produces. Then, the navigation solutions from the

simulation were used in the orbit determination process. In addition, an examination of the

effects of force mismodeling was conducted.

6.1 Conclusions

The ,imulation has performed as expected. The patterns of GPS satellite acceptance match

tho,•c predicted in the geometric analysis of the effects of receiver satellite altitude on two-

%a 'atiibilit% between the GPS satellites and the receiver. The test of the navigation

~olutt ion algorithm with no GPS related errors included in the simulation demonstrated

.c'ur' Iit, within 1.6 meters; each instance of elevated error was also accompanied with a

Iiph eIcel tof GDOP. A comparison of the simulated GPSR navigation solutions with

.,itual (GISR navigation solutions for the TOPEX case revealed that the simulation is

pr Ju,. in-_ %4 lutions with a similar "look and feel," but the precise statistics of these errors

ar" ,,nc~ hat different; contributions to this difference may be incomplete modeling,

tnIt, cimn, of the ionosphere, using more simultaneous GPS signals than the actual

receiver could handle, and rejecting potential navigation solutions due to poor geometry.

The results of orbit determination processes employing the simulated data and ideal

force modeling are very promising. For all orbit configurations studied (Ellipso Borealis,

Ellipso Concordia, and Molniya), the differential corrections process converged to a

solution. The best results came from the navigation solutions using two antennas and
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blocking the signals from below that passed through the ionosphere. The four minute

observation density is the favored choice for performing the orbit determinations, and the

longer fit spans usually produced better fits and predictions. While some of the tested

satellites had exceptionally low levels of error in their predictions, all of them had errors of

less than 50 meters after two weeks of predictions when using the favored antenna

configuration with four minute measurement density and a two week fit span. However,

all of the "truth" orbits and their ODs were performed using a smoothed model of the

atmospheric density. Additional testing should be performed using a noisier representation

of the atmosphere.

The effects of force mismodeling varied greatly with the orbital configuration. The

OD for the Borealis orbits is susceptible to the mismodeling of solar radiation pressure,

drag, and the geopotential field model and size. Of these forces, the mismodeling of drag

had the greatest impact on the accuracy of the Borealis ODs. The Concordia OD is only

affected by the mismodeling of solar radiation pressure; because of its high altitude and low

eccentricity, Concordia experiences very small accelerations due to drag and the

geopotential field, so mismodeling them has little effects. The Molniya OD was only tested

for mismodeling of the geopotential field; the errors from the truncated geopotential

decreased by a factor of 2 for every increase of 4-5 in the geopotential field size from a

minimum size of 12 x 12. Additional mismodeling tests should be performed on all of the

target orbits to determine any functional relations between these forces and the errors they

produce. Because of the low altitude of the selected Molniya orbit, tests should be

conducted on its response to drag mismodeling.
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6.2 Recommendations

Orbits determined from GPS navigation solutions can be extremely accurate. But the

accuracy depends on the quality, duration, and density of the navigation solutions.

The best quality navigation solutions for these higher orbits are always produced

using the two-antenna configuration with an algorithm to ignore signals received by the

nadir antenna that have passed through the ionosphere. In addition to the quality, the two-

antenna configuration also provides more navigation solutions at high altitudes, and it has a

higher altitude ceiling to its measurement capability than either antenna alone.

An observation density of one navigation solution every four minutes appears to be

the best for orbit determination purposes. Higher densities seem to provide little

improvement on the OD performance. Lower densities can be selected for applications that

have a lower accuracy requirement.

An adequate duration for the observations depends on the length of time desired for

the predict span, the size of errors allowable in the predict span, and any unmodeled effects

in the OD. An example of the dependence on unmodeled effects is drag variability; if the

OD treats drag as a constant in a noisy drag environment, longer durations can produce

larger errors. Before selecting the duration, the characteristics of the desired predict span

and the unmodeled effects should be identified, and the impact of these unmodeled effects

should be evaluated.

Potterveld suggested the use of arcs of navigation solutions as opposed to a

continuous stream [77]. This approach was suggested as a way to reduce the power

consumption of the GPS receiver. This method sounds promising. In fact, a similar type

of segmenting occurred in the simulation naturally from the lack of visibility at higher

altitudes (zenith antenna configuration for Borealis, two antenna configuration for

Molniya), and the OD still produced orbits with reasonable levels of error. To verify that
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this method is appropriate for an individual orbital configuration, the OD performance with

this segmented data should be determined.

Unless the GPS receiver antennas being used on a satellite have a small reception

cone, the only reason to employ more than two antennas for position purposes is for

redundancy. By the time a satellite reaches 4000 km altitude, its nadir and zenith antenna

combination using antennas with a reception half-beam angle of 700 can receive signals

from all GPS satellites that are capable transmitting to its position. Additional antennas will

be required if the satellite is also using GPS for its attitude determination.

The Ellipso spacecraft (Borealis and Concordia) and the two antenna nadir-zenith

configuration are an excellent match for mutual performance. To achieve the best

communication performance, these spacecraft maintain a nadir pointing direction at all

tinles. B% mounting the antennas with their central axes on or parallel to this pointing axis,

the antenna directions will be maintained by the altitude control system of the spacecraft

without an% special considerations. This feature in combination with the increased

na ig'atamon olution capability makes the antenna configuration an exceptional choice for

6.3 Future Work

Til- nuILlatnon is a first attempt at modeling GPS navigation solutions. There are several

%va% % in % hich the accuracy of the modeling can be improved. Some of the error sources

that were ignored could be included, as could the GPS ephemeris errors that were intended

to be in this simulation. Also, the ionospheric delay model could be upgraded. Another

potential improvement to the simulation is the inclusion of relativistic effects. Perhaps the

carrier phase of the GPS signals could be computed and used to enhance the accuracy of

the navigation solutions.
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But the use of this work in future projects is not limited to improving the error

models. It could also include examinations of even higher orbits, like GEO or

geosynchronous transfer orbits (GTO). The existing navigation solution algorithm could

be removed and replaced with a Kalman filter algorithm for determining the target's

position. Or the program architecture may be isolated from the algorithms and used in a

different parallel processing application.

The next sections describe some of the model improvements that may be

implemented in the simulation at some future time.

6.3.1 GPS Ephemeris Errors

As stated in Section 3.2.3.3, there are a number of ways that GPS ephemeris errors could

be added to the simulation. But the candidate that is most likely for initial implementation is

the addition of errors to the GPS satellite position as perceived by the target satellite.

One possible method for determining the amount of error to be added to the

perceived position is to generate random Gaussian errors with zero mean and a selected

standard deviation. This could be accomplished by generating the magnitude of the error

and determining a random direction for its application. For the random direction, a

Gaussian random value, with zero mean and standard deviation of one, is computed for

each of the three components. These components are combined into a vector that is

increased or reduced in size relative to a unit vector. The unit vector is multiplied by the

magnitude of the error, and the result is added to the GPS position.

6.3.2 Improving the Ionospheric Model

The ionosphere is currently modeled as a thick shell around the Earth with a uniform

electron density distribution. This implementation was selected to provide a starting point
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and to present a worst case scenario. But the electron density of the ionosphere is not

uniform. It varies with altitude, location above the Earth, local time of day, and wind

currents. Each of these variation types could be modeled, with the possible exception of

the effects of the wind.

The least complex of the improvement concepts relates to the variation with altitude.

The electron density can be determined for each point along the path based on the altitude,

and the instantaneous delay resulting from that density is accumulated in the total

ionospheric delay. This accumulation of instantaneous delay may be achievable through

analytical means.

To model the variations with location and local time, the precise location of each

point of the path through the ionosphere must be known to determine the electron density.

These models would add complexity to the simulation.

6.3.3 Relativistic Effects

Relativistic effects were mentioned in Section 1.1.2 in the description of corrections to the

time of transmission, but these effects were not described. These effects are the result of

observing a body in a moving reference frame while both the observing and observed

reference frames are being accelerated. On Earth, these effects are related to the velocities

of the GPS satellites, the change in gravitational potential between the GPS satellites and

the users, and the rotation of the Earth. The result of these effects is a change in the time

and time rate measured by the user. For instance, when observed from the Earth, the GPS

satellite clocks experience a constant frequency offset. There are also effects observable

from Earth that are related to the small eccentricity of the GPS orbits, and to the rotation of

the Earth (similar to the idea of the Coriolis effect). The changes associated with these

relativistic effects are significant because of the scale of the values being measured in the

GPS navigation solutions.
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For GPS receivers in orbit, these effects can be quite different. Their effects are

related to the velocities and eccentricities of both the GPS constellation and the receiver

satellite itself. It may also experience a completely different frequency offset from that

experienced by users on the Earth's surface.

To implement the changes from relativistic effects into the simulation, an algorithm

must be developed that can compute the timing changes based on the GPS constellation and

the target orbit. This algorithm may also have to model the prelaunch frequency adjustment

that is performed on each GPS satellite to compensate for the constant frequency offset

described earlier in this section.
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Appendix A

Software Creation and Modification

This appendix presents the software that was created or modified in the creation of the

simulation described in this thesis. The new software is divided into two cases, new

programs and stubs. The stubs are the hooks for subroutine that have not been created yet,

but are planned for the future.

A description of each new program is provided here, along with a list of its

connections to other subroutines. Only the names, purposes and the next higher

subroutines are provided for the stubs. For the single modified subroutine, gmatinv.for, a

description of the change is presented.

Following the descriptions of the new and modified software, the source code of

the main program, the master, the slave, and the navslave is presented. The code for these

programs and all programs described in this appendix is stored in Draper's Data Center 1

(DC1), a Silicon Graphics Origin 2000 computer using the IRIX 6.4 operating system; the

programs are in directory /usr/people/jgn4786/thesis/mpi.
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A.1 New Programs

This section is a listing of the new programs created for the simulation. The main program

and the top level subroutines are presented as the main divisions of this section. The lower

subroutines are listed alphabetically under their top level subroutines (master, slave and

navslave). Each entry consists of the subroutine's name, a brief description of its purpose,

its calling sequence, a list of the subroutines that call it, and a list of the subroutines it calls.

A. 1.1 gpspred.for

This is the main program of the simulation. It is responsible for setting up and closing the

MPI environment. It also performs a test to verify that at least three processes have been

requested for the programs operation. The underscore in the program name was placed

intentionally to make it easier to distinguish from the executable.

calling sequence: mpirun -np # gpspred
where # is the number of requested processes

called by: N/A

calls to: master.for
MPI_INIT.for
MPI_FINALIZE.for
MPI_COMM_RANK.for
MPICOMMSIZE.for
navslave.for
slave.for
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A. 1.2 master.for

This subroutine performs the operations of the master in the self-scheduling process. It

acquires the initialization data and distributes it to the appropriate process. It assigns the

initial tasks and waits for the slaves to request additional tasks. Requests are processed on

a first come, first served basis. If no more tasks remain, the reply to the slave is a

shutdown command. When all slaves have received the shutdown command, the master

returns to the main program.

calling sequence: call master(navid,numprocs)

called by: gpspred.for

calls to: MPI_RECV.for
MPI_SEND.for
startup.for

startup.for

This subroutine establishes values to be used in the simulation. These values are the epoch

time, the initial time since epoch, the total number of time steps, the size of the time steps,

and the input type identifier. All of these values are returned to the master.

calling sequence: call startup(itime, stepsize, nsteps, epochday, epochsec, inputype)

called by: master.for

calls to: julian.for
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A.1.3 navslave.for

This subroutine is the gatekeeper for the navigation solution. It receives the navigation data

from the slaves. If this data contains at least 4 GPS satellites, the subroutine decides how

the a priori estimate should be made and passes the data into the navigation solution

algorithm. Once the algorithm is complete or if it was bypassed, navslave resets its

variables and starts again. It returns to the main program after the last data set is processed.

calling sequence: call navslave(mastid,ecase,tcase)

called by: gpspred.for

calls to: GETENV.for
init_headers.for
initnavinfo.for
MPI_RECV.for
navfix.for

init_navinfo.for

This subroutine sets the initial values for the arrays and variable used in the calculation of

navigation solutions. The amount of the navdat array to be initialized is dependent on the

value of ecase. These values are stored in navinfo.h and can be called upon by any

subroutine in the navslave's process.

calling sequence: call initnavinfo(ecase)

called by: navslave.for

calls to: N/A
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geocheck.for

This subroutine converts the vectors from the a priori calculation matrix into unit vectors,

computes the normal to the first two vectors, and determines the angle between the third

vector and the computed normal. This angle is compared to 900 and the compared value is

returned.

calling sequence: call geocheck(priomat,geoval)

called by: navfix.for

calls to: cross.for
dot33.for
mag.for

navfix.for

This subroutine computes the navigation solution from the GPS data and stores it in an

external file. It initializes its conditional test and stores the GPS data in local variables.

Unless they are included in the GPS data, it determines the ephemeris positions of the

received GPS satellites. It selects the four satellites to be used for the a priori estimate,

tests the geometry of this selected set and computes the a priori position estimate. Or, it

extrapolates the a priori estimate from previous navigation solutions and elapsed time. If

the geometry passes the test, the iterative least squares solution is computed and stored, and

the extrapolation data is updated for the next time. Otherwise, the subroutine ends without

finding a solution.

calling sequence: call navfix(tcase)

called by: navslave.for

calls to: geocheck.for
gpsephem.for
gmatinv.for ,
mag.for
matset.for
matvec.for
mave33.for
outnav.for
selectsat.for
trucoef.for
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outnav.for

This subroutine deposits the navigation solution and the statistical data from the navigation

solution into two separate files. It time-codes the data based on the epoch and the elapsed

time in the simulation.

calling sequence: call outnav(time,priori,gdop,cndmin,cndmax,geoval)

called by: navfix.for

calls to: aldiff.for
calndr.for

selectsat.for

This subroutine selects the four GPS satellites to be used in the a priori position estimate

for the navigation solution. It constructs a matrix for each combination of four GPS

satellites and computes the determinant. All combinations with a non-zero determinant are

compared to find the one with the largest magnitude of determinant. That combination is

returned to the navfix subroutine.

calling sequence: call selectsat(gpseph, selsat)

called by: navfix.for

calls to: N/A
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A.1.4 slave.for

This subroutine performs the slave operations for the self-scheduling process. It initializes

its variables and accepts start time and input type data from the master. It enters its main

loop and receives its first assignment. It finds the position of the target satellite and the

times of transmission for the acceptable GPS satellites. It computes the clock errors and

finds the perceived time of transmission for these GPS satellites. From these times, it finds

the GPS ephemeris positions. When all 24 satellites have been evaluated, the slave

transmits the number of acceptable satellites and the navigation data to the navslave. Then,

it resets its variables and requests a new assignment. When the assignment is the

shutdown command, the slave returns to the main program.

calling sequence: call slave(mastid, myid, navid, ecase, tcase)

called byv: gpspred.for

callk to: ephcoef.for
gpstime.for
init_clock.for
init_slaveinfo.for
MPI_RECV.for
MPI_SEND.for
recvdgps.for
satclock.for
tarpos.for
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antenna.for

This subroutine calculates a unit vector in the direction of the receiving antenna's central

axis. To accomplish this task, it computes the normal vector to the orbital plane by taking

the cross product of the position and velocity of the target satellite. This normal is once

again crossed with the target's position to produce a vector that is within the orbital plane,

normal to the target's position vector, and facing the general direction of forward motion.

This vector is then rotated about the normal to the orbital plane by an angle that is passed

into the subroutine in its call. The resulting vector is reduced in magnitude to one and the

unit vector is returned.

calling sequence: call antenna(rotang,uant)

called by: verify.for

calls to: cross.for
mag.for
rotvec.for

delays.for

This subroutine sums the signal delays related to ionospheric and tropospheric effects,

multipath phenomena, and receiver measurements. It returns the delay value in units of

seconds.

calling sequence: call delays(dtime)

called by: gpstime.for

calls to: ionef.for
mpather.for
recmeas.for
tropef.for
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difference.for

This subroutine takes the difference of two three-component vectors.

calling sequence: call difference(vec 1l,vec2,diff)

called by: gpstime.for
ionef.for
verify.for

calls to: N/A

gpstime.for

This subroutine determines the time of signal transmission of a GPS satellite. It is given

the time of reception by the target satellite and the identification of the GPS satellite. First,

it determines the position of the GPS satellite at the time of signal reception. From this

position and the position of the target at the same time, it calculates the range between them.

This range is converted to transit time. The transit time is subtracted from the reception

time to acquired the first estimate of the time of transmission. The process is repeated to

refine the time of transmission, but all subsequent iterations of the process include the

signal delays in the transit time. After determining the time of transmission, a test is

performed to determine if the target (at the reception time) can receive the signal that the

GPS satellite sent at the indicated time and location of transmission. If the satellite is

accepted, the time of transmission is returned.

calling sequence: call gpstime(time,satnum,tsent,tcase)

called by: slave.for

calls to: delays.for
difference.for
getsat.for
gpstru.for
mag.for
verify.for
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init_clock.for

This subroutine sets the initial values for the matrices and variable used in the calculation of

the satellite clock error. These values are stored in clock.h and can be called upon by any

subroutine in the slave's process.

calling sequence: call init_clock

called by: slave.for

calls to: gauss.for

init_slaveinfo.for

This subroutine sets the initial values for the arrays and variable used in the slave

subroutine. These values are stored in slaveinfo.h and can be called upon by any

subroutine in the slave's process.

calling sequence: call init_slaveinfo(ecase)

called b%: slave.for

callk to: N/A

ionef.for

Thi% %uhroutine computes the signal delay from ionospheric effects. This computation

trae.it th ionophere as if the electron density were constant at all depths and locations.

11w path klength through the ionosphere is calculated and multiplied by the ionospheric

dtelI. per unit of path length. The ionospheric delay is returned in units of seconds.

calling sequence: call ionef(delion)

called b%: delays.for

call, to: difference.for
dot33.for
mag.for
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recvdgps.for

This subroutine computes the GPS ephemeris position at the time that the target believes the

signal was transmitted. The ephemeris position is presented in Earth centered, Earth Fixed

(ECEF) coordinates and adds ephemeris errors. The subroutine returns the ephemeris

position with errors included.

calling sequence: call recvdgps(satnum,time, tcase, pos)

called by: slave.for

calls to: adderr.for
getsat.for
gpstru.for
mave33.for

rotvec.for

This subroutine rotates a vector about a given axis normal to the vector through a specified

angle. A positive rotation moves the vector toward the direction of the cross product of the

vector and the axis of rotation. The rotated vector is returned to antenna.

calling sequence: call rotvec(angle, axis, ivec, fvec)

called by: antenna.for

calls to: cross.for
mag.for

satclock.for

This subroutine computes the total time error of the satellite clock using the second-order

Gauss-Markov model. It integrates the state-space equations using two Gaussian white

noise generators as input and computes range errors. If the desired time of output it not on

the update grid, the range value is interpolated. The range errors are converted to time

errors by dividing it by the speed of light, and returned.

calling sequence: call satclock(satnum, time, delclock)

called by: slave.for

calls to: gauss.for
matvec.for
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tarpos.for

This subroutine finds the position and velocity of the target satellite, given the desired time

and the identification of the target satellite. It performs an initialization on its first call.

Identification codes indicate the constellation and number of the target and the method for

calculating the target's state. The position and velocity are not returned; they are stored in

the structured data file slaveinfo.h.

calling sequence: call tarpos(time, satnum, constnum)

called by: slave.for

calls to: init_bsat.for
getbsat.for
get extsat.for

verify.for

This subroutine verifies that the target satellite can receive the signal from a particular GPS

satellite. It computes the values necessary to determine the angles between the vectors.

With these angles determined, they are tested against the maximum allowed values. If any

test fails, the GPS satellite is rejected.

calling sequence: call verify

called by: gpstime.for

calls to: antenna.for
difference.for
dot33.for
mag.for
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Stubs

Stubs are the hook-up points for subroutines that have not been written yet. Listed below

are the stubs installed in this simulation and the subroutines that call them. These stubs are

really functionality that has remained in the preliminary design stage.

Stub

adderr.for

ephcoef.for

gpsephem.for

gpstru.for

mpather.for

recmeas.for

tropef.for

trucoef.for

Purpose

Adding ephemeris errors

Compute coefficients for
ephemeris calculation

Compute ephemeris position from
calculated coefficients

Compute GPS position from
actual data

Compute multipath delays

Compute receiver measurement
delays

Compute tropospheric delays

Compute ephemeris position from
stored coefficients

Parent Subroutines

recvdgps.for

slave.for

navfix.for

gpstime.for, recvdgps.for

delays.for

delays.for

delays.for

navfix.for
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A.3 Modified Subroutines

There is only one modified subroutine, gmatinv.for. This subroutine is a modified version

of the matinv.for subroutine. The modification has nothing the do with the calculations

performed, only the output that is passed back to the calling subroutine.

Matinv.for is a subroutine that performs matrix inversion using the Moore-Penrose

Generalized Inverse. During the inversion process, the norm of the inverse is calculated.

The value of this norm for the geometry matrix G is the value of GDOP. The variable

corresponding to this value was added to the calling sequence, and the value of GDOP is

returned from this subroutine.
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A.4 Source Code

A.4.1 Main Program - gpspred.for

program gpspred
C
C
C
C Revision History ********************************************
C Rev Date Who/Where Comments
C 1.0 07/22/98 JGN/CSDL Initial design and coding
C
C Description *************************************************
C
C This program performs the self-scheduling process for
C eccentric orbit prediction using GPS.
C
C Subroutines *************************************************
C
C master(navid,numprocs)
C MPIINIT(ierr)
C MPIFINALIZE(ierr)
C MPI_COMMRANK(communicator,myid,ierr)
C MPICOMMSIZE(communicator,numprocs,ierr)
C navslave(mastid,ephemcase,truthcase)
C slave(mastid,myid,navid,ephemcase,truthcase)
C
C
C Local Variable Descriptions *********************************
C
C Integers
C ephemcase Identifier of the GPS ephemeris case
C 1 = Errors added to truth
C 2 = Coefficients calculated
C 3 = Coefficients in file
C ierr MPI error flag
C mastid Identification tag of the master process
C myid Identification tag of any process
C navid Identification tag of the navigation fix
C process
C numprocs Number of processes
C truthcase Identifier of the GPS "truth" case
C 1 = Simulated
C 2 = Actual
C
C Declarations ************************************************
C

implicit none
C
C Header Files ************************************************
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include "mpif.h"
C
C Local Variables *********************************************
C

integer*4 ephemcase
integer*4 ierr
integer*4 mastid
integer*4 myid
integer*4 navid
integer*4 numprocs
integer*4 truthcase

C
C Initialize MPI
C

call MPIINIT(ierr)
call MPI_COMM_RANK(MPICOMM_WORLD, myid, ierr)
call MPI_COMM_SIZE(MPICOMM_WORLD, numprocs, ierr)

C
C Verify that there are enough processors
C

if (numprocs .ge. 3) then
C
C Initialize variables
C

mastid = 0
navid = numprocs-1
ephemcase = 1
truthcase = 1

C
if ( myid .eq. mastid) then

write(*,*) 'numprocs = ',numprocs
call master(navid,numprocs)

else
if (myid .eq. navid) then

call navslave(mastid,ephemcase,truthcase)
else

call slave(mastid,myid,navid,ephemcase,truthcase)
endif

endif
else

C
C Notify user of processor shortage
C

write(*,*) 'gpspred requires at least 3 processors.'
write(*,*) 'Please try again with acceptable number.'

endif
C
C Shut down MPI
C

call MPI_FINALIZE(ierr)
stop
end
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A.4.2 master.for

subroutine master(navid,numprocs)
C
C
C
C Revision History ********************************************
C Rev Date Who/Where Comments
C 1.0 07/22/98 JGN/CSDL Initial design and coding
C
C Description *************************************************
C
C This program performs the master operations for the
C self-scheduling process.
C
C Subroutines *************************************************
C
C MPIRECV(buffer,size,type,source,tag,communicator,
C stat,ierr)
C MPISEND(buffer,size,type,receiver,tag,communicator,
C ierr)
C startup(itime,stepsize,nsteps,epochday,epochsec)
C
C
C Local Variable Descriptions *********************************
C
C Integers
C ans Response from slave (value is slave's id)
C i Incrementer for initial tasks
C ierr MPI error flag
C inputype Method of target satellite input
C 1 = DSST
C 2 = Hermite interpolation
C k Incrementer for subsequent tasks
C navid Identification tag of the navigation fix
C process
C nsteps Total number of time steps
C numprocs Number of processes
C sender Identification tag of the responding slave
C stat Status array of received message
C step Time step to be sent
C Reals
C epochday Julian date of noon of epoch day
C epochsec Seconds from noon of epoch day
C initinfo Initial information for navslave, including
C total number of time steps and run epoch
C itime Initial time of signal reception
C stepsize Size of time increment in seconds
C time Time of signal reception to be sent
C
C Declarations ************************************************
C

implicit none
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C
C Header Files ************************************************
C

include "mpifh"
C
C Local Variables *********************************************
C

integer*4 ans
integer*4 i
integer*4 inputype
integer*4 ierr
integer*4 k
integer*4 navid
integer*4 nsteps
integer*4 numprocs
integer*4 sender
integer*4 stat(MPISTATUS_SIZE)
integer*4 step

C
real*8 epochday
real*8 epochsec
real*8 initinfo(3)
real*8 itime
real*8 stepsize
real*8 time

C
C Initialize variable
C

step = 1
C
C Acquire initial time, stepsize, and number of steps
C

call startup(itime,stepsize,nsteps,epochday,epochsec,inputype)
C
C Send initial information to nav slave
C

initinfo(1) = dble(nsteps)
initinfo(2) = epochday
initinfo(3) = epochsec

call MPI_SEND(initinfo, 3, MPIDOUBLE_PRECISION, navid, 1,
$ MPI_COMM_WORLD, ierr)

C
C Send slaves first tasks
C

do i = 1,numprocs-2
write(*,*) 'assigning task ',i

C
C Calculate time of signal reception
C

time = itime + stepsize * (dble(i) - 1.d0)
call MPI_SEND(inputype, 1, MPIINTEGER, i, step,

$ MPI_COMM_WORLD,ierr)
call MPI_SEND(itime, 1, MPI_DOUBLE_PRECISION, i, step,
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$ MPI_COMM_WORLD,ierr)
call MPI_SEND(time, 1, MPI DOUBLE_PRECISION, i, step,

$ _COMMWORLD,ierr)
step = step + 1

enddo
step = numprocs-1

C
C Receive response from slave
C

do k = 1,nsteps
call MPIRECV(ans, 1, MPI INTEGER, MPI_ ANYSOURCE,

$ MPI_ANYTAG, MPI_COMM_WORLD, stat, ierr)
sender = ans

C
C Assign new task to same slave
C

if (step .le. nsteps) then
time = itime + stepsize * (dble(step) - 1.d0)
call MPI_SEND(time, 1, MPI_DOUBLE_PRECISION, sender,

S step, MPICOMM_WORLD, ierr)
else

call MPI_SEND(0.d0, 1, MPI_DOUBLE_PRECISION, sender, 0,
S MPICOMM_WORLD, ierr)

endif
step = step + 1

enddo
rMtum
end
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navslave.for

subroutine navslave(mastid,ecase,tcase)
C
C
C
C
C
C
C

Revision History ********************************************
Rev Date Who/Where Comments
1.0 07/22/98 JGN/CSDL Initial design and coding

Description *************************************************

This program performs the navigational fix operations for
the GPS orbit prediction.

C Subroutines *************************************************

GETENV (ENV_INPUT,INDATAPATH)
init_headers
init_navinfo(ecase)
MPI RECV(buffer,size,type,source,tag,communicator,

stat,ierr)
navfix(tcase)

C Local Variable Descriptions *********************************

Integers
ecase
i
ierr
mastid
nsteps
source

stat
step
tcase

Parameters
toler

Reals
initinfo

reinit

Identifier of the GPS ephemeris case
Incrementer for initializing navdat array
MPI error flag
Identification tag of the master process
Total number of time steps
Source of nay data array that has

just been sized
Status array of received message
Time step being evaluated
Identifier of the GPS "truth" case

Tolerance for reinitialization

Initial information for navslave, including
total number of time steps and run epoch

Condition for reinitializing nav fix

Declarations ************************************************

implicit none

Header Files ************************************************

include "mpif.h"
INCLUDE 'anlfil.h'
include 'navinfo.h'
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C Constants ***************************************************
C

real*8 toler
parameter (toler = 3.Od 1)

C
C Local Variables *********************************************
C

integer*4 ecase
integer*4 i,idum
integer*4 IENDIN
integer*4 ierr
integer*4 mastid
integer*4 nsteps
integer*4 source
integer*4 stat(MPISTATUS_SIZE)
integer*4 step
integer*4 tcase

C
character*(ANLFIL_MAX_PATHLEN) INPATH
character*(ANLFIL_MAX_PATHILEN) INDATA_PATH
character*(ANLFIL_MAX_PATIHLEN + 20) input

C
real*8 initinfo(3)
real*8 reinit

C
C Initialize variables
C

call init_headers
call init_navinfo(ecase)
step = 1
CALL GETENV (ANLFIL.ENV_INPUT,INDATAPATH)
IENDIN = INDEX(INDATA_PATH,' ')
INPATH = INDATAPATH(1:IENDIN-1)
input = INPATH(1:IENDIN- 1)//'timecoef
OPEN(UNIT=ANLFIL.NTCORR,FORM='UNFORMATTED',

1 ACCESS='DIRECT',RECL=248,FILE=input,STATUS='OLD',
2 READONLY,SHARED)

C
C Receive initial information from master
C

call MPI_RECV(initinfo, 3, MPI_DOUBLE_PRECISION, mastid, 1,
$ MPI_COMM_WORLD, stat, ierr)

nsteps = int(initinfo(1))
navinfo.epochday = initinfo(2)
navinfo.epochsec = initinfo(3)

C
C Receive data for navigation fix from slave
C

do while (step .le. nsteps)
call MPI_RECV(navinfo.oksat, 1, MPIINTEGER,

$ MPI_ANY_SOURCE, step, MPI_COMM_WORLD, stat, ierr)
source = stat(MPI_SOURCE)
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call MPIRECV(navinfo.navdat, navinfo.oksat*(2
$ + navinfo.ndat)+1, MPIDOUBLE_PRECISION,
$ source, step, MPI COMM_WORLD, stat, ierr)

if (navinfo.oksat .ge. 4) then
reinit = navinfo.navdat(1) - toler
if (navinfo.time .le. reinit) then

navinfo.init = .true.
endif

C
C Calculate navigation fix
C

call navfix(tcase)
endif

C
C Increment step, and reinitialize variables
C

do i = 1,navinfo.oksat*(2+navinfo.ndat)+1
navinfo.navdat(i) = 0.d0

enddo
step = step + 1

enddo
C

tium
end
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A.4.4 slave.for

subroutine slave(mastid,myid,navid,ecase,tcase)
C
C
C
C Revision History ********************************************
C Rev Date Who/Where Comments
C 1.0 07/22/98 JGN/CSDL Initial design and coding
C
C Description *************************************************
C
C This program performs the slave operations for the
C self-scheduling process.
C
C Subroutines *************************************************
C
C ephcoef(satnum,time,tcase,ephdat)
C gpstime(time,satnum,tsent,tcase)
C init_clock
C init_slaveinfo
C MPIRECV(buffer,size,type,source,tag,communicator,
C stat,ierr)
C MPISEND(buffer,size,type,receiver,tag,communicator,
C ierr)
C recvdgps(satnum,time,tcase,ephdat)
C satclock(satnum,time,delclock)
C tarpos(time,satnum,constnum)
C
C Local Variable Descriptions *********************************
C
C Integers
C addon Position modifier for array navdat
C ans Response to master (value is slave's id)
C ecase Identifier of the GPS ephemeris case
C 1 = Errors added to truth
C 2 = Coefficients calculated
C 3 = Coefficients in file
C i Miscellaneous incrementer
C ierr MPI error flag
C j Incrementer for satellite data storage
C mastid Identification tag of the master process
C myid Slave's identification tag
C navid Identification tag of the navigation fix
C process
C ndat Number of data per GPS sat(excluding satnum
C and time of transmission)
C oksat Number of acceptable satellites
C stat Status array of received message
C step Time step being evaluated
C tcase Identifier of the GPS "truth" case
C 1 = Simulated
C 2 = Actual
C Reals
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C ephdat GPS ephemeris data (for ecase of 1 or 2)
C navdat Array of data required for navigational fix
C start Reception time of first execution
C time Reception time of current execution
C tsent Time of signal transmission from GPS sat
C
C Declarations ************************************************
C

implicit none
C
C Header Files ************************************************
C

include "mpif.h"
include 'clock.h'
include 'slaveinfo.h'
include 'matrix.h'

C
C Local Variables *********************************************
C

integer*4 addon
integer*4 ans
integer*4 ecase
integer*4 i
integer*4 idummy(9)
integer*4 ierr
integer*4 j
integer*4 mastid
integer*4 myid
integer*4 navid
integer*4 ndat
integer*4 oksat
integer*4 stat(MPISTATUS_SIZE)
integer*4 step
integer*4 tcase
integer*4 idum

C
real*8 delclock
real*8 ephdat(SLAVEDATA2)
real*8 navdat(SLAVENGPS*(2+SLAVE_DATA2)+1)
real*8 start
real*8 time
real*8 tsent
real*8 dummy(6,8)
real*8 b(3,3)
real*8 tpos(3)

C
C Initiatize variable
C

step = 1
oksat = 0
ndat = 0
call init_clock
call init_slaveinfo
do i = 1,SLAVE NGPS*(2+SLAVE DATA2)+1
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navdat(i) = 0.d0
enddo
if (ecase .eq. 1) then

ndat = SLAVE_DATA1
elseif (ecase .eq. 2) then

ndat = SLAVE_DATA2
endif
call MPI_RECV(slaveinfo.inputype, 1, MPI_INTEGER, mastid,

$ MPI_ANY_TAG, MPI_COMM_WORLD, stat, ierr)
call MPI_RECV(start, 1, MPIDOUBLE_PRECISION, mastid,

$ MPI_ANY_TAG, MPI_COMM_WORLD, stat, ierr)
C
C Slave receives message
C

do while (step .ne. 0)
call MPI_RECV(time, 1, MPIDOUBLE_PRECISION, mastid,

$ MPIANY_TAG, MPICOMM_WORLD, stat, ierr)
step = stat(MPITAG)
if (step .ne. 0) then

ans = myid
navdat(1) = time

C
C Find positions of target sat and GPS sats
C

call tarpos(time,SLAVETNUM,SLAVETCON)
call eval(time,2,2,2,2,1,idummy,dummy)
b(1,1) = cos(matrix.gha)
b(2,1) = -sin(matrix.gha)
b(3,1) = 0.dO
b(1,2) = sin(matrix.gha)
b(2,2) = cos(matrix.gha)
b(3,2) = 0.dO
b(1,3) = 0.d0
b(2,3) = 0.d0
b(3,3) = 1.d0
call mave33(tpos,b,slaveinfo.tpos)
do i = 1,SLAVENGPS

call gpstime(time,i, tsent,tcase)
if (slaveinfo.flag) then

oksat = oksat + 1
addon = (oksat-1)*(2+ndat)
navdat(addon+2) = dble(i)

C
C Calculate satellite clock errors and modify transmission time
C

if (step .eq. 1) then
delclock = clock(i).xmat( 1)/(SLAVE_C* 1.0d3)

else
call satclock(i,tsent-start,delclock)

endif

navdat(addon+3) = tsent - delclock
C
C If the ephemeris case requires it, compute ephemeris data
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if (ndat .gt. 0) then
if (ndat .eq. SLAVE_DATA1) then

call recvdgps(i,navdat(addon+3),tcase,ephdat)
elseif (ndat .eq. SLAVE_DATA2) then

call ephcoef(i,navdat(addon+3),tcase,ephdat)
endif
do j = 1,ndat

navdat(addon+j+3) = ephdat(j)
enddo

endif
endif

enddo
C
C Send data to navslave for processing
C

call MPISEND(oksat, 1, MPI_INTEGER, navid, step,
$ MPI_COMM_WORLD, ierr)

call MPISEND(navdat, oksat*(2+ndat)+l,
$ MPI_DOUBLE_PRECISION, navid, step,
$ MPI_COMM_WORLD,ierr)

C
C Reset navdat array and oksat
C

do i = 1,oksat*(2+ndat)+l
navdat(i) = 0.d0

enddo
oksat = 0

C
C Notify master about task completion
C

call MPI_SEND(ans, 1, MPI_INTEGER, mastid, ans,
$ MPI_COMM_WORLD, ierr)

endif
enddo

C
1000 format (4f21.12)

return
end
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Appendix B

The Goddard Trajectory Determination System
(GTDS)

B.1 The History of GTDS/DSST

Development of the GTDS program began in the early 1970's at Goddard Space Flight

Center (GSFC). The engineers at the Computer Science Corporation developed simple

models for orbit propagation using non-singular orbital elements. This effort resulted in

equations of motion for the mean elements based on analytical averaging for limited force

models and based on numerical averaging for a broader set of force models. In 1974, A.

Fuchs from NASA Goddard raised the question of developing a nonsingular,

semianalytical theory that combined the best characteristics of existing numerical and

semianalytical satellite theories; this question was answered with a combination of the

generalized method of averaging, analytical averaging, and recursion that was implemented

in GTDS. In 1976, GTDS's development split into two versions: the operational version,

and the research and development (R&D) version.

In late 1978, Draper Laboratory received a R&D version of GTDS from NASA

GSFC to support a project for the U.S. Air Force Space Division. This version of GTDS

contained components of a semianalytic model for the mean element equations of motion,

including zonal harmonic terms, solar and lunar point mass models, and a truncated tesseral

harmonic resonance theory. GTDS development moved toward a semianalytic model that

separates the orbital motion into its mean behavior and higher frequency (short) periodic

motion. Draper technical staff enhanced the mean element theory to gain high precision

calculations and implemented the short periodics as functions of the mean elements. The
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short periodics included: zonal harmonic terms, tesseral m-dailies, linear combinations of

tesseral motion, atmospheric density models, and perturbations from solar radiation

pressure. These modeled behaviors and the creation of routines to calculate the partial

derivatives completed the initial development of the Semianalytic Satellite Theory (DSST)

[13]. DSST provides high precision values for the mean orbital elements and short

periodic motion. The first generation of the DSST included the following physical models:

Mean Element Equations of Motion

* Central-body gravitational spherical harmonics of arbitrary degree and order
(zonals and tesseral resonance) based on the 21 x 21 geopotential

* J,-squared second order effect (model based on eccentricity truncation)
* Third-body point mass effects (both single and double averaging theories)
* Atmospheric drag with J/drag coupling
* Solar radiation pressure with eclipsing
* Integration Coordinate System based on the FK4 coordinate frame

Short-Periodic Motion

* Central-body gravitational zonal harmonics of arbitrary degree based on the
21 x 21 geopotential

* Central-body gravitational m-daily sectoral and tesseral harmonics of
arbitrary degree and order based on the 21 x 21 geopotential

* Central-body gravitational high-frequency sectoral and tesseral harmonics of
arbitrary degree and order based on the 21 x 21 geopotential

* J.-squared and J,/m-daily second order short-periodic variations
* Third-body point mass effects [both single (including Weak Time

Dependence) and double averaging theories]
* Atmospheric drag
* Solar radiation pressure

State Transition Matrix

* General concept based on the Generalized Method of Averaging

General (applicable to both the mean element and short periodic motion)

* Numerical interpolation techniques
* Modified representations of the Hansen coefficients
* Jacchia-Roberts atmospheric density models
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In 1982, Aerospace Corporation had requirements for a high precision mean

element propagator to facilitate long term mission analysis, including maneuver planning.

In a cooperative effort, B. Baxter from Aerospace and P. Cefola from Draper organized a

project to separate the DSST models from GTDS to produce a "Standalone" DSST program

that was easily portable to non-IBM operating systems [16]. A major portion of this

technical effort was completed by L. Early. The resulting Standalone code was comprised

of 200 subroutines. Their functions were pulled from GTDS subroutines and, when

necessary, were rewritten to improve the code. The program resulting from these new

routines was portable, but could not operate without an additional interface layer. These

interfacing programs [16] were also constructed by Mr. Early. The program became

operational in 1984 [9].

Draper Lab's technical staff have continued the development of GTDS. Some of

their improvements are:

* Addition of sources and coordinate systems for Precise Conversion of Element
observation data.

* Maintenance and upgrade of the data bases used in physical models (geopotential
models, solar activity/geomagnetic index files for the Jacchia-Roberts atmospheric
density model, solar/lunar/planetary (SLP) ephemeris and timing coefficient files)

* Conversion of the source code to FORTRAN 77 and improving the structure [22]
* Inclusion of external satellite theories, including NORAD General Perturbations

theories (GP's) and the Naval Space Command second Position, Partials, and Time
theory (PPT2)

* Development of recursive estimation techniques (Kalman filters) matched to the
DSST

Several MIT graduate students, supported by the Draper/MIT educational program, have

assisted in development process. Among these students were D. Fonte and S. Carter.

Fonte performed research on the gravity field model [22]. His research revealed

that the DSST recursions designed for the gravity field with a degree and order of 21 were

sufficiently stable to support a gravity field of larger size. He implemented an increase in

the potential size of the gravity field from 21 x 21 to 50 x 50. This implementation was
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performed in a much more flexible manner than the original 21 x 21 gravity field, and left

the opportunity open for further size increases. The results of his verification showed that

the implementation of the new gravity field was accomplished correctly. This modification

affected the Cowell orbit generator and DSST.

S. Carter made two contributions to GTDS in the course of his research [8]. First,

he expanded the program's reference frame capabilities to include the J2000 system as well

as the previously existing mean of 1950 system; these reference frames reflect motion

based on the mean equator and equinox on given dates. Also, he refined the program by

including a model of the perturbations due to solid Earth tides, the redistribution of the

Earth's mass caused by the solar and lunar pull of gravity. These modifications built on all

previous work and resulted in orbit accuracy on the order of one meter, this one meter

accuracy was based on a comparison with externally generated TOPEX orbits and was

obtained for both Cowell and DSST.

In the time between Fonte's departure and S. Carter's arrival, improvements began

on the Radarsat baseline GTDS program [48]. These improvements were made in three

areas: the incorporation of a new function that predicts motion during and after a maneuver,

the presentation of output in NORAD format, and the debugging of the existing code.

These enhancements were accomplished over a two year period, and were made

independently of Fonte's changes. The work of S. Carter built on these changes.

The most recent project for Draper GTDS development was the investigation of

highly elliptical orbits. During their decay phase, orbits of this type pass lower in the

Earth's atmosphere than standard low Earth orbits (LEO) and require higher order drag

terms and a new atmospheric model for orbit prediction. These elliptical orbits also require

the inclusion of a J,-squared term [57] in its zonal harmonics. This investigation and the

introduction of the MSIS-90 atmospheric model into the PC version of GTDS was

accomplished by 2nd Lt. J. Fischer during the course of his Master's program [20].
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Draper Laboratory is not the only facility that does research and development on

GTDS. Currently, GTDS exists in many different versions. Improvements made at

different locations by many people cause each version to be unique in overall function. A

single uniform version of GTDS with all of the functionality for each of the current

versions is a desirable commodity. A consolidation of GTDS modifications is in progress

at Draper; the result will be this uniform version that everyone can use.

Another issue of concern to GTDS is the need to improve the maintainability of the

source code. This concern was first expressed in 1994 [7] and a coding standard was

established [ 11], but the process has not begun for GTDS.

B.2 Orbit Propagators

The perturbed equations of motion cannot be solved directly by analytical means. Several

methods have been devised to incorporate the deviations from classical two-body motion

resulting from drag, solar radiation pressure, effects of a non-spherical gravity field, solar

and lunar tidal effects, and other perturbations. These methods have been divided into

three categories: special perturbations, general perturbations, and the semianalytic method.

Draper R&D GTDS has the benefit of a selection of orbit propagators based on each of

these categories.

B.2.1 Special perturbations

Special perturbation methods are based on the numerical integration of the perturbed

equations of motion, incorporating all of the accelerations associated with the force models.

Through the use of small step sizes, these integrations provide extremely accurate results.

However, the calculations consume large amounts of computational time. As computers
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continue to improve in both speed and memory, the computational time is becoming less of

an issue. Based on their level of usage, people will decide if the improved accuracy is

worth the extra time for each run. Draper R&D GTDS has the following options from this

category:

Cowell
Time-regulated Cowell
Variation of Parameters (VOP)

B.2.1.1 Cowell

The first two methods listed are named for P. H. Cowell, who originated the idea of

developing the equations of motion in rectangular (Cartesian) coordinates and integrating

them with an algorithm comprised of multiple steps. The equations of classical two-body

motion are derived from Newton's Laws of Gravity and Motion, and can be expressed as:

i +3r=0
r 3 (B.1)

where r is the three dimensional radius vector from the primary body to the secondary

body, and g is the gravitational constant. Applying a disturbing acceleration to the equation

produces:

r=a - grP r 3  (B.2)

This equation can be divided into its vector component equations in Cartesian coordinates

as follows:

i' = ax + R-x.
r

r = a + -~ y
r (B.3)

rY = a +.-z
r 3
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r = X2  
2 + Z2 (B.4)

Equations B.3 are second order differential equations. They could be reduced to first order

by realizing that the velocity vector is the first derivative of the position vector (v = i). By

reducing the perturbing acceleration to its component level, these equations can be

integrated through time to determine the position and velocity of a satellite.

B.2.1.2 VOP

While Cowell focused on numerical integration of the equations of motion, the VOP

method presents satellite motion as a set of orbital elements. These elements are physical

characteristics of the orbit which can be affected by perturbations. This method is most

effective at representing perturbed orbital motion when the perturbing accelerations are

small relative to unperturbed motion [63]. It is an efficient means of determining these

accelerations when integration must be frequently restarted.

VOP presents the rates of the element set in the differential equation:

de= f(c,t)
dt (B.5)

where c is a vector of orbital elements. Again, these elements are affected by the

perturbations and are not constants as in two-body motion. At any given time, these

elements correspond to an instance of unperturbed two-body motion [40]. However, the

elements and this unperturbed equivalent vary with time as the elements are changed by the

perturbing accelerations.

The perturbing accelerations can be divided into two types, conservative and non-

conservative accelerations [2]. Conservative accelerations are a result of conservative

forces and can be expressed as the gradient of a disturbing potential. Non-conservative

accelerations are caused by phenomena that transfer energy away from the system, such as
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drag, and are represented as a common vector. These accelerations are combined in the

VOP equations, which as written as:

4 x T
r+-gr= =ad+ -T

r d + r (B.6)

where

ad  is the non-conservative portion of of the perturbing acceleration

D r ) is the conservative portion of the perturbing acceleration.

Using the facts that velocity is the time-based derivative of position and that

position and velocity are both functions of time and the orbital elements, equation B.6 can

be converted to the following form:

dv(c,t) + Ar(Rt)=a R )

dt r d(C+ r(c,t) (B.7)

where

dr(c, t)S- v(c,t)
dt

Since the elements are not constant the time derivatives should be expressed in

terms of the partial derivatives of these elements. Using the chain rule, the derivatives of

position and velocity become:

dr Dr Dr de

dt -t ac dt (B.8)
dv Dv av dc
dt at ac dt

The only difference between perturbed and two-body motion is the inclusion of the

element rates. By substituting equations B.8 into the equations of B.7 and eliminating the

terms related to two-body motions, the following equations are derived:

ar dc
- -0

Sc dt (B.9)
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R TDv dc TRc dt a(ct) + r(c, t)

Note that the velocity is the same for perturbed and two-body motion.

The equations in B.9 can be combined to produce a single equation for the element

rates. For simplification of further derivation, this merging is accomplished by multiplying

each equation by the transpose of the partial derivative factor in the other equation and

produces:

dc Dr ( T [ +(R >T
LI ad+ - I

dt = (c) a + r (B.10)

where

L Dr vT( av)_ ( arr

L ac ac ac ac

From this point, the equation is split into the conservative and non-conservative

portions. Each segment is treated differently to determine its contribution to the element

rates. The conservative accelerations are evaluated using the Lagrange equations of

planetary motion and the non-conservative accelerations make use of Gauss's equations.

Conservative accelerations cause no net work during the course of an orbit.

Lagrange's equations are used to evaluate the effects of forces that produce these

accelerations. For the purposes of this evaluation, the accelerations from non-conservative

forces are set to zero. The new equation is:

Ldc ar )T( R
LT 

,

dt Dc ,r

simplified to

dc =(R 
T

L-- ii
dt ac (B.11)

This equation can be solved for the element rates by taking the inverse of the Lagrange

matrix L.
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dc D( R T

dt ,ac (B.12)

An alternate method to solving this equation is the use of the Poisson matrix. This

matrix has been shown to be the negative inverse of the Lagrange matrix and produces:

dc = -(R T= R
- = -P= PTJ

dt ac ac (B.13)

Gauss's equations are not limited in the functions they can evaluate. They can

handle either conservative or non-conservative accelerations. But since the conservative

accelerations have already been covered, only the non-conservative accelerations will be

addressed with the Gauss equations. Using the same Poisson substitution that was used in

the Lagrange equations and ignoring the disturbing potential, equation B. 10 becomes:

dc = p r T
dt P, -c aa

dt DC) d(B.14)

The definition of the Poisson matrix states [2]:

Tc 
D c 

Tc ac

P=-I--
P r (rv) Tv ,r) (B.15)

When substituted into equation B. 14 , it becomes:

dc ac (ar T  ac ar 
T

= -) ad - - ad
dt Sv ar d a BT8V d(B.16)

The position and velocity are considered to be independent of each other, so the partial

derivatives become:

Or Ir-=I -=0
ar av (B.17)

and the resulting solution is:

dc ac

dt- ad (B.18)
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The elemental equations equivalent to Equation B.18 can be expressed in a number of

different reference frames. Battin presents them in a radial-normal-tangent frame, which

produces the following equations [2]:

da 2a 2v
- - ad

dt dt

de 1 2(e+cosf)a rsinf
dt -[2(e+cosf)adc adfldt v I a
di rcosO__-= -- ad

dt h dh (B.19)
dG2 rsin0

=-adh
dt hsini

dco 1 ( r rsinOcosido I (2sinf)ad, + 2e+-cosf adn - h a
dt ev a hsini
dM b I  e~r' ( r--

dM n - b 2sinf ( 1 + radt + cosf ada
dt eav p)a a d

The GTDS Mathematical Specification presents these equations in the equinoctial orbit

franc (251:

da 2v
-=-a

dt n2 ad

dh 1+_ kq
dq -I(2YI -XYfX+p +q) -pX)W
dt [ G XG addk 1h
-- =  --- -+13 k(2 -X h - (qlY -pX, )w a da
dt G n

where

I = the retrograde factordt 2G(B.20)dq I(+ p2 +q 2) w an = the mean motion

dt 2Gdr = Cartesian position in the inertial reference frame(qY - pX) adt Dv ay v na-where
I = the retrograde factor
n = the mean motion
v = Cartesian velocition in the inertial reference frame
fv = Cartesian velcitytors in the equineroctial reference frame
,g w = unit vectors in the equinoctial frame
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The position and velocity in the equinoctial frame are given by the equations:

X,= a[(1 - h2P)cosF + hkpsinF - k]

Y,= a[(1 - k2P)sinF + hk[cosF - h] (B.21)
I

Xl =na-[hkpcosF- (1- h2 P)sinF]
r

Y, = na2 [(1 - k 2p)cosF - hklsinF]r
and the variables G andp are defined to be:

G = na 12 -h -k 2  (B.22)
1

1+ 1-h 2 -k 2

B.2.2 General perturbations

General perturbation methods use an analytical approach with series approximations of the

deviation from two-body motion. The perturbations included in these methods are limited

to those that can be modeled as analytical functions. This tactic reduces the accuracy of the

solution, but it gains the benefits of simpler and quicker operation. These methods are

unencumbered by time steps, and are not severely affected by changes in the initial

conditions. For the special perturbation methods, a change in the initial conditions means

the entire integration must be reprocessed because each subsequent integration step is

dependent on the results of the previous one. The general perturbation methods that exist

in Draper R&D GTDS are:

Brouwer
Brouwer-Lyddane
Brouwer-Lyddane-Gordon
Vinti
NORAD Simplified General Perturbations (SGP)
NORAD GP4
NORAD DP4
NORAD HANDE
NAVSPASUR PPT2

Because these methods are not used for this project, no detailed descriptions will be given.
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Semianalytic methods

The semianalytic methods for orbit propagation were devised to take advantage of the best

traits of the special and general perturbation techniques. The high accuracy of numerical

integration and the low computation requirements of the analytical formulations are

combined by separating the orbital motion into its mean motion and a series of high-

frequency periodic components (Figure B.1). Using the Generalized Method of Averaging

(GMA), the short periodics are removed from the orbital motion, leaving a mean

representation of the motion. The perturbations are divided into conservative and non-

conservative accelerations. The conservative accelerations are derived using Lagrange's

VOP equations and are averaged analytically. The non-conservative accelerations. use

Gauss's VOP equations and are averaged numerically. Since it is no longer constrained by

the high frequency components, this mean motion can be numerically integrated using a

much larger time step. The mean motion is propagated to the desired time, and the short

periodics are recombined to maintain the high accuracy. Draper R&D GTDS currently has

two semianalytic propagators available:

Draper Semianalytic Satellite Theory (DSST)
NORAD Semianalytic Theory (SALT)

B.2.3.1 DSST

The Semianalytic Satellite Theory uses a set of equations similar to the VOP equations

derived earlier, but these equations represent the motion in terms of the mean elements as

opposed to the osculating elements. These equations are derived from an altered form of

the Lagrange and Gauss equations. The perturbations are still considered to be very small

relative to the two-body motion, so the osculating equations of motion can be written in the

following manner:
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dc
-d=c EF (c, 1)
dt

dl= n(c,) + EF6(c,1 )dt

i = 1,2,...5 (B.23)

where

= the vector of the slowly changing elements
= the rapidly changing variable
= the mean motion of the spacecraft
= the parameter associated with the perturbation F

Long period motion

Orbital Motion

Figure B.1 Orbital Motion

Short Perienodics

Decomposition

In order to get a mean elements representation of the equations of motion, the

relationship between the mean and osculation elements must be identified. By using a near

identity transformation, the osculation elements can be represented in the following

equations:
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c = E + •i (EI) + ) +... i= 1,2,...5 (B.24)

1 = +•16.1 (,)+ 2' 6.2 (e, i)+...

The overbar indicates the mean representation of the elements, and the remainder of each

equation is a power series representation of the short periodics as a function of the mean

elements. A short periodic has a period shorter than the orbital period of the spacecraft.

Subscripts indicate the element and order associated to the series terms. All of the short

periodic terms are assumed to be 2t periodic with respect to the rapidly changing variable:

ij (Z) ei,j (E,I + 27) (B.25)

Differentiating the equations of the osculating elements with respect to time produces the

relationship between the mean and osculating element rates, which are expressed in the

following equations:

dc dE Dili., dX 2 1i,2 dX
+ + E -- +...

dt dt 8X dt DX dt i= 1,2,...5
dl di fj 6 1 dX 2 6.2 dX

= -+ .... + • +...
dt dt 8X dt aX dt (B.26)

where X is the six component vector of all the mean elements.

(B.27)

The rates of the mean elements are assumed to be functions of the slowly changing

elements and the perturbation parameter 8, but not the rapidly changing variable. These

rates are wnritten as:

R = _EAi.,(E) E Ai.2 +. ..
dt i = 1,2,...5 (B.28)
di
dt = n(E,) + A 6.1(C) + _ A 6.2( ) +...

where A.j is the function corresponding to the ith element's jth order contribution to the

rates of the mean elements.
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Substituting the mean element rates into the equations for the osculating element

produces the following equations:

dc (•Al,()E)+ C--Ai.2 M -+ + 6 dq dtE a A

dt D dt DX dt i= 1,2,...5
dl A dA
dl= (n(,) + eA6. M +Z2A6.2(Z)+...+ C -+ E 2C +...
dt " dt 8X dt (B.29)

and can be regrouped by powers of s to produce:

dc ij., d-X _111.2 dRX
dc Ai. M()+ + 1+A2 (A,()+ (E-) - ++
dt ••X dt X dt i 1,2,...5

dl = 9, +F 61 f6.1 d7X +62(62 E 16-2 d7Xdl n( l)+ A()+ +2A62'
dt DR dt ))X dt (B.30)

These equations represent the left-hand side of the equations for osculating element

rates presented in (B.23). These rates are equal to the perturbing functions displayed on

the right-hand side of those equations. The perturbing functions can be expressed as a

power series expansion in s. Performing a Taylor series expansion on the perturbing

functions about the mean elements produces:

Fi(c,1) = F (Z,1)+ (XX)+X i= 1,2,...5 (B.31)

The coefficients of the partial derivatives are merely the difference between the osculating

and mean elements, which can easily be extracted from (B.24).
- 2

X-X= MA +8 2i.2 +... i = 1,2,...6 (B.32)

transforming (B.31) into:

F° (c,F1) = Fi (Z.2l (i.2 )+..
DX i= 1,2,...6 (B.33)

Since the mean motion in the equation for the rate of the rapidly changing is a function of

the first osculating element, it is reasonable to express the mean motion as a Taylor

expansion about that mean element and arrive at the equation:
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_ne__) 1 2an(2 , ) 2

n(c,)= n(C,)+ DZI (c, - ) + 2! a, 1 +""8?: 2 8£1(B.34)

By using the relationship between the mean motion and the semimajor axis, which is the

first of the osculating elements, and the difference between the mean and osculating

elements from (B.32), the Taylor series expansion can be expressed as the following

power series in c:

3n) 15n(_____ 3n(,),)n(c,) = n(c, )+ C 111.1 + F2 2( 1.12 3n ) 71.2 *
(+ 2Z, R12, 8 , 2ci (B.35)

Substituting (B.33) and (B.35) into the right-hand side of the equations in (B.23) results in

the following equations:

( 3nj(, ) +)

n(c + F(c,l) = n( F,) + 6 (E,,1 ) - 2_ 'i

i= 1,2,...5

(B.36)

C2 F6  15n(cl) 2 3n('E,)
SA 1161' + -12 .2-, .

Now that both sides of (B.23) have been expressed in terms of the mean elements, the

equivalent expressions can be compared to each other. Equating the coefficients of like

powers of s produces the following equations:

First order

Fi'•= A, (Z)+ idX

AX dt

F6(ZI) 3n(cl),,.i .. +  D-6_.1 dX
2Z, AX dt

i=1,2,...5

(B.37)

Second order

_Fi  i.2 dXIX i'l "- A2 () + dt
A3 AX dt i= 1,2,...5
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F6  15n(E,) 2 3n(E,) .- 16.2 dX
+16,+ 1 1.2 :-A6

T6 8-E 1 2E --- + X dt (B.38)

dX
But the time derivative of the mean elements, dt , has only one term that does not contain

any powers of E. Therefore, the first order terms produce the equations:

rFi (,) =Ai,•+ r"n{

F•(E,=A (E)+ n(El )  i= 1,2,...5

F(,1) -3n() = A,()+ n( )

2E X (B.39)

The mean equations of motion cannot be expressed while the short periodics and the

rapidly changing variable still have an effect on the perturbing function, F. These high

frequency effects must be stripped away from the mean motion. This task is accomplished

by the use of the averaging operation, which is defined as:

27t

2 0 (B.40)

The three properties of this operation that are most useful for the stripping process are:

(gf(Z,i) = (f E, I))

/1 (B.41)

(g + f(Zi)) i = (g)1 + (f(Z)

where g is not related to f. The averaging operation is applied to (B.39), resulting in the

equations:

(Fi (E,1)) = (Ai.I (Z)) + n(z,) i
i i(= 1,2+...45

(F 'i 2( 
n(B.42)

(Z 2 i (61Ml a (B.42)
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Earlier in this section, the assumption was made that the short periodic functions had a

period of 27t in the rapidly changing variable. So, applying the averaging operation to

these short periodics nulls them out.

1 i= 1,2,...6

2Z I (B.43)

reducing the equations in (B.42) to:

(Fi (e' )), = (Ai.I (e))i i= 1,2,...6 (B.44)

Once the perturbing function has been averaged over the mean of the rapidly changing

variable, the averaged perturbing function should only be dependent on the slowly

changing mean elements

Fi(Z) = Ai.l(Z )  i= 1,2,...6 (B.45)

When substituted into (B.28), these equations provide the mean equations of motion.

These equations present the mean elements rates as functions of the first five, slowly

changing mean elements. By removing the fast variable, it is now possible to integrate

these equations much more quickly by employing larger time steps. The mean equations of

motion are:

d ()
dt i= 1,2,...5
did-i = n (,) )+ 86 ()
dt (B.46)

The mean elements are propagated to the point of the desired output. To restore

accuracy to the calculations, the short periodics are reintroduced to the solution at the

requested time. The short periodic perturbing functions are the difference between the

osculating and mean perturbing functions. They can be recovered from (B.39) by
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subtracting the perturbations associated with mean motion from the total perturbing

function.

FisP(1\,I = (E

i 1 i= 1,2,...5
F~ •1 - -• nE) 3n(• ) l.

2• (B.47)

Solving these equations for the short periodic functions results in:

1 -/)d
n(-c) FP(, li=1,2,...5

116,1 = 1 (F6P (Ell
____ f ( 2-C1  (B.48)

Using larger time steps allows the DSST to operate more quickly, but it must also

be able to provide the mean elements and short periodics at any desired time. For the mean

elements, this is accomplished by interpolation between points on the integration grid. The

short periodics can also make use of interpolation techniques, but if the interpolation is

invalid at the output time, a new interval is calculated that contains the time of interest. The

short periodics are computed as a Fourier series expansion and added to the mean motion to

produce the osculating orbit.

B.3 Operations

The Draper R&D GTDS uses the propagation techniques described above to perform a

variety of different tasks. These tasks can be divided into the nine main functions in

GTDS:

Ephemeris Generation
Differential Corrections
Filtering
Ephemeris Comparison
Data Management
Data Simulation
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File Report Generation
Error Analysis
Early Orbit Determination

The ephemeris generation function produces a history of the orbit for a desired time

frame. It propagates the orbit forward from a set of initial conditions using any of the

available propagation methods. A selection of perturbations is provided for inclusion in the

ephemeris generation. The output of this function consists of a report of the ephemeris

production and files containing the ephemeris data that can be used as future input for

GTDS or other orbit determination programs. These ephemeris files can be in the form of

ORB 1, ORBIT or EPHEM files.

The differential corrections (DC) function uses estimation theory to determine the

orbital elements and variations in perturbation parameters. The function takes a set of initial

conditions and a series of observations as its inputs, computes an orbit from the initial state

using the indicated perturbation models, and compares the observations with its computed

orbit. In an iterative process, the computed orbit is modified to minimized the sum of the

squares of the residuals in a weighted least-squares fit. Some of the other parameters that

can be solved for are the drag coefficient, solar reflectivity, and observation biases. The

statistics of the iterations are presented in an output file, along with the results of the fit.

The filter function takes a different approach than the DC for estimation of the orbit.

Instead of the DC's batch process, the filter uses sequential estimators that employ dynamic

models of the motion. The linear and extended Kalman filters (LKF and EKF) update the

orbital estimate for each observation, and they maintain information related to previous

observation in the covariance matrix to enhance the next estimate. This technique produces

the best approximation for the orbital motion from a set of observations. This function is

not available in the GTDS version at GSFC, but Draper has incorporated this function with

the capability to handle calculations in both Cowell and DSST.

The ephemeris comparison function determines the difference between ephemeris

information contained in two ephemeris files produced by GTDS. The comparison can be
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performed over any portion of the ephemeris files. The output can be represented in terms

of radial, cross-track, and along-track vector components or in terms of latitude, longitude,

and altitude. In addition, the output includes the element histories and differences

associated to the compared ephemeris files in both Keplerian and equinoctial elements.

The data management function opens temporary files that will be used in other

GTDS functions. The information in these working files is drawn from the GTDS

databases. These files can be generated during the execution of the program that requires

the file, or as an initialization procedure long before the file is needed.

The data simulation function generates simulated observations for use as input to

support and test mission operations. The location and frequency of the observations can be

specified, and can be modified to include errors relevant to the mission performance.

The file report function produces a report of the data stored in the GTDS databases.

This function is normally used to identify the appropriate database for execution of a

specific task.

The error analysis function examines the effects of variations in epoch state,

observation accuracy, and other quantities relating to the tracking of a specific satellite. It

accepts observation input that conforms to the observation types produced by the DC

function.

The early orbit determination function is designed to produce an estimate for the

initial conditions of an orbit when the a priori state, required for DC operation, is

unavailable. GTDS performs this function using any one of the three following methods:

the Gauss method, the Double R-Iteration method, and the Range and Azimuth method.

The initial conditions can be estimated with as few as six observations using this function.

Three files are required to initiate the performance of the desired functions: an input

card file, a command file, and an overrides file. The input card file identifies the functions

to be executed and the options that will be use during the execution. The command file

specifies the databases that will provide the data for the working files, and commands the
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execution of the functions. To compensate for the lack of a short periodics input

processor, the overrides file replaces the predefined values in VAX GTDS with the

appropriate values for proper calculation of the short periodics.

The input card file contains a series of keyword cards. Each keyword card

corresponds with one line of the input file, and consists of the identifying keyword and a

series of input fields. Each keyword maps to an option in GTDS operation. Within the

keyword cards, the input fields provide the ability to select options for that keyword. The

construction of a keyword card's input fields allows for the inclusion of three integers and

three reals. An example of a keyword card is provided in Figure B.2.

Integer
Keyword Fields Real Fields

I r4,-1l~l. I9 71 7  I I
ELEMENT1 2 1 1 -1216.9899171470 3091.2737692293 -6174.0269605908

Figure B.2 Construction of a Keyword Card

In this example, ELEMENT1 is the keyword. The three integer fields indicate the input

coordinate system, the type of elements being input, and the central body of the initial state.

The three real fields contain the first three elements of the initial state. A listing of all

keywords and their descriptions is presented in [76].

If the file only contains keyword cards, the input card file is not complete. It also

requires a control card at the beginning of the file and a finishing card at the end. The

control card identifies the function to be executed, and the finishing card marks the end of

the input card file. The control card has a different construction than the keyword cards,

which is explained in the Goddard Trajectory Determination System (GTDS) User's Guide

[26].

For a particular control card, there is a series of required keyword cards necessary

for the execution of the stated function. The number of required keyword cards varies

from zero to five, depending on the function. For example, the ephemeris function
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requires five control cards: 1) the epoch time for the start of the ephemeris, 2) and 3) the

elements of the initial state, 4) the output type and end of ephemeris time, and 5) the type of

propagation being performed. The keyword card displayed in Figure B.2 is an example of

the first of the cards used to input the elements of the initial state.

The remaining cards are considered to be optional. But the desired option may not

be directly accessible. Some of the options are grouped into subdeck based on the function

being executed and the purpose of the desired option. Not all subdecks are constrained to a

single function, but some are. For example, the COMPOPT subdeck is only useable by the

compare function while DCOPT can be used in DC, data simulation, error analysis, early

orbit determination, and filter functions. Within the input card file, the subdecks must be

separated from the other optional cards by the subdeck identifier at the beginning and an

END card at the end.

GTDS also has the capability of performing multiple functions in a single

execution. Multiple input card files may be stored in a sequence in a single file, and GTDS

will start the subsequent functions in order. If no changes have been indicated in the next

function and the current function shares a working file with it, the new function will use the

file from the previous one. This feature is convenient for instances when the output from

one function is intended to be used as input to the next, such as a differential corrections

run producing the initial conditions for an ephemeris generation.

The major functions of GTDS and its operation are described in more detail in the

GTDS User's Guide [26].
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Appendix C

Space Qualified GPS Receivers

As more study is conducted on the performance of GPS in space, companies are producing

more space qualified GPS receivers. To compete with other manufacturers, these

companies are also building more functions into their receivers. Some of these functions

are: the use of Kalman filters for navigation solutions, attitude determination using GPS,

radiation hardening, and algorithms for more precise navigation solutions. Another way

these manufacturers compete is by producing receivers that perform the same functions, but

are smaller and lighter and consume less power.

Table C.1 presents a listing of GPS receivers that have been used in space

applications [8,64]. Each receiver is identified by its manufacturer and model. Along with

the receiver identification is a listing of the receiver's past or projected missions. The

reception characteristics of each model are provided and include the number of reception

channels, the frequency capability, and the number of antennas. The table also identifies

the functions that each receiver is capable of performing. The table does not present every

receiver, but it does include the most recent receivers produced and those that are currently

being developed [64].
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Table C.1 Spaceborne GPS Receivers

Manufact. Model Mission Chan. Freq. Ant. Functions

AOA Turbostar GPS-MET, 8 Dual P 1 Prec. nav.,
GFO, timing, P&P
Wakeshield 3 codeless

APL GNS TIMED 12-72 Single 2 Filt. nav.,
timing, rad.
hardened

Ashtech and 3DF none 24 Single Navigation,
E-systems upgrade timing
Ashtech and P-12 none 12 Dual P Navigation,
E-systems upgrade timing
Ashtech and OEM none 12 Single Navigation,
E-systems upgrade timing
GSFC PiVoT Spartan 251 24 Single 2/4 Filt. nav.,

timing (attitude
option)

Honeywell/ SIGI STS-96,97 12 Single 4 Attitude,
Trimble/ navigation,
GSFC timing
JPL microGPS SNOE No Single 1 "Bit Grabber,"

limit post-processed
navigation

JPL/GSFC/ GPS on a SAC-C, Champ, 12 Dual 4 Prec. nav.,
Stanford Chip GRACE timing, attitude
Magnavox GPSPAC Landsat 4,5 DOD 2 Dual P 1 Navigation

Motorola GPSDR Explorer 12 Single 2 Navigation,
timing

Motorola GPSDR TOPEX 6 Dual P 1 Navigation,
timing

Motorola Viceroy MSTI-3, Seastar 12 Single 2 Navigation,
timing

Motorola Monarch 12 Dual P(Y) 2 Filt. nav.,
timing, rad.
hardened

Rockwell AST V TAOS 6 Dual P 1 Navigation,
timing

Rockwell 3M upgrade NASA-JSC 5 Dual P 1 Navigation,
Shuttle timing

Rockwell Spaceborne P91-1 ARGOS 5 Dual P 1 Navigation,
5-channel timing

Rockwell SPINSAT SPINSAT 2 Dual P 1 Navigation,
(canceled) timing

Rockwell/ MAGR/S Space Shuttle 5 Dual P(Y) 1 Navigation,
Collins timing
SS/L Tensor SSTI-Lewis, EO- 9 Single 4 Attitude, filt.

1 nav., timing,
rad. hardened
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SSTL SGR TMSAT 12/24 Single 4/5 Attitude, filt.
nav., timing

Trimble TANS II APEX, Pegasus, 6 Single 1 Navigation,
upgrade LEAP timing

Trimble TANS RADCAL 6 Single 1 Navigation,
Quadrex timing

Trimble TANS Orbcomm, 6 Single 4 Attitude,
Vector Crista, SPAS, navigation,

REX-HI, etc. timing
Texas SNR DOD 1 Dual P(Y) 1 Navigation,
Instruments timing
Texas ASNR none 6 Dual P(Y) 1 Navigation,
Instruments timing
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