
A• ,

Security and Decentralized Control in the SFS

Global File System

by

David Mazieres

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1997

© Massachusetts Institute of Technology 1997. All rights reserved.

2 •! OCT 2 9 1997

Author
Department of Electrical Engineering and Computer Science

August 29, 1997

Certified by.....

ii --~- - - -L-r , '' · L 1 1 1· 1 · 1 1

~II~L~ICa~C~e~eaePP~P~~ ~_,

ZlOt' ~ I-

1 ~- ~' I~'~--~CI~LOPI·IQ- --~a - ' ----- I

1 1" J 1

V V

1 1e * 1 1 U CI . ~· · 1 I . I I

- L j I- ,- , I II J I .

M. Frans Kaashoek
Alss~ociate Professor

Theis -uervisor

Accepted by~. ~L~
Arthur C. Smith

Chairman, Department Committee on Graduate Students

Security and Decentralized Control in the SFS Global File

System

by

David Mazieres

Submitted to the Department of Electrical Engineering and Computer Science
on August 29, 1997, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

SFS (secure file system) is a global file system designed to be secure against all
active and passive network attacks, provide a single namespace across all machines
in the world, and avoid any form of centralized control. Using SFS, any unprivileged
user can access any file server in the world securely and with no prior arrangement
on the part of system administrators. New file servers are immediately accessible
securely by all client machines. Users can name such new servers from any existing
file system by specifying public keys in symbolic links. A prototype implementation of
SFS installs easily, coexists with other file systems, and should port trivially to most
UNIX platforms. Preliminary performance numbers on application benchmarks show
that, despite its use of encryption and user-level servers, SFS delivers performance
competitive with an in-kernel NFS implementation.

Thesis Supervisor: M. Frans Kaashoek
Title: Associate Professor

Acknowledgments

The SFS project is joint work with Emmett Witchel and M. Frans Kaashoek. Eddie

Kohler helped write a paper that this thesis is based on.

Contents

1 Introduction

2 Related Work

3 The SFS Namespace

4 Design and protocol

4.1 Read-write protocol

4.1.1 Authentication protocol

4.1.2 Caching

4.2 Algorithms

4.3 Read-only protocol

5 Reference Implementation

5.1 Structure

5.1.1 Programs

5.1.2 Modular design

5.2 Event-driven architecture . . .

5.3 User-level NFS

5.4 Client cache

5.5 Implementation details

5.6 Security issues

6 Results

13

15

.................... 15

.................... 15

.................... 18

.................... 20

.................... 2 1

27

28

28

30

31

32

33

34

35

-:--

6.1 Designing SFS for high performance 37

6.1.1 SFS data and meta-data cache 38

6.1.2 Asynchronous RPC 38

6.2 Measured performance of SFS 38

6.2.1 Experimental setup 39

6.2.2 Modified Andrew benchmark 39

6.2.3 Sprite LFS microbenchmarks 40

6.2.4 Asynchronous RPC microbenchmarks 41

7 Future work 44

8 Conclusion 46

List of Figures

4-1 Key exchange and server authentication.

4-2 Authenticating users

4-3 A hash control block

4-4 Calls in the SFS read-write protocol . . .

4-5 Callbacks in the SFS read-write protocol .

4-6 Calls in the SFS read-only protocol

5-1 Structure of SFS.

6-1 Modified Andrew benchmark performance

6-2 LFS small file benchmark performance

6-3 LFS large file benchmark performance

6-4 Performance of asynchronous and encrypting RPC .

. 40

. 41

. 42

Chapter 1

Introduction

This thesis presents SFS, the first global file system to resist all active and passive

network attacks while avoiding any form of centralized control. The explosion of

the World-Wide Web over the past few years has clearly driven home the benefits

of a decentralized system for sharing information over the wide area network. By

comparison, the limited acceptance of secure HTTP has shown the degree to which

centralized control can hinder the deployment of any technology. All other things

equal, people should clearly prefer to run secure web servers over insecure ones. In

practice, however, the cost and hassle of obtaining the necessary digital certificates

from central certification authorites has kept most web servers from running secure

HTTP. The SFS project proves that secure global network services can function with

completely decentralized trust.

As a global file system, SFS offers a single file namespace on all machines. Users

can reach any SFS file system from any SFS client in the world, simply by referencing

that file system's pathname. The SFS protocol then cryptographically guarantees the

integrity of all file data and the secrecy of any data not universe-readable. These guar-

antees hold over untrusted networks and across administrative realms; they require no

shared secrets and apply even when people use servers they don't have accounts on.

SFS never operates in a degraded or insecure mode. Unlike any previous file system,

SFS achieves its security without granting control of the namespace to any naming

authority. Clients can immediately see new file servers as they come on-line, with

no need to reconfigure clients or register new servers in a centrally or hierarchically

maintained database.

Many existing file systems encourage the formation of inconveniently large ad-

ministrative realms, either to maintain security without restricting file sharing or to

save users from unreasonable complexity. In contrast, we specifically built SFS for

cross-administrative realm operation. SFS's global namespace already assures users

access to any servers they need from any clients they use. In addition, user-controlled

agent processes transparently authenticate users to any file servers they access. Thus,

users can run a single authentication agent at login time and never need to worry

about separately authenticating themselves to multiple servers.

SFS employs several novel techniques to avoid centralized control. First, it em-

beds cryptographic key hashes in pathnames to name file systems by their public keys.

This simple, egalitarian naming scheme ensures that every client has at least one path

to every SFS file system, and that clients can cryptographically protect any commu-

nications with file servers. Of course, anyone can assign additional, human-readable

names to a file system through symbolic links. In this way, certification authori-

ties consist of nothing more than ordinary SFS file servers that name file systems

through symbolic links. Second, SFS allows read-only servers such as certification

authorities to enjoy strong integrity guarantees and high performance through pre-

computed digital signatures. An off-line utility can create signature databases that

prove the contents of file systems. Servers of read-only data can use these databases

both to avoid the cost of any private key operations and to avoid keeping any on-line

copies of a file system's private key. Finally, SFS combines many additional features

often missing from network file systems, including tight consistency guarantees, au-

tomatic mapping of user and group identities between administrative realms, global,

non-blocking automounting, and flexible, open-ended user authentication.

A reference implementation of SFS makes several contributions to user-level filesys-

tems. SFS runs as a user-level NFS loopback file server-an ordinary, local process

acting like a remote NFS server. It should consequently port trivially any Unix

platform supporting NFS. Pervious NFS loopback file systems have exhibited poor

performance. However, SFS makes use of a new asynchronous RPC library that allows

arbitrarily many outstanding file operations. This non-blocking architecture overlaps

the cost of encryption with network latency and lets servers achieve disk arm schedul-

ing for multiple requests. SFS further uses aggressive on-disk client caching, with the

result that our user-level implementation performs comparably to an in-kernel imple-

mentation of NFS, despite SFS additionally providing security and consistency.

We designed SFS to serve existing file systems and coexists with other network file

systems, which will make it easy to install and gradually adopt. Our implementation

uses a modular structure that allows multiple versions of the client and server to run

on the same machine and share the same namespace. This structure should help

innovation and prevent backwards compatibility from ever unreasonably burdening

future revisions of the software.

The rest of this thesis discusses the design of SFS and the SFS protocol, a proto-

type imlementation of SFS, and performance measurements of the prototype imple-

mentation.

Chapter 2

Related Work

Many projects have explored distributed file systems in the context of caching, per-

formance, security, or a global namespace [3, 7, 8, 11, 12, 13, 18, 21, 22, 23, 34, 39,

44, 45, 46, 48, 49, 53, 57]. While SFS's design goals have been met individually by

previous projects, SFS is the first file system to provide security, a global namespace,

and completely decentralized control at the same time.

One of the file systems in most widespread use today is Sun's NFS [44, 54]. NFS

is purely a local-area file system; it doesn't perform well over wide area networks,

and offers no security in the face of network eavesdropping. A later attempt to add

security to NFS through secure RPC [55] had a very appealing design based on public

key cryptography. Unfortunately, the protocol had several flaws. First, the public

key lengths were far too short [30]. Second, the authentication information in RPC

packets was not cryptographically tied to their contents, allowing attackers to tamper

with request packets. Third, file data on the network was sent in cleartext, which may

be acceptable for local area networks, but certainly will not work across the Internet.

AFS [24, 46] is probably the most successful global file system to date. It provides

a clean separation between the local and global namespace by mounting all remote file

systems under a single directory, /af s. AFS also makes extensive use of client caching

to achieve good performance on remote file systems, and doesn't trust client machines

beyond their authenticated users. Unlike SFS, however, AFS client machines contain

a fixed list of available servers that only a privileged administrator can update. AFS

uses Kerberos [52] shared secrets to protect network traffic, and so cannot guarantee

the integrity of file systems on which users do not have accounts. Though AFS

can be compiled to encrypt network communications to servers on which users have

accounts, the commercial binary distributions in widespread use do not offer any

secrecy. DFS [27] is a second generation file system based on AFS, in which a centrally

maintained database determines all available file systems.

The Echo distributed file system [8, 9, 31, 32] achieves secure global file access

without global trust of the authentication root. Each Echo client and server attaches

to a particular point in the global namespace, which also forms a hierarchy of trust.

Clients need not go through the root of this trust hierarchy to access servers with

which they share a common prefix in the namespace. However, the root of the hi-

erarchy is completely centralized. Users cannot reach new servers until someone has

consented to attach those servers to some point in the namespace. Echo also does

not allow for any local namespace, and changes the meaning of the root directory-

interesting ideas, but ones that would prevent it from coexisting easily with other file

systems.

The Truffles service [40] is an extension of the Ficus file system [23] to operate

securely across the Internet. Truffles provides fine-grained access control with the

interesting property that, policy permitting, a user can export files to any other user

in the world, without the need to involve administrators. Unfortunately, the interface

for such file sharing is somewhat clunky, and involves exchanging E-mail messages

signed and encrypted with PEM. Truffles also relies on centralized, hierarchical cer-

tification authorities, naming users with X.500 distinguished names and requiring

X.509 certificates for all users and servers.

Recently, Sun has introduced some extensions to NFS called WebNFS [14, 15] and

aimed at replacing HTTP. WebNFS optimizes connection setup relative to NFS, and

also allows anonymous file access through a "public" file handle, in effect providing

a global file system. However, WebNFS isn't necessarily intended to be used as a

file system, but rather as better protocol for user-level web browsers. Moreover,
because most NFS server implementations are in the kernel, a few changes to an

operating system's NFS code are all that is required to give WebNFS servers many

of the performance benefits research systems like SPIN [6] get by downloading web

servers into the kernel. Sun claims to have achieved an order of magnitude better

performance from WebNFS than from an ordinary Web server. The small additions

to NFS which constitute WebNFS greatly enhance its utility as a global file system,

but do not address NFS's security problems.

Instead of speeding up the Web by replacing HTTP with a well-known network file

system protocol, WebFS [56] implements a network file system on top of the HTTP

protocol. Specifically, WebFS uses the HTTP protocol to transfer data between user-

level HTTP servers and an in-kernel client file system implementation. This allows the

contents of existing URLs to be accessed through the file system. WebFS attempts

to provide authentication and security through a protocol layered over HTTP [4];

authentication requires a hierarchy of certification authorities.

WebFS lets normal file utilities manipulate the contents of remote web sites. It

does not, however, address any of HTTP's serious shortcomings as a file sharing

protocol. HTTP transfers the entire contents of a file before allowing clients to issue

more requests. It does not allow reads at arbitrary offsets of a file. It requires clients

to waste TCP connections if they want multiple outstanding requests. It often does

not even allow clients to list the contents of directories. WebFS avoids some of these

problems on special WebFS servers through a somewhat enhanced and incompatible

version of HTTP. There really is no particular advantage to basing a new file system

protocol on HTTP, however. True, some network firewall administrators allow HTTP

to the outside world; WebFS can subvert their intentions by tunneling a file system

over HTTP. The right thing to do, however, is to build a secure file system from the

ground up, and to let people open their firewalls to it on its own merits.

Chapter 3

The SFS Namespace

One must ask two fundamental questions about any global file system: Who controls

the namespace, and how do clients trust remote machines to serve parts of that

namespace? A centrally controlled namespace hinders deployment; it prevents new

file servers from coming on-line until they gain approval from the naming authority.

On the other hand, clients need cryptographic guarantees on the integrity and secrecy

of remote communications; these guarantees require a binding between encryption

keys and points in the global namespace. To provide this binding without relying on

naming authorities, SFS names file servers by their public keys, an approach similar

in spirit to the SDSI public key infrastructure [42].

Each SFS file system is mounted on a directory named /sfs/Location: HostID.

Location is a DNS host name; HostID is a cryptographic hash of the server's public

key and hostname. Location tells SFS where to find a server for the file system, while

HostID specifies a private key that the server must prove possession of. When a user

references a non-existent directory of the proper format under /sfs, an SFS client

attempts to contact the machine named by Location. If that machine exists, runs

SFS, and can prove possession of a private key corresponding to HostID, then the

client transparently creates the referenced directory in /sfs/ and mounts the remote

file system there. This automatic mounting file systems under pathames derived from

public keys assures every SFS file system a place in the global SFS namespace.

Of course, no person will ever want to type a HostID-the hexadecimal represen-

tation of a 160-bit cryptographic hash. Instead, people can assign human-readable

names to mount points through symbolic links. For instance, if Verisign acted as

an SFS certification authority, client administrators would likely create a symbolic

link from /verisign to the the mount point of that certification authority-a path-

name like /sf s/sf s .verisign. com: 75b4e39a1b58c265f72dac35e7f940c6f093cb8-

0. This file system would in turn contain symbolic links to other SFS mount points,

so that, for instance, /verisign/mit might point to /sf s/sf s.mit.edu: Of69f4a0-

59c62b35f2bdacO5feef610af 052c42c.

There is nothing magic about /verisign, however; it is just a symbolic link. Thus,

SFS supports the use of certification authorities, but neither relies on them for correct

operation nor grants them any special privileges or status. In fact, organizations will

probably install analogous symbolic links to their own servers in the root directories

of their client machines. Individual users can create symbolic links for themselves in

their home directories, perhaps after exchanging Host IDs in digitally signed email.

Anyone with a universe-readable directory can create public links that others can

make direct use of. For instance, /verisign/mit/1cs/dm/sfs-dist could be a path

to the SFS distribution server. The chain of trust is always explicit in such pathnames.

Despite its not being officially certified, people can still reach the sfs-dist server

and understand who has given it that name.

Certification authorities, hierarchical delegation, informal key exchange, the "web

of trust," and even hard-coded encryption keys all have their place in certain situ-

ations. SFS recognizes that no single name to key binding process can be right for

all purposes. By exposing public keys, then, it provides security without placing any

restrictions on key management.

Chapter 4

Design and protocol

This chapter describes the overall design of SFS and the SFS protocol. The next

chapter discusses a reference implementation of SFS for Unix operating systems. We

cover two dialects of the SFS protocol in turn, a general-purpose read-write protocol

and a read-only protocol for heavily accessed public data with stringent security

requirements. All clients must support both protocols, while servers run whichever

one best suits their requirements.

4.1 Read-write protocol

The read-write SFS protocol provides the usual read and write file system operations,

along with public key based user authentication. It guarantees the secrecy, integrity,

and freshness of all data transmitted over the network, and requires file servers to

perform on-line private key operations. This section describes the details of authen-

tication and caching in the read-write protocol. Figures 4-4 and 4-5 at the end of the

chapter list all remote procedure calls in the protocol.

4.1.1 Authentication protocol

Because users can't necessarily trust file servers with their passwords, all user au-

thentication to remote file servers uses public keys in SFS. Every user on an SFS

client machine registers an authentication agent process with the SFS client software.

The authentication agent holds one or more of the user's private keys. When a user

accesses a new file system, the client machine contacts the user's agent and gives the

agent a chance to authenticate the user to the remote server through one of its private

keys. If the authentication succeeds, the client machine receives an authentication

number from the server and tags all file system requests from that user with that au-

thentication number. After authentication, the client also obtains information about

the user's exact credentials on the remote machine, so as to translate the user and

group IDs of remote files to something that makes some amount of sense on the local

machine. If the authentication fails, all file accesses made by the user are tagged

with the authentication number 0, which permits access only to universe-readable

files. When the authentication agent exits, the client machine flushes any cached

data associated with that user and de-allocates any authentication numbers obtained

through that agent. With this scheme, all user authentication after the initial agent

registration takes place completely transparently.

The SFS authentication protocol was inspired by ssh [59], but with several fixes

[1] and modifications. It takes place in two stages: first, authenticating the server to

the client, and second, authenticating the user to the server, via the client. Three

parties are involved: the SFS client software C, the SFS server software S, and the

user's authentication agent A. The only current implementation of the agent software

holds all private keys on the same machine as C. Each user can choose to run his own

agent implementation, however. In the future, we envision dumb agents that forward

authentication requests to smart cards or even to other agents through encrypted

login connections, as is currently done with ssh.

The first stage, shown in Figure 4-1, authenticates the server to the client, with the

client initiating the exchange. The goal is to agree on two client-chosen shared session

keys, K8 c and K,,, to encrypt and protect the integrity of future data communication

between client and server. The server sends the client two public keys, PK. and

PKt: the first, PK,, is the long-lived key whose hash is in the pathname; the second,

PKt, is a temporary public key which changes every hour. Use of a temporary public

host ID = {PK,, hostname}sHA-1

session ID = {K,,, K,,, PKt, No}SHA-1

1. C -+ S: hostname, host ID

2. S - C: PK,, PKt, No

3. C -+ S: {(Kcs, Ksc}PKt PK,, session ID, No

Figure 4-1: Key exchange and server authentication.

key provides forward secrecy: even if SK,, the long-lived secret key, is compromised,

old communication cannot be decrypted without factoring PKt once SKt has been

destroyed.

The host ID in this protocol is the hash obtained from the pathname by the client.

The client sends the host ID and hostname to the server in its first message so the

same machine can serve multiple file systems without needing multiple IP addresses.

The session ID, which is a hash of the two session keys, the server's temporary public

key, and a server-chosen nonce No, is used in future communication to identify the

session. The plaintext echoing of No has no effect on authentication proper, but

can be used by the server to filter out certain denial-of-service attacks that would

otherwise require significant CPU time due to the expense of public-key decryption

[25].

After this initial stage, all traffic from C to S is encrypted with K,, and all traffic

from S to C with K8 c. The client can be sure it is talking to the server as only the

server could have decrypted these session keys. At this point, C can access S with

anonymous permissions.

The second stage of the protocol authenticates the user to the server via the client,

as shown in Figure 4-2. This stage is necessary to access protected files. Here, PK,

is the user's public key. The user's agent A has a copy of the user's private key, SK,.

N, is a nonce, or challenge, chosen by the server. Note that all messages between

client and server are encrypted with one of the private session keys K8, and K,,.

1. C -+ A: hostname, host ID, session ID

2. A -+ C +K• , S: PK,

3. S -K,, C -+ A: {Nu}PK,

4. A -+ C -•+K,, S: {Nu, hostname, host ID, session ID}SHA-1

5. S K-+K, C: authentication number and remote credentials (UIDs, GIDs, etc.)

Figure 4-2: Authenticating users.

The authentication information in the last step of the user authentication is used

to establish some reasonable correspondence between local and remote user and group

IDs. In the first step, note that the agent has access to both host name and host ID,

allowing it to certify the host ID if desired; however, the agent never sees either Kcs

or K,,, the session keys which are encrypting all client-server communication.

4.1.2 Caching

Reasonable performance for any global file system depends critically on the effective-

ness of client caching. Caching in SFS is even more important, given the cost of

software encryption for any data fetched over the network.

The only way to build a portable Unix reference implementation of SFS was to

use NFS loopback mounts on client machines. Unfortunately, the restricted infor-

mation the NFS interface provides somewhat limits cache design choices. Again for

portability, the cache could not ask for version numbers or other nonstandard infor-

mation which would need to be provided by the underlying file system. The fact that

SFS client machines are untrusted produced a further restriction: we did not want

to allow one misbehaving client to hang another client for unreasonable amounts of

time. Our solution is a lease-based cache mechanism [21] where clients must hold a

server-granted lease, with explicit expiration time, before accessing any file.

The SFS client cache stores three types of objects: file data, name lookups, and

file attributes. Both successful and unsuccessful name lookups are cached. File data

is cached in 64 Kbyte chunks; a large file or device for backing store is used to enable

a huge cache, offsetting the cost of decryption.

Caching specifics

In order to return a file's attributes or data to an application, the SFS client must

hold a current lease on the file. This is true even if the file is cached. The client

obtains leases automatically, for the most part: if a remote file is not being written

by any other client, the client's get-attributes request will also return a read lease

for the requested file. If, however, there is an outstanding write lease on the file, the

SFS server first retrieves the file's size and modification time from the writing client.

After some sanity checks, it then returns the attributes to the requesting client with

a zero-length lease.

If a client requests data (not attributes) from a file in the process of being written,

the server sends an unsolicited message to the writing client requesting that the client

give up its write lease. The server will not reply to the read request until the lease

is returned or expires. To prevent a slow client from overly slowing the system, SFS

servers maintain a maximum write lease time per client. A client slow to relinquish

write leases is punished by cutting down its maximum write time.

SFS servers will also send unsolicited messages revoking read leases when a write

occurs. However, these revocations are unconditional-the server does not even wait

for a reply. Thus, no per-client maximum read lease time is required.

A file can remain in the cache after its read lease has expired. The client must

renew the lease if the cached data is to be used, however; at renewal time, the client

must compare modification and inode modification times with the server's current

version. A conflict forces the client to reread the file. A similar scheme is used in

the name lookup cache; here, entries are invalidated only if a directory's times have

changed. As an optimization, the server sends deltas to clients holding read leases on

a directory rather than invalidate the entire cache entry.

The server performs access checks at the time it grants leases. Since a server

only deals with client daemons, of which there is one per machine, the client must

take responsibility for handling access control when a file is shared among users on

a single machine-these users share each other's leases. To facilitate this, each piece

of data in the cache is marked with an authentication number obtained from some

user's authentication agent, if any. When an authentication agent exits, which the

client detects immediately, any data associated with that authentication number is

flushed.

Callbacks and leases

The inclusion of server-generated unsolicited messages enables much higher perfor-

mance. Specifically, because servers can directly ask write-lease holders for informa-

tion, writing clients do not need to write through all attribute or data changes to

the server. This enables a write-behind cache, with the associated improvement in

write performance. These callbacks are also used to inform reading clients of changes,

enabling a longer attribute cache time--readers don't have to check for changes as

often-and better consistency guarantees than NFS provides.

While a callback-based invalidation protocol, without leases, could create a work-

able system, explicit leases are useful for two reasons. First, the expiration times on

read leases limit the amount of state a server needs to keep. Second, some method is

required to limit the length of time a problem client can hold a write lock, since SFS

does not trust client machines; leases present an attractive and simple alternative.

4.2 Algorithms

We chose the Rabin-Williams public key system [38, 58] for SFS for several reasons.

Like RSA, the Rabin algorithm depends on the difficulty of factoring. However, while

there may exist an easier way of breaking RSA than by factoring the modulus, the

Rabin cipher is provably as hard as factoring. Moreover, the Rabin algorithm has fast

signature verification time (twice as fast as RSA with an exponent of 3), a property

we make use of for read-only data as described in Section 4.3. We also hope to avoid

US patent restrictions by using an algorithm other than RSA.

We chose SHA-1 [19], a collision-free hash function, to compute the public-key-

hash used in pathnames of remote servers. The hash result is 160 bits long, which

is currently expressed as 40 characters of hexadecimal digits in pathnames. We may

switch to a more compact notation such as base-36 (0-9 and a-z) before releasing

SFS. SHA-1 is also used to compute the session ID and the answer to the user au-

thentication challenge. We also use SHA-1 in conjunction with the PRab redundancy

function [5] for digital signatures.

The shared-key system used for data communication-that is, with K,, and K86-

is a combination of the Arcfour stream cipher [26] for secrecy and an SHA-1-based

message authentication code (MAC) to detect any modification of network packets.

We chose these algorithms for their strong security and high efficiency when imple-

mented in software. The combination of Arcfour and our SHA-1-based MAC is almost

twice as fast as DES alone, while providing strong secrecy and integrity and longer

encryption keys.

SFS can function with arbitrary size public and shared keys. We currently use

1,024 bit keys for user and server public keys, 768 bit keys for temporary public keys,

and 128 bits for Arcfour shared keys and for nonces. However, the key lengths can

change without breaking compatibility.

4.3 Read-only protocol

Key exchange at connection setup is fairly expensive for an SFS server; for exam-

ple, the two public-key decryptions cost roughly 100 milliseconds on a 200 MHz

Pentium Pro. This enforces a hard limit of 10 connections accepted per second, po-

tentially preventing an SFS server from serving more than a few thousand clients.

One possible solution would be to require large groups of clients to access SFS servers

through a single trusted proxy; however, several studies [11, 33] have shown that

such organization-wide caches have extremely poor hit rates. Another solution would

be to replicate widely used servers; however, this would require widely distributing

these servers' private keys-unacceptable if high security is a requirement. In fact,

for some purposes, even a single on-line copy of a file server's private key may pose

an unacceptable security risk.

To address these issues, SFS servers of public data can operate in a read-only

mode that requires no on-line private key operations. This read-only mode uses pre-

computed digital signatures to prove the contents of a file system to client machines.

While creating digital signatures can be costly (e.g. 60 milliseconds on a 200 MHz

Pentium Pro for 1,024 bit Rabin-Williams keys), Rabin-Williams signature verifica-

tion is extremely fast. A 200 MHz Pentium Pro can verify 1,024 bit Rabin-Williams

signatures in only 250 microseconds-considerably less than the cost of a remote pro-

cedure call on anything but the fastest local-area networks. This makes it reasonable

for clients to verify signatures on every RPC.

All signed SFS messages begin with a signature header that has several fields.

An RPC version number specifies the format of marshaled data; it should remain

fixed unless there is a change to the encoding of base types such as integers and

arrays. Program and version numbers specify the SFS read-only protocol and its

revision level. A direction integer specifies that the message is a reply (currently the

only kind of signed message in SFS). An array of procedure numbers enumerates the

procedures to which the message constitutes a valid reply; some messages can be given

in response to multiple procedure calls-for instance a stale file handle message might

be returned for both a read and get attributes request on a particular file. Finally, a

start time and duration indicate the period of time during which the message should

be considered valid.

Figure 4-6 lists the remote procedure calls in the read-only protocol. Unlike the

read-write protocol, all replies in the SFS read-only protocol contain enough con-

text to prevent them from being interpreted as replies to different questions. Get

attributes replies, for instance, contain both a file's handle and its attributes. Failed

name lookups return a directory file handle and two names that no files lie between

alphabetically.

Replies to file reads are not signed. Clients must verify file contents separately.

So as to obtain atomicity and non-repudiation, a single signature proves the entire

Hash Control File Data

sig. header .
file handle

SHA-1

SHA-1

SHA-1

Indirect Block

SHA-1
ST-TA 1

signature

Figure 4-3: A hash control block

contents of a file. Simply signing the file's contents with its handle, however, would

require clients to download an entire file before verifying any block. Instead, read-

only servers sign a hash control block for each file. A hash control block, shown in

Figure 4-3, consists of a file handle, cryptographic hashes of up to 16 8K data blocks

at the start of the file, and, for larger files, the hashes of single, double, and tripple

indirect hash blocks. A remote readhash procedure allows clients to retrieve these

indirect blocks, each of which can contain up to 400 hashes of file data blocks, or of

single or double indirect hash blocks. Thus, verifying the first block of a file requires

only a small hash control message. A random read from a large file will additionally

require three indirect blocks to be fetched in the worst case, but if multiple reads

exhibit any spatial locality, the appropriate indirect blocks will very likely be cached

at the client.

Note that while key exchange in the read-write protocol guarantees the integrity

and secrecy of messages in both directions, the read-only protocol only guarantees

integrity of messages from the server; it provides no secrecy whatsoever. Therefore,

the read-only protocol is only appropriate for fully public, read-only data. Any data

alteration or non-public data must use another path.

Where full key exchange guarantees the freshness of each message, signed messages

remain valid for the entire duration of a predetermined time interval. Thus, the

read-only protocol cannot provide the tight consistency guarantees that key exchange

(I
I

kI 1, r I A - I I

offers. Frequently changing data should not be made accessible through the read-only

protocol, as the cost to recompute constantly expiring, per-file signatures will likely

exceed the per-connection cost of initial key exchange.

Avoiding key exchange allows an SFS server to accept many more clients for

stable read-only data. In addition, it allows read-only file systems to be replicated

on untrusted machines by replicating signatures and data but not the private key.

Although the signature solution only applies to read-only accesses, we believe that

the number of people writing a particular file system will not reach critical levels.

connect Specifies the file system a client intends to mount. Returns a
public key that hashes to Host ID.

encrypt Begin encrypting the connection (must follow a connect). Re-
turns the root file handle.

login Begins authenticating a user. Takes a public key and returns a
cryptographic challenge.

chalres Takes a response to a login challenge. If the response is correct,
returns an authentication number.

logout Deallocates an authentication number.

statfs Returns the amount of used and free disk space available in a
particular file's partition.

readdir Returns an 8 KB block of file names in a directory.

lookup Takes a directory and a file name. Returns a file handle, at-
tributes, and a lease.

readlink Returns the contents of a symbolic link.

getattr Gets the attributes of a file and obtains a lease

getlease Obtains or refreshes a lease.

read Read file data.

write Read file data.

create Creates a file and obtains a lease.

link Links a file into a directory.

remove Unlinks a file from a directory.

mkdir Creates a directory.

rmdir Deletes a directory.

symlink Creates a symbolic link.

setattr Sets the attributes of a file.

rename Renames a file.

Figure 4-4: Calls in the SFS read-write protocol

killlease Requests that a client relinquish a write lease prematurely, or
tells a client that a read lease will no longer be honored.

dirmod Notifies a client of a created or deleted link in a directory for
which the client holds a lease.

rename Notifies a client of a rename operation affecting a directory for
which the client holds a lease.

Figure 4-5: Callbacks in the SFS read-write protocol

connect Specifies the file system a client intends to mount. Returns a
signed message containing the root file handle and a public key
that hashes to Host ID. (A tagged union makes this compatible
with the read-write connect call.)

lookup Takes a directory and a file name. On success, returns a signed
message containing a directory file handle, a name, a file handle,
and an attribute structure. On failure, returns a signed message
with a directory and two names between which no files lie al-
phabetically. For recently deleted directories, can also return a
signed stale file handle error.

getattr Returns a signed message with a file handle and attributes. For
recently deleted files, may also return a signed stale file handle
error.

readlink Returns a signed message with the file handle of a symbolic link
and its contents. Can return a signed stale file handle error.

read Returns an unsigned block from a file. The data must be verified
through a hash control block.

readdir Returns an unsigned block of file names in a directory. The data
must be verified through a hash control block.

hashctl Returns a signed hash control block for a file handle.

readhash Returns a single, double, or tripple indirect hash block. The
block is unsigned and must be verified through a hash control
block (and possibly one or more indirect blocks).

Figure 4-6: Calls in the SFS read-only protocol

Chapter 5

Reference Implementation

We have built a reference implementation of SFS for Unix systems. The goals for this

implementation are to provide portability and ease of installation. We were willing

to sacrifice performance to meet these goals, so long as the overall performance of the

reference implementation stayed competitive with NFS-a fairly-low-performance file

system which nonetheless enjoys widespread use.

There are several ways of implementing a new file system in Unix; one of the most

attractive is to put the file system in the kernel at the vnode layer [29]. NFS, AFS,

WebFS and local file systems like FFS are all implemented at the vnode layer. Unfor-

tunately, while writing a file system at the vnode layer gives the highest performance

and the most control, the vnode interface differs enough between operating systems

that portability becomes a serious problem. Also, people are generally more reluc-

tant to modify their kernels, even through dynamically linked modules, than to install

user-level software. (We do eventually hope to implement SFS as the vnode layer in

a free operating system, but can't expect SFS to succeed on such a platform-specific

implementation.)

New file systems can also be implemented by replacing system shared libraries or

even intercepting all of a process's system calls, as the UFO system does [2]. Both

methods are appealing because they can be implemented by a completely unprivileged

user. Unfortunately, it is hard to implement complete file system semantics using

these methods (for instance, you can't hand off a file descriptor using sendmsg).

Both methods also fail in some cases-shared libraries don't work with statically

linked applications, and the UFO file system can't work across executions of set-user-

id programs. Moreover, having different namespaces for different processes can cause

confusion, at least on operating systems that don't normally support this.

We therefore decided to implement SFS using NFS loopback mounts. (We chose

NFS version 2, as it is the most widely supported.) A user-level process on each SFS

client machine binds a UDP socket and passes the address of that socket to the kernel

in an NFS mount system call.

Several previous file systems have used NFS loopback mounts [10, 17, 20]. These

file systems all have new functionality which complements existing file systems and is

valuable even at the cost of some performance. SFS, however, aims to replace other

network file systems rather than complement them; it must therefore offer competitive

performance as well as new functionality.

5.1 Structure

SFS consists of three principal programs: agent, sfscd, and sfssd. In addition, some

utility programs allow users to do such things as create public key pairs, and several

auxiliary daemons get invoked by and communicate with sfscd and sfssd. Figure 5-1

shows the overall structure of SFS, which the next few subsections will explain in

detail.

5.1.1 Programs

The sfscd program, which runs on all client machines, acts as an NFS server to the

local operating system. sfscd mounts itself under the directory /sfs and responds to

NFS requests from the kernel. When users reference non-existent directories of the

proper format under /sfs, sfscd attempts to connect to correspondingly named file

servers. If successful, it hands the connection off to an auxiliary client deamon for

the appropriate protocol dialect and creates a mount point for the new file system.

Each user on a client machine runs an instance of the agent program. agent

Client Server

Figure 5-1: Structure of SFS.

contacts the sfscd' program using the SFS control protocol, sfsctrl, to declare its

willingness to authenticate the particular user to remote file servers. This agent

knows the user's private key, which can be stored locally or encrypted and universe-

readable on a remote SFS file system. Each time the user access a remote SFS server

for the first time, the agent automatically authenticates the user as described in

Section 4.1.1. We expect that the agent will be started as part of the login process.

All server machines run either sfsrwsd, for read-write servers, or sfsrosd for read-

only ones. Either one of these daemons can be run individually, or multiple instances

of either or both can be started by an sfssd process. sfsrwsd, the read-write server,

accesses exported local file systems through NFS. For performance, it needs to be

able to keep the local disk queue full to achieve good disk-arm scheduling. It also

needs to refer to files through a low-level representation (such as inode number)

rather than through mutable pathnames, since pathnames might change between

client references to the same file. NFS satisfies both these needs; by communicating

to the local operating system through nonblocking sockets, sfsrwsd can issue parallel

I/O requests in terms of low-level file handles. sfsrosd, the read-only server, serves

information from a database rather than a local file system. It uses uses multiple

processes to retrieve preformatted, digitally signed replies asynchronously from an

on-disk B-tree.

'Currently agent actually communicates directly with the read-write daemon, sfsrwcd, because
the read only auxiliary daemon does not need to authenticate users. This structural inelegance will
be corrected in the near future.

5.1.2 Modular design

Network system software like SFS can easily get firmly entrenched and become very

resistant to change. Moreover, concern for backwards compatibility can vastly com-

plicate future versions of software, both hindering innovation and increasing the like-

lihood of security holes. We therefore chose a modular design for SFS to let multiple

versions of the client and server exist on the same machine and share the same name-

space.

On the server side, the main daemon, sfssd, is an extremely simple program (only

380 lines of C code). On startup, it scans a configuration file that maps file system

names and protocol revision numbers to pathnames of an auxiliary daemon and ar-

guments to pass those daemons. sfssd runs one instance of each auxiliary daemon

listed in the configuration file. It then accepts all incoming network connections from

SFS clients, determines which server should handle each connection, and hands con-

nections off to the appropriate daemons through Unix's facilities for transferring file

descriptors between processes. This organization allows multiple versions of an SFS

server to run on the same machine using the same port number, and should con-

sequently make upgrading a server relatively painless even when the new version of

the software no longer supports an older protocol. True, under this multiple server

scheme, two clients using different protocol versions may no longer enjoy the tight

consistency guarantees offered individually by each version of the server. This seems

like a small price to pay for vastly simplifying innovation, however.

The main client daemon, sfscd, is a bit more complicated than sfssd. It acts as an

NFS server for the /sfs directory and creates new mount points for servers as they are

referenced. sfscd begins by reading a configuration file that maps protocol dialects,

RPC program numbers, and version numbers to the paths of auxiliary daemons and

arguments to pass those daemons. It then spawns an instance of each auxiliarly

daemon listed in the configuration file, giving each daemon a separate socket over

which to receive NFS requests from the kernel. When someone references a non-

existent server name in /sfs, sfscd contacts the server and decides based on the

response to the initial connection request which auxiliary client daemon should handle

the connection. It then transfers the connection to the appropriate daemon by passing

it the file descriptor 2. After receiving a connection, an auxiliary client daemon gives

sfscd an NFS file handle for the root of the new file system, which sfscd then mounts

at the appropriate place.

When a loopback NFS server crashes, it creates an unavailable NFS server, often

leading to hung processes and requiring a machine to be rebooted. This can present a

significant inconvenience to those developing loopback servers. However, sfscd keeps

copies of the sockets it gives to auxiliary daemons for NFS. If an auxiliary daemon

ever dies, sfscd takes over the socket and starts returning stale file handle errors to

the kernel until it can cleanly unmount all of the crashed daemon's file systems.

The SFS client software's modular design allows old, new, and experimental ver-

sions of the SFS protocol to coexist on the same machine and share the same name-

space. Furthermore, sfscd solves the greatest danger of experimental loopback servers,

their tendency to lock up the machine if they crash. SFS should therefore continue

to enjoy innovation even once people start relying on it.

5.2 Event-driven architecture

Because threads are nonportable on Unix, we used an event-driven architecture for

both the client and server. Therefore, neither the client nor the server can ever make

a blocking system call when it has any amount of work to do. In a few cases where

sfscd needs to make system that might block (such as a mount or unmount call), it

uses a separate process to make the call.

Supporting this event-driven architecture required building a new asynchronous

RPC (ARPC) library. We chose to make this library compatible with Sun RPC [50]

and the Sun XDR [51] marshaling routines generated by rpcgen. We also built

2 0On Linux, the one version of Unix that doesn't support file descriptor passing, the auxiliary
client daemon can simply open a new connection to the server being mounted. While this wastes
time and kernel protocol control blocks, we don't expect mounting of file systems to be on the critical
path for most applications.

an encrypting packet stream transport over TCP, and added a new base type of

multiprecision integer (to facilitate public key messages). This allowed the same

RPC routines to be used for NFS, SFS, the authentication agent protocol, and all

hash operations (which need to be performed on well-defined, endian-neutral data

structures).

Though these rpcgen-generated XDR routines are less efficient than we would

have hoped, using XDR has several benefits. First, it allows us to specify the exact

SFS protocol with no ambiguity; as rpcgen is widely available, this specification

can be easily and widely understood. Second, we could assure ourselves that the

autogenerated marshaling code had no buffer overruns or other bugs that could be

triggered by malformed remote data.

5.3 User-level NFS

Building a high performance multiuser file system over loopback NFS mountpoints

posed several implementation challenges. First of all, many Unix kernels lock NFS

mountpoints when a server fails to respond, so as to avoid flooding a server with

retransmits. In order to prevent one slow server from blocking file system requests to

another server we had to use a separate NFS loopback mountpoint for each remote

file server. This vastly complicated the process of automatically mounting remote

file systems, as a mount is only initiated once an NFS request on the /sfs directory

is pending. Since we also wanted the pwd command to show full canonical path-

names, including a server's host ID, we could not simply use the solution employed

by automounters of returning a symbolic link to an actual mount point in a different

directory [16, 37]. Instead, sfscd uses a delaying tactic of sending the user through

a chain of symbolic links which either return to the original mountpoint (now no

longer a symbolic link), if the mount was successful, or end up with a "no such file

or directory" error if the host does not exist or the public key does not match.

This solution is only possible because of the event-driven architecture of sfscd.

While sfscd delays the user's request (after having redirected it, with a symbolic

link, to a different mountpoint so as to avoid having the underlying operating system

lock the /sf s directory), it continues to process other NFS requests. After an asyn-

chronous hostname lookup, connection setup with the remote server, and public key

verification, sfscd responds to the user's request, which has been delayed and redi-

rected, by returning a symbolic link that points back into the /sfs directory where

the remote file server has now been mounted.

Yet another challenge in implementing a user-level NFS server is that the underly-

ing operating system hides information from it. In particular, an NFS server doesn't

see file open, file close, and, worse yet, fsync (forced write through) operations. We

deal with this problem in two ways. First, SFS does not perform write through on

close operations; this was a conscious decision for performance based on the results of

Ousterhout et al. [35], which show that most files stay open only for short periods of

time, thereby undermining the usefulness of write-back caching. In the future, if our

reference implementation can count on operating systems supporting NFS version 3,

we could duplicate the NFS semantics on close, if desired.

Second, we implemented fsync by flushing a file before most attribute changes;

this flush is required because an attribute change may revoke the permissions required

to write back dirty blocks from the cache. Thus, a meaningless attribute change (e.g.,

changing the owner of a file to its current owner) can be used to guarantee that all dirty

data has been written to disk. This solution is not ideal, since it requires modifications

to shared libraries for applications to obtain the correct behavior from fsync. We are

also considering performing an implicit fsync before all rename operations, since in

practice the most critical uses of fsync seem to precede rename operations.

5.4 Client cache

To offset the cost of software encryption, sfsrwcd keeps a large on-disk client cache

as described in Section 4.1.2. This on-disk cache can either be a regular file or,

preferably, a reservec disk partition; the latter avoids any double buffering and does

not disrupt efforts to cluster chunks of data. However, all experiments in this paper
not isrpt ffors t' custe chnksof ata.Howver allexprimnts n tis ape

use a regular file for a cache.

To avoid blocking when accessing on-disk caches, SFS client daemons do so asyn-

chronously through helper processes.

5.5 Implementation details

Maintaining consistency with write-back caches in the face of network failures is hard.

An SFS client attempts to flush any outstanding writes in its cache after a network or

server failure by periodically trying to reestablish a connection with the server. Once

connection is reestablished, these writes will succeed as long as their users' agents are

still running. If the blocks are written back, they may overwrite subsequent changes

made by other users. If a user's agent no longer exists, however, pending writes will

not be performed, as the user who performed them can no longer be authenticated.

Note that if, after killing her agent, a user goes on to change the same file from

another client machine, this may be the right behavior: the user's later changes will

not be overwritten by her earlier ones. Using techniques developed for disconnected

operation [28], one could do better; we may in the future adopt such techniques.

sfsrwcd needs to translate remote file permissions to something that makes sense

on the local machine. This requires that it provide a per-user view of the file system.

Consider, for instance, the case where two users in the same group on the local

machine are in different groups on the remote machine. For files accessible to one of

the remote groups, sfsrwcd must provide different group id mappings depending on

which user performs an access. To accomplish this, SFS disables the kernel's NFS

attribute cache for all SFS file systems, allowing it to give different local users different

views of the file system. SFS builds ID translation tables similar to those of RFS [41].

However, in SFS these tables are maintained dynamically and automatically, and are

specific to each user.

NFS version 2, has fixed-size, 32-byte file handles. sfsrwsd must be careful with

these handles, because an attacker can gain complete access to a file system given only

the NFS file handle of one directory. Moreover, SFS file handles are only 24 bytes,

as client daemons need to tag them with server IDs before turning them into NFS

file handles. sfsrwsd therefore compresses and encrypts NFS file handles to generate

SFS ones. Because most operating systems use a stylized form for their supposedly

opaque NFS file handles, sfsrwsd can reduce 24 of the 32 bytes of a file handle to a

4-byte index into a table, allowing squeezed NFS file handles to occupy only 12 of the

24 bytes in an SFS file handle. The remaining bytes are used for redundancy; they

are set to zero before the file handle is encrypted with blowfish [47] in CFB mode.

5.6 Security issues

The SFS client daemons exchange NFS packets with the kernel over the loopback

network interface. They do so by listening for UDP packets at a port with the

localhost IP address. However, some operating systems will accept forged packets

with localhost source and destination addressees if those packets arrive over a non-

loopback interface. While routers cannot route such packets, attackers with direct

access to a client's physical network can transmit them. SFS client daemons blowfish-

encrypt their NFS file handles, making them hard to guess; this prevents attackers

from modifying SFS file systems with forged loopback NFS requests. However, it

may still be possible for attackers with network access to guess 32-bit RPC packet

IDs and forge responses from SFS client daemons to the kernel. Operating systems

that accept forged localhost packets should be fixed. Until they are, several freely

available IP filter packages can be used to filter such forgeries. Nevertheless, people

need to remain aware of this potential vulnerability.

In general, while SFS keeps file data private and prevents unauthorized modifica-

tion in the face of network attacks, it does not solve all security problems. Obviously,

SFS is only as good as the security of the local operating system. Someone who

breaches the security of a client machine and becomes superuser can read SFS files

accessible to any users on that machine. Moreover, the superuser can even attach to

users' authentication agents with a debugger to read their private keys.

SFS servers must also be kept secure. While SFS encrypts file system data sent

over the network, it does so with freshly negotiated session keys. Thus, servers need

access to file data in unencrypted form. Though not strictly required by the proto-

col, the current server implementation also stores exported files in cleartext on disk,

through the operating system's local file system. SFS allows file sharing across the

network without sacrificing the security of servers or their local file systems. It does

not provide higher security than a local file system, or otherwise replace encrypting

file systems such as CFS [10] which encrypt all data written to disk.

Like most network services, SFS is vulnerable to denial of service attacks, such

as SYN-bombing or large numbers of connections from the same client. More impor-

tantly, the very existence of a global file system raises new kinds of security concerns.

For example, SFS makes it significantly easier for Trojan horses to copy all a user's

private files to a remote location. Even with the level of security that SFS transpar-

ently provides, therefore, users must still be conscious of some security issues.

Chapter 6

Results

We will first discuss SFS design choices that affect performance, and then discuss the

measured performance of our SFS reference implementation.

The results presented here are extremely promising, but SFS is not yet release

quality. In particular, we intend to rewrite the client cache code entirely. When

writing into a dirty chunk, the cache's current structure first requires the entire 64 KB

chunk to be read into core if it is not there already. Fixing this will definitely improve

performance. More seriously, however, the current cache can end up storing more

dirty blocks than there is room for on the server. Correcting this will require limiting

the amount of unallocated write behind when servers have little free disk space, and

may consequently hurt performance.

6.1 Designing SFS for high performance

There are several factors which might differentiate SFS performance from NFS per-

formance. First, SFS is more CPU intensive than NFS, because of the encryption

and integrity checks performed on file data and metadata. However, SFS has two im-

portant features which allow a high performance implementation-a large data and

meta-data cache, and an asynchronous RPC library.

6.1.1 SFS data and meta-data cache

SFS's large cache allows most recently-used data to be accessed locally. This saves

both the communication cost with the server and the cost of decrypting and ver-

ifying data. However, retrieving file attributes requires the kernel to schedule the

sfscd process. This is potentially expensive, and shows up as a small cost in some

benchmarks.

Additionally, the cache allows SFS to buffer a large number of writes, much larger

than the typical NFS implementation where the number of outstanding write requests

is limited by the number of NFS I/O daemon processes.

6.1.2 Asynchronous RPC

By allowing multiple outstanding requests though ARPC, we can overlap their la-

tencies, or use the time they are outstanding to do other work (like encryption-as

measured in 6.2). SFS's aggressive write buffering can accumulate many file chunks

that need to be written back to the server, and these write backs can proceed in

parallel with each other and with additional requests. Read-ahead requests (which

are not yet implemented) can also proceed in parallel. Renames, and most metadata

changes are synchronously forwarded to the server and benefit only from the ARPC

library's efficiency.

6.2 Measured performance of SFS

We ran several sets of experiments to validate the design of SFS. Most importantly, we

wanted to ensure that the end-to-end performance of standard file system workloads,

as exemplified by the modified Andrew Benchmark, was competitive with standard

NFS. We also wanted to determine SFS's performance characteristics under specific

types of loads. For this we used the Sprite LFS benchmarks that stress small file cre-

ation and deletion, and large file reads and writes. Finally, we look at the importance

and interaction of two core implementation decisions-asynchronous RPC and data

encryption.

Note that the mesurements in this section represent a version of SFS with a slightly

older automounter. This should not matter as the cost of mounting file systems is

not reflected in any of the benchmarks. Measurements of the newest version of SFS

on a slightly different network configuration yielded results almost identical to those

presented here.

6.2.1 Experimental setup

Client and servers are 200 MHz Pentium Pros running OpenBSD 2.0, with 64MB

of memory, 4GB of disk, and 10Mb SMC Ultra Ethernet cards. The client and

server were run on different, unloaded machines in multiuser mode. We feel this

configuration mirrors what might be found in a modern lab or office. While no

special effort was made to reduce ambient network traffic, all experiments were run

until at least three runs generated very similar results. The network was periodically

monitored to ensure that the experiments do not represent performance artifacts.

6.2.2 Modified Andrew benchmark

We ran the modified Andrew benchmark [36] on a local file system, NFS, and SFS with

encryption. The timing results are shown in Figure 6-1. All experiments were run

with a warm cache. SFS's data and meta-data cache and aggressive write-buffering

make it faster than NFS on the MAB.

The first phase of the MAB just creates a few directories. The second stresses

large-volume data movement as a number of small files are copied. The third phase

collects the file attributes for a large set of files. The fourth phase searches the files

for a string which does not appear and the final phase launches a compile.

Figure 6-1 also shows that the high security guarantees of SFS do not cost signif-

icant performance for this type of file system usage. The SFS caches are successful

in allowing it to avoid frequent decryption. These numbers confirm our experience

in using SFS for document preparation and for compiling (often the sources to SFS

20

10

Loc NFS SFS sFS Loc NFS SFS sFS LocNFSSFS sFS Loc NFS SFS sFS Loc NFS SFS sFS Loc NFS SFS sFS
directories copy attributes search compile total

MAB phases run on different file systems

Figure 6-1: Wall clock execution time (in seconds) for the different phases of the
modified Andrew benchmark, run on different file systems. sFS is SFS without data
encryption, and Loc is OpenBSD's local FFS file system.

itself).

6.2.3 Sprite LFS microbenchmarks

The Sprite LFS microbenchmarks [43] do not represent any realistic file system work-

load, but they help isolate performance characteristics of the file system. The small

file test creates 1,000 1KB files, reads them, and unlinks them all. The large file test

writes a large file sequentially, reads from it sequentially, then writes it randomly,

reads it randomly, then reads it sequentially. Data is synced to disk after each write.

SFS and NFS have comparable performance for create and unlink phase of the

small file benchmark, as both need to synchronously contact the server. The read

performance for small files is poor over SFS due to an inefficiency in the prototype

implementation. The current SFS implementation manages its cache in 64KB chunks,

regardless of the size of the file. When the chunk size is set to 8K, SFS create time

increases to 29 seconds (equaling NFS), but the read time comes down from 25 seconds

U,

E1
0

Loc NFS SFS sFS Loc NFS SFS sFS Loc NFS SFS sFS
create read unlink

LFS small file benchmarks

Figure 6-2: Wall clock execution time for the different phases of the Sprite LFS small

file benchmark, run over different file systems. The benchmark creates, reads, and

unlinks 1,000 1KB files. sFS is SFS without data encryption, and Loc is OpenBSD's

local FFS file system.

to 4 seconds (faster than NFS), representing the true overhead of SFS relative to the

local file system (due to the scheduling overhead for sfscd). It will not take much

work to make SFS's cache chunks size sensitive to file and read request size.

For the large file benchmark (shown in Figure 6-3) SFS performs well on opera-

tions, like the large sequential write, where it can buffer the data, sending the writes

to the server in parallel. It also performs well on operations that use its cache, like

the large sequential reads.

The random write following the sequential write and read is tough for SFS because

its cache has dirty data in it that must be read from disk and flushed to the server

before space is created for the newly written data.

6.2.4 Asynchronous RPC microbenchmarks

The MAB and the LFS benchmarks seem to indicate that the encryption and integrity

costs of SFS are small, and that the efficiency of and ability to overlap RPCs is an

10

A

Loc NFS SFS sFS Loc NFS SFS sFS Loc NFS SFS sFS Loc NFS SFS sFS Loc NFS SFS sFS
seq write seq read rand write rand read seq read

LFS large file benchmarks

Figure 6-3: Wall clock execution time for the different phases of the Sprite LFS large
file benchmarks, run over different file systems. The benchmark creates an 8MB file
and reads and writes 8k chunks. sFS is SFS without data encryption, and Loc is
OpenBSD's local FFS file system.

RPC Implementation 100B/1

SUN RPC

ARPC
XARPC

0.22
0.23

0.25

100B/2 8KB/1 8KB/2

0.13 (1.7x)

0.15 (1.5x)

20.0

1.7 (12x)

2.0 (10x)

1.1 (18x)

1.1 (18x)

Figure 6-4: The time (in milliseconds) taken for various RPC libraries to complete
a call. Numbers in parenthesis are speed-up factors relative to SUN RPC. The first
number in the column headings indicate the argument size (100 bytes or 8KB). The
response is held fixed at 100 bytes. The second number indicates the number of
outstanding requests (only the asynchronous RPC implementations can have multiple
outstanding requests). Times are the average of 4000 calls for 100 byte argument and
700 calls for 8KB argument

important part of SFS's performance. We investigated this hypothesis, along with

measuring the relative performance of SFS's asynchronous RPC library (ARPC),

asynchronous RPC library with encryption (XARPC), and SUN RPC.

We measured RPC times for a 100 byte argument, as in the case of a set attribute,

and with an 8KB argument, as in the case for a write. Responses are always 100 bytes,

corresponding to a lease. The results are in Figure 6-4. All data is opaque, and so

not marshalled by the XDR routines.

When only one request is outstanding, the base ARPC library is as efficient as

SUN RPC for small (100 byte) arguments. Encryption adds only a 12% overhead.

For large arguments (8KB), the base ARPC library is 12x faster than SUN RPC, due

to heavy optimization for opaque data which avoids copies and mallocs. Encryption

brings the performance down 17%, but that is still 10 times faster than SUN RPC.

In addition to the efficiency of the ARPC library, Figure 6-4 also shows how

overlapping RPCs is a performance advantage for SFS. Small and large arguments,

whether or not they use encryption, all show a 1.5-1.8x speed up from being able to

overlap two RPCs.

Chapter 7

Future work

The primary goal of our continuing work on SFS is a stable release of the software,

including free source code. SFS is designed to be used, and its benefits will not

become fully clear until it is in use at many sites. Our research group will be SFS's

first beta testers; we hope to eliminate NFS entirely from our networks and use SFS

exclusively. This work will also include porting SFS to other Unix platforms, which,

again, should be quite simple.

We may revise the authentication protocols. Currently, read-write servers must

perform two private key operations at connection setup-one for authentication and

one for forward secrecy. The latter could just as well be performed by the client,

saving the server CPU cycles. Pushing this private key operation to clients could

also allow access control in read-only servers (which for performance reasons do not

perform private key operations); the user authentication protocol would guarantee

the secrecy of access-controlled data through its use of the session ID.

Currently, all access control in SFS relies on user and group IDs, which are trans-

lated from one machine to another; users must have accounts on file servers to access

any protected files. It would be useful to allow users to grant file access to the hold-

ers of particular public keys without having to get an administrator to create a local

account for each such person, as was permitted by Truffles [40]. It would also be

desirable to allow externally designated groups of users, so that, for instance, files

can be exported to all employees of a company without the file server having to keep

an explicit list of employee public keys. Utilities to list and manipulate remote files

with their remote user- and group-names would also prove quite useful.

We may explore communication between clients. Insecure file systems such as

xFS [3] have exploited client-to-client data transfers to improve the performance of

shared files. Between mutually distrustful clients, this kind of cooperation opens

up many interesting questions. Given that all SFS clients trust a server to control

the contents of a particular file system, however, such client communication can be

established without incurring any additional private key operations.

Finally, disconnected operation can be seriously improved. In fact, SFS may

enable several new twists on previous schemes. For example, since all SFS users

have private keys, clients can actually digitally sign file modifications after a network

partition and write them back once a user has logged out.

Chapter 8

Conclusion

SFS demonstrates that a secure global file system with a uniform namespace does

not need any centralized authority to manage that namespace. A portable, easy-to-

install reference implementation shows that user-level NFS servers can offer reason-

able performance and that the cost of software encryption can be tolerated through

asynchronous RPC, large on-disk client caches, and encryption algorithms efficient in

software. We hope to see many people use SFS.

Bibliography

[1] Martin Abadi. Explicit communication revisited: Two new examples. IEEE

Transactions on Software Engineering, SE-23(3):185-186, March 1997.

[2] Albert D. Alexandrov, Maximilian Ibel, Klaus E. Schauser, and Chris J.

Scheiman. Extending the operating system at the user level: the Ufo global

file system. In Proceedings of the 1997 USENIX, pages 77-90. USENIX, January

1997.

[3] Thomas E. Anderson, Michael D. Dahlin, Jeanna M. Neefe, David A. Patterson,

Drew S. Roseli, and Randolph Y. Wang. Serverless network file systems. ACM

Transactions on Computer Systems, 14(1):41-79, February 1996. Also appears

in Proceedings of the of the 15th Symposium on Operating System Principles.

[4] Eshwar Belani, Alex Thornton, and Min Zhou. Authentication and security in

webfs. from http://now. cs. berkeley. edu/WebOS/security. ps, January 1997.

[5] Mihir Bellare. The exact security of digital signatures-how to sign with RSA

and Rabin. In U. Maurer, editor, Advances in Cryptology-Eurocrypt 1996,

volume 1070 of Lecture Notes in Computer Science. Springer-Verlag, 1996.

[6] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiuczynski, D. Becker,

S. Eggers, and C. Chambers. Extensibility, safety and performance in the SPIN

operating system. In Proceedings of the 15th ACM Symposium on Operating

Systems Principles, pages 267-284, Copper Mountain, CO, 1995. ACM.

[7] A. D. Birrell and R. M. Needham. A universal file server. IEEE Transactions

on Software Engineering, SE-6(5):450-453, September 1980.

[8] Andrew D. Birrell, Andy Hisgen, Chuck Jerian, Timothy Mann, and Garret

Swart. The Echo distributed file system. Technical Report 111, Digital Systems

Research Center, September 1993.

[9] Andrew D. Birrell, Butler W. Lampson, Roger M. Needham, and Michael D.

Schroeder. A global authentication service without global trust. In Proceedings

of the 1986 IEEE Symposium on Security and Privacy, pages 223-230, 1986.

[10] Matt Blaze. A cryptographic file system for unix. In 1st ACM Conference on

Communications and Computing Security, November 1993.

[11] Matthew Blaze and Rafael Alonso. Dynamic hierarchical caching in large-scale

distributed file systems. In Proceedings of the 12th International Distributed

Computing Systems Conference, pages 521-528, June 1992.

[12] Mark R. Brown, Karen N. Kolling, and Edward A. Taft. The Alpine file system.

ACM Transactions on Computer Systems, 3(4):261-293, November 1985.

[13] Luis Felipe Cabrera and Jim Wyllie. Quicksilver distributed file services: An

architecture for horizontal growth. In Proceedings of the 2nd IEEE Conference

on Workstations, 1988.

[14] B. Callaghan. WebNFS client specification. RFC 2054, Sun Microsystems, Inc.,

October 1996.

[15] B. Callaghan. WebNFS server specification. RFC 2055, Sun Microsystems, Inc.,

October 1996.

[16] Brent Callaghan and Tom Lyon. The automounter. In Proceedings of the Winter

1989 USENIX, pages 43-51. USENIX, 1989.

[17] Vincent Cate. Alex-a global filesystem. In Proceedings of the USENIX File

System Workshop, May 1992.

[18] Jeremy Dion. The Cambridge file server. ACM SIGOPS Operating System

Review, 14(4):26-35, Oct 1980.

[19] FIPS 180-1. Secure Hash Standard. U.S. Department of Commerce/N.I.S.T,

National Tecnical Information Service, Springfield, VA, April 1995.

[20] David K. Gifford, Pierre Jouvelot, Mark Sheldon, and James O'Toole. Semantic

file systems. In Proceedings of the 13th ACM Symposium on Operating Systems

Principles, pages 16-25, Pacific Grove, CA, October 1991. ACM.

[21] Cary G. Gray and David R. Cheriton. Leases: An efficient fault-tolerant mech-

anism for distributed file cache consistency. In Proceedings of the 12th ACM

Symposium on Operating Systems Principles. ACM, 1989.

[22] Bjdrn Gr6nvall, Ian Marsh, and Stephen Pink. A multicast-based distributed

file system for the internet. In Proceedings of the 7th ACM SIGOPS European

Workshop, pages 95-102, 1996.

[23] John S. Heidemann and Gerald J. Popek. File system development with stackable

layers. ACM Transactions on Computer Systems, 12(1):58-89, February 1994.

[24] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols,

M. Satyanarayanan, Robert N. Sidebotham, and Michael J. West. Scale and

performance in a distributed file system. ACM Transactions on Computer Sys-

tems, 6(1):51-81, February 1988.

[25] Phil Karn and William Allen Simpson. The Photuris session key management

protocol. Internet draft (draft-simpson-photuris-15), Network Working Group,

July 1997. Work in progress.

[26] Kalle Kaukonen and Rodney Thayer. A stream cipher encryption algorithm

"arcfour". Internet draft (draft-kaukonen-cipher-arcfour-01), Network Working

Group, July 1997. Work in progress.

[27] Michael L. Kazar, Bruce W. Leverett, Owen T. Anderson, Vasilis Apostolides,

Beth A. Bottos, Sailesh Chutani, Craig F. Everhart, W. Anthony Mason, Shu-

Tsui Tu, and Edward R. Zayas. DEcorum file system architectural overview. In

Proceedings of the Summer 1990 USENIX, pages 151-163. USENIX, 1990.

[28] James J. Kistler and M. Satyanarayanan. Disconnected operation in the coda

file system. ACM Transactions on Computer Systems, 10(1):3-25, 1992.

[29] S. R. Kleiman. Vnodes: An architecture for multiple file system types in Sun

UNIX. In Proceedings of the Summer 1986 USENIX, pages 238-247. USENIX,

1986.

[30] Brian A. LaMacchia and Andrew M. Odlyzko. Computation of discrete log-

arithms in prime fields. In Designs, Codes and Cryptography 1, pages 47-62,

1991.

[31] Butler Lampson, Martin Abadi, Michael Burrows, and Edward P. Wobber. Au-

thentication in distributed systems: Theory and practice. ACM Transactions on

Computer Systems, 10(4):265-310, 1992.

[32] Timothy Mann, Andrew D. Birrell, Andy Hisgen, Chuck Jerian, and Garret

Swart. A coherent distrubuted file cache with directory write-behind. ACM

Transactions on Computer Systems, 12(2):123-164, May 1994.

[33] D. Muntz and P. Honeyman. Multi-level caching in distributed file systems, or

your cache ain't nuthin' but trash. In Proceedings of the Winter 1992 USENIX,

pages 305-312. USENIX, January 1992.

[34] M. Nelson, B. Welch, and J. Ousterhout. Caching in the Sprite network file

system. A CM Transactions on Computer Systems, 6(1):134-154, February 1988.

[35] J. Ousterhout, H. Da Costa, D. Harrison, J. A. Kunze, M. Kupfer, and J. G.

Thompson. A trace-driven analysis of the Unix 4.2 BSD file system. In Proceed-

ings of the 10th ACM Symposium on Operating Systems Principles, pages 15-24,

Orcas Island, WA, December 1985. ACM.

[36] John K. Ousterhout. Why aren't operating systems getting faster as fast as

hardware? In Summer USENIX '90, pages 247-256, Anaheim, CA, June 1990.

[37] Jan-Simon Pendry. Amd - an Automounter. London, SW7 2BZ, UK. Manual

comes with amd software distribution.

[38] Michael O. Rabin. Digitalized signatures and public key functions as intractable

as factorization. Technical Report TR-212, MIT Laboratory for Computer Sci-

ence, January 1979.

[39] David Reed and Liba Svobodova. Swallow: A distributed data storage system for

a local network. In A. West and P. Janson, editors, Local Networks for Computer

Communications. North-Holland Publ., Amsterdam, 1981.

[40] Peter Reiher, Jr. Thomas Page, Gerald Popek, Jeff Cook, and Stephen Crocker.

Truffles - a secure service for widespread file sharing. In Proceedings of the

PSRG Workshop on Network and Distributed System Security, 1993.

[41] Andrew P. Rifkin, Michael P. Forbes, Richard L. Hamilton, Michael Sabrio,

Suryakanta Shah, and Kang Yueh. RFS architectural overview. In Proceedings

of the Summer 1986 USENIX, pages 248-259. USENIX, 1986.

[42] Ronald L. Rivest and Butler Lampson. SDSI-a simple distributed se-

curity infrastructure. Version 1.0 of working document from http://

theory.l ics.mit.edu/~rivest/publications.html.

[43] M. Rosenblum and J. Ousterhout. The design and implementation of a log-

structured file system. In Proceedings of the 13th ACM Symposium on Operating

Systems Principles, pages 1-15, Pacific Grove, CA, October 1991. ACM.

[44] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon.

Design and implementation of the Sun network filesystem. In Proceedings of the

Summer 1985 USENIX, pages 119-130. USENIX, 1985.

[45] M. Satyanarayanan. Integrating security in a large distributed system. ACM

Transactions on Computer Systems, 7(3):247-280, 1989.

[46] M. Satyanarayanan. Scalable, secure and highly available file access in a dis-

tributed workstation environment. IEEE Computer, pages 9-21, May 1990.

[47] Bruce Schneier. Description of a new variable-length key, 64-bit block cipher

(blowfish). In Fast Software Encryption, Cambridge Security Workshop Proceed-

ings, pages 191-204. Springer-Verlag, December 1993.

[48] Michael D. Schroeder, David K. Gifford, and Roger M. Needham. A caching

file system for a programmer's workstation. In Proceedings of the 10th ACM

Symposium on Operating Systems Principles, pages 25-34, Orcas Island, WA,

December 1985. ACM.

[49] Alan B. Sheltzer and Gerald J. Popek. Internet Locus: Extending transparency

to an Internet environment. IEEE Transactions on Software Engineering, SE-

12(11):1067-1075, November 1986.

[50] R. Srinivasan. RPC: Remote procedure call protocol specification version 2. RFC

1831, Network Working Group, August 1995.

[51] R. Srinivasan. XDR: External data representation standard. RFC 1832, Network

Working Group, August 1995.

[52] J. G. Steiner, B. C. Neuman, and J. I. Schiller. Kerberos: An authentication

service for open network systems. In Proceedings of the Winter 1988 USENIX.

USENIX, 1988.

[53] H. Sturgis, J. Mitchell, and J. Israel. Issues in the design and use of a distributed

file system. ACM Operating Systems Review, 14(3):55-69, July 1980.

[54] Sun Microsystems, Inc. NFS: Network file system protocol specification. RFC

1094, Network Working Group, March 1989.

[55] Bradley Taylor and David Goldberg. Secure networking in the Sun environment.

In Proceedings of the Summer 1986 USENIX, pages 28-37. USENIX, 1986.

[56] Amin M. Vahdat, Paul C. Eastha, and Thomas E. Anderson. WebFS: A global

cache coherent file system. from http://www.cs.berkeley.edu/~vahdat/

webfs/webfs.html, December 1996.

[57] Bruce Walker, Gerald Popek, Robert English, Charles Kline, and Greg Thiel. The

LOCUS distributed operating system. In Proceedings of the 9th A CM Symposium

on Operating Systems Principles, pages 49-70. ACM, 1983.

[58] Hugh. C. Williams. A modification of the RSA public-key encryption procedure.

IEEE Transactions on Information Theory, IT-26(6):726-729, November 1980.

[59] Tatu Y15nen. SSH - secure login connections over the Internet. In Proceedings

of the 6th USENIX Security Symposium, pages 37-42, July 1996.

