
Filter and Bounding Algorithm Development for a

Helmet Mounted Micromechanical Inertial Sensor Array

by

Erik S. Bailey

S.B. Aeronautics and Astronautics
Massachusetts Institute of Technology, 1998

Submitted to the Department of Aeronautics and Astronautics in
partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September, 2000

© Erik Stephen Bailey, 2000. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly
paper and electronic copies of this thesis document in whole or in Dart.

Author ...
Dep~tment

Certified by ...

Certified by ..

Accepted by ...
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY Chairman, De

SEP 0 7 2000
Aero

LIBRARIES

p gjyt•ar)d Ast6-autics

..
Tom P. Thorvaldsen

Charles Stark Draper Laboratory
A Thesis Supervisor

\Professor John J. Deyst
Aeronautics and Astronautics

, Thpsis Advisor

Professor Nesbitt W. Hagood, IV
partmental Graduate Committee

Filter and Bounding Algorithm Development for a Helmet Mounted
Micromechanical Inertial Sensor Array

by

Erik S. Bailey

Submitted to the Department of Aeronautics and Astronautics on
June 30, 2000, in partial fulfillment of the requirements for the
degree of Master of Science in Aeronautics and Astronautics

Abstract

The technical evolution of head mounted displays (HMDs) and micromechanical inertial
sensor arrays (MMISAs) have, until recently, occurred independently. This thesis details
the development and simulation results of an inertial helmet-mounted head tracker for a T-
38 jet aircraft flight environment. Primary focuses are the state error estimation filter and
the bounding algorithms used to estimate the head position and orientation during various
flight conditions. Also included is a discussion of the application of the Draper MMISA to
a cueing system for an HMD in a military air vehicle environment. Particular attention is
paid to necessary requirements to meet pointing accuracies for fire control system hand-
off applications for the next generation of air to air missiles, such as the AIM-9X
Sidewinder missile. A Markov process coupling technique used in this research is shown
to achieve pointing accuracies of 4 to 11 milliradians. A generalization of the navigation
filter to any number of inertial navigators with known relative positioning and attitude
coupled using Markov process propagation matrices is also included, along with examples
of future applications, in addition to helmet-mounted cueing systems, for vehicle applica-
tions.

Thesis Supervisor: Tom Thorvaldsen
Title: Tactical Guidance and Navigation Group Leader,

C. S. Draper Laboratory

Thesis Advisor: John J. Deyst
Title: Professor, MIT Department of Aeronautics and Astronautics

Acknowledgements

I would like to express my sincerest gratitude to the Charles Stark Draper Laboratory for
hiring me as a Draper Fellow. Without the opportunity presented by them I would not be
completing my Master of Science at MIT. I also wish to thank the staff of the Draper Lab-
oratory for their daily influence and making their vast expanse of knowledge and experi-
ence available to me which has expanded and broadened my own horizons both as an
engineer and as an individual.

Special thanks to my thesis supervisor at the CSDL, Tom P. Thorvaldsen, who provided
invaluable guidance, insight, and additional personal time commitment into this project.

I would also like to thank my thesis advisor in the MIT Aeronautics and Astronautics
Department, Professor John J. Deyst, who has assisted in the written presentation of my
thesis content.

Dale Landis, of the CSDL has been of great assistance in both learning the existing
MEMS IMU navigation code and adapting it for this application.

I'd also like to thank John Danis, Dave Hauger, Linda Leonard, Wade Hampton, Scott
Berry, and Keith Mason of the Draper Simulation Lab for all of their assistance and guid-
ance in writing the C-Sim simulation for this thesis.

I thank all my close friends -Adriane Faust, Carol Cheung, Chris Deards, Steve Cona-
han, Craig Henderson, Lisette Lyne, Todd Harrison, Elise Westmeyer, Scott Uebelhart,
Rick Francis, and Celine Fauchon-for their help and support which have made the MIT
environment not only enlightening but also enjoyable.

I also wish to thank Edward Ouellette, who has gone above and beyond the call of friend-
ship. Without your hospitality and almost daily support over the past two years, this thesis
would not be completed.

Finally, I wish to thank my family-especially my parents, John and Sharon Bailey-for
their seemingly endless support, patience, and encouragement throughout my 4 years of
undergraduate and 2 years of graduate studies at MIT. Without the two of you, I would
never have been able to work on projects that fly and go into space-a dream of mine
which I've had as long as I can remember. Thank you for everything, from the bottom of
my heart.

This thesis was research and written at the Charles Stark Draper Laboratory under Internal Com-
pany Sponsored Research Project #200, MEMS Helmet Mounted Cueing System.

Publication of this thesis does not constitute approval by the Laboratory of the findings of conclu-
sions contained herein. It is published for the exchange and stimulation of ideas.

Erik S. 13a'd -
June 29, 2000

Assignment

Draper Laboratoatory Report Number T-1382.

In consideration for the research opportunity and permission to prepare my thesis by and at The
Charles Stark Draper Laboratory, Inc., I hereby assign my copyright of the thesis to The Charles
Stark Draper Laboratory, Inc., Cambridge, Massachusetts.

(author'ssgnaý (d te)

Table of Contents

Abstract .. 3
A cknowledgem ents...5
Table of Contents..7
List of Figures...11
List of Tables..13
Chapter 1 Introduction and Background ... 15

1.1 H elm et M ounted Cueing System s ... 15
1.1.1 O verview of Currently A vailable System s ... 15

M agnetic Trackers ... 16
UltraSonic trackers... 17
Optical Trackers... 18
Inertial Trackers ... 18
H ybrid System s.. 20

1.1.2 Current Applications of H ead Trackers .. 20
V irtual Reality Applications .. 21
H elicopter and Jet A ircraft A pplications ... 22
Foot Soldier Applications .. 24

1.1.3 M agnetic Tracking Issues ... 24
Comparative Reasoning for a Better Inertial HMCS................................... 25

1.1.4 M otivation...26
Developing an Inertial HMCS (IHMCS) for the Flight Environment......... 26

1.2 Draper M icrom echanical Inertial Sensors ... 27
1.2.1 Technology ... 28

M EM S Accelerom eters.. 28
M EM S G yroscopes.. 29

1.2.2 First Generation MMISA Application: The Competent Munitions Advanced
Technology D em onstrator (CM ATD) .. 30

1.2.3 Sensor Applicability..31
1.2.4 Technology Road m ap .. 32

First G eneration M M ISA Sensors ... 32
Draper M EM S: The N ext G eneration.. 32

1.3 Helm et M ounted Inertial System Concept...33
1.3.1 H ardw are...35

Placem ent of A ccelerom eters .. 36
Gyroscope M ounting ... 39
V ehicle IM U vs. H M CS IM U .. 40
Head Tracking Com puter... 40

1.3.2 N ecessary System A lgorithm s .. 41
K alm an Filter ... 41
Bounding A lgorithm .. 42

Chapter 2 System D ynam ics ... 43
2.1 Coordinate Fram es ... 43

2.1.1 The ECEF N avigation Fram e..43

2.1.2 The Body Fram e ... 44
2.1.3 The H elm et Fram e.. 44

2.2 Relative D ynam ics... 45
2.2.1 Rotating Frame Dynamics Applied to an Aircraft on the Earth...............46
2.2.2 Rotating Frame Dynamics Applied to Helmet Acceleration....................48

2.3 V ehicle D ynam ic M odel.. 49
2.3.1 A erodynam ic M odel ... 49

Control Surfaces... 50
Force Coefficients.. 50
M om ent Coefficients ... 51

2.3.2 Propulsion M odel.. 52
2.3.3 M ass M odel... 53
2.3.4 Equations of M otion ... 54

Aerodynam ic Q uantities and Earth V elocities... 54
A ttitude .. 54

2.4 Pilot D ynam ic M odel... 57
2.4.1 Stick-Figure M odel... 57

Chapter 3 Sim ulation A rchitecture.. 59
3.1 O verall A rchitecture... 59

3.1.1 Concept ... 59
3.2 Structure...60

3.2.1 Im plem entation... 61
Trajectory and Hardware Simulation in Draper C-Sim Environment 64
N avigation A lgorithm in C-Sim .. 64
Kalman Filter and Data Analysis in MATLAB... 64

3.3 Physics and D ynam ics M odels .. 65
3.3.1 T-38 Flight V ehicle M odel ... 65

A ircraft... 65
Environm ent... 68

3.3.2 Pilot M odel ... 69
Angular Position of the Pilot Torso and Head... 69
A ngular V elocity and A cceleration of the H elm et 70
Specific Force on the Helm et... 71

3.4 Instrum ent M odels ... 72
3.4.1 G PS Constellation/Receiver M odel.. 72
3.4.2 M M ISA & EG I M odels .. 72

3.5 U ser Interface... 73
3.5.1 H ardw are... 73
3.5.2 G raphics .. 75
3.5.3 Trajectory G eneration and Control ... 76

A ircraft Flight Path .. 76
Pilot M otion ... 76

3.5.4 D ata Storage & A nalysis...77
Chapter 4 A lgorithm s .. 79

4.1 N avigation System O verview .. 79
4.1.1 Essence of the Navigation and Coupling Algorithms...............................79

4.1.2 Effect of the Gyros and the Attitude Algorithm 81
4.2 Navigation Equations...82

4.2.1 Attitude Algorithm .. 82
4.2.2 Velocity and Position Determination..84

Additional Accelerometer Compensation.. 84
Accelerometer Lever Arm Compensation ... 84
Delta-Velocity and Attitude Accumulation (Rate Compensation) 85
Earth Mass Attraction and Earth Rotation Navigation Corrections 86
Velocity Summ ation and Position Integration... 87

4.3 Error Estimation Kalm an Filter ... 88
4.3.1 The Discrete Kalm an Filter Equations..88

Propagation and M easurement Equations.. 88
4.3.2 The Navigation Error Estimation Filter Formulation 91

State Vector Description.. 91
Propagation M atrix Formulation.. 92
M easurements .. 95

4.3.3 Generalization to N Navigators With One Master Kalman Filter 97
Parent Navigator vs. Internally Referenced (Markov) States 98

4.4 Bounding Algorithm .. 99
4.4.1 Description of a M arkov Process..99
4.4.2 Attempt to Ensure Markov Process Remains Strictly Bounded.............100
4.4.3 Implementation ... 101

M ATLAB Test... 101
Simulation Implementation.. 102

Chapter 5 Data Analysis..103
5.1 Simulated Truth Data... 103
5.2 Filter Performance ... 104

5.2.1 Single Data Run Analysis ... 104
5.2.2 Twenty-Run M onte Carlo Analyses ... 107

5.3 Bounding Algorithm Performance... 1 15
Chapter 6 Conclusion and Recommendations...117

6.1 Results..117
6.2 Future W ork...117

6.2.1 Initial Transient and Error Reduction...117
6.2.2 Filter Reset Feedback..118
6.2.3 Sensor Placement and Lever Arm Sensitivity .. 118

6.3 Additional Technology Applications...119
6.3.1 Foot soldier HM D and Fire Control System ... 119
6.3.2 Tether Control...122

Space Tethers... 122
Helicopter Tethers.. 122

6.3.3 Generic Application..122
References...125
Appendix A M easurement M atrices .. 127
Appendix B Additional M onte Carlo Plots..129
Appendix C Acronym s .. 135

Appendix D Pilot M odel Code...137
Appendix E N avigation Filter C Code...151
Appendix F Navigation Filter MATLAB Code...187

List of Figures

Figure 1.1 Polhemus IsoTrack II M agnetic Tracker...16
Figure 1.2 AH-64 Apache IHADSS Components..17
Figure 1.3 Logitech H ead Tracker.. 18
Figure 1.4 The InterSense IS-300 InertiaCubeTM System .. 19
Figure 1.5 The InterSense IS-600 InertiaCubeTM and SoniDisc System........................19
Figure 1.6 AH-64 and RAH-66 HMCS Helmets shown with HMDs 23
Figure 1.7 The VSI Joint Head Mounted Cueing System .. 23
Figure 1.8 M EM S Accelerometer Diagram .. 29
Figure 1.9 M EM S Gyroscope Diagram .. 30
Figure 1.10 the Draper MMISA utilized in CMATD with gyroscope enlarged.............31
Figure 1.11 Simplified Relative IMU Geometry and Dynamics....................................35
Figure 1.12 Distributed in-plane sensor mounting example...37
Figure 1.13 Distributed Out-of-Plane Sensor Scheme (Intersecting, Centered Axes) ..38
Figure 1.14 Co-located Mounting Examples (normal, intersecting sensor axes, offset)39
Figure 1.15 MEMS instrument packaging for co-located placement.............................39
Figure 1.16 Overall system Hardware Concept..41
Figure 2.1 The Earth-Centered Earth-Fixed Navigation Frame 43
Figure 2.2 Body Axes Superimposed on image of T-38 .. 44
Figure 2.3 The Helmet Frame superimposed on image of JHMCS................................45
Figure 2.4 Illustration of Relative Frame Dynamics and Position Vectors....................46
Figure 2.5 Visualization of the Quaternion...55
Figure 2.6 Head and Torso Frames in Neutral Position Relative to the Ejection Seat...58
Figure 3.1 Simulation M odule Architecture ... 61
Figure 3.2 The C-sim Fram ew ork...63
Figure 3.3 Joystick Geometry for Control of Pilot ... 70
Figure 3.4 Pilot Attitude, Angular Velocity and Angular Acceleration Generation 71
Figure 3.5 Author Running C-sim on an Onyx 2 with the Double Fly Panel.................74
Figure 4.1 Navigation System Architecture..80
Figure 4.2 Kalman Filter Propagation and Update Timing Diagram [8]........................91
Figure 4.3 Generalized N-Navigator PHI M atrix ... 97
Figure 4.4 Generic Markov Process: : = 10, a = 1, E[x] = 0 100
Figure 4.5 Tau-constant and Tau-varying Markov Processes 102
Figure 5.1 Single Run T-38 and Helmet Navigation Errors ... 105
Figure 5.2 Single Run P-Matrix Attitude Calculated Standard Deviation....................106
Figure 5.3 Monte Carlo Sample Statistics for Filter Markov t = 10 seconds...............108
Figure 5.4 Monte Carlo sample RSS for filter Markov t = 10 seconds 109
Figure 5.5 Final Attitude Sigma vs Markov Time Constant...112
Figure 5.6 Maximum Attitude Error Sigma after settling vs. Markov Time Constant. 113
Figure 5.7 Maximum RSS of Attitude Error after settling vs. Markov Time Constant 114
Figure 5.8 Monte Carlo s Results of Azimuth Accuracy, - varying.............................116
Figure 5.9 Monte Carlo RSS Results of Azimuth Accuracy, t varying 116
Figure 6.1 Soldier Helmet with HMIMU Technology Applied to Ground Maneuvers 120
Figure 6.2 Soldier's Eye View of HMIMU used with HMD for Ground Forces.........121

Figure B. 1: Monte Carlo s Results of Azimuth Accuracy, T = 5..................................129
Figure B.2: Monte Carlo RSS Results of Azimuth Accuracy, = 5 130
Figure B.3: Monte Carlo s Results of Azimuth Accuracy, = 50................................131
Figure B.4: Monte Carlo RSS Results of Azimuth Accuracy, r = 50 132
Figure B.5: Monte Carlo s Results of Azimuth Accuracy, I = 100..............................133
Figure B.6: Monte Carlo RSS Results of Azimuth Accuracy, = 100 134

List of Tables

Table 1.1 Draper MEMS Instrument Errors (one sigma) .. 33
Table 2.1 Interpolated Quantities in Force Coefficient Calculations 51
Table 2.2 Moment Coefficient Linear Coefficient Components 52
Table 2.3 T-38 Minimum (Empty) Moments of Inertia ... 53
Table 3.1 Sim ulation M odules.. 60
Table 3.2 GPS corruption parameters for simulated measurements.......................... 72
Table 3.3 Generic EGI Instrument Errors (one sigma)... 73
Table 3.4 BG Systems custom hardware panel .. 74
Table 4.1 Symbol Definitions for Figure 4.1.. 81
Table 4.2 Generic Navigation Error States... 92
Table 5.1 Summarized Sample Statistics Data at tfinal.. 110

Chapter 1.0

Introduction and Background

1.1 Helmet Mounted Cueing Systems

The purpose of a head tracker or Head Mounted Cueing System (HMCS) is to

detect orientation and position of the user's head relative to his surroundings.

Applications range from virtual reality systems to fire control system inter-

faces, allowing visual feedback via an "enhanced reality" Head Mounted Dis-

play (HMD).

1.1.1 Overview of Currently Available Systems

Typically, HMCS systems consist of a relayed or transmitted signal between

three or more sensors on the helmet and a group of emitters in the cockpit.

These sensors and emitters rely on various ranging schemes, some of which

use radio frequencies, optical, or ultra sonic (pressure wave) methods in vari-

ous geometric configurations. One thing common to all of the aforementioned

schemes is the involvement of emitters and sensors in a configuration such that

there is a signal corresponding to each degree of freedom, propagating through

the cockpit environment. For a more technical overview, see Velger's "Helmet

Mounted Displays and Sights" [21]. The following paragraphs examine five

technologies used to implement HMCS systems.

Magnetic Trackers

Electromagnetic Trackers, such as those commercially available from Polhe-

mus (Figure 1.1), or those designed for the AH-64 Apache (Figure 1.2), create

three standing magnetic fields within the cockpit environment, which are

mapped for deviations due to presence of metal objects. Sensors on the helmet

detect their position and/or orientation by relating received signals, caused by

the magnetic field, to the pre-stored magnetic field mapping. This is currently

the most commonly used scheme used by the military in their head trackers.

However, there are shortcomings of magnetic trackers, which are briefly out-

lined in Section 1.1.3.

Figure 1.1 Polhemus IsoTrack II Magnetic Tracker

BRU

IHADSS
SIGHTING

Figure 1.2 AH-64 Apache IHADSS Components

UltraSonic trackers

Ultrasonic sensors, such as the standalone head tracker produced by Logitech

(Figure 1.3) and the position measurement in the IS-600 by InterSense (Figure

1.5) for virtual reality applications, use three ultrasonic emitters and reflectors

to detect position and orientation of the head. These types of sensors are not

very applicable for a combat environment, as the reflectors are easily masked

by extreme positioning of a pilot's head and the system can loose track during

rapid movements.

Figure 1.3 Logitech Head Tracker

Optical Trackers

Optical sensors, such as those being investigated for ground vehicle head

tracker, use either optical or infrared LEDs and a CCD detector to provide

measurement updates to a Kalman filter. These sensors can be masked (similar

to the aforementioned problems with ultrasonic trackers) and can loose track-

ing accuracy under rapid head motion, and their accuracy is highly dependent

on camera stability, focus, and resolution. Alternate optical sensors have been

proposed and tested, such as the one found in Kim, Richards, and Caudell [11].

Another publication with more detail about optical sensors is Velger's "Helmet

Mounted Displays and Sights," [21] pp. 155-165.

Inertial Trackers

Inertial trackers, such as the one developed by InterSense (Figure 1.4 and Fig-

ure 1.5) in Burlington, MA, overcome the inherent masking and high-dynam-

ics-tracking problems relating to signal transmission between sensors and

emitters to detect head position. However, inertial sensor-based navigation

solutions drift over time, and require periodic updates from other sensors. The

InertiaCubeTM from InterSense uses magnetometers and gravimeters to bound

the drift of the gyros and accelerometers, however both of those update sensors

have large time constants relative to the inertial instruments. Therefore, to

overcome those large time constants, the most accurate systems from

InterSense (IS-600 series) use additional ultrasonic updates from their own

ultrasonic position tracker to form a hybrid system.

Figure 1.4 The InterSense IS-300 InertiaCubeTM System

Figure 1.5 The InterSense IS-600 InertiaCubeTM and SoniDisc System

Hybrid Systems

As mentioned in conjunction with the InterSense InertiaCube TM IS-600 (see

Figure 1.5), many of the aforementioned schemes can be combined using one

or more Kalman Filters to increase the overall confidence and accuracy of the

position and orientation estimate generated by the head tracker. However, as

the filter begins incorporating more measurements and states, the system

requires a faster computer to generate the head state estimate. Therefore, the

best system will incorporate a minimal number of measurements and the

smallest allowable state vector to increase the performance of the computer

dedicated to the filter of the head tracker.

1.1.2 Current Applications of Head Trackers

The aerospace research, simulation, entertainment, and military industries all

have used head trackers for both research and in applications. In the aerospace

research venue, a head tracker system can provide valuable data for the posi-

tioning of the head for motion perception experiments which desire to achieve

data about pilot head motion in a dynamic environment. The simulation and

entertainment venues both use head trackers for measurements of head position

to display graphics to the user of a head mounted display, generating a virtual

three-dimensional environment. Military applications are primarily concerned

with detecting and providing head orientation and/or position to drive symbol

generation for a helmet-mounted Heads Up Display (HUD) or Helmet-

Mounted Display (HMD), resulting in an improved interface to both navigation

and fire control systems. These devices are dubbed Head Mounted Cueing Sys-

tems (HMCSs) incorporating a head tracker with tighter pointing accuracy

requirements, within the dynamic environment of a combat flight or ground

vehicle.

Virtual Reality Applications

The simulation and entertainment fields are rapidly integrating virtual environ-

ments into new and innovative applications. These environments aim to place

the user in a believable environment generated by a computer and presented via

a head mounted display. For user head motion to be an input source for deter-

mining the line of sight in the virtual world, the head must be tracked in orien-

tation and/or position (depending on the simulation). Virtual Reality (VR) head

tracking schemes are usually developed with the goal of reduced data latency

(i.e. time lags caused by the necessary, sophisticated graphical computation)

and minimizing visual artifacts such as slosh (i.e. unwanted roll or pitch due to

improperly interpreted translational motion) or jitter (i.e. optical flow that is

not smooth).

The traditional means of head tracking for VR applications uses inclinometers

and magnetic compasses because of their simplicity and low cost. However

these instruments usually introduce noticeable lags into the graphics display,

which can cause the user to become nauseated. Therefore, InterSense has

developed head trackers which use low-cost Coriolis gyroscopes and solid-

state accelerometers in conjunction with magnetometers and acoustic sensors

(i.e. the IS-300, IS-300 Pro, and IS-600 -- see Figure 1.4 and Figure 1.5). The

gyros and accelerometers allow high (>100 Hz) update rates to the simulation,

while the magnetometers and acoustic sensors bound the drift caused by the

inexpensive low-quality inertial components [7].

Helicopter and Jet Aircraft Applications

The application of a head tracker in a flight vehicle is somewhat different than

the VR application, although many of the design issues are similar. The goal of

a head tracker in a flight vehicle is to provide an HMD symbol generator with

the proper line of sight data so that graphics can be overlaid on the pilot's view.

System goals include better situation awareness, provision of navigational aids,

and aided target acquisition for effective weapons deployment. Current HUD

technology does all of the aforementioned tasks, but only in a fixed, small

angular region about the boresight of the aircraft. HMDs and their associated

head trackers drastically increase the area over which these tasks can be per-

formed in modern jet and rotor aircraft.

Presently, the most common means of head tracking in the flight environment

is the magnetic tracker. Actual integrated applications of a magnetic HMCS in

combat vehicles can be found in the AH-64 Apache and the RAH-66

Comanche helicopters (see Figure 1.6), as well as tests performed by the RAF

of off-boresight target acquisition systems using Jaguar and Hawk jet fighters

equipped with AIM 9L Sidewinder missiles [5].

Comanche HIDSS

Figure 1.6 AH-64 and RAH-66 HMCS Helmets shown with HMDs

Similar systems are currently under development for additional jet aircraft (the

eventual target application of this study), as well as ground vehicles and troops

[14]. The Joint Helmet Mounted Cueing System (JHMCS) is a system, currently

being developed by Vision Systems International (VSI), which is intended for the

F-15, F-16, F/A-18 and F-22 aircraft (See Figure 1.7) [13].

Figure 1.7 The VSI Joint Head Mounted Cueing System

_I__ _ ·__

__

Apache IHADSS

Foot Soldier Applications
The Boeing Company has been working on the Integrated Maintenance and Logis-

tics Soldier System (IMLSS) which is essentially a wearable computer for a foot

soldier that implements an IHMD, but no head tracker [4]. Either this particular

system, or one similar to it, could be fitted with a miniature inertial system, similar

to the one analyzed in this thesis. Its computer could be provided with the appro-

priate algorithms to provide similar functions (navigation, mission information,

and target designation/tracking) as the aforementioned pilots' helmets. However, it

would use GPS as a source of measurement updates to the error estimation filter.

For a conceptual diagram of such a system, see Figure 6.1 and Figure 6.2.

1.1.3 Magnetic Tracking Issues
The aircraft systems mentioned in Section 1.1.2 (IHADSS, HIDSS, and JHMCS)

all utilize magnetic trackers to measure the helmet's orientation and position

within the cockpit. This kind of head tracker requires that three mutually-perpen-

dicular magnetic fields be generated within the cockpit and mapped. The mapping

is necessary for the computer to interpret the readings from the sensors on the hel-

met during use, and must be done for each individual cockpit--a process that is

simultaneously lengthy and tedious [21]. In addition to the long calibration proce-

dure, the mapped magnetic field experiences distortion in the vicinity of metal

objects not present during the mapping procedure, and accuracy also decreases

with distance from the emitter. Other electronics may also interfere with the field,

causing additional inaccuracy [21].

There is also an additional emerging issue surrounding the use of magnetic

trackers: prolonged head exposure to strong magnetic fields. There is no litera-

ture stating whether power levels emitted by a magnetic tracker would be large

enough to be detrimental to a pilot's health when frequently exposed to the

magnetic tracker environment, but by removing the cause of the concern for

the pilot's health (the standing magnetic field) this issue can be avoided

entirely. Present concerns surrounding cell phone use point to a correlation of

reduction in short term memory, as well as an increased tumor probability

when exposed to EM radiation from an emitter in close proximity to the human

head, as are most cockpit magnetic field emitters (mounted on or near the ejec-

tion seat).

As of June, 1999, Honeywell had successfully demonstrated its Advanced Metal

Tolerant Tracker (AMTT) system on both the Apache Longbow helicopter and the

F-16 Vesta testbed aircraft, and is already in production for the U.K. and Oman

Jaguar fleets. The AMTT has the following capabilities:

... track head motion up to 180 deg. on either side and 90
deg. in elevation. It can also accommodate aircraft roll up to
180 deg. in either direction. Line of sight accuracy is less
than 4 milliradians, averaged over the full motion box, in
the Jaguar cockpit. Update rate is 240 Hz. for a single pilot
aircraft, or 120Hz for dual-crew platforms using two helmet
sights. Signal latency is 4.17 millisec. or less... The system
is also tolerant of high metal content of rotorcraft cockpits
and ground combat-vehicle crew positions. [17]

Comparative Reasoning for a Better Inertial HMCS

The main purpose for developing a better inertial head tracker is two-fold.

First, it will allow an alternative tracking scheme to magnetic tracking, and will

decrease the complexity of the hardware required to install and maintain by

eliminating the transmitter and dependency on a mapped magnetic field in the

cockpit environment. Second, an inertial head tracker may be configured to be

used with GPS, which could free the head tracker from its cockpit or virtual

reality arenas. For example, a head mounted IMU system updated with GPS

and integrated with an HMD could provide ground soldiers with the same nav-

igational and targeting aids as vehicle operators. Metaphorically speaking, the

inertial tracker removes the chains imposed by the magnetic tracker system in

the form of the standing magnetic field emitter mounted to the surrounding

environment.

1.1.4 Motivation

Developing an Inertial HMCS (IHMCS) for the Flight Environment

It might seem obvious to apply the existing inertial head trackers developed by

InterSense for VR applications to HMDs in the flight environment. However

upon closer inspection, the InterSense design relies upon particular dynamic

nuances of head tracking for VR applications and would not be well suited for

a flight environment for the following reasons:

1. The IS-300 (when used alone) relies on gravimetric measurements from
the accelerometers to bound the gyro drift in roll and pitch, and magne-
tometer measurements to bound the gyro drift in yaw. This is under the
assumption that Earth's gravity will always be the specific force vector of
interest, which in the flight regime is a poor assumption, especially in
combat situations. Furthermore, this arrangement only gives orientation
estimates and not position, as well.

2. For both position and orientation, the additional acoustic ranging system
is required (what InterSense markets as the IS-600). The goal of the
IHMCS would be to eliminate dependency on any system that relies on
transmitting signals through the cockpit, or one which has a limited
range of motion.

3. The IS-300 gyro in-run bias stability rates are too large when there are
no position update measurements available. Higher-grade MEMS sen-
sors are desirable in the event of a long period without measurement
updates to minimize the accumulated error in position and orientation.

4. The IS-300 has a dynamic accuracy of 3 degrees, which is much larger
than AMTT's accuracy requirement of 4 milliradians, or 0.23 degrees
[17].

The primary benefit of using an inertial tracker for head motion, as opposed to

either visual, ultrasonic, or magnetic sensors is that the sensor components are

self-contained with no reliance on optical, RF, acoustic wave, or mapped mag-

netic field signals transmitted/received within the cockpit. The system can be

small, lightweight, and does not potentially obstruct integration with existing

HMD systems. The HMIMU's low weight and volume are two additional ben-

efits relative to pilot safety during ejection, which are driven by the desire to

minimize loading (especially loads generated from a displaced helmet center

of gravity), and wind blast on the head.

1.2 Draper Micromechanical Inertial Sensors

The sensors that will be modelled and investigated for use in the HMIMU are

the MEMS gyroscopes and accelerometers developed at the Charles Stark

Draper Laboratory. Initially designed to be low-cost, expendable inertial sen-

sors for munitions, these sensors have the desirable characteristics of being

small (each first generation sensor is 3cm square, in flat packaging with the

necessary supporting ASICs [12]) and lightweight (approximately 10 grams

per sensor per axis, totalling 60 grams for all sensors), which are important to

head mounted systems [16].

1.2.1 Technology

Both the MEMS accelerometer and gyroscope are manufactured from silicon

using a dissolved wafer process, featuring silicon bonded to a glass substrate.

The die size of the sensors are approximately 3 mm2.

MEMS Accelerometers

The MEMS Accelerometer is a pendulous mass, shaped like a flat plate

attached to a torsional spring which is offset from the center of mass of the

plate. It behaves like a mass attached to a clamped horizontal flexure. The need

for the mass to be a flat plate is derived from the need to measure the distance

between the plate and the substrate on which it is mounted via capacitive plates

beneath the mass (see Figure 1.8). Therefore, the sensing axis is normal to the

MEMS substrate plane since the torsional spring about which the pendulous

mass rotates is parallel to the substrate plane. The MEMS Accelerometer is

illustrated in Figure 1.8

C

Side View

Figure 1.8 MEMS Accelerometer Diagram

In-run performance is defined as the standard deviation of the residual error of

a compensation model fit to the accelerometer data acquired during a thermal

calibration. Present bias in-run stability performance (see Table 1.1) of the sec-

ond generation accelerometers is at the 0.1 to 2.0 mg level, across a tempera-

ture range of -40 Celsius to +85 Celsius. This stability has been demonstrated

over several days, with in-run scale factors from 30 to 160 ppm.

MEMS Gyroscopes

The theory of operation for the gyroscope is that two masses, suspended by a

sequence of beams anchored to the substrate, are vibrated electrostatically

within the plane of the device. When an angular rate is applied about the input

axis, perpendicular to the velocity vector of the masses, a Coriolis force pushes

(Hidden) Center Pivot
Line Line

Pivot Offset

Top View
_ /

Left Motor-

the masses in and out of the plane of oscillation in an anti parallel manner. The

resultant motion is measured by capacitive plates beneath the masses, provid-

ing a signal proportional to the angular rate input. A diagram of the Draper

Laboratory MEMS gyro can be seen in Figure 1.9. A magnified photo of the

sensor can be seen in Figure 1.10.

Vibrating masses

Right Motor
mommamm
smmmommm

mommummm
monsoon
mommummm
smmmmmmm

= I
U.... U
U......
Eu.....
Eu.....
Eu.....
Eu.....

I- I
Anchor Points center

line

Top View Side View

Figure 1.9 MEMS Gyroscope Diagram

Present performance of in-run bias and scale factor stability range from 3 to 10

per hour and 30 to 100 ppm, respectively. Additional performance figures can

be found in Table 1.1.

1.2.2 First Generation MMISA Application: The Competent Munitions

Advanced Technology Demonstrator (CMATD)

CMATD is a program which developed a replacement fuse for existing Naval

gun-launched munitions. The CMATD Guidance Navigation & Control

(GN&C) assembly contains a full six-degree of freedom (6-DoF) MEMS iner-

summons
mmmmmmm
mmmmmmm

mommmmmm

summmommsummon.
Eu.....
Eu.....
Eu.....
Eu.....
Eu.....

T7~ -.

i-i

tial unit, GPS receiver, and Flight computer, packaged into eight cubic inches

(see Figure 1.10). This electronics and sensor unit was designed to withstand

16,000 g's prior to activation and only produce 0.6 mrad of misalignment due

to the extreme acceleration pulse generated upon firing the munition.

Figure 1.10 the Draper MMISA utilized in CMATD with gyroscope enlarged

1.2.3 Sensor Applicability
The Draper MMISA first generation MEMS IMU fits within a total of eight cubic

inches, and the nearly completed second generation will fit within three cubic

inches. Both the first and second generation systems have separate sensors for each

axis. All gyros have input axes in the plane of the micro-machined sensor, and all

accelerometers have input axes orthogonal to the plane of the sensor. The system

has demonstrated drift rates better by an order of magnitude than the Inerti-

aCube TM and does not need the magnetometers along each axis if it is used in

conjunction with a higher-resolution measurement source such as the dual IMU

solution suggested in this study. In addition, future generations of the Draper

MMISA will fit all three axes onto a single chip as the ability to detect specific

force in the plane of the chip and angular rotation about a perpendicular axis to the

chip become more refined. The light weight, low volume, and high accuracy of

these MEMS components, relative to their counterparts in industry, makes them a

primary candidate for application to head tracking in the flight vehicle environ-

ment.

1.2.4 Technology Road map

First Generation MMISA Sensors

The first generation Draper MEMS gyros being manufactured as of Septem-

ber,1998 were being manufactured using a less-expensive 3-step process and

had achieved a nominal 150deg/h turn-on to turn-on and 30 deg/h in-run bias

stabilities within a 100 Hz operating bandwidth [12]. Present performance of

the CMATD system is at the 10 to 30 deg/h level for the gyros, and the 1 to 7

mg level for the accelerometers across a temperature range of -40 to +85

degrees Celsius. This level of performance is the overall "inertial only" stabil-

ity one could expect from the integrated system, should no measurement

updates be available after initialization and calibration.

Draper MEMS: The Next Generation

The current MEMS gyros and accelerometers are only the present step along

the path to more accurate miniature inertial sensors achievable in the future.

Like any development program, there are next generation sensors in develop-

ment, whose errors can be seen compared to the current generation's errors in

Table 1.1.

1st 2nd
Instrument Error Units Generation Generation

System System

Gyro

Bias Turn-on Repeatability deg/hr 50-150 10-30

Bias In-run Stability deg/hr 10-30 3-10

Scale Factor Turn-on Repeatability ppm 300-1000 100-300

Scale Factor In-run Stability ppm 100-300 30-100

Axis Misalignment mrad 1 1

IA Repeatability mrad 0.2 0.2

Maximum Input deg/s 1000 1000

Bandwidth Hz 100 <500

Angle Random Walk deg/rt(hr) 0.15-0.30 0.03

Accelerometer

Bias Turn-On Repeatability mg 5-10 0.5-5

Bias In-Run Stability mg 1-7 0.1-2

Scale Factor Turn-on Repeatability ppm 500-1400 100-300

Scale Factor In-run Stability ppm 300-500 30-160

Axis Misalignment mrad 1 1

IA Repeatability mrad 0.2 0.2

Maximum Input #g's 15 30

Bandwidth Hz 100 <500

Velocity Random Walk cm/s/rt(hr) 33 1

Table 1.1 Draper MEMS Instrument Errors (one sigma)

1.3 Helmet Mounted Inertial System Concept
The primary focus of this study is the helmet-mounted inertial measurement unit

(HMIMU), which is a full six-degree of freedom sensor array (consisting of three

gyros and three accelerometers) that is mounted to the helmet of the user for the

purpose of tracking head motion within a cockpit environment. Three orthogonally

oriented micromechanical tuning-fork gyroscopes and three orthogonally micro-

mechanical accelerometers are mounted to or embedded within the helmet of a

pilot to detect both orientation and position of the head in three dimensions. Iner-

tial sensors, when used for vehicle navigation, traditionally utilize measurements

from additional sensors and a Kalman Filter to estimate errors in both the inertial

sensors and the navigation solution. These navigation measurements can come

from a radio navigation system (which provides a position and/or velocity update)

such as GPS, TACAN, VORTAC, VOR/DME, or LORAN, or they can be acceler-

ation and orientation signals from another IMU. If the system is a cascaded IMU

system, the relative positioning between the helmet-mounted IMU and the vehicle

IMU must be either observable or stochastically determined. Any of the other sen-

sor schemes outlined in Section 1.1.1 would also suffice as a measurement input to

the Kalman Filter. To be a viable system, any of these cases must be able to accu-

rately provide the angle between the head and the aircraft body for effective target-

ing hand off to the selected weapon system (missile, LASER, chain gun, etc.).

This study investigates a vehicle IMU and a helmet IMU with GPS to deter-

mine the orientation of a pilot's head with respect to an aircraft's body axes.

Linear accelerations and angular velocities within the coordinate system are

detected by the helmet IMU, and are compared to the aircraft IMU via a Kal-

man Filter which relates the position of the helmet to the position of the aircraft

IMU via Markov processes representing displacement along each body axis.

The vectors shown represent the specific force detected by both of the IMUs

(which is also mathematically detailed in Section 2.2). Note the additional

component in the head IMU due to vehicle rotation (which can be sensed by

the Aircraft IMU's gyros).

Helmet IMU

Aircraft IMU

Figure 1.11 Simplified Relative IMU Geometry and Dynamics

By removing the apparent force due to rotation at a lever arm, matching the

orientation of the common components of these vectors in three-dimensional

space, the relative orientations of the two IMUs can be determined. Such IMU

transfer alignments have been successfully designed, tested, and implemented

on various weapons systems, "using either natural or deliberately induced

maneuvers of the vehicle" [10] to match the orientation and acceleration of the

weapon's IMU to the vehicle's IMU. Essentially, the HMIMU must have algo-

rithms that preferably use natural dynamics and a priori information to bound

the drift that will inevitably occur. A more detailed discussion of the relative

components can be found in Section 2.2.

1.3.1 Hardware
The HMCS system will need four key components:

craft

elope

1. Helmet-mounted IMU (Draper MMISA)

2. Vehicle-mounted IMU which utilizes precision gyros such as Ring Laser
Gyros (RLGs) or Fiber Optic Gyros (FOGs) and accelerometers

3. GPS receiver for updating the Vehicle-mounted IMU

4. Processing unit (and associated software) for the Kalman Filter and other
necessary algorithms

A Draper MMISA will be mounted on the helmet for detecting pilot head

motions. This system will consist of a full 6-DoF array (angular rate and spe-

cific force in all three spacial dimensions), with three MEMS solid-state silicon

tuning fork gyroscopes, three MEMS solid-state silicon accelerometers, and

the associated ASICs electronics to support the sensors. Currently, one sensor

with its ASICs is three square centimeters in a flat package [12], making them

small enough to either distribute easily, or co-locate in one sensor mounting

package.

Placement of Accelerometers

Of the innumerable possible sensor mounting configurations, two primary

mounting schemes appear practical. The first is a distributed scheme, where the

center of rotation of the entire sensor package more closely matches that of the

pilot's head. This particular configuration results in different moment arms

from the head's center of rotation to each accelerometer, which must be known

in order for the additional acceleration terms caused by those lever arms during

angular rotation of the head. These lever arms may vary from unit to unit in the

case of personalized fitted pilot helmets, and must be used to account for addi-

tional rotational dynamics terms within the head frame. The second scheme is

a co-located configuration, which attempts to make all of the lever arms within

the head frame as small and similar as possible.

Two variations of the distributed scheme exist: one using in-plane sensor tech-

nology which currently exists, and one using out-of-plane sensor technology

which is currently in development at Draper. The in-plane sensor technology

poses an interesting mounting dilemma, since the sensing axis is confined to

the plane in which the sensor is manufactured on the silicon wafer. This means

that the MEMS accelerometers must be mounted such that the sensing axis is

normal to the surface of the helmet to align the sensing axis with the helmet

strap-down navigation axes. With the existing packaging, that would leave pro-

trusions at three separate locations on the helmet, which would make those

sensors prone to being damaged.

Figure 1.12 Distributed in-plane sensor mounting example

The more desirable alternative is the out-of-plane sensor technology, where the

sensing axis is normal to the silicon wafer plane. With the existing packaging,

that would allow the ASICs package to be mounted tangent to the surface of

the helmet at the normal, minimizing the protrusion and hence, the potential

for damage. Note that the above argument assumes that adding thickness to the

helmet to accommodate for the in-plane sensors' packaging footprint is not an

option, since a standard lightweight helmet under high g-loading can have an

apparent weight of multiple hundreds of pounds [16].

side view front view

Figure 1.13 Distributed Out-of-Plane Sensor Scheme (Intersecting, Centered Axes)

If the sensors were to be co-located, the moment arms to either the center or a

mounting point of the sensor package are measured prior to mounting, and

then the mounting point on the helmet is related to the head's center of rota-

tion. In this configuration, the angular rotation effects can be made similar to

one another, varying only by the inability to mount all the sensors at the same

point in space, as opposed to varying locations on the helmet each with their

own lever arms. This co-location scheme could be located anywhere on the

helmet, but would most likely be mounted on the top of the helmet, to reduce

the probability of cockpit or ejector seat impact on the sensor array assembly.

I

ot p rnounted

side view front view

Figure 1.14 Co-located Mounting Examples (normal, intersecting sensor axes, offset)

Gyroscope Mounting

MEMS gyroscopes are insensitive to moment arms, and can be distributed any-

where on the helmet, provided that their primary sensing axes are aligned par-

allel with the x, y, and z axes of the helmet. One possible packaging

arrangement for all of the MEMS instruments (with their required ASICs) is

seen in Figure 1.15.

Figure 1.15 MEMS instrument packaging for co-located placement

Other miscellaneous hardware on the helmet will consist of the connections

and leads to and from the sensors to enable data transfer to the computer, and

rear-mounte

Exploded ViewAssembled View

~vv

for future designs, the computer may be embedded into the helmet as well with

the advent of flexible trace boards.

Vehicle IMU vs. HMCS IMU

The vehicle IMU serves two functions: it acts as the primary IMU for the vehi-

cle (it determines the body axes orientation with respect to the inertial, earth-

fixed, and local-level frames) and it also acts as the measurement source for the

HMCS to determine the HMCS's orientation with respect to the aircraft's body

axes. The specific force and rotation vectors from the HMCS are compared to

the vehicle IMU's specific force and rotation vectors, and the orientation and

dynamics of the pilot's head can be determined therefrom.

Head Tracking Computer

As shown in Figure 1.16, the Head Tracking Computer (HTC) accepts input

from both the aircraft IMU, via the aircraft's data bus, and the HMCS. The

HTC can also be used for symbology and control of the HMD, so it can also

have output(s) to the HMD. For precision pointing, an eye-tracker should be

used as well, and that must also output signals to the HTC for processing. For

the scope of this thesis, however, the HMD and eye tracker interfaces should be

secondary to HMCS MMISA development. The primary focus is on the accu-

racy of the HMCS MMISA and not its interface into the HMD video system

and the eye tracker; however, when it is appropriate the research will point out

how an eye tracker would work in consort with the HMCS MMISA.

Figure 1.16 Overall system Hardware Concept

1.3.2 Necessary System Algorithms

Kalman Filter

For the HMCS to properly estimate the state of the helmet (position, velocity,

orientation, and angular velocity) relative to the aircraft, there must be a Kal-

man Filter in the HTC which takes measurements from both IMUs. The filter

allows the cross coupled probabilistic distributions (off-diagonal elements in

the covariance matrix) to be implemented in coupling and bounding the two

IMUs. In reality, the filter may have to operate in a cascaded mode, with the

outputs from the aircraft IMU being already filtered by another navigation

computer. This would make computation requirements on the HTC less cum-

bersome by reducing both dimensions of the state propagation matrices by a

factor of approximately two. However, this would most likely introduce arti-

facts in the estimates of head position and orientation due to the time-varying

nature of the measurement variances and covariances, as well as manifested

jumps in the actual measurement readings themselves which occur after the

GPS updates on the aircraft IMU. These negative effects are due to the loss of

the cross coupling information mentioned above. Therefore, this study will use

a larger "dual IMU" state vector of 45 states to take advantage of the benefits

of having the off-diagonal terms in the covariance matrix.

Bounding Algorithm

In addition to the Kalman filter, a scheme for varying the time constant of the

Markov processes relating the two IMU positions will be developed to ensure

that the estimates for head position, velocity, and orientation remain within the

realm of feasibility. Essentially, this algorithm modifies the variance of the

noise in the Kalman Filter model based on a priori information (such as a nom-

inal probabilistic lever arm to the helmet navigator's allowed dynamic enve-

lope), allowing for standard deviation reduction in the state estimates. For

instance, the pilot's head cannot be situated greater than 90 degrees in either

direction relative to his torso's x-axis (protruding from his chest), and his head

cannot be removed from his body or outside the cockpit, or more specifically,

from an ellipsoidal-shaped boundary governed by the pilot's neck motion and

spinal physiology. The bounding algorithm will work in parallel with the Kal-

man Filter, adjusting the measurement noise matrix (R-matrix) and the gains

based on optimal control laws using a cost function for the head dynamics

which is governed by the bounding envelope. The goal is to have a state esti-

mator with low data latency, a narrow probability distribution of the state esti-

mates, and minimal requirements on the pilot to maintain levels of high

accuracy of his helmet-mounted targeting system.

Chapter 2.0

System Dynamics

2.1 Coordinate Frames

The main coordinate frames used in this analysis are the Earth-Centered, Earth

Fixed (ECEF) frame, the aircraft (or body) frame, and the head frame.

2.1.1 The ECEF Navigation Frame

The ECEF frame is defined as being a cartesian frame with the origin at the

center of the earth, the x-axis through zero latitude and zero longitude, the z-

axis through the north pole, and the y-axis mutually orthogonal to both so as to

form a right-handed coordinate system (x-axis vector crossed with the y-axis

vector equals the z-axis vector) (see Figure 2.1).

Figure 2.1 The Earth-Centered Earth-Fixed Navigation Frame

* X-axis through 0, 0 deg
* Y-axis through 0, 90 deg E
* Z-axis through 90 deg N
SFrame Fixed to Earth (rotates with it)

The ECEF frame will serve as the navigation frame, and earth's rotation vector

will be defined as being co-linear with the Z-axis of the frame.

2.1.2 The Body Frame

The body frame is fixed to the aircraft, which in this case is a T-38. The origin

of the frame is located at the aircraft center of mass. The x-axis will be through

the nose of the aircraft, the y-axis will be in the direction of the right wing, and

the z-axis will be pointing mutually orthogonal to those axes through the belly

of the aircraft (see Figure 2.2).

Figure 2.2 Body Axes Superimposed on image of T-38

This aircraft body axis definition agrees with the derivations of force and

moment as found in Stevens and Lewis [20].

2.1.3 The Helmet Frame

The helmet frame is defined as a frame similar to the aircraft body frame, with

the origin located at the helmet's center of mass. Then, the x-axis is through the

center-line of the face opening, the y-axis is through the right side of the hel-

met at 90 degrees from the x-axis forming a plane parallel to the line formed by

the centers of the eye sockets, and the z-axis is down, mutually orthogonal to

the x- and y-axes (see Figure 2.3).

Figure 2.3 The Helmet Frame superimposed on image of JHMCS

The helmet frame has been defined such that when the pilot is looking along

the boresight of the aircraft, the Direction Cosine Matrix (DCM) between the

helmet and body frames is the identity matrix.

2.2 Relative Dynamics

In general the dynamics of objects within rotating frames is covered quite well

in Britting [3], which will be the source for the derivations in the following sec-

tions. The geometry discussed in the next two sections is shown in Figure

Force Sum

Force Sum
r 'X Helmet

Body
ky

Position Vector
- - Rotation Vector

P Force Vector

Figure 2.4 Illustration of Relative Frame Dynamics and Position Vectors

2.2.1 Rotating Frame Dynamics Applied to an Aircraft on the Earth

The three frames to be considered are the inertial frame, the earth frame, and

the body frame of the aircraft. The inertial frame is necessary as the frame in

which all forces are calculated because the earth is rotating with respect to the

inertial frame, causing centripetal, tangential, and Coriolis acceleration compo-

nents. Therefore, with "i" denoting the inertial frame, "e" denoting the earth

frame, R denoting the position vector, C denoting a DCM, and W denoting a

skew-symmetric rotation matrix (as derived in Britting [3]) the total accelera-

tion coordinatized in the ECEF frame is:

Re = C R i +22 eRI +(e + (0 £)2)R i) (2.1)

since the angular acceleration of the earth frame with respect to the inertial

frame is zero, we can look only at the rotational components as:

[L! - 2 2ý
Re = I i)2Ri (2.2)

rot I ie e(2.2)

Finally, the position of an aircraft in the earth's atmosphere is normally

expressed within the rotating earth frame, not the inertial frame:

Re = 2Qe Re + (Qe)2 Re (2.3)

rot ie ie

So the Differential Equation (2.3) represents the forces due to the earth's rota-

tion experienced by a time-varying position vector R, expressed in the ECEF

frame. An application of this would be a jet at a given position R in the ECEF

frame, travelling with a velocity experiencing coriolis and centripetal forces

due to the constant rotation of the ECEF frame with respect to inertial space.

The full equation for the acceleration on the aircraft in the body frame would

be given by:

Rb = ab = +C 22eeRe+(Q ee)2Re + Ge (2.4)
m e le ie j

where Fb, m, and Gb are the Forces applied by the aircraft (i.e. Lift, Drag, Side

Force), the mass of the aircraft, and the mass attraction acceleration of the

earth, respectively. Note that the non-rotational component in Equation (2.1) is

Ri = C + CG e
(2.5)i b 7 e

from Equation (2.4).

2.2.2 Rotating Frame Dynamics Applied to Helmet Acceleration

The derivation for the helmet is similar to the derivation of velocity and accel-

eration in the earth frame for the aircraft body. However, the simplifications

made for the aircraft cannot be made, which leaves extra terms in the solution.

The formulation of an equation which represents the acceleration on the head

in the head frame, h, which is at a lever arm r from the center of gravity of a

freely rotating T-38 aircraft frame (seen in Figure 2.4), b, with respect to the

inertial frame, i, is as follows:

r = C r+ 2Q2b rb bb + bb)2 rb (2 .b6)r = (2.6)

In this case, however, "r" represents the position vector between the helmet and

the T-38 center of gravity, which is subject to the aircraft's dynamics. There-

fore, the T-38's total acceleration must be added to the first term on the right

hand side, which includes the aircraft aerodynamic, Coriolis, and centripetal

forces, as well as the local earth mass attraction gravity acceleration:

2 3 ~Fbh I= Ch rb+ +Cb 2Qe Re+(Qe e)2Re + Ge +
b 7in e (e ie

Cb 2 br b + (2b + (Qb b))r (2.7)

Equation (2.7) represents the accelerations on the helmet, which has dynamics

with respect to a vehicle moving over the surface of a rotating earth.

2.3 Vehicle Dynamic Model

The vehicle dynamics used in this thesis will be those for a T-38 jet aircraft, as

used in the CSDL T-38 avionics demonstrator simulation. As in all aircraft, the

applied forces are Lift, Drag, Thrust, and the three applied moments about the

principle body axes are generated by the vehicle aerodynamics, mass distribu-

tion, and propulsion system. Since the simulation code which generates the T-

38 dynamics is not the primary focus of this thesis, a brief overview will be

provided in this section.

2.3.1 Aerodynamic Model

Traditionally, the Aerodynamic model is taken from tables of data collated

from wind tunnel during design and aircraft testing. This simulation is no

exception, using aerodynamic tables to interpolate the current values for the

aerodynamic and moment coefficients for all aerodynamic surfaces, and drag

on the entire vehicle over a wide range of state variables (i.e. angle of attack,

velocity, angular rates, control surface deflections, etc.). These moment coeffi-

cients are then combined with the current aircraft speed relative to the sur-

rounding fluid medium (atmosphere) as well as the local atmospheric

temperature and density to create resulting forces and moments. These quanti-

ties can then be integrated and manipulated into linear and angular velocities

and positions using a predictor/corrector integration scheme as found in Gersh-

enfeld. The flight, atmospheric, and ground models in addition to the integra-

tion scheme were all taken directly from the Draper T-38 avionics development

demonstrator simulation, and integrated into the head tracker simulation with

only minor modifications.

Control Surfaces

The flight model portion of the code consists of a way of reading in commands

from the simulated cockpit controls (stick, rudder pedals) generate deflections

of the control surfaces (alierons, horizontal stabilizer, and rudder). This simula-

tion uses a three DoF joystick for elevator, aileron, and rudder command input.

These command inputs are fed into control algorithms of the T-38 which out-

put deflections of the control surfaces under the given flight loading conditions.

These deflections are then translated into forces and moment components in

and about each of the three primary axes of the aircraft via the previously men-

tioned tables of empirical data.

Force Coefficients

The Coefficient of Lift, Drag, and Side Force are calculated from the interpo-

lated quantities in the following table:

Force Coefficients Interpolated Linear Coefficients

Lift Horizontal Tail Moment Arm (speed),
Main Wing (speed, AoA),
Flaps (AoA),
Speed Brakes (speed, AoA),
Pitch Rate (speed),
Inertial Bending of CL (AoA),
Ground Effect (speed, altitude),
Rate of Angle of Attack (speed)

Drag Basic (speed, AoA, Coefficient of Lift),
Sideslip (AoA),
Flaps (Coefficient of Lift, flap pos'n),
Speed Brake (speed, AoA),
Wind Milling Engine (speed),
Landing Gear (gear pos'n, flap pos'n,
gear door pos'n)

Side Force Sideslip (speed, AoA),
Rudder (speed, AoA, sideslip),
Aileron (speed),
Roll Rate (speed, AoA),
Yaw Rate (speed, AoA),
Landing Gear (gear pos'n)

Table 2.1 Interpolated Quantities in Force Coefficient Calculations

The details of how these quantities are interpolated and from what actual simu-

lation variables are not included in this document. The purpose for including

the above information is to provide some idea as to the fidelity of the flight

model used as the aircraft model for this simulation.

Moment Coefficients

The Moment Coefficients about the primary axes of the aircraft (defined in

Section 2.1.2) are calculated from interpolated values as the force coefficients

in the preceding table. Their individual components are listed (with the quanti-

ties of which they are dependent in parentheses) in the following table:

Moment Coefficient Interpolated Linear Coefficients

Pitch Basic (based on speed and AoA),
Flaps (AoA),
Speed Brakes (AoA, Landing Gear),
Pitch Rate (based on speed and AoA),
Horizontal Tail Deflection (speed),
AoA Rate (speed),
Landing Gear (Flaps, AoA)

Roll Sideslip (speed & AoA),
Flaps (speed),
Ailerons (speed, AoA, & Flaps),
Rudder (speed, sideslip, & AoA),
Roll Rate (speed & AoA),
Yaw Rate (speed & AoA)

Yaw Sideslip (speed, AoA),
Rudder (speed, AoA,),
Yaw Rate (speed, AoA, Rudder),
Roll Rate (speed, AoA),
Aileron (speed, AoA)

Table 2.2 Moment Coefficient Linear Coefficient Components

Again, the above table is included to give an idea of flight model fidelity only,

and the detailed equations are omitted because they are not central to the topic

of this thesis.

2.3.2 Propulsion Model

The propulsion model deals with how the thrust is generated in the aircraft

model. The input is the position of the throttle in the cockpit, and its position

relative to the idle and afterburner thresholds. The position of the throttle deter-

mines the fuel rate (which also affects the mass model, as to be discussed in

Section 2.3.3), which in turn determines the RPM and thrust. If the afterburn-

ers are on, the fuel rate is adjusted accordingly, as well as the thrust. Airspeed

and altitude are also accounted for in the thrust equations.

2.3.3 Mass Model

The mass model is primarily a static one, based on the geometry and known

inertias of the empty (no fuel) T38 aircraft:

Inertial Component Value

Ixx 11553.6 slug-ft2

Iyy 2.833372e+04 slug-ft2

Izz 2.926608e+04 slug-ft2

Ixz 47.25 slug-ft2

Table 2.3 T-38 Minimum (Empty) Moments of Inertia

The total weight of the aircraft is determined by the dry weight, 8140.0 Lbs.,

plus the weight of the fuel in the left and right fuel tanks, 1,1198.98 Lbs. each,

for a total weight of 1.05x104 Lbs. when the simulation starts. This weight

decreases as fuel is burned until the tanks are empty, when the T-38 weighs its

dry weight. Similarly, the inertias are modified as fuel is burned until they

reach the values listed in Table 2.3. This variable inertia is calculated via inter-

polation tables (as was done in the aerodynamic force and moment calcula-

tions) which depend on the fuel quantity in the left and right fuel tanks.

As with the aerodynamic force and moment calculations, the actual equations

for calculating the inertias and the weight have been omitted due to their ancil-

lary nature.

2.3.4 Equations of Motion

Aerodynamic Quantities and Earth Velocities

The computation of velocity into the earth frame, and the resolving of wind

into the body frame are critical to computing angle of attack and sideslip, as

they are defined by the orientation of the velocity vector in the body frame.

This routine calculates the angle of attack (AoA), sideslip, and the rates for

both for use in the aerodynamic calculations.

Attitude

Aircraft attitude is computed by means of the quaternion, which is a 4-element

vector representing a single rotation which aligns two different frames by

means of describing a unit vector in one frame and an angle about that vector to

rotate one of the two frames.

Quaternic

Figure 2.5 Visualization of the Quaternion

cos

2
1

(2.8)

The differential equations for the quaternion that relates the local level frame to

the aircraft body frame are:

Y

x Frame B

Z

\

I

q0 0 p q r q0

b 1 1 p 0 -r q 1 1 b(2.9)
-qn =2- (2.9)

q2 -q r 0 -p q2

-- r -q p 0_ 3
q 93

where p, q, and r are the angular rates about the x, y, and z body axes, respec-

tively.[20] Equation (2.9) is the means by which the quaternion is propagated

based on the angular rates integrated from the moments in the body frame.

However, the quaternion's magnitude (the norm) must always equal unity. In

order to correct for the additive effects of small errors in computation, the norm

is computed and used to normalize the quaternion to ensure unit magnitude:

2 2 2 2 ,b
q0 + q1 + q2 + q3 n (2.10)

,b
qn bI = qn (2.11)

Iýi norm

This normalized quaternion is what is used for the orientation of the aircraft

with respect to the local level navigation frame. To use this information to

transfer vectors from earth to body, the body-to-earth direction cosine matrix

(DCM) is constructed from the body-to-local level quaternion DCM:

C b
11

2 2 2 2 Iq0 ql q2 +q31 2(-q 0ql + q2q3) 2(q0q2 + qlq 3)

2 2 2 21
2(q0oq1 + q 2q 3) Iq- q + q2- q3 2(-q 0 3 + 1 2)

2 2 2 2
2(-q 0 q 2 + 1q 3) 2(q 0 q3 1 q 2) Iq + q - 2 -q 3

+ Il3 2qq

(2.12)

and the earth-to-local level DCM, which is calculated as in Equation (3.6).

2.4 Pilot Dynamic Model

The pilot's dynamics are a simplification of reality, however for the purposes of

demonstrating the navigation algorithms for the head, they provide the neces-

sary degrees of freedom in the simplest manner for analysis purposes.

2.4.1 Stick-Figure Model

The pilot is represented by a rigid torso which is fixed to the ejection seat in the

virtual aircraft, and a head which is attached to the top of the torso, with the

ability to rotate freely within normal physiological limits. A diagram of the

construction can be seen in Figure 2.6. Both frames can rotate about all three

axes independently of one another, however if the torso rotates, the head

rotates the same amount, along with a translation due to the lever arm (depicted

as the dotted line in Figure 2.6).

I"

and the earth-to-local level DCM, which is calculated as in Equation (3.6).

2.4 Pilot Dynamic Model

The pilot's dynamics are a simplification of reality, however for the purposes of

demonstrating the navigation algorithms for the head, they provide the neces-

sary degrees of freedom in the simplest manner for analysis purposes.

2.4.1 Stick-Figure Model

The pilot is represented by a rigid torso which is fixed to the ejection seat in the

virtual aircraft, and a head which is attached to the top of the torso, with the

ability to rotate freely within normal physiological limits. A diagram of the

construction can be seen in Figure 2.6. Both frames can rotate about all three

axes independently of one another, however if the torso rotates, the head

rotates the same amount, along with a translation due to the lever arm (depicted

as the dotted line in Figure 2.6).

Head

1

Figure 2.6 Head and Torso Frames in Neutral Position Relative to the Ejection Seat

The detailed description of how the pilot dynamics are calculated can be found

in Section 3.3.2.

Chapter 3.0

Simulation Architecture

3.1 Overall Architecture

3.1.1 Concept

The simulation to represent the dynamic environment, instruments, and algo-

rithms of the inertial head tracker is pieced together from existing parts of three

separate simulations. The aircraft dynamics models are from the CSDL Simu-

lation Laboratory T-38 avionics simulator. The micromechanical instrument

models used to simulate both IMUs are from the CSDL Simulation Laboratory

Micro Air Vehicle (MAV) simulation. The navigation code and filter imple-

mentation are based on the code used in the CSDL Competent Munitions

Advanced Technology Demonstrator (CMATD) simulation and hardware.

Finally, the GPS model which simulates the satellite constellation, transmitted

signals, and the receiver messages was taken from the CMATD program as

well.

The goal of the simulation was to create a dual-IMU system with a single Kal-

man Filter to bound the drift of the IMUs and estimate the dynamic lever arm

between them. This simulation would have the ability to independently modify

the relative position and accuracy of the IMUs and their individual sensor com-

ponents, in addition to providing a flexible means of generating simulated

flight dynamics and pilot motion for performance analysis of the dual-IMU

head tracker system.

3.2 Structure

As Section 3.1.1 suggests, the simulation has four independent modules which

were inherited from previous projects, in addition to three new modules for this

particular simulation.

Module Name New/Inherited Function

T-38 Dynamics Module Inherited with Provide Realistic and
minor modifica- Flexible Flight Vehicle

tions Dynamics

MMISA Module (x2) Inherited Provide Realistic and
Flexible Representation
of an IMU

GPS Module Inherited Simulate the GPS satel-
lite constellation and a
receiver unit

Navigation Algorithms Inherited with Calculate Position,
modifications Velocity and Attitude

when combined with an
IMU

Kalman Filter Module New (MATLAB) Estimate Errors in the
IMU instruments and the
Navigation solution

Pilot Dynamics Model New Provide ample degrees of
freedom for the relative
lever arm between IMUs

Bounding Algorithm New Enhance the Kalman Fil-
Model ter and Nav module to

ensure feasible head
position estimates

Table 3.1 Simulation Modules

Module Name New/Inherited Function

Hardware and Graphics New with a few Enable simple trajectory
Interface inherited compo- generation and control

nents for data analysis and
management

Table 3.1 Simulation Modules

In general, the way in which these modules interface with one another is shown

in Figure 3.1, which represents the overall simulation architecture.

Figure 3.1 Simulation Module Architecture

3.2.1 Implementation

All of the modules except for the Kalman Filter were coded in the C program-

ming language, and implemented within the CSDL C-Sim Framework. The

Framework allows data visualization in multiple numeric and graphical for-

mats as data is processed and generated. A screenshot of the C-sim framework

can be seen in Figure 3.2, with the shell, browse windows, OpenGL graphics

window, and a plot window all visible. The upper right window contains the

graphical representation of an aircraft cockpit, with the pilot torso and head

coordinate frames in red and green, respectively. This particular screenshot

was taken while debugging the quaternion calculations for the head truth algo-

rithms.

lOt rP3 endtn (no) I if Io rut

enum adoatoFolag FALE (na) TRUE if red

deub evIlobug(o) 9I. (no) buffer for
doeh noovdubugl13 0. (no) buffer for

doub ovllDebul 2] 90. (no) buffer for
doub nvdlDebug(3) 0.0 (nr) buffer for

duIb nvd•bug[4] . (n) bLffer for
dosb novd•L bug•(] U.S (no) huffer for
doub "rvdDebugS) I.I (no) buffer for

dauh navdl•bug•7) I.0 (no) buffer for

domb novdkbabug) 0.1S (no) buffer for
daub n•wdlebug(S) S.I (no) bIffer for

doub noidDebu0i l] 3.9 (no) buffer for

daob novdbobuglll] 5.8 (no) buffer for
doub navdobudlgt2)] 8. (no) buffer for

daub novdoeb4Ig(13) 5. (na) bIffor for
I •.nN mc L

daub uNuuChfJZIk Rd Iaouf ISz
dk *dateceof[I]

dhut Rdot..escsf (2

doub Rddotecefll]
daub *ddot..ocef(21
daub qb_[OI]

doub qb_e[2]
doub q•_eo)]

43. 199a060 (ft)
-73.0 I4SI27 (ft/s)

-r9.79r0S2e (ft/u)
39.82 13100 (ftle)

-37.9 47593793 (ft/•^2)
-9. 7s51457l1 (ft/s-2)
3S. I2I71642 (ft/so2)
I.787338a62 (no)
.11.39294e-S3 (no)
I.5614317528 (no)

8.319956to-93 (no)

Oasi %e"WntE~yu lj
do"h IhohotG_*M0-0
dos hehmiotCGýudutbO
das holsotcGodetib

dosh hoieotCa-mdot.
hubh hsUitCGwDdot.
dasb holoetcoIiddot-
da" holmmtC&,ssb(S)
dob e hmtca, "-k[I
dhou h boitCBob(2)
humb tiaiutCOG..odoij
doub hsolotCiodol· h
dauh heletCgtndet~j
do" hofoutC-midot,

Inicio of helout conte

dandlasb rsqssatu (5)
ie~tguto (1.010111 am) atisfieod

mruobImolize Z1 LEMNTd YGCTS ERIF si-.t gaot (1.0.201441 0O
icsý I> stop
ow:tvoto (0.S3mmol seu) sotiofiod

sula191 30to(.64mm .u) an'toflud
stop

alm:tgoto (9.1115401011) not s sfited
* .as oponpuIwn PLO

-. u-I) o o s
CIP Pawed aft r 1. 729 nconds

aonm tors1esemol [rJ
doab torse m.lbbl2]
daub toro.heaoodt(S
dOmh torso.hIoad.I[t]
doub torseoedst [2)
daub for ean
daub sideeuan
doub twist
daub ptorseo
daub oLtorso
doub r torso
daub ubt tIe)
dub uhe_t l l)

-1 Momssi. (fl) posittio
0.0 (ft) positiou
O.I (ft) posititn

-3.SggAAA (ft) posit ion
0I. (degrees) fore-aft
0.0 (dugrugs) left-rt~g
0.S (dulglru) left-rice
U.0 (rad/mec) left-righ
0.S (rod/ec) fore-oft
S.8 (radjose) tuist dr
O.0 (rad/sec) vector fo
I.0 (rod/sec) vector If

poltion of torso base in aircraft bdo coord.

renrIte In tLcr

Velocit i in ECEF
Volocit i

in ECOE
Velocity in ECIF
Acclllrtt In El
Acceleratton in 1R
Acceleration in El
quaternion betlm
qguternlon betweoe

quaternion ban u
quaternion obetwo

H

o-

0

0

lnt Sr.JPPS,.pndingt
eme medRate lag

doua novdsebug(e)daub nrdalmbuti3)
daub havdelebus21)

doub ,vndVe*ugl4)

daub navelDebut[S)
doub navoudbugi7)
daub nav4Debus(S)
doub noavdDebug9)
doub navdDebusg(iS]

ah noud II

I (na)FALSE (noa)
(no)
(no)
(noa)
(no)(no)

(na)(no)

(no)
(no)
(ne)(no)
(no)

I if 1. rso
IuE if mewi
buffer for
buffer for
luff r for
buffor for
buffer for
buffer for
buffer for
buffor for
bfrfer for
buffeor for
buffer for
buffer for

-3. mameg sm-
a.s
1.o
S.l

8..
IO
a.s
9.5
8..

'.e

5.eU.S6.5
S..

(tt) peorOIen
(ft/moc) s-ovloci
(ft/soc) w-velact
(ft/soc) -,vlaci
(ft/s^2) s-accI-l
(ft/s'2) x-accelo
(ft/'^2) x-accet)
(ft) poeition
(ft) posltion
(ft) posittie
(ft/sec) s-veloit
(ft/uoc) -veloci
(ft/6so) x-vulaci
(ft/'^2) s-acceol

: i -· i · : *1

2 i .:

- ·- ;r-·~·; I·-l~r~--l·-· · ·I·
~c----~

- -I if floe Met b- -- dr·
I1

Trajectory and Hardware Simulation in Draper C-Sim Environment

The C-sim was designed to simulate a T-38 flying within the atmosphere of a

rotating earth. The T-38 has a controllable stick-figure pilot, represented by

two coordinate frames. The IMUs are also emulated in the sim as well, and

given the proper noise characteristics, and dynamic inputs. The true position

and attitude variables are written to a time-tagged save-set file.

Navigation Algorithm in C-Sim

The outputs of the IMUs are run through two parallel navigation algorithms

which process the IMU outputs, and calculate attitude (via the third order algo-

rithm developed by McKern in Section 4.2.1, equation (4.3)), velocity and

position. These outputs are saved to a file, along with the compensated delta-

velocity, delta-angles, the dynamic state/instrument state 012 sub-matrices (see

Equation (4.23).

Kalman Filter and Data Analysis in MATLAB

The outputted variables mentioned in the above two sections are read into

MATLAB, and parsed into the proper files. The Kalman Filter implementation

is discussed in Chapter 4.0. The filter does not have reset capability, but the

navigation solution could be corrected in MATLAB using error estimate. With-

out resets, the estimated errors will grow unbounded with time. However, for

the purpose of this analysis, a filter without reset capabilities provides adequate

evaluation of the concepts addressed in this study.

Data analysis is performed in the MATLAB environment after collection from

the simulation. Details of this analysis are discussed in Chapter 5.0, "Data

Analysis".

3.3 Physics and Dynamics Models

The simulation consists of a dual-set of algorithms, one generating truth, and

another generating outputs and interface signals of system hardware. The pri-

mary purpose of this study is to generate a consistent dynamic environment

which can be used as a benchmark to test the dual-IMU head tracker concept in

an aircraft.

3.3.1 T-38 Flight Vehicle Model

This model, originally written by the CSDL simulation lab, is the dynamics

engine for the flight vehicle. Its structure and functionality are overviewed in

this section with particular attention to how features relate to testing an IMU

head tracker in a jet aircraft environment.

Aircraft

The T-38 aerodynamics are summarized by a group of aerodynamic tables,

relating individual force and moment elements. These elements are then

summed up into the total moments and forces on the aircraft. Specifically,

these forces and moments are calculated using the stability derivatives interpo-

lated from the tables listed in Section 2.3.1, which are in turn multiplied by

their applicable state vector quantities and summed to get the lift, drag, side

force, and the three moment coefficients on the T-38. These forces and

moments are integrated into velocities and angular rates in the body frame, and

a final integration takes them to position and attitude.

The Head Tracker simulation uses these generated dynamics as a baseline for

motion within in the ECEF frame. These dynamics are then fed into the GPS

constellation and receiver emulation module, as well as the MEMS instrument

models. The MEMS modules, unlike their GPS module counterpart, require

additional processing on the inputs to account for the earth's rotation, and

angular rate due to motion over the earth's spheroidal surface as well as accel-

erations felt by lever arms from the sensors to the center of rotation. In particu-

lar, the additional angular rates are represented by the following equations:

The vector and corresponding skew-symmetric matrix of the earth's rotation in

the ECEF frame with respect to inertial space are:

e Q e Q O(3.1)ll ie 0- earth (3.1)

eart 0 0 0

The angular rotation vector due to motion over the earth's surface in the local

level navigation frame (n-frame) where k denotes longitude and 0 denotes lati-

tude is:

n= (3.2)

and the body angular rotation rate vector, whose components are from the T-38

dynamics model as obtained from integrating the angular accelerations calcu-

lated from the moments in the body frame, is:

- -b

PT38
b qT38 (3.3)

T38

Equations (3.1), (3.2), and (3.3) are combined using the appropriate DCMs in

Equation (3.4).

ib b en e (3.4)

The DCM between the n-frame and the body frame is calculated from the

quaternion via Equation (2.12). The DCM between the ECEF frame and the

body frame is obtained from the matrix product:

C = C1Ce (3.5)

where

-cosksin -sinksin coso
Ce - sink cosX 0 (3.6)

-cosxcoso -sinXcoso -sino

Equation 3.4 is the angular rate detected by the T-38 IMS gyros. The acceler-

ometers, however, detect the acceleration of the body with respect to inertial

space as felt by the IMS, which is at a known lever arm from the CG of the air-

craft. That lever arm (1) in body coordinates (b), is denoted by

- -b

imu
b

iim11 (3.7)

And the specific force felt on the IMU due to aircraft dynamics is

i Rb + 2 CbR e + C e (Q) ieR + (bb b)2) + Gb (3.8)

Where Gb is the mass attraction acceleration of the Earth at position Re in the

body frame.

Environment

The surrounding environment for the vehicle-the atmosphere and ground

forces and effects models-came from the T38 sim. For the purposes of this

simulation, only the atmospheric model's density and temperature was used in

computing the aerodynamic forces and moments, and no wind or turbulence

was introduced into the simulation.

In early stages of development, the ground forces model was found to be faulty

in the fact that it could not handle a rotating earth properly while the T-38 was

sitting on the ground. Measures were taken to fix this modelling error so that

the effects of acceleration and takeoff on the head tracker could be analyzed.

Other than providing a means for determining if the T-38 had crashed during a

simulation run and for providing a model for ground forces and interactions

during takeoff, the ground model was not used extensively, and the original

model for the Instrument Landing System (ILS) was disabled.

3.3.2 Pilot Model

The pilot model's purpose from

accurate dynamic model of the

intended as a means to provide

bounding algorithms used in the

its inception was not to be an anatomically

pilot's head as a shock mount, but it was

the necessary degrees of freedom to test the

lual IMU head tracker.

Angular Position of the Pilot Torso and Head

Since the torso and the head are attached via a fixed lever arm between their

origins, angles simply add between the two frames, relative to the aircraft body.

These Euler angles are used for input purposes only, and are converted to a

quaternion, which eliminates the singularity of Euler angles (0 denotes roll, 0

denotes pitch, and W denotes yaw) at their local zenith. To construct the quater-

nion from Euler angles, both the torso and the head use:

qo= + Cosin cos(cosQ

q= +(co sin s(cos() -

q2 = + COS si COS

q3 = (Cos COS () sin(!) -

to generate the quaternion from torso ti

[20].

+ sin (sin() sin ())

Cos (sin(sin (Y) (3

S~sin Cos sin ()) (3

-sin s in(cos () (3

o body and head to torso, respectively

3.9)

.10)

.11)

.12)

The three euler angles which generate each quaternion are controlled indepen-

dently using two 3-Degree of Freedom joysticks, one for the torso and one for

the head. Moving each joystick forward and backward (along the joystick's Y-

axis and about it's X-axis) controls the pitch angle, moving it left and right

(along the joystick's X-axis and about it's Y-axis) controls the roll angle, and

twisting it (about the joystick's Z axis) controls the yaw angle. This geometric

relationship of joystick to simulated torso motion is described by Figure 3.3.

Roll z Roll

X X

Pitch /I Pitch

f $1 /
Yaw Yaw

Torso Controller Head Controller

Figure 3.3 Joystick Geometry for Control of Pilot

Angular Velocity and Acceleration of the Helmet

In the simulation, position is directly controlled by either the operator or input

files. Therefore, to obtain angular velocity the quaternion is differentiated and

used in conjunction with the current quaternion to extract p, q, and r relative to

the aircraft body using a modified form Equation (2.9), found in Equation

f

(3.13). The helmet rotation rates are then differentiated to get the angular

acceleration. A flow diagram of this process is shown in Figure 3.4.

Figure 3.4 Pilot Attitude, Angular Velocity and Angular Acceleration Generation

Where Equation (3.13) uses the four-parameter, non-commutative quaternion

multiplication operation as defined in McKern [15].

P = 24Jq* (3.13)

where q* is the inverse of q:

qo

q* =-q (3.14)
-q2

Specific Force on the Helmet

Since the simulation inputs control head angular position directly and the nec-

essary first and second derivatives are calculated via the quaternion differential

equation and a final numerical integration as in Figure 3.4, the helmet accelera-

I

tion equation (2.7) can now be used since all off the necessary variables have

been provided.

3.4 Instrument Models

3.4.1 GPS Constellation/Receiver Model

To simplify the simulation code, the GPS model was simplified from the LOS

measurement model to a simple Position and Velocity measurement, which is

the true position and velocity, corrupted by the following delay and white noise

parameters:

Corruption Parameter Value

Delay 1 second (optional)

Position white noise 12 feet

Velocity white noise 0.1 feet per second

Table 3.2 GPS corruption parameters for simulated measurements

3.4.2 MMISA & EGI Models

The MMISA and EGI models take true angular rates and specific forces at the

instrument locations and add noise, bias, and scaling factor errors. The only

difference between the EGI and the MMISA is that the MMISA uses parame-

ters as seen in Table 1.1, and the EGI, which uses more accurate instruments

than MEMS instruments, has the following numbers:

Instrument Error Units Value

Gyroscopes

bias repeatability degrees/hr 0.0035

bias stability degrees/hr 0.0006

scale factor ppm 2

input axis misalignment arcseconds 4

angle random walk deg/sqrt(hr) 0.0025

Accelerometers

bias repeatability gg 60

bias stability 9Lg 20

scale factor repeatability ppm 100

scale factor stability ppm 30

nonlinearity gg/g2 10

input axis misalignment arcseconds 8

cross-coupling gg/g2 10

Table 3.3 Generic EGI Instrument Errors (one sigma)

3.5 User Interface

3.5.1 Hardware

A Silicon Graphics Onyx 2 workstation was used in conjunction with a custom

built hardware interface manufactured by BG Systems, consisting of input

devices listed in Table 3.4.

Figure 3.5 Author Running C-sim on an Onyx 2 with the Double Fly Panel

HardwareHardware Signals Generated Use in Sim
component

Left Joystick 3 Analog stick positions Torso roll, pitch, yaw
1 discrete trigger none
2 discrete push buttons none
1 4-way hat switch none

Right Joystick 4 Analog stick positions Roll/pitch/yaw of head or
aircraft control inputs

1 discrete trigger none

8 analog levers 8 analog channels Camera Angle, throttle

32 momentary 32 discrete signals Aircraft and Pilot Mode Control

push buttons 32 lights for feedback Simulation Mode Awareness

Table 3.4 BG Systems custom hardware panel

Hardware
Signals Generated Use in Sim

component

16 toggle push- 16 discrete signals Graphics Components/View
button 16 lights for feedback Control and Mode Awareness

Table 3.4 BG Systems custom hardware panel

The hardware is used primarily for data recording of control inputs to the T-38

or pilot motion, but the current configuration does not allow for simultaneous

inputs to both the aircraft and the pilot models. However, the simulation was

written with enough flexibility to control operating modes and implement an

autopilot to command the aircraft while commanding the pilot motion. The

mode controllers are tied to the inputs of the push buttons of the BG systems

hardware, and their current state is displayed via lights which are integrated

into the buttons on the central button panel.

3.5.2 Graphics

The core graphics of the simulation are a cockpit (modelled after a two-seat T-

38 cockpit), with two sets of axes for the pilot torso (in red) and head (in

green). The terrain is a simple texture map with an overlaid grid, with simple

features such as a runway, a couple roads, trees, and mountains. The sky also

has a texture map for clouds which are situated at 4000 feet. The camera view

angle can be controlled via levers on the BG systems panel, modifying eleva-

tion, angle, and zoom with the view centered on the pilot inside the cockpit.

Graphics were programmed in the OpenGL graphics language by Silicon

Graphics, and integrated into the Draper C-sim via the DraperGL standard.

The implementation of the OpenGL graphics can be seen in Figure 3.2.

3.5.3 Trajectory Generation and Control

Aircraft Flight Path

For a trajectory to be completely saved for data analysis, a flight control inputs

for the T-38 must be generated and saved as a C-sim "save set", or a time-

tagged data file with variables of interest. These saved files form a library that

can be used to test various flight scenarios (bank turns, takeoff, loops, high-g

maneuvers, etc.). To save a new set of aircraft control variables done by run-

ning the simulation with the aircraft control mode set to manual, so that the BG

systems control inputs can be read in, and converted to T-38 stick deflections

which the T-38 uses as control input variables to the aircraft simulation. These

commands are saved, and then played back later with either manual or saved

pilot motion inputs. The inputs recorded for the T-38 flight path are the lateral

and longitudinal stick position, rudder pedal deflection, and throttle position.

Pilot Motion

The pilot motion is saved in a manner similar to the aircraft control data, but an

aircraft flight path must be run using the control input autopilot while the pilot

motion is being recorded. The two joysticks are used to record torso and head

position, and their inputs are saved in a save set data file (just like the aircraft

control inputs) to be re-played under various aircraft flight conditions for test-

ing purposes.

3.5.4 Data Storage & Analysis

Input data is stored in files to allow the most flexibility in dynamic playback.

The pilot and aircraft control input data files can be combined in any permuta-

tion for generating truth and simulated sensor outputs for application of the

navigation filter and bounding algorithm in MATLAB. The data which is

passed to MATLAB is a binary "mat" file, consisting of a large matrix of time-

tagged data, corresponding to truth, filter propagation matrix sub-sections, and

navigation solutions.

Chapter 4.0

Algorithms

4.1 Navigation System Overview

An inertial navigation system uses outputs from gyroscopes and accelerome-

ters to determine attitude, velocity, and position with respect to a navigation

coordinate frame (i.e. ECEF, Local Level, or Inertial). Often, an inertial navi-

gator also employs a Kalman Filter to estimate both the instrument and naviga-

tion errors of the system, so that the navigation errors can be reduced in

magnitude. These errors are usually estimated via an outside position and/or

velocity measurement source, such as a radio navigation unit (e.g. GPS,

TACAN, VOR, DME, etc.), altimeter (e.g. radio, doppler, or barometric), air

data system, sonar, or another non-inertial source. When another inertial unit is

employed, it is usually for a transfer alignment, such as those used in subma-

rine ICBMs, or inertially guided munitions deployed from aircraft (i.e. cruise

missiles). The block diagram of a typical navigation system can be seen in Fig-

ure 4.1, and the symbol definitions can be found in Table 4.1.

4.1.1 Essence of the Navigation and Coupling Algorithms

The essence of this thesis is to develop a filter which estimates the attitude of

the pilot's helmet. This is modeled via a stochastically-coupled dual IMU sys-

tem, where the movement of the helmet relative to the T-38 EGI is modeled by

three first order Markov processes in position. The EGI develops accurate posi-

tion due to GPS updates, and accurate EGI attitude is achieved via changes in

the direction of the specific force (with accurate position measurements).

Transferring the EGI attitude to the helmet is achieved via a relative position

update between the EGI and the helmet that includes a first order Markov pro-

cess model. The Markov process model allows the head to move within a man-

ifold as a time correlated process.

Figure 4.1 Navigation System Architecture

Symbol Definition Symbol Definition

p GPS LOS messages u GPS unit vector to satellite

H Measurement Matrix z measurement

D Propagation Matrix p,v position and velocity

q quaternion (attitude) w angular rate

f specific force 81V attitude error

6r position error 5v velocity error

8m instrument misalign error 8b instrument bias error

5s instrument scale factor
error

Table 4.1 Symbol Definitions for Figure 4.1

4.1.2 Effect of the Gyros and the Attitude Algorithm

The navigation equations are the "Attitude Algorithm" and "Velocity and Posi-

tion Integration" blocks in Figure 4.1. An important block in the diagram in the

figure is the "Attitude Algorithm" block. If the attitude is calculated incor-

rectly, then the accelerations will be resolved in erroneous directions resulting

in both the incorrect summation of velocity and incorrect integration of posi-

tion. Furthermore, the Kalman Filter error state propagation matrix will be for-

mulated using the incorrect DCM to transform the instrument error states from

the platform frame to the navigation frame. Therefore, it is important that the

attitude (whether it is represented by either a DCM or a quaternion) be accu-

rately determined.

4.2 Navigation Equations

This section describes the duties of the blocks labeled "Instrument Signal Pro-

cessing," "Attitude Algorithm," and "Velocity and Position Integration" in Fig-

ure 4.1. The signal processing block in the figure scales and shifts the incoming

gyro and accelerometer signals to both the proper units and values for compu-

tation.

4.2.1 Attitude Algorithm

The following attitude algorithm is a third order algorithm developed by Mc-

Kern at the MIT Instrumentation Lab [15] which is typically run at 100 Hz or

greater. A fourth order algorithm contains many more terms, and is not practi-

cal for embedded systems. Typically, if more accuracy is needed, a partitioned

attitude algorithm is used, which runs a portion (the cross-product calculation)

at a higher rate than the rate used for transformation of the delta velocity vector

to the navigation frame.

A numerical error involving the transformation of delta velocity from the plat-

form frame to navigation frame is called sculling. First-order sculling correc-

tion is achieved by averaging the old delta theta with the new delta theta before

calculating the delta quaternion as in Equation (4.1) where n denotes the

desired axis of rotation, t denotes the time of calculation, and 8t denotes the

time step.

= A0n
A 1t/+ A ,It _ 6t

(4.1)

The equations for the quaternion update which utilize the above sculling cor-

rection are given in Equations (4.2) and (4.3):

6=
(A62 + AO +A2

+ A62)
(4.2)

(A zlt SAOytA t)+ AOyt AOz t- t - "It ,/ "

2

(AOX t -A _+ (AxZ. A6Xt -6)- 2(AOY . 6 1t A+2
2 t2-t t t-t
24 2

(A6 -AOx t -8t) S- AO - 2(AOZ t At z
,t- t t t 3 t

2

(4.3)

Equation (4.3) is then multiplied by the previous quaternion [15] to produce

the quaternion valid at the present time interval:

t = qe .q 6t - Aqj

where qe is the quaternion representing the rotation of the earth over one time

interval.

Given gyro outputs from three axes, and an initial quaternion, Equations (4.1)

through (4.4) represents a way to compute the present attitude. The quaternion

(4.4)

AO)n t

Aqi t

AOI -511 A6,I

I

calculated represents the transformation from the platform frame to the ECEF

(navigation) frame.

4.2.2 Velocity and Position Determination

Additional Accelerometer Compensation

Further delta-velocity compensation is required (in addition to the instrument

error corrections) which carefully accounts for the lever arms from the plat-

form frame center of rotation to each instrument. Also, as part of the naviga-

tion solution, the specific force must have Earth mass attraction and the Earth

rotational dynamics subtracted from it.

Accelerometer Lever Arm Compensation

Once the delta-velocities are coordinatized in the platform frame, they must be

compensated for tangential and centripetal forces caused by the lever arm for

each instrument from the center of platform rotation (the platform coordinate

frame's origin). If the lever arms of the three accelerometers from the center of

rotation coordinatized in the platform frame are O~f, Of, and Og, then the

additional sensed delta velocity components due to any rotation (expressed

below as the average delta-theta (Equation (4.1))about the subscripted axis of

rotation) will be the following inner products:

T
-(A22 -32)

Av I.a. A01A02 (4.5)

A01A03

Av~ I L.a. =

AO1A02

-(A2A + YO3

A02 83
T

A01A03

1.a. A2 a3 (4.7)

-(Ae2 + A-2

which are all combined into the following vector:

Av' ll.a.

l.a. .a. (4.8)

Av'll.a.

Equation (4.8) represents the delta velocity correction to the accelerometer out-

puts due to the lever arm from the instrument platform's center of rotation to

each accelerometer.

Delta-Velocity and Attitude Accumulation (Rate Compensation)

The compensated delta-velocity vector is then provided to the velocity accu-

mulator. Depending on whether or not the velocity and position algorithms are

being calculated at the same rate as the attitude algorithm (in some embedded

applications they run at a slower rate for computational reasons) the quaternion

will be repeatedly calculated and the delta-velocities will be summed over the

number of cycles until they are needed by the velocity and position algorithms.

Of (4.6)

For the IHMCS, the attitude algorithm is calculated at 100 Hz, while the veloc-

ity and position algorithm is calculated at 50 Hz. This means that for every

velocity and position calculation, there are two instrument error and lever arm

compensated delta-velocity and quaternion calculations. The attitude elements

of the navigation solution are the result of multiple quaternion multiplications

(one for each time step between navigation solution outputs) using the new

delta-quaternions as calculated in Equation (4.3) on page 83. It is the resulting

sum of the new compensated delta-velocities which are corrected for Earth

Mass Attraction, Earth Rotation effects. These two final corrections are

detailed in the following sections.

Earth Mass Attraction and Earth Rotation Navigation Corrections

The current quaternion relating the platform and ECEF is used to transform the

delta-velocity vector from the output of the accelerometers into the ECEF

frame. This is done via:

Ave = q AvP(q e)* (4.9)

Equation (4.9) must be corrected for Earth mass attraction and rotation. The

mass attraction portion of the gravity correction from Britting [3] in geocentric

coordinates, expanded to the J4 term is shown in Equation (4.10).

-3-E (re)2 . 1 2r

3 sin cos•J + J3 seco(5cos- I)+ r(7cos2 3)

GC 0 (4.10)

_3- J 2(3 cos2 - 1) - 2J3 ,3 cos(5 cos20 - 3)- J4() 4(35 cos4• - 30cos2 0 + 3)

Note that in Equation (4.10) 0 represents co-latitude (which is equal to zero at

north pole, 90 degrees at the equator, and 180 degrees at south pole), the terms

Jn represent the modal correction terms for gravity deviation from geocentric

normal, r represents the present position vector magnitude, and re is the radius

of the earth at the equator (the semi-major axis of the WGS-84 ellipsoid).

The centripetal and Coriolis accelerations due to earth rotation are expressed in

Equation (2.3) on page 47. The lever arm correction in Equation (4.8) on page

85 and the Earth rotational correction terms in Equation (2.3) are both used to

correct the delta-velocity from Equation (4.9) as prescribed by Equation

(4.11):

Ave Av e - A t Ce C +R e _ evP

total c rot .a.

where Ce and Ce represent the DCMs between platform and earth, and geo-
p c

centric and earth coordinates, respectively. The result of Equation (4.11) is the

final, compensated delta velocity in the ECEF navigation frame which is used

to calculate the current velocity and position components of the navigation

solution.

Velocity Summation and Position Integration

The fully compensated delta-velocity in Equation (4.11) is then summed with

the previous platform velocity solution to obtain the current platform velocity.

The current platform velocity is then numerically integrated into the current

position, thus completing the full navigation solution consisting of attitude,

velocity and position in the navigation frame.

4.3 Error Estimation Kalman Filter

To prevent the navigation solution from accumulating errors, both the naviga-

tion solution errors and the instrument errors (i.e. bias and scale factor) are

estimated by a Kalman Filter. This section describes the Kalman Filter imple-

mented for the IHMCS.

4.3.1 The Discrete Kalman Filter Equations

The Kalman Filter equations as developed in Gelb [8] and applied to the

IHMCS are outlined in the following paragraphs.

Propagation and Measurement Equations

The propagation matrix formulation of the state equation is:

k = k- 1~k- 1 + Ok- 1 (4.12)

and the measurement equation is:

Zk = HkXk + Vk (4.13)

Equation (4.12) is the linear dynamic model for the state vector, x, formulated

using a propagation matrix D. The vector w contains the independent white

process noise inherent to each state (w contains the same number of elements

as x). Equation (4.13) is the measurement equation, which relates the measure-

ment vector, z, to the state vector via the measurement matrix H. The vector v

is the white noise inherent to each element of the measurement vector (v con-

tains the same number of elements as z). For every different measurement vec-

tor formulation, H and v in Equation (4.13) should be re-evaluated to ensure

that the measurement vector has both proper relation to the state matrix and

proper noise content.

The Kalman Filter uses the Equation (4.14) to propagate the state estimate:

^k (-) = k- I k - 1(+) (4.14)

and Equation (4.15) to propagate the covariance matrix, P:

k(-) = (k- 1Pk- 1() kT- 1 - 1 (4.15)

utilizing the state transition matrix from Equation (4.12) and the process noise

matrix, Q which is a diagonal matrix containing the variance of the white noise

processes of w.

When measurement information is available, Equations (4.14) and (4.15) are

used to propagate the state estimate and the covariance matrix, making them

valid at the time of the measurement. The measurement matrix that is valid for

the current measurement and the covariance matrix are both used to calculate a

gain matrix via Equation (4.16), in conjunction with the measurement noise

matrix, R, which is another diagonal matrix containing the variance of the

white noise processes of v from Equation (4.13).

Kk= Pk(-)HT[HkPk(-)HkT + Rk] - 1 (4.16)

This gain matrix is then used to update the state estimate, by multiplying K

times the innovation. The innovation is the difference between the current mea-

surement, zk, and the predicted measurement, Hkxk(-), as shown in Equation

(4.17):

Xk(+) = Xk(-) + Kk[zk - Hk k(-)] (4.17)

The gain matrix, measurement matrix, and measurement noise matrix are all

used to update P as shown in Equation (4.18):

Pk(+) = [I- KkHk]Pk(-)[I- KkHk T +KkRkKT (4.18)

The associated timing diagram for use of Equations (4.14) through (4.18),

which graphically explains the + and - notation, can be found in Figure 4.2.

Equations (4.14) and (4.15) are used during the "propagation interval" to

advance both the state and the covariance matrix to the pre-measurement time,

as denoted by the horizontal red arrows in Figure 4.2. Equations (4.16), (4.17),

and (4.18) are used during the "measurement and update" interval to update the

state and the covariance matrix based on the new measurement data, repre-

sented by the vertical spike in Figure 4.2.

ZkI Hkl RkI
Zk Hk Rk

k.()Xk.I 0~

Ok-1 Q
k-1 (k Qk

Pk(-)

Figure 4.2 Kalman Filter Propagation and Update Timing Diagram [8]

4.3.2 The Navigation Error Estimation Filter Formulation

State Vector Description

The formulation of the navigation and instrument errors for both the helmet

MMISA and the T-38 EGI each consist of a state vector with nine navigation

errors, and twelve instrument errors, listed below in the order that they appear

in the 21-element state vector:

Pk-l(+)

Zk-I Hk- Rk-1

I j

Zk Hk Rk

,.kl(+) j•k(-)

Xnav

Xinst

Table 4.2 Generic Navigation Error States

Each of these two 21-element state vectors (one for each IMU) are split into

xnav and xinst and arranged with an additional three-element relative position

state vector, xrel, into the state vector used by the Kalman filter:

XnavT38

X
XnVhelmet

Xrel

instr38

inlSthelinet

(4.19)

Propagation Matrix Formulation

The state propagation matrix corresponding with the above state vector is:

Quantity States

Position Errors 6x, 8y, 8z

Velocity Errors 5Vx, 6Vy, 6V z

Attitude Errors W1, W2, V/3

Gyro Bias Errors 8bgi, 8bg2 , 8bg3

Gyro Scale Factor Errors 8sgl , 8sg2, 8sg3

Accelerometer Bias Errors 8bal, 8ba2, 5ba3

Accelerometer Scale Factor Errors 8sal, 8Sa2, 8Sa3

1

T1138 0 0 012T38 0

' 011helmet 0 0 12hehinet
D 0 0 4rel 0 0 (4.20)

0 0 0 I 0
0 0 0 0 I

where for both the T-38 and the helmet IMUs the propagation matrices which

relate the navigation error states within one IMU to one another is:

000 010 000
00 0 10 000000 00 1 00
0 0 0 0 2 e 0 0 -f 3 f2

1 = I+ 0 0 0 -2e 0 0 3 0 - f At (4.21)
0 0 0 0 0 -2 f 00

000 000 0 e00 0 0 0 0 0 -m e 0 0

The f components of 11 are the elements of the instrument, misalignment and

lever-arm-compensated specific force vector of the corresponding IMU for the

given 011 matrix (the result of Equations (4.2) through (4.9), divided by the

time stamp At). The remaining constant, oe, is the earth rotation rate. Note that

the asterisk on the zero matrix in the second row, first column of Equation

(4.21) represents that the 3 x 3 zero matrix is a replacement for the following

rotation vector in skew symmetric matrix form:

Xe ie + Oie (4.22)

which is on the order of 2x 10-3 degrees per second per second, or 6x 10-7 radi-

ans per second per second. For inertial systems with instruments of higher

accuracy than those in the MMISA, this matrix should not be neglected, how-

ever due to the current level of MEMS sensor accuracy, it has been neglected

for this system.

Also for both IMUs, the propagation matrix segments which relate the instru-

ment errors to their corresponding navigation errors are both of the form:

000 000 000 000000 OO jO 0000O
0 00 0 00 0 o0l 1 000

12 = 0 0 0 0 C0 Ca 0 f 2 0 At (4.23)

000 000 0 f3

Ce C e. 0 02 0 000 000
0 0 3 000 000

where fj represents the elements of the instrument specific force vector of the

corresponding IMU for the given ý12 matrix. oj represents the instrument error

compensated angular rate outputs of the corresponding IMU for the given 412

matrix. Ce and C, represent the DCMs from the accelerometer and the gyro

frames to the ECEF frame, respectively.

Finally, the relative propagation matrix represents a Markov process inside a

three dimensional manifold, within which the pilot's head must remain due to

physiological constraints. Equation (4.24) is the relative phi matrix:

•rel =

At
-Cl

0 0

At
t2

0 0 1 At
"3

(4.24)

The tj variables represent the Markov process time constants for all three body

axes. The Markov process is discussed in more detail in Section 4.4.

Measurements

The GPS position and velocity updates are contained in the z vector:

x

y

Z
Zgps

Vx

V

Z nav

which has the corresponding H-matrix in

x

y
z
Vx
V

Vz gps

Appendix A:

The three element measurement vector used to couple the two navigators is

calculated via:

(4.25)

1

Zrel = h - Xb - rel (4.26)

where xh denotes the estimated helmet position, xb denotes the estimated air-

craft body position, and rrel denotes the nominal probabilistic lever arm which

is the three-element expected value of the relative state Markov process vector

in ECEF coordinates. The corresponding measurement matrix can be found in

Appendix A.

If both a relative and a GPS measurement is conducted, the two measurement

vectors are appended to one another:

z gps (4.27)
combo I

LZrel

with the H matrix being appended similarly:

H combo= gps (4.28)

L Hrelj

Equation (4.28) can be explicitly seen in Appendix A.

As can be seen by Equation (4.28), the relative measurements couple in the

effects of the GPS updates into the helmet navigator, and add in the relative

lever arm error (which is the relative state Markov process vector and part of

the state vector).

4.3.3 Generalization to N Navigators With One Master Kalman Filter

One can begin to see a generalization in Equation (4.20), when multiple navi-

gators are placed into a single Kalman Filter. The sub-matrices for relating the

dynamic states to each other are on the diagonal of the upper left of the 1

matrix, while the corresponding inertial instrument error states are directly to

the right, in the upper right of the D matrix, along the local diagonal. Relative

states are beneath the dynamic states, and are along the main diagonal as

Markov processes, and the lower right is an identity matrix. Figure 4.3 shows

the partitioning for N-navigators:

(D(.
11 1l

0II II IP~
,I,2b

I I v III 0
I S It Sr

II I

V I ". I,

o Iir

II
II

I I

dynamic relative instrument (static)

Figure 4.3 Generalized N-Navigator PHI Matrix

a
.m

C',E

c""o>°m

E

v,
--

I,

n

As can be seen by the above construction, the primary nature of the dynamic

and static portions of the F matrix are conserved in the partitions marked cF11

and 012. This allows for sparse matrix calculations to be used when imple-

menting the Kalman Filter in a program which ignore the zero sections of the

matrix, as was implemented in the embedded filter for CMATD.

Parent Navigator vs. Internally Referenced (Markov) States

Also note that the N-navigator formulation must have at least one navigator

which is updated by an outside measurement (such as GPS or another radio

navigation system-this will be known as the "parent navigator"), while the rest

of the navigators can be dependent upon the relative Markov states for cou-

pling to the parent navigator. This means that there will be a zgps and Hgps for

the parent navigator, and a number of zrel and Hrel matrices for various permu-

tations of relative measurements. The other internally bounded (via the a priori

relative position knowledge and Markov) states can be referenced to one

another, as well as to the parent navigator. For example, this would be imple-

mented if the relative knowledge to another internally bounded state is known

better than the same reference to the parent navigator, and that other internally

bounded state has an equal-or-better accuracy and Markov dynamic with

respect to the parent navigator. For certain applications, the relative state

blocks (in the central region of the D matrix) may outnumber the dynamic

blocks (in the upper left region of the (D matrix).

4.4 Bounding Algorithm

Since the system consists of two separate navigators with only one external

measurement source, the two state error estimates have to be coupled with

respect to one another to ensure that the position estimate of the helmet is

physiologically feasible when compared to the T-38 EGI position. The meth-

odology used for this is to navigate the two systems independently, but calcu-

late their errors jointly in the aforementioned Kalman Filter. The lever arm

between the two will be calculated, about which a Markov process will be used

to allow for small, uncoupled head motion relative to the aircraft. The purpose

of this thesis is to determine how well this stochastic coupling scheme works

for the IHMCS.

4.4.1 Description of a Markov Process

A Markov process is mathematically described by the following differential

equation:

-1
S - X + W (4.29)

where the state x (the relative position error estimate in the case of the filter) is

correlated in time and the noise exists in the state derivative, not the state itself.

This has the effect of producing a gradually wandering variable about a given

expected value, as seen in Figure 4.4 (where E[x] = 0.0):

Generic Markov Process

Figure 4.4 Generic Markov Process: r = 10, a = 1, E[x] = 0

4.4.2 Attempt to Ensure Markov Process Remains Strictly Bounded

By making the time constant a function of the Markov process state, no matter

what the value of the state is within its variance limit, that the Markov process

will not push it beyond that boundary by implementing the following linear

relationship for t:

max min)
t = t -)| m x (4.30)

The above relationship effects I when x approaches the boundary by decreas-

ing t to Tmin, thereby increasing the correlation in time at the present value of

100

0.4

0.2

0

-0.2

-0.4

-0.6

or-

10 20 30 40 50 60 70 80 90 100
time [sec]

0

x. Alternatively, when x approaches E[x], I increases to 'max, thus decreasing

the correlation in time at the present value of x. The resulting behavior is that

of a process which is more correlated closer to the boundary, making it more

likely to return to the E[x]. Therefore, the algorithm was implemented to make

sure that the Markov component doesn't add to the error, pushing the pilot's

head outside the physiological limits. The algorithm performance was also

examined to see if it improves the performance of our coupling algorithm.

A comparison of two Markov processes, one without Equation (4.30) imple-

mented and one with it implemented, starting near the intended boundary can

be seen in Figure 4.5 on the next page. It is clear that the t-varying scheme

stays within the limits of x (in the figure at +/- 3), while the constant-t scheme

strays outside of the limits multiple times.

4.4.3 Implementation

MATLAB Test

The relative state matrices will consist of the Markov time constant terms, as

seen in Equation (4.24). These time constants will be calculated using Equa-

tion (4.30), and that should create the desired effect of bounding the errors of

the head navigator with respect to the aircraft navigator to a box of predeter-

mined dimensions.

Generic Markov

700 800 900 1000

. . .-' I i i - I,
I I I I I I I I I

0 100 200 300 AO, 500 600L-Varying MarKov

I I -I I - I

800 900 10000 100 200 300 500 600 700r9aov Time Constant

I I I I I I I I

0 100 200 300 400 500 600 700 800 900 0

Figure 4.5 Tau-constant and Tau-varying Markov Processes

Simulation Implementation

After implementing this algorithm which resulted in a tighter bound for the

MATLAB trial above, the testing yielded no discernible improvement. See

Section 5.3 for further details.

102

| I | |

............... J •AA

Chapter 5.0

Data Analysis

5.1 Simulated Truth Data

The trajectory for the aircraft generated for the data analysis starts with the air-

craft in a free-fall nose-over maneuver, after which the aircraft enters a 2.5-g

pull-up maneuver, followed by a sequence of pull-up and nose-over maneuvers

(similar to a "nap-of-the-earth" terrain following trajectory). The trajectory

reflects one of the worst conditions under which to initialize the system: no ini-

tial specific force vector. However, it is followed by a highly dynamic maneu-

ver followed by smaller pull-up and nose-overs to create a specific force vector

on both the pilot and the helmet to provide the information necessary to couple

the two navigators' attitude estimates, despite the pilot's motion. Without the

maneuvers (e.g. in straight and level flight) the roll and pitch attitude error

would converge much like the data represented below, but the yaw (azimuth)

error would increase at a rate equal to that of the yaw-axis gyro bias.

The pilot trajectory is a generic scan about the cockpit and the field of view,

similar to the behavior of a pilot during visual search for and identification of a

target. The same trajectories were used for all runs, with varying initial errors

on all the navigator output states and inertial instrument error states.

103

5.2 Filter Performance

To analyze filter performance, MATLAB scripts were written to operate in two

situations: single data run and multiple data runs which are in turn analyzed as

a Monte Carlo data set. The Single Data Run is used to demonstrate pointing

accuracy, position update accuracy, and velocity estimate accuracy on both

IMUs, primarily for debugging purposes. The Monte Carlo analyses determine

how well the system works under various noise sequences and initial error con-

ditions, and produce the most useful data. Both analyses are described in the

following paragraphs.

5.2.1 Single Data Run Analysis

A single data run consists of running the Kalman Filter described in Chapter

4.0 on the data coming from the simulation described in Chapter 3.0. The

updates in the filter were performed at 1Hz, the frequency at which the GPS

measurements are obtained. Each GPS update consists of the difference

between GPS position and velocity and the navigated T-38 position and veloc-

ity. Each relative update between the IMUs consists of the difference between

the navigation position of the EGI and the MMISA which is further differenced

with the stochastic lever arm (containing the Markov process used to couple

the two navigators) between the EGI and the MMISA. To evaluate the naviga-

tion solution, the estimates of position, velocity, and attitude errors were com-

bined with the navigated position, velocity, and attitude and compared to the

true position, velocity and attitude values, producing a final result of the posi-

tion velocity and attitude error as seen in Figure 5.1.

104

Helmet Attitude error vs. time

2
0.01

0

--- 0.01

a -0.02

a -0.03
-0.04
-0.05

0 20 40 60 80 100 120

T38 Velocity error vs. time

20 40 60 80 10UU zu

T38 Position error vs. time

0 20 40 60 80 100 120
time (sec]

c .

I'... '. .

- psil error
.....- - psi2 error

·-- psi3 error

20 40 60 80 100

Helmet Position error vs. time

...; ' :..... , •.......• /

JJ
\. .

\ I :1

. .. .-- Xerror
*i Yerror

' 1 1 Zerror
: • 80 100'.L

20 40 60
time [sec]

Figure 5.1 Single Run T-38 and Helmet Navigation Errors

Also of significance is the calculated standard deviation of each of the error

states, as found in the P-matrix of the filter. The calculated filter standard devi-

ation of the attitude error for the helmet MMISA which correspond to the run

in Figure 5.1 are presented in Figure 5.2.

105

- psil error

psi2 error
- psi3 error

-- Vx error
- - Vy error
- Vzerror

- X error

S error
it
• .- Zerror

.K
• "'• •\ "• • t " "•'•

--

T38 Attitude error vs. time

12
20 40 60 80 100

Helmet Velocity error vs. time

· · ·

-_

x10
-

^^

80 100

A

Helmet Attitude Standard Deviation

0.08

0.06

0.04

0.02

0

- 0.0

(rJ

-0.04

S-0.02

-0.08

-0.1
10 20 30 40 50 60 70 80 90 100 110

time [sec]

Figure 5.2 Single Run P-Matrix Attitude Calculated Standard Deviation

The single runs are particularly useful for debugging, but they do not ade-

quately represent the system performance under varying initial errors and con-

ditions. Since this system is dependent upon a stochastic coupling between the

T-38 and helmet navigation solutions (in the form of the Markov relative posi-

tion states in the PHI and H-matrices), an analytical procedure known as a

Monte Carlo analysis, which uses sample random variables for the error states

represented in the filter, was used to quantify the performance of the system.

106

.

r· ~ ·- -- ----------ItI I

W3-" ... I........ "..........
II I

r* '*II Il ...Ii. '

L f rII 1''x ' . .

II- . ., \

III , .

1I
Ill..

.......· · · ·-

- · · · ··: · · · ·· i · · · · · · · ·........... · · · · · i ·

.

. , .

. • .

............. .. .

................

.

......

5.2.2 Twenty-Run Monte Carlo Analyses

For a better performance evaluation of the Markov process linking the helmet

navigator to the aircraft navigator, a 20-sample Monte Carlo analysis was per-

formed, with random initial errors based on the sigmas specified for all state

variables. The "roller coaster" trajectory described in Section 5.1 was used, as

well as the general scan pilot motion trajectory, for a 120 second duration in

simulation time.

The three relative-state Markov process time constants in the Kalman Filter

were varied using 5, 10, 50, and 100 seconds to analyze sensitivity to this

parameter caused by the coupling methodology (see Appendix B for full

results). Since the filter post-processed the simulation data, the same 20-sam-

ple Monte Carlo set was used for each value assigned to the Markov process

time constants. The resulting runs were then analyzed to determine the attitude

error sampled means and standard deviations about each axis as a function of

time. These quantities are plotted adjacent to the filter's calculated standard

deviation (the square root of the diagonal of the P-matrix) for comparison. The

resulting plot for filter Markov time constant oftr = 10 seconds is shown in Fig-

ure 5.3.

107

E[x] & Sigma of attitude error

* ."..Y . .- -. -,.
!·I- · · · · ·:· · · · · / `

0.01

-0.01

0 20 40 60 80 100 120

0.01

-0.01

0 20 40 60 80 100 120

0.01

-0.01

0 20 40 60 80 100 120
time [sec]

0 20 40 60 80 100 120

0 20 40 60 80 100 120

0 20 40 60 80 100
time [sec]

120

Figure 5.3 Monte Carlo Sample Statistics for Filter Markov T = 10 seconds

In addition, the root sum squared (RSS) was calculated from the sample data at

each time step as shown in Equation (5.1):

nn (5.1)
n

which assumes the expected value is zero in its calculation, unlike the standard

deviation (shown in Equation (5.2) for comparison).

108

0.01

0

-0.01

0.01

-0.01

..

....

0.01

0

-0.01

' ' ' ' '

..

........

.... :........ . . . i . .

I
L ...

..........................\"
.:......:......:

Filter P-matrix sigmas

I ; ; ;
r

(5.2)

The RSS shown in Figure 5.4 was also compared to the same attitude error

standard deviation estimated by the Kalman Filter shown in the previous fig-

ure.

RSS of attitude error

T I I " ".I: /

Filter P-matrix sigmas

*

.

...

0.01

0

-0.01

20 40 60 80 100 120

., . . .

20 40 60 80 100 12

...

... -

.f.?.
I . .-

20 40

0.01

0

-0.01

60 80 100 120

20 40 60 80 100 120
time [sec]

0

0.01

(N0
c0.

-0.01

0

20 40 60 80 100 1:20

20 40 60 80 100 120
time [sec]

Figure 5.4 Monte Carlo sample RSS for filter Markov t = 10 seconds

For both the sample statistics and the RSS, the P-matrix standard deviations

create a more tightly bounded envelope for the expected value of the attitude

109

-, 0.01

.M 0
x
I

-0.01

0.01

D) 0

> -0.01

C

0.01

o5 0

-0.01

......i
• . :

• i I , I I I

0

0

error. Since the calculated standard deviation from the P matrix does not match

the Monte Carlo error standard deviation, this discrepancy suggests that the fil-

ter is sub-optimal, so a gain modification scheme may improve the errors and

reduce the discrepancy. The plots for the time constants other than 'I = 10 sec-

onds can be found in Appendix B.

To analyze the trend of the sample standard deviation and RSS versus the time

constant chosen for the Markov process in the post processing Kalman Filter,

their final values (at t = 120 seconds) and maximum values after t = 15 seconds

(the settling time for the system errors) were tabulated and plotted versus the

filter's Markov time constant. The table comparing the sample statistics at t =

120 seconds from both the covariance matrix and the averaged data can be seen

in Table 5.1.

z Quantity Wx [rad] Wy [rad] Wz [rad]

5 final Y of Monte Carlo data 0.0104 0.0039 0.0045

final RSS of Monte Carlo data 0.0102 0.0048 0.0079

mean of Monte Carlo data 0.0001 0.0030 0.0066

mean o of Kalman Filter P 0.0029 0.0004 0.0005

10 final a of Monte Carlo data 0.0097 0.0038 0.0044

final RSS of Monte Carlo data 0.0094 0.0047 0.0078

mean of Monte Carlo data 0.0 0.0029 0.0065

mean a of Kalman Filter P 0.0029 0.0004 0.0005

50 final a of Monte Carlo data 0.0126 0.0038 0.0047

final RSS of Monte Carlo data 0.0122 0.0045 0.0082

mean of Monte Carlo data 0.0003 0.0025 0.0069

Table 5.1 Summarized Sample Statistics Data at tfinal

110

t Quantity Wx [rad] /y [rad] Wz [rad]

average c of Kalman Filter P 0.0028 0.0004 0.0005

100 final cy of Monte Carlo data 0.0141 0.0039 0.0048

final RSS of Monte Carlo data 0.0137 0.0044 0.0085

mean of Monte Carlo data 0.0004 0.0023 0.0071

mean y of Kalman Filter P 0.0027 0.0003 0.0005

Eq. (4.30) final cy of Monte Carlo data 0.0119 0.0033 0.0048

final RSS of Monte Carlo data 0.0117 0.0041 0.0086

mean of Monte Carlo data 0.0015 0.0025 0.0073

mean a of Kalman Filter P 0.0028 0.0004 0.0005

Table 5.1 Summarized Sample Statistics Data at tfinal

From the above tabulated data and the following plot, it is apparent that the

bounding algorithm in Equation(4.30) does not add any additional perfor-

mance over a constant ", and that I:= 10 resulted in the minimal Cy, (the results

plotted in Figure 5.3 and Figure 5.4). A plot of the sample statistics at t = 120

seconds can be seen in Figure 5.5.

Second Order Fit to Attitude Final Error Data

10

Figure 5.5 Final Attitude Sigma vs Markov Time Constant

The trend can clearly be seen to increase as the time constant is increased to 50

and 100 seconds in the Markov Process. Figure 5.6 clearly shows the trend

exists for the maximum sigma after the calculated error settling time (t = 15

seconds):

112

x 10-3

.-
V

E
ca
x

E
o-0
a)

Ca

Second Order Fit to Attitude MAX Error sigma Data

101 102

Figure 5.6 Maximum Attitude Error Sigma after settling vs. Markov Time Constant

The maximum RSS after the attitude error settling time, as the Markov Time

constant varies, can be seen to have a similar trend to the two previous plots as

well in Figure 5.7, although the trend is less pronounced.

Second Order Fit to Attitude Max RSS Data

101 10

Figure 5.7 Maximum RSS of Attitude Error after settling vs. Markov Time Constant

The a priori information and the Markov process provides enough information

for the attitude error to be bounded, thus indicating that a lower-grade IMU

with a stochastically defined relative position to another higher grade IMU can

be configured using relative Markov states in a Kalman Filter to determine atti-

tude (with an appropriate trajectory).

It is apparent from these plots that under the given conditions (pitch over and

pullout maneuver with pilot scanning), it takes 10 to 15 seconds for the attitude

error to be estimated within reasonable limits. The other trials with different

ýFCU

o

.0aU

2

and varying time constants in the relative Markov bounding states confirms this

settling time as well. However, one feature of the data worth noting is the set-

tling time on the y-axis attitude error. As t is increased, the settling time after

10 to 15 seconds to get back into the calculated sigma of the filter is shortened

as shown in Appendix B.

5.3 Bounding Algorithm Performance

Monte Carlo runs were also analyzed using the Markov process bounding algo-

rithm stated in Section 4.4, with t max = 100 and imin = 1. The results are pre-

sented in Figure 5.8 and Figure 5.9.

E[x] & Sigma of attitude error

0 20 40 60 80 100 1

0.01

0 .

-0.01
-0.01

20

20 40 60 80 100 120

0.01

0

-0.01

20 40 60 80 100 120
time [sec]

0

Filter P-matrix sigmas

20 40 60 80 100 120

0 20 40 60 80 100 120

0 20 40 60 80 100 120
time [sec]

0.01

0

-0.01

.....

0.01

0

-0.01

,.

7
I.
S

- - --

•. 9• °\.0.01

0

-0.01

C

...................

20 40 60 80 100 120

. _X -
. -....... : i ..

Figure 5.8 Monte Carlo o Results of Azimuth Accuracy, t varying

RSS of attitude error

:1
0.01

-0.01

0 20 40 60 80 100 120

Filter P-matrix sigmas

......

0 20 40 60 80 100 120

0.01

0

-0.01

0.01

0

-0.01

0.01

u,
0

-0.01

0 20 40 60 80 100 120

0.01
V

N.

0 20 40 60 80 100 120
time [sec]

-0.01

0 20 40 60 80 100 120

20 40 60 80 100 120
time [sec]

Figure 5.9 Monte Carlo RSS Results of Azimuth Accuracy, t varying

Both by comparing the previous two plots with Figure 5.3 and Figure 5.4 and

by examining the tabulated data in Table 5.1, it is evident that the implementa-

tion of Equation (4.30) produces no apparent benefits regarding attitude error

reduction.

116

0.01

0

-0.01

• I I l I

.?

.. • .

\ · · · ~···

. : : •.,•' ' ' .•.'" ''

• • •

• . • •

L :.

Chapter 6.0

Conclusion and Recommendations

6.1 Results

The coupling of the HMIMU to the aircraft IMU via the Kalman Filter

described in Chapter 4.0, which provides position coupling information, has

been shown to be effective after a 10-15 second settling period under poor ini-

tial dynamic conditions, depending on desired accuracy (see previous chapter

for specific results). The goal of the simulation was to show that the same level

of accuracy could be achieved as that of the Honeywell AMTT, which was 4

milliradians pointing accuracy. This system, after the settling period, has

shown repeatable accuracies between 4 and 11 milliradians under the given

testing conditions, which suggests that this technology can eventually be com-

petitive with magnetic trackers or replace them pending additional develop-

ment.

6.2 Future Work

6.2.1 Initial Transient and Error Reduction

Additional work should focus on reducing the initial 10 to 15 second transient

as well as reducing the overall error to obtain acceptable pointing accuracy that

is competitive with other head tracking systems. Possible solutions would be

an algorithm to introduce gain matrix modifications so that the initial transient

could be reduced to less than 5 seconds, by analyzing the aircraft dynamics

117

during system initialization. The goal of this work should be to get the duration

of error transients at system startup as close to other technologies (e.g. sonic,

optical, and magnetic) as possible, to prove that the IMU on the helmet can be

a viable competitor in the vehicle-based head tracker marketplace. Addition-

ally, the dual-IMU setup can be used by a foot soldier, where the other types of

trackers are impractical to use because they rely on equipment mounted to the

surrounding environment (i.e. cockpit or room). A shorter settling time for

pointing accuracy makes the system more versatile for the foot soldier applica-

tion as well.

6.2.2 Filter Reset Feedback

The filter as it exists now has no resets-meaning that the navigator is not cor-

rected by the error estimate of the filter, thus the filter output error can grow

unbounded under certain conditions. Resets prevent this unbounded growth

from occurring and would be desirable to implement in a hardware system.

This implementation would require the MATLAB filter be ported to the C pro-

gramming language and implemented as part of the C-sim simulation.

6.2.3 Sensor Placement and Lever Arm Sensitivity

Additional work on packaging and sensitivity to mounting on a helmet would

be desirable to determine where best to mount the sensors, and whether or not

to use in-plane, normal-to-plane, or a mixture of both types of sensors. The

results of this work should provide a map of best sensor locations on the hel-

118

met for both vehicle and foot soldier applications, based on pointing accuracy

and an error sensitivity study of sensor placement.

6.3 Additional Technology Applications

The following technology areas are suggestions for additional applications of

multiple IMU filters with appropriate a priori knowledge to formulate a similar

filter as to the one developed in this thesis.

6.3.1 Foot soldier HMD and Fire Control System

This type of head tracker would be ideally suited for operation in a non-

enclosed area, such as head tracking of a foot soldier. An IMU could be

mounted within a helmet, with a GPS antenna, and attached to a GPS receiver

and a wearable computer. This would enable the soldier to have an HMD over-

laying targeting, communication, and navigation symbology over his field of

view. When combined with a LASER ranging device (also rigidly mounted to

the helmet) location of targets would be as simple as looking at them. The sol-

dier would have to physically move around to bound azimuth drift as shown by

the Personal Inertial Navigator System (PINS) project at the CSDL. One possi-

ble implementation is shown in Figure 6.1:

119

GPS Antenna

Embedded Monocle
Optics

Laser Ranger

Embedded MEMS
Inertial Sensors

Cable to other
hardware

Figure 6.1 Soldier Helmet with HMIMU Technology Applied to Ground Maneuvers

For a view through the monocle with navigation and targeting symbology, see

Figure 6.2.

120

Figure 6.2 Soldier's Eye View of HMIMU used with HMD for Ground Forces

As the previous two figures suggest, the HMIMU applied to the foot soldier

would be a welcome addition to the information network enhanced battlefield

equipped with precision guided munitions. Soldiers could locate, target and

relay targeting coordinates to precision munitions, which could clear the way

for the foot soldiers with minimal threat to the soldiers themselves, and mini-

mal ammunition use. The targets could be pinpointed within the navigation

coordinates of choice in real time, and could be eliminated or disabled shortly

thereafter.

121

6.3.2 Tether Control

Space Tethers

Tethers for space missions have become thrust into the limelight lately, with

the possibility of generating power and controlling orbital dynamics in unique

and more conservative ways. The tethers' dynamics, however, become quite

complex in the orbital environment, especially when the tethers are quite long

due to the nature of orbital dynamics and planetary magnetic fields. It would be

possible to place small IMUs distributed throughout the tether, to aid in observ-

ability of the modes and other overall dynamics of the tether and adequate con-

trol of the thrusting systems at both ends of the tether.

Helicopter Tethers

Helicopter tethers on autonomous vehicles is a simpler problem than the space

tethers, and is yet another application to which this multiple IMU solution

could be applied. By placing an IMU in the helicopter, and placing an IMU at

the "claw" end of the tether, the helicopter could be controlled to accurately

extend the tether and pick up a tracked object. Such systems could be placed on

autonomous or remotely piloted vehicles to recover items from hazardous envi-

ronments.

6.3.3 Generic Application

Any application where there is an a priori knowledge of dynamic bounds on

additional inertial navigators relative to a main "parent" navigator (which is

updated via another navigation system such as GPS) is appropriate for the

implementation of this filter. This technique will become more feasible and

122

applicable to additional systems as inertial sensors continue to reduce in both

size and cost and as computers increase their computational capacity compared

to their required physical volume. When an entire IMU can fit on a single piece

of silicon and be manufactured as an all-in-one chip is when this technique will

really see its greatest application base blossom due to the availability of less-

expensive components.

For the present time, however, examples such as those states above can be used

as test beds to further develop low-cost multiple-IMU filters with bounded rel-

ative dynamics.

123

References

[1] Axt, W. E. "Head Tracking Accuracy in View of Boresighting and Parallax Com-
pensation." SPIE International Society for Optical Engineering Helmet
Mounted Displays II. Vol. 1290, April 19-20, 1990. pp. 192-203.

[2] Barbour, N. "Inertial Sensor Technology Trends." Draper Technology Digest. Vol.
3, 1999. pp. 5-13.

[3] Britting, K.R. Inertial Navigation Systems Analysis. John Wiley & Sons: New
York, NY, 1971.

[4] Burcham, M. A. "Head-Mounted Display Technology For Use on the Advanced
Concept Technology (ACT) II- Integrated Maintenance & Logistics Sol-
dier System (IMLSS)." SPIE Conference on Helmet and Head-Mounted
Displays III. Vol. 3362, April 13-14, 1998. pp. 276-283.

[5] Chapman, F. W. "The Advent of Helmet-Mounted Devices in the Combat Aircraft
Cockpit." SPIE International Society for Optical Engineering: Helmet
Mounted Displays III. Vol. 1695, April 21-22, 1992. pp. 26-37.

[6] Foxlin, E. "Inertial Head-Tracker Sensor Fusion by a Complimentary Seperate-
Bias Kalman Filter." IEEE Proceedings of the Virtual Reality Annual
International Symposium. March 30-April 3, 1996. pp. 185-194.

[7] Foxlin, E. "Miniature 6-DOF inertial system for tracking HMDs." SPIE Confer-
ence on Helmnet and Head-Mounted Displays III. Vol. 3362, April 13-14,
1998. pp. 214-228.

[8] Gelb, A. Applied Optimal Estimation. M.I.T. Press: Cambridge, MA, 1974.

[9] Gershenfeld, N. The Nature of Mathematical Modeling. Cambridge University
Press: Cambridge, England, 1999.

[10] Kayton, M. "Avionics Navigation Systems." Second Edition. Wiley & Sons, New
York, 1997.

[11] Kim, D., Richards, S. W., and Caudell, T. P. "An Optical Tracker for Augmented
Reality and Wearable Computers." IEEE Proceedings of the Virtual Reality
Annual International Symposium. March 1-5, 1997. pp. 146-150.

[12] Kourepenis, A. "Performance of Small, Low-Cost Rate Sensors for Military and
Commercial Applications." Draper Technology Digest, Vol. 2. 1988. pp.
85-92.

[13] Kranz, Y. "Implementation of Lessons Learned in Design and Evaluation of Dis-
plays for Helmet Mounted Display Systems." SPIE Conference on Helmet
and Head-Mounted Displays III. Vol. 3362, April 13-14, 1998. pp. 156-
163.

[14] Loyd, R. B. "Head-Mounted Display Systems and the Special Operations Sol-
dier." SPIE Conference on Helmet and Head-Mounted Displays III. Vol.
3362, April 13-14, 1998. pp. 244-251.

[15] McKern, R.A.. "A Study of Transformation Algorithms for Use in a Digital Com-
puter." S.M. Thesis, MIT Department of Aeronautics and Astronautics,
1968.

[16] Melzer, J. E. Head Mounted Displays: Designing for the User. McGraw-Hill: New
York, 1997. pp. 147-173.

[17] Proctor, P. "Head Tracker Advances 'Look and Shoot' Tactics." Aviation Week &
Space Technology. June 14, 1999. p. 194.

[18] Osgood, R. K. "JSF Integrated Helmet Audio-Visual System Technology Demon-
stration Results." SPIE International Society for Optical Engineering. Vol.
3058, April 21-27, 1997. pp. 332-334.

[19] Schmidt, G. T. "INS/GPS Technology Trends for Military Systems." Draper Tech-
nology Digest. Vol. 2, 1998. pp. 143-154.

[20] Stevens, Brian L., Lewis, Frank L.. Aircraft Control and Simulation. John Wiley
and Sons: New York, 1992.

[21] Velger, Mordekhai. Helmet Mounted Displays and Sights. Artech House: Boston,
1998.

The measurement matrix for a GPS only measurement is:

gps

The measurement matrix for a relative measurement only is:

-1 0 0 000 0

Hrel 0 o -1 o 000 r0 0

0 0 -1 000 -re2

-re r 100000000cll c 2cl30

S-r 010000000 c2 1 c2 2 c230

re 0 001000000c 3 1 c3 2 3301 31 32 3

0000000000000000000000

0000000000000000000000

0000000000000000000000

The measurement matrix for a combined update is:

Hboth -

-1 0 0 000 0 -r re 13 2 00000000c11 c12 c30000013000000000000000000 0

0 -1 0 000 re 0 -rO 10000000c 21 c22 23000000000000000000000000
3 1 c32 c33000000000000000000000000

0 0 -1000-re re 0 001000000 3 C 3 3 000000000000000000000000

O1

(A.1)

(A.2)

00

00

00

00

00

00 (A.3)

Note that in equations (A.2) and (A.3), r; represents the j-th component of the

lever arm from the T-38 center of gravity to the three-dimensional stochastic

mean of the bounding manifold, coordinatized in ECEF coordinates. Also note

that c1i are the elements of the direction cosine matrix from the body frame to

the ECEF frame.

128

Appendix B

Additional Monte Carlo Plots

The plots for the other chosen non-varying time constants are as follows:

E[x] & Sigma of attitude error

• 1 :" A,

,-.......-. •. . .

• 1. ..."".• " , -" --"-

0 20 40 60 80 100 120

0.01

0

-0.01

S.

0 20 40 60 80 100 120

0.01

-0.01

0 20 40 60 80 100 120
time [sec]

Filter P-matrix sigmas

0 20 40 60 80 100 120

0 20 40 60 80 100 120

0 20 40 60 80 100 120
time [sec]

Figure B.1: Monte Carlo a Results of Azimuth Accuracy, t = 5

129

0 01

000

-0.01

0.01

-0.01

0.01

-0.01

.-.

.

. i. ..

RSS of attitude error

' i .. .ii¢:. ' '..

.. . .. •.

I

...

Filter P-matrix sigmas

0.01

-0.01

0 20 40 60 80 100 120

0.01

0

-0.01

0 20 40 60 80 100 120

0 20 40 60 80 100 120

0 20 40 60 80 100 120

0.01
'-\ .-

N

N

-0.01

0 20 40 60 80 100 120
time [sec]

0 20 40 60 80 100 120
time [sec]

Figure B.2: Monte Carlo RSS Results of Azimuth Accuracy, T = 5

130

0.01

0

-0.01

S1 l.

0

-0.01

A nl

0

-0.01

.

............

.........:i.

....... :.....:··.......'.
I~ ·: · - : · ·: ,

k

· · ·

. ..

Filter P-matrix sigmas

0.01

0

-0.01

0 20 40 60 80 100 120

0.01

-0.01

0 20 40 60 80 100 120

0 20 40 60 80 100 120
time [sec]

0 20 40 60 80 100 120

0 20 40 60 80 100 120

0 20 40 60 80 100 120
time [sec]

Figure B.3: Monte Carlo (y Results of Azimuth Accuracy, r = 50

131

SA-0.0

-0.0

: - .

I -

0.01

-0.01

0.01

0

-0.01

,. I.: i::., . ;
J"

E[x] & Sigma of attitude error

Filter P-matrix sigmas

.. ..
..

..

V

0.01

-0.01

0 20 40 60 80 100 120

0.01
cz

0

-0.01

0 20 40 60 80 100 120

0 20 40 60 80 100 120

0 20 40 60 80 100 120

0.01
.

r.

-0.01

0 20 40 60 80 100 120
time [sec]

0 20 40 60 80 100 120
time [sec]

Figure B.4: Monte Carlo RSS Results of Azimuth Accuracy, t = 50

132

A 4
UV.I

0

A 00

U.U1

0

--U. I

0.01

0

-0.01

• I I I * f'b i - i ;

..............

.................

:

RSS of attitude error

'\~ ' ' ':

~.~·c

. . .

'• .

'. " • ""
-- v.vI

. •

I·r · · · ·

: "
rr nr

.....
I

. . .• :......

·

,·

.......

E[x] & Sigma of attitude error

"

... --

Filter P-matrix sigmas

0.01

-0.01

0 20 40 60 80 100 120

0.01

0

-0.01

0 20 40 60 80 100 120

0 20 40 60 80 100 120
time [sec]

0 20 40 60 80 100 120

0 20 40 60 80 100 120

0 20 40 60 80 100 120
time [sec]

Figure B.5: Monte Carlo cy Results of Azimuth Accuracy, z = 100

133

U.U1 I

0

An Al

S0.01

.Q 0x

>ý-0.01

0.01

-0.01

.......................

.................

....

I.

..

.. . .

.! .

rr rr~

-- vovI

· ·

- ,

- r. .: : ;.

RSS of attitude error

I......... .. /I

..... :...

\•~·.

Filter P-matrix sigmas

.......
0.01

0

-0.01

0 20 40 60 80 100 120 0 20 40 60 80 100 120

0.01
co

S

-0.01

0 20 40 60 80 100 120 0 20 40 60 80 100 120

0.01..................-

0

-0.01

0 20 40 60 80 100 120
time [sec]

0 20 40 60 80 100 120
time [sec]

Figure B.6: Monte Carlo RSS Results of Azimuth Accuracy, t = 100

134

0.01

0

A0 A

V .UI

-0

-0 0

>' -0.01

. * "

:..

0.01

-0.01

• I I I I I I

...::--:

I | I l i l p

-- v.vI
E

....

. • .

.
n h~

E

• . .· ·

..

· ·

: · · · · · · I ·

.

Appendix C

Acronyms
AMTT ... Advanced Metal Tolerant Tracker

A oA A ngle of A ttack

ASIC ... Application Specific Integrated Circuit

CCD ... Charged Coupled D evice

C L C oefficient of L ift

CD .. Coefficient of Drag
CMATD........................... Competent Munitions Advanced Tactical Demonstrator

CPU Central Processing U nit
CSDL Charles Stark Draper Laboratory
DCM ... D irection Cosine M atrix

D oF D egrees of Freedom

ECEF.................................... Earth Centered Earth Fixed

EGI ... Embedded GPS/INS

EM Electro M agnetic

GNC .. Guidance Navigation & Control

GPS Global Position System
HM CS Head M ounted Cueing System
HM D Head M ounted Display
HM IM U Head M ounted Inertial M easurement Unit

HOT Higher Order Terms

H TC H ead Tracking Com puter
H U D H eads U p D isplay
IC B M ... Inter C ontinental B allistic M issile

IHMCS .. Inertial Head Mounted Cueing System
IM U .. Inertial M easurem ent U nit

IM S Inertial M easurement System
INS Inertial Navigation System
JHM CS ... Joint Helm et M ounted Cueing System
LE D L ight E m itting D iode

LORAN .. LOng RAnge Navigation System
L O S L ine of S ight
M AV ... M icro Air Vehicle

MEMS .. Micro ElectroMechanical System
MMISA .. MicroMechanical Inertial Sensor Array
PPS Precise Positioning Service

RA F... U nited K ingdom Royal A ir Force

RF......................... Radio Frequency
RLG Ring Laser Gyro
RPM Revolutions Per M inute

SG I Silicon G raphics Inc.

TOPART............................... TOmahawk Precision Accurate Rapid Targeting
V R V irtual R eality
V SI V ision System s International

135

136

Appendix D

Pilot Model Code

The following code simulates a stick-figure pilot torso and head moving in a

seated position.

137

138

/*-------------------------------------*

** pilot.h ** *
* Author: E. Bailey
* Contents: + prototypes of pilot.c *
-------------------------------------/

/* prototypes for use in other files */
void pilot_dynamics(void);
void pilot_stick_inputs(void);
void pilot2axes(void);

/* ------------------------------------- *

* ** pilot.c ** *
* Author: E. Bailey *
* Contents: + pilot torso & head *
* modelling *

#include
#include
#include
#include
#include

"pilotmodel_ref.h'
"axes_ref.h"
"torso.h"
"head.h"
"pilot.h"

/* Copy Position and Orientation Data to Graphics Variables */
void pilot2axes(void)
{
struct
struct
struct
struct

torso_ref *torso-ptr = &torso;
head_ref *head-ptr = &head;
axes_ref *ax = &axes;
the_axes_ref *t_ax = &theaxes;

t_ax->torso_psi = torso_ptr->twist;
t_ax->torsotheta = torso_ptr->forw_lean;
t_ax->torsophi = torsoptr->side_lean;

t_ax->hd_relphi = head_ptr->lean;
t_ax->hd_rel_theta = head_ptr->nod;
t_ax->hd_rel_psi = headptr->turn;

t_ax->headphi = t_ax->torso_phi 4 t_ax->hd_rel_phi;
t_ax->head_theta = t_ax->torsotheta + tax->hd_rel_theta;
t_ax->headpsi = t_ax->torso_psi + t_ax->hdrelpsi;

/* Convert Stick Movements to Head and Torso Angles */
void pilot_stick_inputs(void)

torso_orientation();
head_orientation();

/* Calculate Orientation and Position truth quantities */
void pilotdynamics(void)

torso_quaternion();
torso_DCM();
torso_pqr();

head_quaternion();
headDCM() ;
headpqr();
mckernw();
headposition();
headvelocity();
head acceleration();

/* Function Prototypes in torso.c */
void torso_orientation(void);
void torso_quaternion(void);
void torso_DCM(void);
void torso pqr(void);

/* -------------------------------------

** torso.c **
" Author: E. Bailey
" Contents: + pilot torso & head *

modelling *

#include <math.h>
#include "simio.h"
#include "sim ref.h"
#include "bghardware_ref.h'
#include "pilotmodel_ref.h"

#define DEG2RAD 3.14159265359/180.0
#define RAD2DEG 180.0/3.14159265359

* Static Function: LaGrange 3-Point Differentiation

* static double threept_lagrangediff(double *var hist, double dt)

* This function implements the LaGrange 3-point Differentiation as *
* found in Kreyszig's "Advanced Engineering Mathematics', p. 790 *
* with an added twist: the three derivatives at the three previous
* function values are averaged (summed and the result devided by 3) *
**

static double threeptlagrange_diff(double *var_hist, double dt)

double LaGrange[3];
double average;
int i;

/* Calculate the three z-axis rotation rates */
LaGrange[0] = (-3.0 * var_hist[0] + 4.0 * var-hist(l] - var_hist[2])/(2.0 * dt);
LaGrangell] = (-var_hist[0] + var_hist[2])/(2.0 * dt);
LaGrange[2] = (var_hist(0] - 4.0 * var_hist[l] + 3.0 * var_hist[2])/(2.0 * dt);

/* Average the three z-axis rotation rates */
average = 0.0;
for(i = 0; i<3; i++)
average += LaGrange[i]/3.0;

return average;

static void pqrquat_calc(double *ql, double *q2, double *pqr_prod)
(
double q_skew_matrix[3][4];

int i,j;

q_skew_matrix[l] 1[3] = -ql[l];
qskewmatrix[2] [0] = q1[3];
qskew_matrix[2 [1] = -q1[2];
qskew_matrix[2] [2] = q1[1];
q_skew_matrix[2] [3] = q1[0];

for(i = 0; i<3; i++)(
pqrprod[i] = 0.0;
for(j = 0; j<4; j++)

pqr_prodli] += qskewmatrix[i] [j] * q2[j];
pqrprod[i] = -2.0 * pqr_prod[i];)

static void quat_inv(double *q, double *q_inv)

int i;int i ;

* This function takes analog joystick values (in 3-axes) which range *
* from -1.0 to 1.0 and scales them via a gain to a suitable range of *
* motion for a pilot torso.

void torso orientation(void)
{
struct torso_ref *torsoptr = &torso;

/* Torso Axis control via left hand controller */
torso_ptr->twist = Filter. ltwsavg * 50.0;

if (Filter.l_1lon_avg > 0)
torso_ptr->forw_lean = Filter.l_lon_avg * -90.0;

else
torsoptr->forw_lean = 0.0;

for(i = 0; i<4; i++)
if(i == 0)

q_inv[i] = q[i];
else

q_inv[i] = -q[i)];

static double euler_diff(double var, double var_delayed, double dt)
(
double diffed-val;

diffedval = (var - var delayed)/dt;

return diffed val;

* ******* ****************** ***

Function: Generate Torso Euler Angles from Analog Joystick *

void torsoorientation()

qskew matrix[0]
qskew_matrix[0]
q_skew_matrix[0]
qskew matrix[0]
q_skew_matrix[1]
q_skew_matrix[l]
qskew_matrix[1]

q1 [1) ;ql~l];
q1l0];
-ql[3];
q1[2];
q1[2];
q1[3];
ql[0];

torso_ptr->q_t_b[i] = torso ptr->q_t_b[i) / quat_norm;

* Function: Generate Torso Quaternion relative to Aircraft Body

* void torso_quaternion(void)

* This function generates the torso quaternion relative to the AC
* body, given the Euler Angles of the torso are already calculated
* for the given pass. The equations used are from Stevens and Lewis,*
* "Aircraft Simulation and Control", p. 41. This function also
* ensures that the quaternion 2-norm = 1.0.
***/*

void torso_quaternion(void)

struct torso_ref *torsoptr = &torso;
struct sim_ref *sim_dir = ∼

int i,j;
double quat_norm = 1.0;

for(i = 0; i<4; i++)
torso_ptr->q_t_b_delay[i) = torsoptr->qtt_b[i];

torso ptr->qt_b[0] = (cos(torsoptr->side_lean
cos(torsoptr->forw_lean * DEG2RAD/2.0) *
cos(torsoptr->twist * DEG2RAD/2.0) +
sin(torsoptr->side_lean * DEG2RAD/2.0) *
sin(torsoptr->forw_lean * DEG2RAD/2.0) *
sin(torso_ptr->twist * DEG2RAD/2.0));

torso_ptr->cqt_b[l] = (sin(torsoptr->sidelean
cos(torso_ptr->forw_lean * DEG2RAD/2.0) *
cos(torsoptr->twist * DEG2RAD/2.0) -
cos(torso_ptr->side_lean * DEG2RAD/2.0) *
sin(torso_ptr->forwlean * DEG2RAD/2.0) *
sin(torsoptr->twist * DEG2RAD/2.0));

torso_ptr->cL_t_b[2] = (cos(torso_ptr->side_lean
sin(torsoptr->forw_lean * DEG2RAD/2.0) *
cos(torso-ptr->twist * DEG2RAD/2.0) +
sin(torso-ptr->side_lean * DEG2RAD/2.0) *
cos(torsoptr->forwlean * DEG2RAD/2.0) *
sin(torso_ptr->twist * DEG2RAD/2.0));

torsoptr->qctb[3] = (cos(torsoptr->side_lean
cos(torso_ptr->forw_lean * DEG2RAD/2.0) *
sin(torso_ptr->twist * DEG2RAD/2.0) -
sin(torsoptr->side_lean * DEG2RAD/2.0)
sin(torsoptr->forw_lean * DEG2RAD/2.0) *
cos(torsoptr->twist * DEG2RAD/2.0));

* DEG2RAD /2.0) *

* DEG2RAD/2.0) *

* DEG2RAD/2.0) *

* DEG2RAD/2.0)

/* Ensure that the 2-norm of the quaternion is 1.0 */
quatnorm = sqrt(torsotr->cLt_b[0] * torsoptr->qt_b[l0] +

torso_ptr-->qt_b[l) * torsoptr->gqt_b[l] +
torso_ptr->qt_b[2] * torsoptr->qt_b(2] +
torso ptr->qt_b[3[* torsoptr->ct_b[31);

if (quat_norm != 0.0) /* avoid floating point exception */
for (i = 0; i < 4; i++)

/*** *

* Function: Generate Torso/Body Direction Cosine Matrices

* void torso_DCM(void)

* THis function generates the Torso->Body DCM (c_tb) from the
* equations found in Stevens and Lewis, "Aircraft Simulation and
* Control', p. 41. It then transposes that matrix to form its
* inverse (a property of DCMs) which translates from Body->Torso
* (c_bt).
**/

void torso_DCM(void)

struct torso_ref *torso_ptr = &torso;
struct simref *sim_dir = ∼

int i,j;
double q_t b_avg[4];
double q_mag;

for(i = 0; i<4; i++)
qt_b_avg[il = (torsoptr->q_tb[i] + torsoptr->q_t b_delay[i])*0.5;

qmag = sqrt(qtbavg[0]*q_t_b_avg[0] + q_tb_avg[l]*qt_b_avg[l] +
t_b_-avg[21]*q-tb_avg[2] + qtb_avg[3]*q_t_b_avg[3]);

if (qLmag != 0.0)
for(i = 0; i<4; i++)
Cqt_b_avg[il = qt_b_avg[i] / q_mag;

torsoptr->c_t_b[0] [0] = _t_b_avg[01 * qct_b_avg[0] +
qt_b_avg[l] * qt_b_.avg[l] -
q_tb_avg[2] * gt_b_avg[2] -
qt_b_avg[3] * ct_b_avg[3];

torso_ptr->c_t_b[O] [1] = 2.0 * (qt_b_avg[l] * _t_b_avg[2]
q_t b_avg[0] * Ct_b avg[3]);

torso_ptr->c_t_b[0] [2] = 2.0 * (qt_b_avg[l] * q_tb_avg[3]
qt b_avg[0] * qtb_avg[2]);

torsoptr->c_t_b[l] [0] = 2.0 * (q_t_b_avg[l] * qt b_avg[2]
cqtb_avg[0] * q_t_b_avg[3]);

torso_ptr->c_t_b[l] [1] = q_t_b_avg[0] * qtbavg[0O -
q_t_b_avg[l] * q_t_b_avg[l] +
q_t_bavg[2] * q_t_b_avg[2] -
cL_t_bavg[3] * q_t_b_avg[3];

torso_ptr->c_t_b[l] [2] = 2.0 * (q_t_b_avg[2] * qt_b_avg[3]
q_t b_avg [0] * q_t_b_avg[ll);

torso_ptr->c_tb[2] [01 = 2.0 * (qt_b_avg[l] * qt b_avg[3] +
qt b_avg[01 * q_t_b_avg[2]);

torsotr->side_lean = Filter.l_lat avg * 45.0;

torso_ptr->c_t_b[2] [1] = 2.0 * (qt_b avg[2] * q_t_b_avg[3] -
q_t_b_avg [0] * qtb_avg [1]);

torso_ptr->c_t_b[2] [2] = q_t_b avg[0] * qt_bavg[0] -
q_t_b_avg[* qt_b_avg [1] -
q_t_b_avg[2] * q_t_b_avg[2] +
qt_bavg [31 * qtb_avg [3] ;

/* Calculate the DCM's Inverse/Transpose */

for(i=0; i<3; i++)
for(j=0; j<3; j++)

torso_ptr->c_b_t_delay[i] [j] = torso_ptr->c_b t[i] [j];

for (i = 0; i <3 ; i++)
for(j = 0; j < 3; j++)

torso_ptr->c_b_t[i] [j] = torso_ptr->c_t b[j] [i];

/***

* Function: Calculates -the torso rotation rate vector (P,Q,R)
-the torso rotation acceleration vector
-OMEGA and OMEGAdot skew-symmetric matrices *

• void torsopqr(void)

" This function calculates the rotation rate by differentiating the
* quaternion, then multiplying that derivative times the current
* quaternion's inverse and a factor of 2. The last three elements
* of the resulting 4-element vector are P, Q, and R, the rotation
* rates about the torso x, y, and z axes, respectively, relative to
* the body frame, expressed in the torso frame.

* The torso PQR is then differentiated using the LaGrange 3-point
* method to get Pdot, Qdot, and Rdot.
" (P, Q, R) and (Pdot, Qdot, and Rdot) are then used to form the two
* skew-symmetric cross-product matrices, OMEGA and OMEGAdot,
" respectively.

void torsopqr(void)

struct torsoref *torsoptr = &torso;
struct sim_ref *simdir = ∼

double q_inv[4];
double qmag;
double qavg[4];
double pqr[3];

int i,j;

for(i = 0; i < 4; i++)(
torso_ptr->q_dot[i] = euler_diff(torso_ptr->q_tb[i] , torso ptr-

>qt_b_delayi]l, sim_dir->dt);

q_avg[i] = (torso ptr->q_t_b[i] + torso_ptr->q_t_b_delay[i])/2.0;

q_mag = sqrt(q_avg[O] * qavg[0] + q_avg[l] * q_avg[l] + q_avg[2] * qavg[2] +
q_avg[3] * qavg[3]);

if(qmag != 0.0)
for(i = 0; i < 4; i++)

q_avg[i] = q_avg[i] / q_mag;

quat_inv(q_avg, q_inv);

pqr_quat_calc(torsoptr->Q_dot, q_inv, pqr);

torsoptr->p_torso = pqr[0];
torso_ptr->qtorso = pqr[l];
torso_ptr->r_torso = pqr[2];

torsoptr->wbt_t[0] = torso_ptr->p_torso;
torso_ptr->w_bt_t[l] = torso_ptr->q_torso;
torso-ptr->w_bt_t [2] = torso_ptr->r_torso;

/* set delay variables for this differentiation pass */
for(i = 0; i < 3; i++)

if(i < 2)

torso_ptr->p_torso-delay[i] = torso ptr->ptorsodelay[i + 1];
torsoptr->q torsodelay[i] = torsoptr->qtorsodelay[i + 1];
torso ptr->r_torsodelay[i] = torsoptr->r_torsodelay[i + 1];

else if (i == 2)

torso ptr->ptorso_delay[i] = torsoptr->ptorso;
torso_ptr->qLtorsodelay[i] = torso_ptr->q torso;
torsoptr->r_torso_delay[i] = torso_ptr->r_torso;

/* calculate derivatives using Lagrange 3-point method, averaging the three
derivs.*/

torso_ptr->pdottorso = threept_lagrange_diff(torso_ptr->p_torsodelay,
sim_dir->dt);
torso_ptr->qdot_torso = threept_lagrangediff(torso_ptr->q_torso_delay,

sim_dir->dt);
torsoptr->rdottorso = threept_lagrange_diff(torso_ptr->r_torsodelay,

sim_dir->dt);

torso_ptr->wd_bt_t[0] = torso_ptr->pdot_torso;
torso-ptr->wd_bt_t l] = torso_ptr->qdottorso;
torso_ptr->wd_bt t[2] = torso_ptr->rdot_torso;

/* Form Skew-Symmetric Rotation Matrices */
torso_ptr->OMEGA_bt_t[0]1[l] = -torso_ptr->rtorso ;
torso_ptr->OMEGA_bt_t[0] [2] = torso_ptr->qtorso;
torsoptr->OMEGAbtt[l] [2] = -torsoptr->p torso;

for(i = 0; i<3; i++)
for(j = 0; j<3; j++)

if(i == j)
torso_ptr->OMEGAbt_t[i] [j]

=
0.0;

else if(i > j)

torsoptr->OMEGA_bt_t[i][j] = -torsoptr->OMEGA_btt[j][i];

torsoptr->OMEGAdotbtt[0] (1] -torso)tr->rdot-torso;
torsoptr->OMEGAdot_btt[0[(2] = torsoptr->qdot_torso;
torsoptr->OMEGAdotbt_t[1 [2] = -torsoptr->pdot_torso;

for(i = 0; i<3; i++)
for(j = 0; j<3; j++)

if(i == j)
torsoptr->OMEGAdot_bt_t[i][j] = 0.0;

else if(i > j)
torsoptr->OMEGAdot_bt_t[i] [j] = -torsoptr->OMEGAdot_btt[j] [i];

)

/* Function Prototypes in head.c */

void
void
void
void
void
void
void
void
void

head_orientation(void);
head_quaternion(void);
head_DCM(void);
headpqr(void);
headw_xform_h2b(void);
mckern_w(void);
headposition(void);
head_velocity(void);
head_acceleration(void);

/* ------------------------------------- *

** head.c ** *

* Author: E. Bailey *
* Contents: + pilot torso & head *

modelling *
----------------------------------- */

#include
#include
#include
#include
#include
#include
#include

<math.h>
"simio.h"
"sim ref.h"
"quaternion algebra.h"
"v_state_ref.h"
"bg_hardware_ref.h"
"pilotmodelref.h'

#define DEG2RAD 3.14159265359/180.0
#define RAD2DEG 180.0/3.14159265359
#define EARTHRATE 0.0000727220521663

/***

* Static Function: LaGrange 3-Point Differentiation

* static double threept_lagrange_diff(double *var_hist, double dt)

* This function implements the LaGrange 3-point Differentiation as
* found in Kreyszig's "Advanced Engineering Mathematics", p. 790
* with an added twist: the three derivatives at the three previous

* function values are averaged (summed and the result devided by 3) *
******* ************** **

static double threept_lagrange_diff(double *varhist, double dt)

double LaGrange[3];
double average;
int i;

/* Calculate the three z-axis rotation rates */
LaGrange[0] = (-3.0 * var_hist[0] + 4.0 * varhist[l] - var_hist[2])/(2.0 * dt);

LaGrange[l] = (-var_hist[0] + varhist[2])/(2.0 * dt);
LaGrange[2] = (var hist[0] - 4.0 * varhist[l] + 3.0 * var_hist[2])/(2.0 * dt);

/* Average the three z-axis rotation rates */
average = 0.0;
for(i = 0; i<3; i++)
average += LaGrange[i]/3.0;

return average;

static void pqr_quatcalc(double *ql, double *q2, double *pqrprod)

double qc_skewmatrix[3] [4];

int i,j;

qskew_matrix[0] [0] = ql[l];
qskewmatrix[0] [1] = ql[0];
q_skew_matrix[0] [2] = -ql[3];
qskew_matrix[0][3] = ql[2];

qskewmatrix[l]
q_skewmatrix[1]
q_skewmatrix[1]
q_skew matrix[l]
q_skew matrix[2]
q_skewmatrix[2]
qcskew matrix[2]
q_skew matrix[2]

ql [2];
ql[3];
ql [0];
-ql [1] ;
ql[3];
-ql [2];
ql [1] ;
ql [0];

for(i = 0; i<3; i++)
(
pqr_prod[i] = 0.0;
for(j = 0; j<4; j++)

pqrprod[i] += qskew_matrix[i][j] * q2[j];
pqr_prod[i] = -2.0 * asin(pqr prod[i]*sim.dt)/sim.dt;

static void quat_inv(double *q, double *q_inv)

int i;

for(i = 0; i<4; i++)
if(i == 0)
q_inv[i] = q[i];

else
qinv[i] = -q[i];

static double euler_diff(double var, double var_delayed, double dt)

double diffed val;

diffed_val = (var - var_delayed)/dt;

return diffedval;

/************************* ************************************** ***

* Function: Generate Head Euler Angles from Analog Joystick

* void headorientation()

* This function takes analog joystick values (in 3-axes) which range *
* from -1.0 to 1.0 and scales them via a gain to a suitable range of *
• motion for a pilot head.

void head_orientation(void)

struct head ref *head_ptr = &head;

/* Head Axis control via right hand controller */

head_ptr->lean = Filter.r_latavg * 40.0;

if (Filter.r_lonavg > 0) (

head_ptr->nod = Filter.r_lon_avg * -45.0;

else if (Filter.r_lonavg < 0) (
head_ptr->nod = (Filter.r_lon_avg) * -80.0;

else (
headptr->nod = 0.0;

head-ptr->turn = Filter.r_twsavg * 85.0;

/**

* Function: Generate Head Quaternion relative to Torso & AC Body *

* void head_quaternion(void)

* This function generates the head quaternion relative to both the
* torso and the AC body, given the Euler Angles of the torso are
* already calculated for the given pass. The equations used are *
* from Stevens and Lewis, "Aircraft Simulation and Control', p. 41. *
* This function also ensures that the quaternions' 2-norm = 1.0. *
******************** ** /

void head_quaternion(void)

struct head_ref *head_ptr = &head;
struct torso_ref *torso_ptr = &torso;
struct sim_ref *simdir = ∼
struct cmat_ref *dcms = &cmat;

int i,j;
double quat_norm = 1.0;
double tempq[4];

for(i = 0; i<4; i++)
head_ptr->q_htdelayli] = head_ptr->qh_t[i];

head_ptr->qh-t[0] = (cos(headptr->lean
cos(head-ptr->nod * DEG2RAD/2.0) *
cos(headptr->turn * DEG2RAD/2.0) +
sin(head-ptr->lean * DEG2RAD/2.0) *
sin(headptr->nod * DEG2RAD/2.0) *
sin(headptr->turn * DEG2RAD/2.0));

head_ptr->qh_t[l] = (sin(head_ptr->lean
cos(headptr->nod * DEG2RAD/2.0) *
cos(headptr->turn * DEG2RAD/2.0) -
cos(head-ptr->lean * DEG2RAD/2.0) *
sin(headptr->nod * DEG2RAD/2.0) *
sin(headptr->turn * DEG2RAD/2.0));

head_ptr->q_h_t[2] = (cos(headptr->lean
sin(headptr->nod * DEG2RAD/2.0) *
cos(headptr->turn * DEG2RAD/2.0) +
sin(head_ptr->lean * DEG2RAD/2.0)
cos(headptr->nod * DEG2RAD/2.0) *
sin(head-ptr->turn * DEG2RAD/2.0));

head_ptr->qhht[3] = (cos(head-ptr->lean
cos(headptr->nod * DEG2RAD/2.0) *
sin(headptr->turn * DEG2RAD/2.0)

* DEG2RAD /2.0) *

* DEG2RAD/2.0) *

* DEG2RAD/2.0) *

* DEG2RAD/2.0) *

sin(head_ptr->lean * DEG2RAD/2.0)
sin(head_ptr->nod * DEG2RAD/2.0) *
cos(headptr->turn * DEG2RAD/2.0));

/* re-normalize quaternion */

quatnorm = sqrt(head-ptr->qht[0] * headptr->qh_t[0]
head_ptr->q_ht[l] * headptr->qh_t[l] +
head-ptr->qht[2] * head_ptr->q_h.t[2] +
headptr->qc_h_t[3] * headptr->q_h_t[3]);

if (quatnorm != 1.0 && quat_norm != 0.0) /* avoid floating point exception */
for (i = 0; i < 4; i++)
headptr->qht[i] = head_ptr->qh_t(i] / quat_norm;

for(i = 0; i<4; i++)
headptr->q_h_edelay[i] = head_ptr->q_he[i];

quatmult(temp_q, torsoptr->qtb, dcms->q_b_e);
quat_mult(headptr->q_h_e, headptr->q_h_t, temp_q);

/* Calc Head DCM components from Quaternions */

void head_DCM(void)

struct head_ref *headptr = &head;
struct torso_ref *torsoptr = &torso;
struct cmat_ref *T38dcms = &cmat;
struct sim_ref *sim_dir = ∼

double *temp-ptr;

double qh_tavg[4];
double q_mag;

int i,j,k;

for(i = 0; i<4; i++)
q_h_t_avg[i] = (head_ptr->q_h_t[i] + headptr->qht_delay[il)*0.5;

q_mag = sqrt(q_h_t_avg[0]*q_h_t_avg[0] + q._h_t_avg[l]*q_h_t_avg[l] +
q_h_tavg[2]*q_h_t_avg[2] + q_h_t_avg[3]*q_h_t-avg[3]);

if (qmag != 0.0)
for(i = 0; i<4; i++)
q_h_t avg[i] = q h-t_avg[i] / q_mag;

* Head to Torso DCM *

head-ptr->c_ht[0][0] = q_h_t_avg[0] * qh_t_avg[0] +
q_h_t_avg[1] * q_h_t_avg[l] -
q_ht_avg[2] * q_h_t_avg[2] -
q_h_t_avg[3] * q_h_t_avg[3];

head_ptr->c_h_t[0][1] = 2.0 * (q_h_t_avg[l] * qh_t_avg[2] +
q_h_t_avg[0] * q_h_t_avg[3]);

head_ptr->c_h_t[0] (2] = 2.0 * (q_h_t_avg[l] * h_t_avg[3] -
q_h t_avg[0] * qch_t_avg[2]);

head_ptr->c_h_t[l] (0] = 2.0 * (qL_h_t_avg[l] * th_t_avg2] -
q_h_t avg[0] * q_h_t_avg[3]);

head_ptr->ch_t[l][l1] = q_h_t_avg[0] * q_ht_avg[0] -
qh_t_avg [l * qh_t_avg [1] +
qh_t_avg(2] * qh_tavg[2] -
qh_t_avg[3] * qh_t_avg[3);

head_ptr->c_h_t[l] (2] = 2.0 * (qh_t avg[2] * q.h_t_avg[3]
q_h_t_avg[O] * qh_t_avg[l]);

headptr->ch_t[2] [0] = 2.0 * (q_h_t_avg[l] * qht_avg[31
q_h_t_avg[0] * qh_t_avg[2]);

headptr->c_h_t[2] [1] = 2.0 * (qh_tavg[2] * q_h_t_avg[3] -
q_h_t_avg[O] * qht_avgl]);

headptr->cht[2] [2] = q_h_t_avg[0] * qh_t_avg[0] -
q_h_t_avg [1] * q_h_t-avg[l] -
qh_t avg[2] * q_h_tavg[2] +
cL_h_t_avg[3] * q_htavg[3];

/* Calculate the DCM's Inverse/Transpose */

for (i = 0; i <3 ; i++)
for(j = 0; j < 3; j++)
headptr->c_t_h[il[j] = head_ptr->c_h_t[j] [i;

Head to Body DCM *

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

I
headptr->c_h_b[i][j] = 0.0;
for (k = 0; k < 3; k++)
headptr->c_h_b(il[j] += torsoptr->c_t_b[i][k] * head_ptr->cht[k][j];

/* Calculate the DCM's Inverse/Transpose */

for (i = 0; i <3 ; i++)
for(j = 0; j < 3; j++)
head_ptr->c_b_h[i] [jl = head_ptr->c_h_b[j] (i];

Head to ECEF *
for = 0; i < 3; i++)/

for (i = 0; i < 3; i++)

for (j = 0; j < 3; j++)

head_ptr->ch_e[i][j] = 0.0;
for (k = 0; k < 3; k++)
headptr->ch_e[i][j] += T38dcms->cbb_e[i][k] * head_ptr->c_h_b[k] [j];

for (i = 0; i <3 ; i++)
for(j = 0; j < 3; j++)
head_ptr->ceh[i][j] =

/* Calculate Head PQR angular rates and OMEGA matrices */

void headpqr(void)

struct head_ref *head_ptr = &head;
struct torso_ref *torsoptr = &torso;
struct simref *sim_dir = ∼

double
double
double
double
double
double

q_inv[4];
q_avg[4];
q_mag;
q_dot[4];
pqr[3];
tempvctr[3];

int i,j;

/* HEAD -> TORSO ANGLE DYNAMICS */

for(i = 0; i < 4; i++)(
qdot[i] = euler-diff(headptr->qh_t[i], head_ptr->q_h_tdelayli], sim_dir-

>dt);
q_avg[i] = (head ptr->q_h_t[i] + headptr->q_h_t_delay[i])/2.0;

)

qmag = sqrt(q_avg([0 * q_avg(0] +
qavg[3] * qavg[3]);

qavg[l] * q_avg[l] + q_avg(2] * q_avg[2] +

if(qmag != 0.0)
for(i = 0; i < 4; i++)

qavg[i] = qavg[i] / qmag;

quat_inv(qavg, q inv);

pqr quatcalc(qdot, qinv, pqr);

for(i = 0; i < 3; i++)

head-ptr->wth_hfi) = pqrli];

/* set delay variables for this pass
for(i = 0; i<3; i++)

for(j = 0; j<3; j++)
if (j < 2)

headptr->c_h_e[j] [i];

head_ptr->w_th_h_delay[i] [j] = head_ptr->w_thh_delay[i] [j+l];
else if (j == 2)

headptr->w_th_h_delayi] [j] = head_ptr->wth_h[i];

for(i = 0; i<3; i++)
headptr->wd-th-h[i] = three_pt_lagrange_diff (head_ptr->wthh_delay[i],

sim_dir->dt);

head_ptr->OMEGA_th_h[0] [l]
headptr->OMEGAth_h[0][2]
headptr->OMEGAth_h[l] [2]

for(i = 0; i<3; i++)
for(j = 0; j<3; j++){

if(i == j)
headptr->OMEGAth_h[i] [j] =

else if(i > j)
headptr->OMEGA_th_h[i] [] =

= -head_ptr->wthh[2];
= headptr->w_thh[11];
= -head_ptr->wthh[0];

0.0;

-head_ptr->OMEGA_th_h[jl [i];

/* HEAD -> BODY ANGLE DYNAMICS */

/* Calculate total angular rate between head and body in
torso w) */

for(i = 0; i < 3; i++)
headptr->w_bh_h[i] = head_ptr->w_th_h[i];
for(j = 0; j < 3; j++)
head_ptr->wbbh_h[i] += headptr->c_t_h[i][j] ' torso

/* Calculate w_th_t for calculation of wd_bhh */

for(i = 0; i<3; i++)(
headptr->w_th_t[i] = 0.0;
for(j = 0; j<3; j++)
headptr->w_tht[i] += headptr->c_h_t[i] [j] *

head_ptr->OMEGA-tht[0] [1]
head_ptr->OMEGA_tht[0] [2]
head_ptr->OMEGAtht [l] [2]

for(i = 0; i<3; i++)
for(j = 0; j<3; j++){

if(i == j)
headptr->OMEGAth_t[i][j] =

else if(i > j)
head_ptr->OMEGA_th_t[i][j] =

head frame (including

ptr->w_bttljl;

headptr->w th_h [jl;

= -head_ptr->w_th_t[2];
= headptr->wtht[l];
= -head_ptr->w th_t[0];

0.0;

-head_ptr->OMEGA_th_t[j] i];

for(i = 0; i<3; i++)(
tempvctr[i] = 0.0;
for(j = 0; j<3; j++)
tempvctr[i] += headptr->OMEGA-th_t[i][j] * torso_ptr->wbtt[j];

struct headref *hd = &head;

double
double
double
double
double
double
double

q_inv[4];
qh_i [4];
q_e_i[4];
delta;
dt = sim.dt;
dt_inv;
mag;

int i, j;

dtinv = l.0/dt;

delta = EARTHRATE * sim.t;

qe_i[0] = cos(delta/2);
Qoe_i[l] = 0.0;
qei[2] = 0.0;

for(i = 0; i < 3; i++) (
head_ptr->wdbh_h[i] = head_ptr->wdth_h[i];
for(j = 0; j < 3; j++)
head_ptr->wd_bh_h[i] += head_ptr->c_t_h[i] [j] * (temp_vctr[j] + torsoptr-

>wd_bt_t[jl);

for(i = 0; i < 3; i++)
head_ptr->wd_bh_b[i] = 0.0;
for(j = 0; j < 3; j++)
head_ptr->wd_bh_b[i] += head_ptr->c_h_b[i] [j] i headptr->wdcbh h[j];

headptr->OMEGAbh.h[0][1] = -headptr->wbh}h[2] DEG2RAD;
headptr->OMEGA bhh[0] [2] = head_ptr->wbh_h[l] * DEG2RAD;

head-ptr->OMEGA bh_h[l] [2] = -head_ptr->w_bhh[O] * DEG2RAD;

for(i = 0; i<3; i++)
for(j = 0; j<3; j++)(

if(i == j)
head_ptr->OMEGA_bh_h[i] [j] = 0.0;

else if(i > j)
head_ptr->OMEGA_bh_h[i] [j] = -head_ptr->OMEGAbh_h[j] [i];

head}tr->0MEGAdot-bh-b[0][1] = -headptr->wd-bh.h[2] DEG2RAD;
head ptr->OMEGAdotbh_b [02] = headptr->wdbhh[l] * DEG2RAD;
headptr->OMEGAdotbh b[] [2] = -head-ptr->wdbh_h[o] * DEG2RAD;

for(i = 0; i<3; i++)
for(j = 0; j<3; j++){

if(i == j)
headptr->OMEGAdot_bh_h[i [j] = 0.0;

else if(i > j)
headptr->OMEGAdot_bh-_hi] [ij = -head_ptr->OMEGAdot_bh_hlj] [i];

void mckern_w(void)

qce_i[31 = -sin(delta/2);

quat_mult(q_h_i, hd->q_h_e, qei);

mag =
sqrt(qh_i[(0]*q-h_i[0]+q_h_i[l]*h ilhil]+qh i[2]*q-h i[2]+qh-i[3]*q-h-i[3]);

if(mag != 0.0)
for(i = 0; i<4; i++)
q_hi[i] = q_h_i[i]/mag;

quat_mult(hd->dq, q_hi, hd->qh_i_hist[0]);

mag = sqrt(hd->dq[0]*hd->dq[0]+hd->dq[l]*hd->dq[l]+hd->dqhd-> d >dq(21+hd-

>dq[3]*hd->dq[3]);
if(mag != 0.0)

for(i = 0; i<4; i++)
hd->dq[i] = hd->dq[i]/mag;

quat_mult(hd->dqml, qh_i, hd->q_hi_hist[l();

mag = sqrt(hd->dqml[0]*hd->dqml[0]+hd->dqml[l]*hd->dqml[l]+hd->dqml[2]*hd-
>dqml[2]+hd->dqml[3]*hd->dqml[3]);

if(mag != 0.0)
for(i = 0; i<4; i++)
hd->dqml[i] = hd->dqml[i]/mag;

quat_mult(hd->dqm2, q_h_i, hd->q_h_i_hist[2]);

mag = sqrt(hd->dqm2[0]hd->dqm2[0]+hd->d hd->dqm2[l]+hd
-
>d

qm
2[2]*hd

-

>dqm2[2]+hd->dqm2[3]*hd->dqm2[3]);
if(mag != 0.0)

for(i = 0; i<4; i++)
hd->dqm2[i] = hd->dqm2[i]/mag;

for(i = 2; i >= 0; i--)
for(j = 0; j<4; j++)

if(i == 0)
if(j == 0)
hd->qh_i_hist[i][j] = qh_i[j];

else
hd->q_hi_hist[i][j] = -ch_i[j];

else
hd->q_h i hist[i][j] = hd->q_h_i hist[i-l][j];

for(i = 0; i<4; i++)(
hd->wdot[i] = 4.0*((-15.0*hd->dq[i]+12.0*hd->dqml[il-3.0*hd->dqm2(i])/

6.0) *dt_inv*dtinv;
hd->west[i] = ((-18.0*hd->dq[i]+9.0*hd->dqml[i]-2.0*hd->dqm2[i])/

6.0)*2.0*dt_inv;
hd->wtemp(i] = (-3.0*hd->dq[i]+3.0*hd->dqm1[i]-hd->dqm2(i])/6.0;
if(i == 0){
hd->qwd[i] = 0.0;
hd->qw[i] = 0.0;

else {
hd->qwdli] = hd->wdot[i];
hd->qw[i] = hd->west(i];

quatmult(hd->qww, hd->qw, hd->qw);
quat-mult(hd->qwww, hd->qww, hd->qw);
quat mult(hd->qwdw, hd->qwd, hd->qw);
quat mult(hd->qw_wd, hd->qw, hd->qwd);

for(i = 0; i<4; i++)(

hd->wddot[i] = 12.0*(dt_inv*dtinv*dtinv*hd->wtemp[i] - hd->qwww[i]/48.0 -
hd->qwdw[i]/24.0 - hd->qw_wd(i]/12.0);

if(i != 0)
hd->wih_h[i-l] = hd->west[i] - dt * hd->wdot[i]/2.0 + dt * dt * hd-

>wddot[i]/6.0;
)

* Calculate Head Position in Body Frame *
********************** ************

void headposition(void)

struct torso_ref *torsoptr = &torso;
struct head_ref *head_ptr = &head;

int i,j;

for(i=0; i<3; i++){
head_ptr->helmetCGx b[i] = torsoptr->torso_base b[i];
for(j=0; j<3; j++)
headptr->helmetCG_xb[i] += torso tr->c_t_b[i][j] * torsoptr-

>torso_head_t[j];

Calculate Head Velocity in the Body Frame *

void headvelocity(void)

struct torso_ref *torsoptr = &torso;
struct head_ref *head_ptr = &head;

double temp_vctr[3] = (0.0, 0.0, 0.0);

int i,j;

/* In the Body Frame */

for(i=0; i<3;i++)(
temp_vctr[i] = 0.0;
for(j = 0; j<3; j++)
tempvctr[i] += -torso_ptr->OMEGAbt_t[i][j]] torso-ptr->torso_headt[j];

for(i = 0; i<3; i++)(
head_ptr->helmetCGxdot_b[i] = 0.0;

for(j = 0; j<3; j-+)

0~

head-ptr->helmetCG_xdotb[i) += torsoptr->ct_b[i] [j] * temp_vctr[j];

Calculate Head Acceleration in the Body Frame *
***/

void head_acceleration(void)

struct headref *head_ptr = &head;
struct torso_ref *torsoptr = &torso;

double temp_vctr[3] = (0.0, 0.0, 0.0);
double temp_mtrx[3][3] = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0);

int i,j,k;

for(i = 0; i<3; i++)
for(j = 0; j < 3; j++)(
temp_mtrx[i][j] = -torso_ptr->OMEGAdot_bt_t[i] [j];
for(k = 0; k<3; k++)

tempmtrx[i][j] += -torso_ptr->OMEGA_bt_t(i([k] * -torso_ptr->OMEGA_bt_t[k] [j];

for(i = 0; i<3; i++){
tempvctrfi] = 0.0;
for(j = 0; j<3; j4-+)

temp_vctr[i] += temp_mtrx[i][j] * torso_ptr->torso_head_t[j];

for(i=0;i<3;i++)
headptr->helmetCG_xddot_b[il = 0.0;
for(j=0; j<3; j++)
headptr->helmetCG_xddot b[i] += torsogtr->ct_bi] [j] * temp_vctr[j];

Appendix E

Navigation Filter C Code

The following code is the code for generating the navigation solution for both

IMUs

152

/*

$Source: /hosts/dc2/users5/gab3/simlab/source/head_tracker/navigation/naviga-
tion.h,v $

$Author: esb2110 $

* $Date: 2000/06/10 17:55:07 $

$Revision: 1.3 $

* $Source: /hosts/dc2/users5/gab3/simlab/source/headtracker/navigation/naviga-
tion.h,v $

* $Log: navigation.h,v $
* Revision 1.3 2000/06/10 17:55:07 esb2110
* Sim ready for MonteCarlo runs

* Revision 1.2 2000/04/11
* CVS hang-ups fixed, head
shifting corrected.

19:43:25 esb2110
navigator works with minor errors, quaternion time

* Revision 1.1 1998/04/01 14:18:05 ej12588
* import from CMATD 4/1/98

*/ifndef NAVIGATIONDR

#ifndef NAVIGATIONHDR
#define NAVIGATION HDR

static char RCSid-navigation[] = "$Header: /hosts/dc2/users5/gab3/simlab/source/
head_tracker/navigation/navigation.h,v 1.3 2000/06/10 17:55:07 esb2110 Exp $";

/" declaration of the primary interface functions in the navigation module '/
void navigation(int nav num, int LR_flag);

#endif /* NAVIGATIONHDR */

/**********************************

NAVIGATION.C

/* Standard headers */
#include <math.h>

/* Headers generated from .spec files */
#include "sim_ref.h" /* global sim variables (time, init, etc.) */
#include "navref.h' /* navIn, navOut, navLoc */
#include "navFC_ref.h' /* rate module variables */
#include "mmisa_ref.h" /* MMISA and other sensor variables */
#include "vstate_ref.h" /* T38 State Variables */
#include "pilotmodel_ref.h"
#include "quaternion_algebra.h" /* For Quaternion Multiply */

/* navigation code header
#include "WGS84.h"
#include "navigation.h"
#include "return_code.h"
#include "nav highrate.h"
#include "nav medrate.h"
#include "nav lorate.h"

files */
/* Earth Model */
/* DataVault for data copying between modules */

/* High Rate routines & hr/mr, hr/lr data copying */
/* Med Rate routines & mr/hr, mr/ir data copying */
/* Low Rate routines & ir/hr, Ir/mr data copying */

/* forward declarations */
static void NavProcessFC (int nav_num, int LR_flag);
static double angle_limit (double);

/* external function definitions */
extern void DoInit (int navnum);

extern int sginap(long);

/* definitions for the simplified navigation code '/
#define NUM_OFNAV_STATES 9

/*

* navigation -- primary interface for the navigation system from the
* simulation

void navigation (int nav_num, int LR_flag)

/* pointers to relevant simulation directories */
struct navIn_ref *nav_in = &navIn[nav_num];
struct navLoc_ref *nav_loc = &navLoc[navnum];
struct navOut_ref *nav_out = &navOut[nav_num];
struct simpLoc_ref *simploc = &simpLoc[nav num];
struct simpOut_ref *simp_out = &simpOut[nav num];
struct qnavOut_ref *qnav_out = &qnavOut(nav num];
struct navmrOut_ref *mrOut = &nav_mrOut[nav_num];
struct navmrLoc_ref *mrLoc = &nav_mrLoc[nav_num];
struct nav mrParm_ref *mrParm = &nav_mrParm[nav_numl;
struct navhrOut_ref *hrOut = &nav_hrOut[navnum];
struct nav hrLoc_ref *hrLoc = &nav_hrLoc[nav_num];
struct navctlLoc_ref *navFC_ctlLoc = &nav_ctlLoc[nav_num];

struct nav_ctlParmref *navFC ctlParm = &nav_ctlParm[nav_num];
struct head_ref *hd = &head;

int ii, jj, kk; /* local counter/index */
struct cmat ref *dcms = &cmat;
double q_b_e_star[4];
double qmag;

static enum NavType output_mode;

/* initialization */
if (sim.init) {

/* initialize flight nav */
NavProcessFC (nav num, LR_flag);
nav_out->tSinceFire = sim.t;

/* normal (CP) execution "/
else (

NavProcessFC (nav num, LR_flag);

/* select the appropriate module for
if (nav_in->navSwitch == FC NAV) {

output data, depending on mode */

for (ii = 0; ii < 3; ii++) {
nav_out->p_fb_e_e[ii] = mrOut->p_fb e_e[ii];
nav_out->v_fb-e_e[ii] = mrOut->vfbe_ee[ii];
nav_out->vfb_e_fb[ii] = mrOut->vfb_efb[ii];
navout->w fb i_fb[ii] = mrOut->w_fb_i_fb[ii];
nav_out->a_fb_i_fblii] = mrOut->a_fbifb[ii];
nav_out->wsenfbi_fb[ii) = hrOut->w-fb_ifb[ii];
nav_out->asen_fb_i_fb[ii] = hrout->asen_fb_i_fb[ii];

for(ii=0; ii<4; ii++)
nav_out->q_b_e[ii] = mr0ut->qpw[ii];

navout->lat = mrLoc->lat;
nav_out->lon = mrLoc->lon;
navout->alt = mrLoc->alt;
navyout->speed = mrOut->speed;

nav_out->tSinceFire = mrOut->time;
nav_out->gdc_rdy = mrOut->gdcrdy;

/* only update the error when we transition to navigation mode */
if (mrout->gdc_rdy) {

for (ii = 0; ii < 3; ii++) (
nav_loc->p_fb_e_eerr[(ii =
mrOut->pfbe_e[iil - nav_in->p_fb_e_e[ii];

nav_loc->vfbeeerr[ii] =
mrOut->v fb e_e[ii] - nav_in->v_fb e_e(ii];

/* quaternion calc */
if(nav_num == 0)O

q_b_e_star[0O = dcms->q_b_e[0];
for (ii = 1; ii < 4; ii++)

qb_e_star[ii) = dcms->q_b_e[ii];

else if(navnum == 1){
q_b_e_star[0] = (hd->q_h_e[0] + hd->qh_e_delay[0]) * 0.5;
for (ii = 1; ii < 4; ii++)
q_bestar[ii] = (hd->q_h_e[ii] + hd->q h_edelay[ii]) * 0.5;

q_mag = sqrt(q_b_e_star[0] * q_b e_star[0] + q_b_e_star[1] * q_b_e_star[1] +
q_b_e star[2] * q_b_e_star[2] + c_b_e_star[3] * q_b_estar[3]);

if(qmag != 0.0)
for(ii = 0; ii<4; ii++)
qbe_star[ii] = qb_e_star[ii]/q_mag;

quat mult(nav_loc->deltaq_fbee_err, hrLoc->q, q_b_e_star);

/* if we haven't gotten to the point where the nav is activated,
don't calculate the errors (no nav output is available yet) */

else (
nav_loc->pfbe_eerr0] = 0.0;
nav loc->p_fbe_eerr[l] = 0.0;
nav_loc->p_fb_eeerr[2] = 0.0;

nav_loc->v_fb-ee_err[0] = 0.0;
nav_loc->v_fb-ee_err[l) = 0.0;
nav_loc->v_fb_ee_eerr[2] = 0.0;

nav_loc->v_fb_efb_err(0J = 0.0;
nav_loc->v_fb_e_fb_err[l] = 0.0;
nav_loc->v_ffe_fb_err[2] = 0.0;

/* for QUICKNAV mode, update output data only as often as medrate would */
else if ((nav in->navSwitch == QUICK_NAV) && (nav_loc->medRateFlag)) {

for (ii = 0; ii < 3; ii++)
navout->p_fbe_e[ii] = nav_in->p_fbe_e[ii];

nav out->v_fbee_e[ii] = nav_in->v_fb._ee[ii];
nav_out->v_fb_ejfb[ii] = 0.0;

nav_out->w_fbifb[ii] = nav in->w_fb_ifb[ii];
nav_out->afb i fb[ii] = nav_in->afb_i fb[ii];

for(ii=0;ii<4;ii++)
nav_out->q_b_e[ii] = nav_in->q_gpwInit[ii];

RectangularToGeodetic (&nav_out->lat, &nav_out->lon, &nav_out->alt,

nav_out->p_fb_ee);

navout->tSinceFire = mrOut->time;
nav_out->gdcrdy = mrOut->gdc_rdy;

/* do the navigation code initialization */
DoInit (navnum);
return;

/* by definition, the errors are zero */
nav_loc->pfb_e_eerr[0] = 0.0;
nav_loc->p_fb_e_eerr[l] = 0.0;
nav_loc->pfbee_eerr[2] = 0.0;
nav_loc->v_fbee_eerr0] = 0.0;
nav_loc->vfb_eee_err[l] = 0.0;
nav_loc->v_fb_e_e_err[2] = 0.0;
nav_loc->v_fb_e_fb_err[0) = 0.0;
nav_loc->v_fb_e_fb_err[l] = 0.0;
nav_loc->v_.fb_e_fberr[2] = 0.0;

/*
* NavProcessFC -- function that performs the "executive" functions
" for the flight code operational modules (navhighrate, navmedrate,
" nav_lorate, plus other), including module scheduling

static void NavProcessFC (int nav num, int LR flag)

/* pointers to relevant simulation directories */
struct navIn_ref *nav_in = &navIn[nav num];
struct navLoc_ref *nav_loc = &navLoc[nav_num];
struct navOut_ref *nav_out = &navOut[nav_num];
struct simpLocref *simp_loc = &simpLoc[navnum];
struct simpOut-ref *simp_out = &simpOut[nav_num];
struct qnavOutref *qnavout = &qnavOut[nav_num];
struct navmrOut_ref *mrOut = &navmrOut[navnum];
struct navmrLocref *mrLoc = &nav_mrLoc[nav_num];
struct nav mrParm-ref *mrParm = &nav_mrParm[nav_num];
struct nav hrOut_ref *hrOut = &navhrOut(nav_num];
struct nav hrLoc_ref *hrLoc = &navhrLoc[nav_num];
struct navctlLoc ref *navFCctlLoc = &navctlLoc[navnum];
struct nav_ctlParm_ref *navFC_ctlParm = &nav_ctlParm[navnum];

/* temporary, for test */
struct nav_lrIn_ref *navFC_lrIn = &nav_lrIn;
struct cmat_ref *dcms = &cmat;
struct head_ref *hd = &head;
double q_be_star(4);
double q_mag;
short ii;

/* if we're in first pass of initialization mode, don't process anything */

if (sim.init && (sim.icj == 0))
return;

/* for the remainder of the initialization passes */

if (sim.init && (sim.ic_j >= 1)) (

MR_Reads (navnum);
DoMedRate (navnum);
MR_Writes (navnum);
navFCctlLoc->medcnt++;
/* only update the error when we
if (mrOut->gdc_rdy) {

transition to navigation mode */

for (ii = 0; ii < 3; ii++)
nav_loc->pfb-_e_eerr(ii] =

mrout->p-fb_ee[ii] - nav_in->p_fb_e_e[ii];
nav loc->v_fb_e_e_err[iil =

mrOut->v-fbe_e[ii] - nav_in->vfb_e e[ii];

/* quaternion calc "/

if(navnum == 0)(
qob estar(0] = dcms->qbe[0];
for (ii = 1; ii < 4; ii++)

/* get the flags from the GPS system */
if (sim.t >= navFCctlParm->first_gps) {
nav_loc->gpsFlagPPS = nav_in->gpsFlagPPS;
nav_loc->gpsFlagLOS = nav_in->gpsFlagLOS;
if (nav loc->gpsFlagPPS)
nav_loc->lr_PPS-pending = 1;

else {
nav loc->gpsFlagPPS = 0;
navloc->gpsFlagLOS = 0;

/* control med rate flag */
if (navFC ctlLoc->hi_cntmed >= navFCctlParm->del_c_med)
nav _loc->medRateFlag = TRUE;
navFCctlLoc->hi_cntmed = 0;

else if (nav loc->medRateFlag)
nav _loc->medRateFlag = FALSE;

/* always process high rate loop */
HR_Reads(&mmisaOut(nav num], nav_num);
if (nav_loc->gpsFlagPPS) (
DoHiRate (nav_loc->medRateFlag, navloc->gpsFlagPPS,

(unsigned long) (nav_in->timeGPS / FET_TO_SECONDS),
navnum);

else
DoHiRate (nav_loc->medRateFlag, nav_loc->gpsFlagPPS, 0, nav_num);

HR_Writes (navnum);
navFC-ctlLoc->hi_cnt++; /* advance the counters */
navFC ctlLoc->hicnt_med++;

/* (if necessary) process med rate loop */
if (nav_loc->medRateFlag) (

qb_e_star(ii] = dcms->qLb_e(ii];

else if(nav_num == 1)(
q_b_e_star(0I = (hd->q_h_e[0] + hd->qh_e_delay[0]) * 0.5;
for (ii = 1; ii < 4; ii++)
qb_e_star[ii] = (hd->qh_e[ii) + hd->q_h e_delay[iil) * 0.5;

q_mag = sqrt(qb-estar[0] q_b e_star(0] + Lb e_star[l] * qb_estar[l] +
q_be_star(2] * qb_e_star(2] + q_b-e_star[3] * q_b_e_star[3]);

if(q mag != 0.0)
for(ii = 0; ii<4; ii++)
q_be_star[ii] = cLb_e_star[ii]/qcLmag;

quatmult(navloc->delta_q_fb_e_err, hrLoc->q, q_b e_star);

/* if we haven't gotten to the point where the nav is activated,
don't calculate the errors (no nav output is available yet) */

else {
nav_loc->p_fb_ee_err[0] = 0.0;
nav_loc->p_fb_e_e_err(l] = 0.0;
nav_loc->p_fb_e_e_err[2] = 0.0;

navloc->v_fbe_e_err[]O = 0.0;
nav_loc->v_fbee_eerr[l] = 0.0;
nav_loc->v_fb_e_e_err[2] = 0.0;

nav_loc->v_fb_e_fb_err[0] = 0.0;
nav_loc->vfbefbe_fberr[l] = 0.0;
nav_loc->vfb_e_fb_e_fb_err2] = 0.0;
nav_loc->delta_q_fbe_err[0] = 0.0;
nav_loc->deltac_Lfbe_err[l] = 0.0;
nav_loc->delta_q_fbeerr[2] = 0.0;
nav_loc->delta__cLfbe_err(31 = 0.0;

/* (if necessary) process lo rate (IPPS) loop */
if (LR_flag && nav_loc->lr_PPSpending) {
LR_Reads (0, nav num);
DoLoRate (0);
LR_Writes ();
navFC-ctlLoc->locnt-pps++;
nav_loc->lr_PPSpending = 0;

)

local function for limiting the range of angles

static double angle limit (double anglein)

double anqlelocal; /* temporary buffer for input data */

/* copy input data to local buffer */

angle local = angle_in;

/* perform the limiter operation */
while (angle_local > PI) (
anglelocal -= (2 * PI);

while (anglelocal < -PI) {
anglelocal += (2 * PI);

/* return the result */
return (angle_local);

/t*********************t****•***************************

nav_highrate.h

* Author: Erik Bailey
* Purpose: Defines functions called by other code
" modules.
**/

#ifndef NAV HIGHRATE H
#define NAVHIGHRATE H_

/* function prototypes called by other .c files */

/* called by nav_init.c */
void filter_inithi (int nav_num);

/* called by navigation.c */
void DoHiRate (int medRateFlag, int gpsFlag, unsigned long gpsTime, int navnum);
Return_CodeType HR_Reads (struct mmisaOut_ref *ISAOut, int nav_num);
Return_CodeType HR_Writes (int nav_num);

#endif /* _NAV_HIGHRATE_H */

/************************/

/* Nay HighRate */
/************************/

/*

* Description: This file contains the functions which comprise the
* high-rate (nominally 100Hz) component of the precision strike
* navigation system.

#if 0
typedef int Return_Code_Type;
#define GOOD_RETURN_CODE 0
#endif

#include
#include
#include
#include
#include
#include
#include
#include
#include

"simio.h*
"navFCref.h"
"matrixx.h"
"matrix_plus.h"
"quaternion_algebra.h"
"navref.h"
"v_state ref.h'
"envrref.h"
"pilotmodel_ref.h"

#include <math.h>

#include
#include
#include
#include
#include

"simref.h"
"mmisaref.h*
"returncode.h"
"nav highrate.h"
"nav data_vault.h"

#include "T38sens_accelref.h"
#include "HELMETsens_accel_ref .h

/* highrate functions */

static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static

void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void

att_alg (int navnum);
dv_trans (int navnum);
q_trans (int navnum);
q_norm (int nav_num);
accum_sums (int navnum);
initsums (int nav_num);
filter_dstm_prp (int navnum);
filterdstminit (int nav num);
sysmat (int navnum);
quat_dcm (int navnum);
gyro_comp (int navnum);
accel_comp (int nav_num);
leverarm_comp (int nav_num);
hirate_reset (int nav num);
StartGpsSum (int nav_num);
head trackerPHIPHI_12 (int nav_num);
sensor_output (int navnum);

/* external declarations */
extern int matrix_err_handler (int code, int src);

filter_init_hi -- all high rate initializations; flags filter
compensation

void filter_init_hi (nav num)

struct nav_hrIn_ref *hrIn = &nav_hrIn[nav_num];
struct nav hrOut_ref *hrOut = &nav_hrout(nav_num];
struct nav_hrLoc_ref *hrLoc = &nav_hrLoc[nav_num];
struct navhrParm_ref *hrParm = &nav_hrParm[nav_num];
struct nav_ctlParm_ref *ctlParm = &nav_ctlParm[nav_num];
struct nav_ctlLoc_ref *ctlLoc = &navctlLoc[navnum];

/* Truth Structures for Initialization Kluge */
struct cmat_ref *dcms = &cmat;
struct T38sensedAccelsOut_ref *T38dynOut = &T38sensedAccelsOut;
struct head_ref *hd = &head;
struct HELMETsensedAccelsOutref *HELMETdynOut = &HELMETsensedAccelsOut;

int ii, jj; /* local counters/indices */
int err;
double initq_err[4], q_.inv[4];

/* initialize the matrix entities */
/* (note: typecast shouldn't be necessary, but the SGI compiler

gives errors without them... */
err = init_matrix (hrLoc->fll, N_DYN, N_DYN,

hrLoc->fll_dp, (MATRIX_P) hrLoc->fll_d);
if (err) (
matrix_err_handler (err, HR_INIT);

err = initmatrix (hrLoc->fl2, N DYN, N STAT,
hrLoc->fl2_dp, (MATRIX_P) hrLoc->fl2_d);

if (err) (
matrix_err_handler (err, HRINIT);

err = init matrix (hrLoc->phil2x, N_DYN, N_STAT,
hrLoc->phil2x_dp, (MATRIXP) hrLoc->phil2xd);

if (err) (
matrix_err_handler (err, HR_INIT);

err = initmatrix (hrLoc->phil2z, N_DYN, N_STAT,
hrLoc->phil2z_dp, (MATRIX_P) hrLoc->phil2zd);

if (err) (
matrix_err_handler (err, HRINIT);

err = init_matrix (hrLoc->phil2z_out, N_DYN, N_STAT,
hrLoc->phil2z_outdp, (MATRIXP) hrOut->phil2z);

if (err) (
matrix_errhandler (err, HRINIT);

err = zero_matrix (hrLoc->fll);
if (err) (
matrix_err_handler (err, HR_INIT);

err = zero_matrix (hrLoc->fl2);
if (err) (
matrixerrhandler (err, HR_INIT);

err = zero matrix (hrLoc->phil2x);
if (err) (
matrix_err_handler (err, HR_INIT);

err = zeromatrix (hrLoc->phil2z);
if (err) (
matrix_err_handler (err, HRINIT);

err = zero_matrix (hrLoc->phil2z_out);
if (err) (
matrixerrhandler (err, HR_INIT);

/* velocity driving position */
for (ii = 0; ii < 3; ii++) (
hrLoc->fll->data[ii] [ii+3] = ctlParm->del_t_hi;

/* diagonals are all 1 for the present model */
for (ii = 0; ii < hrLoc->fll->rows; ii++)
hrLoc->fll->data[ii] [ii] = 1.0;

hrLoc->fll->data[3][4] = -2.0 * hrParm->we * ctlParm->del_t_hi;
hrLoc->fll->data[4] [3] = 2.0 * hrParm->we * ctlParm->del_t_hi;
hrLoc->fll->data[6] [7] = -hrParm->we * ctlParm->del_t_hi;
hrLoc->fll->data[7][6] = hrParm->we * ctlParm->del_t_hi;

sysmat (nav_num); /* first call to sysmat */

filter_dstm_init (nav num); /* initialize PHI12 */

/* initialize the output/state variables */
for (ii = 0; ii < 3; ii++)

/* accelerometer data */
hrLoc->dvvc[ii] = 0.0;
hrOut->dvvc_sum[ii] = 0.0;

/* gyro data */
hrLoc->dthc[ii] = 0.0;
hrLoc->dthcprev[ii] = 0.0;
hrout->dthc_sum[ii] = 0.0;
hrLoc->dthq[ii] = 0.0;
hrLoc->dthqp[ii] = 0.0;

/* inertial velocity */
hrLoc->dvi[ii] = 0.0;
hrout->dvi_sum[ii] = 0.0;
hrOut->dvi_sum_left(ii] = 0.0;
hrLoc->dvi_left[ii] = 0.0;
hrLoc->dvi_right[ii] = 0.0;

/* initialize remaining local variables */
hrLoc->modeFlag = Navigate;
hrLoc->firstpass = 1;
hrLoc->restartHiRateFlag = 0;
hrLoc->filterReinit = 0;
hrLoc->mmisaInterTime = 0.0;
hrLoc->gpsDTime = 0.0;
hrLoc->temperFirstPasses = 1;
hrLoc->tempproc_state = 0;
hrLoc->temp_blk_cnt = 0;
hrLoc->qmag_sq = 0.0;
hrLoc->qmaginv = 0.0;

for (ii = 0; ii < 3; ii++) {
hrLoc->dvla[ii) = 0.0;
hrLoc->dvvlac[ii] = 0.0;
hrLoc->dthcaccum[ii] = 0.0;

for (jj = 0; jj < 3; jj++)
hrLoc->ww[ii][jj] = 0.0;

if(nav-num == 0){
hrLoc->q[0] = dcms->q_b_e[0];
hrLoc->qint[0] = dcms->qb_e[0];
for (ii = 1; ii < 4; ii++) (
hrLoc->q[ii] = -dcms->qLb_e[ii];
hrLoc->qint(ii] = -dcms->qb_e[ii);

else if (navnum == 1)(
qinv[0] = hd->q_he[0];
initq_err[0] = 1.0;
for (ii = 1; ii < 4; ii++) {
q_inv[ii] = -hd->q_h_e(ii];
init_q_err[ii) = hrIn->initpsi_err[ii-l]*0.5;

quatJmult (hrLoc->q,cinv, init_qerr);

for(ii = 0; ii<4; ii++)
hrLoc->q_int[ii] = hrLoc->q[ii);

/* initialize remaining output variables */
hrOut->medValidTime = 0.0;
hrOut->loValidTime = 0.0;
hrOut->gpsInterTime = 0.0;
hrOut->gpsUpdateFlag = 0;
hrout->update_time = 0.0;
hrOut->reset_timestamp = 0.0;

for (ii = 0; ii < 3; ii++) {
hrOut->rwCor(ii] = 0.0;
hrOut->vwCor[ii] = 0.0;
if(nav_num == 0){
hrout->w_fb_i_fb[ii] = T38dynOut->wib_b[ii];
hrout->asen_fb_i_fbtii] = T38dynOut->f_b_sensed[ii];

else if(navnum ==) {
hrout->w_fb i_fb[ii] = HELMETdynOut->w_ib_b[ii);
hrOut->asen fb_ifbtii] = HELMETdynOut->f_h_sensed[ii];

/* most parameter values are initialized in spec file, updated by GCC */

/* just to be sure that the inputs are clean */
hrIn->qCor[O] = 1.0;
for (ii = 0; ii < 3; ii++) {
hrIn->rwCor[ii] = 0.0;
hrIn->vwCor[ii) = 0.0;
hrIn->qCor[ii+l] = 0.0;
hrIn->gbiasCor(ii] = 0.0;
hrIn->abiasCor[ii] = 0.0;

hrln->gsfexCor 0.0;
hrIn->asfe2_xCor = 0.0;

nav_hrParm->we = earth.we;

/* qtrans initialization (dq is quat/w(t)w(t-dt)) */
hrParm->angl = 0.5 * ctlParm->del_t_hi * hrParm->we;
hrParm->dq0 = 1.0; /* cos angl */
hrParm->dq3 = - hrParm->angl; /* sin angl */

#if 0
/* temp_cal smoothing factor initialization */
hrParm->sm_fact = 15;
hrParm->smfact-inv = 1.0 / (double) hrParm->sm_fact;

#endif

return;

DoHiRate -- executive for high rate processing module; primary entry
point for high rate processing, called from rate group control module

high rate inputs
medRateFlag
gpsFlag

gpsTime

from executive:
1 : current pass last one before next medium rate call
1 : GPS 1PPS interrupt has occurred since

prev hi rate pass
: time of GPS 1PPS (earlier than "time" is now)

(only valid when gpsFlag is TRUE)

void DoHiRate (int medRateFlag, int gpsFlag, unsigned long gpsTime, int nav_num)

struct nav_hrInref *hrIn = &navhrIn(navnum];
struct navhrOut_ref *hrOut = &nav_hrOut[nav_num];
struct nav_hrLoc_ref *hrLoc = &nav_hrLoc[nav_num];
struct nav_hrParm_ref *hrParm = &navhrParmInav_num);

struct navctlParmref *ctlParm = &navctlParm[navnum];
struct navctlLocref *ctlLoc = &navctlLoc[navnum];

double timeint[2];
double time_fract[2];

int ii;

/* store the input data */
hrIn->medRateFlag = medRateFlag;
hrIn->gpsFlag = gpsFlag;
hrIn->gpsTime = gpsTime;
/* Note: This data copy may seem redundant, but it's part of a

long-term strategy to move all rate group input/output data to
relevant simulation variable structures. */

/* deal with the time issues here */
hrLoc->mmisaInterTime = FET_TO_SECONDS * (double) hrIn->MMISA_time;

/* if necessary, restart the high rate filter */
if (hrLoc->restartHiRateFlag == 1)

/* clear the restart flag */
hrLoc->restartHiRateFlag = 0;

/* initialize the accumulators */
init_sums (nav_num);

/* clear the GPS update flag */
hrOut->gpsUpdateFlag = 0;

/* navigation mode */
if (hrLoc->modeFlag == Naviga

/* here is the guts of the
/* Pre-processing deletion
accel_comp (nav_num);
gyrocomp (navnum);
lever_arm.comp (navnum);
attalg (nav num);
qtrans (nav_num);
dv_trans (nav_num);
qnorm (nav_num);
accum_sums (nav_num);

te)

high rate processing in nav mode */
by E. Bailey for TPD program */
/* error compensation for accelerometers */
/* error compensation for gyros */
/* accelerometer lever arm compensation */
/* calculate new quaternion */
/* calculate quaternion relative to earth frame */
/* get current delta velocity to earth */
/* normalize the quaternion */
/* accumulate accel/gyro sums (for med rate) */

if(sim.t >= 2.0)(
time_fract[navnum] = modf(sim.t, &time_int[navnum]);
if(!timefract[nav_num])

hrOut->gpsUpdateFlag = 1;

/* initialize or propagate phil2 matrix, as appropriate */
if (hrLoc->filterReinit == 1)
filter_dstm_init (nav_num);
hrLoc->filterReinit = 0;

else
filter_dstmprp (navnum);

/* DLL note: consider halting phi propagation at gps interrupt */

/* if there's new GPS data... */
if (hrIn->gpsFlag) (

/* transform the GPS interrupt time from MMISA ticks to seconds */
hrOut->gpsInterTime = FETTO SECONDS * (double) hrIn->gpsTime;
hrOut->loValidTime = hrLoc->mmisaInterTime;

/* calculate the GPS delta velocity sum */
StartGpsSum (nav_num);

/* copy the phil2z data to output area */
matrixcpy (hrLoc->phil2z_out, hrLoc->phil2z);
/* note: phil2z should only be copied to the output buffer,

phil2z_out, when a 1PPS interrupt has been received, to avoid
the possibility of the low rate module received an update of
the phil2 data too early */

/* set the update flag */
hrOut->gpsUpdateFlag = 1;

/* if med rate is going to happen immediately after... */
if (hrIn->medRateFlag) {

/* signal restart for next pass through DoHiRate */
hrLoc->restartHiRateFlag = 1;

if (hrOut->gpsUpdateFlag) (/* measurement update now */
hrLoc->filterReinit = 1; /* restart filter next pass */
hirate_reset (nav_num);

sensor_output (navnum);

/* error -- mode is neither Down_Det or Navigate */
else {

therr("Highrate Error: The Medrate Mode is not Navigate\n");
/* insert error handler here */

)

return;

accel_comp -- convert dvv from counts to f/s, compensate for known
errors, convert to platform coordinates, return result as dvvc

atic void accelcomp (int nav_num)

struct navhrInref *hrIn = &navhrIn[nav_num];

struct
struct
struct
struct

nav_hrLoc_ref *hrLoc = &nav_hrLoc[nav_num];
nav_hrParm_ref *hrParm = &nav_hrParm[nav_num];
nav_ctlParm_ref *ctlParm = &nav_ctlParm[nav_num];
nav_ctlLoc_ref *ctlLoc = &nav_ctlLoc[navnum];

int ii, jj;
double compdvv[3];
double dvvii;
double dvviisq;
double asfetotal;
double abiastotal;

local counter/index */
compensated accelerometer data */
scaled input data (delta velocity) */
square of dvii */
total scale factor compensation parameter */
total bias compensation parameter */

#if 0

/* cycle through three axes */
for (ii = 0; ii < 3; ii++)

/* do all compensation except misalignment */
/* 1. read input, subtract offset, coarse scaling */
/* 2. calculate total scale factor parameter */
/* 3. calculate total bias parameter */
switch (ii)
case 0:
dvvii = hrParm->ax-scale-factor * ctlParm->del t hi *

(double) ((int) hrIn->accel out[0] - hrParm->accel_offset);
asfetotal = hrParm->asfe(0] + hrParm->sfaccel_x;
abias total = hrParm->abias[O] + hrParm->baccel_x;
break;

case 1:
dvvii = hrParm->ay_scalefactor * ctlParm->del_t_hi *

(double) ((int) hrIn->accel_out(l] - hrParm->accel-offset);
asfetotal = hrParm->asfe[l] + hrParm->sfaccel_y;
abiastotal = hrParm->abias[l] + hrParm->baccel_y;
break;

case 2:
dvvii = hrParm->azscalefactor * ctlParm->del_t_hi *

(double) ((int) hrIn->accel_out[2] - hrParm->acceloffset);
asfe_total = hrParm->asfe[2] + hrParm->sfaccel_z;
abiastotal = hrParm->abias[2] + hrParm->baccel_z;
break;

/* subtract the total bias, then calculate the square */

dvvii -= abias_total;
dvviisq = dvvii * dvvii;

/* compute the compensated delta velocity */
comp dvv[ii) = dvvii -

(asfetotal dvvii) -
(hrParm->asfe2[ii] * dvviisq) -

(hrParm->asfe3[ii] * dvvii * dvviisq);

/* apply transformation -- accelerometer frame to body (platform) frame */

for (ii = 0; ii < 3; ii++) {

/* multiplying a matrix and a vector */
hrLoc->dvvwcii) = 0.0;

for (jj = 0; jji < 3; jj++)
hrLoc->dvvc[ii] += (comp_dvv[jjl * hrParm->c_a_to_p[ii[jjl);

#endif
if(nav_num == 1)

for (ii = 0; ii < 3; ii++) (
hrLoc->dvvc(ii] = 0.5 * (navIn(nav_num].accel_old[ii] +

navIn[nav_num].a_fbLifib[ii]) * ctlParm->del_thi;

else
for (ii = 0; ii < 3; ii++) {
hrLoc->dvvc[ii] = navIn[nav num].afb_ifb[ii] * ctlParm->delt_hi;

return;

gyro_comp -- gyro compensation

static void gyro_comp (int navnum)

struct
struct
struct
struct
struct

nav hrIn_ref *hrIn = &navhrIn[navnum];
nav_hrLoc_ref *hrLoc = &nav_hrLoc[nav_num];
navhrParm_ref *hrParm = &nav_hrParm[navnum];
nav_ctlParm_ref *ctlParm = &nav_ctlParm[nav_num];
nav_ctlLoc_ref *ctlLoc = &nav_ctlLoc[nav num];

/* NB -- assumes accelerometer compensation has already been done */
int ii, jj; /* local counter/index */

#if 0
double
double
double
double
double
double
double
double
double

#endif

comp_dth(3];
dthii;
dthiisq;
dv_ia;
dv_xal;
dvvxa2;
ccl, cc2;
gsfe_total;
gbias-total;

compensated gyro data */
scaled input data (delta theta) */
square of dthii */
inline axis acceleration */
cross axis 1 acceleration */
cross axis 2 acceleration */
local computation buffers */
total scale factor compensation parameter */
total bias compensation parameter */

/* cycle through three axes */
for (ii = 0; ii < 3; ii++)

/* push down delta theta */
hrLoc->dthc_prev[ii] = hrLoc->dthc[ii];

#if 0
/* do all compensation except misalignment */

/* 1. read input, subtract offset, coarse scaling '/

/* 2. obtain compensated acceleration data */
/* 3. calculate total scale factor parameter */

/* 4. calculate total bias parameter */
switch (ii)

case 0:
dthii = hrParm->gx_scale_factor * ctlParm->delt hi "

(double) ((int) hrIn->gyro_out[0] - hrParm->gyro_offset);

dvv_ia = hrLoc->dvvc[]0;
dvw_xal = hrLoc->dvvc[l];
dvw_xa2 = hrLoc->dvvc[2];

/* del v along input axis */

/* del v along cross axes '/

gsfetotal = hrParm->gsfe[0] + hrParm->sfgyro-x;
gbias_total = hrParm->gbias[O] + hrParm->bgyrox;
break;

case 1:
dthii = hrParm->gy_scale_factor * ctlParm->del t hi *

(double) ((int) hrIn->gyroout(l] - hrParm->gyro_offset);

dvv_ia = hrLoc->dvvc[l];
dvv_xal = hrLoc->dvvc[2];
dvw_xa2 = hrLoc->dvvc[0];

/* del v along input axis */

/* del v along cross axes 'I

gsfe_total = hrParm->gsfe[1] + hrParm->sfgyro_y;
gbias total = hrParm->gbias[l] + hrParm->bgyroy;
break;

case 2:
dthii = hrParm->gzscale_factor * ctlParm->del_t_hi *

(double) ((int) hrIn->gyroout[2] - hrParm->gyro_offset);

dvv_ia = hrLoc->dvvc[2];
dvv_xal = hrLoc->dvvc[0];
dvv_xa2 = hrLoc->dvvc[l];

/* del v along input axis */

/* del v along cross axes */

gsfetotal = hrParm->gsfe[2] + hrParm->sfgyroz;
gbias_total = hrParm->gbias[2] + hrParm->bgyroz;
break;

/* subtract the total bias, then calculate the square */
dthii -= gbiastotal;
dthiisq = dthii * dthii;

/* compute the compensated delta theta */
comp_dth[ii] = dthii -

(gsfe_total * dthii) -
(hrParm->gsfe2[ii] * dthiisq) -
(hrParm->gsfe3[ii] * dthii * dthiisq);

/* -

*!
*;

(hrParm->g_iagsensii) * dvv_ia) -
(hrParm->g_xalgsens[ii] * dvv_xal) -
(hrParm->g xa2_gsens[ii] * dvv_xa2) -
(hrParm->sfe_xg[ii] * dvvxa2 * dthii);

/* adjust the compensated delta theta */
ccl = compdth[l] - (hrParm->dthglz * compdth[0]);
cc2 = comp_dth[2] + (hrParm->dth_g2_y * compdth(l]) -

(hrParm->dth_g2_x * comp-dth[2]);
compdth[l] = ccl;

int ii, jj;
double xx;
double wdt[3];
double wsq[3];

/* local counter/index */
/* local computation buffer */
/* interpolated delta theta */
/* square of interpolated delta theta */

/* cycle through three axes, calculating the rates and squares */
for (ii = O; ii < 3; ii++) (

/* interpolate the delta theta (angular rate multiplied by dt) "/
wdt(ii] = xx = 0.5 * (hrLoc->dthc[ii] + hrLoc->dthcprev[ii]);

/* compute the square (angular rate squared multiplied by dt squared) */
w_sq[ii] = xx * xx;

/* compute the ww matrix, part 1: compute the diagonal elements */
for (ii = 0; ii < 3; ii++)
xx = w_sq[ii];
for (jj = 0; jj < 3; jj++)
xx -= wsq[jj];

hrLoc->ww[ii][ii] = xx;
)

comp_dth[2] = cc2;

/* apply transformation -- gyro frame to body (platform) frame */
for (ii = 0; ii < 3; ii++) {

/* multiplying a matrix and a vector */
hrLoc->dthc[ii] = 0.0;
for (jj = 0; jj < 3; jj++)
hrLoc->dthc[ii] += (comp_dth[jj] * hrParm->c_gto p[ii)[jj]);

#endif

hrLoc->dthc[O] = navIn[navnum].w_fb_i_fb[O] * ctlParm->del_t_hi;
hrLoc->dthc[l] = navIn[nav num].wfb_i-fb[1] * ctlParm->del_thi;
hrLoc->dthc[2] = navIn[nav_num].wfb_i_fb[2] * ctlParm->del_thi;

/* integrate delta thetas */
for (ii = 0; ii < 3; ii++)
hrLoc->dthc_accum[ii] += hrLoc->dthc(ii];

return;

/*

lever arm_comp -- lever arm compensation
*1

static void lever_arm.comp (int nav_num)

struct nav_hrLocref khrLoc = &nav_hrLoc[nav_num];
struct nav_hrParm_ref *hrParm = &nav_hrParm[navnum];
struct nav_ctlParm_ref *ctlParm = &nav_ctlParm[nav_num];

/* compute the ww matrix, part 2: compute the non-diagonal elements */
for (ii = 0; ii < 2; ii++) (

for (jj = ii + 1; jj < 3; jj++)
hrLoc->wwljj][ii) = wdt[ii] * wdtljj];
hrLoc->wwtii][jj] = hrLoc->ww[jj][ii];

/* assume accelerometer input axes are along the body frame */
for (ii = 0; ii < 3; ii++) (/* for each axis... */

/* ...sum the row... */
xx = 0.0;
for (jj = 0; jj < 3; jj++)
xx += (hrLoc->ww[ii][jj] * hrParm->rho[ii][jj]);

/* ...compute the lever arm compensation... */
hrLoc->dv_la[ii] = xx * ctlParm->freqhi;
/* equivalent to divide by ctlParm->del_t_hi */

/* ...and apply it to the compensated delta velocity */
hrLoc->dvvw_lac[ii] = hrLoc->dvvc[ii] - hrLoc->dv_la[ii];

return;

attalg -- The attitude algorithm will use the compensated delta

thetas and the previous compensated delta thetas to calculate the

attitude of the platform with respect to inertial space. The

algorithm is the third order algorithm developed by R. McKern.

static void attalg (int nav_num)

struct nav_hrLoc_ref *hrLoc = &navhrLoc[nav_num];

int ii; /* local counter/index */
double aa; /* local computation buffer */
double dq[4]; /* delta quaternion */

/* calculate interpolated delta theta values (compensated) */
for (ii = 0; ii < 3; ii++)
hrLoc->dthqfii] = 0.5 * (hrLoc->dthc[ii] + hrLoc->dthc_prev[ii]);

/* if first time, initialize previous delta theta with first value */

if (hrLoc->first_pass == 1)
for (ii = 0; ii < 3; ii++)
hrLoc->dthqp[ii] = hrLoc->dthq[ii];

hrLoc->firstpass = 0;

#if 1
/* compute the delta quaternion "/
aa = ((hrLoc->dthq[0] * hrLoc->dthq[0]) +

(hrLoc->dthq[l] * hrLoc->dthq[l]) +

(hrLoc->dthq[2] * hrLoc->dthq[2])) / 4;
dq[0] = 1 - (aa / 2);
dq[l] = (hrLoc->dthq[2] * hrLoc->dthqp[l] -
hrLoc->dthq[l] * hrLoc->dthqp[2] -
2 * hrLoc->dthq[0] * aa) / 24 + (hrLoc->dthq[O]

dq[2] = (hrLoc->dthq[O] * hrLoc->dthqp[2] -
hrLoc->dthq[2] * hrLoc->dthqp(0] -
2 * hrLoc->dthq[l] * aa) / 24 + (hrLoc->dthq[l]

dq[3] = (hrLoc->dthq[l] * hrLoc->dthqp[0) -
hrLoc->dthq[0] * hrLoc->dthqp(l] -
2 * hrLoc->dthq[2] * aa) / 24 + (hrLoc->dthq[2]

#endif
#if 0

/* KLUGE FIX compute the delta quaternion */
aa = ((hrLoc->dthq[0] * hrLoc->dthq[0]) 4

(hrLoc->dthq[l] * hrLoc->dthq[l]) +
(hrLoc->dthq[2] * hrLoc->dthq[2])) / 4;
dq[0] = 1 - (aa / 2);
dq[l] = (-2 * hrLoc->dthq[0] * aa) / 24 + (hrLoc
dq[2] = (-2 * hrLoc->dthq[l] * aa) / 24 + (hrLoc
dq[3] = (-2 * hrLoc->dthq[2] * aa) / 24 + (hrLoc

#endif

/ 2);

/ 2);

/ 2);

->dthq[O] / 2);
->dthq[l] / 2);
->dthq[2] / 2);

/* multiply previous quaternion by delta quaternion */
quatmult (hrLoc->q_int, hrLoc->q, dq);

/* note: the result of this multiplication of the previous
quaternion value with the delta quaternion proshowvides an angle
between the body (platform) and the ECEF coordinates at the
previous time step; this result is saved in a distinct array
(qint, for interim quaternion), and will subsequently be

transformed in the function q_trans */

/* save previous delta thetas (radians) */
for (ii = 0; ii < 3; ii++)
hrLoc->dthqp[ii] = hrLoc->dthq[ii];

return;

q_trans -- quaternion from attitude algorithm is updated to give
body-to current world (LL-NED?) transformation

static void q_trans (int navnum)

struct nav hrLoc_ref *hrLoc = &nav_hrLoc[nav_num];
struct nav hrParm_ref *hrParm = &nav hrParm[nav num];

/* calculate new quaternion values */
hrLoc->q[0] =

(hrParm->dq0 * hrLoc->qint[0]) - (hrParm->dq3 * hrLoc->qint[3]);

hrLoc->q[l] =
(hrParm->dq0 * hrLoc->qint[l]) - (hrParm->dq3 * hrLoc->qint[2]);

hrLoc->q[2] =
(hrParm->dqO * hrLoc->q_int[2]) + (hrParm->dq3 * hrLoc->qintll]);

hrLoc->q[3] =
(hrParm->dqO * hrLoc->q_int[3]) + (hrParm->dq3 * hrLoc->qint[(0);

return;

* q_norm -- normalize the quaternion

static void q_norm (int nav_num)

struct navhrLoc_ref *hrLoc = &navhrLoc[navnum];

int ii; /* local counter/index */

/* calculate the sum of the squares of the quaternion elements */
hrLoc->qmag_sq = 0.0;
for (ii = 0; ii < 4; ii++) {
hrLoc->qmag_sq += hrLoc->q(ii] * hrLoc->q[ii];

/* calculate quaternion correction */
hrLoc->qmag_inv = 1.5 - (0.5 * hrLoc->qmagsq);

/* correct the quaternion */
for (ii = 0; ii < 4; ii++) {
hrLoc->q[ii] = hrLoc->q[iil * hrLoc->qmaginv;

return;

dv-trans -- calculate inertial delta velocity (dvi) from
compensated body delta velocity (dvv)

static void dvtrans (int navnum)

struct navhrLoc_ref *hrLoc = &nav hrLoc[nav_num];

double tmp[3]; /* local computation buffer */

/* calculate the temporary values */
tmp[0] =

(hrLoc->q[2] * hrLoc->dvvw_lac[2]) - (hrLoc->q[3] * hrLoc->dvv_lac[l]);

tmp[l] =
(hrLoc->q[3] * hrLoc->dvvlac[0]) - (hrLoc->q[l] * hrLoc->dvv_lac[2]);

tmp[2] =
(hrLoc->q[l] * hrLoc->dvvw_lacil]) - (hrLoc->q[21 * hrLoc->dvvlac[01);

/* now calculate the transformed delta velocities */
hrLoc->dvi[0] = hrLoc->dvv_lac[0] + 2.0 * (hrLoc->q[O] * tmp[O]

+ hrLoc->q[2] * tmp(2]
- hrLoc->q[31 * tmp[l]);

hrLoc->dvi[l] = hrLoc->dvw_lac[l] + 2.0 * (hrLoc->q[0] * tmp[l]
+ hrLoc->q[3] * tmp[0]
- hrLoc->q[l] * tmp[2]);

hrLoc->dvi[2] = hrLoc->dvvw_lac[2] + 2.0 * (hrLoc->q[0] * tmp[2]
+ hrLoc->q[l] * tmp[l]
- hrLoc->q[2) * tmp[0]);

return;

accum_sums -- accumulate accel and gyro data (accumulated over
medium rate period, initialized/re-initialized by initsums)

*/

static void accum_sums (int nav_num)

struct nav hrLoc_ref *hrLoc = &nav_hrLoc[nav_num];
struct nav_hrOut_ref *hrOut = &navhrOut[nav_num];

int ii; /* local counter/index */

/* set the time of validity for accumulator data */
hrOut->medValidTime = hrLoc->mmisaInterTime;

for (ii = 0; ii < 3; ii++) (

/* inertial delta velocities */
hrOut->dvisum[ii] += hrLoc->dvi[ii];

/* delta angles */
hrOut->dthc_sum[ii] += hrLoc->dthc[ii];

/* delta velocities */
hrout->dvvc_sum[ii] += hrLoc->dvvc[ii];

return;

/*
init_sums -- initialize accel and gyro data accumulation registers

*/

static void init_sums (int nav_num)

struct nav_hrout_ref *hrOut = &nav_hrout[nav_num];

int ii; /* local counter/index */

for (ii = 0; ii < 3; ii++) [
hrOut->dvi sum[ii] = 0.0;
hrOut->dthc_sum[ii] = 0.0;
hrOut->dvvwcsum[ii] = 0.0;

)

return;

filterdstm-init -- get the next system model matrix
*/

static void filterdstminit (int nav_num)

struct navhrLoc_ref *hrLoc = &navhrLoc[nav_num];

int err,ii,jj;

/* calculate the discrete state transition matrix */

sysmat (nav_num);

for(ii = 0; ii<N_DYN; ii++)
for(jj = 0; jj< N_STAT; jj++)
hrLoc->phil2zd[ii][jj] = hrLoc->fl2_d[ii][jj];

#if 0
/* copy f12 matrix to phil2z */
err = matrix cpy (hrLoc->phil2z, hrLoc->fl2);
if (err) {
/* error handler here, if desired */

#endif

return;

filterustmprp -- auvance uIudLcee system yven -v nu- -1.,

(keeps track of phizl2 only)

static void filterdstmprp (int nav_num)

struct navhrLoc_ref *hrLoc = &nav_hrLoc[navnum];

int ii, jj;
int err;
double tempmtrx[NDYN] [N_ST

/* local indices */
/* local error code buffer */

/* PHIPHI code - calculate phil2 only */

sysmat -- calculate the current state transition matrix
models for instrument states :

index in phil2 state
0-2 gyro bias errors
3-5 accel bias errors
6 accel g**2 error

note: placement in full state vector is 11 plus above index

static void sysmat (int navnum)

struct
struct
struct
struct
struct
struct

nav_hrIn_ref *hrIn = &nav_hrIn[navnum];
nav_hrOut_ref *hrOut = &navhrout[nav_num];
navhrLocref *hrLoc = &navhrLoc[nav_num];
navctlParm_ref *ctlParm = &nav_ctlParm[nav_num];
cmat_ref *dcms = &cmat;
head_ref *hd = &head;

/* NB -- f is transition matrix,
int ii,jj,kk;
double fsqdt;

static
static
static
static

not continuous model matrix */

double tempmtrx[3][3];
double diagmtrx[3][3];
double forcemtrx[3][3];
double ang-vjmtrx[3)[3];

for(ii = 0; ii<3; ii++)
for (iijj = 0; ii < 3; jj++)
if(navnum == 1)

hrOut->c_e_fb[ii][jj] = hd->che[ii][jji];
else if (navnum == 0)

head_trackerPHIPHI_12 (nav_num);
/* new matrix is calculated in phil2x */

/* then we reassign the data portion to phil2z */
for(ii = 0; ii<N_DYN; ii++)

for(jj = 0; jj<N STAT; jj++)
temp_mtrx[ii][jj] = hrLoc->phil2zd[ii][jj];

for(ii = 0; ii<N_DYN; ii++)
for(jj = 0; jj<N STAT; jj++)
hrLoc->phil2z_d[ii][jj] = hrLoc->phil2x_d[ii][jj];

for(ii = 0; ii<NDYN; ii++)
for(jj = 0; jj<N STAT; jj++)
hrLoc->phil2x_d[ii] [jj] = temp_mtrx[ii][jj];

/* phil2z always points to the current phil2 data */

/* get the next system model matrix */
sysmat (nav_num);

return;

hrOut->ce_fb[ii] [jj] = dcms->c_be[ii[jjl;
)

/* set up the fll matrix */
hrLoc->flld[3][7] = - hrLoc->dvi[21;
hrLoc->fll_d[3]18] = hrLoc->dvi[l];
hrLoc->flld[4][8] = - hrLoc->dvil0l;
hrLoc->flld[4][6] = hrLoc->dvi(2];
hrLoc->fll_d[5] [6] = - hrLoc->dvi[l];
hrLoc->flld[5] [7] = hrLoc->dvi[0];
/* diagonals (=1) and top 3 rows stay as initialized */

/* get the latest body-to-ECEF transform matrix */
quatdcm (nav_num);

for(ii = 0; ii<3; ii++)
forcemtrx[ii][ii] = hrLoc->dvvc[ii];

for(ii = 0; ii<3; ii++)
ang_v_mtrx[ii)[ii] = hrLoc->dthc[ii];

/* f12 matrix */
/* gyro bias elements drive attitude error states 6-8 */
for (ii=0O; ii<3; ii++)

for (jj=0O; jj<3; jj++) {
hrLoc->fl2_d[6+ii][jj] = ctlParm->del_thi * hrOut->c_e_fb[ii][jj];

/* gyro scale factor elements drive attitude error states 6-8*/
for (ii=0; ii<3; ii++)

for (jj=0; jj<3; jj++){
tempmtrx[ii][jj] = 0.0;
for (kk = 0; kk<3; kk++) (

temp_mtrx[ii] [jj] += hrOut->c_efb[ii] [kk] * angv..mtrx[kk] [jj];

for (ii=0O; ii<3; ii++)
for(jj=0; jj<3; jj++)
hrLoc->fl2_d[6+ii][3+jj] =

/* accelerometer bias elements
for (ii=0O; ii<3; ii++) {

for (jj=0; jj<3; jj++) {
hrLoc->fl2_d[3+ii [6+jj] =

}

temp_mtrx[ii] [jj];

drive vel error states 3-5 */

ctlParm->del_t_hi * hrOut->c_efb[ii][jjl;

for (ii=0; ii<3; ii++)
for (jj=0O; jj<3; jj++)(

tempmtrx[ii][jj] = 0.0;
for (kk = 0; kk<3; kk++) (

temp_mtrx[ii][jj] += hrOut->c_e_fb[ii) [kk] * force mtrx[kk] [jj];

for (ii=0; ii<3; ii++)
for(jj=0; jj<3; jj++)

hrLoc->fl2_d(3+ii] (9+jj] = temp_mtrx(ii] [jj];

return;

quatdcm -- quaternion (vector format) to direction cosine matrix
(mcconley format)

static void quat_dcm (int navnum)

struct nav_hr0utref *hrOut = &nav_hrOut[navnum];
struct navhrLoc_ref *hrLoc = &navhrLoc[nav_num];

/* NB -- assume that direction cosine matrix is 3x3 */

/* first row */
hrOut->c_e_fb[0][0] = ((hrLoc->q[O] * hrLoc->q[0]) +
(hrLoc->q(l] * hrLoc->q[l]) -

(hrLoc->q[2] * hrLoc->q[2]) -
(hrLoc->q[3] * hrLoc->q[3]));

hrOut->c_e_fb[0][l] = 2.0 * ((hrLoc->q[l] * hrLoc->q[2]) -
(hrLoc->q[0] * hrLoc->q[3]));

hrOut->c_e_fb[0][2] = 2.0 * ((hrLoc->q[l] * hrLoc->q[3]) +
(hrLoc->q[0] * hrLoc->q[2]));

/* second row */
hrout->c_efb[l][01 = 2.0 * ((hrLoc->q[l] * hrLoc->q[21) +

(hrLoc->q[0] * hrLoc->q[3]));

hrout->ce_fb[l][l] = ((hrLoc->q[O] * hrLoc->q[0]) -
(hrLoc->q[l] * hrLoc->q[l]) +

(hrLoc->q[2] * hrLoc->q[2]) -
(hrLoc->q[3] * hrLoc->q[3]));

hrOut->c_e_fb[1][2] = 2.0 * ((hrLoc->q[2] * hrLoc->q[3]) -
(hrLoc->q[0] * hrLoc->q[l]));

/* third row */
hrOut->c_efb[2][0] = 2.0 * ((hrLoc->q[l] * hrLoc->q[3]) -

(hrLoc->q[0] * hrLoc->q[2]));

hrOut->c e_fb[2][1] = 2.0 * ((hrLoc->q[2] * hrLoc->q[3]) +
(hrLoc->q[0] * hrLoc->q[l]));

hrOut->ce_fb[2][2] = ((hrLoc->q[0] * hrLoc->q[0]) -
(hrLoc->q[l] * hrLoc->q[l]) -

(hrLoc->q[2] * hrLoc->q[2]) +
(hrLoc->q[3] * hrLoc->q[3]));

return;

hiratereset -- update the quaternion and
several compensation

hirate_reset -- update the quaternion and several compensation
parameters, using data from low rate

static void hirate_reset (int nav num)

struct nav hrIn_ref *hrln = &nav_hrIn[nav num];
struct nav _hrOut_ref *hr0ut = &navhrOut[nav_num];
struct nav _hrLoc_ref *hrLoc = &nav_hrLoc(nav_num];
struct nav _hrParmref *hrParm = &nav_hrParm[navnum];

double qcomp[4];
int ii;

/* local buffer for compensated quaternion */
/* local counter/index */

hrIn->qCor[01 = 1.0;
for(ii = 0; ii < 3; ii++)
hrIn->qCor[ii+1] = 0.0;

/* calculate the actual compensated values, store in local buffer */
quat_mult (q_comp, hrIn->qCor, hrLoc->q);

/* copy compensated values into output buffer */
for (ii = 0; ii < 4; ii++)
hrLoc->q[ii] = q_comp[ii];

/* update the remaining compensation parameters */
for (ii = 0; ii < 3; ii++)
hrParm->gbias[ii] -= hrIn->gbiasCor[ii];

hrParm->gsfe[0] -= hrIn->gsfe_xCor;
for (ii = 0; ii < 3; ii++)
hrParm->abias(ii] += hrIn->abiasCor(iil;

hrParm->asfe2[0] += hrIn->asfe2_xCor;

/* copy the medium rate reset data for subsequent use */
for (ii = 0; ii < 3; ii++) (
hrOut->rwCor[ii] = hrIn->rwCor[ii];
hrOut->vwCor(ii] = hrIn->vwCor[ii];

/* pass to med rate the time ID matching rw and vw Cor */
hrOut->updatetime = hrIn->update_time;

/* save the timestamp of the reset data (for low rate) */
hrOut->reset_timestamp = hrIn->update time;

return;

StartGpsSum -- calculate the GPS delta velocity sum

static void StartGpsSum (int navnum)

struct nav_hrOut_ref *hrOut = &nav_hrOut[nav_num];
struct nav_hrLoc_ref *hrLoc = &nav_hrLoc[navnum];
struct nav_ctlParm_ref *ctlParm = &nav_ctlParm(navnum];

int ii; /* local counter/index */

/* calculate the time between the previous MMISA interrupt and
the GPS interrupt */

hrLoc->gpsDTime =
hrOut->gpsInterTime - (hrLoc->mmisaInterTime - ctlParm->del_t_hi);

/* calculate the partial delta velocities */
for (ii = 0; ii < 3; ii++) {

/* portion of delta velocity from last high rate to GPS interrupt */
hrLoc->dvi_left(ii] =

(hrLoc->gpsDTime * ctlParm->freqhi) * hrLoc->dvi[ii];

/* note: multiplying by frequency is equivalent to dividing by
the time period, but saves us a division operation */

/* portion of delta velocity from GPS interrupt to current high rate */
hrLoc->dvi_right[ii] = hrLoc->dvi[ii) - hrLoc->dvi_left(ii];

/* calculate delta velocity from last med rate to GPS interrupt */
hrout->dvi_sum_left[ii] = hrOut->dvi_sum[ii] - hrLoc->dvi_right[ii];

return;

/*
head_tracker_PHIPHI_12 -- PHI x PHI code

static void headtrackerPHIPHI_12 (int nav_num)

/* calculates PHI12 = fll x PHI12 + f12 for special case only */

/* declare pointers to the pertinent data areas */
struct navhrLoc_ref *hrLoc = &nav_hrLoc[nav_num];

int ii,jj,kk;

for(ii = 0; ii<9; ii++)
for(jj = 0; jj<12; jj++) {
hrLoc->phil2x_d[ii][jj] = hrLoc->fl2_d[ii][jj];
for(kk = 0; kk<9; kk++)

hrLoc->phil2xd[ii] [jj += hrLoc->fll_d[ii][kk] * hrLoc->phil2z_d[kk][jj];

return;

* sensor_output -- copy compensated sensor data to output buffer

* for use by guidance and control systems
*/

static void sensor_output (int nav_num)

struct nav-hrOut_ref *hrOut = &nav_hrOut[nav_num];
struct navhrLocref *hrLoc = &nav_hrLoc[navnum];
struct navctlParm_ref *ctlParm = &nav_ctlParm[navnum];

int ii; /* local counter/index */

for (ii = 0; ii < 3; ii++) (
hrOut->w_fb-ifb[ii] = hrLoc->dthc[ii] * ctlParm->freq_hi;
hrOut->asenfbfifbii] = hrLoc->dvvc[ii] * ctlParm->freqhi;

/* note: multiplication by frequency is functionally equivalent to
division by time period, but computationally much more efficient */

return;

* FUNCTION NAME: HRReads

* DESCRIPTION: Reads data from the common into HR 'local' variables

* ARGUMENTS:

* RETURNS:

int cycle - cycle number of HR pass that is running

GOOD_RETURN_CODE

t**/

Return_CodeType HRReads (struct mmisaOut_ref *ISAOut, int nav_num)

struct nav_hrInref *hrIn = &nav_hrIn[nav_num];

int ii;

DVlr2hr lr2hr;
DVmr2hr mr2hr;

GetHRIn (&lr2hr, &mr2hr, nav num);

/* get MMISA data for high rate module */
hrIn->MMISAtime = (unsigned long) (sim.t / FET_TOSECONDS);
for (ii = 0; ii < 3; ii++) (
hrIn->accelout[ii] = ISAOut->mmisaAccl[ii];
hrIn->gyroout[ii] = ISAOut->mmisaGyro[ii];

/* note: the accelerometer and gyro outputs (inputs to nav) should

really be funneled through the navIn structure in nav.spec... */

* FUNCTION NAME: HR_Writes

* DESCRIPTION: Writes data from the HR 'local' variables into the common area

* ARGUMENTS:

* RETURNS:

none

GOOD_RETURN_CODE

t*t k *******/*********t*********tt***t**

Return_Code_Type HR_Writes (int nav_num)

struct navhrOut_ref *hrOut = &navhrOut[nav_num];

int ii, jj;

DVhr2lr hr2lr;
DVhr2mr hr2mr;

/* data copies from high rate module to local */

/* data from high rate module to medium rate module */
hr2mr.medValidTime = hrOut->medValidTime;
hr2mr.gpsInterTime = hrOut->gpsInterTime;
hr2mr.gpsUpdateFlag = hrOut->gpsUpdateFlag;
hr2mr.update_time = hrOut->updatetime;

for (ii = 0; ii < 3; ii++) {
hr2mr.dvvwcsum[ii = hrOut->dvvcsum[ii];
hr2mr.dthcsum[ii] = hrOut->dthcsum[ii];

hr2mr.dvisum[ii] = hrOut->dvi_sum[ii];
hr2mr.dvi_sumleft[ii] = hrOut->dvisum_left[ii];
hr2mr.rwCor[ii] = hrOut->rwCorjii];

/* data copies from local to high rate module */

/* data from medium rate module to high rate module */
for (ii = 0; ii < 4; ii++)
hrIn->qpw[ii] = mr2hr.c_pw(ii];

/* data from low rate module to high rate module */
hrIn->update_time = Ir2hr.updatetime;
hrIn->gsfexCor = Ir2hr.gsfe_xCor;
hrIn->asfe2_xCor = Ir2hr.asfe2_xCor;
for (ii = 0; ii < 3; ii++) (
hrIn->rwCor[ii] = Ir2hr.rwCor[ii];
hrIn->vwCor[ii] = Ir2hr.vwCor[ii];
hrIn->gbiasCor[ii) = Ir2hr.gbiasCor[ii);
hrIn->abiasCor[ii] = Ir2hr.abiasCor[ii];
hrIn->qCor[ii] = lr2hr.qCor[ii];

hrIn->qCor[ii] = Ir2hr.qCorlii];
/* (once extra on qCor, to get the fourth element) */

return GOOD_RETURN_CODE;

) /* end HR_Reads */

/**

hr2mr.vwCor[ii] = hrOut->vwCor[ii];
for (jj = 0; jj < 3; jj++)
hr2mr.cefb(ii](jji = hrOut->c_e_fb[ii][jj];

/* data from high rate module to low rate module */
hr2lr.loValidTime = hrOut->loValidTime;
hr21r.gpsInterTime = hrOut->gpsInterTime;
for (ii = 0; ii < N_DYN; ii++)

for (jj = 0; jj < N_STAT; jj++)
hr2lr.phil2z[iil][jj] = hrOut->phil2z[ii][jj];

hr2lr.lastreset-time = hrOut->reset_timestamp;

Put_HR_Out(&hr21lr, &hr2mr, nav_num);

return GOOD_RETURN_CODE;

) /* end HR_Writes */

**

* nav _medrate.h

* Author: Erik Bailey
* Purpose: Defines functions called by other code
* modules.
**

#ifndef NAV_MEDRATE_H_
#define NAV_MEDRATE_H

/* function prototypes called by other .c files */

/* called by navinit.c */
void filter init_med (int nav_num);

/* called by navigation.c */
void DoMedRate (int nav_hum);
ReturnCode_Type MRReads (int navnum);
Return_Code_Type MR_Writes (int nav_num);

#endif /* NAVMEDRATE_H_ */

/* *****************EDIUM RATE
/* NAV MEDIUM RATE */
/*******************/*

* Description: This file contains the functions which comprise the
* medium-rate (nominally 50Hz) component of the precision strike
* navigation system.

*/

#define DEBUGPERFECTNAV 0

#include <math.h>
#include "navFC ref.hl
#include "matrixx.h-
#include "matrix_plus.h"
#include "constsref.h"
#include "WGS84.h'
#include "v_state_ref.h"
#include "simref.h"
#include "nav_ref.h'
#include "return code.h"
#include "navmedrate.h
#include "navdata_vault.h"
#include "T38sens_accel_ref .h
#include "HELMETsens-accel_ref.h"
/* forward declarations */

static
static
static
static
static
static
static
static
static
static
static
static

void
void
void
void
void
void
void
void
void
void
void
void

rotate_dcm (struct matrix_ref *, double, int);
vel_conversion (int nav_num);
nav_init (int nav_num);
grav_init (int navnum);
setup_telemetry (int nav_num);
nav_alg (int nav_num);
med_accum_sums (int nav_num);
addNavHistory (int nav_num);
nav_output (int nav_num);
medrate_reset (int nav_num);
prepGpsMeasmt (int nav_num);
receiver_aid (int nav_num);

/* external references */
extern int matrix_err_handler (int code, int src);

#define Square(X) ((X)*(X))

/*

note: Included in the data passed from the high rate group to the
medium rate group is the body-to-ECEF transformation matrix, c e fb.
In the high rate group, this data is treated as a simple two
dimensional array, and is stored as such in the output section of
the high rate shared variable area. It is copied into a similar two
dimensional array in the medium rate input section. However, the
medium rate processing uses this data as a matrix, and performs

* filter_init_med -- initialization of medium rate group data
* storage entities

void filter_inittmed (int nav_num)

/* pointers to. shared data area */
struct nav_mrIn_ref *mrIn = &nav_mrIn[nav_num];
struct nav_mrOut_ref *mrOut = &navmrOut[nav_num];
struct navmrLocref *mrLoc = &nav_mrLoc[nav_num];
struct nav_mrParmref *mrParm = &nav_mrParm[nav_num];
struct nav_ctlLocref *ctlLoc = &nav_ctlLoc[navnum];
struct nav_ctlParm ref *ctlParm = &nav_ctlParm[nav_num];

struct
struct
struct
struct
struct

cvars_ref *cv = &cvars;
cmat_ref *dcms = &cmat;
st_vector_ref *sv = &st_vector;
T38Truth_ref *Ttruth = &T38Truth;
HELMETTruth_ref *Htruth = &HELMETTruth;

/* Local Variables*/
int ii, jj; /*
double alt; /*
double lat, lon; /*
double rref[3]; /*

int err; /*

local counter/index */
local buffer for altitude */
local buffers for latitude, longitude (dummy) */
local buffer for aimpoint position */
buffer for error code */

mrLoc->recaid_count = 0;
mrLoc->timeLastGps = 0.0;
mrLoc->stepchange = 0;

/* initialize output and local state variables */
mrLoc->restartMedRateFlag = 0;
if(nav_num == 0)

for (ii = 0; ii < 3; ii++)
mrOut->dvi_sum med[ii] = 0.0;

matrix operations on the data using the matrix library functions.
In order to rectify the references, the solution chosen was as
follows:

a) define a 2D array named c_e fb in the high rate output data area

b) define a 2D array named cefb d in the medium rate input data area

c) define a matrix entity named c_e_fb in the medium rate local data
area

d) within the matrix entity named c_e_fb, reference the input data
c_e_fb_d as the associated data storage for the matrix

Using this design, the data is element-wise copied from the high
rate output section to the medium rate input section, and
subsequently referenced within the medium rate code as a matrix
entity.

mrOut->dvisum_sum[ii] = 0.0;
mrLoc->dvis[ii] = 0.0;
mrLoc->dvi ss[ii] = 0.0;
mrOut->vwGpsTime[ii] = 0.0;
mrLoc->r0[ii] = Ttruth->R_ecef(ii];
mrLoc->rw(ii] = 0.0;
mrLoc->vw[ii] = Ttruth->Rdot_ecef [ii];
mrLoc->accel sum[ii] = 0.0;
mrLoc->gyro_sum[ii] = 0.0;

else if(nav num == 1)
for (ii = 0; ii < 3; ii++)

mrOut->dvisummed[iil = 0.0;
mrOut->dvi_sum-sum[ii] = 0.0;
mrLoc->dvi s(ii] = 0.0;
mrLoc->dvi_ss[ii] = 0.0;
mrOut->vwGpsTime[ii] = 0.0;
mrLoc->r0[ii] = Htruth->R_ecef[ii] + mrIn->init _perr(ii];
mrLoc->rw[ii] = 0.0;
mrLoc->vw[ii] = Htruth->Rdotecef[ii) + mrIn->init_verr[ii];
mrLoc->accel_sum[ii] = 0.0;
mrLoc->gyro_sum[ii] = 0.0;

if (mrOut->hist_len > MAX_NAV_HIST) {
/* error handler here, if desired */
mrOut->hist len = MAX_NAV_HIST;

else if (mrOut->hist_len <= 0) {

/* error handler here, if desired */
mrOut->histlen = 1;

mrOut->histlast = -1;
mrOut->histfull = 0;

/* intialize the matrix/vector entities */
err = init_vector (mrLoc->ge, 3, (MATRIX_P) mrLoc->g_e_d);
if (err) (
matrixerr_handler (err, MR_INIT);

err = initvector (mrLoc->g_fb, 3, (MATRIXP) mrLoc->g fb d);

if (err) (
matrixerrhandler (err, MRINIT);

err = init matrix (mrLoc->ce_1n, 3, 3,

mrLoc->c_eln_dp, (MATRIXP) mrLoc->c_eln_d);
if (err) (
matrix-errhandler (err, MR INIT);

err = init matrix (mrLoc->cln_fb, 3, 3,
mrLoc->c_1n_fbdp, (MATRIX_P) mrLoc->c_ln_fb_d);

if (err) C
matrix-err handler (err, MR_INIT);

err = init matrix (mrLoc->ce_fb, 3, 3,
mrLoc->c_e fbdp, (MATRIX_P) mrIn->c_efb d);

if (err) {
matrix err_handler (err, MR_INIT);

/* calculate the fore-body-to-sensor rotation matrix */
for (ii = 0; ii < 3; ii++) {

for (jj = 0; jj < 3; jj++) {
if (ii == ji)

mrLoc->cs_fb[ii][jj] = 1.0;
else

mrLoc->c s_fb[ii] [jj] = 0.0;

/* initialize remaining local variables */

mrLoc->restartMedRateFlag = 0;
mrLoc->timeNavMode = 0.0;
mrLoc->nwt = 0.0;
mrLoc->slt = cv->slat;
mrLoc->clt = cv->clat;
mrLoc->sln = cv->slon;
mrLoc->cln = cv->clon;
mrLoc->lat = sv->latitude;
mrLoc->lon = sv->longitude;
mrLoc->alt = -sv->z;
mrLoc->tResetPrev = 0.0;

for (ii = 0; ii < 3; ii++) (
mrLoc->rwprev[ii] = 0.0;
mrLoc->vw prev[ii] = 0.0;
mrLoc->g0[ii] = 0.0;
mrLoc->grv[ii] = 0.0;
mrLoc->rrr[ii] = 0.0;
mrLoc->dvis[ii] = 0.0;
mrLoc->dvi_ss[ii] = 0.0;
mrLoc->rwCorPrev[ii] = 0.0;
mrLoc->vwCorPrev[ii) = 0.0;
mrLoc->rwDeltaCor[ii] = 0.0;
mrLoc->vwDeltaCor[ii] = 0.0;
mrLoc->wfb-i-s[ii] = 0.0;
mrLoc->afbi-s[(ii] = 0.0;

for (jj = 0; jj < 3; jj++)
mrLoc->gamma0[ii [jj] = 0.0;

/* initialize remaining output variables */
mrOut->modeFlag = Navigate;
mrOut->gdc_rdy = 0;
mrOut->time = 0.0;
mrOut->altitude = 0.0;
mrOut->speed = 0.0;

for (ii = 0; ii < MAXNAV-HIST; ii++) {
mrOut->navhistory[iil->time = 0.0;

for (jj = 0; jj < 3; jj++) (
mrOut->nav_history[ii]->pos[jj] = 0.0;
mrOut->nav_history(ii]->vel[jj]

=
0.0;

if(navynum == 0)(
for (ii = 0; ii < 3; ii++)
mrOut->pos0[ii] = 0.0;
mrOut->p_fb_ee[ii] = Ttruth->R_ecef(ii);
mrout->v_fb_ee[ii] = Ttruth->Rdot_ecef[ii];
mrOut->v_fb_e fb[ii] = 0.0;
mrOut->e_fb_ln[ii] = 0.0;
mr0ut->w_fb_i_fb[ii) = 0.0;
mr0ut->afb_i_fb[ii] = 0.0;
mrOut->g-fb[ii] = 0.0;

for (jj = 0; jj < 3; jj++) (
mrOut->cfb_e[ii] [jj] = 0.0;
mrOut->cfb_ln(ii [jj(= 0.0;

else if(nav_num == 1){
for (ii = 0; ii < 3; ii++) {
mr0ut->pos0[ii] = 0.0;
mr0ut->pfbee[ii] = Htruth->Recef[ii];
mrout->vfbe-_e[ii] = Htruth->Rdot_ecef[ii];
mr0ut->v_fb_e_fb[ii] = 0.0;
mrOut->e-fbln[ii] = 0.0;
mr0ut->wfb_i_fb[ii] = 0.0;
mrOut->afbifb[ii) = 0.0;
mrOut->gfb[ii] = 0.0;

for (jj = 0; jj < 3; jj++) {
mrOut->cfb_e[ii][jj] = 0.0;
mrOut->c fb_ln[ii] [jj] = 0.0;

for (ii = 0; ii < 4; ii++)
mrOut->q.pw[ii] = dcms->qb_e[ii];

return;

* rotatedcm -- apply a rotation to existing direction cosine matrix

static void rotate_dcm (struct matrix_ref *dcm, double angle, int axis)

/* axis code: 1 = x-axis, 2 = y-axis, 3 = z-axis (Euler convention) */

double in_data[3] [31;
double xform[3][3];
int ii, jj, kk;

/* buffer for input data */
/* buffer for transformation matrix */
/* local counter/index */

/* copy data to input array */
for (ii = 0; ii < 3; ii+) (

for (jj = 0; jj < 3; jj++) (
in_data[ii][jj] = dcm->data[ii][jj];

/* populate transformation matrix */
switch (axis) (
case 1: /* x-axis */

xform[0][0] = 1.0;
xform[0] [11 = 0.0;
xform[0] [2] = 0.0;
xform[l] (0] = 0.0;
xform[l1(11 = cos (angle);
xform[l][2] = sin (angle);
xform[2] [0] = 0.0;
xform[2] [11 = - sin (angle);
xform[2] [2] = cos (angle);
break;

case 2: /* y-axis */
xform[0] [0] = cos (angle);
xform[0][l] = 0.0;
xform[0] [2] = - sin (angle);
xform[l] [0] = 0.0;
xform[l] [1] = 1.0;
xform[l][2] = 0.0;
xform(2 [0] = sin (angle);
xform[2] [1] = 0.0;
xform[2][2] = cos (angle);
break;

case 3: /* z-axis */
xform[0][0] = cos (angle);
xform[0] [1] = sin (angle);
xform[0] [2] = 0.0;
xform[l] [0) = - sin (angle);
xform[l] [1] = cos (angle);
xform[l] [2] = 0.0;
xform[2] [0] = 0.0;
xform[2] [1] = 0.0;
xform[2][2] = 1.0;
break;

default:
/* if an illegal axis is specified, do nothing */
return;
break;

/* calculate new matrix, write to dcm structure */
for (ii = 0; ii < 3; ii++) {

for (jj = 0; jj < 3; jj++)
dcm->data[ii] [jj] = 0.0;
for (kk = 0; kk < 3; kk++) {

dcm->data[ii][jji += (xform[ii][kk] * in_data[kk][jj]);

DoMedRate -- executive for medium rate processing module; primary
entry point for medium rate processing, called from rate group
control module

void DoMedRate (int nav_num)

/* pointers to shared data area */
struct navmrIn_ref *mrIn = &navmrIn[nav_num];
struct navmrOut_ref *mrOut = &nav mrOut(navnum];
struct nav mrLoc-ref *mrLoc = &nav_mrLoc[nav_num];
struct nav mrParm_ref *mrParm = &navmrParm[navnum];
struct nav ctlLoc_ref *ctlLoc = &nav_ctlLoc[nav num];
struct navctlParmrref *ctlParm = &nav_ctlParm[nav_num];

int ii;

/* execute the navigation algorithm */
nav_alg (nav_num);
addNavHistory (nav num);

/* if necessary, reinitialize the medium rate accumulator registers */
if (mrLoc->restartMedRateFlag) I
mrLoc->restartMedRateFlag = 0;
for (ii = 0; ii < 3; ii++)
mrLoc->dvis[ii] = 0.0;
mrLoc->dviss[ii] = 0.0;

/* accumulate the sums */
med_accum_sums (nav_num);

/* if we've received a GPS update... */
if (mrIn->gpsUpdateFlag)

/* record the time */
mrLoc->timeLastGps = mrIn->medValidTime;
/* IrOut->updateTime = mrLoc->timeLastGps;--needs to be done in lorate */

/* add position/velocity corrections from low rate Kalman filter */
medratereset (nav_num);

/* record reset time for guidance */
mrLoc->tResetPrev = mrIn->updatetime;

mrLoc->step_change = 1;
mrLoc->restartMedRateFlag = 1;

/* compute velocity at time of GPS interrupt */
prepGpsMeasmt (navnum);
for (ii = 0; ii < 3; ii++)
mrOut->dvi_sum_med[ii] = mrLoc->dvis[ii];
mrOut->dvi_sumsum(ii] = mrLoc->dvi_ss[ii];

/* note: the cumulative sums of dvi are copied here to stable
locations, for subsequent copy to the low rate module; the
cumulative sums are complete only at time of an interrupt,
from the perspective of the low rate module */

/* prep data for output to guidance system */
nav_output (nav_num) ;

/* send out the GPS receiver aiding data once every fifth medrate call */
if (++mrLoc->rec_aid_count >= mrParm->rcvr_aid_freq) (
receiver aid (navnum);
mrLoc->rec_aid_count = 0;

/* prep the output data for telemetry */
setup_telemetry (nav_num);

return;

nav_init -- initialize the navigation algorithm data, using the
first GPS data

static void nav_init (int navnum)

/* pointers to shared data area */
struct nav_mrIn_ref *mrIn = &navmrIn[nav_num];
struct nav_mrLoc_ref *mrLoc = &nav_mrLoc[navnum];
struct nav_mrParm_ref *mrParm = &nav_mrParm(navnum];

int ii; /* local counter/index */
double time_sincepvt; /* delta time since first GPS message */

/* note: Due to considerations of dynamic range in the
representation of floating point numbers, the position vector has
been divided into two components. The fixed component, rO, is
the position at the first valid GPS data. The other component,
rw, is the subsequent offset from rO. */

/* calculate the delta time since GPS PVT data was valid */
timesincepvt = mrIn->medValidTime - mrIn->gpsInterTime;

/* get the GPS position data */
for (ii = 0; ii < 3; ii++)
mrLoc->r0[ii] = mrIn->GPS_pos[ii] * M2FT;

/* mrLoc->vw[ii] calculated in velconversion */
velconversion (nav_num);

/* extrapolate to the current time (arbitrarily use rw[I for storage) */

for (ii = 0; ii < 3; ii++)
mrLoc->rw(ii] = timesince_pvt * mrLoc->vw[ii];

/* (may not need this...) */

mrLoc->nwt = mrParm->mu / (mrParm->r-e * mrParm->r_e * mrParm->r_e);

/* initialize the gravity vector data */
grav_init (navnum);

return;

velconversion -- converts initial gps velocity (LL-ENU frame)
to ECEF frame velocity

static void velconversion (int nav_num)

struct nav_mrIn_ref *mrIn = &navmrIn[navnum];
struct navmrLocref *mrLoc = &navmrLoc[nav_num];

int ii, ji;
double xx, xxx;
double rri, pri;
double slt, clt;
double sln, cln;
double c enuw[3][31];

/* local counter indices */
/* local computation buffers */
/* length, projected length of velocity vector */
/* sine/cosine of latitude */
/* sine/cosine of longitude */
/* direction cosine matrix, ENU to ECEF */

xx = Square (mrIn->GPSpos[0] * M2FT) + Square (mrIn->GPS_pos[l)] M2FT);
xxx = xx + Square (mrIn->GPSpos[2] * M2FT);
rri = sqrt (xxx);
pri = sqrt (xx);
slt = mrIn->GPSpos[2] * M2FT / rri;
clt = pri / rri;
sln = mrIn->GPSpos[l] * M2FT / pri;
cln = mrIn->GPS_pos[0] * M2FT / pri;

/* create direction cosine matrix, LL-ENU to ECEF frame */
cenuw[0][1] = - slt * c1n;
cenu_w[0] [0] = - sln;
c enuw[0] [2] = clt * cln;
c enuw[l[l]1 = - slt * sln;
c enuw[l] (0] = c1n;
c-enuw[l][2] = clt * slin;
cenuw[2] [1] = clt;
c enu_w[2] [0] = 0.00;
c_enu_w[2)[2] = slt;

/* calculate the transformed velocity vector */
for (ii = 0; ii < 3; ii++)
mrLoc->vw[ii] = 0.0;
for (jj = 0; jj < 3; jj++)
mrLoc->vw[ii] += cenu w[ii][jj] * mrIn->GPS_vel[jj] * M2FT;

return;

grav_init -- from rO, calculate gO and gg0 for gravity calculation

static void grav_init (int navnum)

struct navmrLoc_ref *mrLoc = &navmrLoc[navnum];
struct nav_mrParm_ref *mrParm = &navmrParm[nav_num];

double rmag, rmag_sq;
double ww, ff;
int ii, jj;

/* magnitude, squared magnitude of position */
/* local calculation buffers */
/* local counters */

/* calculate the squared magnitude of the position vector */
rmag_sq = (mrLoc->r0[01 * mrLoc->r0[01) +

(mrLoc->rO[l] * mrLoc->r0[11]) + (mrLoc->r0[2] * mrLoc->r0[2]);

/* calculate the
/* (should be double precision operation...) */
rmag = sqrt (rmagsq);

ww = mrParm->mu / (rmagsq * rmag);
for (ii = 0; ii < 3; ii++)
mrLoc->g0[ii] = ww * mrLoc->r0[ii];

ff = 3.0 * ww / rmag_sq;
for (ii = 0; ii < 3; ii++)

/* set the basic values */
for (jj = 0; jj < 3; jj++)
mrLoc->gamma0[ii][jj] = - ff * mrLoc->r0[ii] * mrLoc->r0[jj];

/* augment the diagonal terms */
mrLoc->gamma0[ii] [ii] += ww;

return;

setup_telemetry -- prep the gyro and accelerometer summations
for output through the telemetry stream (bounded)

static void setup_telemetry (int nav_num)

struct nav_mrIn_ref *mrIn = &navmrIn[nav_num];
struct nav_mrLoc_ref *mrLoc = &navmrLoc[nav_num];

int ii; /* local counter */

#define GYROSUM_BOUND 6300.0
#define ACCELSUM_BOUND 120.0

/* cycle through the three axes... */
for (ii = 0; ii < 3; ii++) (

/* calculate cumulative gyro sum with threshold */

mrLoc->gyro sum[ii) += mrIn->dthc_sum[ii];
while (mrLoc->gyro_sum[ii] > GYRO_SUM_BOUND)
mrLoc->gyrosum[ii] -= GYROSUM_BOUND;

while (mrLoc->gyro_sum[ii] < (- GYRO_SUM_BOUND))
mrLoc->gyro_sum[ii] += GYROSUMBOUND;

/* calculate cumulative accel sum with threshold */
mrLoc->accel_sum[ii] += mrIn->dvvc_sum[ii];
while (mrLoc->accel_sum[ii) > ACCELSUM_BOUND)
mrLoc->accel sum[ii] -= ACCEL_SUMBOUND;

while (mrLoc->accelsum[ii] < (- ACCELSUM_BOUND))
mrLoc->accelsum[ii] += ACCELSUMBOUND;

return;

nav_alg -- primary navigation algorithm

static void navalg (int nav_num)

/* pointers to shared data area */
struct nav_mrIn_ref *mrIn = &nav_mrIn[nav_num];
struct nav mrLocref *mrLoc = &navmrLoc[navnum];
struct nav_mrParm_ref *mrParm = &nav_mrParm[nav_num];
struct nav ctlParm_ref *ctlParm = &nav_ctlParm[nav_num];

/* Computation Gravity Vector in Geocentric Coordinates */

/* in addition to apparent forces and position/velocity integration */

int ii,jj; /* counter */

double R_geo.sq = mrLoc->R_geoc * mrLoc->R_geoc;
double RedivR; /* Radius of Earth devided by local

double Re_div_Rsq;

/* pre-calc of square of cos(lat) to
* to save time in P([] and gO[] calcs

double clt_sq = mrLoc->clt * mrLoc->clt;

/* pre-calc of cube of cos(lat) to
* save time in P[] and gO[] calcs
*/

double clt-3 = clt-sq * mrLoc->clt;

/* preset of geocentric gravity */

double g0_geoc[3] = (0.0, 0.0, -32.179);

double we;

dist to Earth's Ctr. */

/* earth angular velocity */

/* save the previous values "/
for (ii = 0; ii < 3; ii++)
mrLoc->rw prev[ii] = mrLoc->rw[ii];
mrLoc->vw_prev[ii] = mrLoc->vw[ii];

1* Sum up higher order terms which include J[k] and P[k].

This particular formulation goes to 4th order term as
taken from Britting, K. "Inertial Navigation Systems Analysis"
for G[r] this is not a problem, since the P[k] terms are unaffected

by the gradient operator (see Britting)--thus the use of the for loop

as a summation after initializing G[2]. However, for the G[phi]

term, the P[k] terms are altered by the gradient, so the entire
function is written out below as G[O].

*/

g0_geoc[2] = -1.0 * (mrParm->mu / R_geosq);

for (ii=l;ii<4;ii++) (
g0_geoc[2] = g0_geoc[2] +

(((double) (ii+2)) * mrParm->J[ii) *
pow((mrLoc->Rgeoc / physics.Req), (double) (ii+l)) *
mrLoc->P[ii]);

Re_div_R = physics.Req / mrLoc->R_geoc;
Re_div_R_sq = Re_div_R * Re divR;

g0_geoc[0] = (double) -3.0 *
((mrParm->mu/R_geo_sq)*
RedivR_sq * mrLoc->slt * mrLoc->clt *
(mrParm->J[l] + 0.5 *
(mrParm->J[2] * RedivR / mrLoc->clt * (5.0*clt_sq-l.0)) +
((5.0/6.0)*mrParm->J[31* Re_divR_sq * ((7.0*clt_sq-3.0)))));

gOgeoc[l] = 0.0;
#endif

/* *** Compute ECEF Gravity Vector *** */

mrLoc->g0[0 = -(mrLoc->slt*mrLoc->cln)*g0 geoc[0] + mrLoc->clt*gOgeoc[21;

mrLoc->g0[l] = -mrLoc->sln*g0_geoc(0];
mrLoc->g0[2] = -(mrLoc->clt*mrLoc->cln)*g0_geoc[0] -

mrLoc->clt*mrLoc->sln*g0_geoc[l] - mrLoc->slt * g0_geoc[2];

#if 0
/* set magnitude of the position from the Earth's Center using ECEF coords */
if(nav_ctlLoc.med_cnt < 1)
mrLoc->Rgeoc = sqrt((mrLoc->r0[0]*mrLoc->r0[0]) +

(mrLoc->r0[1]*mrLoc->r0[1]) +
(mrLoc->r0[2]*mrLoc->r0 [2]));
else

mrLoc->R_geoc = sqrt((mrLoc->rw[0]*mrLoc->rw[0]) +
(mrLoc->rw[l]*mrLoc->rw[l]) +
(mrLoc->rw[2]*mrLoc->rw[2]));

R_geo_sq = mrLoc->R_geoc * mrLoc->Rgeoc;

/* Calculate the Pk terms (dependend on latitude)
* equations from Britting, K. "Inertial Navigation Systems Analysis"
*/

mrLoc->P[O] = 1.0;
mrLoc->P[l] = 0.5*(3.0*clt_sq)-1.0;
mrLoc->P[2] = 0.5*(5.0*clt_3)-(3.0*mrLoc->clt);
mrLoc->P[3] = 0.125*((35.0*clt_3*mrLoc->clt)-(3.0*clt_sq)+3.0);

/* calculate apparent forces in rotating w frame */

for(ii = 0; ii<3; ii++)
mrLoc->G-vTerm[ii) = mrLoc->g0[ii] * ctlParm->del_t_med;

we = nav_hrParm[navnum].we; /* (local copy of high rate parameter value) */

mrLoc->rrr[0] = we * ctlParm->del_t_med *
(- we * (mrLoc->rw_prev[O] + mrLoc->r0[0]) -
(2.0 * mrLoc->vw_prev[l]));

mrLoc->rrr[l] = we * ctlParm->del_t_med *
(- we * (mrLoc->rwprev[l] + mrLoc->r0[l]) +
(2.0 * mrLoc->vwprev[0]));

mrLoc->rrr[2] = 0.0;

/* calculate earth relative vel and pos in w frame '/
for (ii = 0; ii <= 2; ii++) {

mrLoc->vw[ii) += (mrIn->dvisum[ii] + mrLoc->G_vTerm[ii] - mrLoc->rrr[ii]);
mrLoc->rw[ii] += (ctlParm->del_t_med * 0.5 * (mrLoc->vw[ii]+mrLoc-

>vwprev[iil));

return;

med_accum_sums -- medium rate accumulation of delta velocity sums

static void med_accum_sums (int navnum)
{
/* pointers to shared data area */
struct nav_mrIn_ref *mrIn = &navmrIn[nav_num];
struct nav_mrOut_ref *mrOut = &nav_mrOut[nav_num];
struct nav_mrLoc_ref *mrLoc = &navmrLoc[nav_num];
struct nav_mrParm_ref *mrParm = &nav_mrParm[nav_num];
struct nav_ctlLocref *ctlLoc = &nav_ctlLoc[navnum];
struct nav _ctlParm_ref *ctlParm = &nav_ctlParm[navnum];

int ii;

for (ii = 0; ii < 3; ii++)

/* accumulate the delta velocities over the GPS period */
mrLoc->dvi_s[ii] += mrIn->dvi_sum[ii];

/* also accumulate the sum of the sums */
mrLoc->dvi_ss[ii] += mrLoc->dvi_s[ii];

return;

/ dd H y -- ppend n g n d e he h y y
addNavHistory -- append a navigation data set to the history array

static void addNavHistory (int nav_num)

/* pointers to shared data area '/
struct nav mrInref *mrIn = &navmrIn[navnum];
struct navmrOut_ref *mrOut = &nav_mrOut[navnum];
struct navmrLoc_ref *mrLoc = &navmrLoc[nav_num];
struct nav_mrParm_ref *mrParm = &nav_mrParm[nav_num];
struct nav_ctlLoc_ref *ctlLoc = &nav_ctlLoc[nav_num];
struct navctlParm_ref *ctlParm = &nav_ctlParm[nav_num];

static int hist_lenprev;
struct nav_histref *nav_el;
int ii;
int first_time;

/* memory of previous length parameter */
/* pointer to history element */
/* local counter/index */
/* flag used for setting offset position */

/* it is permissible to dynamically change the size of the circular
buffer; however, to ensure data consistency, the buffer will be
flushed when the size is changed */

if (hist_len_prev != mrOut->hist_len) {

/* sanity checks */
if (mrOut->hist_len > MAXNAV_HIST) {
/* error handler here, if desired */
mrOut->hist_len = MAX_NAV._HIST;

else if (mrOut->hist_len <= 0) {
/* error handler here, if desired */
mrOut->hist_len = MAX_NAV_HIST;

/* reinitialize parameters */
mrOut->hist_last = -1;
mrOut->histfull = 0;

/* remember this new size */
hist_len_prev = mrOut->hist_len;

/* is this the first entry in the buffer? */
if (mrOut->hist_last == -1)

first_time = 1;
else

first_time = 0;

/* calculate the buffer index */
mrout->hist_last++;

/* if we get to the end of the buffer, circle around */
if (mrOut->hist_last >= mrout->hist_len) {
mrOut->hist_last = 0;
if (mrOut->hist_full == 0)
mr0ut->hist_full = 1; /* mark it full

/* now that the index is set, we'll actually load the data */
nav_el = mrOut->nav_history[mrOut->hist_last];
nav_el->time = mrIn->medValidTime;
for (ii = 0; ii < 3; ii++) {

if (first time)
mrOut->pos0[ii] = mrLoc->r0[ii];

navel->pos[ii] = mrLoc->rw[ii];
nav_el->velfiil = mrLoc->vw[ii];

nav_output -- copy calculated data to output buffer area for use by
guidance subsystem

static void nav output (int navnum)

/* pointers to shared data area */
struct navmrIn_ref *mrIn = &nav_mrIn[nav_num];
struct nav_mrOut_ref *mrOut = &navmrOut(nav_num];
struct nav_mrLocref *mrLoc = &nav_mrLoc[navnum];
struct nav_mrParm_ref *mrParm = &nav mrParm(nav_num];
struct nav_ctlLoc_ref *ctlLoc = &nav_ctlLoc[nav_num];
struct navctlParm_ref *ctlParm = &nav_ctlParm[nav num];

int ii, jj;
int err;
double xx, xxx;
double pri, rri;
double vxx;
MATRIX PP c tmp_data;
double lambda;
double cl, sl;
double mu;
double cm, sm;

local counter/index */
local error code buffer */
projection/radius squared (calculation buffer) */
projection/radius */
velocity squared (calculation buffer) */
local pointer to matrix data */
??? angle */
cosine/sine of lambda */
??? angle */
cosine/sine of mu */

/* compare time of current position and velocity corrections
to those used in the most recent navigation reset. If current

corrections are more recent, adjust guidance outputs so that they

reflect the additional accuracy */

mrLoc->dtGuidCor = mrIn->tIdGuidCor - mrLoc->tResetPrev;

if (mrLoc->dtGuidCor > 0.5e0) (
/* guidance corrs refer to later filter timethan last nav rest */
for (ii = 0; ii < 3; ii++) (

mrLoc->rwDeltaCor[ii] = mrIn->rwGuidCor[ii];
mrLoc->vwDeltaCor[ii] = mrIn->vwGuidCor[ii];

else if (mrLoc->dtGuidCor > 1.0e-6) {
/* last nav reset refers to same filter time as guid corrs */

for (ii = 0; ii < 3; ii++) (
mrLoc->rwDeltaCor[ii] = mrIn->rwGuidCor[ii] - mrLoc->rwCorPrev[ii];
mrLoc->vwDeltaCor[ii] = mrIn->vwGuidCor[ii] - mrLoc->vwCorPrev[ii];

else(
/* guid coors are same as nav resets */
for (ii = 0; ii < 3; ii++) {

mrLoc->rwDeltaCor[ii] = 0.OeO;
mrLoc->vwDeltaCor[ii] = 0.OeO;

/* copy the navigation system time (for guidance and control) */
mrOut->time = mrIn->medValidTime;

/* note: multiplying by the frequency is the same as dividing by the
time period, and it avoids multiple division operations */

/* angular velocity and acceleration, in sensor frame */
for (ii = 0; ii < 3; ii++) {
mrLoc->w_fb_i_s[ii] = mrIn->dthc_sum[ii] * ctlParm->freqmed;
mrLoc->a_fb_i_s[ii] = mrIn->dvvwc_sum[ii] * ctlParm->freqmed;

/* transform to fore-body frame */
for (ii = 0; ii < 3; ii++) {
mrOut->w_fb_i_fb[ii] = 0.0;
mrOut->a_fb_i_fb[ii] = 0.0;
for (jj = 0; jj < 3; jj++) {
mrOut->w_fb_i_fbtii] += mrLoc->c_sfb[jj] [ii] * mrLoc->w_fb_i_s[jj];
mrOut->a_fb_i_fb[ii] += mrLoc->c_s fb(jjl(ii] * mrLoc->a_fb_i_sfjj];

#if 0
/* if we're in down determination mode, don't do anything else */
if (mrOut->modeFlag == Down_Det) {
mrout->gdc_rdy = 0;
return;

#endif
/* if we got here, then we're in Navigate mode */
mrOut->gdc_rdy = 1;

/* position and velocity outputs */
/* use guidance delta corrections */
for (ii = 0; ii < 3; ii++)
mrOut->p_fbe_e [ii] =

mrLoc->rw[ii] + mrLoc->r0[ii] - mrLoc->rwDeltaCor[ii];
mrOut->v_fb e_e(ii] = mrLoc->vw[ii] - mrLoc->vwDeltaCor[ii];

/* calculate gravity vector in body frame */
err = MTv (mrLoc->g_fb, mrLoc->c_efb, mrLoc->g_e);
if (err) (
/* error handler here, if desired */

/* (cfbe used instead of c e_fb, per 20 feb 96 memo by Dowdle) */

for (ii = 0; ii < 3; ii++) {
for (jji = 0; jj < 3; jj++) {
mrout->c_fb_e[ii] [jj] = mrIn->c_e_fb_d[jj] [ii];

)

/* outputs for autopilot */
/* calculate roll, pitch, and yaw angles '/

xx = Square (mrOut->p_fb_e_e([O) + Square (mrOut->p_fb_e_e(l]);
xxx = xx + Square (mrOut->p_fb_e_e[2]);
rri = sqrt (xxx);
pri = sqrt (xx);
mrLoc->slt = mrOut->p_fbee[2] / rri;
mrLoc->clt = pri / rri;
mrLoc->sln = mrOut->p_fb.e_e[l] / pri;
mrLoc->cln = mrOut->p_fb_e_e[0] / pri;

c_tmp_data = mrLoc->c_e_ln->data;
c_tmpdata[0]
ctmpdata[0]
c_tmp_data[0]
c tmp_data(l]
ctmpdata[l]
c tmp_data[l]
ctmpdata[2]
ctmpdata[2]
ctmp_data[2]

= - mrLoc->slt * mrLoc->cln;
= - mrLoc->sln;
= - mrLoc->clt * mrLoc->cln;
= - mrLoc->slt k mrLoc->sln;
= mrLoc->cln;
= - mrLoc->clt * mrLoc->sln;
= mrLoc->clt;
= 0.0;
= - mrLoc->slt;

/* calculate the transformation matrix for body to LL-NED */
err = MTM (mrLoc->c_ln fb, mrLoc->c_e_1n, mrLoc->ce_fb);
if (err) (
/* error handler here, if desired */

/* attitude angles */
c tmp_data = mrLoc->c_ln_fb->data;
mrOut->e-fb_1n[l] = - asin (ctmp_data[2][01);
mrOut->efbln[2] = atan2 (c_tmp_data[l] [0], ctmp data[0] (0]);
mrOut->e-fb_n[0]) = atan2 (c_tmp_data[2][1], ctmp-data[2])[2]);

/* pitch V/
/* yaw */
/* roll */

/* calculate the lat/lon/alt form of the current vehicle position */
RectangularToGeodetic (&mrLoc->lat, &mrLoc->lon, &mrLoc->alt, mrOut->p_fb_e_e);

/* calculate output altitude, relative to mean sea level */
mrOut->altitude = mrLoc->alt;

/* speed */
vxx = 0.0;
for (ii = 0; ii < 3; ii++)
vxx += Square (mrLoc->vw[iil);

mrOut->speed = sqrt (vxx);

/* transform output to guidance frame */

/* transform the fore-body velocity vector in the fore-body frame */
for (ii = 0; ii < 3; ii++) (
mrOut->v_fb-e-fb[ii] = 0.0;
for (jj = 0; jji < 3; jj++) f
mrOut->vffbe.fb[lii] += (mrOut->c_fb_e(ii)[jj] * mrout->vfb_e_e[jj]);

/* feed through the quaternion from body to ecef as calcualted by hirate */
/* Mod by E. Bailey 4/4/00 */
for(ii=0; ii<3; ii++)

mrOut->qpw[ii] = mrIn->q_pwInit[ii];

/* feed through the gravity vector as calculated by navalg()
* converted by the calculated DCM c_fb_e, transposed */

for(ii=0; ii<3; ii++)(
mrOut->g_fb[ii] = 0.0;
for(jj=0; jj<3; jj++)

mrout->gfb[ii] += mrOut->c_fb_e[jj] [ii] * mrLoc->g0[jj];
)

medrate_reset -- add the position and velocity corrections from
the low rate filter

static void medratereset (int nav num)

/* pointers to shared data area */
struct nav_mrIn_ref *mrIn = &nav_mrIn[navnum];
struct
struct
struct
struct
struct

nav_mrOut_ref *mrOut = &nav_mrOut[nav_num];
nav _mrLoc_ref *mrLoc = &nav_mrLoc[navjnum];
nav_mrParm_ref *mrParm = &nav mrParm[navnum];
nav_ctlLocref *ctlLoc = &nav ctlLoc[nav_num];
navctlParm_ref *ctlParm = &nav_ctlParm[nav_num];

int ii, jj; /* local counter/index */
struct nav_hist_ref *nav_el; /* pointer to history element */

/* apply corrections to position and velocity */
for (ii = 0; ii < 3; ii++) {
mrLoc->rw[ii] -= mrIn->rwCor[ii];
mrLoc->vw[ii] -= mrIn->vwCor[ii];
mrLoc->vw_prev[ii] -= mrIn->vwCor[ii];

/* also apply corrections to navigation data history */
for (jj = 0; jj < mrOut->hist_len; jj++) {

nav_el = mrOut->nav_history[jj];
for (ii = 0; ii < 3; ii++) {
nav_el->pos[ii] -= mrIn->rwCor[ii];
navel->vel(ii) -= mrIn->vwCor[ii];

for(ii=0; ii<3; ii++) {
mrLoc->rwCorPrev[ii] = mrIn->rwCor[ii];
mrLoc->vwCorPrev[ii] = mrIn->vwCor(ii];

return;

prepGpsMeasmt -- compute the velocity at the time of GPS interrupt

static void prepGpsMeasmt (int nav_num)

/* pointers to shared data area */
struct nav_mrInref *mrIn = &nav_mrIn[navnum];
struct nav mrOutref *mrOut = &nav mrOut(nav_num];
struct navmrLoc_ref *mrLoc = &nav mrLoc[navnum];
struct navmrParmref *mrParm = &nav_mrParm[nav_num];
struct nav_ctlLocref *ctlLoc = &nav_ctlLoc[nav_num];
struct navctlParm_ref *ctlParm = &nav_ctlParm[navnum];

double s; /* proportion of medium rate period before GPS interrupt */
int ii; /* local counter/index */

/* calculate proportion of medium rate interval before GPS interrupt */
/* (multiply by frequency instead of dividing by time period) */
s = (mrIn->gpsInterTime + ctlParm->del_t_med - mrIn->medValidTime)

* ctlParm->freqmed;

/* calculate the velocity at time of GPS interrupt */
for (ii = 0; ii < 3; ii++)
mrOut->vwGpsTime[ii] =

mrLoc->vwprev[ii] + mrIn->dvi_sum_left(ii] +
(s * (- mrLoc->grv[ii] - mrLoc->rrr[ii)));

receiveraid -- sends inertial information to aid GPS

static void receiver_aid (int nav num)
(
/* pointers to shared data area */
struct navmrInref *mrIn = &navmrIn[navnum];
struct nav_mrLoc_ref *mrLoc = &nav_mrLoc[navnum];

double posToRcvr[3]; /* buffer for calculating position */
int ii; /* local counter/index */
unsigned int inertialStatus; /* buffer for constructing status word */

#define AIDINGVELOCITY_VALID 0x00008000
#define AIDING_POSITION_VALID 0x00004000
#define AIDINGSTEP CHANGE 0x00002000
#define AIDING DATA DEGRADED 0x00001000

/* calculate status word */
inertialStatus = AIDING_VELOCITY_VALID I AIDINGPOSITION_VALID;
if (mrLoc->step_change) {

inertialStatus = inertialStatus I AIDING_STEPCHANGE;
mrLoc->stepchange = 0;

if ((mrIn->medValidTime - mrLoc->timeLastGps) > 2.0)
inertialStatus = inertialStatus I AIDING_DATA_DEGRADED;

/* calculate current position */
for (ii = 0; ii < 3; ii++)
posToRcvr[ii) = mrLoc->rw[ii) + mrLoc->r0[ii];

/* send to receiver */
#if (sun I sgi)
#else
SendInertialAidingRcvrMsg (inertialStatus, mrIn->medValidTime,

posToRcvr, mrLoc->vw);
#endif

return;

/**

* FUNCTION NAME:

* DESCRIPTION:

* ARGUMENTS:

* RETURNS:

MRReads

Reads data from the common into MR 'local' variables

none

GOOD_RETURN_CODE

***/

Return_Code_Type MRReads (int navnum)
/* procedure to copy data from common.h to needed HR variables */

/* pointers to shared data area */
struct nav_mrInref *mrIn = &nav mrIn[nav num];

int ii, jj;
DVhr2mr hr2mr;
DVlr2mr lr2mr;

Get_MR_In(&hr2mr, &1r2mr, nav_num);

/* data copies from local to medium rate module */

/* data from high rate module to medium rate module */
mrIn->medValidTime = hr2mr.medValidTime;
mrIn->gpsInterTime = hr2mr.gpsInterTime;
mrIn->gpsUpdateFlag = hr2mr.gpsUpdateFlag;
/* dll june 97 read time ID matching rw and vw Cor */
/* note on update time : low rate sets time ID of each update, and

passes it to high rate . High sets med rate copy of this only
at time of a high rate reset. med rate gets it as time ID of
most recent high rate reset */

mrIn->update_time = hr2mr.update time;
for (ii = 0; ii < 3; ii++) {
mrIn->dvvc_sum[ii] = hr2mr.dvvc_sum(ii];
mrIn->dthc_sum[ii] = hr2mr.dthc_sum[ii];
mrIn->dvi_sum[ii] = hr2mr.dvi_sum[ii];
mrIn->dvi_sum_left[ii] = hr2mr.dvi_sumleftlii];
mrIn->rwCor[ii] = hr2mr.rwCor(ii];
mrIn->vwCor[ii] = hr2mr.vwCor[ii];

for (jji = 0; jj < 3; jj++)
mrIn->c efb-d(ii][jj] = hr2mr.ce_fb[ii][jj];

for (ii=0O; ii<3; ii++) (
mrIn->rwGuidCor[ii] = Ir2mr.rwGuidCor[iil ;
mrIn->vwGuidCor[ii) = Ir2mr.vwGuidCor[ii] ;

mrIn->tIdGuidCor = Ir2mr.tIdGuidCor ;

/* data passed from GPS receiver -- time mark message (msg 4) */
if (mrIn->gpsUpdateFlag) (

for (ii = 0; ii < 3; ii++) (
mrIn->GPS_pos(ii] = navIn[nav_num] .posGPS[ii];
mrIn->GPS-vel[ii] = navIn[nav_num].velGPS[ii];

/* initial attitude */
mrIn->q_pwInit[0] = navIn[nav_num].q_pwInit(O];
mrIn->qLpwInit[l] = navIn[nav_num].q_pwInit[l];
mrIn->cLpwInit[2] = navIn[nav_num].qpwInit[2];
mrIn->qcpwInit[3] = navIn[nav_num].qpwInit[3];

/* data passed from control module (and other places) */
mrIn->roll_rdy = navIn[nav num].roll_rdy;

return GOOD_RETURN_CODE;

) /* end MR_Reads */

* FUNCTION NAME: MR_Writes

* DESCRIPTION: Writes data from the MR 'local' variables into the common area

* ARGUMENTS:

* RETURNS:

none

GOOD-RETURNCODE

**/

Return_Code_Type MR_Writes (int navnum)
/* procedure to copy data from common.h to needed MR variables */

/* pointers to shared data area */
struct nav mrInref *mrIn = &navmrIn[navnum];
struct nav_mrOut_ref *mrOut = &nav-mrOut[navnum];
struct nav_mrLoc_ref *mrLoc = &navmrLoc[nav_num];
struct navmrParm_ref *mrParm = &nav mrParm[nav_num];
struct nav_ctlLoc_ref *ctlLoc = &nav_ctlLoc[nav_num];
struct nav_ctlParm_ref *ctlParm = &nav_ctlParm[nav_num];

int ii, jj;
struct nav_histref *src, *dest;
DVmr2hr mr2hr;
DVmr2lr mr2lr;

/* write guidance data from medium rate module */

for (ii = 0; ii < 3; ii++) {
navOut[nav_num].p_fbe_e(ii) = (double) mrOut->p_fbe_ee[ii];
navOut[navnum].v_fb_e_e[ii] = (double) mrOut->v_fb_ee[ii];
for (jj = 0; jj < 3; jj++) (
navOut[nav_num].c_fbe[ii][jj] = (double) mrOut->c_fbe[ii][jj];

navOut[nav_num].c_b_e[ii] = (double) mrOut->qcpw[ii];
navOut[navnum].w_fb_ifblii] = (double) mrOut->wfb_i_fblii);
navOut[nav-num].a_fb_ifb[ii] = (double) mrOut->a_fb_ifb[ii];

navOuttnav_num].alt = (double) mrOut->altitude;
navOut[nav_num].speed = (double) mrOut->speed;

/* data copies from medium rate module to local */

/* data from medium rate module to high rate module */
for (ii = 0; ii < 4; ii++)
mr2hr.q_pw[ii] = mrOut->q_pw[ii];

/* data from medium rate module to low rate module */
mr2lr.modeFlag = mrOut->modeFlag;
mr2lr.hist_len = mrOut->hist_len;
for (ii = 0; ii < 3; ii++) {
mr2lr.dvi_sum med[iil] = mrOut->dvisum_med(ii];
mr2lr.dvi_sumsum[ii] = mrOut->dvi_sumsum[ii];
mr2lr.pos0[ii] = mrOut->pos0[ii];

for (ii = 0; ii < 3; ii++)
mr2lr.pos0[ii] = mrOut->pos0[ii];

for (ii = 0; ii < mrOut->histlen; ii++)
src = nav_mrOut[nav_num].nav_history(ii];
dest = &mr2lr.nav_history[ii];
dest->time = src->time;
dest->pos[0] = src->pos[0];
dest->pos[l] = src->pos[l];
dest->pos[2] = src->pos[2];
dest->vel[0] = src->vel[0];
dest->vel[l] = src->vel[l];
dest->vel[2] = src->vel[2];

mr2lr.histlast = mrOut->hist_last;
mr2lr.hist_full = mrOut->hist_full;
mr2lr.hist_len = mrOut->hist_len;

Put_MR_Out(&mr2hr, &mr2lr, nav_num);

return GOODRETURNCODE;

) /* end MRWrites */

/*k*tttk********t***t ttt*k*i****t*******************

nav data_vault.h

* Author: Erik S. Bailey & Keith Mason
* Purpose: Defines the data vault sub-structures
***** **

#ifndef _NAV_DATAVAULT_H_
#define NAVDATAVAULT_H

#include "returncode.h"
#include "navFC-ref.h"

/* data from high rate module to medium rate module */
struct hr2mrref {
double medValidTime;
double gpsInterTime;
double c_e_fb[31 [3];
double dvvc sum[3];
double dthcsum[3];
double dvi_sum[3];
double dvi_sum_left[3];
int gpsUpdateFlag;
double update time;
double rwCor[3];
double vwCor[3];

typedef struct hr2mrref DVhr2mr;

/* data from high rate module to low
struct hr2lr_ref {
double loValidTime;
double gpsInterTime;
MATRIX_TYPE phil2z[NDYN] [N_STAT];
double last_reset_time;

rate module */

typedef struct hr2lr_ref DVhr2lr;

/* data from medium rate module to high rate module */
struct mr2hr_ref {

double q_pw(4];
);
typedef struct mr2hrref DVmr2hr;

/* data from medium rate module to low rate module */
struct mr2lr_ref (

enum NavMode modeFlag;
double dvi_sum_med[3];
double dvi_sum_sum[31];
struct nav_hist_ref navhistory(MAXNAV_HIST];
double pos0[3];
int histlen;
int hist-last;
int hist_full;

);
typedef struct mr2lr_ref DVmr2lr;

/* data from low rate module to high rate module */
struct Ir2hr_ref {

double
double
double
double
double
double
double
double

update_time;
qCor[4);
gbiasCor[3];
gsfe xCor;
abiasCor(3];
asfe2_xCor;
rwCor[3];
vwCor[3];

typedef struct Ir2hr ref DVlr2hr;

/* data from low rate module to medium rate module */
struct Ir2mr_ref {

int dummy; /* nothing here now, but dummy variable as a placeholder */
double rwGuidCor[3];
double vwGuidCor[3];
double tIdGuidCor;

typedef struct Ir2mr_ref DVlr2mr;

struct data_vault_ref {
DVhr2mr hr2mr;
DVhr2lr hr2lr;
DVmr2hr mr2hr;
DVmr21lr mr2lr;
DVlr2hr Ir2hr;
DVlr2mr Ir2mr;

Return_Code_Type
Return_CodeType
Return_Code_Type
Return_Code_Type
Return_Code_Type
Return_Code_Type

GetHR_In
Put HR_Out
GetMR_In
PutMR_Ou t
Get LR_In
Put LR_Out

(DVlr2hr
(DVhr21r
(DVhr2mr
(DVmr2hr
(DVhr2lr
(DVlr2hr

*p_lr2hr,
*p_hr21r,
*p_hr2mr,
*p_mr2hr,
*p_hr21r,
*p_lr2hr,

DVmr2hr
DVhr2mr
DVlr2mr
DVmr21r
DVmr2lr
DVlr2mr

*pmr2hr,
*p hr2mr,
*plr2mr,
*p mr21r,
*pmr2lr,
*p_lr2mr,

nav num);
nav_num);
nav_num);
nav_num);
nav_num);
nav_num);

#endif /* NAV_DATAVAULT_H_ */

$Source: /hosts/dc2/users5/gab3/simlab/source/headtracker/navigation/
nav_init.c,v $

* $Author: esb2110 $

* $Date: 2000/06/10 17:55:06 $

$Revision: 1.3 $

*/

static char RCSid[] = "$Header: /hosts/dc2/users5/gab3/simlab/source/
headtracker/navigation/navinit.c,v 1.3 2000/06/10 17:55:06 esb2110 Exp $";

#include
#include
#include
#include
#include
#include
#include

"navFC ref.h*
"matrixx.h*
"simio.h'
"return_code.h'
"nav_highrate.hl
"nav medrate.h,
"nav lorate.h

/* forward declarations */
void Dolnit (int navnum);

DoInit -- executive for all rate group initialization
*/

void DoInit (int navnum)

/* pointers to shared data area */
struct nav_ctlLoc_ref *ctlLoc = &nav_ctlLoc[nav_num];
struct nav_ctlParm_ref *ctlParm = &nav_ctlParm[navnum];

int ii;

ctlParm->freq_med = ctlParm->freqhi / ((double) ctlParm->del_c_med);
ctlParm->del_thi = 1.0 / ctlParm->freq_hi;
ctlParm->del_tmed = 1.0 / ctlParm->freqmed;
ctlParm->del_t_gps = 1.0 / ctlParm->freqgps;

/* initialize counters */
ctlLoc->hi_cnt = 0;
ctlLoc->med cnt = 0;
ctlLoc->lo_cntpps = 0;
ctlLoc->lo_cnt_los = 0;
ctlLoc->hi_cnt_med = 1;

/* internal initialization for each rate function */
filter_init_hi (nav_num);
filter_initmed (navnum);
filterinitlo ();

return;

* matrix err_handler -- general utility function for handling errors
* that occur during access of matrix and kalman library routines;
* errcode is the error code returned from the library function,
* while sourcegroup is a coded ID of the routine from which the
* library call is made
*/

int matrixerr_handler (int err_code, int source_group)

/* identify the calling function */
switch (source_group)
case HR-INIT:

therr ("Matrix error during high rate initialization: ");
break;

case MR_INIT:
therr ("Matrix error during medium rate initialization: ");
break;

case LRINIT:
therr ("Matrix error during low rate initialization: ");
break;

default:
therr ("Matrix error during initialization in unknown function: ");
break;

/* mask to get only the pertinent bits */
switch (err code & 0x7)
case ERR MXX TYPE:

therr2 ("wrong matrix element type\n");
break;

case ERRMXXMATCH:
therr2 ("mismatched element sizes\n");
break;

case ERRMXXEXC:
therr2 ("dimension exceeds capacity\n");
break;

case ERR_MXX_PTR:
therr2 ("NULL pointer\n");
break;

default:
therr2 ("unexpected error code %d\n", err code);
break;

if (errcode & ERR_MXX_LWR)
therr2 (" (from a lower level call)\n");

00W

/* returncode.h
* contains the typedef for the rate group read & writes from the data vault
*/

#ifndef RETURN_CODE H
#define RETURN CODE H

typedef int ReturnCodeType;
#define GOOD_RETURN_CODE 0

#endif /* RETURNCODEH */

WGS84.h

00

* Prototypes
for routines

programmed
by Matt

Bottkol

* that
are in

WGS84.c,
adapted

for the TPD/CGT
sim

* by
E.

Bailey

17
August,

1999

void
GeodeticToRectangular(double

*x, double
phi,

double
lambda,

double
h);

void
RectangularToGeodetic{double

*phidouble

*lambda,
double

*h,
double

*x);

double

GeodeticN(double

phi);

double

GeodeticLat(double

x,
double

y,
double

z);

* Prototypes for routines programmed by Matt Bottkol
" that are in WGS84.c, adapted for the TPD/CGT sim
Sby E. Bailey 17 August, 1999

t*****ttt*f+*********~t·****** t*****************

void GeodeticToRectangular(double *x, double phi, double lambda, double h);
void RectangularToGeodetic(double *phi,double *lambda, double *h, double x)
double GeodeticN(double phi);
double GeodeticLat(double x,double y,double z);

/**

WGS84.c

* Geometric conversion routines programmed by Matt
* Bottkol adapted for the TPD/CGT sim
* by E. Bailey 17 August, 1999
***** ********************* ***************************/

#include "WGS84.h'
#include "navFC ref.h"
#include <math.h>

/* B_WGS84 and E WGS84 from DMA TR 8350.2 */
/* 30 September 1987 */
/* */

/* other geometrical constants are derived */
/* */

/* Note: the commented numbers below are in SI units, whereas the TOPART
* code uses ft/slug/sec units. Therefore, the pointers below to the
* values defined in navFC.spec are in ft/slug/sec units and do not
* equal their SI counterparts, which are commented out.
*/

#define eSquaredWGS84nav_mrParm[0].sqellip /*0.0066943799901378*/
#defineaxisRatioWGS84nav_mrPar[OJm.axisratio /*0.99664718933525*/
#defineaxisRatioSquaredWGS84 nav_mrParm[0].sqaxisratio /
*0.99330562000936'/
#definesemiMajor_WGS84nav_mrParm[0] .smajax /*6378136.9999547*/
#definesemiMinorWGS84navjmrParm(0].sminax /*6356752.3142*/
#defineellip_WGS84nav_mrParm(0].ellip /*0.0818191908426*/
#defineearthRadius_WGS842.08905664602e7 /*6367444.6570775*/

#defineB WGS84
#defineE WGS84

nav mrParm[0].sminax /*6356752.3142'/
nav_mrParm[0].ellip /*0.0818191908426*/

#define ESQUARED_WGS84nav_mrParm[(0.sqellip /*0.0066943799901378*/
#defineAXISRATIO_WGS84nav_mrParm0] .axis_ratio /*0.99664718933525*/
#defineAWGS84navmrParm[0].smajax /*6378136.9999547'/

/* MU, OMEGA_E
#defineMU
#defineJ2
#defineJ4
#defineG
#defineOMEGA_E

values from GPS ICD */
nav_mrParm[0].mu /'3.986005e14*/
nav _mrParm.J[1] /*1082.64e-6*/
nav mrParm.J[2] /*-2.4e-6*/

physics.gc /*9.8066352*/
physics.we /*7292115.1467e-11*/

#defineLIGHTC
#define LIGHT_MILLISEC

nav _mrParm[01.lightc /*299792458.0*/
nav_mrParm[0].light_milsec /*299792.458*/

#define GEODETIC_LATTOL l.e-8

* RectangularToGeodetic(x,&phi,&lambda,&h)
*INPUT: earth relative rectangular coordinates in vector x[0],..x[2]
*OUTPUT:geodetic latitude, longitude, altitude (radians & meters)

void RectangularToGeodetic(double *phi,double *lambda,double *h,double *x)

*phi = GeodeticLat(x[0],x[l],x[2]);
*lambda = atan2(x[l],x[0]);
/* *h = abs(x)/cos(*phi) - Geodetic_N(*phi); */
*h = sqrt(x[0]*x(0]+x[l1*x(l])/cos(*phi) - Geodetic_N(*phi);

}/* end RectangularToGeodetic */

/***

* GeodeticToRectangular(phi,lambda,h,x)
*INPUT: geodetic latitude, longitude, altitude (radians & meters)
*OUTPUT:earth relative rectangular coordinates in vector x[0],..x[2]
*(allocated by caller)

**

void GeodeticToRectangular(double *x, double phi,double lambda,double h)

double N;
N = GeodeticN(phi);
x[O] = (N+h)*cos(phi)*cos(lambda);
x[l] = (N+h)*cos(phi)*sin(lambda);
x[2] = (axisRatioSquaredWGS84*N+h)*sin(phi);

1/* end GeodeticToRectangular */

/***

* phi = GeodeticLat(x,y,z)
*computes geodetic latitude of point with
*rectangular coordinates (x,y,z)

********double Geodetic**t*******************ube d*******************************oube doube z

double GeodeticLat(double x,double y,double z)

double phi0,phil,tan_geocentricPhi;

/*iterationCount=l;*/
tangeocentricPhi = z/sqrt(x*x+y*y);
phi0 = 0.;
phil = atan(tan geocentricPhi/axisRatioSquared_WGS84);

/* Picard iteration */
while(fabs(phil-phi0) > GEODETIC_LATTOL)

phi0 = phil;
phil = atan(tan_geocentricPhi *

(1.0 + eSquared WGS84*Geodetic_N(phi0)*sin(phi0)/z));

00oo
CS

return phil;
)/* end GeodeticLat */

N = GeodeticN(phi)
*computes the geodetic parameter N,
*one of the principal radii of curvature of WGS84 ellipsoid

***/

double GeodeticN(double phi)

return semiMajor_WGS84/sqrt(l-eSquared_WGS84*sin(phi)*sin(phi));
) /* end GeodeticLat */

Appendix F

Navigation Filter MATLAB Code

The following code is the code for implementing the Kalman Filter and per-

forming the Monte Carlo Analysis.

187

188

function tao = bounding_alg(_b_e,R_T38_nav,R_HELMET_nav, R_T38err_est,
R_HELMETerr_est, RelPos_ErrEst, dt)

% Generates the proper tao depending on proximity to the bounding
% box which relates the two

% -------------------- %
% Initial Conditions %
% -------------------- %

%-- Bounding Box Dimensions -- %
twosigma = [1.5, 1.5, 1.5];% [ft] (in both directions

%-- Nominal Lever Arm --%
nom_la_b = [12.083,0.0,-4.33]';% [ft] (in body frame)

%-- Limits on Tao --%

tao_lim = [10, 100;
10, 100;
10, 100];

% ------------------- %
% Main Calculations %
% ------------------- %

%-- Calculate C b_e from q_b_e --%

Cb_e = q2C(qb-e);

%-- Calculate navigated relative position --%

RelPos_nav = (R_T38_nav-RT38err_est) - (R_HELMET_nav-R_HELMETerrest); % - (C_b_e
* RelPosErr_Est) 4 (C b_e * nom_la_b);

%keyboard

%-- Calculate Tao -- %

for (i = 1:1:3)
var = (0.5 * twosigma(i))^2;
tao(i) = abs(-(tao-lim(i,2) - tao_lim(i,l))/var *
abs(RelPosnav(i)) + taolim(i,2));

end

function K = calc-K(Ppre, H, R);

% K = calcK(Ppre, H, R);

% Calculates the gain matrix for a particular measurement update given
% H and R for that particular update.

% Inputs:
% P_pre = propogated state estimate covariance matrix prior to next update
% x_pre = propagated state estimate prior to next update

% Outputs:
% K = Kalman Gain Matrix

% Written by E. Bailey February 26, 2000.

K = P_pre * H' * inv(H * P_pre * H' + R);

%---- ERROR_CALCS.M ---- %
% ----------------------- %

q_h_e_avg = (q_he + qh_eold) 0.5;
q_h_e_star = qh_e_avg ./ norm(qh_e.avg,2);

qmultT38 = qmulq(q.b_eT38,q._be);
qmultHELMET = qmulq(q_he_HeELMET,q hee_star);

error(i,:) = [time, (R_T38-R_T38_nav + x_est(1:3))', ...
(R_HELMET-RHELMET_nav + xest(10:12))'...
(Rdot_T38-Rdot_T38_nav + xest(4:6))', ...
(Rdot-HELMET-Rdot-HELMETnav + xest(13:15))',...
(2.0 * qmultT38(2:4) + x_est(7:9))', ...
(2.0 * qmultHELMET(2:4) + asin(x_est(16:18)))'];

%---- FORMQ.M -------- %

% ---- FORMQ.M ---- %
% ------------------ %

qR_EGI
qLR_MMISA
qV_EG I
qV_MMISA
qatt_EGI
qatt_MMISA
qgbEG I
qgsf_EGI
qCab_EGI
qasf_EGI
qcgb_MMISA
q_gsf_MMISA
q_ab_MMISA
qasfMMISA
q rel

0.0;% [feet]
0.0;% [feet]
0.00032808 / 60;% [ft/sec @ 1 sec]
0.03280 / 60;% [ft/sec @ 1 sec]
4.363323e-5 / 60; % [rad @ 1 sec)
5.23598e-4 / 60; % [rad @ 1 sec]
0.0; % (rad/sec]
0.0; % [rad/sec]
0.0; % [rad/sec]
0.0; % (rad/sec]
0.0;% [rad/sec]
0.0;% [na]
0.0;% [ft/s^2]
0.0;% [ft/s^21
sqrt(l.0^2 * (l-exp(-2*meas_rate_dt/tao)));% [feet]

qdiag = [ones(1,3).*q_REGI, ones(1,3).*qV_ EGI, ones(1,3).*qatt_EGI,
ones(1,3).*cRMMISA, ones(1,3).*CqV_MMISA, ones(1,3).*q_att_MMISA,
ones(1,3).*qrel, ones(1,3).*q_gb_EGI, ones(1,3).*qgsf_EGI,
ones(1,3).*cLab_EGI, ones(1,3).*q_asf_EGI, ones(1,3).*q_gb_MMISA,
ones(1,3) .*qgsfMMISA, ones(1,3).*q_ab_MMISA, ones(1,3).*q_asfMMISA];

clear qRREGI q_R_MMISA qV_EGI qLV_MMISA qatt_EGI q.att_MMISA qgbEGI
qgsfEGI

qab_EGI q_asfEGI qgbMMISA qgsf_MMISA q_ab_MMISA qasf_MMISA

Q = diag(c_diag.^2,0);

clear qdiag ii

% ----------------------- %

function list = genmcVals(num_runs)

% list = generate mcarlo_vals(num runs, sigmax2)
% Generates a list of values within a 2-sigma normal distribution
% to be used for initial attitude errors for the Head Tracker Sim

sigmas = [13.2 * ones(l,3), 1.0 * ones(l,3), 0.001 * ones(l,3),
10.0 * ones(l,3), 2.0 * ones(l,3), 0.02 * ones(1,3)];

for(i = I:num_runs)
list(i,:) = [i, sigmas .* randn(l,length(sigmas))];

end

function [H,R] = H_R_matrix(meastype,q_b_eT38)

sig_RGPS = 13.123; % [ft]
sig_V_GPS = 0.032808; % [ft/sec]
sigrel = 1.0; % [ft]
C_b_e = q2C(q_b_eT38);
nom_la = [12.083, 0.0, -4.33]';

if(meastype == 'gpsM')
H = [1 0 0 0 0 0 0 0

00000000;

010 000000000
0 0 0 0;
001000000000

0 0 0 0;
000 000000 00
0 0 0 0;
000010000000

0 0 0 0;
000001000000
0 0 0 0];

R = [sig_R_GPS^2 0 0 0 0 0;
sig_R_GPS^2 0 0 0 0;
0 sig_RGPS^2 0 0 0;
0 0 sig_V_GPS^2 0 0;
0 0 0 sigVV_GPS^2 0;
0 0 0 0 sig V_GPS^2];

elseif (meas type == 'relM')

H = [-1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0;
0 -1 00000 0 001 000
0 0 0 0;
0 0 -1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0];

H(1:3,19:21) = C_be;

R = (sig_rel^2 0 0;
0 sig_rel^2 0;
0 0 sigrel^21;

elseif (meas_type == 'both')

re = -C_be' * nom_la;
% fprintf('re is [%f %f %f],

H= [1 0 0 0 0 0 0 000
0000000 0;
0 1 00000000 0 0 000
0 0 0 0;
00100000000000
0 0 0 0;
0 0 010 000000000
0 0 0 0;
0000 100 0000000
0 0 0 0;

0 0 0

00 0

0 0 0

0 0 0

0 0 0

0 0 0

000000001000000000000000000

000001000000000000000000000

000000100000000000000000000

its magnitude is

000000000

000000000

000000000

000000000

000000000

%f\n',re(1),re(2)

000000000

000000000

000000000

000000000

000000000

,re(3),norm(re,2))

000000 000

000000000

0 0 0 0 0 0 00 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

00000100000000000

0 0 0 0;
-1 0 0 0 0 0 0 re(3) -re(2)
0 0 0 0 0 0 0 0 0 0 0 0;
0 -1 0 0 0 0 -re(3) 0 re(1)
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 -1 0 0 0 re(2) -re(l) 0

H(7:9,19:21) = C_b_e';

000000000000000000000000

100000000100000000000000

010000000010000000000000

001000000001000000000000

R = [sig_RGPS^2 0 0 0 0 0 0 0 0;
sig_R_GPS^2 0 0 0 0 0 0 0;
0 sigR_GPS^2 0 0 0 0 0 0;
0 0 sig_VGPS^2 0 0 0 0 0;
0 0 0 sig_V_GPS^2 0 0 0 0;
0 0 0 0 sigV_GPS^2 0 0 0;
0 0 0 0 0 sig_rel^2 0 0;
0 0 0 0 0 0 sig_rel^2 0;
0 0 0 0 0 0 0 sig rel^2];

%---------------------%

% ---- HELMETKF.M ---- %
% -------------------- %

%--------------------------%
%-- INITIALIZE VARIABLES --%
%--------------------------%

data_dt = data(2,1) - data(l,l);
starttime = data(l,l);
time = start_time;
endtime = data(end,l);

high_rate_dt = 0.01;
medrate_dt = 0.02;
meas_rate_dt = 1.0;

tao = 5 * ones(3,1);

i = 0;

phill_T38 = eye(9);
phill_HELMET = eye(9);
x_est = zeros(45,1);
init_P;
form_Q;

% ------------------------- %
%-- MAIN FILTER ROUTINE --%
% ------------------------- %

for (time = start_time:data_dt:end_time-data_dt)

if((abs(round(time) - time) < 0.000001))
i = i+l; % increment row index for output and error data matrices
fprintf('Updating at t=%4.2f\n',time);

%-- unlog data at valid measurement time --%
qh_e_old = qh_e;
[qbe, q_h_e, q_be_T38, q_h_e_HELMET] =

unlog_quaternions(data,time,datadt);
[RT38, R HELMET, R_T38_nav, R_HELMET_nav] = unlog_R(data,time,data_dt);
[Rdot_T38, RdotHELMET, RdotT38_nav, Rdot_HELMET_nav] =

unlog_Rdot(data,time,data_dt);

%-- Bounding Algorithm --%

% tao = bounding_alg(q_b e_T38, R_T38_nav, R_HELMET_nay, x_est(l:3),
% x_est(10:12), xest(19:21), meas_rate_dt);

phi_rel = expm(diag(-l./tao,0));

[dvv_b_i_T38, dw_ bi HELMET] = unlog_del_velo(data,time,data_dt);

%-- formulate sub-phi matrices along diagonal -- %
prevphill_T38 = phill_T38;
phillT38 = makephill(dvvb iT38, med_rate_dt);
phill_T38 = phill_T38 * prevphillT38;
prevphill_HELMET = phill_HELMET;

plot_filter_out % MATLAB script for plotting output
% and errors ./plot_filter_out.m

phill_HELMET = make-phill(dvv_bi_HELMET, med_rate_dt);
phill_HELMET = phill_HELMET * prevphill_HELMET;

%-- note that time is at its final value for unlogging phil2's -- %
[phil2_T38, phil2_HELMET] = unlog_phil2(data, time,data_dt);

%-- construct main PHI matrix for entire system --%
PHI = make_PHI(phill_T38, phill_HELMET, phil2_T38, phil2_HELMET, phi_rel);

%-- reset the phill matrices to I -- %
phill_T38 = eye(9);
phill_HELMET = eye(9);

%-- propogate filter estimate from previous update --%
(x_est, P] = propagate(PHI,x_est,P,Q);

%-- get measurement data --%
[z_mHxhat,z] = measurement('both', x est, data, time, data_dt);
[H,R] = H_Rmatrix('both', q_be_T38);

%-- calculate kalman gain matrix -- %
K = calc_K(P,H,R);

%-- update state estimate and covariance matrix -- %
[x_est,P] = update(xest,P,K,H,R,z);

out(i,:) = (time, x_est',z mHxhat', z'];
P_out(i,:) = [time, sqrt(diag(P))'];

error_calcs % MATLAB script for calculating errors ./error_calcs.m

else
[q_be, qh_e, qb_e_T38, qh_eHELMET] =

unlog_quaternions(data,time,data_dt);

if(-mod(time, med_rate_dt))
[dvvb_i_T38, dvvb_i_HELMET] = unlog_del_velo(data,time,data_dt);

%-- formulate sub-phi matrices along diagonal -- %
prev_phillT38 = phillT38;
phillT38 = makephill(dv_b_iT38, med_rate_dt);
phill_T38 = phillT38 * prev_phill_T38;
prev_phillHELMET = phillHELMET;
phill_HELMET = make_phill(dvv_b_i_HELMET, medratedt);
phill_HELMET = phill-HELMET * prev_phillHELMET;

end

%------------------%

%---- INIT P.M ---- %
% ------------------ %

% RENAME BELOW VARS TO "VARIANCE* VARIABLES FOR CONSISTENCY
% IN NAMING VARIABLES

sig_R-EGI
sig_R-MMISA
sig_VEGI
sig_V_MMISA
sig-att_EGI
sig_att_MMISA
sig_gb-EGI
sig_gsf_EGI
sig_ab_EGI
sig_asf_EGI
sig_gb_MMISA
sig_gsfMMISA
sigab_MMISA
sig_asfMMISA
sigrel

3.0;% [feet]
10.0;% [feet]
1.0;% [ft/sec]
5.0;% [ft/sec]
0.001; % [rad]
0.17;% (rad]
1.69684788388e-8; % [rad/sec]
2e-6; % [rad/sec]
0.0000322; % [ft/sec/sec]
0.0001; % [rad/sec]

0.000097;% [rad/sec]
0.0002;% [na]
0.08855;% [ft/s^2]
0.0002;% [na]
0.75;% [feet]

p_diag = [ones(1,3).*sig_REGI, ones(l1,3).*sigV_EGI, ones(1,3).*sig_att_EGI,
ones(1,3).*sig_R_.MMISA, ones(l1,3).*sig_V_MMISA, ones(1,3).*sigatt_MMISA,
ones(1,3).*sig_rel, ones(1,3).*siggb-EGI, ones(1,3).*sig_gsfEGI, ...
ones(1,3).*sig ab_EGI, ones(1,3).*sig_asfEGI, ones(1,3).*sig_gb_MMISA,
ones(1,3).*sig_gsfMMISA, ones(1,3).*sig_ab_MMISA, ones(l,3).*sig_asf_MMISA];

clear sig_R_EGI sig_R_MMISA sig_V_EGI sig_V_MMISA sigattEGI sig_att_MMISA
sig_gb_EGI sig_gsf_EGI

sigab_EGI sig_asf_EGI siggb_MMISA siggsf_MMISA sig_abMMISA sigasf_MMISA
sig_rel

P = diag(pdiag.^2,0);

clear p_diag

function PHI = make PHI(philla, phillb, phil2a, phil2b, phi_rel)

% PHI = make_PHI(philla, phillb, phil2a, phil2b, phi_rel)

% formulates PHI from the five sub matrices

PHI = eye(45,45);

%-- The PHI_11 components -- %

PHI(1:9,1:9) = philla;
PHI(10:18, 10:18) = phillb;
PHI(19:21, 19:21) = phi_rel;

%-- The PHI_12 components --%

% PHI(1:9, 22:33) = zeros(9,12);
% PHI(10:18, 34:45) = zeros(9,12);

PHI(1:9, 22:33) = phil2a;
PHI(10:18, 34:45) = phil2b;

function phill = makephill(delta_v,dt)

% phill = make_phill(delta_v,dt)

% makes the phill sub-matrix for the propogation
% matrix.

w_e = 7.2921e-5; % [rad/sec]

phill = eye(9);

phill(1:3,4:6) = eye(3,3) * dt;
phill(4,5) = -2 * w_e * dt;
phill(5,4) = 2 * w_e * dt;
phill(4:6,7:9) = [0 -delta_v(3) delta_v(2);
deltav(3) 0 -delta_v(1);
-delta v(2) delta_v(1) 0);

phill(7,8) = -w_e * dt;
phill(8,7) = w_e * dt;

% ------------------------ %
%---- MC_HELMET_KF.m ---- %
%------------------------%

set = 10;
numruns = 20;

for(run = l:numruns)

%----------------------- %
%-- Batch DATA LOADER --%
%-----------------------%

fprintf('loading data for set %d, run number %d ...\n',set,run)
eval(['data' num2str(run) ' = MC_load_setrun(' num2str(set) ',' num2str(run)
');'])
fprintf('data saved as matrix data%d.\n',run)

% -------------------------- %
%-- INITIALIZE VARIABLES --%
%--------------------------%
eval(['data = data' num2str(run) '; '])
datadt = data(2,1) - data(l,l);
start_time = data(l,l);
time = start_time;
end_time = data(end,l);

high_rate_dt = 0.01;
med_rate_dt = 0.02;
meas_rate_dt = 1.0;

tao = 10.0 * ones(3,1);

i = 0;

phill_T38 = eye(9);
phillHELMET = eye(9);
x_est = zeros(45,1);
initP;
form_Q;

%-------------------------%
%-- MAIN FILTER ROUTINE --%
% ------------------------- %

for (time = start_time:datadt:endtime-data_dt)

if((abs(round(time) - time) < 0.000001))
i = i+l; % increment row index for output and
fprintf('Run Number %d: Update at t=%4.2f\n',

error data matrices
run, time);

%-- unlog data at valid measurement time -- %
qh.e_old = qeh_e;
[qb_e, q_h_e, qb_e_T38, q_h_e_HELMET] =

unlog_quaternions(data,time,data dt);
[R-T38, RHELMET, R_T38_nav, R_HELMET_nav] = unlogR(data,time,datadt);
[Rdot_T38, Rdot_HELMET, RdotT38_nav, RdotHELMET_nav] =

unlogRdot(data,time,datadt);

%-- Bounding Algorithm --%

tao = bounding_alg(q_b_e_T38, R_T38_nav, R_HELMET_nav, x_est(1:3),
x_est(10:12), x_est(19:21), measrate_dt);

phi_rel = expm(diag(-l./tao,0));

[dvv_b_i_T38, dvw_bi_HELMET] = unlog_del_velo(data,time,datadt);

%-- formulate sub-phi matrices along diagonal --%
prevphill_T38 = phill_T38;
phill_T38 = make_phill(dwv_b_iT38, med_rate_dt);
phill_T38 = phill_T38 * prevphill_T38;
prev_phill_HELMET = phill_HELMET;
phill_HELMET = makehill(dw b_i_HELMET, med_rate_dt);
phill_HELMET = phill_HELMET * prevphill _HELMET;

%-- note that time is at its final value for unlogging phil2's --%
[phil2_T38, phil2_HELMET] = unlogphil2(data,time,data_dt);

%-- construct main PHI matrix for entire system --%
PHI = makePHI(phill_T38, phill_HELMET, phil2_T38, phil2_HELMET,

%-- reset the phill matrices to I --%
phill_T38 = eye(9);
phill_HELMET = eye(9);

%-- propogate filter estimate from previous update -- %
[x est, P1 = propagate(PHI,x_est,P,Q);

%-- get measurement data --%

phi_rel);

[zmHxhat,z] = measurement('both', x_est, data, time, data_dt);
[H,R] = HR matrix('both', qb_e_T38);

%-- calculate kalman gain matrix -- %
K = calc_K(P,H,R);

%-- update state estimate and covariance matrix -- %
[x_est,P] = update(xest,P,K,H,R,z);

rtP_diag = sqrt(diag(P))';

eval(['P_out' num2str(run) '(i,:) = [time, rtP_diag];'])

error_calcs % MATLAB script for calculating errors ./errorcalcs.m
eval(['att_error' num2str(run) ' = [error(:,l),error(:,17:19)];'])

x_est = x_est';
zmHxhat = z_mHxhat';
Z = Z';

eval(['filter_out' num2str(run) '(i,:) = [time, x_est, zmHxhat, z];'])
x_est = xest';

else
[q_b_e, qh_e, qbe_T38, q_h_e-HELMET] = unlog_quaternions(data,time,data_dt);

if(-mod(time, med_ratedt))
[dvv_bi_T38, dv_b_i_HELMET] = unlog_del_velo(data,time,data_dt);

%-- formulate sub-phi matrices along diagonal -- %
prev phill_T38 = phillT38;

phill_T38 = makephill(dvvb_i_T38, med_rate_dt);
phill-T38 = phillT38 * prev-phill_T38;
prevphill_HELMET = phill_HELMET;

phill_HELMET = makephill(dwv_b_iHELMET, medrate_dt);
phill_HELMET = phillHELMET * prev_phill_HELMET;

end

fprintf('Covariance output saved in P_out%d.\n',run)
fprintf('filter output data saved in filter out%d.\n',run)

eval(['clear data' num2str(run)])

end

% cleanup unwanted variables
disp('cleaning up unwanted variables...')
clear C_b_e H K P PHI Q R R_HELMET R_HELMET_nav
clear R T38 RT38_nav Rdot_HELMET Rdot_HELMET_nav
clear Rdot T38 RdotT38_nav
clear data datadt dvv_HELMET_sum dvv_T38_sum dvv bi HELMET
clear dvv bi T38 end_time error error2 error3 error4
clear high_rate_dt i meas_rate_dt med_rate_dt nom_la
clear phill_HELMET phill_T38 phil2_HELMET phil2_T38 phirel
clear qb_e q_b_e_T38 q_h_e qh_e_HELMET qrel qmultHELMET
clear qmultREL qmultREL tr qmultT38 rtP_diag run set start_time
clear tao time x_est z z_mHxhat

clear numruns i

disp('saving processed data as "processed_data.mat"...')
save processed_data

disp('performing statistical analysis...')
stat_run

function data = MC_load_setrun(set, run)

% data = MCloadsetrun(set, run)

% loads data from given Monte Carlo Set and run number

if(run < 10)
eval(['load /diskO2/esb2110/matlab/ThesisData/montecarlo/set_' num2str(set)

'/MCrun0' num2str(run) '.mat'])
eval(['data = MC_runO' num2str(run) ';'])

else
eval(['load /diskO2/esb2110/matlab/ThesisData/montecarlo/set_' num2str(set)

'/MCrun_' num2str(run) '.mat'])
eval(['data = MC_run_' num2str(run) ';'])

end

data = data(:,2:end)'

function [zmHxhat,z] = measurement(meas_type,x_est,data,time,dt)

% [zmHxhat, z] = measurement(meas_type,x_est,data, time,dt)

% Given inputted types (gps, relative, or both) generates
% proper z-vector for the Kalman Filter.

if(meas_type == 'gpsM')

[GPS_R, GPS_V] = unlog_GPS(data,time,dt);

[R_T38, R_HELMET, R_T38_nav, R_HELMET_nav] = unlog_R(data,time,dt);
R_cor_T38 = x_est(l:3);

[Rdot_T38, Rdot_HELMET, Rdot_T38_nav, Rdot_HELMET_nav] =
unlog_Rdot(data,time,dt);
V_cor_T38 = x_est(4:6);
z = [(R_T38_nav - GPS_R)', (Rdot_T38_nav - GPS_V)']';
z_mHxhat = [((R_T38_nav - R_cor_T38)-GPS_R)', ((Rdot_T38_nav - V_cor_T38)-

GPS_V) ']';

elseif(meas_type == 'relM')

[R_T38, R_HELMET, R_T38_nav, R_HELMET_nav] = unlog_R(data,time,dt);
[q_b_e, qh_e, q_b_e_T38, q_h_e_HELMET] = unlog_quaternions(data,time,dt);
R_cor_T38 = x_est(l:3);
RcorHELMET = x_est(10:12);
markov = x_est(19:21);
nom_la = [12.083,0.0,-4.33]';
C_b_e = q2C(q_b_e_T38);
z = R_HELMET_nav - RT38_nav - C_b_e' * nom_la;
z_mHxhat = ((R_HELMET_nav-R_cor_HELMET) - (R_T38_nav-R_cor_T38) -

(C_b_e'*(nomla + markov)));

elseif(meas_type == 'both')

[GPS-R, GPS_V] = unlog_GPS(data, time, dt);
[q_b_e, q_h_e, q_b_e_T38, q_h_e HELMET] = unlog_quaternions(data,time,dt);
[R_T38, R_HELMET, R_T38_nav, R_HELMET_nav] = unlog_R(data,time,dt);
R_cor_T38 = x_est(l:3);
R_cor_HELMET = x_est(10:12);
[Rdot_T38, Rdot_HELMET, Rdot_T38_nav, RdotHELMETnav] =

unlog_Rdot(data,time,dt);
V_cor_T38 = x_est(4:6);
markov = x_est(19:21);
nom_la = [12.083, 0.0, -4.33]';
C_b_e = q2C(q_b_e_T38);

z = [(RT38_nav - GPS_R)',
(Rdot_T38_nav - GPS_V)',

(R-HELMET_nav - R_T38_nav - Cbe' * nom_la)']';

z-mHxhat = [((R_T38_nav - R_cor_T38)-GPSR)',...
((Rdot_T38_nav - V_cor_T38)-GPS_V)',.

((R_HELMET_nav - R_cor_HELMET) - (R_T38_nav - RcorT38) -

(C_b_e' * (nomla + markov)))']';
end

function phill = make_phill(deltav,dt)

% phill = make-phill(delta_v,dt)

% Forms phill matrix component for given
% delta-v inputted to it.

phill = eye(9,9);

phill(1:3,4:6) = eye(3,3) * dt;
phill(4,5) = -2 w_e * dt;
phill(5,4) = 2 * w_e * dt;
phill(4:6,7:9) = [0 -delta_v(3) delta_v(2);
deltav(3) 0 -delta_v(l);
-deltav(2) delta_v(l) 0];

phill(7,8) = -w_e * dt;
phill(8,7) = w_e * dt;

% --------------------------- %
%---- PLOTFILTEROUT.M ---- %
%---------------------------%

figure(l)
clf

subplot(3,2,5),
zoom off
plot(out(:,l), out(:,2), 'b-', out(:,l), out(:,3), 'r--', out(:,l), out(:,4), 'k-
.,)
hold on
grid on
legend('X error','Y error','Z error',3)
ylabel('position [ft]')
title('T38 Filter Position error estimate vs. time')

subplot(3,2,3),
zoom off
plot(out(:,l),out(:,5),'b-', out(:,l), out(:,6), 'r--', out(:,l), out(:,7),'k-.')
hold on
grid on
legend('Vx error','Vy error','Vz error',3)
ylabel('velocity [ft/sec]')
title('T38 Filter Velocity error estimate vs. time')

subplot(3,2,1),
zoom off
plot(out(:,l),out(:,8),'b-', out(:,l),out(:,9),'r--', out(:,l),out(:,10),'k-.')
hold on
grid on
legend('psil error','psi2 error','psi3 error',4)
ylabel('attitude [rad]')
xlabel('time [sec]')
title('T38 Filter Attitude error estimate vs. time')

subplot(3,2,6),
zoom off
plot(out(:,l),out(:,ll),'b-', out(:,l), out(:,12),'r--', out(:,l), out(:,13),'k-

hold on
grid on
legend('X error','Y error','Z error', 4)
ylabel('position [ft]')
title('Helmet Filter Position error estimate vs. time')

subplot(3,2,4),
zoom off
plot(out(:,l), out(:,14),'b-',out(:,l),out(:,15),'r--',out(:,l),out(:,16),'k-.')
hold on
grid on
legend('Vx error','Vy error','Vz error',4)
ylabel('velocity [ft/sec]')
title('Helmet Filter Velocity error estimate vs. time')

subplot(3,2,2),
zoom off
plot(out(:,l),out(:,17),'b-',out(:,l),out(:,18),'r--', out(:,l), out(:,19),'k-.')
hold on
grid on

legend('psil error','psi2 error','psi3 error', 4)
ylabel('attitude [rad]')
xlabel('time [sec]')
title('Helmet Filter Attitude error estimate vs. time')

------- %

figure(2)
clf

subplot(3,2,5),
zoom off
plot(error(:,l),error(:,2),'b-',error(:,l),error(:,3),'r--
',error(:,l),error(:,4),'k-.')

hold on
grid on
legend('X error','Y error','Z error',l)
ylabel('position (ft]')
xlabel('time [sec]')
title('T38 Position error vs. time')

subplot(3,2,3),
zoom off
plot(error(:,1),error(:,8),'b-',error(:,l),error(:,9),'r--
',error(:,l),error(:,10),'k-.')

hold on
grid on
legend('Vx error','Vy error','Vz error',4)
ylabel('velocity [ft/sec]')
title('T38 Velocity error vs. time')

subplot(3,2,1),
zoom off
plot(error(:,l),error(:,14),'b-',error(:,l),error(:,15),'r--
',error(:,l),error(:,16),'k-.')
hold on
grid on
legend('psil error','psi2 error','psi3 error',4)
ylabel('attitude [rad]')

title('T38 Attitude error vs. time')

subplot(3,2,6),
zoom off
plot(error(:,1),error(:,5),'b-',error(:,l),error(:,6),'r--
',error(:,l),error(:,7),'k-.')
hold on
grid on
legend('X error','Y error','Z error',4)
ylabel('position [ft]')
xlabel('time [sec]')
title('Helmet Position error vs. time')

subplot(3,2,4),
zoom off
plot(error(:,l),error(:,11),'b-',error(:,l),error(:,12),'r--
',error(:,l),error(:,13),'k-.')

hold on
grid on
legend('Vx error','Vy error','Vz error',4)
ylabel('velocity [ft/sec]')
title('Helmet Velocity error vs. time')

subplot(3,2,2),
zoom off
plot(error(:,l),error(:,17), 'b-',error(:,l),error(:,18),'r

--

',error(:,l),error(:,19),'k-.')
hold on
grid on
legend('psil error','psi2 error','psi3 error',4)
ylabel('attitude [rad]')
title('Helmet Attitude error vs. time')

%--%

figure(3)
clf
hold on
plot(P_out(:,1),P_out(:,17),'b--',P_out(:,l),-l.*Pout(:,17),'b- -'

)
plot(P_out(:,1),P out(:,18),'g--',P_out(:,l),-l.*P_out(:,18),'g--')
plot(P_out(:,1),P_out(:,19),'r--',P_out(:,),-.*Pout(:,19),'r--')

grid on
title('Helmet Attitude Covariance')
xlabel('time [sec]')
ylabel('covariance (rad]')

function (x_pre, P_pre] = propagate(PHI, x_post, Ppost, Q)

% [x_pre, Ppre] = propagate(PHI, x_post, Ppost, Q)

% This function propogates the state estimate and covariace matrix.

% Inputs:
% PHI = propagation matrix for state & state estimate
% xpost = either initial condition, or post-measurement-update state estimate
% P_post = either initial condition, or post-measurement-update covariance matrix
% Q = inherent noise matrix for state estimate vector (w in diagonal matrix)

Outputs:
x_pre = propagated state estimate prior to next update
P_pre = propogated state estimate covariance matrix prior to next update

% Written by E. Bailey February 26, 2000.

x_pre = PHI * xpost;

P_pre = PHI * P_post * PHI' + Q;

%
%
%

0

function qout=qmulq(ql,q2)

% qout=qmulq(ql,q2)

% Quaternion Multiplication

qout(l,:)=ql(l,:).*q2(1,:)-ql(2,:).*q2(2,:)-ql(3,:).*q2(3,:)-ql(4,:).*q2(4,:);
qout(2,:)=ql(l,:).*q2(2,:)+ql(2,:).*q2(1,:)+ql(3,:).*q2(4,:)-q1(4,:).*q2(3,:);
qout(3,:)=ql(l,:).*q2(3,:)-q1(2,:).*q2(4,:)+ql(3,:).*q2(1,:)+ql(4,:).*q2(2,:);
qout(4,:)=ql(l,:).*q2(4,:)+ql(2,:).*q2(3,:)-q1(3,:).*q2(2,:)+ql(4,:).*q2(1,:);

% --------------------- %
%----- STATRUN.M ----- %
% ---------------------- %

% ------------- %
% INIT VALUES %
% ------------- %

FLAGshowallerrors = 0;

%-------------------%
% Statistical Calcs %
% ------------------- %

psix(:,l) = atterrorl(:,l);
psi_y(:,l) = att_errorl(:,l);
psiz(:,l) = atterrorl(:,l);

for(i= 1:20)
eval(['psix(:,' num2str(i)
eval(['psiy(:,' num2str(i)
eval(['psiz(:,' num2str(i)

'+1) = atterror' num2str(i) '(:,2);'])
'+1) = atterror' num2str(i) '(:,3);'])
'+1) = atterror' num2str(i) '(:,4);'1)

psi_stat(:,l) = psi_x(:,l);

for (i = l:length(psi_stat(:,l)))
psi_stat(i,2) = mean(psi_x(i,2:end));
psi_stat(i,3) = mean(psi y(i,2:end));
psi_stat(i,4) = mean(psi_z(i,2:end));
psi_stat(i,5) = sqrt(var(psix(i,2:end)));
psi_stat(i,6) = sqrt(var(psi_y(i,2:end)));
psi_stat(i,7) = sqrt(var(psi_z(i,2:end)));
psi_stat(i,8) = sqrt(sum(psi_x(i,2:end).^2)/20);
psi_stat(i,9) = sqrt(sum(psiy(i,2:end).^2)/20);
psi_stat(i,10) = sqrt(sum(psiz(i,2:end).^2)/20);

end

Psigpsix(:,l) = P_outl(:,l);
Psig psiy(:,l) = P_outl(:,l);
Psigpsiz(:,1) = P_outl(:,l);

for (i = 1:20)
eval(['Psig_psix(:,' num2str(i) '+1) = Pout'
eval(['Psigpsiy(:,' num2str(i) '+1) = Pout'
eval(['Psigpsiz(:,' num2str(i) '+1) = Pout'

num2str(i) '(:,17);'])
num2str(i) '(:,18);'])
num2str(i) '(:,19);'])

Psig_stat(:,l) = Psigpsix(:,l);

for (i = l:length(psistat(:,l)))
Psig-stat(i,2) = mean(Psigpsix(i,2:end));
Psig-stat(i,3) = mean(Psigpsiy(i,2:end));
Psig-stat(i,4) = mean(Psigpsiz(i,2:end));

end

% ------------------- %
% PLOTTING ROUTINES %
% ------------------- %

figure(1)
clf
subplot(3,2,1),
plot(psi_stat(:,l),psistat(:,2),'r')
hold on
plot(psi stat(:,l),psi_stat(:,5),'--')
plot(psi_stat(:,l),-psistat(:,5),'--')
ylabel('x-axis (rad]')
grid on
axis_vals = [0,120,-
max([max(psi-stat(l0:end,8)),max(psi-stat(10:end,9)),max(psi-stat(l0:end,10))]),

max(fmax(psistat(10:end,8)),max(psi.stat(10:end,9)),max(psistat(10:end,10))])];
title('E[x] & Sigma of attitude error')
axis(axis_vals);

subplot(3,2,2),
plot(Psigstat(:,l),Psigstat(:,2))
hold on
plot(Psig_stat(:,l),-Psig_stat(:,2))
ylabel('psi_x [rad]')
title('Filter P-matrix sigmas')
grid on
axis(axis_vals);

subplot(3,2,3),
plot(psistat(:,l),psi_stat(:,3),'r')
hold on
plot(psistat(:,l),psi_stat(:,6),'--')
plot(psistat(:,l),-psi_stat(:,6),'--')
ylabel('y-axis [rad]')
grid on
axis(axis_vals);

subplot(3,2,4),
plot(Psig_stat(:,l),Psig_stat(:,3))
hold on
plot(Psigstat(:,l),-Psig_stat(:,3))
ylabel('psiy [rad]')
grid on
axis(axisvals);

subplot(3,2,5),
plot(psi_stat(:,l),psistat(:,4),'r')
hold on
plot(psi_stat(:,l),psistat(:,7),'--')
plot(psi_stat(:,l),-psi stat(:,7),'--')
ylabel('z-axis [rad]')
xlabel('time (sec]

')

grid on
axis(axis_vals);

subplot(3,2,6),
plot(Psig_stat(:,l),Psigstat(:,3))
hold on
plot(Psig_stat(:,l),-Psig_stat(:,3))
ylabel('psi_z [rad]')
xlabel('time [secl')
grid on
axis(axis_vals);

figure (2)
clf
subplot(3,2,1),
%plot(psistat(:,l),psi_stat(:,2),'r')
hold on
plot(psi_stat(:,l),psi_stat(:,8),'k-.')
plot(psi_stat(:,l),-psistat(:,8),'k-.')
axis(axis_vals);
grid on;
ylabel('x-axis [rad]')
title('E[x] & RSS of attitude error')

subplot(3,2,3),
%plot(psistat(:,l),psi_stat(:,3),'r')
hold on
plot(psistat(:,l),psi_stat(:,9),'k-.')
plot(psistat(:,l),-psistat(:,9),'k-.')
axis(axisvals);
grid on;
ylabel('y-axis [rad]')

subplot(3,2,5),
%plot(psi-stat(:,l),psi_stat(:,4),'r')
hold on
plot(psi_stat(:,l),psi_stat(:,10),'k-.')
plot(psistat(:,stat(:,l),-psi-stat(:,10),'k-.')
axis(axis-vals);
grid on;
ylabel('z-axis (rad]')
xlabel('time [sec]')

subplot(3,2,2),
plot(Psigstat(:,l),Psig_stat(:,2))
hold on
plot(Psig-stat(:,l),-Psigstat(:,

2
))

ylabel('psi_x (rad]')
title('Filter P-matrix sigmas')
grid on
axis(axis vals);

subplot(3,2,4),
plot(Psigstat(:,l),Psigstat(:,3))
hold on
plot(Psigstat(:,l),-Psig_stat(:,3))
ylabel('psi_y [rad]')
grid on
axis(axis vals);

subplot(3,2,6),
plot(Psigstat(:,l),Psig_stat(:,3))
hold on
plot(Psig_stat(:,l),-Psigstat(:,3))
ylabel('psi_z [rad]')
xlabel('time (sec]')
grid on
axis(axis vals);

if(FLAGshow_allerrors)

figure (3)
clf
for(i = 1:5)
axis_vals = [0,psi_x(end,l),

min([min(psi_x(:,i+l)), min(psi y(:,i+l)), min(psi_z(:,i+l))]),
max([max(psix(:,i+l)), max(psiy_(:,i+l)), max(psi_z(:,i+l))])];

subplot(5,3,3*(i-1)+l),
plot(psi_x(:,l1),psi_x(:,i+l))
hold on
grid on
axis(axisvals);

if(i == 1)
title('x-axis psi-error');

elseif(i == 5)
xlabel('time [sec]');

end
ylabel('error [rad]')
subplot(5,3,3* (i-l)+2),
plot(psi_y(:,l),psi_y(:,i+l))
hold on
grid on
axis (axis_vals);

if(i == 1)
title('y-axis psi-error');

elseif(i == 5)
xlabel('time [secl]');

end
subplot(5,3,3*(i-l)+3),
plot(psi_z(:,l),psi_z(:,i+l))
hold on
grid on
axis(axis-vals);

if(i == 1)
title('z-axis psi-error');

elseif(i == 5)
xlabel('time [sec]');

end
end

figure (4)
clf
for(i = 6:10)
axis_vals = [O,psi_x(end,l),

min((min(psi_x(:,i+l)), min(psi_y(:,i+l)), min(psi_z(:,i+l))]),
max([max(psi_x(:,i+l)), max(psi_y(:,i+l)), max(psi_z(:,i+l))])];

subplot(5,3,3*(i-6)+1),
plot(psi_x(:,l),psi_x(:,i+l))
hold on
grid on
axis(axisvals);

if(i == 6)
title('x-axis psi-error');

elseif(i == 10)
xlabel('time (sec]');

end
ylabel('error [rad]');
subplot(5,3,3*(i-6)+2),
plot(psiy(:,1),psi_y(:,i+l))
hold on

grid on
axis(axis_vals);

if(i == 6)
title('y-axis psi-error');

elseif(i == 10)
xlabel('time (sec]');

end
subplot(5,3,3'(i-6)+3),
plot(psiz(:,l),psi_z(:,i+l))
hold on
grid on
axis(axis_vals);

if(i == 6)
title('z-axis psi-error');

elseif(i == 10)
xlabel('time (sec]');

end
end

figure(5)
clf
for(i = 11:15)
axis_vals = [O,psi_x(end,l),

min([min(psi_x(:,i+l)), min(psi_y(:,i+l)),
max([max(psi_x(:,i+l)), max(psi_y(:,i+l))

subplot(5,3,3*(i-ll)+1),
plot(psi_x(:,l),psix(:,i+l))
hold on
grid on
axis(axisvals);

if(i == 11)
title('x-axis psi-error');

elseif(i == 15)
xlabel('time [sec]');

end
ylabel('error [rad]');
subplot(5,3,3*(i-ll)+2),
plot(psiy(:,l),psiy(:, i+l))
hold on
grid on
axis(axis_vals);

if(i == 11)
title('y-axis psi-error');

elseif(i == 15)
xlabel('time [sec]');

end
subplot(5,3,3*(i-ll)+3),
plot(psi_z(:,l),psi_z(:,i+l))
hold on
grid on
axis(axis_vals);

if(i == 11)
title('z-axis psi-error');

elseif(i == 15)
xlabel('time [sec)');

end
end

figure(6)
clf

min(psi-z(:,i+l))]), ...
max(psi_z(:,i+l))])];

for(i = 16:20)
axis_vals = [O,psi_x(end,l),

min([min(psi_x(:,i+l)), min(psi_y(:,i+l)), min(psi_z(:,i+l))]),
max([max(psix(:,i+l)), max(psiy(:,i+l)), max(psi_z(:,i+l))])];

subplot(5,3,3*(i-16)+1),
plot(psi_x(:,l),psi_x(:,i+l))
hold on
grid on
axis(axisvals);

if(i == 16)
title('x-axis psi-error');

elseif(i == 20)
xlabel('time [sec]');

end
ylabel('error [rad]');
subplot(5,3,3*(i-16)+2),
plot(psi_y(:,l),psi_y(:,i+l))
hold on
grid on
axis(axis_vals);

if(i == 16)
title('y-axis psi-error');

elseif(i == 20)
xlabel('time [secl');

end
subplot(5,3,3*(i-16)+3),
plot(psiz(:,l),psi_z(:,i+l))
hold on
grid on
axis(axis_vals);

if(i == 16)
title('z-axis psi-error');

elseif(i == 20)
xlabel('time [secl');

end
end

end

0,
(J

function [x_post, P_post] = update(x_pre, P_pre, K, H, R, z);

% [xpost, P_post] = update(x.pre, P_pre, K, H, z);

% Performs the Kalman Update using the gain matrix calculated
% prior to calling this function using calcK.m

% Inputs:
% H = measurement matrix for update
% z = measurement for update
% x_pre = state estimate prior to update
% P_.pre = state estimate covariance matrix prior to update

% Outputs:
% x_post = state estimate after measurement update
% Ppost = state estimate covariance matrix after update

% Written by E. Bailey, February 26, 2000

I = eye(length(xpre));

zmHxhat = (z - H*xpre);

x_post = x_pre + K * zmHxhat;

%-- K-varying code -- %

% x_post_2 = z - H*x_post;

% if (abs(x_post_2(7)) > 3)
% K(:,7) = K(:,7)*2;
% end

% if (abs(xpost_2(8)) > 3)
% K(:,8) = K(:,8)*2;
% end

% if (abs(x_post_2(9)) > 3)
% K(:,9) = K(:,9)*2;
% end

% x_post = xpre + K * z mHxhat;

ImKH = (I-K*H);

P_post = ImKH * P_pre * ImKH' + K*R*K';

