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Abstract

The Thin-Layer Method (TLM) is a semi-analytical technique that is efficient for wave
propagation problems involving partially heterogeneous media. While the method has been used
widely for horizontally stratified media, e.g. dynamic response of foundations over layered soils,
there remain many unexplored aspects. These include a thorough evaluation of the TLM's
accuracy and range of applicability as well as its extension to semi-infinite and infinite media.
Based on these considerations, we have three main goals to pursue in this study. The first one is
to explore and improve the accuracy and convergence of the TLM associated with finite media.
The second one is to extend the applicability of the TLM to model and analyze semi-infinite and
infinite multilayered media. The third one is to develop two novel TLM's that are useful in
analyzing wave motions in cylindrically or spherically laminated solids and shells. We proceed
our study by separating it into the following three parts.

In the first part, we begin by characterizing numerical dispersion phenomena in the TLM by
means of general solutions and frequency spectra for discrete homogeneous full-spaces, which
are obtained in closed-form with the aid of a finite difference scheme. Then, we determine the
optimal combination of the consistent and lumped mass matrices by introducing tuning factors
into the discrete system of equations. As a result, we improve the accuracy of not only the
eigenvalues associated with free-vibration problems, but also the modal responses to external
dynamic loads. To assess the accuracy and convergence of the modal solutions, we compute both
the displacements and internal stresses for some canonical examples and then compare with the
associated exact analytical solutions. From this exploration, we discover various aspects of the
TLM modal solutions in connection with the spatial-temporal characteristics of sources and
receivers. We consider both the linear and quadratic expansion TLM's. Finally, we determine the
reasonable numbers of thin-layers per wavelength needed to calculate accurate responses with the
TLM. In addition, we find out that the quadratic expansion TLM is more accurate and efficient
than the linear expansion TLM.

In the second part, we utilize the substructure method and the paraxial approximation for the
purpose of analyzing the semi-infinite and infinite multilayered media by means of the TLM. The
substructure method is applied to the TLM formulation in the time-domain, while the paraxial
approximation is used for the TLM formulation in the frequency-domain. In addition, for the
application of the substructure method, we derive new closed-form Green's functions in the
wavenumber-time domain for a homogeneous half-space by means of contour integration. We
extensively investigate the characteristics of the both formulations to improve their stability and
accuracy. For stable and effective calculation, we propose the use of an artificial buffer layer and
an adaptive buffer layer for the time-domain and frequency-domain formulations, respectively.
Furthermore, we also derive the exact analytical Green's functions in the space-frequency domain



for a layered half-space subjected to SH wave motion and a homogeneous half-space subjected to
SV-P wave motion by means of contour integration. We compare the numerical results obtained
with the TLM against the exact analytical Green's functions to assess the accuracy of the TLM
combined with a hybrid system of the paraxial approximation and the adaptive buffer layer.

In the third part, we develop two new TLM's formulated in the cylindrical and spherical
coordinate systems, respectively. The one is called the Cylindrical Thin-Layer Method (CTLM)
and the other is called the Spherical Thin-Layer Method (STLM). These two are formulated in
both the linear and quadratic expansion. To verify the two developed TLM's, we compute the
propagation modes for a homogeneous cylindrical/spherical solid and shell, and compare these
with the associated exact analytical solutions. For this purpose, we also derive the exact analytical
solutions for the continuous models of interest.

Thesis supervisor: Eduardo Kausel
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Chapter 1 Introduction

1.1 Motivations and scope

The Thin-Layer Method (TLM) is a semi-analytical technique used to solve wave propagation
problems involving partially heterogeneous media. The method is based on a finite-element
discretization of the media in the direction in which the material properties are heterogeneous,
and using analytical methods for the remaining coordinate directions. While the method has been
used widely in the context of horizontally stratified media, such as traffic loads on pavements, the
dynamic response of foundations over layered soils, and non-destructive techniques for laminated
composite materials, there remain many unexplored aspects. These include a thorough evaluation
of the TLM's accuracy and range of applicability as well as its extension to semi-infinite and
infinite media. Based on these considerations, we proceed our study by separating it into the
following three parts.

In the first part, i.e. in chapters 2, 3 and 4, we begin by characterizing numerical dispersion
phenomena in the TLM discrete models by means of general solutions and frequency spectra for
isotropic homogeneous discrete full-spaces subjected to plane waves. The general solutions and
frequency spectra are obtained in closed-form with the aid of a finite difference scheme. Then, we
determine an optimal combination of consistent and lumped mass matrices by introducing tuning
factors into the discrete system of equations. As a result, we improve the accuracy of not only the
eigenvalues associated with free-vibration problems, but also the TLM modal responses to
external dynamic loads. To assess the accuracy and convergence of the TLM modal solutions, we
compute both the displacements and internal stresses for some canonical examples and then
compare these with the associated exact analytical solutions. From this exploration, we discover
various aspects of the TLM modal solutions in connection with possible numerical errors that can
occur in real analyses. For this purpose, we also derive and present the exact analytical solutions
in the form of modal superposition solutions as well as by means of the image source method. We
consider both the linear and quadratic expansion TLM's. Finally, we determine a recommended
numbers of thin-layers per wavelength needed to calculate accurate modal responses with the
TLM. In addition, we observe that the quadratic expansion TLM is more accurate and efficient
than the linear expansion TLM.

In the second part, i.e. in chapters 5 and 6, we utilize the substructure method and the paraxial
approximation for the purpose of analyzing semi-infinite and infinite multilayered media with the
TLM. The substructure method is applied to the TLM formulation in the time-domain, while the
paraxial approximation is used for the TLM formulation in the frequency-domain. In addition, for
the application of the substructure method, we derive new closed-form Green's functions in the
wavenumber-time domain for a homogeneous half-space by means of the contour integration
method. We extensively investigate the characteristics of the both the time-domain and
frequency-domain formulations, as a result of which we improve their stability and accuracy. For
stable and effective calculation, we propose the use of an artificial buffer layer and an adaptive
buffer layer for the time-domain and frequency-domain formulations, respectively. Furthermore,
we also derive exact analytical Green's functions in the space-frequency domain for a layered
half-space subjected to SH wave motion and a homogeneous half-space subjected to SV-P wave
motion by means of the contour integration method. We compare the numerical results obtained
with the TLM against the exact analytical Green's functions to assess the accuracy of the TLM
combined with a hybrid system of the paraxial approximation and the adaptive buffer layer.



In the third part, i.e. in chapters 7 and 8, we develop two new TLM formulations in the cylindrical
and spherical coordinate systems, respectively. These are the Cylindrical Thin-Layer Method
(CTLM) and the Spherical Thin-Layer Method (STLM). Both of these two are formulated not
only in linear expansion, but also in quadratic expansion. Also, we present the modal solutions for
displacement responses in the time-domain. To verify the validation of the two developed TLM's,
we first compare them with the TLM for flat layers, based on the fact that a hollow cylinder and
sphere with a large radius relative to its thickness behaves like an infinite plate. Then, we
compute the propagation modes (or eigenvalues) for a homogeneous cylindrical/spherical solid
and shell, and compare these with the associated exact analytical solutions. For this purpose, we
also derive the exact analytical solutions for the continuous models of interest.

1.2 Historical background

Since its inception in the 1970's, the TLM has evolved into an efficient technique for the analysis
of wave motion in layered soils and other laminated media. Because the TLM is based on a
partial-discretization technique, it requires relatively small computational efforts in comparison
with other full-discretization methods such as the finite difference method and the finite element
method. In addition, the TLM can easily couple with standard finite element methods for such
practical purposes as soil-structure interaction problems or irregular-shaped layered systems.
Finally, the TLM can provide various Green's functions for arbitrarily multilayered media
without any added difficulty, which are very useful indeed when combined with the boundary
element methods.

From the historical point of view, the origin of the TLM can be traced to the work of Lysmer
[1970] where he formulated the characteristic equations for the analysis of generalized Rayleigh
wave in isotropic layered media by means of a limiting process to finite elements of linear
expansion. He also calculated the dispersion characteristics and group velocities on the basis of
Rayleigh's quotient. A few years later, Waas [1972] and Lysmer and Waas [1972] derived the
characteristic equations directly from the principle of virtual work without performing a limiting
process from finite elements. Waas [1972] extensively analyzed the Rayleigh and Love wave
motions in plane and axisymmetric problems. In addition, they obtained transmitting boundaries
for finite element representations of irregular soil media.

At the same period, Nelson et al. [1971], Dong and Nelson [1972], Nelson and Dong [1973]
developed essentially the same method, which they called the extended Ritz technique in their
papers, for studying the free vibrations of laminated orthotropic plates and circular cylinders. In
their studies, a quadratic interpolation function is employed to approximate displacement fields in
the layering direction and Hamilton's principle is used to arrive at the free vibration equations.
Furthermore, Datta et al. [1988] used cubic Hermite polynomials and obtained a characteristic
equation of fourth order in the horizontal wavenumber for the case of plane strain. Alekseyev and
Mikhaylenko [1976] developed a technique for analyzing vertically inhomogeneous elastic half-
spaces on the basis of an extension of the method of partial separation of the variables using the
finite difference method instead of the finite element method. Rukos [1978] treated, with
complete generality, the partial discretization of the boundary value problem of elastostatics, and
illustrated the accuracy of the method for domains of bounded, semi-infinite, and infinite extent.

Drake [1972a, 1972b, 1980] applied the transmitting boundaries of Waas [1972] and Lysmer and
Waas [1972] to analyze Love and Rayleigh waves in irregular layered media. At the same time,



Kausel [1974] formulated the transmitting boundaries in cylindrical coordinates to analyze the
vibration behavior of circular foundations. Kausel and Roasset [1977] developed the semi-
analytical hyper-element for the analysis of layered soils of finite and infinite domains. Kausel
and Rodsset [1981] derived the stiffness matrices for layered soils in the form of both the exact
and discrete solutions, and also presented their advantages over the Haskell-Thompson transfer
matrix method. Tassoulas and Kausel [1983] obtained semi-discrete particular solutions
satisfying inhomogeneous boundary conditions to assess the dynamic behavior of circular and
annular foundations.

Kausel [1981] provided the most general framework for the calculation of the Green's functions
for isotropic layered media by means of the TLM. In his study, he considered various dynamic
loads with arbitrary spatial-temporal characteristics via Fourier and Hankel transformations, and
derived in closed-form the consistent stresses as well as displacements. Based on this work,
Kausel and Peek [1982a] presented the Green's functions for dynamic loads of various types such
as disk loads, ring loads, point loads, seismic single and double couples, and etc. A similar
technique was also developed independently by Tajimi [1980] to investigate the dynamic stiffness
of surface foundations. Olson and Orcutt [1984] formulated the discrete wavenumber/finite
element method by utilizing discrete wavenumber decomposition for the horizontal dependence
of the wave motion in terms of a Fourier-Bessel series. In their study, the vertical-direction and
time dependence of the wave motion is obtained as the solution to a system of partial differential
equations, which are solved numerically by a combination of finite element and finite difference
methods.

Kausel [1986] extended the TLM to allow the modeling of wave propagation in fully anisotropic,
layered systems. In addition, Kausel [1993,1994] formulated the TLM in the time domain to
compute the Green's functions for fully anisotropic layered systems. At the same time, Touhei
[1994] formulated a discrete wavenumber and normal mode superposition method, which turned
out to be quite similar to the work by Kausel [1994]. Geller and Ohminato [1994] and Geller and
Hatori [1995] analyzed laterally heterogeneous media by means of the so-called direct solution
method. Cummins [1994] and Cummins et al. [1994] formulated complete seismograms by
means of the direct solution method of linear expansion for SH and SV-P spherically symmetric
case. Park [1998] formulated the TLM in cylindrical coordinate system, called the cylindrical thin
layer method (CTLM), to obtain the Green's functions for cylindrically laminated anisotropic
elastic media. Kausel [1998] presented the Green's functions for laminated media subjected to a
class of dynamic point sources such as force dipoles, blast loads and bimoments (moment
dipoles). In addition, Han et al. [2001a,b] analyzed transient waves in functionally graded
materials excited by impact loads.

The modeling of layered media over elastic half-spaces or within full-spaces was developed with
the application of the paraxial approximation [Seale 1985; Kausel and Seale 1987; Seale and
Kausel 1989]. As a result, the applicability of the Green's functions was extended from layered
systems of finite depth to layered systems on semi-infinite and infinite media. Maeda and Kausel
[1991] and Kausel [1992] extensively investigated the accuracy and stability of the paraxial
approximation in the context of analyses for layered half-spaces and full-spaces.

Kausel and Peek [1982b] applied the Green's functions obtained with the TLM to the boundary
element method to study laminates with irregularities such as cavities and inclusions. Prosper
[2001] developed the traction boundary element method based on the Green's functions
calculated by means of the TLM and applied it to the detection of delaminations in laminated
plates. Schepers [2001] optimized the TLM to calculate more accurate Green's functions for near



fields in the context of the boundary element method and studied the behavior of foundations on
elastic half-spaces.

Tan [1989] formulated a finite element method for layered solid-fluid media by means of the
formulation for solid media, taking the shear modulus in the fluid domain as zero. Ghibril [1992]
illustrated the capabilities of the TLM for the problem of waves scattering due to finite interfacial
cracks. In addition, he analyzed fluid-solid coupled stratified systems by means of the TLM,
where he imposed continuity conditions between solid and fluid media in a rigorous manner
instead of using a zero shear modulus for the fluid. Liu and Achenbach [1994, 1995] formulated a
so-called strip element method and investigated wave scattering by cracks in anisotropic
laminated plates. It should be noted that the strip element method of Liu and Achenbach is
virtually the same as the TLM and the semi-analytical hyper-elements formulated by Kausel and
Roesset [1977], Kausel [1981], and Tassoulas and Kausel [1983]. Xi et al. [2000a] applied the
strip-element method to the analysis of wave scattering by a crack in an immersed axisymmetric
laminated cylinder.

1.3 Thin-layer method in Cartesian coordinates

In this section, we introduce and review the TLM formulation in a Cartesian coordinate system of
(x, y, z), where the z coordinate corresponds to the depth or layering direction of multi-layered
media of interest. We consider two kinds of the TLM formulations: the one is formulated in the
frequency domain, and the other is formulated in the time domain. Herein, we call the first one
the w-TLM and the second one the t-TLM for short. In particular, we present the response
functions (or Green's functions) associated with only SH and SV-P line loads in this section. For
furthermore response functions such as Green's functions for point loads, disk loads, ring loads,
etc., the readers can refer to the studies by Kausel [1981, 1994] and Kausel and Peek [1982a].

This section is composed of seven subsections 1.3.1-1.3.7. In section 1.3.1, we obtain the wave
equation in matrix form for the most general anisotropic material in a Cartesian coordinate
system, and also set up the necessary boundary conditions. In section 1.3.2, we formulate the
TLM by means of the principle of virtual work and the discretization of the wave equation along
the z direction, after which we end up with a discrete wave equation. In section 1.3.3, we
transform the discrete wave equation by means of a Fourier transformation with respect to the
spatial (x, y) and temporal (t) variables. As a result, we obtain a purely algebraic expression for
the dynamic systems of interest, which could be solved in various ways such as inversion of the
dynamic stiffness matrix or by spectral decomposition. In sections 1.3.4 and 5, we obtain the
modal superposition solutions (or Green's functions) for SH and SV-P harmonic line loads, by
means of eigenvalue problems in the wavenumber variable. In sections 1.3.6 and 7, we obtain the
modal superposition solutions (or Green's functions) for SH and SV-P transient line loads, by
means of eigenvalue problems in the frequency variable. We present in closed-form the responses
for displacement components, consistent stress components, and nodal load components.

1.3.1 Wave equation in Cartesian coordinates

Consider a horizontally stratified, locally homogeneous and anisotropic, linearly elastic medium
of infinite lateral extent whose motion is acted upon by dynamic loads at some location. At any
arbitrary point in the medium, the dynamic equilibrium equation, the stress-strain relation, and the
strain-displacement relation are given by



pii- La = b (1.3.1)
a = DE (1.3.2)
E = Lu (1.3.3)

In these equations,
p= p(x, y,z) (the mass density) (1.3.4a)

u =u(x, y,z,t) =[u x uy Uz (the displacement vector) (1.3.4b)

b=b(x,y,z,t)=[bx by bzl T  (the body load vector) (1.3.4c)

a=a (x, y, z, t) =[ x Cry . , . ~ (the stress tensor) (1.3.4d)

8=O(x,y,Z,t)=[ E E7 9 yz y , Yxr T (the strain tensor) (1.3.4e)

D=D(x,y,z)={(di i,j=1,2,...,6 (the constitutive matrix, symmetric) (1.3.4f)

ax az ay

L= a (a differential operator) (1.3.4g)ay az ax
a a a

az ay ax
The superscript T in these equations denotes a transposed vector or matrix, and the double dot
indicates the second derivative with respect to time t. Substituting equations (1.3.2 and 3) into
equation (1.3.1), we are led to the wave equation in Cartesian coordinates:

pii - LT DLu = b (1.3.5)
On the other hand, the differential operation L can be rewritten as

L = Lx + L, -t L - (1.3.6)ax ay az
where

•.1 •

L x , Ly= , L= 1

*1. 1.. .-

It follows that the expansion of the product L'DL is of the form

LTDL= D a2 + D a2 +D a2
Sa8x2 D ay2 %z2

(1.3.7)
a2  a2  a2

(D,, + D,)- + (DX + DX)- + (D. + D )
axay axaz ayaz

with material matrices D,6 defined by

Da = L DLf, a, l= x,y,z (1.3.8)
These matrices depend only on the material parameters, and can be readily evaluated for any
anisotropic medium. Substituting equations (1.3.7 and 8) into equation (1.3.5), we obtain the
general wave equation for an anisotropic solid in Cartesian coordinates.



On the other hand, the vector of internal stresses in any horizontal plane can be written as
s = Lro'= L DLu (1.3.9)

whose components are

s=[v "'• o,' T(1.3.10)

Finally, the boundary conditions at regions where the external tractions t are prescribed are of
the form

t- s =0 (1.3.11)

with s, being the vector of internal stresses at the boundary with normal v. For an upper
horizontal boundary s, = s, while for a lower horizontal boundary s, = -s, with s given in either
case by equations (1.3.9 and 10).

1.3.2 Formulation of the TLM

To solve the wave equation, we begin by dividing the physical domain into layers that are thin in
the finite element sense. Each of these thin-layers may in turn be composed of sub-layers; the
number of sub-layers, if any, will depend on the interpolation order m chosen for the thin-layer
formulation, as will be seen. We proceed next to cut out an individual thin-layer, and then label
the sub-layers with indices, 1, l+1,...,l+m (from the top down). We preserve the equilibrium of
each thin-layer by applying tractions t, t,, , on the two exposed surfaces such that they match
the internal stresses there. We approximate the displacement field within the thin-layer by means
of an interpolation as

u=NU (1.3.12)
with N = N(z) being a matrix containing the interpolation polynomials, and U = U(x, y,t) a
column vector composed of the interface displacement vectors

U=[uT u[t ... u +m (1.3.13)

For example, for the linear (mr=l) and quadratic (m=2) interpolation, the matrix N is given as

N=['I (1- ')I] (for mz=1) (1.3.14a)

N= [4(25 -1)I 4((1- )I (1-5 )(1-2 2)I] (for m=2) (1.3.14b)

where I is the 3x3 identity matrix, and = z / h, with h being the thickness of the thin-layer.

Clearly, equation (1.3.12) represents a partial discretization of the displacement field, namely
only in the direction of layering. Thus, when we substitute the displacement expansion (1.3.12)
into both of the wave equation (1.3.5) and the boundary conditions (1.3.11), we find that these
equations are not satisfied identically, but exhibit instead residual body forces r = r(x, y, z,t) and
residual boundary tractions q = q(x, y, z,t), i.e.

b - pii + LIDLu = r (1.3.15a)

t - s, =q (1.3.15b)
To derive the discrete equations of motion and dispose of these unbalanced forces r and q, we
apply the method of weighted residuals to the thin-layer, and require the virtual work done by the
residual forces throughout an elementary volume of the thin-layer (of width dx, depth dy, and
height h) to be zeros:



[ut'q, + u'.qmq+ m + ruTrdz dxdy = 0 (1.3.16)

The first two terms represent the virtual work performed by the residual tractions at the upper and
lower boundaries of the thin-layer, while the third term corresponds to the virtual work done by
the residual body forces. Substituting equations (1.3.12 and 15) into equation (1.3.16) and
discarding the product dxdy, we obtain

dut, + (Ulmt+m + SUT Nr b dz

=SU pNTNdz} U+ us, -5 ul.msTm - SU NTLDLNdz U (1.3.17)

When we require this expression to be valid for arbitrary variation SU, we obtain the dynamic
equilibrium equation for the thin-layer as

P N1 rrDL,,, U1

P1+I {pNTNdz U.+ + 0 NT'N _DLNdz u'. (1.3.18)

LP+m _l+m I -L DLu jz=o_ Ui+m
The left-hand side contains the consistent external tractions p acting on the sub-layer interfaces
which result from the interface tractions t and body loads b. The right-hand side, on the other
hand, contains the internal loads as well as the elastic loads of deformation. Evaluation of this
expression for a given interpolation order and material constitution requires tedious algebra
manipulation and finally provides an equation of the form

a2U  a2U a 2U au au
P= MU- A A- A -B - B - + GU (1.3.19)

aX" x axay ay
2  ax Y ay

where

M ={ pN Ndz} (1.3.20)

Aaa ={• NT DNdz}, a=x,y (1.3.21a)

Axy = NT(Dy +Dyx)Ndz} (1.3.21b)

Ba ={ NTDazN'dz} -{ N'T DzaNdz}, ca= x, y (1.3.22)

G ={ IN'T DZN'dzJ (1.3.23)

In equations (1.3.22) and (1.3.23), N' denotes the first derivative of the interpolation matrix with
respect to z. Notice that the M, Aaa9, and G matrices are symmetric, while the Ba matrices are
skew-symmetric. These matrices are listed in Appendix lA.

At this stage, we proceed to overlap the results for a single thin-layer with those of all other thin-
layers, like the element stiffness matrices in a finite element formulation, so as to generate the
system matrix. Since the overlapping process is straightforward and the resulting system of
equations has the same form as equation (1.3.19), we need not introduce additional symbols for
this purpose. Instead, equation (1.3.19) can be understood as representing the complete system of
layers, relating the consistent interface tractions P = P(x, y,t) applied at the layer interfaces with
the displacements U = U(x, y,t) observed there. Such a system is narrowly banded and has a total
of 3N degrees of freedom, with N being the number of active interfaces (which depends on the



number of layers, the expansion order in and the boundary conditions at the top and bottom
surfaces).

1.3.3 Transformation of the discrete wave equation

As can be seen in equation (1.3.19), the partial discretization of the wave equation in the direction
of layering eliminates the functional dependence on the vertical coordinate z, and yields a system
of partial differential equations in the two horizontal coordinates (x, y) and time (t). To solve this
equation, we begin by performing Fourier transformations with respect to the two horizontal
coordinates (x, y) and time (t). The Fourier transformations and their inverses of the
displacements and the consistent interface tractions are

U(kx, ky, ) = dt fdx dyU(x, y, t)e-i(x-kx-k) (1.3.24a)

P(kx,kY,w)= fdt dx dyP(x,y,t)e-i(ax-kxx-k.y) (1.3.24b)

U(x, y,) = f dkx rdkU(x, y, t)e i(xky) (1.3.24c)

P(x, y,t) = cod dkx JdkP(x, y,t)ei(ax-kx-kyy) (1.3.24d)
(27)'3

where c is the angular frequency, kx and ky are the wavenumbers in x and y directions,

respectively, and i = ,-I . Applying equations (1.3.34c and d) to equation (1.3.19), we obtain the
wave equation in the wavenumber-frequency domain of the form.

S= Kdn,, (1.3.25)

with the dynamic stiffness matrix Kny being given by

K,•An = kA, + kxkAAyA, + kA, +i(kxB x + kB,) + G -o 2 M (1.3.26)

While it is possible to solve the above problem in equation (1.3.25) without any difficulty, we
choose instead to restrict our attention to a more special class of problems, namely those systems
that have a (symmetric, positive-definite) constitutive matrix of the form

dl d12 d13  d6
d21 d22 d 23  d26

d d d dd31 d32 d33 d36D= (1.3.27)
d,44 d45

d54 d 55

d61 d62 d63  d66
This constitutive matrix corresponds to a medium that is somewhat more general than an
orthotropic material. When this condition is satisfied, it is possible to reduce equation (1.3.25) to
a fully real and symmetric form. This simply requires modifying the vertical (z-direction)
components of both the load and displacement vectors by a factor of i = 'PIT, which changes the
problem into

P= KdyfU (1.3.28)

with



P=[ p -i- - - -N1i (1.3.29a)

U = W u ui Wx2 N]T (1.3.29b)

S= kxAX + kxkA, +k2A Y + kxB x + kB V, +G-co 2M (1.3.29c)

These modifications are accomplished in equation (1.3.25) by multiplying every third row by i
and every third column by -i. Inspection of the structure of all the matrices involved (see
Appendix 1A) reveals that this modification affects only the iB, terms, which become both real

and symmetric. The modified matrices Ba are obtained from the Ba by simply changing the sign
of every third row.

For a prescribed loading vector, P, the displacement vector U is calculated by formal inversion
of the dynamic stiffness matrix:

S= -K,1 P (1.3.30)
In practice, this inversion is not necessary, since either a Gaussian reduction would be performed,
or the spectral decomposition formulated in the following four sections could be used. Once
obtaining U, we can calculate the responses in the space-time domain with the aid of equation
(1.3.24c).

1.3.4 Responses due to SH harmonic line loads

Here, we consider the modal superposition responses to an SH harmonic line load of excitation
frequency w in an isotropic elastic medium. The associated discrete wave equation in the
wavenumber-frequency domain is given as

[Ak2 +G -m2M] [, =Py (1.3.31)

where the following transformations relating the space and wavenumber domains are imposed.

U, =U,(k,w)= LUy(x,w)ei"dx (1.3.32a)

Py = Py(k,w)= L Pv (x, w)eikdx (1.3.32b)

Also, the matrices A, G, and M in equation (1.3.31) are obtained from Ax, G, M in equation
(1.3.19) by collecting the anti-plane elements that are associated with only the y-direction
components. We assume that an SH harmonic line load is applied at x=0 and at an n-th elevation
(or interface) in the discrete medium of interest. Then, we can express the load in the space-
frequency domain as

P, (X, W) = S(x)81(n) (1.3.33a)

where 8(n) is a Dirac-delta vector with only the n-th entry being 1 and all the others being zeros.

Then, the Fourier transform of Pr is obtained by means of equation (1.3.32b), and is given as

Py (k,w) = 8(n) (1.3.33b)

(A) Displacements due to an SH line load

First, we consider the displacement responses. In the TLM, we use the spectral decomposition to
solve the above given system of equations by means of modal expansions. The reader may refer



to an MIT research report by Kausel [1981] for more detail. The propagation modes of the system
analyzed are obtained from the eigenvalue problem that results from setting the load vector in
equation (1.3.31) equal to zero:

[Aký+Clj =0, j=1,...,M (1.3.34a)

or equivalently

[A LK' + CO] =O (1.3.34b)

where kj is the eigenvalue, j is the mode shapes, M is the total number of modes, C=G-w2 M,
={1j)}, and KL=diag{kj}. In addition, it is assumed that the mode shapes satisfy the following

ortho-normal conditions.
dQAQ( T =I (1.3.35a)
QC(D = -K (1.3.35b)

To obtain the modal expansion for UV,, we assume the response of the form

Uy =(If (1.3.36)

where f = f(k, w) is the modal component vector in the wavenumber-frequency domain.

Substituting equation (1.3.36) into equation (1.3.31) and then pre-multiplying by T , we obtain

f=[I k2 'Kt - PI =[I k2 - K'- oS8(n) = [I k2 - K Fy (1.3.37)

where F, is the participation factor vector due to the SH line load in equation (1.3.33b). Hence,

the displacement in the wavenumber-frequency domain is given as

Ufl = Q[Ik-K]-'rFy (1.3.38)

To obtain the responses in the space-frequency domain, we need to perform an inverse Fourier
transformation with respect to k as

U (x, W) = Uy(k,o)e Adk (1.3.39)

Finally, we can obtain the closed-form displacements in the space-frequency domain as

= I - (E K-I(• ( n ) = -~E DLxlKI' (1.3.40)2i 2i
where E I = diag e - ikj lx l . For the practical purpose, we express equation (1.3.40) in summation

form as
M M -ik lxI

i" = Cf i' = O• • (1.3.41)
j= =1 2ikj

where m is the elevation index for the response points and fj the modal component in the space-

frequency domain.

(B) Nodal loads on a vertical plane due to an SH line load

Next, we consider the stresses in a vertical plane. The associated strain is given in vector form as:

F ax = - l j= ' , 2= Ei F, (1.3.42)

with the negative sign being associated with positive x and vice versa. We notice that the strains
(and stresses) are discontinuous at x=0. If the domain to the right of the section x considered is



removed, it becomes then necessary to apply consistent antiplane line loads to the section to the
left in order to preserve equilibrium with the internal stresses. The consistent nodal loads ,1
applied at the nodes defined by the intersection of the interfaces and the vertical plane considered
can be obtained as follows. The strain f within an 1-th thin layer is expresses as

f = NmA[t (1.3.43)
where Nm = Nm () is the interpolation function with expansion order mi, = z/h,, and

t = [f fI1 .'. •+m]T . The consistent nodal loads q, in equilibrium with the stresses

-xy = Gxy are then

=  +1 = Gth NNm idj = At t  (1.3.44)

Lq+m
which constitutes the contribution of the l-th layer to the consistent nodal loads. If all the layers to
the right of section x are removed, then the consistent nodal loads are obtained overlapping the
contributions of all the layers. This implies overlapping At . The result is

-1Q= A- , =T -A2AE ( I8(n)
2

= TiAKiKLc-' 1 (K L'E ••I•IT (n) (1.3.45)
2i

= TiAcKQ -!'fJy = TRJy

The matrix R = iAQKL-' is the Waas-Lysmer anti-plane transmitting boundary (the dynamic
stiffness matrix of the domain removed).

(C) Stresses in a horizontal plane due to an SH line load

Now, we consider the stresses on the horizontal plane. For this, we substitute equation (1.3.38)
into equation (1.3.31), and then perform the inverse Fourier transformation over the wavenumber
k, which provides the stresses on the horizontal plane in the space-frequency domain. Finally, on
the horizontal planes at the 1-th layer, we obtain a stress vector of the form

I =• •Kjl eik+Ix + (x)A 'j 'y (1.3.46)
S2ij1  jyyj k1  j=l

where

= " •- (1.3.47)

K' = Akj2 G, -_ 2M (1.3.48)

yYj = the participation factor in equation (1.3.37) (1.3.49)

In the equations above, m is the order of the interpolation function used, and the matrices At, G1,
and M, are the layer matrices for the 1-th layer. For the more detail derivation, the reader may
refer to an MIT research report by Kausel [1981].



1.3.5 Responses due to SV-P harmonic line loads

We next consider the modal superposition responses to an SV-P harmonic line load of excitation
frequency w in an isotropic elastic medium. The associated discrete wave equation in the
wavenumber-frequency domain is given as:

[Ak2 + Bk +G -co2M]U = P (1.3.50a)

where

u=[u x iUz] (1.3.50b)

P=[Px iPZ]T (1.3.50c)

The matrices A, B, G, and M above are obtained from Ax, Bx , G, M in equations (1.3.19 and
29c) by collecting the in-plane elements that are associated with only the x- and z-direction

components. For the simple manipulation in the following, we ignore the factor i (= Ji) in

equations (1.3.50b and c). Also, the following transformations relating the space and wavenumber
domains are imposed.

U = U(k,w) = f U(x, a)e "dx (1.3.51a)

P = P(k, o) = f P(x, w)e'~dx (1.3.51b)

We assume that the SV-P harmonic line load is applied at x=-0O and at an n-th elevation in the
discrete medium. So, we can express the load in the space-frequency domain as

P(x,w) = [6(x)8(n) O]T (horizontal line load) (1.3.52a)

P(x, w) =[0 5(x)8(n)]T  (vertical line load) (1.3.52b)

where 6(n) is a Dirac-delta vector defined such that only the n-th entry is 1 and all others are

zeros. The Fourier transform P of the load is then obtained by means of equation (1.3.51b) as

P(k,w) = [8(n) 0]T (horizontal line load) (1.3.52c)

P(k,w) = [0 8(n)]T  (vertical line load) (1.3.52d)

(A) Displacements due to an SV-P line load

First, we calculate the displacement response by means of modal expansion. So, we begin with
the spectral decomposition of the system of equations in matrix form. The reader may refer to an
MIT research report by Kausel [1981] for more details. The natural modes of wave propagation in
the system are obtained from the eigenvalue problem that follows from setting the load vector in
equation (1.3.50a) equal to zero:

[Ak2 +Bk, +C =O, j = 1,..., M (1.3.53)

where kj is the eigenvalue, Oj is the mode shapes, M is the total number of modes, and C=G-a2M.
To solve this eigenvalue problem, we begin by rearranging rows and columns by degrees of
freedom rather than by interface (i.e., grouping first all the horizontal degrees of freedom, and
then all the vertical degrees of freedom). The resulting eigenvalue problem is then given as:

iAxk J  Azk +Cz j = 0 (1.3.54a)
B T k A Gkf + z (0)



where the subscripts x and z represent the direction of the associated degrees of freedom. This
eigenvalue problem may be furthermore transformed into{ xk 2 + CX Bxz + C k (1.3.54b)

B',k A Ckf+ ~Jk 0O
which is a linear (although non-symmetric) eigenvalue problem in kj. An alternative linear
eigenvalue problem is also

Axk Azk } k }Z = {x } (1.3.54c)

having a characteristic matrix which is the transpose of that in equation (1.3.54b). Both of these
eigenvalue problems yield the same eigenvalues and have the associated "left" and "right"
eigenvectors yj and zj as:

y = and z = (1.3.55a,b)

that are also mutually orthogonal with respect to the characteristic equation as will be shown in
equations (1.3.57a and b). The eigenvalue problem may be written as

Az k) +Cz =0 or AZK, +CZ= O (1.3.56a,b)

and

ATyjkj +$ CT  =0 or AT YKR + CTY =O (1.3.56c,d)

which satisfy the ortho-normal conditions
YTAZ = K, and YTCZ = -K3 (1.3.57a,b)

In the equations above, we use matrices defined asS AxB  C)x Bx :
Y={(y} Z={(z, KR = diag {k} (1.3.58a-e)

The equilibrium equation related to equations (1.3.56a,b) is given as
[Ak2 +C]r =Pr (1.3.59)

with the subscript r representing the quantities associated with the right eigenvector,

Ur = ýU } and Pr = f{i} (1.3.60a,b)

To obtain the modal solutions, we assume displacements of the form
Ur = Zf (1.3.61)

where f = f(k,w) is the modal component vector in the wavenumber-frequency domain.

Substituting equation (1.3.61) into equation (1.3.59) and then pre-multiplying by YT , we obtain

f= K' [Ik 2 -K 2  YP= K' k 2 - KR F (1.3.62)

where FI is the participation factor vector associated with the "left" eigenvector due to the SV-P

line load. Concerning the case of line loads, notice also that this F, could be either F7 ,x or ,orE
defined as

rIX = YT P = YT 'n)} (horizontal line load) (1.3.63a)0



F1t. = YTP = YT  0) (vertical line load) (1.3.63b)

Hence, the displacement in the wavenumber-frequency domain is given as:

Ur = ZKI' Ik2 -K2 YP = ZK-' [Ik2 -K]2 ] 1  (1.3.64)

Transforming back to U from Ur,, we obtain the expressions for the displacements in the
wavenumber-frequency domain as

2x  V x[Ik2 -K ]  kDxK'[Ik2 -K ] O]- Px
=Uz kez[Ik2 -K ]2-'K-R' zT [2[Ik2 -K ]-T Fz

( 2 x[Ik 2 - K -'Fx kISxK-'[Ik2 -K 2-z (1.3.65)
ke,[Ik2 - K 2 'K-I'x Ox[Ik2 -K 2]-' I

where

S= T'P = T 8()} (horizontal line load) (1.3.66a)

rZ = ')Tp = T' r }n) (vertical line load) (1.3.66b)

To obtain the responses in the space-frequency domain, we perform the inverse Fourier
transformation with respect to k as

U(x, W)=1 f(k,wo)ei-'dk (1.3.67)

Finally, we obtain in closed-form the displacements due to SV-P line loads in the space-frequency
domain as

=UD E R+IK-,Ex ±xER,'KTR' z JI = -=R r1Z (1.3.68)
z 2i i ZK'E x x ( lxiKR z

where E = diag e- ikjlx l , and the positive and negative signs in the off-diagonal terms are for the

positive and negative x, respectively. For the practical purposes, we can express equation (1.3.68)
for O<x in summation form

SM -ikx(1.3.69)

j=l J=. 2ikj
where mi and n are the elevation indices for the receiver and source points, respectively, a and fl
the indices for the direction of the receiver and source, i.e., x or z, and jj the modal component

in the space-frequency domain.

(B) Nodal loads in vertical planes due to an SV-P line load

Next, we consider the nodal loads in a vertical plane. In continuum mechanics, the stresses in a
vertical plane are expresses as

dx A+ 2G + A I] i{T (1.3.70)
xlzx G ax G - az fi-

Since we apply an interpolation function of certain type for the displacement field in the discrete
model, we can express the displacement within a thin-layer as



fi =[Ijx uiz] T = NmJ, (1.3.71)

where Nm=Nm(") is the interpolation function of expansion order mn, ý=z/h,, and

U = i x  if x+ u ..+1 u. u1+M . The consistent nodal loads in equilibrium with the

stresses of C~x and f, are then

xl
q-i , hI TN d&X (1.3.72)

L -z,,+mmJ
Substitution of equation (1.3.71) into equation (1.3.70) followed by performing integration in
equation (1.3.72) yields the consistent nodal loads for the 1-th thin-layer as

il = hi (Nm 2G Nm + I N Td a1MG ax hm G

= At -+l D Ut, (1.3.72')

which constitutes the contribution of the l-th layer to the consistent nodal loads. The matrix D, is
obtained by collecting only x and z components from g1iDxz in Appendix lA. If all the layers to

the right of section x are removed, then the consistent nodal loads are obtained overlapping the
contributions of all the layers. This implies overlapping A, and D,. Inserting the factor

i(= 1[-i) ignored in equation (1.3.50b,c), we obtain the actual displacements and modified

modal shapes as

U= iEIlK-, 'T  for (
2i lxi R

U = EIR K1 I rT  for .
2i lxi R

·I=) x and =

The resulting consistent nodal load vectors ai

Q= i[-iADE Rl T + DEI IK'1 ~ r T

2i L-t\~ IX Ix RY~XI~R '

)<x

<0

(1.3.73a)

(1.3.73b)

(1.3.74a,b)

e then given as

= - -[iAK,1' -D] DK'EIR (T for 0 < x

= -RU

(1.3.75a)

1[= iAK,- + D] K-'E R1 2i c R ] lxl for x < 0 (1.3.75b)
= LU

The matrix R = iAIKRI' - D and L = iADKR~ - ' + D are the Waas-Lysmer in-plane
transmitting boundary (the dynamic stiffness matrix of the domain removed) corresponding to the
right and left layered regions that stretch for 0 < x < oo and -oo < x < 0, respectively.



(C) Stresses in horizontal planes due to an SV-P line load

Now, we consider the stresses in a horizontal plane. For this, we substitute equation (1.3.65) into
equation (1.3.50a), and then perform the inverse Fourier transformation over the wavenumber k,
which provides the stresses in a horizontal plane in the space-frequency domain. Finally, in the
horizontal planes at the 1-th layer, we obtain a stress vector of the form

S= M -iklxl a= x, (1.3.76)
2i j=1 j a,j k j=J

where

t1= al  l 0 0 - +- m _i+m (1.3.77a)

K' = Atk +B,k +G, -( 2M, (1.3.77b)

yaj = participation factor in equation (1.3.63a or b) (1.3.77c)

$= [•. X, 0 ox 0 . .. o] 0T (1.3.77d)

Z.j=0 =[j " 0 . 0 + ](1.3.77e)

In the equations above, m is the order of the interpolation function used, and the matrices At, BI,
G,, and M, are the layer matrices for the 1-th layer. For the more detail derivation, the reader may
refer to an MIT research report by Kausel [1981].

1.3.6 Response due to SH transient line loads

Here, we consider wave motion in an isotropic elastic medium subjected to an SH transient line
load. The discrete wave equation is given in the wavenumber-frequency domain as:

[Ak2 +G - o2M] U = P (1.3.78)

which is exactly the same as equation (1.3.31). Note that the following transformation relations
between the frequency and time domains are imposed,

y, = Uy(k, o)= : ,y(k,t)e-indt (1.3.79a)

Py = P (k,) = L (k,t)e-'idt (1.3.79b)

We assume that the SH transient line load is applied at x=O and elevation n in the discrete
medium. So, we can express the load in the wavenumber-time domain as:

Py(k,t) = 8(n)S(t) (1.3.80a)

where 8(n) is a Dirac-delta vector with only the nth entry being 1 and all others being zeros. The

Fourier transform of Py is obtained by means of equation (1.3.79b) as

Py (k, o) = 8(n) (1.3.80b)

(A) Displacements due to an SH line load

First, we calculate the displacement responses in terms of modal expansion. For this, we use the
spectral decomposition. The reader may refer to a paper by Kausel [1994] for more detail. The
natural modes of wave propagation in the system are obtained from the eigenvalue problem that
follows from setting the load vector in equation (1.3.78) equal to zero:



[Ak2+G-Mcofl]=O, j=1,...,M

or equivalently

[Ksta -MZ2] = O (1.3.81b)

where a is the eigenvalue, 4j is the mode shapes, M is the total number of modes, K,,,=Ak2+G,
I=={j}, and Q=diag{ a}. In addition, the mode shapes satisfy the following ortho-normal

conditions
1MOT = I (1.3.82a)
OKstaD = _a2 (1.3.82b)

To obtain the modal solutions, we assume the response of the form
Uy = (q (1.3.83)

where i =q(k,w) is the modal component vector in the wavenumber-frequency domain.

Substituting equation (1.3.83) into equation (1.3.78), and then pre-multiplying by ,T we obtain

S= [,2 - I)2 T  2 1 2 ]- 8T (n) = [g2_ -I2 ]-1, (1.3.84)

where ry is the participation factor vector due to an SH line load. Hence, the displacement in the

wavenumber-frequency domain is given as

Uy "[g2- I)2] ITpy = (-Iw2]'F ry (1.3.85)

To obtain the responses in the wavenumber-time domain, we perform an inverse Fourier
transformation with respect to W in the form

U,(k, t)= 2I J,(k,(o)e"'do) (1.3.86)

Finally, we obtain the closed-form displacements in the wavenumber-time domain as

U, (k,t)= QHiQDTe(n) = ?H,Fry (1.3.87)

where H, = diag sin wmt/ow) whose elements are well known as the impulse response functions

of the mode j. For practical purpose, we express equation (1.3.87) in the modal summation form
M M sin wt

i27Y = Ib74j =1 (1.3.88)
j=1 j=1 (O

where m is the elevation index for the response points and 4j the modal component in the

wavenumber-time domain.

(B) Nodal loads in vertical planes due to an SH line load

Next, we consider the stresses in vertical planes. The associated strain is given in vector form as:

Fx = ay = a HIF•,1] = -ikDH,Fy (1.3.89)

where it is implicitly implied that alax=-ik. If the domain to the right of the section x considered
is removed, it becomes necessary to apply consistent antiplane line loads to the section to the left
in order to preserve equilibrium with the internal stresses. The consistent nodal loads applied at
the nodes defined by the intersection of the interfaces and the vertical plane considered can be
obtained as follows. The strain y within an 1-th thin-layer is expresses as

y = Nmy (1.3.90)

(1.3.81a)



where Nm=Nm(~ is the interpolation function of order m, ý=z/hl, and y, = [Y Y "+1 .. Y+m ]T.

The consistent nodal loads in equilibrium with the internal stresses zr = Gy are then given as:

q,1

q = +N =Gh, NTNY d(=A (1.3.91)

which constitutes the contribution of the l-th layer to the consistent nodal loads. If all the layers to
the right of section x are removed, then the consistent nodal loads are obtained by overlapping the
contributions of all the layers. This implies overlapping At for all the thin-layers. The result is

Q, = AFxy = -ikA(H, TDT (n) (1.3.92)

(C) Stresses in horizontal planes due to an SH line load

Now, we consider the stresses in horizontal planes. Substituting equation (1.3.85) into equation
(1.3.78), and then performing an inverse Fourier transformation over the frequency w, we can
obtain the stresses in a horizontal plane in the wavenumber-time domain. Finally, we have the
stress vector at the 1-th layer of the form

[A_ sin o .t M
yz = i K' •T(n) I+ 8(t)M' -• J(n) (1.3.93)

where

oyz 0 ... 0 ofymT (1.3.94)

K= A'k 2 + G' -w•M' (1.3.95)

In the equations above, m is the order of the interpolation function used, and the matrices A&, G1,
and Mt are the layer matrices for the 1-th layer.

1.3.7 Responses due to SV-P transient line loads

Here, we consider wave motion in an isotropic elastic medium subjected to an SV-P transient line
load. The discrete wave equation is given in the wavenumber-frequency domain as:

[Ak2 + Bk + G -w2M]i = P (1.3.96a)

where

u =[Ux iU,] (1.3.96b)

P=[Px iPz]T (1.3.96c)

The matrices A, B, G, and M above are obtained from Ax, BXx, G, M in equations (1.3.19 and
29c) by collecting the in-plane elements that are associated with only the x- and z-direction

components. For the simple manipulation in the following, we ignore the factor i (= 1i) in

equations (1.3.96c and d). Imposing the transformation relations between time and frequency
domains,

U = U(k,w ) = ^(k,t)e-'"dt (1.3.97a)



P = P(k,o) = P(k,t)e-iOdt (1.3.97b)

We assume that the SV-P line load is applied at x=-0O and elevation n in the discrete medium. So,
we can express the load in the wavenumber-time domain as

P(k,t) = [8(n)S(t) 0] (horizontal line load) (1.3.98a)

P(k,t) = [0 8(n)6(t)]T  (vertical line load) (1.3.98b)

where 8(n) is a Dirac-delta vector defined such that only the n-th entry is 1 and all others are

zeros. The Fourier transform, P, is obtained by means of equation (1.3.97b) as

P(k,w) = [6(n) O]f (horizontal line load) (1.3.98c)

P(k,w) = [0 (n)]T  (vertical line load) (1.3.98d)

(A) Displacements due to an SV-P line load

First, we calculate the displacement responses by means of the modal superposition. For this, we
use the spectral decomposition. The reader may refer to a paper by Kausel [1994] for more
details. The natural modes of wave propagation in the system are obtained from the eigenvalue
problem that follows from setting the load vector in equation (1.3.97a) equal to zero:

[Ak2+Bk+G - M w~] =0, j=1,...,M (1.3.99a)

or equivalently

[Ksta, - MOg2] = 0 (1.3.99b)

where aý is the eigenvalue, Oj is the mode shapes, M is the total number of modes, K,,,=Ak2 + Bk
+ G, Q={ I{}, and Q=diag{ oj . In addition, the mode shapes satisfy the following ortho-normal
conditions

IMIT =I (1.3. 100a)

QKKsta, = _- 2  (1.3.100b)

To obtain the modal solutions, we assume the displacement responses of the form

Uy = (q (1.3.101)

where q = i(k,w) is the modal component vector in the wavenumber-frequency domain.

Substituting equation (1.3.101) into equation (1.3.97a) and then pre-multiplying by T', we
obtain

U=2= 2 1w21]-' TP = [L22 I)i2 ] F (1.3.102)

where F is the participation factor vector due to the SV-P line load. Concerning the case of line
loads, it is also noticed that this F could be either Fx or Fz defined as:

F=r = = DT {(n)} (horizontal line load) (1.3.103a)

FZ = Q'TP= 0T { (vertical line load) (1.3.103b)

Hence, the displacement in the wavenumber-frequency domain is given

U = 0[ ,2 - I02' -1 IT=[2 =-Iw ' F (1.3.104)

To obtain the responses in the wavenumber-time domain, we perform the inverse Fourier
transformation with respect to W as



U(k, t) = U(k, c ) e'o'dm

Finally, we obtain the closed-form displacements in wavenumber-time domain as

U(k,t) = {:Z 1Dý,H, r,_ DzHtrx (H,Fz

(1.3.105)

(1.3.106)

where H, = diag {sinjt / aj} whose elements are well known as the impulse response function

of the modej. For practical purpose, we express equation (1.3.106) in modal summation form

;; = s•4•i = Cnm lj t (1.3.107)
j=1 j=1 Oj

where m and n are the elevation indices for the receiver and source points, respectively, a and fl
the indices for the direction of the receiver and source, i.e., x or z, and ,,j the modal component

in the wavenumber-time domain.

(B) Nodal loads in vertical planes due to SV-P line load

Next, we consider the stresses in a vertical plane. In continuum mechanics, the stresses in vertical
planes are expresses as

S + 2G (1.3.108)
{:}[+ G }ax 2 z a

Since we apply an interpolation function of certain type for the displacement field in the discrete
model, we can express the displacement within a thin-layer as:

i, = [ ]x Uz]T = Nm U (1.3.109)

where Nm=Nm(D) is the interpolation function of order m, ý=z/ht, and

[I = i U i x U ... tX . The consistent nodal loads in equilibrium with the

stresses of 6 x and ^f are then

Fqz, h,
q, Ix h N x •( (1.3.110a)

qz,,+m
Substitution of equation (1.3.109) into equation (1.3.108) followed by integration of equation
(1.3.110a) yields the consistent nodal loads for the 1-th thin-layer as:

q, = h, [(N + 2G }aNm IJdýjUGN.m(-ik)+ING h, mG
= [A, (-ik) + D, ] U, (1.3.110b)

which constitutes the contribution of the 1-th thin-layer to the consistent nodal loads. The matrix
D, is obtained by collecting only x and z components from gDxz. in Appendix lA. It should also

be noticed that a/lax = -ikU in equation (1.3.110b). If all the thin-layers to the right or left of

section x are removed, then the consistent nodal loads are obtained by overlapping the
contributions of all the layers. This implies overlapping A, and D,. The resulting consistent

nodal load vectors are then given as



(^ = [A(-ik)+ D]U

(C) Stresses in horizontal planes due to an SV-P line load

Now, we consider the stresses in a horizontal plane. Substituting equation (1.3.104) into equation
(1.3.96a), and then performing an inverse Fourier transformation over the frequency w, we obtain
the stresses on the horizontal plane in the wavenumber-time domain. Finally, we have a stress
vector at the 1-th layer of the form

M sin m .t M
t =jK 1,j ~ + 5(t)Ml~ ,, jya,, c = x, z (1.3.112)

j=1 j=1

where

i~t = [ 0x 0 .. -6x Zm _0-z+ (1.3.113a)

K' = A,k 2 + Bk + G -_ wM, (1.3.113b)

a,,j = participation factor in equation (1.3.103a or b) (1.3.113c)

0, = .j [ x 0 ... 7 0O]T (1.3.113d)

,=[o 0 0 O0 ... 0 OZ ] (1.3.113e)

In the equations above, m is the order of the interpolation function used, and the matrices At, B1,
GI, and MI are the layer matrices for the 1-th thin-layer.

(1.3.111)



Appendix 1A
All the layer matrices, except the B , are of the form.

g,11H g12H .
Layer matrix = g21H '. =(giH}

gm+1,m+lH

Table 1. Matrices H and coefficients gij for different layer matrices.

H
Anisotropic Isotropic

M h- I } h{ 1 I

dzt d6 d1 2 + 2GAxx h d66 d56 h{ G

sym d5, G

"2dl6 d2 +d66 d66 4 + d56 + G
An h, 2d26 d25 + d46 h + G

sym 2d45

d6s d26 d46 G

An hj d22 d24 h + 2G
sym d. G
ds55 d45 d35 G
S d44 d34 G

h sym d33 hA + 2G

g9j

Linear Expansion Quadratic Expansion

1{2 1 4 2 -1
M, Aafp 6 1 2 -2 16 2

G -1 2 4

{1 -11 7 -8 1
G -11 1 -8 16 -8

3
1 -8 7



Table 2. Matrices D and coefficients gj for the layer matrix B,
D

Anisotropic Isotropic

d51  d41  d31

Dxz d56  d46  d36

d55 d45 d35 {G

g,

Linear Expansion Quadratic Expansion

1 1 -1 3 -4 1
Ba 2 1 -1 1 4 0 -4

6 -1 4 -3

Dyz

•G





Chapter 2 Numerical dispersion in the TLM

2.1 Introduction

When an elastic continuous medium subjected to propagating waves is modeled with the TLM (or
with finite elements), the discretization process introduces numerical dispersion (or error) that
represents a discrepancy between the solutions for the discrete and continuous models. Inasmuch
as this numerical artifact generally degrades the accuracy of wave fields obtained with discrete
models, it behooves to minimize this degradation to the extent possible. With this objective in
mind, we characterize here the numerical dispersion of discrete systems modeled with the linear
and quadratic expansion TLM's and compare these characteristics with those of analytical exact
solutions. On the basis of this characterization, we develop optimal tuning factors for the dynamic
stiffness matrices in the TLM, with the aid of which the numerical dispersion can be minimized
and the discrete solutions improved. These factors also help in reducing any spurious reflections
and transmissions of waves that can take place at the interfaces of the discrete layers, even (or
perhaps most importantly) when the layers have identical material properties.

The following deductive reasoning is the motivation of developing the tuning factors. It is well
known that the formulation of dynamic problems by means of discrete methods generally leads to
consistent mass matrices that have the same bandwidth as the stiffness matrices. For
computational efficiency, it is often convenient to replace these with diagonal lumped mass
matrices, which can be derived from the consistent mass matrices by simple addition of the off-
diagonal terms to the diagonal terms. In the context of free vibration problems, the consistent
mass matrix generally produces eigenvalues that exceed the exact eigenvalues of the continuous
model (i.e. natural frequencies), as can be demonstrated by recourse to the enclosure theorem and
Rayleigh's quotient. By contrast, the lumped mass matrix generally produces eigenvalues that are
smaller than those of the continuous model. These two observations suggest that a hybrid
between the consistent and lumped mass matrices could conceivably lead to improved and more
accurate results, and this is indeed the case. As will be shown in this chapter, it is not only
possible to optimally tune the mass matrices, but also the stiffness matrices, which can be
adjusted so as to further improve the computed discrete eigenvalues, especially for anti-plane
problems.

This chapter is composed of four sections, each of which is concerned with anti-plane waves
modeled by the linear expansion TLM, in-plane waves modeled by the linear expansion TLM,
anti-plane waves modeled by the quadratic expansion TLM, and in-plane waves modeled by the
quadratic expansion TLM, respectively. All the sections are built up in a similar fashion, which is
briefly described in the following two paragraphs.

In the first part of each section, we first find the general solution and the wavenumber spectrum
for isotropic homogeneous full-spaces via a finite difference scheme. Thereafter, we qualitatively
estimate the numerical dispersion errors in the TLM in terms of wavenumber-frequency spectra.
As a result, we find a limiting relationship between wavelength and discretization size. Then, we
proceed to analyze the free-vibration problems of ideal structures or media whose exact analytical
solutions (i.e. eigenvalues) are known in closed form. Examples are homogeneous plates (e.g.
plates with free-free or mixed boundary conditions), homogeneous strata, and so on. In addition,
we obtain solutions for infinite or semi-infinite domain problems modeled with the TLM which,
because of the infinite number of discrete equations, are strictly unsolvable in the classical finite



element sense. Formally using the general solutions, however, we find the solutions to those
problems.

In the second part of each section, we quantitatively estimate the numerical dispersion in the
TLM in terms of frequencies and phase velocities. As a result, we find the optimal values for the
tuning factors, which are valid only for a certain range of dimensionless wavenumber in
discretization direction (J,). In addition, we propose a lower bound for the number of thin layers
per wavelength (NA) that is dependent on the range of J in consideration. Then, we numerically
solve the free-vibration problems of interest by changing the tuning factors, to show the best
improvement in eigenvalues due to the optimal tuning factors. In addition, we observe how many
modes among all computed modes are accurate with the application of the optimal tuning factors.

Figure 2.1.1 shows the two uncoupled SH and SV-P harmonic plane waves propagating at an
angle 0 in the x-z plane. The analytical, exact spectrum equations of these harmonic waves in
continuum mechanics are given by

SHwave :w =C sk=C skk 2 +k 2

SV-P wave: ws = Csk = Cskx + k and o), = Ck = C,k + k

(2.1.1)

(2.1.2)

where O's are the frequencies, C's the phase velocities, and k's the wavenumbers in each
direction. In general, the wavenumbers k's can be purely real, purely imaginary, or complex
numbers. The discrete TLM model has its own spectrum equations that we shall introduce later
on in this chapter. We shall explore the numerical dispersions in the TLM by comparing the
spectrum equations of the discrete and continuous models in terms of frequencies and phase
velocities.

Z, w

11

Figure 2.1.1 Two uncoupled SH and SV-P harmonic waves propagating at an angle 0



2.2 Anti-plane (SH) waves with linear expansion TLM

We first consider the propagation of SH waves modeled by the TLM that is based on a linear
expansion, or TLM1 for short. In the first part of this section, we obtain the general solution and
the frequency-wavenumber spectrum for the discrete SH wave equation modeled with the TLM 1.
By means of a qualitative investigation of this spectrum, we find a reference frame for judging
the dimensionless wavenumbers in discrete models. We also formulate and solve three guided
wave problems whose exact solutions for the continuous model are known in closed form.

In the second part, we continue to characterize the numerical dispersion as a function of vertical
direction wavenumber (z) and direction of propagation (0) by estimating frequencies and phase
velocities. Through these characterizations, we obtain the optimal tuning factors that are valid
only for a certain range of vertical direction wavenumber (4,). Based on the range of z, we also
propose a lower bound for the number of thin layers per wavelength. We then consider two
numerical examples of finite and semi-infinite domains. In these two examples, we compare the
TLM1 solution with the exact analytical solutions in order to verify the optimality of the tuning
factors. As an additional result, we can also judge the extent to which the optimal tuning factors
improve the accuracy of the eigenvalues computed with the TLM 1.

2.2.1 Discrete solutions for anti-plane problems

Consider a single TLM1 thin layer that is subjected to SH wave motion as shown in figure 2.2.1.
Notice that a degree of freedom, v, is involved at each node or interface. The governing equation
is given by

Pt = KU, (2.2.1)
where

PI = { Pl Pt-,}

u, ={v, V,_,}

K = A k + G -W 2M

A = (1-f )AL + Ac::

: consistent external traction vector

: displacement vector

: dynamic stiffness matrix

Gh 2
Ac = 66 1 AL= Gh 3

6 -
-1

1J

M = (1-pu)ML +'"Mc: Mc =ph{1 ,6 1 2
In the above expressions, kx is the horizontal wav
lumped and consistent matrices, and 8 and u are
respectively. Also, p is the mass density, G is the
thin layer.

ML = (2.2.3efg)

enumber, the subscripts L and C identify the
the tuning factors for the matrices A and M,
shear modulus, and h is the thickness of each

For convenience and generality in future analysis, we define two auxiliary parameters and three
dimensionless variables for wavenumbers and frequency, namely

a = fl,2-6- _ t22 ,

(2.2.2a)

(2.2.2b)

(2.2.2c)

(2.2.3abc)

(2.2.3d)G = -1
h I1



b = (3- f)Jx + 6- (3 -P)22

woh
, = kxh, J = kh , and Q=-

Cs

If we were to model a full-space with the TLM1, that would entail the assembly of an infinite
number of layers to establish the discrete wave equation, requiring the overlapping of identical
system equations such as equation (2.2.1). In the neighborhood of any particular interface 1, this
system would be compactly written with recourse to the above auxiliary parameters as

p = •[avl, + 2bv, + av,_ (2.2.4a)6h
This equation (2.2.4a) is a finite differences equation which models the discrete SH wave problem
in the frequency-wavenumber domain. In the case of a semi-infinite medium, the presence of the
top surface requires an additional equation (or boundary condition), namely

Po = [bvo + av_, ] (2.2.4b)
6h

Consider a stress-free wave motion in a homogeneous full-space (so-called body wave), which is
obtained by setting the external traction vector to zero, that is, p, = 0 in equation (2.2.4a). This
yields a homogeneous set of finite differences equations, whose solution is the general solution to
the homogeneous full-space. Also, involved is an associated eigenvalue problem that yields the
wavenumber-frequency spectrum for the body wave. To obtain the general solution and the
spectrum, assume a trial solution of the form

v, = AZ' (2.2.5)
Substituting this trial solution into equation (2.2.4a) and dividing by Z', we obtain the spectrum
equation.

aY+b=0 (2.2.6)
where Y = ' (Z + Z - ') . It should be realized that equation (2.2.6) is a condition for the existence

of non-trivial solutions for equation (2.2.4a). The two solutions of the above quadratic equation
for Z are then

ZI,2 = Y + 1 (2.2.7)
which can be expressed as

ZI,2 = e
tiý' = cosJ + i sin (2.2.8)

One of the two roots represents a wave propagating in the positive z-direction, and the other a
wave propagating in the negative z-direction. Also, it is noted that the two roots have a complex
conjugate (or reciprocal) relationship. The general solution is then of the form

v, = AZ' + BZ-t  (2.2.9a)

or equivalently
vt = A cos l + B sin J1 (2.2.9b)

in which A and B (or A andB ) are unknown constants. Substitution of equation (2.2.8) into
equation (2.2.6) yields the spectrum equation in explicit form as

3-2flsin2 2 J +12sin2 - 3-2,sin2 >2 =0 (2.2.10)

where
27h cos 2~th cot 0

J = kxh = khcos - 2 (2.2.1 la)A AZ



2'h sin 0 2nh
= kh = khsinO 2 = (2.2.1 Ib)

In equations (2.2.1 la and b), k and A represent the wavenumber and wavelength along the wave
propagation direction defined by the angle 0 in figure 2.1.1. It can be shown that for very low
wavenumbers (or very long wavelengths) in the z direction, the spectrum equation (2.2.10)

approaches the exact spectrum for a continuous medium, i.e. 0o = Ck = Csýk + k, or

equivalently 9 = +

Having found the relationship between frequency and wavenumbers in equation (2.2.10), we can
calculate the apparent phase velocities as

V =- phase velocity in the propagation direction (2.2.12a)
k

Vx k= x component of phase velocity (2.2.12b)
x

Vz =0 z component of phase velocity (2.2.12c)

Figures 2.2.2 and 2.2.3 present a qualitative comparison of the frequency-wavenumber spectrum
obtained with the discrete model (dashed line) against the exact analytical spectrum (solid line).
The first figure shows the numerical dispersion for a fixed horizontal wavenumber (Jx= 0.57t and

x=rt) as a function of vertical wavenumber J, while the second shows the numerical dispersion
for a fixed vertical wavenumber (4z=0.57t and =t=n) as a function of horizontal wavenumber ý,. In
either case, the discrete model is computed for fully consistent matrices, that is, the tuning factors
used are /f=--=1.0.

As seen in figure 2.2.2, the numerical dispersion takes place mostly in the high vertical
wavenumber region, and complex branches exist in the discrete model that do not exist in the
continuum. Also, it should be recognized from equation (2.2.10) that the discrete model possesses
periodicity as well as branches whose associated group velocity is negative while the phase
velocity is positive. These properties introduce not only numerical error, but also an ambiguity to
the propagation direction of energy. In order to avoid this ambiguity, we adopt the following
convention for the wavenumber z (or equivalently wavelength 2~):

2rr 2h
0 < Rej (= Rekzh = Re 2- h) < or equivalently 0< Re- <1.0 (2.2.13)

2z 2,

This convention states that the wavelength along the discretization direction, A2, must be longer
than twice the discretization size h. The same convention will hold for the SV-P waves modeled
by the TLM1 to be considered later on.

It is observed in figure 2.2.3 that high horizontal wavenumbers produce smaller errors than the
low horizontal wavenumbers for a given vertical wavenumber. The reason is that the high
horizontal wavenumbers involve waves that propagate nearly horizontally. Inasmuch as this is a
direction in which the TLM does not discretize, little error can be expected to occur. Indeed,
when the waves propagates fully in the horizontal direction, no error at all takes place in the
TLM.



We next determine the spectrum equations for three canonical problems: (1) a discrete
homogeneous stratum, (2) a discrete homogenous plate, and (3) Love waves in a layer underlain
by a half space modeled with the TLM1. In section 2.2.2, we numerically compare the
eigenvalues obtained from the discrete and exact analytical solutions for only the second and third
problems and seek to improve the discrete solutions with the aid of the optimal tuning factors J8
and lu.

(1) Homogeneous stratum
Consider a discrete homogeneous stratum of total depth H that is composed of N TLM1 thin
layers. The two boundary conditions for this problem are a) zero stress at the top surface (i.e. 1=0)
and b) zero displacement at the bottom (1=-N). These conditions are

Po = 0 at l=0 (2.2.14a)

v_N =0 at 1=-N (2.2.14b)
We substitute equation (2.2.9b) into equations (2.2.14) and obtain the resulting boundary
condition in matrix form as

b+ acos~z -asin B (2.2.14c)
cos4ýN -sinSzNj LBI 0

Solving the associated eigenvalue problem, we obtain the spectrum equation as

Q oh 1 jK 3- 2flsin 2 L•J +12sin 2 j1 (2.2.15a)
CS 2 2 j 2 23-2 4usin

where

H (_j- ')nh= H 2 j=1, 2,..., N
N N

For comparison, the exact analytical solution to this eigenvalue problem is introduced of the
dimensionless form

S = + ( hj-) j = 1, 2,..., oo (2.2.15b)

First, it is noticed that only N distinct eigenvalues (or modes) are available in the TLM model of
interest, while the infinite number of eigenvalues is obtained from the exact analytical solutions.
Secondly, it is noted that for very small Jj the two equations (2.2.15a and b) become identical
regardless of the values of tuning factors l and p in use. This identification can be easily verified
by expanding equation (2.2.15a) in Taylor series with respect to 4v=0. Therefore, it follows that
by applying sufficiently large number of thin layers (N), the exact values for first few eigenvalues
can always be obtained from the TLMI.

(2) Homogeneous plate
Consider next a discrete homogenous plate of thickness H, composed of N TLM 1 thin layers. The
boundary conditions are now the traction-free surfaces at 1=0 and l=-N, which are expressed as

Po = 0 at l=0 (2.2.16a)

P-N = 0 at 1=-N (2.2.16b)



Substituting equation (2.2.9b) into equations (2.2.16), we obtain the homogeneous matrix
equation

{c b + a c os z  -asin (2.2.16c)
acosz(N -1)+bcosSzN -asin z(N-1)+bsinNj B 0

Solving the associated eigenvalue problem, we obtain the spectrum equation in closed form as

- =oh 1 3-2/fsin2 jý2J+ 12sin2 zj (2.2.17a)
CS 2 - s 2 j 2 2

where

H zjjh= zj j = 0,1,2,..., N
N N

It is noticed that only N+1 distinct eigenvalues (or modes) are obtained from the TLM1 model of
interest. For comparison, the exact analytical solution to this eigenvalue problem is introduced of
the dimensionless form

wOh ch( .h2
S2 + (j• j=0,1,2,... (2.2.17b)

Cs H

In section 2.2.2, we numerically calculate the eigenvalues of this discrete plate with specified
values for Cs, H, and N and compare them with the exact analytical solution by means of the
dispersion curves. Also, we consider four combinations of tuning factors and show the best
improvement in eigenvalues with the help of the optimal tuning factors to be determined in
section 2.2.2.

(3) Love waves
We consider the guided waves in a discrete homogenous layer over a discrete elastic half space,
i.e. so-called Love waves in the continuum. The upper layer is composed of N TLM1 thin layers
whose total thickness is H. The wave speed of the upper layer is slower than that of the half-
space. The discrete half space is composed of an infinitely large number of thin layers. The x-axis
is taken to coincide with the interface between the layer and the half-space. This example is more
complicated than the previous two, because we now have two displacement fields, one for the
upper layer and another for the half space. The general solutions are now

VL,, = AL cos Jl + BL sin Jzl (2.2.18a)

VH,- = AHZ I  (2.2.18b)

in which the subscripts L and H identify the upper layer and the half space, respectively. Equation
(2.2.18b) contains only one term, because VH,I must satisfy the radiation condition, i.e. IZHI > 1 for
l < 0. The boundary conditions are now a stress-free surface and two continuity conditions for
displacements and stresses at the interface. These are given by

1) stress-free condition at z = H, (1 = N) : pL,, =0 (2.2.19a)

2) displacement continuity at z = 0, (1 = 0) : v I,o - v,, o = 0 (2.2.19b)

3) stress continuity at z = 0, (1 = 0) PLO + Pu,0 = 0 (2.2.19c)

Substitute equations (2.2.18) into the above boundary conditions, we obtain the homogeneous
matrix equation



bI cos ,N +a cos (N-1) bL sinN -aLsin ,(N-1) AL, 0
1 -1 f ,=0

[a, cos•:ZL +bL] at sinezt K[bH + al' ]  A 0=

(2.2.19d)
G, h,where K=- .Solving the system of equations (2.2.19d) for nontrivial solutions for A,, B,,
G, hH

and A 9, we obtain the Love wave modes for the discrete model. However, since the elements of
the matrix contain transcendental functions, we shall not be able to obtain the eigenvalues in
closed form. Instead, numerical search techniques are necessary to find the modes.

In section 2.2.2, we perform numerical analysis to calculate the N eigenvalues of this discrete
layered half-space with specified values for GH, GL, hL, H, and N and compare them with the
associated exact solution by means of the dispersion curves. Also, we consider three
combinations of tuning factors and show the best improvement in eigenvalues with the help of the
optimal tuning factors to be determined in section 2.2.2.

2.2.2 Numerical dispersion and tuning factors

In this section, we characterize the numerical dispersion of SH waves modeled with the TLM
based on a linear expansion, or TLM1 for short, by means of the canonical problems formulated
in the previous section. The problems are (1) body waves propagating vertically, (2) body waves
propagating at an angle to the horizontal axis, (3) a homogeneous plate, and (4) Love waves in a
layer underlain by a half space. From the first two examples, we determine the optimal tuning
factors of fl and u and propose a lower bound for the number of thin layers per wavelength.
Thereafter, we apply these factors to the last two problems to verify that the optimal tuning
factors improve best the propagation modes computed from the TLM 1.

(1) Body waves propagating vertically : tuning factor p
Here, we consider the SH waves propagating only vertically, so there is no harmonic variation in
the horizontal direction, i.e. J,=0. This problem is formally identical to the 1-D problem of SH
waves in an infinitely long shear beam discretized with finite elements. Setting ,=0 in equation
(2.2.4a), we obtain the modified governing equation.

p = 6h v+, +2bv + iEv, -1 (2.2.20)

where K =-6-p 2 2 , and b=6-(3- _)DQ
2 . This equation (2.2.20) contains only one tuning

factor, namely p, so finding its optimal value is a straightforward task. With the help of equations
(2.2.10) and (2.2.12c), the phase velocity is calculated as

sin -iw 2 C 2
v 2Cs 2 (2.2.21)

To explore the numerical dispersion characteristics of this wave, the apparent phase velocity Vz in
equation (2.2.21) is computed for four different values of ,u=0, 1/3, 2/3, and 1. Figure 2.2.4



displays the ratio of Vz to Cz(=Cs) as a function of vertical wavenumber ý, and the tuning factor u,
in which Cz is the true vertical phase velocity. It is shown that an optimal factor pu must exist
whose value lies between 1/3 and 2/3 and will be valid only for 0<,/rr<1/2. For z/ht>1/2, on the
other hand, the numerical dispersion increases significantly regardless of the tuning factor p. This
was expected, because high values of ý, correspond to waves whose wavelength is short in
comparison to the thickness of the discrete layers, so they cannot be modeled (or propagated)
faithfully. Therefore, we will focus only on the range of 0<ý/nt<1/2 to determine the optimal
value for p. More interestingly, the condition of O<h/tn<1/2 provides a lower bound for the
number of TLM1 thin layers per wavelength NA-=A/h such that NA must be no less than 4, i.e.
Na2 4. Determining NA is importantly and directly related to the accuracy of the TLM, which will
be discussed in more detail in chapter 4.

To estimate the error caused by the numerical dispersion in the present example, we define an
error function E as

E '= /2d= ,2 V(/2( ) 12 djz (2.2.22)

which provides the integrated squared error over the significant range of vertical wavenumbers
(i.e. for wavelengths that are long compared to the discretization). Figure 2.2.5 shows the error
function in terms of the tuning factor p. As can be seen, E is zero at p =0.55, while it is greater
than zero for all other values of u. Hence, the optimal tuning factor is p =0.55.

(2) Body waves propagating at an angle to the horizontal axis : tuning factor /
Next, we consider the more general problem in which the SH wave propagates at an arbitrary
angle with respect to positive horizontal axis (i.e. 4, is non-zero in equation 2.2.4a). Thus, it is
now necessary to consider tuning factors for both matrices A and M, namely / and u,
respectively, and evaluate their effect on the numerical dispersion as functions of both the
propagation angle and the vertical wavenumber. As in the case of vertically propagating waves,
we evaluate both the ratio of phase velocities V/C and the associated error function E defined by
equation (2.2.22); these are shown in figures 2.2.6 and 2.2.7, respectively.

Figure 2.2.6 shows the variation of VIC with respect to the vertical wavenumber z for the
propagation angles 0 of 15, 30, 45, 60, 75, and 900. In each case, this ratio is evaluated for /=-1,
and u=0, 0.55 and 1.0 (i.e. Ac+ML, Ac+MT and Ac+Mc respectively). It is noticed that the
discrete results for Ac+ML and Ac+Mc are slower and faster, respectively, than the exact results,
while the discrete results for Ac+MT are nearly exact for 4z/t < 1/2. This observation shows that
an optimal value for u exists for arbitrary angles of propagation 0, including 90 degrees, and that
it is likely to be 0.55.

To find the optimal values for fl and p, we again make use of equation (2.2.22), replacing Vz by V
and C, by C, where C is the phase velocity of waves propagating at an angle 0 in the continuous
model. In this example, however, the error function E is a function of not only p, but also 8, i.e.
E =E (f8,p) for a given propagation angle 0. Figure 2.2.7 shows the variation of this error function
for various propagation angles in terms of a standard surface plot. It is now clear that the use of f8
=0.55 and p =0.55 constitute the best choice for both of the tuning factors, and that these factors
are independent of the propagation angle 0. The identical values for / and p may be understood
from the fact that the two matrices A and M are proportional to each other in the case of a
discrete, homogeneous full space.



(3) Homogeneous plate
We now consider the free vibration of a homogeneous plate of thickness H=1.0 and shear
velocity Cs=1.0. For a discrete model, the plate of interest is discretized into 10 thin layers, i.e.
N=10, and so only 11 distinct eigenvalues (or modes) exist in the present discrete model. This
problem is a practical example that can be solved by the general procedures of the TLM
formulated in chapter 1. Because of simplicity of this problem, however, we may also obtain the
solution in closed form by means of a finite difference scheme as shown in equation (2.2.17a).
Through this example, we assess the effect of the tuning factors l and u on eigenvalue problems
for finite domain systems. For this purpose, we consider the following four combinations of the
tuning factors: (i) #=-1.00 and u=1.00 (Ac+Mc); (ii) 8-=1.00 and P=0.00 (Ac+ML); (iii) #--=1.00
and pu=0.55 (Ac+MT); (iv) /pu=0.55 (AT+MT).

Figure 2.2.8 compares the frequency-wavenumber dispersion of the discrete solutions (dashed
lines) with the exact analytical solutions (solid lines). The discrete solutions are computed for the
above four combinations of tuning factors. It is noted that there are shown only 11 branches in
each plot, although the infinite number of modes (or branches) exists in the exact analytical
solution as shown in equation (2.2.17b). As is apparent, the use of the optimal tuning factors, i.e.

8=p-u=0.55, provides the best agreement with the exact solutions. It is also noted that the use of
/=1.00 and p-0.55 also gives good results for small horizontal wavenumbers, i.e. J<xr/4, but not
for high horizontal wavenumbers. Therefore, we conclude that the tuning factors #-/=0.55 are
indeed the optimal choice for anti-plane problems modeled with the TLM1.

It is also observed from figure 2.2.8 that only the 5 or 6 modes of the 11 modes in the discrete
solution are accurate despite the application of optimal tuning factors. The reason is related to the
range of vertical wavenumber J, over which the numerical error (f,,u) in equation (2.2.22) is
estimated to determine the optimal tuning factors. Remember that the optimal tuning factors are
determined only for the significant range of vertical wavenumber, i.e. 0<•/t<0.5. In fact, the 5 or
6 modes are the first half of the set of modes, which can be easily verified by accounting the
index j or 5J in equation (2.2.17a) in the present problem. In addition, inspecting equation
(2.2.17a) reveals that J4 t/n for the accurate first half modes is no greater than 0.5. Finally, it is
concluded that with the application of optimal tuning factors only the first half of the set of all
computed modes (or equivalently the modes with 0<j/it<0.5) is accurate as far as the dispersion
relation is concerned.

(4) Love waves
We consider the last example in this section: a layer underlain by a half-space, i.e. the so-called
Love wave problem. The thickness and shear velocity of the layer is H=1.0 and CL =1.0,
respectively. The shear velocity of the half space is CH=2 .0. The mass density p for both is 1.0.
Therefore, the shear moduli for the layer and half-space are GL(=pCt 2)=1.0 and GH(=PCH2)=4.0,
respectively. For a discrete model, the layer is composed of 20 TLM1 thin layers (N=20), so that
the thickness hL(=H/N) of each thin layer is 0.05(=1/20) and the total number of degrees of
freedom (or interfaces) is 21. Taking into consideration the wave-velocity contrast between the
two materials, the thickness of thin layers for the half space (h,1) is set to be 0.10. In the discrete
model of interest, the first twenty propagation modes are the only valid modes. So, we compare
these twenty modes with the exact analytical solution to assess the effect of the tuning factors J8
and p on eigenvalue problems for layered semi-infinite systems. For this purpose, we consider the



following three combinations of tuning factors: (i) A-=1.00 and ,u=1.00 (Ac+Mc); (ii) #3=1.00 and
p=0.00 (Ac+ML); (iii) #3=p-=0.55 (AT+MT). It is noted that the combination of /3=1.00 and u=0.55
(Ac+MT) is excluded, because the homogenous plate problem has already revealed that the tuning
factors of 8-=1.00 and p=0.55 produce significant numerical errors for high wavenumbers 4.

Figure 2.2.9 compares the frequency-wavenumber dispersion of the discrete solutions (dashed
lines) with the exact analytical solutions (solid lines) for the three combinations of tuning factors.
First of all, it is observed that the optimal tuning factors of =,pu=0.55 improves the accuracy of
eigenvalues to the significant extent. Secondly, only the first half (or 10 in this example) of the
set of 20 modes are shown to be accurate. Therefore, it is proved that the tuning factors f=-3 =0.55
are indeed the optimal choice for SH wave problems of semi-infinite domain as well as finite
domain. In addition, it is verified that as long as using the optimal tuning factors, we can calculate
accurately the first half of the set of modes obtained from the TLM 1 not only for a homogeneous
layer, but also for two-layered systems (or even multilayered systems).

2.2.3 Summary

In this section, we have obtained the general solution and the frequency-wavenumber spectrum
for the discrete SH wave formulated by means of the TLM1. On the basis of a qualitative
investigation of the spectrum, we have found that the wavelengths along the discretization
direction (A,) must be no shorter than twice the discretization size (h), i.e. Ai22h. Then, three
wave propagation problems in finite and semi-infinite discrete media have been solved formally
and successfully. The comprehensive characterization of the numerical dispersion in the discrete
homogenous full-space has yielded the optimal tuning factors of 8P=-u=0.55 that are valid only for
0<~nht<1/2. Also, it has been found that the number of thin layers per wavelength NA (=A;/h) must
be no less than 4, i.e. NA2 4 for the range of J, in consideration. From the free vibration problems
of an SH plate and a layer on a half-space, it is verified that the use of optimal tuning factors
really provides the best agreement with the exact analytical solutions in terms of eigenvalues.
More importantly, it is observed that the first half computed modes are very close to those of the
exact analytical solution, provided that the optimal tuning factors are used.

2.3 In-plane (SV-P) waves with linear expansion TLM

We here consider the SV-P wave propagation modeled with the TLM1. In the first part of this
section 2.3, we obtain the general solution and the frequency-wavenumber spectrum for the SV-P
wave equation modeled with the TLM1. Through a qualitative investigation of the spectrum, we
confirm the convention for the wavelength along the discretization direction and the discretization
size, i.e. A2-2h. Then, we solve formally two guided wave problems by means of the obtained
general solutions. The two problems are a discrete homogeneous plate with mixed boundary
conditions and the Rayleigh surface waves on a discrete homogeneous half-space.

In the second part, we first extensively characterize the numerical dispersion of body waves for
five different Poisson's ratios as a function of vertical direction wavenumber (J,) and the
propagation angle (0). As a result, we confirm that the same range of ý, as the case of SH wave is
only useful as determining the optimal tuning factors. Then, with the calculation of the error
functions, we determine the optimal tuning factors. By analyzing two free-vibration problems of
finite domain, we verify that the optimal tuning factors indeed improve the accuracy of the



eigenvalues in the context of the TLM. In addition, we find out how many modes are accurate
among a set of all computed modes with the application of the optimal tuning factors. In the last
problem, we consider the problem of Rayleigh surface wave to show the effect of the tuning
factors on the accuracy of the TLM1 analysis for (semi-) infinite media.

2.3.1 Discrete solution for in-plane problems

Consider a single TLM1 thin layer subjected to SV-P wave motion as shown in figure 2.3.1. Since
SV-P wave motion is involved, the two degrees of freedom, u and w, are assigned at each node or
interface. The governing equation for the thin layer is then expressed as

Pt =KU, (2.3.1)

P, = P/ Pl- 1 ={Px,i Pz,t Pxt-I Pz.,iT :consistent traction vector

= {uu, u1,} = ut w, u-W1 _, W_

K = Ak, + Bk x + G - o 2M
where
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where oa 6 and p are the tuning factors for the matrices A and M, and the subscripts L and C
represent the lumped and consistent matrices. Note that the matrix A has two tuning factors a and
f3. The reason is that the matrix A has two wave components, i.e. P and S waves. The elements
having the factor A+2G are related to the P wave component, and the elements having the factor
G are related to the S wave component. Therefore, the P and S wave components are individually
tuned by means of a and /, respectively. Also, kx is the horizontal wavenumber, p is the mass
density, A is the Lame constant, G is the shear modulus, and h is the thickness of the thin layer.

For the sake of future convenience, we introduce the three auxiliary matrices and four
dimensionless parameters defined as

(2.3.2a)

(2.3.2b)
(2.3.2c)

(2.3.3a)

(2.3.3b)

(2.3.3c)

(2.3.3d)



a= a,, a12
a21 a22 j

{ar } +3(r-1){-

b ={b b 2

(3 - a)r B +

(3 -8) 1x

+6-1 -r1 - 1 g2

6{ }(1. ; 2

bo bi 2
b 21 b,22J

= {(3 - a)r

= kh,
wh

2 = , and
Cs

S+ 2G _ C 2-2v

G Cs 1- 2v

To describe the wave motion in a homogenous full space composed of infinitely many identical
thin layers, we write the recursive equation of motion at the lth interface as

Pt = LI aTu+ + 2but + aut-, (2.3.4a)
U",

In the special case of a half-space, the top surface (i.e. z=0 or 1=0), which is associated with
boundary conditions, obeys instead the equation

Gpao = bou + au-]
6h

(2.3.4b)

In a particular case of vertically propagating waves, i.e. k, = 0.0, the discrete equation of motion
of equation (2.3.4a) separates into two uncoupled scalar equations, each of which involves only
the horizontal (u) or vertical (w) component. In this case, the u component results solely from S
waves (as in a shear beam), while the w component arises purely from P waves (as in a rod).

To determine the general solutions, we assume a solution in the form.
u1 = Z'• (2.3.5)

in which =I {( }T is the eigenvector, whose direction cosine determines the direction of

particle motion or the polarization. Substituting equation (2.3.5) into equation (2.3.4a) and setting

p, = 0, we obtain the following homogeneous equation in the matrix form.

[aTZ + 2b + aZ-] = 0 (2.3.6a)

2a,,Y + 2b,,
2a,2Y

-2a ,2Y ,1 0
2a22Y + 2b22 0O

{r[6 + 2a(Y -1)] 6Y(r-1) } +

6 + 2fl(Y -1)2 + -67(r -1)

)(33)} +3(r -3) }x +6{1 ;-(3 u). ;}2(3 -181 - r . I

(2.3.6b)



+ t = (2.3.6c)+ 12(1Y) 12r(1 - Y)(Y - 1) 6 + 2,/(Y - 1) {2 O {} (2.3.6c)o

where the two variables Y and Y are defined as
Y = (Z + Z- ') , f =(Z - Z- ), and Y 2 = Y 2 -1.

A nontrivial solution exists only if the determinant of the coefficient matrix in equation (2.3.6c)
vanish. After additional manipulation for the determinant, we obtain the following spectrum
equation for Y.

Y2 - 2ajY + a 2 = 0 (2.3.7)
where

I ab22 +a22bl an bb22 -a22
a, = 2 and a2  2

2 aa 22 +12 a11a22 + a12
The two roots Ys that correspond to P and S wave components are, respectively

=;a 2 - 2  with i= P, S (2.3.8)
Additionally, the directions of particle motion for each component (0), the so-called polarization,
can be obtained from the eigenvectors of equation (2.3.6c) in the form.

= tan- tan' tan- [-yi - y -I] (2.3.9a)

where

= {r[3 + a(Y, -1)]-[3+ f(Y - 1)] } 2 + 6(r -1)(Y' -1)
. =6 (2.3.9b)

6(r -1)Y7
It is clear that these two directions are perpendicular to each other because of the orthogonality of
the two eigenvectors in equation (2.3.6c). Also, it can be easily recognized from equation (2.3.9b)
that the polarization is independent of the tuning factor p. Furthermore, if a=-fl, the polarization is
independent of Poisson's ratio v. However, it can not be easily confirmed whether the polarization
of this discrete model either coincides with the direction of propagation (P waves), or does it lie
in a plane perpendicular to that direction (S waves), as is the case for homogeneous P and S
waves in a continuous space. We numerically demonstrate these characteristics in section 2.3.2.

The two Z's for each Y in equation (2.3.8) can be written as

Zil,2 = ± 1 • 1 or Zil,2 =e i =cosi +isin zi (2.3.10)

The corresponding eigenvectors are then given byal2I a1 12 ix
a12,,, a+b, af2 +i (2.3. 11 a)

1a 12 = 2i 2 ] I2 1F (2.3.11b)
all 2 b aj, + b,

Finally, the general solution is of the form.
, = AZpl+ BZ,2 + CZ +DZs's 2  (2.3.12a)

or equivalently

I cosýzpl ,Px •3+ -isin,/ Px +cosJal Osx + -isin :a/l Sx +
-isincosl -isin sl (2 cos3.l s2b

(2.3.12b)



where A, B, C, and D (or A, B, C, and D) are unknown constants. Substitution of equation
(2.3.10) into equation (2.3.6c) yields the spectrum equation in more explicit form as

r[6 -4asin2 _]

6

6(r- 1)isin ý +
-1)isin.

24sin2 tz 6-4psin2
+ { 2 - 4sin 2 =0 (2.3.13)

24r sin 2  6 -41Z sin

in which
2h cos 2n'h cot 0

= kh = khcosO 2 - (2.3.14a)

2zhsin 2'h
S= kzh = khsinO - 2 (2.3.14b)

with k and A being the wavenumber and wavelength along the wave propagation direction 0. It
can be shown that for a very lower wavenumber (or a very long wavelength) in z direction, the
spectrum equation (2.3.13) approaches the exact analytical spectrum equations given in

dimensionless form as 2,, = r(ý,p + ýp) and s = 2s + ý

Having found the relationship between frequency and wavenumbers from equation (2.3.13), we
can obtain the apparent phase velocities as follows.

VP = : P wave phase velocity in the propagation direction (2.3.15a)
k

Vs = s : S wave phase velocity in the propagation direction (2.3.15b)
k

V _x = P wave phase velocity in the x direction (2.3.15c)

Vsx = s : S wave phase velocity in the x direction (2.3.15d)
kX

VPz = k : P wave phase velocity in the z direction (2.3.15e)
k

VsZ --- : S wave phase velocity in the z direction (2.3.15f)

Figures 2.3.2 and 2.3.3 make a qualitative comparison of the frequency-wavenumber spectrum
obtained with the TLM1 (dashed line) against the exact analytical spectrum (solid line) for a
particular case of Poisson's ratio v=0.30. Since the SV-P wave is associated in this section, two
branches exist in the spectrum: one is for S wave and the other is for P wave. Figure 2.3.2 shows
the numerical dispersion for a fixed horizontal wavenumber (ýx=0.5r and =7tn) as a function of
vertical wavenumber ý,. Figure 2.3.3, on the other hand, shows the numerical dispersion for a
fixed vertical wavenumber (A=0.25n and ý,=0.75tn) as a function of horizontal wavenumber L.
In either case, the discrete model is computed for fully consistent matrices, that is, the tuning
factors used are ao=fl=p= 1.0.



As clearly shown in figure 2.3.2, the similar characteristics are observed to those seen in figure
1.2.3, such as significant numerical error in the high vertical wavenumber region, existence of
complex branches, periodicity of branches, possibility of negative group velocity, and so on.
Therefore, we adopt the same convention for the vertical wavenumber J (or the wavelength
along the discretization direction Aý) as the TLM1 for SH wave in section 2.2, which states that 2A
must be longer than twice the discretization thickness h.

The first plot in figure 2.3.3 shows that high horizontal wavenumbers produce smaller errors than
the low horizontal wavenumbers for a given vertical wavenumber z=0.257x. The reason is the
same as the SH wave problem in section 2.2, i.e. that the high horizontal wavenumbers involve
waves that propagate nearly horizontally. On the other hand, it is observed in the second plot for
Jz=0.75x that the significant numerical errors occur in the whole range of Jx considered, which is
not seen in the problem of SH waves of section 2.2. Therefore, it is expected that concerning its
accuracy, the TLM1 for SV-P wave could produce less accurate results (e.g. eigenvalues or
eigenvectors) than the TLM1 for SH wave, especially for the high vertical wavenumbers, e.g.
J=0.75rx.

We proceed to derive formally the spectrum equations for two guided wave examples: (1) a
discrete homogeneous plate with mixed boundary conditions; and (2) Rayleigh surface waves on
a discrete homogeneous half-space. Concerning the first example, the solutions are obtained in
fully analytical form due to the simplicity of the problem. By contrast, the solution for the second
example is obtained in an implicit form, which requires numerical search techniques. In section
2.3.2, we compare the discrete solutions with the associated exact analytical solutions for the two
examples and seek to improve the discrete solutions with the help of obtained optimal tuning
factors a fl, and u.

(1) Homogeneous plate with mixed boundary conditions
Consider a discrete homogeneous plate of thickness H that is composed of N (even integer) thin
layers of the TLM1. The mixed boundary conditions of interest are that the vertical displacement
and the horizontal stress are both zero at the top (l=N/2) and bottom (l=-N/2) surfaces, namely

w1 =0 (2.3.16a)

Pxt = 0 (2.3.16b)

Under these boundary conditions, it is possible to uncouple the wave motion in the plate into the
symmetric and anti-symmetric modes. The symmetric mode is associated with the wave motion
whose vertical displacement (Wl) and horizontal stress (Pxt) are both zero at the middle (1=0) of the
thickness. On the other hand, the anti-symmetric mode is associated with the wave motion whose
horizontal displacement (ut) and vertical stress (Paz) are both zero at the middle (1=0) of the
thickness.

Consider first the symmetric mode, of which the displacement fields are of the form.{ cos4,/@lx 1 - + cos4:,S/bsx 1
u _= cosJ5, 1. f+ cos5(2.3.17)

u -isin ,/p1pJ L-isinasl Os ,
Substitution of equation (2.3.17) into equations (2.3.16a and b) yields

{w }= -i(a 1 cos•Jz +b,,)sin •zp -i(al cos J +b,I)sin aN s A1 • =

PxR -ial2(a 11 +bt cos Jp,)sinJ,N -ial2(al1 +b, cos)zssin sN JCUJ 0
(2.3.18)



where N = N/2. For nontrivial solutions to be present, the determinant of the coefficient matrix
must vanish. The associated spectrum equation is then given by

f((,,U) = a12 sin ,N sins N.
.[(a,, costp +)b,a)(a,, + b, cos (all cos zs + b,,)(al, + b cos ,,) ] = 0

(2.3.19)
From equation (2.3.19), it is seen that the symmetric mode can be separated into two independent
modes such as P and S wave components. This perfect separation implies an important physics
that there is no mode conversion phenomenon between P and S waves when the waves in the
plate reflect at the surface. Finally, the two independent modes are given in the form.

-- , j =0,1,. -., N -1 (2.3.20a)
N

s -i= , j= 1,2,-., N (2.3.20b)

Insert of equations (2.3.20a and b) into equation (2.3.13) can provide the spectrum equation in
terms of the frequency, the horizontal wavenumber, and the modal index j, which is not shown in
explicit form herein. For purpose of comparison, the two independent modes of the exact
analytical solutions are introduced in the form without any detail derivation.

z •j = , j = 0,1,-...-, (2.3.20c)

s = •, j = 1, 2,. ,oo (2.3.20d)
N

Next, consider the anti-symmetric mode, whose displacement fields are given in the form.

= -isinpl , - + -isinal sx (2.3.21)Scos Pz J cos Sz (2.3.21)sz
Substitution of equation (2.3.21) into equations (2.3.16a and b) yields

w = (a, cos z +b,,)cosJ'pN (a,, cosJzs +b,l))cos N B o=0
{ PxI a2(al2 +b11 b cos z)cos ,N a 2 (a11 + b, cos )cos Jz 0

(2.3.22)
The associated spectrum equation is then given of the form.

f( (x, Q)= al2 cos ,N cos •zSN.
.[(a,, cosjz, +bl)(a,, +b,, coszs) -(al, cos s +b,,)(a,, +b,, cos ,z)] = 0

(2.3.23)
Equation (2.3.23) again shows that the P and S wave components are independent of each other.
Therefore, we have two independent modes in the form.

ZPj = • j= 1,2,---,N (2.3.24a)

s = , j= 1,2,---, N (2.3.24b)

Insert of equations (2.3.24a and b) into equation (2.3.13) can yield the spectrum equation in terms
of the frequency, the horizontal wavenumber, and the modal index j, which is not shown in
explicit form herein. For reference, the two independent modes of the exact analytical solutions
for the anti-symmetric modes are introduced in the form without any detail derivation.

zP j = - ' j = 1,2,...,, (2.3.24c)



,s = j = 1, 2,. .,0 (2.3.24d)

In one example of section 2.3.2, the eigenvalues for the plate of interest are numerically
calculated for specified values of p, Cs, v, H, and N, and then compared with the exact analytical
solutions by means of the dispersion curves. In addition, three different combinations of tuning
factors are applied to the TLM1 solutions in order to verify the best improvement in eigenvalues
by virtue of the optimal values of tuning factors.

(2) Rayleigh surface waves on a half space
We next determine the spectrum equation for the Rayleigh surface wave on a discrete
homogeneous half-space (1•0). For this purpose, we need to remove two terms in equation
(2.3.12a) that violate the radiation condition at z = -oo, leading to the following displacement
field.

S= (AZ4~, + CZs1s )ei( t- kxx), 1=0, -1, -2, ... (2.3.25)
where A and C are determined from the boundary conditions of interest, and the Z's are chosen
such that JZI > 1.0. In this particular problem, we have to apply the stress-free boundary condition
at the surface, which by means of equation (2.3.4b) results in

0 = b0u0 + au_1  (2.3.26)
Inserting (2.3.25) into (2.3.26), we obtain the following equation.

(0 C,1 C12 jA (2.3.27)0 C21 C22 JLCJ
in which

C, = bI,,Px + b,2 ,Pz + ZP' (a,, ex + a,2 OP)
C12 =b, 1 s,, +b1 2 _S + Zs'(a ,Osx + a12Osz )

C21 = b21,P x +b220Pz + Z' (a21 Px +a22 Pz)

C22 = b21 Sx+ 22 Sz + Zs ' (a21 Ox + 22

A nontrivial solution to equation (2.3.27) exists only if the determinant of the coefficient matrix
vanishes, leading to the following condition

C11 C12 = 0 (2.3.28)
C21 C22

Equation (2.3.28) is the spectrum equation for the Rayleigh surface wave modeled with the
TLM1. While the Rayleigh surface waves are non-dispersive in the continuum, they are
dispersive in the TLMI model, as will be seen in section 2.3.2. In section 2.3.2, three different
combinations of tuning factors are again applied in order to investigate the effect of the tuning
factors on the accuracy of eigenvalues obtained with the TLM 1.

2.3.2 Numerical dispersion and tuning factors

In this section, we characterize the numerical dispersion of SV-P waves modeled with the TLM1
by means of the problems formulated in section 2.3.1 and an additional problem of Mindlin plate.
To begin with, we explore the features of numerical dispersion of the body waves in a discrete
homogeneous full-space. Then, we try to determine the optimal values for tuning factors in a
similar fashion to section 2.2. Thereafter, to verify the improvement in eigenvalues achieved by



virtue of the optimal tuning factors, we solve three free-vibration problems such as a
homogeneous plate with mixed boundary conditions, the Mindlin plate with stress-free boundary
conditions, and the Rayleigh surface wave on a homogeneous half-space.

(1) Body waves
Here, we characterize the numerical dispersion of body waves in a discrete homogeneous full-
space modeled with the TLM1 that is subjected to SV-P wave motion. For this goal, we compare
the phase velocities Vs and Vp in equations (2.3.15a and b) and the polarization E in equation
(2.3.9a) obtained with the TLM1 against those obtained from the continuum. Since the problem
of interest is now in a plane-strain state, the Poisson's ratio v possibly influences the numerical
dispersion phenomena in the TLM1 model. Therefore, five Poisson's ratios of =-0.0, 0.1, 0.2,
0.3, and 0.4 are considered. In addition, to show the effect of tuning factors on the numerical
dispersion, the TLM1 model is calculated for three different mass matrices of fully lumped ML
(fl=0), tuned MT (u=0.55), and fully consistent Mc (p1=1) as setting ac-#-= 1.0 for the matrix A.

Figures 2.3.4-8 show the numerical results for v-0O.0, 0.1, 0.2, 0.3, and 0.4, respectively. In each
figure, the three quantities of Vs/Cs, Vp/Cp, and o0- are shown as a function of the vertical
wavenumber 4 and the propagation angle 9. The angles considered are 0=15, 30, 45, 60, and 75.
To show the effect of tuning factors, all the results for the fully lumped mass matrix ML (U=0O),
the tuned mass matrix MT (p-=0.55), and the fully consistent mass matrix Mc (u-=l) are shown
together in each plot. The dashed, solid, and dotted lines represent the results for ML, MT and Mc,
respectively.

It is observed in all the figures 2.3.4-8 that the TLM1 model for SV-P waves has the numerical
dispersion that is dependent on the vertical wavenumber 4 and the propagation angle 0. Also, it is
seen that the degree of the numerical dispersion is larger and larger as the two parameters of 4
and 0 become larger and larger. As to the Poisson's ratio effect, it is shown that the dependency
of the numerical dispersion on the Poisson's ratio exists, but is not significant. With regard to the
polarization, confirmed are the two facts that are considered in section 2.3.1: (1) the polarization
is independent of the mass tuning factor /u and (2) when setting a•Jf, the polarization is
independent of the Poisson's ratio. In addition, it is noticed that the results computed for the tuned
mass matrix with p=0.55 (MT) are much better than those calculated for the fully lumped and
consistent mass matrices, which is true especially for 4/5n(=2h/A) <0.5. By contrast, for /5t>0.5,
the degree of the numerical dispersion is significant regardless of the considered values of p. This
observation is identical to that for the TLM1 for SH wave in section 2.2. Therefore, the same
range of 4, as the TLM1 for SH wave, i.e. 0<JJn<1/2, is applied to determine the optimal tuning
factors for the TLM1 for SV-P wave. Furthermore, the condition of •/nt<1/2 again provides a
lower bound for the number of thin layers per wavelength Na(=A2h) such that NJA4.

(2) Tuning factors
We begin with the tuning factor p for the mass matrix. We can argue that its optimal value must
be 0.55 that is the optimal value of p for the SH wave problems. The reason is as follows. When
waves propagate only in the vertical direction (i.e. the horizontal wavenumber 4, is zero), the
wave motion uncouples completely into two components of SV and P waves and the system
behaves like a shear beam and a rod, respectively. Remember from section 2.2 that with setting

=0, the equation of motion for SH waves is identical to a shear beam, where the tuning factor P
is only involved. Inasmuch as the equations of motion for the shear beam and the rod obey the



same classical wave equation (even if they have different propagation speeds), it follows that the
optimal value for u for SV-P waves must be the same as that for SH waves. Also, it is already
seen in figures 2.3.4-8 that the value of p-=0.55 indeed provides the smallest error among three
cases of t=0.00, 0.55, and 1.00. Therefore, in this section 2.3, we seek the optimal values for only
the remaining tuning factors a and f in conjunction with a fixed, optimal value t=-0.55.

Next, we attempt to determine the optimal values for a and / in the matrix A. For this goal, we
start with defining two error functions Es and Ep for S and P waves, respectively, as

s = -( , fl) = 12 _ 1) d (2.3.29a)

EC=EC(a,/3,V)= ,f2 (L-1 dJ z  (2.3.29b)

which provide the integrated squared errors over the significant range of J, 0<•rh/(=2h/2) <1/2.
Recognize that the error functions are now a function of not only a and / with a fixed value of
p-=0.55, but also the Poisson's ration, because the problem of interest is in a plane-strain state.

Figures 2.3.9a-13b show the variation of the error functions Es and Ep for the five different
Poisson's ratios such as v=0.0, 0.1, 0.2, 0.3, and 0.4 in terms of a standard surface plot. In each
figure, considered are six different propagation angles of 0=15, 30, 45, 60, 75, and 900. It is
obvious that for each Poisson's ratio, there exists no optimal combination of a and / that can
minimize both the error functions Es and Ep regardless of the propagation angle 0. Meanwhile, it is
noticed that for each Poisson's ratio, the variation of Es is in general more sensitive than the
variation of Ep with respect to a and /. This observation suggests that we may try to minimize the
numerical dispersion error by means of only the S wave component rather than both the S and P
wave components. It is shown in all the surface plots of Es that regardless of the propagation
angle 0, the integrated squared error Es has its minimum value at the point of a•1.0 and #-=1.0,
even though there are some exceptions for small angles of 0=15 and/or 300. Finally, we choose a
set of o=1.0 and /3=1.0 as the optimal tuning factors, which is nothing but the case of the fully
consistent matrix A.

(3) Plate with mixed boundary conditions
Consider next the free-vibration of the homogeneous plate with mixed boundary conditions that is
formulated in section 2.3.1. By solving this problem, we estimate the effect of the tuning factors
on the accuracy of the eigenvalues computed from the TLM1. The geometry and material
properties of the plate are given such that the thickness H=1.0, the mass density p=1.0, the shear
velocity Cs=1.0, and the Poisson's ratio v=0.31. In addition, for a discrete model, the plate is
discretized into 12 thin layers, i.e. N=12, which produces 24 distinct eigenvalues (or modes) for
the problem of interest. We also consider three combinations of tuning factors such as (i) a=f=1,
y-=0 (Ac+ML); (ii) aP-=l, -=0.55 (Ac+MT); and (iii) ac=-1, p-l 1 (Ac+Mc). Then, we compare
each of three with the exact analytical solutions.

Figures 2.3.14a, b, and c present the frequency-wavenumber dispersion of the TLM1 solutions
(dashed lines) computed for (i) a=-=l, -=0 (Ac+ML); (ii) ao/:=1, p=0.55 (Ac+MT); and (iii)
t2=#=1, l-1 (Ac+Mc), respectively, in comparison with the exact analytical solution (solid lines).
In each figure, the symmetric and anti-symmetric modes are plotted separately. It is observed that
the use of the optimal values of a3-#=1, p=0.55 (Ac+MT) produces the best agreement with the



exact analytical solution. So, it is proved that the optimal tuning factors improve the accuracy of
the eigenvalues computed from the TLM1. In addition, it must be noticed that this improvement
is achieved only for 8 or 10 modes, not for all the 24 computed modes. Remember that some
similar results are observed for the SH wave problem in section 2.2 in which it is seen that only
the first half of the set of all computed modes are accurate with the help of the optimal tuning
factors. Similarly, it is concluded for this problem of SV-P wave that only the one-third (=8/24) of
the set of all computed modes are accurate with the application of the optimal tuning factors.

(4) Mindlin plate
Here, we consider an additional problem that is not formulated in section 2.3.1. The problem is
the free-vibration of the homogeneous plate with stress-free conditions at the both top and bottom
surfaces whose exact analytical solutions are derived and presented in chapter 4. By solving this
problem, we again estimate the effect of the tuning factors on the accuracy of the eigenvalues
computed from the TLM1. The geometry and material properties of the homogeneous plate are
the exactly same as those of the plate with mixed boundary conditions, i.e. P=Cs=H=1.0 and
v=-0.31. For a discrete model, the plate is discretized again into 12 thin layers, i.e. N=12, which
produces 26 distinct eigenvalues (or modes) for the problem of interest. We again consider three
combinations of tuning factors such as (i) a=f3=-l, p=O (Ac+ML); (ii) o=f-=l, -u=0.55 (Ac+MT);
and (iii) af/=1, 4u=l (Ac+Mc). Then, we compare each of three with the exact analytical
solutions.

Figures 2.3.15a, b, and c present the frequency-wavenumber dispersion of the TLM1 solutions
(dashed lines) computed for (i) oafl=l, u=O (Ac+ML); (ii) ac=-=l, P=0.55 (Ac+MT); and (iii)
af-==1, u=1 (Ac+Mc), respectively, in comparison with the exact analytical solution (solid lines).
In each figure, the symmetric and anti-symmetric modes are plotted separately for convenience in
comparison. It is confirmed that the use of the optimal values of a=f=-1, lu=0.55 (Ac+MT) indeed
produces the best agreement with the exact analytical solution. So, it is verified once again that
the optimal tuning factors improve the accuracy of the eigenvalues computed from the TLM1 for
SV-P wave problems. Also, note that this improvement is achieved only for about 10 modes.
Therefore, it is again concluded that for the SV-P wave problem only about the one-third of the
set of all computed modes are accurate with the application of the optimal tuning factors.

(5) Rayleigh surface waves in a homogeneous half-space.
We consider the problem of Rayleigh surface wave on a discrete homogeneous half-space that is
formulated by means of the TLM1 in section 2.3.1. As numerically solving this problem of semi-
infinite domain, we explore the influence of the optimal tuning factors on the accuracy of the
TLM1 in terms of eigenvalues. The material properties of the homogeneous half-space are given
such that the mass density p and the shear velocity Cs are both 1.0 and the Poisson's ratio v is
0.31. We consider three combinations of tuning factors such as (i) =-/=l, p=0 (Ac+ML); (ii)
a=-j=l, up=0.55 (Ac+MT); and (iii) cr=f-=1, 1=l (Ac+Mc) and compute the apparent phase
velocity of the Rayleigh surface wave VR for each combination. Then, we compare them with the
true exact phase velocity CR that is 0.9289 in the present problem.

Figure 2.3.16 presents the variation of VR/CR as a function of the horizontal wavenumber x for all
the three combinations of tuning factors: (i) cef=-=1, p=0 (Ac+ML, dotted line); (ii) =fl=-l,
p=0.55 (Ac+MT, solid line); and (iii) a~=f, pu1 (Ac+Mc, dashed line). Notice first that the
apparent phase velocity for the Rayleigh surface wave VR is dispersive, i.e. a function of L, while



the true phase velocity CR is non-dispersive in the continuum. Next, it is seen that the
combination of a=f=-1, =0 (Ac+ML, dotted line) shows the best agreement with the exact
solution for the range of the horizontal wavenumber ýý of interest. Therefore, it is revealed that
the optimal tuning factors of a-=-==l and p-0.55 do not improve to the best degree the accuracy of
the TLM1 concerned with the semi-infinite media of interest. However, it should be realized that
the degree of the numerical dispersion errors for all the three combinations is quite small. The
reason is that the Rayleigh surface wave propagates only in the horizontal direction in which the
TLM does not discretize.

2.3.3 Summary

In the first part of this section 2.3, the general solution and the frequency-wavenumber spectrum
are obtained for the discrete SV-P wave equation modeled with the TLM1. The qualitative
investigation of the spectrum has provided the convention for the wavelength along the
discretization direction A2 and the discretization size h, i.e. A._2h, which is exactly the same as SH
wave modeled with the TLM1. In addition, it is observed that for the high vertical wavenumbers,
e.g. 5•=0.757r, the TLM1 for SV-P wave possibly produce less accurate results than the TLM1 for
SH wave. Then, two guided wave problems are solved formally and perfectly by means of the
obtained general solutions.

In the second part, extensive characterization of the SV-P body waves is performed for five
Poisson's ratios of v-0.0, 0.1, 0.2, 0.3, and 0.4. It is confirmed that for the TLM1 model, the
range of 0<h/n<1/2 is only useful as determining the optimal tuning factors, and furthermore
provides a lower bound for the number of thin layers per wavelength Na(=Ajh) such that Na>4.

Then, the calculation of the error functions Es(c;fl) and Ep(afl) has determined the optimal tuning
factors as a=--8=1 and p-0.55 . By analyzing two free-vibration problems of finite domain, it is
verified that the optimal tuning factors indeed improve the accuracy of the eigenvalues in the
context of the TLM. In addition, it is found that for SV-P wave problems, only the one-third of
the set of all computed modes are accurate with the application of the optimal tuning factors. In
the last problem, the Rayleigh surface wave is considered. Interestingly, it is observed that the

optimal tuning factors of a•f=l and p-=0.55 do not improve to the best degree the accuracy of the

TLM1. Instead, the tuning factors of a•3=-1 and p0O (the case of fully lumped mass matrix)
shows the best agreement with the exact solution concerned with the semi-infinite media of
interest.



2.4 Anti-plane (SH) waves with quadratic expansion TLM

In this section, we consider the propagation of SH waves modeled with the TLM that is based on
a quadratic expansion, or TLM2 for short. In the first part of this section, we obtain the general
solution and the frequency-wavenumber spectrum for the discrete SH wave equation modeled
with the TLM2. It is revealed that there are two independent branches in the TLM2 model such as
acoustical and optical branches. Thereafter, by means of a qualitative investigation of this
spectrum, we find a reference frame for judging the dimensionless wavenumbers in discrete
models. Then, we formulate and solve three guided wave problems in close form whose exact
analytical solutions are known in closed form for the continuum.

In the second part, we characterize the numerical dispersion as a function of vertical direction
wavenumber (ý) and direction of propagation (0) by estimating frequencies and phase velocities.
Through these characterizations, we obtain the optimal tuning factors that are valid only for a
certain range of vertical direction wavenumber (4,). Based on the range of z, we also propose a
lower bound for the number of TLM2 thin layers per wavelength. We then consider two
numerical examples of finite and semi-infinite domains. In these two examples, we compare the
TLM2 solution with the exact analytical solutions in order to confirm the validity of the optimal
tuning factors. As an additional result, we can also judge the extent to which the optimal tuning
factors improve the accuracy of the eigenvalues computed with the TLM2.

2.4.1 Discrete solutions for anti-plane problems

Consider a single TLM2 thin layer subjected to SH wave motion as depicted in figure 2.4.1. It is
noted that there exists an internal node indicated by vl that does not exist in the TLM1. The
discrete governing equation for this single layer is obtained in the following.

Pt = KU, (2.4.1)
where

P1 = p, p', p- 1,} T

U, = { v p 't Pt-, } r
K =Ak k + G - m2M
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In the above expressions, p', and v', are the traction and displacement at the internal node. The
other notations and subscripts have the same meanings as those in section 2.2. Also, four
auxiliary parameters and three dimensionless variables are introduced as follows.

a = -f 2 +10+ plQ2

a'= 2fl2 - 80 -2/i2

b = (5- f_)2 + 70- (5 - )g22

b'= 2(5 - fl)x2 + 80- 2(5 -,u)22

coh
, = kxh, J, = kh , and 2=h

Cs

Assembling identical governing equations such as equation (2.4.1) with recourse to the above
auxiliary parameters, we obtain the discrete SH wave equation modeled with the TLM2 as

P G G-- a vt+, +  a'v't+1 + 2bv, + a'v' + av-1 (
P{ = P', 30h{' a ' v, + 2b'v', + a'v, (2.4.4a)

In the case of semi-infinite media, we need to apply the boundary condition at the top surface 1=0
as

Po = (bv o + a'v'o + av.1 } (2.4.4b)
30h

To obtain the general solution to the discrete SH wave equation in equation (2.4.4a), we set Pt=0
and assume the displacement field of vl and v', in the form.

v, = AZ 21 and v', = A'Z2 1-1 (2.4.5ab)
Substituting equations (2.4.5a and b) into equation (2.4.4a) and dividing the first and second rows
by Z2' and Z21', respectively, we obtain the following equation.

a(Z2 +Z-2) + 2b a'(Z + Z-')A (2.4.6a)
a'(Z + Z - ' )  2b' A' 0

or

4aY 2 -2(a-b) 2a'Y (2.4.6b)I )(2.4.6b)
S 2a'Y 2b' JLA'J 0f0

or

[E10-4fY2  46Y 1 120 + 40Y2 -160Y
46Y 4(5 -,) -160Y 160{10- 4,uY 2  4yuY 2] A= (2.4.6c)

-4uY 4(5 -pu) A' l
where Y = (Z + Z-') . This homogeneous set of equations has a non-trivial solution only if its

determinant of the coefficient matrix vanishes. From this condition, the two eigenvalues and
eigenvectors are obtained of the form

Y =+ (a-b)b' (2.4.7a)acoopt -(2ab '- a 2)

{A}, ={t a, } { 1= } (2.4.7b)
A aco,opt -b' Yaco,opt aco'opt



As shown in equations (2.4.7a and b), there exist two solutions, i.e. Yaco and Yopt(= -Yaco). The one
is the acoustical branch, i.e. sgn Caco = 1, and the other is the optical branch, i.e. sgn copt = -1. As
already discussed in the case of the TLM1, each solution has two components Z1,2 that propagate
in opposite directions, and are given by

Zaco 1,2 = Yco ± 4Ya - (2.4.8a)

Zopt 1,2 - opt - pt (2.4.8b)

or

Zaco = clS z,aco isin ,a (2.4.9a)
2 2

Zopt, 2 =e = cos +±isin - (2.4.9b)
2optl2 2

Therefore, the general solution is expressed in the form.
V = AacoZ o + BacoZ- + AoptZ 2t + B optZ2  (2.4.10a)

ac pt opt otp

= o[oZ21-1 + coZ- 21+1 pt[Aop 21-1 t, -z21+1] (2.4.10b)
v aco acoZaco ]+Copt[ topt - opttopt ]

Also, it can be deduced from equation (2.4.7a) that these acoustical and optical solutions have a
relationship of Zopt=-1/Zaco, i.e. complex conjugate relationship. Then, equations (2.4.10a and b)
can be expressed in terms of only the acoustical component as follows.

v = (Aaco + Bopt)Z 2 + (Bao + Aopt)Z-21 (2.4. 11 a)
v' = aco[(Aaco + Bopt)Z21-1 + (Baco + Aopt)Z-21+1] (2.4.11b)

Finally, we may obtain the general solution of the form

v, = AZ2 + BZ-21 (2.4.12a)
v' r ao[Z21-1 + BZ-21+1 (2.4.12b)V' Caco[A aco + BZaco'] (2.4.12b)

or equivalently
v1 = A cos Z,aco + iB sin Iz,aco (2.4.13a)

(2l - 1) (21-1)
v't = c[A cos z,aco + iB sin ,.aco] (2.4.13b)

2 2
in which A and B (or A and B) are the unknown constants to be determined from the boundary
conditions of interest. Substitution of equations (2.4.13a and b) into equation (2.4.4) produces
after tedious manipulations the frequency-wavenumber spectrum in more explicit form

10-4flY2o 4flYaco ) x2 120+40Y20  -160Yao
4flYao 4(5)- f) -160Yao 160

(10- 4/tY2o 4,Yo 2S4Ya o 4(5- 12 =0 (2.4.14)

in which
1 _,a

Yaco =-(Zaco. + Zo,2) CO= Saco (2.4.15a)
2 2

2nhcosO 2nhcot0
ýx = kxh = khcosO= = (2.4.15b)

2a'hsin 0 2'h
S= k,h= khsin=0 2 (2.4.15c)

AZ



with k and A being the wavenumber and wavelength along the wave propagation direction 9. It
can be shown that for very low wavenumbers (or very long wavelengths) in the z direction, the
spectrum equation (2.4.14) approaches the exact one for a continuous medium, i.e.

w=Csk= Cskx + or equivalently 2 = +2 . Having found the relationship between

frequency and wavenumbers from equation (2.4.14), we can obtain the apparent phase velocities
as

V =)- phase velocity in the propagation direction (2.4.16a)
k

Vx x component of phase velocity (2.4.16b)

VZ = : z component of phase velocity (2.4.16c)

Figures 2.4.2 and 2.4.3 present a qualitative comparison of the frequency-wavenumber spectrum
obtained with the TLM2 against the exact analytical spectrum. Note in each figure that a dashed
and dot-dashed line represents the acoustical and optical branches, respectively, and a solid line
represents the exact analytical spectrum. The first figure shows the numerical dispersion for a
fixed horizontal wavenumber (4=0.5nt and =-n) as a function of vertical wavenumber ý, while
the second shows the numerical dispersion for a fixed vertical wavenumber (4-=0.57t and 4•=1.5Cn)
as a function of horizontal wavenumber c. In either case, the TLM2 model is computed for fully
consistent matrices, that is, the tuning factors used are ,=-t=1.0.

In figure 2.4.2, observe first that the acoustical and optical branches cross each other at ~t1=l
with respect to which there is symmetry between the two branches. This observation can be
deduced from equation (2.4.7a) as well. In addition, at the cross point, i.e. 4V/=l, exists a short
complex branch that corresponds to the so-called stopping band region in 92 where no harmonic
wave motion (or no propagation mode) exists at all in the TLM2 model. Along the acoustical
branches, it is shown that the numerical dispersion occurs mostly in the high vertical wavenumber
region as seen in the TLM1 in sections 2.2 and 2.3. Also, observed are some ambiguous
phenomena such as the regions of negative group velocity and the periodicity as the case of the

TLM1. In order to avoid this ambiguity, we adopt the convention for the wavenumber ý, or
equivalently wavelength Az in the TLM2

0 < Rez (= Re kzh = Re h) < 2.0xt or equivalently 0 < Re < 2.0 (2.4.17)

This convention states that the wavelength along the discretization direction, Az, must be longer
than the discretization size h. The same convention will be valid for the SV-P waves modeled
with the TLM2.

It is recognized in figure 2.4.3 that the acoustical and optical branches exist together, but they do
not cross each other as the case of figure 2.4.2. Then, notice in the left plot that the acoustical
branch is remarkably identical to the exact analytical branch. It is also observed that high
horizontal wavenumbers produce smaller numerical dispersion than the low horizontal
wavenumbers for a given vertical wavenumber. The reason is that the high horizontal
wavenumbers involve waves that propagate nearly horizontally as already explained in sections
2.2 and 2.3.



We next determine the spectrum equations for three canonical problems: (1) a discrete
homogeneous stratum, (2) a discrete homogenous plate, and (3) Love waves in a layer underlain
by a half space by means of the TLM2 model. In section 2.4.2, we numerically compare the
eigenvalues obtained from the discrete and exact analytical solutions for only the second and third
problems and seek to improve the discrete solutions with the aid of the optimal tuning factors B
and p.

(1) Homogeneous stratum
Consider a discrete homogeneous stratum of total depth H that consists of N TLM2 thin layers.
The associated boundary conditions such as zero stress at the top surface (1=0) and zero
displacement at the bottom (1=-N) are expressed as

Po = 0 at l=0 (2.4.18a)

v_N =0 at l=N (2.4.18b)

We substitute equations (2.4.12) into equations (2.4.18) to obtain the following condition in
matrix form.

b+a'c. cos z+acos z a'cacosin -- ++asin i (2.4.19)
o 2 2 =(2.4.19)

cos NZ sin N- 0

Solving the associated eigenvalue problem, we obtain the spectrum equation in closed form as

{10-4PYYf2  4PYj 120+40Y2  -160Y1

4flYj 4(5 - )12 -160Y 160 160

{10- 41UY1 Yj g}2 = 0 (2.4.20a)
4 Yj 4(5 -,u)

in which

H (j-.?)7r
Y, = cos - h=-, 2- N j=1,2,...,2N

2 N N
For comparison, we present the exact analytical solution to the continuous homogeneous stratum
in dimensionless form.

S2 =2 ) 1 j= 0,1,2,-.. (2.4.20b)

Notice that 2N distinct eigenvalues (or modes) are available in the TLM2 model of interest, while
N distinct eigenvalues are achieved from the TLM1 model in section 2.2.2. It is also noted that for
very small ýV the two equations (2.4.20a and b) become identical regardless of the values of
tuning factors P and p in use. Therefore, it is concluded that the use of sufficiently large N can
produce the exact values for first few eigenvalues of interest.

(2) Homogeneous plate
Consider next a discrete homogenous plate of thickness H, composed of N TLM2 thin layers. The
two boundary conditions of traction-free surfaces are given as

Po = 0 at l=0 (2.4.21a)

P-N = 0 at 1=-N (2.4.21b)



We substitute equations (2.4.12) into equations (2.4.21) and obtain the next condition in matrix
form.

b+a'c cos + a cos
2

acos(N - 1)jz + a'c.. cos(2N -1) l + bcos Njz

aIca:osin L +asiný z }o2i = (2.4.22)

asin(N-1)ýz +a'c.osin(2N -1) +bsinN -i
2

The associated eigenvalue problem yields the spectrum equation in closed form as

10-4,Yfj2 4/lYj 3' + 120+40Y2 -160Yj
4fY, 4(5- B) -160Yj 160

01°- 4uYj2 4 } = Q2 = 0 (2.4.23a)

in which

Y= Cos HN = , j=0,1,...,2N
2 N N

It is noticed that only 2N+1 distinct eigenvalues (or modes) are obtained from the TLM2 model
of interest. For comparison, we introduce the exact analytical solution to the continuous
homogeneous plate in dimensionless form

S= = - + j 2j= h0,1,2,--- (2.4.23b)
Cs x

In section 2.4.2, we numerically calculate the 2N+1 distinct eigenvalues of this discrete plate with
specified values for Cs, H, and N and compare them with the exact analytical solution by means
of the dispersion curves. In addition, we consider four combinations of tuning factors and prove
the best improvement in eigenvalues with the help of the optimal tuning factors.

(3) Love waves
We consider the guided waves in a discrete homogenous layer over a discrete elastic half space,
i.e. so-called Love wave problem in the continuum. The upper layer has total thickness H and is
composed of N TLM2 thin layers. The wave speed of the upper layer is slower than that of the
half-space. The discrete half space is composed of an infinite number of TLM2 thin layers, and
the interface coincides with the x-axis. This example is more complicated than the two previous
ones, because two displacement fields are now involved, namely vL for the upper layer and vH for
the half space. The relevant expressions for the general solutions are now

vL1 = AL cos 1 + iB, sin 1ý, (2.4.24a)
-(21- 1) (2/-1)

v'I = cocL[AL cos 2 4 + iB, sin 2 J] (2.4.24b)
2 2

vH = A Z21 (2.4.24c)

V'1n = co A 7Z2 -' (2.4.24d)
VH I 

=
CacoH" 1H '



The subscripts L and H identify the upper layer and the half space, respectively. Equations
(2.4.24cd) contain only one term, because VH,l and v'H,t must satisfy the radiation condition, i.e.

JZHI > 1 for 1 < 0. The boundary conditions are a stress-free condition at the top surface and two
continuity conditions for the displacement and stress at the interface given by

1) stress-free condition at z = H, (1 = N) : p,, =0 (2.4.25a)

2) displacement continuity at z = 0, (1 = 0) : vL 0 - v 0 = 0 (2.4.25b)

3) stress continuity at z = 0, (1 = 0) : PLO + PH 0 = 0 (2.4.25c)

We substitute equations (2.4.24) into the above boundary conditions and obtain the next condition
in matrix form.

C,11 C12 C13  AL 0
C21 C22 C23 iBL = 0 (2.4.25d)

C3, C32 C33 JL A 0f

where

Cl = b cosN, + a'L Caco cos(2N - 1)ý+ a, cos(N - 1)Dz
2

C12= bL sinN , + a'L CaoL sin(2N - 1)- + aL sin(N -1)(z2

C31 = aL COS + ac CcoL c Lcos +bL
2

C32 = aL sin + a'L Caco sin

C 33 = K[aHZH + a'H, acoHZH1 +b

C21 = -C 23 = 1

C13 = C22 = 0

GH hL
GL hH

Solving a system of equation (2.4.25d) for nontrivial solutions for AL,, BL, and AH, we obtain

the Love wave modes for the discrete system. The eigenvalues in this problem cannot, however,
be obtained in closed form, so a numerical search technique is required to find out the
propagation modes.

In section 2.4.2, we perform numerical analysis to calculate the 2N eigenvalues (or branches) of
this discrete layered half-space with specified values for GH, GL, hL, H, and N and compare them
with the associated exact solution by means of the dispersion curves. Also, we consider three
combinations of tuning factors and verify the best improvement in eigenvalues with the help of
the optimal tuning factors to be determined in section 2.4.2.

2.4.2 Numerical dispersion and tuning factors

In this section, we characterize the numerical dispersion of SH waves modeled with the TLM2 by
means of the canonical problems formulated in section 2.4.1. The problems are (1) body waves
propagating vertically, (2) body waves propagating at an angle to the horizontal axis, (3) a
homogeneous plate, and (4) Love waves in a layer underlain by a half space. From the first two



examples, we determine the optimal tuning factors of 8 and au and propose a lower bound for the
number of thin layers per wavelength NA. Thereafter, we apply the optimal tuning factors to the
last two problems to verify that the optimal tuning factors improve best the propagation modes
computed from the TLM2.

(1) Body waves propagating vertically: tuning factor p
Here, we again consider a particular SH wave that propagates only in the vertical direction. So, it
follows that there is no variation in the horizontal direction, i.e. '-O. Setting 4-=O in equation
(2.4.14) and formally solving the associated eigenvalue problem, we obtain the spectrum equation
for Q.

[5 -/P4 3- 2sin2 •JZ) 4 - 2 60- 2(5 +3)sin2  2+ 480sin2 • =0 (2.4.26a)

or simply
Ag24 -2B2 + C = 0 (2.4.26b)

Notice that equation (2.4.26a or b) contains only one tuning factor, namely p. Then, the apparent
phase velocity Vz is then calculated as follows.

V (2.4.27)

To explore the numerical dispersion characteristics of this wave, the apparent phase velocity Vz in
equation (2.4.27) is computed for four different values of p/0, 1/3, 2/3, and 1. Figure 2.4.4
displays the ratio of Vz to Cz(=Cs) as a function of wavenumber z and the tuning factor p. Note
that Cz is the true phase velocity of the exact analytical solution. It is seen that there is a
discontinuity at 4z=.l0t where the stopping band exists. As a result, significant numerical
dispersion can occur around ý=1.0nt. It is also anticipated that an optimal value for p is about 1/3
and will be effective only for the range of 05z•(4/5)7r. In other words, the optimal tuning factor
p will not improve the accuracy of SH waves that are involved with the range of 4_(4/5)n.
Remember that some similar observation has been discussed in section 2.2. In addition, this
condition of 0_:5(4/5)nt gives a lower bound for the number of TLM2 thin layers per wavelength
Na(=A,/h) such that NA>5/2.

To estimate the error caused by the numerical dispersion in the present example, we define an
error function E as

E= 5 ) dE=j 45VZ (~u) -1 d z (2.4.28)

which estimates the integrated squared error for 0:5:5(4/5)n. Figure 2.4.5 shows the error
function E versus the tuning factor p. As can be seen, E is zero at p =0.33 (or 1/3), while it is
greater than zero for all other values of p. Hence, it is concluded that the optimal tuning factor is
p-=0.33.

(2) Body waves propagating at an angle to the horizontal axis: tuning factor /
Next, we consider a more general SH wave that propagates at an arbitrary angle with respect to
positive horizontal axis, i.e. 4•0. Thus, it is now necessary to consider both the tuning factors 8
and p, and evaluate their effect on the numerical dispersion as functions of both the vertical
wavenumber 4 and the propagation angle 0. For this purpose, we calculate the ratio of phase



velocities VIC and the associated error function E in equation (2.4.28). The results are shown in
figures 2.4.6 and 2.4.7, respectively.

Figure 2.4.6 shows the variation of V/C with respect to the vertical wavenumber S for the
propagation angles 0 of 15, 30, 45, 60, 75, and 900. In each case, this ratio is evaluated for -=l1,
and p=0, 0.33 and 1.0 (i.e. Ac+ML, Ac+MT and Ac+Mc respectively). It is observed that the
results obtained from Ac+MT are much more accurate than those obtained from Ac+ML and
Ac+Mc, except the case of angle 0=150. In addition it should be emphasized that this observation
is true only for the range of 0<5•<(4/5)n. Therefore, it is expected that an optimal value for p
indeed exists for any arbitrary angle of propagation 0, and that it is in all probability to be 0.33.

To find the optimal values for both / and p, we again utilize equation (2.4.28) with replacement
of Vz by V and Cz by C. Here, C is the true phase velocity of waves propagating at an angle 0 in
the continuum. In addition, the error function E is a function of not only Pu, but also 8, i.e.

We(f,p) for a given propagation angle 0. Figure 2.4.7 shows the variation of this error function
for various propagation angles in terms of a standard surface plot. Notice that the degree of error
of the TLM2 of interest is relatively very small in comparison with the degree of error of the
TLM1 in section 2.2. It is now clear that the use of #=p=0.33 is the best choice for both of the
tuning factors, and that these factors are independent of the propagation angle 0. The identical
values for / and y is understood again from the fact that the two matrices A and M are
proportional to each other as the case of the TLM1 in section 2.2.

(3) Homogeneous plate
We now consider the free vibration of a homogeneous plate of thickness H=1.0 and shear
velocity Cs=1.0. For a discrete model, the homogeneous plate is discretized into 5 TLM2 thin
layers, i.e. N=5, and so only 1 (=2N+1) distinct eigenvalues (or modes) exist in the present
discrete model. Because of simplicity of this problem, the closed form solution is available as
shown in equation (2.4.23a). Through this example, we assess the effect of the tuning factors /
and pu on eigenvalue problems for finite domain systems. For this purpose, we consider the
following four combinations of the tuning factors: (i) /3=1.00 and p=l.00 (Ac+Mc); (ii) -l=1.00
and pu=0.00 (Ac+ML); (iii) /=1.00 and p=0.33 (Ac+MT); (iv) f=-p-=0.33 (AT+MT).

Figure 2.4.8 compares the frequency-wavenumber dispersion of the discrete solutions (dashed
lines) with the exact analytical solutions (solid lines). The discrete solutions are computed for the
above four combinations of tuning factors. It is noted that there are shown only 11 branches in
each plot, although the infinite number of modes (or branches) exists in the exact analytical
solution as shown in equation (2.4.23b). As is apparent, the use of the optimal tuning factors of
fp-==0.33 presents the best agreement with the exact solutions. It is also noted that the use of
/3=1.00 and p=0.33 also gives good results for small horizontal wavenumbers, i.e. fAt<1/2, but
not for high horizontal wavenumbers. Therefore, we conclude that the tuning factors fl==-0.33
are indeed the optimal choice for anti-plane problems modeled with the TLM2.

It is also observed from figure 2.4.8 that only the 5 modes of the 11 modes in the discrete solution
are accurate despite the application of optimal tuning factors. The reason is related to the range of
vertical wavenumber 4 over which the numerical error E(fl,u) in equation (2.4.28) is estimated to
determine the optimal tuning factors. Remember that the optimal tuning factors are determined
only for the significant range of vertical wavenumber, i.e. 0<~/t<4/5. In fact, the modal indices j
of the 5 modes are 0, 1, 2, 3, and 4, respectively, which can be easily verified by accounting the



index j or , in equation (2.4.23a). Finally, it is concluded that with the application of optimal
tuning factors only the first two-fifth of the set of all computed modes (or equivalently the modes
with 0<j/ft<4/5) is accurate as far as the dispersion relation is concerned.

(4) Love waves
In this last example, we consider a homogeneous layer underlain by a homogeneous half-space,
i.e. the so-called Love wave problem. The thickness and shear velocity of the layer is H=1.0 and
CL = 1.0, respectively. The shear velocity of the half space is CH=2 .0. The mass density p for both
is 1.0. It follows that the shear moduli for the layer and half-space are GL(=pCL2)=1.0 and
GH(=pCH2)=4.0, respectively. For a discrete model, the layer is composed of 10 TLM2 thin layers
(N=20), so that the thickness hL(=H/N) of each thin layer is 0.1(=1/10) and the total number of
degrees of freedom (or interfaces) is 21. Taking into consideration the wave-velocity contrast
between the two materials, the thickness of thin layers for the half space (hH) is set to be 0.2. In
the discrete model of interest, the first twenty propagation modes are the only valid modes. So,
we compare these twenty modes with the exact analytical solution to assess the effect of the
tuning factors fl and 1u on eigenvalue problems for layered semi-infinite systems. For this
purpose, we consider the following three combinations of tuning factors: (i) /,-1.00 and P-1.00
(Ac+Mc); (ii) /=-1.00 and =-0.00 (Ac+ML); (iii) f=-p-=0.33 (AT+MT).

Figure 2.4.9 compares the frequency-wavenumber dispersion of the discrete solutions (dashed
lines) with the exact analytical solutions (solid lines) for the three combinations of tuning factors.
First of all, it is observed that the optimal tuning factors of f=-p-=0.33 improves to the great extent
the accuracy of eigenvalues. Secondly, only the first two-fifth (or 8 modes in this example) of the
set of 20 computed modes are shown to be quite accurate. Therefore, it is proved that the tuning
factors f=-p-=0.33 are indeed the optimal choice for SH wave problems of semi-infinite domain as
well as finite domain. In addition, it is verified that as long as using the optimal tuning factors, we
can calculate accurately the first two-fifth of the set of modes obtained from the TLM2 not only
for a homogeneous layer, but also for two-layered systems (or even multilayered systems).

2.4.3 Summary

In this section, the general solution and the frequency-wavenumber spectrum are obtained for the
discrete SH wave formulated by means of the TLM2. The qualitative investigation of the
spectrum has discovered that the wavelengths along the discretization direction (A)) must be no

shorter than the discretization size (h), i.e. ,Ah. In addition, it is observed that the stopping band

region exists at 4= t at which significant numerical dispersion can take place. Then, three wave
propagation problems in finite and semi-infinite discrete media have been solved formally and
successfully. The comprehensive characterization of the numerical dispersion in the discrete

homogenous full-space has yielded the optimal tuning factors of l-p-t=0.33 that are valid only for

0<•ht<4/5. Also, it is found that the number of TLM2 thin layers per wavelength NA (=Ajh) must

be no less than 5/2, i.e. NA:5/ 2 for the range of J, in consideration. From the free vibration
problems of a homogeneous plate and a layer on a homogeneous half-space, it is verified that the
use of optimal tuning factors really provides the best agreement with the exact analytical
solutions in terms of eigenvalues. More importantly, it is observed that the first two-fifth
computed modes are very close to those of the exact analytical solution, provided that the optimal
tuning factors are applied.



2.5. In-Plane (SV-P) waves with quadratic expansion TLM

In this section, we consider the SV-P wave propagation modeled with the TLM2. In the first part
of this section 2.5, we obtain the general solution and the frequency-wavenumber spectrum for
the SV-P wave equation modeled with the TLM2. It is revealed that there are four independent
branches such as S-, P-acoustical branches, and S-, P-optical branches. Through a qualitative
investigation of the spectrum, we confirm the convention for the wavelength along the
discretization direction and the discretization size, i.e. A2>_h. Then, we solve formally two guided
wave problems by means of the obtained general solutions. The two problems are a discrete
homogeneous plate with mixed boundary conditions and the Rayleigh surface waves on a discrete
homogeneous half-space.

In the second part, we first extensively characterize the numerical dispersion of body waves for
five different Poisson's ratios as a function of vertical direction wavenumber (z) and the
propagation angle (0). As a result, we confirm that the same range of z as the case of SH wave is
only useful as determining the optimal tuning factors. Then, with the calculation of the error
functions, we determine the optimal tuning factors. By analyzing two free-vibration problems of
finite domain, we verify that the optimal tuning factors indeed improve the accuracy of the
eigenvalues in the context of the TLM. In addition, we find out how many modes are accurate
among a set of all computed modes with the application of the optimal tuning factors. In the last
problem, we consider the problem of Rayleigh surface wave to show the effect of the tuning
factors on the accuracy of the TLM 1 analysis for (semi-) infinite media.

2.5.1 Discrete solutions for in-plane problems

Consider a single TLM2 thin layer subjected to SV-P wave motion as shown in figure 2.5.1. It is
noticed that since SV-P wave motion is involved, the two degrees of freedom u and w are
involved at each external and internal node. The governing equation is then expressed as

Pt = Ku, (2.5.1)
where

P, ={' { al r," ',"t a 'r- a_-}T (2.5.2a)

u = u W1 u't w't u1_1 w1_1}T (2.5.2b)

K = Ak, +Bk x +G-m 2 M (2.5.2c)

In the above expressions, the matrices A, B, G, and K are defined in the appendix to this chapter.
Also, Tr', 't,, u't, and w't are the traction and displacement components at the internal node.

For the sake of future convenience, we also introduce the five auxiliary matrices and four
dimensionless parameters as follows

a = a , a12

a21 a22{-ar }x { 5(r -1)} +{10 Q2 }{

1 -l 5-5(r1 -1)0 r --p



a'= a'tl a 12

{a r21 aI 22j

= 2, 20(r - 1)

-20(r -1) {-80

b =b, bl2
b=2 b22

b'= b'l b'12
b'21 b'22

2(5 - a)r 2 J80 2(5 - p)

-1 2(5- /) 1* 80r 1
bo ={bI1 b12

b2,1 b22

=(5 - a)r

x = kh,

(5 =f ) 15

ýz = kth,

15(r -3) 70r
(r - 3) 1 70r

(5 -{)1

coh A+2G C2 2-2v
G ,and r -

Cs G C2 1- 2V

To describe the wave motion in a homogenous full space consisting of the identical TLM2 thin
layers, we write the recursive equation of motion at the th interface as

Pp G aTru+, + a'u'/+, + 2but + a'u', + au(2.5.3a)

P t 30h• a 'ut + 2b'u'/ + a'u_ ,  (2.5.3a)

In the particular case of a homogeneous half-space, the top surface (i.e. z=0), which is associated
with boundary conditions, obeys instead the equation

G
po = -Gh{boul + a'u' t + aut_}1 (2.5.3b)

30h
To derive the general solution, we begin with assuming a trial solution in the form.

ut = Z21
4 and u', = Z 21-14' (2.5.4ab)

in which 4= {bx Oz}T and 0'= {1'x 'z}T are, respectively, the eigenvectors for the external

and internal nodes. Substituting equations (2.5.4a and b) into equation (2.5.3a) and dividing the
first two rows and last two rows by Z2' and Z2"1', respectively, we obtain the following equation
for free vibration problem, i.e. P, = 0.

arTZ2 + aZ-2 +2b  a' Z+a'Z-+ } {} (2.5.5a)
a' Z +a'Z-' 2b' ' 0

or

-80r}-{ 2p}

2(5 - Pt)}



ai,(4Y2 -2)+ 2b11

4aYl2Y

2a',1 
Y

2a ' 2
Y

-4a1 2YY

a22 (4Y2 - 2) + 2b22

-2a',12 f

2a' 22 Y

2a',, Y -2a'l2,,Y
2a'l 2  2a' 22 

Y  = 0
2b' 2 o x

-2b'22 Oz

[X' +B + -1-1M2] =O

where Y=-(Z+Z-'), Y=.(Z-Z-'),Y 2 =Y 2 -1, ={ T

(2.5.5c)

s'T T and the matrices A, B,

G, and M are listed in the appendix to this chapter. For simplicity in the following derivation,
we can express equation (2.5.5a) simply as follows.{11 C12 =1 : 0

c21 C2222
(2.5.5d)

A nontrivial solution exists only if the determinant of the coefficient matrix in equation (2.5.5d)
must vanish. This condition can be given by the following equations.

S= -C-C 22C14 (2.5.6a)

[Cw, - C2- = 0 (2.5.6b)

where

S1 aIb22Y
C22C21 bb'2 a*b

2222 12 11

PA albl,

-a 2b22Y
a22blY

C -c 1 al (4Y2 - 2)+ 2b11
I- C12C22C21 =

2 /b'Y2 2 '2
-2 a, , 1 , 2 /b22

al2(a, b + a2 / b22)

al2

a22(4Y2 - 2)+ 2bP22
2 a2alb l~a2b'2y

y2 2 /b 1 2
With additional manipulations of equation (2.5.6b), we obtain the spectrum equation for Y as

a•0 2 - 2a + a2 = 0 (2.5.7)
where

f= y 2

ao = 16(a2 + a11a22)

1
+ , (64a22a;1 +128aa2 - 8a 22a,)
b,,

+ -- (64ala2 2 - 8a la2 +128aa 2 2)
b22

+ ,1, (4a a2 + 128aa22a,2 2 + 1024a'2)
bib22

(2.5.5b)



a, = 8(a 2 + a 2) - 4(a22b + a,,b22)22 11 12 2224

+ (32al2a, + 96a1 1a2 - 2a 22aI -32a12 + 2b22a')bI

1
+ (64az12a2a122 + 1024a142)

a2 = 4 161-+(a 22 -b22)1 162 + (a,,ll -bl)

Then, we obtain the two f 's that correspond to P and S wave components, respectively.

=I 0(a,+ c - ), (2.5.8a)

Y = ± , (2.5.8b)
where i= P or S for P and S wave components, respectively, and j=aco or opt for acoustical and
optical branches, respectively. It should be noticed that equation (2.5.8b) implies the following
relationship.

Yi opt = -Y aco (2.5.8c)

or equivalently

Zi opt =-1/Ziaco (2.5.8d)

Additionally, the directions of particle motion for each component at both the external and
internal nodes can be written in terms of the eigenvectors.

e. = tan-' L.]-  at the external node (2.5.9a)

E= tan-'-[ i at the internal node (2.5.9b)

We have the two Z's for each Y0, in equations (2.5.8b) as follows.

Zijk = 1 or Zijk 2 = COs k+ isin Ljk (2.5.10)
2 2

where k(=1,2) represents the direction of propagation, i.e. positive or negative in the z-direction
and the other indices i and j represent the same meaning as above. The corresponding
eigenvectors at the external and internal nodes are then given in the form.

= xijkl [4a12 -2a 2(a 1 1 lb;, + a22 b22 )]Yijk k (2.5.11a)
Jk - zijk (4al, -2a / bi)Yjk + 2a /b22 j' - 2(a, - b1l)

S ijk  22 _ 11 2  -a2b22 j -ia b' 5 xijk b)
k b b a'(2.5.11b)

.zijk I 12 1 1 22 1I ij zijk

Finally, the general solution is obtained in explicit form
21 +At21 21 21

uI = AoZPacoacoacoi co lPaoZ Pao2 + AoptZpoptl4poptl BoptZ opt2•Popt2
(25. 12a)

"C" CaoZsaol0 Sacol " DaoZsao2 4tSaco 2 + Co0tZptisoptll DoptZs+pt2[Sopt2



U1 = 7 21- I 
t' 721-1 , 21-11-1 ' B 21-1S= AcoZPacol'acol + BacoZPaco21 Paco2 + Aopt opt + opt 2Pop t2 (2.5.12b)

(2.5.12b)" 21- ' + D- 21 1 1 1 d ' 21- 1 2'
+ Caco SaClDaco aco 2aco2 

+  
Stl +Saoa opt pt + DoptZ opt2 opt2

With the help of equation (2.5.8d), this can be simplified to be of the form.
ut =AZ + BZ1 P22 + CZs 1  + DZS 2  (2.5.13a)

u, = A P-1, + BZ2 1 P2, + CZSZ'12I + DZj1212 (2.5.13b)

where we omit the index identifying the acoustical branches for the sake of simple expression.
We deduce the following relationships between the eigenvectors from equations (2.5.1 la and b).

{x= and 2 = x (2.5.14a)

,1=  and '2 = (2.5.14b)

Inserting equation (2.5.10) into equations (2.5.13a and b) and making use of equations (2.5.14a
and b), we obtain the following equivalent expression of the general solution for SV-P wave
problems modeled with the TLM2.

I~ cos, (21) Opx - +-i sin (21) Opx A -

U -isinp(21) pz + cos (21) pz
) f cs 2 (2.5.15a)

+ cos zs (21) sx -isins (2l)sx (2.5.a)
-i sinýs (21) sz J coss (21) sz

u cos°zp(2l-1) 'px - -isin •,(21-1) 'px

-isin ý(21 -1) pzJ cos ýzp(21-1) Opz

+ coszs(2/-1)'sx } - -isinzs(21-1) (2.5.15b)
-isin ýzS(21-1) SzC cos ýzs(21-1) Osz

Substitution of equation (2.5.10) into equation (2.5.5c) with replacement of (Y,Y) by (Y1j,Y1j)

yields the spectrum equation for wavenumber x and gŽ as follows

Iij: + Bi G ij - 2+i•2 = 0 (2.5.16)

where the subscripts i and j represent the replacement of (Y, Y) by (Yj, Y~j) . It can be shown that

for very small vertical wavenumbers (i.e. a very long wavelengths in the z direction), the
spectrum equation (2.5.16) approaches the analytical exact spectrum equations in dimensionless

form given by 2p, = xr(, + z) and Qs = x~

Having found the relationship between frequency and wavenumbers from equation (2.5.16), we
can obtain the apparent phase velocities as follows.

Vp = k : P wave phase velocity in the propagation direction (2.5.17a)
k

Vs = s : S wave phase velocity in the propagation direction (2.5.17b)
k

Vx = x" : P wave phase velocity in the x direction (2.5.17c)

SS wave phase velocity in the x direction 25 dVsx = )s : S wave phase velocity in the x direction (2.5.17d)Xk



VPz = (O' : P wave phase velocity in the z direction (2.5.17e)
kZ

VsZ =s- : S wave phase velocity in the z direction (2.5.17f)

Figures 2.5.2 and 2.5.3 present a qualitative comparison of the frequency-wavenumber spectrum
obtained from equation (2.5.16) against the exact analytical spectrum for a particular case of
Poisson's ratio w0.30. Note in each figure that the dashed and dot-dashed lines represent the S-
and P-acoustical branches and the S- and P-optical branches, respectively, and a solid line
represents the exact analytical spectrum. The first figure shows the numerical dispersion for a
fixed horizontal wavenumber (4=0.57t and =7rn) as a function of vertical wavenumber 4, while
the second shows the numerical dispersion for a fixed vertical wavenumber (z=0.5nt and z= 1.5nt)
as a function of horizontal wavenumber 4. In either case, the TLM2 model is computed for fully
consistent matrices, that is, the tuning factors used are o-=/3=u=l.0.

In figure 2.5.2, recognize first that each of the S- and P-acoustical branches (dashed lines)
intersects with both of the S- and P-optical branches (dot-dashed lines) at certain points. As a
result, there exist four cross points where four short complex branches exist. As discussed in
section 2.4, these complex branches correspond to the stopping band regions. Next, it is observed
along the S- and P-acoustical branches that the numerical dispersion error occurs mostly in the
high vertical wavenumber region. Also, some ambiguities are shown: such as the regions of
negative group velocity and the periodicity. These two observations are similar to those already
seen in section 2.4. Therefore, it behooves to adopt the same convention as the TLM2 for SH
wave in section 2.4 for the vertical wavenumber z (or the wavelength along the discretization
direction iA), which states that Az must be longer than the discretization thickness h.

It is recognized in figure 2.5.3 that the acoustical and optical branches coexist, and there is a
intersection between P-acoustical and S-optical branches, or S-acoustical and P-optical branches.
Then, notice in the left plot (4z=0.5nt) that the S- and P-acoustical branches are remarkably
identical to the exact analytical branches for the range of J, of interest. It is also observed that
high horizontal wavenumbers produce smaller numerical dispersion than the low horizontal
wavenumbers, which is seen more clearly in the right plot (z=1.51n) than in the left plot
(4=0.5t). The reason is that the high horizontal wavenumbers involve waves that propagate
nearly horizontally as already explained in previous sections 2.2-4.

We continue to derive formally the spectrum equations for two guided wave examples: (1) a
discrete homogeneous plate with mixed boundary conditions; and (2) Rayleigh surface waves on
a discrete homogeneous half-space. Concerning the first example, the solutions are obtained in
fully analytical form due to the simplicity of the problem. On the other hand, the solution for the
second example is obtained in an implicit form, which requires numerical search techniques. In
section 2.5.2, we compare the discrete solutions with the associated exact analytical solutions for
the two examples and seek to improve the discrete solutions with the help of obtained optimal
tuning factors a, /3, and p.

(1) Homogenous plate with mixed boundary conditions
Consider a discrete homogeneous plate of thickness H that is composed of N (even integer)
TLM2 thin-layers. The mixed boundary conditions of interest are that the vertical displacement
and the horizontal stress are both zero at the top (l=N/2) and bottom (l=-N/2) surfaces, namely



wt =0 (2.5.17a)

Pxt =0 (2.5.17b)

Under these boundary conditions, it is possible to uncouple the wave motion in the plate into the
symmetric and anti-symmetric modes, as discussed in section 2.3.

Consider first the symmetric mode, of which the displacement fields are of the form.

cos J, (21) x cos zs (21) Osx (2.5.18a)
uI = [_sinzP(2/) b• -jA + (2.5.18a)

S-isin (21) -isinzS (21) sz

co s
-z

' ( 2l - 1) px cosjs(21-1) (2.5.18b)1 -isin zp (21-1) qp'z -isin zs (21 -1) Os (2.5.18b)

Substitution of equations (2.5.18a and b) into equations (2.5.17a and b) yields

w. IC,, sin 2N•,z C,p sin 2NFZs ={ (2.5.19)

Px Cw sin 2N Cwp sin 2NJa j (cJIoJ

where N= N/2,

Cu = -ib 12[2bI + 2a,, cos 2a - 2a~ /b cos2 a- 2a, /b 2 sin2 a]

Cw = C,, + ial2 [a1 1,, /2+b, /2cos2a

+ [2a22 /b22(a,, +b,,)- a / l b; (1/2 + 2a22 lb22 )]COS2 a

+ [2ai, /b, (all,, - b,,) + a2 b2 (1/2 + 2a+ , /bj,)]sin2 a

C, = -ibl2 [2b1 + 2a , cos 2f - 2a, /b, cos2  - 2a /b22 sin2 f]

Cw, = Cu, + ial2 [a,, /2 + b 1 /2cos 2/

+[2a22/ b22(a,, + b,)- al /Ib 1 (1/2 + 2a'22 /b22 )]cos 2/

+ [2al, /bi, (a,, - b1 2) + a,2/b 22(1/2 + 2a, /b, )]sin2f3}

For nontrivial solutions to exist, the determinant of the coefficient matrix must vanish. Thus, the
associated spectrum equation is given by

f(x, 2) = sin 2Nfz sin 2NzS(CuaC, - Ca,,Cw) = 0 (2.5.20)

From equation (2.5.20), it is seen that the symmetric mode can be separated into two independent
modes such as P and S wave components. This perfect separation implies an important physics
that there is no mode conversion phenomenon between P and S waves when the waves in the
plate reflect at the surface. Finally, the two independent modes are given of the form.

J, = j' j 0,1,--,2N-1 (2.5.21a)2N
J = 17, j = 1,2,.-.,2N (2.5.21b)2,

Insert of equations (2.5.21a and b) into equation (2.5.16) can provide the spectrum equation in
terms of the frequency, the horizontal wavenumber, and the modal index j, which is not shown in
explicit form herein. For the purpose of comparison, the two independent modes of the exact
analytical solutions are introduced without any detail derivation in the form.

jzp j = 0,1,...,oo (2.5.21c)2N
zS= 21 ' j=1,2,---,o (2.5.21d)2N



Next, consider the anti-symmetric mode, whose displacement fields are given in the form.
"-i sin ýz, (21) 0,,x =. + -i sin zs (21) Osx,

cos ý (21) J, -j cosa (2l) Osz J
u -isin p ,(21-1) p - f-isin As (2l -1) O•1

u; - B + F (2.5.22b)cos Jp, (21-1) ,z cos J (21-1) (2.5.22b)

Substitution of equations (2.5.22a and b) into equations (2.5.17a and b) yields

fw Ca cos2N(,, CwP cos 2Nf, irA =
w. = C , cos2N~p C , = 0N (2.5.23)P,,; .C cos 2NJ, C,f cos 2N(zs iý 0

where N= N/2,

C,,a = b 2 [2b,, + 2a, cos 2a - 2a /b;, cos2 a - 2a, 1b2 sin2 a]

C. = C,• -al2 [all /2 +b,, /2cos2a
'2 Wa, (l/2 + 2a122/b' )]cos2 a+ [2a22/b22(al, + b,) - a2 1(1/2+ 2a 22)]cos2

+ [2a,; lb;',(a,, - b,,) + a2 b2 (1/2+ 2a, /lb;,)]sin2

Cu, = bl2[2b•1 + 2a1 , cos 2 -2a/b cos2 f - 2a /b2 sin 2 ]

Cwp = C., -a 2{ [a2 1/2+b,,/2cos 2

+[2a 2 1b22(a,, +b,,)-a , / (1/2+2a2 /b2 2 )]cos2

+ [2a,, /lb, (a,, - b1,)+ al2 /b;22(1/ 2 + 2a1, /b,,)]sin2 }

Then, the associated spectrum equation is given by
f((, 9) = cos 2NF, cos 2NF (Ca,,C, - C,,C,) = 0 (2.5.24)

Equation (2.5.24) again shows that the P and S wave components are independent of each other.
Therefore, we have two independent modes of the form.

2 ) j= 1, 2,- -,2N (2.5.25a)

(j- 1)'
-s 2= = j= 1,2,---,2N (2.5.25b)2N

Insert of equations (2.5.25a and b) into equation (2.5.16) can provide the spectrum equation in
terms of the frequency, the horizontal wavenumber, and the modal index j, which is not shown in
explicit form herein. For the purpose of comparison, the two independent modes of the exact
analytical solutions are introduced as follows.

ZP 2= ' j =1,2, ' ,oo (2.5.25c)2N

Sz 2N j= 1,2,.--,oo (2.5.25d)2N
In one example of section 2.5.2, the eigenvalues for the plate of interest are numerically
calculated for specified values of p, Cs, v, H, and N, and then compared with the exact analytical
solutions by means of the dispersion curves. In addition, three different combinations of tuning
factors are applied to the TLM2 solutions in order to verify the best improvement in eigenvalues
by virtue of the optimal values of tuning factors.



(2) Rayleigh surface waves on a half space
We next determine the spectrum equation for the Rayleigh surface wave on a discrete

homogeneous half-space (150) modeled with the TLM2. For this purpose, we need to remove two
terms in equations (2.5.13a and b) that violate the radiation condition at z = -00, leading to the
following displacement field.

u, = AZ , 1  CZ4 1t (2.5.26a)

U' = AZ71-'•', + CZ '7 , (2.5.26b)

where A and C are determined from the boundary conditions, and the Z's are properly chosen i.e.

IZ1>1.0 so that the radiation condition must be satisfied at z=-oo. In this problem, we have to apply
the stress-free boundary condition at the surface, which results in

G {bou t + a'u', + au-1} = 0  (2.5.27)
30h

Inserting equations (2.5.26a and b) into equation (2.5.27), we obtain the characteristic equation

{0 C1  C21 A (2.5.28)

in which
C11 = b1lPx +bl2 Pz + Zl '(a'p- + a'2 P) + Z2 (a11 Px + Pz

C12 = bl + bl2Sz ZS (a1 ~ al2) + Z 2 (a1 Sx aS

C21 =b21,Px + b22 Pz + Z' (a21 0'P + a22Pz ) + ZT2 (a 21 Px 22 Pz

C22 = b,21 s + b22 Sz + Z' (a21 sx + a2 ) + Z 2 (a21 sx + a220Sz)

The existence of a nontrivial solution to equation (2.5.28) requires the vanishing of the
determinant of the matrix in equation (2.5.28). Hence, the following must be satisfied.

C 11 C 2 = 0 (2.5.29)
C21 C22

Equation (2.5.29) provides the spectrum equation for the Rayleigh surface wave modeled with the
TLM2. While the Rayleigh surface wave is non-dispersive in the continuum, it is dispersive in the
TLM2 model, as will be seen in section 2.5.2. In section 2.5.2, three different combinations of
tuning factors are again applied in order to investigate the effect of the tuning factors on the
accuracy of eigenvalues obtained with the TLM2.

2.5.2 Numerical dispersion and tuning factors

In this section, we characterize the numerical dispersion of SV-P waves modeled with the TLM2
by means of the problems formulated in section 2.5.1 and an additional problem of the Mindlin
plate. To begin with, we explore the features of numerical dispersion of the body waves in a
discrete homogeneous full-space. Then, we try to determine the optimal values for tuning factors.
Thereafter, to verify the improvement in eigenvalues achieved by virtue of the optimal tuning
factors, we solve three free-vibration problems such as a homogeneous plate with mixed
boundary conditions, the Mindlin plate with stress-free boundary conditions, and the Rayleigh
surface wave on a homogeneous half-space.



(1) Body waves
We here characterize the numerical dispersion of body waves in a homogeneous full-space
modeled with the TLM2, being subjected to SV-P wave motion. For this purpose, we compute not
only the phase velocities Vs and Vp in equations (2.5.17a and b), but also the polarization at both
external and internal nodes, i.e. E and E' in equation (2.5.9a and b). Then, we compare them with
those obtained from the continuum. Since the present problem is in a plane-strain state, the
Poisson's ratio v possibly has its effect on the numerical dispersion phenomena in the TLM2
model. Therefore, five Poisson's ratios of v-0.0, 0.1, 0.2, 0.3, and 0.4 are considered. In addition,
to show the effect of tuning factors on the numerical dispersion, the TLM2 model is calculated
for three different mass matrices of fully lumped ML (4u=0), tuned MT (P=0.33), and fully
consistent Mc (-1=l) as setting cr=#-1.0 for the matrix A.

Figures 2.5.4a,b-8a,b display the numerical results for v-0.0, 0.1, 0.2, 0.3, and 0.4, respectively.
In each figure a, the two quantities of Vs/Cs and Vp/Cp are shown as a function of the vertical
wavenumber ( and the propagation angle 0. On the other hand, in each figure b, the other two
quantities of 0-E and 9--®' are shown as a function of ý, and 0. The angles considered are 0=15,
30, 45, 60, and 75. To show the effect of tuning factors, all the results for the fully lumped mass
matrix ML (C=0), the tuned mass matrix MT (p=0.55), and the fully consistent mass matrix Mc
(p-=1) are shown together in each plot. The dashed, solid, and dotted lines represent the results
obtained by means of ML, MT and Mc, respectively. Also, it is noted that several discontinuities
exist due to the stopping bands as seen in figure 2.5.2.

It is observed in all the figures 2.5.4a,b-8a,b that the TLM2 model for SV-P waves has the
numerical dispersion that is dependent on both of ý, and 0. Concerning the ratios of Vs/Cs and
Vp/Cp in each figure a, it is seen that the degree of the numerical dispersion is larger and larger as
the vertical wavenumber S becomes larger. It is also shown that the dependency of the numerical
dispersion on the Poisson's ratio exists, but is not significant. With regard to the polarization in
each figure b, the two facts are to be noticed: (1) the polarization is dependent of the mass tuning
factor u and (2) when setting a=f, the polarization is dependent of the Poisson's ratio. Remember
that the exact opposite observations are achieved in section 2.3 for the TLM1. In addition, it is
noticed that the results computed for the tuned mass matrix with u=0.33 (MT) are a little bit better
than those calculated for the fully lumped and consistent mass matrices, which is true particularly
for approximately 4hrt(=2h/A)_<4/5. By contrast, for ý/rr>4/5, the degree of the numerical
dispersion is significant regardless of the considered values of p. This observation is identical to
that for the TLM2 for SV-P wave in section 2.4. Therefore, the same range of ý, as the TLM2 for
SH wave, i.e. 0<•Jt<4/5, is applied to determine the optimal tuning factors for the TLM2 for SV-
P wave. Furthermore, the condition of •Jn<4/5 again provides a lower bound for the number of
thin layers per wavelength Na(=A/h) such that NA:5/2 .

(2) Tuning factors
We begin with determining an optimal value for the tuning factor u. As following the same
reasoning as the case of the TLM1 in section 2.3, we simply decide the optimal value for a as
0.33. Also, remember that figures 2.5.4a-8a already show that the use of p=0.33 provides the
smallest error among the three cases of t=0.00, 0.33, and 1.00. Therefore, in this section, we shall
seek optimal values for the remaining tuning factors a and f in conjunction with a fixed, optimal
value p-0.33 .



Next, we try to determine the optimal values for a and fl in the matrix A. For this goal, we start
with defining two error functions Es and Ep for S and P waves, respectively, as

Es s (a, l) = S 1 d (2.5.30a)

8p = ep (a, /3) = - 1 dz (2.5.30b)

which provide the integrated squared errors over the significant range of ý, 0<•/t(=2h/Az) <4/5.
Recognize that the error functions are now a function of not only a and 8 with a fixed value of

1u=0.33, but also the Poisson's ration, because the problem of interest is in a plane-strain state.

Figures 2.5.9a,b-13a,b show the variation of the error functions Es and Ep for the five different
Poisson's ratios such as v=0.0, 0.1, 0.2, 0.3, and 0.4, respectively, in terms of a standard surface
plot. In each figure, considered are six different propagation angles of 0=15, 30, 45, 60, 75, and
900. It is obvious that for each Poisson's ratio, there is no optimal combination of a and P that
can ideally minimize both the error functions Es and Ep regardless of the propagation angle 0.
Also, notice that the degree of error of the TLM2 of interest is relatively very small in comparison
with the degree of error of the TLM1 in section 2.3. This observation induces an important fact
that as long as the optimal value of pu=0.33 is applied, the numerical dispersion error in the TLM2
for SV-P wave is not only negligible but also almost invariant with respect to the two tuning
factors a and /. Finally, we simply choose a set of c= 1.0 and /3=1.0 as the optimal tuning factors,
which is nothing but the case of the conventional TLM, i.e. the fully consistent matrix A.

(3) Plate with mixed boundary conditions
Consider next the free-vibration of the homogeneous plate with mixed boundary conditions that is
formulated in section 2.5.1. By solving this problem, we estimate the effect of the tuning factors
on the accuracy of the eigenvalues computed from the TLM2. The geometry and material
properties of the plate are given such that the thickness H=1.0, the mass density p=1.0, the shear
velocity Cs=1.0, and the Poisson's ratio v=0.31. In addition, for a discrete model, the plate is
discretized into 6 TLM2 thin-layers, i.e. N=6, which produces 24 distinct eigenvalues (or modes)
for the problem of interest. We also consider three combinations of tuning factors such as (i)
a=-#=1, ,u=O (Ac+ML); (ii) a-==1, u=0.33 (Ac+MT); and (iii) o#=l1, u=1 (Ac+Mc). Then, we
compare each of three with the exact analytical solutions.

Figures 2.5.14a, b, and c present the frequency-wavenumber dispersion of the TLM2 solutions
(dashed lines) computed for (i) a•=l=, p-O (Ac+ML); (ii) a=•=1, u=0.33 (Ac+MT); and (iii)
a•#=1, ,u=1 (Ac+Mc), respectively, in comparison with the exact analytical solution (solid lines).
In each figure, the symmetric and anti-symmetric modes are plotted separately. It is observed that
the use of the optimal values of a=f-=l-, p=0.33 (Ac+MT) produces the best agreement with the
exact analytical solution. So, it is proved that the optimal tuning factors improve the accuracy of
the eigenvalues computed from the TLM2. In addition, it must be noticed that this improvement
is achieved only for 8 or 9 modes, not for all the 24 computed modes. Remember that some
similar results are observed for the SH wave problem in section 2.4 in which it is seen that only
the first two-fifth of the set of all computed modes are accurate with the help of the optimal
tuning factors. Similarly, it is concluded for this problem of SV-P wave that only the one-third
(=8/24) of the set of all computed modes are accurate with the application of the optimal tuning
factors.



(4) Mindlin plate
Here, we consider the Mindlin plate as an additional problem. The problem is the free-vibration
of the homogeneous plate with stress-free conditions at the both top and bottom surfaces whose
exact analytical solutions are derived and presented in chapter 4. By solving this problem, we
again estimate the effect of the tuning factors on the accuracy of the eigenvalues computed from
the TLM2. The geometry and material properties of the homogeneous plate are the exactly same
as those of the plate with mixed boundary conditions, i.e. p=Cs=H=1.0 and 1-0.31. For a discrete
model, the plate is discretized again into 6 TLM2 thin-layers, i.e. N=6, which produces 26 distinct
eigenvalues (or modes) for the problem of interest. We again consider three combinations of
tuning factors such as (i) a•=f1, p-=0 (Ac+ML); (ii) a=--=l, p-=0.33 (Ac+MT); and (iii) a=fi=l,
p-=1 (Ac+Mc). Then, we compare each of three with the exact analytical solutions.

Figures 2.5.15a, b, and c present the frequency-wavenumber dispersion of the TLM1 solutions
(dashed lines) computed for (i) -=f=-l, =0O (Ac+ML); (ii) a~-f=-1, Lp-0.33 (Ac+MT); and (iii)
a-fl=l, -t=l (Ac+Mc), respectively, in comparison with the exact analytical solution (solid lines).
In each figure, the symmetric and anti-symmetric modes are plotted separately for convenience in
comparison. It is confirmed that the use of the optimal values of o=fl=-1, pu=0.33 (Ac+MT) indeed
produces the best agreement with the exact analytical solution. So, it is verified once again that
the optimal tuning factors improve the accuracy of the eigenvalues computed from the TLM2 for
SV-P wave problems. Also, note that this improvement is achieved only for about 8 or 9 modes.
Therefore, it is again concluded that for the SV-P wave problem only about the one-third of the
set of all computed modes are accurate with the application of the optimal tuning factors.

(5) Rayleigh surface waves in a homogenous half space.
We consider the problem of Rayleigh surface wave on a discrete homogeneous half-space that is
formulated by means of the TLM2 in section 2.5.1. As numerically solving this problem of semi-
infinite domain, we explore the influence of the optimal tuning factors on the accuracy of the
TLM2 in terms of eigenvalues. The material properties of the homogeneous half-space are given
such that the mass density p and the shear velocity Cs are both 1.0 and the Poisson's ratio v is
0.31. We consider three combinations of tuning factors such as (i) •=f=-1, p0O (Ac+ML); (ii)
a-=fl=1, =-0. 33 (Ac+MT); and (iii) =fl1=l, 1=l (Ac+Mc) and compute the apparent phase
velocity of the Rayleigh surface wave VR for each combination. Then, we compare them with the
true exact phase velocity CR that is 0.9289 in the present problem.

Figure 2.5.16 presents the variation of VRICR as a function of the horizontal wavenumber c for all
the three combinations of tuning factors: (i) a=fl=1, 1 -=0 (Ac+ML, dotted line); (ii) a=l-l,
p-=0.33 (Ac+MT, solid line); and (iii) a•-=fl-, p=l (Ac+Mc, dashed line). Notice first that the
apparent phase velocity for the Rayleigh surface wave VR is dispersive, i.e. a function of 4,, while
the true phase velocity CR is non-dispersive in the continuum. Next, it is seen that the
combination of a=fl=1, 4u=0 (Ac+ML, dotted line) shows the best agreement with the exact
solution for the range of the horizontal wavenumber x of interest. Therefore, it is revealed that

the optimal tuning factors of c=fl=- and p-0.33 do not improve to the best degree the accuracy of
the TLM2 concerned with the semi-infinite media of interest. However, it should be realized that
the degree of the numerical dispersion errors for all the three combinations is quite small. The
reason is that the Rayleigh surface wave propagates only in the horizontal direction in which the
TLM does not discretize.



2.5.3 Summary

In the first part of this section 2.5, the general solution and the frequency-wavenumber spectrum
are obtained for the discrete SV-P wave equation modeled with the TLM2. The qualitative
investigation of the spectrum has provided the convention for the wavelength along the
discretization direction A~ and the discretization size h, i.e. Ah, which is exactly the same as SH
wave modeled with the TLM2. In addition, it is observed that there exist four stopping band
regions at which significant numerical dispersion can take place. Then, two guided wave
problems are solved formally and perfectly by means of the obtained general solutions.

In the second part, extensive characterization of the SV-P body waves is performed for five
Poisson's ratios of v=0.O, 0.1, 0.2, 0.3, and 0.4. It is confirmed that for the TLM2 model, the
range of 0<Jtn<4/5 is only useful as determining the optimal tuning factors, and furthermore
provides a lower bound for the number of thin layers per wavelength Na(=A/h) such that NA2 5/2.
Then, the calculation of the error functions Es('afl) and Ep(a,f) has determined the optimal tuning
factors as aofl=1 and u=0.33. By analyzing two free-vibration problems of finite domain, it is
verified that the optimal tuning factors indeed improve the accuracy of the eigenvalues in the
context of the TLM. In addition, it is found that for SV-P wave problems, only the one-third of
the set of all computed modes are accurate with the application of the optimal tuning factors. In
the last problem, the Rayleigh surface wave is considered. Interestingly, it is observed that the
optimal tuning factors of af-=l and p=0.3 3 do not improve to the best degree the accuracy of the
TLM1. Instead, the tuning factors of o=fl-1 and u=0 (the case of fully lumped mass matrix)
shows the best agreement with the exact solution concerned with the semi-infinite media of
interest.



APPENDIX FOR SECTION 2.5

The matrices A, B, G, and M in equation (2.5.2c) are listed below.
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The matrices A, B, G , and M in equation (2.5.5c) are listed below.
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Figures for section 2.2
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Figure 2.3.4 Numerical dispersion of a homogeneous full-space (v-0O.O) modeled with TLM1
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Figure 2.3.9a Integrated squared error Es for a full-space (v-O.O) modeled with TLM1
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Figure 2.3.10b Integrated squared error ep for a full-space (vO-0.1) modeled with TLM1
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Figure 2.3.1 la Integrated squared error Es for a full-space (v-0.2) modeled with TLM1
for 0=15, 30, 45, 60, 75, 900
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Figure 2.3.12a Integrated squared error Es for a full-space (v-0.3) modeled with TLM1
for 0=15, 30, 45, 60, 75, 900
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Figure 2.3.12b Integrated squared error Ep for a full-space (V-0.3) modeled with TLM1
for 0=15, 30, 45, 60, 75, 900
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Figure 2.3.13a Integrated squared error es for a full-space (v-0.4) modeled with TLM1
for 0=15, 30, 45, 60, 75, 900
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Symmetric modes (v=0.31) with (Ac+ML)LE
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Figure 2.3.14a Dispersion curves of a mixed BC plate (v=0.31) modeled with TLM1
for o~-f=1.0, -u=0.0 (dashed line for TLM1, solid line for Exact)
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Figure 2.3.14b Dispersion curves of a mixed BC plate (v-0.31) modeled with TLM 1
for a-=f-1.0, p-0.55 (dashed line for TLM1, solid line for Exact)
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Symmetric modes (v=0.31) with (AC+MC)LE
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Figure 2.3.14c Dispersion curves of a mixed BC plate (v-0.31) modeled with TLM1
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Symmetric modes (v=0.31) with (AC+ML)LE
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Symmetric modes (v=0.31) with (Ac+MC)LE
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Anti-Symmetric modes (v=0.31) with (Ac+Mc)LE
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Figure 2.3.15c Dispersion curves of Mindlin plate (=-0.31) modeled with TLM1
for a-=f=-1.0, u=1.0 (dashed line for TLM1, solid line for Exact)
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Rayleigh surface waves(LE), with v=0.31
1. I
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Figure 2.3.16 Numerical dispersion of Rayleigh surface waves (v-0.31) modeled with TLM
in terms of ratio of apparent Rayleigh surface wave to true Rayleigh surface wave VRICR:

o-=,= 1.0, u=0.0 (dot-dashed line); 1=f=.0, #=0.55 (solid line); ý=f=1.0, ,t=1.0 (dashed line)
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Figures for section 2.4

VI

VI1.................. .................

1V-1

Figure 2.4.1. Coordinate system and a TLM2 thin-layer subjected to SH wave motion

Body waves for 4/iR=0.5

N·

Re 4z,/n
Im 4nR

Body waves for x/7n=1

2 2

Re 4z/z
Im 4,Ir

Figure 2.4.2 Dispersion of SH body waves as function of vertical wavenumber
for fixed horizontal wavenumber: Left for x=0.514 Right for 1x=l.On

(dashed line for acoustical branch, dot-dashed line for optical branch, solid line for Exact)
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Body waves for ,/n=0.5
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Figure 2.4.3 Dispersion of SH body waves as function of horizontal wavenumber
for fixed vertical wavenumber: Left for ý,=0.5n; Right for 4,=1.5;r

(dashed line for acoustical branch, dot-dashed line for optical branch, solid line for Exact)
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Figure 2.4.4
in terms of ratio

,t/(=2h/X)

Numerical dispersion of an infinite shear beam modeled with TLM2
of apparent vertical phase velocity to true vertical phase velocity (Vz/Cz)
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Figure 2.4.5 Integrated squared error e for an infinite shear beam modeled with TLM2
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Figure 2.4.6 Numerical dispersion of a homogeneous full-space modeled with TLM2
in terms of ratio of apparent phase velocity to true phase velocity (VIC):

fl=1.0, t=0.0 (dashed); /=-1.0, #=0.33 (solid); /=-1.0, p=1.0 (dotted)
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Figure 2.4.7 Integrated squared error e for a homogeneous full-space modeled with TLM2
for 0=15, 30, 45, 60, 75, 900
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Exact(solid) and Ac +Mc (dashed)
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Figure 2.4.8 Dispersion curves of an SH homogeneous plate modeled with TLM2
for /=p- 1.0; l=-1.0, p-=0.0; f-=1.0, u-=0.33; and l=p=-0.33

(dashed line for TLM2, solid line for Exact)
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Figure 2.4.9 Dispersion curves of Love waves modeled with TLM2
for pl= 1.0; #1=-.0, /p=0.0; and Af=-p=0.33 (dashed line for TLM2, solid line for Exact)
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Figures for section 2.5
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----- ----1-u

1

W-1
{1 11-U

Figure 2.5.1 Coordinate system and a TLM2 thin-layer subjected to SV-P wave motion

Body waves for Vh/=0.5 Body waves for h7r=1
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Figure 2.5.2 Dispersion of SV-P body waves (v=-0.30) as function of vertical wavenumber
for fixed horizontal wavenumber: Left for ,=0.5; Right for ,'=1.0r

(solid line: exact P and S, dashed line: acoustical P and S, dashed-dotted line: optical P and S)
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Body waves for z/n=0.5
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Body waves for hz/2=1.5
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Re x/

Figure 2.5.3 Dispersion of SV-P body waves (v-0.30) as function of horizontal wavenumber
for fixed vertical wavenumber: Left for 4,=0.5/; Right for 4==1.51r

(solid line: exact P and S, dashed line: acoustical P and S, dashed-dotted line: optical P and S)
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Figure 2.5.4a Numerical dispersion of a homogeneous full-space (v-0.0) modeled with TLM2
in terms of Ratios of apparent phase velocity to true phase velocity (Vs/Cs, Vp/Cp):

a•f=-1.O, =0.0 (dashed); a=f=-1.0, p=0.33 (solid); a=f=-1.0, i==1.0 (dotted)
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Figure 2.5.4b Numerical dispersion of a homogeneous full-space (v-0.0) modeled with TLM2
in terms of differences between propagation and polarity angles (0-,0-8-'):
a-=l=1.O, -=O.O (dashed); oa=fl1.0, #=0.33 (solid); oa=l=-1.0, p-1.0 (dotted)
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O= 15 for v=0.10
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Figure 2.5.5a Numerical dispersion of a homogeneous full-space (v-0.1) modeled with TLM2
in terms of ratios of apparent phase velocity to true phase velocity (Vs/Cs, VplCp):

cr==1.0, p=0.0 (dashed); a=/=1.0, p=0.33 (solid); ao==l.O, yp=1.0 (dotted)
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Figure 2.5.5b Numerical dispersion of a homogeneous full-space (v=-0.1) modeled with TLM2
in terms of differences between propagation and polarity angles (0-E,0-E'):
a-=#=1.0, u=0.0 (dashed); a=fi=1.0, p=0.33 (solid); -#=6l1.0, p 1.0 (dotted)
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Figure 2.5.6a Numerical dispersion of a homogeneous full-space (v=0.2) modeled with TLM2
in terms of ratios of apparent phase velocity to true phase velocity (VslCs, VplCp):

oa==1.0, pu=0.0 (dashed); a-== 1.0, p=0.33 (solid); a=f=1.0, -= 1.0 (dotted)
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Figure 2.5.6b Numerical dispersion of a homogeneous full-space (v=-0.2) modeled with TLM2
in terms of Differences between propagation and polarity angles (0-0,0-Y'):
a=/=-1.0, p-=0.0 (dashed); a=-/=1.0, p-0.33 (solid); o=/-=1.0, p-=1.0 (dotted)
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Figure 2.5.7a Numerical dispersion of a homogeneous full-space (v=-0.3) modeled with TLM2
in terms of ratios of apparent phase velocity to true phase velocity (VslCs, Vp/Cp):

a•-f3=1.0, u=0.0 (dashed); a=f=1.0, 0u=0.33 (solid); a7=f=1.0, ,u=l.0 (dotted)
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Figure 2.5.7b Numerical dispersion of a homogeneous full-space (v-0.3) modeled with TLM2
in terms of differences between propagation and polarity angles (O-E,O-E'):
a=-l=1.O, p=0.0 (dashed); a-=fl=1.O, u0.33 (solid); afl= 1.0, = 1.0 (dotted)
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Figure 2.5.8a Numerical dispersion of a homogeneous full-space (v-0.4) modeled with TLM2
in terms of ratios of apparent phase velocity to true phase velocity (VslCs, Vp/Cp):

oa=f-=1.0, p=0.0 (dashed); a-=l=.0, /1=0.33 (solid); a7#=-1.0, p=1.0 (dotted)
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Figure 2.5.8b Numerical dispersion of a homogeneous full-space (v-0.4) modeled with TLM2
in terms of differences between propagation and polarity angles (0-6,0-&'):
a-=/=1.0, p-=0.0 (dashed); oa= --1.0, p-0.33 (solid); o=&-=1.O, pt=-1.0 (dotted)
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Es,1/4 (v=0) for 0 = 15 deg.
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Figure 2.5.9a Integrated squared error es for a homogeneous
for 0=15, 30, 45, 60, 75, 900

(v--0.O) modeled with TLM2
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Figure 2.5.9b Integrated squared error ep for a homogeneous (v0.0) modeled with TLM2
for 0=15, 30, 45, 60, 75, 900
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Figure 2.5.10a Integrated squared error es for a homogeneous (v-O.1) modeled with TLM2
for 0=15, 30, 45, 60, 75, 900
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Figure 2.5.10b Integrated squared error Ep for a homogeneous (VwO.1) modeled with TLM2
for 0=15, 30, 45, 60, 75, 900
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Figure 2.5.1 la Integrated squared error Es for a homogeneous (v-=0.2)
for 0=15, 30, 45, 60, 75, 900
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Figure 2.5.1 lb Integrated squared error Ep for a homogeneous (v-0.2) modeled with TLM2
for 0=15, 30, 45, 60, 75, 900
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Figure 2.5.12a Integrated squared error Es for a homogeneous (v-0.3) modeled with TLM2
for 0=15, 30, 45, 60, 75, 900
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Figure 2.5.12b Integrated squared error ep for a homogeneous (v=-0.3) modeled with TLM2
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Figure 2.5.13a Integrated squared error Es for a homogeneous (v-0.4) modeled with TLM2
for 0=15, 30, 45, 60, 75, 900
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Figure 2.5.13b Integrated squared error Ep for a homogeneous (v=-0.4) modeled with TLM2
for 0=15, 30, 45, 60, 75, 90'
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Symmetric modes (v=0.31) with (AC+ML)QE

0

1.5 2 2

Re In Im VI

Anti-Symmetric modes (v=0.31) with (AC+ML) QE
. . .......... .... .... i .~ ~l~..·

00.5
1.5 2- 2

Im txn
Re 1nI

Figure 2.5.14a Dispersion curves of a BC plate (w-0.31) modeled with TLM2
for a•-/-=1.0, l-=0.0 (dashed line for TLM2, solid line for Exact)
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Figure 2.5.14b Dispersion curves of a BC plate (v-0.31) modeled with TLM2
for ac-/=1.0, -u=0.33 (dashed line for TLM2, solid line for Exact)
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Symmetric modes (v=0.31) with (AC+MC)QE
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Figure 2.5.14c Dispersion curves of a BC plate (v-0.31) modeled with TLM2
for af#=1.0, p--=1.0 (dashed line for TLM2, solid line for Exact)
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Symmetric modes (v=0.31) with (Ac+ML)QE
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Figure 2.5.15a Dispersion curves of Mindlin plate (v=-0.31) modeled with TLM2
for ct=fl= 1.0, pt0.0 (dashed line for TLM2, solid line for Exact)
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Figure 2.5.15b Dispersion curves of Mindlin plate (=-0.31) modeled with TLM2
for a=f-=1.0, p=0.3 3 (dashed line for TLM2, solid line for Exact)
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Figure 2.5.15c Dispersion curves of Mindlin plate (v-0.31) modeled with TLM2
for a=:/=1.0, t=1.0 (dashed line for TLM2, solid line for Exact)
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Rayleigh surface waves(QE), with v=0.31
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Figure 2.5.16 Numerical dispersion of Rayleigh surface waves (=-0.31) modeled with TLM2
in terms of ratio of apparent Rayleigh surface wave to true Rayleigh surface wave VR/CR:

aL=f=1.0O, -u=0.0 (dot-dashed line); ai=f=1.0, ,=-0.33 (solid line); a=f/1.0, y-=1.0 (dashed line)
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Chapter 3 Effect of the tuning factors on the modal solutions

3.1 Introduction

In this short chapter, we investigate the effect that the tuning factors have on the accuracy of the
modal solutions obtained with the TLM. Through this investigation, we verify that the responses
are most accurate when the optimal tuning factors determined in chapter 2 are used. The reason is
that the optimal tuning factors provide the most accurate mode shapes as well as the most
accurate eigenvalues. We consider the modal solutions of both the TLM1 and TLM2, and
compare their accuracy and efficiency. As a result, we propose to use the TLM2 rather than the
TLM1 in consideration of the accuracy and computational cost in analysis.

For the above purpose, we compute the modal solutions of an example structure for three or four
combinations of the tuning factors and then compare them with the associated exact analytical
solutions. The example structure of interest is a homogeneous plate with stress-free boundary
conditions at the both top and bottom surfaces, subjected to an SH or SV-P line load. The exact
analytical solutions due to the SH and SV-P line loads are derived and presented in appendices 4B
and 4C, respectively, of chapter 4. Particularly, in this chapter we are interested in only the
displacement responses of the homogeneous plate. The investigation for the accuracy of internal
stress components is performed in chapter 4.

In section 3.2, we assess the effect of the tuning factors on the accuracy of the ow-TLM modal
solutions, by computing the displacement responses of the homogeneous plate due to an SH and
SV-P harmonic line load with a single excitation frequency fx. In section 3.3, we explore the
effect of the tuning factors on the accuracy of the t-TLM modal solutions, by calculating the
displacement seismograms of the homogeneous plate due to an SH and SV-P transient line load.

3.2 w-TLM modal solutions with the tuning factors

In this section, we explore the effect of the tuning factors on the accuracy of the wo-TLM modal
solutions. For this purpose, we compute the modal solutions of an example structure for three or
four combinations of the tuning factors and then compare them with the associated exact
analytical solutions. The example structure is a homogeneous plate with stress-free boundary
conditions at both the top and bottom surfaces, subjected to a SH or SV-P harmonic line load. The
line load is applied at the top surface and has a single excitation frequency fe. In particular, we
are interested in only the displacement responses of the homogeneous plate.

3.2.1 Plate subjected to an SH harmonic line load

We first explore the effect of the tuning factors on the accuracy of the we-TLM modal solutions as
for SH wave motions. For this purpose, we calculate the harmonic responses (displacements) in a
homogeneous plate subjected to an SH harmonic line load. Concerning the material properties
and geometry of the plate, the mass density (p), the shear velocity (Cs), and the thickness (H) are
all chosen to be 1.0. The SH harmonic line load is applied at the top surface of the plate and its
excitation frequencyfe is 2.75.
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To estimate the effect of the tuning factors 8 and p on the accuracy of the ao-TLM modal
responses, the motion of this plate is analyzed with changing the tuning factors. The results are
then compared with the exact analytical solution that is derived in appendix 3B. The following
four combinations of 8 and p are considered. For the TLM1 models, four combinations are
applied such that /=1.0 and p-0.0 (Ac+ML); /=1.0 and p-1.0 (Ac+Mc); /=1.0 and t-0.55
(Ac+MT); /P-u=0.55 (AT+MT). On the other hand, for the TLM2 models, four combinations are
applied such that #-=1.0 and p=0.0 (Ac+ML); P=1.0 and p=1.0 (Ac+Mc); #-=1.0 and p=0.33
(Ac+MT); #=/=p0.33 (AT+MT). Concerning the discretization, the number of thin-layers per
wavelength NA is chosen such that Na=4 is used for the TLM1 and NPA=2 is used for the TLM2.
Remember that N-=4 for the TLM1 and NA=2 for the TLM2 are the lower bounds for the number
of thin-layers per wavelength that is proposed in chapter 2. Therefore, the validity of the proposed
NA in chapter 2 can be verified through the present problem as well.

Figures 3.2.1-4 show the numerical results obtained with the TLM1 of Ac+ML, Ac+Mc, Ac+MT,
and AT+MT, respectively. The first plot in each figure displays the eigenvalues obtained with the
TLM1 (x) in comparison with the exact analytical eigenvalue (o) on the complex wavenumber
plane. The second and third plots compare the real and imaginary parts of the displacement v, i.e.
Re v and Im v, at the top surface obtained with the TLM1 (solid line) against the exact analytical
solutions (dashed line) for 0.0<x<4.0. It is clearly shown that the application of /l=p-0.55
(AT+MT) really provides the best agreement with the exact analytical solutions in terms of not
only the eigenvalues, but also the modal solutions. Therefore, it is verified that the optimal tuning
factors obtained in chapter 2 improve the accuracy of the modal responses obtained with the
TLM1 as well as the eigenvalues. In addition, this best accuracy achieved with the optimal tuning
factors confirms the validity of the condition of NA2 4 that is proposed for the TLM1 in chapter 2.
In figure 3.2.3, it should also be noticed that the use of =l1.0 and pt=0.55 (Ac+MT) improves the
accuracy of the modal solution only for small x (e.g. x<0.5), but not for large x. The inaccuracy
associated with large x results from the numerical dispersion error in the high propagation modes
such as the 3 rd, 4th, 5 h and 6th modes, not the non-propagation modes, as shown in figure 3.2.3.
The degree of this numerical error can be easily estimated by comparing the 3 rd, 4 th, 5 th and 6th

eigenvalues kj in the two figures 3.2.3 and 3.2.4. More detail discussion about this error is
provided in chapter 4.

Figures 3.2.5-8 show the numerical results obtained with the TLM2 of Ac+ML, Ac+Mc, Ac+MT,
and AT+MT, respectively, in comparison with the exact analytical solutions. The first plot in each
figure compares the eigenvalue obtained with the TLM2 (x) against the exact analytical
eigenvalue (o). The second and third plots compare the real and imaginary parts of the
displacement, i.e. Re v and Im v, at the top surface obtained with the TLM2 (solid line) against
the exact analytical solutions (dashed line) for 0.0<x<4.0. It is again clearly shown that the
application of the optimal tuning factors of --/=p0.3 3 (AT+MT) really provides the best
agreement with the exact analytical solutions in terms of not only the eigenvalues, but also the
modal solutions. Therefore, it is proved that the optimal tuning factors improve to the best degree
the accuracy of the modal responses as well as the eigenvalues, computed with the TLM2. In
addition, this best accuracy achieved with the optimal tuning factors confirms the validity of the
condition of NA•2 that is proposed for the TLM2 in chapter 2. In figure 3.2.7, it should be noticed
that the use of #=1.0 and p=0.33 (Ac+MT) improves the accuracy of the modal solution only for
small x (e.g. x<0.7), but not for large x. This inaccuracy for large x is caused by the numerical
dispersion error in the high propagation modes such as the 5th and 6th modes, not the non-
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propagation modes, as shown in figure 3.2.7. The degree of this numerical error can be easily
estimated by comparing the associated 5" and 6"' eigenvalues ki in the two figures 3.2.7 and 3.2.8.

In application of #=1.0, and p=0.55 (for the TLM1) or 0.33 (for the TLM2), both indicated by
Ac+Mr, the errors in the modal solutions discussed above can be reduced simply by increasing
Na. In the present problem, Na=4 is used for the TLM1, and Na=2 is used for the TLM2. As
increasing N,, however, we can obtain more accurate high propagation modes, and then can
calculate the more accurate modal solutions as well. This is the case of Schepers [2001], in which
as for calculating the accurate modal solutions to SH wave problems, he has proposed the use of
Na= 10 for the TLM1 with the application of -=l.0 and ,u=0.55 (Ac+MT).

3.2.2 Plate subjected to an SV-P harmonic line load

We next investigate the effect of the tuning factors on the accuracy of the o-TLM modal
solutions concerned with SV-P wave motions. For this purpose, we calculate the harmonic
responses (displacements) in a homogeneous plate subjected to an SV-P harmonic line load.
Concerning the material properties and geometry of the plate, the mass density (p), the shear
velocity (Cs), and the thickness (H) are all chosen to be 1.0, and the Poisson's ratio v is 0.31. In
addition, the damping ratio used is 0.1%. The SV-P harmonic line load is applied at the top
surface in the vertical (z-) direction and its excitation frequencyfex is 2.5.

To estimate the effect of the tuning factors a, 8 and l on the accuracy of the co-TLM modal
responses, the harmonic motion of this plate is analyzed with fixing a==#=l1.0, but changing u.
The results are then compared with the exact analytical solution that is derived in appendix 3C.
The following three values for lu are considered. For the TLM1 models, the three values are such
that p=0.0 (Ac+ML); 1=l.0 (Ac+Mc); t=-0.55 (Ac+MT). On the other hand, for the TLM2, the
three values are such that pu=0.0 (Ac+ML); 4U=1.0 (Ac+Mc); /=0.33 (Ac+MT). Concerning the
discretization, the number of thin-layers per wavelength NA is chosen such that Na=8 is applied
for the TLM1 model and NA=4 is applied for the TLM2 model, both of which are twice the lower
bound for Na proposed in chapter 2. Therefore, it is expected that the accuracy of the present
discrete models is better than that of the discrete models in section 3.2.1 where the lower bounds
for the proposed NA are used in analysis.

Figures 3.2.9-11 show the numerical results obtained with the TLM1 of Ac+ML, Ac+Mc, and
Ac+MT, respectively. The first plot in each figure displays the eigenvalue obtained with the
TLM1 (x) in comparison with the exact analytical eigenvalue (o) on the complex wavenumber
plane. The second and third plots compare the real and imaginary parts of the horizontal
displacement ux, i.e. Re u, and Im u,, at the top surface obtained with the TLM1 (solid line)
against the exact analytical solutions (dashed line) for 0.0<x<2.0. The variable ui represents a
displacement in the i-direction due a load in the j-direction. The fourth and fifth plots compare the
real and imaginary parts of the vertical displacement uz, i.e. Re u= and Im uz, at the top surface
obtained with the TLM1 (solid line) against the exact analytical solutions (dashed line) for
0.0<x<2.0. It is clearly shown that the application of a=#=-1.0 and Pu=0.55 (Ac+Mr) really
provides the best agreement with the exact analytical solutions in terms of not only the
eigenvalues, but also the modal solutions. Therefore, it is verified that the optimal tuning factors
obtained in chapter 2 improve best the accuracy of the modal solutions as well as the eigenvalues
obtained with the TLM1. In addition, the comparison of figures 3.2.9-11 with figures 3.2.1-3
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reveals that the modal solution obtained with NA=8 is more accurate than that obtained with NA=4.
Therefore, it is confirmed that the larger NA is used, the more accurate results are obtained.

Figures 3.2.12-14 show the numerical results obtained with the TLM2 of Ac+ML, Ac+Mc, and
Ac+MT, respectively. The first plot in each figure displays the eigenvalue obtained with the
TLM2 (x) in comparison with the exact analytical eigenvalue (o) on the complex wavenumber
plane. The second and third plots compare the real and imaginary parts of the horizontal
displacement ux, i.e. Re uix and Im ux, at the top surface obtained with the TLM2 (solid line)
against the exact analytical solutions (dashed line) for 0.0<x<2.0. The variable uy, represents a
displacement in the i-direction due a load in the j-direction. The fourth and fifth plots compare the
real and imaginary parts of the vertical displacement uz, i.e. Re u, and Im ui, at the top surface
obtained with the TLM2 (solid line) against the exact analytical solutions (dashed line) for
0.0<x<2.0. It is clearly shown that the application of a-=f=1.0 and P=-0.33 (Ac+MT) really
provides the best agreement with the exact analytical solutions in terms of not only the
eigenvalues, but also the modal solutions. Therefore, it is verified that the optimal tuning factors
obtained in chapter 2 improve the accuracy of the modal responses as well as the eigenvalues
computed with the TLM2. In addition, the comparison of figures 3.2.12-14 with figures 3.2.5-7
reveals that the modal solution obtained with NA=4 is much more accurate than that obtained with
NA=2. Therefore, it is again confirmed that the larger NA is used, the more accurate results are
obtained.

In addition, it should be recognized that the modal solutions obtained with the TLM2 are much
more accurate than those obtained with the TLM1. This can be easily observed by comparing the
two results in figures 3.2.11 and 3.2.14, both of which are calculated with application of the
optimal tuning factors. Since NA=8 is used for the TLM1 model and NA=4 is used for the TLM2
model, the total number of the degrees of freedom involved is identical for both the models. It
follows that the computational cost of both the models is quite comparable. Finally, in
consideration of both the accuracy and computational cost in analysis, we propose to use the
TLM2 rather than the TLM1.

3.3 t-TLM modal solutions with the tuning factors

In this section, we explore the effect of the tuning factors on the accuracy of the t-TLM modal
solutions. For this purpose, we compute the modal solutions of an example structure for three or
four combinations of the tuning factors and then compare them with the associated exact
analytical solutions. The example structure is a homogeneous plate with stress-free boundary
conditions at the top and bottom surfaces, subjected to a SH or SV-P transient line load. The
transient line load is applied at the top surface and is a bell-shaped function in both x and t. More
details about this bell-shaped function are explained in chapter 4. In particular, we are interested
in the seismograms of the homogeneous plate, only in terms of displacements.

3.3.1 Plate subjected to an SH transient line load

We first explore the effect of the tuning factors on the accuracy of the t-TLM modal solutions as
for SH wave motions. For this purpose, we synthesize the displacement seismogram v in a
homogeneous plate subjected to an SH transient line load. Concerning the material properties and
geometry of the plate, the mass density (p), the shear velocity (Cs), and the thickness (H) are all
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chosen to be 1.0. The SH transient line load is applied at the top surface of the plate and is a bell-
shaped function with a=td-0.2 where a and td are half the width in the x-direction and the time-
duration, respectively, of the line load

To estimate the effect of the tuning factors / and p on the accuracy of the t-TLM modal
responses, the motion of this plate is analyzed with changing the tuning factors. The results are
then compared with the exact analytical solution that is derived in appendix 3B. The following
four combinations of 8 and p are considered. For the TLM1 models, four combinations are used
such that 8=1.0 and p=0.0 (Ac+ML); 8-=1.0 and u=1.0 (Ac+Mc); A3=1.0 and p-0.55 (Ac+MT);
fl=p=0.55 (AT+MT). On the other hand, for the TLM2 models, four combinations are used such
that #=1.0 and p=0.0 (Ac+ML); fl=1.0 and p=1.0 (Ac+Mc); 3=1.0 and p=0.3 3 (Ac+MT);
8=p-=0.33 (AT+MT). Concerning the discretization, the number of thin-layers per wavelength NA
is chosen such that Nt=4 is used for the TLM1 and NA=2 is used for the TLM2. Remember that
N1=4 for the TLM1 and Na=2 for the TLM2 are the lower bounds for the proposed number of
thin-layers per wavelength proposed in chapter 2. Therefore, the validity of the proposed NA in
chapter 2 can also be verified through the present problem.

Figure 3.3.1 shows four displacement seismograms obtained with the TLM1 (solid line) of
Ac+ML, Ac+Mc, Ac+MT, and AT+MT, respectively, in comparison with the exact analytical
solution (dashed line). The dot-dashed line in each plot displays the difference between the exact
analytical solution and the TLM1 modal solution. The displacement seismogram v is recorded at
x=1 on the top surface of the plate and for 0<t<4. It is observed that the combination of /3=p=0.55
(AT+MT) provides the almost perfect agreement with the exact analytical solution. Therefore, it is
concluded that the combination of &3=p=0.55 (AT+MT) is the optimal choice for improving to the
best extent the accuracy of the TLM1 modal solution. In addition, this best accuracy achieved in
the modal solution verifies the validity of the condition of N,2 4 that is determined for the TLM1
in chapter 2.

Figure 3.3.2 shows four displacement seismograms obtained with the TLM2 (solid line) of
Ac+ML, Ac+Mc, Ac+MT, and AT+MT, respectively, in comparison with the exact analytical
solution (dashed line). The dot-dashed line in each plot represents the difference between the
exact analytical solution and the TLM2 modal solution. The displacement seismogram v is
recorded at x=l1 on the top surface of the plate and for 0<t<4. It is seen that the combination of

=/p=0.33 (AT+MT) provides the almost perfect agreement with the exact analytical solution.
Therefore, it is concluded that the combination of P,-/=0.33 (AT+MT) is the optimal choice for
improving to the best extent the accuracy of the TLM2 modal solution. In addition, this best
accuracy achieved in the modal solution verifies the validity of the condition of NA2 2 that is
determined for the TLM2 in chapter 2.

3.3.2 Plate subjected to an SV-P transient line load

We continue to explore the effect of the tuning factors on the accuracy of the t-TLM modal
solutions concerned with SV-P wave motions. For this purpose, we synthesize the displacement
seismograms of ux, and u, in a homogeneous plate subjected to an SV-P transient line load
applied in the vertical (z-) direction. Note that uxz and uzz are the displacements in the x- and z-
direction, respectively, due to a load in the z-direction. Concerning the material properties and
geometry of the plate, the mass density (p), the shear velocity (Cs), and the thickness (H) are all
chosen to be 1.0, and the Poisson's ratio v is 0.31. The SV-P transient line load is applied at the
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top surface in the vertical (z-) direction and is a bell-shaped function with a=td=0.2 where a and
td are half the width in the x-direction and the time-duration, respectively, of the line load.

To estimate the effect of the tuning factors a; fl and u on the accuracy of the t-TLM modal
responses, the time-dependent motion of this plate is analyzed with fixing ao1f=l.0, but changing
,u. The results are then compared with the exact analytical solution that is derived in appendix 3C.
The following three values for u are considered. For the TLM1 models, the three values are such
that p-=O.O (Ac+ML); =l1.0 (Ac+Mc); =-0.55 (Ac+MT). On the other hand, for the TLM2, the
three values are such that =O0.0 (Ac+ML); p-1.0 (Ac+Mc); p-0.33 (Ac+MT). Concerning the
discretization, the number of thin-layers per wavelength NA is chosen such that NA= 8 is applied
for the TLM1 model and NA=4 is applied for the TLM2 model, both of which are twice the lower
bound for NA proposed in chapter 2. Therefore, it would be interesting to see if the accuracy of the
present discrete models is better than that of the discrete models in section 3.3.1 where the lower
bound for the proposed NA is used in analysis.

Figures 3.3.3-5 show the displacement seismograms obtained with the TLM1 (solid line) of
Ac+ML, Ac+Mc, and Ac+MT, respectively, in comparison with the exact analytical solution
(dashed line). The displacement seismograms of u, and u, are recorded at x=1 on the top surface
of the plate and for O<t<4. It is observed that the combination of =f--=l and p=0.55 (Ac+MT)
provides the best agreement with the exact analytical solution. Therefore, it is concluded that the
combination of a=/-=1 and p=0.55 (Ac+MT) is the optimal choice for improving to the best
extent the accuracy of the TLM1 modal solution. In addition, this achieved accuracy in the modal
solution verifies the validity of the condition of NA, 4 that is determined for the TLM1 in chapter
2.

Figures 3.3.6-8 show the displacement seismograms obtained with the TLM2 (solid line) of
Ac+ML, Ac+Mc, and Ac+MT, respectively, in comparison with the exact analytical solution
(dashed line). The displacement seismograms of uxi and uii are recorded at x=1 on the top surface
of the plate and for O<t<4. It is observed that the combination of ol=-1 and p=0.33 (Ac+MT)
provides the best agreement with the exact analytical solution. Therefore, it is concluded that the
combination of o==f1 and /-0.33 (Ac+MT) is the optimal choice for improving to the best
extent the accuracy of the TLM2 modal solution. In addition, this achieved accuracy in the modal
solution verifies the validity of the condition of Na>2 that is determined for the TLM2 in chapter
2.

In addition, it should be noticed that the modal solutions obtained with the TLM2 are more
accurate than those obtained with the TLM1. This can be easily observed by comparing the two
results in figures 3.3.5 and 3.3.8, both of which are calculated with application of the optimal

tuning factors. Since NAt=8 is used for the TLM1 model and Na=4 is used for the TLM2 model,
the total number of the degrees of freedom involved is identical for both the models. It follows
that the computational cost of both the models is quite comparable. Finally, in consideration of
both the accuracy and computational cost in analysis, we propose to use the TLM2 rather than the
TLM1.
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Figures for section 3.2
k1 with (Ac+ML)LE

-1 0 1 2 3 4 5 6
Re kY/

Re v with (Ac+ML)LE

Im v with (Ac+ML)LE

0.5

-0.5

Figur

0.5 1 1.5 2 2.5 3 3.5 4

e 3.2.1 Harmonic wave motion obtained with TLM 1 of ,= 1, ,u=O (Ac-
eigenvalues kj and surface displacements v

for homogeneous plate subjected to SH surface line load offe,=2.75
(x:TLM1 kj; o: Exact kj; solid curve: TLM1 v; dashed curve: Exact v)

.............. .. .... ...... . . . . . . . . . . . . . . .O . . . . O.. O O .

x0
0

, \ -- /1~ ~ / --

157

I I I I | I

E

F

+ML):



M with (Ac+MC)LE
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Figure 3.2.2 Harmonic wave motion obtained with TLM1 of =-=l (Ac+Mc):
eigenvalues kj and surface displacements v

for homogeneous plate subjected to SH surface line load offx2.75
(x:TLM1 k ; o: Exact kj; solid curve: TLM1 v; dashed curve: Exact v)
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Figure 3.2.3 Harmonic wave motion obtained with TLM1 of f=1, /-=0.55 (Ac+MT):
eigenvalues kj and surface displacements v

for homogeneous plate subjected to SH surface line load of fe2.75
(x:TLM1 kj; o: Exact kj; solid curve: TLMI v; dashed curve: Exact v)
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Swith (AT+MT)LE
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Figure 3.2.4 Harmonic wave motion obtained with TLM1 of flp-,0.55 (Ar+MT):
eigenvalues k, and surface displacements v

for homogeneous plate subjected to SH surface line load of fex2.75
(x:TLM1 k1 ; o: Exact kj; solid curve: TLM1 v; dashed curve: Exact v)
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Figure 3.2.5 Harmonic wave motion obtained with TLM2 of /=-1, u=O (Ac+ML):
eigenvalues kj and surface displacements v

for homogeneous plate subjected to SH surface line load off, =2.75
(x:TLM2 kj; o: Exact kj; solid curve: TLM2 v; dashed curve: Exact v)
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Figure 3.2.6 Harmonic wave motion obtained with TLM2 of I-/u=l (Ac+Mc):
eigenvalues kj and surface displacements v

for homogeneous plate subjected to SH surface line load of fex2.75
(x:TLM2 kj; o: Exact kj; solid curve: TLM2 v; dashed curve: Exact v)
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Figure 3.2.7 Harmonic wave motion obtained with TLM2 of /=-1, =-0.33 (Ac+MT):
eigenvalues kj and surface displacements v

for homogeneous plate subjected to SH surface line load of fe2.75
(x:TLM2 kj; o: Exact kj; solid curve: TLM2 v; dashed curve: Exact v)
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Figure 3.2.8 Harmonic wave motion obtained with TLM2 of /p=u=0.33 (AT+MT):
eigenvalues kj and surface displacements v

for homogeneous plate subjected to SH surface line load of fe=2.75
(x:TLM2 kj; o: Exact kj; solid curve: TLM2 v; dashed curve: Exact v)
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Figure 3.2.9 Harmonic wave motion obtained with TLM1 of a-ýf=l, 4u=O (Ac+ML):
eigenvalues kj and surface displacements Uxz, u=

for homogeneous plate subjected to SV-P surface line load offex=2.50 in vertical direction
(x:TLM1 kj; o: Exact kj; solid curve: TLM1 u,, uz; dashed curve: Exact u,, uz)
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Figure 3.2.10 Harmonic wave motion obtained with TLM1 of a=fl=/I=1 (Ac+Mc):
eigenvalues kj and surface displacements uxx, u,

for homogeneous plate subjected to SV-P surface line load off, =2.50 in vertical direction
(x:TLM1 kj; o: Exact kj; solid curve: TLM1 ux, u,; dashed curve: Exact uxx, u,)
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Figure 3.2.11 Harmonic wave motion obtained with TLM1 of o•-1=l, ,=0.55 (Ac+MT):
eigenvalues kj and surface displacements ux, u.

for homogeneous plate subjected to SV-P surface line load offex=2.50 in vertical direction
(x:TLM1 kj; o: Exact kj; solid curve: TLM1 u, u=; dashed curve: Exact ux, u=)
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Figure 3.2.12 Harmonic wave motion obtained with TLM2 of aJfl=l, -u=0 (Ac+ML):
eigenvalues kj and surface displacements uxt, u,

for homogeneous plate subjected to SV-P surface line load of fe=2.50 in vertical direction
(x:TLM2 kj; o: Exact kj; solid curve: TLM2 uxx, u,; dashed curve: Exact u.x, u,)
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Figure 3.2.13 Harmonic wave motion obtained with TLM2 of a==pl=l (Ac+Mc):
eigenvalues kj and surface displacements uxz, uzz

for homogeneous plate subjected to SV-P surface line load offex2.50 in vertical direction
(x:TLM2 kj; o: Exact kj; solid curve: TLM2 uxz, uz; dashed curve: Exact ux, uzz)
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Figure 3.2.14 Harmonic wave motion obtained with TLM2 of a•f-=1, p-0.3 3 (Ac+MT):
eigenvalues kj and surface displacements Uxz, u&

for homogeneous plate subjected to SV-P surface line load of fex2.50 in vertical direction
(x:TLM2 kj; o: Exact kj; solid curve: TLM2 iu,, uz; dashed curve: Exact u,, uz)
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Figures for section 3.3
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Figure 3.3.1 Surface seismograms of v at x=1.0 in homogeneous plate obtained with TLM1

of fi=1, u=0 (Ac+ML); /--1, p=l (Ac+Mc); 3--1, p=0.55 (Ac+MT); /-=0.55, 4 =0.55 (AT+MT),
for SH surface line load of a=td=0.2 . (solid curve: TLM1 v; dashed curve: Exact v)

v with (Ac+ML)QE

v with (AC+MT)OE

v with (Ac+MC)OE

v with (AT+MT)OE

-----------

0 1 2 3 4

-0.5

_I

1 2 3 4
t

Figure 3.3.2 Surface seismograms of v at x=1.0 in homogeneous plate obtained with TLM2
of =--1, /=0 (Ac+ML); /=l, p=1 (Ac+Mc); /%-1, p=0.33 (Ac+MT); /=-0.33, p=0.33 (AT+MT),

for SH surface line load of a=td=0. 2. (solid curve: TLM2 v; dashed curve: Exact v)
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Figure 3.3.3 Surface seismograms of uxt, ui at x=l1.0 in homogeneous plate obtained with TLM1
of a-•l= 1, -u=0 (Ac+ML), for SV-P surface line load of a=td=0. 2 in vertical direction.

(solid curve: TLM1 un, u,=; dashed curve: Exact ux, u,)
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Figure 3.3.4 Surface seismograms of ux,, u. at x=1.0 in homogeneous plate obtained with TLM1

of aof=1, p--=l (Ac+Mc) , for SV-P surface line load of a=td=0. 2 in vertical direction.
(solid curve: TLM1 ui, u,; dashed curve: Exact u,, u,)
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Figure 3.3.5 Surface seismograms of u.n, u, at x=--1.0 in homogeneous plate obtained with TLM 1
of aO=fl1, p=0.55 (Ac+MT) , for SV-P surface line load of a=td=0. 2 in vertical direction.

(solid curve: TLM1 ux, u,; dashed curve: Exact ux, u=)
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Figure 3.3.6 Surface seismograms of uxx, u, at x=1.0 in homogeneous plate obtained with TLM2
of a=fl=1, p-= (Ac+ML), for SV-P surface line load of a=td=0.2 in vertical direction.

(solid curve: TLM2 ugn, u,; dashed curve: Exact ux, u,)
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Figure 3.3.7 Surface seismograms of ux,, u, at x=1.0 in homogeneous plate obtained with TLM2

of pa=f -1, p1 (Ac+Mc), for SV-P surface line load of a=td=0. 2 in vertical direction.
(solid curve: TLM2 u,, u,; dashed curve: Exact u.x, u=)
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Figure 3.3.8 Surface seismograms of u,,, uzz at x=1.0 in homogeneous plate obtained with TLM2

of a~=-1, =-0.33 (Ac+MT) , for SV-P surface line load of a=td=0.2 in vertical direction.
(solid curve: TLM2 ux, uz; dashed curve: Exact ui, us)
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Chapter 4 Convergence and accuracy of the modal solutions

In this chapter, we study the convergence and accuracy of the modal solutions obtained with the
TLM. A converged modal solution means a solution that describes wave motion of systems of
interest by means of a sufficient number of modes, without any loss of input energy generated by
external sources. The accuracy of the TLM modal solutions can be estimated by comparison with
known exact analytical solutions. Since the TLM is a semi-discrete numerical technique, its
convergence and accuracy are intimately related to the discretization scheme, i.e. the number of
thin-layers, which is also directly associated with the number of modes included into modal
summations. Ideally, the infinite number of thin-layers could yield the converged and accurate
responses. From the practical point of view, however, we need a reasonable discretization scheme
so as to calculate numerical solutions both accurately and efficiently.

To assess the convergence and accuracy of the TLM modal solutions, we choose relatively simple
examples whose exact analytical solutions are known in closed form and/or in terms of exact
modal superposition. The examples are isotropic homogenous plates and strata subjected to SH
and SV-P wave motion. Their exact analytical solutions are derived and illustrated in the
appendices 4A, 4B, and 4C.

As shown in chapter 1, there are two formulations of the TLM's, i.e., the TLM formulated in the
frequency domain, and the TLM formulated in the time domain. For short, we call herein the
former as the o-TLM and the latter as the t-TLM. These two formulations have different
calculation procedures, i.e. different types of eigenvalue problems, and so are the features of their
modal solutions. However, there are some common aspects between the two formulations as well.
So, in section 4.1, we explore the common aspects of the two formulations by briefly overviewing
the TLM analysis procedure of calculating the modal solutions. In section 4.2, we characterize
and assess in more detail the convergence and accuracy of the co-TLM modal solutions. First, we
investigate various aspects of the ao-TLM modal solutions in terms of the displacement response
of a homogeneous stratum subjected to SH harmonic line loads. Secondly, we assess the accuracy
of the ao-TLM in terms of both the displacement and stress response by analyzing three simple
examples such as a homogeneous stratum and plate subjected to SH and SV-P harmonic line
loads. In section 4.3, we characterize and assess in more detail the convergence and accuracy of
the t-TLM modal solutions. First, we investigate various aspects of the t-TLM modal solutions in
terms of the displacement response of a homogeneous plate subjected to SH transient line loads.
Secondly, we assess the accuracy of the t-TLM in terms of both the displacement and stress
response by analyzing three simple examples such as a homogeneous stratum and plate subjected
to SH and SV-P transient line loads.

4.1 Overview of TLM modal solutions

We briefly overview here the TLM analysis procedure of calculating the modal solutions, which
is composed of four steps, as will be shown in the following four paragraphs. Based on this
overview, we point out two aspects of convergence and accuracy of the TLM modal solution,
which are basically related to the spatial and temporal characteristics of external sources and
receivers. The two aspects can be easily observed just by examining the analysis procedure and
the TLM modal solutions.
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The first step in the TLM analysis is to determine the spatial and temporal characteristics of a
given source P(x,z,t) by means of its spectra in both the wavenumber (k) and frequency (Co)
domain. Inspection of the source spectrum in the wavenumber domain reveals the significant
wavenumber range of k,<k-kmax that contributes the most to the modal solutions. As a
consequence, the lower and upper limits of the wavenumber integration in the t-TLM can be
taken as km,, and kmax, respectively, instead of -- and +00. On the other hand, inspection of the
source spectrum in the frequency domain provides the significant range of o, i.e. a&inOl<a_ x

whose spectral components have major contribution to the modal solutions. According to anx,

the minimum wavelength A, is then given as 2nC/oax or Clfmnx where C is the shear wave
speed of each layer, and fmt x is the maximum frequency (in Hz) having a relationship with the

maximum angular frequency as ax=2nfmax.

The second step consists in determining the discretization size h for each layer and constructing
the dynamics stiffness matrix Kdy, for a whole system of interest. The discretization size h for
each layer is determined of the form.

h < f" (4.1.1)
NA

where NA is the number of thin-layers per wavelength. Remember that the proposed NA in chapter
2 is

N = 4 for the TLM1 (4.1.2)

Na = 2 for the TLM2 (4.1.3)

However, it should be noted that proper NA must be chosen according to required accuracy and

problems of interest.

The third step is to solve eigenvalue problems for the constructed dynamic stiffness matrix Kdyn to

obtain the propagation modes in terms of eigenvalues (kj or a-) and mode shapes (4).

The fourth step that is the final step is to calculate the modal solutions in the following form of
modal expansion or series.

M

U(x, o) = Z fj (x, w) for the c-TLM (4.1.4)
j=1

(x,t)1 U(k,t)e-i"dk = - LI j(k,t) e-i"dk for the t-TLM (4.1.5)

where U = U(x, ) and U = U(k,t) are the displacement vectors in the o-TLM and the t-TLM,

respectively, M is the total number of the modes involved in the modal superposition, and

fj (x, o) and lj (k,t) are the modal components or participation factors in the o-TLM and the t-

TLM, respectively.

We consider first the convergence of the TLM modal solution associated with temporal
characteristics of external sources. In general, a modal solution to a source of high-frequency
content converges more slowly than a modal solution to a source of low-frequency content. The
reason is that to calculate accurate responses to high-frequency excitations, it is necessary to
include correspondingly high modes into the modal solutions. In other words, the parameter M in
equations (4.1.4 and 5) becomes larger. In addition, the computational cost of solving the
associated eigenvalue problems increases together with the frequency content. The reason is that
as the excitation frequency becomes higher, the corresponding wavelength shortens, which in
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turns requires a finer discretization of the media, see equation (4.1.1). Thus, the dynamic stiffness
matrix to be solved increases in size.

Next, we briefly consider the convergence and accuracy concerned with both of the spatial and

temporal characteristics of receivers. In general, the convergence and accuracy associated with
receivers are related to singularities and discontinuities in wave motion. Since the responses in
the TLM are provided in series form (i.e. modal superposition), the convergence near the

singularities and discontinuities is very slow and the accuracy is very sensitive as well. In the w-

TLM, the singularities occur simply near to sources, i.e. x=0O. So, the convergence and accuracy
of the oTLM are dependent on only the spatial characteristic of the receivers. On the other hand,
the singularities are complicated in the t-TLM, because the singularities exist near the wave fronts
as well as in the vicinity of sources. Therefore, the convergence and accuracy of the t-TLM
depend on both the spatial and temporal characteristics of the receivers.

In sections 4.2 and 4.3, we discuss in more detail not only the above two aspects, but also other
features, by means of numerical and practical examples. In addition, we determine the required

number of thin-layers per wavelength Nt needed to calculate accurately modal solutions not only
for displacements, but also for nodal stresses and loads.

4.2 TLM in the acdomain: a-TLM

We characterize and assess here in more detail the convergence and accuracy of the w-TLM
modal solutions. For this purpose, we begin by investigating various aspects of displacement
responses of a homogeneous stratum subjected to SH line loads. From this investigation, we

determine the number of thin-layers per wavelength NA needed to accurately calculate the modal
responses with the a.-TLM. Thereafter, we assess the accuracy of the w-TLM in terms of both the
displacement and stress responses by analyzing three simple examples for a homogeneous
stratum and plate subjected to SH and SV-P harmonic line loads.

We consider both the TLM1 and TLM2 in this section. Concerning the tuning factors, we apply
the optimal values determined in chapter 2. A summary of the optimal values is as follows:

the TLM1 for SH wave problems : ,&=-=0.55
the TLM2 for SH wave problems : A=pu=0.33
the TLM1 for SV-P wave problems : e-=f=l.0 and u=0.55
the TLM2 for SV-P wave problems : a-== 1.0 and /=0.33

4.2.1 Characterization of the modal solution

We estimate the convergence and accuracy of the modal solutions in the co-TLM by means of a
simple problem involving SH waves. In a nutshell, we investigate the convergence and accuracy
in terms of the spatial and temporal characteristics of the sources, the spatial and temporal
characteristics of the receivers, and the dispersion characteristics found in chapter 2. From this
investigation, we reveal a variety of important aspects of the modal solutions in the w-TLM.

The simple problem analyzed here concerns the response of a homogeneous stratum subjected to
an SH surface line load as shown in figure 4.2.1. The mass density, the shear velocity, and the
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thickness (or depth) of the stratum are all taken as unity, i.e. p=Cs=H=1, while the damping ratio

d is 0.0

where ex is the excitation frequency representing temporal charactenstics ot the external source
p. Following the four analysis steps explained in section 4.1, we solve an eigenvalue problem of
the form.

Kdy. = [Ak 2 + G -Mwo2]Oj =0 (4.2.2)

The displacement response in the x-o domain is then given as

M Mx, i)=kjf1  (4.2.3)
j=1 =1 2ik

where "' is the displacement at elevation m due to a load at elevation n, and M is the total
number of modes involved in the modal superposition. If all computed modes are included in the
calculation, then M is given for the present problem as

M = N for the TLM1 (4.2.4)
M = 2N for the TLM2 (4.2.5)

where N is the total number of thin-layers used in analysis. In general, however, it is not
necessary to include all the computed modes into the modal solution because the evanescent
modes with imaginary and complex eigenvalues kj do not contribute significantly to the final
results in the far-field, as will be seen in this section.

To determine the convergence and accuracy characteristics, we compare the modal solutions of

the w-TLM with the exact analytical solutions. The exact analytical solutions to this stratum are
presented in appendices 4A and 4B of this chapter, where they are derived by means of the image
source method and the continuous modal solution, respectively. Figure 4.2.2 displays the
dispersion curves of this stratum obtained with the exact analytical eigenvalue problem.

(A) Sources

Here, we consider the effect of the characteristics of sources on the convergence and accuracy of

the modal solutions in the -TLM. First of all, we consider the effect of temporal characteristics
of sources on convergence. Secondly, we consider the effect of temporal characteristics of
sources on accuracy. Thirdly, we consider the effects of spatial characteristics of sources on

convergence. Finally, we estimate the accuracy of the modal solutions in connection with the
temporal characteristics of sources and the number of thin-layers per wavelength.

We begin with the effect of temporal characteristics of sources, i.e. ex, on the convergence of the

wTLM modal solutions. As we have already observed in section 4.1, the modal solution to a
source of high-frequency content converges more slowly than the modal solution to a source of

low-frequency content. For example, consider a stratum excited at two different frequencies oh
and a, where oh>z>. To calculate the responses to the high-frequency excitation, it is necessary
to include the corresponding high propagation modes into the modal solutions. Therefore, the

modal solution due to the high frequency Qo converges more slowly than the modal solution due

to the low frequency o2.

Next, we consider the effect of temporal characteristics of sources, i.e. coex, on the accuracy of the

co-TLM modal solutions. At some frequencies of excitation, there exists a very special mode
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whose eigenvalue ko is nearly zero in absolute value, i.e. Ikol=0. This special mode occurs only
when the excitation frequency wx is close to the resonant (or cutoff) frequency Ca at which the
wave associated with this ko propagates nearly vertically (i.e. in the direction of the layers). As
can be easily recognized in equation (4.2.3), the factor 1/ko then becomes very large in value, so
this mode dominates strongly in the modal summation, even when ko is not the eigenvalue of the
first mode of the stratum. Therefore, in the case when coex=~R, the accuracy of the modal solution
is mostly controlled by the accuracy of this o-th mode. Hence, it is necessary to calculate the o-th
mode with high accuracy. In addition, if ko is exactly zero, which constitutes a double pole, then
equation (4.2.3) is no longer valid. In that case, it is necessary to use Fi7 = 0'"•x instead, the

amplitude of which grows linearly with x. This contradiction can be avoided by assuming that the
stratum has certain amount of damping, i.e. ý#0. Then, theoretically, the associated eigenvalue
problem never produces zero eigenvalues.

Next, consider the effects of spatial characteristics of sources on the convergence of the modal
solutions. The line load in equation (4.2.1) is a special type whose distribution in space x is that of
a 8 function, and for which the associated response function in equation (4.2.3) is referred to as a
Green's function. There are many practical applications in which the convergence of the response
functions to the actual loads may be faster than that for line loads. Since the system of interest is
of linear elasticity, superposition of multiple-load effects is always possible by utilizing the modal
solution in equation (4.2.3). Therefore, we can calculate the responses due to any load arbitrarily
distributed in the x direction by means of superposition, or equivalently, by integration. Consider,
for example, a strip load of unit amplitude applied over a certain range -a<x<a where a is half the
width of the strip load. The response (for x>a) can be obtained by integrating the modal solution
in equation (4.2.3) via convolution over the strip load as follows.

M -ikf|x- I
= ,,jP = v(x-)P,,,ýp()d = (ý) ed md=

j=1 2ikj
M -ikX x-fl M -ikjx

=I fm e d[eika eik(-a)

M -iklx

= --T' -e- sin ka (4.2.6)
J=1 ikj

Observe that the convergence is now faster than for line loads, because the solution contains the
factor l/k.2 rather than l/kj as in equation (4.2.3).

Next, we estimate the accuracy of the modal solutions in connection with not only the temporal
characteristics of the sources 0 ex, but also the number of thin-layers per wavelength NA. For this
purpose, we calculate the displacement at a point (x,z) = (1, 0) due to a line load applied on the
surface while changing both ex and NA. We obtain the numerical results by means of both of the
co-TLM and the exact analytical modal solution and then compare the two results. From this
analysis, we propose the proper NA with which the accurate modal solutions can be obtained.

Figures 4.2.3a,b display the logarithm of the amplitudes and the phase angles E (in radians) of the
displacements obtained with the TLM1 and the TLM2, respectively. Each of the sharp peaks in
the plots for displacements corresponds to the resonant frequencies. Four different NA's are
considered for the analysis, namely NA=2,4,8,12 for the TLM1 and NA=1,2,4,6 for the TLM2. In
addition, for each NA, the displacement is calculated in the range of frequenciesfex from 0 to 2 Hz.
In each plot the result of the w-TLM (solid line) is compared with that of the exact analytical
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modal solution (dashed line). To avoid the singularity at the resonant frequency, a damping ratio
,=0.001 is used in analysis.

Figure 4.2.3a shows the results obtained with the TLM1. The TLM1 with Na=2 yields acceptable
results only for relatively low frequencies, i.e. fex<0.5, while with NA=4, it provides acceptable
results for all the frequencies of interest. The TLM1 with Na=8 produces essentially the exact
results, although some discrepancies still persist at the resonant frequencies. Finally, the TLM1
with Na=12 shows perfect agreement with the exact analytical solution, even at the resonant
frequencies. In the light of these results, we propose the discretization criterion Na=12 to calculate
accurate displacements with the TLM1.

Figure 4.2.3b shows the results obtained with the TLM2. The TLM2 with Na=1 yields the correct
results only for relatively low frequencies, i.e.fx<0.6 , while Na=2 provides acceptable results for
all the frequencies of interest. The TLM2 with N=--4 yields virtually perfect results, so that an
additional refinement to NA =6 doesn't reveal any further improvements. Thus, we propose the
use of NA-4 to calculate accurate displacements with the TLM2.

(B) Receivers

Here, we consider the effect of the characteristics of receivers on the convergence and accuracy
of the modal solutions in the )-TLM. Since we are concerned with the o-TLM, we consider only
the spatial characteristics of receivers. Then, we distinguish between propagating and non-
propagating modes depending on the type of eigenvalue kj. Finally, we establish a criterion to
distinguish the near- and far-field solutions for a given evanescent mode of the form kj=-i ir.

As discussed in section 4.1, the spatial characteristics of receivers have significant effect on the
convergence and accuracy of the modal solutions with the ,-TLM. In other words, the
convergence and accuracy of the modal solutions in the o-TLM are dependent on the distance
between the external sources and the receivers, namely the near-field and far-field solutions. In
general, the near-field solution converges slowly. The reason is that the high evanescent (i.e. non-
propagating) modes in equation (4.2.3) contribute strongly to the wave field in the immediate
vicinity of the source, so a large number of modes is necessary. It follows that the accuracy of the
near-field solution is sensitive to the degree of numerical error of these non-propagating modes.
On the other hand, the far-field solution converges relatively fast, because only the propagating
modes (which for any given frequency are finite in number) have major contribution to the modal
solutions, and in addition no singularities are involved in the wave motion. Therefore, the
accuracy of the far-field solution depends only on the accuracy of the propagating modes, and is
nearly independent of any numerical error in the evanescent modes.

Consider an example to illustrate the effect of the spatial characteristics of receivers on the
convergence and accuracy of the modal solutions in the wTLM. The example involves the
displacement on the surface of a stratum in the range 0<x<l caused by a line load with fe=4.5 Hz
applied on the surface. The associated propagating modes are the first 9 modes shown in the
dispersion curves of figure 4.2.2. The displacement is obtained with both of the TLM1 with
Na=1 2 and the TLM2 with Na=4 . In both the cases, the total number of thin-layers N is 54, and
the total number of computed modes is also 54. In addition, the modal solutions are calculated for
various M (=the number of modes included in modal summation), namely 8, 9, 10, and 54.
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Figures 4.2.4a and b display the numerical results (solid line) obtained with the TLM1 and the
TLM2, respectively, in comparison with the exact analytical solutions (dashed line) obtained with
the image source method. As can be seen, the far-field solutions for 0.3<x converge with just 9 or
10 propagation modes, i.e. M=9 or 10, while the near-field solutions for x<0.3 converge more
slowly, and require a larger number of modes. Notice in the two figures that the responses show
sharp variation near the source point, which causes the slow convergence in the near-field
solutions.

The propagating and non-propagating modes referred to previously can be distinguished
according to the type of eigenvalue kj. As seen in figure 4.2.2, the eigenvalues kj can be purely
real, purely imaginary, or complex numbers. Therefore, and without any loss of generality, kj can
be expressed as j-irh with 05ih. It follows that the factor exp(-ikix) /2ikj in equation (4.2.3) for
0-x can be expressed in one of the following three forms:

-ikx e -
i
5
i

x

(A) - when ý 0, ij =0 (4.2.7)
2ik1  2ifj

-ikyx e-~jx

(B) - when ýj =0,77j 0 (4.2.8)
2iki 2r7j

e-ikyx e-qxe-ix

(C) - when• 0,77i 0 (4.2.9)
2ikj 2(rQ, + ij)

Case (A) corresponds to a propagating mode, because equation (4.2.7) represents harmonic wave
motion in the x direction. Case (B) corresponds to a non-propagating mode, because equation
(4.2.8) represents exponentially decaying amplitudes in the x direction. Case (C) corresponds to
either a propagating mode or a non-propagating mode, depending on the magnitude of j}. In the
case of a stratum in antiplane motion as being considered herein, these complex eigenvalues arise
only when the material has damping, i.e. •O•.0.

Next, we establish a criterion to distinguish the near- and far-field solutions for a given
evanescent mode of the form kj=-i i. First, we assume that the amplitude of all the mode shapes
is order of 1, and choose a parameter E such that eE<<1. For example, e'3=0.05 and e' 5=0.007.
Then, the contributions of all the evanescent modes can be determined according to equation
(4.2.8). Disregarding the factor 2 in the denominator, we formulate the following relationship.

S < e-  
(4.2.10)

where e-' on the right hand side defines the tolerance. It follows that any mode, say the j h, that
satisfies equation (4.2.10) will have very small contribution to the final results. Hence, if these
modes are ordered by the magnitude of the imaginary part, it follows that the contribution to the
response of all modes higher than the jh is negligible. From equation (4.2.10) and adding a
subscriptj to x, we arrive at the following criterion.

E - log r,-17< x (4.2.11)

r71

In this expression, xj denotes the critical distance that corresponds to 71. In other words, for a
given ri, we can consider the region x<xj as the near-field, and x,<x as the far-field. It also
follows that the mode of kj=-ir7, has significant contribution to the former, but negligible
contribution to the latter.
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(C) Numerical dispersion

In chapter 2, we evaluated the numerical dispersion in the TLM, and found the optimal tuning
factors needed for the dynamic stiffness matrix Ky,,. With the help of these factors, we were able
to minimize the numerical error in the eigenvalues and mode shapes obtained with discrete
models. However, despite the tuning factors, some small errors still persist. Here, we explore the
effect of these inaccuracies on the final modal responses. For this purpose, a couple of examples
are considered, and a remedy is proposed to ameliorate the remaining error.

First, we consider the effect of the dispersion error on the far-field solution. Let kEj and kDj be the
j-th eigenvalues obtained with the exact and the discrete solutions, respectively. Assume that
these two eigenvalues have a small discrepancy e. Then, we can express kDj as

kDj = kE,j ± 6 (4.2.12)
If we now substitute kEj and kDj into equation (4.2.3) we can write the last factor there as

-ikEJ x
(4.2.13)

2ikj

-ikDj x -i(kE.J±E)x -ikE. x -ikEj X iex
Se T IEx • ix (4.2.14)

2ikD.j  2i(kE,j ± E) 2 i(kE,j ± E) 2ikE,j
Equation (4.2.14) shows that the amplitude of the discrete solution converges to the exact
solution, because leie'l=1.0. However, if x is large, then the factor e"' could lead to significant
discrepancies in the phase angles E. To demonstrate this observation more explicitly, we consider
the same example as figure 4.2.4, except that we now calculate the displacement in the far field,
i.e. for 0<x<4.0. Figures 4.2.5a and b show the numerical results in terms of the amplitude and the
phase angle obtained with the TLM1 and the TLM2 (solid line), respectively, and with the exact
analytical solution (dashed line). As can be seen, the numerical error in the phase angles increases
for larger x. It is also observed that the error of the TLM2 is much smaller than that of the TLM 1.

In subsection (A), we considered a special eigenvalue ko and discussed its significant contribution
to the final modal solutions. Since this eigenvalue plays such an important role, any small error
associated with ko deteriorates the final results not only the far-field, but also in the near-field. To
overcome this problem, we propose a hybrid method as follows.

Instead of using eigenvalues in the vicinity of ko such as ko. and ko, or ko and k0o+ obtained with
the acTLM, we make use instead of the exact eigenvalues. For this purpose, a new routine is
required that searches for the exact eigenvalues with the continuous model. The associated
computational effort is small, because we start the search with the eigenvalues obtained with the
waTLM as initial guesses, and use the mode shapes obtained with the aw-TLM.

To verify this proposed hybrid method, we consider again the stratum with an excitation
frequency f,,=4.25 Hz, which coincides with the 9-th resonant frequency. Figures 4.2.6a and b
show the results from the conventional TLM1 and TLM2 (solid line), respectively, in comparison
with the exact modal superposition (dashed line). It is seen that there are significant errors for
both the TLM1 and the TLM2. Figures 4.2.7a and b show the results obtained with the hybrid
method (solid line) in comparison with the exact modal superposition (dashed line). It is proved
that the proposed hybrid method significantly improves the final results.
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4.2.2 SH wave problem

We now assess the accuracy of the ca-TLM in the computation of stresses as well as
displacements elicited by SH waves. For this purpose, we evaluate the consistent nodal loads in
vertical planes and the consistent stresses in horizontal planes. For practical purposes, we analyze
two simple examples involving a homogeneous stratum and a homogeneous plate subjected to
harmonic SH line loads. The associated exact analytical solutions are derived and presented in
appendix 4B. We compute the responses by means of both the TLM1 and TLM2 with NA
proposed in section 4.2.1, and then compare them with the exact analytical solutions.

(A) Homogeneous stratum

We explore here the accuracy of the o-TLM by analyzing a homogeneous stratum subjected to an
SH line load. The material properties and geometry of the stratum, namely the mass density, the
shear wave velocity, and the thickness, are all taken as unity, i.e. p=Cs=H=1.0. The line load is
applied at the top surface and its excitation frequency is fex=2.50, which corresponds to a
wavelength -=Cslfe=0.4. Using the w-TLM, we compute the displacement v(x,z,ow), the

consistent stress in a horizontal plane ••(x,z,w), and the consistent nodal load on a vertical

plane qy(x, z,co) for the whole stratum, and compare these with the exact analytical solutions.

For this purpose, the consistent nodal load q, is calculated by means of equation (1.3.45) for both

the w-TLM and the exact analytical solution.

We begin by investigating the accuracy of the TLM1. For the discrete model, we analyze the
stratum by means of the TLM1 with N,=12, as proposed in section 4.2.1. Thus, it follows that the
total number of thin-layers N(=H/h= HNa/2) is 30, so the total number of degrees of freedom for
the discrete model is 30. Figure 4.2.8 shows the numerical results obtained with the TLM1 (solid
line) in comparison with the exact analytical solutions (dashed line). The two plots on the first
row present the real and imaginary part of the displacement v. The two plots on the second row
present the real and imaginary part of the consistent stress zy. The two plots on the third row
present the real and imaginary part of the consistent nodal load qy. Each line in the six plots
represents the variation of the responses at interface i=1,3,5,...,29 (counted from the top down)
and for 0<_:x<2. It is observed from figure 4.2.8 that all the three components of v, zy, and qy
obtained with the TLM1 using NA=12 are in good agreement with the exact analytical solutions,
for the whole domain considered. Therefore, it is proved that the TLM1 with NA=12 provides
quite good accuracy for not only the displacement component, but also the internal stress
components.

Next, we assess the accuracy of the TLM2. For the discrete model, we analyze the stratum by
means of the TLM2 with NA=4 as proposed in section 4.2.1. So, it follows that the total number of
thin-layers N(=H/h= HNAA2) is 10 and the total number of degrees of freedom for the discrete
model is 20. Figure 4.2.9 shows the numerical results obtained with the TLM2 (solid line) in
comparison with the exact analytical solutions (dashed line). The two plots on the first row
present the real and imaginary part of the displacement v. The two plots on the second row
present the real and imaginary part of the consistent stress ,y. The two plots on the third row
present the real and imaginary part of the consistent nodal load qy. Each line in the six plots
represents the variation of the responses at interface i=1,2,3,...,10 (from the top) and for 0<_5_r2. It
is observed in figure 4.2.9 that all three fields v, rz,, and qy obtained with the TLM2 using NA=4
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are in good agreement with the exact analytical solutions throughout the domain of interest.
Therefore, it is again verified that the TLM2 with NA-4 provides quite good accuracy for not only
the displacement component, but also the internal stress components.

(B) Homogeneous plate

Next, we explore the accuracy of the w-TLM by analyzing a homogeneous plate subjected to an
SH line load. The material properties and geometry of the stratum are the same as those for the
stratum considered previously, i.e. p=Cs=H=1.0. An SH line load is applied at the top surface
with an excitation frequencyfx = 2.25, for which the associated wavelength is A-Cslfex = 0.4445.
Using the o-TLM, we compute the displacement v(x,z, o), the consistent stress on horizontal

planes r•,(x,z,co), and the consistent nodal load on vertical planes qy(x,z,cO) throughout the

plate, and compare these with the exact analytical solutions. It should be noted again that the
consistent nodal load q, is calculated by means of equation (1.3.45).

We begin by investigating the accuracy of the TLM1. For the discrete model, we analyze the
plate by means of the TLM1 with NA=1 2 as proposed in section 4.2.1. So, it follows that the total
recommended number of thin-layers N(=H/h= HNAA2) is 27. However, we choose N=30 instead to
match the stratum case. Then the total number of degrees of freedom for the discrete model is 30.
Figure 4.2.10 shows the numerical results obtained with the TLM1 (solid line) in comparison
with the exact analytical solutions (dashed line). The two plots on the first row present the real
and imaginary part of the displacement v. The two plots on the second row present the real and
imaginary part of the consistent stress 'y. The two plots on the third row present the real and
imaginary part of the consistent nodal load qy. Each line in the six plots represents the variation of
the responses at interfaces i=1,3,5,...,31 (from the top) and for 0<_x_2. It is observed from figure
4.2.10 that all three field quantities v, zy, and qy obtained with the TLM1 using NA=12 are in good
agreement with the exact analytical solutions, for the whole domain of interest. Therefore, it is
confirmed that the TLM1 with Na=12 provides quite good accuracy for not only the
displacements, but also for the internal stresses.

Next, we assess the accuracy of the TLM2. For the discrete model, we analyze the plate by means
of the TLM2 with NA=4 as proposed in section 4.2.1, for which the total recommended number of
thin-layers is N=H/h= HNA/A-9. However, N=10 is used for actual calculation, so that the total
number of degrees of freedom for the discrete model is 21. Figure 4.2.11 shows the numerical
results obtained with the TLM2 (solid line) in comparison with the exact analytical solutions
(dashed line). The two plots on the first row present the real and imaginary part of the
displacement v. The two plots on the second row present the real and imaginary part of the
consistent stress z'. The two plots on the third row present the real and imaginary part of the
consistent nodal load qy. Note that each line in the six plots represents the variation of the
responses at interface i=1,2,3,...,11 (from the top) and for 0<_x2. It is observed in figure 4.2.9
that all the three field quantities v, zy,, and qy obtained with the TLM2 using NA=4 are in good
agreement with the exact analytical solutions, for the whole domain of interest. Therefore, it is
confirmed that the TLM2 with Na=4 provides quite good accuracy for not only the displacement
component, but also the internal stress components.
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4.2.3 SV-Pwave problem

We assess here the accuracy of the w-TLM for SV-P wave problems in terms of both the
displacement and stress responses. For practical purposes, we analyze again a homogeneous
plate, but this time subjected to SV-P harmonic line loads. The associated exact analytical
solutions are derived and presented in appendix 4C. The material properties and geometry of the
stratum, namely the mass density, the shear wave velocity, and the thickness, are all taken as
unity, i.e. p=Cs=H=1.0. In addition, Poisson's ratio used is v--0.31 (as in the classical Mindlin
plate), and the damping ratio imposed is 0.1%. An SV-P line load is applied at the top surface in
the vertical direction with an excitation frequency fei=2.25, for which the associated wavelength
is A-Cs/fei=0.4445. We are interested in the horizontal and vertical displacements, u and w, the
consistent stresses on horizontal planes, , and or, and the consistent nodal loads on vertical
planes, q, and qz. We compute all responses by means of both the TLM1 and TLM2 with NA as
proposed in section 4.2.1, and then compare these with the exact analytical solutions. It should be
noted that the consistent nodal loads, qx and qz, are calculated by means of equation (1.3.75) for
both the o)-TLM and the exact analytical solution.

We start by exploring the accuracy of the TLM1 for SV-P wave problems. For the discrete model,
we analyze the plate by means of the TLM1 with NA=12 as proposed in section 4.2.1, which
implies a total number of thin-layers N=HIh= HNa/A-27. For the actual analysis, however, N is
chosen to be 30, so the total number of degrees of freedom for the discrete model is 62. Figure
4.2.12a,b show the numerical results obtained with the TLM1 (solid line) in comparison with the
exact analytical solutions (dashed line). Figure 4.2.12a display the real and imaginary parts of u,
w, r,, and figure 4.2.12b show the real and imaginary parts of o,, q, qz. Note that each line in the
twelve plots represents the variation of the responses at interface i=1,3,5,...,29 (from the top) and
for 0<x_2. It is observed from figures 4.2.12a,b that all the six response quantities u, w, zr, o,, qx
and qz obtained with the TLM1 using Na=12 are in good agreement with the exact analytical
solutions throughout the domain considered. Therefore, it is seen that the TLM1 with Na=12
provides quite good accuracy for the displacement components and the internal stress
components, not only for SH wave problems, but also for SV-P wave problems.

We next assess the accuracy of the TLM2 for SV-P wave problems. For the discrete model, we
analyze the plate by means of the TLM2 with NA=4 as proposed in section 4.2.1, for which the
total number of thin-layers is N=H/h= HNA/2=9. For the actual analysis, however, N is chosen to
be 10, so that the total number of degrees of freedom for the discrete model of the plate is 42.
Figure 4.2.13a,b show the numerical results obtained with the TLM2 (solid line) in comparison
with the exact analytical solutions (dashed line). Figure 4.2.13a display the real and imaginary
parts of u, w, r', and figure 4.2.13b shows the real and imaginary parts of Oq, qx, qz. Each line in
the twelve plots represents the variation of the responses at interface i=1,3,5,...,11 (from the top)
and for 05<_x2. It is observed from figures 4.2.13a,b that all the six components of u, w, ,, rz, qx,
q, obtained with the TLM2 using NA- 4 are in good agreement with the exact analytical solutions
throughout the domain considered. Therefore, it is verified that the TLM2 with N1=4 provides
quite good accuracy for the displacement components and the internal stress components, not
only for SH wave problems, but also for SV-P wave problems.

185



4.3 TLM in the time domain: t-TLM

In this section, we characterize and assess in more detail the convergence and accuracy of the t-
TLM modal solutions. For this purpose, we begin by investigating various aspects of
displacement responses of a homogeneous plate subjected to SH transient line loads. From this
investigation, we determine the number of thin-layers per wavelength Na needed to obtain
accurate modal responses with the t-TLM. Thereafter, we assess the accuracy of the t-TLM in
terms of both the displacement and stress responses by analyzing three simple examples, namely
a homogeneous stratum and plate subjected to SH and SV-P transient line loads.

We consider both the TLM1 and TLM2 in this section. Concerning the tuning factors, we apply
the optimal values determined in chapter 2. A summary of the optimal values is as follows:

TLM1 for SH wave problems : 8=u=p-0.55
TLM2 for SH wave problems : =%t4-=0.33
TLM1 for SV-P wave problems : r=Af-=l.0 and p=0.55
TLM2 for SV-P wave problems : r=/1=l.0 and p=0.3 3

4.3.1 Characterization of the modal solution

We assess the convergence and accuracy of the modal solutions in the t-TLM by means of a
homogeneous plate with shear wave velocity Cs=1.0 and thickness H=1.0, subjected to SH wave
motion as shown in figure 4.3.1. This plate problem is one of the simplest examples, through
which we investigate the dependence of convergence and accuracy on the spatial and temporal
characteristics of sources, the spatial and temporal characteristics of receivers, and the numerical
dispersion of the TLM found in chapter 2. From this investigation, we reveal a number of
characteristics in the modal solutions with the t-TLM.

We calculate displacement responses due to an SH line load given as
p = p, (x, z,t) = f(x) S(z)h(t) (4.3.1)

where fix) and h(t) are the spatial and temporal variation of the line load, respectively. In
particular, the bell-shaped variation in both the space x and time t, so-called Hanning window, is
considered here, for whichflx) and h(t) are of the form.

-cos27x Ixaf (x) = a 2a (4.3.2)
0 IxI>a

sin2--t <t < t
h(t) = td  td < < t (4.3.3)

0 t <0, td <t

where a is the half width of the load and td is the loading duration.

Following the four analysis steps described in section 4.1, we begin by determining the spatial
and temporal characteristics of the applied source p. Based on this characterization, we decide on
the thickness of the discrete layers and the practical integration range needed to invert the Fourier
transform over wavenumbers k. The Fourier transforms of fix) and h(t) in equations (4.3.2 and 3)
are of the form
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f(k) = f(x)eidx sin=  (4.3.4)
ka[1- (ka /7C)2]

h(w) = Lh(t)e-iOdt = sin td / 2 e-itodl2 (4.3.5)
otd / 2 [1- (wtd / 27)2]

Figure 4.3.2 shows the spectra of these two functions as well as the dispersion curve of the plate
obtained with the exact analytical solution. Clearly, the amplitudes of the loading function are
negligible beyond the wavenumber kmax=27r/a and frequency wax=4m/td (i.e. fmzx= 2/td). This
implies that the load spectrum-components beyond kmna and ,max have negligible contribution to
the wave motion. Through this section 4.3.1, we set a=td=0.2 and so km,,=10r and a6x=20n.
Then, we assemble the dynamic stiffness matrix Kdy,, and solve the associated eigenvalue problem
of the form

Kdynj = [Ak2 + G -Mol, = 0 (4.3.6)

The displacement in the k-t domain is then obtained by means of the modal summation

M M sin ojt
vm"(k,t)= E_ O j = '_,•i _ (4.3.7)

j=1 j=1 j01
where 3" is the displacement at elevation mn due to a load at elevation n, and M is the total
number of modes included in the modal summations. In the present problem, M does not exceed

M = N+1 for the TLM1 (4.3.8)
M = 2N+1 for the TLM2 (4.3.9)

where N=HIh=HNAIAn. is the total number of thin-layers. For practical purposes, it is not
necessary to include all the computed modes in the modal solution, because in general the high
modes do not contribute much to the final results in the far-field, as was the case in the w-TLM.

In order to obtain the solution in the x-t domain, we perform the inverse Fourier transformation as

S"(x, t)= -: r (k,t)e-'kdk (4.3.10)

As shown in the spectra of figure 4.3.2, the amplitudes of the load in the wavenumber domain
beyond kmna are small enough that they can be ignored. Hence, we replace the preceding
integration by

v (x,t) =1 9V"• (k, t)coskxdk (4.3.11)

where the inverse Fourier cosine transformation is applied because of the symmetry of the
function V"^ in the present problem. If the function V"` were anti-symmetry with respect to k, the
inverse Fourier sine transformation would be performed instead,. i.e.

v" (x,t) =1 j' " -" (k,t)sinkxdk (4.3.12)
7r

Practically, the wavenumber integration in equations (4.3.10-12) is performed by means of a
finite discrete summation, not by an analytical integration (or even the FFT). For instance, instead
of calculating equation (4.3.11), we calculate a summation with an interval Ak,

v"M (x,t) - -V (ko, t) + "m (k,, t)cos(kx)1 (4.3.13)

where ki=iAk and Mk=km,Ak. Kausel [1994] points out that when choosing Ak, it is necessary to
avoid the influence of the spatial periodicity of the discrete Fourier series in equation (4.3.13). So,
he suggests the use of a criterion of the form
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2nt 2t
Ak <27 = (4.3.14)

L x. + Ct, + a
where X,,,,, Cma, tm, are the farthest distance, the fastest wave speed, the longest time in
calculation, respectively, and L is the spatial periodicity of the load due to the discrete
summation.

To estimate the convergence and accuracy, we compare the modal solutions obtained with the
discrete t-TLM with the exact analytical solutions, which are derived and presented in appendices
4A and 4B using the image source method and the continuous modal solution, respectively.
Figure 4.3.2 displays the dispersion curves of the plate and the spectra of the loading function in
equations (4.3.2 and 3).

(A) Sources

Here, we consider the effect of the characteristics of sources on the convergence and accuracy of
the modal solutions in the t-TLM, namely the effect of the spatial and temporal characteristics of
the sources. Thereafter, we estimate the accuracy of the modal solutions in connection with both
the temporal characteristics of the sources and the number of thin-layers per wavelength.

First, we consider the effect of the spatial characteristics of the sources on the convergence of the
t-TLM modal solutions. As discussed in section 4.1, the spatial characterization of sources
provides the significant wavenumber range k, i.e. kinS:<kkmax that contributes to the modal
solutions. Also, it is observed from equation (4.3.13) that a large kmax requires a large Mk for
discrete summations, because Mk=kmna/Ak for a fixed Ak. Therefore, the convergence of equation
(4.3.13) clearly depends on kax. Hence, it follows from the definition of the function .f(x) in
equation (4.3.2) that the smaller the load half-width a is, the slower the convergence, because
kmax=2d/a and Mk=kx/Ak.

Next, consider the effect of the temporal characteristics of the sources on the convergence of the
t-TLM modal solutions. As already pointed out in section 4.1, a modal solution to a source of
high-frequency content converges more slowly than a modal solution to a source of low-
frequency content. Hence, in connection with the function h(t) in equation (4.3.3), it is inferred
that a modal solution associated with smaller td converges more slowly than that associated with
larger td, because of max=47/td.

Finally, we consider the accuracy of the t-TLM modal solution as a function of the number of
thin-layers per wavelength NA. Recall from section 4.1 that this Na plays an important role in
determining the discretization size in connection with the temporal characteristics of external
sources, i.e. L~x as shown in equation (4.1.1). For this purpose, we calculate the displacement
seismogram v of the plate at (x,z)=(1,O) due to a transient line load with a=td=0.2 as a function of
NA. We perform the numerical analysis by means of both of the t-TLM and the exact analytical
modal solution and then compare the two results. From this analysis, we propose the proper NA
with which accurate modal solutions can be obtained.

Figures 4.3.3 displays the displacement seismogram v of the plate at (x,z)=(1,0) for 0!t•5,
obtained with the TLM1 on the left column, and the TLM2 on the right column. Each sharp peak
in the plots corresponds to the arrival of a wave-front . For the analyses with the TLM1 and
TLM2, four different NA's are considered, namely NA=2, 4 ,8,1 2 and Na=1,2,4,6, respectively. In
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each plot that, the result of the t-TLM (solid line) is compared with that of the exact analytical
modal solution (dashed line).

As can be seen in figure 4.3.3, the use of NA=2 for the TLM1 and Na=1 for the TLM2 produces
significant errors in the seismograms, except for the direct wave arrivals involving no reflection.
In the case of Na=4 for the TLM1 and Na=2 for the TLM2, the results are acceptable and exhibit
little error. The inaccuracies can be seen near the arrivals of the second and third peaks
corresponding to wave fronts for multiply reflected waves. It is believed that this error is caused
by the numerical dispersion of the higher modes in the discrete models, as will be seen in
subsection (C). On the other hand, the use of Na=8 for the TLM1 and Na=4 for the TLM2 shows
an almost perfect agreement with the exact analytical solution. In addition, notice that the results
obtained with NA=12 for the TLM1 and NA=6 for the TLM2 are virtually identical to those
obtained with NA;=8 for the TLM1 and Na=4 for the TLM2. Hence, we propose the use of Na=8
for the TLM1 and N;A=4 for the TLM2 for calculating accurate displacement with the t-TLM.

(B) Receivers

The convergence and accuracy of the t-TLM are considered in connection with the spatial and
temporal characteristics of the receivers. As discussed in section 4.1, the convergence and
accuracy of the modal solutions depend on the existence of singularities in wave motion of
interest. Since the final response of the t-TLM is provided in the x-t domain, there are two types
of singularities, i.e. spatial and temporal singularities. The former occurs only near to the source
point, as was the case of the wo-TLM, while the latter takes place at the arrivals of multi-reflection
waves. The two singularities require the inclusion of many high modes in the modal summations,
as a result of which the convergence is very slow. In addition, it is expected that the numerical
dispersion error involved in the high modes computed with the t-TLM deteriorates the accuracy
of the final response.

First, we investigate the convergence with the spatial characteristics of the receivers. For this
purpose, we calculate displacement snap-shots at t=1.85 along the surface (05x•-4.0) due to a
surface line load with a=td=0. 2 , and vary the number of modes included into modal summations,
namely M=8, 12, 16, and 20. The results are then compared with the exact analytical modal
solution using a sufficient number of modes. For the discrete models, NA=8 and NA=4 are used for
the TLM1 and the TLM2, respectively.

Figure 4.3.4 shows the convergence of the modal solutions obtained with the TLM1 and TLM2
(solid line) in comparison with the converged solution obtained with the exact analytical modal
superposition (dashed line). As can be seen, the near field solutions converge slowly, while the
far field solutions converge very fast with even only 8 modes being included. Therefore, it is
confirmed that the singularity near the source point decreases the speed in convergence.

Next, we consider the convergence with the temporal characteristics of the receivers. For this
purpose, we again calculate the seismograms at (x,z)=(1.0,0.0) due to a surface line load with
a=td=0.2 for 0•t•5, and M=8, 12, 16, and 20. The results are then compared with the converged
solution obtained with the exact analytical modal superposition. For the discrete models, Na=8
and N2=4 are applied for the TLM 1 and the TLM2, respectively.

Figure 4.3.5 displays the convergence of the seismograms at (x,z)=(1,0) calculated by means of
the TLM1 with Na=8 and the TLM2 with Na=4 (solid line) in comparison with the converged
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solution obtained with the exact analytical modal superposition (dashed line). It is clearly seen
that the convergence is slow near the second and third sharp peaks that correspond to the
wavefronts of the reflected waves. In addition, the third peak converges more slowly than the
second one. The reason is that the third peak experiences more reflections along its propagation
path than the second one. Therefore, the third peak requires a large number of modes in its modal
summation. It is confirmed that the arrivals of reflected waves cause a sharp variation in the
responses, and that the modal solutions at the corresponding times converge slowly.

(C) Numerical Dispersion

We now consider the effect of the numerical dispersion on the accuracy of the t-TLM modal
solution. In chapter 2, it was seen that the optimal tuning factors improve the accuracy of
computed eigenvalues of only the low modes, not the high modes. So, it is expected that the
numerical error associated with the high modes deteriorates the accuracy of the t-TLM modal
solutions. To investigate this feature, we consider first the phase difference between the t-TLM
modal solution and the exact analytical solution. Then, we consider a numerical example to
confirm practically the effect of the numerical dispersion of the high modes on the accuracy.
Finally, we propose a strategy to decrease this numerical dispersion effect.

First, consider the phase difference between the t-TLM modal solution and the exact analytical
solution, which is produced by the numerical dispersion in the t-TLM. Let oEj and aoj be the j-th
eigenvalues of the exact analytical solution and the t-TLM, respectively. Then, foj can be
expressed in terms of •Ej as

o.,J = WE,j + E (4.3.15)
where E represents the error in eigenvalues between the t-TLM and the exact modal solution.
Consider the last term in equation (4.3.7), i.e. sinojt/a1, which is actually the impulse response
function for each mode j and is a function of time t. Compare the two impulse response functions
of the exact analytical solution and the t-TLM as

sin coE jt e
i

WE 
'

tsin E, ImWEj (4.3.16)
O)E,j O)E,j

s - Im - Im ) Im (4.3.17)
)±, j  O)D, O)E,j •6 O) E,j

It is expected that the component e±' t in equation (4.3.17) can produce a significant phase
difference for large t, even for a very small e. Notice also that the seismograms for large t at a
given receiver involves multiply reflected waves, as can be seen in figures 4.3.6a,b.

Next, we consider a numerical example to show the numerical error caused by the numerical
dispersion in the high modes. In this example, we once more calculate the seismogram of the
plate at (x,z)=(1.0,0.0) due to a surface line load with a=t=-0.2 , but now we consider the interval
05t<10. The reason of considering such a long time window is to include a larger number of
multiply reflected waves in the seismograms. Notice that these multiple reflections are associated
with high modes rather than low modes, as previously discussed in subsection (B). For the
discrete models, Na=8 and Na=4 are used for the TLM1 and the TLM2, respectively. Then, the
total number of computed modes in this example is 81. In particular, we calculate two kinds of
seismograms in this example using M=81 and M=41. The two results are then compared with the
two exact analytical solutions that are also calculated with the 81 and 41 exact modes,
respectively.
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Figure 4.3.6a displays the numerical results obtained with M=81. The two plots in the first row
compare the seismograms obtained with the TLM1 and the TLM2 (solid line) against the exact
analytical solution (dashed line). The two plots in the second row display, respectively, the
difference between each of the two discrete models (i.e. TLM1 and TLM2) and the exact
analytical solution. Recall that the seismograms obtained with the t-TLM include all the
computed modes, i.e. M=81. It is observed that the waves having a higher multiple reflections
exhibit more numerical error, which is caused by the numerical dispersion of the high modes.
Therefore, it is confirmed that the numerical dispersion in the high modes deteriorates the final
responses.

Figure 4.3.6b presents the numerical results obtained with M=41 in the same fashion as figure
4.3.6a. It is observed that the difference between the t-TLM and the exact analytical solution is
reduced. The reason for this reduced error is that by truncating the high modes, we avoid the
numerical dispersion effect associated with those high modes. In other words, we include only the
accurate eigenvalues and modal shapes into the modal superposition. In addition, the elimination
of incorrect high modes improves to the great extent the convergence of the modal solutions.
Therefore, we conclude that the truncation of incorrect high modes obtained with the t-TLM is
necessary, because the truncation not only improves the accuracy of the modal solutions, but also
reduces remarkably the computational time.

4.3.2 SH wave problems

We now assess the accuracy of the t-TLM for SH wave problems for the computation of stresses
as well as displacements. To this effect, we consider both of the consistent nodal load on vertical
planes and the consistent stresses on horizontal planes. For practical purposes, we analyze two
simple examples, namely a homogeneous stratum and a homogeneous plate subjected to SH
transient line loads. The associated exact analytical solutions are derived and presented in
appendix 4B. We compute the responses by means of both the TLM1 and TLM2 with NA as
proposed in section 4.3.1, and then compare them with the exact analytical solutions.

(A) Homogeneous stratum

We explore here the accuracy of the t-TLM by analyzing a homogeneous stratum subjected to an
SH line load whose variations in x and t are both bell-shaped, as defined in equations (4.3.1 to 3).
The material properties and geometry of the stratum, namely the mass density, the shear wave
velocity, and the thickness, are all taken as unity, i.e. p=Cs=H=1.0. The SH transient line load is
applied at the top surface. Also, its half width a and its loading duration td are both 0.2. Hence,
the associated minimum wavelength is 1n,=Cs/fmax =0.1, and the maximum wavenumber kna is
10n. We compute by means of the t-TLM the displacement v(x,z,t), the consistent stresses on

horizontal planes rz (x, z,t), and the consistent nodal load on vertical planes qy (x, z,t), and then

compare these with the exact analytical solutions. It should be noted that the consistent nodal load
q, is calculated by means of equation (1.3.92) for both the t-TLM and the exact analytical

solution.

We begin by investigating the accuracy of the TLM1. For the discrete model, we analyze the
stratum by means of the TLM1 with Na=8 as proposed in section 4.3.1. So, it follows that the

191



total number of thin-layers is N=H/h=HNA=-80 and the total number of degrees of freedom is 80.
Figure 4.3.7 shows the numerical results obtained with the TLM1 (solid line) in comparison with
the exact analytical solutions (dashed line). The three plots present the displacement v, the
consistent stress 'y, and the consistent nodal load qy, respectively, for snap-shots at t=-3.0. Each
line in the three plots represents the variation of the responses at interfaces i=1,9,17,...,73 (from
the top) and for 0<x<4. It is observed from figure 4.3.7 that all the three response variables v, z,
and qy obtained with the TLM1 using NA=8 are in good agreement with the exact analytical
solutions throughout the domain considered. Therefore, it is seen that the TLM1 with Na=8
provides quite good accuracy not only for the displacements, but also the internal stresses.

Next, we assess the accuracy of the TLM2. For the discrete model, we analyze the stratum using
Na=4 as proposed in section 4.3.1, implying a total number of thin-layers is N=H/h=HNAA--I40,
and a total number of degrees of freedom of 80. Figure 4.3.8 shows the numerical results obtained
with the TLM2 (solid line) in comparison with the exact analytical solutions (dashed line). The
three plots present the displacement v, the consistent stress zy, and the consistent nodal load qy,
respectively, in terms of snap-shots at t=3.0. Each line in the three plots represents the variation
of the responses at interfaces i=1,5,9,...,37 (from the top) and for 0<•!X4. It is observed from
figure 4.3.8 that all the three components of v, zy, and qy obtained with the TLM2 using Na=4 are
in good agreement with the exact analytical solutions throughout the domain considered.
Therefore, the TLM2 with Na=4 provides quite good accuracy for both the displacement and the
internal stresses.

(B) Homogeneous plate

Next, we explore the accuracy of the t-TLM by analyzing a homogeneous plate subjected to an
SH line load whose variations in x and t are both bell-shaped as defined in equations (4.3.1 to 3).
The material properties and geometry of the stratum are identical to those of the stratum just
considered, i.e. p=Cs=H=1.0. The SH transient line load is applied at the top surface, and its half
width a and duration td are both 0.2. Thus, the associated minimum wavelength is

Mn=Cs/fmax=O.1 and the maximum wavenumber is kmax=10nt. We then compute by means of the
t-TLM the displacement v(x,z,t), the consistent stress on horizontal planes r•,(x,z,t), and the

consistent nodal load on vertical planes qy(x,z,t), and then compare these with the exact

analytical solutions.

We begin by investigating the accuracy of the TLM1. For the discrete model, we analyze the
plate by means of the TLM1 with NPA=8 as proposed in section 4.3.1. So, it follows that the total
number of thin-layers is N=H/h=HNA=--80 and the total number of degrees of freedom is 81.
Figure 4.3.9 shows the numerical results obtained with the TLM1 (solid line) in comparison with
the exact analytical solutions (dashed line). The three plots present the displacement v, the
consistent stress zy, and the consistent nodal load qy, respectively, in terms of snap-shots taken at
t=3.0. Each line in the three plots represents the variation of the responses at interfaces
i=1,9,17,...,81 (from the top) and for 0x<_4. It is observed from figure 4.3.9 that all the three
components, namely v, zy, and qy are in good agreement with the exact analytical solutions
throughout the domain of interest. Therefore, the TLM1 with Na=8 provides quite good accuracy
not only for the displacements, but also the internal stresses.
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We next assess the accuracy of the TLM2. For the discrete model, we analyze the plate by means
of the TLM2 with NA-4 as proposed in section 4.3.1. So, it follows that the total number of thin-
layers is N=H/h=HNd/i=40 and the total number of degrees of freedom for the discrete model is
81. Figure 4.3.10 shows the numerical results obtained with the TLM2 (solid line) in comparison
with the exact analytical solutions (dashed line). The three plots present the displacement v, the
consistent stress 'y, and the consistent nodal load qy, respectively, in terms of snap-shots at t=3.0.
Note that each line in the three plots represents the variation of the responses at interfaces
i=1,5,9,...,41 (from the top) and for 0<x_4. It is observed from figure 4.3.10 that all the three of
v, zy, and qy obtained with the TLM2 using NA=4 are in good agreement with the exact analytical
solutions. Thus, it is confirmed that the TLM2 with Na=4 provides quite good accuracy for not
only the displacement component, but also the internal stress components.

4.3.3 SV-P wave problems

We assess here the accuracy of the t-TLM for SV-P wave problems in terms of both the
displacement and stress responses. For practical purposes, we analyze a homogeneous plate
subjected to an SV-P transient line load whose variation in x and t is bell-shaped, as defined in
equations (4.3.1 to 3). The associated exact analytical solutions are derived and presented in
appendix 4C. The material properties and geometry of the stratum, namely the mass density, the
shear wave velocity, and the thickness are all unity, i.e. p=Cs=H=1.0. Also, Poisson's ratio v is
taken as 0.31 (as in the Mindlin plate). The SV-P line load is applied at the top surface in the
vertical direction. Also, its half width a and duration td are both 0.2. Then, the associated
minimum wavelength is 1nn=Cs/fmax=O.1, and the maximum wavenumber is kma,=10nt. We are
interested in the horizontal and vertical displacements, u and w, the consistent stresses in
horizontal planes, z and r, and the consistent nodal loads on the vertical plane, qx and qc. We
compute the responses by means of both the TLM1 and TLM2 with Na as proposed in section
4.3.1, and then compare these with the exact analytical solutions. It should be noted that the
consistent nodal loads, qx and qz, are calculated by means of equation (1.3.111) for both the t-
TLM and the exact analytical solution.

We start by exploring the accuracy of the TLM1 for SV-P wave problems. For the discrete model,
we analyze the plate by means of the TLM1 with Na=8, as proposed in section 4.3.1. It follows
that the total number of thin-layers is N=H/h=HNA!2=80 and then the total number of degrees of
freedom in the discrete model is 162. Figure 4.3.1 la,b show the numerical results obtained with
the TLM1 (solid line) in comparison with the exact analytical solutions (dashed line). Figure
4.3.11a displays snap-shots at t=3.0 for u, w, and r, while figure 4.3.1 lb shows snap-shots at
t=3.0 for c, qx, and qz. Each line in the six plots represents the variation of the responses at
interfaces i=1,9,17,...,81 (from the top) and for 0x5-•4. It is observed from figures 4.3.1 la,b that
all the six filed quantities u, w, r, a', qx and q, obtained with the TLM1 using N;,=8 are in good
agreement with the exact analytical solutions. Therefore, the TLM1 with NPA=8 provides quite
good accuracy for the displacement components and the internal stress components, not only for
SH wave problems, but also for SV-P wave problems.

Next, we investigate the accuracy of the TLM2 for SV-P wave problems. For the discrete model,
we analyze the plate by means of the TLM2 with NA= 4 , so that the total number of thin-layers is
N=H/h=HNAI2=40 and the total number of degrees of freedom in the discrete model is 162.
Figures 4.3.12a,b show the numerical results obtained with the TLM2 (solid line) in comparison
with the exact analytical solutions (dashed line). Figure 4.3.12a displays snap-shots at t=3.0 of u,
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w, and r', while figure 4.3.1 lb shows snap-shots at t=-3.0 of o, qx, and qz. Each line in the six
plots represents the variation of the responses at interfaces i=1,5,9,...,41 (from the top) and for
0<rx:4. It is observed from figures 4.3.12a,b that all the six of u, w, r,, o~, qx and q, obtained with
the TLM2 using Na=4 are everywhere in good agreement with the exact analytical solutions.
Thus, the TLM2 with NA=4 provides quite good accuracy for both the displacements and internal
stresses, not only for SH wave problems, but also for SV-P wave problems.
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Figures for section 4.2
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Figure 4.2.1 Homogeneous stratum of thickness H subjected to an SH line load b

Dispersion Curves of SH Homo. Stratum
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Figure 4.2.2 Dispersion curves for SH homogeneous stratum of thickness H
SH waves (i=woH/7Cs, and --kHtn)
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Figure 4.2.3a Accuracy of TLM1 modal solutions as function off, and NA
in terms of logarithmic amplitudes and phase angles in radian of displacement v at (x,z)=(1.0,0.0)

due to SH surface line load (solid for TLM1, dash for Exact modal superposition)
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Figure 4.2.3b Accuracy of TLM2 modal solutions as function off, and NA
in terms of logarithmic amplitudes and phase angles in radian of displacement v at (x,z)=(1.0,0.0)

due to SH surface line load (solid for TLM2, dash for Exact modal superposition)
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Figure 4.2.4a Convergence of TLM1 modal solutions with NA=12
in terms of surface displacement v due to SH surface line load of fe,4.50
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Figure 4.2.6b Effect of numerical dispersion on near-field solutions of TLM2 of NA=4
in terms of surface displacement v due to SH surface line load offex=4.25

(solid for TLM2, dash for Image source method)
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Figure 4.2.7a Near-field solutions improved by the hybrid method: TLM1 of Na=12
in terms of surface displacement v due to SH surface line load offex=4.25

(solid for TLM1, dash for Image source method)
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Figure 4.2.7b Near-field solutions improved by the hybrid method: TLM2 of NA=4
in terms of surface displacement v due to SH surface line load of fe=4.25

(solid for TLM2, dash for Image source method)

202

-4

-1
5

· ·
.5 0

5

r I I I I I I

t I I



Re VLE and Re vco N

0 0.5 1 1.5 2
x

Re Tyz,LE and Re 'yzCON

zz

0 0.5 1 1.5 2
x

Re qy,LE and Re qy,coN

0 0.5 1 1.5 2
x

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

U.2

0

-0.2

-0.4
N

-0.6

-0.8

-1

0.2

0

-0.2

-0.4
N

-0.6

-0.8

-1

0 0.5 1 1.5 2

Im Tyz,LE and Im ryzCON

0 0.5 1 1.5 2

Im qyLE and Im q.CON

0 0.5 1 1.5 2

Figure 4.2.8 Harmonic responses v, ry, qy of homogeneous stratum obtained with TLM1
due to SH surface line load off,=2.50

(solid for TLM1 Na=12; dashed for Exact analytical solution)

203

0.2

0

-0.2

-0.4
N

-0.6

-0.8

-1

0.2

0

-0.2

-0.4
N

-0.6

-0.8

-1

'M VLE and IM VCON

,,

~-, ~-- --- , ~

~----c 2=s-
/ --~-

;

-1~----~;'~---~----~;;~



Re vOE and Re vco N

-- --- -

0.2

0

-0.2

-0.4
N

-0.6

-0.8

-1

0 0.5 1 1.5 2

RecyzQE and pzCON

- ~

0.5 1 1.5 2

0

-0.2

-0.4
N

-0.6

-0.8

-1

0 0.5 1 1.5 2

Im 'yz,QE and Im 'yz.CON

0 0.5 1
x

1.5 2

Re qy,QE and Re qyCON

0 0.5 1 1.5 2

0.2

0

-0.2

-0.4
N

-0.6

-0.8

-1

Im qy.oE and Im qy.cON

0 0.5 1 1.5 2
x

Figure 4.2.9 Harmonic responses v, t', qy of homogeneous stratum obtained with TLM2
due to SH surface line load off,=2.50

(solid for TLM2 NA=4; dashed for Exact analytical solution)
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Figures for section 4.3

-P y, v
z=0

b=b(x,z,t) G, p

z = -H

Figure 4.3.1 Homogeneous plate of thickness H subjected to an SH line load b
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Figure 4.3.2 Dispersion curves of SH homogeneous plate of thickness H
and spectra of the loading function (Hanning window) in wavenumber-frequency domain
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Figure 4.3.3 Accuracy of t-TLM modal solutions as function of NA
seismograms of v at (x=l, z=O) in homogeneous plate subjected to SH surface line load with
a=td=0.2 : the left column obtained with TLM1 and the right column obtained with TLM2

(solid for TLM, dashed for Exact modal superposition)
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Figure 4.3.4 Convergence of t-TLM modal solutions as function of x and M
snapshots of surface v for t=1.85 of homogeneous plate subjected to SH surface line load with

a=td=0.2 : the left column obtained with TLM1 and the right column obtained with TLM2
(solid for TLM, dashed for Exact modal superposition)
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Figure 4.3.5 Convergence of t-TLM modal solutions as function of t and M
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Figure 4.3.9 Snapshots of v, ty, qy of homogeneous plate obtained with TLM1 of NA=8
due to SH surface line load with a=td=0.2

(solid for TLM1; dashed for Exact analytical modal solution)
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Figure 4.3.1 la Snapshots of ux, u,, r' of homogeneous plate obtained with TLM1 of NA=8
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(solid for TLM 1; dashed for Exact analytical modal solution)
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Figure 4.3.1 lb Snapshots of a,, q, qz of homogeneous plate obtained with TLM1 of N..=8
due to SV-P surface line load in vertical direction with a=td=0.2

(solid for TLM1; dashed for Exact analytical modal solution)
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Figure 4.3.12a Snapshots of uq, uz, r' of homogeneous plate obtained with TLM2 of N,=4
due to SV-P surface line load in vertical direction with a=td=0.2

(solid for TLM2; dashed for Exact analytical modal solution)

222

0

-0.5

-1

1

0

0

-0.5

-1

1- -

0

.v=| . ....-

I I _I I I I I
L



zz,QE and nzz,E

0.5 1 1.5 2 2.5 3 3.5 4
x

qxQE and qx,EX

0.5 1 1.5 2 2.5 3 3.5 4
x

qz,QE and qza,

0.5 1 1.5 2 2.5 3 3.5 4
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Appendix 4A: Image Source Method for SH wave problems

Here, we formulate the image source method for a homogeneous layer of thickness H subjected to
SH line loads. Three types of boundary conditions are considered, namely 'free-free", 'free-
fixed", and 'fixed-fixed", where 'free" and "fixed" refer to a boundary for stress-free and
displacement-fixed conditions, respectively. We first obtain the solutions in the space-time
domain, or x-t domain for short, by utilizing the Green function of a homogeneous full-space.
Then, we obtain the solutions for both the space-frequency (x-co) and wavenumber-time (k-t)
domains simply by performing the Fourier transformations.

To formulate the image source method for the present problem, we first consider the ray paths of
the multiply-reflected waves within the domain of interest as shown in figure 4A.1, where we
apply a line load p=S(x)8(z-zs)6(t) and look at the response v at (xm, Zm). The solid lines represent
the paths of waves generated by the real source within the layer. On the other hand, the dashed
lines express the paths of waves resulting from the associated image sources Si. For analysis, we
have to determine two important factors which are the locations z. and the polarization fj of the
image sources S±1. From figure 4A. 1, we can derive the following relationships for the locations
of the image sources.

zi = z, + 2[(m±n)U + mL] (4A.1)
2m + n = i (4A.2)

where i=1,2,3,..., m=0,1,2,... and n=O or 1. In equation (4A.1), z+i and z.i are the coordinates of
the i-th image source Si along the positive and negative z-axes, respectively. According to
equation (4A.2), the integers m and n can be uniquely determined for a given i. For example, for
i=1, we obtain z+l= zs+2[(O+1)U+OL]= z,+2U with a set of m=0 and n=1, and z-l= z2- 2 [(1-
1)U+IL]= z,-2L with a set of m=1 and n=1. The coefficients of (m+n) and m in front of U and L
represent the total number of reflections at the upper and lower boundary, respectively, along the
associated ray paths within the layer. Therefore, we can determine the polarization according to
these coefficients. In addition, since the sign of wave polarization reverses only if the boundary
condition is "fixed", we can determine the polarization factorf±, as

f,i = (1)M""(1)"' for 'free-free" (4A.3a)

f,, = (1)"2" (-1)" for "free-fixed" (4A.3b)

f2, = (-1)" (_-1)" for '"fixed-fixed" (4A.3c)
Hence, we can write the image sources S± of the form

Si = f±,,(x)5(z - z±i)((t) (4A.4)

The exact Green function Gy, for a homogeneous full-space subjected to the line load 8(x)4(z)5(t)
is well known, which is

1 1 H (t - r)
G = •/t 2 _2-i (4A.5a)

[" = (4A.5b)
Cs

where p and Cs are the mass density and shear wave speed, and H is Heaviside's unit step
function. As shown in figure 4A. 1, the solutions can be obtained by superimposing the responses
due to both the real and associated image sources. So, we can express v in the x-t domain of the
form
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1 1 H (t-r ,) H(t - 1r,)
v(x,z,t) pC2  + f

rx 2 +(z-z) 2

Cs Cs

r±i x 2 + i2

Cs Cs
where the first term in the bracket represents the response
summation term due to the associated image sources S±.

Performing the following Fourier transformations, we obtain
domains, respectively, as

i(xz,'o) = v(x,z,t)e- 'dt

4pC H2) (kfr, )+ f±iH2) (kfr±i)]

vi(k,z,t)= t v(x, z,t)e'idx

(4A.6a)

(4A.6b)

(4A.6c)

due to the real source, and the

the responses in the x-co and k-t

(4A.7a)

S(kCs2pC H (t -iz,s)

where H (2) is the second Hankel function of order 0,

dCs5 , rz,s=(z-z,)/Cs, and rz,±•=(z-z:)/Cs.

2L

U
U
L

L

2U

(4A.7b)
Jo the first Bessel function of order 0, kp=

-1 x

Figure 4A. 1 Real and image sources, and associated ray paths
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Appendix 4B: Homogeneous Plate subjected to SH Line Loads

We analyze a homogeneous plate subjected to SH line loads by means of the continuous modal
superposition method. Through this example we explore the characteristics of TLM as well as the
modal superposition method itself, because most of the involved procedures are similar in both of
these methods. The plate model considered here can easily be changed into a homogenous
stratum subjected to SH line loads, the formulas for which will be given later without any detailed
derivation. We consider the formulations in both the frequency and time domains.

Consider a homogeneous plate of thickness H, subjected to a time-dependent excitation b=b(x,z,t)
(body force) shown in figure 4B.1. The equation of motion and the associated boundary
conditions are

aV• G 2 +-2 = b(x, z, t) (4B. la)

Z = 0 at z=O,-H (4B. b)

Also,
v(x, z, t) = y direction displacement (4B.2a)

yz = Gyy = G = stress in horizontal planes (4B.2b)
az
av

ry = Gxy = G v = stress in vertical planes (4B.2c)
ax

In general, we may assume a solution of the form

v(x,z,t) = 1 do Ldk V(k,z, o)e i'" - x' (4B.3a)
(27t)

2

V(k,z,w) = dt_ dx v(x,z,t)e - i'( - a )  (4B.3b)

where we apply the dual Fourier transform to the time and spatial variable t and x. When we
perform the inverse Fourier transform in eq. (4B.3a), however, we have difficulties due to infinite
number of poles that produce singularities in the integral in eq. (4B.3a). To overcome this
difficulty, we analyze this special plate by means of the modal superposition method. For this
purpose, we need to analyze the homogeneous wave equation i.e., b=0 so as to obtain the normal
modes of wave propagation.

a2vp [Ga2v +a2v = 0 (4B.4a)
t2 L a2

with the boundary conditions
'y = 0, at z = 0 and -H (4B.4b)

As in the TLM, we have two choices to formulate the modal analysis: 1) frequency domain
formulation and 2) time domain formulation. Each formulation has its own features, and we
consider the response functions (displacements, v, and stresses, ', and 'y) in both domains.
Figure 4B.2 shows the dispersion curve for this plate. As seen in figure 4B.2, the dispersion curve
has real and imaginary branches. The real branch represents the propagating modes, while the
imaginary branch represents the non-propagating or evanescent modes.
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(1) Modal superposition in the frequency domain for a plate

Assume a modal solution of the form

V = 0i (z)ei(wt - kJx) (4B.5)

in which j is the modal index. In the frequency formulation, co is the parameter and kj is the
eigenvalue. Substituting this assumed solution into eq. (4B.4a), we obtain

i "+ flpj = 0 (4B.6)

with

= (coCs)2 - kj, Cs =  (4B.7ab)

Eq. (4B.6) has a general solution of the form
j(z) = Acos ,jz + Bsin flz (4B.8)

From the stress-free boundary conditions at the top and bottom, i.e., z=0, and -H, equation
(4B.lb), we obtain

0'(0) = B =0 (4B.9a)

'(-H)=0 BjH= jr, j=O0,1,2,... (4B.9b)

It follows that the eigenvalues is

k = [(/ Cs) 2 -(jr/H) 2  (4B. 10)

The dispersion curve in figure 2 is based on eq. (4B. 10) by means of the dimensionless frequency
QŽ and wavenumber 4. The mode shapes are then

Oi(z)= cos- (4B.11)
H

This mode shape is not yet normalized, which will be accomplished after obtaining the modal
equation in the next section.

Consider next a plate subjected to a line load with a given frequency o at x=-0, z=zo. The equation
of motion is now

p t x + a 2 = P(2)G2(x)(z- Zo) (4B.12)

For this harmonic load, assume a solution of the form

9(x,z,o) = ,) Oj(z)f, (x)ei" (4B. 13)
j=0

where we include the factor e"" so as to carry out the differential operators with respect to t
without any ambiguity. Introducing equation (4B. 13) into equation (4B.12), we obtain

(_- C2 Gfl3 )f - Gfj] = P(0)6(z - zo) (4B.14)
j=0

We next pre-multiply by an arbitrary mode O(z), and integrate with respect to z so as to take
advantage of the orthogonality of the modes. On the left-hand side, this involves the integral

0 j#l
S(z)(z)d = H / 2 j = 1 0 (4B.15)

H j=1=0

while on the right-hand side, we have
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- 0, (z)(z - zo)dz =; (zo) (4B.16)
Hence, the summation uncouples into

-GH(fo "+ kof o) = P(w)S(x) for j = 0 (4B.17a)

GH
GH (fj "+ k fj) = P(co)6(x)j (zo) for j > 0 (4B.17b)
2

Equations (4B.17) are the modal equations. To solve these equations, we carry out a Fourier
transform into the wavenumber domain. Forj > 0, we have

GH
2 (k - k)fj(k, z,w) = P(o)Oj#(zo) (4B.18)
2

so that
2P(m) 1

S 2(k)- =- -1 2 A(Zo) (4B. 19)
GH k 2-kj

where we apply the Fourier transform of the form

f (x) = I dk e-A i  fJ (ý)eikldý

We invert this back into the spatial domain by means of the inverse Fourier transform

f (x) = (k)edk= P(w) (z) e-idk (4B.20)
27 ( GH7 k -k j

which evaluates to

f(x) = P(co)# (zo) e- ik Ixl

f (x) = Im(kj) < 0 (4B.21)
GH iki

A similar result holds forj = 0, except for a factor /2. Finally, the modal solution is

P( ) e-ikolx " e - ikj lx|
ý(x,Oz,w)= - +E j(z)Oj(ZO)iGH 2ko -=1 k-

P()H i.xi +  j-i cos cos j7z e-'kj (4B.22)
iGH 2ko +=1 H H k J

In equation (4B.22), we omit the factor e i' . Notice that iGkH = ipwC,H can be interpreted as the

impedance of a viscous dashpot. The stress components are expressed in the form

yz (x, z,j)= Gf = G = - #Z(zo) k

H H H H k(4B.23)
iH z H H H k1j

y (x, z,o)= Gy =G =-T e-ik2x| + (z)Oj (z)ePX x ) L2 j=l
= TP() 1 e-ikox + Cos JZ Cos -ik• (4B.24)

H [2 j H H
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(2) Modal superposition in the frequency domain for a stratum

A homogeneous stratum subjected to an SH line load has boundary conditions

zyz = 0 at z=0 (4B.25a)
v=0 at z=-H (4B.25b)

In conjunction with the differential equation, these boundary conditions produce eigenvalues
eigenvectors (mode shapes) that differ from those of the plate, although the details are similar.
For this reason, we omit the derivation here and just display the final results:

Eigenvalues kj:

k = V(CO/Cs)2 -[(j-1/2)7/H] 2 , j=1,2,3,... (4B.26a)

Eigenvector (mode shape) :
(j-1/2)7r

O 1(z)= cos z (4B.26b)
H

Displacements :

P(o) cos (j-1/2)tz (j - 1/2)tz0 e
-ikl|xl

iGH ) H H k(4.27)

Stresses :

P(w) (j--1/2)7r (j-1/2)trz (j-1/2)7rzo eikJlxl
( )sincos (4B.28)

iH [X H H H k(4.28)

xY (x, z, )= T cos -- x H (4B.29)

(3) Modal superposition in the time domain for a plate

Assume a modal solution of the form

v = i (z)ei( • jt-kx) (4B.30)

in which j is the modal index. In the frequency formulation, k is the parameter and ay is the
eigenvalue. Substituting this assumed solution into eq. (4B.4a), we obtain

J "+ flf = 0 (4B.31)

with

= (W / Cs )
2 - k2z Cs =  (4B.32ab)

Eq. (4B.31) has a general solution of the form
Oj (z) = Acos flz + Bsin fjz (4B.33)

From the stress-free boundary conditions at the top and bottom, i.e., z=0, and -H, we obtain
0'(0) =0 > B =0 (4B.34a)

0'(-H)= 0 8 ,H= j7r, j=0,1,2,-.. (4B.34b)

It follows that

) =CsJ k2 +(j7/H)2 (4B.35)
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The dispersion curve in figure 2 is based on equation (4B.35) by means of the dimensionless
frequency Q2 and wavenumber ý. The modal shapes are then

O (z)= cos (4B.36)
H

This mode shape is not yet normalized, which will be done after finding the modal equation in the
next section.

Consider next a plate subjected to a line load with a given wavenumber k at x=O, z=zo. The
equation of motion is now

a2  a2 - a22
p - G 2 + = P(k)6(z -z0 )(t) (4B.37)

For this harmonic load, assume a solution of the form

v(k,z, t) = 1 (z)qj(t)e- i' (4B.38)
j=0

where we include the factor e-' in order to carry out the differential operators with respect to x
without any ambiguity. Introducing equation (4B.38) into equation (4B.37), we obtain

[pij,+ G(fl + k 2)q] •, = P(k)S(z - o)(t) (4B.39)
J=0

Sp[ij + w)qj1  = P(k)S(z - zo)6(t) (4B.39')
j=0

We pre-multiply by an arbitrary mode 01(z), and integrate with respect to z so as to take advantage
of orthogonality of the modes. On the left-hand side, this involves the integral

0 j l I

f•,(z)0j(z)dz= H/2 j=1#0 (4B.40)

H j=1=0

while on the right-hand side, we have

; Oj)(z)d(z - zo)dz =(zo) (4B.41)

Hence, the summation uncouples into
-pH(4 0 + owq 0 ) = P(k)6(t) for j = 0 (4B.42a)

p- (4j + o)qj) = P(k)J(t)0j (zo) for j> 0 (4B.42b)
2

Equations (4B.42) are the modal equations. To solve these equations, we carry out a Fourier
transform into the frequency domain. Forj > 0, we have

pH (o9 _- 2);i (W) = P(k)o (zo) (4B.43)
2

so that
2P(k) 1i (o)= i 2 _2 (Zo) (4B.44)
pH J (0

where we apply the Fourier transform of the form

q (t) = i a dio dwe •" q i(r)e-i" d r

We invert this back into the time domain by means of the inverse Fourier transform
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qj(t)= j(k,z,o)ei'd= P(k)j(z) f 2 2 id (4B.45)
2j(t) =_ eiedo9 (4B.45)27 pHn m -m

which evaluates to
2P(k)oj(zo) sin ojt

qi(t) = (4B.46)
pH oi

A similar result holds forj = 0, except for a factor 1/2. Finally, the modal solution is

2P(k) 1 sin wot + sin o jtlv(k,z,t)M + E (iW)o-(ZO)
pH 2 wo j=i -ij

2P(k) 1 sinwot + cos jzcos inwt. (4B.47)
pH 2 wo j=, H H o J

In equation (4B.47), we omit the factor e- i'. The stress components are expressed of the form

yz (k, z,t)= Gz = G a P(k(z)inHz PH ;l dz mO
2GP(k)[-jCsinrZ Cos j7rZo sin iojt (4B.48)

pH Ij=I H H H wj
-ik 2GP(k) 1 sin o wt sin m_ t

S(k, z,t)= G^ = G = -ik + Ow (z)(oax pH 2 1o j=' t

= -ik ) I + cos cos (4B.49)
pH 2 o j=I H H (O

The final step in this formulation is to invert the quantities from the wavenumber domain into the
spatial domain. For example, the displacement v is obtained by

v(x,z,t)=1 E- (k,z,t)e-i"dk (4B.50)

(4) Modal superposition in the time domain for a stratum

A homogeneous stratum subjected to an SH line load has boundary conditions

tyz = 0 at z=0 (4B.51a)
v=0 at z=-H (4B.5 1b)

Because of the similarity with the plate case, we omit a detailed derivation here and just display
the final results, i.e. eigenvalues, mode shapes, displacement and stresses:

Eigenvalues q4:

o = Cs k 2 +[(j-I/ 2)/ H] 2 ,I j=1,2,3,... (4B.52a)

Eigenvector (mode shape) :
(j -1/2)r

OW(z)= cos z (4B.52b)
H

Displacements :
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2P(k) (j-1/2)tz (j-1/2)rzo sin oJt2(k,z,t)- Zcos cos (4B.53)
pH ;=, H H o

Stresses :
2GP(k) ~ ,(j-1/2).s (j-l/2)xz (j-1/2)_zo sino_ t

- _(l (k-1),t)smcosl (4B.54)pH 1 =1  H H H o(
2GP(k) os (j-l1/2)rz (j-1/2)nzo sin ogjt

(kzt)= -ik cos cos (4B.55)pH p H H o5
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Figures for appendix 4B

Z =
zX

b=b(x,z,t) G, p

z = -H

Figure 4B. 1 Homogeneous plate of thickness H subjected to SH source b

Dispersion curves of SH plate

4 4
10 10

Re(ý)

Figure 4B.2 Dispersion curve of SH homogeneous plate
(-wcoH/Cs7 --kH/t)
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Figure 4B.3 Analysis procedures of frequency- and time-domain formulations
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Appendix 4C: Homogeneous Plate subjected to SV-P Line Loads

We consider a homogeneous plate subjected to SV-P line loads as shown in figure 4C. 1. We seek
the associated modal solutions formulated in both the x-co and k-t domains. The equation of
motion and boundary conditions are given by

pii - LDLu = b in - < x < oo and -b5 <z < b (4C.la)
xz = o•, =0 at z = +b (4C.lb)

where p is the mass density, the superscript dot represents the partial derivative with respect to
time t,

u = {u w}T (displacement vector) (4C.1c)

b= {bx bz}T (body force vector: line loads in this study) (4C. d)

D = 2 + 2G (constitutive matrix, symmetric) (4C.le)

L = Lx + L (differential operator) (4C. If)
ax az

LX = , and LZ = (4C. g,h)

We expand equation (4C. la) and equation (4C. Ib) in more explicit form to obtain
a2 a2 a2

Mii- [D,,2 +(Dx +D,) 2  +D, • u=b (4C.2a)
x axz z

Tz = x + D, u (4C.2b)

where

M= }, D,= G G} D = D = D= +2G

(4C.2e-f)
The constants A and G are referred to as the Lame's constants. Also, the associated (reduced)
from the three dimensional problem) constitutive law and infinitesimal strains are given of the
form

0 = De (4C.3a)
E = Lu (4C.3b)

where a ={o = }T and E= {E Ez y I are the stress vector and the strain vector,
respectively.

(1) General solutions in the k-w domain

Since we seek the free vibration modes in the plate, we set b=O in equation (4C.la) or equation
(4C.2a) and assume the general solution to be of the form
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u = {(z) ei(-) (4C.4)

Substitution of equation (4C.4) into equations (4C.2ab) provides

[k2D-+ik(D+D,) d- -O 2M  = 0=O (4C.5a)

}= D(-ik) + D u d (4C.5b)
OZ) L dzJ

Since the general solution for this problem is well known, it is presented here without any
detailed derivation.

For non-zero frequency (cO):
W (z) = A cosa z + Bsinaz + Ccos/3z + Dsin/ z (4C.6a)

a k
i (z)=-[Asinaz-Bcosaz]+ -[-Csinf z + Dcos/3z] (4C.6b)

k 6

i = (k + fE /k - 2a2 / k)G[Acoscaz + Bsinaz] + 2kG[C cos/ z + Dsin/ z] (4C.6c)

iF =-(k- _l2 /k)G[Acosaz + Bsin az]- 2kG[Ccos/ z + Dsin/ z] (4C.6d)

u = 2aG[-Asinaz + Bcos az] + ( -k 2 /f) G[-C sin /z + Dcos fz] (4C.6e)

For zero frequency (•=O):
u(z) = A cosh kz + B sinh kz + Cz sinh kz + Dz cosh kz (4C.7a)

i (z) = -A sinh kz - Bcosh kz +

C[ / k sinh kz - z cosh kz] + D[/ k cosh kz - z sinh kz]

i U = 2kG[A cosh kz + B sinh kz] +
(4C.7c)

C[2Gkz sinh kz + (K - 1) cosh kz] + D[2Gkz cosh kz + (K - 1) sinh kz]

i U = -2kG[Acosh kz + B sinh kz] +

C[Q( + 2G)(K - 1) cosh kz - 2Gkz sinh kz] + D[(A + 2G)(K - 1) sinh kz - 2Gkz cosh kz]

(4C.7d)
F, = 2kG[A sinh kz + Bcosh kz] +

(4C.7e)
C[-(K - 1)sinh kz + 2kz cosh kz] + D[-(K - 1) cosh kz + 2kz sinh kz]

where A, B, C, D are the unknown constants, a= (/C)2 , = /C - k2 , and

K = 3-4v.

For simplicity in our analysis, we distinguish between symmetric and anti-symmetric modes.
Equations (4C.6) for the non-zero frequency are thus separated into the following:

Symmetric mode (awO):
W(z) = Acos az + Ccosf z (4C.8a)

i(z)= -i A--sin az-C-sinfz (4C.8b)
(k fi
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Anti-Symmetric mode (o06O):
u(z) = B sin atz + D sin /z (4C.9a)

S(z)= i B- cosaz --Dkcos /z (4C.9b)

We can write the corresponding expressions for the zero frequency case as

Symmetric mode (w=O):
W(z) = Acoshkz + Czsinhkz (4C. 10a)

O(z) = i (A sinh kz - C[Q k sinh kz - z cosh kz]) (4C. 10b)

Anti-Symmetric mode (o0O):
W(z) = B sinh kz + Dz cosh kz (4C.1 1a)

;(z) = i (Bcosh kz - D[K/ k cosh kz - z sinh kz]) (4C.11b)

Substitution of equations (4C.8-11) into the boundary conditions in equation (4C. lb) or equation
(4C.2b) yields the spectrum equations F's and the associated mode shapes ~p as follows:

Symmetric mode (wO):
F(k,w) = 4kasina b cos b - (k 2 

-_ 2 )( /k - k /f)cos ab sin fb = 0 (4C.12a)

cos az + R cos /z

rz - -sinaz -R-sin z
k fi

SC 2a sin ab _ (P k - k)coscrb (4C.12c)

A (f/-k 2 / P)sin/3b 2kcos/fb

Anti-Symmetric mode (awO):
F(k,ow) = -4kacos•ab sin fb + (k2 - 2 )( / k - k / f)sin ab cos b = 0 (4C. 13a)

sin az + R sin /z }

S= = (a k (4C.13b)
S =i ~-cosaz-R-cos/zk 19

D 2acosab (f2 / k - k)sin ab. 13c)
R= (4C. 13c)

B ( - k 2/ ) cos/fb 2ksin/fb

Symmetric mode (o-=0):
F(k)= 2sinh kb cosh kb + 2kb= 0 (4C. 14a)

cosh kz + Rz sinh kz
{ = 0 i sinh kz - R( sinhkz - zcosh kz)] (4. 14b)

C 2ksinhkb
R=- = (4C. 14c)

A (1 -K) sinh kb + 2kbcosh kb
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Anti-Symmetric mode (o0=O):
F(k) = 2sinh kb cosh kb - 2kb = 0 (4C. 15a)

sinh kz + Rz cosh kz

o= ( = i coshkz-R(-coshkz-zsinhkz)]

D 2kcoshkb
R = - (4C. 15c)

B (1 - K) cosh kb + 2kb sinh kb

There is an interesting observation, perhaps not known yet, that the eigenvalues for the above
spectrum equations for zero frequency are independent of Poisson's ratio v. Hence, once we solve
equations (4C.14a) and (4C.15a), we can apply the found eigenvalues to a material with any
arbitrary v. However, the associated mode shapes in equations (4C.14bc) and (4C.15bc) do
depend on Poisson's ratio, so the final response is indeed a function of this ratio.

The 3-D plots in figures 4C.2a and C.2b display the dispersion curves for the symmetric modes
and the anti-symmetric modes, respectively, for a plate with p=1.0, Cs=1.0, v=-0.31, and H=1.0.

(2) Modal superposition in the x-w domain

We begin with three orthogonality conditions that are essential in determining the participation
factors in our modal superposition. For this purpose, we first write the expressions for the field
equation and the boundary conditions in terms of the eigenvalues and eigenvectors as

k2D,)4j +ikj (D, +D,) j - DzJ' -o 2M(0 =0 (4C.16a)

[-ikjDzj +D, zzo]=b =0 (4C.16b)

where primes denote derivatives with respect to z, and Oj is the normalized eigenvector that is
proportional to (pj in equations (4C.12-15) by the j-th normalization constant. Also, the equations

associated with the adjoined vector 4 = {-I _ ,}T are

STkizD, -ikii,0 (D, , + Dx~)- D - 40T 2M =0 (4C.17a)

[iki~T + ~T, Dzz,=b = 0 (4C.17b)

with D, = D .

We attempt to obtain the 1 st orthogonality condition. For this purpose, divide equations (4C. 16a)

and (4C.17a) by the eigenvalues kj and ki, respectively, and multiply equation (4C.16a) by iT

from the left and equation (4C.17a) by Oj from the right. Next, integrate them over z to obtain

S D +i(D,+D - 2M- j dz = (4C.18)

2 1
b:[kj Dx+ i T(Dx + Dz ).4 0, kMJ4dkizI
fb ki D$ -i'0(D)+D) -. "rD-~-i k 2 ] d=0 (4C.19)

Subtraction of equation (4C.19) from equation (4C.18) followed by integration by parts and
applying the boundary conditions provides the 1st orthogonality condition of the form.
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(kj-k,) b D -r "D' +co2 ~ TM ]dz = 0
iik

(4C.20)

Also, the associated normalization constant is determined from the following relationship.

b [kkjkTD -~'Dz + w24 TMO ]dz = 2kjk,S (4C.21)

which is consistent with the TLM convention.

Next, we achieve the 2 nd orthogonality condition as follows. Without dividing by eigenvalues, we
follow the same procedures as the 1st orthogonality condition as follows. Multiply equation

(4C.16a) by Tr from the left and equation (4C.17a) by Oj from the right. Next, integrate them

over z to finally obtain

•T[kD,• +ik,(D, +D,)O' -D -o 2M~]dz =0

[TkDxx -ik,~ ' (D, +D,)-~'D 2D -4T2M ]dz =

(4C.22)

(4C.23)

Subtraction of equation (4C.23) from equation (4C.22) followed by integration by parts and
applying the boundary conditions provides the 2nd orthogonality condition of the form

(k, -ki) r:[(kj + k,)jD,A + +i(ýTD,; -4' T Dz )]dz = (4C.24)

Then, the normalization constant for this second orthogonality condition is determined from

(4C.25):[(kj +k,) Dxj +i (•TDz -rD, )]dz= (k +k,)
b- z~ '(j k~~

We now consider a 3rd orthogonality condition that is associated with using the right and left

eigenvectors defined as z = 0x ikjo Z}T and y, = {kj ix i 0j, , respectively. We need to

develop the associated governing equations and boundary conditions as:

For a right eigenvector with kj:

[Xk + C zi =

Txz

ikj3 z5

-G} ={S2G}+
A + 2GI dz {2Ak 2 at z=+b.

For a left eigenvector with ki:

yi [Xk +C]={0O 0}1

o- 1
+ +

A + 2G dz Gki

where ( ) and ( ) represent the direction of the derivatives operation and

A+2G .1
AR{ G)d

-( + G)- G
dz

C[-G 2 P 2

CR {

at z=+b.

(/ + G) d
dz

-(A + 2G) p) 2
dz2

(4C.26a)

(4C.26b)

(4C.27a)

(4C.27b)

(4C.28ab)
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A+ 2G

AL{ G)

dz

CL-G z2 pw2

G

-(2 + G)d4
_G2a z  (4C.28cd)

-(A + 2G)z 2 - 2

In order to find out the orthogonality condition, we need to perform the following integration.

:(y,• [Xk' +, CR]Zj - yi [Ak + C, z )dz =0 (4C.29)
We expand in more explicit form to obtain

G z
ib T Dzkjk +-Gk2 j -Ak

SI Z'+

where the terms of mass are canceled by each other. Application of integration by
third and fourth terms in the first line, and the second and fourth terms in the
followed by the boundary conditions provides

(k k)y D,z,dz + -Gk2 dz - jb -Ak 2 d

* -G
b f Iy: T {Aki c as

Finally, we can obtain the 3rd orthogonality condition as
Iz + i GT zdz =dz

(k -k2) b Dzdz- • i j dz+ :by'T{ zjdz =0

(4C.30)

parts (to the
second line)

(4C.31)

(4C.32a)

(4C.32b)
+b

(k fk) bi Ry jdz +y z = 0

For practical purposes, this condition is best written in scalar form.

(A+2G)k, bi idz-Gk, bi wjdz+iA fw: ujdz-iG fwiudz=AjS,

where Aj is a yet to be determined normalization constant, and u and w replace
respectively. Interchanging i andj, we obtain the alternate form

(2A+2G)kj, ui dz-Gkif wwjdz+i2 w uidz-iG fwjyudz=Ai.i

(4C.33a)
0, and z,

(4C.33b)
Adding these two forms, we obtain the second orthogonality condition, whose normalization
constant we already know. Hence

(k,+ k (+ 2G) Ui idz - G • i ,wjdz
(4C.34)

+iL u +Wi Uj)dz-iG (uw,  +i u )dZ= (A. + A)6u =2k 6A
Finally, it follows that Aj = kj.
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We next obtain the modal solutions for the Mindlin plate subjected to SV-P line loads with
application of the transmitting boundary conditions on the vertical plane that are given as

{ } =[{ + 2G G}ax {G + } -I]{wu (4C.35a)

+2 G ax G9 a w

or briefly

s= D D+D a u (4C.35b)

Equilibrium of a thin vertical section extending from 0- to 0+ requires

Is- -s = p (4C.36)

a) Horizontal load
Using the modal expansion, the displacements are

u+ = j, e-ikjx x>0 (4C.37a)
j=0

u- = ~ • eikJx x<O (4C.37b)
j=0

where the participation factor r is the only unknown that is determined as follows.
At x=0, we must have continuity of displacements. Hence

U+ =u- =-> y -j- = 0 (4C.38)
j=0

which implies

y' w = 0 and thus also y w = 0 (4C.39ab)
j=0 j=0

Also, from the modal expansion, the stresses near the load are

s+ = Y r[-ikjD, j + Dxr (4C.40a)
j=0

s- = r[ ikjDj +Dx,] (4C.40b)
j=0

Hence, the equilibrium condition requires that

s- -s=' i= T ikD , )+ D •-,1= p (4C.41)

j=0

In terms of the components, the second equation in equation (4C.41) yields the identity 0=0,
which is not interesting. The first component, on the other hand, leads to

2X [i k (A +2G)uj - Aw' = (z - zo) (4C.42)
j=0

But from equations (4C.39ab), we can see that the second term in the equilibrium equation
cancels. Hence

(2 + 2G) ykju =i (z - z0 ) (4C.43)
=Multiplying by uandintegrat2i

Multiplying by u, and integrating over the height, we obtain
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(A + 2G) 7jk j •iujdz=-u (zo)  (4C.44)
j=0 2i

We will show next that because of orthogonality, the LHS reduces to

(2 + 2G) jky,k b ii u dz = Y, A (4C.45)
j=0

in which

A, = [kj (+2G)G u dz-G G bw dz +i2 biulwjdz-iG ujw'dz (4C.46)

so that

uii(zo)Y u(Zo) (4C.47)
2iA,

From the third orthogonality condition, we have

(2+2G)k, biudz-Gk, wiwjdz+i2l uiwjdz-iGf: uiwdz=Aij (4C.48)

where Ai is simply the result of the left-hand side (LHS) when i=j. Multiplying by the

participation factor and adding up over all modes, we obtain

(A + 2G) y kj bUi dz -G ki w, w dz
--: (4C.49)

+i2A i  Yj w dz-iG u y[jwj i dz = Yjj A(,sU = yi A[j=0 Ij=0 j=0

Because of equations (4C.39ab), the last three summations in brackets on the LHS are
automatically zero. Hence, it follows that

(A + 2G) y kj fuiJ dz= , (4C.50)
j=0

which proves the condition used to solve for the participation factors for a horizontal load.

b) Vertical load
Using the modal expansion, the displacements are now

u = ~yje-ikx x>O (4C.51a)
j=0

u = -2yjjeikix x<O (4C.51b)
j=0

where the participation factor y is only the unknown that is determined as follows.
Notice the minus sign in the second equation, which differs from the horizontal case. At x=-0O, we
must have again continuity of displacements. Hence

U+ =u- E= (yj( +J) =0 (4C.52)
j=0

which implies

y, uj =0 and thus also Y, u' = 0 (4C.53ab)
j=l j=0

Also, from the modal expansion, the stresses near the load are
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s+ = - y[ -i kD,ýj + Dr] (4C.54a)
j=0

s- = - y [i ik D•, + Dr (4C.54b)
j=0

Hence, the equilibrium condition requires that

s--s + = j [ikjD T( j - - D( + -)$ = p  (4C.55)
i=0

In terms of the components, the first equation yields the identity 0=0, which is not interesting.
The second component, on the other hand, leads to

2G y [i kj w -u =S(z - zo) (4C.56)
j=0

But from equations (4C.53ab), we can see that the second term in the equilibrium equation
cancels. Hence

1
G yjkj w = - (z - zo) (4C.57)

j=0 2i

Multiplying by wi and integrating over the height, we obtain

G •ykj i wjdz = wi(zo) (4C.58)

Again because of orthogonality, the above summation reduces to

yA, =-G ykwwdz ( w4C.59)
j=0

in which Aj is as before, so that

w, (zo)
Y wi) (4C.60)

S 2iAj

Once more, from the third orthogonality condition (but observe that we exchanged i and j), we
have for i • j

(+2G)kj, i Ujdz-Gkj b Wijdz+il bw[U dz-iGwb iju dz= A.Sj (4C.61)

Multiplying by the participation factor and adding up over all modes, we obtain

(2A- + 2G)k, u ,ui [ ••=o Ujdz-G a k wiwj dz4=o

+iA bw; yu, dz-iG• :wi yju dz = Zy, A,6, = r, A
Because of equations (4C.53ab), the first summation in brackets as well as the last two are
automatically zero. Hence, it follows that

-G•y k E wwjdz= yA. (4C.63)
j=0

which completes the proof.
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(3) Modal superposition in the k-t domain

We again begin with the orthogonality condition. For this purpose, we write the field equation
and the boundary conditions in terms of an eigenvalue and an eigenvector for aj-th mode as

k2D,•4 +ik (Dzx +D , )  -DZo -aoM2Mo =0 (4C.64a)

[-ikDzxj + Dzz ]z=b = 0 (4C.64b)

where primes represent the derivative with respect to z, and Oj is the normalized eigenvector that
is proportional to (p1 in equations (4C.12-15) by the j-th normalization constant.
Also, we may have the equations associated with a normalized eigenvector 4 of the form.

k2Dx, +ik (Dxz +Dz)j,' -Dzz4 - o2M4 =0 (4C.65a)

[-ikDz, + Dzz, lz=b = 0 (4C.65b)

Next, we multiply equation (4C.64a) by 4T from the left and equation (4C.65a) by f from the

left. Next, integrate them over z to obtain

T[kk2Dxx j +ik (Dz +Dz), -Dzz' -co2MJ]dz=O (4C.66)

bfjik2DO +ik (Dx +D x)4' -D0z4 - o2M]dz=O (4C.67)

Subtraction of equation (4C.67) from equation (4C.66) followed by integration by parts and
applying the boundary conditions provides the orthogonality condition of the form.

p( )2 - :) fb i dz = 0 (4C.68)
Also, the associated normalization constant is determined from the following relationship:

p fb j• dz = S,j (4C.69)

which is consistent with the TLM convention.

Now, we move on to find out the modal solutions that is our final goal. For this purpose, we first
assume the modal solution of the form.

ii(k, z, t) = £Y (t)j (z)e-i" (4C.70)
j=O

where the participation factor j is the only unknown and fi is a harmonic function in x with k.
In order to calculate the participation factor, we consider the governing equation

a2 a2  a2
Mi i-D- + (D +D, )- +D, - iu = e-i'k(z - zo0 )(t)p (4C.71)

xa~x zxdz %z2

where p is a vector of [1 0 ]T for a horizontal load or [0 1]T for a horizontal load.

Inserting equation (4C.70) into equation (4C.71) and pre-multiplication of 4T followed by

integration over the thickness provides

b lO[M ae2 a2 aa dzb T M -D . -- ( D x + - D zz ) e 
- i x  

d z ( 4 C 7 2 )
M•-[ x%2 z axaz I j--0 (4C.72)

= T e-"(z - 0)(t)p]dz
With the help of equations (4C.64, 68, and 69), equation (4C.72) attain the form.
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+• +2 ), = (t) (zo)p (4C.73)

in which we omit the term of e- i'k on both the sides.
Apply the Fourier transformation to y over time t as

7i ()= yi (t)ei 'dt and yi(t) = •1 f(wc)e-i',dt (4C.74a,b)

Then, we can obtain the participation factor in the W-domain as

(O 2 - 2 )i = 0(z0) Pi (4C.75a)

or

C 2 A= 2 (4C.75b)

Inversion of Fourier transformation yields for mode i:
sin cat

7i =- Pi (4C.76)
pi

Finally, we can express the modal superposition of the form.

fi(k, z,t) = pAe-ii (4C.77)
j=0 Oj

To complete our analysis, we have to perform the inverse Fourier transformation over the
wavenumber k to obtain the solutions in the x-t domain as

u(x, z,t) = - f^i(k, z,t)dk = I e-' dk (4C.78)
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Figures for appendix 4C

Z, w
A

H

z = +b

G,p, v

k

,b=b(x,z,t)

1~ ll

z=-b

Figure 4C.1. Homogeneous plate subjected to SV-P line loads b
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Symmetric mode for v=0.31

0

S15 20

Figure 4C.2a Dispersion curves of Mindlin plate (-0.31) for the symmetric modes
(2=aoH/Cs and ý=kH)

Anti-Symmetric mode for v=0.31

15 zu

Figure 4C.2b Dispersion curves of Mindlin plate (v=0.31)
(2=o)H/Cs and 4=kH)

for the anti-symmetric modes
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Chapter 5 Infinite media modeling with the t-TLM

5.1 Introduction

We develop herein a hybrid method, by which we extend the t-TLM method from finite media to
(semi-) infinite media. As shown in chapter 4, the t-TLM provides very accurate responses for
finite-depth domains subjected to dynamics loads. However, due to its inherent origin in the finite
element method, the t-TLM is unable to analyze media that extend to infinity in the direction of
layering, i.e. that are unbounded in the depth (z-) direction, because that would entail infinite
matrices. To overcome this important shortcoming, we make use of the substructure method and
combine the t-TLM modal solution with the exact analytical Green functions for a homogeneous
half-space formulated in the wavenumber and time domain, or k-t domain for short. The exact
analytical Green functions needed for this purpose are derived and presented in section 5.3, and
constitute the key component of the substructure method developed in this chapter.

The substructure method is a technique by which the analysis of a complex structure is performed
in various steps, separating the structure into simpler substructures which are more efficiently (or
easily) handled than the complete system in one single step. The analysis of each substructure is
then followed by synthesis, to ensure compatibility and equilibrium across the interfaces
separating the various structures. The technique is based on the principle of superposition, so that
it is restricted to linear systems.

The presentation in this chapter is as follows. In section 5.2, we develop the substructure method
by combining the t-TLM modal solution with the exact analytical Green functions for a
homogeneous half-space in the k-t domain, and then investigate its stability and accuracy. From

here, we decide on the proper time step At needed for the numerical solution of the convolution
equations, and also find out the number of accurate high modes needed for the modal solutions.
Furthermore, we propose the use of a buffer layer that stabilizes the final responses, especially for
a system composed of significantly dissimilar materials. In section 5.3, we derive and present the
exact analytical Green functions for a homogeneous half-space in the k-t domain, which is a key
element in the substructure method being considered. In section 5.4, we apply the technique to
various examples of multilayered half-spaces so as to validate the developed method. Also, we
investigate the wave motions elicited by sources within complicated multilayered half-spaces.

5.2 Substructure method and stability

5.2.1 Substructure method

We begin by defining the problem involved in the application of the substructure method. Our
goal is to obtain the dynamic response of a semi-infinite, layered half-plane due to a line source

p(x,z,t) applied at z=z,(O0), as shown in figure 5.2.1. The semi-infinite medium consists of an
upper layered domain (z>0) of thickness H and a lower homogeneous half-space (z50). The
horizontal x-axis is defined at the interface between the upper layered domain and the lower half-
space. In addition, p and A, are the mass densities of the upper layered domain and the lower
half-space, respectively, and Cs,i and Cs,11 the shear wave velocities, and vI and v11 the Poisson's
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ratios. For the upper layered domain, i.e. Oz<_H, the material properties pl, Cs,,, and vI are
functions of z, while for the half-space of z<0, A, Cs,11, and vn are assumed constant. In general, it
is not trivial to calculate the dynamic response in the space-time domain u(x,z,t) for these kinds of
multi-layered systems.

In the following, we formulate a powerful and efficient technique for the calculation of the
dynamic response u(x,z,t) in the semi-infinite multi-layered medium shown in figure 5.2.1. For
this purpose, the substructure method is applied in the wavenumber-time domain, or k-t domain
for short, with the aid of two known Green functions that are both obtained in closed form with
the t-TLM and the contour integral method, respectively. The Green function obtained with the t-
TLM is a semi-analytical solution in the k-t domain for a finite multi-layered medium, while the
Green function obtained with the contour integral method is an exact analytical solution in the k-t
domain for a homogeneous half-space subjected to a surface line load. The latter is a new Green's
function that is derived in this study. By virtue of the two Green functions, the analysis of the
semi-infinite multi-layered medium of interest can be performed in separate steps, dividing the
whole medium into two relatively simple substructures for the upper layered medium (0<z<H)
and the homogeneous half-space (z<0). The analysis of each substructure is then followed by
synthesis, to ensure the two conditions of compatibility and equilibrium across the interface
between the two substructures.

Figure 5.2.2 shows the complete medium separated into two substructure, namely the upper
layered system and the lower homogeneous half-space. When an external line load f" is applied

load at z=z,, dynamic internal stresses to develop at the interface between the upper layered
system and the half-space, i.e. z=0. In general, To is unknown until the problem of interest is
completely solved. For general 3D problems, to is of the form.

,' o 10 (5.2.1)

The first and third elements of To0 in equation (5.2.1) are associated with SV-P wave motion,
while the second element is associated with SH wave motion. Before the whole system is
separated, To is the internal stress vector, as shown in the left of figure 5.2.2. On the other hand,
after separation, TO becomes the boundary condition for both the two substructures, that is

S = _-T for the upper layered system (5.2.2)
An 

= +•o for the half-space (5.2.3)

where ^i and s, are the traction vectors at the interface for the upper layered system and the
lower half-space, respectively, and satisfy the equilibrium conditions at the interface, simply
because s, + Sn = 0.

By virtue of the superposition theorem for linear elastic systems, the displacement responses in
the k-t domain for each substructure can be expressed as

uim"(k,t)= G"' *= " +G m, n =Gm, _ ,o ,ro (5.2.4)

,m0o (k,t) = G nO • mo• 70 * (5.2.5)
where

ii"i (k,t) = [0"' 1  ] (=the displacement vector for 0<zH) (5.2.6)

^mn (k,t) = Ia nU 1 I]r (=the displacement vector for z_0) (5.2.7)

G""(k,t)={G7.} (=the Green function matrix for 0<_z<H, with ij=x, y, z) (5.2.8)
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iG' (k,t)= I{G• (=the Green function matrix for z<0, with ij=x, y, z) (5.2.9)

In equations (5.2.4-9), the superscripts m and n represent the elevations of the field (or receiver)
and the source points, respectively, and the subscripts i and j the directions of the displacements

and the unit line loads, respectively. Notice that G7" and G' are calculated in closed form with

the t-TLM and the contour integral method, respectively. Furthermore, G' and Gj'I have the
following structure for the most general 3D problems.

G: 6,n 6ni}

Gmn= G G7 G, (5.2.10)yx yy yz
mn y Gn m

For the line load problem, however, "" becomes of the form

Gml{ a mn (5.2.11)

Practically, equation (5.2.11) can be uncoupled into two independent wave motions of SV-P and
SH waves as

SV-P wave: G = ^ (2x2 matrix) (5.2.12)Gmn Gmn

SH wave: G" = G"' (1xl matrix, i.e. scalar) (5.2.13)

It is convenient to consider simultaneously the SV-P and SH wave motion cases, so we continue
to use the 3x3 matrix form of equation (5.2.11). For practical computations, however, equations
(5.2.12 and 13) should be calculated individually for each wave motion.

Next, we calculate the unknown 0o in equation (5.2.4 and 5) by make use of the displacement
continuity condition at the interface (zm=0 with m=0), which is given in the form

^00 -OnuiI = uI  (5.2.14)
or more explicitly

SOOn G *P" -Gpn * OOc (5.2.15)

Collecting the terms associated with To on the left hand side, we obtain the equation

(oo o +G).0 =G *" (5.2.16)

For simplicity in ensuing manipulations, we express equation (5.2.16) as

*•*= I^I* (5.2.17)
where

= To (5.2.18)

= =" (5.2.19)

0= +•oo (5.2.20)

H =G · (5.2.21)
Notice that T is only the unknown in equation (5.2.17). For continuous functions in time t,
equation (5.2.17) is expressed in integral equation form
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f F(t - t)T(r)dr = f H(t - 'r)(r)dr (5.2.22)
This type of integral equation is referred to as the first-kind Volterra equation [Arfken, 1985].
Since we are solving our present problem numerically, i.e. in discrete-time series, we solve
instead the following difference equation at each time step

[~(t, -rj)i(rj)]At = [l(t, -7•r)(T7)] At with i=0,1,2,....,N (5.2.23)
j=0 j=0

where ti=iAt, Tj=jAt, At(=T/N,), and T is the total time in calculation. Equation (5.2.23) can be
rewritten in more compact form

[ e ]= ljI_ (5.2.24)j=0 j=0
Furthermore, expanding equation (5.2.24) for each time step ti, we obtain the system of equations

-F= HIIHo 0 i=0

Fto + F~, = HIp+ +HoIH i=

2o + , + o2 = [2o + H H,0 + I 2 , i=2

N, +F',[, , +"+,, + N, No + IN,-,, +""++iIPN,-, + tI)N, i=N,
(5.2.25)

The unknown traction vector Qi for each time step i can then be determined iteratively for
increasing i from 0 to N, in the form

tror m i=i

42 0-1 H2 H ^,0 + Ho 2 20 1 i=2

(5.2.26)
Substituting the determined ois(= Qe,) into equations (5.2.4 and 5), we can calculate the responses
in the k-t domain at any elevation z=zi, in both of the upper layered system and the half-space. In
order to obtain the final responses in the x-t domain, we perform an inverse Fourier
transformations in k as

u1(x, t)•1 = fiI (k,t)e-i'dk  (for 0<_z<_H) (5.2.27)

Un (Xt) =1 Ii~"n (k,t)e-i'dk (for z:0) (5.2.28)
27r

Next, we consider the responses due to axisymmetric loads such as point loads in the same semi-
infinite medium as figure 5.2.1, which is generally formulated in a cylindrical coordinate system,
i.e. in (r, 0, z). As is shown by Kausel [1981], the responses of axisymmetric problems, i.e. u,, us,
uz, can be expressed in terms of those of the plain strain problem in equation (5.2.6 or 7). Also,
the Hankel transformation in 3D space substitutes the Fourier transformation in 2D space.
Finally, the displacement in the space-time domain is obtained as
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u"(r,0,t) = T, kC,"(k,0,t)dk (5.2.29)
,p=0

where

u"m(r,0,t)=[ u" um u"mh (5.2.30)

iU (k,0,t)=[ ~"" = v" i•"" equal to equation (5.2.6 or 7) (5.2.31)

cos •

TU = -sin uO } (5.2.32)
cos 'of

d P
d(kr) ' kr

C J dJ (5.2.33)
kr d(kr)

-Jp

In the above, J, = J, (kr) are the Bessel functions of the first kind and u-th order, k is the

wavenumber in the radial direction, and u = wavenumber in the azimuthal direction: t=l1 for a
horizontal point load, and u=O for a vertical point load.

5.2.2 Stability and Accuracy

We consider next the stability and accuracy of the substructure method formulated in section
5.2.1. For this purpose, we discuss four issues in subsections (A), (B), (C), and (D), namely the
stability, accuracy, Poisson's ratio effect, and application of a buffer layer. The stability of the
technique is intimately related to the time step At in equation (5.2.23), because we numerically
solve the associated integral equations in the form of equation (5.2.23). In subsection (A), we
propose a criterion for the proper At through some numerical experiments, so as to obtain stable
responses with the substructure method. The accuracy of this substructure method is associated
with two parameters, which are the number of thin-layers per wavelength NA and the maximum
frequency involved with the t-TLM modal solutions fM. In subsection (B), the proper values for
the two parameters are determined through some numerical examples. In subsection (C), we
consider the effect of the Poisson's ratio on the response stability in SV-P wave problems.
Finally, in subsection (D), we propose the use of a buffer layer of some minimum thickness HB
for more efficient calculation.

We proceed with the discussion of the above issues by solving a test example of a layer (0<_zH,
H=I) overlain by a homogeneous half-space (z50) subjected to a surface line load p. The material
properties of the layer and the half-space will be specified in each subsection. Meanwhile, the
applied surface line load is defined as

pi(x,z,t)= f(x)S(z- H)h(t) with i=x, y, or z (5.2.34)
whereflx) and h(t) are given in the form.

Scos2x x
f(x)= a 2a with a being half the width of the load (5.2.35)

0 IxI >a
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h(t) = 2 5sin ' 71 t 0 :5 t ! t td
h(t) d d with td being the loading duration (5.2.36)

0 " tt<0, t
The line load has a bell-shaped variation in both the space x and time t, so-called Hanning
window. The Fourier Transform off(x) and h(t) are of the form.

sin ka
(k)= f (x)ebdx ka[1sin ka (5.2.37)

ka[1- (ka / 7)2f

(w) = h(t)e-'"dt sin td / 2  -i2 (5.2.38)
(otd / 2[11-(9td /2rt)2e]

As shown in chapter 4, the amplitude of the given load function in the wavenumber and
frequency domain becomes negligible beyond the wavenumber kmax=2nr/a and frequency
Oma0x= 4nt/td, which means that the spectral components beyond kmax and ax are insignificant.
Through this section, we set a=td=0.2, which implies krx=10Ot andffmax=anx/2n-=10.0.

(A) Stability

The first task is to decide the criterion for the proper time step At so as to obtain stable responses
with the substructure method. Note that F(t) and Fi(t) in equations (5.2.22) are the syntheses of
a certain number M of modal components whose maximum frequencyfM is to be no less than the
maximum frequency of the applied load fmax, as discussed in chapter 4. Therefore, in order to
express precisely F(t) and H(t) in discrete time step At, the following condition must be
satisfied:

1 1
f 5 fm 5 f,Nyq = 1/(2At) or At < 1(5.2.39)

2fM 2f (5.2.39)
where fw.Nyq is the so-called Nyquist frequency associated with a time step At up to which the

useful frequency range extends in the spectra defined via the Discrete Fourier Transform (DFT)
or the Fast Fourier Transform (FFT). Notice that the condition in equation (5.2.39) is sufficient
only for precisely expressing F(t) and IH(t) in discrete time-series, but not for solving equation
(5.2.23) in discrete time-series.

Now, we determine the criterion for the proper time step At by analyzing numerically the test
example, where an SH line load py in equation (5.2.34) is applied and the material properties and
geometry of the upper layer and the homogeneous half-space are given as Ap=pAi=Cs,1=Cs,11=H=1
and Poisson's ratio is VI=VII=0.30. Since the material properties of both the upper layer and the
lower half-space are identical, the behavior of the whole system is exactly the same as that of a
homogeneous half-space whose exact analytical solution is given in section 4.3. By means of the
substructure method, we calculate the displacement response v(x,z,t) at (x,z)=(1,1) for 05t<5 with
changing time step At such that At=-1/(2fM), 1/(4fM), and 1/(8fM) where fM=fnax is used. For the
calculation of the Green function for the upper layer, we apply the TLM1 with Na=8.

The three plots in figure 5.2.3 compare the response obtained with the substructure method (solid
line) against the exact analytical solution (dashed line) for At=1/(2fM), 1/(4fM), and 1/(8fM),
respectively, withfM=f.mx in this case. It is observed that the use of At=1/(2fM) provides a totally
unstable result, while the use of At=1/(4fM) and 1/(8fM) provides stable responses. In fact, the
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agreement between the substructure method and the exact analytical solution is almost perfect for
At=1/(4fM) and 1/(8fM). Therefore, we propose the following criterion for the proper time step At
to obtain the stable result from the substructure method.

1
At <5 (5.2.40)

4fM

However, it should be recognized that even though the results are stable with application of
At•ll(4fM), some small errors are detected around at t=2.24 in the second and third plots. These
small errors seem to be caused by weak spurious reflections at the interface between the upper
layer and the lower half-space, which is not supposed to happen. So, our second task is to find out
the causes of these spurious reflections and how to avoid them.

(B) Accuracy

As shown in the second and third plots of figure 5.2.3, there exist spurious reflections, which
deteriorate the final results. There are two reasons for these spurious reflections: 1) Numerical
dispersion error in the high modes computed with the t-TLM, and 2) Non-converged t-TLM
modal solutions in the k-t domain. The first reason is obvious, because as discussed in chapters 2
and 4, the t-TLM provides incorrect eigenvalues and mode shapes for the highest modes. On the
other hand, the second reason is not directly understandable, because we have obtained the
converged and accurate results with the TLM1 using the discretization Na= 8 recommended in
chapter 4.

The explanation for this incomplete convergence of the modal solution in the k-t domain is as
follows. All modal solutions in the k-t domain must be considered to be near-field responses,
because in the k-t domain the spatially harmonic loads are distributed from -00 to +00 in the x-
direction, so the responses are periodic as well. Thus, there are no far-field responses in the k-t
domain. Therefore, to obtain the converged and accurate modal solutions in the k-t domain, an
additional number of accurate high modes is necessary in the modal summation. The reason is the
same as that argued in chapter 4 for near-field solutions in the x-t domain. Consequently, it is
necessary to increase the number of thin-layers per wavelength NA, and include an additional
number of accurate high modes having sufficiently high frequency contentfM(>fma) in the modal
solutions. In addition, the extra high modes require the adjustment of At according to equation
(5.2.40). Otherwise, the solutions become unstable, because those high modes increase the
involved maximum frequencyfM, i.e. fmax<fM wherefmax is the maximum frequency of the load.

We now determine the proper values for NA and fM so as to calculate accurate responses with the
substructure method. For this purpose, we analyze the same test example as subsection (A) while
changing Na andfM for both the TLM1 and the TLM2. We consider the following six models.

Model 1: TLM1 with NA=8 and fM=fmax
Model 2: TLM1 with N-=8 andfM=2fmax
Model 3: TLM1 with NA=12 andfM=2fmax
Model 4: TLM2 with Na= 4 andfM=fmax
Model 5: TLM2 with Na= 4 andfM=2fmax
Model 6: TLM2 with NA= 6 andfM=2fmx.

Figure 5.2.4 shows the displacement snap-shots at t=1.4 for all the six models listed above. The
two snap-shots for Model 1 (TLM1 with Na=8 and fM=fmx) and Model 4 (TLM2 with Na= 4 and
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fM=fx) confirm that weak spurious reflections take place at the interface and then propagate
toward the top surface. Next, we observe that Model 2 (TLM1 with NA=8 and fM=2fax) and
Model 5 (TLM2 with NA= 4 and fM=2fax) decrease the degree of spurious reflection effect, but
not completely, which implies that the incorrect high modes still affect the final responses.
Therefore, it is concluded that accurate high modes ought to be included into the modal solutions,
which can be achieved only by increasing the number of thin-layers per wavelength NA. Finally, it
is shown form the two snap-shots in the last row of figure 5.2.4 that Model 3 (TLM1 with N,=12
and fM=2f,mx) and Model 6 (TLM1 with NA=12 and fM=2fax) avoid almost perfectly the effect of
spurious reflection. In addition, it is noticed that the result of Model 6 is better than that of Model
3, which implies that the TLM2 provides more accurate results than the TLM1 when the same
number of degree of freedoms are used, as seen in chapter 4. Finally, concerning the accuracy of
the substructure method, we propose the use of

N, 212 for the TLM1 (5.2.41)

NA > 6 for the TLM2 (5.2.42)

fM > 2fm2 (5.2.43)

To complete our discussion in this subsection (B), we solve a test example in which the above
homogeneous half-space is now subjected to an SV-P surface vertical line load Pz as given in

equation (5.2.34). We apply the TLM2 with NA1=6, fM=2.f~nx and At=1/(4fM). Figures 5.2.5 and 6
show the snap-shots at t=0.5, 1.0, 1.5, and 2.0 for the horizontal(u,) and vertical(u,)
displacements, respectively. It is verified that no spurious reflections take place with application
of the proposed model with the TLM2 of NA=6, fM=2.fnmax and At=fMI4. In addition, it is observed
that the Rayleigh wave motion is confined near the surface and carries most of the energy from
the applied source. On the other hand, most of the energy associated with S and P waves
penetrates into the half-space at the beginning and only a very small portion propagates along the
surface.

Finally, it is concluded that the proposed substructure method models the wave motion within the
semi-infinite (or infinite) domain with very good accuracy. In addition, the proposed technique
synthesizes precisely the involved physical phenomena. Therefore, with the aid of the
substructure method, we can study and explore even more complicated problems such as wave
propagation in multilayered half-spaces.

(C) Poisson's ratio effect

Here, we consider the effect of Poisson's ratio v on the stability of the substructure method,

which will in turn modify the criterion for the proper time step At in equation (5.2.40), especially

for SV-P wave problems with v,=0.5. We discuss this issue again with the test example of a
homogeneous layer on a homogeneous half-space subjected to an SV-P surface vertical line load

Pz as given in equation (5.2.34), where pj=p~,=Cs,I=Cs,11=H=1.

In terms of Poisson' ratio v, the ratio of S wave velocity to P wave velocity CslCp is given by

CP 2-2v (5.2.44)
Cs 1- 2v

It is inferred from equation (5.2.44) that as v-40.5, the ratio tends to infinity. This significant
difference between the two wave velocities can cause additional instability when the criterion in
equation (5.2.40) is used. The reason is that the significant dissimilarity of the two wave
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velocities produces more complicated wave motions at the interface where mode conversions are
involved between S and P waves. Therefore, it is necessary to decrease the time step At, i.e. apply
finer At, so as to describe more precisely the complicated wave motion.

We analyze the test example for a high Poisson's ratio v=-0.49 by means of the substructure
method. We calculate the horizontal (u,) and vertical (un) displacements with the use of the
TLM2 with NA,QE=6 , fM=2.fx and At=1/(4fM), 1/(8fM). It turns out that the use of At=fM/4
produces unstable numerical results as the case of the first plot in figure 5.2.3 demonstrates, while
the use of At=fM/8 provides the stable numerical results. Figures 5.2.7 and 8 show the snap-shots
at t=0.5, 1.0, 1.5, and 2.0 for the horizontal (u,) and vertical (u,) displacements, respectively.
Hence, it is concluded that in SV-P wave problems, the time step At must be adjusted by taking
into account the Poisson's ratio v.

(D) Application of the buffer layer

We consider the stability of the substructure method in case that two significant dissimilar
materials are contacted at the interface between the upper layered medium and the lower
homogeneous half-space in figure 5.2.1. As the case of v-0.5 in subsection (C), this significant
difference in material properties can produce complicated wave motion at the interface such as
mode conversion, reflection, and refraction. It follows that a much finer time step At is necessary
for calculating stable responses. As a result, the computational cost may increase significantly.

To avoid this inefficiency, we here propose the use of a buffer layer of certain thickness HB
whose material properties are identical to the lower homogeneous half-space. This buffer layer is
located between the upper layered medium and the lower homogeneous half-space, which is
basically equivalent to shifting down the interface by HB at which equations (5.2.23-25) are
established and solved. This shifted interface is now an artificial one, because it is located
between two identical materials. For practical purpose, we also propose the thickness of the
buffer layer HBL in the form.

HBL •min (5.2.45)
where 2., is the minimum wavelength in analysis.

For practical verification of the proposed buffer layer, we solve the test example of a
homogeneous layer (pj=Cs,=l1.0, H=1.0, 0<z5H) overlain by a homogeneous half-space (Ap=l,
Cs,u1=3.0, z50) subjected to an SH surface line load py in equation (5.2.34). We analyze this
example by means of the TLM2 of NA=6, fM=2.0f,,ax. Also, we consider three models: (1)
At=1/(4fM) without a buffer layer, (2) At=1/(8fM) without a buffer layer, and (3) At=1/(4fM) with a
buffer layer of HB=1ý) n as suggested in equation (5.2.45). In this present example,
Amn(=Cs, ulfmax)=3/10=0.3.

It turns out that the first model of At=1/( 4fM) without a buffer layer produces unstable result, as
seen in the first plot of figure 5.2.3. On the other hand, the second and third models with
At=1/(8fM) without a buffer layer, and At=1/(4fM) with a buffer layer of HB=A,.in produce both
stable results. Figure 5.2.9 presents the displacement snap-shots at t=0.5, 1.0, 1.5, and 2.0
obtained with At=-1/(8fM) without a buffer layer. Figure 5.2.10 displays the displacement snap-
shots at t=0.5, 1.0, 1.5, and 2.0 obtained with At=1/(4fM) with a buffer layer of HB=2 •n=0.3.
Notice that the agreement between the two figures is remarkable. Finally, it is proved that the
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application of a buffer layer of HB=Ain improves the responses obtained with the substructure
method from the point of view of both its efficiency and accuracy.

5.3 Green's functions in k-t domain on a homogeneous half-space

We derive here the Green functions in the k-t domain for a homogeneous half-space (z-0)
subjected to SH and SV-P surface line loads. For the case of an SH line load, the Green function is
obtained in a completely closed form. On the other hand, for SV-P line loads, the Green functions
are obtained by contour integration in the complex frequency plane and expressed in terms of the
summation of the residues associated with the poles (i.e. free vibration terms) and branch-cut
integrals without singularities.

5.3.1 Green's function for SH surface line loads

We start by deriving the Green function for SH surface line loads. First, consider a homogeneous

half-space (z_0) subjected to an SH surface line load, whose governing equation is established in
the form

a av az2
p T- GýZ + 2 = p =(x)(z)8(t) (5.3.1)

where v=v(x,z,t) is the displacement in the y-direction expressed in the x-t domain, 8 is the Dirac

delta function, p is the mass density, and G is the shear modulus. Applying a double Fourier

transformations to v(x,z,t) with respect to x and t, we obtain the general solution for z•0 in the k-w
domain in the absence of external force py as

V(k,z,co) = Aekz (5.3.2)

where A is an unknown constant, s = 1-( (w/kCs)2, and Cs= 4G/p(=shear velocity).

Applying the traction boundary condition at the top surface, we can determine the unknown

constant A and finally obtain the Green function G', in the k-w domain as

Gyy(k, z,) = le- e (5.3.3)
Gks

In order to obtain the Green function in the k-t domain, we perform an inverse Fourier transform

in co as

Gy(k,z,t)= 2 =G(k, z,w)e"dw = - e• e'"dc (5.3.4)

This inverse Fourier transformation has an exact solution, as given in the mathematical handbook

by Spiegel [1968]. The final result is then

S2S(5.3.5)
G, (k, z,t)= pCs (5.3.5)

0 , z/Cs >t

where J0 is the Bessel function of the first kind and 0-th order.
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5.3.2 Green's functions for SV-P surface line loads

Next, we derive the Green functions for SV-P surface line loads. First, consider a homogeneous
half-space (z50) subjected to SV-P surface line loads, for which the governing equation is given
in matrix form as

pii- LT DLu = p (5.3.6)

where p is the mass density, the superscript dot represents the partial derivative with respect to
time t,

u(x,z,t) ={u w} (the displacement vector) (5.3.7a)

p(x,z,t)={px P)}T  (the applied line load vector) (5.3.7b)

D= 2 + 2G (the constitutive matrix) (5.3.7c)

L = L + L (the differential operator) (5.3.7d)
ax  a-z

L ={1 , andLz={ i (5.3.7e,f)

In the constitutive matrix D, the constants 2 and G are referred to as the Lame's constants.
Applying the double Fourier transformations to u(x,z,t) with respect to x and t, we obtain the
general solution in the k-w domain in the absence of external force p as

r••ir ek'  ]j e"L A]
i(k,z,wo) = W eirekr z i/seZ (5.3.8)

where A, B are unknown constants, r = 1- (/ kCp )2, = 1- /kC 2 C, = (+2G)p,

and Cs = J•Gp . Combining the traction conditions at the top surface with equation (5.3.8), we

end up with the Green functions Gii (k, z,o) in the k-w domain as

G,~(k, z, w) = 1 [2ser - s(l+ s2 )e~ (5.3.9a)
4kGA

,(k,z,o)- = [2rsekrz -(+ S2 )e (5.3.9b)

Gz (k, z,o) =- [(1+ s2)e - 2rsekz] (5.3.9c)

G, (k, z,w) = I -[-r(1 + s2 )ekr + 2seksz (5.3.9d)
4kGA

where
1

A (1+ s2) 2 + rTS (5.3.10)
4

Equation (5.3.10) is the well known Rayleigh surface wave equation that provides a non-
dispersive SV-P propagation mode. A very close solution to this equation is

(R = kCR (5.3.1 la)

CR = Cs (-0.0276v3 - 0.056v2 + 0. 197v + 0.874) (5.3.11b)

where CR is the phase velocity of Rayleigh wave, and v is the Poisson's ratio of the half-space of
interest.
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To obtain the Green functions in the k-t domain, we have to perform the inverse Fourier
transform over coin the form.

Sb (ki z t) p= G~2 rI (k,z,on)ee'"do

We begin by defining the parameters needed in the derivation that follows:

kCs
r= kCst

Cs= 1-2v

C, 22-2v

r= (1-(/kC,)2 =1-22 =2 ia

s = 1-(o/kCs )2 =• -i=if

1
A, =--(1- #2)2 -ag

4
1

A2 =-- (1 fl2)2 + irfl
4
1

A =--(1- f 2)2 - irT = conj(, 2)4

s= os _ kCs -1
kCs kCs

P _ op _ kC, _1
kCs kCs a

QR = kGO
kCs

rR =r(2 = Q2 R)
sR = s(Q = iR)

D, = 0odA=dQ Qgl

(dimensionless frequency)

(dimensionless time)

(ratio of wave speeds)

(dimensionless branch-point for S wave)

(dimensionless branch-point for P wave)

(dimensionless Rayleigh pole)

=Q,[2_2• rR _ 2 SR

(5.3.12)

(5.3.13a)

(5.3.13b)

(5.3.13c)

(5.3.13d)

(5.3.13e)

(5.3.13f)

(5.3.13g)

(5.3.13h)

(5.3.13i)

(5.3.13j)

(5.3.13k)

(5.3.131)

(5.3.13m)

(5.3.13n)

With the dimensionless parameters defined above, equation (5.3.12) can be expresses as

Gx,(k,z,t) =- - 2sekrz s(1+ )ekz ird2
87rpCs

(5.3.14a)-8pCs K,(s,r,A)e.. dGl
8n7rpCs

1
-8 Ix

8rrpCs
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G,(k,z,t)= f ![2rsek -(1+ s 2 )eksz I enrd
8npCs A

- K (s,r,A)ein'df (5.3.14b)
87tpCs

1
= I

8npCs

G.,(k,z,t)= 8 f [(1 + sZ)e k" - 2rseIz ]ei'nd

- KJK (s,r, A)ein'd (5.3.14c)

8npCs

= I

87cpCs

G=z(k,z,t)= 1 -r(1+ s2)e + 2sek]" ez MTd
8xpCs A

S 1 EKzz(s,r,A)einRdQ (5.3.14d)

8&pCs
1

= 8 I
8npCs

where K, are the kernels for each integral and shown to be the functions of s, r, A.

We proceed to calculate the four integrals I,, I,, Iz, and Iz defined in equations (5.3.14a-d).
Instead of performing integration along the real O-axis as in equations (5.3.14a-d), we deform the
integration path in the upper complex O-plane, or Qc-plane, as shown in figure 5.3.1. The use of

ein' in equations (5.3.14a-d) requires the upper Oc-plane. Since the integrands in each integral
are odd functions of both of s and r, the branch-cuts around both of =+±Qs(=+I) and

Q= +in(= ±1/a) are made along both of Re s = 0 and Re r = 0. The resulting contour integral

has the form.
WdlJ I= + WdO + a dIa + 'dI + ,a dI¾

Ila
+ dI + do .  + f, dl + Id (5.3.15)

= 2nii Residues

where ij=x,z. All the integrands vanish on Cj, so equation (5.3.15) can be expresses as

I, = 2cni (Residues), - Lranch-cut dly (5.3.16a)

anc-c, + + la XI (5.3.16b)
+ dlI + ',adi + f, + adl,I

For the proper contour integrals, we have to identify the correct phase of complex r and s along
the deformed integration paths. We first inspect s and then apply the same reasoning to r. For this
purpose, we shift down the frequency axis by itq, as shown in figure 5.3.2. Then, s2 is given as
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s2(c) = l- (Cc - i 1) 2

= 1- ( + i' - i77)2  (5.3.17)

= 1- Q2 + (4 -7) + 2i(r - )

By examining the signs of Re s2 and Im s2 , we decide on which of the four quadrants the
function s2 lies; these quadrants (labeled by four small letters of i, ii, iii, iv) are shown in figure
5.3.2. Based on this, we can decide on which of the four quadrants (labeled by four large letters of
1, II, III, IV) the function s is located, again as shown in figure 5.3.2. The Branch-cut integrals are
then expressed as

Branch-cad1 = / KU (if, r, A2 )eird + K(-ifl, r, A)ein'df

+ f'K, (if,r,A2 )e'nird + a- K, (-i l ,r, A;)e in 'd2
(5.3.18)

+ a K, (ip,ia,A,)eiO'dn + U K(-if,-ia, A )ein'd

+ L K, (iP, ia,A,)e' rdn + K, (-i6, -ia, A,)ei"'d
where Ky are the kernels in each integrand as defined in equations (5.3.14). Changing the
integration direction so as to increase the absolute value of Q along the path, we obtain

IBranch-cu• dlX= fl K, (iPf, r, A2)eiMd + fK.(-i, r, A )einrd

K-, K (ifp,r,A 2)e nird + K(-if, r, A 2)eI' d.Ya ~(5.3.19)

- LK, (iP, ia, A,)ei"n dQ + • K,(-iP, -ia, A,)ein'd Z

- K, K (iP, ia, A,)einf'd + F K, (-if, -ia, A,)e'0'df

Since the kernels in each row of equation (5.3.19) are conjugate to each other, the expression
simplifies into

IBrnch-cWdl = df 2i m [K, (-ifl, r,A; )] ein'dQ

+ Ila 2ilm [K, (-iP , r,A )]e'rd
(5.3.20)

+ f 2i Im [K (-if, -ia, A,)] ein!'df

+ fa2ilm[K,(-iA,-ia,A,)]ein•' d

Additionally, replacing Q1 by -4 in the second and fourth integrals and considering the conjugate
relationship between ein' and e- i'~, we can simplify the branch-cut integrals in equation (5.3.20)
as

JSranch-cu.t d = -4 f' Im [K, (-iP, r, A;)] sin rdQ (5.3.21)
-4 Im [K, (-iPl,-ia, A, )] sin OrdG

Next, we consider the residues at 2=+±R . The residues of I, can be obtained as follows.
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(Residues), = lim (0g+ 2R)Kijeiar + lim (gS-g,)Kijeinr

= lim (2 + R,) j ein' + lim (Q - G,) ) " e ia r  (5.3.22)

NY(-2R) - i R  Ni(R) - N( einRr
dA d e

dQ_=-_ , dA '=",

where Nu= Nj(G) represent only the numerator parts in the kernels in equations (5.3.14). Also, it
can easily be observed that N0(-ŽR)= Nj(9R) and dA/dSln=_nR=-dA1dQŽn=aR. Due to the conjugate
property of the two terms, only the imaginary parts survive and the result is then given in the
form

I (Residues) = 2i Im ei•  = 2i D(R) sin ,Rz (5.3.23)
SD, DR

Then, substitution of equations (5.3.21) and (5.3.23) into equation (5.3.16a) yields

1.. = - 47cnR sin •,r
DR

+4 ta Im [K (-if, r, A;)sin QrdG (5.3.24)

+4a Im[ K(-if,-i'a,A )]sin rdQ

The final expressions for the Green functions in k-t domain are in the compact form

Gi (k,z,t )  e ,
87rpCs

e N l(a2R)si+= -pC N ( Rsin , '+ Im[K 1 (-i,, r, A;)]sin rdG2 (5.3.25)
27tpCs  

DR

+ F Im[K (-if,-ia, A,)] sin QrdG}

where ex=e,=land e,=ez=i. To efficiently calculate the above branch-cut integrals, we apply
Hermite interpolations to the kernels. We display the four Green functions in the following
explicit form.

, 1 -{[2sRekrRz -sR(l1+ s)eRs]
Gx - sinQR r

27tpCs DR

- [a2f8coskaz _(1 ,2 )coskfz sin 2crd2 (5.3.26a)

i 2flekr Re [A2 ] _- 3(1 -2) Re[e-ikfizA 2]
- * sinQMd

A2 2
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i F[-2rs~erRz + (1+ s' )ksRzG = sin QR,
27rpCs DR

- 2aflsinkaz (1fl 2)sinkfz sin trdQ (5.3.26b)
A1

,a 2r/lek' Re[A2 ] + (1-f 2 ) -ikm[e 2 ] sin 12 d1

A2A 2

i 1[-( + s2)ekriz + 2rRsRe•"s iR

27rpCs  D,

, (1-fl2)sinkaz + 2a fsinkz sinrd (5.3.26c)
aA

la -(1- f_ 2 )  A2)ekr 2 
] - 2r f Re[ e- ikz 2 sin Qd

- isin ,dRT
27cpC s  DR

-a(1- f 2)coskaz + 2acoskflz
sin r2TdG (5.3.26d)

At

-ar(1-fl2)e k Im[A2 
] - 2rIm[e-ikf' zA2] sin •d}

A2A

To complete our formulation, we present the Green functions for the case of k=0O, which can be
obtained in closed form as follows:

1 z/C <t
S= pCs s (5.3.27a)

0 , z/Cs >t

G, =0 (5.3.27b)

Gx =0 (5.3.27c)1
G/ = PCp (5.3.27d)

0 , z/C >t
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5.4 Applications to multilayered half-spaces

5.4.1 Anti-plane problems

Here, we analyze two numerical examples of multilayered half-spaces subjected to an SH
transient line load, by means of the substructure method developed. The two examples are 1) a
one-layered system on a homogeneous half-space, and 2) a two-layered system on a
homogeneous half-space. Through these analyses, we illustrate wave motions within the upper
layered domains in terms of displacement snapshots. The wave motions observed here are much
more complicated than in the case of a homogeneous half-space. The reason is that due to the
dissimilarity of material properties, the phenomena of reflection and transmission (or refraction)
occur at the interfaces between the layers. In addition, head waves propagate through the media
as well.

Consider the first example: a one-layered system (0<z<H) on a homogeneous half-space (z<0)
subjected to an SH transient line load. The mass density, the shear wave velocity, and the
thickness of the upper layer are pA=Cs,1=H=1.0, while the mass density and the shear wave
velocity of the lower half-space are P2=1.0 and Cs,2=2.0. The SH line load is applied at the top-
surface, i.e. z=H(=1), and its variations in both x and t are defined by a bell-shaped function, i.e.
so-called Hanning window, with a=td=0. 2 , as defined in equations (4.2.35 and 36). Then, the
associated maximum wavenumber kmax and maximum frequencyf,mx are 10r and 10. For discrete
models, we apply the TLM2 with NA=8, At=-1/(4fM), and a buffer layer of HBL=A/mn. Since

lAm'n(=CS,2/fmax) is 0.2 in the present example, HBL is chosen as 0.2.

Figure 5.4.1 shows the displacement snapshots at t=l, 2, 3, and 4 for the upper one-layered
system (0:5zl) in terms of a standard surface plot. The first snapshot for t=1 shows that only the
direct wave propagates with circular wavefronts through the medium, which is exactly identical
to the case of a homogeneous half-space whose material properties are the same as the upper
layer. The second snapshot for t=2 displays the direct wave propagating still in the same fashion
as the case of a homogeneous half-space, and the first reflection at the interface of z=0
propagating upward and forming elliptical wavefronts. Notice that the polarization of this first
reflection wave is opposite to the direct wave, because the half-space is stiffer than the upper
layer, i.e. Cs,1<Cs, 2. The third snapshot for t=3 illustrates the direct wave propagating nearly
vertically, and the first reflection at the top-surface at z=1 propagating downward with elliptical
wavefronts and without change in polarization. In addition, as can be seen in the third snapshot, a
weak head wave propagates ahead of the direct wave. Finally, it is observed in the fourth
snapshot for t=4 that because most of the energy generated by the external source leaks into the
half-space during multiple reflections, the amplitudes of all the reflected waves become
progressively smaller. On the other hand, the direct wave propagates continues with significant
amplitude.

Now, consider the second example: a two-layered system (0<z<H, with H=H1+H2) on a
homogeneous half-space (z_0) subjected to an SH transient line load. The mass densities, the
shear wave velocities, and the thickness' of the two upper layers are p,=Cs,1=Hi=1.0, and
p2=H2=1.0, Cs.2=2, respectively, while the mass density and the shear wave velocity of the lower
half-space are p3=1.0 and CS,3=3.0, respectively. The SH line load is applied at the top-surface,
i.e. z=H(=HI+H2=2), and its variations in both x and t are defined by a bell-shaped function, i.e. a
Hanning window with a=td=0.2 , as defined in equations (4.2.35 and 36). Then, the associated
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maximum wavenumber k ax and maximum frequency fnx are 10t and 10. For discrete models,
we apply the TLM2 with NA=8, At=1/(4fM), and a buffer layer HBL=A2 n. Since min(=Cs,3/fmax) is
0.3 in the present example, HBL is chosen as 0.3.

Figure 5.4.2 displays the displacement snapshots at t=l, 2, 3, and 4 for the upper two-layered
system (0<z52) in terms of a standard surface plot. In each plot, the dotted line at z=1 represents
the interface between the first (15z<2) and second (0z51) upper layer. The first snapshot for t=l1
shows that only the direct wave propagates with circular wavefronts through the medium, which
is exactly identical to the case of a homogeneous half-space whose material properties are equal
to those of the first upper layer (1<z52). Next, it is observed in the second snapshot for t=2 that
the wave motion in the first layer (1<z52) is identical to the snapshot for t=-2 of figure 5.4.1. In
addition, it is shown that the first transmitted wave from the first layer (15z<2) to the second layer
(0z51) refracts and propagates through the second layer, and the first reflection wave at the
interface at z=0 propagates with relatively weak amplitude. The weak amplitude of the reflection
wave implies that most energy from the source has already leaked into the half-space. The third
snapshot for t=3 shows again the similarity to the third snapshot in figure 5.4.1 for the first layer
(1<z52). However, there is a difference as well, that is, the first transmitted wave from the second
layer (0<z<l) to the first layer (1<1z2) propagates through the first layer with weak amplitude.
This transmitted wave results from the first reflection at the interface at z=0. In addition, two head
waves are observed in the third snapshot for t=-3, because not only the second layer is stiffer than
the first layer, but also the half-space is stiffer than the second layer. One propagates through the
first layer ahead of the direct wave generated by the source, and the other propagates through the
both first and second layers ahead of both the direct wave and first transmitted wave from the first
layer to the second layer. Finally, the fourth snapshot for t=4 illustrates that the wave motion in
the first layer is similar to the fourth snapshot in figure 5.4.1, except the effect of the reflection
waves at z=0. Also, notice that since most energy from the external source to the second layer
leaks into the half-space during multiple reflections, the amplitudes of all the waves in the second
layer become very small.

5.4.2 In-plane problems

Next, we analyze two numerical examples of multilayered half-spaces subjected to an SV-P
vertical line load, by means of the substructure method developed. The two examples are 1) a
one-layered system on a homogeneous half-space, and 2) a two-layered system on a
homogeneous half-space. Through these analyses, we illustrate wave motions within the upper
layered domains of interest in terms of snapshots for both the horizontal and vertical
displacements u and w. The wave motions involved here are much more complicated than in the
case of a homogeneous half-space. The reason is that because of the dissimilarity of material
properties, the phenomena of reflection, transmission, refraction, and head waves occur at the
interfaces between the layers. In addition, since both of S and P wave components are involved,
the mode conversions between the two components also take place at each interface.

Consider the first example: a one-layered system (0_z5H) on a homogeneous half-space (z<0)
subjected to an SV-P vertical line load. The mass density, the shear wave velocity, the thickness,
and the Poisson's ratio of the upper layer are pA=Cs,1=H=1.0 and v=0.25, respectively, while the
mass density, the shear wave velocity, and the Poisson's ratio of the lower half-space are p2=1.0,

Cs,2=2.0, and v=0.25, respectively. Then, it follows that dilation (P) wave velocities for the upper
layer and the half-space are Cp,1=1.732 and Cp,2=3.464, respectively, and the Rayleigh surface
wave velocity for the upper is CRt=0.9193. The SV-P transient line load Pz is applied at the top-
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surface, i.e. z=H(=l), and its variation in both x and t is defined by a Hanning window, with
a=td=0.2 , as defined in equations (4.2.35 and 36). Then, the associated maximum wavenumber
kmx and maximum frequencyfmax are 10 and 10. For discrete models, we apply the TLM2 with
Na= 8, At=1/(4fM), and a buffer layer of HBLt=Am'n. Since A.n(=Cs,2/fmax) is 0.2 in the present
example, HBL is chosen as 0.2.

Figure 5.4.3 shows the displacement snapshots for u and w at t=0.5, 1.0, 1.5, and 2.0 for the upper
one-layered system (0<z51) in terms of a standard surface plot. It is observed in the first two
snapshots for t=0.5 that the P and S wave components propagate separately through the upper
layer in the same fashion as the case of a homogeneous half-space. Observe also that near the top-
surface, the amplitude of P wave components is much smaller than that of S wave component,
while within the upper layer and below the top-surface, the amplitude of P wave components is
comparable to that of S wave components. This confirms that a P wave cannot properly propagate
along stress-free surfaces without an external source to sustain it. Also, notice that the Rayleigh
surface wave propagates together with S wave along the top-surface at time t=0.5. The two
snapshots for t=1.0 on the second row display that two weak reflected waves resulting from the
incident direct P wave at the interface of z=0 propagate upward through the upper layer. The
reason that two reflection waves propagate is the mode conversion from an incident P wave into
two reflected S and P waves at the interface. Also, notice that the Rayleigh surface wave
propagates along the top-surface and is clearly separated from the S wave components, and its
amplitude is significant as well. The snapshots on the third and fourth rows illustrate the wave
motions for t=1.5 and t=2.0, respectively. As shown in the four surface plots, the wave motions
involved are extremely complicated, because of the multiple reflections, the head wave effects,
and the mode conversion between P and S wave components at both the interface and top-surface.
In addition, due to the multiple reflections and energy leakage into the half-space, the amplitudes
of waves decrease to the great degree, which makes it more difficult to identify the involved
waves and interpret the wave motions. However, it can be seen that the Rayleigh surface wave
propagates in the almost same fashion as the case of a homogeneous half-space. This observation
implies that in the present example, the depth of the upper layer (H=1) is large enough to prevent
the Rayleigh surface wave from "touching" the interface between the upper layer and the half-
space.

Next, consider the second example: a two-layered system (0<z5H, with H=H,+H2) on a
homogeneous half-space (z<0) subjected to an SV-P vertical line load. The mass densities, the
shear wave velocities, the thickness', and the Poisson's ratios of the two upper layers are
PA=P2=1, Cs,1=1, Cs,2=2, HI=H2=1.0 and vl=v2=0.25, respectively, while the mass density, the
shear wave velocity, and the Poisson's ratio of the lower half-space are p 3=1.0, CS,3=3.0, and
v3=0.25, respectively. Then, it follows that dilation (P) wave velocities for the two upper layer
and the half-space are Cp,1=1.732, Cp,2=3.464, and CP,3=5.196, respectively, and the Rayleigh
surface wave velocity for the upper is CR,1=0. 9 193. The SV-P transient line load Pz is applied at
the top-surface, i.e. z=H(=2), and its variation in both x and t is defined by a Hanning window,
with a=td=0.2, as defined in equations (4.2.35 and 36). Then, the associated maximum
wavenumber kx, and maximum frequencyfmnx are 10nt and 10. For discrete models, we apply the
TLM2 with NA=8, At=-1/(4fM), and a buffer layer of HBL=A-n. Since ,•n(=Cs,3/fmax) is 0.3 in the
present example, HBL is chosen as 0.3.

Figure 5.4.4 shows the displacement snapshots for u and w at t=0.5, 1.0, 1.5, and 2.0 for the upper
two-layered system (0<z52) in terms of a standard surface plot. In each plot, the dotted line at z=1
represents the interface between the first (1z<52) and second (0<_z51) upper layer. We begin by
interpreting the wave motions in the first layer (15z52), in comparison with the wave motions in
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the upper layer (05z51) in figure 5.4.3. It is observed in the first (t=0.5) and second (t=-1.0)
snapshots that the wave motions in the first layer (1•<72) are exactly identical to those in the
upper layer (0_z51) in figure 5.4.3. The reason is that at time t=0.5 and 1.0, the waves reflecting
at the interface at z=0 have not yet arrived at the first layer. On the other hand, it is seen in the
snapshots in the third (for t=1.5) and fourth (for t=2.0) rows that the reflection waves from the
interface at z=0 have transmitted into the first layer (15z•2). Hence, the wave motions in the first
layer are now different from those in the upper layer (0<7<1) in figure 5.4.3. However, notice that
the degree of difference is insignificant. The reason for this little difference is that when the
reflection occurs at the interface of z=0, most energy leaks into the half-space and only small
portion bounces up. Consequently, the waves transmitting from the second layer to the first layer
are too weak to influence significantly the wave motions in the first layer (1~5z2). Also, notice
that the Rayleigh surface wave motion propagates without any interruption resulting from the
transmitted waves in the present problem for the whole time of interest.

Finally, we consider the wave motions in the second layer (0z51). The snapshots for t=-0.5 in the
first row show that the second layer is quiescent, because no wave has yet arrived from the
source. The snapshots for t=-1.0 display complicated interference phenomena where the P wave
transmitted from the first layer (1•:52) has already propagated upward after reflecting at the
interface of z=0, while the transmitted S wave propagated downward. However, due to the
complicated interference, the associated wavefronts are not clearly distinguished in the snapshots.
The snapshots for t=1.5 and 2.0 illustrate even more complicated wave motions. The reasons for
this extreme complication are that multiple reflections, head wave effects, and mode conversion
between P and S wave components have taken place at the interfaces z=0 and z=1. In addition,
due to the multiple reflections/transmissions and the associated energy leakage into the half-
space, the amplitudes of waves decrease significantly, which makes it more complicated to
identify the involved waves and interpret the wave motions.
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Figure 5.2.1 Semi-infinite medium subjected to a line load vector p(x,y,z,t) at z=z,
and the coordinate system used
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Figure 5.2.2 Substructuring of the semi-infinite medium
into an upper layered system of 0<z<H and a homogeneous half-space of z<0,

by imposing the traction boundary conditions ,, s, at the interface of z=0
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Figure 5.2.3 Stability of substructure method as function of At:
seismograms of surface v at x=- in a homogeneous half-space (P=Cs=l)

subjected to SH surface line load of a=td=0. 2 , obtained with the TLM1 of NA=8,
and At=-1/(2fM), 1/(4fM), and 1/(8fM),fM=fmax=lO0 (solid line for TLM1; dashed line for Exact)
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Figure 5.2.4 Accuracy of substructure method as function of NA andfM:
snapshots of v at t=1-.4 in a homogeneous half-space (p=Cs= 1)

due to SH surface line load of a=td=0.2

271

0

N -0.5

-1
0

0

N -0.5

-1
0

0

N -0.5

-1

TLM2 with N,=4 and f=1.0*fmax



U_ a t= 0.50
0

-0.2

-0.4
N

-0.6

-0.8

-1

0

-0.2

-0.4
N

-0.6

-0.8

-1

0

-0.2

-0.4
N

-0.6

-0.8

-1

0

-0.2

-0.4

-0.6

-0.8

-1

0 0.5 1 1.5 2 2.5 3 3.5 4

i u~ t= 1.00

0 0.5 1 1.5 2 2.5 3 3.5 4

u_ t= 1.50

U U.s 1 1.s 3 u t 42

S@ t= 2.00Ps P

U U.S 1 1. 0 L.z .

Figure 5.2.5 Snapshots of u, in a homogeneous half-space (p=Cs=l, -0.30)
subjected to a vertical surface line load of a=td=0.2 , calculated with TLM2 with NA=6
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Figure 5.2.6 Snapshots of u, in a homogeneous half-space (p=Cs=l, w-0.30)
subjected to a vertical surface line load of a=tO0.2 , calculated with TLM2 with NA=6
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Figure 5.2.7 Snapshots of u, in a homogeneous half-space (p=Cs=l, I-0.49)
subjected to a vertical surface line load of a=t•=0.2, calculated with TLM2 with NA= 6
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Figure 5.2.8 Snapshots of u, in a homogeneous half-space (p=Cs=1, v-0.49)
subjected to a vertical surface line load of a=td=0.2 , calculated with TLM2 with NA=6
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Figure 5.2.10 Snapshots of v with a buffer layer of HBL=An and with At=- 1/(4fM)

in a layer (p=Cs, I=H=1) on a half-space (p,=1,Cs, n=3) subjected to SH surface line load of
a=t-=0.2, obtained with TLM2 of NA=6
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Figures for section 5.3

Figure 5.3.1 Contour integral paths, branch-points (x), and poles (e): Rayleigh wave problem
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Figure 5.3.2 Identification of the branch-cuts and the quadrants for s2 (i-iv) and s (I-IV).
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Figures for section 5.4
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Figure 5.4.1 Snapshots of v in a one-layered half-space
(p=Csa=H=I; P2= 1, Cs,2=2)

subjected to SH surface line load of a=td=0.2 ,
obtained with TLM2 of Na=6, At=1/(4fM) and with a buffer layer of HBL=,An
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Figure 5.4.2 Snapshots of v in a two-layered half-space
(p=Cs,1 =Hl,=; P2=H2= .0, Cs,2=2; p3= , Cs,3=3)

subjected to SH surface line load of a=td=0.2 ,
obtained with TLM2 of Na=6, At=1/(4fM) and with a buffer layer of HBL=jnf
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Figure 5.4.3 Snapshots of ux,uzz in a one-layered half-space
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subjected to a vertical surface line load of a=td=0.2 ,
obtained with TLM2 of Na=6, At-1/(4fM) and with a buffer layer of HBL=,Ain
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Chapter 6 Infinite media modeling with the wc-TLM

6.1 Introduction

In this chapter, we explore the characteristics of (semi-) infinite media modeling with the w-
TLM, which is basically based on the application of a paraxial approximation and a buffer layer
of appropriate thickness, see the papers of Maeda and Kausel [1991], Kausel [1992], Clayton and
Engquist [1977]. We first review the preceding studies on the subject and get to understand the
known features of the paraxial approximation and the buffer layer. Then, based on this review, we
modify the paraxial approximation, particularly for SV-P wave problems, in order to improve the
stability of calculated results. In addition, we propose the use of an adaptive buffer layer that is
very efficient in the calculation of seismograms by means of the co-TLM.

In section 6.2, we investigate the characteristics of the paraxial approximation and the buffer
layer for both SH and SV-P wave problems. Through this investigation, we consider the stability
of the paraxial approximation not only in the wavenumber domain, but also in the space domain.
As a result, we determine a critical epicentral distance X, closely related to the thickness of the
buffer layer HBL, which is especially important for SH wave problems. Also, we modify the
paraxial approximation for SV-P wave problems and illustrate the achieved improvements
through numerical examples. In section 6.3, we briefly discuss the hybrid method where we
combine the mode shapes obtained with the ct-TLM and the exact eigenvalues to calculate
responses in a more efficient way. The efficiency and validation of this strategy were already
discussed and practically proved in chapter 4. Then, we propose the use of an adaptive buffer
layer, which is very useful in seismogram calculations. In section 6.4, we analyze various
examples of multilayered half-spaces to validate the (semi-) infinite media modeling with the ao-
TLM combined with the paraxial approximation and the adaptive buffer layer. In addition, we get
to understand the physics involved in these complicated systems. In appendix 6A, we derive the
Green's functions in the x-w domain for an SH one-layered half-space and an SV-P homogeneous
half-spaces subjected to surface harmonic line loads. These Green functions are useful for
gauging the accuracy of numerical results obtained with the wo-TLM combined with the paraxial
approximation and the buffer layer.

6.2 Paraxial Approximation

The paraxial approximation KpA for the boundary impedance can be obtained by expanding the
exact impedance matrix KEX of Kausel and Rodsset [1981] in Taylor series in the wavenumber k,
and retaining only first three terms as follows:

k dKEx ]  k2 d 2 KEX (
KPA(k) = KEX ++ k= d=2 k 0 (6.2.1)Kp(k)KExko ! dk k=0 2! dk k=O

where
KEX = ksG for SH waves (6.2.2a)

K. X = 2kG 2 S+ for SV-P waves (6.2.2b)
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r = - (6.2.2c)

s= -J s (6.2.2d)

and Cs, Cp, G are the S-, P-wave speeds, shear modulus, respectively. Note that KEX in equation
(6.2.2b) is valid for a half-space z<O. For a half-space z>O, the signs of the off-diagonal terms in
equation (6.2.2b) must be reversed. Figure 6.2.1 shows a layered system overlain by a
homogeneous half-space and the coordinate system used in this chapter. The paraxial
approximation in equation (6.2.1) represents the mechanical behavior of the homogeneous half-
space of z<0 in the mathematical sense.

6.2.1 Paraxial Approximation for SH wave Problems

Equation (6.2.1) provides the paraxial approximation KpA for SH wave problems of the form

1 k2 1 k2=iG k --J = iwpCs 1  (6.2.3)
PA2 ks 2k2 k)

where ks=cdCs.

First, we explore the characteristics of KPA in equation (6.2.3) as a function of the wavenumber k.
For this purpose, we compare KpA in equation (6.2.3) with KEX in equation (6.2.2a) for some
range of wavenumbers k/ks. Figure 6.2.2 compares the amplitude and phase angle of KPA (dashed
line) with those of KEX (solid line). It is observed that KpA shows a good agreement with KEX
only for small wavenumber k, i.e. k•0.6ks. This comparison predicts that KpA can accurately
model waves impinging on the paraxial boundary with incidence angle of 9045.°.

Similar observations were also found by Maeda and Kausel [1991], which are briefly summarized
in this paragraph. They characterized KPA by means of two important features: 1) the reflection
coefficients between two identical and/or dissimilar semi-infinite media in contact modeled with
KEX and KPA; 2) the energy transmission in one cycle of harmonic motion. With these two
characteristics, they explain in detail a spurious reflection phenomenon that can take place at the
paraxial boundary, which can lead to unstable reverberation phenomena. Also, to overcome the
instability problem, they propose a hybrid system consisting of the paraxial approximation KPA
and a buffer layer. The thickness of the buffer layer must be no less than half of the shear
wavelength to calculate accurate responses, while it must be no less than a quarter of the shear
wavelength to calculate acceptable responses. The important function of the buffer layer is to
avoid the strong spurious reflection at the paraxial boundary related to inhomogeneous waves that
decay exponentially within the buffer layer; hence, the waves do not feel the existence of the
paraxial approximation.

We now characterize the behavior of the hybrid system composed of KpA and the buffer layer as a
function of its thickness and wavenumber k in comparison with KEX. We denote the hybrid
system, the thickness of the buffer layer, the shear wavelength, and the ratio of the thickness to
the shear wavelength as KPB, HaBL, 2s, and Rs=HBL/2 S, respectively. We compare the amplitude
and phase angle of KpB against those of KEX. Figure 6.2.3 shows the comparisons of KPB (dashed
line) with KEX (solid line) for Rs=0.25, 0.50, 0.75, 1.00. To avoid the influence of numerical
errors from the TLM model, we model the buffer layer with the exact stiffness matrix (Kausel
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and Rodsset [1981]). It is observed that KpB with Rs-0.5 is really in a good agreement with KEX
for large k as well as for small k, which confirms the recommendation for the thickness of the
buffer layer proposed by Maeda and Kausel [1991].

We now consider the accuracy and stability of the hybrid system KpB associated with the near-
field and far-field responses. It is observed in figure 6.2.3 that the behavior of KpB with Rs>0.5 is
almost the same as that of KEX for all wavenumbers of interest, which is true for the near-field
responses, but not so for the far-field responses. The reason is that whenever propagating waves
due to external sources impinge on the paraxial boundary with an incidence angle 0>45', the
waves feel the existence of the paraxial boundary and spurious reflections take place. This
phenomenon affects and deteriorates the far-field responses, but not the near-field responses, as
will be discussed in the next paragraph.

For illustration purposes, we proceed by considering a canonical example of a homogenous half-
space subjected to an SH surface line load of a certain excitation frequency f,. The half-space is
modeled with a hybrid system KPB composed of an upper buffer layer of thickness HBL(=RsAs)
and a paraxial boundary impedance where As=Cs/fe. Figure 6.2.4 depicts this example and
displays two particular ray paths A and B originating from the surface source at z,=0. The wave
along path A is almost completely absorbed by the paraxial boundary impedance, because the
wave impinges on the boundary with an angle 0<450. On the other hand, the wave along path B is
partly absorbed (solid line) and partly reflected (dashed line) by the paraxial boundary, because
the wave impinges on the boundary with an angle 0>45' . As a result, a spurious reflection
associated with path B deteriorates the response in the far field and contributes to non-physical
reverberations in the system. In the light of this observation, we divide the whole system into the
two domains I and II according to the stability and accuracy of the responses shown in figure
6.2.4. Domain I is a region (or near-field) where the response is stable and accurate. On the other
hand, Domain II is a region (or far-field) where an unstable response may result from spurious
reflections. In figure 6.2.4, the thick dotted line represents the border between the two domains I
and II, and XI is the epicentral distance or range, measured from the source to the border on the
surface that is 2 HBL in the present example. It can be easily inferred that XI is a function of the z
coordinate of the source, i.e. zn(0O) and the thickness of the buffer layer HBL, which is given in
the form.

X1 = (2HBL + z,) tan 45* = 2HBL + z, (6.2.4)

At this stage, we propose that a proper Rs must be chosen such that we can calculate a stable and
accurate response within the whole region of interest. It follows that the larger the X, required, the
thicker HBL must be.

In order to generalize the above observation, we consider a more complicated system composed
of L dissimilar layers over a paraxial boundary subjected to an external source at z,. Figure 6.2.5
shows a particular case with L=4. The piece-wise thick dotted lines represent the border between
domains I and II. All incidence/refraction angles Us are determined via Snell's law as

sin 01 _ sin 02 sin OL-1 _ sin (6.2.5)- = - - (6.2.5)
C, C2  L-1 CL

where OL is always 450, because this is the largest acceptable value for the angle associated with
the paraxial boundary. For simplicity in the discussion, we assume that all angles 6 are smaller
than the critical angle Ocr for each layer, so there is no total reflection at any interface. If a total
reflection were to occur, the paraxial boundary would never feel the wave arrivals from the
source, and would thus have no effect on the computed results. Once the U's for each layer have
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been obtained with the aid of equation (6.2.5), we can obtain the maximum range X, for domain I
by a generalization of equation (6.2.4) in the following form

L L

X, =(H n -d)tan , + H, tan0, + H, tan O (6.2.6)
/=n+l 1=1

where d is the distance between the external source and the top surface, n is the index for the
layer that contains the external source, and the H's are the thickness of each layer.

For practical verification of the above issues, we solve two numerical examples: 1) a
homogeneous half-space and 2) a layered half-space (so-called Love wave problem). Both of
these systems are subjected to an SH surface line load with frequency fe•= 2 .5. We calculate the
displacement responses by means of the a-TLM with application of the hybrid system with KpB.
The exact analytical solutions for both examples are derived by means of contour integrals in
appendix 5A of this chapter. We compare the responses obtained with the w-TLM against the
exact analytical solutions.

For the first example, we choose the following material properties for the TLM2 discrete model:
p=Cs=1.0 and Na=8. We consider three different buffer layers, Rs=0.50,0.75,1.0 to show the
dependence of X, on Rs. We choose NA=8 instead of the recommended NA=4 of previous chapters,
to avoid numerical dispersion to the extent possible. Since the excitation frequency fex is 2.5 and
the shear velocity Cs is 1.0, the shear wavelength As is 0.4 and so HBL=RsAs=0.2, 0.3, 0.4.
Consequently, the maximum ranges XI's are estimated to be 0.4, 0.6, and 0.8, respectively,
according to equation (6.2.4).

The numerical results are shown in figures 6.2.6a,b, 6.2.7a,b and 6.2.8a,b for HBL(=Rs2 s)=0.2,
0.3, and 0.4, respectively. Figures 6.2.6a, 6.2.7a, and 6.2.8a show the found eigenvalues kj in the
complex wavenumber plane (indicated by "x"). Figures 6.2.6b, 6.2.7b, and 6.2.8b illustrate the
displacement responses by means of a standard surface plot in which the color intensities
represent relative amplitudes of displacements. The eigenvalues here are purely spurious modes,
because the homogeneous half-space being considered does not have any true free vibration
modes, as shown in the appendix of this chapter. Interestingly, however, all these spurious
eigenvalues are located near the branch-cut integral paths of the exact contour integral solutions.
This observation implies that the modal superposition solutions with the spurious eigenvalues
play an equivalent role to the branch-cut integrals in the exact contour integral solutions.
Furthermore, it is observed from figures 6.2.6a-8b that as Rs increases, the spurious eigenvalues
converge to the branch-cut integral paths and additionally, the stable domain I is extended farther.
It is also remarkable in the two plots at the bottom of figures 6.2.6b, 6.2.7b, and 6.2.8b (which
show the difference between the )-TLM and the exact analytical solution) that the two domains I
and II are clearly distinguished by the dotted lines whose intersections with the surface almost
exactly coincide with XI's estimated by equation (6.2.4) or (6.2.6).

Next, we consider the second example. We choose the following material properties for a TLM2
discrete model: for the upper layer (0<_z1), p=Cs=l, H1=1, NA=8; for the buffer layer (-HBLZO<0),
pR=1, CR=2, Na=8, Rs=0.50,0.75,1.0. Sincefex is 2.5 and CR(>Cs) is 2.0, the shear wavelength As
of the buffer layer is 0.8 and so HBL(=Rs2 s)=0.4, 0.6, 0.8. According to the Snell's law in
equation (6.2.5), 01 is 20.700. Hence, the maximum ranges XI's predicted with equation (6.2.6)
are 1.55, 1.95, and 2.35.

Figures 6.2.9a,b to 6.2.11a,b display the numerical results for HBL(=Rs2 s)=0.4, 0.6, and 0.8,
respectively. As shown in figures 6.2.9a, 6.2.10a, and 6.2.11a, the eigenvalues kj obtained with
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the a-TLM (indicated by "x") are found not only along the branch-cut integral paths, which are
purely spurious modes, but also found beyond the branch-point, i.e. k/ks>1.O, on the real
wavenumber axis. These eigenvalues with klks>1.O correspond to the true propagation modes or
true poles in the Love wave problem. It is shown in the appendix that the true modes are
associated with the residue summation in the exact contour integral solutions. As can be seen in
the zoomed plots on the right in figures 6.2.9a, 6.2.10a, and 6.2.11 a, the propagation modes from
the TLM are almost identical to those of the exact solution (indicated by "o"). Therefore, it is
concluded that the t-TLM with application of the hybrid system KpB provides a modal solution
that is equivalent to the branch-cut integrals and the residue summations of the exact analytical
solutions. It is also shown that as a larger Rs is used, the spurious eigenvalues approach the
branch-cut integral paths. As a result, the stable domain I is extended farther. It is confirmed in
the last two surface plots of each figure (which show the difference between the o-TLM and the
exact analytical solution) that the two domains of I and II are clearly distinguished as indicated by
the dotted line, and the predicted XI's from equation (6.2.6) are virtually identical to the numerical
results.

Note (A): Layer over a homogeneous half-space

The above system of a homogeneous layer overlain by a homogeneous half-space, so-called Love
wave problem, has interesting aspects that are intimately related to the propagation modes of the
plate and of the stratum of the same material property and geometry as the layer, but with
different boundary conditions. In a plate, the boundary conditions are free-free while for the
stratum they are free-fixed. When the stiffness of the half-space approaches zero, the system
becomes a plate. On the other hand, when the stiffness of the half-space is taken infinitely large,
then the system becomes a stratum. Therefore, it could be argued that the behavior of the Love
wave problem must lie somewhere in the middle of these two extreme cases, but this is not quite
the case.

Figure 6.2.12 shows all the dispersion curves of the Love wave problem (solid curves), the plate
(dashed curves), and the stratum (dotted-dashed curves). All of these dispersion curves are
obtained from the exact analytical solutions. At zero-frequency, the branches of both the plate
and the stratum start as purely imaginary branches (assuming no damping), and then turn real at
cut-off frequencies that coincide with the resonant frequencies of the plate or stratum. On the
other hand, the branches of the Love waves are purely real and appear suddenly at the intersection
of the branches for the half-space w=CRk (the steeper straight line in figure 6.2.12) and the
branches of the plate. In the high frequency range that follows, the branches for Love waves
steadily approach the branches for the stratum. Thus, all propagation modes for Love waves with
no damping are only real, and there exist no imaginary or complex branches. In addition, there is
only the finite number of propagation modes for a given frequency or a given wavenumber, as
shown in the dispersion curves. Thus, Love modes are seemingly not quite an intermediate step
between a stratum and a plate, because the imaginary branches only appear quite suddenly when
the stiffness of the half-space is either exactly zero or infinitely large.

Now, the wavenumber spectra for the plate, stratum or layer over elastic half-space emanate
from a transcendental eigenvalue problem that follows from setting a characteristic determinant to
zero. When the value of this determinant is evaluated for the case of the layer over elastic half-
space for arbitrary combinations of frequency and wavenumber and the result is presented as a
surface color plot where small values of the determinant lead to dark gray and zero values to
black, then "tubes" are observed surrounding each of the branches in the wavenumber spectrum.
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In addition, interesting and very revealing complex-valued tubes can be observed that emanate
from the starting points of the real branches. Within these tubes, the determinant is not zero, but is
small, which implies that the "axes" of the tubes represent near (but not exact) solutions for free
evanescent waves. As the stiffness of the half-space then approaches either zero or infinity, the
tubes approach the imaginary branches for the plate or stratum, respectively. This demonstrates
that the Love wave problem is indeed an intermediate situation between the plate and the stratum.

The previous considerations are taken up next in the context of a solution to the Love wave
problem using modal superposition. Now, we know that a finite number of real modes is not
enough to represent the response to the Love wave problem in the near-field, a situation that we
explore next. We begin our exploration by considering the behavior of the kernel KI in equation
(5A.3a) of appendix 5A. Figures 6.2.13a,b show the wavenumber spectra of the absolute values
of K, evaluated at the surface for two frequencies offex=1.0 and 2.0, respectively. It can be seen
that there exist the infinite number of the maximums of finite amplitude and a finite number of
maximums of infinite amplitude. All the maximums are indicated by an "o". The maximums of
infinite amplitude correspond to the true propagation modes of the Love wave problem. The
maximums of finite amplitude appear only along the branch-cut and are believed to produce the
significant contribution to the branch-cut integrals in the exact analytical solutions. Since they are
not true poles, we call them pseudo poles. We then search for the branches of these pseudo poles
in a certain frequency range by means of a numerical technique. The results are plotted by means
of dots in figure 6.2.12 for a discrete sampling of frequencies. Remarkably, the branches of the
pseudo poles (or pseudo branches) are almost identical to the branches of the stratum until they
approach the branch of the half-space (a=CRk). Thereafter, the pseudo branches deviate upward
from the stratum branches and move onto the half-space branch. As they pass the intersections
between the half-space branch and the nearest high branches of the plate, these pseudo branches
become the true propagation branches (solid curves). Thus, it is found that each branch or
maximum of the Love wave problem starts as a pseudo branch that follows a stratum branch for
low frequencies and then evolves into a true branch for high frequencies. More precisely, the jh
branch of the Love wave problem first follows the j stratum branch (j=1,2... for the stratum),
crosses the jh branch of the plate (j=0,1,2... for the plate) and finally approaches asymptotically
to the (i+1)0h stratum branch for high frequencies. At this stage, it should be remembered that the
branch-cut integrals in the exact solutions have major contribution to the calculation of the near-
field solutions as discussed in appendix 5A. Hence, it is concluded that the pseudo branches (i.e.
evanescent pseudo-modes) play an important role in the near-field solutions. Finally, it follows
that the deficiency of the modal solutions in the near field due to the finite number of propagation
modes is compensated by the branch-cut integrals.

It is observed in figures 6.2.9b, 10b, and 1 lb that the spurious modes of the ao-TLM with KpB are
found near the branch-cut integral paths for the Love wave problems. In addition, there is a more
interesting relationship between the true and spurious modes from the TLM with KPa and the true
and pseudo modes from the exact continuous models, which is discussed here. For this purpose,
we compare the dispersion curves obtained from both the TLM with KPB (dashed curves) and the
exact solutions (solid curves), including the pseudo pole branches (dots) in figures 6.2.14a,b for
HBL=0.0 and 0.4, respectively. The same discrete model used above is considered, i.e. the TLM2
with Na=8. As can be seen, there are some remarkable coincidences in the imaginary components
of kj between the spurious modes of the discrete model and the pseudo modes of the exact
analytical solution. This observation implies that the spurious modes provide a good equivalence
to the branch-cut integrals in the exact analytical solutions. We recall that the pseudo modes have
major contributions to the branch-cut integrals. Also, comparison of figures 6.2.14a,b shows that
with the help of the buffer layer, the accuracy of the true propagation modes of the TLM with KPB
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is significantly improved. Finally, we conclude that with the help of KPB, the o-TLM can provide
efficient and accurate solutions to the layered half-space problem, which is supported by the
following two observations: (1) the spurious modes of the discrete model are almost identical to
the pseudo modes of the exact analytical solution; (2) the true propagation modes are obtained
with great accuracy.

6.2.2 Paraxial Approximation for SV-P wave Problems

Equation (6.2.1) provides the paraxial approximation KpA for SV-P wave problems of the form
K = s •p i-a)/a z + s (6.2.7)

KPA PCP 1 1-2a ks 2 (1-2a)/a2 k

where p=mass density, a--CslCp, and ks=5 dCs.

We start by exploring the features of KpA in equation (6.2.7) as a function of wavenumber k. For
this purpose, we compare KpA in equation (6.2.7) with KEX in equation (6.2.2b) in terms of
amplitude and phase angle. Figures 6.2.15a-d show the comparison of KEX (dashed line) and KPA
(solid line) for Poisson's ratio v-0.1, 0.2, 0.3, and 0.4, respectively. It is seen that KPA is in a
good agreement with KEX for only small k, namely k<(0.2-0.3)ks. The corresponding incidence
angle 0 for S wave is 11 -180. As in the case of SH wave problems of section 6.2.1, it is expected
that spurious reflections take place for waves with incidence angle 0>11o-18'.

The above observation again suggests the use of a hybrid system KPB composed of KpA and a
buffer layer for obtaining accurate results. It should be noticed that the thickness of the buffer
layer is now a function of the wavelength for P waves Ap, because 2 p>As. So, we make use of
HBL=R Pp. To verify the effect of the buffer layer of thickness HBL on the accuracy of the hybrid
system KPB, we compare the amplitude and phase angle of KPB and KEX with changing Rp.
Figures 6.2.16a-d compare KpB with Rp=0.25 (dashed line) and KEX (solid line) for Poisson's
ratio v=0.1, 0.2, 0.3, and 0.4, respectively. Figures 6.2.17a-d compare KPB with Rp=0.50 (dashed
line) and KEX (solid line) for Poisson's ratio v-0.1, 0.2, 0.3, and 0.4, respectively. To avoid the
influence of numerical errors stemming from the TLM, the exact stiffness matrix (Kausel and
Rodsset [1981]) is used in modeling the buffer layer. It is observed that the use of
Rp=HBJ/Ap>20.50 provides quite good approximation to KEX.

Next, we consider an alternative for assessing the behavior of KpA in equation (6.2.7). The
alternative is to consider the dispersion relation of S and P body waves taken up by Clayton and
Engquist [1977]. These writers derived a paraxial approximation A2, which is identical to KPA in
equation (6.2.7) as proved by Kausel [1992]. In addition, Kausel pointed out a sign error in matrix
C2 in the study by Clayton and Engquist. In this paragraph, we briefly elaborate on Clayton and
Engquist's dispersion relation, and then assess its behavior in the context of numerical examples.
Clayton and Engquist's paraxial approximation A2 is:

a2u a+ aCU a2u- + C + C  + C  - =O (6.2.8)
ataz at' atax 3 ax2

where
u = [u w]T (=the displacement vector) (6.2.9)

C l/ = cs "  (6.2.10)
- 1 l/ C,
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C2 = P -CS) /C (reversed sign!) (6.2.11)

3 ={Cs 2CP C 2Cs} (6.2.12)

Application of a Fourier transformation to equation (6.2.8) gives

u(x, z,t) = ( ) L L Lii(kx, k9, w)ei( -kx-kzz)dkxdkzdw (6.2.13)

which leads to the equation in the wavenumber-frequency domain

[IKz -C, +C 2Kx -C 3Kx2 i=0 (6.2.14)

where I is the 2x2 identify matrix, and kx, kz, o are the horizontal wavenumber, the vertical
wavenumber, the angular frequency, respectively, and Kz=k/o , Kx=k/om. The dispersion relation
sought is obtained by setting the determinant of the coefficient matrix in equation (6.2.14) equal
to zero, namely

det (IK, - C + C2K - C3K) = 0 (6.2.15)

Figure 6.2.18 shows the dispersion curves (solid line) for S and P body waves obtained with the
paraxial approximation A2 for Poisson's ratio v-0.0, 0.1, 0.2, 0.3, 0.33, 0.40, 0.45, and 0.49, in
comparison with the exact analytical solutions (dashed line). Note that in each figure, the upper
solid line and the large dashed circle correspond to S waves, while the lower solid line and the
small dashed circle correspond to P waves. It is observed that the paraxial approximation A2
shows good agreement with the exact analytical solution only for very small k. It is also noticed
that the discrepancy in shear waves becomes very large for v >0.33(=1/3), when the sign of the
second diagonal element in the matrix C3 reverses, i.e. /2(Cp-2Cs). This second diagonal element
is directly related to the second diagonal element of the third matrix in equation (6.2.7), which
can be easily proven from the paper by Kausel [1992]. Physically, this large discrepancy
introduces significant evanescent wave motion, especially for S waves, which can in turn produce
strong spurious reflections at the paraxial boundary. Interestingly, the discrepancy can be
diminished by setting this second diagonal element in the matrix C3 to be zero when v>0.33. The
improvement associated with v=0.40, 0.45, and 0.49 is shown in figure 6.2.19, where the results
for v-0.0, 0.1, 0.2, 0.3 and 0.33 are identical to those of figure 6.2.18. Also, notice that a
significant improvement is achieved in S waves. So, we propose here a modified paraxial
approximation A2 such that

C3 = 2Cs C 2Cs} for v<0.33 (6.2.16)

C3 = Cs 2CP for v 0.33 (6.2.17)2 -
Then, KPA in equation (6.2.7) modifies into

= a f 1-2al k i a-2 ( k
PA 1 12a ks 2 -{2(1-2a)/aI2 ks

for v50.33 (6.2.18)

KPA = OPCPi
a  ;+ -2 1-2a k • i a - 2  k

for v20.33 (6.2.19)
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The accuracy and stability of the propagation modes in a dynamic systems are important in the
context of the TLM. So, we now explore the characteristics of the dynamic stiffness matrix
combined with KPA from the point of view of the eigenvalue problems. Consider two perfectly-
bonded half-spaces modeled with KEX in equation (6.2.2b) for z>0 and KpA in equation (6.2.7 or
19) for z<0. The shear velocities are Cs+ for z>0 and Cs. for z<0, while the mass density and
Poisson's ratios in both half-spaces are taken to be identical. It should be recognized that the
signs of the off-diagonal elements in equation (6.2.2b) must be reversed in this problem, because
now KEX represents an upper half-space. Then, the eigenvalue problem for Q=ks/k=-(okCs) is
provided in the form of det(KEx+KPA)=0. The eigenvalue 92 is calculated as a function of
Poisson's ratio v.

First, we consider the case Cs+= Cs. (i.e. a homogeneous space) and solve the eigenvalue problem
with application of equation (6.2.7). Figure 6.2.20 shows the obtained dispersion curve for Q2
versus Poisson's ratio v. It is shown that for v>1/3, there exist negative imaginary roots which are
unstable roots, as pointed out by Kausel [1992]. On the other hand, positive imaginary roots are
found for v<1/3. The application of equation (6.2.19) instead of equation (6.2.7) for v>1/3 can
avoid the unstable negative imaginary roots. To verify this, we now consider the case Cs+=2Cs-.
In this case, we solve the eigenvalue problem with application of equation (6.2.7), and then
equations (6.2.18,19). Figures 6.2.21a,b display the dispersion curves obtained with application of
equations (6.2.7) and (6.2.18,19), respectively. It is seen that the use of equation (6.2.7) provides
an unstable negative imaginary branch for v>1/3, while the use of equation (6.2.18,19) produces
only stable branches belonging to the 1 st and 2nd quadrants for all v. So, it follows that the
modified KpA in equation (6.2.18,19) really stabilizes the dynamic system represented by
KEX+KPA. Furthermore, it is expected that well-conditioned dynamic systems can be constructed
by combining the modified KpA with a buffer layer. Some related examples are shown later in this
section.

We continue with a discussion on the stability and accuracy of response calculations obtained
with a hybrid system using KpB. For this purpose, we consider an example of a homogeneous
half-space subjected to the surface line load in the positive z-direction whose exact analytical
solution is derived and presented in appendix 5A. We choose material properties and excitation
frequency p=1.0, Cs=1.0, v-0.30, andfe,=2.5. Therefore, the P and Rayleigh surface wave speeds
are Cp=1.87 and CR=0. 9 3 , respectively. Then, the maximum and minimum wavelengths are Ap =
Cp/lf• = 1.87/2.5 = 0.75 (=0.80), R = CRlfex = 0.93/2.5 = 0.37 (=2p/2). We calculate displacement
responses for five different buffer layers HBL=0.20, 0.40, 0.60, 0.80, 1.00, each of which
corresponds approximately to the case Rp=0.25, 0.50, 0.75, 1.00, and 1.25, respectively. For
discrete models, we apply the TLM2 with NA=8. To estimate the accuracy, we compare the results
obtained with KPB against the exact analytical solution.

Figures 6.2.22a-c through 6.2.26a-c show the numerical results in comparison with the exact
analytical solutions for HBt=0. 20, 0.40, 0.60, 0.80, and 1.00, respectively. Figures 6.2.22a,
6.2.23a, 6.2.24a, 6.2.25a, and 6.2.26a display the found eigenvalues kj (indicated by "x") and the
exact Rayleigh pole kR=aICR (indicated by "o") in the complex wavenumber plane. It is observed
that as HBL (or Rp) becomes larger, the Rayleigh pole obtained with KPB becomes more accurate
and the other spurious eigenvalues kj are more densely distributed near and along the branch-cut.
So, it is inferred that the KPB with larger Rp produces the more correct modal solutions that play
an equivalent role to the residue summations and the branch-cut integrals of the exact analytical
solutions. Figures 6.2.22bc, 6.2.23bc, 6.2.24bc, 6.2.25bc, and 6.2.26bc compare the results of KpB
with the exact analytical solution in terms of the horizontal and vertical displacements. It is
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shown that Rp must be no less than 0.50-0.75, or approximately HBL 2 1.02 R-1.5AR, which
implies the important fact that the thickness of the buffer layer must be deep enough to prevent
the Rayleigh surface wave from touching the paraxial boundary. It is well known that the
Rayleigh surface wave carries most of the energy from external sources along the top surface. So,
if the buffer layer is not thick enough, the TLM combined with the paraxial boundary produces
significant errors, as seen in figure 6.2.22b. Unlike the SH wave problem, a clear separation
between two domains I and II according to the accuracy is not observed in the present problem.
The reason is that most of the energy propagated along the surface by the Rayleigh surface wave,
and this is modeled quite accurately with the TLM. So, little energy in the form of body waves
penetrates the medium and touches the lower boundary. Therefore, the wave motion arriving at
the paraxial boundary is too small to produce strong spurious reflections. Therefore, with the
satisfaction of HBL1.0R~1.5AR, the accuracy of the responses is nearly independent of the space
coordinate.

To generalize the above discussion on the effect of Rayleigh surface waves, we consider also
Stoneley interface waves. The Stoneley interface wave is also known to be a non-dispersive
propagation mode that propagates along the interface between two dissimilar semi-infinite media
[Cagniard, 1962]. Stoneley interface waves can also propagate at any interface of multilayered
systems of semi-finite (and even finite) domains for very high wavenumbers or very high
frequencies. Therefore, in application of the hybrid system KpB, the proper thickness of the buffer
layer HBL must be determined according to the wavelength of either the Rayleigh surface wave or
the Stoneley interface wave, depending on the problems being considered.

Next, we verify the improvement achieved with the help of the modified KpA in equations (6.2.18
and 19), in terms of displacement responses. For this purpose, we solve a homogeneous full-space
subjected to a vertical line load offe,=2.5. The exact analytical solution for this problem is known
in closed form [Dominguez and Abascal, 1984]. We use material properties p=1.0, Cs=1.0, and
v=-0.25, 0.45. Then, the corresponding Cp's are 1.73 for =-0.25 and 3.32 for v=0.45, and the
associated wavelengths Ap's are 0.69 and 1.33, respectively. So, we set HBL(=Rp2p)=I.O which is
sufficient for both of v=-0.25, 0.45. The buffer layer is modeled with a TLM2 model satisfying
NA-=8. Since we consider the homogeneous full-space domain, we must combine two identical
hybrid systems of KPB with HBL=l that represent the upper half-space and lower half-space,
respectively.

First, we calculate the displacement responses by means of equation (6.2.7) for both of V=0.25
and 0.45. Figures 6.2.27a,b and 6.2.28a,b show the numerical results for v=0.25 and 0.45,
respectively, in comparison with the exact analytical solution by means of a standard surface plot.
It is seen that the use of equation (6.2.7) provides the quite good results for v=0.25, but not for
v=0.45. The reason is that the responses for v=-0.45 obtained with equation (6.2.7) deteriorated
because of the strong spurious reflections, as expected.

Secondly, we apply the modified KpA of equation (6.2.18) instead of equation (6.2.7) to the case
of v=0.45. Figures 6.2.29a,b show the numerical results in comparison with the exact analytical
solutions. It is observed that the use of the modified KpA in equation (6.2.19) shows a good
agreement with the exact analytical solutions. Finally, it is verified from the present numerical
example that well-conditioned dynamic systems are achieved by combining the modified KPA
with a buffer layer.
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6.3 Application to the TLM

6.3.1 Hybrid of the o-TLM and the exact eigenvalues

Here, we apply the hybrid technique proposed in chapter 4 to the modeling of (semi-) infinite
domains. The basic idea of the hybrid technique is to calculate the modal solutions by combining
the mode shapes computed with the w-TLM and the exact eigenvalues obtained with the exact
continuous models. In addition, the exact eigenvalues are calculated without any significant
additional effort in computation by means of numerical searching based on the eigenvalues
obtained from the co-TLM. In chapter 4, it was observed that the hybrid technique improves to the
great extent the accuracy of the modal solutions for a stratum subjected to an SH line load excited
at a resonant frequency. In general, the numerical dispersion error associated with the resonant
frequencies considerably deteriorates the modal solutions, as shown in figure 4.2.6a, b. Also, it is
recalled that even small errors in eigenvalues can produce significant numerical errors to the far-
field solutions, but not the near-field solutions, as seen in figures 4.2.5a and b.

The hybrid technique is quite useful in connection with wave analyses of (semi-) infinite multi-
layered media whose continuous models in general have only finite number of true propagation
modes with either purely real eigenvalues kj or complex eigenvalues with small imaginary part,
Im kj=O. It is shown in section 6.2 that the ow-TLM combined with the paraxial approximation and
the buffer layer, i.e. KPB, provides quite accurate, but not exact, eigenvalues for true propagation
modes. Therefore, the computational effort in the numerical search for a finite number of exact
ki's for the true propagation modes on the basis of the excellent approximations kj's obtained with
the o-TLM, is very small indeed.

We now consider a simple example where a homogeneous half-space of p=Cs=1.0 and v=-0.30 is
subjected to an SV-P vertical line load of fx=2.5 applied at the top surface. For this homogeneous
half-space, there is only one true propagation mode, namely the non-dispersive Rayleigh surface
wave pole kR. The exact Rayleigh surface wave velocity CR is 0.9273, and the associated
wavelength 2 R(=CR/fex) is 0.37. To verify the usefulness of the hybrid technique, we compute the
displacement responses by means of both the conventional co-TLM combined with KPB of
HBL=0. 5 (>AR=0. 37 ) and the hybrid technique. For the conventional a-TLM, the TLM2 with Na--4
and 8 are applied, while for the hybrid technique, the TLM2 with Na=4 are applied. Then, we
compare these with the exact analytical solution.

Figures 6.3.1a,b,c show the numerical results (solid line) obtained with the conventional TLM2
with Na=4, the conventional TLM2 with Na=8, and the hybrid technique using TLM2 with Na=4,
respectively, in comparison with the exact analytical solution (dashed line). It is observed in
figure 6.3.la that the far-field solutions are deteriorated by the numerical error associated with kR
obtained with the conventional TLM2 of Na=4. It is shown in figure 6.3.lb that this numerical
error is reduced by using NA= 8 instead of Na=4. Finally, figure 6.3.c shows that the numerical
results obtained with the hybrid technique with N,--4 are in a good agreement with the exact
analytical solution, and its accuracy is even better than that of the conventional w-TLM with
NA=8. Therefore, it is verified that the hybrid technique provides quite accurate and more efficient
solutions than the conventional w-TLM combined with KPB.

293



6.3.2 Adaptive buffer layer for seismogram calculation

Next, we discuss the application of the hybrid system KpB to seismogram calculation, i.e. time-
domain response syntheses. Then, for efficient calculation, we propose the use of an adaptive
buffer layer whose physical thickness is a function of frequency f and whose mathematical
dimension is a function of the ratio of thickness of a buffer layer to wavelength Rs and the
number of thin-layers per wavelength NA. Then, we verify the efficiency of the proposed adaptive
buffer layer by means of numerical examples and determine the proper values of Rs and NA for
the adaptive buffer layer in connection with the seismogram calculation.

To calculate seismograms by means of the w,-TLM combined with KPB, there are several
parameters to be considered in advance. First of all, concerning the use of KpB, we have to
determine the maximum range xmx of receivers to be considered in the seismogram analyses. It is
recalled from section 6.2 that the distance XI between an external source and the border of
domains I and II in figures 6.2.4 and 5 is a function of the buffer-layer thickness HBL(=RA), which
is important especially for anti-plane problems. Therefore, HBL must be chosen such that Xma, •
x1.

Secondly, regarding the inverse Discrete Fourier transformation or the inverse Fast Fourier
transformation from the frequency-domain to the time-domain, we need to determine the
maximum frequency and the sampling frequency to be considered. The maximum frequency fmax
can be determined from the temporal characteristics of excitation sources, i.e. the frequency
spectra of excitation sources. The sampling frequency Af should be no greater than 1/tmax where
tm,, is the maximum time in the seismograms of interest. Then, the minimum frequency f n is
generally equal to Af or (/2)Af.

Once the range of frequency fý, and fmax has been decided, we need to determine the thickness
HBL of the buffer layer and its discretization size hBL. Following the conventional co-TLM, we

usually set HBL=RAmXx=RCsIfin and hBL=Ami'JNA7=Cs/(fmaxNA). Notice that the thickness
HBL=RCslfmin is too large for fmax, while hBL=Cs/(fmnaNA) is too small for fmin. Therefore, the
number of thin-layers for the buffer layer NBL(=HBL/hBL) is given as RNafm.x/fmn, which require
quite a large system of equations, and hence, a considerable computational expense. To avoid this
inefficiency, we propose an adaptive buffer layer as follows.

The idea is to apply a buffer layer of just the "necessary" thickness for each frequency f such as

HBL=RsAs(=RsCs/f), and to discretize this buffer layer according to NA=2As/hBL. Remember from

chapter 4 that NA can be determined according to the required accuracy. Then, it follows that the
total number of thin-layers NBL for the buffer layer is given in the form.

NBL = HBL/ hBL = Rs2 s /hBL = RSNA (6.3.1)

Equation (6.3.1) indicates that the size of the system of equations for the buffer layer is now a

function of only Rs and NA. Therefore, the physical thickness of the adaptive buffer layer is a

function off, satisfying the condition HBLŽ_RsCs/f. On the other hand, for the two fixed parameter

Rs and NA, the mathematical size of the system of equations is invariant for all frequencies f of
interest, namely independent off. Therefore, when combined with the ,o-TLM for seismogram
calculation, the adaptive buffer layer proposed here is much more efficient than the conventional

buffer layer that uses HBL=RCslfmin and hBL=Cs/(f.mxNA).

Next, we combine the two systems of equations for the paraxial approximation KPA and the

adaptive buffer layer KBL, so as to finally express the combined system in the form of a product
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of a parameter and a matrix, which can be directly and efficiently applied to seismogram
calculations. It will be shown that the parameter is dependent on the frequencyf, while the matrix
is independent off.

To begin with, we express ks in equations (6.2.3 and 7) in terms of hBL and NA as

ks _ c _ 2f _ 21r _ 1 21 (6.3.2)
Cs Cs 2s hBL N

Substituting equation (6.3.2) into equations (6.2.3 and 7), we obtain KpA in the form.

KPA =L [XAK2 +BPAK +PA (6.3.3)
hBL

where K(=khBL) is the dimensionless wavenumber, hBL is given as Csl(NJ), and the three matrices
are as follows:
For SH waves,

GNA
APA = -i (6.3.4a)

2 27

BPA =0 (6.3.4b)

GPA = iG (6.3.4c)
NA

For SV-P waves,

= G NA  -2/ (6.3.5a)
PA 2 ••2n [ (1-22a)/3

- 1/Ia-2
BPA = G 1/a - 2 (6.3.5b)

GPA-iG } (6.3.5c)

Notice that the terms in bracket in equation (6.3.3) are all independent of the frequency f, and
only the factor l/hBL is a function off such that NflCs. Similarly, the dynamic stiffness matrices
for the adaptive buffer layer can be expressed as

KB = ABLk2 +Bk +GB - 2ML] = -I[X KZ2  BLK +GB, -Q2MBL]  (6.3.6)

where ABL, BBL, GBL, and MBL are the material matrices of the conventional TLM, and ABL,
BBL, GB, and MBL are the modified ones for the adaptive buffer layer defined as

ABL = ABL L (6.3.7a)

BBL = BBL (6.3.7b)

GBL= GBLhBL (6.3.7c)

9BL =  BLh •L (6.3.7d)
27r

S= whtL = Cs 2 (6.3.7e)

Notice again that the terms in bracket in equation (6.3.6) are all independent of the frequency f,
and only the factor l/hBL is a function off such that Njf/Cs. Combining equations (6.3.3 and 6)
provides the adaptive dynamic systems for KPB, which can be expressed symbolically as

KPB =[ r;PBiK2 + PBK +GB -, 2RPB] (6.3.8)
hBL
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where (A, pB, GPB,,, MP,) are obtained by assembling (ABL, BBL, GBL, MBL) and (APA,

BPA, GPA MPA ). It is noticed in equation (6.3.8) that all the terms in brackets are independent of

f, and only hBL is a function of f such that hBL=2s/Na=Cs/(fNa). Hence, the constructed adaptive
system KpB has a physical thickness that is a function off and a mathematical size that is invariant
with f. Finally, the assemblage of equations (6.3.8) with the dynamic stiffness matrices for the
upper layers in figure 6.2.1 supplies the total system of equations to be solved. The associated
examples are considered not only later in this section 6.3, but also in section 6.4.

Furthermore, there is an additional great application of the adaptive system KPB in the form of
equation (6.3.8). We can calculate in an extremely efficient way the epicentral seismograms for a
homogeneous half-space subjected to surface line loads as follows. First, from equation (6.3.8),
we solve the eigenvalue problem for the dimensionless wavenumber K in stead of k in the
following form.

[PB jK PBK, +GPB - Q2MPB j =j0 (6.3.9)

where the eigenvalue Kj and the mode shape Oj are both independent of the frequency f. Once Kj
have been found, the results for eachf can be obtained by re-scaling as

K K K.N,
k. - - - C f (6.3.10)

hBL As/ NA Cs
Therefore, by solving only once the eigenvalue problem in equation (6.3.9), we can calculate the
responses for any arbitrary frequency f by re-scaling the eigenvalues as shown in equation
(6.3.10). After applying the orthogonal conditions to the mode shapes as in the conventional
TLM, the modal solutions for anyf (or w) can be given as

11 ) 1 M -iklxl M -ik (6.3.11)
h" J 2ik ,  

0a 2iK1

where the two l's in the superscript represent the elevations of the surface receiver and source,
respectively, and the subscripts afl(=x, y, z) are the directions of receiver and source,
respectively. It should be noticed that a factor sgn(x) must be added to equation (6.3.11) when
opfl. Performing the inverse DFT or inverse FFT with the modal solutions ii",(xj,) in equation

(6.3.11), we can obtain the seismograms in the time domain, i.e. u" (x,t) by solving only once

the associated eigenvalue problem in equation (6.3.9).

To validate the adaptive buffer layer proposed above, we calculate the seismograms for u" (x,t)

and u(x,t) in a homogeneous half-space (z<O) with p=Cs=1.0 and v-0.30, subjected to a

surface line load of the form

Pi = 6(x)6(z)h(t) with i=x, y, or z (6.3.12)

where

-sin-t , 0ttd
h(t) = td td (6.3.13)

0 , t<0, td<t

In equation (6.3.13), td is the time duration of loading and the associated maximum frequencyfmx
is 2 td as shown in chapter 4. We choose td=0. 2 for the present problem, and so fmx=10 in the
following numerical calculations. We calculate the seismograms by means of both equation
(6.3.11) and the exact analytical solutions derived in appendix 5A, and compare these to verify
the validity of the adaptive buffer layer proposed here. For discrete models, we use the TLM2
with NA= 8.
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First, we calculate the seismograms u" at 8 epicentral points x=0.25, 0.50,..., 2.0 by means of

the adaptive KPB with Rs=1.0, 2.0, 3.0. Figures 6.3.2, 3, 4 show the results (dashed line) for

u11(x,t) with R=1.0, 2.0, 3.0, respectively, in comparison with the exact solutions (solid line) for

0<t<4. The corresponding minimum range XI(=2HBL) is 0.2, 0.4, 0.6, respectively, because An is
0.1 in the present problem. It is observed that the use of Rs=1.0 and Rs=2.0 introduces numerical
errors resulting from the strong spurious reflections at the paraxial boundary. On the other hand,
the use of Rs=3.0 shows very good agreement with the exact solutions without any spurious
reflections within the region of interest, i.e., x=0.25-2.0. Based on the observations in section 6.2,
we should have expected strong spurious reflections just beyond the corresponding minimum XI
of 0.2, 0.4, 0.6 for Rs=1.0, 2.0, 3.0, respectively, in domain II. For example, in figure 6.3.4, the
responses for x20.6 should have been deteriorated by the spurious reflections from the paraxial
boundary. However, no reflection appears in the seismograms. The reason is that the applied
source in equation (6.3.12) transmits very weak body wave energy into the system at the high
frequencies. Consequently, the associated spurious reflections at the paraxial boundary are too
small to deteriorate the seismograms to any significant degree.

Next, we calculate the seismograms of u" at 8 epicentral points x=0.25, 0.50,..., 2.0 by means of

the adaptive KPB with Rs=1.0 and 2.0. Figures 6.3.5 and 6 display the responses for u"(x,t) with

Rs=l.0 and 2.0, respectively, where the relationship Rs=HBL/As is used instead of RP=HBLI2P, by

which we can easily compare the above results for U1 that are due to an SH line load. It is seen

in figure 6.3.5 that the responses with Rs=1.0 are not contaminated by the spurious reflections at
the paraxial boundary, and even look very similar to those with Rs=2.0 in figure 6.3.6. The reason
is that most of the energy from the source propagates along the surface in the form of Rayleigh
waves, without penetrating into the buffer layer, as was already observed in section 6.2.
Therefore, it is concluded that the adaptive buffer layer is more effective for SV-P wave problems
than for SH wave problems.

Concerning the application of KPB of equation (6.3.8) to a (semi-) infinite system such as the one
in figure 6.2.1, a problem arises in determining a proper number of thin-layers per wavelength
NA,BL for the adaptive buffer layer that can be used for all the frequencies. In general, the total
number of thin-layers N for the upper layered system in figure 6.2.1 can be chosen according to
the maximum frequency fmax and NA. Then, it follows that, for any ft<fmx), the number of thin-
layers per wavelength, which can be referred to as NA for convenience, is greater than NA.
Therefore, the adaptive buffer layer with a fixed NAML could be inconsistent with the upper layer
system with NV4 . This kind of inconsistency can produce numerical spurious reflections at the
interface between the upper layer system and the adaptive buffer layer. Therefore, it is necessary
to determine a proper and reasonable NA,BL for the adaptive buffer layer that might be greater than
NA so as to decrease the spurious reflections to the extent possible.

We try to determine here a proper and reasonable NABL for the adaptive buffer layer by solving a
numerical example. We consider again one of our canonical examples: a homogeneous half-space
with p=Cs=1.0, subjected to an SH surface line load py defined by equations (6.3.12 and 13). We
compute the displacement responses of this homogeneous half-space by modeling it as a system
composed of a homogeneous layer (0:z<H, with H=1) and a homogeneous half-space (z!0). The
layer and the half-space have identical material properties. Clearly, the interface z=0 between the
layer and the half-space is an artificial one, because the two media have identical material
properties. We model the upper layer by means of the TLM2 with NA=4, and model the adaptive
buffer layer Rs=4.0 with the TLM2 using four different NA,BL. We try four choices NaBL=4 , 8, 12,
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and 16 for the adaptive buffer layer. Figures 6.3.7, 8, 9, and 10 display the corresponding snap-
shots of the displacements at t=0.3, 0.6,..., 1.8, in terms of a standard surface plot. It is shown
that the adaptive buffer layers with NaBL=4 and 8 provide numerical spurious reflections, while
the adaptive buffers layer with NABL>1 2 produce no significant spurious reflections. It can be
easily inferred that the model of NBL=12 corresponds to Ny for flfax=1/3. This reasoning
implies that in order to avoid significant spurious reflections, N4.BL must be no less than N'V for

flfmix = 1/3.

6.4 Analyses of multilayered half-spaces

6.4.1 Anti-plane problems

Here, we analyze two numerical examples of multilayered half-spaces subjected to SH transient
line loads, by means of the w-TLM combined with the adaptive hybrid system KpB. The adaptive
hybrid system KPB consists of a combination of a paraxial approximation and an adaptive buffer
layer, as proposed in section 6.3. The two examples are 1) a one-layered system on a
homogeneous half-space, and 2) a two-layered system on a homogeneous half-space, which are
exactly identical to those in section 4.4.1. Through these analyses, we illustrate wave motions
within the upper layered domains in terms of displacement snapshots. In addition, we validate
the use of the o-TLM combined with the adaptive hybrid system KPB in calculating seismograms,
and compare with the results of section 4.4.1 obtained by means of the substructure method. As
seen in section 4.4.1, the wave motions associated with the two layered cases are much more
complicated than the case of a homogeneous half-space. The reason is that due to the dissimilarity
of material properties, the phenomena of reflection, transmission (or refraction), and head waves
occur at the interfaces between the layers.

The SH line load considered in this section 6.4.1 is given as
p, = o(x)S(z - H)h(t) (6.4.1)

where H is the thickness of the upper layered system (H=1 for the first example, and H=2 for the
second example), and h(t) is a Hanning window function with td=0.2 , given as

-sin2-t 0
h(t) = td td (6.4.2)

0 , t <0, td<t
Then, it follows that the associated maximum frequency fmx(=2/td) is 10. Note that the line load
in equation (6.4.1) has the same temporal variation as that of the two examples in section 4.4.1.
On the other hand, the spatial variation is taken as &(x), instead of a Hanning window of half-
width a, which was used for the corresponding examples in section 4.4.1. However, since a small
half-width was used in section 4.4.1, i.e. a=0.2, it is expected that the wave motions in this
section 6.4.1 should be quite similar to those in section 4.4.1.

Consider the first example: a one-layered system (0<z<H) on a homogeneous half-space (z50)
subjected to the SH transient line load p, of equation (6.4.1). The mass density, the shear wave
velocity, and the thickness of the upper layer are p1=Cs,1=H=1.0, respectively, while the mass

density and the shear wave velocity of the lower half-space are 2= 1.0 and Cs.2=2.0, respectively.
For discrete models, we apply the TLM2 with NA-4 and the adaptive hybrid system KPB of

Na,BL.=12 and Rs(=HBL/As)-=4.0 as proposed in section 6.3.2.
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Figure 6.4.1 shows the displacement snapshots at t=1, 2, 3, and 4 for the upper layer (0<z7l) by
means of a standard surface plot. First of all, in comparison with figure 4.4.1, it is verified that the
w-TLM combined with the adaptive hybrid system KpB of Na,BL=1 2 and Rs=4.0 successfully
provides accurate results without any spurious reflection effect for SH wave problems. The wave
motions in this problem are very similar to those in figure 4.4.1, as pointed out previously. The
first snapshot for t=-1 shows that only the direct wave propagates with circular wavefronts through
the medium, which is exactly identical to the case of a homogeneous half-space whose material
properties are the same as the upper layer. The second snapshot for t=2 displays a direct wave
propagating in the same fashion as in the case of a homogeneous half-space, and a first reflection
at the interface of z=0 propagating upwards with an elliptical wave front. Notice that the
polarization of this first reflection wave is opposite to that of the direct wave, because the half-
space is stiffer than the upper layer, i.e. Cs,I<CS,2. The third snapshot for t=-3 shows a direct wave
propagating almost as a vertical plane wave, and the first wave reflected at the top-surface z=1
propagating downwards with elliptical wave front and without change in polarization. In addition,
it is seen in the third snapshot that a first head wave of weak amplitude propagates ahead of the
direct wave. Finally, it is observed in the fourth snapshot for t=4 that since most energy generated
by the external source leaks into the half-space during multiple reflections, the amplitudes of all
the reflected waves become smaller and smaller. On the other hand, the direct wave propagates
still with significant amplitude.

Next, consider the second example: a two-layered system (0<z<5H, with H=H,+H2) on a
homogeneous half-space (z<0) subjected to the SH line load p, in equation (6.4.1). The mass
densities, shear wave velocities and thicknesses of the two upper layers are p1=Cs,1=H1=1.0, and
p2=H2=1.0, Cs,2=2 , respectively, while the mass density and the shear wave velocity of the lower
half-space are p 3=1.0 and Cs,3=3.0, respectively. It follows that the total thickness of the upper
layered system is now H(=H1+H2)=2. For discrete models, we apply the TLM2 with Na=4 and the
adaptive hybrid system KPB of NBL=1 2 and Rs(=HBaLAs)=4.0 as proposed in section 6.3.2.

Figure 6.4.2 displays the displacement snapshots at t=l1, 2, 3, and 4 for the upper two-layered
system (0<_z 2 ) by means of a standard surface plot. In each plot, the dotted line at z=1 represents
the interface between the first (15_z2) and second (0<_z1) upper layer. First of all, in comparison
with figure 4.4.2, it is again verified that the o-TLM combined with the adaptive hybrid system
KpB of N, BL=1 2 and Rs=4.0 successfully provides accurate results without any spurious reflection
effect for SH wave problems. The wave motions in this problem are very similar to those in figure
4.4.2, as pointed out above. The first snapshot for t=l1 shows that only the direct wave propagates
with circular wave fronts through the medium, which is exactly identical to the case of a
homogeneous half-space whose material properties are equal to those of the first upper layer
(1•z5 2). Next, it is observed in the second snapshot for t=2 that the wave motion in the first layer
(1<z5 2) is identical to the snapshot for t=2 of figure 6.4.1. In addition, it is shown that the first
transmitted wave from the first layer (1:5z<2) to the second layer (0<z51) refracts and propagates
through the second layer, and the first reflection wave at the interface at z=0 propagates with
relatively weak amplitude. The weak amplitude of the reflected wave implies that most of the
energy from the source has already leaked into the half-space. The third snapshot for t=3 shows
again the similarity to the third snapshot in figure 6.4.1 for the first layer (1<z<2). However, there
is a difference as well, that is, the first transmitted wave from the second layer (01_z1) to the first
layer (1<z52) propagates through the first layer with weak amplitude. This transmitted wave
results from the first reflection at the interface at z=0. In addition, two head waves are observed in
the third snapshot for t=3, because not only the second layer is stiffer than the first layer, but also
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the half-space is stiffer than the second layer. One propagates through the first layer ahead of the
direct wave generated by the source, and the other propagates through both the first and second
layers ahead of the direct wave and first transmitted wave from the first layer to the second layer.
Finally, the fourth snapshot for t=4 illustrates that the wave motion in the firs layer is similar to
the fourth snapshot in figure 6.4.1, except the effect of the reflection waves at z=0. Also, notice
that because most of the energy from the external source to the second layer leaks into the half-
space during multiple reflections, the amplitudes of all the waves in the second layer become very
small.

6.4.2 In-plane problems

Next, we analyze two numerical examples of multilayered half-spaces subjected to SV-P vertical
line loads, by means of the ac-TLM combined with the adaptive hybrid system KPB. The two
examples are 1) a one-layered system on a homogeneous half-space, and 2) a two-layered system
on a homogeneous half-space, which are exactly identical to those in section 4.4.2. Through these
analyses, we illustrate wave motions within the upper layered domains of interest in terms of
snapshots for the both horizontal and vertical displacements u and w. In addition, we validate the
o-TLM combined with the adaptive hybrid system KPB for calculating seismograms through
comparison with the results of section 4.4.2 obtained with the substructure method. As seen in
section 4.4.2, the wave motions involved here are much more complicated than the case of a
homogeneous half-space. The reason is that due to the dissimilarity of material properties, the
phenomena of reflection, transmission (or refraction), and head waves occur at the interfaces
between the layers. In addition, since both of S and P wave components are involved, the mode
conversions between the two components also take place at each interface.

The SV-P line load Pz considered in this section 6.4.2 is given as

p, = 5(x)6(z - H)h(t) (6.4.3)
where H is the thickness of the upper layer system (H=1 for the first example, and H=2 for the
second example), and h(t) is given in equation (6.4.2). So, the associated maximum frequency
f.x(=2/td) is again 10. Note that the line load in equation (6.4.3) has the same temporal variation
as the corresponding two examples in section 4.4.2. On the other hand, its spatial variation is
given as &(x), instead of the Hanning window with a half-width a, which is used for the
corresponding examples in section 4.4.2. However, as the case of section 6.4.1 and for the same
reason, it is expected that the wave motions in this section are quite similar to those in section
4.4.2.

Consider the first example: a one-layered system (0_z5H) on a homogeneous half-space (z<0)
subjected to the SV-P vertical line load Pz of equation (6.4.3). The mass density, the shear wave
velocity, the thickness, and the Poisson's ratio of the upper layer are pA=Cs,1=H=1.0 and v--0.25,
respectively, while the mass density, the shear wave velocity, and the Poisson's ratio of the lower
half-space are P2=1.0, Cs,2=2.0, and v=-0.25, respectively. Then, it follows that dilation (P) wave
velocities for the upper layer and the half-space are Cp,1=1.732 and Cp,2=3.464, respectively, and
the Rayleigh surface wave velocity for the upper is CR,1=0. 9 193 . For discrete models, we apply
the TLM2 with NA=4 and the adaptive hybrid system KpB with Na, BL=12 and Rs(=HBtJAs)=2.0 as
proposed in section 6.3.2.

Figure 6.4.3 shows the displacement snapshots for u and w at t=0.5, 1.0, 1.5, and 2.0 for the upper
one-layered system (0:z•1) by means of a standard surface plot. First of all, in comparison with
figure 4.4.3, it is verified that the Wo-TLM combined with the adaptive hybrid system KPB of
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NABL=1 2 and Rs=2.0 successfully provides accurate results without any spurious reflection effect
for SV-P wave problems. The wave motions in this problem are very similar to those in figure
4.4.3, as pointed out previously. It is observed in the two snapshots for t=0.5 that the P and S
wave components propagate separately through the upper layer in the same fashion as the case of
a homogeneous half-space. It should also be recognized that near the top-surface, the amplitude
of P wave components is much smaller than that of S wave component, while within the upper
layer and below the top-surface, the amplitude of P wave components is comparable to that of S
wave components. This confirms the fact that P waves can not properly propagate along stress-
free surfaces without an external source. Also, notice that the Rayleigh surface wave propagates
closely behind the S wave along the top-surface at time t=0.5. Next, the two snapshots for t=1.0
on the second row display two weak reflected waves resulting from the incident direct P wave at
the interface of z=0 propagating upward through the upper layer. The reason that these two
reflection waves exist is the mode conversion from an incident P wave to two reflected S and P
waves at the interface. Also, notice that the Rayleigh surface wave propagating along the top-
surface is clearly separated from the S wave components, and its amplitude is significant as well.
The snapshots on the third and fourth rows illustrate the wave motions for t=1.5 and t=2.0,
respectively. As shown in the four surface plots, the wave motions involved are extremely
complicated, because of the multiple reflections, the head wave effects, and the mode conversion
between P and S wave components at both the interface and top-surface. In addition, due to the
multiple reflections and energy leakage into the half-space, the amplitudes of waves decrease to a
great degree, which makes it more difficult to identify the involved waves and interpret the wave
motions. However, it is seen that the Rayleigh surface wave propagates in the almost same
fashion as for a homogeneous half-space. This observation implies that in the present example,
the depth of the upper layer (H=I) is large enough to prevent the Rayleigh surface wave from
touching the interface between the upper layer and the half-space.

Next, consider the second example: a two-layered system (0<z<H, with H=HI+H2) on a
homogeneous half-space (z_0) subjected to the SV-P vertical line load Pz of equation (6.4.3). The
mass densities, the shear wave velocities, the thickness', and the Poisson's ratios of the two upper
layers are P==P2=1, Cs,1=1, CS,2=2, HI=H2=1.0 and vl=v2=0.25, respectively, while the mass
density, the shear wave velocity, and the Poisson's ratio of the lower half-space are p3=1.0,

Cs,3=3.0, and v3=0.25, respectively. Then, it follows that dilation (P) wave velocities for the two
upper layer and the half-space are Cp,1=1.732, CP,2=3.464, and CP,3=5.196, respectively, and the
Rayleigh surface wave velocity for the upper layer is CR,1=0. 9 193. For discrete models, we apply
the TLM2 with NA=4 and the adaptive hybrid system KPB of NBL=12 and Rs(=HBJt/s)=2.0 as
proposed in section 6.3.2.

Figure 6.4.4 shows the displacement snapshots of u and w at t=0.5, 1.0, 1.5, and 2.0 for the upper
two-layered system (0<_:z2) by means of a standard surface plot. In each plot, the dotted line at
z=1 represents the interface between the first (15_z2) and second (0<_zl) upper layer. First of all,
in comparison with figure 4.4.4, it is verified that the co-TLM combined with the adaptive hybrid
system KPB of NaBL=12 and Rs=2.0 successfully provides accurate results without any spurious
reflection effect for SV-P wave problems. The wave motions in this problem are much similar to
those in figure 4.4.4, as pointed out above.

We begin by interpreting the wave motions in the first layer (<15z52), in comparison with the
wave motions in the upper layer (05z<1) in figure 6.4.3. It is observed in the snapshots on the
first (for t=0.5) and second (for t=1.0) rows that the wave motions in the first layer (15<z2) are
exactly identical to those in the upper layer (0<z5l) in figure 6.4.3. The reason is that at time
t=0.5 and 1.0, the waves reflecting at the interface at z=0 have not yet arrived at the first layer. On
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the other hand, it is seen in the snapshots on the third (for t=1.5) and fourth (for t=-2.0) rows that
the reflection waves from the interface at z=0 transmit into the first layer (1_z<2). Hence, the
wave motions in the first layer are now different from those in the upper layer (0_z:1) in figure
6.4.3. However, notice that the degree of difference is insignificant. The reason for this small
difference is that when a reflection occurs at the interface of z=0, most of the energy leaks into
the half-space and only small fraction bounces up. Consequently, the waves transmitting from the
second layer into the first layer are too weak to significantly influence the wave motions in the
first layer (1•:52). Also, notice that the Rayleigh surface wave motion propagates without any
interruption resulting from the transmitted waves in the present problem for the whole time of
interest.

We now consider the wave motions in the second layer (01_z1). The snapshots for t=-0.5 on the
first row show that the second layer is quiescent, because no wave have yet arrived from the
source. The snapshots for t=1.0 display complicated interference phenomena caused by P waves
transmitted from the first layer (1<z52) already propagating upward after reflecting at the
interface of z=0, while transmitted S waves propagate downward. However, due to the
complicated interference, the associated wavefronts cannot clearly be distinguished in the
snapshots. The snapshots for t=1.5 and 2.0 illustrate even more complicated wave motions. The
reasons for this extreme complication are that the multiple reflections, the head wave effects, and
the mode conversion between P and S wave components occur associated with both the interfaces
of z=0 and z=1. In addition, due to the multiple reflections/transmissions and the associated
energy leakage into the half-space, the amplitudes of the involved waves decrease to the great
degree, which makes it more difficult to identify the involved waves and interpret the wave
motions.
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Figures for section 6.2

z=H

z=0

Figure 6.2.1 Semi-infinite medium subjected to a line load vector p(x,y,z,ow)
at z=z, and the coordinate system used.

abs[K/(ksG)j without buffer layer

0.5 1 1.5 2 2.5 3 3.5

Phase angle, in e/x

0.5 1 1.5 2 2.5 3 3.5 4

Figure 6.2.2 Comparison of KEX and KpA without the buffer layer for SH waves
(solid line: KEX; dashed line: KPA)
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Figure 6.2.3 Comparison of KEX and KPB with the buffer layer for SH waves
(solid line: KEX; dashed line: KpB)
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HBL Spurious reflection

Complete absorption Incomplete absorption

Figure 6.2.4 Stability of the hybrid system KPB for SH waves:
wave A: completely absorbed; wave B: incompletely absorbed

domain I: stable; domain II: unstable

X,

d=ZHi-zn

: Paraxial Boundary•I-4 iiiii :2i _ : i ii i iii i ii iiiii i• ?• i i iii

Figure 6.2.5 Theoretical ray paths distinguishing domains I and II,
for an example system composed of 4 layers over the paraxial boundary impedance (SH waves)
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Figure 6.2.6a Eigenvalues kj (x) obtained with TLM2 of Na=8 and Rs-0.5
for a homogeneous half-space (p=Cs= 1l) for f,e2.5
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Figure 6.2.6b Displacements v(=G,) obtained with TLM2 of Na=8 and Rs=0.5
in a homogeneous half-space (p=Cs=l) subjected to SH harmonic surface line load offe,=2.5

(Gy p: TLM2 of NA=8 and Rs-0.5 ; GyE: Exact solution)
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Figure 6.2.7a Eigenvalues kj (x) obtained with TLM2 of NA=8 and Rs=0.75
for a homogeneous half-space (p=Cs=1) forf,.=2.5
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Figure 6.2.7b Displacements v(=G,y) obtained with TLM2 of Na=8 and Rs=0.75
in a homogeneous half-space (p=Cs=1) subjected to SH harmonic surface line load off,i=2.5

(G, pe: TLM2 of Na=8 and Rs=0.75; GyyEX: Exact solution)
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Figure 6.2.8a Eigenvalues kj (x) obtained with TLM2 of Na=8 and Rs=1.0
for a homogeneous half-space (p=Cs=1) for f,=2.5
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Figure 6.2.8b Displacements v(=Gy) obtained with TLM2 of NA=8 and Rs=1.0
in a homogeneous half-space (p=Cs=l) subjected to SH harmonic surface line load offex=2.5

(Gy pB: TLM2 of Na=8 and Rs=1.0; G, EX: Exact solution)
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Figure 6.2.9a Eigenvalues ki (x) obtained with TLM2 of NA= 8 and Rs=0.50

for a one-layered homogeneous half-space (pCs= 1, H,=1; p 1=l, CR=2) forfex=2.5,
(o: Exact true propagation mode)
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Figure 6.2.9b Displacements v(=Gyy) obtained with TLM2 of NA=8 and Rs=0.50
in a one-layered homogeneous half-space (p=Cs=1, H=l1; p-l 1, C,=2)

subjected to SH harmonic surface line load of f,=2.5
(Gyy,p: TLM2 of Na=8 and Rs=0.5; Gyy EX: Exact solution)
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Figure 6.2.10a Eigenvalues kj (x) obtained with TLM2 of NA=8 and Rs--0.75
for a one-layered homogeneous half-space (pCs=1, H1= ; p 1=l, CR=2 ) forf,=2.5,

(o: Exact true propagation mode)
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Figure 6.2. 10b Displacements v(=G,) obtained with TLM2 of Na=8 and Rs=0.75
in a one-layered homogeneous half-space (p=Cs=1, HI=l; pR=l, CR=2 )

subjected to SH harmonic surface line load off,,=2.5

(Gy PB: TLM2 of NA= 8 and Rs--0.75; G, Ex: Exact solution)
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Figure 6.2.11a Eigenvalues kj (x) obtained with TLM2 of NA=8 and Rs= 1.0

for a one-layered homogeneous half-space (p=Cs=1, H,=1; pe=l, CR=2) forf,e=2.5,
(o: Exact true propagation mode)
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Figure 6.2.11 lb Displacements v(=G,,) obtained with TLM2 of Na=8 and Rs=1.0
in a one-layered homogeneous half-space (p=Cs=1, H,=1; pe1=, CR=2 )
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323



Poles of det(Kx+KpA)=0 for a Dissimilar full-space

20 -20 Im(w/kCs)

Re(w/kCs)

Figure 6.2.21b Propagation modes of det(KEX+KpA)=O (Cs.=2Cs.) using modified KpA
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Figure 6.2.22a Eigenvalues kj (x) obtained with TLM2 of Nt=8 and R=0.25

for a homogeneous half-space (p=Cs=1, v-0.3) forf,x=2.5, (o: Exact Rayleigh pole kR)
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Figure 6.2.22b Displacements u,(=G,,) obtained with TLM2 of NA= 8 and R=--0.25
in a homogeneous half-space (p=Cs=1, v-0.3)

subjected to harmonic vertical line load off,,=2.5 applied at the top surface
(G, QE: TLM2 of Na=8 and Rp=-0.25; GxEX: Exact solution)
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Figure 6.2.22c Displacements u,(=G ) obtained with TLM2 of Na=8 and R=--0.25
in a homogeneous half-space (p=Cs=l, v=0.3)

subjected to harmonic vertical line load off,.,=2.5 applied at the top surface
(G, QE: TLM2 of Na=8 and R,=0.25; GEx: Exact solution)
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Figure 6.2.23a Eigenvalues kj (x) obtained with TLM2 of NA=8 and Rp=0.50
for a homogeneous half-space (p=Cs=1, v-0.3) forfei=2.5, (o: Exact Rayleigh pole kR)
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Figure 6.2.23b Displacements u=(=G,) obtained with TLM2 of Na=8 and R--0.50
in a homogeneous half-space (p=Cs=1, v=0.3)

subjected to harmonic vertical line load off,=2.5 applied at the top surface
(GQ, E: TLM2 of NA= 8 and R-=0.50; Gx Ex: Exact solution)
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Figure 6.2.24a Eigenvalues kj (x) obtained with TLM2 of NA=8 and R,=0.75
for a homogeneous half-space (p=Cs= 1, v-0.3) forf,=2.5, (o: Exact Rayleigh pole kR)
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in a homogeneous half-space (p=Cs=l, v=0.3)

subjected to harmonic vertical line load off,,=2.5 applied at the top surface
(G, XE: TLM2 of Na=8 and Rp=0.75; GEX: Exact solution)
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in a homogeneous half-space (p=Cs=1l, v-0.3)

subjected to harmonic vertical line load off,.,=2.5 applied at the top surface
(GX QE: TLM2 of Na=8 and R,=0.75; GEx: Exact solution)
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Figure 6.2.25a Eigenvalues kj (x) obtained with TLM2 of Na=8 and Rp=1.0
for a homogeneous half-space (p=Cs= 1, iv0.3) for fe=2.5, (o: Exact Rayleigh pole kR)
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Figure 6.2.25b Displacements u,(=G,) obtained with TLM2 of NA=8 and Rp= 1.0
in a homogeneous half-space (p=Cs=1, v=0.3)

subjected to harmonic vertical line load offe.=2.5 applied at the top surface
(G, QE: TLM2 of NA==8 and Rp= 1.0; Gx Ex: Exact solution)
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Figure 6.2.26a Eigenvalues kj (x) obtained with TLM2 of NA=8 and R= 1,25
for a homogeneous half-space (p=Cs=1, v-0.3) for f,,=2.5, (o: Exact Rayleigh pole kR)
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Figure 6.3.2 Seismograms of surface uyy obtained with TLM2 of R=1.0
on a homogeneous half-space subjected to SH line load of td=0. 2 ,

(solid line: TLM2; dashed line: Exact solution)
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Figure 6.3.3 Seismograms of surface u, obtained with TLM2 of R=2.0
on a homogeneous half-space subjected to SH line load of td=0.2,

(solid line: TLM2; dashed line: Exact solution)
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Figure 6.3.4 Seismograms of surface uy obtained with TLM2 of R=3.0
on a homogeneous half-space subjected to SH line load of td=0. 2 ,

(solid line: TLM2; dashed line: Exact solution)
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Figure 6.3.5 Seismograms of surface ui obtained with TLM2 of R=1.0
on a homogeneous half-space subjected to vertical line load of td=0.2
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Figure 6.3.6 Seismograms of surface u, obtained with TLM2 of R=2.0
on a homogeneous half-space subjected to vertical line load of td=0.2
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Figures for section 6.4
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APPENDIX 6A: Contour Integral Solutions in x-) domain

We present and derive the Green's functions in the space-frequency domain, or x-o domain for
short, associated with plane strain wave motions. Two types of semi-infinite media (z50) are
considered: 1) a layer on a half-space subjected to an SH surface line load (the Love wave
problem), 2) a homogeneous half-space subjected to SV-P surface line loads. We apply the
contour integration method over the complex wavenumber plane to obtain the Green functions in
the x- wdomain.

6A.1 Green functions for SH surface line loads

Here, we consider a system of a layer of thickness H overlain by a homogeneous half-space that
is subjected to an SH surface line load. Figure 6A. 1 describes the problem of interest and the x-
axis coincides with the interface between the upper layer and the half-space. The upper layer and
the half-space are labeled as I and II, respectively, and p's and C's are the mass densities and the
shear wave speeds, respectively. In a case of C1<C11, guided waves develop within the upper layer,
which is known as the Love wave problem. We start by deriving the Green functions for this
Love wave problem and then generalize the solutions for the other cases of C1=C11 and CI>C1.

The governing equations for the problem of interest are given in the x-t domain as

p, 2- G,[ + z = (x)6(z-H)6(t)= Py for 05 z 5 H (6A. la)
A at, a a2 2
a2 v +a2VII 0 for z 5 0 (6A.lb)

A at2  aZ2  aZ2

where v's are the displacements in the x-t domain and G's the shear moduli. Applying a double
Fourier transformations with respect to x and t, we obtain the general solutions in the k-oj domain
in the absence of the external load as

V,(k, z,o) = Acos/ z + Bsin fz (6A.2a)

1 (k,z,o)= Ceyz  (6A.2b)

where = (o/C )2-k 2 , y== k - (o/C 2 , and A, B, C are unknown constants. These are

determined by satisfying the traction boundary condition at the top surface and the two continuity
conditions for the displacement and internal stress at the interface z=0. Then, the Green functions

Gy's in the k-co domain are obtained as

1 Y N 1
G-Y1 (k,z,co)=- -- cosz- P-, sin 1z]- Gi K , for0 z H (6A.3a)

1 INi= 1
G-, 11(k,z,o)= [-e z]-. K, for z 5 0 (6A.3b)

GIA  G, A GI
where

A = [ sin /H - pycos JH], (6A.4a)

,u = G1n / GI, (6A.4b)

K's are the kernels, and N's the numerators of the kernels. The function A in equation (6A.4a) is
the characteristic equation for Love waves, which in the case A = 0 provides the dispersive
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guided waves within the upper layer. Furthermore, it should be noticed that the kernels are all
even functions of k and fl, but odd functions of y, which implies that the sign change and
conjugate properties of the kernels are associated only with y.

The Green functions in the x-co domain are obtained by means of the inverse Fourier transform

GI(xzw) = 2 G.; (k,z, c)e-dk

= 1 N e-i"dk =- • CK,(k,y,P, A)e-i"dk (6A.5)
27GI A 27nG

1

27nG 1
where Il are the integrals to be calculated, and l=I or II. Since the Love wave equation produces
the zeros of the denominators of the kernels at the poles, we can not integrate along the real k-
axis. To overcome this obstacle, we deform the integral path into the complex k-plane, or ý-plane,
as shown in figure 6A.2. In figure 6A.2, k, = c/C , k, 1 = o/C,,, and the set -kM,...,-kl,kI,...,kM

represent the poles of the Love wave equation for a given frequency co. It is noticed that all the
poles are located along the real k-axis, assuming that the system of interest is undamped. Adding
some amount of damping into the system, these poles move from the real k-axis to the complex ý

region. The contour integral path is then closed in the lower ý -plane, because e-' A is used. The
integrands in equation (6A.5) are odd functions of y, and even functions of P. Therefore, there is a
branch-point only around y as shown in figure 6A.2. Then, the resulting contour integrals are
given of the form

4d1, =I, + LdI + , dl, + "'dI, + fdl, + dI,
lM (6A.6)

= -2ni (m-th Residue),

where M is the total number of poles for a given frequency o. Since the integrands vanish on

C_', equation (6A.6) yields

I, = -2ni- (m-th Residue), - fBranch-cu dl, (6A.7a)
m

JBrach_,, dl = dl, + dl, + Y dl, + f dI, (6A.7b)

Next, we need to identify the branch-cut so as to decide on the proper phases of y and ,. For this
purpose, we shift up the real k-axis by ii- as shown in figure 6A.3. Then, ý is given as

Y2 =(kc + i J) - kIJ

=[k + i(7 + -)]2 _ k2 (6A.8)

= k2 - k -(77+ )2 + 2ik(7 + 7)

According to the signs of Rey 2 and Imy 2 , we decide the (i,ii,iii,iv)-th quadrants for / as shown

in figure 6A.3. Consequently, we can determine the (I,II,III,IV)-th quadrants for y. Then, the
branch-cut integrals are expressed as

Branch-cudlI, = LK,(ir,-ii,/,A,*)e-i )e;xd(ir)+ .K,(ir, iY,-, A,1)e-i(i')xd(i q) (6A.9)-ra-' 
(6A.9)

+ K, (k,-if,,,1, A,)e-i'dk + KK, ,(k, if,-/f, A*)e-'dk

where
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J = r2 +k (6A.10a)

y = 2 +(6A.10b)

I = k (6A.10c)

A1 =3 sin PH+ipA) cos 3H, and A' =conj(A1 ) (6A.10de)

A,, = fsin/3H-ipycos/JH, and A, =conj(A1 ,) (6A. 10fg)

Changing the direction of integration in the first and fourth integrals, we obtain

fLanch-cut dl, =- i jK,(i i, -iy, /3,A,*,)e-&;xdq + i K,(Iq,(ij7/,- ,A1 )e-i(i)xdq

+ 'K,(k,-ii, p,A,)e-'dk - " K,(k, if,-P,Al )e--'dk

(6A.11)
The conjugate relationships between the kernels in each row in equation (6A.1 1) provides

Branch-t dl, =-2 Im [K, (i , if, -, A ) ed+ 2i Im [K(k, -ij,,A,)]e-&'dk

(6A.12)
Replacement of q by -77 in the first term in equation (6A. 12) yields

anch-cu dl = 2 fIm [K, (-i , y,-, A )] e-xdl+ 2i Im [K, (k,-i,f,A, )]e-dk
(6A.13)

Next, we consider the residues in equation (6A.7a). The residues for each pole, kin, are obtained
by the limit

(m-th Residue), = lim (k - km) N' e-'~ = N-(kn) e-ikx (6A.14)
k->k. A A'(k,)

where
dA k k

A'= (1 +puyH)sin/fH-(kH + p-)cos/fH (6A.15)
dk P Y

Substitution of equations (6A. 13) and (6A. 14) into equation (6A.7a) produces

li = -ni -2i sin kx
m= L A'(k,,) s(6A.16a)

-2 Im [K, (-i 7, i, -fl, A1,)] e-'xdqr+ i "Im [K, (k,-if,, fA,A)]e- "dk}

li :-2ni N, (km) e_.- x
m= L A'(km) (6A.16b)

-2 { Im [K, (-i q, iy,-, A)] e-'dxd + i Im [K, (k,-i, , A,)]e-idk}

where equations (6A. I 16a) and (6A.16b) are for the cases of the undamped and damped systems,
respectively. Finally, the Green functions in the x-o domain for the Love wave problem are of the
form

G,, (x,z, o) sin kx
GI m=, A '(k, )

,f Im[K,(-iq,i, '-f,AA)] e-'xd + i f" lm[K,(k,'-i, f,A,)]e-'dk

(6A.17a)
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for the undamped system, and

G,(xz,) = • Nt (km) e -
ikx

Ga m=' A'(km)

1 { f Im[Ki(-irl7,iP,-,,All)] e - ' xdrl + i " Im[Ki(k,-iY,,Ai)]e-ihdk}

(6A.17b)
for the damped system.

To complete our formulation, we present the Green's functions in more explicit form as
a) Undamped system:

G,,l(x, z,w)= = 1[ (cosfmz+p-•mS inmZ) sinkmx-
G m= A'(km) 8,

I m[1 I i
+ { Im cos z + # + l sin flzl e-~ xdr (6A.18a)

,Y z iJkedk+i "Im • cosflz- -sin z e-dk

G, (x, Z,O)= -, m= 1  sin(k )

(6A. 18b)
+ Im e-rxd +i Im - e-' idk

b) Damped system:

GYY, (x, z, ()=I cos',8 +Pm sinjz e-ikmx1 rf
+- . Im[ + cos /z + p/ i-sin /z ]e-" xdr (6A.18c)

SGl All

+i "Im cos flz-pL-sin fz e-i'dk

i M [" er i.-

Gr.ll, (x, z,) =- e-ikx
G1 i if Im e-  dk (6A. 18d)

+ L- { Im[ e- xdi +i Im e-'dk

where #, = ,k k LYm. = .

Now, we generalize the solutions for the two additional cases of C1 =C11 and C1>C11 . In both of
these cases, there do not exist any poles. Therefore, the residue summations are canceled in
equations (6A. 17a and b). Then, the Green functions are modified to be of the form

,(XZ,O))= - Im[ KI(-i7,i7f,-fl,A,)]e-'xd + i "Im[K,(k,-i',/3,A)]e-'&dkj

(6A. 19)
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6A.2 Green functions for SV-P surface line loads

Next, we consider a homogeneous half-space (zO) subjected to SV-P surface line loads, as
shown in figure 6A.4. The governing equation is given in matrix form as

pii -LT DLu = p (6A.20)

where p is the mass density, the superscript dot represents the partial derivative with respect to
time t,

u(x,z,t) ={u w}T (the displacement vector) (6A.21a)

p(x,z,t)= {p pz } (the applied line load vector) (6A.21b)

A+2G A

D = 2 + 2G (the constitutive matrix) (6A.21c)

L = LX  + L (the differential operator) (6A.21d)ax az
L={ and L { I}. (6A.21e,f)

In the constitutive matrix D, the constants A and G are called Lame's constants. Applying a
double Fourier transformations to u(x,z,t) with respect to x and t, we obtain the general solution in
the k-ow domain in the absence of the external force p as

i(k, z, )= {}= { er i (6A.22)WI -e" i-e B

where A and B are unknown constants, r = - (k2 olC2, = k2 (w Cs

C,= (2+ 2G)/p, and Cs = ýGp. Satisfying the traction boundary conditions at the top

surface with equation (6A.21), we obtain the Green functions Gi in the k-wdomain as

I is (k e ,3 e N, e
G, (k,z,) = I 2ker" -s I-+- e - e - =- x K, (6A.23a)

GA k s G A G

i s k eN, e
G,(k,z, Wo)== 2re"Z -k -+- )eZ] - __ " ` K (6A.23b)

GA I k s GA G

(e -- Kz (6A.23c)1 S k k eN ex,(kzc) = -+- + ) e-- + 2re' z  - K, (6A.23c)

Gz(k Z O) = ,k fs e+ - --2---z -K (6A.23d)

where e=e,=l, ez=e,=i=I-1, K11 are the kernels in the integrals introduced later, and Nij the
numerators in each kernel Kij. Furthermore, A is the Rayleigh surface wave equation defined as

A = 4kr - ks is k 2 (6A.24)

The Rayleigh surface wave equation provides a non-dispersive SV-P propagation mode, i.e.

354



kR = wCR (6A.25a)

CR = Cs (-0.0276v3 - 0.056v2 + 0. 197v + 0.874) (6A.25b)

where CR is the phase velocity of Rayleigh waves, and v is the Poisson's ratio of the half-space. It
is also observed in equations (6A.23) that all the Ky are odd functions of both s and r.
Additionally, K, and Kx are odd functions of k, which affects the phase of Ky's when k is
replaced by iq in the branch-cut integrals, as will be shown later.

We now perform an inverse Fourier transformations of G, so as to obtain the Green functions

G, in the x-co domain as

G, (x, z, co) = 1 G (k,z, w)e-"dk

e N e.
= G e-Adk = cG ' K, (k,s,r,A)e-'dk (6A.26)

27tG A 2nG -
e

27tG
where ij = x,z, and Ii. represent the integrals to be calculated. It is also noticed that the kernels K,
are expressed as function of k, s, r, and A, which renders our future derivation much simpler. As
shown in equation (6A.26), the kernels are singular when A=0, or equivalently k-=k. Therefore,
the integrals in equation (6A.26) can not be performed properly. To avoid this problem, we
deform the integral paths into the complex wavenumber plane, or ý-plane, as shown in figure
6A.5. We close the integral path by including the lower ý-plane, because we use e" x in equation
(6A.26). Also, since all the kernels are odd functions of both s and r, the branch-cuts around both
of the two branch points of ks = co / Cs and kp = c / C, are placed along Re s = 0 and Re r = 0.

Then, the result contour integrals are given as

4dlu = Iu + jd + fBn chdly = -27nii (Residues), (6A.27a)

I,,chc,,,d d = dl + dl + dA.2
anch-cu (6A.27b)

+ d l + + + dl,

In the above equation, the integrals on C_o vanish, so equation (6A.27a) can be expresses as

I = -2ni (Residues)- I- ,,,dI (6A.28)

In order to calculate the correct branch-cut integrals, we need to identify the branch-cuts and the
phases of s and r. For this purpose, we make use of figure 6A.3 in the previous section just by
replacing k11 by ks or kp in this section. Then, the branch-cut integrals in (6A.27b) are expressed in
terms of s, r, A as

Branchc,,dlY = " K (k,-is-,-iF,A)e-i"cdk + f K,(k,is,ir,AA) e - i'dk

+ K (k,-is,r,A,)e -" d k + " K,(k, i, r, A)edk

+ fK, (iq,--iP,-ia,-Ac)e-~()x'd(irq)+ fK,(irq, if, ia, Ac)e-i(•xd(irq)

(6A.29)
where

g= k2-k7 , F= k2-k 2,
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J= aVT+k+, a=

AA = A(k, iY, i), A = A(k, -is, -iF)= conj(AA)

AB = A(k, i-,r), A = A(k,-iY, r)= conj(AB)

Ac = A(i7, ip, ia) (6A.30a-i)
Changing the integration directions, we obtain

Baonch-cl dl = fp K, (k,_-is, -iT, A )e-ii"dk - P KY (k, i, iF, AA )e-idk

+ Ky(k, -i, r, A)e-~dk- K, (k, ir, r, AB)e-idk

+ K, (i 7,-i,6,-ia,-Ac)e-i(i'7)xd(i7) - 7 K, (i , if, ia, Ac)e-~i('i~)xd(i q)

(6A.31)
Making use of the conjugate relationships between the kernels, not the whole integrands, we
obtain the following.

f" d.d/•l = - 7" 2iIm[K~(k,is,ir,AA)]e-•'dk

- fp 2ilm[KV,(k,i-,r,AB)]e-'kdk (6A.32)

+ [72eY Im[e Ky(ir, iPf, ia,Ac)]e'dxd

The use of e, in the third term in equation (6A.32) is related to the fact that K, and Kx: are odd
functions of k or ir7, as previously observed. Furthermore, we replace r by -q and then obtain the
branch-cut integrals in the form.

fBranch-cutdl = - " 2i Im [K (k, iY, iF, AA )] e-dk

- r 2ilIm[K.(k,i-,r,AB)] e-idk (6A.33)

- f2e' Im [eK,(-i , i,6, ia, Ac-)]e-]xdrl

where Ac-_,; = A(-i 7, if6, ia).

We next continue to calculate the residues in equation (6A.28). The residues for the poles of
k=-kR are

N,1 ,.h N (±kR) rik~x(Residues), = lim (kT kR) e- = ke (6A.34)
k--±kR A A'(±kR)

where

dA k2 k2 k' s (A.5A' 4r 1+ -5s 1+ +k + (6A.35)dk s S
Then, the integrals I- are expressed as

I N[,(-kR) •ikx N A(kR) e-ikx

+ t" 2im [K, (k,i,ir,, AA)] e-- 'dk (6A.36a)

+ s 2i Im[Kd(k, i, r,AB)] e - i"dk

+ . 2e,' Im [e, K,(-i r, ifp, i a, Ac)]e-~xdr
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I= -2ti Ni (kR) -ikRx

SA'(kR )

+ J 2im K,(k, is,i-,AA )]&e-"xdk (6A.36b)

+ r 2iIm[K(k,i, r, AB)] e - 'i dk

+ f 2e 1 Im[eeKuj(-ili 7i,i, i,Ac)] e-l"xd

where equations (6A.36a) and (6A.36b) are for the cases of the undamped and damped systems,
respectively. The final expressions for the Green functions in the x-o domain are then

S-ie, N i (-kR) eik ) -ikx

Gi (x, z, ) - e kx + ex
2G A'(-k) A'(kR) I

+s•i m ,Im[K(k,i-,i'F,A,) e-idk (6A.37a)

+i Im[ Ki(k,i-,r,A)]e-ikxdk

+ Jfe I Im[eiKij(-iir,if, ia, Ac)]e-exdr?}

for the undamped system, and

-ie,, Nij(kR) -ikRxIGI (x, z, G) ) e
G A'(kR)

• . Im[K(kiiF ,)]e (6A.37b)

+ i Im Ki (k, iT, r, A,)]e-ikdk

+ fe•'Im[eijKij(-iil, i/,icr, Ac)]e-7xdr

for the damped system.
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Figures for appendix 6A
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z=0

, V

Figure 6A. 1 Layered half-space subjected to an SH surface line load py

k

Figure 6A.2 Contour integral paths, branch-points (x), and poles (*): Love wave problem
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Figure 6A.3 Identification of the branch-cut and the quadrants for ý (i-iv) and y(I-IV)
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Figure 6A.4 Homogeneous half-space subjected to SV-P surface line loads
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Figure 6A.5 Contour integral paths, branch-points (x), and poles (*): Rayleigh wave problem

360

I (=k+i 17)



Chapter 7 Cylindrical thin-layer method

7.1 Introduction

In this chapter, we introduce and formulate a new thin-layer method that is useful and efficient
for the analysis of wave propagation in anisotropic, laminated cylindrical solids and shells. This
new thin-layer method is herein called the cylindrical thin-layer method, or the CTLM for short.
Basically, the CTLM is a new formulation TLM that is developed in the cylindrical coordinate

system (r, 0, z), instead of in the Cartesian coordinate system (x, y, z) as the case of the TLM for

flat layers. Also, discretization is performed along the radial (r-) direction in the sense of finite
element. After developing the CTLM, we also verify its validation by means of an analytical
comparison with the TLM for flat layers and two numerical examples for a homogeneous
cylindrical solid and shell.

For the above purposes, we perform the following procedures. In section 7.2, we derive a general
form of the wave equation for anisotropic material in the cylindrical coordinate system and also
set up the boundary conditions that are necessary for formulating the CTLM. In section 7.3, we
develop the CTLM by means of the principle of virtual work and the discretization of the wave

equation along the radial (r-) direction. After all, we end up with the discrete wave equation for
the systems of interest. For the verification of the formulated CTLM, we compare it with the
TLM for flat layers, based on the fact that a hollow cylinder with a large radius relative to its
thickness behaves like an infinite plate. In section 7.4, we solve the discrete wave equation by

means of the Fourier transformations with respect to the spatial (0, z) and temporal (t) variables
and the associated eigenvalue problem in the frequency variable, which is a liner and real-valued
problem. Thereafter, we apply the modal superposition to obtain the analytical response functions
in the wavenumber-time domain. Finally, we perform the numerical transformations over
wavenumbers to obtain the responses in the space-time domain due to dynamic excitations in the
cylindrical solids and shells. In section 7.5, we formulate the analytical eigenvalue problem of the
continuum that is associated with the propagation modes of isotropic homogeneous cylindrical
solid and shell. In section 7.6, we compare the results of the eigenvalue problems obtained with
the two of the CTLM and the analytical solution so as to verify the validations of the developed
CTLM.

7.2 Wave equation in cylindrical coordinates

The wave equation and boundary conditions needed to describe and specify the behavior of an
infinite cylindrical lamina are derived herein in the cylindrical coordinate system. The boundary
conditions are prescribed on the inner and outer radial surfaces of each thin-layer. The material of
interest is assumed to be anisotropic. At the end of this section, we obtain, using matrix methods,
the wave equation for anisotropic media, and also for cross-anisotropic media so as to verify the
proposed method.
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7.2.1 Wave equation for cylindrically anisotropic media

Consider an infinitely long hollow cylinder (or cylindrical shell) of linear elastic, homogeneous,
and anisotropy as shown in figure 7.2.1. The dynamic equilibrium equation, the stress-strain
relation, and the strain-displacement relation at any point in the medium are expressed by

L[,a+b=pii (7.2.1)

a = DE (7.2.2)
E = LCu (7.2.3)

In the above equations, p is the mass density, and

= [ra, a a, -oz Trz 'r T

b =[b, be bz ]T

U =[ll Itu o I

E = "Er E•' z YO z Yrz YrO]T

d1, d12  d,13 dl4
d21 d22 d23  d24

d31 d32  d33  d34

d41  d42  d43  d44

dl d52  d53  d,4

d61 d62 d63 d64

= the stress tensor

= the body load vector

= the displacement vector

= the strain tensor

= constitutive matrix (symmetric!)

dl6

d26

d36

d46

d56
d,,6

d

dz

9 1 8
?z rdO

8 1
d = diff. operator for strain

dr r

r

9 18
dz rd6

8 2
-+- -
dr r

8 1
-rdr r

= diff. operator for stress

(7.2.4h)
The superscript T in the above equations denotes a transposed vector or matrix, and the double
dot indicates the second partial derivative with respect to time t. Substituting equations (7.2.2 and
3) into equation (7.2.1), we obtain the wave equation in cylindrical coordinates:

Lr, DLu + b = pii (7.2.5)

On the other hand, the differential operators L, and L, can be written as

LE = Lr + L -+ L +L (7.2.6a)
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(7.2.4a)

(7.2.4b)

(7.2.4c)

(7.2.4e)

(7.2.4f)

8
8r

lie

1
r

1 d
rd0

9  1 d
dz rd O

8 1
8+-d- + I
dr r

Ca

(7.2.4g)

1
r

1 d
rd dz

9 18
dz r d6
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L, =r rL +L d z L + (L r - L,) (7.2.6b)dr rdO dz r
.1 . . • •

L, = ,Lo = . , L = L = (7.2.6c-f)

• 1. . 1 •1 - -1

It follows that the expansion of the product L, DLE is of the form

LTDL- = r + -- r+Lr -z +(L-Lr) D+ L+ LO + L, +L1
aDL dr r dz +air I ) r

(7.2.7a)
which after more expansion yields

d 2  1 d 2  d 2

ILDL = D~r2 +D e -- 2 + dz2

1 2  d
2  1d

2

+(Dro + Dor) (D, + D r)- +(Doz + Dz)dO
rdrdr drdz r dzd

+(D, +D,, -D)- -+(D, -Di ) r2

+ (D, + D, - D, ) D,, (7.2.7b)

The material matrices Dp are defined by

D -p = LT DLO, with a, fl = r, , z, 1 (7.2.8)

which are presented in Appendix 7A. These matrices depend only on the material properties, and
can be readily evaluated for any anisotropic medium. It should be noted, however, that these
equations assume that the constitutive properties are not a function of 0, so the material is
assumed to have cylindrical symmetry. An example is the case of a wooden log. Substituting
equations (7.2.7 and 8) into equation (7.2.5), we obtain the general wave equation for an
anisotropic solid in cylindrical coordinates.

7.2.2 Boundary conditions

To assemble the discretized equations in the cylindrical thin-layer method in the next section, we
need to specify the boundary conditions that relate the force equilibrium between the internal
stresses and the external tractions at each cylindrical interface. Figure 7.2.2 shows the boundary
conditions to be considered. The internal stresses in any cylindrical surface have three
components and can be written in the vector form as

s= or z,,o ;r~] =L a=gL rDL ,u  (7.2.9a)

Application of equation (7.2.8) to equation (7.2.9a) yields then,
Sa  r  11

S= D a- +D I- -+Dr + DrI u (7.2.9b)
r rOar rz r
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These matrices are given in Appendix 7A. Finally, the boundary conditions with prescribed
external tractions t are of the form

t-s,, =0 (7.2.10)
with s, being the vector of internal stresses at the boundary with normal v. For an inner

cylindrical boundary s, = -s, while for an outer cylindrical boundary sv = s, with s given in
either case by equation (7.2.9a or b).

7.2.3 Wave equation for a cross-anisotropic medium

The elements of the constitutive matrix for a cross-anisotropic (transversely isotropic) material
are given such that

d22 = d33 = A + 2G

d23 = d32 = A
d44 = G

dl2 = d21 = d1 3 = d31 = 2 t

d55 =d66 = G,

in the isotropic plane (0 - z plane)

in the transverse direction (radial direction)

(7.2.11)
All other elements d, are zero. Consequently, the wave equation in the cross-anisotropic medium

s:

G, -r + 2+2(
G1

A,+GG, }2 d'

d18

r drG,

G

1 d2 G,
r2  02

G • A+2GJ dz
A G, d2

&2 +ardz- -A+G
-(A + 2G + G,) S d

u +b = pii
jrj2

Sd2
A+G Od

r d90z

S2-A,

rd z

(7.2.12)

By setting =,-A and Gt=G, we can obtain the case of isotropic materials.

7.3 Cylindrical thin-layer method

In this section, the cylindrical thin-layer method (CTLM) is formulated by means of the principle
of virtual work and the discretization of the wave equation along the radial direction. In other
words, the virtual work done by residual forces is considered, and both of linear and quadratic
interpolations are employed to obtain the discretized equations. Finally, assembling all discretized
wave equations, we obtain a system of partial differential equations. To verify this formulation,
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A, +2G,
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I
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all the coefficient matrices of a cylindrical thin-layer are compared with those for a flat thin-layer.
This verification is based on the fact that a hollow cylinder whose radius is much larger than its
thickness behaves as an infinite flat plate.

7.3.1 Formulation of the cylindrical thin-layer method

In the CTLM, physical cylindrical layers (or shells) are divided into thin-layers that are thin in the
finite element sense. In addition, each thin-layer is divided into sub-layers. The number of sub-
layers depends on the interpolation order m that is chosen for the cylindrical thin-layer
formulation. Accordingly, the dimension of the total system of discretized equations also depends
on the total number of thin-layers and the interpolation order m.

We cut out an individual cylindrical thin-layer from the whole system as shown in figure 7.3.1,
and consider it as a free body in space. Depending on the interpolation order m, this thin-layer
may contain in turn sub-layers which can be labeled with indices, 1, 1+1,..., l+mn (from the inner
layer to the outer surface). We also apply two external tractions t, and t+,, so as to preserve the
dynamic equilibrium of this free body. We approximate the displacement field within a
cylindrical thin-layer by means of an interpolation as follows.

u=NU (7.3.1)
where N is a matrix containing the interpolation polynomials, and U is a column vector
composed of the interface displacement vectors

U= [uT Ur1, . Um]T (7.3.2)
In the following, we will restrict our attention to only two interpolations of nm=1 (linear) and 2
(quadratic). Then, the column vector U and the interpolation matrix N are of the form

U= [u uT,] Tr  (7.3.3a)

N= [(1-)I (1+ )I] (-1 51) (7.3.3b)
2

for linear expansion of m=1, and

U= [uT u[T u+2 ]T (7.3.4a)

N = -[• (4-1)I-2( -1)( +1)I ý((+1)I] (-15 g: 1) (7.3.4b)
2

for quadratic expansion of m=2. In the above equations (7.3.3 and 4), I is the 3 x 3 identity
matrix, g= (r-rm), h = r,,, -r, = thickness of a thin-layer, and rm = -(rt +rj m)= radius of the

thin-layer's mid-surface. It follows that equation (7.3.1) can be rewritten in the following form

u =NU= 1 [(1- g)I (+ g)I] Ut1  (7.3.5)1 =) (7.3.5)2 u+1I
for linear expansion of m=1, and

u=NU= [{(_-1)I -2(11 -1)(+1)I +((++1)I U1+1 (7.3.6)

111+2j

for quadratic expansion of nm=2, where

S , , = u11 u , an d ul+ 2  1+2 /1+2 1+2 T

S [J r 0 z Ubz I

(7.3.7abc)
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Equations (7.3.5 and 6) represent a partial discretization of the displacement field, namely one in
the layering direction, which in this case is the radial direction. This discretized displacement
field is not an exact solution to the given wave equation. Thus when substituted into both the
wave equation (7.2.5) and into the boundary conditions in equation (7.2.10), the displacement
expansion in equation (7.3.1) does not identically satisfy equations (7.2.5) and (7.2.10).
Therefore, in the sense of the finite element method, residual body forces w = w(r, 0, z, t) and

the residual boundary tractions q = q(r, 0, z, t) are introduced as unbalanced forces:

L, DL,u+b-pii = w (7.3.8a)

t-s,V = q (7.3.8b)

Then, the method of weighted residuals requires that the virtual work done by the residual forces
w and q as a result of the virtual displacement Su within the elementary volume dV=rdrdOdz

and on the boundary surface dS= rdOdz of a cylindrical thin-layer be zero, i.e.,

[suq r + (5ul+mq,+.mr+m + SuTwrdr dOdz =0 (7.3.9)

In above equation (7.3.9), the first two terms represent the virtual work performed by the two
residual tractions of q, and ql+m on the inner and outer boundaries of a cylindrical thin-layer,
respectively. The integration term that follows corresponds to the virtual work done by the
residual body forces w. In equation (7.3.9), there is no term associated with internal stresses along
the two boundaries that are parallel to the radial direction, i.e., dS=rd~dr and dS=drdz; the

reason is that their virtual work cancels identically with the work of the equal and opposite
stresses acting on neighboring elementary volumes. Substituting equations. (7.3.5, 6, and 8) into
equation (7.3.9) and canceling out dO dz, we obtain

ult•ur, + Ut+,, ,rt,,m +6UT fr NT brdr = SUT  " NTNprdr
(7.3.10)

-rUT  { " NL' DLNrdr}U -JuTsri + +UtmSt+mrt+.

When we require this expression to be valid for arbitrary variations SU, we obtain the dynamic

equilibrium equation for a cylindrical thin-layer of the following form

_p1+pI utLP+ NNrdr ui+1

Pi+m I
(7.3.11)

The left hand side is the vector of the consistent external tractions p acting on the sub-layer

interfaces which are the resultant of the interface tractions t and body loads b. On the other
hand, the right hand side contains the inertial loads as well as the elastic loads of deformation.
Calculation of the above equation (7.3.11) with the chosen interpolation polynomials of order m
and the material constitutive matrix yields

d2U d2 U d 2U dU dU
P= MU- A° A2  A - B -- B - +GU (7.3.12)&0 2 0O zd z 0 Z dz

where

P= [p P+1 -.. P/+m]r (7.3.13a)

M = $"' prNrNdr (7.3.13b)
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A = f 1 N'D oNdr (7.3.13c)
r

A0z = NT (Do + D ) Ndr (7.3.13d)

A= = " rNTDNdr (7.3.13e)

B = N'T DorN'dr - N'DoN'dr + "'r (Do - Do)Ndr (7.3.13f)
JrI r

B •" rNTDzrN'dr - rN DzNN'dr} + 'NT (Dz -Dz)Ndr (7.3.13g)

G= rrN T DrN'dr + [N D,,N+ NDi,N']dr + Nr D, Ndr (7.3.13h)

with N'= dN/dr. Notice that the M, Aap, and G matrices are symmetric, while the Ba
matrices are anti-symmetric. These matrices are given in full form in Appendices 7B and 7C,
respectively, for the linear expansion of m=1 and for the quadratic expansion of m=2.

At this stage, the results for a single cylindrical thin-layer are overlapped with those of all other
cylindrical thin-layers so as to generate the total system of equations in matrix form. To avoid the
use of additional symbols, the same symbols as equation (7.3.12) are used to formulate the total
system of equations for the multilayered cylindrical body.

P= MUAo- A Ao U A- B- B B d + +GU (7.3.14)o 02 O d z d 2  0 0 z
where

P= p p p1 p2 . p. (7.3.15a)

U= u U u U 2 U (7.3.15b)
In above equations (7.3.15a and b), the superscripts indicate the interface or node to which they
belong, and the subscripts denote the coordinate direction. The total system matrix is narrowly
banded and has a total of 3N degrees of freedom, with N being the number of active interfaces,
which depends on the number of layers, the expansion order (here, 1 or 2) and the boundary
conditions at the top and bottom surfaces.

7.3.2 Comparison of the CTLM with the TLM

To verify the cylindrical thin-layer method formulated in section 7.3.1, we compare here the layer
matrices of the CTKM with those of the TLM for flat layers. We base this comparison on the fact
that a cylinder with large radius and small thickness behaves like a flat plate. For this purpose, we
begin with defining a parameter of the form.

h
a =- (7.3.16)

2r,

in which h is the thickness of a cylindrical thin-layer, and rm is the radius of the middle surface.
When the radius of the cylinder is increased to infinity while holding the layer thickness h
constant, rm in each cylindrical thin-layer also increases without bound and the parameter a
approaches zero.
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Now, the system equation for a single cylindrical thin-layer is
d2 U d2

U d2 U dU dU
MU - A A A -B B d- +GU = 0O (7.3.17)

S 02 0Oz zz 2 W zdz

in which the layer matrices are as listed in Appendices 7B and 7C, respectively, for the linear and
quadratic expansion. On the other hand, in Cartesian coordinates (x, y7, z), the system equation

for flat layers is of the form
2U d2U - d2U - dU - dU

MU- A A - Ay -B -- +GU 0 (7.3.18)Xrd 2 xy d dy 2 X-y Y

with layer matrices that will be identified in turn. In the equations above, a bar indicates that the
matrices refer to those for flat layers. To make the comparison, we must now match the two
coordinate systems:

r ; 0 ; z --> (7.3.19a-c)

However, in equation (7.3.19b), the two coordinates 0 and y are not dimensionally equal.

Therefore, we divide the system equation by the mean radius rm, and use it to define the

characteristic arc length
r = y (7.3.20)

The system equation transforms then into
~-MU-rA 2 d 2U Ad 2U B B +GU=

Sy 2  dyd z  . zz 2  0 y zd z
(7.3.21)

We will now show that the coefficient matrices of the cylindrical thin-layer method become the
same as those for flat layers when r, is made large enough i.e. as rm - . When this is done, the

parameter a tends to zero, that is
h

lim a = lim --- - = 0 (7.3.22)

First, w consider the case of linear expansion CTLM of m=l. We begin with the mass matrices
M and M:

M= I Phrm, f(2-a)II I ph 2I IlM = 1im - (7.3.23)
a r-o 6 I (2+a)I 6 I 21

Next, we examine the matrix Ao . For this purpose, we consider first the coefficients

, = II[(1+ a)2 In 2+a -2a- 4a2]

C2- 12[(a2 1 -a2)ln l+al-2a
4a1 +a

c3 4 (1 In Ia2a+4a2] (7.3.24a-c)
4a2 I -a

which appear in the definition of this matrix (see Appendix 7B). Expanding in Taylor series the
logarithmic term

In l +a= 2( a+ a + la +... (7.3.25)
1n-a) 3 5

and substituting this expansion into equations (7.3.24a-c), we obtain in the limit of large radius
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2 1 2
lim = 2 a lim C2 =-a lim c3 =-a (7.3.26a-c)
- 3 r-* 3 r - 3

Substituting in turn these limiting expressions into the definition of Ao, we obtain

r, a 2Doo DO h 2Doo Doo
lr.rA = rim -r-- - 3 Doo 2Doo 6 Doo 2Doo (7.3.27)

h 2D, D. }_
6 DO 2DYY

For the matrices A0Z and Axy as well as the matrices AZ and A=, we have immediately

h h2(Doz + Dz) Doz + DZ0 oA
S6" Doz + DZ0  2(Doz + D) (7.3.28)

0z (7.3.28)
h 2(Dxy, + Dyx) Dxy + Dx
6 D +Dyx, 2(Dxy +Dyx) x,

and
1 A h2D DZ
rm Dzz 2Dzz (7.3.29)

6 D, 2D

Next, we consider Bo, which we take from Appendix 7B. As before, we expand the coefficients

in the second term in Taylor series, and consider the limit as a goes to zero

1 Dro - Dor D,o + Dor a (DoI - DI) Do, -D, 0o
o2 -(Dro+Dor) -(Dro -Dor) " 3 Doi - DIo 2(Do, - Do)

I Dro - Dor Dro + DOr (7.3.30)
2 -(Dro + Do,) -(Dro - Dor)(7.3.30)

I Dr -Dy DyZ + DU
2 -(D, +D,) -(Dyz -Dzy -  y

The negative sign in front of the matrix for plane layers is the results of the ordering of the layer
interfaces. In the cylindrical case, we order the interfaces in the direction of growing r (i.e. from
the inside to the outside), while for the flat layers, we order them in the direction opposite to the
vertical coordinate (i.e. top layer first). This ordering indeed changes the signs, a fact that can be
verified by exchanging in the expression above the diagonal and off-diagonal elements,
respectively, and noticing that the same expression but with opposite signs is obtained.

As we shall see next, this same sign reversal will be observed in the Bz and B, matrices:

-B= I D, -Dzr D, +Dzr _ a D, -Dzr -(DZ - Dr)
r,. 2 -(D + Dzr) -(Drz- Dz,) 6 -(D,- Dzr) zD, - D r (7.3.31)

+a 2(Dl -D 1 ) D, -D,I,
and3 Dafter -Ddiscarding 2(Dthe last two matrices when -D, we obtain

and after discarding the last two matrices when a -- 0, we obtain
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B I~1 D r - D zr Dr +Dzr
r 2 -(Dr +Dzr) -(D -Dzr)J (7.3.32)

If DX - D, DZ + DZ }--Bx

2 -(Dx + D,) -(D - Dz~ )

Finally, for the matrices G and G , we have

C Drr -Drr+ 1 -(Dlr+Dri) Dr- DrI
r, h -Drr,, Drr (Dr - Dr) Dr +Dr (733)

a 2D (7.3.33)

3r, D,, 2D,,
and after discarding the last two terms in the limit of large radius, we obtain

G= 1 Drr -Drr
h -- Dr D rI D z=  Dz- (7.3.34)

I D Z -D z z

h -D• DZZ

As having seen above, we have obtained the same results as for the flat layers. Hence, the
formulation is consistent. Also, it is noted that we can conclude the same agreement with the case
of the quadratic expansion CTLM, which is not discussed in the present study.

7.4 Solution of the discrete wave equation

The discrete system of equations in section 7.3 has been obtained by applying a finite element
formulation in the radial direction, while maintaining the spatial (0, z) and time (t) domains as
continuous. To solve this system of equations, a Fourier transform is performed from the space-
time domain to the wavenumber-frequency domain. This process yields an algebraic equation that
contains the wavenumbers as parameters and the frequency as an eigenvalue, which corresponds
to the TLM formulated in the time domain. Considering that the constitutive matrix is symmetric
and positive-definite, it is possible to show that all eigenvalues in this problem will be real and
non-negative. Using then these eigenvalues in the context of a modal superposition technique, we
obtain in closed form the solution for the discrete equation of motion.

7.4.1 Transformation of the system of equations

The partial discretization of the wave equation in the layering direction eliminate the functional
dependence on the radial coordinate r, and yield a system of partial differential equations only in
the azimuthal, axial and time coordinates 0, z, t, respectively. From the preceding sections, this
equation is obtained in the form.

d
2

U d
2

U A 2
U dU dU

P = M U-A d A U AA z-B B z + GU (7.4.1)0 d02 OZ z zz 2 0 d z
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To solve this equation, we perform both spatial and temporal Fourier transforms in each
coordinate. In the transformed domain, the discrete system displacement and traction fields can

be written as U and P, and their relationships with the actual domain variables are of the form

U = Ueit'a -nO-kz)  (7.4.2a)

P = Fei(ax-nO- z)  (7.4.2b)
where w is the angular frequency, and k, n are the axial and azimuthal wavenumbers,
respectively, and

p,, • Z (7.4.3a)

U = - -uZ (7.4.3b)

The partial derivatives implied by equations (7.4.2a and b) are then
a2U 2 au au

-- 2U _-inU - =-ikU
t2  az

32U a2U 22U k
S-nkU = -n2U = -k 2 U (7.4.4a-f)

S -nz k02 az2

When these expressions are substituted into the system equation (7.4.1), we obtain the
transformed system equation

P = (n2Ao0 +nkAoz +k2AzZ +inBo +ikBZ +G-o 2M)0 (7.4.5)

or more briefly
P = KU -o 2M 0 (7.4.6)

7.4.2 Linear, real-valued eigenvalue problem

The analogy of equation (7.4.6) to a problem in structural dynamics suggests that it can be solved
by a modal superposition involving the eigenvalue problem of the form.

K D = McI" 2  (7.4.7)

where cD is the matrix of eigenvectors and Q = diag{(w} is the diagonal matrix of eigenvalues.

While the eigenvalue problem of equation (7.4.7) can be solved easily, a more special class of
problems will be considered so as to make the given eigenvalue problem both linear and real-
valued. This process requires a new constitutive matrix corresponding to a medium that is
somewhat more general than that of orthotropic materials. The new constitutive matrix for this
medium is a symmetric, positive-definite constitutive matrix of the form

d,1  d12 d13 d14

d21 d22 d23 d24

d31 d32 d33 d34  (7.4.8)
d41 d42 d43 d44

d55 d56

d65 d66

Now we proceed to investigate the nature of the equation (7.4.7) with this particular constitutive
matrix. For this purpose, we rearrange equation (7.4.5) according to the degrees of freedom. In
other word, we re-order the traction and displacement vectors P, U as follows:

= .... Po jPz ..." ' N ]T (7.4.9a)
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u- iT -T]•[1 ... N i iN W, N]
After this is done, the system equation (7.4.5) changes into an expression of the form

After this is done, the system equation (7.4.5) changes into an expression of the form

-P =
LJ P]sym.

Ar Ar"
A0 Aez

A"z

A4o A" 1
Ao4 AO nk

A"O

Arr

Isym.

A'o A"
A0 Aez k2

A",4z

A"Oz

Is
sym.

Bro B] B["

Boo BOz in+ -B re T

-Bo Z Bz" -B "0 0 zSrr
Bre B"
Bo BO zik

- z-Bo: B]z z

(7.4.10)

where the subscripts have the same meaning as in equation (7.4.5), while the first and second
superscripts denote the components of the traction and displacement fields, respectively.
Substitution of the constitutive matrix given by equation (7.4.8) into equation (7.4.10) leads then
to the much simpler equation

Ae
A" z

n2 +

Bro Bz0I O
+ -Bo • B in+ -B roT

-B" } L-Bz

+ Go Goz ( ) 2
Goez G" z

Aj 

z

Ao°• nk+
Bro B"

z z

S ik

S M L" U zi

k2

(7.4.11)

Additional manipulations of equation (7.4.11) with i(= ,-) will yield a fully real and
symmetric form system equation. This manipulation requires that we modify the vertical
components of both load and displacement vectors by an i factor. This modification is
accomplished by multiplying the first row by i and multiplying the first column by -i. Inspection
of the structure of all matrices involved reveals that this transformation affects only the signs in
the first rows of the fourth and fifth terms in equation (7.4.11). Finally, the following system
equation is obtained

iji, A - -Arr"[Pr 1 0 [1

Po =  AH A4 n2 + • A.
P AO A"z AozPz 00 00 1 O

• }A" Aez k2

AOz Anzz z
-B;o -B }

krOT+ -BO
-B rzT

1B0

--B -Brz
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r-BT
+ -BO

G" Gro Gr
+ Goo GOz

sym. G zz

.Ez - Ar0PO BL JiiP I
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G" - M"rr - iuir
+{ Go GOz - o)2 MO" - u (7.4.12)

G oz Ga - . M6 i

or more briefly

= KU- 2MU (7.4.13)
where

-= "' p PI -N -1 (7.4.14a)

TFU=Ei .- N -i - ... N 1T (7.4.14b)

Now it is seen that equation (7.4.13) is a general eigenvalue problem involving fully real and
symmetric matrices. This eigenvalue problem is of the form

KI- = w)2M41  (7.4.15)

where 4, (j=1,2,...,3N) is an eigenvector, and a), is the corresponding eigenvalue. The

eigenvectors can be grouped into the modal matrix 0 = ~{},and they satisfy the standard

orthogonality conditions. Without loss of generality, they can be normalized with respect to the
mass matrix, i.e.,

DTMI = I (7.4.16a)

(Qi~' = 2 (7.4.16b)
with

Q= diag )i (j= 1,2,...,3N) (7.4.17)

7.4.3 Modal superposition and responses in the space-time domain

A conventional modal superposition gives the solution to equation (7.4.13) in the wavenumber-

time domain if P in equation (7.4.13) is assumed to be of the separable form

P = Po(n, k)f (t) (7.4.18)
The solution is given as

3N

i = yjh * f (7.4.19)
j=1

in which
S= ~ P0  = modal participation factor (7.4.20a)

1
hj = exp(- jcot)sin(0d j t) = modal impulse response function (7.4.20b)

O0 dj

O)dj = 0 jj (7.4.20c)

In these expressions, the symbol * indicates a convolution and ýj is the fraction of viscous

modal damping. The use of equation (7.4.20b) with oddj gives the general solution so as to

consider the effect of an arbitrary proportional viscous damping. It is noted that the modal mass
implied by equation (7.4.20a) is unity because of the normalization of the eigenvectors in
equation (7.4.16a).
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Finally, we can obtain the responses in the space-time domain by means of the inverse Fourier
transformation of the form.

U(O, z,t) = [ J(n, k,t)e-i'(n"+kdk] (7.4.21)

7.5 Analytical eigenvalue problem for a homogeneous solid and shell

We here formulate the analytical eigenvalue problem that is associated with the propagation
modes of isotropic homogeneous cylindrical solids and shells. In the next section, we compare
the eigenvalues of this analytical formulation with those of the CTLM so as to verify, the
validations of the latter.

In the absence of body forces, the wave equation for an isotropic medium is of the form.

[LDDL - p a u = 0 (7.5.1)

where u = [Ur uo u 1Tz , the operators of L, and L, are the same as in sections 7.2, p is the mass

density, and the material matrix D is
A+2G A2

2 2+2G 2
S 2 2+2D= (7.5.2)

We assume a solution to equation (7.5.1) in the following form of separation of variables

u=e T, C,f (z)
where

snO s
S -sin nO -

cosnO

pC nc - C -

n Cýr "

-c.

{sinn9

or cosnO
S sinnO

(7.5.3)

(7.5.4a)

(7.5.4b)

f(z)=[f, f 2  f 3]T  (7.5.4c)

In equations (7.5.4), w, n, and ý are the frequency, azimuthal wavenumber, radial wavenumber,
respectively, and C, = C, (r) is the cylindrical Bessel functions of order n that satisfy the

following differential equation and recurrence relationships
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d2C 1I dC,+ 2dr2  r dr (dr2 r dr
n 2 =0

C, = 1 (Cn-, - C1+)

cn = 1 (C_,- + c,)
r 2

= dC,
d( r)

Combining equations (7.5.1 and 3) and manipulating much algebra, we obtain

[LDL1 - p ale'_T. C f=[ at2I
eT,C, - 2 - 2G

A+2G - -:

G. -(2± G)

d2G ) 2 1o

A,+2G

A+G d

Inspecting equation (7.5.6), we recognize that it can be uncoupled into two
For SH waves,

Gf 2"+(pw2-G2)f 2=0

For SV-P wav

(G

wave equations:

(7.5.7a)

es,
A+2G A+G

+ (pC2 _ 2(

- lf3
[2G) . ff O,2

P0)' ~-'x JL[fJ3J

where ff = dfj / dz with j=1,2,3. Next, we assume f of the form

f = e - ikz

O=[1 02 0]T

(7.5.7b)

(7.5.8a)

(7.5.8b)

Insert equation (7.5.8) into equations (7.5.7) to obtain the following eigenvalue problems:
For SH waves,

(-k 2G+ pm 2 -_22G)0 2 =0 (7.5.9a)

whose eigenvalues are

s = (colCs) 2 k2 (7.5.9b)

For SV-P waves,

p 2 -2(A + 2G)-k 2G
-iký(A + G)

whose eigenvalues are

5, = (o/C,)2 -k 2

ik(A + G) o0
pm2 - 2G - k 2(R + 2 G ) 3

s = .(W/Cs) -k2

(7.5.5a)

(7.5.5b)

(7.5.5c)

(7.5.5d)

(7.5.6)1 2 =0
J1

(7.5.10a)

(7.5.10bc)
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where Cs is the S wave velocity and Cp is the P wave velocity. The mode shapes of this problem
are then of the form

=( k)=

-k

-i s
In equation (7.5.11), the first column vector 01 represents the P wave mode
column vectors 02 and 03 represent the SH and SV wave modes. Finally, we
solution in the full form of separation of variables

u = ei("-)T, {C,T, 4a + Cn,s[1b + 0c]) = ei'-"')T,Z,a

where a, b, c are the unknown constants to be determined, C,,,p and Cn,s
replacement of in equation (7.5.4b) by jp and js, respectively, and

Sn.

rkZnp

-kZ,,p

n Zn,S

Zn.,s k
O i

kZ',s

n

rZn,s

ýsZ,.s

(7.5.11)

and the other two
obtain the general

(7.5.12)

are obtained, with

(7.5.13a)

a=[a b c]T  (7.5.13b)

Z,P = J. (4pr) or Y. (pr) (7.5.13c)

Zn.s = J (ýsr ) or Y (s r) (7.5.13d)

In equations (7.5.13cd), J, and Y,, are the first and second kind Bessel functions of order n,
respectively. In addition, when ýp and/or ýs are imaginary, we should replace J,, and Y, by 1,, and
K,, respectively, that are the first and second kind Modified Bessel functions of order n.
Also, we can alternatively express the general solution as

u = ei(x-kz)T, [Z,1 a, + Z. 2a2 ] (7.5.14)

where

-i~pJpP

S nZ -iJ.,

r

-kJn,
P

-ifpYP,

n
Zn 2  -in,P

r

-kY,,p

a, =[a, b, cj,

a2= [a2 b2 C2

n iis

ns k0
O i ksJn,s

n ns kYns
sr

s k n-Yý s0sr'

(7.5.15a)

(7.5.15b)

(7.5.15c)

(7.5.15d)
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We consider the following boundary condition in the present problem.

s = [a, zr,] = LDL, u  (7.5.16)

Apply equation (7.5.14) into equation (7.5.16) to obtain, again after huge algebraic manipulation,
/(2 + 2G)

ro /G =ei(Wt-k)T, [A,(r)al + A2(r)a2] =

a11
= ei(ax-Tl a'l

a3 1

a,13  1  11
a b23 + a2l
a3 1 23 1

a1 l or a21 = i (1 - )Z,

1 2 n(1a12 or a12 = -) Z,s
r

+ 1
2 ]

+ E k2 - (1 _ e) Zn,P
r

1
SZn,s

•sr
1 2 n(1- e) 2 -

a,3 or a13 = -k Zr's Zn'sr I sr + s rz,s

a21 or a21 =i , nPa2, 21 rr Z"

1 2 2
a 22 or a 22 =--ZnS

r

1 2 2knK,a23 or a2 3 - ZnS -

a, or a2; =i22kZ,, p

1 2 kn
a32 or a 2 = -i Za2°a32 sr

a3 or 4a3 =i(~ -k 2)Z.s

_ _ v
2+2G 1-v

-(1 2n2
- ýs 1 ýr

2 ) Zn.S

1

SrnS

(7.5.18a)

(7.5.18b)

(7.5.18c)

(7.5.18d)

(7.5.18e)

(7.5.18f)

(7.5.18g)

(7.5.18h)

(7.5.18i)

(7.5.18j)

Next, we factor out the imaginary i in equation (7.5.17) from column 1 and multiply the last row
by -i; also, for simplicity, we multiply all terms by r2 , and scale columns 2 and 3 by ýs and

ýsr , respectively. The result is

i r, l/( + 2G)

,ro /G = ei(a-kz) T [BI (r)bl + B2(r)b2]
r,/G

bl':,
= ei(tx-kz)T, bl,

b'31

bl'2  b:3 1 ia, bll

b22  b23 H b. + b2
bP2 bP3 1 b31

b2 b 13 ia2
bl22 b23  b2
bj2  b3J C2b32 b 23 C2

(7.5.19)

where
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C2
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bl, or b' = pr(1- E)Z',p + [(5pr)2 +E (kr)2 -n2(1-E)] Z, (7.5.20a)

bo2 or b22 =n(1- )[(ýsr)Z',s -Zns] (7.5.20b)

b,3 or bj3 =-(kr)(1- e){(Jsr)Z,.s +[(sr)2 _ n2Z.,s (7.5.20c)

b, or b2
1 = 2n[Z, e, - (•pr)Z,,p] (7.5.20d)

bo2 or b22 = -2(jsr)Z.,s - [(Jsr)2 -2n2 ]Z.s (7.5.20e)

b23 or b,23 = 2(k r)n[(Jsr)Z,,s - Zns] (7.5.20f)

bI or b321 = 2(k r)(5,r)Z',p (7.5.20g)

b'2 or b3
2
2 = -(k r)n Z,,s  (7.5.20h)

b33 or b33= =( sr)[(Jsr)2 - (k r)2 ]Zs (7.5.20i)

7.5.1 Cylindrical solid

First, we consider the propagation modes of a homogeneous cylindrical solid whose radius is ro.
From equation (7.5.19), we obtain the following stress-free condition at r=ro in the following
form.

B, (r)b, =0 (7.5.21)

where we cancel the term ei•(-k)T,. Then, the associated eigenvalue problem is of the form.

det [B, (ro)]= 0 (7.5.22)
The roots (or zeros) of equation (7.5.22) provide the propagation modes of a homogeneous
cylindrical solid for the continuum.

7.5.2 Cylindrical shell

We next consider the propagation modes of a homogeneous cylindrical shell whose inner and
outer radii are ri and ro, respectively. From equation (7.5.19), we again obtain the following
stress-free condition at r=-r and r=-r{B1(ri) B2(t) ib1 =0 (7.5.23)

B,(ro) B2(ro)j b2
where we cancel the term e -- )T,. Finally, the associated eigenvalue problem is described as

det B (r) B2(ro) =0 (7.5.24)
B, (r.) B2 ()J ]

The roots (or zeros) of equation (7.5.24) represent the propagation modes of a homogeneous
cylindrical shell for the continuum.

7.6 Comparison of numerical and analytical solutions

We compare the eigenvalues oa (frequencies) calculated with the CTLM against the exact
analytical solutions so as to illustrate the validation of the formulated CTLM in this chapter. For
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the practical purpose, we choose two simple structures and solve the associated eigenvalue
problems. The two simple structures are (1) a homogenous cylindrical solid, (2) a homogeneous
cylindrical shell. The exact analytical solutions for both are obtained in the previous section 7.5.

For the discrete models, we consider the both linear and quadratic expansion CTLM, or the
CTLM1 and CTLM2 for short, respectively. We choose the total number of thin-layers N such as
N=10 for the CTLM1 and N=5 for the CTLM2. In addition, to investigate the effect of the tuning
factor u of chapter 2 on the accuracy of eigenvalues calculated with the CTLM, we apply the
lumped, tuned, and consistent mass matrices to the problem of interest. For the tuned mass
matrix, we apply the optimal values of y that are obtained for the TLM (formulated in the

Cartesian coordinate system) in chapter 2, namely, p=0.55 for the CTLM1 and P=0.33 for the
CTLM2 are used in this section.

7.6.1 Homogeneous cylindrical solid

First, we consider the propagation modes of a homogeneous cylindrical solid that is subjected to

fully 3-dimensional wave motion, i.e. for the case of n2l, with n being the wavenumber in 0
direction. The geometry and material properties of the cylindrical solid are given such that the
radius of the solid is ro=1.0, the mass density and shear velocity are p=Cs=1.0, and the Poisson's
ratio is v=-0.30. In particular, we are interested in its free vibration modes for n=1.

The dispersion curves of the propagation modes for n=1 are shown in figure 7.6.1 (for the lumped
mass matrix), in figure 7.6.2 (for the tuned mass matrix), and in figure 7.6.3 (for the consistent
mass matrix), in comparison with. the exact analytical solution. Note in the three figures that the
solid lines represent the propagation branches obtained with the CTLM, and the dashed lines
represent the propagation branches obtained with the exact analytical solution. It is observed in
all the three figures that the eigenvalues obtained with the CTLM are in good agreement with the
exact analytical solutions. Also, notice that the accurate results are obtained only for the low
modes, not for the high ones. Furthermore, it is shown that the CTLM2 with N=5 provides more
accurate results than the CTLM1 with N=10, which again confirms that the quadratic expansion is
not only more accurate, but also more efficient than the linear expansion, as shown in chapters
2-4 associated with the TLM.

Now, we consider the effect of the tuning factor t on the accuracy of eigenvalues. Comparison of
the three figures of 7.6.1, 7.6.2, and 7.6.3 verifies that the optimal values of P-0.55 and u-=0.33
obtained for the TLM in chapter 2 provide much better agreement with the exact analytical
solution than the other two values of p=0 and 1 for the CTLM as well. Therefore, it is
recommended to apply the optimal values of p=0.55 and pu=0.33 to the CTLM as well as to the
TLM.

7.6.2 Homogeneous cylindrical shell

Next, we consider the propagation modes of a homogeneous cylindrical shell subjected to fully 3-
dimensional wave motion, i.e. for the case of n21. The geometry and material properties of the
cylindrical solid are given such that the inner and outer radii are ri=0.5 and r,o=1.5, the mass
density and shear velocity are p=Cs=1.0, and the Poisson's ratio is v=-0.30. Again, we are
interested in its free vibration modes for n= 1.
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The dispersion curves for n=1 of the homogeneous cylindrical shell are shown in figure 7.6.4 (for
the lumped mass matrix), in figure 7.6.5 (for the tuned mass matrix), and in figure 7.6.6 (for the
consistent mass matrix), in comparison with the exact analytical solution. In the three figures, the
solid lines represent the propagation branches obtained with the CTLM, and the dashed lines
represent the propagation branches obtained with the exact analytical solution. It is observed that
the eigenvalues obtained with the CTLM show a good agreement with the exact analytical
solutions. Also, notice that the accurate results are obtained only for the low modes. Furthermore,
it is shown that the CTLM2 with N=5 provides more accurate results than the CTLM1 with N=10,
which again confirms that the quadratic expansion is more accurate and more efficient than the
linear expansion.

Now, we consider the effect of the tuning factor u on the accuracy of eigenvalues. Comparison of

the three figures of 7.6.4, 7.6.5, and 7.6.6 verifies that the optimal values of u=0.55 and 0u=0.33
provide much better agreement with the exact analytical solution than the other two values of t=O
and 1 for the CTLM. Therefore, it is now strongly recommended to apply the optimal values of
It=0.55 and u=0.33 to the CTLM.
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Figures for chapter 7

Figure 7.2.1 Infinitely long cylindrical shell
of linear elastic, homogeneous, and anisotropy and the cylindrical coordinate system used.

Figure 7.2.2 Boundary conditions on the inner and outer radial surfaces
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1+m

Figure 7.3.1 Individual cylindrical thin-layer
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Cylindrical solid for n= 1, using CTLMI
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k/X

Figure 7.6.1 Propagation modes for n=1 in cylindrical solid using the lumped mass matrix
(u=0): solid line for CTLM; dashed line for Exact

Cylindrical solid for n= 1, using CTLMI

0 0.5 1 1.5 2
k/ k/nlx

Figure 7.6.2 Propagation modes for n=1 in cylindrical solid using the tuned mass matrix
: (u-0.55 or 0.33): solid line for CTLM; dashed line for Exact
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Cylindrical solid for n= 1, using CTLMI
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Cylindrical solid for n= 1, using CTLM2
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Figure 7.6.3 Propagation modes for n= 1 in cylindrical solid using the consistent mass matrix
(-= 1): solid line for CTLM; dashed line for Exact

Cylindrical shell for n= 1, using CTLMI

fl 05 1 VS 2

i

Figure 7.6.4 Propagation modes for n=1 in cylindrical shell using the lumped mass matrix

(p=0): solid line for CTLM; dashed line for Exact
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Cylindrical shell for n= 1, using CTLM2
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Figure 7.6.5 Propagation modes for n=1 in cylindrical shell using the tuned mass matrix
(p-u=0.55 or 0.33): solid line for CTLM; dashed line for Exact

Cylindrical shell for n= 1, using CTLM1I-

i

0 0.5 1 1.5 2
k/x

Figure 7.6.6 Propagation modes for n=1 in cylindrical shell using the consistent mass matrix
(p-1=): solid line for CTLM; dashed line for Exact
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APPENDIX 7A: Material matrices

dii d16  d,15  d66  d26  d46  ds5s d45  d35

Drr = dl 6  d66 d56  Doo = d26  d22  d24  D = d45  d44 d34

d,5 , 56  d55  d46  d2 d d44 d35  d 4 d34 d33
dI d16 d1 2  d14  d15  d14  d13

DrO =Dr= d66  d 26  d 46  D ,=DT d46  d36

d56  d25 d45  d{Z d45  d35

d56  d46  d36  d12 -d16
DoZ = Dz = d25 d24 23  Dr=D = d26  -d66

d45  d44  d34  d25  -d 56

d26  -d, d25  -d,56

D01=De= d 22  -d 26  D =D = d24  -d 46

d24  -d 46  *d 23  -d 36

2d16  d12 + d66  d14 + d56

Dr, + Dr, = d12 + d66 2d 26  d25 + d46

d14 +d56  d25 +d 46  2d 45

d12 -d66 d14 - d56

Dro - Dor = -(dl2 -d 66 ) d46 -d25

-(dl4 -d56) -(d 46 - d25)
2d15  d14 +d56  d13 +d55 1

Dr + Dzr, = 4 d4 +d56 2d46  d36 + d451dl3 +d55 d36 + d45 2d35

d14 -d 5 6  d13 -d55

D, - Dzr = -(dl4 -d 56 ) d36 -d 4 5

L-(dl3 -d55) -(d 36 -d45)

2d56  d25 +d46 d36 +d45
Doz + Dzo = d25 + d46  2d 24  d23 +d44

d36 +d45  d23 + d44 2d 34

d,, -d26 d1 - d 25

D, + D,, - Dlr =  2d16 + d26 d66 2d56

d15+ d25 d55 f

Dr, + Dr

J

-d16 +d26  d25 1
-2d66 -d56

-d56
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Dr -Dlr =d26 +d16

Do1 - De = (d22 + d66 )

I d24

Dzi - D = d24 + d56

-d16 -d 26 -d25
6 d56

-d56

-(d22 + d66) -d24
d46

-d46

-d56 - d24 -d 23

S d36
-d36

d15
Drz + Dz - D1, = (d 24 + 2d56 )

d23 + d55

d22
DII = -d26

For cross-anisotropic media,

-d26
d66

the material matrices are:
+ 2G,

Drr =

Dr, = Dr

Do01 =D 1

G t

St}

G-
I-Gt

+2G

A
Dro + Dr = {, + Gt

Dro-Dr = -(2, G,)

A+2G D=

- G -

Dz =D=

Dri = D =

Doz =D

,+G, 4

2, + G,
fD, + Dzr = ]

t + G,
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d14 -(d 24 + d56) d13 -d 23

2d 36

d35

G
. A+2G

-

-G,

-



D A, -G G
Drz - Dzr={

-(At, G,) •

Doz + Dzo = •- 2 +G

-A+G

A, + 2Gt

Drr - Dir =  G

Do1 - Do = (G, + A + 2G)

D,- DI "

Drz +DZI - Diz=G,

DII Gt·
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APPENDIX 7B : Layer Matrices for linear expansion

7B.1 Preliminary definitions
h 1 1+a

a - L = 1I2 ln 2a
2r4a 2 L 1-a

c, = (1 + a)2 In--a 2a-4a2  = (1 + a)2 L + a
4aL 1-a 2

c2 1 )[(1an 2a] = - (1-a2)L-a]
4a2  1-a

a i l+ay a
C3 = 2 [(1-a) 2 In +-2a+4a']=(l-a)

2 L + a2

For a linear expansion, the layer matrices are then

M phr (2 - a)I
6 I

Aoo =c DOc1
c2Doo

(2 + a)I

C2Doo
c3Doo

h {2(Doz + Dzo)
oz Doz + Dz

hr, (2 - a)Dzz
A- 6 Dzz

1 Dro - Dor
Bo 2 -(Dro + Do,)

]B rMD, - Dzr
S2 -(Dr, + Dz,)

Grm
h -Drr

Doz + Dz•o

2(Doz + DZo)

(2+ a)Dzz

Dro + Dor
-(Dro - Do0r)J

+ (Do1 -D 10 ) C2 (Do, - D10 )
+c2(Doj - DI) c3 (Do, -D1O0 )

D, + D, a D, -D,Drz + Dzr arm D, -Dzr
-(Dr, - Dzr 6 - 1j(Drz - Dzr)

-Drrf+1 - ( D r, + D r l )

Drr 2 (Dr - Dr)

-(Drz - Dzr)

D, - Dzzr

Dr - Dr

DIr + DrI

CI211
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7B.2 Anisotropic case

In detail these matrices are

2-a

2-a

M p h r

6 1

L
cjd66 cd26

c1 d 22

Ao =

sym.

z -a

. 2+a

Cld46 c2d66
cId 24 c2d26

cd44 c2d46

C3d66

2+a

2+a

C2d26

C2 d22

c2d24

c3d26

C3d22

C2 d46

c2 d24

c2 d44

c3d46

c3 d24

c3 d44

4d56 2(d 25 +d 46 ) 2(d 36 +d 45 ) 2d56
4d 24  2(d 23 +d44) d25 + d46

h 4d 34  d36 + d45
oz 6 4d56

sym.

(2- a)d55 (2- a)d45 (2- a)d35

(2- a)d44 (2- a)d34

h rm  (2 - a)d33

sym.

d,55

d45

d35
(2 + a)d55

d25 + d46

2d24

d23 + d44

2(d25 +d 46 )
4d24

d45

d"
d34

(2 + a)d45

(2 + a)d44

d36 + d45

d23 + d44
2d 34

2(d 36 +d 45 )
2 (d23 + d44 )

4d34

d35
d34
d33

(2 + a)d35

(2 + a)d34

(2 + a)d33
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1
B =2

antisym.

antisym.

r,
B --

2

antisym.

d12 -d 66  d14 -d 56  2d1 6  d12 +d 66  d14 + d 56

d46 -d 25  d12 + d66 2d26  d25 + d46

dl4 +d 56  d25 + d46  2d45

d66- d1 2  d56 - d14

d25 - d46

-c1 (d22 + d66) -cd 24

cld 46 c2(d22 +d66)

d14 -d 56  d13 - d55  2d15

d36- d45  d14 + d56

d13 + d55

-c 2(d22 + d66) -c 2d24

- c2d46

-c 2 d46

-c 3(d22 +d6) -c 3d24

C3d46

d14 + d56

2d 46

d36 + d45

-(d14 - d56)

d13 + d55

d36 + d45

2d35

-(dl 3 - d55)

-(d 36 -d 45 )

-d 14 - 4d24 -3d 56 d55 - d13 - 4d23

3d 36 + d45

ar

6

antisym.

2d 24 + 3d 56 - dl4
2d23 + d55 - d,3

d l4 - 2d24 - 3d 56  d13 - 2d23 - d55

3d3 6 - d45

d45 - 3d36

-d1 4 - 4d24 -3d 56  d55 - d13 - 4d 23

3d 36 + d45
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d,, d16
d66

-dl6

-d65

-dis

-d56

d15

d56
d55
d'sýsym.

-2d12 d16 - d26
2d66

1
2

c, d22 -c1d26

+ .

sym.

d56 -(dl6 +d26)
-d25

2d12

c2d22  -c 2d26

-c 2d 26  c2d6

c3d22  - 3d 26

c3d66

d16 + d26  d25
-d56

ds56

d26 - d16  d25
-2d66 -d56

7B.3 Transverse-isotropic case

The below equations are for the transverse isotropic case. If we change 2, and G, to A and G,

respectively, we obtain the expressions for the isotropic case.

Cl GA

Ao =
C2G t

c2G,
c, (A + 2G)

c2 ( + 2G)

c,G

c2G

c3GA

2(A + G)

h
Aoz =6

2(A + G)

A2+G

A

c2 (2 + 2G)

* c22G

c3 ( + 2G)

* c3G

`2+G

+G

2(A + G)

+ G)
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(2 - a)G,

hr,A '6 G,

Bo -

-(At +G,)

c (A-+ 2G + G,)

+ (+ 2G + G)

c (2(+ 2G + G,)

(2 - a)G

(2 - a)(A + 2G)

(2 + a)G,

(2 + a)G

A+ 2G

A - G,

-(A, +G,)

-c, (A + 2G + G,)

c, (+ 2G+G,)

-c 2 ( + 2G + G,)

c3( + 2G+G,)

A+ 2G

(2 + a)(A + 2G)

B -( A -G, )
-(2 , + )

a 2,A - G, + 4A

6

-(A, - G, - 2A)

A, + G,

S 4 -G,
-(, -G, +4A)

2, -G - 21

-c 2 (A + 2G + G,)

-c 3 ( + 2G + G,)

S-(A, - G, + 42)

2,- G, + 42
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A, + 2G,

G,
r<

G =rm' -
h

sym.

c, (2+ 2G) -2,

sym.
sym.

-(2, + 2G, )

A, + 2G,

c2(A + 2G)

(c, + 1)G, c,2G

c3 ( + 2G) + 2,

(c3 -1)G, .
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APPENDIX 7C : Layer Matrices for quadratic expansion

7C.1 Preliminary definitions

h
a-

2r,=

c= 1 4 3(1+a)21ogI+a -4a 4 -8a 3 -12a 2 -6a12a 1-a
c22 = 3(

1- a2)2 2 l+ al+ a 10a3 -6a
223a4 1-a

1 f 1+a -8a3  2
C33 1 3(1-a)2 log - a + 4a4 -8a3 +12a2 -6a

C 12a4 L 1-a

(1X+ a)3(1- a2log l +a + 4a3 - 6a}
C12 = C21 = 6a4  1 --a

(1- a) {3(1-a2)logl +-a +4a3 - 6a}c23 = C32 6a 4  1-a

11 a l(a 1+a

C13 C31 = 4 3(1 - a2)lOg l-a + 4a 3 - 6a
C 12a 1-a

For a quadratic expansion, the layer matrices are then

p (4-3a)I
M = 0 (2 - 2a)I

30

CIDoo cl2DOO
Aoo = c21Doo c22zDoo

c31zDoo c32Doo

h4(Doz + Dzo
h

Aoz =h 2(DoZ + DZo30
-(Doz + D•o

(4 - 3a)Dz,
A ~- hm (2- 2a)D

30 1
3(Dro - Do,)

Bo = 6-4(Dro + Dor)
(Dro + Dor)

cl1(Do, - Die)
+ C21(Do1 -DIo)

c31(Do - D10o)

(2 - 2a)I -I
16I (2 + 2a)I

(2 + 2a)I (4 + 3a)IJ

C13D 1
c23D oo

c33Doo
) 2(DoZ +DZo) -(Doz +Dzo)
) 16(DoZ +DZo) 2(Doz +D Do)
) 2(Doz +DzO) 4(DoZ +DZO)

(2- 2a)Dz -Dzz
16DZ (2 + 2a)D,

(2+ 2a)Dz (4 +3a)Dzz

4(Dr, + Dor)

-4(Dr, + Dor)

4(DrO + Dor)

C12(Do, - Do) Cl3(Do, -D10o)

C22(D01 -D10) c23(Do, -D 10 )

c32(Do, -DIo) c33(D01 -Do)J
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-3(Dzr - D,)

Bz =L-m -4(Dzr + D )
6
6 l(Dzr + D,)

h1 (DOzr - DO)

+- 8Dzr +12D,.
60

L Dzr - Drz
4(D,,l - D,)

h
+- 2(Dl -D,)

30
-(Dz1 - D1d)

4(Dzr + D,) -I(Dzr + D,)

4(Dzr + Dr)

-4(Dz, + Dr ) 3(Dzr - Dr) J
-12Dzr -8D, Dzr - D,
-16(Dzr -D,) 8Dzr +12D,
-12Dz,, -8D,• 11(Dzr -Drz)

2(Dzl -DIZ) -(Dzl -DIZ)

16(D,• -Dz) 2(D, -Dl,)

2(Dz - DI,) 4(Dzl - D)

2-Drr Drr ] 7Drr -8Drr Drr

G = rr -D,, + 3h r -8D, 16D,. -8Dr
-Drr D Drr - 8 Drr 7Dr

S-3(Dr + Dr, )
+ 6 4(Dri - DIr)

-- (Drl - DOr)

-4(Drl -Dr) (Dr - Dr) c,11Dll c2DI c13D,,
-4(Drl - Dir) + 21Di C22Dll c23D11

4(Dri Di,) 3(Dri + D,) J c31D11 c32Dll C33D 11

7C.2 Anisotropic case

In detail these matrices are

4-3a

4-3a

4-3a

2-2a

2-2a

2-2a

2-2a

2-2a

-1 • • 2+2a

-1 2+2a

2-2a

* 2+2a

* * 2+2a

16
4+3a

* • 4+3a

2+2a

M phr,
30 2+2a

4+3a
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c1ld66
clld 26

c11d 46

c21d66

A0o = c 21d26

c21d46

c3ld66

c31d26

c31d46

4(2d56)
4(d25 + d46)
4(dz3 + d45)

2(2d,6)
A°z= 30  2(d 25 

+ d
46 )

2(d 36 + d45 )
-(2d 56)

-(d25 + d46 )

-(d 36 + d45 )

-(2d 56)
-(d 25 + d46 )

-(d 36 + d45)
2(2d56)

2(d 25 + d46)
2(d36 + d45)

4(2d56)
4(d25 + d46)
4(d36 + d45 )

c11d26 c1ld 46

cld22  c11d 24

Clld 24  clld 44

c21d26  c21d46

c21d22  C12d24
c21d2 c12d,

c31d26  c31d46

c31d22  c31d24

c3ld, c31d44

4(d 25 + d46)
4(2d24 )

4(d 23 + d44)

2(d25 + d46)
2(2d 24)

2(d23 + d4 )

-(d 25 + d46 )
-(2d 24)

-(d 23 + d44)

-(d 25 + d46 )
-(2d 24)

-(d 23 + d44)

2(d25 + d4 6 )
2(2d 24)

2(d23 + d44 )
4(d25 + d46)

4(2d 24)
4(d23 + d44 )

c12d66  c12d26

c12d 26  c12d22

c12d46 12d24

c22d66 C22d26

c22d26  c22d 22

c22d46  c22d24

c32d 66  c32d26

c32d26 c32d22

C32d46  c32d24

4(d36 + d45 )
4(d23 + d 44 )

4(2d 34)
2(d36 + d45)
2(d23 + d44)

2(2d 34 )
-(d 36 + d45)
-(d 23 + d44 )

-(2d 34)

-(d 36 + d45)
-(d 23 + d44)

-(2d 34)
2(d36 + d45 )
2(d 23 + d44 )

2(2d 34)
4(d 36 + d45 )
4(d23 + d44)

4(2d 34)

c12d46  c13d
c 12d 24  C13L

c12d44  C13

c22d46 c23d
c22d 24  c23t

c22d44 c23

c32d46 c33c

C32d24 C33(

c32d44 c33

2(2d 56)
2(d 25 + d46)
2(d36 + d4 5 )

16(2d 56)
16(d 25 + d46 )
16(d 36 + d45 )

2(2d 56)
2(d 25 + d46 )
2(d36 + d45 )

1&

14,

d2

164

d6,

d2,

6 13d26  c 3d46
6 c13d22  c13d24

6 c13d24  c13d,
6 23d26 c23d46

6 c23d22  c23d24

6 c23d24  C23d44

6 C33d26  c33d46

6 c33d 22  c33d 24

6 c33d24  c33d44

2(d 25 + d4 6 ) 2(d 36 + d45 )
2(2d24) 2(d 23 + d44 )

2(d23 + d44) 2(2d 34)
16(d25 +d 46 ) 16(d 36 +d 45 )
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-(d1 6 + d26) -d 56  4(d 6, + d26 ) • 4d56
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7C.3 Transverse-isotropic case

The below equations are for the transverse isotropic case. If we change 2, and G, to A and G,

respectively, we obtain the expressions for the isotropic case.

clG,t

cl(A+ 2G) c12(A+ 2G)

c11G

c21Gt

c21( + 2G) c22 (A + 2G)

c21G

c32G,

c3(A2 + 2G)

c31G
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4(A + G)

cl12G
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c32G
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c23G
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c33G

-(A + G)

-(A + G)
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4(A + G)

h
AOz = •30 2(A + G)

2(A + G) 16(A + G)

-(A + G)
-(A + G)

2(A + G)

4(A + G)

2(A + G)
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Chapter 8 Spherical thin-layer method

8.1 Introduction

In this chapter, we present and formulate another new thin-layer method that is a powerful
technique for the analysis of wave propagation in anisotropic, laminated spherical solids and
shells. We herein call the new method the spherical thin-layer method, or the STLM for short.
Basically, the STLM is a new formulation TLM that is developed in the spherical coordinate
system (r, 0, 0), instead of in the Cartesian coordinate system (x, y, z) as the case of the TLM for
flat layers. Also, discretization is implemented along the radial (r-) direction in the sense of finite
element, as the CTLM in chapter 7. After completing the formulation of the STLM, we verify its
validation by means of an analytical comparison with the TLM for flat layers and two numerical
examples for the propagation modes of a homogeneous spherical solid and shell.

For the above purposes, we perform the following procedures. In section 8.2, we derive a general
form of the wave equation for anisotropic material in the spherical coordinate system and also set
up the boundary conditions that are necessary for formulating the STLM. In section 8.3, we
develop the STLM by means of the principle of virtual work and the discretization of the wave
equation along the radial (r-) direction. After all, we obtain the discrete wave equation for the
systems of interest. For the verification of the formulated STLM, we compare it with the TLM for
flat layers, based on the fact that a spherical shell with a large radius relative to its thickness
behaves like an infinite plate. In section 8.4, we solve the discrete wave equation by means of the
Fourier-Legendre series with respect to the spatial variables of 0 and 0, the Fourier
transformation with respect to the temporal variable t, and the associated eigenvalue problem in
the frequency variable. Thereafter, we apply the modal superposition to obtain the analytical
response functions in the wavenumber-time domain. Finally, we perform the series summations
over wavenumbers to obtain the responses in the space-time domain due to dynamic excitations
in the spherical solids and shells. In section 8.5, we formulate the analytical eigenvalue problem
of the continuum that is associated with the propagation modes of isotropic homogeneous
spherical solid and shell. In section 8.6, we compare the results of the eigenvalue problems
obtained with the two of the STLM and the analytical solution so as to verify the validations of
the developed STLM.

8.2 Wave equation in spherical coordinates

The wave equation and boundary conditions needed to describe and specify the behavior of a
spherical lamina are developed herein. The boundary conditions need to be prescribed on the
inner and outer radial surfaces of each spherical thin-layer. The material is assumed to be
anisotropic. At the end of this section, we obtain, using matrix methods, the wave equation for
anisotropic media, and also for cross-anisotropic media so as to verify the proposed method.
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8.2.1 Wave equation for spherical anisotropy media

Consider a spherical layer (or shell) of linear elastic, homogeneous anisotropy as shown in figure
8.2.1. The dynamic equilibrium equation, the stress-strain relation, and the strain-displacement
relation at any point in the medium are expressed by

LTa+b = pii (8.2.1)
S= DE (8.2.2)

, = Lu (8.2.3)
In the above equations, p is the mass density, and

a= a, a[ oo 7e -ro -r T

b =[b b, bo ]T

U = Il r, u u ]T

E = [Er E Go Y0

d I d 12

d21  d22

d31  d32

d 41  d42

d,, d52

d61 d62

d

dr

1

r

d 2

dr r

L•=

d13 d14

d23  d24

d33  d34

d43  d44

d53 d54

d63 d64

1

r

d
d0

= the stress tensor

= the body load vector

= the displacement vector

Yr 1 T

d15

d25

d35

d45
ds4
d65

1

r

cot 0
r

1 d

rsin db 0

1

r

1 d cot 0
rd--- r
rd# r

= the strain tensor

= constitutive matrix (symmetric!)

d,6
d26

d36

d46

d56

d66
1 d

rsin 86

1 d

rsin90 B

1 d cot 0
rd r

1

r

cot 0
r

1 d

rsin db

1

rdo

d 1

dr r

d 1
dr r

= diff. operator for strain
1 8

rsin O 8

1 8

rsin 80

1 8 2coto
rd- r
rd# r

(8.2.4a)

(8.2.4b)

(8.2.4c)

(8.2.4e)

(8.2.4f)

(8.2.4g)
1 8 cot__

-- +

rdo r

d 3
r r+dr r

8 3
+r r

dr r

= diff. operator for stress (8.2.4h)
The superscript T in the above equations denotes a transposed vector or matrix, and the double
dot indicates the second partial derivative with respect to time t. Substituting equations (8.2.2 and
3) into equation (8.2.1), we obtain the wave equation in spherical coordinates:

L, DL,u + b = pii (8.2.5)

On the other hand, the differential operators L, and L, can be written as
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d 1 d 1 d 1 cot 0L = -+ L -- + L - L-+L + L2c (8.2.6a)
dr rrd L rsino O r r

1 a 1 o 1 cot #
La =Lr + L r- +LrsO + (2Lr- L,) + (L,- L,) (8.2.6b)

dr rd rd rsin dO r r

Lr,

-" 1

. ... . 1 1 • • 1 •

-,L ==  - 1,Lo= - 1 -,L, = L2 = - - -1' • • 1•1* -1 • -
1 1 • -1 •
1 . ... - -1 •

(8.2.6c-g)
It follows that the expansion of the product L, DL, is of the form

(8.2.7a)
which after expansion yields2 1 2 1 2 1 cot d+(Dr 1 + 1 do t +1 O

+ DL= r r - +-L- --- + D r  D  r sin0 oodr rd rsin 8 r

+(2Dr +Dr -D dr)r +(Dr +Dr2 -D cot) 8
r22 d2 D2 r2L +(DL = Dr +D -D ,) +D-

r2 r2 2 0 2 20) r 2 sin

+(Dri +Dir)--+(Dr 2  + D o , -D 12 DD21)c +ordr r dr

1 cot2 0-D2 + (D - ot22) 2 (8.2.7b)
02 sin 2 0 ( 2  22 )

The material matrices Dap are defined by

Dap = L DL , a,fl= r,0,0,1,2 (8.2.8)
which are presented in Appendix 8A. These matrices depend only on the material properties, and
can be readily evaluated for any anisotropic medium. It should be noted, however, that these
equations assume that the constitutive properties are not a function of 0 and 0, so the material is
assumed to have some kind of spherical symmetry. An example is the case of an onion-like body,
such as the earth's crust. Substituting equations (8.2.7 and 8) into equation (8.2.5), we obtain the
general wave equation for a spherically anisotropic solid.
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8.2.2 Boundary conditions

To assemble the discretized equations in the thin-layer method, we need the boundary conditions
that relate the force equilibrium between the internal stresses and the external tractions at each
spherical interface. Figure 8.2.2 shows the boundary conditions. The internal stresses in any
spherical surface have three components and can be written in the vector form as

S=[- /reT ~LTra= TL:jL~u
S = o r z-, r,,, 'ro = I! cr = I!r D L, u

Application of equation (8.2.8) to equation (8.2.9a) yields then,[ 1 a 1 a 1 cot1
S= Drr -Dr -- +Dro +Dr -+Dr2

r r aB rsin• a r r

(8.2.9a)

(8.2.9b)

These matrices are given in Appendix 8A. Finally, the boundary conditions with prescribed
external tractions t are of the form

t-s v =0 (8.2.10)

with s, being the vector of internal stresses at the boundary with normal v. For an inner

spherical boundary s, = -s, while for an outer spherical boundary s, = s, with s given in either

case by equations (8.2.9).

8.2.3 Wave equation for a cross-anisotropic medium

The elements of the constitutive matrix for a cross-anisotropic (transversely isotropic) material
are

d22 d33 = 2 + 2G

d23 = d32 = A

d4 =G

d,, = 2, + 2G,

d12 =d21 =d13 =d31 = t

d,5 = d66 = G,

in the isotropic plane (8--Oplane)

in the transverse direction (radial direction)

All other elements di are zero. Consequently, the wave equation in the cross-anisotropic

is as follows:

(8.2.11)
medium

1 a2+2G 1 2 GA+2G r /•-+

1 r.a2  I

rsin araBo
-- · ·

1 a2

sin 0 a0aO

1, + 2G,

1 821Il a2r ar-- +(A +GI) 11
+(2, + G,)

A, + 2G,
+2
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S- G, - 2(2 +G) cot

+ 2(G, ++G) •+ 2+2G
r2r 2 G

+ - -(A + 3G) ir2 sin0 aO r 2 sin 0 aO
2(G,+A+G) • A+3G

2, - 2(A + G) -G A+ - G - 2(A + G) - (
+2 - G, 7 + r 2

-GI{ 2 . r 2 { G 2 o u +b = pii (8.2.12)
r- 2sin'2 G r r2 U

By setting 2-A= and Gi=G, we can obtain the case of isotropic materials.

8.3 Spherical thin-layer method

The spherical thin-layer method is formulated by means of discretization of the medium of

interest along the radial (r-) direction, and applying the principle of virtual work to consider the
work done by residual forces. Finally, assemblage of the discretized equations leads to a system
of partial differential equations. To verify this formulation, all the coefficient matrices of a
spherical thin-layer are compared with those of the TLM for flat thin-layers. This verification is
based on the fact that a spherical shell whose radius is large when compared to its thickness
behaves like an infinite, flat plate.

8.3.1 Formulation of the spherical thin-layer method

In the STLM, physical spherical layers (or shells) are divided into thin-layers that are thin in the
finite element sense. In addition, each thin-layer is divided into sub-layers. The number of sub-
layers depends on the interpolation order m that is chosen for the spherical thin-layer formulation.
Accordingly, the dimension of the total system of discretized equations also depends on the total
number of thin-layers and the interpolation order m.

We cut out an individual spherical thin-layer from the whole system as shown in fig. 8.3.1, and
consider it as a free body in space. Depending on the order m of interpolation, this thin-layer may
contain in turn sublayers which can be labeled with indices, 1, 1+1, - - -, l+m (from the inner to
outer surfaces). We also apply two external tractions t t and t+,, so as to preserve the dynamic

equilibrium of this free body. We approximate the displacement field within a spherical thin-layer
by means of an interpolation:

u=NU (8.3.1)
where N is a matrix containing the interpolation polynomials, and U is a column vector
composed of the interface displacement vectors

U= uT u +T1  . uT T  (8.3.2)1 1 1+1 I+
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In the following, we will restrict our attention to only two interpolations of m=1 (linear) and 2
(quadratic). Therefore, the column vector U and the interpolation matrix N are of the form:
For linear expansion (m=1),

U=[uT u ,T]T  (8.3.3a)

N [(1- )I (1+ g)I] (-15 g5 1) (8.3.3b)
2

For quadratic expansion (m=2),

U=[u Tu, u,+2 ] (8.3.4a)

1
N =1-[((-1)I -2(¢-1)(¢+1)1 (('+1)I] (-15 g5 1) (8.3.4b)

2
where I is the 3x3 identity matrix, g=i(r-rm), h= rtj+m -r = thickness of a thin-layer, and

r, = --(r, + rT+m)= radius of the thin-layer's mid-surface. Equation (8.3.1) can be rewritten in the

following form:
For linear expansion (m=l),

u= NU = [(1- g)I (1+ g)I][ U (8.3.5)

For quadratic expansion (m=2),

1 u(lu= NU= -[2(•-1)I -2( -1)( + 1)I ( + 1) I u1, (8.3.6)
2

LUI+ 2
where

u [U [1, u 1+1 1+1 uT , and u1+2 = U+2 1+2 1+2

(8.3.7abc)
Equations (8.3.5 and 6) represent a partial discretization of the displacement field, namely one in
the layering direction, which in this case is the radial direction. This discretized displacement
field is not an exact solution to the given wave equation. Thus, when substituted into both the
wave equation (8.2.5) and into the boundary conditions (8.2.10), the displacement expansion
(8.3.1) does not identically satisfy equations (8.2.5 and 10). Therefore, in the sense of the finite
element method, residual body forces w = w(r, 0, 0, t) and the residual boundary tractions

q = q(r, 0, 0, t) are introduced as unbalanced forces:

Le DL, u + b - pii = w (8.3.8a)

t- s =q (8.3.8b)

The method of weighted residuals requires that the virtual work done by the residual forces w
and q as a result of the virtual displacement 6u within the elementary volume

dV = r2drsin db dO and on the boundary surface dS = r2 sin d dO of a spherical thin-layer be

zero, i.e.,

[JuT q r2 +UT+m q +m m + Sur wr 2drsin d2d2 =O0 (8.3.9)

In above equation (8.3.9), the first two terms represent the virtual work performed by the residual
tractions of q, and qi+m on the inner and outer boundaries, respectively, of a spherical thin-layer.
The integration term that follows corresponds to the virtual work done by the residual body forces
w . In equation (8.3.9), there is no term associated with internal stresses along the two boundaries
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that are parallel to the radial direction, i.e., dS=rdrsinodO and dS=rdrdo ; the reason is that

their virtual work cancels identically with the work of the equal and opposite stresses acting on
neighboring elementary volumes. Substituting equations (8.3.5 or 6) and (8.3.8) into equation
(8.3.9) and canceling out sin do dO , we obtain

6uTit, rl2 +6t+m l+m 2j+ T J NTb rdr

sUT' + N' Npr2dr 1UT +MN T L DL, Nr2dr U-u r,2 • +mSl+m rl2

(8.3.10)
When we require this expression to be valid for arbitrary variations SU, we obtain the dynamic

equilibrium equation for a spherical thin-layer of the following form
[u1

Sf." N LTDLN r2dr U+

(8.3.11)
The left hand side is the vector of the consistent external tractions p acting on the sub-layers

interfaces which are the resultant of the interface tractions t and body loads b. On the other
hand, the right hand side contains the inertial loads as well as the elastic loads of deformation.
Calculation of the above equation (8.3.11) with the chosen interpolation polynomials and the
material constitutive matrix yields

Pd2U 1 d2 U 1 d2U
P=MU-A, E  A, Aos 2 Sin a a 0 sin2 0 2

dU 1 dU
-(BOl +cot B02)--u'-  1+Coto B02) (8.3.12)do sino dO
+(G, +cotqG 2 +cot2 bG 3)U

where

P= [P Pi+i "'" Pl+m] T

M = fNNpr2dr

AOO = '" NT'DONdr

Ao = N (Doo +Do,)Ndr

Aoo = J2" NTDooNdr
T

Bl= N'NDrN'rdr - {M NTD rN'rdr +r r"M NT (DO, -DO)Ndr

B2 = F'Nr (D, +D2 -D20)Ndr

B = _'DrN'rdr- r(.NDorN'r dr + IN' (D, -Do)Ndr

B02 = • NT (D2-D20)Ndr

[ 1 PU1

P.+.= {+ NTNp r2dr u.}+

P/+m Lii+mJ

(8.3.13)

(8.3.14)

(8.3.15a)

(8.3.15b)

(8.3.15c)

(8.3.15d)

(8.3.15e)

(8.3.15f)

(8.3.15g)
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G, = TN'DrrN'r 2 dr + N DIrN + N'DirN' rdr)
Fi (8.3.15h)

+ " NT(Di, +D02)Ndr

G2 =-f+NTDcN'rdr+ I[N"TDr2N + NTD 2rN'] rdr
(8.3.15i)

- f'" NT (D -D 12 -D2 21)Ndr

G3 = ND 22Ndr (8.3.15j)

with N' = dN/dr. These matrices are given in full form in Appendices 8B and 8C, respectively,
for the linear and quadratic expansion.

At this stage, the results for a single spherical thin-layer are overlapped with those of all other
spherical thin-layers so as to generate the system matrix. To avoid the use of additional symbols,
the same symbols as equation (8.3.12) are used to formulate the system matrix equation for the N-
layer spherical body.

d2 U 1 d2 U 1 2U
P= MU-A -A A- A,

d 02 s00in -Ad 0 sin2 d9 0 2

dU 1 oU-(B,, + cot OB 2 ) dU (B01 + cotoB02)  (8.3.16)
d sin dO

+(G, +cotQG 2 + Cot2 G3)U

where

1 1 1 2 N~r

U=u uOI uO Ur • uT (8.3.17b)

In above equations (8.3.17a and b), the superscripts indicate the interface to which they belong,
and the subscripts denote the coordinate direction. The system matrix is narrowly banded and has
a total of 3N degrees of freedom, with N being the number of active interfaces, which depends on
the number of thin-layers, the expansion order (here, 1 or 2) and the boundary conditions at the
top and bottom surfaces.

8.3.2 Comparison of the STLM with the TLM

To verify the spherical thin-layer method formulated in section 8.3.1, we compare here the layer
matrices involved against those of the TLM for flat layers. We base this comparison on the fact
that a spherical shell with large radius and small thickness behaves like a flat plate. For this
purpose, we explore the behavior of the parameter

h
a = h (8.3.18)

2rm

in which h is the thickness of a spherical thin-layer, and rm is the radius of the middle surface.

When the radius of the spherical shell is increased to infinity while holding the layer thickness
constant, r, in each spherical thin-layer also increases without bound and the parameter a

approaches zero.
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Now, the system equation for a single spherical thin-layer is

d2U 1 d2U 1 d2UMU-A-0 d02  2o o sin 02
a* 9sin 8 J 6 0 sin2 # d92

-(B,, + cotoB 2  0)- - (Bo1 +cot OB2) )-- u+ (G, + cotOG 2 + Cot2 G3 )U=do sino do
(8.3.19)

in which the layer matrices are as listed in Appendices 8B and 8C, respectively, for the linear and
quadratic expansion. On the other hand, in Cartesian coordinates (x, y, z), the system equation

for flat layers is of the form
d2 U d2 U d 2U dU dU -MU-A --- A -- B - B -- +GU=O (8.3.20)
dt2 ddy 2  xa dy

with layer matrices that will be identified in turn. In the equations above, a bar indicates that the
matrices refer to those for flat layers. To make the comparison, we must now match the two
coordinate systems:

r -> z; 0 -- T; 0 - y (8.3.21a-c)

However, in equation (8.3.21b and c), the second and third pairs are dimensionally unequal.

Therefore, we divide the system equation by the mean radius r,, and use it to define the

characteristic arc lengths
Or = x (8.3.22-a)

sin o 0 r = y (8.3.22-b)

The system equation transforms then into
d2U d2U d2U

SMU-A A A y
M J dx 2  00 dxd y 00 d 2

1 (B, + cot B 2)  (Bol + cot 0 Bo2) +U 1(G, +cot G + Cot G,))02)-(2G 2+cot2 G 3)U=O

rm d m r. m

(8.3.23)

We will now show that the coefficient matrices of the spherical thin-layer method become the
same as those for flat layers when rm is made large enough, i.e., as rm - oo. When this is done,

the parameter a tends to zero, that is
h

lim a = lim- =0 (8.3.24)
rm_,, r.-. 2r.

First, w consider the case of linear expansion STLM of m=1. We begin with the mass matrices
M and M:

phr 2 a )I ( 2 + )I ph 2I I
rM = ' lim 3T• •- (8.3.25)

a-* (a2)I (a2+a+)Ij I 2I M (8.3.25)

Next, we examine the matrix A,,.

h 2DA{ D2 h 2D8 D.26)
* 6 D,00 2 6 DD, 2D, "
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For the matrices Apo and AXy as well as the matrices A.o and AX, we also have immediately

h f2(DO + D,)
A06 Do +Do,

DO + Do~• h 2(D, + Dyx, )

2(Do + Do)f 6 Dxy + Dyx

h F2Do
6 Doo

Next, we consider B,t + cot bB02.

lim (BO, +cot B02

lim h -(Dr -Dor)
- rm 12 Dr -Dor

Dr -D Dr
-(D r - Dr)

Dr, + D,

-(Dr - Dor)J

1 h 2(D + D -D2 )  DD• + DN2 -D 2 0rm 6 DND0, + D -D 2 2(D, + D€2 -D20

Dr + Dor If Dx -Dz
-(Dro - Dor) 2 -(Dz + Dx)

(Dx + D) i -
=Bx-(Dx: - Dz•) x

(8.3.29)
The negative sign in front of the matrix for plane layers is the result of the ordering of the layer
interfaces. In the spherical case, we order the interfaces in the direction of growing r (i.e. from the
inside to the outside), while for plane layers, we order them in the direction opposite to the
vertical coordinate (i.e. top layer first). This ordering indeed changes the signs, a fact that can be
verified by exchanging in the expression above the diagonal and off-diagonal elements,
respectively, and noticing that the same expression but with opposite signs is obtained.

As we shall see next, this same sign reversal will be observed in the Bo, +cot 0 B 2 and BE
matrices:

lim -(Bo, +cot Bo2)
r, .-- r

1 Ih -(Dro - Dor) D,o -Dor
Srm 12- Dro - Dor -(Dro - Dor)J

h 2(Do, - DIo) DO, - Do r Dr - Dr
6 Do, - D1o 2(Do0 - DIo) 2 -(Dro + Dr,)

1 h r2(D02 - D20 ) Do2 - D20

trm 6 Do2 -D2 2(Do2 - D20)

I Dro -Dor Dro + Dor _ 1 DYZ -DZY
2 -(Dro +D o r) -(Dr o -Dor)J 2 -(Dyz + Dzy)

Dro + Dor
-(Dr, - Dor)

(Dy, + Dy)

-(DYZ- DZ,)

(8.3.30)
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and

DXy + Dyx
2(Dxy + Dyx) xy

Doo" h "2D,
2Doo 6 Dry

(8.3.27)

(8.3.28)

D~1 - DO r2 Dr, - D&,

2(D1, -D,) 2 "-(Dr,, + Dor)

2DYY A

h 2(DOI - DIO)
6 DO - D
6 i2D,, zD,, - ,

1 DrO - Dr

2 -(Dro + Dor )



Finally, for the matrices G and G , we have

Slim mG=

. 1 h Drr + (Dr + Dir)
r-- ... 12 -Dr r - (Dri + DI,)

h f2(D,, + D 2) D11 
+ D 2

6 D1 +DO2 2(D 11 +D 2 )J

+ r2 Drr
h -Drr

-Drr - (DrI + Dr)D ,

Drr + (DrI + Dir) J

+ r (Drl + Dir)

2 DrI -Dlr

Drr}]

1 h -Dr, +(Dr 2 +D 2r)

r+2 12 Dor -(Dr 2 +D 2r)

h f-2(Do1 -DI 2 -D 21) -(D 1 -DI 2 -D 21) 16 -(DOI -D 1 2 D 21) -2(DI -D 1 2 D 21)j

+rmDr -Dr 2 -D 2r

2 Dr + Dr2 - D 2 r

1 D, -Dr,,
h -Drr Drr

-Dr, Dr2 + D2 r+ 1 h 4D 22

-Dr, + Dr2 2r 2 2 2D2

I Dz

h -D,
(8.3.31)

As having seen above, we have obtained the same results as for flat layers. Hence, the
formulation is consistent. Also, it is noted that we can conclude the same agreement with the case
of quadratic expansion, which is not discussed in the present study.

8.4 Solution of the discrete wave equations

The discrete system equation in section 8.3 is obtained by applying a finite element formulation
in the radial direction, while maintaining the spatial (0, 0) and time (t) domains as continuous. To

solve this system equation, Fourier and Legendre transformation are performed from the space-
time domain to the wavenumber-frequency domain. This process yields an algebraic equation that
contains the wavenumbers as parameters and the frequency as eigenvalues. Considering that the
constitutive matrix is symmetric and positive-definite, it is possible to show that all eigenvalues
in this problem will be real and non-negative. Using then these eigenvalues in the context of a
modal superposition technique, we obtain the closed-form solution for the discrete equation of
motion.

8.4.1 Transformation of the system of equations

The partial discretization of the wave equation in the layering direction eliminates the functional
dependence on the radial coordinate r , and yields a system of partial differential equations in the
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azimuthal, polar and time coordinates such as 0, 0, and t. From the preceding sections, this
system of partial differential equations is

d2 U 1 d 2U 1 d 2U
P=MU-A -A -A, 2

S 02  sin dd 0 sin2 0 d 0 2

-(BPo + cot B 2 ) u- (Bo, +cot 0BB0 2 ) dU (8.4.1)
do sin d bO

+(GI +cotqG 2 + cot2 G3)U

P= p P1 P r P PN (8.4.2a)

U = [ur U4 iur . uo"f (8.4.2b)

In particular, we assume the material matrix D to be of the form.

1, + 2G, A, A,
A, 2 +2G A

', A A +2G 2
D= 2 2+2G (8.4.3)G

G
To solve equation (8.4.1), we perform the Fourier transforms with respect to azimuthal coordinate
0 and time t, and Legendre transforms with respect to polar coordinate 0. In the transformed
domain, the discrete system displacement and traction fields can be written as U and P, and
their relationships with the actual domain variables are of the form

U= ei('a - nO) L,, U (8.4.4a)

P = ei(ax-ne) Ln P (8.4.4b)
where

P "' inp
L" = sinP" (8.4.5a)

in

sin 0

i= P-i P- P-2 N ]-T (8.4.5b)

U= ( •. T (8.4.5c)

In equations (8.4.5a, b, and c), (W,, p,) are the displacement and traction components in the

radial direction, (UIs, Ur,) and ( Ps, Pr) are auxiliary (non-physical) displacements and tractions

components used to express the actual displacement components in 0 and 0. In addition, m is the
angular frequency; n and m are the azimuthal and polar wavenumbers, respectively; and

P, = dPm / do, with P, (cos0) being the associated Legendre function that satisfies the Legendre

equation about which we discuss in more detail in the next section 8.5. The partial derivatives in
equation (8.4.1) are then
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al2U 2 (wt-nO) au au
= -2Lm Ue in = -i nLUei2t_-no)  )U = L"VUei(-x-ne)

2U i(wt-nO) 2U - aui(ox-nO) 2U
-- = -- i n Ve'_ nM"Ue' - = Lm Ue '(Ox -no)

(8.4.6a-f)

where L m and L m are the first and second derivatives of L~, operator with respect to 0.

Applying equations (8.4.4a and b) to the system equation (8.4.1) and performing huge algebraic
manipulation, we obtain the transformed system equation as

ei(c-nO) LTP = ei( t-no)LIf (K - C 2 U) (8.4.7)

Because of the structure of the matrices K and M1, equation (8.4.7) can be divided into two
uncoupled modes, namely the spheroidal mode and the torsional mode. The spheroidal mode
corresponds to the SV-P mode of flat plate problems, while the torsional mode corresponds to the
SH mode. Therefore, we can separately express equation (8.4.7) in the form.
For the spheroidal mode,

Ps = Ks s - c•MsU s (8.4.8a)
For the torsional mode,

P, = ITU -T 1TC TTU (8.4.8b)
where the subscripts S and T identify the spheroidal and torsional modes, respectively, and

-= 2P PS Pr " Pj (8.4.9a)

u r us =2 N T] (8.4.9b)

[P= 2 P "'"N]T (8.4.9c)

=T[IT iT " u]T (8.4.9d)

In addition, we display all the matrices I s , KT, Ms and 1MT in Appendices 8B and 8C,
respectively, for the linear and quadratic expansion.

8.3.2 Eigenvalue problems

The associated eigenvalue problem is then of the form

i,U, = Cof1,U, (8.4.10)
where i=S or T. The analogy of equation (8.4.10) to a problem in structural dynamics suggests
that it can be solved by a modal superposition involving the following eigenvalue problem

Ki(, i = M1 ci 2  (8.4.11)

where Oi = {~,j is the matrix of eigenvectors and Q ,= diag {co j is the diagonal matrix of

eigenvalues with j being the modal index. The eigenvector matrix (DI satisfies the following
orthogonal conditions.

(Dr1P^j =I (8.4.12a)

% rTK, i = 22 (8.4.12b)
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8.4.3 Modal superposition and responses in the space-time domain

A conventional modal superposition gives the solution to equation (8.4.8) in the wavenumber-

time domain if P is assumed to be of the separable form

P = Po(n,m) f (t) (8.4.13)

The solution is then
2NorN

U(n,m,t)= yjhj * f j (8.4.14)
j=1

in which
Y = 4f P0  = modal participation factor (8.4.15a)

1
h = exp(-mJwot)sin(o d j t) = modal impulse response function (8.4.15b)

)dj

_Od j j (8.4.15c)

In these expressions, the symbol * indicates a convolution, ,j is the fraction of viscous modal

damping, and cOdj is the damped natural frequency for the jh mode. Notice that the modal mass

implied by equation (8.4.15a) is unity because of the normalization in equation (8.4.12). Also, it
is noted that equations (8.4.13-15) are available for both spheroidal and torsional modes.

Finally, we can express the response in the spatial and time domains as

U(,0,,t) = -"e-inOL IUM,(n,m,t) (8.4.16)
m=0 n=O

where we use U0 in stead of U in order to clearly show the dependency of displacements on the

wavenumbers m and n.

8.5 Analytical eigenvalue problem for a homogeneous solid and shell

We here formulate the analytical eigenvalue problem that is associated with the propagation
modes of isotropic homogeneous spherical solids and shells. In the next section 8.6, we compare
the eigenvalues of this analytical formulation with those of the STLM so as to verify the
validations of the latter.

The wave equation in the space-time domain is given of the form

IL[DLe - p1u =0 (8.5.1)

where u = ru, u u]T , the differential operators of La and L, are the same as those in the

previous sections, p is the mass density, and finally
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2A+ 2G 2 2

A 2+2G A

A A A+2G
G

G

G

(8.5.2)

We consider the solution in the next form of separation of variables.

u(r, ,O,t)= e-i(•'-nO)L"mV(r)

where co is the frequency, n the azimuthal wavenumber, and

V(r) = [Vr (r)

L" =

(8.5.3)

(8.5.4a)Vs(r) V (r)]'

Pn

p , in Pn
" sin m

sin 
j

(8.5.4b)

P = Pr (cos 0) : the associated Legendre function of the first kind (8.5.4c)

p =d (8.5.4d)" do
The first kind associated Legendre function PI" in equation (8.5.4c) satisfies the following

differential equation and recurrence relations.

2n
P, +cot P," + m(m +) P =n2  0 (8.5.5a)

sin

(1-cos2 O)n /2 dn+m(-sin2 )m  (8.5.5b)
Pm" (cos #) = (8.5.5b)

2mm! d(cos 0)"n"

(2m + 1)cos0 Pm" = (m - n + 1) Pm"1 + (m + n)Pm, (8.5.5c)

d dP" m+n
P, o = mcot P n" - Pr"- (8.5.5d)

di sinq

Substitution of equation (8.5.3) into equation (8.5.1) followed by much algebraic manipulation

provides the next wave equation in the wavenumber-frequency domain

[LDLe - a2 e' i-nO")LmV(r)=

ei(-nL[C, d +C I +C 0 I 2M] V(r) = O
i(dr r dr r 2M

l'm 2dr2 r dr r rIwhere
-2(A2 + 2G)- FG

CO= 2(A + 2G)

(8.5.6)

ii(A + 3G)

-i~(A + 2G) (8.5.7a)
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2(2 + 2G) -ifi(A + G)
C 2 = A + G 2G • (8.5.7b)

2G

A+2G -

C2 = G - (8.5.7c)

M= p } (8.5.7d)

= m(m + 1) (8.5.7e)

Next, we assume V of the form
V(r) = zm. (8.5.8)

where

Zm =

z

r

Zm z +m (8.5.9a)

Zm

Zm Zm (er) : the spherical Bessel function of order m (8.5.9b)

, dzm ( r) d m (r)(8.5.9c)
dr d (r)

0= { s T } : mode shape (8.5.9d)

In equation (8.5.9b), ý is the wavenumber in the radial direction, which will be the eigenvalue
associated with the body waves in the spherical coordinate system. The spherical Bessel function
Zm satisfies the following differential equation and is related to the cylindrical Bessel function Cm
as

zM +-zM _ 2 Zm =0 (8.5.10a)

zm (r) ý -Cm+ I 2(r) (8.5.10b)

In addition, the useful recurrence relations are
2m +1

Zm (er) = Zm-_ (4r) + zm+, (er) (8.5.10c)
jr

dzm (jr) = m Zm (jr) - zm+, (r) (8.5.10d)
d(fr) jr

Again, substitution of equation (8.5.8) into equation (8.5.6) and much manipulation produce

d2  id 1 r 2M ZmI -[ dr r dr r
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pc2 - (A + 2G)2 O
Zm . p -o2 Gý2  s = 0 (8.5.11)

p/)2 -Gý 2  0T

where we cancel the term ei(-nO)L V. Finally, three fully uncoupled modes are obtained such as

(1) P mode: p, with ,p = o/ C
(2) S mode: s with s = o/Cs
(3) Tmode: r with T =wo/Cs

where C, = ( + 2G) /p and Cs = J .p It is noted that the P and S modes are related to the

spheroidal mode, and T mode the torsional mode, which will be shown later in this section. Also,
the mode shape is give as

O=10 OS }= 1 } (8.5.12)

Then, we can express V(r) as

V(r) = zm,popa + Zm,S'Sb + Zm,TkC = Zma (8.5.13)

where

'mS
Zm,P m•

r

Zm P ,S + (8.5.14a)
r r

Zm,T

a=[a b c]T  (8.5.14b)

Zm.i = Zm (ýi) with i=P, S, or T (8.5.14c)

Zm,i = Zm(fir) with i=P, S, or T (8.5.14d)

and a, b, c are unknown constants to be determined.

The alternative for the general solution in the wavenumber-frequency domain is
V(r) = Zmla, + Zm2a 2  (8.5.15)

where

Zml =

-Jm,S
Jm,P m r

JmP im.s ' Jms (8.5.16a)
r r

JmT

423



Ym,T

: the first kind spherical Bessel function of order m
Ym,i = Ym.i(ýr)

al= =[a bl c,]T

a2 =[a2 b2 ]T

: the second kind spherical Bessel function of order m (8.5.16d)

(8.5.16e)

(8.5:16f)

The two vectors of a, and a2 are the unknown constant vectors to be determined from given
boundary conditions. The general solution in the space-time domain for harmonic waves is then
determined in the form

u(r, ,0,t) = ei(Ot-nO)L m(Zmla, + Zm2 a2) (8.5.17)

The boundary condition of interest is of the next form.

S = [or r ro ]T = L DL, u  (8.5.18)

Substituting equation (8.5.17) into equation (8.5.18), we finally end up with the following.

s= LrDL, e it-n'L"(Zma, + Zma 2)] = i(-nO) m [A, (r)a + A2(r)a2] (8.5.19)

where
A, (r) or A2 (r)

2G
{[m 2 -m r22 / 2] mP + 2ý,rZm+l.p}

r

2G
=2 [(m - )Zm,p -P•rzm+,p]

0

G
-[(m - 1)zm,
r

2G2G [(m - 1)Zm s - srZm+l,S

2G
S[m2 - 1 - 2 r2 / 2 ]Zm,

s + srzm+l,s }r0
0

- 4TrZm+I,T

In equation (8.5.20), z isj for A1 and y for A2 according to equations (8.5.15 and 16). As shown in
equation (8.5.20), there are two uncoupled modes of spheroidal and torsional modes. Hence, we
can separately express the two modes as
Spheroidal mode:

As, (r) or ASP2(r)

2G 2G
2 [m - m - /2r2 /2]Zm,p + 2prZm+l,p I i--[(m - m,s -- srZm+I,sr r

2G 2[(m -1)m, m+[ 2 -1- r2 / 2 ]Zm,s + srzm+l,s
r(8.5.21)

(8.5.21)
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Ym,P

Zm2 YmP
r

- Ym,S
m

r

Ym.S
Jm,S +

r
(8.5.16b)

(8.5.16c)

(8.5.20)



Torsional mode:

ATRl(r) or ATR2(r) = G [(m -1)Zm T mrZl.T ]} (8.5.22)

The associated constant vectors are also uncoupled as
Spheroidal mode:

aspI = and asp2 = (8.5.23)

Torsional mode:
arl, = {c1 and aTR2 c2) (8.5.24)

8.5.1 Spherical solid

First, we are interested in the propagation modes of a homogeneous spherical solid with radius ro.
The two uncoupled eigenvalue problems are given from equation (8.5.19) as
Spheroidal mode:

det As,,(r o) = 0 (8.5.25)

Torsional mode:
det ATR(r,)= 0 (8.5.26)

The roots of equations (8.5.25 and 26) provide the propagation modes for the spheroidal and
torsional modes, respectively, of the homogeneous spherical solid. In section 8.6, we consider
only the spheroidal mode and compare them with the results obtained with the STLM.

8.5.2 Spherical shell

Next, we consider the propagation modes in a homogeneous spherical shell with ri and ro as the
inner and outer radii, respectively. The eigenvalue problems to be considered are then
Spheroidal mode:

detAs ( ri) ASP2 (ri 0 (8.5.27)
ASpl(ro) ASP2 (ro)J

Torsional mode:

det A At ( ri) ATR2 (r)• =0 (8.5.28)
ATRI (ro) ATR2(ro)J

The roots of equations (8.5.27 and 28) provide the propagation modes for the spheroidal and
torsional modes, respectively, of the homogeneous spherical shell. In section 8.6, we consider
only the spheroidal mode and compare them with the results obtained with the STLM.

8.6 Comparison of numerical and analytical solutions

We compare the eigenvalues qa (frequencies) calculated with the STLM against the exact
analytical solutions so as to illustrate the validation of the formulated STLM in this chapter 8. For
the practical purpose, we choose two simple structures and solve the associated eigenvalue
problems. The two simple structures are (1) a homogenous spherical solid, (2) a homogeneous
spherical shell. The exact analytical solutions for both are obtained in the previous section 8.5.
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For the discrete models, we consider the both linear and quadratic expansion STLM, or the
STLM1 and STLM2 for short, respectively. We choose the total number of thin-layers N such as
N=10 for the STLM1 and N=5 for the STLM2. In addition, to investigate the effect of the tuning
factor p of chapter 2 on the accuracy of eigenvalues calculated with the STLM, we apply the
lumped, tuned, and consistent mass matrices to the problem of interest. For the tuned mass
matrix, we apply the optimal values of p that are obtained for the TLM (formulated in the
Cartesian coordinate system) in chapter 2, namely, p=0.55 for the STLM1 and p=0.3 3 for the
STLM2 are used in this section.

8.6.1 Homogeneous Spherical Solid

First, we consider the propagation modes of a homogeneous spherical solid subjected to only
spheroidal wave motion. The geometry and material properties of the spherical solid are given
such that the radius of the solid is ro=1.0, the mass density and shear velocity are p=Cs=1.0, and
the Poisson's ratio is 1-0.30.

The dispersion curves of the spheroidal modes are shown in figure 8.6.1 (for the lumped mass
matrix), in figure 8.6.2 (for the tuned mass matrix), and in figure 8.6.3 (for the consistent mass
matrix), in comparison with the exact analytical solution. Note in the three figures that the solid
lines represent the propagation branches obtained with the STLM, and the dashed lines represent
the propagation branches obtained with the exact analytical solution. It is observed in all the three
figures that the eigenvalues of the spheroidal modes obtained with the STLM are in good
agreement with the exact analytical solutions. Also, notice that the accurate results are obtained
only for the low modes, not for the high ones. Furthermore, it is shown that the STLM2 with N=5
provides more accurate results than the STLM1 with N=10, which again confirms that the
quadratic expansion is not only more accurate, but also more efficient than the linear expansion,
as shown in chapters 2-4 associated with the TLM.

Now, we consider the effect of the tuning factor p on the accuracy of eigenvalues. Comparison of
the three figures of 8.6.1, 8.6.2, and 8.6.3 verifies that the optimal values of p-0.55 and p-0.33
obtained for the TLM in chapter 2 provide much better agreement with the exact analytical
solution than the other two values of p0O and 1 for the STLM as well. Therefore, it is
recommended to apply the optimal values of p-0.55 and pu=0.33 to the STLM as well as to the
TLM.

8.6.2 Homogeneous Spherical Shell

Next, we consider the propagation modes of a homogeneous spherical shell subjected to only
spheroidal wave motion. The geometry and material properties of the spherical solid are given
such that the inner and outer radii of the shell is ri=0.5 and ro=1.5, the mass density and shear

velocity are p=Cs=1.0, and the Poisson's ratio is v=-0.30.

The dispersion curves of the spheroidal modes are shown in figure 8.6.4 (for the lumped mass
matrix), in figure 8.6.5 (for the tuned mass matrix), and in figure 8.6.6 (for the consistent mass
matrix), in comparison with the exact analytical solution. Note in the three figures that the solid
lines represent the propagation branches obtained with the STLM, and the dashed lines represent
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the propagation branches obtained with the exact analytical solution. It is observed in all the three
figures that the eigenvalues of the spheroidal modes obtained with the STLM are in good
agreement with the exact analytical solutions. Also, notice that the accurate results are obtained
only for the low modes, not for the high ones. Furthermore, it is shown that the STLM2 with N=5
provides more accurate results than the STLM1 with N=10, which again confirms that the
quadratic expansion is not only more accurate, but also more efficient than the linear expansion.

Now, we consider the effect of the tuning factor p on the accuracy of eigenvalues. Comparison of

the three figures of 8.6.4, 8.6.5, and 8.6.6 verifies that the optimal values of p10.55 and p=0.33
obtained for the TLM in chapter 2 provide much better agreement with the exact analytical
solution than the other two values of p=O and 1 for the STLM as well. Therefore, it is now
strongly recommended to apply the optimal values of p=0.55 and p=0.33 to the STLM.
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Figures for chapter 8

Figure 8.2.2 Spherical shell in spherical coordinate system

Figure 8.2.2 Boundary Conditions on spherical shell surfaces
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l+m

Figure 8.3.1 Individual spherical thin-layer
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Spheriodal modes with STLM2

Spheroidal modes in spherical solid, using the lumped mass matrix
(solid line: STLM; dashed line: Exact)

Spheriodal modes with STLMI

2 4 6 8 10
m

Figure 8.6.2

Spheriodal modes with STLM2

Spheroidal modes in spherical solid, using the tuned mass matrix
(solid line: STLM; dashed line: Exact)

Figure 8.6.1
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Spheriodal modes with STLM2

6 8 10

m m

Figure 8.6.3 Spheroidal modes in spherical solid, using the consistent mass matrix
(solid line: STLM; dashed line: Exact)

Spheriodal modes with STLM1 Spheriodal modes with STLM2

2 4 6 8 10 2 4 6 8 10

Figure 8.6.4 Spheroidal modes in spherical shell, using the lumped mass matrix
(solid line: STLM; dashed line: Exact)
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Spheriodal modes with STLM1

2 4 6 8 10
m

Figure 8.6.5 Spheroidal modes in spherical shell, using the tuned mass matrix
(solid line: STLM; dashed line: Exact)

Sphedodal modes with STLM1

4 6 8 10
m

Spheriodal modes with STLM2
rr=

4 6 8 10
m

Figure 8.6.6 Spheroidal modes in spherical shell, using the consistent mass matrix
(solid line: STLM; dashed line: Exact)
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APPENDIX 8A: Material matrices

dI, dIs d, d, d26 d, d55 d45 d3sd1  d16 d15  66  26  46  1 55 d4  351
D-d24 I D d45

Dr = d16 d66 d56 Do= d26 d22 d24 Doo d45 d44 d34

dI5 d56 d55  d46 d24 d44 d35 d34 d33

Id16 d12 d14  ds d,14 d13

D Dr= Dr= = d26 d 46  Dr0 =Dr = d56 d46 d36

d56 d25 d45  d55 d45 d35

d56 d46 d36

D =D =0 d d2 4 d24 23

d45 d4 d34

d22 + 2d23 +d33 -d2 6 - d36 -d25 -d35

D 1 = -d 26 -d 36  d66 d56  D22 =  d33
-d 25 - d35 d56  d55  • -d34

Sd23 +d33 -d24 -d 34

DI2 = D21 =" -- d36  d46

-d 35  d45

d12 +d13 -d16 -d15  d13 -dl4
Dr = DTr= d26 +d 36 -d66 -d 56  Dr2 = Dr = 2 d36 -d 46

d25 +d35 -d 56 -d 55  d35 -d 45

d26 +d 36 -d 66 -d56 1 d36 -d 46

+ 46 45= d -d f
DOI = DO = d 2 2 

+ d 2 3 - d 2 6 - d 25  

0D2 -2D0T d23 -d24d24 + d34 -d46 -d45 d34 -d4
d25 +d35 -d 56 -d55  d3 5 -d45

Do ~ D1o d24 +d34 -d 46 -d 45  D2 = Do d34 -d44
d23+ d33 -d 36 -d 35  d33 -d 34

2d16  d 2 +d66 dd4 + d56

Dr, + D r = dl2 + d66 2d 26  d25 + d46

d14 +d56 d25 +d 46  2d45
dI 2 - d 66  d14 -d56

Dr, - Do r = -dl2 + d66 -d25 + d46

-d14 + d56 d25 - d46

2d15  d14 +d56 d13 + d,
Dro + Dor = d14 + d56  2d46  d 36 + d45

1dl3 +d55 d36 + d45 2d35

-d34

d44
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d14 - d56  d13 - d55

Dro - DOr = -dl4 + d56 d36 - d45

-d,3 +ds5 -d 36 + d45

2d 56  d25 +d46 d36 +d45

Do +D, = d25 +d46  2d24  d23 + d44

d36 +d45 d23 + d44 2d 34

2dl, d16 - d26 - d36 d15 - d25 - d35

2Dr + (Dl, - D,,) = 3dl6 + d26 + d36  2d66 2d 56

3d15 + d25 + d35 2d56  2d55

d22 + 2d 23 +d33  -d26 -d25 - d35 - d46

D, + D2 = -d 26 - d36  d23 + d66  -d 24 + d56

-d25 - d35  d34 + d56  -d44 + d55
d16  dl3 + d66 -d 14 + d56

Dor + (Dr2 - D2r) = dl2 - d13  d26  d25 - d35 - d46
2d14  d35 

+ 2d46  d45

d16  d12 - d22 - d23 -d66 d14 - d24 - d34 - d56

Dro + (DOI - DlO) = d22 + d23 + 2d 66  d 26  -d 25 + 2d 46

d24 + d34 + 2d56 2d25 - d46 d45

d26 + d36
d22 -d34

2d24 + d34 d44

d15  d14 - d24 - d -d 34 - d56  d 3 -d 23 - d33 -d 55

Dro + (Doi - Dlo) = d24 + d34 + 2d56  d46  2d36 - d45

d23 + d33 + 2d55 -d36 + 2d45 d35

d35  -d 45

Doo + (D02 - D20 ) = -d 35  • -d 33 - d44

d45 d33 + d44

dl2 + d13 -d 22 -2d 23 - d33 -d 6 + d26 + d36 -d 5 + d 35

D,, - D,, = 2d 26 + 2d 36  -2d 66  -2d 56

2d25 + 2d35  -2d56  -2d 55

d26 + d36  d13 - d23 - d33 - d66 -d14 + d24 +d34 -d56

Dr2 + D, 1 - DI2 - D21 = d22 - d33  -d26 + 3d 36  -d25 + d35 - 2d 46

2d 24 + 2d 34  2d 35 - 2d46  -4d 45

-(d22 + d23 + d66 ) -(d24 + d34 + d56)

DOI - DI = (d22 + d23 + d66) • -(d25 -d46)
( d 24 + d34 + d56) d25 - d46
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Doi - DIo = (d24 + d34 + d456)

(d23 + d33 + d4 )

d35
Do2 - D20  -d35

d45  (d33 + d44)

2d 2 + 2d13
Dr, + Dr = -d6 + d26 + d36

L-ds + d25 + d35

DrI - DI = (d16 + d26 + d36)

(d,5+ d25 +d35)
d26 + d36

D1 - DI2 - D 21 = d 22 - d33

2d 24 + 2d34

-(d24 +d34 +d56) -(d23 +d33 +d55)

• (d36 -d 45 )

-(d36 - d45)

-d45

-(d 33 + d44)

-dl6 + d26 + d36

-2d66

-2d56

-(d1 6 + d26 + d36)

d24 + d34 - d56

-2d 56

-2d55

-(d,, + d25 + d35 )

-d 23 - d33 - d66 d24 + d34 - d56
-d 26 + 2d 36  -d25 + d35 - d46

d35 - 2d 46 -3d 45

For cross-anisotropic media, the

A, + 2G, -
Drr =  { G,

Dr, = Do = G,-

D, = G,

Drl = D , = - -G,

Do1 = DI = 2(A + G)

Dor = Do = +G
2(A + G)

Dro + Dor =•/, + G,

material matrices are:

D0, = .+ 2G Doo = G
G .. 2+2G

Dro =Dr = { Do = =D

D 22 = { + 2G DI2 = D = )

Dr2 = Dr = }

S D2 = D2 = + A
-G-Gt

A +
-+c -

.D02=D i
%+2GA +2G

Dr Dor{-(.-G)
D, - Dr,= -(2 t G,)

A-Gt -
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Dro +Dor = . . . Dro -Dor =

A, + G, -(• G) +G

Dpo + Doo = . A+G

A+G

2(+A, + 2G, )
2Drr + (Drl - DO,) = 2(GJ

4(A + G)

D, +D+2 = G, +2
G, -G

Dr + (Dr2 -D2r) = G

Dr + (DO - DIO) = 2(G, +2+ G)

Do + (D2 - D2 ) = 2 A+2G

G

2Gt}

G, - 2(2 + G)

,- , - 2(A + G)

DrO + (Do, - Do) =
2(G, + A + G)

DOo + (D02
A+3G

2[A, - A - 2(A + 2G)

-(2 + 3G)

-2G,
-2G,

SD D2 D2 , -G, -2( +G)
Dr2 +Do -D12 _D21

-(G, + 2A + 2G)

D,-D, = (G, + 22 + 2G)
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, -(G, + 2A + 2G)

Doi -Dio =
(G, + 2A + 2G)

D02 - D2 = i, -

I (A + 3G)
42t

Dri+D+ = { -2G,

-( + 3G)}

-2G,4

Drl-Dlr{.

- -G, -2(A + G)
DOI - D12 -D21
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APPENDIX 8B : Layer Matrices for linear expansion

8B.1 Layer matrices

For a linear expansion, the layer matrices are then

M =phr,2 {( a2 )I (ia2 }
2 • 2  2 +T5- T5- -T3 31

h 2DO,
6 Do

2D}
2D•

+DoO
Do

2(Do
A h 2(Do + Do,)

6o 6 DO +DoO

h 2Doo Doo
A°°6 Doo 2Doo

h -(Dr, -Der)
B 12 [Dr - Dor

r D, - Dr

2 -(Dr, + Dr)

h 2(Doo + D02 -D 2 )
B2 D0D + D02 -D 2 0

Dr - Dor 1 h 2(D, - D10)+--
-(Dr, - Dr) 6 DOI - Di

Dr, + Dr
-(Dr, - Dr)

DOO + D02 - D2

2(D¢ +D 0 2 -D 20)J

h -(Dro -Dor)
01 -12 Dro -Dor

rm Dro - Dor
2 -(Dro +Dor)

B h f2(DO2 - D20 )
02  6 D 2 -D 20

h Drr + (DrI + Dr)
= 12 -Drr -(DrI + Dr)

Dro - Dr,
-(Dro - D0 )

Dro + Dor
-(Dro -Dor)

D02 - D20
!(D02 - D 29 )J

-Drr - (Dri + Dr,) O
Drr + (Dri + DO)

h 2(Do, - D10)
6 Do1-D10n

2(D11 + D02)
D11+ D 2

Dol -D10
2(DO1- Dlo)

2(D,, + D02 )

-(Drl - Dr,) +2Dr

DrI + Dir h -Drr

DO, - D1,

2(D,1 - D,)

rm -(Drl + DO,)
2 DrI - DIr

-Drr

Drr
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h G -Dr + (Dr2 +D 2r
G-2 12[ D -r(Dr2 +D 2r:

h -2(Dl,, - D12 - D26 -(DO -D12 -D21

r Dr, - Dr2 - D 2 r
2 Dr +Dr 2 - D 2r

G3 h 4D22
G3 = 2D22

) D - (Dr2 + D2r)

-DOr +(Dr 2 +D 2r)

,) -(D,, -D12-D21)

) -2(D,, -D2 -D2,1)

-Dr - Dr2 + D2r

-DOr + Dr2 + D 2r J
2D 22

4D22

8B.2 Stiffness and mass matrices for the linear expansion

The stiffness and mass matrices for cross-anisotropic materials are given of the form.

8B.2.1 Spheroidal mode

h

52, + 2(1+ 2$)G, + 16(A + G) -ii[A, + 3G, + 8(A + G)]
-[A, + 3G, + 8(A + G)] 3G, + 4ii2 + 8(~ - 1)G

-52, + 2(TF -1)G, + 8(A + G) [A, - 3G, - 4(A + G)]

A, -3G, -4(A + G) 3G, + 22iiiA + 4(i-1)G

-42,

S ((, - G,)
2 -

(2, + G,)

-i(A, -(
2G,

-,F(A, +

2, + 2G,
2 

2

h -(2, + 2G,)

i,-[A, -
3G, +:

3G, +

-5A2 + 2(ini - 1)G, + 8(A + G)

2, - 3G, - 4(A + G)
52, + 2(1+ 2in)G, +16(A + G)

-[2,+3G,+8( +G)]

G,) • l(A, + G,)
-(At + G,)

G,) 42, -n(A -G,)
-(2, -G,) -2G, J

-(A, +2G,) 1
-G,

2 + 2G,
G, ,

2G, [A, - 3G, - 4(A + G)]
2(A + 2G)

4G, -[A, + 3G, + 8(A + G)]
4(A + 2G)

4G,

12 2G,

I .

-[2, + 3G, + 8(2 + G)]
4(A + 2G)

[2, - 3G, - 4(A + G)]

2(A + 2G)
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5A2, +2G, + 16(2+G) • -5A,-2G, +8(2 + G)

h -[ + 3G,+8(A +G)] 3G, -8G A2 -3G, -4(A +G) 3G, -4G
+

12 -5At - 2G, + 8(A + G) 51, + 2G, + 16(A + G)
3, -3G, -4(A+G) 3G, -4G -[A,+3G,+8(A+G)] 3G, -8G

(A, - Gt) (At, + G) {-4A2,
- •{ (2, - G) 2G, -(A, + G,)

2 -(A, + G,) -(A, - G,) 2 4/2,
.(A, +G,) -( - G,) -2G,

SA, + 2G,
S2 1

h I -(At + 2G,)

S-(A, + 2G,) )
G, -- G,

A + 2G,

-G, G,

[4a2 - 10a +10

30 a2 +5

a2 +5

4a2 -10a +10

4a 2 +10a +10

a2 +5

8B.2.2 Torsional mode

h J3G, + 4(m - 2)G 3G, + 2(m - 2)GG 2Gt, 2 GI G,
T- 12 = 3G, + 2(m - 2)G 3G, + 4(m - 2)G 2 -  -2G, h -G, G,

Gh 2G G h 3G,-8G 3G, - 4G 2G, + G, -G,
= m- + +L

6 G 2G 12 3G, -4G 3G,-8GJ 2 -2G t h '-G, G,

phr,2 4a 2 -10a+10

30 L a2 +5
a2 +5

4a2 +10a+10

It is noted above that I = m(m + 1).
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APPENDIX 8C : Layer Matrices for quadratic expansion

8C.1 Layer matrices

For a quadratic expansion, the layer matrices are then

3 2 12 2 12 2-a -a+-2I (a2 a+1I 1a2 I
7 3 7 3 3) -"14 6)

phr,2 1  2 a1 ( 1 2 2
M= a2-

M 5 (7a 3) i 21 3 7 3 3

IC1a2 I -1a2 +2a+iI C 3a2+a+2I

h4DO, 2DO -D~,
A = 302D, 16DO 2D,

0-DO 2D, 4D ,

h4(DO + DoO) 2(Doo + Do) -(D00 + DoO)

A0 = 30 2(D•O +D0 o) 16(DOO +D0,) 2(DOO +DD0 )

I-(DOO + D0 ) 2(Do + Do,) 4(DOO + Do)J

h 4Do, 2Doo -Do
Aoo = 2Doo 16Doo 2Do

-Doo 2Doo 4Doo

h11(Dr - Dro) -12D,,- 8DrO Dor - Dr

B 1 = 60 8Dr +12Dr,, -16(Dr,, -Dr) 8Dr,, +12Dr

D60 - Dr• -12Dr,-8Dr 11(DOr-D r)

-3(DOr - Dro) 4(D,, + D•,) -(D,, + Dr)

6+r -4(Dr, + Dr,) 4(Dr, + Dr,)}

(Dor +Dr,) -4(Dor +Dr,) 3(DOr - DrO)

h4(D0 -DIO) 2(D, -DI ) -(DO -DIO)
+• 32(D0 -D,1) 16(D, - Di,) 2(DO1 -D D)

-(Dot DI¢) 2(D0 -D10 ) 4(D1 - DIO)

h4(D, +D0 2 -D20) 2(D, +D0 2 -D20) -(D +DD2 -D 24)1

B02 = h 2(D, +D0 2 -D 20) 16(DO +DD 2 -D 2 ) 2(D¢ +D0 2 -D 20)

L-(DO +D0 2 -D 20) 2(D, +D0 2 -D20) 4(D 0 +D02 -D 20)J

11(Dor -Dr) -12Dor -8Dr Do, -Dro

Bo, = 8Dor,+12Dro -16(Dor-Dro) 8D or +12Dro
J Dor - Dro -12Dr - 8Dro II(Dor-Dro)
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F-3(Dor - Dro) 4(Do, + Dr) -(Do, + Dro)

+ -L -4(Dor + Dro) 4(Dor + Dro)

(Do, + Dro) -4(Do, + Dr,) 3(D, - DrO) J
[4(Do1 - D1 o) 2(Dol - Do) -(Dol -DIo)

+ - 2(Do - D1o) 16(Dol - DI) 2(Do0 - D1o)

3-(Doi - DIo ) 2(DoI - Dlo) 4(Do1 - DIo)

h 4(Do2 -D 20) 2(D 2 -D 20) -(D02 -D 20)
BO2=- 2(D 2 -D 20 ) 16(Do2 -D 20) 2(Do2 -D 20

30-(D 02 -D 20) 2(Do2 - D2 ) 4(Do2 - D20)J
-40 +17 Drr 40 +-0- 24 D rr 5+7 Drr

a 2 a a a a

h 40 + 40 2480 48 40 40
60 a2  a a a a

5 40 40 D 35 +4+17 D-4
24+7 Drr a2 24 Drr+17 Drr

h 11 (Dr + Dr) 8D, - 12DIr (Dr, + Dr,)
+- -12D,, + 8Dir -16(Dr,, + Dr) -12Dri + 8D,,

60
(Drl + D ) 8Drl - 12DIr 1 l(Drl + Dr)

[-3(Drl + Di,) -4(Dr,, - Dr,) (Drl - Dir)

+rm- 4(Dr,, - D,,) -4(Drl,, - D,,)
6

-(Drl - Di) 4(Drl,, - Dr) 3(Drl + Dr, )

h 4 ( D 2 + D ll ) 2(D2 + D ll1) -(D2 + D ll )

+- 30 2(D 2 +Dl) 16(DO2 +Dl) 2(DO2 + DO)

-(D 2 + D ll) 2(DO2+Dll) 4(DO2 +DO)

11Dr -12Dr Dr,, 1 3Dr, -4Dr, Dr
h r

G -2 r8D, -16Dr 8Dr + M- 4Dr -4DrSD, -12Dr 11D r J -Dr 4Dr -3Dr

h 1(Dr 2 + D 2r) 8Dr2 - 12D 2 r (Dr 2 + D2 r)
h

+- -12Dr 2 + 8D 2 r -16(Dr 2 + D 2r) -12Dr 2 + 8D 2r60
60 (Dr2 + D2r ) 8Dr2 - 12D2r 1 I(Dr2+ D2r

-3(Dr2 D2r) -4(Dr2 -D,,2r) (Dr2 -D2r

+ rm 4(Dr2 - D2r) -4(Dr 2 - D2r)

L -(Dr 2 -D 2r) 4(Dr2 -D 2r) 3(Dr 2 + D 2r) J

S4(Db -D 12 -D 21) 2(Dl -D2 -D21) -(DO -DD2 -D21•

S2(D, - D2 --D21) 16(D, - D12 -D21) 2(D, - 12 -D21)30 _(Doi -D12 -D21) 2(D_ -D12D21) 4(D -D12 -D21)
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h4D 22 2D22 -D 22

G3 = 2D 22 16D 22 2D 2230
-D 22 2D 22 4D 22 J

8C.2 Stiffness and mass matrices for the quadratic expansion

8C.2.1 Spheroidal mode

612, +(34+8-)G, +32(A+ G) i[-112, +3G, -16(A+ G)]

-1 U12, + 3G, -16(A + G) 3G, +8FmA +16( - 1)G

h -32, +4(iii-12)G, +16(A +G) i[122, + 4G, - 8(A + G)]

60 -8(A, + 2G,)- 8(A +G) -16G, +4,2 + 8(p -1)G

11A, + 2(7- M)G, -8(A + G) m[-A, + 3G, +4(A + G)]

-2A + 3G, +4(A +G) 3G, - 2ii2-4(i- 1)G

m[-8(A, + 2G,) - 8(A2 + G)] 112, + 2(7 - -)G, - 8(A + G)

-16G, +4ii2 +8(M -1)G -2, + 3G, +34(A + G)

16m[A, - 3G, - 4(A + G)] -322, + 4(m -12)G, +16(A + G)

16[7G, + 2in2 + 4(n -1)G] -8(2, + 2G,)-8(A + G)

m[-8(A, + 2G,) - 8( + G)] 612, + (34 + 8F)G, + 32(A + G)

-16G, + 4nA +8( - 1)G -112, +3G, -16(A+ G)

-(202, +16G,) 3m(At, -G,) 8(A2, + 2G,) 4F(A, + G,)

3(A, - G,) -2G, -4(2, + G,) 8G,

r, 8(A + 2Gt) -44(AG + G,)
6 4(2, +G,) 8G,

m(A, + G,) -8(2, +2G,) -4,(A, + G,)

-(2, + G,) 4(A + G,) -8G,

7(2, + 2G,)

-r2 8(A, + 2G, )
3h

(A2, + 2G,)

-8(A, + 2G,)

7G,

-8Gt-8G,

G,

16(A, + 2G,)

-8(2, + 2G, )

-8G,

16G,

-8G,

(2, + 2G,)

-8(, + 2G, )

7(, + 2G,)

-322, + 4( - 12)G, +.16( + G)

12, + 4G, -8(A + G)

16[-A, + 2(3 + ,)G, + 8(A + G)]

16[, -3G, -4(A +G)]

-32A, + 4( -12)G, + 16(A + G)

122, + 4G, -8(A + G)

fi[-2, + 3G, + 4(A + G)]

3G, - 22 - 4(m- 1)G
i[12;1, + 4G, - 8(A + G)]

-16G, +4iA + 8( - 1)G

in[-11A, + 3G, -16(A + G)]

3G, + 8mRA + 16(hi - 1)G

-FM(A, +G,)
,t + G,

-8(A, + 2G,)  4-(A, + G,)

-4(A, + G,) -8G,
202, + 16G, -3fi(2, - G,)

-3(A, - G,) 2G,

G,

8G,

7G,
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8G,

h 4G,
= m--

60
-2G,

[-112,+3G, -16(A+G)] 4G,
8(A + 2G)

[122, +4G, -8(A+ G)] 32G,
4(A + 2G)

[-2, + 3G, + 4(A + G)] 4G,

-2(A + 2G)

[-8(2, + 2G,) - 8(A + G)] -2G, [-2, + 3G, + 4(A + G)]

4(A + 2G) -2(A + 2G)

16[A, - 3G, - 4(A + G)] 4G, [122, + 4G, - 8(A + G)]

32[A + 2G] 4(A + 2G)

[-8(, +2G,)-8(2+G)] 8G, [-112, +3G, -16(2+G)]

4(A + 2G) 8(A + 2G)

612, + 34G, + 32(A + G)

-112, + 3G, -16(2 + G)

h -32A, -48G, +16(A +G)

60 -8(2, + 2G,)-8(A + G)
112, + 14G, - 8(A + G)

-2, + 3G, + 4(A + G)

-322, -48G, + 16(A + G)

3G, -16G 122, +4G, -8( + G)

16[-2, +6G, +8(A +G)]

-8(2G, + G) 16[A, - 3G, - 4(A + G)]

-322, - 48G, + 16( + G)

3G, + 4G 122, + 4G, - 8(A + G)

112, + 14G, -8( + G)

-8(2G, + G) -A, + 3G, + 4(A + G)

-322, - 48G, + 16( + G)

16[7G, - 4G] -8(A, + 2G, + A + G)

61A, + 34G, + 32(A + G)

-8(2G, + G) -112, + 3G, -16(A + G)

3G, + 4G

-8(2G, + G)

3G, -16G

3(A, -G,)

rm -4(2, + G,)
6

S(, +G,)

-(20A, +16G,)
3(A, - G,)

rr 8(2, + 2G,)
6 4(2, +G,)

-(2, +G,)

4(A, +G,)

S4(A, +G,)

-4(2, + G,) * -3(2,-G,)

8(2, + 2G,)

8

2G, -4(A, + G,) 8G, A, + G,
S. -8(A, + 2G,)
G, -4(2, +G,)

-8(A, + 2G,) • 202, +16G,

4(2, + G,) -8G, -3(A,-G,)
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7(A2, + 2G,)

r2 -8(A2 + 2G,)
3h

(2, + 2G,)

7G,

-8G,

-8(A, + 2G,)

16(2 t + 2G,)

-8(, + 2G,)

S (2, + 2G,)

8G, G,
* -8(2A + 2G,)

G, -8Gt
7(2, +2G,)

8G, * 7G,

phr2
Ms = 5

32 2
-a -a+-
7 3

1 2 1
--- a+--

7 3 3

12 2 1
7 3---a+-
7 3 3

32 2
Sa -a+-

7 3

1 a2 1
---a+--

7 3 3

1 21
-- a2

14 6
1 21

-- a2
14 6

1 a2 _1-- a4 6
14 6

12 a2 1
-a -- a+-
7 3 3

8 8a2 +-

21 3
8 8a 2 +8

21 3
1 2 1

a2 +-a+-
7 3 3

1 2 1a2 +-a+-
7 3 3

a2 +a+
7 3

1 2 12 1
a +--a+-

7 3 3

12 _1
--- a --

14 6

1 2 1
a2 +-a +-

7 3 3

a2 +a+-
7 3

8C.2.2 Torsional mode

8G 4G -2G f 3G, - 16G -8(2G, + G)

K=• i- 4G 32G 4G +- -8(2G, + G) 16[7G, -4G]
602G 4G 8G 60 3G,+4G -8(2G, + G)

-2G, 8G, • 2 7G, -8G, G,
+rm- 8G, -8G, +-r -8G 16G, -8G,

6 3h_8 G2G, IG, -8G, 7Gt

M = phr ,
5

32 2 1 2 2 1 1 21
-a2 -a+-- -- a+- -- a
7 3 7 3 3 14 6

1 2 2 1 8 8 1 2 1a 2--a+- -a2 +- -a2 +a+-
7 3 3 21 3 7 3 3

1 1 1 2 1 3 a 2
- a 1- a2+a+ a +a+-
14 6 7 3 3 7 3

It is noted above that iii = m(m + 1)
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Chapter 9 Summary and Conclusions

In this dissertation, we have focused on three goals, namely
* Explore and improve the accuracy and convergence of the TLM by evaluating the numerical

dispersion and through benchmark tests available for exact analytical solutions.
* Extend the applicability of the TLM to semi-infinite and infinite layered media.
* Develop two new TLM's for the analysis of wave motions in cylindrically and spherically

laminated media.

In the first part, which is contained in chapters 2 and 3, we successfully and systematically
derived the closed-form general solutions and spectrum equations for discrete full-spaces
subjected to SH and SV-P plane waves, modeled with both the TLM1 and TLM2. Based on these,
we comprehensively explored the numerical dispersion phenomena in the TLM discrete models
from the point of view of wave motions. As a result, we provided a rule for the least number of
thin-layers per wavelength required for accurate results, namely Na=4 for the TLM1 and NA=2 (or
5/2) for the TLM2. Then, by means of the error estimation over the significant range of vertical
wavenumbers, we obtained the optimal tuning factors for the mix of consistent and lumped mass
matrices, namely 0.55 for the TLM1 and 0.33 for the TLM2. The optimal tuning factors basically
minimize the effect of the numerical dispersion on wave motions in the discrete models. We also
derived the closed-form characteristic equations for several free-vibration problems such as anti-
plane homogeneous discrete strata and plates, and in-plane homogeneous discrete plates with
mixed boundary conditions. In addition, we formally obtained the propagation modes of discrete
half-spaces such as a layer on a half-space subjected to anti-plane waves and a homogeneous
half-space subjected to in-plane waves. Finally, we compared the eigenvalues for the above free-
vibration problems modeled with discrete models against the associated exact analytical
solutions, to which we applied different combinations of tuning factors. Finally, we established
that the optimal tuning factors improve considerably the accuracy of the eigenvalues in the TLM.
In addition, we determined that the TLM2 is more efficient and accurate than the TLM1. Thus,
we recommend the use of the TLM2 rather than the TLM 1 for more effective analyses.

In chapter 4, we assessed the accuracy and convergence of the TLM modal solutions by means of
benchmark tests, and compared these with available exact analytical solutions for both
displacements and stresses. For this purpose, we derived and presented the exact analytical
solutions for some canonical examples in the appendices. We explored the TLM modal solutions
from the point of view of spatial and temporal characteristics of sources and receivers, and also
investigated the effect of numerical dispersion on the accuracy. From this exploration, we have
assessed the potential for errors associated with the modal superposition in the TLM solutions,
and provided criteria for the number of thin-layers per wavelength NA needed to calculate
accurate responses fields. For the TLM in the frequency domain, NA2 12 is recommended for the
TLM1 and Na>4 for the TLM2. For the TLM in the time domain, N•2 8 is recommended for the
TLM1 and Na>4 for the TLM2. In addition, we found out that a hybrid of the exact and discrete
solutions can improve considerably the accuracy and efficiency of the o)-TLM modal solutions.
The hybrid method is basically a combination of the eigenvalues obtained with the continuous
models and the mode shapes obtained with the w-TLM.

The second part is described in chapters 5 and 6. In chapter 5, we successfully formulate the
substructure method to analyze semi-infinite (or infinite) layered media by means of the t-TLM.
For this purpose, we also derive new Green's functions in the wavenumber-time domain for a
homogeneous half-space by means of the contour integration method. These Green's functions
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are a key element in the substructure method formulated in this study. We present an efficient
procedure to solve the required integral equations (convolutions) by means of discrete time series.
Also, we propose the use of an artificial buffer layer to stabilize the solutions of the convolution
equations, which is necessary, especially for the case in which the impedance contrast between
the upper layered system and the half-space is very large or very small. Regarding the accuracy
and stability of the formulated substructure method, we determine important criteria for the
choice of four parameters as follows. First, the number of thin-layers per wavelength NA must
satisfy the conditions of NA212 for the TLM1 and NA>6 for the TLM2. Secondly, the maximum
frequency-content in the modal solutionfM must be no less than twice the maximum frequency of
the external source fmax, i.e. fM>2fax. Thirdly, the time sampling for discrete time series At must
be no greater than a quarter of the minimum period (or half of the Nyquist period), i.e. At1/(4fM).
Finally, the thickness of the artificial buffer layer HB must be no smaller than the smallest
wavelength A2n considered in analyses, i.e. H>_A"'n. Solving several numerical examples, we
showed the validation of the developed substructure method and the above four criteria as well.

In chapter 6, we explore the characteristics of semi-infinite and infinite media modeled with the
hybrid coaTLM together with the paraxial approximation and the buffer layer. We first review
some previous studies in the literature, and investigate some features of the hybrid system. From
here, we find the accuracy of the response as function of the range x (i.e. distance to the
receivers), which says that the response in the far-field deteriorates because of spurious reflection
at the interface of the paraxial boundary with the buffer layer. In addition, we modify the paraxial
approximation for SV-P wave problems to improve the stability of calculated responses when
Poisson's ratio is v>0.30. In addition, we propose the use of an adaptive buffer layer that is very
efficient for seismogram calculation. Through numerical examples, we verify the efficiency of the
adaptive buffer layer and determine the proper thickness and refinement of the adaptive buffer
layer in the context of seismogram calculation.

The third part is expounded in chapters 7 and 8. In these two chapters, we introduce and
formulate two new thin-layer methods, i.e. the cylindrical thin-layer method (CTLM) and the
spherical thin-layer method (STLM). These are useful and efficient methods for the analysis of
wave propagation in anisotropic, cylindrical and spherical laminas. We verify their validity by
means of an analytical comparison with the TLM for flat layers and via two numerical examples
for a homogeneous solid and shell. The analytical comparison is based on the fact that hollow
cylinders and/or spheres with large radii relative to their thickness behave locally like an infinite
plate. For the numerical comparison, we calculate the propagation modes of a homogeneous solid
and shell and compare these with the exact analytical solutions. For this purpose, we present the
exact analytical solutions for a homogeneous solid and shell. As it turns out, the CTLM and
STLM show an excellent agreement with the associated exact analytical solutions. We also
explore the effect of tuning factors on these new TLM's, and find that they are similar to those for
flat layers.
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