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Abstract

Symplectic reflection algebras are attached to any finite group G of automorphisms
of a symplectic vector space V , and are a multi-parameter deformation of the smash
product TV ♯G, where TV is the tensor algebra. Their representations have been
studied in connection with different subjects, such as symplectic quotient singular-
ities, Hilbert scheme of points in the plane and combinatorics. Let Γ ⊂ SL(2,C)
be a finite subgroup, and let Sn be the symmetric group on n letters. We study
finite dimensional representations of the wreath product symplectic reflection algebra
H1,k,c(Γn) of rank n, attached to the wreath product group Γn = Sn ⋉ Γn, and to
the parameters (k, c), where k is a complex number (occurring only for n > 1), and
c a class function on the set of nontrivial elements of Γ. In particular, we construct,
for the first time, families of irreducible finite dimensional modules when Γ is not
cyclic, n > 1, and (k, c) vary in some linear subspace of the space of parameters. The
method is deformation theoretic and uses properties of the Hochschild cohomology
of H1,k,c(Γn), and a Morita equivalence, established by Crawley-Boevey and Holland,
between the rank one algebra H1,c(Γ) and the deformed preprojective algebra Πλ(Q),
where Q is the extended Dynkin quiver attached to Γ via the McKay correspondence.
We carry out a similar construction for continuous wreath product symplectic reflec-
tion algebras, a generalization to the case when Γ ⊂ SL(2,C) is infinite reductive.
This time the main tool is the definition of a continuous analog of the deformed pre-
projective algebras for the infinite affine Dynkin quivers corresponding to the infinite
reductive subgroups of SL(2,C).

Thesis Supervisor: Pavel Etingof
Title: Professor of Mathematics
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3-4 Graph Ẽ7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
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Introduction

The study of symplectic reflection algebras was initiated by Etingof and Ginzburg

in [EG02], although these algebras (and several of their properties) already appear

in the classical work of Drinfeld [Dri86], as a special case of degenerate affine Hecke

algebras for a finite group.

Symplectic reflection algebras arise from the action of a finite group of symplec-

tomorphisms G ⊂ Sp(V ) on a symplectic vector space (V, ω). They form a multi-

parameter family of deformations Ht,f (G) of the skew group algebra SV ♯G, where

SV is the symmetric algebra of V . The parameter t is a complex number, and the

parameter f is a conjugation invariant function on the the set S of symplectic reflec-

tions in G, i.e. elements s ∈ G such that rk(Id − s)|V = 2. Symplectic reflections

can be considered as analogs of reflections in a symplectic setting, since they fix a

codimension two subspace pointwise, and act on the orthogonal complement with

nontrivial complex conjugate eigenvalues of norm one. Hence the name.

Explicitly, if we denote by TV the tensor algebra of V , the symplectic reflection

algebra Ht,f (G) is the quotient of TV ♯G by the relations

x⊗ y − y ⊗ x = tω(x, y) · 1 +
∑

s∈S

f(s) · ωs(x, y) · s ∀x, y ∈ V

where ωs denotes the (possibly degenerate) skew-symmetric form which coincides with

ω on Im(Id− s), and has ker(Id− s) as its radical.

One of the fundamental properties of Ht,f (G) is that it satisfies the analog of

the Poincaré-Birkhoff-Witt (PBW) theorem for the universal enveloping algebra of a

Lie algebra. Namely, if we consider the increasing filtration on Ht,f (G) obtained by
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assigning degree zero to the elements of G and degree one to the elements of V , we

get an isomorphism for the associated graded algebra grHt,f (G) ∼= SV ♯G. The PBW

property assures the flatness of the family of deformations Ht,f (G).

Rescaling the parameters (t, f) by a non-zero complex number does not change

Ht,f (G) up to isomorphism. Thus we can distinguish two main cases in the study of

symplectic reflection algebras: the quasi-classical case when t = 0, and the quantum

case when t = 1. Algebras belonging to these two subfamilies present contrasting

features that make them interesting for different reasons, both in algebraic geometry

and representation theory.

On the geometric side, let us consider the orbit space V/G. This space and the

corresponding commutative algebra, the ring of invariants SV G, might not be the

right objects to describe the geometric properties of the G-action, that might instead

be connected with some resolutions of V/G. One can then think to approach the

study of such properties by replacing SV G with the non-commutative smash product

SV ♯G , and constructing non-commutative deformations of this algebra. In the quasi-

classical case, for example, the non-commutative deformation H0,f (G) of SV ♯G has

a big center which is a commutative deformation of SV G (i.e. corresponding to an

actual algebraic variety), and can be used to study symplectic resolutions of some

interesting (Poisson) deformations of the orbifold V/G ([EG02]), [GS04]). A class of

symplectic reflection algebras of particular interest for algebraic geometry is the one

of rational Cherednik algebras. These are symplectic reflection algebras attached to

an irreducible finite complex reflection group W in a vector space h, acting diagonally

on V = h⊕h∗, where h∗ denotes the dual of the reflection representation. In this case,

the symplectic form is given by the natural pairing. In other words, V is the cotangent

bundle of h with the standard symplectic structure, and h, h∗ are W -stable irreducible

Lagrangian subspaces. In the quantum case, the Cherednik algebra H1,f (h⊕ h∗,W )

for W of type A can be regarded in different ways as a non-commutative deformation

of the Hilbert scheme of points in the plane C2 ([GS06],[GS05],[KR]).

On the representation theoretic side, the most challenging case is the quantum

one which is the most non-commutative one. Indeed, when t = 1 and regarding f as
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a formal parameter, the family H1,f (G) gives a universal deformation of the smash

product W♯G, where W is the Weyl algebra of the symplectic space (V, ω) ([EG02]).

The representation theory of such deformations has proved to be very rich and inter-

esting. In particular, for rational Cherednik algebras an analog of category O for Lie

algebras has been defined, as well as a theory of standard modules and formal char-

acters ([BEG03], [GGOR03], [Chm06]). Moreover, in the case of Cherednik algebras,

the theory of symplectic reflection algebras is connected to the one of double affine

Hecke algebras (of which they are a certain degeneration, cfr [EG02], Introduction),

introduced by I. Cherednik and used by the same author to prove some important

Macdonald’s conjectures ([Che95]). This links the representation theory of symplectic

reflection algebras to combinatorics and the study of special functions.

The main topic of this thesis is the representation theory of the symplectic re-

flection algebras of wreath product type Ht,k,c(Γn). These are symplectic reflection

algebras attached to the semi-direct products Γn := Sn ⋉ Γn ⊂ Sp(2n,C). Here Sn

is the symmetric group on n letters, Γ is any finite subgroup of SL(2,C) = Sp(2,C),

and Sn acts on Γn by permuting the factors. The deformation parameter f appearing

in the definition of symplectic reflection algebra can in this case be written as a pair

(k, c), where k is a complex number, and c is a class function on the non-trivial ele-

ments of Γ. The integer n is called the rank of the algebra Ht,k,c(Γn). In particular,

when Γ = Z/mZ the group Sn⋉(Z/mZ)n is a complex reflection group (real reflection

group of type A if m = 1 and of type B if m = 2) and one recovers a subfamily of

rational Cherednik algebras.

In the quasi-classical case, representations of the wreath product algebras were

studied in [EG02] using a geometric approach and the main result of the authors is

that, if (k, c) are generic, isomorphism classes of finite dimensional irreducible modules

are parametrized by the points of the (smooth) algebraic variety corresponding to the

center of H0,k,c(Γn).

In the quantum case, in contrast with the case of Cherednik algebras, a uniform

approach to the representation theory does not exist yet. Nevertheless, when n = 1,

there is no parameter k and H1,c(Γ) coincides with some non-commutative deforma-

13



tion of the Kleinian singularity C2/Γ introduced by Crawley-Boevey and Holland,

who classified finite dimensional irreducible modules using methods coming from the

representation theory of quivers and deformed preprojective algebras, which are some

special quotients of path algebras of quivers. In particular, in [CBH98] the authors

established a Morita equivalence of H1,c(Γ) with the deformed preprojective algebra

Πλ(Q), where Q is the extended (ADE) Dynkin quiver attached to Γ via the McKay

correspondence, and λ ∈ CI , where I is the set of vertices of Q, is a parameter de-

pending on c. This allowed them to define reflection functors that give equivalences

of the categories of modules for different values of the deformation parameters.

The main result of this thesis is the construction of the first (for non-cyclic Γ)

families of finite dimensional representations for H1,k,c(Γn) when n > 1, and (k, c)

vary in some linear subspaces of the space of deformation parameters. We use two

methods, both arising from simple observations and corresponding natural questions.

1) Irreducible representations of the group Γn are well known. They can all be

obtained in the following way. Choose any vector with positive integer coor-

dinates ~n = (n1, . . . , nr) such that
∑r

i=1 ni = n. Let Sni
be the subgroup of

Sn moving only the indices j such that n1+ · · · +ni−1 < j ≤ n1+ · · · +ni, and

consider the subgroup Sn1 × · · · × Snr ⊂ Sn. Take an irreducible representation

X of the group S~n: X := X1 ⊗ · · · ⊗ Xr, where Xi is an irreducible represen-

tation of Sni
for any i. Choose a collection N1, · · · , Nr of irreducible pairwise

non-isomorphic representations of Γ, and form the irreducible representation

N := N⊗n1
1 ⊗ · · · ⊗N⊗nr

r of Γn. Then X ⊗N is an irreducible S~n ⋉ Γn-module

(where S~n acts also on N by permuting the factors) and M := IndΓn

S~n⋉ΓnX ⊗ Y
is an irreducible Γn-module. Which such modules can be extended to an irre-

ducible representation of the entire algebra H1,k,c(Γn), and for which values of

the parameters (k, c)?

2) Since H1,0,c(Γn) = H1,c(Γ)⊗n♯Sn, when k is zero, irreducible finite dimensional

representations are known. They can all be obtained with the same procedure

used in 1). We get modules M = Ind
H1,0,c(Γn)

H1,c(Γ)⊗n♯S~n
X ⊗Y , where this time we take
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Y = Y ⊗n1
1 ⊗· · ·⊗Y ⊗nr

r , for some Yis irreducible pairwise non-isomorphicH1,c(Γ)-

modules. Since, by the PBW property, H1,k,c+c′(Γn) is a flat formal deformation

of H1,0,c(Γn) a natural question is: can we formally deform a H1,0,c-module M

to values of the parameters (k, c+ c′) with k 6= 0?

In Theorem 3.2.4, we give an answer to question 1). Using just methods from rep-

resentation theory of finite groups, we obtain a complete classification of all irreducible

Γn-modules that extend to H1,k,c(Γn)-modules for k 6= 0. Such modules extend if and

only if the Young diagram of Xi is a rectangle for any i and HomΓ(Ni, Nj ⊗ C2) = 0

for any i 6= j, where C2 is the defining representation of Γ. Such representations

have a unique extension obtained by making V act trivially, and the values of the

parameters (k, c) for which they extend lie in a codimension r linear subspace, where

r is the dimension of the vector ~n.

In Theorem 3.3.10, using cohomological methods, we give a partial answer to the

second question. We show that sufficient conditions for an irreducible representation

of H1,0,c(Γn) to formally deform to some values of the parameter with k 6= 0 are

that Xi has rectangular Young diagram for any i and that Ext1
H1,c(Γ)(Yi, Yj) = 0

for any i 6= j. Such representations actually admit a unique deformation in the

formal neighborhood of 0 of a codimension r linear subspace. We also show that

in a dense open set of this linear subspace the deformation is not only formal, i.e.

H1,k,c+c′(Γn) admits an irreducible representation isomorphic to M as a Γn-module.

We want to mention that in [GG05] Gan and Ginzburg introduced a one parameter

deformation An,ν,λ(Q) (where ν ∈ C) of the smash product Πλ(Q)⊗n♯Sn, Morita

equivalent to H1,k,c(Γn) for any n, when Q is the McKay quiver of Γ. In ([Gan06])

Gan, using this interpretation of the wreath product symplectic reflection algebras

in terms of deformed preprojective algebras, was able to generalize the reflection

functors of [CBH98] to the case n > 1. This allowed him to prove the necessity

of the conditions of Theorem 3.3.10, showing that our result gives an exhaustive

classification of representations coming from deformations.

Symplectic reflection algebras have a generalization to reductive algebraic groups
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called continuous symplectic reflection algebras ([EGG05]). In this case, the role of

the group algebra is played by the ring of algebraic distributions O(G)∗, the dual

space of the ring of regular functions O(G). The second topic of this thesis is the

study of finite dimensional representations of continuous symplectic reflection alge-

bras of wreath product type, i.e. attached to the groups Sn ⋉Γn, where Γ ⊂ SL(2,C)

is an infinite reductive subgroup. This time the main tool is the definition of some

“continuous” analogs of the deformed preprojective algebras for the infinite affine

Dynkin quivers corresponding to the reductive subgroups of SL(2,C), and of the cor-

responding generalization to such quivers of the Gan-Ginzburg algebra An,ν,λ(Q). A

Morita equivalence between these algebras and the continuous symplectic reflection

algebras allows us to easily extend the methods of [CBH98] and [Gan06] to the con-

tinuous case. In particular, in Corollary 6.2.2 we give a complete classification of the

finite dimensional irreducible representations for n = 1. For n > 1, in Theorem 6.5.2

and Theorem 6.5.3, we extend the results of Theorem 3.2.4 and Theorem 3.3.10 to the

continuous case, giving necessary and sufficient conditions for deforming irreducible

finite dimensional representations existing for k = 0 to nonzero values of k.

16



Chapter 1

Basic deformation theory

1.1 Plan of the chapter

In this chapter we first review the basic definitions of the theory of flat formal defor-

mations for associative algebras. We then recall the fundamental role of Hochschild

cohomology in this theory and the notion of universal deformation. Finally, we briefly

discuss deformations of modules.

1.2 Flat formal deformations of associative alge-

bras

Let k be a field, and let A be an associative unital algebra over k. Let U be a finite

dimensional k-vector space. Denote by k[[U ]] the ring of k-valued formal functions

on U , and denote by m the unique maximal ideal in k[[U ]].

We recall that a k[[U ]]-module is called topologically free if it is isomorphic to

V [[U ]] for some k-vector space V .

Definition 1.2.1. A flat formal deformation of A over k[[U ]] is an algebra AU over

k[[U ]] which is topologically free as a k[[U ]]-module, together with a fixed isomorphism

of algebras ϕ : AU/mAU −→ A.
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Thus in particular AU = A[[U ]] as a k[[U ]]-module. If dimU = n, then AU is said

to be an n-parameter flat formal deformation of A.

Two deformations AU , A′
U are said to be isomorphic if there exists a k[[U ]]-algebra

isomorphism AU
∼= A′

U which is the identity modulo m. A deformation is said to be

trivial if there exists an algebra isomorphism AU
∼= A[[U ]] which is the identity

modulo m, where the algebra structure on A[[U ]] is given by the usual multiplication

of formal power series on U with coefficients in A.

In a similar way, one can define m-th order deformations as deformations over the

ring k[[U ]]/mm+1.

If ~1, . . . , ~n are coordinates on U , then we can identify C[[U ]] with the ring of

power series k[[~1, ..., ~n]], and the ideal m with the ideal (~1, . . . , ~n). Using the fact

that AU is topologically free we can choose an identification ϕ̃ : AU −→ A[[~1, . . . , ~n]]

as k[[~1, ..., ~n]]-modules, coinciding with the isomorphism ϕ of Definition 1.2.1 mod-

ulo (~1, . . . , ~n). Let us denote by p = (p1, . . . , pn) ∈ Zn
≥0 a multi-index, and let hp be

the product
∏

j ~
pj

j . We can think of AU as the module A[[~1, . . . , ~n]] equipped with

a new k[[~1, ..., ~n]]-linear, associative star-product determined by a formula

a ∗ b =
∑

p

cp(a, b)h
p (1.1)

where cp : A × A −→ A are k-bilinear maps, and c0,...,0(a, b) = ab for any a, b ∈ A

(the product coincides with the product in A modulo (~1, . . . , ~n)).

In particular, a one parameter deformation A~ can be thought of as A[[~]] equipped

with a k[[~]]-linear associative product ∗ such that for any a, b ∈ A

a ∗ b = ab+ c1(a, b)~ + c2(a, b)~
2 + · · · , (1.2)

where cj : A × A −→ A are k-bilinear maps, and c0(a, b) = ab is just the original

product in A.

One can think of c1, and the corresponding first order deformation (deformation

over the ring k[[~]]/~2), as the infinitesimal deformation or differential of the family
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A~. This leads to two natural questions. The first is finding a classifying space for

infinitesimal deformations. The second is defining a convenient theoretical setting

to describe the obstructions to integrating infinitesimal deformations, i.e. given a

first order deformation c1, lifting the associativity property of the product ∗ from

order one to any order by choosing appropriate cis for i > 1. In his pioneering

work ([Ger63],[Ger64]), Gerstenhaber showed how the natural language to approach

these problems is the one of homological algebra, specifically the one of Hochschild

cohomology that we are going to review in the next section.

1.3 Hochschild cohomology and deformation the-

ory

For an A-bimodule E, consider the following complex (Hochschild complex)

0 −→ C0(A,E)
d−→ · · · d−→ Cm(A,E)

d−→ Cm+1(A,E)
d−→ · · ·

where Cm(A,E) = Homk(A
⊗m, E) is the space of m-linear maps from Am to E (and

C0(A,E) := E), and the differential d is defined as follows:

(de)(a) : = ae− ea ∀ e ∈ E, a ∈ A

(df)(a1, · · · , am+1) : = a1 f(a2, · · · , am+1)

+
m∑

i=1

(−1)if(a1, · · · , ai−1, ai ai+1, ai+2, · · · , am+1)

− (−1)mf(a1, · · · , am) am+1.

Definition 1.3.1. The i-th Hochschild cohomology group H i(A,E) of A with coef-

ficients in the bimodule E is the i-th cohomology group of the Hochschild complex

(C•, d).

We recall that an A-bimodule structure on a k vector space space E is the same
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as a left A⊗Ao-module structure, where Ao is the opposite algebra of A, and A⊗Ao

is called the enveloping algebra of A. The following fact will be very useful to us in

this thesis.

Proposition 1.3.2. There exists a natural isomorphism

H i(A,E) −→ Exti
A⊗Ao(A,E)

Proof. Consider the A-bimodule structure on A⊗m given by

b(a1 ⊗ · · · ⊗ am)c = ba1 ⊗ · · · ⊗ amc

The so called bar resolution of the bimodule A is a projective resolution and is given

by

· · · −→ A⊗3 −→ A⊗2 −→ A

where the differential is

∂(a1 ⊗ · · · ⊗ am) = a1a2 ⊗ · · · ⊗ am − · · ·+ (−1)m−1a1 ⊗ · · · ⊗ am−1am.

It is now enough to observe that, for any m ≥ 2, one has a natural isomorphism

of vector spaces HomA⊗Ao(A⊗m, E) ∼= Homk(A
m−2, E) = Cm−2(A,E), and that ∂

corresponds to d under this identification.

2

Let us now go back to one parameter deformations and formula (1.2). Imposing

the associativity condition

(a ∗ b) ∗ c = a ∗ (b ∗ c)
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one gets a hierarchy of equations

dcm(a, b, c) =
∑

i+ j = m

i, j > 0

ci(cj(a, b), c)− ci(a, cj(b, c)) (1.3)

where m > 0 and d is the Hochschild differential. In particular, when m = 1 the right

hand side is zero, and one gets that associativity in order one holds if and only if c1

is a Hochschild 2-cocycle with values in the bimodule A. It is easy to see that two

first order deformations are isomorphic if and only if the associated 2-cocycles c1, c
′
1

are in the same cohomology class in H2(A,A).

Theorem 1.3.3. Two first order one parameter deformations of an associative al-

gebra A are isomorphic if and only if the corresponding 2-cocycles c1, c
′
1 are in the

same Hochschild cohomology class.

Proof. Suppose c1, c
′
1 are in the same cohomology class. Then c1 − c′1 = df ,

where f is an endomorphism of A as a k-vector space. Then one can check that the

assignment

a −→ a+ f(a)~

for any a ∈ A defines by k[[~]]-linear extension an isomorphism between the corre-

sponding first order deformations. Vice versa suppose that two first order deforma-

tions are isomorphic. This means that there exists a k[[~]]/~2-algebra isomorphism

between them which is the identity modulo ~. Such an isomorphism is given by a

map

a −→ a+ f(a)~

where f is a k linear endomorphism of A, and the map is compatible with the star

products ∗, ∗′ modulo ~2. Imposing this compatibility condition gives exactly c1−c′1 =

df .

2
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Thus the cohomology group H2(A,A) parametrizes infinitesimal deformations up

to isomorphism.

For m = 2 equation (1.3) gives

dc2(a, b, c) = c1(c1(a, b), c)− c1(a, c1(b, c))

for any a, b, c ∈ A. It can be computed that, if c1 is a cocycle, then the right hand

side defines a 3-cocycle b1 and its cohomology class depends only on the cohomology

class of c1. The cohomology class of b1 in H3(A,A) is the only obstruction to lifting

associativity from order one to order two.

In general, it can be shown that if equation (1.3) is satisfied for m = 1, . . . ,M − 1

then for m = M the right hand side is a cocycle bM . Thus all obstructions lie in

H3(A,A). This time though, the cohomology class of bM depends not only on the

cohomology class [c1] of c1 but also on the entire sequence c2, . . . , cM−1. This is why

lifting an infinitesimal deformation to a family A~ is a highly non trivial problem.

Indeed, if maps c1, . . . , cM−1 satisfying (1.3) are chosen, then any two maps cM , c′M

compatible with them must satisfy d(cM − c′M) = 0, i.e. they must differ by a

cocycle. Moreover if two solutions differ by a coboundary they give rise to isomorphic

M -th order deformations. In other words, the freedom in choosing the solution at

step M lies in H2(A,A). The problem is that a particular choice of cM affects the

equations in the hierarchy for all m > M , and can determine an obstruction at any

of the next steps. If H3(A,A) is zero though, all obstructions vanish and any first

order deformation can be lifted, i.e. it is the differential of a family of flat formal

deformations.

From the previous discussion it appears that the space H2(A,A) is a natural

candidate to parametrize a universal deformation for the algebra A, in a sense that

we are going to clarify.

Let us look at formula (1.1) for a deformation with parameters in an n dimen-

sional vector space U . Imposing the associativity condition and arguing as in the one

parameter case, one obtains that c0,...,1j ,...0 must be Hochschild 2-cocycles for each j.
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Thus any such deformation defines a natural linear map φ from the space of

parameters U to H2(A,A). Such a map is given by the assignment

φ : U −→ H2(A,A)

(~1, · · · , ~n) −→ ∑
j ~j [c0,...,1j ,...0]

for any (~1, · · · , ~n) ∈ U , where [C] stands for the cohomology class of a cocycle C.

Proposition 1.3.4. If the space H2(A,A) is finite dimensional and H3(A,A) = 0

then there exists a flat formal deformation Au over k[[U ]], where U := H2(A,A), such

that the map φ above is the identity. This deformation is unique up to isomorphism

(we allow automorphisms of k[[U ]]).

Proof. Suppose dimH2(A,A) = n. For a multi-index p = (p1, ..., pn) ∈ Zn
≥0, let

|p| = p1 + · · · + pn denote its length. For any j = 1, ..., n let ej be the multi-index

(0, ..., 1j , ..., 0). Fix a basis [ce1 ], . . . , [cen ] for H2(A,A) and let ~1, . . . , ~n be coordi-

nates relative to this basis . We claim that, up to isomorphism and automorphisms of

k[[U ]], a deformation as in the statement of the theorem must be given by a formula

a ∗ b = ab+
n∑

i=1

cei
(a, b)~i +

∑

|p|>1

cp(a, b)h
p (1.4)

for some choice of representatives ce1 , . . . , cen of the above basis and for some k-

bilinear maps cp : A×A→ A. This is true because, first of all, the map φ must be the

identity. Secondly, arguing as in the proof of Theorem 1.3.3, one can see that different

choices of representatives for the basis [ce1 ], . . . , [cen ] do not affect the representation

at order one up to isomorphism. Finally a change of basis in H2(A,A) changes such

a deformation by the corresponding induced automorphism of k[[U ]] ∼= k[[~1, ..., ~n]].

It is easy to compute that the condition that formula (1.4) defines a deformation

over k[[~1, ..., ~n]] gives, for each p with |p| > 1, an equation

dcp = bp (1.5)
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where bp is a 3-cocycle whose expression may involve cq only for |q| < |p|. Since

H3(A,A) = 0 any 3-cocycle is a coboundary, thus we can recursively solve the equa-

tions above and find cps that give a deformation as desired.

What is left now to show is that such a deformation is unique. We discussed

uniqueness at order one. It remains to prove that the deformation does not depend

on our choices of cps for |p| > 1 up to isomorphism (possibly involving automorphisms

of k[[~1, ..., ~n]]). We will show this by induction on |p|. Let now Au and A′u be two

deformations given by two sets of maps {cp}, {c′p} respectively. Let N be the maximal

number such that, up to automorphism of Au and A′u, it is possible to set cp = c′p for

any p such that |p| < N . Then for any q with |q| = N we have bq = b′q, where bq and

b′q are the cocycles on the right hand side of equation (1.5) for cq and c′q respectively.

This means that d(cq − c′q) = 0 i.e. the two maps differ by a cocycle. Thus we can

write

cq = c′q +
∑

j

αqjcej

with αqj ∈ C. Consider now the automorphism ψN of k[[~1, ..., ~n]] defined by the

assignment

~j −→ ~j +
∑

|q|=N

αqjh
q.

It is easy to see that twisting A′u with ψN we can set cq = c′q for any q with |q| = N ,

without affecting the cps with |p| < N . This contradicts the maximality of N .

2

When it exists, the deformation Au = Au

~1,...,~n
of Theorem 1.3.4 is called the

universal deformation of A.

The existence of the universal deformation guarantees that the moduli space of

one parameter deformations is a smooth space, given by the formal neighborhood of

zero in H2(A,A). This fact is a consequence of the following proposition stating the

universal property of Au.

Proposition 1.3.5. For every flat formal one parameter deformation A~ there exists

a unique power series α(~) = (α1(~), . . . , αn(~)) ∈ ~H2(A,A)[[~]] such that there is
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an isomorphism A~
∼= Au

α1(~),...,αn(~) of flat formal deformations. Moreover α′(0) is

the cohomology class of the differential c1 of the family A~.

Proof. Let us denote by ∗u the multiplication in Au. Suppose dimH2(A,A) = n.

For any a, b in A, regard a ∗u b = a ∗u b(~1, . . . , ~n) as a formal function from U :=

H2(A,A) to A. Consider now a one parameter deformation A~ = (A[[~]], ∗), and

regard a ∗ b = a ∗ b(~) as a formal function from k to A. We have to show that, up to

isomorphism, the algebra A~ is given by a formula a∗ b(~) = a∗u b(α(~)) for a unique

power series.

Thus we have to find αi(~) ∈ ~k[[~]] for i = 1, . . . n such that, for any a, b ∈ A,

the identity

∑

j

cj(a, b)~
j =

∑

i

cei
(a, b)αi(~) +

∑

|p|>1

cp(a, b)α1(~)p1 · · ·αn(~)pn (1.6)

is satisfied. If αi(~) =
∑

r>1 αir~
r then one can compute that the condition for (1.6)

to be satisfied at order one is

∑

i

αi1[cei
] = [c1].

Clearly there exist unique α11, . . . , α1n satisfying this equation. In general one can

compute that the condition that (1.6) is satisfied at order n is given by

∑

i

αin[cei
] = [c̃n]

where c̃n is a cocycle depending on αij with j < n. It is clear that this equation has

a unique solution.

2

We want to end this section by mentioning that the conditions of Proposition 1.3.5

are not necessary for the existence of the universal deformation. Indeed, all formal

obstructions to deformations can vanish even when H3(A,A) is nonzero, although

this fact might be extremely difficult to prove.
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1.4 Flat formal deformations of modules

Let now M be a left A-module. Let AU be a flat formal deformation of A over k[[U ]],

where U is some finite dimensional vector space, and let ϕ : A −→ AU/mAU be the

fixed isomorphism of Definition 1.2.1. The following definition formalizes the intuitive

notion of a deformation of M to an AU -module.

Definition 1.4.1. A flat formal deformation of the module M is a AU -module MU

which is topologically free as a k[[U ]]-module together with a fixed isomorphism of

A-modules γ : M −→ MU/mMU , where the structure of A module on MU/mMU is

the one induced by the isomorphism ϕ.

The fundamental tool for the study of deformations of modules is again Hochschild

cohomology.

Indeed, let ~1, . . . , ~n be coordinates in U and let p = (p1, . . . , pn) be a multi-

index in Zn
≥0. Arguing as in Section 1.2, we can think of MU as the k[[~1, ..., ~n]]-

moduleM [[~1, . . . , ~n]] together with a k[[~1, ..., ~n]] algebra homomorphism ρ̃ : A −→
EndM [[~1, . . . , ~n]] given by a formula

ρ̃(a) =
∑

p

ρp(a)h
p, (1.7)

where ρp : A −→ EndM are k-linear maps and ρ0,...,0(a) = ρ(a), where ρ is the

homomorphism giving the representation M .

Imposing the condition that ρ̃ is a homomorphism gives a hierarchy of equations

dρp(a, b) = −
∑

q + s = p

|q|, |s| > 0

ρq(a)ρs(b) +
∑

q + s = p

|q|, |s| > 0

ρq(cs(a, b)) (1.8)

where d is the Hochschild differential and the css are the maps defining the product

in AU as in formula (1.1).

If ρqs satisfy the above equation for all q with |q| < N , then for any p with |p| = N
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the right hand side is a cocycle. Thus, all the obstruction to the deformation of the

module M lie in H2(A,EndM). At each step, the freedom in choosing a solution for

(1.8) lies in H1(A,EndM).

It is clear from this discussion that the problem of deforming modules presents sim-

ilar difficulties to the one of deforming algebras, and that in general an A-module M

does not admit any deformation to a representation of AU . Nevertheless, sometimes

the (Hochschild-)cohomological properties of A and M are such that it is possible to

find deformations, as we will see in the next chapters of this thesis.
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Chapter 2

Symplectic reflection algebras

2.1 Plan of the chapter

In this chapter we recall the basics of the theory of symplectic reflection algebras.

In Section 2.2 we give the general definition, and we describe the main properties of

these algebras such as the PBW property. In Section 2.3 we consider more specifically

symplectic reflection algebras associated to wreath product groups, that will be the

object of interest of this thesis.

2.2 Definition and properties

Let (V, ω) be a symplectic vector space over C, and let G ⊂ Sp(V ) be a finite group of

symplectomorphisms. Denote by TV the tensor algebra of V and by C[G] the group

algebra. For any two vectors u, v ∈ V we will write uv for the tensor product u⊗ v.

Definition 2.2.1. The smash product algebra TV ♯G is the vector space TV ⊗C C[G]

with the product defined by the formula

(u⊗ g)(v ⊗ h) = u(gv)⊗ gh

for any u, v ∈ V and g, h ∈ G.
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Note that assigning grade degree zero to the elements of C[G] and grade degree

one to the elements of V the algebra TV ♯G becomes a graded algebra (with a corre-

sponding filtration).

The main object of our interest will be a family of algebras obtained as quotients

of the above smash product.

Definition 2.2.2. An element s ∈ G is called a symplectic reflection if rk(Id−s) = 2.

Symplectic reflections can be considered as symplectic analogs of complex reflec-

tions. Indeed, any symplectic reflection s fixes a (complex) codimension two space

pointwise and acts diagonally on a complement with complex conjugate eigenvalues

of norm one. In other words there exists a basis such that s is a diagonal matrix

s =




λ

λ−1

1
. . .

1




with λ 6= 1 and |λ| = 1. We will denote by S the set of symplectic reflections. By

definition, this set is stable under conjugation. We will denote by C(S) the vector

space C[S]G of C-valued class functions on S, and we will write fs = f(s) for any

f ∈ C(S).

For any s ∈ S consider the ω-orthogonal decomposition Im(Id− s)⊕Ker(Id− s).
Denote by ωs the skew symmetric form that coincides with ω on Im(Id− s) and has

Ker(Id− s) as its radical.

Definition 2.2.3 ([EG02]). For any f ∈ C(S) and any constant t ∈ C the symplectic

reflection algebra Ht,f (G) is the quotient of the smash product TV ♯G by the relations

uv − vu = t ω(u, v) +
∑

s∈S

fs ωs(u, v) s (2.1)

for any u, v ∈ V .
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Let now e = 1
|G|

∑
g∈G g ∈ C[G] be the averaging idempotent.

Definition 2.2.4. The spherical subalgebra is the algebra eHt,f (G)e ⊂ Ht,f (G) .

Note that that eHt,f (G)e does not contain the unit element of Ht,f (G).

When both t and f are zero, one has uv − vu = 0 for any u, v ∈ V . Thus, if we

denote by SV the symmetric algebra of V we have:

H0,0(G) = SV ♯G.

In particular the algebra H0,0(G) is graded. Moreover, the isomorphism e(SV ♯G)e ∼=
SV G, where SV G is the algebra of invariant polynomials, yields an isomorphism

eH0,0(G)e ∼= SV G

for the spherical subalgebra.

In general though, the defining relations (2.1) are not homogeneous and the algebra

Ht,f (G) does not inherit the grading of TV ♯G but only a filtration F•. Consider the

associated graded algebra

gr(Ht,f (G)) =
⊕

i

Fi(Ht,f (G))/Fi−1(Ht,f (G)).

Since uv − vu lies in degree two for any u, v ∈ V , while any element of the group

algebra lies in degree zero it is clear from the defining relations that u, v commute in

gr(Ht,f (G)). Thus there exists a surjective homomorphism of graded algebras

φ : H0,0(G) = SV ♯G ։ gr(Ht,f (G)).

One of the most important properties of the algebra Ht,f (G) is that the above ho-

momorphism is also injective, as stated in the next theorem, called Poincaré-Birkhoff-

Witt(PBW)-Theorem in analogy with the PBW-Theorem for the universal enveloping

algebra of a Lie algebra.
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Theorem 2.2.5. ([EG02], Theorem 1.3) For any t ∈ C and f ∈ C(S) the above

homomorphism is an isomorphism.

It is clear that the PBW theorem also gives an isomorphism

gr(eHt,f (G)e) ∼= SV G.

It is not hard to see that rescaling the parameters t, f by a non-zero complex

number does not changeHt,f (G) up to isomorphism. Thus, in particular, for any t 6= 0

there is an isomorphism Ht,f (G) ∼= H1,f/t(G). This reduces the study of symplectic

reflection algebras to the two cases t = 0 (quasi-classical case) and t = 1 (quantum

case) that present substantial differences. In this thesis we will be concerned with the

second case.

Suppose then that t = 1. In this case, specializing the parameter f to 0 we get

an isomorphism

H1,0(G) ∼=W♯G

where W is the Weyl algebra of the symplectic vector space (V, ω) i.e.

W :=
TV

〈uv − vu = ω(u, v)〉u,v∈V

.

Regard now f as a formal parameter and the family {H1,f (G)}f as a single algebra

over C[[C(S)]]. Thanks to the PBW property stated in Theorem 2.2.5, {H1,f (G)}f
has no torsion as a C[[C(S)]]-module. Thus the corresponding family is flat over

C[[C(S)]] and can be seen as a flat formal deformation ofW♯G (in this case the power

series defining the star product is a degree one polynomial in f , thus it converges for

any value of f and the deformation is not only formal). The following theorem is due

to Etingof and Ginzburg.

Theorem 2.2.6 ([EG02]). The family {H1,f (G)}f is the universal deformation of the

algebra W♯G and the family {eH1,f (G)e}f is the universal deformation of the algebra

of invariants WG.
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Proof. In [AFLS00] Alev, Farinati, Lambre and Solotar proved that the dimensions

of the Hochschild cohomology groups of W♯G are as follows

dimH i(W♯G) =





n(j) if i = 2j

0 if j is odd

where

n(j) = ♯ {conjugacy classes of elements g ∈ G such that rk(Id− g) = 2j} .

In particular, H3(W♯G,W♯G) = 0 and dimH2(W♯G,W♯G) = dimC(S). Thus

Theorem 1.3.4 guarantees the existence of the universal deformation and the fact

that it is parametrized by the space C(S). The only thing left to do is proving that

the family {H1,f (G)}f is actually the one satisfying the condition in Theorem 1.3.4.

In other words, it must be verified that the cohomology classes corresponding to the

family of infinitesimal (order one) deformations {H1,f (G)/mH1,f (G)}f (here m is the

maximal ideal in C[[C(S)]]) span the whole space C(S) and not a smaller one. This

is done in [EG02]. The proof for {H1,f (G)/mH1,f (G)}f is similar.

2

2.3 The wreath-product construction

In this thesis we will be interested in the study of the symplectic reflection algebras

attached to a special family of groups generated by symplectic reflections, provided

by the wreath product construction.

Let Γ be a finite subgroup of SL(2,C), and let Γn be the direct product Γ× · · · ×Γ︸ ︷︷ ︸
n factors

.

Let Sn be the symmetric group of rank n.

Definition 2.3.1. The wreath product Γn := Sn ⋉Γn is the semi-direct product of Sn

and Γn, where Γn is normal, and the action of Sn on Γn by conjugation is the natural

one in which Sn permutes the direct factors of Γn.
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Let now L be a 2-dimensional complex vector space with a symplectic form ωL, and

consider the space V = L⊕n, endowed with the induced symplectic form ωV = ωL
⊕n.

Choosing a symplectic basis we can identify Sp(L) with SL(2,C). Clearly, the

natural (faithful) action of the wreath product group Γn on V , where each factor Γ

in Γn acts on the corresponding summand L in V , and Sn permutes such summands,

is symplectic. Thus Γn ⊂ Sp(V ).

In the sequel we will write γi ∈ Γn for any element γ ∈ Γ seen as an element in the

i-th factor Γ of Γn. Γn acts by conjugation on the set S of its symplectic reflections.

It is easy to see that there are symplectic reflections of two types in Γn:

(S) the elements sijγiγj
−1 where i, j ∈ [1, n], sij is the transposition (ij) ∈ Sn,

and γ ∈ Γ;

(Γ) the elements γi, for i ∈ [1, n] and γ ∈ Γ r {1}.

Elements of type (S) are all in the same conjugacy class, while elements of type

(Γ) form one conjugacy class for any nontrivial conjugacy class in Γ. Thus functions

f ∈ C(S) can be written as pairs (k, c), where k is a number (the value of f on

elements of type (S)), and c is a conjugation invariant function on Γ r {1} (encoding

the values of f on the elements of type (Γ)).

Definition 2.3.2. The wreath product symplectic reflection algebra Ht,k,c(Γn) is the

symplectic reflection algebra attached to the vector space V , the group Γn and the

parameters t ∈ C and f = (k, c).

We will now give a more explicit presentation of the algebra Ht,k,c(Γn). For any

vector u ∈ L and any i ∈ [1, n] we will write ui ∈ V for u placed in the i-th summand

of V . In particular from now on we will fix a symplectic basis {x, y} of L (ωL(x, y) = 1)

and we will denote by {xi, yi} the corresponding symplectic basis for V . We will also

write cγ for the value of the function c on the element γ ∈ Γ.

Lemma 2.3.3. ([GG], Lemma 3.1.1) The algebra H1,k,c(Γn) is the quotient of TV ♯Γn

by the following relations:
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(R1) For any i ∈ [1, n]:

[xi, yi] = t+
k

2

∑

j 6=i

∑

γ∈Γ

sijγiγ
−1
j +

∑

γ∈Γr{1}

cγγi .

(R2) For any u, v ∈ L and i 6= j:

[ui, vj] = −k
2

∑

γ∈Γ

ωL(γu, v)sijγiγ
−1
j .

2

We will call the integer n the rank of the algebra H1,k,c(Γn).

We want now to have a closer look at some interesting examples.

Example 2.3.4. When the rank n is one, there is no parameter k (there are no

symplectic reflections of type (S)). Let now c = t+
∑

γ∈Γr{1} cγγ be the central element

of C[Γ] corresponding to the class function coinciding with c on Γr{1} and assuming

value t on the identity element. If we identify the tensor algebra algebra TL with the

ring C〈x, y〉 of noncommutative polynomials in x, y, then the rank one wreath product

symplectic reflection algebra is the quotient

Ht,c(Γ) :=
C〈x, y〉♯Γ
〈[x, y]− c〉 .

The algebra Ht,c(Γ) has interesting connections with the Kleinian singularity C2/Γ

(the spherical subalgebra eHt,c(Γ)e is a non-commutative deformation of the ring of

invariants C[x, y]Γ) and it was studied by Crawley-Boevey and Holland in [CBH98].

In particular, as we will see in the next chapter, a complete classification of the simple

finite dimensional Ht,c(Γ) module is available for all values of the parameters.

Example 2.3.5. When k = 0 the defining relations (R1), (R2) simplify drastically

and there is an isomorphism

Ht,0,c(Γn) ∼= Ht,c(Γ)⊗n♯Sn. (2.2)
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Example 2.3.6. Suppose Γ = Z/mZ is cyclic of some order m. In this case there

is a splitting V = h ⊕ h∗, where h is the reflection representation of Sn ⋉ (Z/mZ)n

(as a complex reflection group) and h∗ is its dual. The symplectic form ωV can be

identified with the natural pairing between h and h∗ that become Lagrangian subspaces.

Thus the vector space V can be seen as the cotangent bundle of h endowed with its

natural structure of symplectic manifold and with the diagonal (Hamiltonian) action of

Sn⋉(Z/mZ)n. The algebra Ht,k,c(Sn⋉(Z/mZ)n) is a special case of rational Cherednik

algebra. As a vector space, this algebra has a decomposition Sh⊗C[Γn]⊗Sh∗, analog

to the triangular decomposition for the universal enveloping algebra of a semisimple

Lie algebra.

As already mentioned, in this thesis we will be concerned with the representation

theory of the wreath product algebra when t = 1. Although our results will be true

whenever Γ is nontrivial, we want to recall that when Γ is cyclic, i.e. in the case of

the rational Cherednik algebra, there exists a more general (and effective) approach

to the study of representations. For rational Cherednik algebras, in fact, an analog

of category O for finite dimensional semisimple Lie algebras has been defined, as well

as a theory of standard modules and formal characters ([BEG03], [GGOR03]).

For completeness, we want to end this section with a few words about the case

t = 0. Suppose c 6= 0, the fact that makes the quasi-classical case notably different is

that the algebra H0,k,c(Γn) has a large center Z0,k,c such that

gr(Z0,k,c) = SV Γn

and

Z0,k,c
∼= eH0,k,c(Γn)e.

The following theorem is due to Etingof and Ginzburg.

Theorem 2.3.7. ([EG02], Corollary 1.14) If the parameters (k, c) are generic, all

irreducible H0,k,c(Γn)-modules are finite dimensional of dimension |Γn| = n!|Γ|n,
and are isomorphic to the regular representation of Γn as Γn-modules. Moreover,
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SpecZ0,k,c is a smooth algebraic variety, and irreducible modules are parametrized up

to isomorphism by the points of SpecZ0,k,c via the map that assigns to each module

its central character.
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Chapter 3

Finite dimensional representations

for H1,k,c(Γn)

3.1 Plan of the chapter

In this chapter we will present two different methods to produce examples of finite

dimensional representations for the algebra H1,k,c(Γn). Both methods start from

simple observations.

In the first place from Definition 2.2.3 we can see that the algebra H1,k,c(Γn)

contains a copy of the group algebra C[Γn]. Thus, the simplest thing to do is trying

to classify all irreducible Γn-modules that extend to representations of the whole

algebra H1,k,c(Γn). We give a complete answer to this problem in Section 3.2, which

is based on the paper [Mon07b].

Secondly, in the rank one case a complete classification of the finite dimensional

representations for the wreath product algebra H1,c(Γ) is available, thanks to the

results of Crawley-Boevey and Holland ([CBH98]). Moreover, as observed in Example

2.3.5

H1,0,c(Γn) = H1,c(Γ)⊗n♯Sn

i.e. when the parameter k is zero, the rank n algebra is simply the smash product

of the tensor product of n copies of the rank one algebra with Sn (where Sn acts by
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permuting the factors). As a consequence, in this case, finite dimensional irreducible

representations are also known (they can be recovered from a knowledge of the irre-

ducible finite dimensional representations in rank one and from well known results

by Macdonald about skew group algebras as explained in Section 3.3.4). We observe

now that that the algebra H1,0,c(Γn) has a flat formal deformation over the finite

dimensional vector space C(S) given by H1,k,c+c′ . The fact that this deformation is

flat follows from the PBW Theorem 2.2.5. Using this observation in Section 3.3 we

determine some sufficient conditions for a H1,0,c(Γn)-module to be deformed to values

of the parameters with nonzero k. This last section is based on the papers [EM05]

and [Mon07a].

We recall that in the case of cyclic (nontrivial) Γ some finite dimensional repre-

sentation were constructed by Chmutova and Etingof in [CE03] before our work.

3.2 Extending irreducible Γn-modules

3.2.1 Irreducible representations of wreath product groups

For the reader’s convenience, and in order to introduce some important notation,

we recall the classification of irreducible representations for a wreath product group.

Everything that follows is true for any finite group Γ and for representations over any

algebraically closed field F of characteristic 0. For simplicity we will consider F = C,

the field of complex numbers. For complete proofs and details the reader should refer

to [JK81], Chapter 4.

A nice property of the wreath product group Γn is that the set of its irreducible

representations Irr(Γn) can be completely recovered from a knowledge of Irr(Γ), using

the representation theory of the symmetric group.

Let {N1, . . . , Nν} denote a complete set of pairwise non-isomorphic representations

of Γ over C. Then a complete set of irreducible representations of Γn is given by

N = Nh1 ⊗ · · · ⊗Nhn where (h1, . . . , hn) varies in [1, ν]n. If nh denotes the number of
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indices i s.t. hi = h, i.e. the number of factors of N equal to Nh, then

~n = (n1, . . . , nν)

is called the type of N .

We will say that two representations N , N ′ are conjugate if they have the same

type. This simply means that N = Nh1 ⊗ · · ·⊗Nhn and N ′ = Nhσ(1)
⊗ · · ·⊗Nhσ(n)

for

some σ ∈ Sn, i.e. N ′ equals the representation N twisted by the outer automorphism

of Γn that permutes the factors according to σ. It turns out that the role played

by conjugate representations of Γn in recovering irreducible representations of Γn is

exactly the same. This is essentially because, as one can easily argue from Definition

2.3.1, the outer automorphism induced by σ ∈ Sn on Γn is a restriction of an inner

automorphism in Γn (conjugation by the element σ ∈ Γn). So from now on we will

consider only the representations of Γn that can be written as N = N⊗n1
1 ⊗· · ·⊗N⊗nν

ν .

Notice that the representations of this form are a complete set of irreducible, pairwise

non-conjugate representations of Γn.

For any h, we denote by Snh
the subgroup of Sn consisting of the permutations

that move only the indices {∑h−1
i=1 ni + 1, . . . ,

∑h
i=1 ni}, corresponding to the factors

of N isomorphic to Nh. We agree that Snh
= {1} if nh = 0. Thus we can consider

the group

S~n = Sn1 × · · · × Snν ⊂ Sn ⊂ Sn ⋉ Γn

called the inertia factor of N . Obviously any irreducible representation X of S~n is

obtained as X = X1 ⊗ · · · ⊗Xν , where Xh is an irreducible representation of Snh
.

The inertia subgroup of N , instead, is defined to be

(Γn)N = S~n ⋉ Γn ⊂ Sn ⋉ Γn.

Let’s now consider an irreducible Γn-module N = N⊗n1
1 ⊗ · · · ⊗N⊗nν

ν . There is a

natural action of (Γn)N on N in which Γn acts in the obvious way, and S~n permutes

the factors. This representation can be shown to be irreducible. For simplicity we
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will keep the notation N for this representation.

Another easy way to obtain irreducible representations of (Γn)N is extending an

irreducible representation X = X1 ⊗ · · · ⊗ Xν of S~n by making Γn act trivially. In

this case we will also keep the notation X for this extension.

Let’s now consider the tensor product of X and N

X ⊗N = (X1 ⊗ · · · ⊗Xν)⊗
(
N⊗n1

1 ⊗ · · · ⊗N⊗nν
ν

)
.

Here S~n acts both on X and on N( permuting the factors), while Γn acts only on N .

This is also an irreducible representation of (Γn)N ([JK81], page 155).

We can now obtain the induced representation of Γn:

X ⊗N ↑:= IndΓn

(Γn)N
X ⊗N

The following theorem holds.

Theorem 3.2.1. The representation X ⊗ N ↑ is irreducible and runs through a

complete system of pairwise non-isomorphic irreducible representations of Γn if N

runs through a complete system of pairwise non-conjugate irreducible representations

of Γn and, while N remains fixed, X runs through a complete system of pairwise

non-isomorphic irreducible representations of S~n.

In particular we have that, for a fixed X, the representation X ⊗ N ↑ depends

only on the type of N . With abuse of language we will call type of X ⊗ N ↑ the

type of N as a representation of Γn. We remark that the possible types of X ⊗N ↑
are in bijection with the ν-tuples (n1, . . . , nν), nh ≥ 0,

∑
h nh = n and that to any

such ν-tuple we can attach a proper partition of n, taking all the non-zero nhs in

(n1, . . . , nν) and ordering them in non-increasing order.

Example 3.2.2. Suppose all the factors of N are the same , i.e. N = N⊗n
h for some

h ∈ {1, . . . , ν}. The type of N is (0, . . . 0, n, 0, . . . 0) with n in the h-th position and

is associated to the partition of n of Young diagram a single row of length n, i.e. the

partition corresponding to the trivial representation of Sn. For this reason we will
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call these representations of “trivial type”. In this case the inertia factor of N is

Sn, its inertia subgroup coincides with Sn ⋉ Γn, and we need no induction. For any

irreducible representation X of Sn we obtain the irreducible representation X ⊗N of

Sn ⋉ Γn.

3.2.2 McKay correspondence

It is well known (see for example [Cox91], Chapters 6,7) that all the finite subgroups

of SL(2,C), or equivalently the finite groups of quaternions, can be distinguished into

two infinite series

• the cyclic groups Cm+1 for any m ≥ 0 (C1 = {1}), of order m+ 1;

• the dicyclic groups Dm−2 for n ≥ 4, of order 4(m− 2);

and three exceptional groups that are the double coverings of the groups of rotations

preserving regular polyhedra in R3 via the homomorphism of Lie groups SU(2) −→
SO(3,R):

• the binary tetrahedral group T, of order 24;

• the binary octahedral group O, of order 48;

• the binary icosahedral group I, of order 120.

The terminology we used refers to the so called McKay correspondence, as we are

going to explain. In ([McK81]) McKay showed that “the eigenvectors of the Cartan

matrices of affine type Ãm, D̃m, Ẽ6, Ẽ7, Ẽ8 can be taken to be the columns of the

character tables of the finite groups of quaternions”. To this end he attached a graph

to any finite subgroup of SL(2,C) in the following way. Consider the set of irreducible

non-isomorphic representations of a finite group Γ ⊂ SL(2,C), I = {N1, . . . , Nν}, and

let L be the defining representation of Γ, i.e. the representation of Γ as a subgroup of

SL(2,C). Notice that L is a self-dual representation. Now build the graph in which

the set of vertices is I, and the number of edges between two vertices Nh and Nh′

is the multiplicity of the irreducible representation Nh in Nh′ ⊗ L or equivalently,
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since L is self-dual, the multiplicity of Nh′ in Nh ⊗ L. Any such graph turns out

to be an extended Dynkin graph with extending vertex corresponding to the trivial

representation. If we label each vertex with the dimension of the corresponding

representation the result is the following. When Γ = Cn+1, n ≥ 0 is cyclic we get the

extended Dynkin diagram Ãn:

1 1 1

1

1

Figure 3-1: Graph Ãn

When Γ = Dn−2, n ≥ 4 is dicyclic we get the diagram D̃n:

1

1

1

1

2 2

Figure 3-2: Graph D̃n

When Γ = T (binary tetrahedral), Γ = O (binary octahedral) or Γ = I (binary

icosahedral) we get the extended Dynkin diagrams of type Ẽ6, Ẽ7, Ẽ8 respectively:

1 12 3 2

2

1

Figure 3-3: Graph Ẽ6
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4 3 2 1

2

1 2 3

Figure 3-4: Graph Ẽ7

1 2 3 4 5 6 4 2

3

Figure 3-5: Graph Ẽ8

In this setting, the adjacent vertices to a fixed vertex Nh correspond to the types

of the irreducible components of the representation Nh ⊗ L, while the number of

connecting vertices corresponds to the multiplicities of such types. Note that the

decomposition of Nh⊗L is multiplicity free (i.e. the diagram is simply laced) except

when Γ = C2 (i.e. for type Ã1). Thus, when Γ 6= C2, if for any i = 1, . . . , ν we set

di = dimNi, and we consider the vector δ = {di} ∈ Zν (corresponding to the above

labeling), we get the “harmonic” property

2di =
∑

jadjacent to i

dj

for the extended Dynkin diagrams above.

3.2.3 Representations of Sn with rectangular Young diagram

In what follows we will use the following standard results from representation theory

of the symmetric group. Denote by h the reflection representation of Sn. For a Young

diagram µ we denote by Xµ the corresponding irreducible representation of Sn and by

C(µ) the content of µ, i.e. the sum of signed distances of the cells from the diagonal.

Lemma 3.2.3. i) HomSn(h⊗Xµ, Xµ) = Cm−1, where m is the number of corners

of the Young diagram µ. In particular HomSn(h⊗Xµ, Xµ) = 0 if and only if µ

is a rectangle.
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ii) The element C = s12 + s13 + · · ·+ s1n acts by a scalar in Xµ if and only if µ is

a rectangle. In this case C|Xµ = 2 C(µ)
n

.

iii) If µ is a rectangular Young diagram of height a and width b, then C(µ) = (b−a) n
2

.

Proof. Let Sn−1 ⊂ Sn be the subgroup of permutations fixing the index 1. It is

well known that Xµ|Sn−1 =
∑
Xµ−j, where the sum is taken over the corners of µ

and µ − j is the Young diagram obtained from µ by cutting off the corner j. Since

h⊕C = IndSn

Sn−1
C, the assertion ( i) follows from the Frobenius reciprocity. To prove

( ii), observe that C commutes with Sn−1, so acts by a scalar on each Xµ−j. Thus,

if µ is a rectangle, C acts as a scalar (as we have only one summand), and the “if”

part of the statement is proved. To prove the “only if” part, let Zn be the sum of all

transpositions in Sn. Zn is a central element in the group algebra, and it is known to

act in Xµ by the scalar c(µ), where c(µ) is the content of µ, i.e. the sum over all cells

of the signed distances from these cells to the diagonal. Now, C = Zn − Zn−1, so it

acts on Xµ−j by the scalar c(j), the signed distance from the cell j to the diagonal.

The numbers c(j) are clearly different for all corners j, so if there are 2 or more

corners, then C cannot act by a scalar. This finishes the proof of (ii). Part (iii) is a

straightforward computation.

2

3.2.4 The main theorem

Our main theorem classifies the irreducible representations of Γn that extend to rep-

resentations of H1,k,c(Γn) for values of (k, c) with k 6= 0. For Γ = {1} it is easy

to see that the algebra H1,k,c(Sn) has no finite dimensional representations. In fact

H1,k,c(Sn) always contains a copy of the Weyl algebra (generated by the elements

x1 + · · · + xn, y1 + · · · + yn) that has no finite dimensional representations. We will

thus consider the case Γ 6= {1}. Before stating the theorem we need to introduce

some notation:

• ν will denote the number of conjugacy classes {C1, . . . , Cν} of Γ , with C1 = {1},
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|Cs| will be the cardinality of the class Cs, and cs the value of the class function

c on Cs;

• for any irreducible representation Nh of Γ, χNh
(Cs) will be the value of the

character of Nh on the class Cs .

With this notation, the complex number
|Cs|χNh

(Cs)

dim Nh
is the scalar corresponding to

the central element
∑

γ∈Cs
γ in the irreducible representation Nh.

Theorem 3.2.4. Let Γ 6= {1}. Then:

I) If an irreducible Γn-module M extends to a representation of H1,k,c(Γn) then

the generators xi, yi act by zero on M for any i = 1, . . . , n.

II) For k 6= 0 an irreducible representation M = X⊗N ↑ of Γn of type (n1, . . . , nν)

extends to a representation of some associated symplectic reflection algebra

H1,k,c(Γn) if and only if the following two conditions are satisfied:

i) X = X1 ⊗ · · · ⊗Xν, where Xh is an irreducible representation of Snh
with

rectangular Young diagram of some size ah × bh, for any h s.t. nh 6= 0;

ii) for any h 6= h′ s.t. nh, nh′ 6= 0, HomΓ(Nh ⊗ L,Nh′) = 0, where L is

the natural representation of Γ. In other words, any two non-isomorphic

representations Nh, Nh′ of Γ occurring in the type of N must be non-

adjacent vertices in the extended Dynkin diagram attached to Γ. We agree

that this condition is empty when N is of trivial type (Example 3.2.2).

III) The values of the parameter (k, c) for which M = X ⊗ N ↑ can be extended

form a linear subspace of Cν, which can be described as the intersection of the

hyperplanes

Hh : dimNh + (bh − ah)
k

2
|Γ|+

ν∑

s=2

cs |Cs|χNh
(Cs) = 0 (3.1)

for all h ∈ {1, . . . , ν} s.t. nh 6= 0, i.e. for any representation Nh occurring

in the type of N . The space of the solutions of this system of equations has

dimension ν − r where r = #{h s.t. nh 6= 0}.
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3.2.5 Proof of Theorem 3.2.4

From now on we will assume Γ 6= {1}. We will divide the proof of Theorem 3.2.4 in

several steps.

STEP 1 Proof of Theorem 3.2.4 part I)

Without loss of generality consider the elements x1, y1 ∈ H1,k,c(Γn). From Section

2.3 we know these elements commute with the elements γi for i 6= 1, and the action

of γ1 by conjugation on such elements corresponds to the action of γ on the basis

vectors x, y respectively in the natural representation L of Γ. Thus we can view x1,

y1 as a basis for the representation:

L⊗ C⊗ · · · ⊗ C︸ ︷︷ ︸
n−1

of Γn, where C is the trivial one-dimensional representation. So we have that the

action of x1, y1 on M induces maps of Γn-modules:

(L⊗ C⊗ · · · ⊗ C)⊗M −→M.

But now from Section 3.2.1 we have that, as a Γn-module, M decomposes in

irreducibles as
⊕

σ

Nhσ(1)
⊗ · · · ⊗Nhσ(n)

where σ are permutations in Sn and factors may appear with some multiplicity. Thus

composing with the Γn-module maps given by the injections and projections of the

direct factors we have that x1, y1 induce Γn-module maps:

(
L⊗Nhσ(1)

)
⊗ · · · ⊗Nhσ(n)

−→ Nhσ′(1)
⊗ · · · ⊗Nhσ′(n)

for any σ, σ′. Since the Nhs are irreducible Γ-modules, in order for such a map to be

non-zero, we must have Nhσ(i)
∼= Nhσ′(i)

for any i ≥ 2. This implies Nhσ(1)
∼= Nhσ′(1)
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and we get a homomorphism:

L⊗Nhσ(i)
−→ Nhσ(i)

.

But such a homomorphism must be zero as explained in Section 3.2.2, as all extended

Dynkin diagrams except Ã0 have no loop-vertices. We deduce x1, y1 act trivially on

M .

2

Now that we know that the generators xi, yi must act trivially on M we can reduce

the defining relations (R1), (R2) of H1,k,c(Γn) in Lemma 2.3.3 to the simpler form:

(R1’) For any i ∈ [1, n]:

0 = 1 +
k

2

∑

j 6=i

∑

γ∈Γ

sijγiγ
−1
j +

∑

γ∈Γr{1}

cγγi .

(R2’) For any u, v ∈ L and i 6= j:

0 =
k

2

∑

γ∈Γ

ωL(γu, v)γiγ
−1
j ,

where, with abuse of notation, we wrote γi, sij etc. . . for the images of the correspond-

ing elements of H1,k,c(Γn) in the representation M .

This reduction will allow us to prove part II) and III) of Theorem 3.2.4 by using

simple classical results from the representation theory of finite groups.

STEP 2 The relations (R2’)

It turns out that the relations (R2’) have an easy interpretation in terms of the

extended Dynkin diagram attached to the group Γ in the McKay correspondence.

Let L be the natural representation of Γ. We have the following proposition.
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Lemma 3.2.5. If X ⊗ Y ↑ is a representation of Γn of type (n1, . . . , nν), then the

operators of the corresponding matrix representation satisfy (R2’) for k 6= 0 if and

only if for any pair h, h′ s.t. nh, nh′ 6= 0, HomΓ(L ⊗ Nh, Nh′) = 0 i.e. if and only if

Nh, Nh′ are not adjacent vertices of the extended Dynkin diagram associated to Γ in

the McKay correspondence.

Proof. Relations (R2) are satisfied for k 6= 0 if and only if

∑

γ∈Γ

ωL(γu, v) γiγ
−1
j = 0 ∀u, v ∈ L, ∀ i 6= j .

We observe that, for any N , the subgroup Γn is contained in the inertia subgroup of

N and is normal in Γn. For this reason the induced representation X ⊗N ↑ can be

written as:

σ1 · (X ⊗N)⊕ · · · ⊕ σℓ · (X ⊗N) (3.2)

where ℓ = n!
n1!...nν !

, and {σ1, . . . , σℓ} is a set of representatives of the left cosets of

the inertia factor (Γn)N in Γn, that can be chosen to be all in Sn. The action of an

element g ∈ Γn on a vector σl · v is defined as follows:

g(σl · v) = σr · (g′v) where gσl = σrg
′ g′ ∈ (Γn)N .

By the normality of Γn, all the direct factors of (3.2) are stable under the action

of
∑

γ∈Γ ωL(γu, v) γiγ
−1
j , thus this operator has a block diagonal form. The l-th

block corresponds to the operator A(s, t) =
∑

γ∈Γ ωL(γu, v) γsγ
−1
t , with (s, t) =

(σ−1
l (i), σ−1

l (j)), in the representation X ⊗ N of (Γn)N . We are reduced now to

show that any such block is zero if and only if the conditions of the proposition are

satisfied. Since the action of A(s, t) is trivial on X, we can suppose X to be trivial

1-dimensional, thus X ⊗ N ∼= N . Without loss of generality we can also suppose

s ≤ t. Since the bilinear form ωL is non degenerate and u, v vary in all L we have:

A(s, t) = 0⇔
∑

γ∈Γ

γ ⊗ γ ⊗ γ−1|L⊗Nhs⊗Nht
= 0⇔

∑

γ∈Γ

γ ⊗ γ ⊗ γ−1∗|L⊗Nhs⊗Nht
= 0
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where “ ∗ ” denotes the transposition. Now, if we denote by N∗
ht

the dual representa-

tion of Nht , we notice that the last operator corresponds to the operator:

∑

γ∈Γ

γ ⊗ γ ⊗ γ|L⊗Nhs⊗N∗
ht
,

that is a multiple of the projector on the invariants of the representation L⊗Nhs⊗N∗
ht

.

Now this is zero if and only if HomΓ(L ⊗ Nht , Nhs) = 0. From Section 3.2.2 we

know this happens exactly when Nhs , Nht are non adjacent vertices in the Dynkin

diagram attached to Γ.

2

Notice that when N is of trivial type (0, . . . , n, . . . 0), i.e. when all the factors of N

are the same, Lemma 3.2.5 implies that the conditions (R2’) are automatically sat-

isfied (since extended Dynkin diagrams corresponding to non-trivial finite subgroups

of SL(2,C) have no loop vertices).

STEP 3 The relations (R1’)

The only thing we are left to do now is analyzing the conditions for relations (R1’)

to be satisfied. We will begin from the easiest case of M = X ⊗N ↑ with N of type

(0, . . . , n, . . . , 0). We have the following proposition.

Lemma 3.2.6. For k 6= 0 a representation M of Γn of trivial type (0, . . . , n, . . . 0)

extends to a representation of H1,k,c(Γn) if and only if the following conditions are

satisfied:

i) the representation X of Sn corresponds to a rectangular Young diagram;

ii) the parameter (k, c) satisfies the corresponding equation in part III) of Theorem

3.2.4.

Proof. As we observed in the previous subsection, Lemma 3.2.5 implies that in

this case relations (R2’) are satisfied. Thus we only have to consider relations (R1’).
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We have M = X⊗N⊗n
h , with X and Nh irreducible modules for Sn and Γ respec-

tively. We will begin with an easy clarifying example. When Nh is one dimensional,

it is straightforward to check that Lemma 3.2.6 holds. In this case in fact, the per-

mutation action of Sn on N⊗n
h is trivial and X ⊗N⊗n

h
∼= X as Sn-modules. Thus the

relation (R1’) for a fixed i looks like:

k

2
|Γ|
∑

j 6=i

sij = −1−
∑

γ∈Γr{1}

cγ χNh
(γ) = −1−

ν∑

s=2

cs |Cs|χNh
(Cs) ,

where χNh
(Cs) is the value of the character of Nh on the conjugacy class Cs. For

k 6= 0 we have:
∑

j 6=i

sij =
2 (−1−∑ν

s=2 cs |Cs|χNh
(Cs))

k |Γ| . (3.3)

So
∑

j 6=i sij must act as a scalar and Lemma 3.2.3 part ii) implies that X must have

rectangular Young diagram µ of some size a× b. We remark that Lemma 3.2.3 part

ii) iii) implies that the element
∑

j 6=i sij acts as the scalar 2 C(µ)
n

= (b − a) in this

representation. Substituting this value in equation (3.3) we get the result in the 1-

dimensional case. Notice that this first consideration solves completely the case when

Γ is cyclic.

Let’s now suppose dim X = m and dim Nh = p > 1. We rewrite relations (R1’)

as follows:

−1−
∑

γ∈Γ\{1}

cγγi =
k

2

∑

j 6=i

∑

γ∈Γ

sijγiγ
−1
j . (3.4)

We observe that the left hand side of (3.4) is a central element of the group algebra

C[Γn] (due to the fact that c is a class function), and that, as a Γn-module, X ⊗ N
is isomorphic to a direct sum of dimX copies of the irreducible representation N⊗n

h .

Thus the left hand side acts as a scalar in this representation. More precisely we

have:
∑

γ∈Γr{1}

cγγi =
ν∑

s=2

cs |Cs|χYh
(Cs)

dimNh

IdX⊗N .

So we must have that k
2

∑
j 6=i

∑
γ∈Γ sijγiγ

−1
j is a scalar. We will show that this oper-

ator has a block form that reduces equation (3.4) to equation (3.3).
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For this let’s take any two bases {v1, . . . , vp}, {x1, . . . , xm} for Nh and X respec-

tively. The vectors {vi = vi1 ⊗· · ·⊗ vin}, where the multi-index i = (i1, . . . , in) varies

in [1, p]n, are clearly a basis for N = N⊗n
h . We can give the multi-indices I a total

ordering i1, . . . , ipn using the lexicographic order. Consider now the basis of X⊗N⊗n
h

given by the vectors:

Z1 = x1⊗vi1
, . . . , Zm = xm⊗vi1

, . . . , Zm(pn−1)+1 = x1⊗vipn , . . . , Zmpn = xm⊗vipn .

Any transposition sij ∈Sn induces a permutation s̃ij (of order 2) on the set {i1, . . . , ipn}
thus on the vectors of the basis {Z1, . . . , Zmpn}. Let’s now denote by AX(sij) the

operator (of size m ×m) for sij in the representation X, and by Om the 0-operator

of size m×m. It is easy to see that, using the basis {Z1, . . . , Zmpn}, we can obtain a

block form for the operator sij in the representation X ⊗N from the block diagonal

operator 


AX(sij) Om · · · Om

Om
. . . · · · Om

...
...

. . .
...

Om · · · Om AX(sij)




by simply permuting the columns according to s̃ij. Using this, we can compute a

block form for sij

∑
γ∈Γ γiγ

−1
j . We denote each block, of size m ×m, by its position

(r, t), where r = (r1, . . . , rn), t = (t1, . . . , tn) are multi-indices. We have the following

formulas for the blocks :

• for (r, t) with r differing from t at most for the pair of indices (ri, rj):

(r, t) = AX(sij)
∑

γ∈Γ

αrjti(γ)αritj(γ
−1) ,

where αrj ,ti(γ) are the matrix coefficients in the representation Nh;
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• for (r, t) with r differing from t for indices different from ri, rj

(r, t) = Om .

Summing up over j 6= i we can now rewrite relations (R1’) in block form for each

i ∈ [1, n]:

1. for (r, t) with r differing from t at most for the index ri

k

2

∑

j 6=i

AX(sij)
∑

γ∈Γ

αrjti(γ)αrirj
(γ−1)=−δritiIm

(
1+

ν∑

s=2

cs |Cs|χNh
(Cs)

dimNh

)
(3.5)

where δriti =





0 if ri 6= ti

1 if ri = ti
;

2. for (r, t) with r differing from t at least for an index rj, j 6= i, and at most for

the pair of indices (ri, rj)

k

2
AX(sij)

∑

γ∈Γ

αrjti(γ)αritj(γ
−1) = 0 . (3.6)

In all the other cases we only obtain trivial relations.

Now we observe that, using the orthogonality property of matrix coefficients of

irreducible representations of a finite group, we get:

∑

γ∈Γ

αrj ,ti(γ)αri,tj(γ
−1) = δriti δrjtj

|Γ|
dimNh

.

Substituting these values in equation (3.6) we obtain trivial relations. From equation

(3.5), instead, we obtain that
∑

j 6=iAX(sij) must be a scalar operator. Thus Lemma

3.2.3 implies that the Young diagram µ attached to X is a rectangle, of some size

ah × bh, and that
∑

j 6=iAX(sij) acts on X as the scalar (b− a). Thus from equation
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(3.5) we obtain the equation:

dimNh + (bh − ah)
k

2
|Γ|+

ν∑

s=2

cs |Cs|χNh
(Cs) = 0

which is exactly the equation (3.1) for the hyperplane Hh in Theorem 3.2.4, part

III). Notice that, in this case, we get a single equation since Nh is the only factor

appearing in N .

2

We will now analyze the cases when the inertia factor of N is not the entire Sn

and an actual induction is needed to build the representation X ⊗ N ↑. If the type

of N is ~n = (n1, . . . , nν), then the inertia factor is S~n = Sn1 × · · · × Snν and we have:

X ⊗N ↑= σ1 · (X ⊗N)⊕ · · · ⊕ σℓ · (X ⊗N)

where ℓ = n!
n1!···nν !

and {σ1, . . . , σℓ} is a set of representatives for the left cosets of S~n

in Sn.

Remark 3.2.7. Let’s denote by [σ] the left coset of σ with respect to S~n. An easy

computation shows that for any transposition sij and any permutation σ:

[sijσ] = [σ]⇔ sσ−1(i)σ−1(j) ∈ S~n .

Moreover we observe that for any σ ∈ Sn and any i = 1, . . . , n:

γiσ = σγσ−1(i) .

We are now ready to prove the following result.

Lemma 3.2.8. For a representation X ⊗ N ↑ of Γn of non-trivial type (n1, . . . , nν)

relations (R1) are satisfied for some non-zero values of k if and only if:
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i) X = X1⊗· · ·⊗Xν, with Xh an irreducible representation of Snh
with rectangular

Young diagram;

ii) the parameter (k, c) satisfies the corresponding system of equations in part III)

of Theorem 3.2.4.

Proof. Let N be a representation of Γn of type (n1, . . . , nν). We observe that for

any X, if we choose {σ1, . . . , σℓ} ⊂ Sn representatives of the left cosets of (Γn)N in

Γn:

X ⊗N ↑= σ1 · (X ⊗N)⊕ · · · ⊕ σℓ · (X ⊗N) , (3.7)

is a Γn-stable decomposition of X ⊗ N ↑. For any representative σl, let’s denote by

σl N the representation of Γn with same underlying vector space as N and with the

action onN twisted by the automorphism induced by σl on Γn (the action of γi on σl N

is the same as the action of γσ−1(i) on N). Since Γn acts trivially on X, as a Γn-module

the subspace σl · (X ⊗N) is isomorphic to a direct sum of copies of the irreducible

representation σl N . So, for a fixed i, the Γn-central operator −1 −∑γ∈Γr{1} cγγi

preserves the subspaces σl · (X ⊗N) and acts as a scalar on each of them. For any

vector σl · v ∈ σl(X ⊗N) we have:


−1−

∑

γ∈Γr{1}

cγγi


 (σl · v) = σl · (−v) + σl ·




−

∑

γ∈Γr{1}

cγγσ−1
l

(i)


 v




= C(σl · v). (3.8)

with C ∈ C. The action of k
2

∑
j 6=i

∑
γ∈Γ sijγiγ

−1
j on such a vector is instead:

(
k

2

∑

j 6=i

∑

γ∈Γ

sijγiγ
−1
j

)
(σl · v) =

∑

j 6=i

σr(ijl) ·
((

k

2

∑

γ∈Γ

σ̃ijlγσ−1
l

(i)γ
−1

σ−1
l

(j)

)
v

)
(3.9)

where σr(ijl) is the representative in the set {σ1, . . . , σℓ} of the coset [sijσl] and σ̃ijl ∈
S~n is the unique element s.t. sijσl = σr(ijl)σ̃ijl.

Relations (R1’) are satisfied if and only if these two actions are the same. In

particular k
2

∑
j 6=i

∑
γ∈Γ sijγiγ

−1
j must preserve the subspace σl · (X ⊗ N). But let’s
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now look at equation (3.9) and take j 6= i s.t. [sijσl] = [σr], r 6= l i.e. sij “moves”

the subspace σl · (X ⊗ N) sending it to the subspace σr · (X ⊗ N). Then we have:

sσ−1
l

(i)σ−1
l

(j) /∈ S~n. This means that the representations Nσ−1
l

(i), Nσ−1
l

(j) are not iso-

morphic. As a consequence, arguing as in Lemma 3.2.5, we have that

∑

γ∈Γ

γσ−1
l

(i)γ
−1

σ−1
l

(j)
= 0

in the representation X ⊗ N , hence sij sends the subspace σl · (X ⊗ N) to 0. This

means that k
2

∑
j 6=i

∑
γ∈Γ sijγiγ

−1
j indeed preserves the subspace σl · (X ⊗ N) and

that relations (R1) split up into equations that can be checked on the subspaces

σl · (X ⊗ N) . So in equation (3.9) it is enough to take the sum over the j s s.t.

[sijσl] = [σl]. Moreover we know that if [sijσl] = [σl] then sijσl = σl sσ−1
l

(i)σ−1
l

(j) i.e.

σ̃ijl = sσ−1
l

(i)σ−1
l

(j). Hence, for a fixed i, if σ−1
l (i) = p the relations (R1’) reduce to the

following equations:

k

2

∑

q 6= p

spq ∈ Snhp

spq

∑

γ∈Γ

γpγ
−1
q = −1−

∑

γ∈Γr{1}

cγγp (3.10)

where the identity must be considered in the representation X ⊗ N of S~n ⋉ Γn and

p ∈ {σ−1
1 (i), . . . , σ−1

ℓ (i)}. For any p, equation (3.10) is exactly the p-th equation of

relations (R1’) for the extension of the representation of trivial type Xhp ⊗N
⊗nhp

hp
of

Snhp
⋉ Γnhp to the algebra H1,k,c(Snhp

⋉ Γnhp ). It is easily checked that, letting i and

σl vary, we obtain all the relations for the extension of the representations Xh⊗N⊗nh

h

of Snh
⊗ Γnh for any nh 6= 0 . Using Lemma 3.2.6 we get the result.

2

STEP 4 The conditions on the parameter (k, c)

Now that we classified the representations of Γn that can potentially be extended

to representations of H1,k,c(Γn) for k 6= 0. We would now like to show that such
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extensions exist for a non-empty set of values of (k, c). This amounts to proving

that the system of equations in Theorem 3.2.4 part III) admits solutions. Fix a

representation M = X ⊗N ↑ of Γn of type (n1, . . . , nν) satisfying conditions i) ii) of

Theorem 3.2.4 part II). We have the following lemma.

Lemma 3.2.9. If r = #{h s.t. nh 6= 0}, then the space of the solutions for the system

of equations in part II) of Theorem 3.2.4 has dimension ν − r.

Proof. By condition ii) we have that:

r = #{h s.t. nh 6= 0} < ν = #{vertices in the extended Dynkin diagram of Γ} .

Without loss of generality we can suppose n1, . . . , nr 6= 0, nh = 0 for h > r. So in

matrix form the system has size r × ν, with r ≤ ν − 1:




(b1−a1) |Γ|
2

|C2|χN1(C2) . . . |Cν |χN1(Cν)

(b2−a2) |Γ|
2

|C2|χN2(C2) . . . |Cν |χN2(Cν)
...

...
...

...

(br−ar) |Γ|
2

|C2|χNr(C2) . . . |Cν |χNr(Cν)







k

c2
...

cν




=




−dimN1

−dimN2

...

−dimNr



.

But now we have:

rk




|C2|χN1(C2) . . . |Cν |χN1(Cν)

|C2|χN2(C2) . . . |Cν |χN2(Cν)
...

...
...

|C2|χNr(C2) . . . |Cν |χNr(Cν)




= rk




χN1(C2) . . . χN1(Cν)

χN2(C2) . . . χN2(Cν)
...

...
...

χNr(C2) . . . χNr(Cν)




= r .

In fact the rows R1, . . . , Rr on the RHS are rows of the character table for Γ from

which we have erased the entries χNh
(1) = dimNh. If a non-trivial linear combination

∑r
h=1 ahRh of these rows is zero then the class function χ =

∑r
h=1 ahχNh

satisfies the

equation:

χ(γ) = 0, ∀ γ ∈ Γ r {1} .
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This is possible only if χ = mρ, where m ∈ C and ρ is the character of the regular

representation. Now we must have m 6= 0 since characters of non-isomorphic irre-

ducible representations are linearly independent. But m 6= 0 is also impossible since,

by condition ii), N1, . . . Nr are not a complete set of irreducible representations of Γ

while, on the other hand, any irreducible representation of Γ occurs in the regular

representation with non-zero multiplicity. So the matrix for the system in part III)

of Theorem 3.2.4 has maximal rank and the space of solutions has dimension ν − r.

2

We are finally ready to prove part II) and III) of Theorem 3.2.4.

STEP 5 Proof of Theorem 3.2.4 parts II) and III)

Just combine the results of Lemma 3.2.5, Lemma 3.2.6 and Lemma 3.2.9.

3.3 Deforming irreducible H1,0,c(Γn)-modules

3.3.1 A proposition in deformation theory

Let A be an associative unital algebra over C and let AU be a flat formal deformation

over C[[U ]], where U is some finite dimensional vector space. Let M be a left A-

module.

There exists a natural map η : U → H2(A,EndM). The map η is the com-

position of the map φ : U −→ H2(A,A) of Section 1.3 with the natural map

ψ : H2(A,A) −→ H2(A,EndM) induced by functoriality by the homomorphism

ρ : A −→ EndM giving the representation. The next proposition will be our main

tool in investigating the possibilty of obtaining H1,k,c+c′(Γn)-modules for k 6= 0 as

deformations of H1,0,c(Γn)-modules.

Proposition 3.3.1. Assume that η is surjective with kernel K, and moreover that

H1(A,EndM) = 0. Then:

59



(i) There exists a unique smooth formal subscheme S of the formal neighborhood

of the origin in U , with tangent space K at the origin, such that M deforms to a

representation of the algebra AS := AU⊗̂C[[U ]]C[S] (where ⊗̂ is the completed tensor

product).

(ii) The deformation of M over S is unique.

Proof. Let us realize AU explicitly as A[[~1, ..., ~n]] equipped with a product ∗ as

in (1.1). We may assume that K is the space of all vectors (~1, ..., ~n) such that

~m+1 = ... = ~n = 0.

Let D be the formal neighborhood of the origin in K, with coordinates t1 =

~1, ..., tm = ~m. Let θ : D → U be a map given by the formula θ(t1, ..., tm) =

(~1, ..., ~n), where ~i = ti for i ≤ m, and

~k =
∑

k,p1,...,pm

~k,p1,...,pmt
p1

1 ...t
pm
m , k > m,

where ~k,p1,...,pm ∈ C. More briefly, we can write ~k =
∑

p ~kpt
p, where p is a multi-

index. For brevity we also let ej to be the multi-index (0, ..., 1j, ..., 0).

We claim that there exist unique formal functions ~k = ~k(t), k > m, for which

we can deform M over D. Indeed, such a deformation would be defined by a series

ρ̃(a) =
∑

p

ρp(a)t
p,

where ρ0(a) = ρ(a), and ρ is the homomorphism giving the representation M . The

condition that ρ̃ is a representation gives for each p

d ρp =
∑

j

~jpρ(cej
) +Bp, (3.11)

where for j ≤ m, ~jp = 1 if p = ej and zero otherwise, and Bp is a 2-cocycle whose

expression may involve ρq and ~kq only with |q| < |p|. Since the map η is surjective,

there are (unique) ~m+1,p, ..., ~np for which the right hand side is a coboundary. For

such ~m+1,p, ..., ~np (and only for them), we can solve (3.11) for ρp.
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This shows the existence of the functions ~j(t), j > m, such that the deformation

of M over D is possible. To show the uniqueness of these functions, let ~j and ~′
j

be two sets of functions for which the deformation exists. Let ρp, ρ
′
p be the coeffients

of the corresponding representations ρ̃, ρ̃′. Let N be the maximal number such that

~jp = ~′
jp for |p| < N . Since H1(A,EndM) = 0, the solution ρp of (3.11) is unique up

to adding a coboundary. Thus we can use changes of basis in M to modify ρ̃ so that

ρp = ρ′p for |p| < N (note that this does not affect ~j). Then for any q with |q| = N ,

Bq(ρ̃) = Bq(ρ̃
′), and hence ~jq = ~′

jq. This contradicts the maximality of N .

Thus, we have shown that the functions ~j exist and are unique; they define a

parametrization of the desired subscheme S by D. Our proof also implies that the

deformation of M over S is unique, so we are done.

2

We end this section by recalling the following fact from algebraic geometry that

will guarantee that the representations we will find in Theorem 3.3.10 are actually

irreducible.

Let X be an affine irreducible algebraic variety over C, R = C[X]. Let A be an

algebra over R and M an A-module, such that A and M are free as R-modules and

M is of finite rank. For x ∈ X, let Ax, Mx be the fibers of A, M at x; so Ax is a

C-algebra and Mx a finite dimensional module over Ax.

Proposition 3.3.2. The set of x for which Mx is irreducible is open in X.

Proof. Let x be a point of X where Mx is irreducible. We have that the map

fx : A→ EndMx is surjective. This means that there exist elements a1, ..., aN2 in A,

N = dim RM , such that fx(ai) is a basis of EndMx. The set U of points z of X such

that fz(ai) are a basis of EndMz is open and contains x. We found a neighborhood

U of x such that, for all z in U , Mz is an irreducible Az-module, as desired.

2
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3.3.2 Deformed preprojective algebras

In order to apply Proposition 3.3.1 to our case, we need to have a closer look at

the finite dimensional irreducible representations of H1,0,c(Γn) = H1,c(Γ)⊗n♯Sn. As

we already mentioned, in analogy with the case of the wreath product groups, such

representations can be recovered from a knowledge of the irreducible representations

of the rank one algebra H1,c(Γ), using the representation theory of Sn. The complete

classification of the finite dimensional irreducible representations of H1,c(Γ) was ob-

tained by Crawley-Boevey and Holland in [CBH98] using the representation theory

of quivers and deformed preprojective algebras.

In this section we recall the Crawley-Boevey and Holland definition of the de-

formed preprojective algebra and how it is related with H1,c(Γ).

Let Q be a finite quiver (finite oriented graph) and let I be the set of its vertices.

If two vertices i, j ∈ I are connected by an arrow a in such a way that

a : i −→ j

we will denote by h(a) = j the head of the arrow a and by t(a) = i its tail. We will

denote by Q be the double quiver of Q, obtained by adding a reverse arrow

a∗ : j −→ i

for any arrow a : i −→ j of Q.

Let B :=
⊕

i∈I Cei be the semisimple finite dimensional algebra spanned by or-

thogonal idempotents ei corresponding to the vertices. Let let E be the vector space

with basis the set of arrows of Q. We have that E is a B-bimodule and E =
∑

i,j∈I Eij,

where Eij is spanned by all the arrows a with h(a) = i, t(a) = j. We can form the

path algebra of Q defined as CQ := TBE =
⊕

n≥0 T
n
BE, where T n

BE is the n-fold

tensor product of E over B. Each idempotent ei corresponds to the trivial path that

does not move from the vertex i, and arrows compose as paths on the oriented graph

when it is possible (otherwise their composition gives 0). For any λ ∈ B we write
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λ =
∑

i∈I λiei. For any i ∈ I define the element Ri of CQ as follows:

Ri :=
∑

{a∈Q|h(a)=i}

aa∗ −
∑

{a∈Q|t(a)=i}

a∗a . (3.12)

Definition 3.3.3. For any λ ∈ B, the deformed preprojective algebra Πλ(Q) is the

quotient
CQ

〈Ri − λiei〉i∈I

where 〈. . . 〉 denotes the two-sided ideal generated by the indicated elements.

By [CBH98] Lemma 2.2, the algebra Πλ(Q) does not depend on the orientation

of Q and it is unchanged up to isomorphism by multiplying λ by a nonzero scalar.

Consider now any quiver Q obtained by assigning any orientation to the extended

Dynkin diagram attached to Γ via the McKay correspondence. In this case the set of

vertices I is in bijection with the set of isomorphism classes of irreducible Γ-modules

{Ni}i∈I . Consider a parameter λ ∈ CI = Cν as above related to the parameter c of

the family H1,c(Γ) in the following way. If c = 1+
∑

γ∈Γr{1} cγγ is the central element

of C[Γ] that appears in the definition of H1,c(Γ) (see Example 2.3.4) then

λi = trNi
c . (3.13)

We have the following theorem.

Theorem 3.3.4. For Q and λ as above the algebra H1,c(Γ) is Morita equivalent to

the algebra Πλ(Q).

3.3.3 Irreducible representations of H1,c(Γ)

From the previous section we know that classifying the finite dimensional irreducible

representations of H1,c(Γ) is equivalent to solving the same problem for the alge-

bra Πλ(Q). If we denote by · the standard scalar product in Cν , by R the regular
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representation of Γ, and by δ ∈ Zν the vector at the end of Section 3.2.2 then

λ · δ = trRc

and the condition 1 = trRc corresponds to the condition λ ·δ = 1. Thus, in particular

it is enough to look at parameters λ with λ · δ 6= 0.

Any finite dimensional representation Y of Πλ(Q) is also a representations of the

path algebra of Q. Thus we can attach to Y a dimension vector α ∈ Zν such that

αi = dim eiY .

We recall now that one can associate an affine root system to the McKay graph Q.

The roots of such system can be distinguished into real roots and imaginary roots.

The real roots are divided into positive and negative roots, and are the images of

the coordinate vectors of Zν under sequences of some suitably defined reflections,

generating the Weyl group W attached to Q. The imaginary roots, instead, are all

the non-zero integer multiples of the vector δ. When λ ·δ 6= 0, let us denote by Rλ the

set of real roots α such that λ ·α = 0 (this is a finite set), and by Σλ the unique basis

of Rλ consisting of positive roots. The following theorem gives a classification of the

isomorphism classes of irreducible finite dimensional representations for H1,c(Γ).

Theorem 3.3.5 ([CBH98], Theorem 7.4). If λ · δ 6= 0, then Πλ(Q) has only finitely

many finite-dimensional simple modules up to isomorphisms, and they are in one-to-

one correspondence with the set Σλ. The correspondence is the one assigning to each

module its dimension vector.

We end this section with three lemmas that will be useful in the sequel.

Lemma 3.3.6. The characters of the irreducible finite dimensional H1,c(Γ)-modules

are linearly independent.

Proof. Let {Yh}h=1,...,p, where p = |Σλ|, be a complete collection of finite dimen-

sional, irreducible, pairwise non-isomorphic representations of H1,c(Γ). According to

Theorem 3.3.5, we write Σλ ∋ α(h) =
{
α(h),j

}
j=1,...,ν

for the dimension vector corre-

sponding to Yh under the Morita equivalence of Section 3.3.2, where λ corresponds
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to c as in (3.13). This means we have a decomposition Yh =
⊕ν

j=1N
⊕α(h),j

j as a

Γ-module (see [CBH98], § 3). Thus for the character of Yh as a Γ-module we get

(χYh
)|Γ =

∑ν
j=1 α(h),jχNj

. By Theorem 3.3.5 the αh’s are a basis of the vector space

Span C(Rλ) ⊂ Cν , thus they are linearly independent vectors in Cν . The result now

follows from the fact that the χNj
’s for j = 1, . . . , ν are linearly independent functions

on Γ.

2

We recall that the symmetrized Ringel form attached to the quiverQ is the bilinear

form (−,−) on ZI defined as follows. For any α = {αi} and β = {βi} in ZI set

〈α, β〉 =
∑

i∈I

αi βi −
∑

a∈Q

αt(a) βh(a). (3.14)

Then

(α, β) = 〈α, β〉+ 〈β, α〉. (3.15)

This bilinear form is W -invariant, where W is the Weyl goup of Q. Moreover,

when the underlying graph of Q is extended Dynkin, this form is positive semidefinite.

The radical is generated by the vector δ ([Kac90] Proposition 4.7, Theorem 4.8).

Lemma 3.3.7. Let Yh, Yh′ be two irreducible, finite dimensional, non isomorphic

representations of H1,c(Γ) and let α(h), α(h′) be the two distinct roots corresponding

to them under the Morita equivalence. The following are equivalent

i) (α(h), α(h′)) = 0

ii) Ext1
H1,c(Γ)(Yh, Yh′) = 0

Proof. We can of course prove the result for the corresponding Πλ(Q)-modules that

we will still denote by Yh, Yh′ . The result then can be easily deduced from [CBH98],

§ 7. The two conditions are in fact equivalent when λ is a dominant parameter (see

[CBH98] § 7 for a definition of dominance) . In this case in fact, by [CBH98] Lemma

7.1, the dimension vectors α(h), α(h′) are simple roots corresponding to two distinct
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vertices. Thus Ext1
Πλ

(Yh, Yh′) 6= 0 if and only if α(h), α(h′) correspond to adjacent

vertices i.e. if and only if (α(h), α(h′)) 6= 0 (see formulas (3.14), (3.15)). When λ is not

dominant but λ · δ = 1, there exists an element w of the Weyl group W attached to

the quiver Q such that wλ = λ+ is dominant. In this case the algebra Πλ is Morita

equivalent to the deformed preprojective algebra Πλ+ , and this Morita equivalence

acts on the dimension vectors as the element w ∈W , i.e. in particular preserving the

Ringel form (see [CBH98] Corollary 5.2, Lemma 7.2, and Theorem 7.4). Thus we can

reduce ourselves to the case when λ is dominant.

2

Lemma 3.3.8. Let Y be an irreducible H1,c(Γ)-module. Then Ext1
H1,c(Γ)(Y, Y ) = 0.

Proof. We will prove the result for the corresponding Πλ(Q)-module that we will

also denote by Y . But it is known ([CBH98], Corollary 7.6) that Πλ(Q) contains only

one minimal ideal J among all the nonzero ideals, and Ext1
Πλ(Q)/J(Y ′, Y ′) = 0 for

any irreducible module Y ′ over the (finite dimensional) quotient algebra Πλ(Q)/J .

Since any finite dimensional Πλ(Q)-module must factor through Πλ(Q)/J , we get

Ext1
Πλ(Q)(Y, Y ) = 0, as desired.

2

3.3.4 Irreducible representations of H1,0,c(Γn)

We recall that H1,0,c(Γn) = H1,c(Γ)⊗n♯Sn. Let {Yh}h=1,...,p, where p = |Σλ|, be a

complete set of pairwise non-isomorphic finite dimensional H1,c(Γ)-modules. In a

similar fashion as in Section 3.2.1, let Y = Y ⊗n1
1 ⊗ · · · ⊗ Y ⊗np

p , with
∑

i ni = n, be a

representation of H1,c(Γ)⊗n of type ~n = (n1, · · · , np). Set S~n = Sn1 × · · · × Snp ⊂ Sn,

and let X = X1⊗· · ·⊗Xp be an irreducible representation of S~n. As in Section 3.2.1,

we will say that a representation Y′ = Yh1 ⊗ · · · ⊗ Yhn is conjugate to Y (or has the

same type as Y) if it has the same factors up to a permutation. The tensor product

X ⊗Y is an irreducible representation of the subalgebra H1,c(Γ)⊗n♯S~n ⊂ H1,0,c(Γn),
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where S~n acts both on X and on Y (permuting the factors of Y). We can form the

induced H1,0,c(Γn)-module:

X ⊗Y ↑:= Ind
H1,0,c(Γn)

H1,c(Γ)⊗n♯S~n
X ⊗ Y.

By [Mac80] (paragraph after (A.5)), we have the following theorem.

Theorem 3.3.9. The representation X⊗Y ↑ is irreducible and runs through a com-

plete system of pairwise non-isomorphic irreducible representations of H1,0,c(Γn) if Y

runs through a complete system of pairwise non-conjugate irreducible representations

of H1,c(Γ) and, while Y remains fixed, X runs through a complete system of pairwise

non-isomorphic irreducible representations of S~n.

3.3.5 The main theorem

Denote by Mc = X ⊗Y ↑ an H1,0,c(Γn)-module of some type (n1, . . . , np) for some

c. Notice that, by Theorem 3.3.5, such representations exist only for special values

of c. Denote by M the underlying vector space of Mc. Let M = M(Y, X) be

the moduli space of irreducible representations of H1,k,c(Γn) isomorphic to M as Γn-

modules (where (k, c) are allowed to vary). This is a quasi-affine algebraic variety: it

is the quotient of the quasi-affine variety M̃(Y, X) of extensions of the Γn-module

M to an irreducible H1,k,c(Γn)-module by a free action of the reductive group G of

basis changes in M compatible with Γn modulo scalars. Let F :M→ C(S) be the

morphism which sends a representation to the corresponding values of (k, c).

Let χYh
be the character of the representation Yh of H1,c0(Γ) and let α(h) be

the positive real root attached to Yh under the Morita equivalence. With the same

notation as in Theorem 3.2.4 we have the following result.

Theorem 3.3.10. Suppose Xh has rectangular Young diagram of some size ah×bh for

any h such that nh 6= 0, and that moreover (α(h), α(h′)) = 0 for any h 6= h′ such that

nh, nh′ 6= 0 (where we agree that the last condition is empty if ~n = (0, . . . , n, . . . , 0)

corresponds to the trivial partition). Then:
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(i) For any c0 the representation Mc0 of H1,0,c0(Γn) can be formally deformed to

a representation of H1,k,c(Γn) along the intersection of the hyperplanes

HYh,ah,bh
: dimYi +

k

2
|Γ|(bi − ai) +

ν∑

s=2

cs|Cs|χYi
(Cs) = 0

for all h ∈ {1, . . . , p} such that nh 6= 0, but not in other directions. This deformation

is unique. The linear space described by the above equations has dimension ν − r

where r = #{h s.t. nh 6= 0}.
(ii) The morphism F mapsM to

⋂

h|nh 6=0

HYh,ah,bh
and is étale at Mc0 for all c0. Its

restriction to the formal neighborhood of Mc0 is the deformation from (i).

(iii) There exists a nonempty Zariski open subset U of
⋂

h|nh 6=0

HYh,ah,bh
such that

for (k, c) ∈ U , the algebra H1,k,c(Γn) admits a finite dimensional irreducible represen-

tation isomorphic to M as a Γn-module.

3.3.6 Proof of Theorem 3.3.10

STEP 1 Homological properties of H1,c(Γ)

We recall the following definition (see [vdB98, vdB02, EO06]):

Definition 3.3.11. An algebra B is defined to be in the class V B(d) if it is of finite

Hochschild dimension (i.e. there exists n ∈ N s.t. H i(B,E) = 0 for any i > n and

any B-bimodule E) and H∗(B,B ⊗ Bo) is concentrated in degree d, where it equals

B as a B-bimodule.

The meaning of this definition is clarified by the following result by Van den Bergh

([vdB98, vdB02]).

Theorem 3.3.12. If B ∈ V B(d) then for any B-bimodule E, the Hochschild homol-

ogy Hi(B,E) is naturally isomorphic to the Hochschild cohomology Hd−i(B,E).

2
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Proposition 3.3.13. The algebra H1,c(Γ) belongs to the class V B(2).

Proof. Let us pose B := H1,c(Γ). If Γ = {1}, the statement is well known ([vdB98,

vdB02]; see also [EO06]). Let us consider the case Γ 6= {1}. We have to show that B

has finite Hochschild dimension and that:

H i(B,B ⊗Bo) = 0 for i 6= 2

H2(B,B ⊗Bo) ∼= B as B − bimodules.

The algebra C 〈x, y〉 ♯Γ has a natural increasing filtration obtained by putting x, y in

degree 1 and the elements of Γ in degree 0. This filtration clearly induces a filtration

on B: B = ∪n≥0F
nB, and the associated graded algebra is B0 = grB = C [x, y] ♯Γ (by

the PBW theorem), which has Hochschild dimension 2. So by a deformation argument

we have that B has finite Hochschild dimension (equal to 2) and H i(B,B ⊗Bo) = 0

for i 6= 2, as this is true for B0 (which is easily checked since B0 is a semidirect

product of a finite group with a polynomial algebra).

It remains to show the B-bimodule E := H2(B,B⊗Bo) is isomorphic to B. Using

again a deformation argument (cf. [vdB98]), we can see that E is invertible and free

as a right and left B-module, because this is true for B0. So E = Bφ where φ is an

automorphism of B such that grφ = 1. We will now show that φ = 1, which will

conclude the proof.

Define a linear map ξ : B0 → B0 as follows: if z ∈ B0 is a homogeneous element

of degree n, and z̃ is its lifting to B, then ξ(z) is defined to be the projection of

the element φ(z̃) − z̃ (which has filtration degree n − 1) to (grB)n−1. It is easy to

check that ξ is well defined (i.e., independent on the choice of the lifting), and is a

derivation of B0 of degree −1.

Our job is to show that ξ = 0. This would imply that φ = 1, since B is generated

by F 1B.

It is clear that any homogeneous inner derivation of B0 has nonnegative degree.

Hence, it suffices to show that the degree −1 part of H1(B0, B0) is zero. But it is
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easy to compute using Koszul complexes that H1(B0, B0) = Vect(L)Γ, the space of

Γ-invariant vector fields on L. In particular, vector fields of degree −1 are those with

constant coefficients. But such a vector field cannot be Γ-invariant unless it is zero,

since the space L has no nonzero vectors fixed by Γ. Thus, ξ = 0 and we are done.

2

Corollary 3.3.14. H2(H1,c(Γ),EndY ) = H0(H1,c(Γ),EndY ) = C.

Proof. Posing again B := H1,c(Γ), we can apply Theorem 3.3.12 to obtain the first

identity. Furthermore, H0(B,EndY ) = EndY/[B,EndY ] = C as Y is irreducible, so

the second identity follows.

2

STEP 2 Homological properties of H1,0,c(Γn)

We would now like to apply Proposition 3.3.1 to the algebra H1,0,c0(Γn), its flat

formal deformation H1,k,c0+c′(Γn) over the finite dimensional vector space U = C(S),

and any moduleM satisfying the conditions of Theorem 3.3.10. Our job is to compute

the cohomology groups H2(H1,0,c(Γn),EndM), H1(H1,0,c(Γn),EndM) and to show

the surjectivity of the map η.

Proposition 3.3.15. If M is as in Theorem 3.3.10 and r ∈ N is as in part (i) of the

same theorem then

H2(H1,0,c(Γn),EndM) =
⊕

h|nh 6=0

H2(H1,c(Γ),EndYh) = Cr.

Proof. The second equality follows from Corollary 3.3.14. Let us prove the first

equality. For simplicity, let B denote the algebra H1,c(Γ) as above, and let A be the
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algebra H1,0,c(Γn). Thus we can write A = Sn♯B
⊗n. We have:

H∗(A,EndM) = Ext∗A⊗Ao(A,EndM)

= Ext∗B⊗n♯Sn⊗Bo⊗n♯Sn
(B⊗n♯Sn,EndM)

= Ext∗(B⊗n⊗Bo⊗n)♯Sn×Sn
(B⊗n♯Sn,EndM)

Now, the (B⊗n ⊗ Bo⊗n)♯Sn × Sn-module B⊗n♯Sn is induced from the module B⊗n

over the subalgebra (B⊗n ⊗ Bo⊗n)♯Sn, in which Sn acts simultaneously permuting

the factors of B⊗n and Bo⊗n (note that (B⊗n ⊗ Bo⊗n)♯Sn is indeed a subalgebra of

(B⊗n ⊗ Bo⊗n)♯Sn × Sn as it can be identified with the subalgebra (B⊗n ⊗ Bo⊗n)♯D

where D = {(σ, σ), σ ∈ Sn} ⊂ Sn × Sn). Applying the Shapiro Lemma we get:

Ext∗(B⊗n⊗Bo⊗n)♯Sn×Sn
(B⊗n♯Sn,EndM) = Ext∗(B⊗n⊗Bo⊗n)♯Sn

(B⊗n,EndM)

=
(
Ext∗B⊗n⊗Bo⊗n(B⊗n,EndM)

)Sn
.

We observe now that the subalgebra B⊗n is stable under the inner automorphisms

induced by the elements σ ∈ Sn ⊂ A. Thus setting M ′ = X ⊗ Y the induced A-

module M can be written as:

M = σ1M
′ ⊕ σ2M

′ ⊕ · · · ⊕ σℓM
′ (3.16)

where ℓ = n!
n1!...nr!

and {σ1, . . . , σℓ} is a set of representatives for the left cosets of S~n

in Sn. The action of an element σ(b1 ⊗ · · · ⊗ bn) on a vector σl · m′ ∈ σlM
′ is the

following:

σ(b1 ⊗ · · · ⊗ bn) (σl ·m′) = σs · (σ′(bσl(1) ⊗ · · · ⊗ bσl(n))m
′) ∈ σsM

′ (3.17)

where σ′ ∈ S~n, σs ∈ {σ1, . . . , σℓ} are the only elements satisfying σσl = σhσ
′. In

particular as a B⊗n-module, each summand σlM
′ = σlX ⊗ σlY equals:

X ⊗ Yh
σ
−1
l

(1)
⊗ · · · ⊗ Yh

σ
−1
l

(n)

71



with trivial action of B⊗n on X.

Thus we have a chain of Sn-equivariant isomorphisms:

Ext∗B⊗n⊗Bo⊗n(B⊗n,EndM)

= Ext∗B⊗n⊗Bo⊗n

(
B⊗n,End

(⊕

l

σlM
′

))

= Ext∗B⊗n⊗Bo⊗n

(
B⊗n,

⊕

l,s

Hom(σlM
′, σsM

′)

)

=
⊕

l,s

Ext∗B⊗n⊗Bo⊗n

(
B⊗n,Hom(σlM

′, σsM
′)
)

=
⊕

l,s

Ext∗B⊗n⊗Bo⊗n

(
B⊗n,Hom(σlX, σsX)⊗ Hom(σlY, σsY)

)

=
⊕

l,s

Hom(σlX, σsX)⊗ Ext∗B⊗n⊗Bo⊗n

(
B⊗n,Hom(σlY, σsY)

)

=
⊕

l,s

Hom(σlX, σsX)⊗ Ext∗B⊗n⊗Bo⊗n

(
B⊗n,

n⊗

i=1

Hom(Yh
σ
−1
l

(i)
, Yh

σ
−1
s (i)

)

)
(3.18)

where the third identity holds since the action of B⊗n ⊗ Bo⊗n does not permute

the direct factors in
⊕

l

σlM
′ and is trivial on X in the module M ′. Since all the

identities pass to invariants, all is left to do is computing the degree 2 component of

the invariance of (3.18).

To this end, we apply the Künneth formula in degree 2. Lemma 3.3.7, Lemma

3.3.8 and our conditions on the Yh’s guarantee Ext1B(Yh, Yh′) = 0 for any h 6= h′

with nh, n
′
h 6= 0. Moreover, for any h 6= h′, Yh, Yh′ are non-isomorphic irreducible

representations of B, thus Ext0
B(Yh, Yh′) = HomB(Yh, Yh′) = 0. As a consequence we

get




⊕

l,s

(σ−1
l

(i)σ−1
s (i))∈S~n ∀i

Hom(σlX, σsX)⊗
n⊕

i=1

Ext2
B⊗Bo

(
B,Hom(Yh

σ
−1
l

(i)
, Yh

σ
−1
s (i)

)

)




Sn
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where (σ−1
l (i)σ−1

s (i)) denotes the transposition moving the corresponding indices.

Now we have (σ−1
l (i)σ−1

h (i)) ∈ S~n, ∀i if and only if σl = σsσ with σ ∈ S~n. But σl, σs

belong to different left cosets of S~n. Thus we can rewrite the last term as:

(⊕

l

EndσlX ⊗
⊕

i

Ext2
B⊗Bo(B,EndYh

σ
−1
l

(i)
)

)Sn

=


 ⊕

h|nh 6=0

EndX ⊗
(
Ext2

B⊗Bo (B,EndYh)
)⊕nh




S~n

=


 ⊕

h|nh 6=0


 ⊗

h′|nh′ 6=0

EndXh′


⊗

(
Ext2

B⊗Bo (B,EndYh)
)⊕nh




S~n

.

Now we have that as an Snh
-module:

(
Ext2

B⊗Bo (B,EndYh)
)⊕nh = Ext2

B⊗Bo (B,EndYh)⊗ Cnh

with Snh
acting only on Cnh by permuting the factors, and Cnh = C ⊕ hh, where C

the trivial representation, and hh is the reflection representation of Snh
. So we have:

⊕

h|nh 6=0

Ext2
B⊗Bo (B,EndYh)⊗(EndX1 ⊗ · · · ⊗(Cnh ⊗ EndXh)⊗ · · · ⊗EndXp)

S~n

=
⊕

h|nh 6=0

Ext2
B⊗Bo (B,EndYh)⊗

⊗
(
EndSn1

X1 ⊗ · · · ⊗ (C⊗ EndXh ⊕ hh ⊗ EndXh)
Snh ⊗ · · · ⊗ EndSnp

Xp

)

=
⊕

h|nh 6=0

Ext2
B⊗Bo (B,EndYh)⊗

(
EndSnh

Xh ⊕ HomSnh
(hh ⊗Xh, Xh)

)

=
⊕

h|nh 6=0

Ext2
B⊗Bo (B,EndYh) = Cr

since, by Lemma 3.2.3, the fact that Xh has rectangular Young diagram for any h

such that nh 6= 0 guarantees HomSnh
(hh ⊗Xh, Xh) = 0 for all such hs.

2
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Corollary 3.3.16. If M is as in Proposition 3.3.15, then map

η : U −→ H2(H1,0,c(Γn),EndM)

is surjective.

Proof. As in the previous proofs, let B := H1,c(Γ) and A := H1,0,c(Γn). Let U0 ⊂ U

be the subspace of vectors (0, c′). It is sufficient to show that the restriction of η to

U0 is surjective. But this restriction is a composition of three natural maps:

U0 → H2(B,B)→ H2(A,A)→ H2(A,EndM).

Here the first map η0 : U0 → H2(B,B) is induced by the deformation of B along

U0, the second map ξ : H2(B,B) → H2(A,A) comes from the Künneth formula,

and the third map ψ : H2(A,A)→ H2(A,EndM) is induced by the homomorphism

A→ EndM .

Now, by Proposition 3.3.15, the map ψ◦ξ coincides with the map ψ0 : H2(B,B)→
⊕

h|nh 6=0H
2(B,EndYh) induced by the homomorphism φ : B → ⊕

h|nh 6=0 EndYh.

Let K0 = Ker(ψ0) and U ′
0 = η−1

0 (K0). We have to show that codimU ′
0 ≥ r =

♯ {h s.t. nh 6= 0}. By the results of STEP 1, Proposition 3.3.1 can be applied to

the algebra B and the representation Yh for any h such that nh 6= 0. Thus, for any

such h, the representation Yh admits a first order deformation along U ′
0. So, by the

defining relations for the rank one case ( see Example 2.3.4), on U ′
0 we must have

trYh
(c) = 0, where c is as in Section 3.3.2. Since the representations Yh are non-

isomorphic their characters are linearly independent by Lemma 3.3.6, hence so are

these linear equations. Thus the codim(U ′
0) ≥ r, and η|U0 is surjective, as desired.

2

Proposition 3.3.17. H1(H1,0,c(Γn),EndM) = 0.

Proof. Arguing as in the proof of Proposition 3.3.15, and using the same notation,

we get that H1(A,EndM) =
⊕

h|nh 6=0H
1(B,EndYh), which is zero by Lemma 3.3.8.

This proves the proposition.
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2

We have proved the following result.

Proposition 3.3.18. If the conditions of Theorem 3.3.10 are satisfied then there

exists a unique smooth codimension r formal subscheme S of the formal neighborhood

of the origin in U such that the representation of H1,0,c0(Γn) on the vector space M

deforms to a representation of H1,k,c0+c′(Γn) along S (i.e., abusing the language, for

(k, c′) ∈ S). Furthermore, such a deformation over S is unique.

Proof. Corollary 3.3.16 and Proposition 3.3.17 show that our case satisfies all the

hypotheses of Proposition 3.3.1. Moreover, from H2(A,EndM) = Cr we deduce

dim Ker η = dimU − r, and the Proposition follows.

2

STEP 3 The subscheme S and the proof of part (i)

Now we would like to find the subscheme S of Proposition 3.3.18. We will do this

computing some appropriate trace conditions for the deformation of the module M .

Let xi, yi, γi, sij be the elements of H1,k,c(Γn) that appear in Lemma 2.3.3.

Let again r be as in Theorem 3.3.10 part (ii). For simplicity let us write Y =

Y
⊗nh1
h1

⊗ · · · ⊗ Y ⊗hr

hr
where hs ∈ {1, . . . , p} are all distinct, and X = Xh1 ⊗ · · · ⊗Xhr .

Since the Yhs are finite dimensional, irreducible, non-isomorphic representations of

H1,c(Γ), Lemma 3.3.6 ensures that for any choice of complex numbers z1, . . . , zr there

exists a central element Z of C[Γ] such that χYhs
(Z) = trYhs

(Z) = zs. Fix now Z(1)

such that trYhs
(Z(1)) = 1− δ1s and consider the element:

P1 = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
nh1

⊗Z(1)⊗ · · · ⊗ Z(1)︸ ︷︷ ︸
n−nh1

∈ H1,k,c(Γn).

Such element commutes with x1, y1. Consider now the relation (R1) in Lemma 2.3.3

for i = 1 (and t = 1), and multiply it by P1 on the right. The left hand side becomes
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[x1, y1P1], thus it has trace zero. To compute the trace of the right hand side operator

it is convenient to use again the decomposition of the induced module M given in the

previous section (cfr. (3.16), (3.17)). The trace of the right hand side reduces to the

sum of the three terms:

trMP1 = m (dimYh1)
nh1

∏

s

dimXhs (3.19)

k

2
trM

( nh1∑

j=2

∑

γ∈Γ

s1jγ1γ
−1
j

)
P1 =

k

2
m tr

Xh1
⊗Y

⊗nh1
h1

( nh1∑

j=2

∑

γ∈Γ

s1jγ1γ
−1
j

)∏

s 6=1

dimXhs (3.20)

trM


 ∑

γ∈Γr{1}

cγγ1


P1 = m


 ∑

γ∈Γr{1}

cγtrYh1
(γ)


 (dimYh1)

nh1
−1
∏

s

dimXhs (3.21)

where m =
(n−nh1

)!

nh2
!...nhr !

is the number of elements σl in the set of representatives

{σ1, . . . , σℓ} such that σ−1
l ({1, 2, . . . , nh1}) = {1, 2, . . . , nh1}. Now we claim that:

tr
Xh1

⊗Y
⊗nh1
h1

(s1j γ1 γj
−1) = trXh1

(s1j) dimYh1

nh1
−1 ∀ j ≤ nh1 . (3.22)

To obtain (3.22), we observe that, for j ≤ nh1 , s1j γ1 γj
−1 is conjugate in the subgroup

Γnh1
= Snh1

⋉Γnh1 to s1j and that the character of Snh1
on Xh1 ⊗Y

⊗nh1
h1

is simply the

product of the characters on Xh1 and Y
⊗nh1
h1

. An easy computation gives tr
Y

⊗nh1
h1

sij =

dimYh1

nh1
−1, hence the formula.

From the proof of Lemma 3.2.3, we know that the central element
∑

i<j≤nh1

sij in

Snh1
acts on Xh1 as the scalar c(µ), where c(µ) is the content of the Young diagram µ

attached to Xh1 . We can deduce that the trace of each transposition s1j is trYh1
(s1j) =

dim Yh1

nh1
(nh1

−1)/2
c(µ). Thus if the Young diagram of Xh1 is of size ah1 × bh1 we get:

tr
Xh1

⊗Y
⊗nh1
h1

(s1jγ1 γj
−1) =

(bh1 − ah1) dimXh1

nh1 − 1
dimYh1

nh1
−1. (3.23)

where we used Lemma 3.2.3 part (iii) to evaluate c(µ) = (bh1−ah1)nh1/2. Substitut-
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ing in (3.20), summing up (3.19),(3.20),(3.21) and simplifying we get the equation:

dimYh1 +
k

2
|Γ|(bh1 − ah1) +

∑

γ∈Γr{1}

cγχYh1
(γ) = 0 (3.24)

that (grouping the elements γ ∈ Γ r {1} according their conjugacy class) is exactly

the equation for the hyperplane HYh1
,ah1

,bh1
. Analogously we can define Z(s), Ps and

obtain the equations of the hyperplane HYhs ,ahs ,bhs
for s = 2, . . . , r. We get exactly r

independent necessary linear conditions.

This shows that (0, c0) + S ⊂ ⋂r
s=1HYhs ,ahs ,bhs

. But since the two subschemes

have the same dimension we have that S is the formal neighborhood of zero in
⋂r

i=1HYhs ,ahs ,bhs
− (0, c0) and Theorem 3.3.10, (i) is proved.

STEP 4 Proof of part (ii) and (iii)

LetM′ be the formal neighborhood of Mc0 inM. We have shown that the morphism

F : M → U lands in
⋂

h|nh 6=0HYh,ah,bh
, and that F |M′ : M′ → (0, c0) + S is an

isomorphism. This implies that the map F :M→ ⋂
h|nh 6=0HYh,ah,bh

is étale at Mc0 .

This proves part (ii) of Theorem 3.3.10, and, together with Proposition 3.3.2, also

implies (iii), since a map which is étale at one point is dominant.
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Chapter 4

Continuous symplectic reflection

algebras

4.1 Plan of the chapter

Continuous symplectic reflection algebras were introduced by Etingof, Gan, and

Ginzburg in [EGG05] as a special case of continuous Hecke algebras. They are a

generalization of symplectic reflection algebras to reductive algebraic groups, where

the role of the group algebra is played by the ring of algebraic distributions O(G)∗. In

this chapter, after recalling some generalities about algebraic distributions in Section

4.2, we define continuous symplectic reflection algebras in Section 4.3 and describe

some of their properties. In Section 4.4 we consider more specifically continuous

symplectic reflection algebras for wreath product groups. Finally, in Section 4.5 we

define infinitesimal Hecke algebras, another special case of continuous Hecke algebras

we will be interested in.

4.2 Algebraic distributions

Let G be a reductive algebraic group over C, and denote by O(G) the algebra of

regular functions on G. The algebraic distributions on G are the elements of the dual

space O(G)∗.
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Example 4.2.1. For any g ∈ G there is a unique distribution δg such that 〈δg, f〉 =

f(g) for any f ∈ O(G). This distribution is called the delta distribution concentrated

at the point g.

The algebra O(G)∗ is naturally equipped with the weak or initial topology, as we

are going to explain. Let 〈 , 〉 : O(G)∗ ×O(G) −→ C be the natural pairing, and for

any f ∈ O(G) consider the map

Tf : O(G)∗ −→ C

µ −→ 〈µ, f〉

The weak topology on O(G)∗ is the coarsest topology making all the functions Tf for

f ∈ O(G) continuous, where C is given the discrete topology. To understand how the

weak topology looks like, let us realize O(G)∗ as the projective limit

O(G)∗ = lim←−U
∗

where U ⊂ O(G) ranges over all finite dimensional sub-vector spaces. Then, the

weak topology coincides with the inverse limit topology on O(G)∗, i.e. the coarsest

topology making all the projections O(G)∗ ։ U continuous (where each U is given

the discrete topology). In this topology a system of neighborhoods of 0 ∈ O(G)∗ is

given by all the sub-vector spaces of O(G)∗ of finite codimension.

The coalgebra structure on O(G) induces an algebra structure on O(G)∗ given by

the convolution product. To ease notation we will write simply µµ′ for the convolution

of any two distributions µ, µ′ ∈ O(G)∗. If ∆ : O(G) −→ O(G) ⊗ O(G) denotes the

coproduct for O(G), then the convolution product µµ′ is the unique distribution on

G such that:

〈µµ′, f〉 = 〈µ⊗ µ′,∆(f)〉 ∀f ∈ O(G) . (4.1)

Example 4.2.2. If G is a finite group, the assignment g −→ δg defines an algebra

isomorphism C[G] −→ O(G)∗.

The algebra O(G)∗ is equipped with a natural action of the algebra O(G). For
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any f ∈ O(G) and µ ∈ O(G)∗ define the element fµ = µf as the unique distribution

such that:

〈fµ, h〉 = 〈µ, fh〉 ∀h ∈ O(G). (4.2)

Let now Z be a closed subscheme of G and let I(Z) be the defining ideal of Z.

An algebraic distribution µ is said to be supported on Z if µ annihilates all functions

in I(Z). Using formula (4.2), this is equivalent to say that I(Z) ⊂ AnnO(G)(µ). It is

clear that the space of algebraic distributions on G supported on Z is isomorphic to

the space of algebraic distributions on Z.

We recall that there are two left actions of G on O(G) given by the left and right

translation respectively. More specifically, if we denote by g −→ λg ∈ EndO(G) the

homomorphism giving the left translation action, and by g −→ ρg ∈ EndO(G) the

homomorphism giving the right translation we have

λg(f)(h) = f(g−1h)

ρg(f)(h) = f(hg)

for any f ∈ O(G) and any g, h ∈ G. Both these actions induce left actions on O(G)∗

in the obvious way. Keeping the same notation for such actions, we have:

〈ρg(µ), f〉 = 〈µ, ρg−1(f)〉, ∀ g ∈ G, µ ∈ O(G)∗, f ∈ O(G)

(and similarly for the left translation λg ). These actions commute and thus make

O(G)∗ into a G×G-module. Note that as G×G-modules O(G) and O(G)∗ have the

following decompositions:

O(G) ∼=
⊕

i∈I

Ni ⊗N∗
i
∼=
⊕

i∈I

End(Ni), O(G)∗ ∼=
∏

i∈I

Ni ⊗N∗
i
∼=
∏

i∈I

EndNi (4.3)

where Ni ranges over all (isomorphism classes of) irreducible finite dimensional rep-

resentations of G, and N∗
i denotes the dual representation.

Example 4.2.3. For any reductive group G there exists a unique right and left
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translation-invariant algebraic distribution
∫

G
(·) dg : O(G) −→ C such that

∫
G

1 dg =

1. If we consider the decomposition of O(G) of formula (4.3) and we take N0
∼= C to

be the trivial representation, then
∫

G
(·) dg can be described as the projection on the

one dimensional subspace N0 ⊗N∗
0 .

Similarly the action of G on itself by conjugation induces actions on O(G) and

O(G)∗. These actions can be seen as the restrictions to the diagonal copy of G in

G × G of the G × G actions on O(G) and O(G)∗ that we described above. Thus,

for any closed Ad(G)-invariant subscheme Z of G, we have an induced action of G

on the space O(Z)∗ and a natural identification (O(Z)∗)G = O(Z/G)∗. We will

denote by C(Z) this last space. We will identify C(Z) with the space of G-invariant

distributions supported on Z.

4.3 Continuous symplectic reflection algebras

Let (V, ω) be as in Section 2.2. Let {vi} be any basis of V and let {v∗i } be its

dual basis. Let G be a reductive algebraic group with an algebraic representation

ρ : G −→ Sp(V ).

Let TV be the tensor algebra of V .

Definition 4.3.1. The semidirect product TV ♯O(G)∗ is the algebra generated by u ∈
V and µ ∈ O(G)∗ with the relations

µ · u =
∑

i

vi · (v∗i , gu)µ

where (v∗i , gu)µ denotes the action of the regular function (v∗i , gu) on µ.

Notice that, since V ⊗N is finite dimensional for all N ∈ Z≥0, we have

TV ♯O(G)∗ =
⊕

N∈Z≥0

V ⊗N ⊗O(G)∗ =
⊕

N∈Z≥0

((V ∗)⊗N ⊗O(G))∗.

We can then give each summand ((V ∗)⊗N ⊗O(G))∗ the weak topology and equip
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TV ♯O(G)∗ with the direct sum topology, i.e. the finest topology such that all the

canonical injections are continuous.

Let now p :
∧3 V −→ V be the projection obtained by contracting the first two

components using ω, and let Σ be the closed subscheme of G defined by the equation

p ◦∧3(1− g|V ) = 0. This subscheme is clearly Ad(G)-invariant.

Definition 4.3.2. For any t ∈ (O(Ker ρ)∗)G and any φ ∈ C(Σ) the continuous

symplectic reflection algebra Ht,φ(G) is the quotient of the smash product TV ♯O(G)∗

by the relations

uv − vu = ω(u, v)t+ ω((1− g)u, (1− g)v)φ (4.4)

for any u, v ∈ V .

Moreover, H0,0(G) = SV ♯O(G)∗, and assigning grade degree zero to O(G)∗ and

grade degree one to V , we obtain a filtration on Ht,φ(G) and a well defined surjective

algebra map

ϕ : H0,0(G) = SV ♯O(G)∗ ։ gr(Ht,φ(G)).

By [EGG05] Theorem 3.1 the map ϕ is an isomorphism, that is to sayHt,φ(G) satisfies

the PBW property as in the finite case.

Finally, let us consider the following analog of symplectic reflections for the con-

tinuous case.

Definition 4.3.3. The set S of symplectic reflections is the set of elements s ∈ G

such that rk(1− s)|V ≤ 2.

It can be seen that S is contained in the set of closed points Σ(C) of Σ and that

any semisimple element g ∈ Σ(C) is in S. Using this it is easy to see, looking at the

defining relations, that when G is finite and ρ is a faithful representation, the algebra

Ht,φ(G) is the same as the symplectic reflection algebra defined in Section 2.2 (see

[EGG05], § 3.1).
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4.4 The wreath product case

Let L = (C2, ωL) and (V = L⊕n, ωV ) be as in Section 2.3. Let Γ ⊂ SL(2,C) = Sp(L)

an infinite reductive subgroup. It is well known that, up to conjugation, there exist

only three such groups:

1) SL(2,C);

2) GL(1,C) = C∗, identified with the maximal torus of diagonal matrices;

3) Õ2, identified with the normalizer of the maximal torus.

There is a natural symplectic action of the wreath product Γn = Sn ⋉ Γn on V .

Thus we can write Γn ⊂ Sp(V ).

Let us now to consider the ring of algebraic distributions over Γn. This is the ring

O(Γn)∗ ∼= (O(Γn)♯O(Sn))∗ ∼= (O(Γ)⊗n♯O(Sn))∗ = (O(Γ)⊗n)∗♯O(Sn)∗

where the last identity holds because O(Sn) ∼= C[Sn] is finite dimensional. Let {Ni}i∈I

be a complete collection of pairwise non-isomorphic irreducible finite dimensional Γ-

modules, where I = Z if Γ = GL(1,C) and I = Z≥0 otherwise. Using decomposition

(4.3), we can consider the filtration by ideals of O(Γ)∗ given by

O(Γ)∗ = O(Γ)∗0 ⊃ O(Γ)∗1 ⊃ O(Γ)∗2 ⊃ · · ·

where O(Γ)∗N :=
∏

|i|≥N Mat(di) and di = dimNi.

For any l = 1, . . . , n and any N ∈ Z≥0 consider the ideals in O(Γ)∗⊗n

O(Γn)∗N,l =O(Γ)∗⊗l−1 ⊗O(Γ)∗N ⊗O(Γ)∗⊗n−l and O(Γn)∗N =O(Γn)∗N,1+· · ·+O(Γn)∗N,n.

We denote by O(Γ)∗⊗̂n the completion of the algebra O(Γ)∗⊗n with respect to the

filtration by ideals

O(Γ)∗⊗n = O(Γn)∗0 ⊃ O(Γn)∗1 ⊃ O(Γn)∗2 ⊃ · · ·
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that is to say the projective limit

O(Γ)∗⊗̂n := lim←−O(Γ)∗⊗n/O(Γn)∗N .

We have O(Γ)∗⊗̂n ∼= (O(Γ)⊗n)∗, and since from Example 4.2.2 we know O(Sn)∗ =

C[Sn], we get:

O(Γn)∗ ∼= O(Γ)∗
⊗̂n
♯Sn.

Note also that all the quotients O(Γ)∗⊗n/O(Γn)∗N are finite dimensional vector spaces.

Thus, equipping these vector spaces with the discrete topology, the inverse limit

topology on O(Γ)∗⊗̂n ∼= O(Γn)∗ coincides also in this case with the weak topology.

We want now to give a description of the subscheme Σ defined in the previous

section. Let γi, sij ∈ Γn be as in Section 2.3. Let S0 = S ∩ Γn be the set of

symplectic reflections in Γn and let Ad(Γn)sij = {slmγlγ
−1
m |l 6= m, γ ∈ Γ} be the

conjugacy class of any transposition. Then it is easy to see that S = S0 ∪Ad(Γn)sij.

The group Γn acts by conjugation on S preserving this decomposition. Moreover

we have Σ = Σ0 ∪ Ad(Γn)sij, where Σ0 = Σ ∩ Γn. It can be proved (see [EGG05],

Proposition 6.4) that for Γ as in case 1), 2), 3) above, the set of orbits S/Γn is a

scheme isomorphic to Σ/Γn (see [EGG05], proof of Proposition 6.4). It follows that

C(S) = C(Σ), and C(S) = C(S0)⊕ C∆, where ∆ is the integration over Ad(Γn)sij,

and we have a natural identification C(S0) = C(Γ). Thus for any φ ∈ C(S) we can

write φ = (k, c), c ∈ C(Γ), k ∈ C.

Since in our case ρ is the defining representation of Γn as a subgroup of Sp(V ),

we have Kerρ = {1}. Thus the parameter t can be identified with a complex number

corresponding to a scalar multiple tδ1 of the delta distribution supported at the

identity element. If Γ ⊂ SL(2,C) is infinite reductive, though, the identity element

1 is in the closure of S r {1}, and the parameter t can be absorbed in c.1

1Note that all what we said here is not true for continuous symplectic reflection algebras in
general (see for example the case of the continuous Cherednik algebra attached to the group On,
[EGG05] § 3.3.2) and the extra parameter t becomes essential for a definition including all cases
([EGG05], § 3.1).
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We can thus consider the continuous symplectic reflection algebra Hk,c(Γn) at-

tached to Γn and to the parameters (k, c).

We want now to give an analog of Lemma 2.3.3 for the continuous case. Let

f ∈ O(Γn) ∼= O(Γ)⊗n♯O(Sn) be a “decomposable” function, i.e. f = f̃(f1⊗· · ·⊗ fn),

with f̃ ∈ O(Sn) and fi ∈ O(Γ) for any i. Then we can write for the distribution ∆:

〈∆, f〉 =
∑

i<j

〈δsij
, f̃〉

(∫

Γ

fi(γ)fj(γ
−1) dγ

∏

l 6=i,j

〈δ1, fl〉
)

(4.5)

=
∑

i<j

〈δsij
, f̃〉〈∆i,j, f1 ⊗ · · · ⊗ fn〉

where ∆ij is the distribution on Γn acting as shown above. Thus ∆ =
∑

i,j|i<j δsij
∆ij.

We denote by ωL(γu, v)∆ij the distribution on Γn such that

〈ωL(γu, v)∆ij, f1 ⊗ · · · ⊗ fn〉 =

∫

Γ

ωL(γu, v)fi(γ)fj(γ
−1) dγ

∏

l 6=i,j

〈δ1, fl〉 .

Finally for c ∈ C(S) we will denote by ci the algebraic distribution on Γn given by

δ⊗l−1
1 ⊗ c⊗ δ⊗n−l

1 .

Let xi,yi, ui,vi be as in Lemma 2.3.3.

Lemma 4.4.1. The algebra Hk,c(Γn) is the quotient of TV ♯O(Γn)∗ by the following

relations:

(R1) For any i ∈ [1, n]:

[xi, yi] = ci + 2k
∑

j| j 6=i

δsij
∆ij .

(R2) For any u, v ∈ L and i 6= j:

[ui, vj] = −2kδsij
(ωL(γu, v)∆ij)

Proof. For the sake of clarity let us first look at the rank one example. In this case,

according to definition 4.3.2, and absorbing the parameter t in c, the only defining
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relation should be:

[x, y] = ω((1− γ)x, (1− γ)y)c (4.6)

where x, y is a symplectic basis. From this we get the expression

[x, y] = (2− trL(γ))c (4.7)

where trL denotes the trace in the defining representation of Γ on L. Now it is enough

to show that the invariant function 2−trL(γ) is not a zero divisor in O(Γ)Γ. Indeed, if

this is true then the multiplication by 2− trL(γ) is an injective linear endomorphism

of O(Γ)Γ, thus the induced linear endomorphism of O(Γ)∗Γ is surjective, and any

invariant distribution c′ can be written as c′ = (2− trL(γ))c, for some c ∈ O(Γ)∗Γ =

C(Γ). But now for Γ = C∗ and Γ = SL(2,C) the ring O(Γ)Γ is clearly a domain.

When Γ = Õ2, the cover of the group O2, we have O(Γ)Γ = C[z, z−1] ⊕ C, where

the two summands come from two connected components (so it has zero divisors),

but the function 2 − tr(γ), which is clearly not identically 0 on the first summand,

maps to 2 in the second summand (since tr(γ) = 0 for γ from the conjugacy class of

complex orthogonal reflections), so it is not a zero divisor.

To pass to the higher rank case, we observe first of all that ω(ui, vj) = 0 if i 6= j

and ω(xi, yj) = δij. Moreover, since the distribution ∆ is supported on the conjugacy

class Ad(Γn)sij = {slmγlγ
−1
m |l 6= m, γ ∈ Γ} and for all i 6= j the orbit of sij under the

action of Γn ⊂ Γn is Ad(Γn)sij =
{
sijγiγ

−1
j |γ ∈ Γ

}
, we have:

ω((1− g)ui, (1− g)vj)∆

= (1− δij)
(
−ω(ui, (γ

−1v)i)− ω((γu)j, vj)
)
δsij

∆ij

+ δij

∑

l 6=i

(ω(ui, vi) + ω((γu)l, (γv)l)) δsil
∆il

= −2(1− δij)δsij
(ωL(γu, v)∆ij) + 2δijωL(u, v)

∑

l 6=j

δsil
∆il (4.8)

It’s now trivial to deduce (R1), (R2) from (4.8) and the above observations.

2
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As in Section 2.3 we have the following interesting examples.

Example 4.4.2. If n = 1 then

Hc(Γ) =
C〈x, y〉♯O(Γ)∗

〈[x, y]− c〉

is a continuous version of the Crawley-Boevey and Holland algebra of Example 2.3.4.

Example 4.4.3. When k = 0 we have

H0,c(Γn) = Hc(Γ)⊗̂n♯Sn.

Example 4.4.4. When Γ = GL(1,C) is a maximal torus there is a decomposition

V = h ⊕ h∗, where h is the irreducible representation of Sn ⋉ GL(1,C)n on Cn =

C⊕· · ·⊕C where (α1, . . . , αn) ∈ GL(1,C)n acts as the matrix diag(α1, . . . , αn) and Sn

permutes the vectors of the standard basis. The symplectic form ωV can be identified

with the natural pairing between h, h∗ and this algebra is called continuous Cherednik

algebra.

4.5 Infinitesimal Hecke algebras

The rank 1 algebra Hc(Γ) has an interesting infinitesimal counterpart called the

infinitesimal Hecke algebra (cfr. [EGG05] , Section 4). In this section we recall the

definition of such algebra.

For Γ = SL(2,C), GL(1,C), Õ2, let g be the Lie algebra of Γ. Then the enveloping

algebra Ug is naturally isomorphic to the subalgebra of O(Γ)∗ of all algebraic distri-

butions set-theoretically supported at the identity element 1 ∈ Γ (cf. [DG80], II, §
6). More precisely, if we identify any element D ∈ Ug with the corresponding left

invariant differential operator on Γ, then the above mentioned isomorphism sends D

to the distribution D̃ such that:

〈D̃, f〉 := (Df)(1) ∀f ∈ O(Γ) (4.9)
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where by Df we just mean D applied to f as a differential operator.

In particular, Ad(Γ)-invariant distributions supported at the origin can be identi-

fied with elements of the center Z(Ug) of the enveloping algebra. If the distribution

c belongs to the subalgebra Ug ⊂ O(Γ)∗ we define the infinitesimal Hecke algebra

Hc(g) as the quotient:
TV ♯Ug

〈[x, y]− c〉 .

When g = sl2, representations of the algebra Hc(g), called deformed symplectic

oscillator algebra of rank 1, were studied by Khare in [Kha05]. We will compare

his results with our results about finite dimensional representations of the algebra

Hc(SL(2,C)) in Section 6.3.
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Chapter 5

Continuous deformed preprojective

algebras

5.1 Plan of the chapter

In Section 3.3.2 and Section 3.3.3 we illustrated the fundamental role played by the

theory of deformed preprojective algebras in the study of the representations of the

rank one algebra H1,c(Γ). In the higher rank case, a remarkable development in the

representation theory of wreath product symplectic reflection algebras has been the

introduction, by Gan and Ginzburg ([GG05]), of the higher rank deformed prepro-

jective algebra An,ν,λ(Q) for any quiver Q. The algebra An,ν,λ(Q) is a one-parameter

deformation of the smash product Πλ(Q)⊗n♯Sn. In the case when the underlying

graph of Q is affine Dynkin, this deformation is Morita equivalent to the higher rank

symplectic reflection algebra of wreath product type. Recently, following this inter-

pretation of wreath product symplectic reflection algebras of higher rank in terms

of deformed path algebras, Gan defined a version of the reflection functors for the

higher rank case ([Gan06]). This allowed him to give a more elegant and transparent

formulation and proof of Theorem 3.2.4 and Theorem 3.3.10, as well as a proof of the

necessity of the conditions in Theorem 3.3.10.

In the light of these results, and of the extended McKay correspondence between

infinite reductive subgroups of SL(2,C) and infinite affine Dynkin diagrams of type
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A∞, A+∞, D∞, in this chapter we define a continuous version of the deformed pre-

projective algebra An,ν,λ(Q) for any quiver Q with such underlying graph. For ap-

propriate values of the parameters, we establish a Morita equivalence between the

continuous symplectic reflection algebra Hk,c(Γn) and the algebra An,ν,λ(Q), where Q

is any quiver with underlying graph corresponding to Γ. This result provides us the

link we were looking for between the representation theory of quivers and deformed

preprojective algebras and the representation theory of the continuous symplectic re-

flection algebra. As we will see in Chapter 6 it will allow us to extend Gan’s methods

to the continuous case.

The structure of the chapter is as follows. In Sections 5.2, and Section 5.3, we

recall some generalities about infinite affine Dynkin quivers, the definitions of their

root systems and of their Weyl groups. In Section 5.4 we examine some properties

of the action of the Weyl group on the space of weights that will be fundamental

for the application of reflection functors to the continuous case. All these facts are

known, and can be easily deduced from [Kac90], but we explicitly present them here

in the form and with the level of detail which is convenient for our purposes. In

Section 5.5 we give the formal definition of the continuous deformed preprojective

algebra An,ν,λ(Q). Finally, in Section 5.6, we establish the above mentioned Morita

equivalence.

5.2 Infinite affine quivers and the McKay corre-

spondence for reductive subgroups of SL(2,C)

Let Γ ⊂ SL(2,C) be one of the three groups in Section 4.4. With the exact same

procedure as in Section 3.2.2 one can associate a graph to Γ. In particular, if {Ni}i∈I

(where we take I = Z for Γ = GL(1,C) and I = Z≥0 for Γ = Õ2, SL(2,C), and N0

denotes the trivial representation) is a complete collection of finite dimensional irre-

ducible pairwise non-isomorphic representations of Γ, the set of vertices of the graph

attached to Γ is in bijection with I and is thus infinite. It is a classical result that the
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graphs associated to GL(1,C), Õ2, SL(2,C) are the infinite Dynkin diagrams A∞,

D∞, A+∞, respectively. This can be seen as an extension of the McKay correspon-

dence to the reductive case. We will use the notation Γ for both the group and the

corresponding graph.

b b b. . . . . .

A∞

b b b b

b

. . .

D∞

b b b . . .

A+∞

Figure 5-1: Graphs associated to GL(1,C), Õ2, and SL(2,C).

We recall that the graphs A∞, D∞, A+∞, together with the analog graphs B∞,

C∞, form the complete list of connected Dynkin diagrams of infinite affine Cartan

matrices, i.e. generalized Cartan matrices of infinite order, such that any principal

minor of finite order is positive ([Kac90], § 4.10). In particular we get the matrices:

A∞=




· · · . . .
...

...
... · · ·

· · · −1 2 −1
... · · ·

· · · ... −1 2 −1 · · ·
· · · ...

...
...

. . . · · ·




D∞=




2 0 −1 · · · · · · · · ·
0 2 −1 · · · · · · · · ·
−1 −1 2 −1

... · · ·
0 0 −1 2 −1 · · ·
...

...
...

...
... · · ·




A+∞=




2 −1 · · · · · ·
−1 2 −1 · · ·
...

...
... · · ·


 .

In the sequel we will denote by A = A(Γ) any such matrix and by g′(A) the

corresponding Kac-Moody algebra ([Kac90], § 1, 2).

5.3 Infinite rank affine root systems

Here we want to give a description of the root system attached to the graph Γ or,

equivalently, to the matrix A.
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Consider the space (ZI)0 (where I = Z for A = A∞ and I = Z+ for A = A+∞, D∞)

of sequences {αi}i∈I of integer numbers which have only finitely many nonzero entries.

This space has a Z-basis {ǫi}i∈I , where ǫi is the sequence with 1 in the i-th position

and 0 elsewhere. We will write α =
∑

i∈I αiǫi, where αi = 0 for all but finitely many

indices. Denote by Q = Q(Γ) the quiver obtained by assigning any orientation to

the graph Γ. Since any of the graphs Γ is locally finite (i.e. any vertex has finite

valency), formulas (3.14), (3.15) of Section 3.3.3 make sense for any such Q and any

two vectors α, β ∈ (ZI)0. Thus the symmetrized Ringel form can still be defined for

any such Q as a bilinear form on (ZI)0. Moreover, the matrix representing the Ringel

form in the basis {ǫi}i∈I is exactly the Cartan matrix A.

We are now ready to define the root system for A. Our construction works more

generally whenever A is the matrix of the symmetrized Ringel form for any locally

finite quiver Q, in particular when the quiver is finite it coincides with the usual defi-

nition of root system for a quiver ([CBH98], § 6). Moreover our description coincides

with the one given in [Kac90] (§ 7.11) for the root system of an infinite rank affine

Kac-Moody algebra g′(A).

We will say that ǫi are the simple roots for A (or for Q or Γ), and we will denote

the set of simple roots by Π = Π(A). Note that, since all the finite order principal

minors of A are nondegenerate, the form ( , ) has radical equal to {0} on (ZI)0.

For any i ∈ I we will now define the simple reflection si : (ZI)0 → (ZI)0 by:

si(α) = α− (α, ǫi)ǫi.

The Weyl group W attached to A (equivalently to Γ) is the group of linear auto-

morphisms of (ZI)0 generated by the simple reflections si, ∀i ∈ I.

The real roots of A, and in general for a locally finite quiver Q, are defined to be

the union of the orbits of the simple roots ǫi under the action of W , we will denote the

set of real roots by ∆re = ∆re(A). So we have, by definition, ∆re =
⋃

w∈W wΠ. It is

standard that any such root is positive or negative (i.e. is a sum of simple roots with

all non-negative, respectively non-positive, integer coefficients) and that ∆re
− = −∆re

+ .
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The imaginary roots of A, or in general for a locally finite quiver Q, are instead the

elements of (ZI)0 that are of the form ±wβ, for β ∈ F , where F is the fundamental

region:

F = {β ∈ (ZI
≥0)0|β 6= 0, support of β connected, and (β, ǫi) ≤ 0 ∀i ∈ I}.

We denote such vectors by ∆im = ∆im(A). The root system for A is the union of real

and imaginary roots and we will denote it by ∆ = ∆(A) = ∆re ∪∆im. In our case,

when A is an infinite rank affine Cartan matrix, we have ∆ = ∆re, and there are no

imaginary roots ([Kac90], § 7.11). This is because any infinite rank affine matrix A

(as well as its graph Γ and its root system ∆), can be seen as the limit of a sequence

of positive finite rank Cartan matrices A(n), all of the same type, (with their Dynkin

diagrams Γ(n) and root systems ∆(n)), and for such matrices there are no imaginary

roots ([Kac90], § 5.2, Proposition 5.2 c).

All this is in contrast with the theory for finite affine Dynkin quivers, for which

the set of imaginary roots is infinite and is given by the nonzero integer multiples

of δ. For finite affine Dynkin quivers the vector δ is also the minimal vector with

nonnegative integer coordinates among the vectors generating the one dimensional

kernel of the corresponding affine Cartan matrix or, equivalently, the radical of the

corresponding symmetrized Ringel form, which is positive semi-definite in this case

([Kac90], Theorem 5.6, b). We can recover the analogy with the finite case if we

observe that the matrix A makes sense as an endomorphism on the space ZI of all

sequences {αi}i∈I with integer entries. This is because any of its rows has only finitely

many non-zero entries. The kernel of this endomorphism of ZI is a rank one Z-module

generated by the vector δ = {di}, where di = dimNi. We want to remark that this

vector is not a root for the Kac-Moody algebra g′(A) but it can be seen as a root for

a central extension of a completion of g′(A) (see [Kac90], § 7.12).
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5.4 Action of the Weyl group on weights

Consider the space (CI)0 of sequences {ui}i∈I of complex numbers such that ui = 0

for all but finitely many indices. Clearly the space (ZI)0 above can be embedded as

a lattice in (CI)0 and the Z-basis {ǫi}i∈I of (ZI)0 gives a basis of (CI)0 as a complex

vector space via this embedding. The dual space of (CI)0 is called the weight space

and it is isomorphic to the space CI . We will denote by · the standard pairing between

(CI)0 and CI , and by {ǫ∗i } the “dual basis” (spanning CI topologically) of {ǫi} with

respect to this pairing, that is to say ǫ∗i · ǫj = δij. For any λ ∈ CI we will write

λ = {λi}, where λ =
∑

i λiǫ
∗
i (where the sum is now possibly infinite).

We will consider (CI)0 as embedded in CI via the map

φ : (CI)0 −→ CI

ǫi −→ ∑
j ajiǫ

∗
j

where aji = (ǫj, ǫi). In the basis {ǫi}, {ǫ∗i } the map φ is given by the Cartan matrix

A(Γ). Moreover, for any vector α ∈ CI and any i ∈ I, we have:

(α, ǫi) = φ(α) · ǫi = φ(α)i . (5.1)

For any reflection si, i ∈ I, we can now consider its dual reflection ri : CI → CI

which is uniquely determined by the property

riλ · α = λ · siα ∀λ ∈ CI , α ∈ (ZI)0.

In other words, we have (riλ)j = λj − (ǫi, ǫj)λi for any j, which is equivalent to:

riλ = λ− λiφ(ǫi) . (5.2)

Thus we can define an action of W on CI by the condition

λ · (wα) = w−1λ · α ∀λ ∈ CI , α ∈ (ZI)0.
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Let now “≺” be a total ordering on C satisfying the following properties ([CBH98],

§ 7):

1. If a ≺ b, then a+ c ≺ b+ c, for any c ∈ C.

2. On integers ≺ coincides with the usual order.

3. For any a ∈ C there is m ∈ Z with a ≺ m.

An example of such an order is the lexicographic order with respect to the R-basis

{1,
√
−1} of C.

We say that a weight λ is dominant if λi � 0 for all i ∈ I. Let J ⊂ I be a finite

set of indices. For any weight λ let λJ be the weight such that (λJ)i = λi, if i ∈ J ,

(λJ)i = 0 otherwise. Then we say that λ is J-dominant if λJ is dominant.

Let now J be a finite subset of indices corresponding to some full connected

subquiver QJ . Let Rλ,J be the set of roots α of Q such that the support of α is

contained in J , and λ · α = 0. Let Σλ,J be the set of minimal positive elements of

Rλ,J . Denote by WJ the subgroup of W generated by the reflections sj, for all j ∈ J .

For any α ∈ Rλ,J , let sα be the automorphism of (ZI)0 given by β → β − (α, β)α

and let Wλ,J be the subgroup of WJ generated by these automorphisms. We have the

following lemma.

Lemma 5.4.1. For any λ ∈ CI

1) Rλ,J is the set of roots of a reduced root system in the (finite dimensional) vector

space it generates. The group Wλ,J acts faithfully on Rλ,J and identifies with

its Weyl group.

2) Any λ is WJ-conjugate to a unique J-dominant weight λ+, and there exists a

unique w+ ∈WJ of minimal length (in WJ) such that w+λ = λ+.

3) Σλ,J is the unique basis of Rλ,J consisting of positive roots and w+Σλ,J = Σλ+,J .

4) If λ is J-dominant then Σλ,J = {ǫi|λi = 0}.
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Proof. Let us start from part 1). We observe that QJ is Dynkin. Moreover the

roots of Q supported in J are in bijection with the roots of (the finite quiver) QJ

and the bijection is simply the restriction α → α|J . It is also clear that, using this

identification, the group WJ acts on these roots as the Weyl group W (QJ) of the

quiver QJ . Thus part 1) can be reduced to the analog statement for the quiver QJ

([CBH98] Lemma 7.2 part (3) ).

Let us now prove part 2). Let J ′ = J ∪∂J , where ∂J is the set of adjacent vertices

for the subquiver QJ ( the vertices that are not in QJ but are joined to QJ by a path

of length one). Let UJ ′ ⊂ CI be the vector space of weights µ satisfying µi = 0 for

i /∈ J ′ (i.e. the span of ǫ∗j , j ∈ J ′). As above, let λJ ′ be the weight (λJ ′)j = λj if j ∈ J ′,

(λJ ′)j = 0 otherwise. Clearly λJ ′ ∈ UJ ′ . Write λ = λJ ′ + (λ − λJ ′). Then we have

that WJ fixes (λ − λJ ′) and preserves UJ ′ . Identifying UJ ′ with a finite dimensional

vector space of dimension |J ′|, the weight space for the finite Dynkin quiver QJ ′ , we

see that WJ acts on UJ ′ as the parabolic subgroup W (QJ) ⊂ W (QJ ′). The result now

follows from the ordinary theory of Dynkin quivers. Indeed, write λJ ′ =
∑

j∈J ′ bjν(ǫj)

(this is clearly possible since any principal minor of the Cartan matrix A(Γ) is non-

degenerate) and define the height of λ as ht(λ) :=
∑

j∈J ′ bj. Consider now a vector

of the form wλJ ′ , for w ∈ W (QJ), of maximal height with respect to “≺” (this exists

since W (QJ) is finite). If (wλJ ′)j ≺ 0 for some j ∈ J then, from formula (5.2), we get

ht(wλJ ′)− ht(rjwλJ ′) = ht(wλJ ′ − rjwλJ ′) = ht((wλJ ′)jν(ǫj)) = (wλJ ′)j ≺ 0

Thus ht(wλJ ′) is not maximal: a contradiction. So we must have (wλJ ′)J = (wλ)J

dominant, and λ+ := wλ is J-dominant.

For the uniqueness it is enough to prove that two J-dominant weights cannot be

WJ conjugate. Suppose now λ is J-dominant and w ∈ WJ . We have to prove that if

wλ is J-dominant then wλ = λ. Thanks to the identification with W (QJ) the group

WJ is endowed with a length function. We will prove the result by induction on the

length of w. If w is of length one then w = rj for some j ∈ J . If rjλ is J-dominant
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then (rjλ)i = rjλ · ǫi � 0 for any i ∈ J . But

rjλ · ǫj = λ · sjǫj = λ · (−ǫj) = −(λ · ǫj) = −λj � 0

since λ is J-dominant. Thus it must be λj = λ · ǫj = 0 and rjλ = λ by equation (5.2).

Now suppose w = ri1 · · · ris is a reduced expression for w. Since is ∈ J we must have

λ · ǫis � 0 and therefore wλ · wǫis � 0. But, by Lemma 3.11 of [Kac90], wǫis is a

negative root (for QJ) and since wλ is J-dominant we must also have wλ · wǫis � 0.

Thus 0 = wλ ·wǫis = λ · ǫis . This implies risλ = λ and wλ = wrisλ, with wris shorter

than w and the result follows by induction. It is standard to prove that there exists

a unique w+ ∈ WJ of minimal length (as an element of W (QJ)) with the property

wλ = λ+.

The proof of part 3) is now straightforward if we use the results of 1) and 2). Part

4) is just a trivial observation.

2

5.5 Definition of the continuous deformed prepro-

jective algebra

5.5.1 The rank one case

We recall that in general ([Eis95], § 7), given an algebra A and a descending filtration

by ideals

A = m0 ⊃ m1 ⊃ · · ·

the completion of A with respect to this filtration is defined as the projective limit

Â := lim←−A/mi.
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IfM is an A-module (A-bimodule) the completion ofM is the Â-module (Â-bimodule)

defined as

M̂ := lim←−M/miM (M̂ := lim←−M/miM +Mmi).

Let now Q be a quiver with underlying graph an infinite affine Dynkin diagram

of type A∞, D∞, A+∞ with set of vertices I.

With the same notation as in Section 3.3.2, let B :=
⊕

i∈I Cei
∼= (CI)0 be the

algebra spanned by the idempotents ei for all i ∈ I. Let B̂ :=
∏

i∈I Cei
∼= CI be the

algebra over C topologically spanned by the same idempotents. Note that B̂ = B∗

as vector spaces, and that B̂ is the completion of B with respect to the filtration:

B = B0 ⊃ B1 ⊃ B2 ⊃ · · ·

where BN =
⊕

|i|≥N

Cei.

Let E be the vector space spanned by the edges of the double quiver Q, and let

Ê be the vector space with topological basis formed by the same edges. Thus Ê is a

B̂-bimodule, and as such it decomposes as Ê =
∏

i,j∈I Eij, where Eij is spanned by

all edges a ∈ Q such that h(a) = i, t(a) = j. Note that the B̂-bimodule Ê is the

completion of the B-bimodule E, i.e. it is the completion of E with respect to the

filtration by B-sub-bimodules

E = E0 ⊃ E1 ⊃ E2 ⊃ · · ·

with EN :=
⊕

|i|≥N

Eij +
⊕

|j|≥N

Eij = BNE+EBN (thus E/EN =
⊕

|i|,|j|<N

Eij). Moreover,

since Q ( hence Q) is locally finite, all the spaces Eij are finite dimensional. Thus

E∗
ij
∼= Eij and we have an identification Ê = E∗ as vector spaces.

For any k ∈ Z≥0, let us now consider the B-bimodule

T k
BE := E ⊗B · · · ⊗B E︸ ︷︷ ︸

k factors

.
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As we know, this module is identified with the vector spaced spanned by all the paths

of length k on the double quiver Q, with its natural B-bimodule structure. Thus, the

completion T̂ k
BE of this module can be identified with the vector space topologically

spanned by the paths of length k, endowed with its natural B̂-bimodule structure.

We will write

T̂ k
BE = Ê⊗̂ bB · · · ⊗̂ bBÊ︸ ︷︷ ︸

k factors

.

To justify this notation we observe that there is an isomorphism of B̂-bimodules

lim←−T
k
BE/BNT

k
BE+T k

BEBN
∼=lim←− Ê⊗ bB · · ·⊗ bB Ê/B̂N(Ê⊗ bB · · ·⊗ bB Ê)+(Ê⊗ bB · · ·⊗ bB Ê)B̂N

where B̂N =
∏

|i|≥N

Cei.

Note that as vector spaces T̂ k
BE = (T k

BE)∗.

Definition 5.5.1. The continuous path algebra of Q is defined as

ĈQ := T̂BE =
⊕

k≥0

T̂ k
BE

Observe that, as vector spaces, we have

T̂BE =
⊕

k≥0

T̂ k
BE =

⊕

k≥0

(T k
BE)∗

Thus we can give to each summand the weak topology, and we can equip ĈQ with

the direct sum topology (the finest topology such that all the canonical injections are

continuous).

We want to remark how this is a reasonable definition of continuous path algebra

for the case of infinite locally finite quivers. Indeed, for any locally finite quiver, there

are only a finite number of paths of length k (i.e. belonging to the space T̂ k
BE) passing

through a fixed vertex. Any element of ĈQ is a, possibly infinite, linear combination

of paths such that the length of the summands is bounded, and thus each vertex is

contained in at most a finite number of summands. This means that we are avoiding
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“pathologic cases” of infinite linear combinations of paths passing through the same

vertex infinitely many times. Moreover, we want to stress the fact that the algebra of

Definition 5.5.1 is unital, with unit
∏

i∈I ei, while the usual path algebra CQ (where

we take B =
⊕

i∈I Cei and E =
⊕

Eij and usual tensor products) is not unital when

the quiver is infinite.

For any λ ∈ B̂ we write λ =
∑

i∈I λiei.

Note that, since the quiverQ is locally finite, for any i ∈ I the elementRi described

by formula (3.12) in Section 3.3.2 is a well defined element of ĈQ.

Definition 5.5.2. The continuous deformed preprojective algebra Π̂λ(Q) attached to

the infinite affine quiver Q and to the parameter λ ∈ B̂ = CI is the quotient:

Π̂λ(Q) =
ĈQ

〈〈Ri − λiei〉〉 i∈I

where 〈〈. . . 〉〉 is the closed ideal generated by the indicated elements in the completed

path algebra ĈQ.

Later in this thesis, we will need to consider a global version of the deformed

preprojective algebra. So if R is a commutative unital C-algebra we define R̂ Q by

substituting B̂ with B̂R := B̂⊗̂R ∼= RI and Ê with ÊR = Ê⊗̂R. For any λi ∈ R for

any i ∈ I, we define Π̂R,λ(Q) to be R̂ Q/〈〈Ri − λiei〉〉i∈I .

5.5.2 The higher rank case

The definition of higher rank continuous deformed preprojective algebra given in this

section is just a generalization to the continuous case of the one given by Gan and

Ginzburg in [GG05], § 1.2. Namely, let us fix a positive integer n > 1 and consider

the algebra B := B⊗n. For any l = 1, . . . , n consider the ideals in B

BN,l = B⊗l−1 ⊗BN ⊗B⊗n−l and BN = BN,1 + · · ·+ BN,n.

where BN is as in the previous section.
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We denote by B̂ = B̂⊗̂n the completion of B with respect to the chain of ideals:

B = B0 ⊃ B1 ⊃ B2 ⊃ · · · .

For any l ∈ [1, n] consider the B-bimodules:

El = B⊗(l−1) ⊗ E ⊗B⊗(n−l) and E =
⊕

1≤l≤n

El

and the completed B̂-bimodules

Êl = B̂⊗̂(l−1)⊗̂Ê⊗̂B̂⊗̂(n−l) and Ê =
⊕

1≤l≤n

Êl.

Here Êl is the completion of the B-bimodule El := B⊗(l−1) ⊗ E ⊗ B(n−l) with respect

to the chain of sub-bimodules

El = El,0 ⊃ El,1 ⊃ El,2 ⊃ · · ·

with El,N = BNEl + ElBN .

In a similar fashion as in the previous section we can consider the B-bimodule

T k
BE := E ⊗B · · · ⊗B E︸ ︷︷ ︸

k factors

and the completed B̂-bimodule T̂ k
BE := Ê⊗̂ bB · · · ⊗̂ bBÊ︸ ︷︷ ︸

k factors

. We

define

T̂BE :=
⊕

k≥0

T̂ k
BE .

Note that as vector spaces T̂ k
BE = (T k

BE)∗. Thus we can equip T̂ k
BE with the weak

topology and T̂BE with the direct sum topology.

Note that Sn acts naturally on Ê , thus on T̂BE . Now for any l ∈ [1, n], any path

a ∈ ĈQ and any i = (i1, . . . , in) ∈ In we consider the elements

|i := ei1 ⊗ · · · ⊗ ein ∈ B̂
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and

al|i := ei1 ⊗ · · · ⊗ aeil ⊗ · · · ⊗ ein ∈ T̂BEl .

For an arrow a ∈ Q, if il = t(a) we define

al(i) := (i′1, . . . , i
′
n) ∈ In, where i′m =





im if m 6= l

h(a) if m = l

Definition 5.5.3. For any λ ∈ B̂ and ν ∈ C, define the B̂-algebra An,ν,λ(Q) to be

the quotient of T̂BE♯Sn by the following relations:

(I) For any l ∈ [1, n] and i = (i1, . . . , in):

(Ril − λil)l|i = ν
∑

{m6=l| im=il}

sml|i ;

(II) For any l,m ∈ [1, n], l 6= m, a, b ∈ Q and i = (i1, . . . , in) with il = t(a),

im = t(b):

al|bm(i)bm|i − bm|al(i)al|i =





νslm|i if b ∈ Q and a = b∗

−νslm|i if a ∈ Q and b = a∗

0 else

For n = 1 there is no parameter ν and A1,λ(Q) = Π̂λ(Q), while for n > 1 and

ν = 0 we have An,λ,0(Q) = Π̂λ(Q)⊗̂n♯Sn.

As in the previous section, if R is a commutative unital C-algebra, we can define

B̂R = B̂R⊗̂R · · · ⊗̂RB̂R︸ ︷︷ ︸
n factors

and similarly ÊR. Taking ν ∈ R, λi ∈ R for any i ∈ I we can

then define AR,n,ν,λ.

5.6 Morita equivalence

Let Q be a McKay quiver for Γ and let χNi
be the character of the irreducible

representation Ni. The following theorem is the analog of Theorem 3.5.2 of [GG05].
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Theorem 5.6.1. The algebra Hk,c(Γn) is Morita equivalent to the algebra An,ν,λ(Q)

for ν = 2k and λ = {λi} where λi = 〈c, χNi
〉.

Our proof of this theorem follows very closely the one of [GG05]. We report the

proof in detail in Appendix A since proving this Morita equivalence is the key result

from which all the results about the representation theory of Hk,c(Γn) will follow.

Also these computations can help the interested reader to become familiar with the

language of algebraic distributions.

Let now J ⊂ I be a finite subset of indices, and consider the finite dimensional

subspace

BJ :=
⊕

i∈J

Cei ⊂
∏

i∈I

Cei = B̂

i.e. BJ =
{
λ ∈ B̂|λi = 0∀i /∈ J

}
. Define the finite dimensional vector space UJ :=

BJ ×C. From the above theorem and the PBW property for the continuous case (see

Section 4.3) we can deduce that, for any λ0 ∈ B̂, the family {An,ν,λ0+λ}(ν,λ)∈UJ
gives

a flat formal deformation of An,0,λ0 in dimUJ = |J | + 1 parameters, where |J | is the

cardinality of the set J .

Let m be the unique maximal ideal in C[[UJ ]]. For any C[[UJ ]]-module consider

the decreasing filtration V ⊃ mV ⊃ m2V ⊃ · · · and the associated graded ring

gr
m
(V ) :=

∞∏

h=0

mhV

mh+1V
.

In what follows we will write V := (gr
m
V )0 = V/mV .

Let ~′, ~i for i ∈ J be coordinate functions on UJ , where ~′ denotes the projection

BJ × C −→ C and, for each i ∈ J , ~i denotes the projection BJ × C −→ Cei. Now

set ν = ~′ and λi = ~i for any i ∈ J , and regard them as elements in the maximal

ideal m ⊂ C[[UJ ]]. Consider the algebra AC[[UJ ]],n,ν,λ0+λ. Then gr
m
(AC[[UJ ]],n,ν,λ0+λ) ∼=

An,0,λ0 [[UJ ]] as C[[UJ ]]-algebras. In particular AC[[UJ ]],n,ν,λ0+λ
∼= An,0,λ0 . This cor-

responds to the flat formal deformation of An,0,λ0 over C[[UJ ]] given by the family

{An,ν,λ0+λ}(ν,λ)∈UJ
.

More generally, let ν ∈ C[[UJ ]], and let λ ∈ BJ ⊗ C[[UJ ]]. Consider the C[[UJ ]]-
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algebra AC[[UJ ]],n,ν,λ. The following Lemma is the analog of [Gan06] Lemma 5.13 and

thanks to the PBW property of An,ν,λ can be proved in exactly the same way.

Lemma 5.6.2. Assume that ν ∈ C[UJ ] and λ ∈ BJ ⊗ C[UJ ] ⊂ BJ ⊗ C[[UJ ]]. Then

gr
m
(AC[[UJ ]],n,ν,λ) = AC[[UJ ]],n,ν,λ[[UJ ]] as C[[UJ ]]-algebras.
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Chapter 6

Finite dimensional representations

for the continuous case

6.1 Plan of the chapter

In this chapter we use the Morita equivalence established in Section 5.6 to study the

representation theory of An,ν,λ.

In Section 6.2 we classify finite dimensional representations in rank one, and in

Section 6.3 we compare our results for the special case Γ = SL(2,C) with the results

of [Kha05] for the deformed symplectic oscillator algebra of rank one.

Finally, in Section 6.5 we consider the higher rank case and we extend the reflection

functors and the results of [Gan06] to the continuous case.

6.2 Representations in the rank one case

The following easy result holds.

Proposition 6.2.1. Any finite dimensional representation of the continuous de-

formed preprojective algebra Π̂λ(Q) is a finite dimensional representation of some

ordinary deformed preprojective algebra Πλ|J (QJ), where J ⊂ I is a finite subset of

vertices, QJ is the corresponding full subquiver of Q, and λ|J ∈ CJ is the restriction of
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the parameter λ to set of vertices J . Vice versa, any finite dimensional representation

of Πλ|J (QJ) can be extended to a finite dimensional representation of Π̂λ(Q).

Proof. By Definition 5.5.2 we have that a representation Y of Π̂λ(Q) is a

representation of Ĉ Q such that, for each a ∈ Q, the corresponding linear maps

a : et(a)Y → eh(a)Y , a∗ : eh(a)Y → et(a)Y satisfy the relation

∑

a ∈ Q
h(a) = i

aa∗ −
∑

a ∈ Q
t(a) = i

a∗a = λiIdeiY

for any i. But now, if dimY < ∞, we must have dim eiY = αi < ∞ for all i, and

eiY = 0 for all but finitely many i. Thus the representation Y is supported at a finite

number of vertices and the result follows.

Conversely, suppose Πλ|J (QJ) admits a finite dimensional representation Y , then

we can clearly extend it to a representation of Π̂λ(Q) by setting eiY = 0 for i /∈ J
and a = a∗ = 0 for a /∈ QJ .

2

Proposition 6.2.1 implies the next Corollary.

Corollary 6.2.2. For any λ ∈ CI there is a bijection between the set of isomorphism

classes of finite dimensional simple Π̂λ(Q)-modules and the set

Σ̂λ :=
⋃

J

Σλ,J

where J runs over all the finite subsets of indices corresponding to connected subquiv-

ers.

Proof. The result is implied by Proposition 6.2.1 and by the fact, proved by

Crawley-Boevey and Holland, that isomorphism classes of simple Πλ|J (QJ)-modules

are in bijection with Σλ,J ([CBH98], § 7).

2
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6.3 The SL(2,C) case

We will now compare Khare’s result about representation theory of the deformed

symplectic oscillator algebra of rank one with the results of Section 6.2 in the case

Γ = SL(2,C).

We observe that, in this case, the subalgebra of invariant algebraic distributions

supported at the identity can be identified with the algebra of polynomials in the

quadratic Casimir element ∆ = 1
4
(EF + FE + H2

2
) (where E, F , H are the standard

generators of sl2), that coincides with the center of the enveloping algebra. Now if

we let x, y be a symplectic basis of the standard two dimensional complex symplectic

vector space L, and we take f = f(∆) to be a polynomial with no constant coefficient,

we can see that Khare’s deformed symplectic oscillator algebra (cfr [Kha05], § 9)

Hf =
TL♯U(sl2)

〈[x, y] = 1 + f(∆)〉

coincides with the infinitesimal Hecke algebra Hc(SL(2,C)) when we take f = fc to

be an appropriate polynomial depending on c.

Let VC(i), i ∈ Z≥0 be the standard cyclic module of sl2 of highest weight i (i.e.

the irreducible finite dimensional representation of dimension i+ 1). Denote by bi be

the scalar by which the Casimir ∆ acts on VC(i) (bi = i(i+ 2)/8).

Khare’s classification of finite dimensional representations of Hf can be summa-

rized as follows (see [Kha05] § 15, Theorem 11, and § 9, formula (1)).

I) There exists a unique simple Hf -module of the form

(∗) V (r, s) :=
r⊕

i=s

VC(i)

for any s ≤ r in Z≥0 satisfying the two conditions:

i)
r∑

i=s

(i+ 1)(1 + f(bi)) = 0;

ii)
r∑

i=k

(i+ 1)(1 + f(bi)) 6= 0 s < k ≤ r .

109



II) Any finite dimensional irreducibleHf -module is isomorphic to one of the V (r, s).

We observe now that all positive roots for the infinite quiver A+∞ are of the form

α = α[s,r] =
∑r

i=s ǫi for some 0 ≤ s ≤ r, where ǫi are coordinate vectors (simple

roots) as in Section 5.3 (cfr. [Kac90], § 7.11, where ǫi = αi in Kac’s notation).

Thus, according to Corollary 6.2.2, in the case of SL(2,C) all possible simple finite

dimensionalHc(SL(2,C))-modules must have the form (∗). Moreover, Corollary 6.2.2

tells us that a simple representation of dimension vector α exists if and only if α ∈ Σ̂λ.

This condition is equivalent to the following two conditions on the root α:

a’) λ · α = 0;

b’) for any nontrivial decomposition α = β(1) + · · · + β(n) into positive roots we

must have λ · β(k) 6= 0 for some k.

Now, any decomposition as in b’) looks like:

α[s,r] = α[s,s+t1] + α[s+t1+1,s+t1+t2] + · · ·+ α[s+t1+···+tn+1,r]

with s + t1 + · · · + tn + 1 ≤ r. In particular, we can consider the decompositions

α[s,r] = α[s,m−1] +α[m,r] for any s < m ≤ r. Since 0 = λ ·α[s,r] = λ ·α[s,m−1] + λ ·α[m,r]

our condition implies that in particular λ·α[m,r] 6= 0. On the other hand, any nontrivial

decomposition of α[r,s] contains a root α[m,r] for s < m ≤ r. Thus, the conditions a’),

b’) can be rephrased as:

a) α[s,r] · λ = 0;

b) α[m,r] · λ 6= 0 s < m ≤ r.

We will now translate the conditions a), b) on the dimension vector α into Khare’s

conditions i), ii). In order to do this, we have to compare Khare’s parameter f with

our parameter c. Let’s denote by χi the irreducible character corresponding to VC(i).

Then, since the χi s span the space of invariant functions, we must have

λi = 〈c, χi〉 = 〈1 + f(∆), χi〉 . (6.1)
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For any i ∈ Z≥0. We recall now that constants in U(sl2) correspond to multiples of

the delta distribution δ1. Moreover for any D ∈ U(sl2) one has D(χi)(1) = χi(D) =

trVC(i)(D) , and, in particular trVC(i)(∆
l) = dim(VC(i))bli = (i + 1)bli. It is then easy

to compute that

〈1 + f(∆), χi〉 = (i+ 1)(1 + f(bi)) .

and the equality (6.1) becomes

(i+ 1)(1 + f(bi)) = λi . (6.2)

Thus we can rewrite the conditions i) and ii) as

1)
r∑

i=s

λi = 0

2)
r∑

i=k

λi 6= 0 s < k ≤ r

which correspond to conditions a), b) above respectively.

6.4 Gan’s reflection functors

In [Gan06], Wee Liang Gan constructed reflection functors for higher rank. Gan’s

reflection functors are defined for any loop-free vertex i of any finite quiver Q and,

under some conditions on the parameter λ, ν, they establish an equivalence

Fi : AR,n,ν,λ(Q)−mod→ AR,n,ν,riλ(Q)−mod

where riλ denotes the action of the dual simple reflection ri at the vertex i on the

parameter λ ∈ RI (which we can obtain by extending the action on CI by R-linearity).

Thanks to this property the functors Fi turned out to be a very powerful tool in the

deformation-theoretic approach to the study of finite dimensional representations of

higher rank deformed preprojective algebras.
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Gan’s definition of reflection functors can be pushed ahead, without any change,

when Q is an infinite quiver with underlying graph an affine Dynkin diagram of

type A∞, A+∞, D∞ (and more generally when Q is an infinite locally finite quiver)

and we consider modules that are finitely generated over R. Gan’s results about the

representations of the wreath product symplectic reflection algebra will then naturally

extend to the continuous case. The proofs of all the results in this section are exactly

as the ones for the analog statements in [Gan06]. Thus we will mostly refer to such

proofs and, when necessary, we will explain why and how they can be adapted to the

case of infinite affine Dynkin quivers.

From now on, let us suppose Q is a quiver with underlying graph of type A∞,

A+∞, D∞, and, to ease notation, let us write An,ν,λ for An,ν,λ(Q), and Π̂λ for Π̂λ(Q).

We observe that Gan’s construction works only for loop free vertices ([GG05], 2.3)

but, in our case, any vertex is such. Thus let i be any vertex of Q. Since AR,n,ν,λ

does not depend on the orientation of Q, we can suppose that i is a sink (all arrows

at i point toward i). Let V be an AR,n,ν,λ-module which is finitely generated as an

R-module. The definition of Fi(V ) is the same as in [Gan06] that we are now going

to recall.

Let

H := {a ∈ Q|h(a) = i} . (6.3)

Remark 6.4.1. Note that, for any infinite affine quiver, the set H is finite.

If j = (j1, . . . , jn) ∈ In, where I is the set of vertices of Q, let

Vj := |jV, and ∆(j) := {m ∈ {1, . . . , n} |jm = i}

where |j is the element ej1 ⊗ · · · ⊗ ejn as in Section 5.5.2.

Remark 6.4.2. Observe that, even if Q is an infinite quiver, if V is finitely generated

as a R-module then Vj 6= 0 only for a finite number of multi-indices j.

For any subset D ⊂ ∆(j), consider the finite set

X (D) := { all maps ξ : D → H} . (6.4)
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For any ξ ∈ X (D) let

t(j, ξ) := (t1, . . . , tn) ∈ In, where tm =





jm if m /∈ D
t(ξ(m)) if m ∈ D

.

Set

V (j,D) :=
⊕

ξ∈X (D)

Vt(j,ξ)

so that V (j, ∅) = Vj. For any ξ there are a projection and an inclusion map

πj,ξ : V (j,D)→ Vt(j,ξ), µj,ξ : Vt(j,ξ) →֒ V (j,D).

Moreover, for any p ∈ D there is a restriction map ρp : X (D) → X (D \ {p}). Thus

for each ξ ∈ X (D) we can consider the two compositions

V (j,D)
πj,ξ

// Vt(j,ξ)

ξ(p)p|t(j,ξ)
// Vt(j,ρp(ξ))

�

�

µj,ρp(ξ)
// V (j,D \ {p})

V (j,D \ {p})
πj,ρp(ξ)

// Vt(j,ρp(ξ))

ξ(p)∗p|t(j,ρp(ξ))
// Vt(j,ξ)

�

�

µj,ξ
// V (j,D) .

where we recall that ξ(p)p|t(j,ξ) = et1 ⊗ · · · ⊗ ξ(p)etp ⊗ · · · etn (and similarly for

ξ(p)∗p|t(j,ρp(ξ))).

Define now

πj,p(D) : V (j,D)→ V (j,D \ {p}), πj,p(D) :=
∑

ξ∈X (D)

µj,ρp(ξ)ξ(p)p|t(j,ξ)πj,ξ (6.5)

µj,p(D) : V (j,D \ {p})→ V (j,D), πj,p(D) :=
∑

ξ∈X (D)

µj,ξξ(p)
∗
p|t(j,ρp(ξ))πj,ρp(ξ).

(6.6)

Let

Vj(D) :=




∩p∈DKer(πj,p(D)) if D 6= ∅
Vj if D = ∅

and let V ′
j := Vj(∆(j)).
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Now, for all σ ∈ Sn we set σ(j) = (jσ−1(1), . . . , jσ−1(n)), so that ∆(σ(j)) = σ(∆(j)).

For any D ⊂ ∆(j) and any map ξ ∈ X (D), we define σ(ξ) as the map ξ ◦ σ−1 ∈
X (σ(D)). We define σ|j as the map that is given by the formula

σ|j : V (j,D)→ V (σ(j), σ(D)), σ|j :=
∑

ξ∈X (D)

µσ(j),σ(ξ)σπj,ξ

for any D ⊂ ∆(j).

Definition 6.4.3. We define Fi(V ) := V ′ =
⊕

j∈In V ′
j as a B̂R♯Sn-module (the com-

patibility of the Sn action can be checked by computation as in [Gan06], Lemma 2.2).

Note that by Remark 6.4.2 the direct sum in Definition 6.4.3 is really a direct sum

over a finite subset of indices in I.

For any l = 1, . . . , n, a ∈ Q, j ∈ In with jl = t(a), we have to define a map

a′l|j : V ′
j → V ′

al(j)
, where al(j) is as defined in Section 5.5.2. One has three cases.

Case I. If h(a), t(a) 6= i then l /∈ ∆(j) = ∆(al(j)). For any D ⊂ ∆(j) we have a map

al|j,D : V (j,D)→ V (al(j), D), al|j,D :=
∑

ξ∈X (D)

µal(j),ξal|t(j,ξ)πj,ξ.

We define

a′l|j := al|j,∆(j). (6.7)

Case II. If t(a) = i, then l ∈ ∆(j) and ∆(al(j)) = ∆(j)\ {l} since there are no loop

edges at i (hence h(a) 6= i). If l ∈ D ⊂ ∆(j), for each r ∈ H there is an injective

map

τr,l,D : X (D\ {l}) →֒ X (D) : η → τr,l,D(η)

where

τr,l,D(η)(m) :=





η(m) if m ∈ D\ {l}
r if m = l
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We observe that t(j, τr,l,D(η)) = t(r∗l (j), η). Thus there is a projection map

τ !
r,l,j,D : V (j,D)→ V (r∗l (j), D\ {l}), τ !

r,l,j,D :=
∑

η∈X (D\{l})

µr∗
l
(j),ηπj,τr,l,D(η),

where we used again the fact that there are no loop edges at i and thus, since

t(r∗) = i, we must have h(r∗) 6= i. Similarly there is an inclusion map

τr,l,j,D
!
: V (r∗l (j), D\ {l})→ V (j,D), τr,l,j,D

!
:=

∑

η∈X (D\{l})

µj,τr,l,D(η)πr∗
l
(j),η.

We define

a′l|j := τ !
a∗,l,j,∆(j). (6.8)

Case III. If h(a) = i, then l /∈ ∆(j) and ∆(al(j)) = ∆(j) ∪ {l}. For any D ⊂ ∆(j) we

have the inclusion map

τa,l,al(j),D∪{l}
!
: V (j,D)→ V (al(j), D ∪ {l})

as above. We have a map

θa,l,j,D : V (j,D)→ V (al(j), D ∪ {l})

defined by

θa,l,j,D :=

(
−λi + µal(j),lπal(j),l + ν

∑

m∈D

sml|al(j)

)
τa,l,al(j),D∪{l}

!
.

We define

a′l|j := θa,l,j,∆(j). (6.9)

We have the following proposition

Proposition 6.4.4. [[GG05], Proposition 2.7] With the above action Fi(V ) is a

AR,n,ν,riλ-module.
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When Q is an infinite affine Dynkin quiver (or in general a locally finite one), the

reflection functors satisfy the same properties as in Gan ([Gan06], § 6.2). In particular

if i is a loop-free vertex, let Λi be the set of all (λ, ν) ∈ B̂R × R = RI × R such that

λi ± ν
∑r

m=2 s1m is invertible in R[Sr] for all r = 1, . . . , n.

Theorem 6.4.5 ([Gan06], Theorem 5.1). If (λ, ν) ∈ Λi, then the functor

Fi : AR,n,ν,λ −mod→ AR,n,ν,riλ −mod

is an equivalence of categories with quasi-inverse functor Fi, where we are considering

the categories of left modules that are finitely generated as R-modules.

Lemma 6.4.6 ([Gan06], Proposition 5.12). If R = C we have:

Λi = {(λ, ν) ∈ B̂ × C|λi ± pν 6= 0 for p = 0, . . . , n− 1}

Let now BJ and UJ be the finite dimensional vectors spaces defined at the end

of Section 5.6. Let R = C[[UJ ]]. Let ν ∈ C[[UJ ]], and λ ∈ BJ ⊗ C[[UJ ]]. With the

same notation as in Section 5.6, we say that a AC[[UJ ]],n,ν,λ-module VUJ
is a flat formal

deformation of a AC[[UJ ]],n,ν,λ-module V if VUJ
∼= V [[UJ ]] as C[[UJ ]]-modules and

VUJ
∼= V . Proposition 5.14 of [Gan06] extend to the continuous case with analogous

proof.

Proposition 6.4.7. Assume that ν ∈ C[UJ ], and λ ∈ BJ ⊗ C[UJ ] (as in Lemma

5.6.2). Moreover, let i ∈ J and assume that (λ, ν) ∈ Λi. If a AC[[UJ ]],n,ν,λ-module

VUJ
is a flat formal deformation of a finite dimensional AC[[UJ ]],n,ν,λ-module V , then

Fi(VUJ
) is a flat formal deformation of Fi(V ).

2
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6.5 Representations in the higher rank case

For any commutative unital C-algebra R and any B̂R♯Sn-module V define the set

IV ⊂ I as follows

IV :=
{
i ∈ I|∃ j := (j1, . . . jn) ∈ In with i ∈ {j1, . . . , jn} and |jV 6= 0

}
.

where we recall that |j = ej1 ⊗ · · · ⊗ ejn .

It is clear that if V is finitely generated over R then IV is a finite subset of I (see

Remark 6.4.2).

In particular when n = 1, R = C and V is finite dimensional, of dimension vector

say α, then IV = {i ∈ I|eiV 6= 0} = supp(α), the support of the dimension vector.

Suppose now IV is finite, and let J ⊂ I be any finite subset of indices such that

IV ⊂ J . Consider the finite rank free R-module

BR,J :=
⊕

i∈J

Rei →֒
∏

i∈I

Rei = B̂R

i.e. BR,J =
{
λ ∈ B̂R|λi = 0 ∀i /∈ J

}
. Then the module V factors through the homo-

morphism (B̂R♯Sn) ։ B⊗n
R,J♯Sn defined by





σ −→ σ if σ ∈ Sn

|j −→ |j if js ∈ J for all s

|j −→ 0 otherwise

(6.10)

In accordance with the notation of Section 6.2, in all what follows, for any finite set

of indices J and any parameter λ ∈ B̂R, we will denote by λ|J ∈ BR,J the restriction

of the parameter λ to the set J .

Suppose now V is a AR,n,ν,λ-module and IV ⊂ J . Let QJ be the full sub-

quiver corresponding to J . Then V factors through the homomorphism AR,n,ν,λ −→
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AR,n,ν,λ|J (QJ) defined by formulas (6.10) above and by the assignment





al|j −→ al|j if js ∈ J for all s

al|j −→ 0 otherwise

where we recall that, for any a ∈ Q and l = 1, . . . , n, we denoted by al|j the element

ej1 ⊗ · · · ⊗ aejl
⊗ · · · ⊗ ejn .

Observe that what we said above also implies that the module V factors through

an action of the algebra AR,n,ν,λJ
, where λJ is as in Section 5.4 (i.e. (λJ)i = λi if

i ∈ J and (λJ)i = 0 otherwise).

Thus, if we want to study modules over AR,n,ν,λ(Q) that are finitely generated as

R-modules, it is actually enough to consider subfamilies of algebras depending only

on finitely many of the parameters λi.

Let us now go back to the case R = C. The easiest examples of finite dimensional

An,ν,λ- modules one can look for are the modules which are irreducible as B̂♯Sn-

modules. For any i ∈ I, let Ni be the complex vector space with dimension vector ǫi.

Consider ~n = (n1, . . . , nr), where ni ∈ Z>0, and
∑r

i=1 ni = n. Let {i1, . . . , ir} be a set

of r distinct vertices of Q and let N = N⊗n1
i1
⊗· · ·⊗N⊗nr

ir
. As in Chapter 3, regard Snj

as the group permuting the factors in N⊗nj

ij
, and consider S~n := Sn1×· · ·×Snr ⊂ Sn.

Let X = X1 ⊗ · · · ⊗ Xr be a simple module for the group S~n. Then X ⊗ N is a

simple module for B̂♯S~n. One can then form the induced B̂♯Sn-module X ⊗ N ↑:=
Ind

bB♯Sn

bB♯S~n

(X ⊗ N ). Moreover, it is known that any simple finite dimensional B̂♯Sn-

module has this form (this is true by [Mac80], paragraph after (A5), when Γ is

finite, and remains true for Γ reductive when we consider only finite dimensional

representations).

Observe now that we have

X ⊗N ↑=
⊕

σ

σ(X ⊗N ) (6.11)

where σ runs over a set of left coset representative of S~n in Sn ( in particular we have

IX⊗N↑ = {i1, . . . , ir}).
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The following lemma is the analog of [Gan06], Lemma 6.1.

Lemma 6.5.1. Suppose ν ∈ C[[UJ ]], and λ ∈ BJ⊗C[[UJ ]]. Let a AC[[UJ ]],n,ν,λ-module

VUJ
be a flat formal deformation of the finite dimensional AC[[UJ ]],n,ν,λ-module VUJ

. If

VUJ
is simple as a B̂♯Sn-module, then all elements of ÊC[[UJ ]] must act by 0 on VUJ

.

Proof. The proof goes exactly as in [Gan06] when we observe that also in our case

B̂♯Sn is a semisimple algebra. This implies that VUJ
must be of the form (X ⊗N ↑

)[[UJ ]] as a B̂C[[UJ ]]♯Sn-module, with i1, . . . , ir ∈ J (trivial deformation of an irreducible

module X ⊗ N ↑). Let us fix l ∈ {1, . . . n}. Any al|j ∈ B̂C[[UJ ]]♯Sn induces maps

between the different summands in formula (6.11). Now, for any j = (j1, . . . , jn) ∈ In

and σ ∈ Sn, if jh = jσ(h) for any h 6= l then jl = jσ(l). Since Q has no edge loops,

this implies that al|j must act by 0 on N . Since this is true for any a and any l, all

elements of ÊC[[UJ ]] must act by 0 on VUJ
.

The following theorem can be proved as Theorem 6.2 in [Gan06] and is equivalent

to Theorem 6.5 in [EGG05].

Theorem 6.5.2. Assume C[[UJ ]] ∋ ν 6= 0 and λ ∈ BJ ⊗ C[[UJ ]]. The B̂C[[UJ ]]♯Sn-

module (X ⊗N ↑)[[UJ ]] extends to a AC[[UJ ]],n,ν,λJ
-module if and only if the following

conditions are satisfied:

(i) For all l ∈ {1, . . . , r}, the simple module Xl of Snl
has rectangular Young dia-

gram of some size al × bl;

(ii) No two vertices in the collection {i1, . . . , ir} are adjacent in Q, i.e. (ǫij , ǫik) = 0

for any j 6= k ∈ {1, . . . , r};

(iii) For all l ∈ {1, . . . , r}, one has λil = ν(al − bl);

where we agree that condition (ii) is empty if r = 1 i.e. if ~n = (n).

Fix now λ0 ∈ B̂. Let Y1, . . . , Yr be a collection of simple, pairwise non-isomorphic,

finite dimensional representations of Π̂λ0 and denote by α(i) the dimension vector of

Yi. Let Y := Y ⊗n1
1 ⊗ · · · ⊗ Y ⊗nr

r . Then X ⊗ Y is an irreducible representation

of Π̂⊗̂n
λ0
♯S~n and, as in the finite case, we can consider the induced An,0,λ0-module
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X ⊗ Y ↑:= Ind
Π̂⊗̂n

λ0
♯Sn

Π̂⊗̂n
λ0

♯S~n

X ⊗ Y. It is known (as before by [Mac80]) that any finite

dimensional simple An,0,λ0-module is of this form. For i = 1, . . . , r, denote by α(i) the

dimension vector of Yi. It is easy to see that:

IX⊗Y↑ =
r⋃

i=1

IYi
=

r⋃

i=1

supp(α(i)).

Let J be a finite subset of indices corresponding to some connected subquiver and

such that IX⊗Y↑ ⊂ J . As in Section 5.4, let λ+ be the unique J-dominant weight WJ -

conjugate to λ0, and w+ the unique element of minimal length such that w+λ0 = λ+.

Write w+ = sjh
· · · sj1 for some simple reflections corresponding to vertices j1, . . . , jh ∈

J . By minimality of the length we know (rjg · · · rj1λ)jg+1 6= 0 for g = 0, . . . , h − 1.

Denote by Fw+ the composition Fjh
· · ·Fj1 , and by F(w+)−1 the composition Fj1 · · ·Fjh

.

The following theorem is the analog of Theorem 6.3 in [Gan06].

Theorem 6.5.3. Suppose λ ∈ BJ ⊗ C[UJ ] with λi ∈ UJ for any i ∈ J , and that

0 6= ν ∈ UJ . The An,0,λ0-module X ⊗ Y ↑ has a flat formal deformation to a

AC[[UJ ]],n,ν,λ0+λ-module if and only if the following conditions are satisfied:

(i) For all l ∈ {1, . . . , r}, the simple module Xl of Snl
has rectangular Young dia-

gram, of size al × bl;

(ii) (α(l), α(m)) = 0 for all l 6= m;

(iii) For all l ∈ {1, . . . , r}, one has λ · α(l) = (al − bl)ν;

where we agree that condition (ii) is empty if r = 1. When the deformation exists it

is unique.

Proof. Take J , λ+, w+, Fw+ , F(w+)−1 as above. Exactly as in [Gan06], proof of

Theorem 6.3, we can prove that (rjg · · · rj1(λ0 + λ), ν) ∈ Λjg+1 for g = 0, . . . , h −
1. Indeed, for any C ∈ C[[UJ ]][Sn] the element (rjg · · · rj1(λ0 + λ))jg+1 + νC has

an inverse in C[[UJ ]][Sn]. Finding this inverse amounts to solving a system of n!

equations in n! variables with matrix (rjg · · · rj1(λ0 + λ))jg+1Idn! + νA, with A some
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matrix. Since λ, ν ∈ m and (rjg · · · rj1λ0)jg+1 6= 0 (by minimality of the length of

w+), the determinant of this matrix is nonzero modulo m. Thus the determinant is

invertible in C[[UJ ]] and so the matrix is invertible. As a consequence we have that

the sequence Fw+ establishes an equivalence of categories AC[[UJ ]],n,ν,λ0+λ −mod −→
AC[[UJ ]],n,ν,λ++w+(λ) −mod.

For any l = 1, . . . , r we have that α(l) ∈ Σλ0,J . From Lemma 5.4.1 we know that

w+Σλ0,J = Σλ+,J . Since λ+ is J-dominant we know that Σλ+,J =
{
ǫi|i ∈ J, λ+

i = 0
}
.

For any l = 1, . . . r, define il ∈ J by w+(α(l)) = ǫil ∈ Σλ+,J . As we observed at

the beginning of this section, since IX⊗Y↑ ⊂ J the An,0,λ0-module X ⊗ Y ↑ factors

through An,0,(λ0)|J (QJ). Moreover, since j1, · · · , jh ∈ J , we can deduce from the

definition of the functors Fjl
that the An,0,λ+-module Fw+(X ⊗Y ↑) factors through

An,0,(λ+)|J (QJ). By [CBH98] Theorem 5.1, we must have Fw+(X ⊗Y ↑) = X ⊗N ↑
where N = N⊗n1

i1
⊗ · · · ⊗ N⊗nr

ir
.

From now the proof goes exactly as in [Gan06] and we report it for the reader’s

convenience.

We first observe that, for any l = 1, . . . , r, we have λ0 ·α(l) = λ+ · ǫil = 0, and that

both the products ( , ) and · are W -invariant.

Using this, we have that, if the conditions in the theorem are satisfied, then the

B̂C[[UJ ]]♯Sn-module M := X ⊗ N ↑ [[UJ ]] satisfies the conditions of Theorem 6.5.2,

and thus extends to a AC[[UJ ]],n,ν,λ++w+(λ)-module (with ÊC[[UJ ]] acting by 0). Thus by

Proposition 6.4.7 the AC[[UJ ]],n,ν,λ0+λ-module F(w+)−1(M) is a flat formal deformation

of X ⊗Y ↑.
Vice versa suppose a AC[[UJ ]],n,ν,λ0+λ-module V is a flat formal deformation of

X ⊗Y ↑. Then, using again Proposition 6.4.7, we have that Fw+(V ) is a flat formal

deformation of X ⊗ N ↑. Since Fw+(V ) = (X ⊗ N ↑)[[UJ ]] as a B̂C[[UJ ]]♯Sn-module,

then by Theorem 6.5.2 the conditions (i), (ii), (iii) must be satisfied. Moreover,

we have that, by Lemma 6.5.1, ÊC[[UJ ]] must act by 0. Thus Fw+(V ) is the unique

flat formal deformation of X ⊗ N ↑ and V is the unique flat formal deformation of

X ⊗Y ↑.

2
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Assume now that λ0 ∈ BJ and that the conditions (i), (ii) of Theorem 6.5.3

hold. Let ν ∈ C[UJ ] and λ ∈ BJ ⊗ C[UJ ] be functions satisfying the condition (iii).

Suppose there is a point o ∈ UJ such that λ specializes to λ0 and ν specializes to

0 at o. Following Gan’s notation let U ′
J be the Zariski open set in UJ defined by

(rjg · · · rj1λ)jg+1 ± pν 6= 0 for g = 0, . . . , h− 1 and p = 0, . . . , n− 1. Since o ∈ U ′
J this

set is nonempty. Let C[U ′
J ] be the ring of regular functions on U ′

J and for any u ∈ U ′
J

let mu denote the maximal ideal of functions vanishing at u. If V is a C[U ′
J ] -module

let V u := V/muV . The following theorem is the analog of [Gan06], Theorem 6.4 and

the proof is exactly the same.

Theorem 6.5.4. There exists a AC[U ′
J ],n,ν,λ-module VU ′

J
such that:

(i) V o
U ′

J
= X ⊗Y ↑ as a An,0,λ0-module, and VU ′

J
is flat over U ′

J ;

(ii) for any point u ∈ U ′
J , V

u
U ′

J
is a finite dimensional simple Au

C[U ′
J ],n,ν,λ-module,

isomorphic to X ⊗Y ↑ as a B̂u
C[U ′

J ]♯Sn-module.

2
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Appendix A

Proof of Theorem 5.6.1

Before getting started we need to introduce some notation. For any i ∈ I, let us choose
a basis for the irreducible representation Ni, and let us denote by ENi

pq (γ) ∈ O(Γ) the
(p, q)-th matrix coefficient for Ni in such basis, where 1 ≤ p, q ≤ di = dimNi. Since
Γ is reductive, we know these functions span the algebra O(Γ). Moreover, if we

take matrix coefficients ENi
pq (γ), E

N∗
j

lm (γ) with respect to dual bases, the following
orthogonality relation holds:

∫

Γ

ENi
pq (γ)E

N∗
j

lm (γ)dγ =
1

di

δijδplδqm , (A.1)

where
∫
Γ

is the linear form described in Section 4.2. Let ĚNi
pq be the unique distri-

bution such that 〈ĚNi
pq , E

Nj

lm 〉 = δijδplδqm. Using (A.1) we can write 〈ĚNi
pq , E

Nj

lm 〉 =

di

∫
Γ
E

Nj

lm E
N∗

i
pq dγ. Using the identifications (4.3) of Section 4.2, we can see how these

distributions span topologically O(Γ)∗.

It is straightforward to compute that, if ∆ : O(Γ) −→ O(Γ) ⊗ O(Γ) denotes the
coproduct for O(Γ), then ∆(ENi

pq ) =
∑di

r=1E
Ni
pr ⊗ ENi

rq . In all what follows, when
there is no ambiguity, we will just omit the sum sign over repeated indices and write
∆(ENi

pq ) = ENi
pr ⊗ENi

rq . Using just the definition of convolution product (formula (4.1),

Section 4.2), it is now easy to see that ĚNi
pq Ě

Nj

lm = δijδqlĚ
Ni
pm, so that the identification

O(Γ)∗ =
∏

i∈I Mat(di) is an algebra isomorphism.

We observe now that V ⊗O(Γ)∗
⊗̂n

is a O(Γ)∗
⊗̂n

-bimodule with right action only
on the second factor and left action defined by

µ(w ⊗ µ′) =
∑

i

(xi ⊗ (x∗i , gw) + yi ⊗ (y∗i , gw))µµ′

for all µ, µ′ ∈ O(Γ)∗
⊗̂n

, w ∈ V , where {xi, yi} is a symplectic basis as in Lemma 4.4.1
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and {x∗i , y∗i } is its dual basis. Let us now denote by

T k

O(Γ)∗⊗̂n(V ⊗O(Γ)∗
⊗̂n

) := (V ⊗O(Γ)∗
⊗̂n

)⊗
O(Γ)∗⊗̂n · · · ⊗O(Γ)∗⊗̂n (V ⊗O(Γ)∗

⊗̂n
).

We have

TV ♯O(Γn)∗=

(⊕

k≥0

T k

O(Γ)∗⊗̂n(V ⊗O(Γ)∗
⊗̂n

)

)
♯Sn =T

O(Γ)∗⊗̂n(V ⊗O(Γ)∗
⊗̂n

)♯Sn. (A.2)

Following [CBH98] (§ 3) and [GG05] (§ 3.3) we will now define the idempotents
ϕi := ĚNi

11 and ϕ =
∑

i ϕi in the algebra O(Γ)∗.

For the element element ϕ⊗n ∈ O(Γ)∗
⊗̂n

we have:

ϕ⊗n =
∑

i1,...,in∈I

ϕi1 ⊗ · · · ⊗ ϕin

and

∑

i1,p1,...,in,pn

(Ě
Ni1
p11
⊗ · · · ⊗ ĚNin

pn1 )ϕ⊗n(Ě
Ni1
1p1
⊗ · · · ⊗ ĚNin

1pn
)

=
∑

i1,p1,...,in,pn

Ě
Ni1
p11 Ě

Ni1
1p1
⊗ · · · ⊗ ĚNin

pn1 Ě
Nin

1pn
= δ⊗n

1 . (A.3)

Since δ⊗n
1 is the unit element in O(Γ)∗

⊗̂n
, equation (A.3) implies a Morita equiv-

alence ϕ⊗n
(
TV ♯O(Γ)∗

⊗̂n
)
ϕ⊗n ∼ TV ♯O(Γ)∗

⊗̂n
.

Now clearly we have an isomorphism

B̂ ∼−→ ϕ⊗nO(Γ)∗
⊗̂n
ϕ⊗n =

∏

i1,...,in

C · ϕi1 ⊗ · · · ⊗ ϕin (A.4)

such that
ei1 ⊗ · · · ⊗ ein −→ ϕi1 ⊗ · · · ⊗ ϕin .

Moreover we have bijections

ϕiO(Γ)∗ϕj ↔ HomΓ(Ni, Nj) ϕi (L⊗O(Γ)∗)ϕj ↔ HomΓ(Ni, L⊗Nj).

Indeed we have that O(Γ)∗ϕj
∼= Nj and (L⊗O(Γ)∗)ϕj

∼= L ⊗ Nj. The first is an
irreducible finite dimensional representation and, since Γ is reductive, the second is
a semisimple representation. Multiplying on the left by the idempotent ϕi corre-
sponds to projecting on the multiplicity space of the component of type Ni of such
representations.
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Thus we have an isomorphism

ϕ⊗n
(
V ⊗O(Γ)∗⊗̂n

)
ϕ⊗n

=
∏

i1,...,jn

(ϕi1 ⊗ · · · ⊗ ϕin)(L⊕n ⊗O(Γ)∗⊗̂ · · · ⊗̂O(Γ)∗︸ ︷︷ ︸
n

)(ϕj1 ⊗ · · · ⊗ ϕjn)

=
n⊕

l=1

∏

i1,...,jn

HomΓ(Ni1 , Nj1)⊗ · · · ⊗ HomΓ(Nil , L⊗Njl
)⊗ · · · ⊗ HomΓ(Nin , Njn)

∼= Ê (A.5)

Now from (A.2) and from identities (A.4) and (A.5) it follows that:

ϕ⊗n
(
T
O(Γ)∗⊗̂n

(
V ⊗O(Γ)∗

⊗̂n
))

ϕ⊗n ∼= T̂BE (A.6)

and

ϕ⊗n
(
TV ♯O(Γ)∗

⊗̂n
)
ϕ⊗n = ϕ⊗n

(
T
O(Γ)∗⊗̂n

(
V ⊗O(Γ)∗

⊗̂n
)
♯Sn

)
ϕ⊗n

∼= T̂BE♯Sn (A.7)

Now by (A.3) we have that Hk,c(Γn) is Morita equivalent to ϕ⊗nHk,c(Γn)ϕ⊗n. By

(A.7) we have that ϕ⊗nHk,c(Γn)ϕ⊗n is isomorphic to some quotient of T̂BE♯Sn. We
will show in the next theorem that for an appropriate choice of the parameters this
quotient is exactly the one described in Definition 5.5.3.

We will need the following auxiliary lemma, which is the analog for infinite affine
quivers of Lemma 3.2 of [CBH98]. Let Q be a quiver attached to Γ (with any orien-
tation). Let ζ be the linear map ζ : C→ L⊗ L such that 1→ y ⊗ x− x⊗ y.

Lemma A.0.5. For any arrow a : i→ j in Q there exist Γ-module homomorphisms

θa : Ni → L⊗Nj and φa : Nj → L⊗Ni

such that for any vertex i

∑

a∈Q,h(a)=i

(IdL ⊗ θa)φa −
∑

a∈Q,t(a)=i

(IdL ⊗ φa)θa = −di(ζ ⊗ IdNi
)

as maps from Ni to L⊗ L⊗Ni, and such that

(ωL ⊗ IdNt(a)
)(IdL ⊗ φa)θa = −dh(a)IdNt(a)

and
(ωL ⊗ IdNh(a)

)(IdL ⊗ θa)φa = dt(a)IdNh(a)
.

Moreover the θa, φa combine to give a basis for each of the spaces HomΓ(Ni, L⊗Nj).

Proof. (of Theorem 5.6.1) In the case Γ is of type A∞ the same proof as in [CBH98],
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Lemma 3.2, works without any change. For Γ of type A+∞, D∞ the proof goes as
the one in [CBH98] for type D̃n, Ẽn if we observe that also in our case Q is a (semi-
infinite) tree, the L⊗Ni are all multiplicity free and the vector δ is the unique vector
in CI , up to scalar multiples, such that (δ, ǫi) = 0 for all i ∈ I.

2

Proof. We give a proof for n ≥ 2 since the proof for n = 1 is similar and easier.
Our proof rephrases the proof of Theorem 3.5.2 in [GG05] in the language of algebraic
distributions on Γn. Using equations (A.4)-(A.7) and Lemma A.0.5 we can define an
isomorphism

T̂BE♯Sn → ϕ⊗n (TV ♯O(Γn)∗)ϕ⊗n

ei1 ⊗ · · · ⊗ ein · σ → ϕi1 ⊗ · · · ⊗ ϕin · σ,
ei1 ⊗ · · · ⊗ a⊗ · · · ⊗ ein · σ → ϕi1 ⊗ · · · ⊗ φa ⊗ · · · ⊗ ϕin · σ,
ei1 ⊗ · · · ⊗ a∗ ⊗ · · · ⊗ ein · σ → ϕi1 ⊗ · · · ⊗ θa ⊗ · · · ⊗ ϕin · σ,

for all i1, . . . , in ∈ I, a ∈ Q.
Let us denote by J the subspace of TV ♯O(Γn)∗ topologically spanned by rela-

tions (R1), (R2) of Definition 4.4.1. Then the algebra Hk,c(Γn) is the quotient of
TV ♯O(Γn)∗ by the two-sided ideal generated by J and ϕ⊗nHk,c(Γn)ϕ⊗n is the quo-
tient of ϕ⊗nTV ♯O(Γn)∗ϕ⊗n by the ideal

ϕ⊗n (TV ♯O(Γn)∗) J (TV ♯O(Γn)∗)ϕ⊗n

= ϕ⊗n (TV ♯O(Γn)∗)ϕ⊗nO(Γ)∗
⊗̂n
JO(Γ)∗

⊗̂n
ϕ⊗n (TV ♯O(Γn)∗)ϕ⊗n

where the identity holds by equation (A.3). Our claim is that the image of the two

sided ideal generated by ϕ⊗nO(Γ)∗
⊗̂n
JO(Γ)∗

⊗̂n
ϕ⊗n under the above isomorphism is

exactly the ideal of the defining relations (I), (II) for An,ν,λ(Q).
Let us first consider the relations (R1). Notice that for any ϕ ∈ O(Γ)∗ and x, y ∈ L

a symplectic basis, we have that in TL♯O(Γ)∗

ϕ(xy − yx) = (xy − yx)ϕ . (A.8)

In fact

ϕ(xy − yx)
=(x(x∗, γx)ϕ+y(y∗, γx)ϕ) y−(y(y∗, γy)ϕ+x(x∗, γy)ϕ)x

=xx(x∗, γy)(x∗, γx)ϕ+xy(y∗, γy)(x∗, γx)ϕ+yx(x∗, γy)(y∗, γx)ϕ+yy(y∗, γy)(y∗, γx)ϕ+

−yx(x∗, γx)(y∗, γx)ϕ−yy(y∗, γx)(y∗, γy)ϕ−xy(y∗, γx)(x∗, γy)ϕ−xx(x∗, γx)(x∗, γy)ϕ
=(xy − yx) ((x∗, γx)(y∗, γy)−(x∗, γy)(y∗, γx))ϕ

=(xy − yx)(detγ)ϕ

=(xy − yx)ϕ

where the last identity holds since detγ ≡ 1 as a function on SL(2,C). Also, since c
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is a Γ-invariant distribution, for all ϕ ∈ O(Γ)∗ we have

ϕc = cϕ ∈ O(Γ)∗. (A.9)

Moreover, if for any ϕ ∈ O(Γ)∗ we write ϕi = δ1⊗· · ·⊗ϕ⊗· · ·⊗δ1 ∈ O(Γ)∗
⊗̂n

, where
ϕ is placed in the ith position, we have that

ϕiψj

(
δsij

∆ij

)
=
(
δsij

∆ij

)
ϕiψj (A.10)

for any ϕ, ψ ∈ O(Γ)∗ and any i, j ∈ [1, n]. To see that (A.10) holds it is enough to

test the right and left hand side of the equality on a decomposable function f̃(E
Nl1
p1q1⊗

· · · ⊗ E
Nln
pnqn), where f̃ is a function on Sn. Suppose without loss of generality that

i = 1, j = 2. For the right hand side we have

〈(δs12∆12)ϕ1ψ2, f̃(E
Nl1
p1q1 ⊗ · · · ⊗ ENln

pnqn
)〉

= 〈δs12 , f̃〉
(
〈ϕ,ENl1

r1q1〉〈ψ,E
Nl2
r2q2〉

∫

Γ

E
Nl1
p1r1(γ)E

Nl2
p2r2(γ

−1) dγ

)
〈δ1, ENl3

p3q3〉 · · · 〈δ1, ENln
pnqn
〉

= f̃(s12)

(
〈ϕ,ENl1

r1q1〉〈ψ,E
Nl2
r2q2〉

∫

Γ

E
Nl1
p1r1(γ)E

N∗
l2

r2p2(γ) dγ

)
E

Nl3
p3q3(1) · · ·ENln

pnqn
(1)

= δl1l2 f̃(s12)
1

dl1

〈ψ,ENl1
p1q2〉〈ϕ,E

Nl1
p2q1〉E

Nl3
p3q3(1) · · ·ENln

pnqn
(1)

while for the left hand side we have

〈ϕ1ψ2 (δs12∆12) , f̃(E
Nl1
p1q1 ⊗ · · · ⊗ ENln

pnqn
〉

= 〈δs12ϕ2ψ1∆12, E
Nl1
p1q1 ⊗ · · · ⊗ ENln

pnqn
〉

= 〈δs12 , f̃〉
(
〈ψ,ENl1

p1r1〉〈ϕ,E
Nl2
p2r2〉

∫

Γ

E
Nl1
r1q1(γ)E

Nl2
r2q2(γ

−1) dγ

)
〈δ1, ENl3

p3q3〉 · · · 〈δ1, ENln
pnqn
〉

= f̃(s12)

(
〈ψ,ENl1

p1r1〉〈ϕ,E
Nl2
p2r2〉

∫

Γ

E
Nl1
r1q1(γ)E

N∗
l2

q2r2(γ) dγ

)
E

Nl3
p3q3(1) · · ·ENln

pnqn
(1)

= δl1l2 f̃(s12)
1

dl1

〈ψ,ENl1
p1q2〉〈ϕ,E

Nl1
p2q1〉E

Nl3
p3q3(1) · · ·ENln

pnqn
(1)

where in both cases we used the fact that for any finite dimensional representation

Ni, if we choose dual bases, we have ENi
pq (γ−1) = E

N∗
i

qp (γ) for any p, q = 1, . . . , di. Now
using (A.8), (A.9), (A.10), if we denote by J1 the vector space spanned by relations
(R1) we see that

ϕ⊗nO(Γ)∗
⊗̂n
J1O(Γ)∗

⊗̂n
ϕ⊗n = ϕ⊗nJ1ϕ

⊗nO(Γ)∗
⊗̂n
ϕ⊗n.
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Then for any choice of i1, . . . , in ∈ I and l ∈ [1, n] we have:

ϕi1 ⊗ · · · ⊗ ϕin · [xl, yl]

= [xl, yl] · ϕi1 ⊗ · · · ⊗ ϕin

= ϕi1 ⊗ · · · ⊗
1

dil


 ∑

a∈Q, h(a)=il

φaθa −
∑

a∈Q, t(a)=il

θaφa


⊗ · · · ⊗ ϕin (A.11)

and

ϕi1 ⊗ · · · ⊗ ϕincl =
λil

dil

ϕi1 ⊗ · · · ⊗ ϕin . (A.12)

Indeed we can write ϕi1 ⊗ · · · ⊗ ϕincl = ϕi1 ⊗ · · · ⊗ ϕilc⊗ · · · ⊗ ϕin , and testing on a

function E
Nj
pq ∈ O(Γ) we have:

〈ϕilc, E
Nj
pq 〉

= 〈ϕil , E
Nj
pr 〉〈c, ENj

rq 〉
= δiljδp1〈c, ENj

1q 〉 = δiljδp1δq1〈c, ENil

11 〉

=
1

dil

δiljδp1δq1〈c, χil〉.

The last identities follow from the fact that c is a Γ-invariant distribution, thus a
sum of duals of characters. More precisely

c =
∑

i

αi

di∑

j=1

ĚNi

jj αi ∈ C ,

and one has
〈c, ENj

pq 〉 = 0 if p 6= q ,

so that

〈c, χil〉 = 〈
∑

i

αi

di∑

j=1

ĚNi

jj ,

dil∑

j=1

E
Nil

jj 〉 = dilαil = dil〈c, E
Nil

11 〉.

Now we claim that

(ϕi1 ⊗ · · · ⊗ ϕin) δslj
∆lj (ϕi1 ⊗ · · · ⊗ ϕin) =

δijil

dil

(ϕi1 ⊗ · · · ⊗ ϕin) δslj
(A.13)

Indeed, supposing without loss of generality that l = 1 j = 2, and testing the left
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hand side on a decomposable function f̃
(
E

Nl1
p1q1 ⊗ · · · ⊗ ENln

pnqn

)
we get:

〈(ϕi1 ⊗ ϕi2 ⊗ · · · ⊗ ϕin) δs12∆12, f̃
(
E

Nl1
p1q1 ⊗ · · · ⊗ ENln

pnqn

)
〉

= 〈δs12 (ϕi2 ⊗ ϕi1 ⊗ · · · ⊗ ϕin) ∆12, f̃
(
E

Nl1
p1q1 ⊗ · · · ⊗ ENln

pnqn

)
〉

= f̃(s12)〈ϕi2 , E
Nl1
p1r1〉〈ϕi1 , E

Nl2
p2r2〉

(∫

Γ

E
Nl1
r1q1(γ)E

N∗
l2

q2r2(γ) dγ

)∏

j≥3

〈ϕij , E
Nlj
pjqj〉

= f̃(s12)δi1i2

∏

j≥1

δij lj

∏

j≥1

δpj1

∏

j≥3

δqj1

∫

Γ

E
Ni1
1q1

(γ)E
N∗

i1
q21 (γ) dγ

= f̃(s12)
δi1i2

di1

∏

j≥1

δij lj

∏

j≥1

δpj1

∏

j≥1

δqj1

=
δi1i2

di1

〈(ϕi1 ⊗ ϕi2 ⊗ · · · ⊗ ϕin) δs12 , f̃
(
E

Nl1
p1q1 ⊗ · · · ⊗ ENln

pnqn

)
〉.

By (A.11), (A.12), (A.13) we thus have that relations of type (R1) give us exactly
the relations (I) in Definition 5.5.3.

We will now find the relations that are given by (R2). We will assume without
loss of generality that n = 2. First of all, for any u, v ∈ L and any ϕ, ψ ∈ O(Γ)∗, if
x, y is any basis for L, we can easily see that

(ϕ⊗ ψ) · [u1, v2]

= [x1, x2] ((x
∗, hu)ϕ⊗ (x∗, gv)ψ) + [x1, y2] ((x

∗, hu))ϕ⊗ (y∗, gv)ψ)

+ [y1, x2] ((y
∗, hu))ϕ⊗ (x∗, gv)ψ) + [y1, y2] ((y

∗, hu))ϕ⊗ (y, gv)ψ) (A.14)

and similarly

(ϕ⊗ ψ) δs12ωL(γu, v)∆12

=δs12ωL(γx, x)∆12 ((x∗, hu)ϕ⊗ (x∗, gv)ψ)+δs12ωL(γx, y)∆12 ((x∗, hu)ϕ⊗ (y∗, gv)ψ)

+δs12ωL(γy, x)∆12 ((y∗, hu)ϕ⊗ (x∗, gv)ψ)+δs12ωL(γy, y)∆12 ((y∗, hu)ϕ⊗ (y∗, gv)ψ) .
(A.15)

To prove this last identity we first have to introduce some more notation. For
ϕ, ψ ∈ O(Γ)∗ we will write ϕh, ψg to indicate the variable with respect to which these
distributions are considered (so ϕ is a linear functional on functions in the variable
h etc. . . ). Since the value of the distribution ∆12 on any function f1 ⊗ f2 ∈ O(Γ)⊗2

can be written as

〈∆12, f1 ⊗ f2〉 =

∫
Γ× Γ
g = h

f1(g)f2(h
−1) dg dh .

We will write ∆12,(g h) to keep track of the variables. Finally for E
Nl1
p1q1⊗E

Nl2
p2q2 ∈ O(Γ)⊗2
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we will write

∆(E
Nl1
p1q1 ⊗ E

Nl2
p2q2)(g, h, g

′, h′) = E
Nl1
p1r1(g)⊗ E

Nl2
p2r2(h)⊗ E

Nl1
r1q1(g

′)⊗ ENl2
r2q2(h

′)

for the coproduct. Let us now consider the decomposable function f = f̃(E
Nl1
p1q1 ⊗

E
Nl2
p2q2), where f̃ is a function on Sn. We have

〈(ϕ⊗ ψ) δs12ωL(γu, v)∆12 , f〉
= f̃(s12)〈(ψg ⊗ ϕh)

(
ωL(g′u, v)∆12,(g′ h′)

)
, ∆(E

Nl1
p1q1 ⊗ E

Nl2
p2q2)(g, h, g

′, h′)〉
= f̃(s12)〈ψgϕh , E

Nl1
p1r1(g)E

Nl2
p2r2(h)〉〈∆12,(g′ h′) , ωL(g′u, v)E

Nl1
r1q1(g

′)E
Nl2
r2q2(h

′)〉 .

Now making the change of variable (g′, h′) = (g−1g̃h, γ−1h̃h) and using the fact that
the integral is left and right translation invariant we get

f̃(s12)〈ψgϕh , E
Nl1
p1r1(g)E

Nl2
p2r2(h)〉〈∆12,(g′ h′) , ωL(g−1g̃hu, v)E

Nl1
r1q1(g

−1g̃h)E
Nl2
r2q2(h

−1h̃g)〉 .
(A.16)

We now observe that:

ωL(g−1g̃hu, v) = ωL(g̃hu, gv)

=

1︷ ︸︸ ︷
(x∗, hu)(x∗, gv)ωL(g̃x, x) +

2︷ ︸︸ ︷
(x∗, hu)(y∗, gv)ωL(g̃x, y)

+

3︷ ︸︸ ︷
(y∗, hu)(x∗, gv)ωL(g̃y, x) +

4︷ ︸︸ ︷
(y∗, hu)(y∗, gv)ωL(g̃y, y) (A.17)

and that

E
Nl1
r1q1(g

−1g̃h)E
Nl2
r2q2(h

−1h̃−1g) (A.18)

= E
Nl1
r1s1(g

−1)E
Nl1
s1t1(g̃)E

Nl1
t1q1

(h)E
Nl2
r2s2(h

−1)E
Nl2
s2t2(h̃

−1)E
Nl2
t2q2

(g) . (A.19)

Using (A.17) we can rewrite (A.16) as a sum of four terms. If we use (A.19) to rewrite
the first of these terms, for example, we get

f̃(s12)〈ψgϕh , (x∗, hu)(x∗, gv)E
Nl1
p1r1(g)E

Nl1
r1s1(g

−1)E
Nl1
t1q1

(h)Ep2,r2(h)E
Nl2
r2s2(h

−1)E
Nl2
t2q2

(g)〉·
· 〈ωL(g̃x, x)∆12,(g̃ h̃) , E

Nl1
s1t1(g̃)E

Nl2
s2t2(h̃)〉

= f̃(s12)〈ψgϕh , (x∗, hu)(x∗, gv)E
Nl1
p1s1(e)E

Nl1
t1q1

(h)Ep2,s2(e)E
Nl2
t2q2

(g)〉·
· 〈ωL(g̃x, x)∆12,(g̃ h̃) , E

Nl1
s1t1(g̃)E

Nl2
s2t2(h̃)〉

= f̃(s12)〈ψgϕh , (x∗, hu)(x∗, gv)E
Nl1
t1q1

(h)E
Nl2
t2q2

(g)〉·
· 〈ωL(g̃x, x)∆12,(g̃ h̃) , E

Nl1
p1s1(e)E

Nl1
s1t1(g̃)Ep2,s2(e)E

Nl2
s2t2(h̃)〉
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= f̃(s12)〈ψgϕh , (x∗, hu)(x∗, gv)E
Nl1
t1q1

(h)E
Nl2
t2q2

(g)〉·〈ωL(g̃x, x)∆12,(g̃ h̃), E
Nl1
p1t1(g̃)Ep2,t2(h̃)〉

= f̃(s12)〈
(
ωL(g̃u, v)∆12,(g̃ h̃)

)
((x∗, hu)ϕh) ((x∗, gv)ψg) , ∆(E

Nl1
p1q1 ⊗ E

Nl2
p2q2)(g̃, h̃, h, g)〉

=〈δs12 ((x∗, hu)ϕ⊗ (x∗, gu)ψ)ωL(γx, v)∆12 , f〉

where we just used the properties of the coproduct and counit (evaluation at the
identity). It is of course possible to rewrite the remaining three terms in a similar
way, so that we get exactly expression (A.15).

Now for any i, j, k, l ∈ I an easy computation shows that, via the identification

TV ♯O(Γ)∗⊗̂2 ∼= T
O(Γ)∗⊗̂2(V ⊗O(Γ)∗⊗̂2), we have

(ϕi ⊗ ϕj) (ϕ⊗ δ1) [u1, v2] (δ1 ⊗ ψ) (ϕk ⊗ ϕl)

= (ϕiϕ⊗ ϕj) (u1 ⊗ (ϕk ⊗ ϕj))
⊗

(ϕk ⊗ ϕj) (v2 ⊗ (ϕk ⊗ ψϕl))

− (ϕi ⊗ ϕj) (v2 ⊗ (ϕi ⊗ ψϕl))
⊗

(ϕiϕ⊗ ϕl) (u1 ⊗ (ϕk ⊗ ϕl)) (A.20)

where
⊗

denotes the product in T
O(Γ)∗⊗̂2(V ⊗ O(Γ)∗⊗̂2), and we can see (A.20) as

an identity between algebraic distributions on Γ2 with values in T 2V . On the other
hand we trivially have that

(ϕi ⊗ ϕj) (ϕ⊗ δ1) (δs12ωL(γu, v)∆12) (δ1 ⊗ ψ) (ϕk ⊗ ϕl)

= δs12 (ϕj ⊗ ϕiϕ)ωL(γu, v)∆12 (ϕk ⊗ ψϕl) . (A.21)

As in [GG05] we observe now that for any arrow a ∈ Q we can find distributions

ϕa, ψa ∈ O(Γ)∗
⊗̂n

and vectors ua, va ∈ L such that

ϕt(a)ϕa

(
ua ⊗ ϕh(a)

)
6= 0 and ϕh(a)

(
va ⊗ ψaϕt(a)

)
6= 0.

Also in our caseQ has no loop vertices, thus we have that the spaces ϕi

(
L⊗O(Γ)∗⊗̂2

)
ϕj

are at most one dimensional and for any i, j ∈ I we have an identification:

(
ϕiO(Γ)∗⊗̂2 ⊗ L⊗O(Γ)∗⊗̂2ϕj

)Γ

→ ϕi

(
L⊗O(Γ)∗⊗̂2

)
ϕj

α⊗ u⊗ β → α (u⊗ β)

where ϕiO(Γ)∗⊗̂2 ⊗ L⊗ ϕjO(Γ)∗⊗̂2 ∼= N∗
i ⊗ L⊗Nj as Γ-modules. Moreover again as

in [GG05] we have a non degenerate Γ-equivariant pairing

(
ϕiO(Γ)∗⊗̂2 ⊗ L⊗O(Γ)∗⊗̂2ϕj

)⊗(
ϕjO(Γ)∗⊗̂2 ⊗ L⊗O(Γ)∗⊗̂2ϕi

)
→ C

(α⊗ u⊗ β)
⊗

(α′ ⊗ u⊗ β′)→ (αβ′)(α′β)ωL(u, u′).

As a consequence, we can assume that, for any a ∈ Q, we have ωL(ua, va) = 1.
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Moreover ϕt(a)ϕ
(
va ⊗ ϕh(a)

)
= 0 if ϕh(a)

(
va ⊗ ψϕt(a)

)
6= 0, and ϕh(a)

(
ua ⊗ ψϕt(a)

)
=

0 if ϕt(a)ϕ
(
ua ⊗ ϕh(a)

)
6= 0.

Note that if i 6= l or j 6= k the expression (A) is zero. To see this, let us evaluate

the distribution (ϕj ⊗ ϕiϕ)ωL(γu, v)∆12 (ϕk ⊗ ψϕl) on a function E
Nl1
p1q1 ⊗ E

Nl2
p2q2 . We

have

〈(ϕj ⊗ ϕiϕ)ωL(γu, v)∆12 (ϕk ⊗ ψϕl) , E
Nl1
p1q1 ⊗ E

Nl2
p2q2〉

= 〈ϕj , E
Nl1
p1r1〉〈ϕiϕ , E

Nl2
p2r2〉〈ωL(γu, v)∆12 , E

Nl1
r1s1 ⊗ E

Nl2
r2s2〉〈ϕk , E

Nl1
s1q1〉〈ψϕl , E

Nl2
s2q2〉 .

Since last expression is zero if j, k 6= l1 and i, l 6= l2 the above distribution is identically
0 if j 6= k or i 6= l.

Thus, if a, b ∈ Q are two arrows such that b 6= a∗ or a 6= b∗ we get from (A.20),
(A) and (R2) that

(a⊗ h(b))(t(a)⊗ b)− (h(a)⊗ b)(a⊗ t(b)) = 0 .

Suppose now j = k and i = l. Consider an edge a : i → j in Q and suppose, for
simplicity, a ∈ Q. We have an injection as an irreducible factor θa : Ni →֒ L ⊗ Nj.
We can choose a basis ξ := {ξi} of L⊗Nj = Ni⊕ . . . adapted to this decompositions
into irreducibles

ξ1 := ϕi = ENi

11 , ξ1 := ENi

21 , ξ3 := ENi

31 , . . . , ξdi
:= ENi

di1
, . . . .

On the other hand we can choose a basis µ := {µi} for L⊗Nj adapted to the tensor
product

µ1 := ua ⊗ ϕj = ua ⊗ ENj

11 , µ2 = ua ⊗ ENj

21 , . . . , µ2dj
:= va ⊗ ENj

dj1
.

Let’s now define the matrix τ = (τpq) by ϕµq =
∑

p τpqξp and the matrix ρ = (ρpq) by
ψξq =

∑
p ρpqµq. In other words we have τ = ξϕµ, where ξϕµ = (ξpϕµq) denotes the

matrix representing the linear map induced by ϕ on L⊗Nj if we choose the basis µ
for the domain and ξ for the image. Similarly we have ρ = µψξ. Now, recalling that
we are using the following identifications

Nj

φa→֒ L⊗Nj
ϑa→֒ L⊗ L⊗Nj

ωL⊗1→ Nj ,

and that by Lemma A.0.5 this composition of morphisms equals djIdNj
, we have that

ϕiϕ (ua ⊗ ϕj) = τ11ϕi and ϕj (va ⊗ ψϕi) = −ρ11

di

ϕj . (A.22)

We now claim that

(ϕj ⊗ ϕiϕ) (ωL(γua, va)∆12) (ϕj ⊗ ψϕi) =
τ11ρ11

di

ϕj ⊗ ϕi . (A.23)
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First of all it’s easy to see that

(ϕj ⊗ ϕiϕ) (ωL(γua, va)∆12) (ϕj ⊗ ψϕi) = Cϕj ⊗ ϕi ,

where C is some constant. To compute C we will evaluate the left hand side of (A.23)

on the function E
Nj

11 ⊗ENi

11 ∈ O(Γ)⊗2. We recall that we can see the functions ENi
pq (γ)

as the matrix coefficients for the action of γ on the direct factor Ni ⊂ L⊗Nj in the

basis ξ and the functions EL
rs(γ)E

Nj
pq (γ) as the matrix coefficients for γ on L⊗Nj in

the basis µ. We define the matrix α = {αpq} as the matrix of the change of basis
µq =

∑
p αpqξp and by α̃ = (α̃pq) its inverse. Accordingly to the previous notation we

write ξϕξ = (ξqϕξp) (respectively ξψξ = (ξqψξp)) for the matrix of the linear map ϕ
(respectively ψ) where we chose the basis ξ both for the domain and the image.

〈(ϕj ⊗ ϕiϕ) (ωL(γua, va)∆12) (ϕj ⊗ ψϕi) , E
Nj

11 ⊗ ENi

11 〉

=

dj∑

r,p=1

di∑

r′,p′=1

〈ĚNj

11 , E
Nj

1r 〉〈ϕ,ENi

1r′〉
(∫

Γ

ωL(γua, va)E
Nj
rp (γ)ENi

r′p′(γ
−1) dγ

)
·

· 〈ĚNj

11 , E
Nj

p1 〉〈ψ,ENi

p′1〉

=

di∑

r′,p′=1

〈ϕ,ENi

1r′〉
(∫

Γ

ωL(γua, va)E
Nj

11 (γ)ENi

p′r′(γ
−1) dγ

)
〈ψ,ENi

p′1〉

=

di∑

r′,p′=1

〈ϕ,ENi

1r′〉
(∫

Γ

EL
11(γ)E

Nj

11 (γ)ENi

p′r′(γ
−1) dγ

)
〈ψ,ENi

p′1〉

=
1

di

di∑

r′,p′=1

〈ϕ,ENi

1r′〉〈ψ,ENi

p′1〉〈ĚNi

p′r′ , E
L
11(γ)E

Nj

11 (γ)〉

=
1

di

di∑

r′,p′=1

〈ϕ,ENi

1r′〉〈ψ,ENi

p′1〉〈ĚNi

p′r′ ,

di∑

s,t=1

α̃1sαt1E
Ni
st 〉

=
1

di

di∑

r′,p′=1

〈ϕ,ENi

1r′〉〈ψ,ENi

p′1〉α̃1p′αr′1

=
1

di

(
di∑

p′=1

〈ψ,ENi

p′1〉α̃1p′

)(
di∑

r′=1

〈ϕ,ENi

1r′〉αr′1

)

=
1

di

(
di∑

p′=1

ξp′
ψξ1α̃1p′

)(
di∑

r′=1

ξ1ϕξr′
αr′1

)
=
ρ11τ11
di

where the last identity holds since ρ = µψξ = α−1
ξψξ = α̃ ξψξ and τ = ξϕµ = ξψξ α.

Thus we have that C = ρ11aτ11
di

and the identity (A.23) holds. So now taking i = l,
j = k u = ua, v = va, ϕ = ϕa, ψ = ψa in (A.20) and (A.23), and using (A.22), we have

133



that relation (R2) gives us exactly

(a∗ ⊗ h(a)) (h(a)⊗ a)− (t(a)⊗ a) (a∗ ⊗ t(a)) = 2kδs12 (h(a)⊗ t(a))

since τ11, ρ11 6= 0 in this case as observed above. Also taking u = ua, v = va in
(A.20) and (A.23) we have that, if ϕiϕ (ua ⊗ ϕj) 6= 0, then ϕj (ua ⊗ ψϕj) = 0 and
so ρdj+1 = 0 (see (A.22)) and both sides of (R2) give zero. The same is true if we
exchange the roles of ua and va. Thus the relations (R2) give exactly the relations
(II) of Definition 5.5.3.

2
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