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Abstract

Symplectic reflection algebras are attached to any finite group G of automorphisms
of a symplectic vector space V', and are a multi-parameter deformation of the smash
product TV4G, where TV is the tensor algebra. Their representations have been
studied in connection with different subjects, such as symplectic quotient singular-
ities, Hilbert scheme of points in the plane and combinatorics. Let I' C SL(2,C)
be a finite subgroup, and let S, be the symmetric group on n letters. We study
finite dimensional representations of the wreath product symplectic reflection algebra
Hi.(T'),) of rank n, attached to the wreath product group I', = S, x I'", and to
the parameters (k,c), where k is a complex number (occurring only for n > 1), and
¢ a class function on the set of nontrivial elements of I'. In particular, we construct,
for the first time, families of irreducible finite dimensional modules when I' is not
cyclic, n > 1, and (k, ¢) vary in some linear subspace of the space of parameters. The
method is deformation theoretic and uses properties of the Hochschild cohomology
of Hy ;. .(T',), and a Morita equivalence, established by Crawley-Boevey and Holland,
between the rank one algebra H; .(I') and the deformed preprojective algebra II,(Q),
where () is the extended Dynkin quiver attached to I' via the McKay correspondence.
We carry out a similar construction for continuous wreath product symplectic reflec-
tion algebras, a generalization to the case when I' C SL(2,C) is infinite reductive.
This time the main tool is the definition of a continuous analog of the deformed pre-
projective algebras for the infinite affine Dynkin quivers corresponding to the infinite
reductive subgroups of SL(2,C).

Thesis Supervisor: Pavel Etingof
Title: Professor of Mathematics
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Introduction

The study of symplectic reflection algebras was initiated by Etingof and Ginzburg
in [EG02], although these algebras (and several of their properties) already appear
in the classical work of Drinfeld [Dri86], as a special case of degenerate affine Hecke
algebras for a finite group.

Symplectic reflection algebras arise from the action of a finite group of symplec-
tomorphisms G C Sp(V') on a symplectic vector space (V,w). They form a multi-
parameter family of deformations H, ;(G) of the skew group algebra SViG, where
SV is the symmetric algebra of V. The parameter ¢ is a complex number, and the
parameter f is a conjugation invariant function on the the set S of symplectic reflec-
tions in G, i.e. elements s € G such that rk(Id — s)|y = 2. Symplectic reflections
can be considered as analogs of reflections in a symplectic setting, since they fix a
codimension two subspace pointwise, and act on the orthogonal complement with
nontrivial complex conjugate eigenvalues of norm one. Hence the name.

Explicitly, if we denote by T'V the tensor algebra of V', the symplectic reflection
algebra H; ;(G) is the quotient of TV4G by the relations

rRy—y@r=tw,y) 1+ f(s) wlr,y)-s VoyeV
seS

where w; denotes the (possibly degenerate) skew-symmetric form which coincides with
w on Im(Id — s), and has ker(Id — s) as its radical.

One of the fundamental properties of H, ;(G) is that it satisfies the analog of
the Poincaré-Birkhoff-Witt (PBW) theorem for the universal enveloping algebra of a

Lie algebra. Namely, if we consider the increasing filtration on H; ;(G) obtained by
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assigning degree zero to the elements of G and degree one to the elements of V', we
get an isomorphism for the associated graded algebra grH, ((G) = SV4G. The PBW
property assures the flatness of the family of deformations H, ;(G).

Rescaling the parameters (¢, f) by a non-zero complex number does not change
H, ;(G) up to isomorphism. Thus we can distinguish two main cases in the study of
symplectic reflection algebras: the quasi-classical case when t = 0, and the quantum
case when t = 1. Algebras belonging to these two subfamilies present contrasting
features that make them interesting for different reasons, both in algebraic geometry

and representation theory.

On the geometric side, let us consider the orbit space V/G. This space and the
corresponding commutative algebra, the ring of invariants SV, might not be the
right objects to describe the geometric properties of the G-action, that might instead
be connected with some resolutions of V/G. One can then think to approach the
study of such properties by replacing SV with the non-commutative smash product
SV 4G , and constructing non-commutative deformations of this algebra. In the quasi-
classical case, for example, the non-commutative deformation Hy ¢(G) of SVHG has
a big center which is a commutative deformation of SV (i.e. corresponding to an
actual algebraic variety), and can be used to study symplectic resolutions of some
interesting (Poisson) deformations of the orbifold V/G ([EG02]), [GS04]). A class of
symplectic reflection algebras of particular interest for algebraic geometry is the one
of rational Cherednik algebras. These are symplectic reflection algebras attached to
an irreducible finite complex reflection group W in a vector space b, acting diagonally
on V = hdbh*, where h* denotes the dual of the reflection representation. In this case,
the symplectic form is given by the natural pairing. In other words, V' is the cotangent
bundle of § with the standard symplectic structure, and b, h* are WW-stable irreducible
Lagrangian subspaces. In the quantum case, the Cherednik algebra Hy ¢(h & h*, W)
for W of type A can be regarded in different ways as a non-commutative deformation

of the Hilbert scheme of points in the plane C? ([GS06],(GS05],[KR]).

On the representation theoretic side, the most challenging case is the quantum

one which is the most non-commutative one. Indeed, when ¢t = 1 and regarding f as
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a formal parameter, the family H; ;(G) gives a universal deformation of the smash
product WG, where W is the Weyl algebra of the symplectic space (V,w) ([EG02]).
The representation theory of such deformations has proved to be very rich and inter-
esting. In particular, for rational Cherednik algebras an analog of category O for Lie
algebras has been defined, as well as a theory of standard modules and formal char-
acters ([BEGO03], [GGORO03], [Chm06]). Moreover, in the case of Cherednik algebras,
the theory of symplectic reflection algebras is connected to the one of double affine
Hecke algebras (of which they are a certain degeneration, cfr [EG02], Introduction),
introduced by I. Cherednik and used by the same author to prove some important
Macdonald’s conjectures ([Che95]). This links the representation theory of symplectic

reflection algebras to combinatorics and the study of special functions.

The main topic of this thesis is the representation theory of the symplectic re-
flection algebras of wreath product type H.(I';,). These are symplectic reflection
algebras attached to the semi-direct products I',, := S,, x I'" C Sp(2n,C). Here S,
is the symmetric group on n letters, I" is any finite subgroup of SL(2,C) = Sp(2,C),
and S,, acts on I'" by permuting the factors. The deformation parameter f appearing
in the definition of symplectic reflection algebra can in this case be written as a pair
(k,c), where k is a complex number, and ¢ is a class function on the non-trivial ele-
ments of I". The integer n is called the rank of the algebra Hyy .(I',). In particular,
when I' = Z/mZ the group S,, X (Z/mZ)" is a complex reflection group (real reflection
group of type A if m = 1 and of type B if m = 2) and one recovers a subfamily of

rational Cherednik algebras.

In the quasi-classical case, representations of the wreath product algebras were
studied in [EG02] using a geometric approach and the main result of the authors is
that, if (k, c) are generic, isomorphism classes of finite dimensional irreducible modules
are parametrized by the points of the (smooth) algebraic variety corresponding to the
center of Hy(T,).

In the quantum case, in contrast with the case of Cherednik algebras, a uniform
approach to the representation theory does not exist yet. Nevertheless, when n =1,

there is no parameter k and H; .(I") coincides with some non-commutative deforma-

13



tion of the Kleinian singularity C?/T" introduced by Crawley-Boevey and Holland,
who classified finite dimensional irreducible modules using methods coming from the
representation theory of quivers and deformed preprojective algebras, which are some
special quotients of path algebras of quivers. In particular, in [CBH98] the authors
established a Morita equivalence of Hy (I') with the deformed preprojective algebra
I1,(Q), where @ is the extended (ADE) Dynkin quiver attached to I' via the McKay
correspondence, and A € C!, where I is the set of vertices of (), is a parameter de-
pending on ¢. This allowed them to define reflection functors that give equivalences
of the categories of modules for different values of the deformation parameters.

The main result of this thesis is the construction of the first (for non-cyclic I')
families of finite dimensional representations for Hy.(I',) when n > 1, and (k,¢)
vary in some linear subspaces of the space of deformation parameters. We use two

methods, both arising from simple observations and corresponding natural questions.

1) Irreducible representations of the group I',, are well known. They can all be
obtained in the following way. Choose any vector with positive integer coor-
dinates 7 = (ni,...,n,) such that >, n, = n. Let S,, be the subgroup of
S, moving only the indices j such that ny+--- +n;_1 <j<n;+--- +n;, and
consider the subgroup S,, X --- xS, C S,. Take an irreducible representation
X of the group Si: X = X; ® --- ® X,., where X is an irreducible represen-
tation of S, for any i. Choose a collection Ny, ---, N, of irreducible pairwise
non-isomorphic representations of I', and form the irreducible representation
N:= N - @ N®" of . Then X ® N is an irreducible Sz x ["-module
(where S5 acts also on N by permuting the factors) and M := IndggxrnX RY
is an irreducible I',,-module. Which such modules can be extended to an irre-
ducible representation of the entire algebra H; j .(I',), and for which values of

the parameters (k, c)?

2) Since Hy (') = Hy(I)®"4S,, when k is zero, irreducible finite dimensional
representations are known. They can all be obtained with the same procedure

used in 1). We get modules M = Indgii’(}(f@”gﬁ SﬁX ®Y, where this time we take
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Y =YP"®- @Y% for some Y;s irreducible pairwise non-isomorphic H; .(T')-
modules. Since, by the PBW property, Hj j .+ (I',,) is a flat formal deformation
of Hyp.(T',) a natural question is: can we formally deform a H; o .module M

to values of the parameters (k,c+ ) with & # 07

In Theorem 3.2.4, we give an answer to question 1). Using just methods from rep-
resentation theory of finite groups, we obtain a complete classification of all irreducible
I',-modules that extend to Hy j .(T',,)-modules for k& # 0. Such modules extend if and
only if the Young diagram of X is a rectangle for any 7 and Homr(N;, N; ® C?) =0
for any i # j, where C? is the defining representation of I'. Such representations
have a unique extension obtained by making V' act trivially, and the values of the
parameters (k, ¢) for which they extend lie in a codimension r linear subspace, where
r is the dimension of the vector 7.

In Theorem 3.3.10, using cohomological methods, we give a partial answer to the
second question. We show that sufficient conditions for an irreducible representation
of Hyp.(T',) to formally deform to some values of the parameter with k& # 0 are
that X; has rectangular Young diagram for any ¢ and that EXt}{LC(r) (v,,Y;) =0
for any ¢ # j. Such representations actually admit a unique deformation in the
formal neighborhood of 0 of a codimension r linear subspace. We also show that
in a dense open set of this linear subspace the deformation is not only formal, i.e.
Hi jc+o(T),) admits an irreducible representation isomorphic to M as a I',-module.
We want to mention that in [GG05] Gan and Ginzburg introduced a one parameter
deformation A, ,(Q) (where v € C) of the smash product II,(Q)®"4S,, Morita
equivalent to Hi j .(I',) for any n, when @ is the McKay quiver of I'. In ([Gan06])
Gan, using this interpretation of the wreath product symplectic reflection algebras
in terms of deformed preprojective algebras, was able to generalize the reflection
functors of [CBH98] to the case n > 1. This allowed him to prove the necessity
of the conditions of Theorem 3.3.10, showing that our result gives an exhaustive
classification of representations coming from deformations.

Symplectic reflection algebras have a generalization to reductive algebraic groups
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called continuous symplectic reflection algebras ([EGGO05]). In this case, the role of
the group algebra is played by the ring of algebraic distributions O(G)*, the dual
space of the ring of regular functions O(G). The second topic of this thesis is the
study of finite dimensional representations of continuous symplectic reflection alge-
bras of wreath product type, i.e. attached to the groups S,, x ['", where I' C SL(2,C)
is an infinite reductive subgroup. This time the main tool is the definition of some
“continuous” analogs of the deformed preprojective algebras for the infinite affine
Dynkin quivers corresponding to the reductive subgroups of SL(2,C), and of the cor-
responding generalization to such quivers of the Gan-Ginzburg algebra A, , A(@Q). A
Morita equivalence between these algebras and the continuous symplectic reflection
algebras allows us to easily extend the methods of [CBH98] and [Gan06] to the con-
tinuous case. In particular, in Corollary 6.2.2 we give a complete classification of the
finite dimensional irreducible representations for n = 1. For n > 1, in Theorem 6.5.2
and Theorem 6.5.3, we extend the results of Theorem 3.2.4 and Theorem 3.3.10 to the
continuous case, giving necessary and sufficient conditions for deforming irreducible

finite dimensional representations existing for £ = 0 to nonzero values of k.
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Chapter 1

Basic deformation theory

1.1 Plan of the chapter

In this chapter we first review the basic definitions of the theory of flat formal defor-
mations for associative algebras. We then recall the fundamental role of Hochschild
cohomology in this theory and the notion of universal deformation. Finally, we briefly

discuss deformations of modules.

1.2 Flat formal deformations of associative alge-

bras

Let k be a field, and let A be an associative unital algebra over k. Let U be a finite
dimensional k-vector space. Denote by k[[U]] the ring of k-valued formal functions
on U, and denote by m the unique maximal ideal in k[[U]].

We recall that a k[[U]]-module is called topologically free if it is isomorphic to
V[[U]] for some k-vector space V.

Definition 1.2.1. A flat formal deformation of A over k[[U]] is an algebra Ay over
E[[U]] which is topologically free as a k[[U]]-module, together with a fixed isomorphism
of algebras ¢ : Ay/mAy — A.

17



Thus in particular Ay = A[[U]] as a k[[U]]-module. If dim U = n, then Ay is said

to be an n-parameter flat formal deformation of A.

Two deformations Ay, A, are said to be isomorphic if there exists a k[[U]]-algebra
isomorphism Ay = A}, which is the identity modulo m. A deformation is said to be
trivial if there exists an algebra isomorphism Ay = A[[U]] which is the identity
modulo m, where the algebra structure on A[[U]] is given by the usual multiplication
of formal power series on U with coefficients in A.

In a similar way, one can define m-th order deformations as deformations over the
ring k[[U]]/m™+1.

If hy,...,h, are coordinates on U, then we can identify C[[U]] with the ring of
power series k[[fi1, ..., )], and the ideal m with the ideal (fq,. .., h,). Using the fact
that Ay is topologically free we can choose an identification ¢ : Ay — Al[h1, . . ., Ay]]
as kl[[h1, ..., Aiy]]-modules, coinciding with the isomorphism ¢ of Definition 1.2.1 mod-
ulo (A1, ..., hy). Let us denote by p = (p1,...,pn) € ZZ, a multi-index, and let h? be
the product []; hZ’. We can think of Ay as the module A[[f, ..., hy,]] equipped with

a new kl[[hy, ..., hy]]-linear, associative star-product determined by a formula

axb=> cy(a,b)h? (1.1)

P
(the product coincides with the product in A modulo (A4, ..., hy,)).

In particular, a one parameter deformation Ay can be thought of as A[[A]] equipped

with a k[[h]]-linear associative product * such that for any a,b € A
axb=ab+c(a,b)h+ cala,b)R* + -, (1.2)

where ¢; : A X A — A are k-bilinear maps, and co(a,b) = ab is just the original
product in A.
One can think of ¢;, and the corresponding first order deformation (deformation

over the ring k[[A]]/h?), as the infinitesimal deformation or differential of the family

18



Ap. This leads to two natural questions. The first is finding a classifying space for
infinitesimal deformations. The second is defining a convenient theoretical setting
to describe the obstructions to integrating infinitesimal deformations, i.e. given a
first order deformation ¢y, lifting the associativity property of the product x from
order one to any order by choosing appropriate ¢;s for ¢ > 1. In his pioneering
work ([Ger63],[Ger64]), Gerstenhaber showed how the natural language to approach
these problems is the one of homological algebra, specifically the one of Hochschild

cohomology that we are going to review in the next section.

1.3 Hochschild cohomology and deformation the-
ory
For an A-bimodule E, consider the following complex (Hochschild complex)

0— C%AE) L ... L ™A E) -L ™A E) L -

where C™(A, E) = Homy(A®™, E) is the space of m-linear maps from A™ to E (and
C°(A,E) := E), and the differential d is defined as follows:

(de)(a): = ae—ea Ve€eE, acA
(df>(a17'” 7am+1) o= ap f(a’27"' 7am+1)
+ Z(—l)if(al,--- P Qi 15 @ Qi1 Qi 5 Q1)
i=1
= (=1)"f(a1, -+ am) Q1

Definition 1.3.1. The i-th Hochschild cohomology group H'(A, E) of A with coef-
ficients in the bimodule E is the i-th cohomology group of the Hochschild complex
(C*,d).

We recall that an A-bimodule structure on a k vector space space E is the same

19



as a left A ® A°-module structure, where A° is the opposite algebra of A, and A ® A°
is called the enveloping algebra of A. The following fact will be very useful to us in

this thesis.

Proposition 1.3.2. There exists a natural isomorphism

HY(A, E) — Extiyg 10(A, E)

Proof. Consider the A-bimodule structure on A®™ given by
blag @+ @ ap)e=ba; @ -+ ® anpc

The so called bar resolution of the bimodule A is a projective resolution and is given
by

o A 5 A2 A

where the differential is
Nay @ ®ap) =0102@ @Ay — -+ (=1)" a1 @+ ® 1.

It is now enough to observe that, for any m > 2, one has a natural isomorphism
of vector spaces Homgga0(A®™, E) = Homy(A™ % E) = C™ (A, F), and that 0

corresponds to d under this identification.

Let us now go back to one parameter deformations and formula (1.2). Imposing
the associativity condition

(axb)xc=ax(bxc)

20



one gets a hierarchy of equations

den(abc)= > alelab),c) — cia, ci(b,c)) (1.3)
1+j=m
i,j >0

where m > 0 and d is the Hochschild differential. In particular, when m = 1 the right
hand side is zero, and one gets that associativity in order one holds if and only if ¢;
is a Hochschild 2-cocycle with values in the bimodule A. It is easy to see that two
first order deformations are isomorphic if and only if the associated 2-cocycles ¢y, ]

are in the same cohomology class in H2(A, A).

Theorem 1.3.3. Two first order one parameter deformations of an associative al-
gebra A are isomorphic if and only if the corresponding 2-cocycles ¢y, ¢) are in the

same Hochschild cohomology class.

Proof. Suppose ¢, ¢| are in the same cohomology class. Then ¢; — ¢| = df,
where f is an endomorphism of A as a k-vector space. Then one can check that the
assignment

a— a+ f(a)h

for any a € A defines by k[[R]]-linear extension an isomorphism between the corre-
sponding first order deformations. Vice versa suppose that two first order deforma-
tions are isomorphic. This means that there exists a k[[h]]/h*-algebra isomorphism
between them which is the identity modulo A. Such an isomorphism is given by a
map

a— a+ f(a)h

where f is a k linear endomorphism of A, and the map is compatible with the star
products *, ¥ modulo 2. Imposing this compatibility condition gives exactly ¢; —c| =

df.
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Thus the cohomology group H?(A, A) parametrizes infinitesimal deformations up

to isomorphism.

For m = 2 equation (1.3) gives

dey(a, b, c) = c1(c1(a,b), c) — cr(a, 1 (b, c))

for any a,b,c € A. It can be computed that, if ¢; is a cocycle, then the right hand
side defines a 3-cocycle b; and its cohomology class depends only on the cohomology
class of ¢;. The cohomology class of by in H?(A, A) is the only obstruction to lifting

associativity from order one to order two.

In general, it can be shown that if equation (1.3) is satisfied form =1,..., M —1
then for m = M the right hand side is a cocycle by;. Thus all obstructions lie in
H3(A, A). This time though, the cohomology class of by, depends not only on the
cohomology class [c;] of ¢; but also on the entire sequence ¢, ..., cp—1. This is why
lifting an infinitesimal deformation to a family Aj is a highly non trivial problem.
Indeed, if maps ¢y, ..., cp—1 satisfying (1.3) are chosen, then any two maps ¢y, ¢y,
compatible with them must satisfy d(cy — ¢j;) = 0, i.e. they must differ by a
cocycle. Moreover if two solutions differ by a coboundary they give rise to isomorphic
M-th order deformations. In other words, the freedom in choosing the solution at
step M lies in H?(A, A). The problem is that a particular choice of ¢y, affects the
equations in the hierarchy for all m > M, and can determine an obstruction at any
of the next steps. If H3(A, A) is zero though, all obstructions vanish and any first
order deformation can be lifted, i.e. it is the differential of a family of flat formal

deformations.

From the previous discussion it appears that the space H?*(A, A) is a natural
candidate to parametrize a universal deformation for the algebra A, in a sense that

we are going to clarify.

Let us look at formula (1.1) for a deformation with parameters in an n dimen-
sional vector space U. Imposing the associativity condition and arguing as in the one

parameter case, one obtains that co,....1;,..0 Must be Hochschild 2-cocycles for each j.
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Thus any such deformation defines a natural linear map ¢ from the space of

parameters U to H?(A, A). Such a map is given by the assignment

o : U — H?(A, A)
(has- ) — 32, Ry [co,.a;,..0]

for any (hy,--- ,h,) € U, where [C] stands for the cohomology class of a cocycle C.

Proposition 1.3.4. If the space H*(A, A) is finite dimensional and H*(A, A) = 0
then there exists a flat formal deformation A* over k[[U]], where U := H*(A, A), such
that the map ¢ above is the identity. This deformation is unique up to isomorphism

(we allow automorphisms of k[[U]]).

Proof. Suppose dim H?(A, A) = n. For a multi-index P = (P1,.-,Pn) € Z%, let
lp| = p1 + -+ + pp denote its length. For any j = 1,...,n let e; be the multi-index
(0,...,1;,...,0). Fix a basis [ce, ], ..., [c.,] for H*(A, A) and let hy,...,h, be coordi-
nates relative to this basis . We claim that, up to isomorphism and automorphisms of

k[[U]], a deformation as in the statement of the theorem must be given by a formula

a*xb= ab+Zcei(a,b)hi—|— ch(a, b)h? (1.4)
=1 lp[>1
for some choice of representatives c.,,...,c., of the above basis and for some k-

bilinear maps ¢, : Ax A — A. This is true because, first of all, the map ¢ must be the
identity. Secondly, arguing as in the proof of Theorem 1.3.3, one can see that different
choices of representatives for the basis [c.,], ..., [c.,] do not affect the representation
at order one up to isomorphism. Finally a change of basis in H?*(A, A) changes such

a deformation by the corresponding induced automorphism of k[[U]] = k[[h, ..., h,]].

It is easy to compute that the condition that formula (1.4) defines a deformation

over k[[hi, ..., h,]] gives, for each p with |p| > 1, an equation

dcy, = by (1.5)
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where b, is a 3-cocycle whose expression may involve ¢, only for |g| < |p|. Since
H3(A, A) = 0 any 3-cocycle is a coboundary, thus we can recursively solve the equa-
tions above and find ¢,s that give a deformation as desired.

What is left now to show is that such a deformation is unique. We discussed
uniqueness at order one. It remains to prove that the deformation does not depend
on our choices of ¢,s for |p| > 1 up to isomorphism (possibly involving automorphisms
of k[[h1, ..., hy]]). We will show this by induction on [p|. Let now A* and A" be two
deformations given by two sets of maps {c,}, {c,} respectively. Let N be the maximal
number such that, up to automorphism of A* and A, it is possible to set Cp = c, for
any p such that [p| < N. Then for any ¢ with |¢| = N we have b, = b/, where b, and
b, are the cocycles on the right hand side of equation (1.5) for cq and ¢ respectively.
This means that d(c; — ¢;) = 0 i.e. the two maps differ by a cocycle. Thus we can

write
_ .
Cqg = Cq T Z QrgjCe;
j

with ay; € C. Consider now the automorphism ¢x of k[[f, ..., iip]] defined by the

assignment

hj — hj + Z Oégjhg.

lg|=N
It is easy to see that twisting A" with ¢y we can set ¢, = ¢, for any ¢ with [g| = N,

without affecting the c,s with [p[ < N. This contradicts the maximality of N.

|

When it exists, the deformation A* = Aj = of Theorem 1.3.4 is called the
universal deformation of A.

The existence of the universal deformation guarantees that the moduli space of
one parameter deformations is a smooth space, given by the formal neighborhood of
zero in H?(A, A). This fact is a consequence of the following proposition stating the

universal property of A*.

Proposition 1.3.5. For every flat formal one parameter deformation Ay, there exists

a unique power series a(h) = (ay(h),...,an(h)) € RH?(A, A)[[h]] such that there is
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an isomorphism Ap = Agl(h) w of flat formal deformations. Moreover a/(0) is

the cohomology class of the differential ¢y of the family Ap.

Proof. Let us denote by *, the multiplication in A*. Suppose dim H?(A, A) = n.
For any a,b in A, regard a %, b = a *, b(hy, ..., h,) as a formal function from U :=
H?(A, A) to A. Consider now a one parameter deformation A, = (A[[R]],*), and
regard a*b = a*b(h) as a formal function from k to A. We have to show that, up to
isomorphism, the algebra Ay, is given by a formula a *b(h) = a*,b(a(h)) for a unique
power series.

Thus we have to find «;(h) € hk[[h]] for i« = 1,...n such that, for any a,b € A,
the identity

ch(a, bW = Zcei(a,b)ai(h) + Y epla,b)ag ()P - - (R)P" (1.6)

Ip|>1

is satisfied. If a;(h) = >, ., a;rh” then one can compute that the condition for (1.6)

to be satisfied at order one is

Z aice,] = [ea].

Clearly there exist unique aqy, ..., a1, satisfying this equation. In general one can

compute that the condition that (1.6) is satisfied at order n is given by

Zain [Ce;] = [Cn]

where ¢, is a cocycle depending on «a;; with j < n. It is clear that this equation has

a unique solution.

O

We want to end this section by mentioning that the conditions of Proposition 1.3.5
are not necessary for the existence of the universal deformation. Indeed, all formal
obstructions to deformations can vanish even when H?3(A, A) is nonzero, although

this fact might be extremely difficult to prove.

25



1.4 Flat formal deformations of modules

Let now M be a left A-module. Let Ay be a flat formal deformation of A over k[[U]],
where U is some finite dimensional vector space, and let ¢ : A — Ay /mAy be the
fixed isomorphism of Definition 1.2.1. The following definition formalizes the intuitive

notion of a deformation of M to an Ay-module.

Definition 1.4.1. A flat formal deformation of the module M is a Ay-module My
which is topologically free as a k[[U]]-module together with a fized isomorphism of
A-modules v : M — My /mMy, where the structure of A module on My /mMy is

the one induced by the isomorphism .

The fundamental tool for the study of deformations of modules is again Hochschild
cohomology.

Indeed, let hi,..., R, be coordinates in U and let p = (p1,...,ps) be a multi-
index in ZZ,. Arguing as in Section 1.2, we can think of My as the k[[hy, ..., k)]
module M[[hy, ..., h,]] together with a k[[f, ..., fi,]] algebra homomorphism p: A —
End M|[h, ..., h,]] given by a formula

pla) =3 pyla)he, (L.7)

where p, : A — End M are k-linear maps and po__o(a) = p(a), where p is the

.....

homomorphism giving the representation M.

Imposing the condition that p is a homomorphism gives a hierarchy of equations

dpp(a,b) == > pla)p)+ D pyles(ab)) (1.8)

+

|

+

[Bs)
|
()
|

=P =b
| >0 >0

(I

q ql, Is

where d is the Hochschild differential and the cgs are the maps defining the product
in Ay as in formula (1.1).

If pgs satisfy the above equation for all ¢ with |g| < N, then for any p with [p[ = N
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the right hand side is a cocycle. Thus, all the obstruction to the deformation of the
module M lie in H?(A, End M). At each step, the freedom in choosing a solution for
(1.8) lies in H'(A, End M).

It is clear from this discussion that the problem of deforming modules presents sim-
ilar difficulties to the one of deforming algebras, and that in general an A-module M
does not admit any deformation to a representation of A;. Nevertheless, sometimes
the (Hochschild-)cohomological properties of A and M are such that it is possible to

find deformations, as we will see in the next chapters of this thesis.
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Chapter 2

Symplectic reflection algebras

2.1 Plan of the chapter

In this chapter we recall the basics of the theory of symplectic reflection algebras.
In Section 2.2 we give the general definition, and we describe the main properties of
these algebras such as the PBW property. In Section 2.3 we consider more specifically
symplectic reflection algebras associated to wreath product groups, that will be the

object of interest of this thesis.

2.2 Definition and properties

Let (V,w) be a symplectic vector space over C, and let G C Sp(V') be a finite group of
symplectomorphisms. Denote by TV the tensor algebra of V' and by C[G] the group

algebra. For any two vectors u,v € V' we will write uv for the tensor product u ® v.

Definition 2.2.1. The smash product algebra TVHG is the vector space TV ®¢ C|G]
with the product defined by the formula

(u®g)(v®h)=u(gv)® gh

for any u,v € V and g, h € G.
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Note that assigning grade degree zero to the elements of C[G] and grade degree
one to the elements of V' the algebra TV#G becomes a graded algebra (with a corre-
sponding filtration).

The main object of our interest will be a family of algebras obtained as quotients

of the above smash product.
Definition 2.2.2. An element s € G is called a symplectic reflection if rk(Id—s) = 2.

Symplectic reflections can be considered as symplectic analogs of complex reflec-
tions. Indeed, any symplectic reflection s fixes a (complex) codimension two space
pointwise and acts diagonally on a complement with complex conjugate eigenvalues

of norm one. In other words there exists a basis such that s is a diagonal matrix

with A # 1 and |A| = 1. We will denote by S the set of symplectic reflections. By
definition, this set is stable under conjugation. We will denote by C(S) the vector
space C[S]¢ of C-valued class functions on S, and we will write f, = f(s) for any
fed(s).

For any s € S consider the w-orthogonal decomposition Im(Id — s) & Ker(Id — s).
Denote by w, the skew symmetric form that coincides with w on Im(Id — s) and has

Ker(Id — s) as its radical.

Definition 2.2.3 ([EG02]). For any f € C(S) and any constant t € C the symplectic
reflection algebra H; ;(G) is the quotient of the smash product TVHG by the relations

uv—vu:tw(u,v)—l—Zfsws(u,v)s (2.1)
seS

for any u,v € V.
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Let now e = ﬁ >_gec 9 € C[G] be the averaging idempotent.
Definition 2.2.4. The spherical subalgebra is the algebra eH; ;(G)e C Hy ¢(G) .

Note that that eH; ;(G)e does not contain the unit element of H, ((G).
When both ¢ and f are zero, one has uv — vu = 0 for any u,v € V. Thus, if we

denote by SV the symmetric algebra of V' we have:
Hoo(G) = SVHG.

In particular the algebra Hy o(G) is graded. Moreover, the isomorphism e(SV{G)e =

SV, where SV is the algebra of invariant polynomials, yields an isomorphism
€H070(G)6 = SVG

for the spherical subalgebra.
In general though, the defining relations (2.1) are not homogeneous and the algebra
H, ;(G) does not inherit the grading of TVH#G but only a filtration F,. Consider the

associated graded algebra
gr(H (G @f Hy 1 (G))/Fici(Hep(G)).

Since uv — vu lies in degree two for any u,v € V', while any element of the group
algebra lies in degree zero it is clear from the defining relations that u, v commute in

gr(H; s(G)). Thus there exists a surjective homomorphism of graded algebras
qf) . H070(G) = SVHG - gI‘(HtJ(G)).

One of the most important properties of the algebra H; ¢(G) is that the above ho-
momorphism is also injective, as stated in the next theorem, called Poincaré-Birkhoff-
Witt(PBW )-Theorem in analogy with the PBW-Theorem for the universal enveloping
algebra of a Lie algebra.
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Theorem 2.2.5. ([EG02], Theorem 1.3) For any t € C and f € C(S) the above

homomorphism is an isomorphism.

It is clear that the PBW theorem also gives an isomorphism
gr(eH, ;(G)e) = SVC.

It is not hard to see that rescaling the parameters ¢, f by a non-zero complex
number does not change H; ;(G) up to isomorphism. Thus, in particular, for any ¢ # 0
there is an isomorphism Hy ;(G) = Hy s/:(G). This reduces the study of symplectic
reflection algebras to the two cases t = 0 (quasi-classical case) and t = 1 (quantum
case) that present substantial differences. In this thesis we will be concerned with the
second case.

Suppose then that ¢ = 1. In this case, specializing the parameter f to 0 we get
an isomorphism

Hio(G) = WHG
where W is the Weyl algebra of the symplectic vector space (V,w) i.e.

TV

(uwv —vu = w(u, V) upev

W =

Regard now f as a formal parameter and the family {H; ¢(G)} ; as a single algebra
over C[[C(S)]]. Thanks to the PBW property stated in Theorem 2.2.5, {H1 #(G)},
has no torsion as a C[[C(S)]]-module. Thus the corresponding family is flat over
C[[C(S)]] and can be seen as a flat formal deformation of WG (in this case the power
series defining the star product is a degree one polynomial in f, thus it converges for
any value of f and the deformation is not only formal). The following theorem is due

to Etingof and Ginzburg.

Theorem 2.2.6 ([EG02]). The family {H1,;(G)}; is the universal deformation of the
algebra WHG and the family {eHLf(G)e}f is the universal deformation of the algebra

of invariants WY,
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Proof. In [AFLS00] Alev, Farinati, Lambre and Solotar proved that the dimensions

of the Hochschild cohomology groups of WiG are as follows

n(j) if i=2j
0 if 7 isodd

dim H' (WHG) =

where
n(j) =t {conjugacy classes of elements g € G such that rk(Id — g) = 2j5}.

In particular, H*(W{G, WEG) = 0 and dim H*(WHEG, WiG) = dim C(S). Thus
Theorem 1.3.4 guarantees the existence of the universal deformation and the fact
that it is parametrized by the space C(S). The only thing left to do is proving that
the family {H,;(G)}, is actually the one satisfying the condition in Theorem 1.3.4.
In other words, it must be verified that the cohomology classes corresponding to the
family of infinitesimal (order one) deformations {H1,¢(G)/mH; ;(G)} (here m is the
maximal ideal in C[[C(S)]]) span the whole space C'(S) and not a smaller one. This
is done in [EG02]. The proof for {Hy ;(G)/mHy ;(G)} is similar.

2.3 The wreath-product construction

In this thesis we will be interested in the study of the symplectic reflection algebras
attached to a special family of groups generated by symplectic reflections, provided
by the wreath product construction.

Let I" be a finite subgroup of SL(2, C), and let I'* be the direct product I'x - -+ xT.
————

N factors

Let S,, be the symmetric group of rank n.

Definition 2.3.1. The wreath product T',, := S, x I'" is the semi-direct product of S,
and I'™, where I'™ is normal, and the action of S,, on I'™ by conjugation is the natural

one in which S, permutes the direct factors of I'™.

33



Let now L be a 2-dimensional complex vector space with a symplectic form wy,, and
consider the space V = L% endowed with the induced symplectic form wy = wr®".

Choosing a symplectic basis we can identify Sp(L) with SL(2,C). Clearly, the
natural (faithful) action of the wreath product group I',, on V', where each factor I'
in I acts on the corresponding summand L in V', and S,, permutes such summands,
is symplectic. Thus I',, C Sp(V).

In the sequel we will write v; € T',, for any element v € I' seen as an element in the
i-th factor I" of ['". T',, acts by conjugation on the set S of its symplectic reflections.
It is easy to see that there are symplectic reflections of two types in T';:

(S) the elements s;;v;v;~" where i,j € [1,n], s;; is the transposition (ij) € S,
and v € I';

(T') the elements ~;, for i € [1,n] and v € T' \ {1}.

Elements of type (S) are all in the same conjugacy class, while elements of type
(I") form one conjugacy class for any nontrivial conjugacy class in I". Thus functions
f € C(S) can be written as pairs (k,c), where k is a number (the value of f on
elements of type (S)), and ¢ is a conjugation invariant function on I' \ {1} (encoding

the values of f on the elements of type (I')).

Definition 2.3.2. The wreath product symplectic reflection algebra Hyy .(T,) is the
symplectic reflection algebra attached to the vector space V', the group T'),, and the
parameters t € C and f = (k,c).

We will now give a more explicit presentation of the algebra H;y .(I',). For any
vector u € L and any i € [1,n] we will write u; € V for u placed in the i-th summand
of V. In particular from now on we will fix a symplectic basis {x, y} of L (wy(z,y) = 1)
and we will denote by {x;,y;} the corresponding symplectic basis for V. We will also

write ¢, for the value of the function c on the element v € I'.

Lemma 2.3.3. (/GGJ, Lemma 3.1.1) The algebra Hy . .(T,) is the quotient of TV T,

by the following relations:
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(R1) For anyi € [1,n]:

[z, 9] =t + g Zzsz‘j%%-_l + Z CyYi -

j#i yel ~yel'~{1}

(R2) For any u,v € L andi # j:

k _
[, Uj] = D) %ZFWL(WU, U)Siﬂﬂj b

We will call the integer n the rank of the algebra Hy . .(T),).

We want now to have a closer look at some interesting examples.

Example 2.3.4. When the rank n is one, there is no parameter k (there are no
symplectic reflections of type (S)). Let now ¢ = t—l—ZveF\{l} ¢y be the central element
of C[T'] corresponding to the class function coinciding with ¢ on I' {1} and assuming
value t on the identity element. If we identify the tensor algebra algebra T L with the
ring C(x,y) of noncommutative polynomials in x,y, then the rank one wreath product

symplectic reflection algebra is the quotient

C(z, y)il’

S Py

The algebra Hy.(T) has interesting connections with the Kleinian singularity C*/T
(the spherical subalgebra eHy (I')e is a non-commutative deformation of the ring of
invariants Clz,y|" ) and it was studied by Crawley-Boevey and Holland in [CBHYS].
In particular, as we will see in the next chapter, a complete classification of the simple

finite dimensional Hy .(I') module is available for all values of the parameters.

Example 2.3.5. When k = 0 the defining relations (R1), (R2) simplify drastically

and there is an isomorphism

Ht,O,ca_‘n) = Ht7c(r)®nﬁSn- (2.2)
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Example 2.3.6. Suppose I' = Z/mZ is cyclic of some order m. In this case there
is a splitting V.= b @ b*, where b is the reflection representation of S, X (Z/mZ)"
(as a complex reflection group) and b* is its dual. The symplectic form wy can be
wdentified with the natural pairing between b and h* that become Lagrangian subspaces.
Thus the vector space V' can be seen as the cotangent bundle of b endowed with its
natural structure of symplectic manifold and with the diagonal (Hamiltonian) action of
SaX(Z/mZ)". The algebra Hy (Sp X (Z/mZ)") is a special case of rational Cherednik
algebra. As a vector space, this algebra has a decomposition Sh® C[T,] ® Sh*, analog
to the triangular decomposition for the universal enveloping algebra of a semisimple

Lie algebra.

As already mentioned, in this thesis we will be concerned with the representation
theory of the wreath product algebra when ¢ = 1. Although our results will be true
whenever I is nontrivial, we want to recall that when I" is cyclic, i.e. in the case of
the rational Cherednik algebra, there exists a more general (and effective) approach
to the study of representations. For rational Cherednik algebras, in fact, an analog
of category O for finite dimensional semisimple Lie algebras has been defined, as well
as a theory of standard modules and formal characters ([BEGO03], [GGORO03]).

For completeness, we want to end this section with a few words about the case
t = 0. Suppose ¢ # 0, the fact that makes the quasi-classical case notably different is
that the algebra Hyj (I',) has a large center Zyy . such that

gr(Zoge) = Sy Tn
and
ZO,k,c = eHO,k,c(Fn>e-

The following theorem is due to Etingof and Ginzburg.

Theorem 2.3.7. ([EG02], Corollary 1.14) If the parameters (k,c) are generic, all
irreducible Hyy o(T'y)-modules are finite dimensional of dimension |I',| = nl|T'|",

and are isomorphic to the reqular representation of I',, as I',-modules. Moreover,
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Spec Zy . 15 a smooth algebraic variety, and irreducible modules are parametrized up
to isomorphism by the points of Spec Zy .. via the map that assigns to each module

its central character.
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Chapter 3

Finite dimensional representations

for Hl,k,c(rn>

3.1 Plan of the chapter

In this chapter we will present two different methods to produce examples of finite
dimensional representations for the algebra Hiy.(I',). Both methods start from
simple observations.

In the first place from Definition 2.2.3 we can see that the algebra Hy(T;,)
contains a copy of the group algebra C[I',]. Thus, the simplest thing to do is trying
to classify all irreducible I',,-modules that extend to representations of the whole
algebra Hy .(T',,). We give a complete answer to this problem in Section 3.2, which
is based on the paper [Mon07b].

Secondly, in the rank one case a complete classification of the finite dimensional
representations for the wreath product algebra H,.(I') is available, thanks to the
results of Crawley-Boevey and Holland ([CBH98]). Moreover, as observed in Example
2.3.5

Hyo(Ty) = Hy ()45,

i.e. when the parameter k is zero, the rank n algebra is simply the smash product

of the tensor product of n copies of the rank one algebra with S,, (where S,, acts by
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permuting the factors). As a consequence, in this case, finite dimensional irreducible
representations are also known (they can be recovered from a knowledge of the irre-
ducible finite dimensional representations in rank one and from well known results
by Macdonald about skew group algebras as explained in Section 3.3.4). We observe
now that that the algebra H;(.(I',) has a flat formal deformation over the finite
dimensional vector space C(S) given by Hj . The fact that this deformation is
flat follows from the PBW Theorem 2.2.5. Using this observation in Section 3.3 we
determine some sufficient conditions for a H; o .(I';,)-module to be deformed to values
of the parameters with nonzero k. This last section is based on the papers [EMO05]

and [Mon07a].

We recall that in the case of cyclic (nontrivial) I" some finite dimensional repre-

sentation were constructed by Chmutova and Etingof in [CE03] before our work.

3.2 Extending irreducible I',-modules

3.2.1 Irreducible representations of wreath product groups

For the reader’s convenience, and in order to introduce some important notation,
we recall the classification of irreducible representations for a wreath product group.
Everything that follows is true for any finite group I' and for representations over any
algebraically closed field F' of characteristic 0. For simplicity we will consider F' = C,
the field of complex numbers. For complete proofs and details the reader should refer

to [JK81], Chapter 4.

A nice property of the wreath product group I',, is that the set of its irreducible
representations Irr(T',,) can be completely recovered from a knowledge of Irr(I"), using

the representation theory of the symmetric group.

Let {Ny,..., N,} denote a complete set of pairwise non-isomorphic representations
of I' over C. Then a complete set of irreducible representations of I'" is given by

N = N, ®---® Ny, where (hy, ..., h,) varies in [1,v]". If n; denotes the number of
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indices ¢ s.t. h; = h, i.e. the number of factors of N equal to IV, then
n=(ny,...,n,)

is called the type of N.

We will say that two representations N, N’ are conjugate if they have the same
type. This simply means that N = Ny, ® ---® N;,, and N’ = Nhyy @+ @ Ny, for
some o € S,, i.e. N’ equals the representation N twisted by the outer automorphism
of I'™ that permutes the factors according to o. It turns out that the role played
by conjugate representations of I' in recovering irreducible representations of I',, is
exactly the same. This is essentially because, as one can easily argue from Definition
2.3.1, the outer automorphism induced by o € S,, on I'" is a restriction of an inner
automorphism in I',, (conjugation by the element o € T',). So from now on we will
consider only the representations of I'" that can be written as N = NJ™ ®---@ N&™,

Notice that the representations of this form are a complete set of irreducible, pairwise

non-conjugate representations of I'".

For any h, we denote by S, the subgroup of S, consisting of the permutations

that move only the indices {321~ n; +1,..., 31 n;}, corresponding to the factors
of N isomorphic to N,. We agree that S,, = {1} if n, = 0. Thus we can consider
the group

Si=5p, X+ xS, CS,CS,xI™

called the wnertia factor of N. Obviously any irreducible representation X of Sy is

obtained as X = X; ® --- ® X,,, where X, is an irreducible representation of .S,,, .

The inertia subgroup of N, instead, is defined to be
(Tp)n=SaxI"CS, xI™

Let’s now consider an irreducible I'™-module N = N™ ® --- ® N®"% . There is a
natural action of (I';,)y on N in which I acts in the obvious way, and S; permutes

the factors. This representation can be shown to be irreducible. For simplicity we
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will keep the notation N for this representation.

Another easy way to obtain irreducible representations of (I',)y is extending an
irreducible representation X = X; ® --- ® X, of S; by making I'" act trivially. In
this case we will also keep the notation X for this extension.

Let’s now consider the tensor product of X and N
XON=(X1®--0X,)® (NP"® - @ N™).

Here S; acts both on X and on N( permuting the factors), while I'" acts only on V.
This is also an irreducible representation of (I',)y ([JK81], page 155).
We can now obtain the induced representation of T',:

X®NPi=Indy, X®N

Tn)N

The following theorem holds.

Theorem 3.2.1. The representation X @ N T is irreducible and runs through a
complete system of pairwise non-isomorphic irreducible representations of Ty, if N
runs through a complete system of pairwise non-conjugate irreducible representations
of T'™ and, while N remains fized, X runs through a complete system of pairwise

non-isomorphic irreducible representations of Sy.

In particular we have that, for a fixed X, the representation X ® N T depends
only on the type of N. With abuse of language we will call type of X ® N T the
type of N as a representation of ['". We remark that the possible types of X @ N T
are in bijection with the v-tuples (nq,...,n,), ny >0, >, n, = n and that to any
such v-tuple we can attach a proper partition of n, taking all the non-zero nys in

(n1,...,n,) and ordering them in non-increasing order.

Example 3.2.2. Suppose all the factors of N are the same , i.e. N = NZ" for some
h e {l,...,v}. The type of N is (0,...0,n,0,...0) with n in the h-th position and
15 associated to the partition of n of Young diagram a single row of length n, i.e. the

partition corresponding to the trivial representation of S,. For this reason we will
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call these representations of “trivial type”. In this case the inertia factor of N is
Sp, its inertia subgroup coincides with S, X I'™, and we need no induction. For any
wrreducible representation X of S, we obtain the irreducible representation X @ N of

S, x I'".

3.2.2 McKay correspondence

It is well known (see for example [Cox91], Chapters 6,7) that all the finite subgroups
of SL(2,C), or equivalently the finite groups of quaternions, can be distinguished into

two infinite series
e the cyclic groups C, 41 for any m > 0 (C; = {1}), of order m + 1;
e the dicyclic groups D,,_5 for n > 4, of order 4(m — 2);

and three exceptional groups that are the double coverings of the groups of rotations
preserving regular polyhedra in R? via the homomorphism of Lie groups SU(2) —

SO(3,R):
e the binary tetrahedral group ¥, of order 24;
e the binary octahedral group O, of order 48;
e the binary icosahedral group J, of order 120.

The terminology we used refers to the so called McKay correspondence, as we are
going to explain. In ([McK81]) McKay showed that “the eigenvectors of the Cartan
matrices of affine type A,,, Dy, Fe. E7, Es can be taken to be the columns of the
character tables of the finite groups of quaternions”. To this end he attached a graph
to any finite subgroup of SL(2,C) in the following way. Consider the set of irreducible
non-isomorphic representations of a finite group I' C SL(2,C), I = {Ny,..., N, }, and
let L be the defining representation of I', i.e. the representation of I' as a subgroup of
SL(2,C). Notice that L is a self-dual representation. Now build the graph in which
the set of vertices is I, and the number of edges between two vertices N, and Ny

is the multiplicity of the irreducible representation N, in N ® L or equivalently,
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since L is self-dual, the multiplicity of Ny in N, ® L. Any such graph turns out
to be an extended Dynkin graph with extending vertex corresponding to the trivial
representation. If we label each vertex with the dimension of the corresponding
representation the result is the following. When I' = C,, 11, n > 0 is cyclic we get the

extended Dynkin diagram A,:

Figure 3-1: Graph A,

When I' = D,,_,, n > 4 is dicyclic we get the diagram D,,:

Figure 3-2: Graph D,

When I' = ¥ (binary tetrahedral), I' = O (binary octahedral) or I' = J (binary

icosahedral) we get the extended Dynkin diagrams of type Es, En, Es respectively:

1 2 3 2 1

Figure 3-3: Graph Eg
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@ L @ ® L ®
1 2 3 4 3 2 1
Figure 3-4: Graph Fy
3
1 2 3 a4 5 6 a1 2

Figure 3-5: Graph Ex

In this setting, the adjacent vertices to a fixed vertex N, correspond to the types
of the irreducible components of the representation N, ® L, while the number of
connecting vertices corresponds to the multiplicities of such types. Note that the
decomposition of N, ® L is multiplicity free (i.e. the diagram is simply laced) except
when I' = Cy (i.e. for type fll). Thus, when I'" # C,, if for any ¢ = 1,..., v we set
d; = dim N;, and we consider the vector § = {d;} € Z” (corresponding to the above

labeling), we get the “harmonic” property

jadjacent to?

for the extended Dynkin diagrams above.

3.2.3 Representations of 5, with rectangular Young diagram

In what follows we will use the following standard results from representation theory
of the symmetric group. Denote by h the reflection representation of S,,. For a Young
diagram p we denote by X, the corresponding irreducible representation of \S,, and by

C'(p) the content of u, i.e. the sum of signed distances of the cells from the diagonal.

Lemma 3.2.3. i) Homg, (h® X, X,,)) = C™', where m is the number of corners
of the Young diagram . In particular Homg, (h ® X,,, X,,) = 0 if and only if p

s a rectangle.
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ii) The element C' = s19 + 13+ -+ - + S1p, acts by a scalar in X, if and only if p is

a rectangle. In this case Clx, = %(“)

ii1) If u is a rectangular Young diagram of height a and width b, then C(u) = w

Proof. Let S,,_1 C S,, be the subgroup of permutations fixing the index 1. It is
well known that X,

S, = >, X,_;, where the sum is taken over the corners of u
and p — 7 is the Young diagram obtained from p by cutting off the corner j. Since
heoC= Ind‘quflC, the assertion (i) follows from the Frobenius reciprocity. To prove
(ii), observe that C' commutes with S,_1, so acts by a scalar on each X,_;. Thus,
if 11 is a rectangle, C' acts as a scalar (as we have only one summand), and the “if”
part of the statement is proved. To prove the “only if” part, let Z,, be the sum of all
transpositions in 5,. Z, is a central element in the group algebra, and it is known to
act in X, by the scalar c(u), where c(u) is the content of y, i.e. the sum over all cells
of the signed distances from these cells to the diagonal. Now, C' = Z,, — Z,,_1, so it
acts on X,,_; by the scalar c(j), the signed distance from the cell j to the diagonal.
The numbers c(j) are clearly different for all corners j, so if there are 2 or more
corners, then C' cannot act by a scalar. This finishes the proof of (ii). Part (iii) is a

straightforward computation.

3.2.4 The main theorem

Our main theorem classifies the irreducible representations of I',, that extend to rep-
resentations of Hyy.(T',,) for values of (k,c) with k # 0. For I' = {1} it is easy
to see that the algebra Hjj .(S,) has no finite dimensional representations. In fact
Hi..(S,) always contains a copy of the Weyl algebra (generated by the elements
x1 4+ Tn, 1 + -+ y,) that has no finite dimensional representations. We will
thus consider the case I' # {1}. Before stating the theorem we need to introduce

some notation:

e v will denote the number of conjugacy classes {C1,...,C,} of I , with C; = {1},
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|Cs| will be the cardinality of the class C§, and ¢4 the value of the class function

con Cg;

e for any irreducible representation N, of I', xu, (Cs) will be the value of the
character of N}, on the class C .

‘Cs| XNy, (Cs

With this notation, the complex number —3—%- ) is the scalar corresponding to
1m IV p,

the central element e, 7 in the irreducible representation Np,.
Theorem 3.2.4. Let I' # {1}. Then:

I) If an irreducible T',-module M extends to a representation of Hyy(I',) then

the generators x;, y; act by zero on M for anyi=1,...,n.

II) For k # 0 an irreducible representation M = X @ N | of T, of type (nq,...,n,)
extends to a representation of some associated symplectic reflection algebra

Hy..(Ty) if and only if the following two conditions are satisfied:

i) X=X,®- - ®X,, where X}, is an irreducible representation of S,, with
rectangular Young diagram of some size ap X by, for any h s.t. n, # 0;
it) for any h # h' s.t. np,np # 0, Homp(N, ® L, Ny) = 0, where L is
the natural representation of I'. In other words, any two non-isomorphic
representations Ny, Np of T' occurring in the type of N must be non-
adjacent vertices in the extended Dynkin diagram attached to I'. We agree

that this condition is empty when N is of trivial type (Example 3.2.2).

III) The values of the parameter (k,c) for which M = X ® N 1 can be extended

form a linear subspace of C¥, which can be described as the intersection of the

hyperplanes
: k -
Hy, dim N, + (b — ax) 5 |T| + D clCulxn, (C) =0 (3.1)
s=2
for all h € {1,...,v} st. n, # 0, i.e. for any representation Ny occurring

in the type of N. The space of the solutions of this system of equations has
dimension v — r where v = #{h s.t. n, # 0}.
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3.2.5 Proof of Theorem 3.2.4

From now on we will assume I' # {1}. We will divide the proof of Theorem 3.2.4 in

several steps.

STEP 1 Proof of Theorem 3.2.4 part I)

Without loss of generality consider the elements z1, y1 € Hy . (I',). From Section
2.3 we know these elements commute with the elements ~; for ¢ # 1, and the action
of 71 by conjugation on such elements corresponds to the action of 7 on the basis
vectors x, y respectively in the natural representation L of I'. Thus we can view xq,

11 as a basis for the representation:
LeCw---C
1

of I'™, where C is the trivial one-dimensional representation. So we have that the

action of x1, y; on M induces maps of I'"-modules:
(LRC®---®@C)®@ M — M.

But now from Section 3.2.1 we have that, as a I"-module, M decomposes in

irreducibles as

@Nhom Q- ® Nho(n)

where ¢ are permutations in .5, and factors may appear with some multiplicity. Thus
composing with the I'"-module maps given by the injections and projections of the

direct factors we have that xy, y; induce I'-module maps:
(L ® Nha(1)> ® e ® Nha(n) - th’(l) ® e ® Nho—’(n)

for any o, o’. Since the N,s are irreducible I'-modules, in order for such a map to be

non-zero, we must have thm = th,(i) for any ¢ > 2. This implies Nhg(l) = Nha/(n
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and we get a homomorphism:
L@ Niyy = Nigiiy

But such a homomorphism must be zero as explained in Section 3.2.2; as all extended

Dynkin diagrams except Ay have no loop-vertices. We deduce z1, y; act trivially on

M.

Now that we know that the generators x;, y; must act trivially on M we can reduce

the defining relations (R1), (R2) of Hy(I',) in Lemma 2.3.3 to the simpler form:

(R1°) For any i € [1,n]:

O:1+§ZZSU’Y1’YJ_1+ Z CyYi -

j#i yel yel~{1}

(R2’) For any u,v € L and i # j:

k -1
0= 5 ZWL(’yuv U)%’VJ 9

vyel

where, with abuse of notation, we wrote 7, s;; etc. .. for the images of the correspond-
ing elements of Hj j.(I',) in the representation M.
This reduction will allow us to prove part I7) and I11) of Theorem 3.2.4 by using

simple classical results from the representation theory of finite groups.

STEP 2 The relations (R2’)

It turns out that the relations (R2’) have an easy interpretation in terms of the
extended Dynkin diagram attached to the group I' in the McKay correspondence.

Let L be the natural representation of I'. We have the following proposition.
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Lemma 3.2.5. If X ® Y T is a representation of T, of type (ny,...,n,), then the
operators of the corresponding matriz representation satisfy (R2’) for k # 0 if and
only if for any pair h,h' s.t. ny,ny # 0, Homp(L ® Ny, Np) = 0 d.e. if and only if
Ny, Ny are not adjacent vertices of the extended Dynkin diagram associated to I' in

the McKay correspondence.

Proof. Relations (R2) are satisfied for k # 0 if and only if

d_wrlyuv) vyt =0 YuweL Vi#j.

~vel
We observe that, for any N, the subgroup ' is contained in the inertia subgroup of
N and is normal in I',,. For this reason the induced representation X ® N T can be

written as:

- (XON)®- o (X@N) (3.2)

n!
nil..n, !’

where ¢ = and {o1,...,0,} is a set of representatives of the left cosets of
the inertia factor (I',)x in T',,, that can be chosen to be all in S,,. The action of an

element g € T',, on a vector o; - v is defined as follows:
g(Ul ’ U) = Or - (glv) where go; = Urg/ g/ € (Fn)N .

By the normality of I'", all the direct factors of (3.2) are stable under the action
of > crwr(yu,v) 'yz-fyj’l, thus this operator has a block diagonal form. The [-th
block corresponds to the operator A(s,t) = > p wr,(yu, v) vy, with (s,t) =
(0;1(i),0,'(5)), in the representation X ® N of (T',)y. We are reduced now to
show that any such block is zero if and only if the conditions of the proposition are
satisfied. Since the action of A(s,t) is trivial on X, we can suppose X to be trivial
1-dimensional, thus X ® N =2 N. Without loss of generality we can also suppose

s < t. Since the bilinear form wy, is non degenerate and u, v vary in all L we have:

A(s,t) =0 < Z’Y KXY 7_1|L®Nhs®Nht =0« Z’}/ KT 7_1*|L®Nhs®Nht =0
~el ~yel
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where “*” denotes the transposition. Now, if we denote by N; the dual representa-

tion of Np,, we notice that the last operator corresponds to the operator:

D 1877 em,en;,

vyel

that is a multiple of the projector on the invariants of the representation L& Ny, @ Ny .
Now this is zero if and only if Homp(L ® Np,, Ni,) = 0. From Section 3.2.2 we
know this happens exactly when Nj_ , N, are non adjacent vertices in the Dynkin

diagram attached to I'.
O

Notice that when N is of trivial type (0,...,n,...0), i.e. when all the factors of N
are the same, Lemma 3.2.5 implies that the conditions (R2’) are automatically sat-
isfied (since extended Dynkin diagrams corresponding to non-trivial finite subgroups

of SL(2,C) have no loop vertices).

STEP 3 The relations (R1’)

The only thing we are left to do now is analyzing the conditions for relations (R1’)
to be satisfied. We will begin from the easiest case of M = X ® N T with N of type

(0,...,n,...,0). We have the following proposition.

Lemma 3.2.6. For k # 0 a representation M of T',, of trivial type (0,...,n,...0)
extends to a representation of Hy k(L) if and only if the following conditions are

satisfied:
i) the representation X of S, corresponds to a rectangular Young diagram,

ii) the parameter (k,c) satisfies the corresponding equation in part I11) of Theorem

3.2.4.

Proof. As we observed in the previous subsection, Lemma 3.2.5 implies that in

this case relations (R2’) are satisfied. Thus we only have to consider relations (R1’).
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We have M = X ® N?", with X and N}, irreducible modules for S,, and I" respec-
tively. We will begin with an easy clarifying example. When N}, is one dimensional,
it is straightforward to check that Lemma 3.2.6 holds. In this case in fact, the per-
mutation action of S, on N2 is trivial and X ® N2™ = X as S,-modules. Thus the
relation (R1°) for a fixed i looks like:

v

§|F|Z‘Sii:_1_ Z C’YXNh(’Y):_1_ZCS|CS|XN]—L(OS)’

j#i ver~{1} §=2

where yn, (Cs) is the value of the character of N, on the conjugacy class C. For

k # 0 we have:

S, < 201 T Gl (C). .
o kT
So Y i Sij must act as a scalar and Lemma 3.2.3 part 77) implies that X must have
rectangular Young diagram p of some size a x b. We remark that Lemma 3.2.3 part
i) 4ii) implies that the element )., s;; acts as the scalar %(”) = (b — a) in this
representation. Substituting this value in equation (3.3) we get the result in the 1-
dimensional case. Notice that this first consideration solves completely the case when
I' is cyclic.

Let’s now suppose dim X = m and dim N, = p > 1. We rewrite relations (R1’)

as follows:

yel'\{1} j#i y€er
We observe that the left hand side of (3.4) is a central element of the group algebra
C[I'"] (due to the fact that ¢ is a class function), and that, as a I'""-module, X ® N
is isomorphic to a direct sum of dim X copies of the irreducible representation N
Thus the left hand side acts as a scalar in this representation. More precisely we

have:

Z CyYi = Z ¢ |0l X3, (C) ldxgn.

dim Nh
~vel'~{1} s=2

So we must have that %Z#i > er sivy; | is a scalar. We will show that this oper-

ator has a block form that reduces equation (3.4) to equation (3.3).
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For this let’s take any two bases {v1,...,v,}, {z1,..., 2y} for N}, and X respec-
tively. The vectors {v; = v;, ® - - - ®v;, }, where the multi-index ¢ = (i1, ..., i,) varies
in [1,p]", are clearly a basis for N = N". We can give the multi-indices I a total
ordering iy, ..., i, using the lexicographic order. Consider now the basis of X ® /N, o

given by the vectors:
1=21Q@Vis o L= Ty @ Vi, oy Zp(pn—1)41= T1 Q Vi, - s Lpn = T @ Vi, .

Any transposition s;; € S, induces a permutation 5;; (of order 2) on the set {i, ..., 7.}
thus on the vectors of the basis {Zi,..., Zyyn}. Let’s now denote by Ax(s;;) the
operator (of size m x m) for s;; in the representation X, and by O,, the 0-operator
of size m x m. It is easy to see that, using the basis {Z1, ..., Zyn }, we can obtain a

block form for the operator s;; in the representation X ® N from the block diagonal

operator
AX(SZ']') Om e Om
O IR O
Om e Om AX<SZ']')

by simply permuting the columns according to s;;. Using this, we can compute a
block form for s;; Zwer %%—1. We denote each block, of size m x m, by its position
(r,t), where r = (ry,...,r,), t = (t1,...,t,) are multi-indices. We have the following

formulas for the blocks :

e for (r,t) with r differing from ¢ at most for the pair of indices (r;,7;):

(£7 t) = AX(Sij) Z Qrjt; (7) Qr;t (7_1) )

yer

where o, 4, (7) are the matrix coefficients in the representation Ny;
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e for (r,t) with r differing from ¢ for indices different from r;, r;

(fy t) = Op, .

Summing up over j # i we can now rewrite relations (R1’) in block form for each

€ [1,n]:

1. for (r,t) with r differing from ¢ at most for the index r;

s |Csl X,
—ZAX Sij Zam Y) i (7 = (1—1—20 |d1|n>1(]]<7h )> (3.5)

J# ver

where 9,,;, = 7 ;

2. for (r,t) with r differing from ¢ at least for an index r;, j # 4, and at most for

the pair of indices (74, r;)

In all the other cases we only obtain trivial relations.

Now we observe that, using the orthogonality property of matrix coefficients of

irreducible representations of a finite group, we get:

_ r
Z Qrjt; () Qi t (v 1) = O, 51”;'15]' dlI’n A|th :

vel

Substituting these values in equation (3.6) we obtain trivial relations. From equation
(3.5), instead, we obtain that > _,; Ax(s;;) must be a scalar operator. Thus Lemma
3.2.3 implies that the Young diagram p attached to X is a rectangle, of some size

ap X by, and that . ; Ax(si;) acts on X as the scalar (b — a). Thus from equation
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(3.5) we obtain the equation:

. k -
dim N, + (b, — an) 3 [T + > | Culxn, (Cs) =0

s=2

which is exactly the equation (3.1) for the hyperplane H; in Theorem 3.2.4, part
I17). Notice that, in this case, we get a single equation since N} is the only factor

appearing in V.

We will now analyze the cases when the inertia factor of IV is not the entire S,
and an actual induction is needed to build the representation X ® N 7. If the type

of Nis = (ny,...,n,), then the inertia factor is Sz = S,,, X --- x S,,, and we have:
XNT=0-(XQON)®---®or- (X®N)

where ( = —" ; and {01,...,0/} is a set of representatives for the left cosets of Sy

nil-ny,

in S,,.

Remark 3.2.7. Let’s denote by [o] the left coset of o with respect to Si. An easy

computation shows that for any transposition s;; and any permutation o:
[sij0] = [0] € s60-1(3)0-1(j) € i -
Moreover we observe that for any o € S, and any 1 =1,...,n:
Yi0 = 0%o—1(i) -

We are now ready to prove the following result.

Lemma 3.2.8. For a representation X @ N 1 of T',, of non-trivial type (nq,...,n,)

relations (R1) are satisfied for some non-zero values of k if and only if:
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i) X =X1®---®X,, with X;, an irreducible representation of S,, with rectangular

Young diagram;

i) the parameter (k,c) satisfies the corresponding system of equations in part 111)

of Theorem 3.2.4.

Proof. Let N be a representation of I'" of type (n,...,n,). We observe that for
any X, if we choose {oy,...,00} C S, representatives of the left cosets of (I',)y in
|

XQ@Nl=0 - (XQ@N)@®---®o,- (X®N), (3.7)

is a I'-stable decomposition of X ® N T. For any representative o, let’s denote by
o1 N the representation of I'™ with same underlying vector space as N and with the
action on N twisted by the automorphism induced by o; on I'™ (the action of ; on o; N
is the same as the action of 7,-1(; on V). Since I'" acts trivially on X, as a I'""-module
the subspace o; - (X ® N) is isomorphic to a direct sum of copies of the irreducible
representation o; N. So, for a fixed i, the I"-central operator —1 — Z’yeF\ (1} G Vi
preserves the subspaces 0, - (X ® N) and acts as a scalar on each of them. For any

vector o, - v € 0y(X ® N) we have:

-1- Z i | (o-v) = o (—v)+o;- - Z Y Voi(a) | U

~vel~{1} yeI'~{1}

= Cloy-v). (3.8)

with C' € C. The action of £ D jti Damer sij’yﬁj_l on such a vector is instead:

k _ k . _
(5 Z Z 5i57i7; 1) (07-v) = Z Or(ijl) * ((5 Z O'Z‘jl’ya_l—l(i)")/ol_ll(j)> v) (3.9)
j#i yer J#i vEr
where 0,(;;;) is the representative in the set {oy,..., 0} of the coset [s;jo;] and 7, €
Sy is the unique element s.t. s;jo; = 0,101
Relations (R1’°) are satisfied if and only if these two actions are the same. In

particular %Z#i Z'yEF sij%'yj_l must preserve the subspace o; - (X ® N). But let’s
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now look at equation (3.9) and take j # i s.t. [s;jou] = [o,], r # [ l.e. s;; “moves”
the subspace o; - (X ® N) sending it to the subspace o, - (X ® N). Then we have:
So=1(i)or (5) ¢ Si. This means that the representations No_l—l(i), Nal—l( j) are not iso-

morphic. As a consequence, arguing as in Lemma 3.2.5, we have that

-1 o

Z%fl(i)vaﬂ(j) =0

~yel’
in the representation X ® N, hence s;; sends the subspace o, - (X ® N) to 0. This
means that %Z i Z’yef‘ SijViv; ! indeed preserves the subspace o, - (X ® N) and
that relations (R1) split up into equations that can be checked on the subspaces
o - (X ®N) . Soin equation (3.9) it is enough to take the sum over the js s.t.
[sijo1] = [oy]. Moreover we know that if [s;;0;] = [oy] then s;;0, = oy So=1 ()0 (j) ie.
Oijl = So=1(1)o1(;)- Hence, for a fixed 4, if o, '(i) = p the relations (R1’) reduce to the

following equations:

g D s W =l ) e (3.10)

yel vyel'~{1}
q#p
Spq € thp

where the identity must be considered in the representation X ® N of Sz x '™ and
p € {o7'(9),...,0,(i)}. For any p, equation (3.10) is exactly the p-th equation of
relations (R1’) for the extension of the representation of trivial type Xj, ® IV, }i " of
thp x I to the algebra H Lk,c(thp x "), It is easily checked that, letting ¢ and
o0, vary, we obtain all the relations for the extension of the representations X, ® V. ?"’L

of S, ® I'™ for any nj, # 0 . Using Lemma 3.2.6 we get the result.

STEP 4 The conditions on the parameter (k,c)

Now that we classified the representations of I';, that can potentially be extended

to representations of Hyy(I,) for & # 0. We would now like to show that such

57



extensions exist for a non-empty set of values of (k,c). This amounts to proving
that the system of equations in Theorem 3.2.4 part [I]) admits solutions. Fix a
representation M = X @ N 1 of T',, of type (n4,...,n,) satisfying conditions 3) i) of
Theorem 3.2.4 part I7). We have the following lemma.

Lemma 3.2.9. Ifr = #{h s.t. n, # 0}, then the space of the solutions for the system

of equations in part II) of Theorem 3.2.4 has dimension v —r.

Proof. By condition ii) we have that:

r = #{h s.t. ny, # 0} < v = #{vertices in the extended Dynkin diagram of I'}.

Without loss of generality we can suppose nq,...,n, # 0, n, = 0 for h > r. So in

matrix form the system has size r x v, with r < v — 1:

(blfc;l) IT| 1Calxn, (C) .. |Culx, (Cy) k —dimN;
(brt;z) IT| 1O xn, (C) o Ol (C) | —dimN,
=) lT 10y xn, (C) oo [Culx, (C) ¢ —dimN,

But now we have:

|Colxn, (Co) .. |Culxn, (C) v (C2) oo xwn (C))
|Colxny (Co) . |Culxn, (C) v (C2) oo xwe(Cy)

rk . . . = rk . . . - r
|C2|XN7‘ (02) A |CV|XNr<CV) XNT (02) A XN‘!‘ (CV)

In fact the rows Ry, ..., R, on the RHS are rows of the character table for I" from
which we have erased the entries xn, (1) = dim NN,. If a non-trivial linear combination
Y h—y anRy, of these rows is zero then the class function xy = >, | apxn, satisfies the
equation:

x(v) =0, Vyel~{1l}.
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This is possible only if x = mp, where m € C and p is the character of the regular
representation. Now we must have m # 0 since characters of non-isomorphic irre-
ducible representations are linearly independent. But m # 0 is also impossible since,
by condition ii), Ni,... N, are not a complete set of irreducible representations of I'
while, on the other hand, any irreducible representation of I' occurs in the regular
representation with non-zero multiplicity. So the matrix for the system in part I17)

of Theorem 3.2.4 has maximal rank and the space of solutions has dimension v — r.

a

We are finally ready to prove part I7) and I11) of Theorem 3.2.4.

STEP 5 Proof of Theorem 3.2.4 parts II) and III)

Just combine the results of Lemma 3.2.5, Lemma 3.2.6 and Lemma 3.2.9.

3.3 Deforming irreducible H;(.(I',)-modules

3.3.1 A proposition in deformation theory

Let A be an associative unital algebra over C and let Ay be a flat formal deformation
over CI[[U]], where U is some finite dimensional vector space. Let M be a left A-
module.

There exists a natural map n : U — H?(A,End M). The map 7 is the com-
position of the map ¢ : U — H?*(A, A) of Section 1.3 with the natural map
Y H*(A,A) — H?*(A,End M) induced by functoriality by the homomorphism
p: A — End M giving the representation. The next proposition will be our main
tool in investigating the possibilty of obtaining Hj j i (I';)-modules for & # 0 as

deformations of Hy g .(I',)-modules.

Proposition 3.3.1. Assume that n is surjective with kernel K, and moreover that

HY(A,End M) = 0. Then:
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(i) There ezists a unique smooth formal subscheme S of the formal neighborhood
of the origin in U, with tangent space K at the origin, such that M deforms to a
representation of the algebra Ag := AyQ@cquyC[S] (where @ is the completed tensor
product).

(ii) The deformation of M over S is unique.

Proof. Let us realize Ay explicitly as A[[hy, ..., h,]|] equipped with a product * as
in (1.1). We may assume that K is the space of all vectors (hy, ..., h,) such that
hmsi1 = ... = h, =0.

Let D be the formal neighborhood of the origin in K, with coordinates t; =
hi,..otm = hp. Let @ : D — U be a map given by the formula 6(t4,...,t,) =

(A1, ..., hy), where h; = t; for i < m, and

hk = Z hk,pl’m,pmtﬁ)l...t%m, k> m,
k:7p17“'7pm
where fiyp, .. p,. € C. More briefly, we can write by, = Zp hypt?, where p is a multi-
index. For brevity we also let e; to be the multi-index (0, ..., 1;, ...,0).
We claim that there exist unique formal functions hy, = hy(t), k > m, for which

we can deform M over D. Indeed, such a deformation would be defined by a series
pla) =Y ppla)tt,
p

where po(a) = p(a), and p is the homomorphism giving the representation M. The

condition that p is a representation gives for each p
de: Zhj£p<06j> +Bg> (3.11)
J

where for j < m, hj, = 1if p = ¢; and zero otherwise, and B, is a 2-cocycle whose
expression may involve p, and Ay, only with |g| < [p[. Since the map 7 is surjective,
there are (unique) My, y1,p, -, finp for which the right hand side is a coboundary. For

such My, -, np (and only for them), we can solve (3.11) for p,.
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This shows the existence of the functions %;(t), j > m, such that the deformation
of M over D is possible. To show the uniqueness of these functions, let f; and 7}
be two sets of functions for which the deformation exists. Let p,, pj, be the coeffients
of the corresponding representations p, p’. Let N be the maximal number such that
hjp = I, for |p| < N. Since H'(A, End M) = 0, the solution p, of (3.11) is unique up
to adding a coboundary. Thus we can use changes of basis in M to modify p so that
pp = py, for |p| < N (note that this does not affect f;). Then for any g with |¢| = N,
By(p) = By(p'), and hence hjq = hj,. This contradicts the maximality of .

Thus, we have shown that the functions h; exist and are unique; they define a
parametrization of the desired subscheme S by D. Our proof also implies that the

deformation of M over S is unique, so we are done.

We end this section by recalling the following fact from algebraic geometry that
will guarantee that the representations we will find in Theorem 3.3.10 are actually
irreducible.

Let X be an affine irreducible algebraic variety over C, R = C[X]. Let A be an
algebra over R and M an A-module, such that A and M are free as R-modules and
M is of finite rank. For z € X, let A,, M, be the fibers of A, M at z; so A, is a

C-algebra and M, a finite dimensional module over A,.
Proposition 3.3.2. The set of x for which M, is irreducible is open in X.

Proof. Let x be a point of X where M, is irreducible. We have that the map
fz : A — End M, is surjective. This means that there exist elements aq,...,an2 in A,
N = dim g M, such that f,(a;) is a basis of End M,. The set U of points z of X such
that f.(a;) are a basis of End M, is open and contains . We found a neighborhood

U of z such that, for all z in U, M, is an irreducible A.-module, as desired.
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3.3.2 Deformed preprojective algebras

In order to apply Proposition 3.3.1 to our case, we need to have a closer look at
the finite dimensional irreducible representations of Hy.(T') = Hy()®"4S,. As
we already mentioned, in analogy with the case of the wreath product groups, such
representations can be recovered from a knowledge of the irreducible representations
of the rank one algebra H; .(I"), using the representation theory of S,,. The complete
classification of the finite dimensional irreducible representations of H; .(I') was ob-
tained by Crawley-Boevey and Holland in [CBH98| using the representation theory

of quivers and deformed preprojective algebras.

In this section we recall the Crawley-Boevey and Holland definition of the de-

formed preprojective algebra and how it is related with H; .(T').

Let @ be a finite quiver (finite oriented graph) and let I be the set of its vertices.

If two vertices i, j € I are connected by an arrow a in such a way that
a:1— 7

we will denote by h(a) = j the head of the arrow a and by t(a) = i its tail. We will
denote by Q be the double quiver of @, obtained by adding a reverse arrow

a ] —1

for any arrow a : i — j of Q.

Let B := @,.; Ce; be the semisimple finite dimensional algebra spanned by or-
thogonal idempotents e; corresponding to the vertices. Let let E' be the vector space
with basis the set of arrows of Q. We have that E is a B-bimodule and F = Zl ier Eijs
where E;; is spanned by all the arrows a with h(a) = i, t(a) = j. We can form the
path algebra of Q defined as CQ := TzE = @nzo TRE, where TRE is the n-fold
tensor product of F over B. Each idempotent e; corresponds to the trivial path that

does not move from the vertex ¢, and arrows compose as paths on the oriented graph

when it is possible (otherwise their composition gives 0). For any A € B we write
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A= Zie s Aiei. For any @ € I define the element R; of CQ as follows:

R, = Z aa” — Z a‘a. (3.12)
{acQ|h(a)=i} {acQlt(a)=i}
Definition 3.3.3. For any A\ € B, the deformed preprojective algebra 11\(Q) is the
quotient .
CQ
(Ri — Niei)ier

where (...) denotes the two-sided ideal generated by the indicated elements.

By [CBHO98| Lemma 2.2, the algebra I1,(Q) does not depend on the orientation
of ) and it is unchanged up to isomorphism by multiplying A by a nonzero scalar.

Consider now any quiver () obtained by assigning any orientation to the extended
Dynkin diagram attached to I' via the McKay correspondence. In this case the set of
vertices [ is in bijection with the set of isomorphism classes of irreducible I'-modules
{N:},c;- Consider a parameter A € C' = C” as above related to the parameter ¢ of
the family H; (') in the following way. If ¢ =14+ ., ¢, is the central element
of C[I'] that appears in the definition of H; .(I') (see Example 2.3.4) then

A = try, C. (3.13)

We have the following theorem.

Theorem 3.3.4. For () and A as above the algebra H, .(I") is Morita equivalent to
the algebra I1,(Q).

3.3.3 Irreducible representations of H; .(I")

From the previous section we know that classifying the finite dimensional irreducible
representations of Hj .(I') is equivalent to solving the same problem for the alge-

bra II,(Q). If we denote by - the standard scalar product in C¥, by R the regular
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representation of I', and by d € Z” the vector at the end of Section 3.2.2 then
A0 = tI‘RC

and the condition 1 = trzc corresponds to the condition A-d = 1. Thus, in particular
it is enough to look at parameters A with A -4 # 0.

Any finite dimensional representation Y of II(Q) is also a representations of the
path algebra of (). Thus we can attach to Y a dimension vector o € Z¥ such that
o; = dime;Y.

We recall now that one can associate an affine root system to the McKay graph Q.
The roots of such system can be distinguished into real roots and imaginary roots.
The real roots are divided into positive and negative roots, and are the images of
the coordinate vectors of Z” under sequences of some suitably defined reflections,
generating the Weyl group W attached to (). The imaginary roots, instead, are all
the non-zero integer multiples of the vector . When A-§ # 0, let us denote by R, the
set of real roots « such that A+« = 0 (this is a finite set), and by X, the unique basis
of R, consisting of positive roots. The following theorem gives a classification of the

isomorphism classes of irreducible finite dimensional representations for H; .(I").

Theorem 3.3.5 ([CBH98], Theorem 7.4). If A-§ # 0, then I1,(Q) has only finitely
many finite-dimensional simple modules up to isomorphisms, and they are in one-to-
one correspondence with the set ¥y. The correspondence is the one assigning to each

module its dimension vector.
We end this section with three lemmas that will be useful in the sequel.

Lemma 3.3.6. The characters of the irreducible finite dimensional Hy .(I")-modules

are linearly independent.

Proof. Let {Yp.},_, ., where p = [X,], be a complete collection of finite dimen-

p?

sional, irreducible, pairwise non-isomorphic representations of H; .(I"). According to

-----

sponding to Y} under the Morita equivalence of Section 3.3.2, where A corresponds
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to ¢ as in (3.13). This means we have a decomposition Y, = @7_, Nj@a(m’j as a
-module (see [CBH98], §3). Thus for the character of Y}, as a I'-module we get
(Xv,)|r = Z;’Zl an,jXn,- By Theorem 3.3.5 the ay,’s are a basis of the vector space
Spanc(Ry) C C”, thus they are linearly independent vectors in C”. The result now
follows from the fact that the xn,’s for j = 1,..., v are linearly independent functions

on .
O

We recall that the symmetrized Ringel form attached to the quiver @) is the bilinear
form (—, —) on Z! defined as follows. For any a = {;} and 8 = {;} in Z! set

(a, B) = Z o B — Z Qt(a) Bna)- (3.14)

iel acQ

Then
(a, ) = (@, B) + (B, ). (3.15)

This bilinear form is W-invariant, where W is the Weyl goup of ). Moreover,
when the underlying graph of @) is extended Dynkin, this form is positive semidefinite.
The radical is generated by the vector ¢ ([Kac90] Proposition 4.7, Theorem 4.8).

Lemma 3.3.7. Let Yy, Y be two irreducible, finite dimensional, non isomorphic
representations of Hy (I') and let oy, onry be the two distinct roots corresponding

to them under the Morita equivalence. The following are equivalent
1) (am), amw)) =0
ZZ) EXt}{LC(F)(Yh’ Yh/) =0
Proof. We can of course prove the result for the corresponding 1Ty (Q))-modules that
we will still denote by Y}, Vi, The result then can be easily deduced from [CBH98],
§ 7. The two conditions are in fact equivalent when A is a dominant parameter (see

[CBH98]| § 7 for a definition of dominance) . In this case in fact, by [CBH98| Lemma

7.1, the dimension vectors ), oy are simple roots corresponding to two distinct
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vertices. Thus Extll-IA(Yh,Yh/) # 0 if and only if a(), ) correspond to adjacent
vertices i.e. if and only if (a(p), aqnry) # 0 (see formulas (3.14), (3.15)). When A is not
dominant but A - d = 1, there exists an element w of the Weyl group W attached to
the quiver () such that wA = A" is dominant. In this case the algebra II, is Morita
equivalent to the deformed preprojective algebra II,+, and this Morita equivalence
acts on the dimension vectors as the element w € W, i.e. in particular preserving the
Ringel form (see [CBH98] Corollary 5.2, Lemma 7.2, and Theorem 7.4). Thus we can

reduce ourselves to the case when A\ is dominant.
O
Lemma 3.3.8. Let Y be an irreducible Hy .(I")-module. Then Extllql’c(r) (YY) =0.

Proof. We will prove the result for the corresponding IT,(Q)-module that we will
also denote by Y. But it is known ([CBH98], Corollary 7.6) that II,(Q) contains only
one minimal ideal J among all the nonzero ideals, and Extllh(Q) (YY) =0 for
any irreducible module Y’ over the (finite dimensional) quotient algebra II,(Q)/J.
Since any finite dimensional II,(Q)-module must factor through II,(Q)/J, we get
ExthA(Q)(Y, Y') =0, as desired.

3.3.4 Irreducible representations of Hy.(I',)

We recall that Hy.(T')) = Hy (I)®"8S,. Let {Yi},_, where p = |3,[, be a

,,,,, D’
complete set of pairwise non-isomorphic finite dimensional H; .(I')-modules. In a
similar fashion as in Section 3.2.1,let Y =Y ® --- ® Yp®np, with ). n; =n, be a
representation of Hy  (I")®" of type @ = (ny,- -+ ,np). Set Sz =S, x -+ xS, C Sy,
and let X = X; ®---® X, be an irreducible representation of Si. As in Section 3.2.1,
we will say that a representation Y' =Y}, ® --- ® Y}, is conjugate to Y (or has the

same type as Y) if it has the same factors up to a permutation. The tensor product

X ®Y is an irreducible representation of the subalgebra Hy .(I)®"4S5; C Hy.(Ts),
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where S acts both on X and on Y (permuting the factors of Y). We can form the
induced Hj o .(I,)-module:

Hi,0,c(T'n
X @Y 1:=Indy, {0 X ®.

By [Mac80] (paragraph after (A.5)), we have the following theorem.

Theorem 3.3.9. The representation X ® Y T s irreducible and runs through a com-
plete system of pairwise non-isomorphic irreducible representations of Hyo.(I'y) if Y
runs through a complete system of pairwise non-conjugate irreducible representations
of Hy (') and, while Y remains fized, X runs through a complete system of pairwise

non-isomorphic irreducible representations of Si.

3.3.5 The main theorem

Denote by M. = X ® Y T an H;.(I',)-module of some type (n4,...,n,) for some
c. Notice that, by Theorem 3.3.5, such representations exist only for special values
of ¢. Denote by M the underlying vector space of M.. Let M = M(Y,X) be
the moduli space of irreducible representations of Hj j .(T',) isomorphic to M as T',-
modules (where (k, c¢) are allowed to vary). This is a quasi-affine algebraic variety: it
is the quotient of the quasi-affine variety M (Y, X) of extensions of the I',,-module
M to an irreducible Hyj (T',)-module by a free action of the reductive group G of
basis changes in M compatible with T',, modulo scalars. Let F' : M — C(S) be the
morphism which sends a representation to the corresponding values of (k, ¢).

Let Xy, be the character of the representation Y; of H. (') and let a be
the positive real root attached to Y; under the Morita equivalence. With the same

notation as in Theorem 3.2.4 we have the following result.

Theorem 3.3.10. Suppose X}, has rectangular Young diagram of some size ap X by, for
any h such that ny # 0, and that moreover (ay, oqnry) = 0 for any h # h' such that
np, Ny # 0 (where we agree that the last condition is empty if @ = (0,...,n,...,0)

corresponds to the trivial partition). Then:
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(i) For any cy the representation M., of Hy (L) can be formally deformed to

a representation of Hy y.(I'y) along the intersection of the hyperplanes

. k -
i, dim Y+ 2|T)(bi — i) + > " lCuhxw (Cs) = 0
s=2
forall h € {1,...,p} such that n, # 0, but not in other directions. This deformation
15 unique. The linear space described by the above equations has dimension v — r
where r = #{h s.t. ny, # 0}.

(i) The morphism F maps M to ﬂ Hy,, ay,.,, and is étale at M., for all cy. Its
h|nh7$0
restriction to the formal neighborhood of M., is the deformation from (i).

(iii) There exists a nonempty Zariski open subset U of m Hy, ap.b, Such that
h|np#0
for (k,c) € U, the algebra Hyy (T'y,) admits a finite dimensional irreducible represen-

tation isomorphic to M as a I',,-module.

3.3.6 Proof of Theorem 3.3.10

STEP 1 Homological properties of H; .(I')

We recall the following definition (see [vdB98, vdB02, EO06]):

Definition 3.3.11. An algebra B is defined to be in the class V B(d) if it is of finite
Hochschild dimension (i.e. there exists n € N s.t. H(B,E) =0 for any i > n and
any B-bimodule E) and H*(B, B ® B°) is concentrated in degree d, where it equals
B as a B-bimodule.

The meaning of this definition is clarified by the following result by Van den Bergh
([vdB98, vdB02]).

Theorem 3.3.12. If B € V B(d) then for any B-bimodule E, the Hochschild homol-
ogy H;(B, E) is naturally isomorphic to the Hochschild cohomology H*(B, E).
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Proposition 3.3.13. The algebra Hy (') belongs to the class V B(2).

Proof. Let us pose B := Hy .(I'). If I' = {1}, the statement is well known ([vdB98,
vdB02]; see also [EO06]). Let us consider the case I' # {1}. We have to show that B
has finite Hochschild dimension and that:

H'(B,B® B°) =0 for i # 2

H*(B,B® B°)~ B as B — bimodules.

The algebra C (z,y) I" has a natural increasing filtration obtained by putting z, y in
degree 1 and the elements of I" in degree 0. This filtration clearly induces a filtration
on B: B = U,>oF™B, and the associated graded algebra is By = grB = C [z, y] i (by
the PBW theorem), which has Hochschild dimension 2. So by a deformation argument
we have that B has finite Hochschild dimension (equal to 2) and H (B, B ® B°) =0
for i # 2, as this is true for By (which is easily checked since By is a semidirect
product of a finite group with a polynomial algebra).

It remains to show the B-bimodule £ := H*(B, B® B°) is isomorphic to B. Using
again a deformation argument (cf. [vdB98]), we can see that F is invertible and free
as a right and left B-module, because this is true for By. So E = B¢ where ¢ is an
automorphism of B such that gr¢ = 1. We will now show that ¢ = 1, which will
conclude the proof.

Define a linear map & : By — By as follows: if z € By is a homogeneous element
of degree n, and Z is its lifting to B, then £(z) is defined to be the projection of
the element ¢(2) — Z (which has filtration degree n — 1) to (grB),—1. It is easy to
check that £ is well defined (i.e., independent on the choice of the lifting), and is a
derivation of By of degree —1.

Our job is to show that & = 0. This would imply that ¢ = 1, since B is generated
by F'B.

It is clear that any homogeneous inner derivation of By has nonnegative degree.

Hence, it suffices to show that the degree —1 part of H'(By, By) is zero. But it is
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easy to compute using Koszul complexes that H'(By, By) = Vect(L)", the space of
[-invariant vector fields on L. In particular, vector fields of degree —1 are those with
constant coefficients. But such a vector field cannot be I'-invariant unless it is zero,

since the space L has no nonzero vectors fixed by I'. Thus, £ = 0 and we are done.

Corollary 3.3.14. H*(H, ("), EndY) = Hy(H,.(T'),EndY) = C.

Proof. Posing again B := H; .(I'), we can apply Theorem 3.3.12 to obtain the first
identity. Furthermore, Hy(B,EndY) = EndY/[B,EndY] = C as Y is irreducible, so

the second identity follows.

STEP 2 Homological properties of H;.(T;,)

We would now like to apply Proposition 3.3.1 to the algebra Hi ., (I), its flat
formal deformation Hi j .+ (') over the finite dimensional vector space U = C(S),
and any module M satisfying the conditions of Theorem 3.3.10. Our job is to compute
the cohomology groups H?*(Hi.(T,),End M), H'(H,.(T,), End M) and to show

the surjectivity of the map 7.

Proposition 3.3.15. If M is as in Theorem 3.3.10 and r € N is as in part (i) of the

same theorem then

H*(Hy0,(T,), End M) = @ H*(H,(T),EndY;) = C".
h|np#£0

Proof. The second equality follows from Corollary 3.3.14. Let us prove the first
equality. For simplicity, let B denote the algebra H; .(I') as above, and let A be the
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algebra Hy.(T',). Thus we can write A = S,,§B®". We have:

H*(A,End M) = Extjg,.(A,End M)
pr— EXt*B®nﬁSn®Bo®nﬂSn (B®nﬂ5n, EIld M)

Ext(pong poenyss, x5, (B®"£S,,, End M)

Now, the (B®" @ B°®")1S,, x S,-module B®"S, is induced from the module B®"
over the subalgebra (B®" @ B°®")4S,,, in which S, acts simultaneously permuting
the factors of B®" and B°®" (note that (B®" @ B°®")#S,, is indeed a subalgebra of
(B®" @ B°®™#S,, x S, as it can be identified with the subalgebra (B®" @ B°®"){D
where D = {(0,0), 0 € S,} C S, x S,). Applying the Shapiro Lemma we get:

EXt?B(@"@BO@n)ﬂSnXSn (B®nﬁ5n7 End M) = EXt;(kB®"®BO®")jan(B®n7 End M)

= (Extlyeny poen (B", End M)) ",

We observe now that the subalgebra B®™ is stable under the inner automorphisms
induced by the elements o0 € S, C A. Thus setting M’ = X ® Y the induced A-

module M can be written as:

M=oM®o.M & - - BoM (3.16)

n!
nil..n.

where ¢ = ; and {01, ..., 0.} is a set of representatives for the left cosets of Sy

in S,. The action of an element o(b; ® --- ® b,,) on a vector o; - m' € oM’ is the

following:
by @ @by) (01-m') =04 (0 (boy1) @+ + @ bymy)') € 7, M’ (3.17)
where ¢’ € Sz, 05 € {01,...,00} are the only elements satisfying co; = o,0’. In

particular as a B®"-module, each summand o;M’ = 0;.X ® 0;Y equals:

X ® Yhal_l(l) ® o ® Yhal_l(n)
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with trivial action of B®" on X.

Thus we have a chain of S,,-equivariant isomorphisms:

EXteng goen (BY", End M)

= EXt*B®n®Bo®n <B®n7 End (@ O'ZM/) >

l

— EXt*B@n@Bo@n <B®n’ @ :[‘:[Ol’n_(o-l]\4/7 O‘sM’))

l,s

- @ Extong gosn (B®", Hom (o, M’, USM'))

l,s

= @ Extponggosen (B*",Hom(0y X, 0,X) ® Hom(o,Y,0,Y))

l,s

_ @ Hom(0;.X, 0,X) ® Extlyeng goon (B2, Hom(oY,0,Y))

l,s

= @Hom(alX, 0:X) ® Extpang gosn <B®”, ®Hom(Yh _1(_>,Yh _1(v))) (3.18)
O'l 2 Og 1

l,s =1

where the third identity holds since the action of B®" @ B°®" does not permute
the direct factors in @U[M "and is trivial on X in the module M’. Since all the
identities pass to invariants, all is left to do is computing the degree 2 component of
the invariance of (3.18).

To this end, we apply the Kiinneth formula in degree 2. Lemma 3.3.7, Lemma
3.3.8 and our conditions on the Y;’s guarantee Exth(Y;,Y),) = 0 for any h # I
with np,nj, # 0. Moreover, for any h # 1/, Y}, V), are non-isomorphic irreducible
representations of B, thus Ext% (Y}, Vi) = Homp(Y}, Vi) = 0. As a consequence we

get

Sn

P Hom(oX,0.X)® @ Exthep (B, Hom(Ys . Yh%l(“))
i=1

l,s

(o] L (o5 tipesy vi
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where (0;'(i)o;1(i)) denotes the transposition moving the corresponding indices.
Now we have (al_l(i)o,jl(i)) € Sz, Vi if and only if 0; = 0,0 with o € S;. But o7, 0

belong to different left cosets of S;. Thus we can rewrite the last term as:

Sn
ela End X ® @ EXt%@BO (B7 End thfl(i) >>
Si

= | P EndX @ (Exthyp (B,EndY;))™™
h|np#0
Si

= @ ® End Xh/ X (EXtZB@)Bo (Ba End Yh)) o

hlnp#0 \ h'|n;#0

Now we have that as an S,,,-module:
(Ext%y o (B, End ¥3)) ™™ = Ext%_ 5. (B, End Y;,) @ C™

with S, acting only on C™ by permuting the factors, and C™ = C @ b, where C

the trivial representation, and by, is the reflection representation of S5,,. So we have:

D Ext? o (B, End V) ®(End X, ® - ©(C™ ©® End X,,)® - - - @End X,,) %"
h|np#0

- EBExth@BO (B,EndY,) ®
h|np#0

® (Ends,, X, @+ ® (C® End X, @ by, @ End X,)* @ -+ @ Bnds;, X, )

= @PExthep (B.EndY),) ® (Ends, X, @ Homsg, (b, ® Xy, X5))
h|np#£0

= @PExthep (B, EndY,) =C’

h|np#0

since, by Lemma 3.2.3, the fact that X}, has rectangular Young diagram for any h
such that n, # 0 guarantees Homg, (b, ® Xp, Xp) = 0 for all such hs.
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Corollary 3.3.16. If M is as in Proposition 3.3.15, then map
n:U — H*(Hy.(T,),End M)

18 surjective.

Proof. As in the previous proofs, let B := H; .(I') and A := H; ¢ .(T,,). Let Uy C U
be the subspace of vectors (0, ). It is sufficient to show that the restriction of 1 to

Uy is surjective. But this restriction is a composition of three natural maps:
Uy — H*(B,B) — H*(A,A) — H*(A,End M).

Here the first map 7y : Uy — H?*(B, B) is induced by the deformation of B along
Uy, the second map & : H*(B,B) — H?*(A, A) comes from the Kiinneth formula,
and the third map ¢ : H*(A, A) — H?*(A,End M) is induced by the homomorphism
A — EndM.

Now, by Proposition 3.3.15, the map 1o coincides with the map v : H*(B, B) —
D20 H?(B,EndY,) induced by the homomorphism ¢ : B — Dy, 20 End Vi
Let Ky = Ker(y) and U} = n5'(Ko). We have to show that codimUj > r =
t{h s.t. n, # 0}. By the results of STEP 1, Proposition 3.3.1 can be applied to
the algebra B and the representation Y}, for any h such that n;, # 0. Thus, for any
such h, the representation Y} admits a first order deformation along Uj. So, by the
defining relations for the rank one case ( see Example 2.3.4), on Uj we must have
try, (c) = 0, where c is as in Section 3.3.2. Since the representations Y}, are non-
isomorphic their characters are linearly independent by Lemma 3.3.6, hence so are

these linear equations. Thus the codim(Uj) > r, and 7|y, is surjective, as desired.

Proposition 3.3.17. H'(H,,.(T,), EndM) = 0.

Proof. Arguing as in the proof of Proposition 3.3.15, and using the same notation,
we get that H'(A, End M) = @y, 2o ' (B,EndY}), which is zero by Lemma 3.3.8.

This proves the proposition.
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We have proved the following result.

Proposition 3.3.18. If the conditions of Theorem 3.3.10 are satisfied then there
exists a unique smooth codimension r formal subscheme S of the formal neighborhood
of the origin in U such that the representation of Hy ., (L) on the vector space M
deforms to a representation of Hygeore(I'n) along S (i.e., abusing the language, for

(k,c') € S). Furthermore, such a deformation over S is unique.

Proof. Corollary 3.3.16 and Proposition 3.3.17 show that our case satisfies all the
hypotheses of Proposition 3.3.1. Moreover, from H?(A,End M) = C" we deduce

dim Kern = dim U — r, and the Proposition follows.

STEP 3 The subscheme S and the proof of part (i)

Now we would like to find the subscheme S of Proposition 3.3.18. We will do this
computing some appropriate trace conditions for the deformation of the module M.
Let x4, yi, Vi, si; be the elements of Hy j .(I',,) that appear in Lemma 2.3.3.

Let again r be as in Theorem 3.3.10 part (ii). For simplicity let us write Y =

Y,

lnhl ®-® Yh(?hT where hs € {1,...,p} are all distinct, and X = X}, @ --- @ X}, .
Since the Y}, are finite dimensional, irreducible, non-isomorphic representations of
H, ('), Lemma 3.3.6 ensures that for any choice of complex numbers z1, ..., z, there
exists a central element Z of C[I'] such that xy, (Z) = try, (Z) = z,. Fix now Z(1)

such that try, (Z(1)) =1 — 1, and consider the element:

P=1®---010Z1)® - ---® Z(1) € Hy,.(T,).
A R R10Z(1)® - ®Z(1) € Hy(Ty)

~~

1 n—"np,

Such element commutes with xy, y;. Consider now the relation (R1) in Lemma 2.3.3

fori =1 (and t = 1), and multiply it by P; on the right. The left hand side becomes
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[1,y1 P1], thus it has trace zero. To compute the trace of the right hand side operator
it is convenient to use again the decomposition of the induced module M given in the
previous section (cfr. (3.16), (3.17)). The trace of the right hand side reduces to the

sum of the three terms:

try Py = m (dim Yy, )" H dim X, (3.19)

k - » k o P
§trM (Z Z $1717; ) P = 5 m tth1®Yh®1nh1 (Z Z S1M1Y; Hdlm Xn, (3.20)

Jj=2 vl j=2 yer s#1

| Y em | Pi=m | D ety (9) ] dimYy,)"™ ! [[dim X, (3.21)
~vel~{1} el ~{1} s
(nfnhl)!

T 18 the number of elements o; in the set of representatives
S|

{o1,...,00} such that o; ' ({1,2,...,n,}) = {1,2,...,np, }. Now we claim that:

where m =

tthl®Y®"h1 (siymvy ) = trx, (s1;)dim Yy, " Vi< ng,. (3.22)

hy

To obtain (3.22), we observe that, for j < ny,, s1;717; " is conjugate in the subgroup
L'y, = Sy, X I to s1; and that the character of 5, on X, ® Y}fmhl is simply the

RNy . .
product of the characters on X3, and Y} ~"*. An easy computation gives tryczmhl Sij =
h1

dim Y3,," !, hence the formula.

From the proof of Lemma 3.2.3, we know that the central element Z Si; in
1<j<np,
Shy,, acts on Xj, as the scalar c(u), where ¢(u) is the content of the Young diagram p

attached to Xj,. We can deduce that the trace of each transposition sy, is try,, (s15) =
dim Yy,

mc(u). Thus if the Young diagram of X, is of size ay, X by, we get:
1 1

bhy — an, ) dim X
tr ! (Sljfyl Vj_l) = ( 1 ahl) 1 A py

dimY;, "1 3.23
1Y, (3.23)

where we used Lemma 3.2.3 part (7i7) to evaluate c(u) = (bp, — an, )np, /2. Substitut-

76



ing in (3.20), summing up (3.19),(3.20),(3.21) and simplifying we get the equation:

_ k
dim Yh1 + §|F|(bh1 - ahl) + Z CyXYn, (’7) =0 (324)
vyel'~{1}
that (grouping the elements v € I' \. {1} according their conjugacy class) is exactly

the equation for the hyperplane Hy,,, . Analogously we can define Z(s), Ps; and

ahlvbhl
obtain the equations of the hyperplane Hy, 4, p,. for s =2,...,r. We get exactly r
independent necessary linear conditions.

This shows that (0,¢o) +5 C (,_; Hy,,.ap, bs,- But since the two subschemes

have the same dimension we have that S is the formal neighborhood of zero in

MNi_1 Hyi, an, bn, — (0,¢o) and Theorem 3.3.10, (4) is proved.

STEP 4 Proof of part (ii) and (dii)

Let M’ be the formal neighborhood of M., in M. We have shown that the morphism
Fo M — U lands in (), 20 Hvianns and that Flayy @ M" — (0,¢0) + 5 is an
isomorphism. This implies that the map F': M — ﬂh‘nhﬂ) Hy, ap.b, 1s étale at M.
This proves part (ii) of Theorem 3.3.10, and, together with Proposition 3.3.2, also

implies (iii), since a map which is étale at one point is dominant.
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Chapter 4

Continuous symplectic reflection

algebras

4.1 Plan of the chapter

Continuous symplectic reflection algebras were introduced by Etingof, Gan, and
Ginzburg in [EGGO5] as a special case of continuous Hecke algebras. They are a
generalization of symplectic reflection algebras to reductive algebraic groups, where
the role of the group algebra is played by the ring of algebraic distributions O(G)*. In
this chapter, after recalling some generalities about algebraic distributions in Section
4.2, we define continuous symplectic reflection algebras in Section 4.3 and describe
some of their properties. In Section 4.4 we consider more specifically continuous
symplectic reflection algebras for wreath product groups. Finally, in Section 4.5 we
define infinitesimal Hecke algebras, another special case of continuous Hecke algebras

we will be interested in.

4.2 Algebraic distributions

Let G be a reductive algebraic group over C, and denote by O(G) the algebra of
regular functions on G. The algebraic distributions on GG are the elements of the dual

space O(G)*.
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Example 4.2.1. For any g € G there is a unique distribution o, such that (o, ) =
f(g) for any f € O(G). This distribution is called the delta distribution concentrated

at the point g.

The algebra O(G)* is naturally equipped with the weak or initial topology, as we
are going to explain. Let (, ) : O(G)* x O(G) — C be the natural pairing, and for
any f € O(G) consider the map

Ty: O(G) — C
po— /)

The weak topology on O(G)* is the coarsest topology making all the functions 7 for
f € O(G) continuous, where C is given the discrete topology. To understand how the
weak topology looks like, let us realize O(G)* as the projective limit

O(G)" =lmU*

where U C O(G) ranges over all finite dimensional sub-vector spaces. Then, the
weak topology coincides with the inverse limit topology on O(G)*, i.e. the coarsest
topology making all the projections O(G)* — U continuous (where each U is given
the discrete topology). In this topology a system of neighborhoods of 0 € O(G)* is
given by all the sub-vector spaces of O(G)* of finite codimension.

The coalgebra structure on O(G) induces an algebra structure on O(G)* given by
the convolution product. To ease notation we will write simply pp’ for the convolution
of any two distributions u, ' € O(G)*. If A: O(G) — O(G) ® O(G) denotes the
coproduct for O(G), then the convolution product uu' is the unique distribution on

G such that:
(s f)y = (ne ,A(f))  VfeOoq). (4.1)

Example 4.2.2. If G is a finite group, the assignment g — 0, defines an algebra
isomorphism C[G] — O(G)*.

The algebra O(G)* is equipped with a natural action of the algebra O(G). For
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any f € O(G) and p € O(G)* define the element fu = pf as the unique distribution
such that:

(Fuh) = (u. fB)  Vhe OG). (4.2)

Let now Z be a closed subscheme of G and let I(Z) be the defining ideal of Z.
An algebraic distribution p is said to be supported on Z if p annihilates all functions
in I(Z). Using formula (4.2), this is equivalent to say that I(Z) C Annpg(p). It is
clear that the space of algebraic distributions on GG supported on Z is isomorphic to
the space of algebraic distributions on Z.

We recall that there are two left actions of G on O(G) given by the left and right
translation respectively. More specifically, if we denote by ¢ — A, € EndO(G) the
homomorphism giving the left translation action, and by ¢ — p, € EndO(G) the

homomorphism giving the right translation we have

Ag(f)(h) = f(g'h)
pg(f)(h) = f(hg)

for any f € O(G) and any g,h € G. Both these actions induce left actions on O(G)*

in the obvious way. Keeping the same notation for such actions, we have:

(pg(1), £) = (i, pg—1(f)), Vg€ G, pe O(G), feOG)

(and similarly for the left translation )\, ). These actions commute and thus make
O(G)* into a G x G-module. Note that as G x G-modules O(G) and O(G)* have the

following decompositions:

OG) =P N ®N =PEnd(N,), 0OG) =][[N:®N; =]][EndN; (4.3)

el el iel il

where N; ranges over all (isomorphism classes of) irreducible finite dimensional rep-

resentations of GG, and N; denotes the dual representation.

Example 4.2.3. For any reductive group G there exists a unique right and left
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translation-invariant algebraic distribution [,(-)dg : O(G) — C such that [, 1dg =
1. If we consider the decomposition of O(G) of formula (4.3) and we take Ny = C to
be the trivial representation, then fG() dg can be described as the projection on the

one dimensional subspace Ny @ Nj.

Similarly the action of G on itself by conjugation induces actions on O(G) and
O(G)*. These actions can be seen as the restrictions to the diagonal copy of G in
G x G of the G x G actions on O(G) and O(G)* that we described above. Thus,
for any closed Ad(G)-invariant subscheme Z of G, we have an induced action of G
on the space O(Z)* and a natural identification (O(Z)*)¢ = O(Z/G)*. We will
denote by C(Z) this last space. We will identify C'(Z) with the space of G-invariant

distributions supported on Z.

4.3 Continuous symplectic reflection algebras

Let (V,w) be as in Section 2.2. Let {v;} be any basis of V' and let {v} be its
dual basis. Let GG be a reductive algebraic group with an algebraic representation
p:G— Sp(V).

Let TV be the tensor algebra of V.

Definition 4.3.1. The semidirect product TVEO(G)* is the algebra generated by u €
V and p € O(G)* with the relations

= 3 (g

where (v}, gu)p denotes the action of the reqular function (v}, gu) on p.

Notice that, since V&V is finite dimensional for all N € Zs, we have

TVi0(G) = @ VN e 0(G) = P (V)N 0(G))".

N€Zsg N€Zs

We can then give each summand ((V*)®Y @ O(G))* the weak topology and equip
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TV3O(G)* with the direct sum topology, i.e. the finest topology such that all the
canonical injections are continuous.

Let now p : /\3 V' — V be the projection obtained by contracting the first two
components using w, and let 3 be the closed subscheme of G defined by the equation

po A*(1 — gly) = 0. This subscheme is clearly Ad(G)-invariant.

Definition 4.3.2. For any t € (O(Kerp)*)¢ and any ¢ € C(X) the continuous
symplectic reflection algebra H; 4(G) is the quotient of the smash product TV$O(G)*
by the relations

uwv —vu = w(u, )t +w((1 —g)u, (1 —g)v)o (4.4)

for any u,v € V.

Moreover, Hoo(G) = SVEO(G)*, and assigning grade degree zero to O(G)* and
grade degree one to V', we obtain a filtration on H; ,(G) and a well defined surjective

algebra map

@ : Hoo(G) = SVEO(G)* — gr(Hes(G)).

By [EGGO5] Theorem 3.1 the map ¢ is an isomorphism, that is to say H; ,(G) satisfies
the PBW property as in the finite case.

Finally, let us consider the following analog of symplectic reflections for the con-

tinuous case.

Definition 4.3.3. The set S of symplectic reflections is the set of elements s € G
such that tk(1 — s)|y < 2.

It can be seen that S is contained in the set of closed points ¥(C) of ¥ and that
any semisimple element g € X(C) is in S. Using this it is easy to see, looking at the
defining relations, that when G is finite and p is a faithful representation, the algebra

H:s(G) is the same as the symplectic reflection algebra defined in Section 2.2 (see
[EGGO05], § 3.1).
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4.4 'The wreath product case

Let L = (C* wy) and (V = L®" wy) be as in Section 2.3. Let ' € SL(2,C) = Sp(L)
an infinite reductive subgroup. It is well known that, up to conjugation, there exist

only three such groups:
1) SL(2,C);
2) GL(1,C) = C*, identified with the maximal torus of diagonal matrices;
3) 62, identified with the normalizer of the maximal torus.

There is a natural symplectic action of the wreath product I',, = S,, x '™ on V.
Thus we can write I',, C Sp(V).

Let us now to consider the ring of algebraic distributions over I',,. This is the ring
O(T,)" = (O(I™)FO(Sn))" = (O(I)*"20(S,))" = (O(I)*") 40 (Sn)"

where the last identity holds because O(S,) = C[S,] is finite dimensional. Let {N;},.,
be a complete collection of pairwise non-isomorphic irreducible finite dimensional I'-
modules, where [ =Z if I' = GL(1,C) and I = Z>( otherwise. Using decomposition
(4.3), we can consider the filtration by ideals of O(I')* given by

O(L) = 0M); > OI); >OM); > -+

where O(I')y = []};> x5 Mat(d;) and d; = dim N;.

For any [ =1,...,n and any N € Z>( consider the ideals in o)==

O(™) ., =0T 'Oy ®OT)**" " and O y=0T")y1++OI") .-

We denote by O(F)*®" the completion of the algebra O(I")**" with respect to the
filtration by ideals

OT)* " = O(I"); > OT™); D> OT™)5 > -
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that is to say the projective limit

O()*®" .= lim OT)*®" /O(T™)%.

pa—

We have O(F)*®n >~ (O(I"®™)*, and since from Example 4.2.2 we know O(S,)* =
C[S,], we get:
O(T,)" = O(T)*"tS,.

Note also that all the quotients O(I')**" /O(I'"™)% are finite dimensional vector spaces.
Thus, equipping these vector spaces with the discrete topology, the inverse limit

topology on O(F)*®” =~ O(I'"™)* coincides also in this case with the weak topology.

We want now to give a description of the subscheme 3 defined in the previous
section. Let v;,s;; € I';, be as in Section 2.3. Let S = S N I™ be the set of
symplectic reflections in I and let Ad(T'y)si;; = {smYiym |l #m, v €T} be the
conjugacy class of any transposition. Then it is easy to see that S = Sy U Ad(T,,)s;;.
The group I',, acts by conjugation on S preserving this decomposition. Moreover
we have ¥ = Xy U Ad(T,,)s;;, where ¥y = X N I™. It can be proved (see [EGGO5],
Proposition 6.4) that for T as in case 1),2),3) above, the set of orbits S/T', is a
scheme isomorphic to ¥/I',, (see [EGGO05], proof of Proposition 6.4). It follows that
C(S) =C(Y), and C(S) = C(Sp) ® CA, where A is the integration over Ad(I',,)s;;,
and we have a natural identification C'(Sy) = C(I"). Thus for any ¢ € C(S) we can
write ¢ = (k,c¢), ce C(I'), k € C.

Since in our case p is the defining representation of I',, as a subgroup of Sp(V),
we have Kerp = {1}. Thus the parameter ¢ can be identified with a complex number
corresponding to a scalar multiple t6; of the delta distribution supported at the
identity element. If I' C SL(2,C) is infinite reductive, though, the identity element

1 is in the closure of § \ {1}, and the parameter ¢ can be absorbed in c.!

INote that all what we said here is not true for continuous symplectic reflection algebras in
general (see for example the case of the continuous Cherednik algebra attached to the group O,,
[EGGO5] § 3.3.2) and the extra parameter ¢ becomes essential for a definition including all cases
([EGGO05], § 3.1).
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We can thus consider the continuous symplectic reflection algebra Hy (I',) at-

tached to I',, and to the parameters (k, ).

We want now to give an analog of Lemma 2.3.3 for the continuous case. Let
feor, =oM)*t0(S,) be a “decomposable” function, i.e. f = f(fl R ® fn),
with f € O(S,,) and f; € O(I) for any 7. Then we can write for the distribution A:

(A f) = D (6. f) ( / FNf(Ydy H(él,m) (4.5)

i<j I#4,5

- Z<5Sij7f><Ai’j7fl Q- ®fn>

1<j

where A;; is the distribution on I'" acting as shown above. Thus A =) VAV

i,j]i<g

We denote by wp,(yu,v)A;; the distribution on I'™ such that
ety froe o 5) = [wtuofsed []6 6.
r 144,

Finally for ¢ € C'(S) we will denote by ¢; the algebraic distribution on I'" given by
S @ c@ o

Let x;,y;, u;,v; be as in Lemma 2.3.3.

Lemma 4.4.1. The algebra Hy o(T,) is the quotient of TVEO(T,,)" by the following

relations:

(R1) For anyi € [1,n]:
[xwyz] =¢ + 2k Z 5s¢inj .

Jli#i

(R2) For any u,v € L and i # j:

[ui, vj] = —2kds,; (wr(yu,v)Ay)

Proof. For the sake of clarity let us first look at the rank one example. In this case,

according to definition 4.3.2, and absorbing the parameter ¢ in ¢, the only defining
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relation should be:

[2,y] = w((1 = 7)z, (1 = 7)y)e (4.6)

where x,y is a symplectic basis. From this we get the expression

[z, y] = (2 —trp(y))c (4.7)

where tr;, denotes the trace in the defining representation of I' on L. Now it is enough
to show that the invariant function 2—trz(7y) is not a zero divisor in O(T')''. Indeed, if
this is true then the multiplication by 2 — try () is an injective linear endomorphism
of O(I')F, thus the induced linear endomorphism of O(I)*" is surjective, and any
invariant distribution ¢ can be written as ¢ = (2 — tr(7))c, for some ¢ € O()*" =
C(T'). But now for I' = C* and I' = SL(2,C) the ring O(T")" is clearly a domain.
When I' = O,, the cover of the group Oy, we have O(T')V' = Clz,27!] @ C, where
the two summands come from two connected components (so it has zero divisors),
but the function 2 — tr(vy), which is clearly not identically 0 on the first summand,
maps to 2 in the second summand (since tr(y) = 0 for v from the conjugacy class of
complex orthogonal reflections), so it is not a zero divisor.

To pass to the higher rank case, we observe first of all that w(w;,v;) = 01if i # j
and w(z;,y;) = d;;. Moreover, since the distribution A is supported on the conjugacy
class Ad(T,,)si; = {simyivm |l # m, v € '} and for all i # j the orbit of s;; under the
action of I'* C T',, is Ad(I')s;; = {sijvﬁj_lh € F}, we have:

w((1 = g)ui, (1 —g)vj)A
= (1= 8y) (—w(ui, (v 0)s) = w((yu);, v5)) 0s; Ay

+0i > (wlug,vi) +w((yu)i, (Y0)1)) 65, Aia
14

= —2(1 — éij)ésij (wL(’yu, U)Al'j) + 25iij(u, ’U) Z (SsﬂAil (48)
I#]

It’s now trivial to deduce (R1), (R2) from (4.8) and the above observations.
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As in Section 2.3 we have the following interesting examples.
Example 4.4.2. If n =1 then

Cl, y)pO(I)"

Rl =~ =)

is a continuous version of the Crawley-Boevey and Holland algebra of Example 2.3.4.

Example 4.4.3. When k = 0 we have
HO,C(Fn> = HC(F)@LﬁSn-

Example 4.4.4. When I' = GL(1,C) is a mazimal torus there is a decomposition
V = b @ b*, where by is the irreducible representation of S, x GL(1,C)™ on C" =
Co---@C where (ay,...,an) € GL(1,C)" acts as the matriz diag(ay, .. ., a,) and S,
permutes the vectors of the standard basis. The symplectic form wy can be identified
with the natural pairing between b, b* and this algebra is called continuous Cherednik

algebra.

4.5 Infinitesimal Hecke algebras

The rank 1 algebra H.(I') has an interesting infinitesimal counterpart called the
infinitesimal Hecke algebra (cfr. [EGGO5] , Section 4). In this section we recall the
definition of such algebra.

For ' = SL(2,C),GL(1,C), O,, let g be the Lie algebra of I'. Then the enveloping
algebra Ug is naturally isomorphic to the subalgebra of O(I')* of all algebraic distri-
butions set-theoretically supported at the identity element 1 € I' (cf. [DG80], II, §
6). More precisely, if we identify any element D € Ug with the corresponding left
invariant differential operator on I', then the above mentioned isomorphism sends D

to the distribution D such that:

(D, f):=(Df)(1) VfeO() (4.9)
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where by D f we just mean D applied to f as a differential operator.

In particular, Ad(I")-invariant distributions supported at the origin can be identi-
fied with elements of the center Z(Ug) of the enveloping algebra. If the distribution
¢ belongs to the subalgebra Ug C O(T')* we define the infinitesimal Hecke algebra

H.(g) as the quotient:
TVildg

([z.9] =)
When g = sly, representations of the algebra H.(g), called deformed symplectic
oscillator algebra of rank 1, were studied by Khare in [Kha05]. We will compare
his results with our results about finite dimensional representations of the algebra

H.(SL(2,C)) in Section 6.3.
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Chapter 5

Continuous deformed preprojective

algebras

5.1 Plan of the chapter

In Section 3.3.2 and Section 3.3.3 we illustrated the fundamental role played by the
theory of deformed preprojective algebras in the study of the representations of the
rank one algebra H; .(I'). In the higher rank case, a remarkable development in the
representation theory of wreath product symplectic reflection algebras has been the
introduction, by Gan and Ginzburg ([GGO05]), of the higher rank deformed prepro-
jective algebra A, , (Q) for any quiver ). The algebra A, , ,(Q) is a one-parameter
deformation of the smash product I1)(Q)®"#S,. In the case when the underlying
graph of @) is affine Dynkin, this deformation is Morita equivalent to the higher rank
symplectic reflection algebra of wreath product type. Recently, following this inter-
pretation of wreath product symplectic reflection algebras of higher rank in terms
of deformed path algebras, Gan defined a version of the reflection functors for the
higher rank case ([Gan06]). This allowed him to give a more elegant and transparent
formulation and proof of Theorem 3.2.4 and Theorem 3.3.10, as well as a proof of the
necessity of the conditions in Theorem 3.3.10.

In the light of these results, and of the extended McKay correspondence between

infinite reductive subgroups of SL(2,C) and infinite affine Dynkin diagrams of type
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Asoy, Aioo, Do, in this chapter we define a continuous version of the deformed pre-
projective algebra A, ,,(Q) for any quiver @ with such underlying graph. For ap-
propriate values of the parameters, we establish a Morita equivalence between the
continuous symplectic reflection algebra Hy .(I',,) and the algebra A, , A(Q), where @
is any quiver with underlying graph corresponding to I'. This result provides us the
link we were looking for between the representation theory of quivers and deformed
preprojective algebras and the representation theory of the continuous symplectic re-
flection algebra. As we will see in Chapter 6 it will allow us to extend Gan’s methods

to the continuous case.

The structure of the chapter is as follows. In Sections 5.2, and Section 5.3, we
recall some generalities about infinite affine Dynkin quivers, the definitions of their
root systems and of their Weyl groups. In Section 5.4 we examine some properties
of the action of the Weyl group on the space of weights that will be fundamental
for the application of reflection functors to the continuous case. All these facts are
known, and can be easily deduced from [Kac90], but we explicitly present them here
in the form and with the level of detail which is convenient for our purposes. In
Section 5.5 we give the formal definition of the continuous deformed preprojective
algebra A, ,(Q). Finally, in Section 5.6, we establish the above mentioned Morita

equivalence.

5.2 Infinite affine quivers and the McKay corre-

spondence for reductive subgroups of SL(2,C)

Let I' € SL(2,C) be one of the three groups in Section 4.4. With the exact same
procedure as in Section 3.2.2 one can associate a graph to I'. In particular, if {N;}ies
(where we take I = Z for I' = GL(1,C) and I = Zs for I' = O,, SL(2,C), and N,
denotes the trivial representation) is a complete collection of finite dimensional irre-
ducible pairwise non-isomorphic representations of I', the set of vertices of the graph

attached to I' is in bijection with I and is thus infinite. It is a classical result that the
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graphs associated to GL(1,C), 52, SL(2,C) are the infinite Dynkin diagrams A,
Dy, A, respectively. This can be seen as an extension of the McKay correspon-

dence to the reductive case. We will use the notation I' for both the group and the

A Dy A+°O

corresponding graph.

Figure 5-1: Graphs associated to GL(1,C), Oy, and SL(2, C).

We recall that the graphs A, Do, Ai, together with the analog graphs B,
Cy, form the complete list of connected Dynkin diagrams of infinite affine Cartan
matrices, i.e. generalized Cartan matrices of infinite order, such that any principal

minor of finite order is positive ([Kac90], § 4.10). In particular we get the matrices:

2 0 -1

0 2 -1
12 -1
A= De=| -1 -1 2 -1
-1 2 -1
0 0 -1 2 -1
2 1
A= -1 2 -1

In the sequel we will denote by A = A(I') any such matrix and by g'(A) the
corresponding Kac-Moody algebra ([Kac90], § 1, 2).

5.3 Infinite rank affine root systems

Here we want to give a description of the root system attached to the graph I" or,

equivalently, to the matrix A.
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Consider the space (Z)g (where [ = Zfor A= A and [ =7, for A= A, ., D)
of sequences {«; };er of integer numbers which have only finitely many nonzero entries.
This space has a Z-basis {¢;};cr, where ¢; is the sequence with 1 in the i-th position

and 0 elsewhere. We will write a = > ., a€;, where o; = 0 for all but finitely many

iel
indices. Denote by Q = Q(I') the quiver obtained by assigning any orientation to
the graph I'. Since any of the graphs I' is locally finite (i.e. any vertex has finite
valency), formulas (3.14), (3.15) of Section 3.3.3 make sense for any such @) and any
two vectors a, 3 € (Z')g. Thus the symmetrized Ringel form can still be defined for

any such Q as a bilinear form on (Z!),. Moreover, the matrix representing the Ringel

form in the basis {€;};cs is exactly the Cartan matrix A.

We are now ready to define the root system for A. Our construction works more
generally whenever A is the matrix of the symmetrized Ringel form for any locally
finite quiver (), in particular when the quiver is finite it coincides with the usual defi-
nition of root system for a quiver ([CBH98], § 6). Moreover our description coincides
with the one given in [Kac90] (§ 7.11) for the root system of an infinite rank affine
Kac-Moody algebra g/'(A).

We will say that ¢; are the simple roots for A (or for @ or I'), and we will denote
the set of simple roots by II = II(A). Note that, since all the finite order principal

minors of A are nondegenerate, the form (, ) has radical equal to {0} on (Z),.

For any i € I we will now define the simple reflection s; : (Z!)y — (Z!)y by:

si(a) = a — (a, €)E;.

The Weyl group W attached to A (equivalently to I') is the group of linear auto-
morphisms of (Z!), generated by the simple reflections s;, Vi € I.

The real roots of A, and in general for a locally finite quiver (), are defined to be
the union of the orbits of the simple roots ¢; under the action of W, we will denote the
set of real roots by A™ = A™(A). So we have, by definition, A™ = J, o, wIl. Tt is
standard that any such root is positive or negative (i.e. is a sum of simple roots with

all non-negative, respectively non-positive, integer coeflicients) and that A™ = —A’¢.
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The imaginary roots of A, or in general for a locally finite quiver (), are instead the
elements of (Z!), that are of the form w3, for 8 € F, where F is the fundamental

region:
F={p¢€ (leo)o\ﬁ # 0, support of 3 connected, and (3,¢') <0 Vi € I}.

We denote such vectors by A™ = A" (A). The root system for A is the union of real
and imaginary roots and we will denote it by A = A(A4) = A™ U A™. In our case,
when A is an infinite rank affine Cartan matrix, we have A = A", and there are no
imaginary roots ([Kac90], § 7.11). This is because any infinite rank affine matrix A
(as well as its graph I" and its root system A), can be seen as the limit of a sequence
of positive finite rank Cartan matrices A(n), all of the same type, (with their Dynkin
diagrams I'(n) and root systems A(n)), and for such matrices there are no imaginary

roots ([Kac90], § 5.2, Proposition 5.2 c).

All this is in contrast with the theory for finite affine Dynkin quivers, for which
the set of imaginary roots is infinite and is given by the nonzero integer multiples
of 4. For finite affine Dynkin quivers the vector ¢ is also the minimal vector with
nonnegative integer coordinates among the vectors generating the one dimensional
kernel of the corresponding affine Cartan matrix or, equivalently, the radical of the
corresponding symmetrized Ringel form, which is positive semi-definite in this case
([Kac90], Theorem 5.6, b). We can recover the analogy with the finite case if we
observe that the matrix A makes sense as an endomorphism on the space Z’ of all
sequences {q; }icr with integer entries. This is because any of its rows has only finitely
many non-zero entries. The kernel of this endomorphism of Z/ is a rank one Z-module
generated by the vector § = {d;}, where d; = dim N;. We want to remark that this
vector is not a root for the Kac-Moody algebra g'(A) but it can be seen as a root for

a central extension of a completion of g'(A) (see [Kac90], § 7.12).
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5.4 Action of the Weyl group on weights

Consider the space (C')o of sequences {u;};.; of complex numbers such that u; = 0
for all but finitely many indices. Clearly the space (Z!)y above can be embedded as
a lattice in (C')y and the Z-basis {¢;},.; of (Z")y gives a basis of (C'), as a complex
vector space via this embedding. The dual space of (C!), is called the weight space
and it is isomorphic to the space C!. We will denote by - the standard pairing between
(Ch)y and C!, and by {e} the “dual basis” (spanning C! topologically) of {¢;} with
respect to this pairing, that is to say € - ¢; = 8;;. For any A € C! we will write

A= {\}, where A = >, \je; (where the sum is now possibly infinite).

We will consider (C!)y as embedded in C! via the map

gb . ((CI)() — CI

%
€; — Zj ajl-ej

where a;; = (¢j,€). In the basis {¢;}, {€/} the map ¢ is given by the Cartan matrix

A(T). Moreover, for any vector o € C' and any i € I, we have:
(o, &) = ¢(@) - & = p(a); - (5.1)

For any reflection s;, i € I, we can now consider its dual reflection r; : C! — C!

which is uniquely determined by the property
A= \- S0 YAe !, ac(Zh),.
In other words, we have (1;A); = A\; — (€, €;)A; for any j, which is equivalent to:
A =X — X\o(e) . (5.2)
Thus we can define an action of W on C! by the condition

A (wa)=wN-a VAEC, ac(Z),.
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Let now “<” be a total ordering on C satisfying the following properties ([CBH9S],
§7):

1. If a < b, then a + ¢ < b+ ¢, for any c € C.
2. On integers < coincides with the usual order.
3. For any a € C there is m € Z with a < m.

An example of such an order is the lexicographic order with respect to the R-basis
{1,v/—1} of C.

We say that a weight A\ is dominant if \; > 0 for all ¢ € I. Let J C I be a finite
set of indices. For any weight A let A\; be the weight such that (\;); = \;, if i € J,
(As); = 0 otherwise. Then we say that A is J-dominant if A; is dominant.

Let now J be a finite subset of indices corresponding to some full connected
subquiver ();. Let R, ; be the set of roots a of () such that the support of « is
contained in J, and A - o = 0. Let X, ; be the set of minimal positive elements of
R,.;. Denote by W the subgroup of W generated by the reflections s, for all j € J.
For any a € Ry j, let s, be the automorphism of (Z)y given by 8 — 8 — (a, 3)a
and let W) ; be the subgroup of W generated by these automorphisms. We have the

following lemma.
Lemma 5.4.1. For any A € C!

1) Ry ; is the set of roots of a reduced root system in the (finite dimensional) vector
space it generates. The group Wi ; acts faithfully on Ry ; and identifies with
its Weyl group.

2) Any X\ is Wy-conjugate to a unique J-dominant weight \*, and there exists a

unique wt € Wy of minimal length (in W) such that w™ X = \*.
3) Xy is the unique basis of Ry consisting of positive roots and wtEy ; = Xy+ ;.
4) If X is J-dominant then Xy ; = {€;|\; = 0}.
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Proof. Let us start from part 1). We observe that @), is Dynkin. Moreover the
roots of @) supported in J are in bijection with the roots of (the finite quiver) @
and the bijection is simply the restriction o — «|;. It is also clear that, using this
identification, the group W) acts on these roots as the Weyl group W (Q;) of the
quiver ();. Thus part 1) can be reduced to the analog statement for the quiver Q)

([CBH98| Lemma 7.2 part (3) ).

Let us now prove part 2). Let J' = JUJJ, where 0.J is the set of adjacent vertices
for the subquiver @ ( the vertices that are not in )5 but are joined to () by a path
of length one). Let Uy C C! be the vector space of weights u satisfying pu; = 0 for
i ¢ J' (i.e. thespanof €}, j € J'). Asabove, let Ay be the weight (A\;/); = \;if j € J',
(As); = 0 otherwise. Clearly A\ € Uy. Write A = Ay + (A — Ay). Then we have
that W fixes (A — \y/) and preserves Uy Identifying U, with a finite dimensional
vector space of dimension |.J’|, the weight space for the finite Dynkin quiver @/, we
see that W acts on Uy as the parabolic subgroup W(Q ;) C W(Q ). The result now
follows from the ordinary theory of Dynkin quivers. Indeed, write Ay = >, 5, bjv(€;)
(this is clearly possible since any principal minor of the Cartan matrix A(T") is non-
degenerate) and define the height of A as ht(\) := >_ ., b;. Consider now a vector
of the form wA, for w € W(Q), of maximal height with respect to “<” (this exists

since W (@) is finite). If (wA;); < 0 for some j € J then, from formula (5.2), we get
ht(IU)\J/) — ht(T’jUJ)\J/) = ht(w)\J/ — T’jUJ}\J/) = ht((w)\J/)jV<€j)) = (UM\J/)j =< 0

Thus ht(wA ;) is not maximal: a contradiction. So we must have (wA;); = (wA),

dominant, and A\* := wA is J-dominant.

For the uniqueness it is enough to prove that two J-dominant weights cannot be
W conjugate. Suppose now A is J-dominant and w € W;. We have to prove that if
w is J-dominant then wA = A. Thanks to the identification with W (Q ;) the group
W, is endowed with a length function. We will prove the result by induction on the

length of w. If w is of length one then w = r; for some j € J. If r;\ is J-dominant
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then (r;\); =r;\-¢ > 0 for any ¢ € J. But
rid-eg=A-sie =AM (—€) = —(A-€) =—A; =0

since A is J-dominant. Thus it must be A\; = A-¢; = 0 and r;A = X by equation (5.2).
Now suppose w = r;, - - - r;, is a reduced expression for w. Since is € J we must have
A€, = 0 and therefore wA - we;, = 0. But, by Lemma 3.11 of [Kac90], we;, is a
negative root (for ¢);) and since wA is J-dominant we must also have w - we;, < 0.
Thus 0 = wA - we;, = A-¢;,. This implies 7, A = A and wA = wr; A, with wr;, shorter
than w and the result follows by induction. It is standard to prove that there exists
a unique wt € W of minimal length (as an element of W(Q,)) with the property
wA = AT,

The proof of part 3) is now straightforward if we use the results of 1) and 2). Part

4) is just a trivial observation.

5.5 Definition of the continuous deformed prepro-

jective algebra

5.5.1 The rank one case

We recall that in general ([Eis95], § 7), given an algebra A and a descending filtration
by ideals

A=myDODmy D---
the completion of A with respect to this filtration is defined as the projective limit

~
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If M is an A-module (A-bimodule) the completion of M is the A-module (X—bimodule)
defined as

—~

M :=lim M/m;M (M := lim M/m;M + Mm,).

Let now ) be a quiver with underlying graph an infinite affine Dynkin diagram

of type Awo, Doo, Ao With set of vertices [.

With the same notation as in Section 3.3.2, let B := @,.; Ce; = (C')y be the
algebra spanned by the idempotents e; for all ¢ € I. Let B = [Lic; Ce; = C! be the
algebra over C topologically spanned by the same idempotents. Note that B = B*

as vector spaces, and that B is the completion of B with respect to the filtration:
B:BoDBlDBQD"'

where By = @ Ce;.

[i| >N
Let E be the vector space spanned by the edges of the double quiver Q, and let
E be the vector space with topological basis formed by the same edges. Thus Eisa

E—bimodule, and as such it decomposes as E= I E;;, where Ej;; is spanned by

ijel
all edges a € @ such that h(a) = i, t(a) = j. Note that the B-bimodule E is the
completion of the B-bimodule F, i.e. it is the completion of F with respect to the

filtration by B-sub-bimodules
E:EoDElDEQD"‘

with Ey = @ Eij + @ E;; = BvE+ EBy (thus E/EyN = @ E;;). Moreover,
=N LN il <N
since @ ( hence Q) is locally finite, all the spaces E;; are finite dimensional. Thus

E}; = E;; and we have an identification £ = E* as vector spaces.

For any k € Z>, let us now consider the B-bimodule

T§E3=ﬁ®3'--®sl2-
kf;;ors
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As we know, this module is identified with the vector spaced spanned by all the paths
of length k on the double quiver @, with its natural B-bimodule structure. Thus, the
completion @ of this module can be identified with the vector space topologically
spanned by the paths of length k£, endowed with its natural B-bimodule structure.
We will write
TEE = Bdy--- @56 .
k factors

To justify this notation we observe that there is an isomorphism of B-bimodules

~

lim THE/ByTE EATE EBy 2lim E® 5 -®5E/By(E®p- @5 EWH{E®5- - -®5F) By

where B\N = H Ce;.

>N

—

Note that as vector spaces TEE = (TEE)*.

Definition 5.5.1. The continuous path algebra of Q is defined as

CQ =TokE =P TsE

k>0

Observe that, as vector spaces, we have

ToE = PTE = PTLE)

k>0 k>0

—

Thus we can give to each summand the weak topology, and we can equip C Q with
the direct sum topology (the finest topology such that all the canonical injections are
continuous).

We want to remark how this is a reasonable definition of continuous path algebra
for the case of infinite locally finite quivers. Indeed, for any locally finite quiver, there
are only a finite number of paths of length & (i.e. belonging to the space Y{EE) passing
through a fixed vertex. Any element of (65 is a, possibly infinite, linear combination

of paths such that the length of the summands is bounded, and thus each vertex is

contained in at most a finite number of summands. This means that we are avoiding
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“pathologic cases” of infinite linear combinations of paths passing through the same
vertex infinitely many times. Moreover, we want to stress the fact that the algebra of

Definition 5.5.1 is unital, with unit .., e;, while the usual path algebra CQ (where

iel
we take B = @, ; Ce; and £ = @ E;; and usual tensor products) is not unital when
the quiver is infinite.

For any \ € B we write A = Y ier Ni€i-

Note that, since the quiver @ is locally finite, for any 7 € I the element R; described

by formula (3.12) in Section 3.3.2 is a well defined element of C Q.

Definition 5.5.2. The continuous deformed preprojective algebra f[,\(Q) attached to
the infinite affine quiver (Q and to the parameter \ € B =C! is the quotient:
cq

Q) = TR —net .,

where ((...)) is the closed ideal generated by the indicated elements in the completed

path algebra (65

Later in this thesis, we will need to consider a global version of the deformed
preprojective algebra. So if R is a commutative unital C-algebra we define }/%5 by
substituting B with B\R = BOR = R! and E with ER = E@R For any \; € R for
any i € I, we define I (Q) to be @/«RZ — Ai€i))

i€l

5.5.2 The higher rank case

The definition of higher rank continuous deformed preprojective algebra given in this
section is just a generalization to the continuous case of the one given by Gan and
Ginzburg in [GGO05], § 1.2. Namely, let us fix a positive integer n > 1 and consider
the algebra B := B®". For any [ = 1,...,n consider the ideals in B

BNJ = B®l_1 ® By ® B®n_l and By = BN,l 4+ 4 BN,n-

where By is as in the previous section.
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We denote by B = B®" the completion of B with respect to the chain of ideals:

B=ByD>DB DBy D---.

For any [ € [1,n] consider the B-bimodules:

& =B g E® B2 and € = @ &

1<i<n

and the completed B-bimodules

§ = BVeER ) md E= ) &

1<i<n

Here gl is the completion of the B-bimodule & := B®!"1) @ F @ BV with respect

to the chain of sub-bimodules
& = 51,0 D 5[71 D 5172 Do

with SZ,N == BNgl + SZBN.

In a similar fashion as in the previous section we can consider the B-bimodule
Tgé' = E®p--® & and the completed B-bimodule TL’;E = g@g- --®g§. We
— —

k factors k factors

define
Tot = @D TEE.

k>0

Note that as vector spaces TEE = (TEE)*. Thus we can equip TEE with the weak

topology and 7/};5' with the direct sum topology.

Note that S,, acts naturally on é\, thus on fg\g. Now for any [ € [1,n], any path

a € CQ and any i = (i1,...,4,) € I" we consider the elements

|1::6i1®"'®6in68
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and

al‘i::eh@'”@aeil®"'®€in G@l-
For an arrow a € @, if iy = t(a) we define

Im iftm #£1
h(a) ifm=1

ay(z) := (iy,...,i,) € I", where i, =

Definition 5.5.3. For any \ € B and v € C, define the g—algebm A, (Q) to be
the quotient of 7/}3\5|an by the following relations:

(I) For anyl € [1,n] and i = (i1, ..., in):

(R = Xili=v Y Smili;

{m#Al] itm=1}

(II) For any l,m € [1,n], I # m, a,b € Q and i = (i1,...,i,) with iy = t(a),
im = t(b):

VSimli ifbe @ and a = b*
b (@) 0mli = bmlayy@li = § ~Vsiml;  ifa € Q and b= a*

0 else

For n = 1 there is no parameter v and A; »(Q) = II,(Q), while for n > 1 and
v =0 we have A, »0(Q) = I1,(Q)®"4S,.

As in the previous section, if R is a commutative unital C-algebra, we can define

gR = §R®R e ®R§@ and similarly ER. Taking v € R, \; € R for any ¢ € I we can

n factors

then define Ag ;2.

5.6 Morita equivalence

Let @ be a McKay quiver for I' and let yn, be the character of the irreducible
representation NN;. The following theorem is the analog of Theorem 3.5.2 of [GGO5].
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Theorem 5.6.1. The algebra Hy, (L)) is Morita equivalent to the algebra A, , \(Q)
for v =2k and X\ = {\;} where \; = (¢, xn;,)-

Our proof of this theorem follows very closely the one of [GG05]. We report the
proof in detail in Appendix A since proving this Morita equivalence is the key result
from which all the results about the representation theory of Hy .(I',,) will follow.
Also these computations can help the interested reader to become familiar with the
language of algebraic distributions.

Let now J C I be a finite subset of indices, and consider the finite dimensional

subspace

BJ = @Celcn(ﬁelzé

ieJ i€l
ie. By = {)\ € B|\; =0Vi ¢ J}. Define the finite dimensional vector space U :=
Bj x C. From the above theorem and the PBW property for the continuous case (see
Section 4.3) we can deduce that, for any \g € é, the family {A,,, A0+,\}(V7 New, 8ives
a flat formal deformation of A, g, in dimU; = |J| + 1 parameters, where |J| is the
cardinality of the set J.

Let m be the unique maximal ideal in C[[U,]]. For any C[[U;]]-module consider

the decreasing filtration V' 2> mV D m2?V O ... and the associated graded ring

o m'V
grm(V) = H W
h=0

In what follows we will write V := (gr, V) = V/mV.

Let i/, h; for i € J be coordinate functions on Uy, where A/ denotes the projection
Bj; x C — C and, for each ¢ € J, h; denotes the projection B; x C — Ce;. Now
set v = A’ and \; = h; for any i € J, and regard them as elements in the maximal

ideal m C C|[[U,]]. Consider the algebra Ac(,jnuro+r- Then gro (Acqu,nvror) =

Ao [Us]] as C[[Uy]]-algebras. In particular Acqu,mpreer = Anopn. This cor-
responds to the flat formal deformation of A, ., over C[[U,]] given by the family

{AnﬂyvAO"')‘}(U,)\)EUJ :
More generally, let v € C[[U,]], and let A € B; ® C|[U,]]. Consider the C[[U,]]-
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algebra Ac(v,)),nv,x- The following Lemma is the analog of [Gan06] Lemma 5.13 and
thanks to the PBW property of A, can be proved in exactly the same way.

Lemma 5.6.2. Assume that v € C[U,] and A\ € B; @ C[U;] C B; ® C[[Uy]]. Then
grm(Aciw, ) = Acu)nea U] as Cl[U]]-algebras.
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Chapter 6

Finite dimensional representations

for the continuous case

6.1 Plan of the chapter

In this chapter we use the Morita equivalence established in Section 5.6 to study the
representation theory of .An,u A

In Section 6.2 we classify finite dimensional representations in rank one, and in
Section 6.3 we compare our results for the special case I' = SL(2, C) with the results
of [Kha05] for the deformed symplectic oscillator algebra of rank one.

Finally, in Section 6.5 we consider the higher rank case and we extend the reflection

functors and the results of [Gan06] to the continuous case.

6.2 Representations in the rank one case
The following easy result holds.

Proposition 6.2.1. Any finite dimensional representation of the continuous de-
formed preprojective algebra f[,\(@) 1s a finite dimensional representation of some
ordinary deformed preprojective algebra I1y,(Q), where J C I is a finite subset of

vertices, @ is the corresponding full subquiver of Q, and \|; € C7 is the restriction of
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the parameter A to set of vertices J. Vice versa, any finite dimensional representation

of Iy, (@) can be extended to a finite dimensional representation of f[,\(Q).

Proof. By Definition 5.5.2 we have that a representation Y of f[,\(Q) is a

representation of C'Q such that, for each a € @, the corresponding linear maps

a:eya)Y — ena)Y, a :epa)Y — eyyY satisty the relation

Z aa” — Z a*a = Nld.,y
a € Q a€Q
h(a) =1 t(a) =1

for any i. But now, if dimY < oo, we must have dime;Y = a; < oo for all 4, and
e;Y = 0 for all but finitely many ¢. Thus the representation Y is supported at a finite
number of vertices and the result follows.

Conversely, suppose II,|,(Q) admits a finite dimensional representation Y, then
we can clearly extend it to a representation of II,(Q) by setting ;Y = 0 for i ¢ J
and a =a*=0fora ¢ Q.

Proposition 6.2.1 implies the next Corollary.

Corollary 6.2.2. For any A € C! there is a bijection between the set of isomorphism

classes of finite dimensional simple I1,(Q)-modules and the set

i/\ = UE)\’J
J

where J runs over all the finite subsets of indices corresponding to connected subquiv-

ers.

Proof. The result is implied by Proposition 6.2.1 and by the fact, proved by
Crawley-Boevey and Holland, that isomorphism classes of simple IL,|, (Q s)-modules

are in bijection with X, ; ([CBH98], § 7).

108



6.3 The SL(2,C) case

We will now compare Khare’s result about representation theory of the deformed
symplectic oscillator algebra of rank one with the results of Section 6.2 in the case
I'=SL(2,C).

We observe that, in this case, the subalgebra of invariant algebraic distributions
supported at the identity can be identified with the algebra of polynomials in the
quadratic Casimir element A = 3(EF + FE + HTQ) (where E, F', H are the standard
generators of sly), that coincides with the center of the enveloping algebra. Now if
we let z, y be a symplectic basis of the standard two dimensional complex symplectic
vector space L, and we take f = f(A) to be a polynomial with no constant coefficient,

we can see that Khare’s deformed symplectic oscillator algebra (cfr [Kha05], § 9)

TLW/{ (5 [2)

M= =1+ 1)

coincides with the infinitesimal Hecke algebra H.(SL(2,C)) when we take f = f. to
be an appropriate polynomial depending on c.

Let Ve (i), i € Zo be the standard cyclic module of sl of highest weight 7 (i.e.
the irreducible finite dimensional representation of dimension ¢ + 1). Denote by b; be
the scalar by which the Casimir A acts on V(i) (b; = i(i + 2)/8).

Khare’s classification of finite dimensional representations of Hy can be summa-

rized as follows (see [Kha05] § 15, Theorem 11, and § 9, formula (1)).

I) There exists a unique simple Hj-module of the form

(x)  V(r,s):= @ Ve (i)

for any s < r in Zx( satisfying the two conditions:

r

D)) G+ D+ f(b) =0;

i=s

r

i) ) G+ DA+ (b)) A0 s<k<r .

i=k
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II) Any finite dimensional irreducible H -module is isomorphic to one of the V (r, s).

We observe now that all positive roots for the infinite quiver A, ., are of the form
= Q) = Z;:s ¢; for some 0 < s < r, where ¢; are coordinate vectors (simple
roots) as in Section 5.3 (cfr. [Kac90], § 7.11, where ¢; = «; in Kac’s notation).
Thus, according to Corollary 6.2.2, in the case of SL(2,C) all possible simple finite
dimensional H.(SL(2, C))-modules must have the form (x). Moreover, Corollary 6.2.2
tells us that a simple representation of dimension vector « exists if and only if a € 5 A-

This condition is equivalent to the following two conditions on the root a:

b’) for any nontrivial decomposition a@ = 3" + ... 4 3™ into positive roots we

must have X - 3% £ 0 for some k.

Now, any decomposition as in b’) looks like:

Os;r] = Qs stty] T sty 41,54t +ta] T 0 ° T Qsityoottn+1,7]

with s +t; +--- 4+ ¢, + 1 < r. In particular, we can consider the decompositions
Qfsp] = Asm—1] T Am,p) for any s <m < 7. Since 0 = A~ agp] = A Qg m—1] + A Q]
our condition implies that in particular A-ay,,; # 0. On the other hand, any nontrivial
decomposition of oy, contains a root oy, . for s < m < r. Thus, the conditions a’),

b’) can be rephrased as:
a) Qg A=0;
b) g AF£O s<m<r.

We will now translate the conditions a), b) on the dimension vector « into Khare’s
conditions i), #i). In order to do this, we have to compare Khare’s parameter f with
our parameter ¢. Let’s denote by y; the irreducible character corresponding to Vi (i).

Then, since the y; s span the space of invariant functions, we must have

Ai = (e, xi) = (L+ f(A), xi) - (6.1)
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For any i € Z>,. We recall now that constants in U(sly) correspond to multiples of
the delta distribution d;. Moreover for any D € U(sly) one has D(x;)(1) = xi(D) =
try. (D) , and, in particular try, ;) (A!) = dim(Ve(i))b = (i + 1)b. It is then easy

to compute that
(T4 £(A),xi) = @+ 1)L+ f(b))-
and the equality (6.1) becomes
i+ 1)1+ f(b) = A (6.2)

Thus we can rewrite the conditions i) and i) as

2) Z)\ﬁéo s<k<r
i=k

which correspond to conditions a), b) above respectively.

6.4 Gan’s reflection functors

In [Gan06], Wee Liang Gan constructed reflection functors for higher rank. Gan’s
reflection functors are defined for any loop-free vertex i of any finite quiver () and,

under some conditions on the parameter A, v, they establish an equivalence
Fi: Apnoa(Q) —mod — Ag pyria(Q) —mod

where ;A denotes the action of the dual simple reflection r; at the vertex ¢ on the
parameter A € R! (which we can obtain by extending the action on C! by R-linearity).
Thanks to this property the functors F; turned out to be a very powerful tool in the
deformation-theoretic approach to the study of finite dimensional representations of

higher rank deformed preprojective algebras.
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Gan’s definition of reflection functors can be pushed ahead, without any change,
when () is an infinite quiver with underlying graph an affine Dynkin diagram of
type Aso, Aioo, Do (and more generally when () is an infinite locally finite quiver)
and we consider modules that are finitely generated over R. Gan’s results about the
representations of the wreath product symplectic reflection algebra will then naturally
extend to the continuous case. The proofs of all the results in this section are exactly
as the ones for the analog statements in [Gan06]. Thus we will mostly refer to such
proofs and, when necessary, we will explain why and how they can be adapted to the
case of infinite affine Dynkin quivers.

From now on, let us suppose () is a quiver with underlying graph of type A,
A, Dy, and, to ease notation, let us write A, for A, ,(Q), and I1, for f[,\(Q).

We observe that Gan’s construction works only for loop free vertices ([GGO05], 2.3)
but, in our case, any vertex is such. Thus let ¢ be any vertex of (). Since Ag, .2
does not depend on the orientation of (), we can suppose that 7 is a sink (all arrows
at ¢ point toward ¢). Let V' be an Ag, , »-module which is finitely generated as an
R-module. The definition of F;(V') is the same as in [Gan06] that we are now going
to recall.

Let

H:={a € Q|h(a) =1i}. (6.3)
Remark 6.4.1. Note that, for any infinite affine quiver, the set 'H 1is finite.

If j = (ji,---,Jn) € I", where [ is the set of vertices of @, let
Vi =V, and A(j) :={m e {l,...,n}|jm =i}

where |; is the element e;, ® - -+ ® e, as in Section 5.5.2.

Remark 6.4.2. Observe that, even if Q) is an infinite quiver, if V' is finitely generated

as a R-module then V; # 0 only for a finite number of multi-indices j.

For any subset D C A(j), consider the finite set

X(D):={almaps {: D — H}. (6.4)
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For any £ € X(D) let

, Jm if mé& D
t(j,€) :=(t1,...,t,) € I, where tm = :
- t(&(m)) it me D

Set

@ %(JE

¢ex (D)

so that V(j, 0) = Vj. For any & there are a projection and an inclusion map
Mg VI D) = Vige,  mye: Vige — V(I D).

Moreover, for any p € D there is a restriction map p, : X(D) — X (D \ {p}). Thus

for each & € X (D) we can consider the two compositions

T ¢ E@plec,e)
= Vi) ———

Hj.pp(8)

ViG.pwe)———=V(j, D\ {p})

V(5 D)

. T, pp(€) E@)ple,op (e Wy .
V(j,D\ {p}) —= Vitjop(€) — 2 Vy(j. )=V (j, D) .

where we recall that {(p),lie) = ey ® -+ ® (p)er, ® -+~ ey, (and similarly for

E(P)5 100 (0)))-

Define now
Tp(D) V(G D) = Vi, D\{p}),  mp(D) = > tip©f@plgeomie (6.5)
€eX(D)
/@',p(D) V(i D\ {p}) = V(j, D), Z Hj, ¢£(p) ‘t(y Pp(€)T5.pp(€)-
€eX(D
(6.6)
Let

| PpepKer(m, (D)) if D#0
R 4 it D=0
and let V} := V;(A(j)).
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Now, for all o € S, we set 0(j) = (jo—1(1),- -+ Jo-1(n)), 50 that A(o(j)) = o(A(J))-
For any D C A(j) and any map £ € X (D), we define o(§) as the map oo™ ! €
X(o(D)). We define of; as the map that is given by the formula

ol; 1 V(j,D) = V(e(j),o(D),  oli= D Moo
geX(D)

for any D C A(j).

Definition 6.4.3. We define F;(V) :=V' =@ . V] as a BrtS,-module (the com-

jeIn

patibility of the S, action can be checked by computation as in [Gan06], Lemma 2.2).

Note that by Remark 6.4.2 the direct sum in Definition 6.4.3 is really a direct sum

over a finite subset of indices in 1.
For any [ = 1,...,n, a € Q, j € I" with j; = t(a), we have to define a map

alj : V] =V, ;) » where q,(j) is as defined in Section 5.5.2. One has three cases.

Case I. If h(a),t(a) # i then [ ¢ A(j) = A(ai(j)). For any D C A(j) we have a map

alp V(G D) = Vi), D), alip= Y Hagetlyome
£eXx(D)

We define
CL”l = al|ivA(i)’ (67)

Case II. If t(a) = i, then | € A(j) and A(ai(j)) = A(j)\ {l} since there are no loop
edges at i (hence h(a) # 7). If | € D C A(j), for each r € H there is an injective
map

Trap - X (D\{l}) = X (D) 21— 71.0(n)

where

n(m) if m e D\ {l}

r if m=1

Tr1,0(n)(m) =
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Case I11.

We observe that ¢(j, 7,.,p(n)) = t(r/(j),n). Thus there is a projection map

Tip VD)= VG, DN, = Y e @a s
neX(D\{l})

where we used again the fact that there are no loop edges at ¢ and thus, since

t(r*) =i, we must have h(r*) # i. Similarly there is an inclusion map

Trign, V@) DY = VD), Ty = D Bimuna) ™ @
neX(D\{1})

We define

a”l = 7_(!1*7Z7Z7A(i). (68)

If h(a) =1, then [ ¢ A(j) and A(a(j)) = A(j) U{l}. For any D C A(j) we

have the inclusion map
Tata(),ougy, © V (7, D) = Via(j), D UA{l})
as above. We have a map
Oatjp - V(j, D) = Vi), DULl})

defined by
Qa,l,Z,D ( )‘ + Mal(j lﬂ-al ),l +v Z 3ml|al ) 7—alal Du{l}
meD

We define
a2|l = 9a7lylyA@. (69)

We have the following proposition

Proposition 6.4.4. [[GG05], Proposition 2.7] With the above action F;(V') is a

AR nvrir-module.
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When @ is an infinite affine Dynkin quiver (or in general a locally finite one), the
reflection functors satisfy the same properties as in Gan ([Gan06], § 6.2). In particular
if 7 is a loop-free vertex, let A; be the set of all (\,v) € Br x R = R! x R such that
N £V, Sim is invertible in R[S, ] for all 7 =1,...,n.

Theorem 6.4.5 ([Gan06], Theorem 5.1). If (\,v) € A;, then the functor
E : -A-R,n,u)\ — mod — AR,n,V,m)\ — mod

1s an equivalence of categories with quasi-inverse functor F;, where we are considering

the categories of left modules that are finitely generated as R-modules.

Lemma 6.4.6 ([Gan06], Proposition 5.12). If R = C we have:

A ={(\v) e BxCN\E£pr#£0 forp=0,...,n—1}

Let now B; and U; be the finite dimensional vectors spaces defined at the end
of Section 5.6. Let R = C|[[U,]]. Let v € C[[U,]], and A\ € B; ® C[[U,]]. With the
same notation as in Section 5.6, we say that a Ac(v,)),nv,a-module Vy;, is a flat formal
deformation of a Acqu,nr-module V if Vi, = V[[U;]] as C[[U;]]-modules and
Vi, & V. Proposition 5.14 of [Gan06] extend to the continuous case with analogous

proof.

Proposition 6.4.7. Assume that v € C[Uy], and A € B; ® C[U,| (as in Lemma
5.6.2). Moreover, let i € J and assume that (A\,v) € A;. If a Acjw,))npr-module

Vi, is a flat formal deformation of a finite dimensional Acjy,)jmnux-module V', then

F,(Vy,) is a flat formal deformation of F;(V').
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6.5 Representations in the higher rank case

For any commutative unital C-algebra R and any gRﬁSn—module V' define the set

I, C I as follows
Iy = {ie[\ﬂi::(jl,...jn)e[”with i€ {j1,. . jn} and W;Ao}.

where we recall that |; =¢; ® - ®e¢y,.

It is clear that if V is finitely generated over R then [y is a finite subset of I (see
Remark 6.4.2).

In particular when n = 1, R = C and V is finite dimensional, of dimension vector

say «, then Iy = {i € I|e;V # 0} = supp(«), the support of the dimension vector.

Suppose now Iy is finite, and let J C I be any finite subset of indices such that

Iy C J. Consider the finite rank free R-module

BR,J = @Rez — HRGI = ER
icJ icl
ie. Bpy = {)\ € §R|)\i =0Vi¢ J}. Then the module V factors through the homo-
morphism (BptS,) — BE"4S, defined by

o — o ifoes,
;, — |; ifjs€ Jforalls (6.10)

|; — 0 otherwise

In accordance with the notation of Section 6.2, in all what follows, for any finite set
of indices J and any parameter \ € B r, we will denote by A|; € Bg s the restriction

of the parameter A to the set J.

Suppose now V is a Apg,, a-module and Iy C J. Let @; be the full sub-

quiver corresponding to J. Then V factors through the homomorphism Ag,, , » —
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ARrnuw, (Qr) defined by formulas (6.10) above and by the assignment

alll — alll if j, € J for all s

ajl; — 0  otherwise

where we recall that, for any a € Q and [ = 1,...,n, we denoted by a;| j the element
€, @ ®ae, - ®ej,.

Observe that what we said above also implies that the module V' factors through
an action of the algebra Ag,,,, where A\; is as in Section 5.4 (i.e. (A;); = A; if
i € J and (A\;); = 0 otherwise).

Thus, if we want to study modules over Apg,,, (@) that are finitely generated as
R-modules, it is actually enough to consider subfamilies of algebras depending only
on finitely many of the parameters \;.

Let us now go back to the case R = C. The easiest examples of finite dimensional
A, - modules one can look for are the modules which are irreducible as gﬁSn—
modules. For any 7 € I, let V; be the complex vector space with dimension vector ¢;.
Consider 7 = (n4,...,n,), where n; € Zso, and . n; = n. Let {i1,... 4.} be aset
of r distinct vertices of @ and let N' = N @- - -@N?"". As in Chapter 3, regard S,
as the group permuting the factors in ./\/;?nj , and consider S; := .5, X ---x .S, CS,.
Let X = X; ® --- ® X, be a simple module for the group Sz. Then X @ N is a
simple module for B\ﬁSﬁ. One can then form the induced f)’\ﬁSn—module XN 1=
Indgggz(X ® N). Moreover, it is known that any simple finite dimensional gﬁSn—
module has this form (this is true by [Mac80|, paragraph after (A5), when I' is
finite, and remains true for I' reductive when we consider only finite dimensional

representations).

Observe now that we have
XoN1=FoXaN) (6.11)

where o runs over a set of left coset representative of S in S,, ( in particular we have

Ixont ={i1, ..., 0 }).
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The following lemma is the analog of [Gan06], Lemma 6.1.

Lemma 6.5.1. Suppose v € C[[U,]], and A € B;@C[[U,]]. Let a Acjw,))npx-module
Vi, be a flat formal deformation of the finite dimensional Acju,))n,ux-module Vu,. If

V_UJ 18 simple as a B\ﬁSn—module, then all elements of EC[[UJ” must act by 0 on Vi, .

Proof. The proof goes exactly as in [Gan06] when we observe that also in our case
gﬁSn is a semisimple algebra. This implies that Vi, must be of the form (X @ N 1
)[Us]] as a B\C[[Uﬂ]ﬁSn—module, with iy, ..., € J (trivial deformation of an irreducible
module X ® V' 7). Let us fix [ € {1,...n}. Any al; € g@[[UJ]]ﬂSn induces maps
between the different summands in formula (6.11). Now, for any j = (ji,...,jn) € I"
and o € Sy, if j, = jom) for any h # [ then j; = j,). Since () has no edge loops,
this implies that a| ; must act by 0 on N. Since this is true for any a and any [, all
elements of cSA’(c[[U L) must act by 0 on Vy,.

The following theorem can be proved as Theorem 6.2 in [Gan06] and is equivalent

to Theorem 6.5 in [EGGO05].

Theorem 6.5.2. Assume C[[U]] 2 v # 0 and A € B; ® C[[U,]]. The g@[[UJ]]ﬂSn-
module (X @ N 1)[[U,]] extends to a Ac(u,)jnwr,-module if and only if the following

conditions are satisfied:

(i) For alll € {1,...,r}, the simple module X; of Sy, has rectangular Young dia-

gram of some size a; X by;

(ii) No two vertices in the collection {ii, ..., i.} are adjacent in Q, i.c. (€, €,) =0

forany j #ke{l,...,r};
(i1i) For alll € {1,...,r}, one has \;, = v(a; — by);
where we agree that condition (ii) is empty if r = 1 i.e. if T = (n).

Fix now \g € B. Let Y1, ..., Y, be a collection of simple, pairwise non-isomorphic,
finite dimensional representations of f[,\o and denote by o the dimension vector of
Vi, Let Y = V" ®--- @Y%, Then X ® Y is an irreducible representation

of Hi?ﬁSﬁ and, as in the finite case, we can consider the induced A, o ,-module
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ﬁ®n Sn

X®Y T:= Indﬁ%(;ﬁs X ®Y. It is known (as before by [Mac80]) that any finite
Xg *°7

dimensional simple \A,, 5 y,-module is of this form. For ¢ = 1,...,r, denote by «a(; the

dimension vector of Y;. It is easy to see that:

Ixovy = J I = [Jswp(aw):
1=1 i=1

Let J be a finite subset of indices corresponding to some connected subquiver and

such that Ixgyy C J. Asin Section 5.4, let A™ be the unique J-dominant weight -

conjugate to g, and w™ the unique element of minimal length such that w* Ay = AT.

Write wt = s, - - - 55, for some simple reflections corresponding to vertices ji, . .., jn €

J. By minimality of the length we know (r;, ---7r;A);,,, # 0 for g =0,...,h — 1.

Denote by F,+ the composition Fj, - - F},, and by F{,+)-1 the composition Fj, --- Fj,.
The following theorem is the analog of Theorem 6.3 in [Gan06].

Theorem 6.5.3. Suppose A\ € B; ® C[U;| with \; € Uy for any i € J, and that
0 # v e Uj. The A,gxr,-module X @Y T has a flat formal deformation to a

Aciiv ) nvro+x-module if and only if the following conditions are satisfied:

(i) For alll € {1,...,r}, the simple module X; of S,, has rectangular Young dia-

gram, of size a; X by;

(ii) (oqy, gmy) = 0 for all 1 # m;
(iii) For alll € {1,...,r}, one has X\ - aqy = (a; — by)v;

where we agree that condition (it) is empty if r = 1. When the deformation ezists it

1S UNIqUE.

Proof. Take J, A", w*, F,+, F,+)-1 as above. Exactly as in [Gan06], proof of

Theorem 6.3, we can prove that (r;, ---7;, (Ao + A),v) € A, for g = 0,...,h —

Jg+1
1. Indeed, for any C' € C[[U,;]][S,] the element (r;, ---7;(Xo + A))j,,, + vC has
an inverse in C[[U,]][S,]. Finding this inverse amounts to solving a system of n!

equations in n! variables with matrix (r;, - - 75, (Ao + A))j, ., Idn + VA, with A some

Jg+1
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matrix. Since A\,v € m and (r;, - 7;,X0)j,,, 7 0 (by minimality of the length of
w™), the determinant of this matrix is nonzero modulo m. Thus the determinant is
invertible in C[[U,]] and so the matrix is invertible. As a consequence we have that
the sequence F,,+ establishes an equivalence of categories Ac(v,])npr0+2 — mod —
Acv,]1n3+wt (n) — mod.

For any [ = 1,...,r we have that o) € Xy, ;. From Lemma 5.4.1 we know that
wtEy, s = Uy+.y. Since AT is J-dominant we know that X+ ; = {ez|2 e\ = 0}.
For any | = 1,...r, define 4 € J by w* (o)) = €, € Ex+,. As we observed at
the beginning of this section, since Ixgyy C J the A, o 5,-module X ® Y T factors
through A, (), (Qs). Moreover, since ji,---,j, € J, we can deduce from the
definition of the functors Fj, that the A, o y+-module F,,+(X ® Y T) factors through
Ano,04),(Qs). By [CBHI8] Theorem 5.1, we must have F,+ (X @Y 1) =X QN 1
where N = NP @ -+ @ NP

From now the proof goes exactly as in [Gan06] and we report it for the reader’s
convenience.

We first observe that, for any { = 1,...,7, we have A\g- ) = At -¢;, = 0, and that
both the products (, ) and - are W-invariant.

Using this, we have that, if the conditions in the theorem are satisfied, then the
g@[[UJ”ﬁSn—module M = X @ N 1 [[U,]] satisfies the conditions of Theorem 6.5.2,
and thus extends to a Ac(u,))nurt+wt-module (with E\CHUJ]] acting by 0). Thus by
Proposition 6.4.7 the Acu, 1020+ 3-module Fiy,+y-1(M) is a flat formal deformation
of X®YT.

Vice versa suppose a Ac(u,]jnpro+a-module V' is a flat formal deformation of
X ®Y 1. Then, using again Proposition 6.4.7, we have that F,,+(V) is a flat formal
deformation of X @ V' 1. Since F+(V) = (X @ N N[[U,/]] as a g@[[UJ]]hSn—module,
then by Theorem 6.5.2 the conditions (4), (i¢), (%) must be satisfied. Moreover,
we have that, by Lemma 6.5.1, é\@[[Uﬂ] must act by 0. Thus F,+ (V) is the unique
flat formal deformation of X ® N/ 1 and V is the unique flat formal deformation of
X®YT.
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Assume now that Ay € B, and that the conditions (i), (i7) of Theorem 6.5.3
hold. Let v € C[U;] and A € By ® C[U,] be functions satisfying the condition (7).
Suppose there is a point o € U; such that A\ specializes to A\g and v specializes to
0 at o. Following Gan’s notation let U’ be the Zariski open set in U; defined by
(75, Ty N)jyr TPV # 0 for g =0,...,h—1and p=0,...,n— 1. Since o € U} this
set is nonempty. Let C[U] be the ring of regular functions on U’ and for any u € U,
let m,, denote the maximal ideal of functions vanishing at u. If V' is a C[U/] -module
let V¥ :=V/m,V. The following theorem is the analog of [Gan06], Theorem 6.4 and

the proof is exactly the same.
Theorem 6.5.4. There exists a AQU‘/]M,W\—module Vi, such that:
(i) Vog =X®Y T as a Ay -module, and Vi, is flat over Uy,

(i1) for any point uw € U, VL”;L,J is a finite dimensional simple A%[U,J]’n7V7A—m0dule,

tsomorphic to X @ Y T as a B\&UﬂﬁSﬂ—module.
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Appendix A

Proof of Theorem 5.6.1

Before getting started we need to introduce some notation. For any ¢ € I, let us choose
a basis for the irreducible representation N;, and let us denote by Eé\(]; (7) € O(T) the
(p, q)-th matrix coefficient for N; in such basis, where 1 < p,q < d; = dim NV;. Since
I' is reductive, we know these functions span the algebra O(I'). Moreover, if we

take matrix coefficients E[V¢(7), Eljxj (7) with respect to dual bases, the following
orthogonality relation holds:

v N* 1
/ Eé\;l () By, (7)dy = Jéijépléqm , (A.1)
I 7

where fr is the linear form described in Section 4.2. Let E;,Y]i be the unique distri-
bution such that (EN: EZNWf) = 08;i0,04m. Using (A.1) we can write (EN: ENj> =

pq pq ) lm

di [ E;Zj EIJ,\Z;* d~y. Using the identifications (4.3) of Section 4.2, we can see how these
distributions span topologically O(I")*.

It is straightforward to compute that, if A : O(I') — O(I') ® O(I") denotes the

coproduct for O(T'), then A(EN:) = "%  ENo @ ENi. In all what follows, when

there is no ambiguity, we will just omit the sum sign over repeated indices and write
A(EN) = Elli@ Eli. Using just the definition of convolution product (formula (4.1),

Section 4.2), it is now easy to see that Eé\giEanj = 5ij6qlEI])\[;'L, so that the identification
O(I)* = [],c; Mat(d;) is an algebra isomorphism.

We observe now that V' ® O(F)*®n is a O(F)*®n—bimodule with right action only
on the second factor and left action defined by

plw @ p') = Z (2: @ (27, gw) + y; ® (y;, gw)) pp/

for all pu, ' € O(F)*®n, w € V', where {x;,y;} is a symplectic basis as in Lemma 4.4.1
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and {z7,y’} is its dual basis. Let us now denote by

T pyen(V @O = (VO ) @ @ g (V© O,

o) om e o)

We have

TVﬁO(rn)*:(@T(’;(F)@nw@om*@")) 850 = Ty gy (VOO )88, (A2)

k>0

Following [CBH98] (§ 3) and [GGO5] (§ 3.3) we will now define the idempotents
@i = EY and ¢ = 3, ; in the algebra O(T)*.

For the element element p®" € O(F)*®n we have:

Z iy @ @ @y,

11 yeeey in€l
and
=N - N’Ln n( N; - Nin
Z (Eplll "'®Epn1 )90® (Elml "'®E1pn)

11,P15++50n,Pn
= > BB - @B By =6 (A.3)

11,P150-50n,Pn
Since 07" is the unit element in O(F)*®n, equation (A.3) implies a Morita equiv-

alence " (TVhO(F)*®n> P&~ Tij(’)(F)*®n.
Now clearly we have an isomorphism

such that
iy & Q€ — iy Q- Q Py, .

Moreover we have bijections
0iO(I')*p; < Homr(N;, Nj) @i (L® O(I')") ¢; <> Homr(N;, L @ Nj).

Indeed we have that O(I')*p; = N; and (L ® O(I')*) p; = L ® N;. The first is an
irreducible finite dimensional representation and, since I' is reductive, the second is
a semisimple representation. Multiplying on the left by the idempotent ¢; corre-
sponds to projecting on the multiplicity space of the component of type N; of such
representations.
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Thus we have an isomorphism

= I Gu®- 00T @ 0M)E - B0M))(pn ® -+ @ ;)

. N~
n

n

=@ [[ Homr(N,,N;,) ® - ® Homp(N;,, L ® N;,) @ - - - ® Homp (N, N;,)

I=1 i1,...n

~ g (A.5)

Now from (A.2) and from identities (A.4) and (A.5) it follows that:

—

o (Tyyron (V@ O ") ) 7 = Tl (A.6)
and
" (T VﬂO(F)*®"> I = " (TO(F)*@L (V ® O(F)*®”) ﬁSn) ="
~ TELS, (A7)

Now by (A.3) we have that Hy .(T',,) is Morita equivalent to p*"Hy (T, )¢®". By

—

(A.7) we have that ¢®"H,, .(T,,)p®" is isomorphic to some quotient of TgELS,. We
will show in the next theorem that for an appropriate choice of the parameters this
quotient is exactly the one described in Definition 5.5.3.

We will need the following auxiliary lemma, which is the analog for infinite affine
quivers of Lemma 3.2 of [CBH98]. Let @ be a quiver attached to I' (with any orien-
tation). Let ¢ be the linear map ( : C — L ® Lsuch that ] —y®z —2®y.

Lemma A.0.5. For any arrow a : i — j in Q) there exist I'-module homomorphisms
Ha:Ni—>L®Nj and (baN]—>L®Nl

such that for any vertex i

. (A @0)de— Y (dp®a)bs = —di(¢ @ 1dy,)

a€Q,h(a)=i a€Q,t(a)=1
as maps from N; to L ® L ® N;, and such that
(WL ® IdNt(a))<:[dL ® ¢a)9a - _dh(a)IdNt(a)

and
(wL ® Ith(a))(IdL ® ea)gba = dt(a)Ith(a> ’

Moreover the 8,, ¢, combine to give a basis for each of the spaces Homp(N;, L ® N;).

Proof. (of Theorem 5.6.1) In the case I' is of type A the same proof as in [CBH98],
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Lemma 3.2, works without any change. For I' of type A,., D« the proof goes as
the one in [CBH98] for type D,, E, if we observe that also in our case Q is a (semi-
infinite) tree, the L ® N; are all multiplicity free and the vector ¢ is the unique vector
in C!, up to scalar multiples, such that (d,¢;) = 0 for all 4 € I.

|

Proof. We give a proof for n > 2 since the proof for n = 1 is similar and easier.
Our proof rephrases the proof of Theorem 3.5.2 in [GGO05] in the language of algebraic
distributions on I',,. Using equations (A.4)-(A.7) and Lemma A.0.5 we can define an
isomorphism

TaltSy — ¢ (TVIO(Tn)") ¢
€, Q- Qe 0 —Y;, Q- Q;, -0,
R Qa®--- Qe -0 _>90i1®"'®¢a®"‘®90in'07
R RA® - ®e, 0 S, Q0 Q0,0 @y, -0,

for all 41,...,1, € I, a € Q.

Let us denote by J the subspace of TV#O(T,,)" topologically spanned by rela-
tions (R1), (R2) of Definition 4.4.1. Then the algebra Hy.(I',,) is the quotient of
TV$O(T,,)" by the two-sided ideal generated by J and ¢®"Hy .(T',)p®™ is the quo-
tient of " TV1O(T,,) ¢®" by the ideal

¥ (TVEO(T,)") J (TVEO(Tn)) ™"
= " (TVEO(T,)") =" O(I)* " JOT) "™ (TVEO(T,)*) "

where the identity holds by equation (A.3). Our claim is that the image of the two

sided ideal generated by ¢®"O(T )*®nJ om)” +n ©®™ under the above isomorphism is
exactly the ideal of the defining relations (I), (H) for A, (Q).

Let us first consider the relations (R1). Notice that for any ¢ € O(I')* and x,y € L
a symplectic basis, we have that in T L§O(I")*

p(ry —yx) = (vy — yz)p. (A8)

In fact

o(ry — yx)
= (z(@", y2)p+y(y*, vx)e) y— (Y™, yw)e+o(z™, yy)p)
=zx (2", yy)(@", yr)o+ay(y, yy) (@, yo) oty (e, yy) (", ye) o +yy (Y, yw) (Y, o) o+
—yz (", y2) (", yo)o—yy(y*, vo) (", vy) e —ay(y*, yo) (@, yy) o —ax(a”, yo) (2", yy)p

= (zy — yz) (2", y2) (Y™, vy) — (@, ) (y", vz)) @

= (zy — yx)(dety) ¢

= (Y — yx)p

where the last identity holds since dety = 1 as a function on SL(2,C). Also, since ¢
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is a T-invariant distribution, for all ¢ € O(T")* we have
pc=cp e O(I)". (A.9)

Moreover, if for any ¢ € O(I")* we write p; =01 ® - QP ®--- R € (’)(F)*®", where
© is placed in the ith position, we have that

('Ozwj ( Sij ) (5SUAU) ('Ozwj (AlO)

for any ¢,1 € O(T')* and any 4,5 € [1,n]. To see that (A.10) holds it is enough to
test the rlght and left hand side of the equality on a decomposable function f (E plql ®

- ® Epnqn), where f is a function on S,. Suppose without loss of generality that
1 =1, 7 = 2. For the right hand side we have

<(6812A12) 901¢2a f( p1Q1 Q- E;];\,[fgn»

3 Nll Niy Niy Nig ( — 1
- <(58127 f> (< T1Q1><¢ ETQQ2> /I‘ Eplh (7)EP27"2 ('7 1) d’y) <517 p3¢13> o <61’ Eﬁ?}ﬁ

— F(sw) (< B0, %) [ BrEG m) s (1) BN (1)

7 Ny,

~ N
= 6lll2f(512) <¢ pllJ2><§07 Ep2lqll>EP3Q3(1) T E;Xf&’n(l)

dy,

while for the left hand side we have

Ny,

(192 (05,,A12) , f(Epm K- nggn>
N,
= <5812 @2¢1A127 EP1Z!111 & nglgn)

Nll Ni, Ny, N,

= (ns ) (0 NN B8 [ EYOIEN O @) (61BN - 0, )

Ny N, Ny N, Nig 1
- f(812> (<¢?EPIT1><LIO?EPQT2>/FETI(H(’Y)E 21”2( )d,}/) EP3Q3(1> ’ E;)\i(?n(l)

N Niy o\ Vi

= 51112f(512) dl W? p1q2>< EPQQ1>EP3Q3(1) e ng&’n(l)

where in both cases we used the fact that for any finite dimensional representation
N;, if we choose dual bases, we have ng; (v hH = ng* (v) for any p,g =1,...,d;. Now
using (A.8), (A.9), (A.10), if we denote by .J; the vector space spanned by relations
(R1) we see that

PO RO " = =SB Or) e,
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Then for any choice of iy,...,i, € [ and [ € [1,n] we have:

i, @ @i+ T,y
= [,y 0 ® - ® @,

1
=pu® - ® 5 D Galam D bube| @B, (A.11)
a€Q, h(a)=1 a€qQ, t(a)=1;
and \
<pi1®~~®goincl:d—”goil ® - Q. (A.12)
i

Indeed we can write p;, @ - ® ;¢ = i, D+ R Y;;c R - X ¢, , and testing on a
function Epj € O(T) we have:

<90izc ENj)
= (i, Ep7) (e, BIY)

N;
611361,1(0 E > = 5”]5;;15(11(0, By

d 62” 6p16q1<c7 Xil>-
i

The last identities follow from the fact that ¢ is a I'-invariant distribution, thus a
sum of duals of characters. More precisely

d;
c:g OéiE EJJ\; a; € C,
i j=1
and one has

(¢, BNy =0 ifp#q,
so that

(e, xa) = Zazz JJ’ZE " —dlla”:dil<c,Eﬁ”>.

Now we claim that

(gpil K- (pln) 5811'Alj (9011 - (pzn) =

ZJ:” (05 ® - ®ws,) 55[]’ (A.13)
Indeed, supposing without loss of generality that [ = 1 7 = 2, and testing the left
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hand side on a decomposable function f ( i ® - ® Epnqn> we get:

<(90i1 & Pi, @+ & SD'LTL) 5512A12, f ( Plfh & E;];\ﬁé’n>>

N,
= (6512 (03, ® 01, ® - @ p1,) Ara, f (Emlqll Q& E]i?%))

~ N; N, N; N N; .
— Flsun){ins B8 Y (on, B2 ( [ EaeEG m) i Eas)
T

Jj=>3
- Ny
f 312 1112 H 57,] H 6pjl H 6(]] / 1q1 )qull (,-)/) d7
j>1 7>1 j=>3
— f 2122 H 67,] H 6pg H 6(]]
” 5>1 j>1 j>1
52 7 r
= 20 (0, @ i, @+ @ ) b | (B @+ @ BNV ),
11

By (A.11), (A.12), (A.13) we thus have that relations of type (R1) give us exactly
the relations (1) in Definition 5.5.3.

We will now find the relations that are given by (R2). We will assume without
loss of generality that n = 2. First of all, for any u,v € L and any ¢, € O(T)*, if
x,1y is any basis for L, we can easily see that

(0 @) - [ur, vy
= [z, o] (27, hu)p © (27, gu)ib) + [, w2] (27, hu) ) @ (y7, gv)¢)
+ [y, 2] (7, hu))p @ (27, gu)¥) + [yo, w2l (Y7, hu)) o © (y, gv)y) (A.14)

and similarly

(P ® 1) bspwr(yu, v)Ary
=05,wWr (72, ) A1z (27, hu)p @ (27, gu)Y) +0s,,wr (v, y) Az (27, hu)p @ (y*, gv))

05w (VY ) Ava (Y7, hu)p @ (27, gv)h) + 05w (VY ¥) Arz ((y°, hu)p @ (v, g(@)w) )
A15

To prove this last identity we first have to introduce some more notation. For
e, € O(I')* we will write ¢, 1, to indicate the variable with respect to which these
distributions are considered (so ¢ is a linear functional on functions in the variable
h etc...). Since the value of the distribution A5 on any function f; ® f, € O(I")®?
can be written as

@i fie foh = [ 0 AL dgdh.
g=~h

We will write Ay (41) to keep track of the variables. Finally for Eplq1 RE, ,],\2[?2 € O(I")®?

129



we will write

Ny, Ni, Ny, Ni,

N,
A(Epun ® Epng)(g, h, g/’ h,) = Epm( ) ® Epyry (h) ® Ehtn( ) ® Erzqz(h/)

for the coproduct. Let us now consider the decomposable function f = f (E, ﬁlqll ®

E]])\;@) where f is a function on S,. We have

<(90 X w) 5312wL(’7u7 U)A12 ; f>
= Fls12){(€ @ 1) (wi (g1, 0) Ara g ) s AEpyty @ Epa) (g, by o'y 1)

N, Ny,

= f(312)<¢g§0h ) ;;\1[17}1 (g)Epzfz(h»(Am g’ h') WL(Q U, U)Ei\lflqll (gl)Erzqz (h,)> .

Now making the change of variable (¢/, ') = (¢~ 'gh,~y 'hh) and using the fact that
the integral is left and right translation invariant we get

N, N, 1~ N, 1~ N, 17
f(512)<¢990ha p117}1<g)Ep2l7?2(h>><A12 g’ h') wL(Q 1ghuav)E7’1lqll(g 1gh)Er2qu2(h 1h9)>-
(A.16)
We now observe that:
wr (g~ ghu,v) = wr(ghu, gv)
! 2
= (2", hu)(z*, gv)wr, (g2, x) + (2%, hu)(y", gv)wr (G, y)
3 4
+ (v, hu) (2, go)wr (Gy, ©) + (y*, hu) (y*, gv)wr(Gy, y) (A.17)
and that
Eng (g7 3h) Eng, (" h"g) (A.18)
N, _ N, N, N, _ N, _ N,
= B4 (9B () By f (R Ené (W ELE (R ELE(9) - (A.19)

Using (A.17) we can rewrite (A.16) as a sum of four terms. If we use (A.19) to rewrite
the first of these terms, for example, we get

Flsi2)(Wyon , (2%, ) (2, gv) s (9)En (97 ) B (B) By ry () B, (R B2 (9))-
Awr(§2,2) Ay o5y« Bt (9B ()
= F(s12)(Wgion (5", hu) (57, g0) By () By (1) Epy 3 (€) e (9))-
Awe(§E.2) Dy oy - Ba (D) Eai (B)
= f(s12){Wgpn, (2%, hu)(a™, gu) Ep (h) En (9))-
Ny, Ny, Ni, /7

w97, ) A 57y Emsi(€) By, () Eps o (€) Eyi (1))
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Ni, Ny,

= F(s2)(yepn (" ), g0) By () By () (2, 2) D1 gy, By (8 B s ()
s12)( (G0, 0) B g gy ) (@ hue)in) (@ go)iey) s AEnthy & B )3, B b, 9))
= (00 (2", hu)p @ (&, gu)) wr (72, 0) A, f)

where we just used the properties of the coproduct and counit (evaluation at the
identity). It is of course possible to rewrite the remaining three terms in a similar
way, so that we get exactly expression (A.15).

Now for any i, j, k,l € I an easy computation shows that, via the identification
TVO(T)*? = T rye2 (V @ O(I)**?), we have

(0i ® ¢5) (¢ ® 1) [ur, v2] (61 @ V) (1 @ 1)
= (itp ® ;) (ur ® (21 © 05)) R) (01 ® 0;) (v2 ® (spx ® Yip1))
— (9 @ 9;) (12 (9: @ Y1) Q) (vir ® 1) (w1 ® (21 ® 1)) (A.20)

where @ denotes the product in TO(F)*@(V ® O(F)*®2), and we can see (A.20) as

an identity between algebraic distributions on I'> with values in 72V. On the other
hand we trivially have that

(9 ® 5) (¢ @ 01) (0s,wW (YU, V) A12) (01 @ ¥) (1 ® 1)
= 051, (5 ® pip) wr(Yu, v)Arz (P @ Yipy) (A.21)

As in [GGO5] we observe now that for any arrow a € @ we can find distributions
Pa, Yo € O(F)*®" and vectors ug,, v, € L such that
Pt(a)Pa (ua ® Soh(zz)) 7A 0 and Ph(a) (Ua X 7wbagpt(a)) 7A 0.

Also in our case () has no loop vertices, thus we have that the spaces ¢; <L®O(F)*®2> ©;
are at most one dimensional and for any 7,7 € I we have an identification:

(O e Le0r) %) o (Loor)y®)y,

aRuR [ — alu® )

where cpi(’)(f‘)*@ QL® gij(F)*®2 = N ® L ® N; as I'-modules. Moreover again as
in [GGO5] we have a non degenerate ['-equivariant pairing

(P00 2 Lo Or)Pe,) @ (¢ & Lo Or) ) - C

(a@u®B)QR)(a @us ) — (af) (o Bwr(u,1).

As a consequence, we can assume that, for any a € @), we have wp(uq,v,) = 1.
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Moreover ;)¢ (Ua X @h(a)) = 0 if vp(a) (Ua & WPt(a)) # 0, and Ph(a) (Ua ® w‘Pt(a)) =
0 if i(a)¢ (ta @ Ph(a)) # 0.

Note that if i # [ or j # k the expression (A) is zero. To see this let us evaluate
the distribution (¢; ® i) wr(yu, v) A1z (pr ® 1) on a function Eplq1 ® E;Zg, We
have

N;
((; ® ©10) wi. (vt v) Arz (01 ® V1) , By ® Epe,)

N, N, N
= <(Pj ) Ep1r1><90190: Ep2r2><WL(’Yu U)A127 Er11511 ® E7“21822><(Pka 51q1><7/}90l ) 82lq22> .

Since last expression is zero if j, k # [ and 7,1 # [, the above distribution is identically
0if j#£kori#1.

Thus, if a,b € @Q are two arrows such that b # a* or a # b* we get from (A.20),
(A) and (R2) that

(a® h(b))(t(a) ®b) — (h(a) @ b)(a @ (b)) = 0.

Suppose now j = k and ¢ = [. Consider an edge a : i — j in Q and suppose, for
simplicity, a € (). We have an injection as an irreducible factor ¢, : N; — L ® Nj.
We can choose a basis £ := {{;} of L& N; = N; & ... adapted to this decompositions
into irreducibles

N; . N; . N; . N;
61 = (pl — Ell 5 51 = E21 5 53 = E31 y ey €d1 = Edll,

On the other hand we can choose a basis p := {y;} for L ® N; adapted to the tensor
product

= U @ = U @ Byy'y o =u, @ By’ L “2dj::Ua®Ede1'

Let’s now define the matrix 7 = (7,4) by ¢y = > 7€, and the matrix p = (py,) by
V& = D, Ppatlq- In other words we have 7 = ¢, where ¢, = (¢,,,) denotes the
matrix representing the linear map induced by ¢ on L ® N; if we choose the basis p
for the domain and & for the image. Similarly we have p = ,1¢. Now, recalling that
we are using the following identifications

N; <—>L®N (—>L®L®N “rl N

R
and that by Lemma A.0.5 this composition of morphisms equals d;Idy;, we have that

P11

©itp (Ug ® ) = T116s and ©; (Ve @ Vo) = RZE (A.22)
We now claim that
1P
(07 ® i) (WL (Y, V) A2) (95 @ Pip;) = ——0; @ ;. (A.23)

d;
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First of all it’s easy to see that

(5 ® 0ip) (WL (YUa; Va)A12) (05 @ Ps) = Cop; @ @y,

where C'is some constant. To compute C' we will evaluate the left hand side of (A.23)
on the function E)Y ® ENi € O(I)¥2. We recall that we can see the functions EV:(7)
as the matrix coefficients for the action of v on the direct factor N; C L ® N; in the
basis £ and the functions Eé(”y)E%j (7) as the matrix coefficients for v on L ® N; in
the basis p. We define the matrix a@ = {a,,} as the matrix of the change of basis
Iq = D, &y and by & = (ay,) its inverse. Accordingly to the previous notation we
write ¢pe = (¢,9¢,) (vespectively ¢ie = (¢,10¢,)) for the matrix of the linear map ¢
(respectively 1) where we chose the basis £ both for the domain and the image.

N; i
(05 ® i) (Wi (YUa, va) A12) (9 @ ;) , By ® EfY)
dj d;

=Y Y BV B B ([ rtrn e BE QI ) )
rp=17r"p'=1 r
(B By ) (W, EDY)
d;
=S (o, B ( [ ntn ) B () ES(7) dv) (. EN)
' pl=1 I
d;
= > teB ([ EREY OB @) B
r’p'=1
1 &
== (0, Epi) (0, ENO(EDN:,, BY(7)EfY (7))
v r’p'=1
1 &
= d_ Z <907E1Nr1/>< EN/7 Z alsatlEst
? =1 s,t=1
1 &
=4 Z 2 ><¢7 /1>O‘1p’O‘T’1
v r’p'=1
1 di di
=7 <Z<¢;E]§Yi>541p’> <Z<%E >Oér/1>
¢ p'=1 r’'=1

d; d;
1 - ~ - P11T11
= d_ <Z £p/w£1051p’> (Z 51%057"/0{7“/1) = d
v p'=1 r'=1 v

where the last identity holds since p = 10 = @™ ¢the = A ¢the and T = ¢, = e .

Thus we have that C' = 227710 and the identity (A.23) holds. So now taking i = [,
J=ku=1u.v="100=p w 1, in (A.20) and (A.23), and using (A.22), we have
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that relation (R2) gives us exactly
(@ ® h(a)) (h(a) ® a) = (t(a) @ a) (¢" @ t(a)) = 2kds,, (h(a) @ t(a))

since 711, p11 # 0 in this case as observed above. Also taking u = u,,v = v, in
(A.20) and (A.23) we have that, if p;p (u, @ ¢;) # 0, then ¢; (u, ® Y;) = 0 and
0 pa;41 = 0 (see (A.22)) and both sides of (R2) give zero. The same is true if we
exchange the roles of u, and v,. Thus the relations (R2) give exactly the relations
(1I) of Definition 5.5.3.
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