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Abstract

Although perfectly matched layers (PMLs) have been widely used to truncate numeri-
cal simulations of electromagnetism and other wave equations, we point out important
cases in which a PML fails to be reflectionless even in the limit of infinite resolution.
In particular, the underlying coordinate-stretching idea behind PML breaks down
in photonic crystals and in other structures where the material is not an analytic
function in the direction perpendicular to the boundary, leading to substantial re-
flections. The alternative is an adiabatic absorber, in which reflections are made
negligible by gradually increasing the material absorption at the boundaries, similar
to a common strategy to combat discretization reflections in PMLs. We demonstrate
the fundamental connection between such reflections and the smoothness of the ab-
sorption profile via coupled-mode theory, and show how to obtain higher-order and
even exponential vanishing of the reflection with absorber thickness.
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Chapter 1

Introduction

1.1 Overview

A perfectly matched layer (PML) is an artificial absorbing medium that is commonly

used to truncate computational grids for simulating wave equations (e.g. Maxwell’s

equations), and is designed to have the property that interfaces between the PML

and adjacent media are reflectionless in the exact wave equation [1, 2]. We describe

important cases in which PML fails to be reflectionless, even in the exact (non-

discretized) Maxwell equations, most notably in the case of periodic media (pho-

tonic crystals [3])—contrary to previous suggestions of photonic-crystal “PML” ab-

sorbers [4–8]. In these cases (similar to PML reflections due to discretization er-

ror [2,9]), the remaining approach to reduce reflections is to “turn on” the absorption

gradually, asymptotically approaching an “adiabatic” limit of zero reflections [10]

regardless of whether the medium forms a true PML—here, we provide a deeper

understanding of all such adiabiatic absorbers by showing that the reflection’s depen-

dence on the thickness of the absorbing layer is determined by the smoothness of the

absorption profile, and can be predicted by coupled-mode theory approximations. For

a fixed absorption profile (typically quadratic or cubic in previous work [2]), the re-

flection decreases with absorber thickness L proportional to some characteristic power

law determined by the smoothness (e.g. 1/L6 for quadratic absorption). As the ab-

sorber becomes thicker, smoother absorptions become favorable, and we show that it
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is even possible to obtain exponential decrease of the reflection with L by new choices

of the absorption profile. The role of PML (when it works), compared to ordinary

absorbing materials, is to improve the constant factor in this reflection convergence,

rather than the functional form. For homogeneous materials as in most previous anal-

yses, although some attempts have been made to optimize the PML profile among

various polynomial functions [11–14], a quadratic or cubic profile works so well [2]

that further attempts at optimization are arguably superfluous. On the other hand,

for periodic media—especially when operating in modes with low group velocity—

the required absorber thickness can become so large that the choice of absorption

profile becomes critical. We also discuss the possibility of other optimizations, such

as balancing the “transition” reflection from the absorber interface with the “round-

trip” reflection due to the finite absorption, but these optimizations depend more

sensitively on the incident-wave medium.

1.2 Various PML Formulations

There are several nearly equivalent formulations of PML. Berenger’s original formu-

lation [1] split the wave solution into the sum of two new artificial field components.

A more common “UPML” (uniaxial-PML) formulation expresses the PML region

as the ordinary wave equation with a combination of artificial anisotropic absorbing

materials [15]. Both of these formulations were originally derived by laboriously com-

puting the solution for a planewave incident on the absorber interface at an arbitrary

angle and polarization, and then solving for the conditions in which the reflection is

always zero. Both formulations, however, can also be derived by a complex “stretched-

coordinate” approach [16–18]—this much simpler and more elegant derivation of PML

reveals its underlying meaning and generalizes more easily to inhomogeneous media,

other wave equations, and other coordinate systems. In particular, the coordinate-

stretching approach derives PML by an analytic continuation of Maxwell’s equations

into complex spatial coordinates, where the oscillating fields become exponentially

decaying [16–19]. (This description can then be converted back into a change of

10



waveguide

PML

PML? waveguide splitter

Figure 1-1: (a) PML is still reflectionless for inhomogeneous media such as waveguides
that are homogeneous in the direction perpenendicular to the PML. (b, c) PML is
no longer reflectionless when the dielectric function is discontinuous (non-analytic) in
the direction perpendicular to the PML, as in a photonic crystal (b) or a waveguide
entering the PML at an angle (c).

materials via a complex coordinate transformation [18, 20].) By viewing PML as an

analytic continuation, it can be shown to be reflectionless even for inhomogeneous

media such as in Fig. 1-1(a) [21]: for a waveguide entering the PML perpendicularly,

complex coordinate stretching is still possible because the material parameters (and

hence Maxwell’s equations) are analytic functions (constants) in that direction. The

same derivation of PML, however, also immediately points to situations where PML is

inapplicable: in any problem where the material parameters are not described by ana-

lytic functions in the direction perpendicular to the boundary, a reflectionless absorber

cannot be designed by complex coordinate stretching. As discussed in more detail

below, this means that “PML” is not reflectionless for photonic crystals as in Fig. 1-

1(b) where the dielectric function varies discontinously in the direction perpendicular

to the boundary, or even in cases where a dielectric waveguide hits the PML obliquely

[Fig. 1-1(c)]. (In fact, even for rare cases in which an oscillating dielectric function

is analytic in the PML direction, we will explain that the analytic-continuation idea

still does not yield a useful PML absorber in the discretized equations.)

11



1.3 PMLs in Photonic Crystals

Previous suggestions to apply PML to photonic crystals by simply overlapping a

“PML” anisotropic absorber with the periodic dielectric function [4–8] (including a

similar suggestion for integral-equation methods [22]) were therefore not “true” PML

media in the sense that the reflection will not go to zero even in the limit of infinite

resolution. In this thesis, we will refer to such an absorbing layer as a pseudo-PML

(pPML). (In the special case of an effectively one-dimensional medium where there

is only a single propagating mode, such as a single-mode waveguide surrounded by

a complete-bandgap medium, it is possible to arrange an “impedance-matched” ab-

sorber to approximately cancel that one mode [23], or alternatively to specify analyti-

cal boundary conditions of zero reflection for that one mode [24]. More generally, in a

transfer-matrix or scattering-matrix method where one explicitly computes all propa-

gating modes and expands the fields in that basis, it is possible to impose analytically

reflectionless boundary conditions [25, 26], but such methods become very expensive

in three dimensions.) These previous authors were nevertheless able to observe small

reflections in a pPML only because they overlapped the pPML with many periods of

the crystal and thereby turn on the pPML very gradually. As we explain below, such

absorbing layers are more properly understood as adiabatic absorbers rather than

PML media, and indeed the “PML” property only improves the constant factor in

the long-wavelength limit of an effective homogeneous medium, or in any case where

there are large homogeneous-material regions compared to the wavelength. Moreover,

as we describe, the reflections worsen rapidly as the group velocity decreases (e.g., as

a band edge is approached).

Even in the case of a homogeneous medium (or one uniform in the direction per-

pendicular to the boundary), where true PML applies, there are well-known numerical

reflections due to the finite discretization [2, 9]. It is sometimes claimed that the so-

lutions for a PML converge exponentially to the solution of the open problem as the

PML thickness is increased [27,28]. This is true, but only in the limit where the dis-

cretization error is negligible. Once the discretization reflections dominate, we show
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in Ch. 4 that the convergence rate with PML thickness depends on the smoothness

of the PML profile in the same way as for any other adiabatic absorber, and the

rate is only polynomial for a fixed polynomial profile. That is, there is a universal

relationship between smoothness and reflectivity for all adiabatic absorbers, whether

discrete or continuous and whether PML or non-PML. Other authors have remarked

that the numerical reflection seems to be dominated by the discontinuity in the profile

or its derivatives at the PML boundary [2], but have not presented a precise analysis

of the relationship between convergence and smoothness.

The following thesis is structured as follows. We begin, in Ch. 2, with a very brief

review of the derivation of PML in the simple case of one and two dimensions, and

define the key quantities. Then, in Ch. 3, we explain and demonstrate the failure

of PML for periodic media, even in the simplest case of one-dimensional structures

where only normal-incident, non-evanescent waves are present, and even when the

dielectric function varies analytically (sinusoidally). In fact, in this case, pPML may

do no better than an ordinary absorbing medium (e.g., a scalar electric conductivity).

Next, in Ch. 4, we analyze the relationship of the reflection to the smoothness of the

absorption profile, and show via both 1d and 2d numerical calculations that the

asymptotic behavior is predicted by coupled-mode theory, as well as the effect of

group velocity. In Ch. 5, we describe how the coupled-mode understanding of this

transition reflection points the way towards improved absorbing layers—ideally, layers

whose reflection decreases exponentially with thickness (not the case even for true

PML with a conventional quadratic profile, as mentioned above). Finally, we conclude

with some remarks about future directions in Ch. 6.
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Chapter 2

Brief review of PML

2.1 Mathematical formulation

Consider Maxwell’s equations in two dimensions (xy) for the TM polarization, in

which the electric field (E) is in the z direction and the magnetic field (H) is in the

xy plane, for a current source J
z

and a dielectric function ε(x, y) in natural units

(ε0 = µ0 = 1), with time-harmonic fields (time-dependence ∼ e−iωt) are:

∇× H =
∂Hy

∂x
− ∂Hx

∂y
= −iωεEz (2.1)

∂Ez

∂y
= iωHx (2.2)

∂Ez

∂x
= −iωHy (2.3)

One can now derive a PML absorbing boundary in the x direction, assuming for now

that ε is a function of y only (e.g., the medium is homogeneous, or a waveguide in

the x direction, near the computational cell boundary). In this case, one performs an

analytic continuation to complex x coordinates by the transformation:

∂

∂x
→ 1

1 + iσ(x)
ω

∂

∂x
, (2.4)
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in terms of a PML profile σ(x), which plays the role of a conductivity or absorption

strength. The profile σ(x) can also be a complex function, where the imaginary part

corresponds to a real coordinate stretching and enhances the attenuation of purely

evanescent waves [2, 29], but in this thesis we focus on the case of real σ and the

absorption of propagating waves. Maxwell’s equations then become:

∂Hy

∂x
−

(

1 +
iσ

ω

)

∂Hx

∂y
= −iωεEz + σεEz (2.5)

∂Ez

∂y
= iωHx (2.6)

∂Ez

∂x
= −iωHy + σHy (2.7)

Note the σεEz and σHy terms, which have the form of electric and magnetic conduc-

tivities, respectively. The remaining iσ/ω term becomes an integral or convolution

in time-domain and is typically handled by integrating an auxiliary differential equa-

tion [2], but is trivial in frequency domain. The extension to PMLs in other directions

is straightforward and is not reviewed here.

In a medium independent of x, the wave solutions can be decomposed into normal

modes with x dependence exp(ikxx) and kx > 0 for right-going waves in a right-

handed [30] medium (e.g. planewaves in a homogeneous medium or waveguide modes

in a waveguide). The point of this transformation (2.4) is that these normal modes

are thereby analytically continued to decaying solutions exp[ikxx − kx

ω

∫ x
σ(x′)dx′]

wherever σ > 0. The 1/ω factor is desirable because, at least in a homogeneous

dispersionless medium, the attenuation factor kx/ω is independent of frequency (but

not of incidence angle).

Outside the PML regions, where σ = 0, the wave equation and thus the solution

are unchanged, and it is only inside the PML (σ > 0) that the oscillating solution

becomes exponentially decaying with no reflections (in theory) no matter how fast σ

changes, even if σ changes discontinuously. After a short distance L in the PML, the

computational cell can then be truncated (e.g. with Dirichlet boundaries), with an

15



exponentially small round-trip reflection

Rround−trip ∼ e−4kx

ω

R

L

0
σ(x′)dx′

, (2.8)

where we have started the PML at x = 0, and the factor of 4 is because the reflection

is proportional to the round-trip (2L) field squared.

In the exact Maxwell equations, the PML could be made arbitrarily thin by making

σ very large, but this is not feasible in practice because, once Maxwell’s equations are

discretized (in a finite-difference or finite-element scheme) the reflectionless property

disappears. That is, it is not meaningful to analytically continue the discretized

equations, and thus in the discretized system there are numerical reflections from

the PML boundary that disappear in the limit of high resolution. To reduce these

numerical reflections, most authors suggest that the PML be turned on gradually,

i.e. that σ(x) be a continuous function starting at zero, typically chosen to grow

quadratically or cubically [2].

2.2 Absorption profile

More precisely, let us define σ(x) in the PML (x ∈ [0, L]) by a shape function s(u) ∈
[0, 1]:

σ(x) = σ0 s(x/L) (2.9)

where the argument of s(u) is a rescaled coordinate u = x/L ∈ [0, 1] and σ0 is an

overall amplitude set to achieve some theoretical maximum round-trip absorption R0

for normal-incident waves in a medium of index n (kx = ωn). Using eq. (2.8) for R0,

we define:

σ0 =
− ln R0

4Ln
∫ 1

0
s(u′)du′

. (2.10)

For x < 0, outside the PML, σ = 0, i.e. s(u < 0) = 0. As L is made longer and longer

for a fixed s(u), the PML profile σ turns on more and more gradually [both because

s(u) is stretched out and because σ0 decreases], and the numerical reflections decrease.
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Several authors have suggested s(u) = u2 (quadratic) or s(u) = u3 (cubic) turn-on

of the PML, which have discontinuities at u = 0 in the second and third derivatives

respectively [2]. In Ch. 4, we show that there is a simple correspondence between the

smoothness of s(u) and the rate of decrease of absorption with L, as a consequence

of the adiabatic theorem and coupled-mode theory. Note that the smoothness of s(u)

is still relevant in a discretized system—with a fixed resolution and wavelength, as L

is increased one samples s(x/L) more and more finely and a discrete version of the

adiabatic theorem applies [31].

In fact, we will see that the same adiabatic theorem and the same rate of decrease

apply for any absorption, whether or not the absorbing material forms a PML. For

example, if we only include σ on the right-hand-side of eq. (2.5), and neither on the

left-hand-side nor in eqs. (2.6) and (2.7), it corresponds to an ordinary scalar electric

conductivity. As we see in Ch. 3, the advantage of PML over this ordinary con-

ductivity is not that the reflection decreases faster with L, but that this decrease is

multiplied by a much smaller constant factor (which decreases with increasing resolu-

tion) in the case of PML. This advantage mostly disappears for periodic media where

analytic continuation fails, but the same relationship between the rate of decrease

and the smoothness of s(u) applies.

In general, therefore, we will divide the reflections from PML into two categories:

the exponentially small round-trip reflections (above), and transition reflections from

the boundary between σ 6= 0 and σ = 0 (which can arise either from numerical

discretization or from other failures of PML as described in the next section). It is

possible to obtain exactly zero reflection by balancing the round-trip and transition

reflections so that they destructively interfere, but this cancellation can only occur

for isolated wavelengths (and incident angles) [12] and hence is not useful in general.

Instead, we will begin by setting the estimated round-trip reflection R0 to be negligibly

small (10−25) and focus on the transition reflection; we return to the question of

balancing round-trip and transition reflections in Ch. 5.
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Chapter 3

Failure of PML

3.1 Homogeneous & inhomogeneous media

To illustrate the failure of PML in periodic media, we consider a finite-difference

frequency-domain simulation (FDFD, with a second-order–accurate Yee grid) [32] of

the simplest possible case: a periodic dielectric function ε(x) in one dimension [so that

we only have the Ez and Hy fields in eqs. (2.5) and (2.7)]. Given a point dipole source

at some position (outside the absorber), we then compute the reflection coefficient

from a pPML of thickness L as a function of both L and resolution.

Here, pPML (pseudo-PML) is defined by using eqs. (2.5) and (2.7): exactly the

same equations as for an ordinary PML, but with an inhomogeneous ε function over-

lapping the “PML” as in Refs. 4–8. For comparison, we also show a non-PML ab-

sorber in which σ is included only in eq. (2.5) but not in eq. (2.7), i.e. an ordinary

electric conductivity only. We consider two dielectric functions: vacuum (ε = 1) for

comparison, and a periodic dielectric function ε(x) = 6 + 5 sin(2πx/a) that varies

from 1 to 11 with period a. Like all one-dimensional periodic structures, this ε(x) has

photonic band gaps that prohibit propagation in certain frequency ranges [3], but we

operate at a vacuum wavelength ≈ a slightly below the first bandgap (at a wavevector

kx = 0.9π/a and vacuum wavelength λ = 0.9597a). The reflection is computed as

the squared amplitude of the reflected Bloch wave, given by the total field minus the

incident Bloch wave (computed by numerically solving for the Bloch waves of the

18



discretized unit cell). Of course, there are two boundaries, at +x and −x, but we

make the latter reflection negligible by using an absorber of thickness 5L on the left

(and verified that further increasing the left-absorber thickness does not change the

result). In this section, we use a quadratic shape function s(u) = u2 for the absorber

profile σ as defined above.

The absorber, here, is a pPML because it is not derived by analytic continuation

of the dielectric function, and is instead formed by simply applying the homogeneous-

PML equations on top of the inhomogeneous medium, leading to intrinsic reflections.

However, in this case the periodic ε(x) function is actually analytic in x, so in prin-

ciple one could have derived a true PML by using eq. (2.5) with the analytically

continued dielectric function ε[x + i
ω

∫ x
σ(x′)dx′]. Unfortunately, this introduces new

problems: the sine of a complex argument has an exponentially growing real part,

causing the solutions to oscillate exponentially rapidly and leading to a breakdown

of the discretization as the oscillation exceeds the Nyquist frequency. In practice

therefore, we find that such a “true” PML with exponentially increasing ℜ[ε] leads to

large reflections that (at best) decrease extremely slowly with resolution. So, one still

cannot use a true PML in practice for the discretized problem (and the same is true

any analytical periodicity, via Fourier expansion of ε). In any case, this possibility is

not applicable in the vast majority of practical periodic structures, which more com-

monly involve a discontinuous (non-analytic) ε, so we do not consider analytically

continuing ε(x) further here and focus only on the pPML case.

Figure 3-1 shows the results of these one-dimensional FDFD simulations, and the

difference between the uniform medium (where PML works) and the periodic medium

(where it does not) is stark. In the uniform medium, the reflection from PML rapidly

goes to zero as resolution is increased (and in fact, goes to zero quadratically with

resolution because FDFD’s center-difference discretization is second-order accurate),

whereas the non-PML absorber in the uniform medium goes to a constant nonzero

reflection (the Fresnel reflection coefficient from the exact Maxwell equations). For

the periodic medium, both the pPML and non-PML absorbers behave roughly the

same, going to a constant nonzero-reflection in the high-resolution limit: the pPML
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Figure 3-1: Reflection coefficient as a function of discretization resolution for both a
uniform medium and a periodic medium with PML and non-PML absorbing bound-
aries (insets). For the periodic medium, PML fails to be reflectionless even in the
limit of high resolution, and does no better than a non-PML absorber. Inset: reflec-
tion as a function of absorber thickness L for fixed resolution ∼ 50pixels/λ: as the
absorber becomes thicker and the absorption is turned on more gradually, reflection
goes to zero via the adiabatic theorem; PML for the uniform medium only improves
the constant factor.
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is not reflectionless for the exact Maxwell equations.

3.2 PMLs & adiabatic absorbers

One way of understanding why pPML is not reflectionless for a periodic medium was

described in the previous section: the equations with “PML” absorption are no longer

derived via analytic continuation of Maxwell’s equations, and so the fundamental

justification for PML disappears. This has nothing to do with either evanescent

waves or glancing-angle waves, neither of which are present in one dimension, nor

is it a numerical reflection from discretization (since it does not vanish as resolution

is increased). Another way of understanding this is that the propagating waves in

a periodic medium are Bloch waves [3], and consist of a superposition of reflections

from all interfaces (all places where ε changes) in the medium—when we absorb

waves reflected from interfaces within the “PML,” we have effectively terminated the

periodicity and hence see reflections from this termination. (Similar but even stronger

reflections are observed if one terminates the periodicity before it enters the absorbing

region [23].)

However, the inset of Fig. 3-1 shows a way in which the reflections can still be

made small for the periodic medium: by increasing the thickness L of the absorbing

layer. As L is increased, we see that the reflections in all four cases (PML and

non-PML, uniform and periodic) go to zero as 1/L6 asymptotically (although the

periodic media take longer to attain this asymptotic power law). The true PML in

the uniform medium is only different in that it has a better constant factor (which

depends on resolution). The reason for this, as described in the next section, is that all

transition reflections can be understood via the same coupled-mode mechanism, and

the 1/L6 rate is a consequence of the second-derivative discontinuity in s(u) = u2.

This reduction of reflection with L is adiabatic absorption, distinct from the PML

concept, and it is such adiabatic absorption that one must better understand in order

to efficiently truncate periodic media.
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Chapter 4

Smoothness & Reflection

In this section, we demonstrate and explain the relationship between the smoothness

of the absorber profile’s shape function s(u) and the dependence of reflection on

absorber thickness L. The basic principle is that, as L increases, the rate of change of

the absorption (PML or otherwise) becomes more and more gradual—as it approaches

a perfectly uniform (or perfectly periodic) limit, there is an adiabatic theorem stating

that the reflections must go to zero. Such an adiabatic theorem is the well-understood

mechanism behind gradual waveguide tapers [33], and adiabatic theorems also hold

in periodic media with slowly varying unit cells [10], and there is also an adiabatic

theorem for slowly-varying discretized systems [31]. Moreover, as we discuss in the

next section, the rate at which the adiabatic (zero-reflection) limit is approached is

determined by the smoothness of the transition s(u).

4.1 Numerical results

First, however, let us present the results of numerical experiments using second-order

FDFD discretization for four structures: uniform and periodic media in one and

two dimensions (with continuous and discontinuous ε, respectively). The reflection

versus PML/pPML absorber length L in one dimension is shown for uniform media

in Fig. 4-1 and for a periodic medium (the same medium as for Fig. 3-1) in Fig. 4-2,

for a variety of shape functions s(u) = ud for exponents d ∈ {1, 2, 3, 4, 5}. In both
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cases, there is a striking pattern: the reflection asymptotically follows a power law

1/L2d+2, which we will explain analytically below in terms of the smoothness of s(u).

In two dimensions, we looked at the boundary reflection from a point source at

the center of the cell. In this case, defining a single “reflection” coefficient is more

difficult because the point source emits waves at multiple angles. Instead, we look at

the convergence of the electric field as L is increased, and defined a field convergence

factor

|E(L+1)
z (x, y) − E

(L)
z (x, y)|2

|E(L)
z (x, y)|2

(4.1)

in terms of the electric field Ez at a point (x, y) (chosen roughly halfway between the

point source and the absorbing layer) for two PML/pPML thicknesses L and L + 1.

This difference should go to zero as L → ∞, assuming that the reflection goes to

zero in this limit (and hence the field converges to the solution for open boundaries).

Indeed, this adiabatic limit is observed for both the uniform medium (vacuum) in

Fig. 4-3 and for a periodic medium (a square lattice of width-0.7a square air holes in

ε = 12) in Fig. 4-4. Again, there is a simple power-law relationship evident in both

plots: when s(u) = ud, the field convergence factor goes as 1/L2d+4.

In 1d, we found that the reflection went as 1/L2d+2 for s(u) = ud, and in 2d

we found that the corresponding field convergence factor went as 1/L2d+4. These

two results are mathematically equivalent, for the following reason. Suppose that

the reflection coefficient (for waves at any angle) goes asymptotically as 1/L2α for

some exponent α; it follows that the reflected electric field goes as 1/Lα, and hence

E(L)(x, y) = E(∞)(x, y)+O(1/Lα). Substituting this expression into eq. (4.1) and ex-

panding in powers of 1/L, one finds that the field convergence factor goes as 1/L2α+2,

exactly the difference of 1/L2 that we observed above. [There is a subtlety in this

derivation: it implicitly assumes that the phase of the O(1/Lα) term, i.e. the reflected

phase, goes to a constant as L → ∞ in order to expand in powers of 1/L. This as-

sumption is confirmed by our numerical results, but it is also predicted analytically

by the coupled-mode theory result eq. (4.3) in the next section.]

25



10
0

10
1

10
2

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

absorber length L

fie
ld

 c
on

ve
rg

en
ce

 ~
 |E

(L
+

1)
 -

 E
( 

L)
|2

linear

quadratic

cubic

quintic

1/L6

1/L8

1/L10

1/L12

1/L14

quartic

L PML

PML

P
M

L

P
M

L

Figure 4-3: Field convergence factor [eq. (4.1)] (∼ reflection/L2) vs. PML thickness
L for 2d vacuum (inset) at a resolution of 20pixels/λ for various shape functions s(u)
ranging from linear [s(u) = u] to quintic [s(u) = u5]. For reference, the corresponding
asymptotic power laws are shown as dashed lines. Inset: ℜ[Ez] field pattern for the
(point) source at the origin (blue/white/red = positive/zero/negative).

26



10
0

10
1

10
-35

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

absorber length L / a

fie
ld

 c
on

ve
rg

en
ce

 ~
 |E

(L
+

1)
 -

 E
(L

) |2

1/L12

quartic

1/L14

quintic

1/L6

linear

1/L8

quadratic

1/L10

cubic

pPML

pPML

pP
M

L

pP
M

L

pPML

pPML

pP
M

L

pP
M

L

L

a

Figure 4-4: Field convergence factor [eq. (4.1)] (∼ reflection/L2) vs. pPML thickness
L for the discontinuous 2d periodic medium (left inset: square lattice of square air
holes in ε = 12) with period a, at a resolution of 10pixels/a with a vacuum wavelength
λ = 0.6667a (not in a band gap) for various shape functions s(u) ranging from linear
[s(u) = u] to quintic [s(u) = u5]. For reference, the corresponding asymptotic power
laws are shown as dashed lines. Right inset: ℜ[Ez] field pattern for the (point) source
at the origin (blue/white/red = positive/zero/negative).

27



4.2 Analysis

The natural way to analyze waves propagating along a medium that is slowly vary-

ing in the propagation direction (say x) is coupled-mode theory (or coupled-wave

theory) [10, 34]: at each x, one expands the fields in the basis of the eigenmodes

(indexed by ℓ) of a uniform structure with that cross-section in terms of expansion

coefficients cℓ(x). (The eigenmodes have x-dependence eiβℓx for some propagation

constants βℓ.) The expansion coefficients cℓ in this basis are then determined by a

set of ordinary differential equations for dcℓ/dx coupling the different modes, where

the coupling coefficient is proportional to the rate of change [here, the derivative

s′(x/L)]. In the limit where the structure varies more and more slowly, the solution

approaches an “adiabatic” limit in which the cℓ are nearly constant (i.e. no scattering

between modes). Although coupled-mode theory was originally developed for media

that are slowly varying in the propagation direction [34], it has been generalized to

periodic media with a slowly varying unit cell [10], in which very similar coupled-

mode equations appear. A similar adiabatic limit has also been derived for slowly

varying discrete systems. Using coupled-mode theory, one can derive a universal rela-

tionship between the smoothness of the rate of change [s′(u)] and the asymptotic rate

of convergence to the adiabatic limit. This relationship, derived below, analytically

predicts the convergence rates of the reflection with absorber length observed in the

previous section.

4.2.1 Coupled Mode Theory

We omit the derivation of the coupled-mode equations here; their general form is

considered in detail elsewhere [10, 34]. We simply quote the result: in the limit of

slow variation (large L), the equations can be solved to lowest order in 1/L in terms

of a simple integral. In particular, if the structure is smoothly parameterized by a

shape function s(x/L) (e.g. the absorption profile as given here), then the amplitude

cr (corresponding to a reflected power |cr|2) of a reflected mode is given to lowest-order
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(for large L) by [10]:

cr(L) =

∫ 1

0

s′(u)
M [s(u)]

∆β[s(u)]
eiL

R

u

0
∆β[s(u′)]du′

du. (4.2)

Here, M is a coupling coefficient depending on the mode overlap between the incident

and reflected field (in the changing part of the structure) and ∆β 6= 0 is the difference

βi − βr between the propagation constants of the incident and reflected modes. Both

of these are some analytic functions of the shape s(u). In general, there may be more

than one reflected mode, and in a periodic structure the coefficient even for a single

reflected mode is a sum of contributions of above form from the different Brillouin

zones [10], but it suffices to analyze the rate of convergence of a single such integral

with L. The basic reason for the adiabatic limit is that, as L grows, the phase term

oscillates faster and faster and the integral of this oscillating quantity goes to zero.

4.2.2 Fourier Analysis

There are many standard methods to analyze the asymptotic (large L) properties of

such an integral. In particular, we apply a technique that is commonly used to analyze

the convergence rate of Fourier series: one simply integrates by parts repeatedly until

a nonzero boundary term is obtained [35, 36]. Each integration by parts integrates

the eiL
R

∆β term, dividing the integrand by iL∆β(u), and differentiates the s′M/∆β

term. After integrating by parts d times, the boundary term at u = 0 is zero if

the corresponding derivative s(d)(0+) is zero, whereas the boundary term at u = 1 is

always negligible because of the absorption (leading to a complex ∆β and exponential

decay), assuming a small round-trip reflection R0. The dominant asymptotic term

is the first (lowest-d) u = 0 boundary term that is nonzero, since all subsequent

integrations by parts have an additional factor of 1/L. [Here, we have assumed that

s is a smooth function in (0, 1) so that there are never delta-function contributions

from the interior.] The result is the following asymptotic form for cr(L), independent
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of the particular details of the geometry or the modes:

cr(L) = s(d)(0+)
M(0+)

∆β(0+)
[−iL∆β(0+)]−d + O(L−(d+1)), (4.3)

where s(d)(0+) is the first nonzero derivative of s(u) at u = 0+, and integrating by

parts d times yielded a division by (−iL∆β)d (flipping sign each time). This result

corresponds to what is sometimes called “Darboux’s principle:” the convergence is

dominated by the lowest-order singularity [36], which here is the first discontinuity

in the rate of change s′(u) at u = 0. A similar result applies, for example, to the

convergence rate of a Fourier series: a function that has a discontinuity in the d-

th derivative has a Fourier series whose coefficients cn decrease asymptotically as

1/n(d+1) [35,36] (the d + 1 instead of d is due to the fact that our integral starts with

s′).

Equation (4.3) would seem to imply that the reflection ∼ |cr|2 is O(L−2d), but

this is not the case because there is a hidden 1/L factor in the coupling coefficient

M , thanks to the 1/L dependence of σ0 in eq. (2.10). The coupling coefficient M

is a matrix element proportional to the rate of change of the materials [10], which

in this case is ∂σ
∂u

= s′(u)σ0 ∼ 1/L. Therefore, the reflection scales as |M |2/L2d =

O(L−(2d+2)), exactly corresponding to our numerical results above.

Other useful results can be obtained from eq. (4.3), and in particular one can show

that the reflections due to nonuniformity worsen in a periodic structure as a flat band

edge (β0, ω0) is approached [33]. As a quadratic-shaped band-edge ω−ω0 ∼ (β−β0)
2

is approached, the group velocity vg = dω
dβ

scales proportional to β − β0, while the

∆β between the forward and reflected modes is 2(β − β0) ∼ vg. Also, the coupling

coefficient M is proportional to 1/vg because of the constant-power normalizations

of the incident and reflected modes [10, 33]. Hence, by inspection of eq. (4.3), the

reflection |cr|2 = O(v
−(2d+4)
g ). For example, the reflection is O(v−6

g ) for a linear taper

s(u) = u [33]. Because of this unfavorable scaling, an imperfect absorbing layer such

as a pPML is most challenging in periodic structures when operating close to a band

edge where there are slow-light modes (in the same way that other taper transitions
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are challenging in this regime [33]).

4.3 Adiabatic theorems in discrete systems

There is one thing missing from the above analysis, and that is the discretized-space

adiabatic case. In a slowly varying discrete system [i.e, sampling some slow change

sn = s(n∆x/L) as L grows larger], there is still a proof of the adiabatic theorem

(cr → 0), but the only published proof is currently for the lossless case (unitary evo-

lution) [31]. Also, an analogous integral form of the lowest-order reflection has not

been presented, nor has the rate of convergence to the adiabatic limit been analyzed

in the discrete case. So, our prediction of the asympototic convergence rate is rigor-

ously proven only for the case of the continuous-space wave propagation. However,

our numerical results demonstrate that a slowly-changing discretized system exhibits

exactly the same scaling (e.g. in the PML case for uniform media, where the only

reflections are due to discretization). (This seems analogous to the fact that the dis-

cretization error of a discrete Fourier transform converges at the same rate as the

decay of the coefficients of the continuous-space Fourier series [36].) In future work,

we hope to further validate our numerical result for the convergence rate in discretized

space with a proper generalization of the coupled-mode analysis.
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Chapter 5

Towards Better Absorbers

From the previous section, there is a close relationship between the smoothness of

the absorption profile and the asymptotic convergence rate of the reflections R(L)

as a function of absorber thickness L: if the profile s(u) has a discontinuity in the

d-th derivative (e.g. for s = ud), then the reflection coefficient goes as 1/L2d+2 for a

fixed round-trip reflection. This result raises several interesting questions. Can one

do better than polynomial convergence? What is the optimal shape s(u)? And what

if the round-trip reflection is not fixed?

5.1 Smoothness & C∞ functions

The above result relating smoothness and convergence has a natural corollary: if s(u)

is C∞, i.e. all of its derivatives are continuous, then the reflection goes to zero faster

than any polynomial in 1/L. This is similar to a well-known result for the conver-

gence of Fourier series of C∞ functions [36]; the exact rate of faster-than-polynomial

convergence again depends on the strongest singularity in s(u). For example, for

s(u) = (tanh(u) + 1)/2, which goes exponentially to zero as u → −∞ and to one

as u → +∞, the reflection should decrease exponentially with L, as determined by

contour integration from the residue of the pole at u = ±iπ/2 that is closest to the

real axis (similar to the analysis for the convergence of a Fourier series for an analytic

function [36,37]). However, such an absorption taper would require an infinitely thick
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Figure 5-1: Reflectivity vs. PML thickness L for 1d vacuum (blue circles) at a
resolution of 50pixels/λ, and for pPML thickness L in the 1d periodic medium of
Fig. 4-2 (red squares) with period a at a resolution of 50pixels/a with a wavevector
kx = 0.9π/a (vacuum wavelength λ = 0.9597a. In both cases, a C∞ (infinitely
differentiable) shape function s(u) = e1−1/u for u > 0 is used, leading to asymptotic

convergence as e−α
√

L for some constants α.
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absorber in order to avoid discontinuously truncating the exponential tail of tanh(u).

To have a C∞ function with a finite absorber, with s(u) = 0 for u ≤ 0, the s(u) func-

tion must be non-analytic; a standard example of such a function is s(u) = e1−1/u

for u > 0 (all of whose derivatives go to zero as u → 0+, where there is an essential

singularity). Because s(u) = e1−1/u is C∞, its reflection R(L) must decrease faster

than any polynomial. Exactly how much faster than polynomial is determined by

asymptotically evaluating the integral of eq. (4.2) by a saddle-point method [38, 39]:

the result is that R(L) decays asymptotically as e−α
√

L for some constant α > 0 [38].

This is confirmed by Fig. 5-1, which plots the PML/pPML reflection for the 1d uni-

form and periodic cases on a semilog scale versus
√

L, and results clearly approach a

straight line as expected.

Although s(u) = e1−1/u yields an exponential convergence of the absorption in

Fig. 5-1, the constant factor and the exponential rate are almost certainly suboptimal

for this arbitrary choice of C∞ function. If we compare Fig. 5-1 to Fig. 4-1 for the

uniform case and Fig. 4-2 for the periodic case, we see that this C∞ s(u) is superior

to the polynomial s(u) for the periodic case where PML is not perfect, but inferior for

the uniform case until the reflection becomes inconsequential (∼ 10−20). This is still

a useful result in the sense that one mainly needs to improve pPML for the periodic

case, whereas PML is already good enough for uniform media. However, one would

ideally prefer a shape function that is consistently better than the polynomial s(u),

regardless of the dielectric function, so further exploration of the space of possible

absorption profiles seems warranted.

5.2 Balancing round-trip & transition reflections

Finally, in the above analysis we fixed the round-trip reflection R0, via the estimate

of eq. (2.8), to approximately 10−25 in order for our calculations to isolate the effect

of the transition reflection. Obviously, in a real application, one is unlikely to require

such low reflections and one will set R0 to a larger value, corresponding to a larger

σ0 ∼ ln R0 in eq. (2.10). This will also reduce the transition reflection [as seen from
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eq. (4.3)], but only by a logarithmic constant factor. The best choice to minimize

reflection for a given absorber length, in principle, is to set R0 to be roughly equal

to the transition reflection for that length. (Another reason to make them equal

is the possibility of destructive interference between the round-trip and transition

reflection [12], but such destructive interference is inherently restricted to narrow

bandwidths and ranges of incident angles and so we do not concern ourselves with

this possibility.) In order to make them roughly equal, one needs an estimate of the

transition reflection; for example, one could simply numerically fit the power law of

eq. (4.3). The result of such matching is shown in Fig. 5-2 for a quadratic profile

s(u) = u2 in 1d uniform media, and the overall reflection is reduced by a factor of

3–400 compared to a fixed R0 = 10−16. This is a significant reduction, but is not

overwhelming (especially for smaller L) and changes the asymptotic convergence rate

eq. (4.3) only by a factor of lnR0 ∼ ln L. The drawback of this optimization is that

it is difficult to determine the transition reflection analytically for inhomogeneous

media, and so one is generally forced to make a conservative estimate of R0, which

reduces the advantage gained.
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Chapter 6

Conclusion

Perfectly matched layers are an extraordinarily powerful technique to absorb waves

incident on the boundaries of wave-equation simulation, but they are not a panacea.

In particular, for cases such as photonic crystals where the medium is not analytic in

the direction perpendicular to the boundary, the fundamental coordinate-stretching

idea behind PML breaks down, and the interface has intrinsic reflections (even for

simple 1d cases with only normal-incident non-evanescent waves). However, one can

still obtain small reflections by gradually ramping up the “pseudo-PML” (pPML)

absorption, similar to the idea behind the quadratic PML profiles commonly used

to circumvent discretization-based reflections in uniform media, forming an adiabatic

absorber. In fact, for both cases (pPML in periodic media and PML in discretized

uniform media), we show that the basic mechanism behind the reflection is deter-

mined in the same way by the smoothness of the absorption profile, which can be

predicted analytically by coupled-mode theory. More generally, an adiabatic absorber

is applicable in any situation where a true PML is inconvenient or impossible to im-

plement.

The same theory then predicts that an exponential absorber, one whose reflections

decrease exponentially with some power of the absorber thickness L, is possible, for

example by using an infinitely differentiable absorption profile. (In contrast, ordinary

PML in a uniform medium with a quadratic profile is not an exponential absorber: its

numerical-discretization reflections decrease as 1/L6.) We gave a simple C∞ example
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profile that led to such exponential absorption, but much future work remains to

be done in identifying profiles with both exponential absorption and good constant

factors. In particular, one possibility that we will examine in a subsequent manuscript

is an absorption profile whose smoothness increases with L, so that it matches simple

quadratic profiles for small L but becomes exponentially smoother with large L.

(Such L-varying profiles require a more careful convergence analysis, however, in

order to ensure that they approach the adiabatic zero-reflection limit. A closely

related mathematical idea is explored in Ref. 38.)
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Appendix A

Fourier analysis of reflection

coefficient

Here we show how eq. (4.3) is derived from eq. (4.2) using the methods of Fourier

analysis, specifically the integration by parts method. We start with

cr(L) =

∫ 1

0

s′(u)
M [s(u)]

∆β[s(u)]
eiL

R

u

0
∆β[s(u′)]du′

du (A.1)

where the upper bound of the integral can be extended to +∞ since ∆β[s(u′)] =

2k + 2iσ(u) is itself complex owing to the absorption profile σ = σ0s(u) within the

“PML” region. Using this fact with slight rearrangement of the terms, we arrive at:

cr(L) ≈
∫ ∞

0

s′(u) M [s(u)]
∆β[s(u)]

iL∆β[s(u)]

d

du

[

eiL
R

u

0
∆β[s(u′)]du

]

du. (A.2)

Equation (A.2) is now in the standard form of
∫

udv = uv −
∫

vdu and after one

iteration of integration by parts becomes:

cr(L) =
s′(u) M [s(u)]

∆β[s(u)]

iL∆β[s(u′)]
eiL

R

u

0
∆β[s(u′)]du |∞0+ −

∫ ∞

0

[

s′(u) M [s(u)]
∆β[s(u)]

iL∆β[s(u′)]

]′

eiL
R

u

0
∆β[s(u′)]du. (A.3)

The first term with integral bounds is zero as s′(0+) = 0 on the left boundary and

exponentially approaches zero on the right boundary. This iteration repeats until a
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discontinuity is reached when s(d)(0+) 6= 0 resulting in:

cr(L) =
s(d)(0+) M(0+)

∆β(0+)

[−iL∆β(0+)]d
+ O

(

1

L(d+1)

)

. (A.4)
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