
Estimating Phytoplankton Growth Rates from

Compositional Data
by

Lorraine Thomas
Submitted to the Joint Program in Oceanography / Biological I

Oceanography
Massachusetts Institute of Technology

and Woods Hole Oceanographic Institution
in partial fulfillment of the requirements for the degree of

Master of Science in Biological Oceanography

MASSACHUETTS INW S
OF TECHNOLOG

JUN 1,9 2001

LIBRARIEI
at Lthe

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 2008 ARC

@Lorraine Thomas. All rights reserved.
The author hereby grants to MIT and WHOI permission to reproduce

and to distribute publicly paper and electronic copies of this thesis
document in whole or in part in any medium now known or hereafter

created.

Author
Joint Program in Oceanograpfly / Biological Oceanography--

Massachusetts Institute of Technology
and Woods Hole Oceanographic Institution

,, January 18, 2008

Certified by
Michael Neubert

Associate Scientist, Woods Hole Oceanographic Institution
Thesis Supervisor

Certified by
Heidi Sosik

Associate Scientist, Woods HSde Oceanographic Institution

Accepted by
Thesis Supervisor

Edward DeLong

Chair, Joint Committee for Biological Oceanography
Massachusetts Institute of Technology

Y

S

rrvE;S

Estimating Phytoplankton Growth Rates from

Compositional Data

by

Lorraine Thomas

Submitted to the Joint Program in Oceanography / Biological Oceanography
Massachusetts Institute of Technology

and Woods Hole Oceanographic Institution
on January 18, 2008, in partial fulfillment of the

requirements for the degree of
Master of Science in Biological Oceanography

Abstract

I build on the deterministic phytoplankton growth model of Sosik et al. by introducing
process error, which simulates real variation in population growth and inaccuracies
in the structure of the matrix model. Adding a stochastic component allows me to
use maximum likelihood methods of parameter estimation.

I lay out the method used to calculate parameter estimates, confidence intervals,
and estimated population growth rates, then use a simplified three-stage model to
test the efficacy of this method with simulated observations. I repeat similar tests
with the full model based on Sosik et al., then test this model with a set of data from
a laboratory culture whose population growth rate was independently determined.

In general, the parameter estimates I obtain for simulated data are better the
lower the levels of stochasticity. Despite large confidence intervals around some model
parameter estimates, the estimated population growth rates have relatively small
confidence intervals. The parameter estimates I obtained for the laboratory data fell
in a region of the parameter space that in general contains parameter sets that are
difficult to estimate, although the estimated population growth rate was close to the
independently determined value.

Thesis Supervisor: Michael Neubert
Title: Associate Scientist, Woods Hole Oceanographic Institution

Thesis Supervisor: Heidi Sosik
Title: Associate Scientist, Woods Hole Oceanographic Institution

Acknowledgments

Throughout this project, I benefited from the advice of many people. I'd like to par-

ticularly thank my advisors, Mike Neubert and Heidi Sosik for their help, particularly

figuring out what the most recent set of results implied for the debugging process,

and assistance and guidance during the writing process. Andy Solow also provided

insight into several statistical questions that arose. Mick Follows not only served on

my thesis committee, but provided helpful notes in a very short time frame. The

Neubert/Caswell lab group was also very supportive, particularly when it came to

general tools for doing mathematical modeling research. Beyond the details of this

project, I'd like to thank Stephanie Jenouvrier and Carly Strasser, as well as the

other Biological Oceanography students for their friendship during my time here, and

Erin Dupuis for helping me with several logistical issues. My research was supported

by MIT, the Woods Hole Oceanographic Institution, and a grant from the National

Science Foundation (OCE-0530830).

Contents

1 Introduction 15

2 Methods 19

2.1 Structure of the model 19

2.2 Parameter estimation 21

2.3 Practicalities 22

3 Three stage model 25

3.1 Basic matrix population model 25

3.2 Parameter estimate distribution for an artificial observation 28

3.3 Bias and normality 32

3.4 Effect of epsilon 34

3.5 Equilibrium 35

3.6 Accuracy across parameter space 36

3.6.1 Total Error 37

3.6.2 Relative error and confidence interval size 37

3.7 Implications 39

3.7.1 Accuracy of confidence intervals 52

4 Full model 57

4.1 Model description 57

4.2 Optimization using maximum likelihood 60

4.3 Test scenarios 60

7

4.3.1 Scenario results 63

4.3.2 Conclusions regarding artificial observations 71

4.4 Laboratory observation 71

5 Conclusions 77

5.0.1 Limitations 78

5.0.2 Future directions 79

A Three stage code 83

A.1 bootstrap_nest_ci 83

A.2 calc_a 85

A.3 calcbig-_acc 85

A.4 calcdir_like 89

A.5 calc_equilibobs 90

A.6 (calcgrowth 92

A.7 calc_obs 93

A.8 dircalc 93

A.9 draw_from_dir 94

A.10 equi_obs_bootstrap 94

A.11 recurse_opt_params 96

A.12 transform 100

A.13 untransform 102

B Full model code 105

B.1 bootstrapci_growth 105

B.2 calc_a 106

B.3 calcb 110

B.4 calcdir_like 111

B.5 calc_growth 112

B.6 calc_obs 113

B.7 dircalc.................... 114

8

B.8 day733033_2_const 115

B.9 drawfrom_dir 116

B.10 loadconst 117

B.11 recursecheat_paramns 119

B.12 recurseinfinite_rand 124

B.13 transform 128

B.14 untransform 131

List of Figures

2-1 Parameter transformation diagram

3-1 Life cycle graph for three stage model 26

3-2 Incident radiation and cell growth rate curves 27

3-3 Sample population distribution 28

3-4 Relation of sample popllation distribution to 29

3-5 Asymptotic and bootstrap parameter distributions 30

3-6 Sample 10-day observation 32

3-7 Parameter estimate distributions for 10-day observation 33

3-8 Sample observation when population starts at equilibrium 35

3-9 Total relative error across parameter space 38

3-10 Relative error of c estimates 40

3-11 Confidence interval size of c estimates 41

3-12 Relative error of 62 estimates 42

3-13 Confidence interval size of 62 estimates 43

3-14 Relative error of 63 estimates 44

3-15 Confidence interval size of 63 estimates 45

3-16 Relative error of ¢ estimates 46

3-17 Confidence interval size of 4 estimates 47

3-18 Relative error of p. estimates 48

3-19 Confidence interval size of pi estimates 49

3-20 Estimates of p as function of parameters 50

3-21 Estimates of fp as a function of true p 51

3-22

3-23

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

Parameter estimate accuracy

Population growth rate accuracy

Life cycle graph for full model

Cell growth rate functions

Cell division rate functions

Initial population distribution

Incident radiation

Growth and division scenarios for i = 106

Growth and division scenarios for 1 = 105

Growth and division scenarios for = 104

Growth and division scenarios for 1 = 103

Estimates of p as a function of true . . .

Laboratory observation estimates

. . . 54

. . . 55

.. . . . 58

... . . . 61

.. . . . 61

... . . . 62

.. . . . 63

. 64

. 67

... 69

. 72

. 74

. 76

List of Tables

3.1 Asymptotic and bootstrap parameter estimates 31

3.2 Skew of parameter distributions 31

3.3 Parameter estimates for 10-day observation 33

3.4 Skew of parameter estimates for 10-day observation 34

3.5 Parameter estimates for c = 10-10 and e = 0 35

3.6 Parameter estimates for observation starting at equilibrium 36

4.1 Growth and division scenario parameters 62

4.2 Parameter estimates for four scenarios with 6 = 106 65

4.3 Parameter estimates for four scenarios with 1 = 105 68

4.4 Parameter estimates for four scenarios with 1 = 10 70

4.5 Parameter estimates for four scenarios with 1 = 103 73

4.6 Parameter estimates for laboratory observation 75

Chapter 1

Introduction

Current methods for ineasuring p)hytoplankton population growth rates fall into two

categories: laboratory and in situ methods. Population growth rates mneasured in

laboratory cultures only reflect population growth in an artificial setting. In situ

methods often involve large amounts of time in the field, making them expensive for

long term stlludies. Reynolds [11] describes several modern methods involving large

enclosures, hourly sampling, or time-intensive handling of field samples.

Emerging approaches such as alltomated flow cytoinmetry promise to overcome

some limitations of conventional methods. For example, FlowCytobot, a sui)nersible

flow cytonmeter, can autonomously mionitor phytoplankton cell size (distributions over

time [10]. FlowCytobot draws water from a particular depth and imeasures light scat-

tering and fluorescence of each particle passing through the system. These measllre-

ments can be used to identify various taxa and determine cell size. Other instruments

deployed at the same study site monitor light level, water temperature, salinity and

other environmental characteristics.

Because of these sampling capalb)ilities, submnersible flow cytometry offers a new

way to monitor phytoplankton population dlynamics. Motivated by the availability

of this information, we can build new mnodels to estimate population growth rates.

For example, Sosik et al. [12] have developed a deterministic model, to estimate

population growth rates of the cyanlobacteria Syncchococcus from time series of cell

size distributions. Because their analysis relies on relative abundance, rather than

total number of phytoplankton in each size class, they avoid mistaking changes in

cell concentration due to advection and patchiness for changes due to population

growth. To convert these relative abundances into population growth rates, they

used a matrix population model [5]. The model has terms for cell growth, stasis and

division, and includes terms that represent the effects of measured light level. This

model is described in detail in Chap. 4.

Sosik et al. [12] estimated the parameters in their model by minimizing a weighted

sum of squared deviations between the observed and modeled size (listributions. Io

calculate confidence intervals, they generated bootstrapped data sets by sampling

from the real data and estimating parameters for each data set.

I build on the deterministic model of Sosik et al. [12] by introducing process

error, which simulates real variation in population growth and inaccuracies in the

structure of the matrix model [4]. For the sake of simplicity and tractability, I ignore

observation error. (See, however, Calder et al. [4], who point out that this can lead

to errors in parameter estimation.) Adding a stochastic component allows me to

use maximum likelihood methods of parameter estimation. With known asymptotic

approximations [3], I can also calculate confidence intervals around the parameter

estimates without resorting to the bootstrap.

In Chap. 2, I describe the new stochastic model and the parameter estimation

method. Because the estimation of population growth rate is a central problem in

population biology, and because time series of p)roportions are likely to appear in

other biological applications (e.g., epidemiology), my presentation in Chap. 2 is as

general as possible. I use a simplified three-stage model to test the efficacy of the

method. The results appear in Chap. 3. In Chap. 4, I report the results of similar

tests I performed with the full model described by Sosik et al. [12]. These tests

use simulated data sets to determine the predictive abilities and limitations of the

method. I have additionally tested the method using a set of data obtained from a

laboratory culture, whose population growth rate was independently determined.

In general, the parameter estimates I obtain for simulated data are better the

lower the levels of stochasticity. Despite large confidence intervals around some model

parameter estimates, the estimated popullation growth rates have relatively small

confidence intervals. The parameter estimates I obtained for the laboratory data fell

in a region of the parameter space that in general contains parameter sets that are

difficult to estimate, although the estimated population growth rate was close to the

independantly determined value.

Chapter 2

Methods

2.1 Structure of the model

iWe begin by dividing the population into m stages. Let the ith component of the

vector wt, wwt) be the fraction of cells in stage i. Our population growth model

describes the dynamics of wt.

The model has two components: a projection ma.trix component and a stochastic

component. First we calculate the expected size distribution at time t, vt(0) from

the observed distribution at time t - 1 via

B1-1(9)wti-v (0) =Bt(O)w (2.1)IIB,-_ (0)wt-- II

where(I w = EI• w(=). In the projection ma,trix B1(9), the entry b3 (0) in the ith

row and jth column gives the number of cells in stage i at time t + 1 per cell in stage

j at time t. These entries are based on formulas for cell growth, stasis and division,

which in turn may depend on environmental covariates (e. g., light or temperature)

and model parameters 9.

Next, we assume that the actual stage distribution at time t is drawn from a proba-

bility density function whose expectation is vt(0). Because, by definition, Ei 111i) = 1,

our choice of probability density function is constrained. The most popular choice [7]

is the Dirichlet distribution [6], whose probability density function is

f(wlv(0),) = i) r(H)
fi = r(01ii)0) i=1

(2.2)

wt - Dir(Ovt(O)). (2.3)

The initial distribution wo is assumed to be known.

The precision parameter 0 is part of the vector 0 of model parmnaeters to estimate.

It is inversely proportional to the variance of the Dirichlet distribution. In particular,

the variance and covariances are given by

w(i)(1 - w(i))
Var[w ()] =

¢+1
(2.4)

(2.5)
Q+1

A Dirichlet random variate can be generated by first generating gamma random

variates (with expected values v(")(0)) according to

y() ~ Gainmma(v() (0), 1). (2.6)

The components of the Dirichlet random variate are then calculated with

- y(i)
C•m~ y(j)Ej=lY

(2.7)

where rn is the number of stages [6].

To calculate the population growth rate, the population is first projected forward

over the course of an entire day:

u(O) = [t BI(0) wo.
t=0 (2.8)

Thus

and

Cov[w(i) , w(j)]

We then calculate the population rate, /i, as

in

i (0) = Il _UM (0). (2.9)
i=1

Note that this deterministic measurement does not directly depend on the precision

parameter 5, but only on the components of B.

2.2 Parameter estimation

The conditional likelihood of an observed time series wt (conditioned oil wo) as a

function of the model parameters (0) caln be written:

7,

L(wwo,) = I f(wklvk (0), 0) (2.10)
k=1

with vk(0) given by (2.1). Maximum likelihood estimation amounts to maximizing

the conditional likelihood over 0 [3]. I denote the estimate 9.

In practice, the minimum of the negative log likelihood (-l(wt Iwo, 0)) is typically

calculated. From (2.2), the negative log likelihood simplifies to

-l(wtlwo, O) = ln 1F(q) + ln F(pvt) (0) - (vO (0) - 1)ln . (2.11)
k=1 i=1 i=1

As mentioned in the introduction, one advantage of the maximum likelihood

method is the ease of calculation of confidence intervals for our estimate 0. Asymp-

totically, the estimates have a multivariate normal distribution.

The variance-covariance matrix of this distribution is found by taking the inverse

of the observed Fisher information matrix [3]. The observed Fisher information matrix

(1) is defined as
d
2

1(0) = d2 0= (2.12)

Conveniently, the maximum likelihood estimation of a function of 0 is simply the

function of the maximum likelihood estimate of 0. Thus fi = p(O).

2.3 Practicalities

In implementing the maximum likelihood procedure above, I encountered various

practical issues.

Numerical Optimization In order to use an unconstrained optimization routine,

I transformed the model parameters (0) from their natural ranges ([0, cc] and [0, 1])

to values which range from -oo and oc (Fig. 2-1) via O' = g(O). I then found the

maximum likelihood estimate of the transformed parameter vector, 0'. Finally, I

applied the inverse transform g-'(0') to calculate original parameters 0.

o -g(o)-e'

O'

e-g (93-e'
Figure 2-1: Diagram of parameter transformation and maximum likelihood estima-
tion.

Asymptotically, the distributions of 0 and 9' will both be normally distributed and

unbiased. In practice these distributions may differ because the rate of convergence

to normality will differ [3]. We can take advantage of the fact that 9' converges faster

when we calculate confidence intervals on 9.

To calculate these asymptotic confidence intervals, we invert the Fisher infor-

mation matrix that corresponds to the transformed parameter estimate 9' to get a

matrix of variances and covariances for the transformed parameters. We then draw

500 random variables from a multivariate normal distribution with mean 0' a.nd cor-

responding variance/covariance matrix, then untransform them to get an asymptotic

distribution of parameter estimates 0. We then calculate a 95% confidence interval for

each parameter by finding the 12th smallest and largest values in each distribution.

We also calculate the projected population growth rate, fi, corresponding to ea.ch set

of parameter estimates.

Zeros One drawback to the Dirichlet distribution is that by definition the proba-

bility of having an empty size class is 0.

Grunwald et al. [7] note that this problem is still present for alternative proba-

bility distributions and propose a solution involving conditional distributions on the

boundaries as described in a 1982 pap.er by Aitchison [1]. Aitchison also proposed a

simpler ad-hoc solution for situations with only a few zeros [1]. I used Aitchison's

solution, adding an arbitrarily small amount (e = 10-10) to each size class when

projecting forward, but before renorinalizing. This is done at each time step, and

changes all zero entries into amounts we assume are below the detection threshold of

actual data-gathering devices. I later did the same with the laboratory data used in

the full model (See Chap. 4).

In theory, if there are no zeros in the observations or starting points used for the

matrix population model, the expected popula.tion distribution vt(0) should never

contain zeros. In practice, however, there are times when the projected proportion

in a size class is a small fraction of a small initial proportion, and the resulting

proportion is rounded to zero because of the way my implementation stores data. I

used the same approach of adding e = 10 - 10 to eliminate these zeros.

Chapter 3

Three stage model

To evaluate the strengths and weaknesses of the maximum likelihood method, I de-

signed a simplified version of the full phytoplankton growth model. This simple model

has three size classes of plankton, cell growth dependent on external forcing and size

dependent cell division rates. In this section, I examined assumptions about normal-

ity of parameter estimate distributions, the effects of removing zeros, and the impact

of the starting population distribution. I also examined the accuracy of the parameter

and population growth rate estimates over a. wide range of parameter values.

3.1 Basic matrix population model

For the three stage model, I use a life cycle scheme that includes cell growth, division

and stasis (Fig. 3-1). The cell division rates, 62 and ý6 are parameters to be fit. An

additional parameter c reflects how cell growth - 1 depends on external forcing (e.g.,

light) that follows a normal distribution over the course of a day (Fig. 3-2):

M (t)= ()(3.1)c + E(t)

8(t) = 1 - (t-12)2 /72. (3.2)
6v•7

1The constant c and function e are non-physical quantities meant to represent variation, and
have no units.

282 283

7(1-4)

(1-y)(1-4) (1-4)

Figure 3-1: Life cycle graph for the three stage model. In our model, stages 1, 2, and
3 represent small, medium and large phytoplankton. Medium cells divide at a rate
62, large cells at a rate 63. Both small and medium cells grow as a function of c and
the level of incident radiation 8.

1-y

t -n

nA "7VU.U

0.06

0.05

- 0.04

0.03

0.02

0.01

0

p

i I
I

0 10 20
Time (hr) e (rel. units)

Figure 3-2: Incident radiation (3.2) as a function of time, and cell growth rate (3.1)
as a function of incident radiation. with c = 0.5, in the three stage model.

The projection matrix Bt, in (2.1), now takes tile form

I - 7() 262 0
Bt = (t) (1 - 7(t))(1 - 62) 263 (3.3)

0 y(t)(1 - 62) 1 -63

and 0 = [c, 62, 3,]

For a typical realization of the model starting from a uniform initial population

distribution w) = 1/3, the population slowly reaches equilibrium, with approxi-

mately 2/3 large, under 1/3 medium, and 1/10 small phytoplankton (Fig. 3-3). When

multiple sample observations are considered, we see that the variance in model size

distributions increases as 0 decreases (Fig. 3-4).

r
IL
C
v

0.(

0oe

0.;

0.

0.'

5 10 15 20
Time (hr)

Figure 3-3: Time series of continuous proportions for three stage model. Sample
observation generated with c = 0.5, 62 = 0.01(h-1), 63 = 0.01(h-1), and 0 = 104. The
red x line corresponds to small, the green circles to mediulm and the blue diamonds
to large phytoplankton.

3.2 Parameter estimate distribution for an artifi-

cial observation

As a first assessment of the maximum likelihood methods described here, we consider

parameter estimates (0) for observations generated from a single set of known param-

eters: c = 0.5, 62 = 0.01(h-1), 6:3 = 0.01(h-1), and 0 = 104. These parameters were

chosen so that the effect of any single parameter would not predominate when arti-

ficial observations were created, and so that the maximum cell growth and division

rates did not exceed 0.15(h-1).

Based on the properties of maximum likelihood estimation, the distribution of

parameter estimates found by simulating 500 observations from the same parameters

should be asymptotically unbiased and normally distributed. We can calculate the

boundaries on a 95% confidence interval from this distribution by finding the 12th

largest and smallest values. Such a bootstrap distribution should be well approxi-

= 103

0.5

5 10 15 20
1I

S0.5
0

0

5 10 1520

S0.5
0

a.
5 10 1520

Time (h)

= 104.5

0.5

5 10 15 20
1

0.5

5 10 1520

0.5

5 101520
Time (h)

= = 106
1

0.5

5 10 15 20
1

0.5

0
5 10 1520

1

0.5

5 10 1520
Time (h)

Figure 3-4: Time series of proportion in each size class, with c = 0.5. 62 = 0.01 and
63 = 0.01, for 50 model simulations at each . value; all cases were initialized with
U,)) = 1/3. The top row shows the proportion of large phytoplankton, the middle
row the proportion of medium phytoplankton, and the bottom row the proportion of
small phytoplankton.

100T71 801 7
801 i 60
6C

4C

2C

40-

_' 0 ...

100o

80

60

40-

20-

Atd

80

LI

80I
60

40

20

0
(.37 0.67 0-002 0.019 0.004 0.016 ~.64 2.4

A 1th'r IIA Ihr
-
'

•
A I•VA

Figure 3-5: Histogram of asymptotic (from Fisher information matrix) and bootstrap
parameter distributions and population growth rates for the observations generated
with c - 0.5, 62 - 0.01(h-'), 63 = 0.01(h-'), and < = 10W. The red lines correspond
to the true parameter values, the yellow lines to the maximum likelihood estimates.

mated by the one generated from the observed Fisher information matrix (2.12).

I found that the means of the asymptotic (listributions are not centered on the

true value, but rather on the single maximum likelihood estimate of the parameters

(Fig. 3-5). In contrast, the means of the bootstrap distributions, which are generated

from independent realizations based on the 'true" values, are close to the true values.

All of the asymptotic and bootstrap confidence intervals contain the true paranm-

eter values (Table 3.1). Also, the mean bootstrap parameter estimates of c, 62, 63

and the population growth rate are all accurate within 3%, while the estimate of 0

is off by just over 15%. The asymptotic parameter estimates are less accurate, with

estimates of 62, b and the population growth rate all more than 15% off from the true

60-

o 40.
E-r

LL
20

-0-

80[II

6C

4C

2C

60

i40
o -

20

0 LA

32

·-- u |
nn--7 n) nA A nnla n An, I f11& n A flu -15 I'v.JI u.ur U.~NL V.V)~ V·~N-l V.VIV V.U'1 L.-t V.VV V.JL

J

b
1 MR.-

32

Asymptotic
Max. Like.

Approximation
95% confidence interval

Bootstrap
Mean 95% confidence interval

[0.44, 0.61]
[0.0035, 0.013]
[0.0064, 0.013]
[8.5c3, 1.9e4]
[0.10, 0.25]

0.50 [0.43, 0.60]
0.010 [0.0053, 0.015]
0.010 [0.0064, 0.014]
1.2e4 [7.8e3, 1.8e4]
0.19 [0.12, 0.27]

Table 3.1: Asymptotic and bootstrap mean parameter and population growth rate
estimates and confidence intervals for the observation shown in Fig. 3-3.

Parameter Asymptotic skew Bootstrap skew
c 0.017 0.46
62 (- 1) 1.1 0.0073
63(h -1) 0.67 0.044

0.76 1.1
(d) 0.81 -0.034

Table 3.2: Skew of distribution of parameter estimates with bootstrap distribution
and distribution from Fisher information matrix based on the observation in Fig. 3-3.

value. For a single parameter (62), the asymptotic and bootstrap estimates differ by

as much as 30%. The percent difference of the lower and upper bounds of the con-

fidence intervals generated by the two methods ranges from under 5% for c to over

30% for the lower bound on 62.

The other factor to consider is normality. Visually, several of the the parameter

estimate distributions are non-normal (Fig. 3-5). I quantified this by calculating

the skew of the parameter distributions (Table 3.2). The asymptotic parameter and

population growth rate estimate distributions all show high skew (over 0.5) except

in the c parameter, while for the bootstrap estimate distributions, only (shows high

skew. I discuss the causes of this skew in the next section.

Parameter True value
c

62 (- 1)

63(h-)

it(d)- 1

0.50
0.010
0.010
1.0e4
0.19

0.53
0.0070
0.0093
1.3e4
0.16

C
0t-fO
O0a
0

50 100 150 200
Time (hr)

Figure 3-6: A sample observation of the proportion of plankton in each size class
over 10 days, generated from the three stage model with c = 0.5, 62 = 0.01(h1'),
63 = 0.01(h- 1), (= 104. The red x line corresponds to small, the green circles to
medium and the blue diamonds to large phytopIlankton.

3.3 Bias and normality

How do the results fit with the fact that the maximum likelihood method promises

asymptotically unbiased and normally distributed parameter estimates? These pa-

rameter estimates were based on only 24 size distributions, corresponding to one

day's worth of hourly observations. As the length of the observation increases, bias

in parameter estimates and skew in the parameter distribution should decrease. To

test this, I repeated the calculations of Sec. 3.2 and generated asymptotic and boot-

strap parameter distributions and confidence intervals for a 10-day long simulated

observation (Fig. 3-6). The incident light function S(t) was repeated each (lay.

The bias in parameter estimates decreases compared to the 1-day observations,

with the largest bias just over 10% (Table 3.3). The confidence interval size also

decreases, although in the case of 62, this means it no longer contains the true pa-

rameter value. As in the 1-day case, the other confidence intervals do all contain the

true parameter values.

For the 10-day long observation, there was a significant decrease in skew for all of

-- --- --- ---

o >
0- (< OC

•.0

150

C, 100

37 0.67GoLL 50

81 37 0.67

150

100

C.

)838

6O08

0.32

0.32

Figure 3-7: Histograms of asymptotic p)arameter distributions when the observations
are lengthened to 10 days, with parameters c
and = 104 .

0.5, 62 = 0.01(h-), - 0.01(h-')

Ten day asymptotic
Parameter True value Max. Like. 95% confidence interval
c 0.50 0.52 [0.49, 0.56]
62(h - l) 0.010 0.0090 [0.0080, 0.0099]
63(h -') 0.010 0.0093 [0.0085, 0.010]
0 1.0e4 1.14 [9.2e3, 1.2c4]
Ip(d)1- 0.22 0.21 [0.19, 0.22]

Table 3.3: Asymptotic parameter estimates and confidence intervals when the obser-
vations are lengthened to 10 (days.

E

E

I

82 (hr-
)

3 (hr
-) • (xl 04)

Parameter One day skew Ten day skew
c 0.017 -0.0074
62(h - 1) 1.1 0.067

0.67 0.20
0.76 0.34

.(d)-1 0.81 0.17

Table 3.4: Skew of asymptotic parameter estimate distributions for 1- and 10-day
long observations, based on c = 0.5, 62 = 0.01(11h-1), 63 = 0.01(h-1), and 1 = 104.

the parameters compared to the 1-day case, particularly 62, whose distribution was

the most non-normal in the 1-day case (Table 3.4).

The decrease in skew (Table 3.4) and decrease in bias (Table 3.3) of the 0 estimate

matches expectations about the asymptotic behavior of the model. These findings

confirm that the using ten times as much data substantially improves the parameter

estimate accuracy. Since the 1-day estimate of the population growth rate was close to

the true value, differing by 15% (Table. 3.1), I continue to use the 1-day observations

for my analysis to avoid the computational cost of using 10-day observations.

3.4 Effect of epsilon

In Sec. 2, I made the assumption that adding E = 10-t" to each vector of proportions

and renormalizing would have negligible impact on the parameter estimates. To test

this, I repea.ted the same calculations of asymptotic parameter estimate distributions

with e = 0 (Table 3.5). I was able to do this because the observation in question

(Fig. 3-3) had no zeros in it.

Note that the while the maximum likelihood estimates of the parameter values

differ between the two methods, the confidence intervals all contain tile true p)arameter

values. It is also worth noting that tile estimates where e = 10-10 are as accurate as

the estimates where E = 0. From this, I conclude that removing zeros with C = 10- 10

does not significantly decrease the accuracy of the Iaramneter estimates, and that this

approach is therefore safe to use.

E = -10 E = 0
Parameter True value Max. Like. 95% confidence interval Max. Like. 95% confidence interva
c 0.50 0.53 [0.44, 0.61] 0.47 [0.40, 0.53]
62(h - 1) 0.010 0.0070 [0.0035. 0.013] 0.012 [0.0082, 0.017]
63(h - 1) 0.010 0.0093 [0.0064, 0.013] 0.012 [0.0096, 0.016]
0 1.0e4 1.3e4 [8.5e3, 1.9c4] 1.4e4 [9.3c3, 1.9e4]
pl(d) -1 0.19 0.16 [0.10, 0.25] 0.23 [0.18, 0.31]

Table 3.5: Maximum likelihood parameter estimates and asymptotic confidence in-
tervals when E = 10- 10 and when c = 0.

0.8

0.6

0.4

5 10 15 20
Time (hr)

Figure 3-8: A sample observation of the proportion of plankton in each size class with
= 10-] 1, c = 0.5, -2 = 0.01(1h-), 63 - 0.01(h-1), and -= 104, fromi the last day

of a 100-day observation. The red x line corresponds to small, the green circles to
nimedium and the blue diamonds to large phytoplankton.

3.5 Equilibrium

In the previous analyses, the initial population composition is unrealistic, with an

equal proportion in each size class. By generating a long (100 (lay) observation and

using only the last day, I create an observation whose population composition begins

at equilibrilum (Fig. 3-8). In contrast with the transient observation (Fig. 3-3), the

size distribution changes very little over the course of a day. Overall, the paramnc-

I I

~. ,~4-e1ýjo

E

E

0.2 I

Transient Equilibrium
Parameter True value Max. Like. 95% confidence interval Max. Like. 95% confidence interv
c 0.50 0.53 [0.44, 0.61] 0.45 [0.34, 0.59]
62(h- 1) 0.010 0.0070 [0.0035, 0.013] 0.011 [0.0085, 0.015]
63(h - 1) 0.010 0.0093 [0.0064, 0.013] 0.012 [0.0090, 0.015]

1.0e4 1.3e4 [8.5e3, 1.9e4] 1.5e4 [9.3e3, 2.1e4]
p(d)- 1 0.19 0.16 [0.10, 0.25] 0.22 [0.17, 0.29]

Table 3.6: Maximum likelihood parameter estimates and asymptotic confidence in-
tervals from the first (transient) and 100th (equilibrium) day of an observa.tion whose
population distribution begins with a uniform distribution and reaches equilibrium.

ter estimates are as accurate as they were when the initial population distribution

was uniform, and the confidence intervals still contain the true parameter values

(Table 3.6).

3.6 Accuracy across parameter space

The results in the previous section were all based on a single set of parameters.

To evaluate whether these methods work in general, we need to test other points

in the parameter space. To accomplish this, I created a grid of parameter values.

These values are equally spaced on a log scale, so that they cover a large part of the

parameter space. The grid consists of all combinations of the following parameter

values:

c = 0.01, 0.0251, 0.0631, 0.1585, 0.3981, 1.0 (3.4)

62 = 0.001, 0.0032, 0.01, 0.0316, 0.1, 0.3162 (3.5)

63 = 0.001, 0.0032. 0.01, 0.0316, 0.1, 0.3162 (3.6)

1 = 10:, 3.16 x 104 . 106 (3.7)

For each parameter combination, I generated an artificial observation based on

those values, found the maximum likelihood parameter estimate and generated a

confidence interval with the Fisher information matrix. I also used the maximum

likelihood estimate to calculate a population growth rate p.

3.6.1 Total Error

To get an overall picture of the accuracy of the parameter estimates, I calculated a

total error term, that measures the distance between the true parameter values and

the maximum likelihood estimate. Because the parameters cover several orders of

magnitude, I use relative error, rather than absolute error. This total error is given

by

Terr = V(Ic - 5l/c)2 + (162 - 21/62)2 (3 - 3/6)2 + (- 1/) 2. (3.8)

T,.r is largest when 6 is small (Fig. 3-9). Error is also higher when 62 and 63 are

small, and when c is large, but these effects are less prominent. There are also a few

parameter combinations, which appear to be randomly distributed, that have much

higher total error than their neighbors. These estimates are likely inaccurate due to

difficulties with the optimization routine, and do not represent a true pattern.

3.6.2 Relative error and confidence interval size

In addition to overall trends in error, I wanted to examine trends in error of individual

parameters. To do this, I calculated the error and confidence interval size for each

parameter, again with the relative error rather than absolute error.

The relative error formula is

Perr = (p - WA)/p, (3.9)

where p is the true parameter value, and 3) is the parameter estimate.

I also wanted to capture the precision of each estimate. To do this. I calculated

the relative size of the confidence interval for each parameter, with

Pci = (Phigh - Plov,)/P, (3.10)

-3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1

-3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1

-3 -2 -1
Log 10(6)

c = 0.01

-3 -2 -1
Loglo(83)

c = 0.025

-3 -2 -1
Loglo(83)

c = 0.063

-3 -2 -1
Loglo(3)

c = 0.16

-3 -2 -1
Logo(83)

c = 0.4

Figure 3-9: Total relative error of the parameter estimates, shown as c, 62, 63 and 5 vary across the parameter space.

C'.'

to

OC0
-J

o0

0

-3 -2 -1

100+%

50%

100UU+%

50%

no,

oc..

0

0m-
0

-J

-3 -2 -1

I uu-/

50%

Ui'b

-3 -2 -1
Logo(83)

c= 1

U%1

ulo

~nn.ar

U%

where Phigh, and pl,,ow are the high and low ends of the confidence interval and p is the

true parameter value.

For each of the model parameters and for p., the pattern of relative errors shows a

similar response to the parameters as the pattern of confidence interval sizes (Figs. 3-

10 to 3-17).

For estimates of c, 62 and 63, the relative error increases with increases in ¢ and

c, though the effect of c on the relative errors of 62 and 63 is small.

Relative errors increase as 63 decreases for both 62 and 63, while only 62 has relative

error that increases in response to decreases in 62.

In the case of the parameter 0, relative errors appear to be large and highly

variable, but uncorrelated with the parameters themselves, including 6. T'his large

relative error is not surprising, given that the 0 confidence intervals are very large

throughout the parameter space.

The relationships between the relative error of p. and the model's parameter values

are similar to the ones described above. Relative errors appear to be correlated with

0, c. and to a lesser extent negatively correlated with 62 and 63 (Fig. 3-18 and 3-19).

In addition, the relative error of the population growth rate p appears to be correlated

with the magnitude of the population growth rate itself (Fig. 3-20 and 3-21). This

is unsurprising, since /p is positively correlated with 62 and 63, and (when c is small)

negatively correlated with c. The precision parameter 0 is positively correlated with

the accuracy of p, even though the formula for p does not depend on 0. This is not

surprising, since ¢ can affect p through its influence on the accuracy of the other

parameter estimates.

3.7 Implications

Although the errors and confidence intervals vary depending on the parameter, there

are some clear patterns. The most obvious is the correlation between smaller 4 and

larger confidence intervals/relative errors. This makes intuitive sense, since the d

parameter is inversely related to the variance of the Dirichlet distribution. Smaller

-1

-2

-1

-2

-3

-1

-3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1

-1

-2

-1

-2

-3

-1 -1

-2

-3

-1

-3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1

Cl, C'~j

In

111" C"
-..J

-1-2

-3

-1

-2

-3

I
I

I UUt-/o

50%

0%V
-3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1

LoglO(63) LogO(63) Logl(63) LoglO(3) Log(63) Logl(63)

c = 0.01 c = 0,025 c - 0,063 c = 0.16 c - 0,4 c - 1

Figure 3-10: Relative error of c estimates, shown as c, 62, (3 and 0 vary across the parameter space. In each sub-plot c and (2
are held constant. The c parameter increases as you move up and the 62 parameter as you move right across the sub-plots. The
color of each square represents the relative error, ranging from 0% (dark blue) to at least 100% (dark red).

-- 2

-2

-3

vc,,

'- to

-J

I
I
I
I

I50%UU

50%

100+%

50%

no,

I nnll ,o

Ufo

- -1

o04

0-jo._1

-3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1

o-

-3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1

-3 -2 -1
Log 10(83)

c = 0.01

-3 -2 -1
Log10(63)

c - 0.025

-3 -2 -1
Loglo(83)

c = 0.063

-3 -2 -1
Loglo(63)

c = 0.16

-3 -2 -1
Log1 o(83)

c = 0.4

-3 -2 -1
Log10(63)

c = 1

Figure 3-11: Relative confidence interval size of the c estimates, details as in Fig. 3-10

100+%

50%

U" Ia

I UU+7o

50%

m-,o
U /o

100+%

50%

0%

U'r

..---..

-3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1

-3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1

-3 -2 -1
Log,,(6)

c = 0.01

-3 -2 -1
Log

o0 (63)

c = 0.025

-3 -2 -1
Loglo(63)

c = 0.063

-3 -2 -1
Log l0 (83)

c = 0.16

-3 -2 -1
Loglo(63)

c = 0.4

100+%

50%

no'

-3 -2 -1

I UU +-

50%

-3 -2 -1

-3 -2 -1
Logo(63)

c= 1

Figure 3-12: Relative error of 62 estimates, shown as c, 62, 63 and 0 vary across the parameter space.

C-i
o

0
__j

c3

CD0

o
JI

"14
o

od1

1UU+%

50%

no%

u~

·---- ·

u/,o

-oipds iaoompxud 0144 SSonr AITA .M put- Ly yQ U. St UA&014S 'Sd4tTTT4s0 1\) 014 jo 0ZiS WVA104U! 0iU0PI.U03 OA14¶0"ld :fl-f 0.11j1

L- 2- L- 2-

V'0 = 0

(C g)oLo00
6- L- 2- 6-

L- 2- -L- 2- 6-

L- 2- 6- 1- 2- 6-

9L'O = 0

(s9)015-i
I- 2-

690"0 =

(g)OLO6o
6- 1- 2- 6-

S0O'O = 3

(- 2- 6-

LO'O = o

(S9)oL §0.

1- 2- 6-

L- 2- 6- L- 2- 6- L- 2- 6- 1- 2- 6-

I.- 2- C- -2- 6- L- 2- 6- L- 2- 6-

L=0

%0

%+00 L

0+nS

o/^+nn I

o/n

%+0S

4C+nnt

I--
o

ro
,-

r-

Co -cC
C

%+00 L

04

C14U
o

0

--

-3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1

0M

o

CJ

100+%

50%

I50%UU-

50%

-3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1

-3 -2 -1
Log10 (63)

c = 0.01

-3 -2 -1
Log1 o(6)

c = 0.025

-3 -2 -1
Log1 0(3)

c = 0.063

-3 -2
Logo0 (

c = 0.16

-3 -2 -1
Log1o(83)

c = 0.4

-3 -2 -1
Log,,(63)

c= 1

50%

Figure 3-14: Relative error of 6, estimates, shown as c, 62, 63 and 0 vary across the parameter space.

- -1

o

d-2
o
_1

-3
U0%

C)

0--IoV
o

-3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1

eNC

0

0o
0

-J

-3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1

-3 -2 -1
Logo1 (83)

c - 0.01

-3 -2 -1
Log 10(83)

c = 0.025

-3 -2 -1
Log 10 (83)

c = 0.063

-3 -2 -1
Logo(63)

c = 0.16

-3 -2 -1
Loglo(83)

c = 0.4

-3 -2 -1
Log 10(83)

c-1

Figure 3-15: Relative confidence interval size of the 63 estimates, shown as c, 6 2, 63 and 9p vary across the parameter space.

100+%

50%/

U /o

1004+0/1UU+5/%

50%W

tipC

04

-J

1uU+o

50%

Ufo

-- · ---

-- ' -- ~

(N~
(0

0r

0
-J

-3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1

100+%

50%

Ul A,

1o00%

50%

no'

-3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1

-3 -2 -1
Loglo(63)

c = 0.01

-3 -2 -1
Log 10(63)

c = 0.025

-3 -2 -1
Loglo(3)

c = 0.063

-3 -2 -1
Log1 (63)

c = 0.16

-3 -2 -1
Logo(63)

c = 0.4

-3 -2 -1
Loglo(63)

Iuu--x

I UU+-7o

50%

c= 1

Figure 3-16: Relative error of 0 estimates, shown as c, 62, 63 and 0 vary across the parameter space.

(N

o0

dF -2
-3

-3

-U/%

U0%

- -1

C)

C:; -2
0-j
o

-2

-1

-2

-3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1

-J

-3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1

C.0

,i-
o-
.__

-3 -2 -1
Logo(63)

c = 0.01

-3 -2 -1
Log10(3)

c = 0.025

-3 -2 -1
Log1o(83)

c = 0.063

-3 -2 -1
Log10(3)

c= 0.16

-3 -2 -1
Log1o(3)

c - 0.4

-3 -2 -1
Logo1 (83)

c= 1

Figure 3-17: Relative confidence interval size of the 6 estimates, shown as c, 62, 63 and 6 vary across the parameter space.

100+%

50%

U %b

IUU+5

50%

U /o

100+%

50%

no%
U~o

..--.,..

- -1
ClJ

-2
0

-J

-3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1

o
_J

-1

-2

-3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1

-.--, 1

d· -2
o

-J
2T-

-3

-3 -2 -1
Loglo(63)

-3

c = 0.01

-2 -1
Log1 0(83)

c = 0.025

-3 -2 -1
LoglO(63)

c = 0.063

-3 -2 -1
Loglo(63)

c = 0.16

-3 -2 -1
Loglo(63)

c = 0.4

-3 -2 -1
Log10 (3)

c=1

Figure 3-18: Relative error of population growth rate estimates, shown as c, ý2, 63 and 9 vary across the parameter space.

100+%

50n

no'

I UU+-o

50%

Roar
U ib

50%

no%

u~

u~p

....,-..

-3

-1

-2

-3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1

-3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1

-3 -2 -1
Loglo(83)

c = 0.01

-3 -2 -1 -3 -2 -1
LoglO(83) LoglO(83)

c = 0.025

Figure 3-19: Relative confidence interval size of the population growth rate estimates, shown as c, 62. 63 and O vary across the
parameter space.

Co"
o

0
0

-j

S-1
-oj

- -2

100-0+%

50%

no'

IuUIo

I UU+-

50%/0

-10

I UU+7o

50%

rro,

-3 -2 -1
LogO(83)

c = 0.16c = 0.063

-3 -2 -1
LogO(83)

c = 0.4

-3 -2 -1
Loglo(83)

c= 1

-I

~nrr . or

U o

-2

-3

-1

-2

-3

-3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1

-2

-1

-2

-3

-2

-3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1

-1

-2

-3

1

I.
-3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1

Logl(63) Log((3)) Logo0(53) Logo((53) Log(L 1 (3) Log(63)

c = 0.01 c = 0.025 c = 0.063 c = 0.16 c = 0.4 c = 1

Figure 3-20: Population growth rate estimates, shown as c, 02, 63 and 0 vary across the parameter space.

.- -1
Co C. J
II o

4 ~-2
o

-3

.-.- 1

, - LO

"' oT -2
-. ,- 0..-JCIOC:)

-1
Co c"J.,- -1

o

J

1.5

1

0.5

n

2+

1.5

1

0.5

0 >

Z+

1.5

0

0.5

-

-

-2
I

||

-

||

0.0

p (d -)

Figure 3-21: Population growth rate estimates f., and confidence intervals as a func-
tion of the true growth rate p,. Data, is shown on a log-log scale to focus on relative
error. Red poilnts corresp)on(1 to 6 = 106, green to 6 = 104 and blue to , = 10:3.

0

¢

values of 0 correspond to higher variance, which effectively adds more "noise" to the

artificial observations, making the other parameters harder to estimate.

Ib a lesser degree, there appears to be a negative correlation between 62 and 63 and

relative model parameter errors. One explanation for this is that 62 and 6:3 reflect the

phytoplankton cell division rate: when very few plankton are dividing, the population

doesn't change much from one time step to the next, making the parameters harder

to estimate.

There also appears to be a small correlation between c and relative error. The

c parameter is found in the cell growth rate function 3, in (3.1). Larger c values

correspond to smaller maximumn 7 and, for the range of parameters in the grid above

(Eqns 3.4 to 3.7), smaller differences between minimum and maximum values (weaker

forcing). With these data sets, we cannot distinguish the effects of lower total incident

radiation, and smaller differences between minimum and maximum light levels. One

way to test this would be to compare the effects of high and low light levels which do

not change over the course of a day, or use flat and steep incident radiation curves

whose average values are the same.

3.7.1 Accuracy of confidence intervals

Another metric to consider is the accuracy of the confidence intervals themselves.

In theory, we expect 95% of the confidence intervals to contain the true parameter

values. In my results (Fig. 3-22), all four true model parameter values are within their

confidence intervals only 73% of the time. The true population growth rate falls within

the estimated population growth rate confidence interval 89% of the time (Fig. 3-

23). This proportion differs from the proportion of parameter estimate confidence

intervals containing the true value because the population growth rate is a function

of all 4 parameters, and may be more sensitive to one parameter than another, and

therefore may be within the confidence interval even when one of the parameters used

to calculate it is outside of its confidence interval. Of the 648 parameter combinations,

there are only 2 where the true population growth rate falls outside its confidence

interval and the corresponding true parameter values do 'not fall outside of their

confidence intervals.

-2

-3r

-2

-3

-3 -2 -1 -3 -2 -1 -J - -1 - -Z -1 -4 -1 -I -3 -L -I

-1
•. c•

y- o

II
0-

-1

-2

-3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1

-2 -2

-1

-2

-3

-3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1
Log1o(8 3) Logo(63) Loglo(83) Loglo(3) Loglo(3) Log 10(63)

c = 0.01 c = 0.025 c = 0.063 c = 0.16 c = 0.4 c = 1

Figure 3-22: Accuracy of parameter estimate confidence intervals as a function ofc, 62, .3, 0. Cells where the confidence intervals

for each parameter contain the true value are marked as red, cells where at least one confidence interval does not contain the
true parameter value are marked as blue.

o
II

._1

o
II . -

,-.-

II1 r~r CIAI

-1

-2

-2

-3

-2

-3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -Z -

-2

-3 -2 -1 -3 -7 -1 -1j -Z -5 -. -Z -I - - -i -Z -I

-1

-2

-3

-1

-3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1

Loglo(3) Loglo(63) Loglo(3) Loglo(63) Loglo(83) Loglo(63)

c = 0.01 c = 0.025 c = 0.063 c = 0.16 c = 0.4 c = 1

Figure 3-23: Accuracy of population growth rate confidence interval as a function of c, 62, 3, o. Cells where the population

growth rate confidence interval contains the true population growth rate are marked as red, cells where at least one confidence

interval does not contain the true population growth rate are marked as blue.

"o ·j
II

-J

'- 0

II
- O

., -1

0o
,G-0
II , -2

/

-3

~1 ~m*

1 ~ r ? ~ r(3 1

Chapter 4

Full model

Having tested the maximum likelihood methods and assumptions with a basic three

stage model, I moved on to the more realistic model of phytoplankton growth laid

out by Sosik et al. [12].

4.1 Model description

I classified individuals into 57 size classes of volume vi (e.g., Fig. 4-4), where

Vi = Vmin2 (i-l)"4 ', Vmi.. = 2-;p.m,3 , AV = 0.125. (4.1)

For the full model, we use a. life cycle scheme which allows one of three things to

happen at each time step (Fig. 4-1). An individual phytoplankton cell can grow one

size class (growth); remain the same size (stasis); or divide, moving to the size class

1/2 as large as the original.

The fraction of dividing cells in size class i at time t, is given by

6, ~(1)=
0 i 6 max

0 < t < t6

tb < t < 24

a, b, and 6 max are parameters that will be estimated in the model. t6 is set to 6 h,

and is the number of hours after dawn that the plankton begin dividing. The values

(4.2)

(1-8)'Y

*00

(1-8) (1-Y)

Figure 4-1: Life cycle structure of full model described by Sosik et al. [12].

of a and b define a wide range of division curves.

The fraction of non-dividing cells that grow one size class during one time step

(dt, '7(t) is given by

1 (t) = (1 - e-E(t)/E*) ,.r: (4.3)

Here, E* and 7,max are parameters to be fit. E(t) is the incident radiation, a source

of external forcing.

The transition matrix A(t) summarizes these transitions and can be used to

project the population state forward one time step dt:

A(t) =

a1,1 (11,2

(12,1 a2,2 a2,j

amn,m-r1 UlmI,.m /

(4.4)

where] = 1 + = 9.

... a1,j-1

am+ 1 -j,m

(i+1,i ,i,i

mi~·

Ihe growth terms are given by

(4.5)

The cell division terms for large (i > j) phytoplankton are

(4.6)

Small phytoplanktoin (i=2,..., j-1) are less than twice as big as the smallest size

class, and so after division are put in the smallest size class. The division term for

these size classes is

(4.7)

The stasis (neither divisioll or growt hi) terms are given by

(1 - y(t))(1 - 6i(t)) + 2i(t), i =

a-,4(t) = (1 -,.(t))(1 - 6(t)), i =
1.- i(t), i =

T'o get an hourly p)rojection from time t to t + 1, I use

B (= -- 1

B(t)= H

2,..., n. - 1.

Mi .

A(t + idt)

In total, there are six parameters to estimate: a, b. (6,ci., m ,,iax, E*, and 0.

I calculated a new population distribution with the same method described in

Chap. 2, by projecting forward one hour with B(t), normalizing to get v,+L, then

adding process error to get wt+j by drawing from a Dirichlet distribution with ex-

pected(values of vt and a precision parameter (,5:

B(t)w,
Vt+• B(t)wt |

w,+i = Dir(o v,+i).

(4.10)

(4.11)

(4.8)

(4.9)

ani+li(t) = -(t)[l - si(t)], i = 1:...,") - 1.

a ,(Ii+ _j,(t) = 2ýj(t), i = j,... , I

,,I.•) = 26,(t).

The deterministic population growth rate is calculated from the hourly projection

matrices B(t), with formula 2.9 in Chap. 2.

4.2 Optimization using maximum likelihood

My goal in the scenarios outlined below is to see if the maxinmum likelihood methods

used in the three-stage case can give good estimates of the population growth rates

and parameters in a larger and more complex model, which I hope to use to estimate

the population growth rates of real populations. Since the optimization routine I

have bleen using has problems finding the global lnaximuIi. I have chosen to use

the true paramlleter values as a starting point for the optimizations with artificial

olbservations and known parameter values. Assuming that this procedure finds near

optimal values, this approach will tell us whether the method is working, given a.

functioning optimization routine.

4.3 Test scenarios

I wanted to test this model's ability to estimate 0 and p over a range of paramneter

values. In the three stage imodel, I was able to examine a grid of points covering a

large area of the p)aranmeter spa(ce. The larger number of parameters in the full mnodel

makes this method impractical. Instead. I focus on a set of four scenarios, b)ased(on

a combination of hiogh and low cell growth and division rates.

The high growth scenarios (HG) use -= 0.25 (10() ,i)- and E* = 20()0 el. units.

The low growth scenarios (LG) use 7i,,a = 0.05 (10 riin)-' and E* = 10 r(l. nitds.

The HG scenario corresponds to high light level adapted phytoplanmktonl and the LG

scenario to low light adapted i)hytoplankton (Fig. 4-2). The high division sce1narimos

(lID) use a = 1, b = 2 and ,,,,, = 0.05 (10 miin) - (Fig. 4-3). The low division

scenarios (LD) use (a = 1, b = 2 and ,11,,,, = 0.01 (10 wmti-n)

I then combined the growth and division scenarios, to get four combinations of

high and low growth and division (Table 4.1). 1 also repeated these four scenarios

0.

E 0.1
0

0.

(9

0.0

Radiation (W m1)

Figure 4-2: Cell growth rates -. as functions of incident radiation. The HG curve is
plotted as diamonds and the LG curve as crosses.

U.L

0.04

0.C

I O.0.

E
o 0.(

10.0;

g o.c
i5 0.01

0.01

0.c

0.0(

Cell Volume ([t m)

Figure 4-3: Cell division rates 6 as functions of cell volume. The HD curve is plotted
as diamon(ls and the LD cuirve as crosses.

_ _
U.2

Scenario a b 6.rS,,, , E* 0x
(10 (10 (di-)

IIGHD 1 2 0.05 0.25 200 10" 1.04
HGLD 1 2 0.01 0.25 20() 10 " 0.31
LGHD 1 2 0.05 0.05 10 10 '" 0.86
LGLD 1 2 0.01 0.05 10 10" 0.26

Table 4.1: Trul(e parameter values used in the four test scenarios and corresp)onding
deterministic population growth rates /p.

with different precision parameters.

For each scenario, I generated an artificial observation, then estimated the parain-

eters with the inaxinnnu likelihood mnethod(l with an initial size (distribulltion (Fig. 4-4)

and incident radiation over the day (Fig. 4-5) taken froom a laboratory observation [9]

which will be used later.

0 0.5 1 1.5 2 2
Cell volume (jim3)

.5 3 3.5 4

Figure 4-4: Initial population distribution.

U.08

0.07

0.06

C
0
.1 0.05

- 0.04

S0.03
a-

0.02

0.01

0 I I • 0 I

^ ^^ - I --- T -r----

"-4;

a,

..
·,-

I- -----------------

191111,I

700

.600

E
500

c.*
A 400

c 3000

/P

/i

/
/"

- 200[

100I

U0 5 10 15 20 25
Time (hr)

Figure 4-5: Incident radiation as a function of time E(t).

4.3.1 Scenario results

Precision parameter -= 106

When 5 = 106, most parameter confidence interval1s contain the true values (Ta-

ble 4.2). Exceptions are a and b in the low division (LD) scenarios and (in all cases.

In.all four scenarios, the (estimates and confidence intervals are consistently high.

Despite this fact, the p, confidence intervals contain the true value in all four scenar-

ios. The estimated y and 6 curves are nearly indistinguishable from those calculated

from the true parameter values (Fig. 4-6).

Precision parameter 6 = 10'

When (is decreased to 10i, the parameter estimates become less accurate (Table 4-

7). In the HD scenarios, the a. b and 6 max confidence intervals do not contain the true

values, though the parameter estimates are still within 10%. For the LD scenarios,

the confidence intervals are much larger, but still not large enough to contain the

true p)arameter values. The errors are large enough in these LD scenarios that the p

nnA

· ·

/

Expected 1h proj.

5 10 15 20 25

-. 0.2
E
o0.1

(1

5 10 15 20 25 'di.
u Z 4 U

5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

0.04

0 0.02

0
0 2 4

o0.

0 0

.2

.1

0
0 500 1000

5 10 15 20 25 5 10 15 20 25 t 10 15 ZU 20 2

5 10 15 20 25 5 10 15 20 25
Time (h) Time (h)

5 10 15 20 25
Time (h)

0.04

0.02

00 2 4
Cell size (pm3)

" 0.2
E
o 0.1

0 500 1000
E(t) (rel. units)

Figure 4-6: Each row corresponds to one of the four growth/division scenarios, with o = 106. The first column shows the
artificial scenario used. The second shows the expected population distribution with the parameter estimates 0. The third
shows a full day's projection from wo with 0. Time is measured in hours after dawn. The 5.th and 6th column show the cell
division (plotted vs. volumne) and growth (plotted vs incident radiation) curves calculated fromn 0 in red and 0 in blue. Cell
growth and division are per 10 mnin time span. In the HGLD scenario, phytoplankton accumulate in the largest size class, which
cascades to cause accumulation in the size classes 1/2 and 1/4 as large.

4)
N

S0.1

4)

4)
N
C,-
= 0.1
0,

500 1000

N

= 0.1

O14) 0I

0.0

E
0 0.0

N
v-

= 0.1

E

00

Obs 24h proj
n

5

00

Scenario i,(b 6 max :max E* 16 3
(10 rin,)-1 (10 ruin)- ' (re-. units) (d-')

HGHD T 1 2 0.05 0.25 200 106 1.04
NILE 1.0 2.0 0.050 0.25 2.0c2 1.40c6 1.04
CI [0.99. 1.0] [2.0, 2.0] [0.049. 0.050] [0.25, 0.25] [2.0c2. 2.1e2] [1.31c6., 1.51e6] [1.03, 1.04]

HGLD T 1 2 0.01 0.25 200 106 0.31
NM 0.96 1.9 0.010 0.25 2.0e2 1.51e6 0.31
CI [0.93, 0.99] [1.9, 2.0] [0.010, 0.010] [0.25, 0.25] [2.0e2, 2.0e2] [1.41e6, 1.62,6] [0.31. 0.31]

LGHD T 1 2 0.05 0.05 10 106 0.86
NILE 1.0 2.0 0.050 0.050 10. 1.35e6 0.86
CI [0.98, 1.1] [2.0, 2.0] [0.049, 0.051] [0.049, 0.051] [9.2, 11.] [1.26e6, 1.44e6] [0.85, 0.86]

LGLD T 1 2 0.01 0.05 10 106 0.26
NILE 0.87 1.9 0.011 0.050 10. 1.45c6 0.25
CI [0.79, 0.97] [1.9, 2.0] [0.010, 0.011] [0.050, 0.051] [9.4, 12.] [1.36e6, 1.54c6] [0.25, 0.26]

Table 4.2: Parameter and population growth rate maximum likelihood estimates (NILE) and confidence intervals (CI), for true
parameters (T) as in Table 4.1.

confidence intervals do not contain the true values. In contrast, in the HD scenarios,

the pt confidence intervals contains the true values, despite the fact that the a, b and

,,,ax confidence intervals do not.

These inaccuracies are particularly visible in the LGLD 6 curve (Fig. 4-7). Since

the bulk of the plankton have a cell volume between 0.25 and 2, the fit of the lower

half of the 6 curve is more critical than the upper half. Based on this, the first and

third (HD) 6 curves are still good fits, even though the upper part of both curves

visibly deviates. The LD division curves are worse fits, at least for the smaller cell

volumes. This is particularly evident in the fourth scenario (LGLD).

Precision parameter = 10

When the precision parameter is further decreased to p = 10(, the numerical method

used to invert the Hessian matrix breaks down in the low division (LD) scenarios,

which means confidence intervals cannot be calculated with the asymptotic approach.

The HD confidence intervals are still presented, as are the maximum likelihood esti-

mates in the LD scenarios (Table 4.4). In the HGHD scenario, even though only the

"/max and E* confidence intervals contain the true parameter values, the p confidence

interval still contains the true population growth rate. The LGHD confidence interval

on It does not contain the true population growth rate, but it nearly does. Note that

the cell division rate curves in the first and third scenarios still fit reasonably well

in the relevant cell size range (Fig. 4-8). The fit in the other two scenarios is much

worse.

Precision parameter = 10

When the precision parameter is reduced still further, to 1 = 10i, only the LGHD

confidence intervals can be calculated (Table 4.5). Note that while all but the E* and

ft confidence intervals contain the true parameter value, this is in part because the

confidence intervals are quite large.

At this point, with 0 = 103, none of the 6 curves, including the HD scenarios, are

a close fit with the true ones (Fig. 4-9). Of the 7• curves. only the LGHD curve is

Expected 1h proj.

5 10 15 20 25 5 5 10 15 20 25 U U00 1UUU

5 10 15 20 25 5 10 15 20 25

7- 0.04

0 0.02

0 2 4

0.0,

E
o 0.0
c-

10 1 ZU 25 5 10 15 20 25 5 10 15 20 25

S0.2

E
0 0.1

0
0 500 1000

0.2

E
0 0.1

0
0 500 1000

o 0.

5 10 15 20 25
Time (h)

5 10 15 20 25
Time (h)

5 10 15 20 25
Time (h) Cell size (pm3) E(t) (rel. units)

00

Figure 4-7: Each row corresponds to one of the four growth/division scenarios. with 6 = 10s . Details are as in Fig. 4-6.

-. I

'I)
.N
U)

U .1
O

N

S0. 1

NN

-

S0. 1
0

v,

0.1
0

24h projObs
rr,

,,

a b 6,ma E* p

(10 m,.in)- (10 r?,in)- (rl. units) (-)(1)
HGHD T 1 2 0.05 0.25 200 105 1.04

MLE 0.89 1.9 0.053 0.2.5 2.0c2 1.36c5 1.04
CI [0.85, 0.94] [1.9, 2.0] [0.051, 0.054] [0.25, 0.25] [1.9e2, 2.1e2] [1.26e5, 1.47e5] [1.03. 1.05]

HGLD T 1 2 0.01 0.25 200 10" 0.31
MLE 0.61 1.3 0.013 0.25 2.1e2 1.39e5 0.33
CI [0.53, 0.71] [1.2, 1.4] [0.012, 0.014] [0.25, 0.25] [2.0e2. 2.2c2] [1.28e5, 1.51e5] [0.32, 0.34]

LGHD T 1 2 0.05 0.05 10 10" 0.86
NLE 0.89 1.9 0.052 0.049 8.5 1. 27e5 0.86
CI [0.79, 0.98] [1.9, 2.0] [0.049, 0.056] [0.047, 0.051] [6.4, 11.] [1.18e5, 1.35e5] [0.84, 0.87]

LGLD T 1 2 0.01 0.05 10 105 0.26
MLE 0.043 1.0 0.091 0.048 16. 1.1165 0.23
CI [0.0063, 0.40] [0.91. 1.2] [0.0097, 0.41] [0.046, 0.050] [11., 25.] [1.03e5, 1.20c5] [0.16, 0.24]

confidence intervals (CI), for trueTable 4.3: Parameter and population growth rate maximum likelihood estimates (MLE) and
parameters (T) as in Table 4.1, except = 10'.

Expected 1h proj.

5 10 15 20 25 5 10 15 20 25

-0.Cr-

E

o 0.C

5 10 15 20 25 5 10 15 20 25 5 10 b1 20 25

0.0

E

"-

5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

-0.2

E /o 0.1

0
0 500 1000

0.2

0.1

00 500 1000

0.(
E
o 0.0
cO

5 10 15 20 25
Time (h)

5 10 15 20 25
Time (h)

5 10 15 20 25
Time (h) Cell size (prnm 3)

S 0UU I UUU

E(t) (rel. units)

Figure 4-8: Each row corresponds to one of the four growth/division scenarios, with 6 = 104

0

N
(/)
-U. 1

O

1Ej

o(

7 0.2
.C
E
o 0.1

0

500 1000

N
0.1

E

N
0.1

0

1

.3

=0.1

24h projObs
.,-.

co

Details are as in Fig. 4-6.

Scenario a b mai,,x 'max E* C)
(10 ruirn)- (10 rirTi) - ' (rel. trnits) (d- 1)

HGHD T 1 2 0.05 0.25 200 104 1.04
MLE 0.38 1.3 0.083 0.24 2.1e02 1.24c04 1.07
CI [0.30, 0.48] [1.3, 1.4] [0.071. 0.097] [0.23, 0.25] [1.7e02, 2.4e02] [1.14e04, 1.35e04] [1.04, 1.09]

HGLD T 1 2 0.01 0.25 200 10' 0.31
NLE 4.2 1.5e - 5 0.0050 0.25 2.4e02 1.02e04 0.43
CI ...

LGHD T 1 2 0.05 0.05 10 104 0.86
MLE 0.38 1.5 0.083 0.054 4.1 1.14e04 0.90
CI [0.27. 0.56] [1.4, 1.6] [0.062, 0.11] [0.049, 0.059] [3.0. 5.8] [1.06e04, 1.24e04] [0.86, 0.94]

LGLD T 1 2 0.01 0.05 10 104 0.26
NILE 2.9c04 0.0011 0.0015 0.041 5.4 1.05e04 0.16
CI - - -

confidence intervals (CI), for trueTable 4.4: Parameter and population growth rate maximum likelihood estimates (MLE) and
parameters (T) as in Table 4.1, except o = 104.

still close to the true one. The accuracy of the growth curve, and its corresponding

parameter estimates may explain the ability to calculate confidence intervals for this

scenario.

4.3.2 Conclusions regarding artificial observations

Regardless of scenario or precision parameter value, there appears to be a bias in

the precision parameter (0) estimates, causing the estimates to be high and the true

parameter values to lie outside the corresponding confidence intervals. Despite this,

I am able to consistently estimate the population growth rate p, when the precision

parameter is high enough (0 > 106). When 6 is lower (¢ = 104 - i_5). I can still

reliably estimate It in the HD scenarios, but not in all of the LD scenarios. When

¢ is even smaller (0 < 10<), imy results show the maximum likelihood approach can

be problematic. With my numerical methods, confidence intervals were difficult to

determine, and the estimates were often highly inaccurate.

In addition, there appears to be a correlation between the true popula.tion growth

rate p and the accuracy of estimates of p (Fig. 4-10). For 0 = 106, 0 = 10", and

the HD scenarios with 1 = 104, the scenarios with higher true growth rates have

smaller confidence intervals and smaller relative error for the estimates of /p.. More

work would be needed to determine if this is a simple function of the cell division

curve 6, since pI and S are strongly correlated.

4.4 Laboratory observation

The initial size distribution and 24 hour incident radiation levels correspond to a.

pJhytoplankton population grown in a laboratory setting by Olson et al. [9]. A batch

culture of Synechococcus were grown under temperature control and artificial light.

The population size distribution and abundance were measured every few minutes

with a bench top version of the FlowCytobot [10]. This information was then ag-

gregated into hourly size distributions, and zeros were converted to 10- 10, as in the

artificial observation above (Fig. 4-11). Because the population was well mixed and

Expected 1h proj.

" 0.04

o 0.02

S 10 15 20 25 5 10 15 20 25 5 10 15 20 25

S0.2
/

) 0.1 /

00
0 500 1000

-. 0.C

o 0.c
cO

5 10 15 20 25

5

5 10 15 20 25

Time (h) Time (h)

5 10 15 20 25

5 10 15 20 25
Time (h)

0.04

0.02

00 2 4

S0.04

0 0.02

0 2 4
Cell size (pm3)

E

o

o

0.2

0.1

0 500 1000

0.2

0.1

0
0 500 1000

E(t) (rel. units)

Figure 4-9: Each row corresponds to one of the four growth/division scenarios, with = 103 . Details are as in Fig. 4-6.

1L I

N

0.1

N
cO

= 0.1U)

1

N

-=0.1
0

o' -

= 0.1
0

Obs 24h proj
¢Q

1 Iv %J LV j5 00

5

Scenario a b ,max •,L, E*• 4
(10 ,in/)-1 (10 •in)- ' (rl. units) (d-')

HGHD T 1 2 0.05 0.25 200 103 1.04
NILE 1.2 1.5 - 6 0.016 0.16 7.9 8.59e02 0.95
CI -

HGLD T 1 2 0.01 0.25 200 10i 0.31
NILE 1.1c02 8.2e - 6 0.011 0.30 1.8c02 8.10c02 1.15
CI

LGHD T 1 2 0.05 0.05 10 103 0.86
NILE 0.047 3.8e - 6 0.10 0.052 0.026 9.96e02 0.49

CI [1.0c - 5, 5.1r02] [4.4c - 129, 2.4c129] [3.5c - 6, 1.0] [0.046, 0.058] [0.0051, 0.16] [9.14c02, 1.08c03] [0.00, NaN]

LGLD T 1 2 0.01 0.05 10 103 0.26
MLE 6.0e04 8.6e - 5 0.0047 0.074 2.8 9.12e02 0.50
CI .

Table 4.5: Parameter and population growth rate maximum likelihood estimates (NILE) and confidence intervals (CI), for true

parameters (T) as in Table 4.1, except 6 = 103.

1

0.32

0i "0.1 0.32 1 3.2
g (d-)

Figure 4-10: Population growth rate estimates / and confidence intervals as a function
of the true growth rate p, plotted on a log scale. The data is shown on a log-log scale
to focus on relative error. Red points correspond to =6 - 106, cyan to = 10)", green
to 0 = 104 and blue to 4 = 103. When confidence intervals cannot be calculated, the
point is replaced with an x.

a b 6max imaxE*

(10 (10 mi'n)-> (rel. units)
0.0054 2.1e - 144 0.91 0.093 3.0 5.22c2 0.52

Table 4.6: Parameter and population growth rate estimates and confidence intervals
for a laboratory observation.

had no mortality sources, it is possible to use abundance data to calculate population

growth rates. For the experimental condition examined here the population growth

rate from cell abundance was 0.64 d- .

I repeated the maximum likelihood methods used above, in order to calculate

parameter and population growth rate estimates. In this case, I don't know the true

parameter values, so I cannot start the optimization routine near the true values. To

compensate, I found the maximum likelihood estimate and corresponding likelihood

for over 17,000 random starting points. I then used the parameter estimates and

Hessian matrix that correspond to the lowest negative log likelihood to attempt to

generate confidence intervals (Table 4.6), but was unable to because the matrix was

not invertible.

The estimate(d population growth rate # is 0.52 d-' . This is close to the true

population growth rate of /t = 0.64 d-'. Although this estimate of p appears to

be fairly accurate, the 6 estimate is very small, which suggests the other parameter

estimates may not be very accurate, particularly considering that the corresponding

Hessian matrix is singular. When I plotted estimated cell growth and division curves,

I noticed that they showed no response to light levels or cell volume (Fig. 4-11).

Note: if one plots the cell growth and division curves for the 200 or so estimates

with population growth rates nearly identical to the maximum likelihood estimate,

these curves are very similar in appearance, even though the estimates of a and b

(for example) may vary by several orders of magnitude. All of the b estimates are

very small, which means the a values have little impact. Although the population

growth rate estimate appears to be accurate, I could not get confidence intervals on

that estimate, making it difficult to decide how well the method is working overall.

Obs Expected lh proj. 24h proj
UV.V

0.04

0.03

0.02

0.01

A

Time (h) Time (h) Time (h)
O 2 4
Cell size (m3)

0.15

0.05

O
0 500 1000

E(t) (rel. units)

Figure 4-11: Laboratory observation. Details are as in Fig. 4-6

.

~ rrr
U.25 ,

E

E

I
'

Chapter 5

Conclusions

For the simplified three-stage model (Section 3), one can estimate most of the model

parameters using the maximum likelihood method. Estimates of the precision pa-

rameter 6 are consistently too high. Bias in the parameter estimates appears to be

negatively correlated with cell division rates and cell growth rates. Because of the

structure of the three stage model, this high-bias region also has low daily population

growth rates p.

The bias in population growth rate estimates fi is relatively low, even when the

precision parameter 6 is relatively small and the biases in parameter estimates are

large. The corresponding p. confidence intervals contain the true growth rate 89%. of

the time. Bias and confidence interval size both decrease as the size of the observation

increases. Removing zeros does not affect the estimate accuracy. The accuracy of

model parameter estimates is high for high 62 and 63 values (which correspond to

high cell division rates) and for low c values (which correspond to high cell growth

rates). Since these parameters also correspond to high population growth rates p, it

is difficult to determine if all combination of these parameters that lead to a given it

will have similar accuracy of model parameter estimates.

In the full model, as in the three-stage model, the accuracy of the parameter

estimates increased with tp. The model also exhibited the same pattern of low bias

corresponding to high cell growth and division curves, as well as high population

growth rates p,. In cases where ' was very small (0 = 10i), the estimated cell growth

and division curves were almost entirely flat, showing no response to light levels or

phytoplankton cell size respectively.

Thie 0 value for the laboratory data suggests that this observation falls in tile noisy

region of tile parameter space. and that the the corresponding population growth rate

is not likely to be a good estimate. Despite this, the estimated population growth

rate is within 13%. of the measured population growth rate. A comparison of the

laboratory observation with artificial observations generate(d with low 0 values shows

that the laboratory observation is much less scattered and random than the artificial

observation (Fig. 4-6 and 4-11). This suggests that either the parameter estimates

are incorrect or that the model is not a good fit for real world data.

5.0.1 Limitations

One limitation of the current imIplementation of the maximum likelihood method is

that the optimization routine used, "fminunc" in Matlab [8], returns different values

depending on initial conditions. For the artificial observations, I compensated by in-

cluding the true parameter values as one starting point, and including several random

starting points as well. Starting on the true parameter values is not an option for the

laboratory observation, so I resorted to using thousands of random starting points.

Use of another optimization routine for this part of the analysis would remove one

possible source of bias in tile parameter estimates.

Another limitation of the current implementation is that the confidence intervals of

the parameter estimates and population growth rates contain the true values slightly

less frequently than they should from a statistical standpoint. This could be either

because of an unknown source of bias in the estimate around which the confidence

interval is generated, a problem with the size of the confidence interval itself, or

random chance.

In addition, some of the Hessian matrices returned by the "fminunc" optimization

routine cannot be inverted with Matlab's numerical methods. These Hessian matrices

correspond to regions with highly biased parameter estimates, which suggests the

corresponding confidence intervals will be large, and would be useful for judging

the reliability of a given parameter estimate. This limitation may also disappear

with the choice of a new optimization routine. It can also be avoided with a more

computationally intensive parametric bootstrap approach.

5.0.2 Future directions

There are several directions this project could head in the future, some involving

analysis of the current model, some involving extensions and changes.

Since there are large amounts of laboratory data available, it would be useful to

compare estimated and measured population growth rates for multiple laboratory

observations. If we assume that multiple cultures grown under the same conditions

will have similar parameter values, we can treat them as different samples from a sin-

gle day and estimate a single set of parameters for all of them. This would increase

the number of available data points, and may give better bounds on correspond-

ing parameter estimates, based on the three-stage tests. This would be particularly

useful since the estimated precision is very low, at less than 10i. Making the same

assumption that similar cultures have similar model parameters, we can also use the

distribution of parameter estimates to get approximate confidence intervals. Either of

these methods should give a clearer idea of the accuracy of the individual estimates.

It would also be good to do a sensitivity and elasticity analysis of the full model,

to see how a small change in a single parameter affects the population growth rate.

Once the sensitivity analysis has been completed, and the model's predictive ability

has been further tested with laboratory data, there will be information both on how

well the model performs, and on which components of the model have the largest

impact. This information can be used to strategically remove model parameters,

rather than systematically testing all possible combinations. This has the advantage

of reducing the ratio of model parameters to data points (which may not be significant

if the parameters removed contribute little to the estimates of lp) as well as clarifying

which components of the model are most important and the relationship between cell

growth and division and population growth.

In terms of model implementation, it would also be useful to look more closely

at the trade-off between the number of data points into which a dlay's worth of size

distribution data is split, and the accuracy of those data points. In the current

implementation, size distribution data is reported for each hour, leading to 24 data

points per day. Decreasing this interval, by grouping the data into half-hour bins

would double the number of data points, but decrease the accuracy of each point,

and vice versa if data were binned into two-hour intervals. Systematic tests with

simulated data with an appropriate precision parameter would help to find the ideal

trade-off between more information and more accuracy.

Moving on to changes in the underlying model structure, the current implementa-

tion does not take into account observation error. As mentioned in the introduction,

Calder et al. [4] point out that ignoring observation error can lead to errors in parame-

ter estimation. In this model, the most appropriate form for observation error is likely

the multinoinial distribution. This could be added as a third step after projecting

the model forward and adding process error:

Zt+1 = iultinom(wt+l, n)/n. (5.1)

The basic model structure in both the three stage and full models has three types

of terms: growth, stasis and reproduction. When it comes to modeling organisms

other than phytoplankton, new terms, such as mortality, will have to be added. In

this model, I have implicitly assumed that any sources of mortality, such as grazing,

do not discriminate between size classes, and are constant over time. I have also

calculated the population growth rate it in the absence of mortality. In other types of

models, such as human demographics, this assumption is not accurate. These models

must directly include mortality terms that take into account the population's age or

size structure. Population growth rate formulas will have to be similarly reworked.

Other terms will need to be added whenever different sizes or stages of an organism

respond differently to their environment.

There are also other statistical approaches to dealing with mnultivariate distribu-

tions and time series of continuous proportions. Aitchison et al. [2] describe an al-

ternate zero-handling method that maintains the proportions between non-zero parts

of a population distrilbution. Grunwald et al. [7] describe a sta.tistica.1l approach with

a. modified Dirichlet d(istribultion whose results can be interpreted in terms of the

odds ratios between different components of the distribution (e.g., size classes), that

can also be used when the components of the distribution are dependent. These ap-

proaches may be more aippropriate than the one laid out here for some types of time

series of proportional data.

In future years, another statistical approach may be possible, that naturally han-

(lies zeros in the size distribuitions. In the context of phytoplankton, we can assume

any zeros in the size distribution are due to an inability to detect proportions below a

certain threshold. Aitchison et al. [2] are developing a method to handle "structural

zeros", zeros which are truly zero, which come up in other types of models.

Although the mnodel leveloped in this paper can successfully estimate population

growth rate for artificial ob)servations under low-noise conditions, and shows some

ability to estimate population growth rate for a set of laboratory (lata, there a.re

many possible improvements and extensions which could increase its predictive ca-

pabilities. Once the mnodel improvements have been tested with laboratory data., an

extended model could hIe used to calculate growth rates from field data. gathered from

a FlowCytobot.

Appendix A

Three stage code

A.1 bootstrapnest _ci

function bootstrap_nest_ci(filename, n_obs, true_c, true_delta2, ...

true_delta3, true_shape, n_days, epsilon)

' Generate one observation and estimate based on the "true"

% parameter values, and use the corresponding Hessian matrix to

% generate a CI. (This is called the asymptotic method in the

' writeup, and is called bootstrap_params here. It is not) Then

% generate n_obs observations based on the "true" parameter values,

' and calculate parameter estimates for each (This is called the

% bootstrap method in the writeup and is saved as est_params here).

% Save all of these estimates and their associated data in "filename"

n_bootstrap = n_obs;

best_obs = calc_obs(true_c, true_delta2, true_delta3, true_shape,

[1/3,1/3,1/3], n_days, epsilon);

[best_params, best_like, best_flag, best_hess, num_iter] =

recurse_opt_params(best_obs, n_days, epsilon)

best_c = best_params(1);

best_delta2 = bestparams(2);

best_delta3 = best_params(3);

best_shape = best_params(4);

% In transformed param space, normally distributed. Draw n_bootstrap

% values from multiv. norm. dist. Then transform these back.

tr_best_params = transform(best_params);

best_var_cov = inv(besthess);

tr_bootstrap_params = mvnrnd(tr_best_params, best_var_cov, ...

n_bootstrap);

for i=1:n_bootstrap

bootstrap_params(i,:) = untransform(tr_bootstrap_params(i,:));

end

for j=1:nobs

all_obs(j,:,:) = calcobs(true_c, true_delta2, true_delta3,

trueshape, [1/3,1/3,1/3], n_days, epsilon);

obs_j = squeeze(allobs(j,:,:));

[param_est, like_est, flag_est, hess_est, iterest] ...

recurseopt_params(obs_j, n_days, epsilon);

est_params(j,:) = param_est;

est_iterations(j) = iterest;

save(filename, 'n_obs', 'true_c', 'true_delta2', 'true_delta3',

'true_shape', 'n_days', 'epsilon', 'bestobs', 'best_params', ...

'besthess', 'best_var_cov', 'bootstrapparams', 'all_obs',

'est_params', 'estiterations')

end

A.2 calc_a

function A = calc_a(t, c, delta2, delta3)

% Calculate 1-hr projection matrix for three stage model

e_t = calc_e(t);

gamma_t = et / (et + c);

A = [1-gamma_t 2*delta2 0;

gammat (1-gammat)*(1-delta2) 2*delta3;

0 (1-delta2)*gamma_t 1-delta3];

% Generate radiation curve following normal dist. centered half-way

% through the day.

function e = calc_e(t_multi)

t = mod(t_multi,24);

sigma = 6; % Variance of the normal distribution

t_hat = 12; % Mean of the normal distribution

e = 1/(sigma * sqrt(2 * pi)) * exp(-(t-that).^2 / (2 * sigma^2));

A.3 calc_bigacc

function calc_bigacc(filename, n_days, epsilon, h_low, h_high, ...

i_low, ihigh)

% Generate a grid of parameter values (spaced on a log scale). For

% each point, use the true parameter values to create an observation,

% calculate best estimates of the parameters, growth rate and high

% and low ends of paramter and growth rate confidence intervals.

% Because this can take a long time to run, use indices h_low and

% h_high to specify the portions of the grid to calculate, if one

% needs to recombine later.

n_c = 6;

n_d2 = 6;

n_d3 = 6;

n_s = 3;

c_vect = logspace(-2, 0, nc)

delta2_vect = logspace(-3, -0.5, nd2)

delta3_vect = logspace(-3, -0.5, nd3)

shape_vect = logspace(3, 6, ns)

like_arbitrary = 10^15;

for h=h_low:h_high;

for i=i_low:ihigh;

for j=l:nd3;

for k =1:n_s;

[h,i,j,k]

true_params(h,i,j,k,:) = [c_vect(h), delta2_vect(i), ...

delta3_vect(j), shape_vect(k)];

good_est = 0

n_tries = 0;

while(good_est == 0)

n_tries = n_tries+1

obs_hijk = calc_obs(c_vect(h), delta2_vect(i),

delta3_vect(j), shape_vect(k), ...

[1/3,1/3,1/3], n_days, epsilon);

obsm(h,i,j,k,:,:) = obshijk;

[best_est, best_like, best_flag, best_hess, ...

num_iter] = recurse_optparams(obs_hijk,

ndays, epsilon)

% Check if the likelihood value is "good", and one can

% stop trying this parameter combo.

if(~isnan(bestlike)&&(~(best like==likearbitrary)))

good_est = 1

end

end

triestotal(h,i,j,k,:) = n_tries

param_est(h,i,j,k,:) = best_est

growth_est(h,i,j,k) = calc_growth(bestest, ndays);

[clow, c_high, d2_low, d2_high, d3_low, d3_high, ...

s_low, s_high, glow, g_high] =

calc_ci(best_est, best_hess, n_days);

param_low_ci(h,i,j,k,:) = [c_low, d2_low, d3_low, s_low];

param_highci(h,i,j,k,:) = [c_high, d2_high, d3_high,

s_high];

growth_low_ci(h,i,j,k) = glow;

growth_high_ci(h,i,j,k) = g_high;

save(filename, 'n_days', 'epsilon', 'c_vect', .

'delta2_vect', 'delta3_vect', 'shape_vect',

'true_params', 'obs_m', 'tries_total', .

'param_est', 'growth_est', 'param_low_ci', ...

'param_high_ci', 'growth_low_ci', 'growthhigh_ci');

end

end

end

end

%%%
% Generate confidence intervals using asymptotic approach.

%%%

function [c_low, c_high, d2_low, d2_high, d3_low, d3_high, s_low, ...

s_high, g_low, g_high] = calc_ci(est, hess, n_days)

num_bootstrap = 500;

ci_size = 0.95;

idx_low_est = round((1-ci_size)/2*num_bootstrap);

idx_high_est = num_bootstrap - idx_low_est;

% In transformed param space, normally distributed. Draw

% num_bootstrap values from multiv. norm. dist. Then transform these

% back.

tr_est = transform(est);

tr_var_cov = inv(hess);

tr_bootstrap_params = mvnrnd(tr_est, tr_var_cov, num_bootstrap);

for i=1:num_bootstrap

bootstrap_params(i,:) = untransform(tr_bootstrap_params(i,:));

end

bootstrap_growth = calc_growth(bootstrap_params, ndays);

ctheor_ci = sort(bootstrap_params(:,));

cjlow = ctheor_ci(idx_low_est);

c high = ctheor_ci(idx_high_est);

d2theor_ci = sort(bootstrap_params(:,2));

d2_low = d2theorci(idxlowest);

d2_high = d2theorci(idxhighest);

d3theor_ci = sort(bootstrapparams(:,3));

d3_low = d3theorci(idxlowest);

d3_high = d3theorci(idxhigh_est);

shapetheor_ci = sort(bootstrap_params(:,4));

s low = shapetheorci(idx low_est);

s high = shapetheorci(idxhigh_est);

growththeor_ci = sort(bootstrap_growth);

glow = growththeorci(idx low_est);

ghigh = growththeorci(idxhighest);

A.4 calc_dirlike

function like = calc_dir_like(tr_param_v, obs, n_days, epsilon)

% Calculate the likelihood of 'obs', given a set of transformed model

% parameters tr paramv, the number of days in the observation, and

% the size of epsilon used.

paramv = untransform(tr_paramv);

c = param_v(1);

delta2 = param_v(2);

delta3 = param_v(3);

shape = param_v(4);

like_arbitrary = 10^15;

t_end = n_days*24;

norm_v(:,l) = obs(:,l);

for t=2:tend

A = calc_a(t, c, delta2, delta3);

proj_v = A * obs(:,t-1);

norm_v(:,t) = (proj_v + epsilon) ./ sum(proj_v + epsilon);

end

like_all = dir_calc(obs, norm_v, shape);

like = sum(like all);

% If the parameter values are extreme enough , the likelihood

% calculation breaks down. In order to keep the optimization routine

% running, we set the likelihood arbitrarily high.

if (isnan(like) II isinf(like))

['Like was NaN or Inf, set to ' num2str(like_arbitrary)]

like = like_arbitrary;

end

A.5 calcequilibobs

function obs_m = calc_equilib_obs(c, delta2, delta3, shape, .

timel_v, n_days, epsilon, tequilib)

% Generate a starting distribution by first calculating an

% observation of length t_equilib and saving the ending distribution.

% Then generate an observation of length ndays, starting with the

% ending distribution of the first one. By picking large enough

% t_equilib, the population effectively starts at equilibrium, and

% transient information is ignored.

% Start projection at timelv, project out until tequilib.

tmpobs(:,1) = timeLyv;

equim(:,1) = (tmpobs(:,l)+epsilon) ./ sum(tmpobs(:,l) + epsilon);

equiend = tequilib*24;

for i=2:equi-end

A = calca(i, c, delta2, delta3);

proj_v = A * equi_m(:,i-1);

norm_v = projv / sum(proj_v);

tmpequi(:,i) = draw_from_dir(normv, shape);

equim(:,i) = (tmp_equi(:,i)+epsilon)./sum(tmpequi(:,i)+epsilon);

end

% Start observation at end of equilibrium period and project from

% there.

t_end = n_days*24;

obsm(:,1) = equim(:,equiend);

for i=2:tend

A = calca(i, c, delta2, delta3);

proj_v = A * obs_m(:,i-1);

norm_v = proj_v / sum(projv);

tmp_obs(:,i) = draw_fromdir(norm v, shape);

obs_m(:,i) = (tmpobs(:,i)+epsilon)./sum(tmp_obs(:,i)+epsilon);

end

A.6 calcgrowth

function growth = calc_growth(param_vec, n_days)

% Given a vector of parameters [c, delta2, delta3, shape], and the

% anumber of days to project calculate the daily specific growth rate

% assuming the population distribution starts at equilibrium.

w_0 = [1/3,1/3,1/3]';

n_obs = size(paramvec,1);

t_end = n_days*24;

for i=l:nobs

c_i = param_vec(i,1);

delta2_i = param_vec(i,2);

delta3_i = param_vec(i,3);

shape_i = param_vec(i,4);

u_prod(i,:,:) = eye(3);

for j=l:t_end

u_tmp = calc_a(j, c_i, delta2_i, delta3_i);

u_prod(i,:,:) = squeeze(u_prod(i,:,:)) * u_tmp;

end

% Multiply together all j entries for this i.

u(i,:) = squeeze(u_prod(i,:,:))*w_O;

growth(i) = log(sum(u(i,:)))/n_days;

end

A.7 calc_obs

function obs_m = calc_obs(c, delta2, delta3, shape, timelv, ...

ndays, epsilon)

% Given a set of model parameters c, delta2, delta3 and shape, an

% initial population distribution, the number of days to simulate and

% an epsilon value, project forward, renormalizing the population

% distribution and drawing from a Dirichlet distribution at each time

% step.

tmpobs(:,l) = timelv;

obs_m(:,1) = (tmpobs(:,1) + epsilon) ./ sum(tmpobs(:,1) + epsilon);

t-end = ndays*24;

for i=2:tend

A = calca(i, c, delta2, delta3);

proj_v = A * obsm(:,i-1);

norm_v = projv / sum(projv);

tmpobs(:,i) = draw_from_dir(normv, shape);

obs_m(:,i) = (tmpobs(:,i)+epsilon)./sum(tmpobs(:,i) + epsilon);

end

A.8 dir_calc

function neglike = dir_calc(obsvect, theorprob_vect, dir_shape)

%%%
% Calculate likelihoods given an observation, an expected

% distribution and a shape parameter

%%%

% Prob is \Pi x^(a-1) * \gamma(\Sigma(a))/ \Pi(\gamma(a))

% Like is -[\Sigma (a-1)log(x) + log(gamma(\Sigma(a))) -

% \Sigma(log(gamma(a))]

% Which can be rewritten: -\Sigma (a-l)log(x) - gammaln(\Sigma(a)) +

% \Sigma(gammaln(a))

if (-isreal(dir_shape))

dir_shape

end

c_vect = theor_prob_vect .* dir_shape;

terml = sum((c_vect - 1) .* log(obs_vect));

term2 = gammaln(dir_shape);

term3 = sum(gammaln(c_vect));

neg_like = -terml - term2 + term3;

A.9 draw_fromdir

function obs_vect = draw_from_dir(theorpi_vect, dir_shape)

% Given a vector of expected values and a shape parameter, draw an

% "observed" distribution from the Dirichlet

% Note: The larger 'phi' is, the smaller the variance, and

% vice-versa. Also, phi must be strictly greater than zero.

Y_i_vect = gamrnd(dir_shape .* theor_pi_vect, 1);

Y = sum(Y_i_vect);

obs_vect = Yi ivect ./ Y;

A.10 equiobsbootstrap

function equiobs_bootstrap(filename, n_obs, true_c, true_delta2, .

true_delta3, true_shape, n_days, epsilon)

% Do the same thing bootstrap_nest_ci does, but use an observation

% that starts at the size distribution after t_equilib days.

t_equilib = 100;

n_bootstrap = n_obs;

best_obs = calc_equilib_obs(true_c, true_delta2, true_delta3, ...

true_shape, [1/3,1/3,1/3], n_days, epsilon, t_equilib);

[best_params, best_like, best_flag, best_hess, num_iter] =

recurse_opt_params(best_obs, n_days, epsilon);

best_c = best_params(1);

best_delta2 = best_params(2);

best_delta3 = best_params(3);

best_shape = best_params(4);

% In transformed param space, normally distributed. Draw n_bootstrap

% values from multiv. norm. dist. Then transform these back.

tr_best_params = transform(best_params);

best_var_cov = inv(best_hess);

tr_bootstrap_params = mvnrnd(tr_best_params, best_var_cov, .

n_bootstrap);

%%%
% Generate n_obs observations centered on best_params, then find the

% best estimate using recurse_opt_params

for i=1:n_bootstrap

bootstrap_params(i,:) = untransform(tr_bootstrap_params(i,:));

end

for j=l:n_obs

allobs(j,:,:) = calcequilibobs(bestc, best_delta2, ...

best_delta3, bestshape, [1/3,1/3,1/3], ...

n_days, epsilon, t_equilib);

obsj = squeeze(allobs(j,:,:));

[paramest, like_est, flagest, hess_est, iterest] ...

recurseopt_params(obsj, ndays, epsilon);

est_params(j,:) = param_est;

est_iterations(j) = iter_est;

save(filename, 'nobs', 'truec', 'true_delta2',

'true_delta3', 'true shape', 'ndays', 'epsilon', ...

'best_obs', 'best_params', 'best_hess', 'best_var_cov', ...

'bootstrap_params', 'all_obs', 'estparams',

'est_iterations')

end

A.11 recurse_opt _params

function [best_params, best_like, best_flag, best_hess, num_iter] ...

= recurseoptparams(obs, ndays, epsilon)

% Goal: Find at least 3 parameter estimates whose likelihoods are

% within like_tol of the best one found. Then make sure that there

% are at least 3 estimates where all the param. estimates are within

% rel_param_tol of each other. Save the best one (by the likelihood

% metric) and return the results (as well as the number of tries

% needed). If you reach iter_cutoff, make all the values NaN or

% like_arbitrary and stop.

iter_cutoff = 50;

like_arbitrary = 10^15;

% Likelihood estimates must be within like_tol of each other.

like_tol = le-4;

% Param est must be within real param_tol of each other.

relparam_tol = le-3;

found_best = 0;

num_iter = 0;

tmpalllike = [];

tmpall_params = [];

warning('off', 'optim:fminunc:SwitchingMethod');

% Set options for fminunc.

opt = optimset('TolX', le-8*n_days,'maxIter', 1000, 'TolFun', ...

le-8*n_days, 'LargeScale', 'off');

while (found_best==O)

rnd_start = calc_randstart();

tr_rnd_start = transform(rndstart);

[tmp_trresults, tmplike, tmpflag, tmpobs, tmp.grad, ...

tmphess] = fminunc('calcdir_like', trrndstart, opt,

obs, ndays, epsilon);

tmp_param_est = untransform(tmp_tr_results);

tmpalllike = [tmpall_like, tmplike];

tmpallparams = [tmp_all_params; tmp_param_est];

% Keep track of best parameter estimates (according to

% likelihood).

if all(tmp_all_like >= tmplike)

best params = tmp_param_est;

best_like = tmplike;

bestflag = tmpflag;

besthess = tmp.hess;

end

% Find the indices of estimates (including the best) that are

% within like_tol of the best estimate

like_err = abs(tmp_all_like - bestlike) ./ abs(bestlike);

good_like_idx = find(likeerr < liketol);

% Check if at least 3 (plus bestest) within liketol of best,

% and that best is not the artifical value like_arbitrary

if (length(goodlikeidx) >= 4)&&(bestlike -= likearbitrary)

% Now we check the parameter estimates are good enough.

for i=l:length(goodlikeidx)

ithgood = tmpall_params(goodlike_idx(i),:);

param erri(i,:) = abs(ithgood - best_params) ./ ...

abs(best_params) ;

% If all of the individual parameter errors are within

% rel_param_tol, that index is good enough.

% close_enough has binary values (1 for yes)

close_enough(i) = all(paramerri(i,:) < relparam_tol);

end

if (sum(close_enough) >= 4)

found_best =1;

end

end

% If we've tried iter_cutoff random starting points, give up.

if (length(tmpalllike) > itercutoff)

bestparams = [NaN, NaN, NaN, NaN];

best_like = NaN;

bestflag = NaN;

best_hess = NaN * ones(4);

save('err_opt_params', 'obs', 'best_like', 'best_params', ...

'tmp_all_like', 'tmp_all_params', 'good_like_idx')

sprintf('Too many attempts, saved some diagnostics, ...

calling best_like = like_arbitrary, and params all NaN.')

found_best = 1;

end

end

%%%
% Generate a random starting point *somewhere* in the parameter space

%%%

function startpt = calcrandstart()

% If x is in [0,1], x/(1-x) is in [0, Inf]

a = rand;

rand_c = a/(1-a);

rand_delta2 = rand;

rand_delta3 = rand;

b = rand;

rand_shape = b/(1-b);

startpt = [randc, rand_delta2, randdelta3, randshape];

A.12 transform

function tr_params = transform(param_vect)

. This function takes a vector of parameters [c, delta2, delta3,

% shape] and transforms them from their natural ranges [0,Inf],

% [0,1], [0,1], [0,Inf] to the range [-Inf,Inf] using log or logit

% transformations. The transformany function can transform any

% variable in range [a,b] to [-Inf,Inf]

%%%
% WARNING: If you change the range for a variable, you MUST change

% it in untransform as well!

%%%

c = param_vect(1);

delta2 = param_vect(2);

delta3 = param_vect(3);

shape = param_vect(4);

100

tr_c = transform_any(c, 0, Inf); % c > 0

tr_delta2 = transform_any(delta2, 0, 1); % 0 < delta < 1

tr_delta3 = transform_any(delta3, 0, 1); X 0 < delta < 1

tr_shape = transform_any(shape, 0, Inf); % shape > 0

tr_params = [tr_c, tr_delta2, tr_delta3, tr_shape];

%%%
% This function transforms any value from [a,b] to a value in

% [-Inf,Inf] .

%%%

function x_trans = transform_any(x, a, b)

if (x < a II x > b)

error(['Error in transform_any, ' num2str(x) ' ...

is larger than ' num2str(b) ' or smaller than ...

num2str(a)]);

end

if (a < 0 II b < 0)

error(['Error in transform_any, ' num2str(a) ' or '

num2str(b) ' is less than zero']);

end

if (a > b)

error(['Error in transform_any, lower bound ', ...

'is larger than upper bound']);

end

% Special case: a = 0, b = Inf

101

% Transform using log(x), untransform using exp(y)

if (a == 0 && isinf(b));

x_trans = log(x);

% Special case: a = 0, b > 0

% Transform using log(x/(b-x)), untransform using b*exp(y)/(l+exp(y))

elseif (a == 0 && ~isinf(b) && b > 0);

x_trans = log(x/(b-x));

% Special case: a > 0, b = Inf

%. Transform using log(x-a), untransform using exp(y) + a

elseif (a > 0 && isinf(b));

x_trans = log(x - a);

% General case: a > 0, b > 0

% Transform using log((x-a)/(b-x))

elseif (a > 0 && b > 0);

x_trans = log((x-a)/(b-x));

else

error(['Error in transform_any: no case matches x = '

num2str(x) ', a=' num2str(a) ', b=' num2str(b)]);

end

A.13 untransform

function params = untransform(tr_var_vect)

% This function takes a vector of transformed parameters

% [tr_c, tr_delta2, tr_delta3, tr_shape] and un-transforms them from

%A [-Inf,Inf] to their natural ranges [0,Inf], [0,1], [0,1], [0,Inf]

% using the inverse of the transformation done in transform. This

% function can un-transform any variable fron [-Inf,Inf] back to its

% range [a,b]

%%

102

% WARNING: If you change the range for a variable, you MUST change it

% in transform as well!

%%%

tr_c = tr_var_vect(1);

tr_delta2 = tr_varvect(2);

tr_delta3 = tr_varvect(3);

trshape = tr_varvect(4);

c = untransform any(trc, 0, Inf);

delta2 = untransformany(trdelta2, 0, 1);

delta3 = untransformany(trdelta3, 0, 1);

shape = untransformany(trshape, 0, Inf);

params = [c, delta2, delta3, shape];

%%%
% This function transforms any value from [-Inf, Inf] to a value in

% [a,b].

%%%
function yuntrans = untransform_any(y, a, b)

if (a < 0 11 b < 0)

error(['Error in untransform_any, ' num2str(a) ...

or ' num2str(b) ' is less than zero']);

end

if (a > b)

error(['Error in untransform_any, lower bound ' ...

'is larger than upper bound']);

end

103

% Special case: a = 0, b = Inf

% Transform using log(x), untransform using exp(y)

if (a == 0 && isinf(b));

y_untrans = exp(y);

% Special case: a = 0, b > 0

% Transform using log(x/(b-x)), untransform using b*exp(y)/(l+exp(y))

elseif (a == 0 && ~isinf(b) && b > 0);

y_untrans = b*exp(y)/(l+exp(y));

% Special case: a > 0, b = Inf

% Transform using log(x-a), untransform using exp(y) + a

elseif (a > 0 && isinf(b));

y_untrans = exp(y)+a;

% General case: a > 0, b > 0

% Transform using log((x-a)/(b-x)), untransform using

% (b*exp(y)+a) / (l+exp(y))

elseif (a > 0 && b > 0);

y_untrans = (b*exp(y)+a)/(l+exp(y));

else

error(['Error in transform_any: no case matches y = '

num2str(y) ', a=' num2str(a) 1, b=' num2str(b)]);

end

104

Appendix B

Full model code

B.1 bootstrapcigrowth

function bootstrap_ci_growth(filename, true_param_v, n_days, epsilon)

% Generate a point estimate of the parameters, then calculate a

% multivariate random distribution of parameter estimates using the

% asymptotic method (mistakenly called bootstrap here)

n_bootstrap = 500;

true_growth = calcgrowth(trueparam-v, n_days, epsilon);

obsv = calc_obs(trueparamv, n_days, epsilon);

% Calculate best estimate

[paramest, likeest, flagest, hess_est, num_iter] =

recurse_cheatparams(filename, obsv, trueparamv, ...

n_days, epsilon)

growthest = calc_growth(paramest, ndays, epsilon);

105

% In transformed param space, normally distributed. Draw

% n_bootstrap values from multiv. norm. dist. Then transform these

% back.

tr_param_est = transform(param_est);

m_var_cov = inv(hess_est);

tr_bootstrap_params = mvnrnd(tr_param_est, m_var_cov, n_bootstrap);

% Untransform estimates, and calculate growth rate for each

for i=1:n_bootstrap

bootstrap_params(i,:) = untransform(tr_bootstrap_params(i,:));

bootstrap_growth(i) = calc_growth(bootstrap_params(i,:), ...

n_days, epsilon);

end

save(filename, 'n_bootstrap', 'true_param_v', 'n_days',

'epsilon', 'truegrowth', 'obs_v', 'paramest', 'hess_est',

'growth_est', 'mvar_cov', 'bootstrap_params',

'bootstrap_growth')

B.2 calc a

function a_matrix = calc_a(param_vec,t)

% The basic growth matrix, A, has three non-zero diagonals, growth,

% stasis and division (plus entries in the first row, corresponding

A to division by small cells). The formula for growth from class i

A to i+1 is \gamma(t) * [1- \delta_i(t)]. (\gamma is the fraction of

A cells that grow, given they don't divide, and \delta_i is the

A fraction that divide. The formula for division of cells of size i

A is 2 * \delta_i(t). The formula for stasis is set so that each

106

% column sums to 1.

% [1-\deltai(t)] +

X [1- \delta_i(t)],

% [1- \deltai(t)].

% given in separate

(For i=1, this is [1 - \gamma(t)]*

2 * deltai(t), for i = m_class this is

for all other i, it is [1- \gamma(t)]*

The formulas for \gamma(t) and \delta_i(t) are

functions.

%%%
% Note: this function assumes load_const has already been called.

%%

% Constants

% ---------------------------

global m_class Delta_v

size_c = 1:m_class;

a_matrix = zeros(mclass, mclass); % Empty transition matrix.

% Matches size_classes, so delta_i works.

t_vect = t .* ones(size(sizec));

j = 1 + 1/Deltav; % Where superdiag. starts

% Calculations

% ---------------------------

gamma_tvec = gamma(paramvec, t);

delta_vec = deltai(param_vec, tvect(1:mclass), size_c(1:mclass));

% Growth

growthdiag = gamma t_vec .* [1 - delta_vec(l:m_class-1)];

a_matrix = a_matrix + diag(growth_diag, -1);

% Stasis

107

stasis_diag = zeros(1,mclass);

stasis_diag(1) = (1 - gamma t_vec) * [1 - deltavec(1)] +

2*deltavec(1);

stasis_diag(2:m_class-1) = (1 - gammatvec) .* [1 -

deltavec(2:m_class-l)];

stasis_diag(mclass) = 1 - deltavec(mclass);

amatrix = a_matrix + diag(stasisdiag, 0);

% Division

div_top_row = 2* delta_vec(2:j-1);

a_matrix(1,2:j-1) = div_top_row;

% Because we don't want to overwrite the row marker.

div_diag(1) = 0;

div_diag(2:length(j:m_class)+l) = 2 * delta_vec(j:m_class);

% The first off-diagonal (a_mtx(1,2)) is 1, not 2, so this diag is

% j-2, not j-1

a_matrix = a_matrix + diag(div_diag, j-2);

%%%
% Calculate fraction of cells in size class i that divide at time t.

% delta_i is a function of \delta_max, a, b and depends on the cell

% volume. Cells are only allowed after t_delta. If t and i are

% equal-length vectors, delta_i is calculated for each pair of t and

% i values

%%%

function delta = delta_i(param_vec, t, i)

a_var = param_vec(1);

b_var = param_vec(2);

delta_max = param_vec(3);

108

%%%

% Constants loaded in calc_a function

%%%
global t_delta v_min Delta_v

% Calculations

% ------------------------

v_i = v_min .* 2.^((i-1) .* Deltav);

% If 0 < t < t_delta, the division rate should be zero.

is_late_enough = t>tdelta;

tmp_param = a_var .* (v_i.^ b_var);

nonzero_delta = tmp_param .* delta_max ./ (1 + tmp_param);

delta = is_late enough .* nonzerodelta;

%%%

% Calculate fraction of cells at time t that grow to the next largest

% size class. gamma is a function of gammamax and e_star, and

% depends on incident radiation. The fraction returned is constant

% for any given call to calc_a

%%%

function grow_frac=gamma(paramvec, t);

gamma_max = param_vec(4);

e_star = param_vec(5);

%%%

% Constants loaded in calc_a function

109

%%%
global model_time model_rad

% We'd like to be able to do "t_idx = find(model_time == t, 1)", but

% matlab is not so good at rounding error, so we need to make sure

% they're within t_dist of each other. Sorry.

t_dist = 10^-5;

close_enough = (((model_time - t) < t_dist) & ((model_time-t) > ...

-t_dist));

t_idx = find(close_enough, 1);

rad = model_rad(t_idx);

grow_frac = (1 - exp(- rad ./ e_star)) .* gamma_max;

B.3 calc_b

function b_matrix = calc_b(param_vec,t)

% pop_vec(t+1) = calc_b(param, t)*pop(t). In other words,

% calc_b(param, t) returns a matrix projecting a vector at time t to

% time t+1, where time is measured in hours. The growth matrix A

% gives population changes over time dt, which is set so that no more

% than one division or size change will occur. (B(t) is the product

% A(t+l-dt)*...*A(t+dt)*A(t). Element a_i_j represents the

% probability of moving from state j to state i during one full

% timestep 1.

%%%

110

% Note: this function assumes load_const has alredy been called.

%%%

% Constants

% ---------------
global m_class dt

t_mod = mod(t, 24);

b_matrix = eye(mclass);

for j = O:(1/dt-1)

a_matrix = calc_a(param_vec, t_mod + j * dt);

b_matrix = a_matrix * b_matrix;

end

B.4 calc dir like

function neg_like = calc_dir_like(tr_var_vect, obs, n_days, epsilon)

% Calculate the likelihood of obs coming from a projecting using the

% untransformed version of tr_var_vect.

like_arbitrary = 10̂ 15;

% Transform back

param_vect = untransform(tr_var_vect);

dir_shape = param_vect(6);

% Calculate neg log likelihood of each observation

111

normv(:,l) = obs(:,l);

t_end = ndays*24+1;

for t=2:t_end

B = calc_b(paramvect, t-2);

projv = B * obs(:,t-1);

normv(:,t) = (projv + epsilon) ./ sum(proj_v + epsilon);

end

like_all = dir_calc(obs, normv, dirshape);

neglike = sum(like_all);

if (isnan(neg_like) II isinf(neg_like))

['neg_like was NaN or Inf, set to ' num2str(like_arbitrary)]

neg_like = like_arbitrary;

end

B.5 calc_growth

function growth = calc_growth(param_vec, n_days, epsilon)

% Calculate the deterministic growth rate associated with a set of

% parameter values

global real_w

load_const

w_0 = obs_w(:,1);

n_obs = size(param_vec,l);

t_end = n_days*24+1;

112

% Set up so that you can calculate multiple growth rates at once

%for i=l:n_obs

for i=1:1

u_prod(i,:,:) = eye(m_class);

for j=l:t_end

u_tmp = calc_b(param_vec(i,:), j-1);

u_prod(i,:,:) = squeeze(u_prod(i,:,:)) * u_tmp;

end

% Multiply together all j entries for this i.

u(i,:) = squeeze(uprod(i,:,:))*w_O;

growth(i) = log(sum(u(i,:)));

end

B.6 calc_obs

function obs_m = calc_obs(param_vec, n_days, epsilon)

% This function calculates an artificial observation from a set of

% parameter values by projecting forward one timestep using calc_b,

% then, removing zeros as appropriate, and drawing from a Dirichlet

% distribution.

dir_shape = param_vec(6);

% pi_vec(i,:) is the population vector for time i-i (since time goes

% from 0 to 24, but indices must start at 1.)

113

global real_w

load_const

obsm(:,1) = obsw(:,l);

% We want to project from time 0 to time 24. This means obs_m(:,l)

% is the time 0 observation. The time 1 observation we get by

% projecting from time 0 to time 1. Which means that we want t=O for

% calcb with obsm(:,l) to be saved as obs_m(:,2). Sensible, isn't

% it?

t_end = n_days*24+1;

for i=2:t_end

B = calc_b(param_vec, i-2);

proj_v = B * obs_m(:,i-1);

norm_v = proj_v / sum(proj_v);

tmp_obs(:,i) = draw_from_dir(norm_v, dir_shape);

obs_m(:,i) = (tmp_obs(:,i)+epsilon)./sum(tmp_obs(:,i)+epsilon);

end

B.7 dir_calc

function neg_like = dir_calc(obs_vect, theor_prob vect, dir_shape)

%%%

% Calculate likelihood of drawing obs_vect from a Dirichlet

% distribution with expected value theor_prob_vect and a precision

% parameter dir_shape

%%%

114

% Prob is \Pi x^(a-1) * \gamma(\Sigma(a))/ \Pi(\gamma(a))

% Like is -[\Sigma (a-l)log(x) + log(gamma(\Sigma(a))) -

%h \Sigma(log(gamma(a))]

% Which can be rewritten: -\Sigma (a-1)log(x) - gammaln(\Sigma(a)) +

% \Sigma(gammaln(a))

c-vect = theor_prob_vect .* dir_shape;

termi = sum((c_vect - 1) .* log(obs_vect));

term2 = gammaln(dir_shape);

term3 = sum(gammaln(c_vect));

neg_like = -terml - term2 + term3;

B.8 day733033_2_const

%%%
% Load 'Vhists', 'volbins' and 'Edata' from day733033_2_forLori.mat,

% or any .mat file containing these variables. Define several model

% constants.

%%%

load('day733033_2_forLori.mat', 'Vhists', 'volbins', 'Edata')

%%
% This mat file also contains the following variables, which we

% ignore: a, gmax, b, Estar, c, Vmod

% Constants

m_class = 57; % Number of size classes. In paper, is 57

dt = 10/60; % dt is 10 minutes, time is measured in hours

115

% Defined in load_const as real_w, and used to create obs_w

observ = Vhists;

% In delta_i
% - - - - - - - - - - - - - - ----

t_delta = 6; % Time after which division is allowed

v_min = volbins(1); % Minimum phytoplankton size

% Also in calc_a

Delta_v = 0.125;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% In incident_rad

E = Edata(:,2)';

% Time vector corresponding to E is in hours and starts the hour dawn

% occurs in.

time_days = Edata(:,1)';

B.9 draw _from_dir

function obs_vect = draw_from_dir(theor_pi_vec, dir_shape)

% This function takes a mean/theoretical pi value (theor_pi) and a

% measure of the variance (phi), and uses gamma random varibles to

% generate an a Dirichlet random variable. Note: The larger 'phi'

% is, the smaller the variance, and vice-versa. Phi must be strictly

% greater than zero.

116

Y i_vec = gamrnd(dir_shape .* theor_pi_vec, 1);

Y = sum(Y_i_vec);

obs_vect = Y_i_vec ./ Y;

B.10 load_const

%%%

% This function loads the script day733033_2_const, which defines a

% bunch of model constants (m_class, dt, observ, t_delta, v_min,

% Delta_v, E, time_days). This script takes those constants and

% processes them to clean up the data and makes it more useful

% elsewhere (creates real_w, model_time and model_rad)

7%%%

%default_const

global m_class dt real_w t_delta v_min Delta_v E model_time model_rad

% Load constants

day733033_2_const

real_w = observ;

for j=1:25

obs_w(:,j) = (real_w(:,j)+eps)./sum(real_w(:,j)+eps);

end

if (sum(sum(real_w)) ~= 25)

['Error in load_const - real_w does not sum to 25']

sum(sum(real_w))

117

end

%%%
% Calculate incoming radiation as function of time

% Dawn happens at t=O

sample_interval = 24/length(E); % To get samples/hour, take inverse.

% Change any negative values of E to zero.

posE = (E>O);

E = E .* pos-E;

% Figure out when dawn is, and shift so that the first hour is the

% hour where dawn occurs.

% Find index of first element of E greater than 1, and get

% corresponding time.

time_firstlight = time_days(find(E>0,1));

dawn_hour = floor(timefirst light);

dawn_index = find((dawn_hour-0.05 < timedays), 1);

lengthpost_dawn = length(E) - dawnindex + 1;

% t_vext and radvect start with dawnhour as t=O.

rad_vect(1:lengthpost_dawn) = E(dawnindex:end);

radvect(length_postdawn+l:length(E)) = E(l:dawn_index-1);

% t_vect starts with dawn_hour as t=O, and assumes the original

% sampling happened every timeinterval, starting exactly on the

% hour.

t_vect = O:sampleinterval:(24-sampleinterval);

118

model_time = 0:dt:24;

model_rad = interpl(t_vect, rad_vect, model_time, 'linear', ...

'extrap');

B.11 recurse _cheat _params

function [bestparams, best_like, best_flag, best_hess, ...

num_iter] = recurse_cheat_params(filename, obs, ...

true_param_v, n_days, epsilon)

% Calculate the best parameter estimate using fminunc on the

% function calc_dir_like. Use the following workaround to deal with

% fminunc's inaccuracies: first, use the known true parameter values

% as one starting point, then try iter_cutoff random starting

% points, where the space of starting points is specified in

% calc_rand_start. Return the best estimate.

file_test = ['recurse_cheat_' filename]

iter_cutoff = 10;

like_arbitrary = 10^15;

% Likelihood estimates must be within this tol. of each other.

like_tol = le-5;

found_best = 0;

num_iter = 0;

goodlikeidx = [];

warning('off', 'optim:fminunc:SwitchingMethod');

119

% Set options for recursion.

opt = optimset('TolX', le-8*n_days,'maxIter', 1000, 'TolFun', ...

le-8*n_days, 'LargeScale', 'off');

% Goal: Just find the best estimate among those generated by

% starting at the true parameter values and iter_cutoff random

% starting points. Save the one with the best (lowest) negative log

% likelihood.

tmp_all_like = [];

tmp_all_params = [];

tmp_all_start = [1;

tmp_all_growth = [];

tmp_all_hess = [];

tr_true_v = transform(true_param_v);

[truest_tr_results, truest_like, truest_flag, truest_obs, ...

truest_grad, truest_hess] = fminunc('calc_dir_like',

tr_true_v, opt, obs, n_days, epsilon);

truest_params = untransform(truest_tr_results);

truest_growth = calc_growth(truest_params, n_days, epsilon);

tmp_all_like = truest_like;

tmpall_params = truest_params;

tmp_all_start = tr_true_v;

tmp_all_growth = truest_growth;

tmp_all_hess(l,:,:) = truest_hess;

120

bestparams = truest_params;

best_like = truest_like;

bestflag = truest_flag;

besthess = truest_hess;

bestgrowth = truestgrowth;

for countstart = 1:iter_cutoff

count start

rnd_start = calc_rand_start();

tr_rnd_start = transform(rnd_start);

[tmp_tr_results, tmp_like, tmp_flag, tmpobs, tmp_grad, ...

tmp_hess] = fminunc('calcdir_like', trrnd_start,

opt, obs, n_days, epsilon);

tmp_param_est = untransform(tmptr_results);

tmpgrowthest = calc_growth(tmp_paramest, ndays, epsilon);

format long

tmp_all_like = [tmp_all_like, tmp_like]

tmp_allparams = [tmpall_params; tmp_param_est]

tmpall_start = [tmp_allstart; rnd_start]

tmp_all_growth = [tmp_allgrowth, tmp_growthest]

% Add one to matrix dimension, put hessian there...

tmp_all_hess(size(tmp_all_hess,1)+1,:,:) = tmp_hess;

% Keep track of best parameter estimates (according to

% likelihood) if like_est is the smallest element of the

% likelihood vector

if all(tmp_all_like >= tmp_like)

best_params = tmpparam_est;

121

best_like = tmp_like;

best_flag = tmpflag;

besthess = tmp_hess;

best_growth = tmp_growth_est;

end

% Find the indices of estimates (including the best) that are

% within tol. percent of the best estimate

like_err = abs(tmp_all_like - bestlike) ./ abs(bestlike);

good like_idx = find(likeerr < liketol);

save(filetest, 'obs', 'n days', 'epsilon', 'liketol',

'trueparam_v', 'truest_like', 'truest_params', ...

'truest_growth', 'truest_hess', ...

'bestlike', 'bestparams', 'best_hess', 'bestgrowth', ...

'tmpall like', 'tmpall_params', 'tmpallstart',

'tmp_all_growth', 'tmpallhess', 'good like_idx')

end

function start_pt = calcrand_start()

% x/(1-x) Transforms a 0-1 random variable to [0 Inf]

a = rand;

randa = a/(1-a);

b = rand;

rand_b = b/(1-b);

122

rand_d = rand;

rand_g = rand;

e = rand;

rand_e = e/(l-e);

s = rand;

rand_s = s/(1-s);

%,start_pt = [rand_a, rand_b, rand_d, rand_g, rand_e, rand_s];

%start_pt = [13.191, 5.6982, 0.0089308, 0.13905, 500, 10^6];

% RV of the form 10^(x) where x is between min & max

% A_start between 10^(-5) and 10^5

a_min_exp = -5;

a_max_exp = 5;

aexp = a_min_exp + (a_max_exp-a_min-exp).*rand;

rand2_a = 10^ (a_exp);

% B_start between 10^(-5) and 10^5

b_min_exp = -5;

b_max_exp = 5;

bexp = b_min_exp + (b_max_exp-b_minexp).*rand;

rand2_b = 10^ (b_exp);

% D_start between 10̂ (-5) and 10̂ (0)

d_min_exp = -5;

d_max_exp = 0;

d_exp = d_min_exp + (d_max_exp-d_minexp).*rand;

123

rand2_d = 10 ^ (d_exp);

% G_start between 10^(-5) and 10^(0)

g_min_exp = -5;

g_max_exp = 0;

g_exp = g_min_exp + (g_max_exp-g_min_exp).*rand;

rand2_g = 10^(g_exp);

% E_start between 10^0 and 10^5

e_min_exp = 0;

e_max_exp = 5;

e_exp = e_min_exp + (e_max_exp-e_min_exp).*rand;

rand2_e = 10^(e_exp);

% S_start between 10^1 and 10^10

s_min_exp = 1;

s_max_exp = 10;

s_exp = s_min_exp + (s_max_exp-s_min_exp).*rand;

rand2_s = 10 ^ (s _ exp);

start_pt = [rand2_a, rand2_b, rand2_d, rand2_g, rand2_e, rand2_s]

%start_pt = [13, 6, 0.15, 0.15, 400, 10^6];

B.12 recurse_infinite_rand

function recurse_infinite_rand(filename, obs, n_days, epsilon)

% Generate "infinitely many" (until stopped) starting points, and

% calculate parameter estimates while starting at each. Later,

124

% we'll find the best likelihood and use the corresponding parameter

% estimate and hessian matrix.

file_test = ['recurse_inf_rand ' filename]

like_arbitrary = 10^15;

% Likelihood estimates must be within this tol. of each other.

like_tol = le-5;

found_best = 0;

num_iter = 0;

good_likeidx = [];

warning('off', 'optim:fminunc:SwitchingMethod');

% Set options for recursion. May want to later make these relative.

opt = optimset('TolX', le-8*n_days,'maxIter', 1000, 'TolFun',

le-8*n_days, 'LargeScale', 'off');

% Goal: Find at least 3 parameter estimates whose likelihoods are

% within tol. of the best one found. Then make sure that there are

% at least 3 estimates where all the param. estimates are within

% tol. of each other. Save the best one (by the likelihood metric)

% and return the results (as well as the number of tries needed)

tmp_all_like = [];

tmp_all_params = [];

tmp_all_start = [] ;

tmp_all_growth = [];

tmp_all_hess = [];

125

while 1

length(tmp_all_like)+1

rnd_start = calc_rand_start();

tr_rnd_start = transform(rnd_start);

[tmp_tr_results, tmp_like, tmp_flag, tmpobs, tmp_grad, ...

tmp_hess] = fminunc('calc_dir_like', tr_rnd_start,

opt, obs, n_days, epsilon);

tmp_param_est = untransform(tmp_tr_results);

tmp_growth_est = calc_growth(tmp_param_est, n_days, epsilon);

tmp_all_like = [tmp_all_like, tmp_like];

tmp_all_params = [tmp_all_params; tmp_param_est];

tmp_all_start = [tmp_all_start; rnd_start];

tmp_all_growth = [tmp_all_growth, tmp_growth_est];

% Add one to matrix dimension, put hessian there...

tmp_all_hess(size(tmp_all_hess,l)+l,:,:) = tmp_hess;

% Keep track of best parameter estimates (according to

% likelihood) if like_est is the smallest element of the

% likelihood vector

if all(tmp_all_like >= tmp_like)

best_params = tmp_param_est;

best_like = tmp_like;

best_flag = tmp_flag;

best_hess = tmp_hess;

best_growth = tmpgrowth_est;

end

126

% Find the indices of estimates (including the best) that are

% within tol. percent of the best estimate

like_err = abs(tmpall_like - best_like) ./ abs(best_like);

good_like_idx = find(likeerr < liketol);

save(filetest, 'obs', 'n days', 'epsilon', 'like_tol',

'best_like', 'bestparams', 'besthess', 'bestgrowth',

'tmpalllike', 'tmpallparams', 'tmpallstart', ...

'tmp_allgrowth', 'tmpall_hess', 'goodlike idx')

end

function startpt = calcrand_start()

% RV of the form 1O^(x) where x is between min & max

% Astart between 10^(-5) and 10^5

a_min_exp = -5;

a_max_exp = 5;

aexp = a_minexp + (amaxexp-amin exp).*rand;

rand2_a = 10 ^ (aexp);

% B_start between 10^(-5) and 10^5

b_min_exp = -5;

b_max_exp = 5;

bexp = bmin_exp + (bmaxexp-bmin exp).*rand;

rand2_b = 10 ^ (bexp);

% Dstart between 10̂ (-5) and 10^(0)

d_minexp = -5;

127

d max_exp = 0;

d_exp = dminexp + (d_maxexp-d_minexp).*rand;

rand2_d = 10^(d_exp);

% Gstart between 10^(-5) and 10^(0)

gminexp = -5;

gmaxexp = 0;

gexp = gmin_exp + (gmax_exp-gminexp).*rand;

rand2_g = 10^(gexp);

% Estart between 10^0 and 10^5

emin_exp = 0;

e_max_exp = 5;

e_exp = e_minexp + (emaxexp-e_minexp).*rand;

rand2_e = 10^(e_exp);

% Sstart between 10^1 and 10^10

s_min_exp = 1;

smax_exp = 10;

sexp = s_minexp + (smaxexp-s_min exp).*rand;

rand2_s = 10 ^ (sexp);

startpt = [rand2_a, rand2_b, rand2_d, rand2_g, rand2_e, rand2_s]

B.13 transform

function tr_vect = transform(param_vect)

%%%
' WARNING: If you change the range for a variable, you MUST change it

% in untransform as well!

128

%%%

a_var = param_vect(1);

b_var = param_vect(2);

delta_max = param_vect(3);

gamma_max = param_vect(4);

e_star = param_vect(5);

dir_shape = param_vect(6);

tr_a_var = transform_any(a_var, 0, Inf); %

tr_b_var = transform_any(b_var, 0, Inf); %

tr_delta_max = transform_any(delta_max, 0,

tr_gamma_max = transform_any(gamma_max, 0,

tr_e_star = transform_any(e_star, 0, Inf);

tr_dir_shape = transform_any(dir_shape, 0,

a_var > 0

b_var > 0

1); % 0 < delta_max < 1

1); % 0 < gamma_max < 1

% e_star > 0

Inf); % dir_shape > 0

tr_vect = [tr_a_var, tr_b_var, tr_delta_max, tr_gamma_max, ...

tr_e_star, tr_dir_shape];

%%%
% Transform any non-negative range into the range (-Inf, Inf), and

% return value of parameter x in transformed range.

%%%

function xtrans = transform_any(x, a, b)

if (x < a II x > b)

error(['Error in transform_any, ' num2str(x) ...

' is larger than ' num2str(b) ' or smaller than ...

num2str(a)]);

end

129

if (a < 0 11 b < 0)

error(['Error in transform_any, ' num2str(a) ' or ' ...

num2str(b) ' is less than zero']);

end

if (a > b)

error(['Error in transform_any, lower bound is larger than' ...

upper bound']);

end

% Special case: a = 0, b = Inf

% Transform using log(x), untransform using exp(y)

if (a == 0 && isinf(b));

x_trans = log(x);

% Special case: a = 0, b > 0

% Transform using log(x/(b-x)), untransform using b*exp(y)/(1+exp(y))

elseif (a == 0 && ~isinf(b) && b > 0);

x_trans = log(x/(b-x));

% Special case: a > 0, b = Inf

% Transform using log(x-a). Untransform using exp(y) + a

elseif (a > 0 && isinf(b));

x_trans = log(x - a);

% General case: a > 0, b > 0

% Transform using log((x-a)/(b-x))

elseif (a > 0 && b > 0);

x_trans = log((x-a)/(b-x));

else

error(['Error in transform_any: no case matches x = '

num2str(x) ', a=' num2str(a) ', b=' num2str(b)]);

end

130

B.14 untransform

function param_v = untransform(tr_var_vect)

% Take a vector transformed using transform, and return it to

% original values

tr_a_var = tr_var_vect(1);

tr_b_var = tr_var_vect(2);

tr_delta_max = tr_var_vect(3);

tr_gamma_max = tr_var_vect(4);

tr_e_star = tr_var_vect(5);

tr_dir_shape = tr_var_vect(6);

avar = untransform_any(tr_a_var, 0, Inf);

bvar = untransform_any(tr_b_var, 0, Inf);

delta_max = untransform_any(tr-deltamax, 0, 1);

gamma_max = untransform_any(trgammamax, 0, 1);

estar = untransform_any(tr_e_star, 0, Inf);

dir_shape = untransform_any(trdir_shape, 0, Inf);

param_v = [a_var, b_var, delta_max, gamma_max, e_star, dir_shape];

%%%
% Transform any value from (-Inf, Inf) to a value in (a,b).

%%%
function y_untrans = untransform_any(y, a, b)

if (a < 0 II b < 0)

error(['Error in untransform_any, ' num2str(a) ' or ' ...

131

num2str(b) ' is less than zero']);

end

if (a > b)

error(['Error in untransform_any, lower bound is larger ' ...

'than upper bound']);

end

% Special case: a = 0, b = Inf

% Transform using log(x), untransform using exp(y)

if (a == 0 && isinf(b));

y_untrans = exp(y);

% Special case: a = 0, b > 0

% Transform using log(x/(b-x)), untransform using b*exp(y)/(l+exp(y))

elseif (a == 0 && ~isinf(b) && b > 0);

y_untrans = b*exp(y)/(l+exp(y));

% Special case: a > 0, b = Inf

% Transform using log(x-a). Untransform using exp(y) + a

elseif (a > 0 && isinf(b));

y_untrans = exp(y)+a;

% General case: a > 0, b > 0

% Transform using log((x-a)/(b-x)), untransform using

% (b*exp(y)+a)/(l+exp(y))

elseif (a > 0 && b > 0);

y_untrans = (b*exp(y)+a)/(l+exp(y));

else

error(['Error in transform_any: no case matches y = '

num2str(y) ', a=' num2str(a) ', b=' num2str(b)]);

end

132

Bibliography

[1] J. Aitchison. The statistical analysis of compositional data. Journal of the Royal
Statistical Society. .Series B (Methodological), 44(2):139-177, 1982.

[2] J. Aitchison and J. J. Egozcue. Compositional data analysis: Where are we and
where should we be heading. Mathematical Geology, 37(7):829-850, 2005.

[3] A. Azzalini. Statistical Inference based on the likelihood. Number 68 in Mono-
graphs on Statistics and Applied Probability. Chapman & Hall, 1996.

[4] C. Calder, M. Lavine, P. Miiller, and J. S. Clark. Incorporating multiple sources
of stochasticity into dynamic population models. Ecology, 84(6):1395---1402, 2003.

[5] H. Caswell. Alatrix population models: construction, analysis, and interpretation.
Sinauer Associates, Inc., 2nd edition, 2001.

[6] M. Evans, N. Hastings, and B. Peacock. Statistical Distributions. John Wiley &
Sons, Inc, 2nd edition, 1993.

[7] G. K. Grunwald, A. E. Raftery, and P. Guttorp. Time series of continuous
proportions. Journal of the Royal Statistical Society. Series B (Methodological),
55(1):103--116, 1993.

[8] The MathWA;orks. Matlab. 2007a, Natick, MA.

[9] R. J. Olson, A Shalapyonok, and H. M. Sosik. Bench top flowcytobot measured
Synechococcus time series of continuous proportions. Unpublished data.

[10] R. J. Olson. A Shalapyonok, and H. M. Sosik. An automated submersible flow
cytometer for analyzing pico- and nanophytoplankton: Flowcytobot. Deep-sea
Research, part 1, 50:301-315, 2003.

[11] C. S. Reynolds. The Ecology of Phytoplankton. Ecology, Biodiversity and Con-
servation. Cambridge University Press, 2006.

[12] H. M. Sosik, R. J. Olson, M. G. Neubert, A. Shalapyonok, and A. R1. Solow.
Growth rates of coastal phytoplankton from time-series measurements with a
submersible flow cytonmeter. Limnological Oceanography, 48(5):1756-1765, 2003.

133

