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ABSTRACT

We develop methods for computing the large order
behavior of the Rayleigh Schroedinger perturbation series
for the energy eigenvalues of a quantum mechanical system.
In particular, we study systems of coupled anharmonic
oscillators. A dispersion relation in the coupling constant
is derived which converts the calculation into a tunneling
problem which is then solved by semi-classical methods.
Entirely new multidimensional WKB techniques are introduced
and used to study systems of coupled anharmonic oscillators.
If the unperturbed oscillator system is isotropic, then the
exact large-order behavior of the perturbation series may be
computed analytically. A perturbation scheme is developed
to deal with small anisotropies in the unperturbed system.
Finally, we discuss the coupled oscillator systems which
arise from cutoff quantum field theories. Here the unperturbed
system has large anisotropies. Extensive computer calculations
have been performed to verify our theoretical predictions, and
excellent agreement is found.
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CHAPTER I

INTRODUCTION

In an earlier and happier time in the history of physics,

a proposal to investigate the convergence of a perturbation

series would probably have been met with polite laughter.

Many important physical problems were, in that fortunate era,

exactly soluble and even when approximation proved necessary,

the correct answer could usually be obtained from the first

few terms of a simple and intuitive perturbation scheme. Why

then pursue a question of convergence up some mathematical

back alley while so much good physics was passing by in the

main street?

Unfortunately, the modern theoretical physicist can no

longer afford the luxury of these comfortable metaphors.

Interesting physics now lurks in the back alleys beyond the

limits of the Born approximation. It behooves us then to make

some attempt to tame these uncivilized regions, and to dis-

cover the inner simplicity behind their rank jungles of indices.

We will see in this thesis that at least in the problem of

the large order behavior of perturbation theory results can be

obtained which compare in beauty and simplicity with any cal-

culation based on the Born approximation.

The area of physics in which knowledge of the convergence

properties of the perturbation series would be most useful is
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the theory of elementary particles.

Nowhere is the insufficiency of the Born approximation

more evident; and here the problem is compounded with two

others of equal magnitude. There exist no convincing non-

perturbative approximation methods for most of the problems

that arise in elementary particle physics, and there are no

nontrivial model theories which satisfy all of the basic

physical principles (Lorentz Invariance, Unitarity, Crossing

etc.) which one believes to be operative in this field. In

fact, the consistency of these principles has been challenged

more than once in the past forty years.[l]

It is not suprising then that several important problems

in elementary particle physics lead one to investigate the

behavior of perturbation theory in more detail than has

previously been deemed necessary.

I do not have the time here to discuss all of these

questions but one of them is of sufficient importance to

merit some explanation. This is the failure of field theo-

retic perturbation theory to reproduce the scaling behavior of

deep inelastic scattering which has been observed at SLAC [2 ]

I believe that this is the first time in the history of field

theory that such a point of qualitative disagreement with

experiment has been reached. [Of course one can always argue

that the observed scaling is a transitory, pre-asymptotic
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phenomenon which does not contradict the predictions of

perturbation theory [3] ]. All realistic field theories when

evaluated to any finite order of perturbation theory beyond

the Born approximation produce conflict with (the extropola-

tion to infinite energy of) the results of the SLAC experiments.

There appear to be two ways out of this dilemma. One must

either produce a mechanism which assures the dominance of

the Born approximation at high energy despite the strength of

the coupling [4 ] , or one must show that the theory's large

energy behavior when summed to all orders is very different

from that in any finite order. It has long been known that

this latter alternative can occur if the bare coupling con-

stant satisfies the so-called Gell-Mann-Low eigenvalue con-

dition. [5] This hypothesis is clearly nonperturbative in

nature.

Recently, Adler [6 ] has shown that if the Gell-Mann - Low

eigenvalue exists, then it is an essential singularity of all

of the Green's functions of the field theory. Since an

essential singularity cannot be detected in any finite order

of perturbation theory, a study of the large order behavior

of the series seems indicated.

Previous work on this question has mostly been devoted to

obtaining bounds on the nth term in the perturbation series

for superrenormalizable field theries. These bounds showed
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that many of these series diverged. (For detailed refer-

ences, see the papers of Jaffee [7 1 and Simon [8]). However,

the bounds are not sufficiently strong to determine the

nature of the singularity which causes the divergence.

In this thesis I will present a method for computing the

exact large order behavior of a quantum mechanical perturbat-

ion series. This enables one to determine the exact radius

of convergence of the series, and suggests qualitative nature

of any singularity which causes the series to diverge. The

method is a generalization of one invented by Bender and Wu

[9]
in their study of the one-dimensional anharmonic oscillator.

I have initially set my sights on the ý 4 field theory

(and other theories whose interactions are polynomials in

Bose fields). If spatial and ultraviolet cutoffs are im-

posed on this model it becomes equivalent[1 0] to a finite set

of coupled anharmonic oscillators. One would hope to compute

the large order behavior of perturbation theory for this

oscillator system as a function of the cutoffs and then

study the limit as the cutoffs go to infinity. Although I

have not yet achieved this goal I have made substantial

progress toward it. The methods introduced in this thesis

enables one to compute the large order behavior of the

perturbation series for the energy eigenvalues of essentially

any Hamiltonian of the form
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N

H = Pi2 + m 2x i + P(x) 1.1)

i=l

where P(x) is an arbitrary even polynomial. (The restriction

to even polynomials is merely a convenience, we can deal with

arbitrary polynomials as long as the leading coefficient is

even). Eq. [1.1] differs from the Hamiltonians encountered

in cutoff field theories in one important respect: the un-

perturbed oscillator system is completely isotropic (or as we

shall say, it is an equal mass oscillator). In Chpater V we

will show how to deal with "small" anisotropies in the un-

perturbed system but the anisotropy in a cutoff field theory

cannot be considered small. The problem of anisotropy (un-

equal mass oscillators) is thus the major obstacle which

stands in our path. It should also be noted however, that

we are computing eigenvalues while the real objects of interest

in quantum field theory are scattering amplitudes. I will make

some remarks about this more difficult problem in Chapter VII.

The remainder of this thesis is organized as follows:

In Chapter II we discuss analytic properties of the eigenvalues

as functions of the coupling constant. We derive an important

dispersion relation which enables us to convert the problem

of computing the large order behavior of perturbation theory

into a barrier penetration problem. The dispersion relation
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also provides us with a remarkable quantitative restatement

of Dyson's famous argument about the divergence of pertur-

bation theory.

In Chapter III we compute the large order behavior of

the perturbation series for a one-dimensional anharmonic

oscillator with polynomial self interactions. This simple

system serves as an introduction to WKB methods and helps

us to motivate certain computational shortcuts which are

very useful in multidimensional problems. It also gives us

an understanding of the manner in which "mass renormaliza-

tion" and "Wick ordering" may affect the large-order behavior

of perturbation theory.

Chapter IV begins the main body of the thesis. We give

a general discussion of barrier penetration problems in

N dimensions, and argue that in the limit of a very high and

very wide barrier, the escaping probability current is con-

centrated along a particular trajectory. This trajectory,

which is a solution of the classical equations of motion, is

called the "most probable escape path" (MPEP). We then study

systems of coupled equal mass anharmonic oscillators and show

that theirMPEP's are straight lines. This enables us to com-

pute the exact large order behavior of the perturbation series

for these systems.
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In Chapter V we attack the problem of unequal mass

oscillators. We first derive a formula which completely

determines the large order behavior of perturbation theory

once the MPEP is known. Thus we are left with the completely

classical problem of finding the MPEP. We then show how to

solve this problem perturbatively when the MPEP is almost a

straight line. Finally we apply these techniques to a simple

two-dimensional oscillator system.

The arguments presented throughout this thesis are highly

nonrigorous. For this reason I have done extensive computer

calculations to compare with my predictions of the large order

behavior of perturbation theory. These calculations are

described in Chapter VI and the results are tabulated. Ex-

cellent agreement between computer and theoretical calcula-

tions is found.

The seventh and final chapter is devoted to conclusions

and speculations. I discuss the possible extension of the

present work to Green's functions, real field theories

and theories with Fermions.

The appendices contain several special calculations not

covered inthe text, and some general theorems about the MPEP's

for equal mass oscillators.
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CHAPTER II

ANALYTIC PROPERTIES OF EIGENVALUES AND THE DISPERSION

REPRESENTATION FOR THE RAYLEIGH SCHROEDINGER COEFFICIENTS

A. Introduction and Analytic Continuation of E(X)

The Rayleigh Schroedinger perturbation series for a

general eigenvalue problem is generated by a recursion relation

which determines the nth order contribution to the energy in

terms of its predecessors and of integrals over all the lower

order contributions to the wave function. For the systems

which we will be studying in this thesis, (N dimensional har-

monic oscillators with polynomial perturbations) it is possible

to reduce the general recursion relation to a single nonlinear

second order partial difference equation in N+l dimensions. In

one dimension the problem of finding the large order behavior

of perturbation theory can be solved by a direct attack on this

difference equation, but in many dimensions the relevant approx-

imation methods become unwieldy.

We will therefore proceed by using a technique discovered

by Bender and Wu,: we convert the computation of the large or-

der behavior of perturbation theory to a barrier penetration

problem. Such a reformulation of the problem is very important
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because it allows us to apply physical intuition to what

originally appeared to be a purely mathematical problem.

The crucial mathematical tool which enables us to accomplish

this remarkable transmogrification is a dispersion relation

for the eigenvalue E(X).

The proof of our dispersion relation like that of most

of its relatives depends on the analytic and asymptotic pro-

perties of the function E(X). However before we can discuss

these we will first have to define E(X) for complex X.

The Hamiltonians which we will be studying all have the

form

N

H = Ho + V = -V 2 + mi2x + AV(x) (2.1)

i=l

where V is a polynomial of order 2M (for simplicity we will

always assume that V is even). We will assume that for X>O

H is bounded below in the sense that < OIHIj> > c for all

1ý> in the domain of H. This condition quarantees that for

X>O there exist E (X) such that the solutions of

H(X)4 = E(X) i (2.2)

are normalizable

C N

(x) (x) (2.3)
-OO
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It is easy to see that this condition cannot be used to

define E(X) for all complex X. For example, when X< 0

H(X) is not bounded below for real x, and we do not expect

it to have normalizable eigenfunctions.

The definition of E(X) for complex X is most easily

arrived at by the use of a scaling transformation first intro-

duced by Szymanzik. 2 ] We write

M
V(x) =

( j )V (x) (2.4)

where V (j ) is homogeneous of order 2j, and consider the diff-

erential equation

N M+ m xi2  )-E = 0-V2 + 1xi + + .V ( j ) -(X)-E(a, X = 04 2: 1,Xj

For a > 0 Xj > 0 this operator has eigenfunctions which obey

**ý < co

Now define the operator U(B) for ý>0 by

[ U(o)p] (x) = 8 (B

It is easy to see that U is unitary and that

(2.5)

(2.6)
1A1
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2 2
-1 mixi j,.U ()(-V 2  + - + .V ) U ()

4 j (2.7)

2 2 -_ (j)+B-i mixi +V V
4 j

Since unitarily equivalent Hamiltonians have identical eigen-

values we see that

E(a,Xj) = B E(a -2 , 1xj B j -l) (2.8)

In particular

-2 -j-1E(1,Xj=X) = B E(8 2 ,-8 )

1
S= M+1

(2.9)

and if

-2 1- j+L
M+1 M+X1 M+1E(X) = E(IXj=X) = E(X M I  .= X )J J

(2.10)

Kato's work on regular perturbations of operators in Hilbert

space [3 ] shows that for all complex X, the right hand side of

l/M+1
[2.7] (with .= X; 3 = X ) may be defined as an operator in

Hilbert space with normalizable eigenfunctions. Thus, the right

hand side of [2.10] is defined for all complex X. Since any

(_-B 2
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analytic continuation of E(X) must satisfy [2.10], this eq-

uation defines E(X) for all X.

This definition of E(A) allows us to derive some useful

boundary conditions for the eigenfunctions of the unscaled

Hamiltonian. In one dimension these boundary conditions give

us an alternative definition of E(X) in terms of a boundary

value problem in the complex plane.

Let us consider a coordinate direction x. such that
1

V(x) Ixilco axi2M  if :xkl=0(1) ifk

In this region the eigenfuuctions of the right hand side of
1

[2.7] satisfy (with B = ?ý' )

(-V 2 + ax. ) 2 (x) = 01

The asymptotic solution of this equation which is nor-

malizable along the real axis is M+1

- /a X i
M+1

O(x) = e f(xk) i k

where f is any twice differentiable function of the small

coordinates. Applying the transformation [2.6] we find that

the wave function of the unscaled Hamiltonian is

(xaX x M+l 1

(x) = (constant) e M+1 f(A x2 (N+) k)
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This wave function satisfies the boundary condition

lim

Ixi l- i(x) = 0

larg(±xi) + 2(M+ arg 1<2(M+ , Xk = 0(1)

which is the result we wished to obtain. It is easy to see

that in one dimension the imposition of the above boundary

condition on the unscaled differential equation [2.2] defines

an eigenvalue problem for all complex X, and that this de-

finition of the eigenvalue is equivalent to [2.10].

If V is a homogeneous polynomial we can use eq. [2.10]

to determine the behavior of E(X) as IXI+o. [2.1] says that

E(X) is determined by the boundary value problem

-2 2 2

-V 2 +mM + I  mi xi + V(x) - 1-I/M+l E(X) 0 = 0
4

lim
r (x) = 0

(2.11)

For large JXJ we can drop the quadratic term since it is

a regular perturbation of V [ 4 ] "
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-V 2 + V(x) - X-1/M+l E(A) l = 0 (2.12)

X does not appear anywhere in the differential operator so
1

X - Th(X) must be a constant. Thus,

-l/M+1
(2.13)E(X) %

I 00·-

B. Analyticity Properties and the Dispersion Relation

We will now proceed to derive the dispersion relation

for E(X). The proof depends on a theorem due to Simon:[5]

For any Hamiltonian of the form [2.1] with homo-
geneous V, E(X) is analytic in the region shown
in Figure 1. (The complement of a cut annulus)
and the Rayleigh Schrodinger series is asymptotic
to E for sufficiently small X in this region.

Using this result and Cauchy's theorem we can write

12lifF(X) = 27i

c

F(x)
x-X (2.14)

where F(x) = x-1[E(x)-E(o)] and c is the dashed contour
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in Fig. 1. Since F(X)
X+ o

-M
E(X) I+xM and F(A) = o(A)1 X+0

(Since the perturbation series is asymptotic) we can neglect

the contribution from the circles at zero and infinity and

write

1F(X) - 21i2 7Ti

-R2 0

D (x) +
-0 -R3

D(x) + F(x)
x-X

B

where

D(x) = lim F(x+is) - F(x-ic) (2.16)

R3 (R2 ) is the outer (inner) radius of the annulus and B

is its boundary.

From equation [2.15] we can derive an exact expression for

the Rayleigh Schrodinger coefficients

E(X) = X nAn (2.17)

1
by expanding xx-X

0 -R 0

E(X) = E(o)+ 2Xi n D(x)x + D(x)x + F(x)

n=0 -o( -R3 B

(2.18)

(2.15)
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-R2
An 2 = 27

m00

D (x) x-n +D(X)x +
-n -

D(x)x +- F(x)xn

-R3 B

We are interested in the behavior of An as n-*o and we

will now argue that only the second integral in brackets

contributes in this limit, Let D be the maximum value that

ID(x)l attains on the interval (-o,-R2 ) and F the maximum that

IFI attains on the contour B. Then if L is the length of the

contour B we have

-R
2

-nJ D(x)x

f F(x)x - n

B

< D (-R-n
l-n

(2.20)

< F (-R 3 ) -n< F (-R3)

On the other hand, if ID(xl is non zero on any interval

(-c,-d) b>c>d>0 then

1-n l-n
D(x)x > K -(2

I 1-n
.21)

(2.19)

J
-R 3
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where K is a constant. Thus, unless D(x)=O on the entire

interval (-R3,0), the second integral dominates as n+m, and

0 -n

An n+~ 2Ti f D(x)x
-R
3

(2.22)

0

•.• mmIJ D(x)x -n

-OO

This can be written in a more suggestive form if we notice

2iImE (x)that D(x) 2iImE
x

0

A 1 ImE(x)xnx (2.23)
n n+~ 0

Eq. [2.23] should be written in orange dayglo ink. It is

the basis not only of our entire computational program but

also of our intuitive understanding of singular perturbation

theory. The only assumption that we have made in arriving

at [2.23] is that D(x) does not vanish identically on the

interval (-R3,0). This will be verified by explicit calculation.
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Eq. [2.23] is extremely attractive because it relates the

large n behavior of A to the behavior of the imaginary part
n

of E for small negative coupling constant. States with com-

plex energy are unstable and ImE is a measure of the width

or lifetime of the state. Thus the large n behavior of An

depends on whether or not the bound states of the unperturbed

Hamiltonian remain stable when we turn on the perturbation

with small negative coupling. We can be even more precise

than this. If the perturbation series is to converge for any

X then An can grow no faster than Kn for some K. Eq. [2.23]

tells us that this can only happen if ImE vanishes for

1
--<x<O. We see that the radius of convergence of the per-
K

turbation series is the largest value of -x for which ImE = 0.

Figure [2] illustrates the behavior of the potential V

which corresponds to convergence or divergence of the per-

turbation series. It is clear from this picture that we are

dealing with a tunneling problem. Thus the value of ImE

will be related to a barrier penetration factor, and we can

use an elementary argument to express ImE in terms of the

probability of tunneling through the potential barrier. We

write the Schrodinger Equation as

(-V2 + U - E)ý = 0

The conjugate equation is
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(-V2 + U -E*) 4* = 0

We multiply the first equation by p*, the second by i

subtract and integrate over a volume V:

f (E-E*) * =- (p*V2i-.lV 2 p )

V V

Now we use Gauss' theorem to obtain

* ds
ImE = (2.24)

V

where S is the surface surrounding V and

J = 2 [p*VJ - lVi*] (2.25)

J is the familiar probability current. In Chaps. III-IV, we

will show how to compute J for small negative X.

Before we begin our computation I would like to point out

to the reader the similarity between our discussion and that

given by Dyson [6] in his ancient paper on the divergence of

perturbation theory in quantum electrodynamics. Dyson's argu-

ment runs as follows: if QED has a convergent perturbation

series then we can analytically continue the states and ampli-

tudes of the theory to a world where e, the fine structure

constant, is negative so that oppositely charged particles
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repel. Now consider a state containing N electron positron

pairs with electrons and positrons in separate regions of

space. Dyson argues that for N large enough the negative

energy from the Coulomb repulsion of the pairs will be larger

than their kinetic energy, and therefore this state will have

lower energy than the vacuum. Although it is separated from

the vacuum by a large potential barrier (of height > 2NMe =

N MeV) quantum mechanical tunneling will cause the vacuum to

decay into this negative energy state. This instability means

that QED with negative a cannot be described by analytic

functions and the perturbation series must diverge.

It is clear that Eq. [2.23] is nothing but a quantifica-

tion of Dyson's intuitive discussion. Of course [2.23] has

not been proven for QED.

It should be emphasized that we have only proven this

important equation for homogeneous V.The scaling argument

lim E(h)that was used to prove that lim E(X) 0 does not work for

non-homogeneous perturbations. Since I will occasionally want

to discuss such perturbations I will assume that [2.23] con-

tinues to hold in the non-homogeneous case. In Chap. III,

we use [2.23] to calculate the large order behavior of the

perturbation series for a one dimensional oscillator with

arbitrary polynomial perturbation. The results are in good

agreement with computer calculations and this provides numer-
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ical "proof" of the correctness of [2.23] in the non-homogen-

eous case.
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CHAPTER III

ANHARMONIC OSCILLATOR WITH POLYNOMIAL SELF INTERACTIONS

A. Introduction

The anharmonic oscillator with polynomial self inter-

actions[l ] is defined by the differential equation:

d2  x2  x N N-1 x N-2

0=[-- + -+ X(a(x-) + b(-) + c(- +......

-EK(X,a,b,c...) I ] (3.1)

with the boundary condition

lim Ixl - w f(x) = 0 for

(3.2)

larg(+x) + (2N+2)-larg X{ < 7(2N+2)-1

The perturbation series for the Kth eigenvalue is

0o

EK(,a,b,c....) = nAK (abc,....
n=0
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We shall solve equation [3.1] for small negative

1 (X= -E 0 <<< 1) and use equations [2.23] and [2.25] to

determine the large n behavior of Aý (a,b,c....). Through-

out that calculation it is assumed that N is small compared

with E (a>O).

The approximate solution of [3.1] will be obtained by

the method of asymptotic matching. We divide the real axis

into seven overlapping regions and approximate the differen-

tial equation in each region. The general solution of these

seven approximate equations containsf urteen arbitrary con-

stants. Two of these constants are determined by the boundary

conditions at ±w and a third corresponds to overall normali-

zation. The remaining constants are determined by requiring

that the solutions in two adjacent regions agree on the over-

lap between the two regions. We choose our regions so that

as c0O the size of the overlap becomes infinite, and adjacent

wave functions must agree on a larger and larger domain.

Thus the approximation to the wave function becomes better

and better as E--O.

It should be noted that the number of matching conditions

exceeds the number of free constants by one. If we start

at -w and we proceed to the right by asymptotic matching we

will find that there will be no free constants left to satisfy
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the matching condition at +w. As we shall see, this last

condition determines the energy eigenvalue.

Let us now describe the seven regions:

I: 4l(x x( F- V2 (N-l)

III: x ~ E-2(N-1)

IV: x 1A(N-)

Regions V, VI, and VII are the mirror images of II, III, and

IV respectively. Note that the regions overlap and that the

size of the overlap becomes infinite as cs0. (I should point
1 _ 1

out that by x-E 2 (N-1) I mean that x = E 2(N-i) (1+ a) with
3

a ((1 as -*0. a could be as large as £4(N-l) for example,

in which case the overlap between III and II or IV certainly

becomes infinite as +-*O.)

B. Parity and Reality of ýK

The differential equation [3.1] is invariant under x+ -x,

and consequently the eigenfunctions may be chosen to have

definite parity. This reduces our labor by half, for if we

choose a definite parity solution in region I, we need only
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perform asymptotic matches on the positive real axis.

It will be convenient to separate *K and E into their

real and imaginary parts

K =K + i XK

E = E(1) + i E(2)

Referring to Eq.[2.23] we see that EK (2)() must go to zero

faster than any power of E as s0O, for otherwise An would

(1) 1
be infinite. On the other hand, EK (1 ) - K+1  as c+0.1 2

We will see that in the region 0Ox((x -C 2 (N-1) , K will con-

sist of an increasing and a decreasing part. Without loss

of generality we can choose the phase of K so that the de-

creasing part is purely real. Therefore the behavior of K

and XK will be as shown in Fig. [3].

The upshot of this discussion is that for small s we can

write the real and imaginary parts of Eq.[3.1] as

S -(a(x)N +.....) -E= 0 (3.3)
dx2 4 2 K K

d2  x2  2 (2)
[dx2 + -(a(-) N +.... EK (1X K = EK (3.4)
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(2)
Eq. [3.4] is exact and in [3.3] we have dropped EK XK

(1)
compared to EK  K

We can now outline our complete procedure for solving

[3.1]. In regions I and II we will solve Eq. [3.3] approximately,

choosing the solution which decreases for increasing x in

region II and which has definite parity in region I. (Such a

solution only exists for discrete values of EK (1) so this

will fix our eigenvalue.) In regions III and IV we will solve

Eq. [3.1] approximately since there is no simple criterion for

identifying the real and imaginary parts of 4 K in these regions.

The boundary condition [3.2] enables us to determine PK

in region III up to a multiplicative constant. The value of

this constant is found by matching the part of KIII which de-

creases for increasing x to ýK in region II.

C. ýK In Region I

In region I we can approximate [3.1] by

(d + E () KI = 0 (3.5)
dx2 4 K KI

The even (odd) solution of this equation is

= (1) (x)+ D (3.6)
KI =2 E K -1/2 4M EK (1) 1-x).(3.6
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where D is the parabolic cylinder function. We have

freely chosen the normalization of 4KI .

If we now inquire whether either of these solutions

decreases for increasing x we run into trouble. The asymp

expansions of D (x) and D (-x) for x÷co are

D (x) ---9 e- /4 x2

totic

x (3.7)

D- e 2x 9 V7i /2 x2
DV(-x) e-V 4  x e + e

r (-v)

(3.8)

1 (1) (1) 1, bothThus, unless N( E ) = , ie E(1) K both
2 K K 2

definite parity solutions have components which increase as

x increases. We see that to the order we are working

E ( K + 1 . Furthermore since[4
K 2

DK(Z) = eKT i DK(-Z) (3.9)

we have an even parity solution for K even and an odd solution

for K odd.

D. ýK In Region II

In region II we try a WKB solution
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x xa N -1/4C [ (a )N + .... ) - (K + 1/2)]1
KII 4 2

x
exp [- 92 -s(a( ) +...)-(K+/2)] (3.10)

x
o

2 x2 N
where xo = /4EK is (approximately) the zero of - E[a(-) +...

-EK

which lies near the origin. In the future we.will refer to xo

as the nearby turning point. As usual the validity of this

I dVapproximation follows from the fact that for +0t 1 d isV dx

small in region II. In the overlap between regions I and II x
1

is much greater than one but much less than E 2(N-IT ). For

example we could take the overlap to be the region

1 1
6 (N-1)< x< 6 4(N-1)

can approximate [3.10] by

For such values of x we

2 12 -= C( ) eKII
[t lt-2"-4 (K+1/2-)-4 (K+1/2)1n (t+Vt--4 (K+41/2)]x

4(K+1/2)

2
x

C e 4 x e/ {{(K+1/2) (1-ln(K+1/2)+1n2}

(3.11)

Comparing this with the asymptotic expansion of [3.6] as given

by [3.7] and [3.8] we find that

1C = exp { l(K+i/2) (l-ln(K+i/2)) +in2} (3.12)
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Notice that the constants a,b, etc. do not appear anywhere in C.

E. ýK In Region III

Near the upper turning point of V (which we shall denote

by xj) the WKB approximation breaks down. This is signalled

by the singularity of [3.10] at xl, for xl is a regular point

of Eq.[3.1] and the exact solution must be analytic there.

1 dV
Alternatively we could remark that V dx is no longer

small.

To find an appropriate approximation for K in region III

we notice that the distant turning point x, is given by

1
2 N-2 2(N-I)

xl ~ a
X1 Ea

- (-La
N-2

2

1
2(N-1) b + 2EK

N-K]
N-1

+ 0 (C 32 (N-1)

and that near this point we can approximate V by

N-1V ~ 2 x (x1-x)

N-l
Thus if we introduce the new variable r (-N-xx)

can rewrite the differential equation [3.1] as

(3.13)

(3.14)

(x 1 -x), we
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d 2

(-• + r)• = 0 (3.15)dr2 KIII

This is the familiar Airy equation [5 ] whose linearly inde-

pendent solutions are denoted by Ai(r) and Bi(r). It is very

important to notice that this equation has no dependence on

the constants c,d,.... The effect of these terms is to shift
3

the position of xl by o(c 2(N-1) ) and for E<< 1 this shift is

negligible compared with E

F. $K In Region IV

In region IV we can again use the WKB approximation for

ýK
--14 f

ýKIV = V e (3.16)

Since V is negative throughout this region, the phase of the

+(-) solution increases decreases throughout the region. More-

over for x÷•w

V6a xN+l
±i NTT 2N/2

(3.17)
(x) XN/2

KIV



-37-

According to the boundary condition [3.2]

so that the correct solution is the one whose phase decreases

as x increases.

We now find the linear combination of Airy functions

which matches to the solution in Region IV. This must be the

linear combination with decreasing phase as x-M. The asymptotic

behavior of the Airy functions for large negative r is[6]

Ai(r) 7- (-r) sin((-r)3/2 )-cos( (-r) /2+
r-)-oo4 3 )

Bi(r) --- *7-2 (-r)-1/4 sin (L(-r) 3/+ 1)+cos((-r) 3/2+ )

(3.18)

(3.19)

and the linear combination with decreasing phase is

(3.20)ýKII I = D [Bi(r)-iAi(r)]

where D is a constant.

K Iv (x-i) ---- 0
K ~x-tc (x> O, O<<<J)
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G. Matching Regions II and III

When x is the overlap between regions II and III

r is large and positive and we can use the asymptotic ex-

pansion of the Airy functions [7 ]:

(3.21)Ai (r) 7T r e
r--co 2

Bi (r) r-o r e7 rrrre

According to our discussion in Sect. B the part of KIII which

decreases for increasing x in the overlap region should

match to KII. Thus we should have

ýKII(x)" 2 r e3r 1 2 (3.23)

where

(3.22)
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(N-l-x. i1
r = [ 2 ]2 (Xi -X) (3.24)

To evaluate D we must find the behavior of KII for

x-x1 . In the first factor in [3.10] we make the approximation

x x N N-1
V(x) - -e[a( 2) + .. ] -(n+')z -1 (x1-x)4 2 2 2

N- 2/3
2 (3.25)

We cannot however make this approximation in the integral
x

/ / V(x) because the integration region is so large.
xo

we write

Instead

X X) dV(x) d

J ATV(x) dx = J V V(x) dx - f /V (x) dx

E A -J / V(x) dx

x

(3.26)
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A is a real constant which we will evaluate in a moment. The

x dependent part of the integral can now be approximated

1x r
dx/V(x) /r dr = r

3r
(3.27)

Therefore

N-l -J6
C(-2 1) e r e

and comparing with Eq. [3.23] we find that

D =T42 C N- 2 1 x- 6 e-A
D = the only C(e of D on b, c,

Note that the only dependence of D on b, c,

(3.28)

(3.29)

etc. is through the

constants A and x .

The evaluation of A is most simply performed by splitting

the integration region into two parts

xi

.dx + f /V dx

x

- Al + A2

KII

x

A f

where

(3.30)
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In the first integral we approximate V by

V - (K+'2)
4

so that

x

A/ ~ - (K+12) 1 -2 1 -(K+-) -(K+)1 n2xX X 2 X2 o

xo

In the integral for A we make a change of variables
2

1

A= 2 uduA2 = 2X, 2 { udu 2N-2 2 N-1
1-4 [ x i  ( )2

b 2N-4 2
+ x1 ( )

2N-6 2 N-3
c u

+ -x, (- ) +....] (K+ 2) 2 (3.33)
U2X 2

U

Since the integral is now taken over a range which stays

finite as ÷0Q the magnitude of a term may simply be read off

from its coefficients. Using Eq. [3.13] we see that the first

two terms in the square root are of order one (with a
1

correction of 0(EcýT-T), that the terms proportional to b and

(3.31)

(3.32)

x
U -

X1

N-2
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1

(K+12) are o( N-) , that the term proportional to c
2

is o(E N-1 ) etc. Thus we can use the binomial expansion

and Eq. [3.13] to write an approximate expression for A2 :

1

1N-2
2  N-I

A2 [ ( )a
2 Ea

b2 [-+2EK]
aN-
N-1 j 2 N-2udu / l-u

udu b 2N-2 2b 2N-4 4(K+1 )
2N2 [-2 [ + 2EK] u +-- u + 2

/1-u u2

1
N-1

2N-2
ca)La

(3.34)

N-I+ o(L )

To calculate the exact leading behavior of perturbation

theory we must keep all terms in [3.34] which do not vanish

as c0O. There are five such terms, and we evaluate them

as follows:

2
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1N-21 2 N-I
2 ca

1

X/x

udu 1 l1 -u2

1N-2~1 2 N-1
2 ca

1
N-I1 2N - 2

4 ca

1
N-2 N-1

1 2
4 Ea

1 2N-2udu /1-u

1 N-2S dt t N- t)
o

1 3r N-1 r ~
1 3

(N-1)r (1 + 3N-I 2

1
N-11 2N - 2

-( )2 a

1-2V- x + o(C4

1-2- -
4

In [3.35] we have used the substitution

2N-2t= u

The next two terms may be combined to give

1 x )2

1 N- (3.35)

(3.36)
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b[- + 2EK]
a K

1 u 1 2N-2udu /1-uJ /1 2N-2  N-1

X/X1

S22N-2 /I-u2N-2 1
[b + 2E udu + o (eN-1)a K 1-u2N- 2  N-

0

(3.37)

Both integrals in (3.37) give Beta functions when we make

the substitution (3.36) and it is easy to show that they

cancel exactly!

The fourth term is

2N-3du

/u 2 N - 2
J1-u

b
[ -2/1-t ]

4 (N-1)a (X/x) 2N-2

X/x1
(3.38)

b + (N-o ()
2 (N-1) a

and the fifth is:

b
2a
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- (K+I/2) /

X/x

du

u 1-2N-2

(K+'/2) f
2N-2

2N-2xX1

dt

t T --ý (3.39)

(K+/ 2) (K+1) 2 /N-(K+/2) In +(K+ )1nx - (K+-) In( )+ o( )
2N-2 2 2 2N-2 Ea

Combining Eqs. (3.34-3.39) we find that

N-2 1 3
2 N-1 ( 1 ) 2)r N-1 r 2

1a 3
(N-1)F( + -)

N-1 2

N-2
+ K+ n 2n( 2

(2N-2)

S(K+ 2 ) In 2 (N-b i x1 + (K+/ 2 ) In x +o( /
2N-2 2(N-1)a 4

(3.40)

"
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Thus

1
1 1 N-IA = A1+ A2 = 1)
2 2Ea

1 3
' N-1 ' (

1(N-1)( N-1
3 I+ -) 2N-22

K+ 2

+ (K+Y 2 ) [in [i-k + -] - 1 ] - b + o( 1/N-I

2 (N-1) a

(3.41)

Referring to Eq. (3.29) and using (3.13) we find that the

multiplicative factor in front of the Airy function is

1
C-N 2N-2

C[ (N-l) (2 )
Ea

with C given by (3.12) and A by (3.41).

D = r Y/2

V/s

e-A + o(Ei/N-1) (3.42)

, K+ I z 7___
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H. The Large Order Behavior of the Perturbation Series

Our matching program complete, we are now ready to

compute the imaginary part of the energy eigenvalue. Since

we are in one dimension, the surface integral in [2.24] means

simply an evaluation of the current at two points on the

positive and negative x axis.

J-ds + [J(x)-J(-x)] (3.43)

The wave function has definite parity so that this is just

J'ds = 2J(x) x > o (3.44)

The only region in which we know both the real and imaginary

parts of the wave function is region III. To simplify our

calculation we evaluate the current at the extreme upper end

of this region where

-/1 2  -4 -i [(-r) 2+ +
k ~ D7-r (-r) [+i] e-

- e-/4 4/2
D(L) (-r) e (3.45)
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Remembering that D is a real constant and that

r = N- xl) (xi-x)
2

we have

- 4 N-1 I3 4DJ.ds = 2J(x) = (-i)2 T

Thus

J-ds = 2C2 e- 2A

To evaluate if k* ýk it is sufficient to approximate K by Dk

since the dominant contribution comes from region I.

ýk "k ~ /2r k ! (3.48)

Combining [3.48], [3.47], [3.41] and [3.12], and using the

Legendre duplication formula [ 8 for the Gamma function

obtain our final result for An

K
An (a,b,c,...)

K b
N-I 2 /(N-1)a -a n

e (-) nF ((N-2)n+(R+ 2 )
r#T ', 2

IN-1)n+ (K+ 12)

(3.49)

(3.46)

(3.47)

we

X
w
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I. Discussion

Eq. [3.49] has many interesting features, not the least

of which is its simple dependence on the constants b,c, etc.

We see that adding a new term to the interaction Hamiltonian

2Nof an x oscillator has no effect at all on the leading

large order behavior of the perturbation series if the term

2N-4grows no faster at infinity than x . The effect of a term

2N-2
bx is simply to scale the large order perturbation co-

efficients for all the energy levels by the same constant

factor eb/a(Nl)

In particular if we add a "mass renormalization" term

6mx 2 where 6m = o(X) as X-O, we will not affect the large

order growth of the series for an x 2N(N>2) oscillator and will

merely scale the large order coefficients of an x4 oscillator.

Thus "mass renormalization" does not seem to effect the con-

vergence of perturbation theory. Similar remarks may be

made about Wick ordering .

Another important property of [3.49] emerges if we ask

where the different contributions to the large order behavior

of perturbation theory come from. A quick review of the

last few sections convinces us that the entire factorial and

constant to the n behavior (that is the behavior that controls

the convergence of the series) comes from WKB wave function
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in region II. In particular, if we had simply said that

Xl
-2 / VImE = (const.) e -2 f (3.50)

we would have found the correct factorial and constant to

the n behavior of An. This is a very general result and

will recur throughout our work. The exponential factor in

[3.50] is familiar from most work on the WKB approximation.

It is called the barrier penetration factor.[10]

If we were only interested in finite oscillator systems,

Eq. [3.50] would shorten our work immensely for it enables

us to decide whether perturbation theory converges without

ever solving a differential equation or performing an

asymptotic match. However, in field theory, we are interested

in the constant (independent of n) terms in An since it is

here that we expect that notorious field theoretic divergences

to arise. [See Sec. IV.F]. Thus the constant term out front of

An must be found if we wish to renormalize our results for

the large order behavior of perturbation theory.

It will be useful then to find a computational method

intermediate between Eq. [3.50] and the long trek through

sections C-H: a method which shortens theworkbut is

sufficiently accurate to compute the exact leading behavior

of An. Such a shortcut can indeed be found. It eliminates the
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asymptotic match at the upper turning point.

Let us return to the beginning of section E where we

noted that the region II solution becomes invalid as we move

up the real axis towards the upper turning point xl. Suppose

now that instead of continuing on this collision course with

the turning point we make a detour into the complex plane as

shown in Fig. [4]. If we give the turning point a wide

enough berth then the WKB wave function [3.10] is a valid

approximation all along the contour F in Fig. [4]. In par-

ticular we can evaluate the wave function at a point at the

upper end of region III

W 2 C2 N -1/4
2) ......... ) k)$(x) = C - ( a( ) +..... -Ek

x t2 t2 NX exp - - - (a(2) + ... )-Ek dt

XO
(3.51)

The integral in [3.51] is to be taken along the contourF.

However, since the only singularity of the integrand in the

region of interest is a branch point at the distant turning

point, we can deform the contour until it lies parallel to

and infinitesimally above the real axis so that
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X
2

(x) = C ( -4
2 N

-E(a( 2-) + .... ) -E k )

exp - 4 -- (a(---) +....)-E k dt

(3.52)

where the integral is now taken along the real axis. As in

section

S~
xo xo

we split the integral into two parts

+.

=+A + I

xl

with A given by [3.41]. The second integral in [3.53] is

purely imaginary, while the first is purely real. Using this

fact we plug [3.52] into the definition of the current and

find that

J'ds = 2J(x) = 2C2 e-2A

-114

(3.53)
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in complete agreement with [3.47].

Despite the agreement the cautious reader may have grave

misgivings about the piece of legerdermain that we have just

pulled off. We seem to have used the WKB approximation out-

side its domain of validity, and to have solved a boundary

value problem without using the boundary condition at in-

finity. Furthermore [3.10] is a formula for the real part of

the wave function in region II and we have used it to obtain

an expression for the whole wave function at the upper end

of region III.

The first and third objections may be dealt with summar-

ily. We have not used the WKB approximation in a region

where it is not valid. Eq. [3.52] does not purport to re-

present the wavefunction near the turning point xl, but only

at points far into the upper end of region III where the WKB

approximation is again valid. This explanation may also

allay the reader's bourgeois fear that we have "gotten some-

thing for nothing". We have lost information by avoiding

turning point analysis: namely we no longer know the behavior

of * near x1 .

To the question about the entire wave function coming out

of its real part the only answer I can supply is an affirma-

tion that this is indeed true. The functional form which

represents the real part of i in region II develops an imag-
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inary part as we move past the turning point, and this newly

complex function describes the dominant behavior of both the

real and imaginary part of i at the upper end of region III.

Remember that in section G we determined the constant D by

matching the decreasing part of the region III wave function

to the real part of i in region II. We could then have used

this result to find the imaginary part of PII. By going into

the complex plane we could have continued ImPII into the upper

end of region III and we would then have found that it gave

an exponentially small contribution to J.

We can now understand how we have used the boundary

condition at infinity in our discussion. This condition

determines the correct linear combination of increasing and

decreasing WKB solutions that is to be used in region II.

Without it we would be unable to affirm that the contribution

of Imýi I was exponentially small at the upper end of region III.

Actually, we have treated this question rather cavalierly even

in our "careful" analysis. A more detailed treatment (for

the case of an x4 oscillator) which constructs both Re+ and

Imi in all regions may be found in a paper by Bender and Wu .

Once we have done the detailed analysis that justifies

our "trick" we can give a simple prescription for obtaining

the current which flows out to infinity in an arbitrary re-
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flection invariant barrier penetration problem: First solve

the Schrodinger equation near the origin, choosing a solu-

tion with definite parity. Then match this solution to a

decreasing WKB solution in the tunneling region. This match

determines the lowest order value for the real part of the

energy. The escaping current is now computed by evaluating

the tunneling region WKB solution at a point far beyond the

distant turning point. This is the procedure that we will

follow when we turn to multidimensional barrier penetration

problems in the following Chapters.
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CHAPTER IV

COUPLED ANHARMONIC OSCILLATORS

Introduction

We will now extend the techniques developed in Chapter III

to multidimensional systems of oscillators. To begin with,

we study a simple two-dimensional system whose Hamiltonian is

D2 + X2+y 2 + (ax +by +2cx 2 y2 ) . (4.1)
Dx2  @y2  4 4

It will be clear that much of our discussion applies to systems

more general than [4.1] and in later sections we will discuss

more complicated oscillators.

The basic strategy for obtaining the large order behavior

of perturbation theory for [4.1] is to solve the differential

equation by asymptotic matching for small negative A. We will

use the shortcut outlined in Chapter III, so that only one

asymptotic match needs to be performed. Thus, we only need

to solve the differential equation near the origin and in the

large region between the two turning points. (In two dimen-

sions the turning points are really turning lines, and in

N dimensions they are "N-1 dimensional turning hypersurfaces".
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I find such phrases awkward, and I will continue to use

"turning point" even in multidimensional situations).

It is easy to solve [4.1] near the origin (say for

x2 +y2< /2) for there it reduces to a simple harmonic

oscillator equation. In the tunneling region (between the

two turning points), however, things are more difficult.

It is to this problem that we now turn.

A. Semiclassical Approach to Multidimensional Tunneling

Problems

Discussion of Method of Solution

Our method for dealing with tunneling through N dimen-

sional potential barriers is based on a simple physical

picture. A particle in an unstable state centered at the origin

will ultimately penetrate the barrier and escape to infinity.

The total amplitude for escape is the sum of the amplitudes

over all possible paths of escape. We will show that there

exist most probable escape paths (MPEP's) and that the relative

amplitude to escape along other paths is exponentially small.

The dominant contribution to the escape amplitude comes from

regions, which we call tubes, surrounding the MPEP's. The

probability current is negligible outside of these tubes
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during tunneling and flows outward in narrow beams. We will

show that for a system without a rotational symmetry the

number of tubes is finite and that they are well-separated.

We will then use semi-classical (WKB related) methods to

approximate the solutions to the Schroedinger equation

within these tubes.

We have introduced the notion of a tube in order to

reduce our nonspherical multidimensional problem to one which

is approximately one-dimensional. It is natural to try to

solve a tunneling problem using WKB techniques, but standard

WKB analysis has proved computationally useful only for

systems with one degree of freedom or those which can be

reduced to one dimension by symmetry considerations(1)

The zeroth-order WKB equation for the phase S of a wave

function with energy E is(2)

( S)2 = V -E . (4.2)

This is just the Hamilton-Jacobi equation for a classical

system with Hamiltonian p +V. In one dimension it reduces

to (dS/dx) 2=V-E, whose solution is S=±f(V-E)1/2. For the

general multidimensional case it is a nonlinear partial

differential equation. Of course, if the Hamiltonian has a
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continuous symmetry, Eq.1 4,2] will be separable. However,

Eq.14.21 is nontriVial in general. The new multidimensional

techniques which we have discovered simplify the problem of

solving Eq.14,2] because now we need to solve it only in a

small, approximately one-dimensional region. Our technique

is expressly designed to deal with problems which do not

have continuous symmetries, and is thus complementary to the

separation of variables idea.

We briefly review the path integral formalism. The

amplitude for a particle of energy E to take a particular

path P in a potential V is

1 -fP (V-E) -/2
e (4.3)

where (E-V) /2 is the classical action and the normalization
P

factor N is slowly varying and depends only on the endpoints

of the path. The total amplitude is just the sum of Eq.[4.3]

over all paths P.

In the tunneling region, (V-E) is positive, and the

amplitude is exponentially damped. Therefore, the dominant

contribution to the amplitude comes from regions near the

paths which minimize the action integral and thus satisfy



-60-

( VýE) / 2 = 0 (4.4)

The Euler-Lagrange equations following from Eq.14,21 are(3)

d 2 x. dx. Idx. dy 3V
2( V-E) + -+-- (4,5)

ds 2  ds ds dx. Dx

where s is the path length, All solutions of Eq.14.51 are

local stationary points of the action. However, we are

interested in the global minima. This will eliminate all

except a discrete set of paths which are just the MPEP's.(4)

Once we have found a set of MPEP's, we must find approxi-

mate solutions to the Schroedinger equation along these

trajectories. As in any semiclassical or ray description of

a wave phenomenon, we must distinguish two levels of approxi-

mation. At the first level, called geometrical optics or

the eikonal approximation, the phase of the wave function

is approximated by a line integral along the trajectory,

while its amplitude is assumed to be constant. This is just

zeroth-order WKB. The second level, called physical optics

or first-order WKB, takes into account the variation of the

amplitude and the spread of the wave function into the region

around the trajectory. Thus, physical optics is characterized
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by a set of tubes through which most of the probability

current flows.

These two levels of approximation are clearly dis-

tinguished in our results for the large-order behavior of

perturbation theory. We find that in general for large n

An KLn f (Mn+J) (1+0(1)) (4.6)

The constants L, M, and J are determined by geometrical

optics alone. Physical optics is needed to find the value

of K. This is entirely in accord with the results of

Chap. III.

B. Determination of Most Probable Escape Paths

The program we outlined in part A of this section for

finding the MPEP's is, of course, very difficult. It involves

actually finding closed-form solutions to Eq. [4.5] and

explicitly selecting those solutions which minimize f(V-E)

Fortunately, in many cases, a heuristic argument enables us

to guess the most probable paths without solving Eq. [4.5],

and these turn out to be straight lines. In fact, it is

generally true that the MPEP's for the equal mass oscillators
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defined in Eq. [1.1] are straight lines. The more difficult

problem of unequal mass oscillators, which have curved MPEP's,

will be discussed in the next chapter. It is easy to show

that the straight MPEP's satisfy Eq.[4.5], but we have no way

of proving that they are global minima of the action. The

only convincing evidence we have for this is the excellent

agreement of our results with our computer calculations.

In this section we use geometrical optics to treat the

special case of Eq. [4.1] for which a=b=1. This simplifies

the notation without obscuring any of the important features

of the problem. In the next section we use physical optics

to treat this same case. Equation [4.1] is solved in general

in Sec. E.

We expect a straight MPEP to satisfy certain reasonable

criteria. It should be a "path of least resistance" to

tunneling and thus should pass through a saddle point of the

potential V=x 2/4+y2/4-E(x4+y 4+2cx 2y2 )/4. The saddle point

should be oriented along the path (which is a radial line).

A saddle point of V satisfies the equations
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S- _ (x3 +cxy2 ) = 0
(x 2

-= - e(y3 +cx 2 y) = 0 . (4.7)

Equations [4.7] have nine solutions, namely

(x,y) = (0,0) ,

[+ (2E) 2 ,0] , [0, ±(2E) ] ,

+ and - {[2(c+1)E] - 1 2  + [2(c+1)6] - 1 2} (4.8)

To identify those critical points in Eq. [4.8] which are

radially oriented saddle points, we compute the Hessian

matrix H (matrix of second partial derivatives). We demand

that H have one positive and one negative eigenvalue at the

critical point and further require that the eigenvector

having negative eigenvalue must lie along the radial line

connecting the critical point with the origin. We find that

2 - e(3x2+cy 2 )  -2cExy

H =

-2c2xy- (3y2+CX 2 )

(4.9)

i
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It follows that (0,0) is not a saddle point, that

(±(2c)/2 ,0) and (0,±(2) /2) are acceptable saddle points

when -l<c<l, and + and - {[2(c+l)E]- /, +[2(c+1)E - I 2} are

acceptable saddle points when c>l. When c=l, there are no

saddle points. This is the spherically symmetric case

where all straight-line paths contribute equally to the

amplitude, and it is treated separately in Appendix B.

It is now easy to show that radial lines through the

saddle points are solutions of Eq.[4.5] 5 ) . Equation [4.5]

reduces to

dx dx @V dy DV 3V
ds ds Dx ds Dy ax

dy {dx V + dy DV _ V
ds ds Dx ds -y Dy , (4.10)

because our straight line paths have the property that

d 2 x = d2y = 0
ds2  ds2

Equation [4.10] is satisfied by (d, d) = (0,+1), (+1,0),

and (+/2/2, +/2/2) because of three properties of V:
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y=O

=0,
ax x=O

aV 8V= + DV when x = ÷ y. (4.11)Dx - Dy

C. Geometrical Optics

We outline here a brief and heuristic treatment. A

careful and mathematically detailed approach is given in the

next section. We follow the procedure described at the end

of Chap. III. Up to multiplicative constants the wave

function 4(x,y) in the tunneling region on the MPEP is given

by

( ,y)
'V)• ds

We are ignoring all paths except the 4 MPEP's. E is the

unperturbed value of the energy, namely 1. The integral is

taken along the MPEP from the inner turning point so = 0(1)

(solution of V-E=O) to the argument of f(x,y).
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We are interested in computing the current flowing out

to infinity. We compute the current at a point just beyond
-1

the distant turning point sl=0(E-1 ). The total current J

is the sum of the currents along each MPEP. J is proportional

to

exp[-2 S (V-E 2ds]

s0

for each MPEP. This reduces to

exp{-2 S [ - 4 s4-1] /2ds),
s

where a=cos48+sin 4G+2c sin28 cos2 8,

and e is the angle between the MPEP and the x-axis. Computing

the above integral approximately gives

jCE-1/2 e-1/(3a)

for each MPEP. From Eq. [2.23] and [225], we thus obtain

0
An d (--)-n-3/2 1/(3ea)

or(n+ ) (-3a)n  . (4.12)2c
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When -l<c<l, the MPEP's are along the axes and a=l.

c+l
When c>l, the MPEP's are at 450 to the axes and a 2 " Thus,

for large n,

A n (-3 )n f (n+1), -l<c<l,n 2

and

n 1
An [-3 (c+1)/ 2] r(n+ ), c>l. (4.13)

Equation [4.131 is continuous in c at c=l.

Equation [4.13] clearly illustrates the phenomenon of

decoupling that takes place in the large-order behavior of

perturbation theory. When the coupling of the oscillators

is strong enough (c>l),An depends on the coupling term. But

when -l<c<l, the system seems to behave as if the oscillators

were completely uncoupled. Actually, when c<l the multipli-

cative constant K, which we will determine in the next section,

still depends on c. Nevertheless, the decoupling of the

dominant behavior of An for large n is quite remarkable and

is typical of the simplification that we observe in large

order.
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D. Physical Optics

In this section we use physical optics to approximate

the imaginary part of the ground-state energy for the system

a2 a2 x 2  y - (x4+y +2cx 2y2 )-Ep 0.- +- --- x4+y+2c y -E}ý = 0.

Dx2 ay2 4 4 4
(4.14)

We will solve the problem explicitly only for -l<c<l. When

c>l we use the following symmetry transformation to reduce

the problem back to the c<l case: (6)

x*x - x+y

X-Yy-_ x-y
/2 (4.15)

Equation [4.15] converts Eq.[4.14] into

-- 2 -- 2S a2 a2 x 2 E.1+c -4 -4 3-c -2-2
2 - + + - - ( )(x +y +2 - x y )-Ej=0.

ax ay 4 4 4 2 l+c
(4.16)

We then make the additional transformations

c-c = (3-c)/(l+c),

E*E = E(l+c)/2 , (4.17)

and observe that c>l implies that IcI<l.
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1. The Physical Optics Approximation

We will solve Eq. [4.14] in a tube of thickness 0(1)

surrounding the positive x-axis. (The x-axis is a MPEP when

Icl<l.) To do so, we break the tube into two regions:

Region I, where y=0(1) and x<Ec , and Region II, where

y=0(l) and C6 <x<<e .2. Notice that the regions overlap.

In region I we approximate Eq.[4.14] by

2 + 2 + - l] = 0 , (4.18)

@x2  ay2  4 4

whose solution is the unperturbed ground-state wave function

ýI = e-(x +y2)/4 (4.19)

We have freely chosen the normalization of ~I

In region II, we approximate Eq. [4.14] by

92 32 x y2 2 4 y2

2 2 +- + - -- (x +2cx2y2) - 11 = 0, (4.20)
9x2  Dy2  4 4 4

where we have neglected ey4 compared with y2. We seek a

solution which is exponentially decaying with increasing x

in the tunneling region. Thus, we factor off a decreasing
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WKB-type function of the x variable:

2  ex4  1 -
=X(4 4 2 ) exp[-

x 2)2

(t2  Et4  1/24 4 2)  d .

V-2

We have chosen the lower endpoint of the integral arbitrarily.

The new equation satisfied by X is

(x 2-ex) 41 12X - Xyyx yy
+ (-- 1 cx2 2)X = 0.4 2 2

The change of scale

EX = Z2

eliminates all reference to c from Eq.[4.9] and gives

z(1-z2) 2Xz Xyy + (L- - - y z )X = 0. (4.24)

In Eq. [4.21] we factored off the rapidly changing geo-

metrical optics behavior. Equation [4.24] contains the next

order correction to this behavior which we have referred to

as physical optics. That is, Eq. [4.24], when solved, will

provide the multiplicative constants that were missing in

Eq.[4.13]. However, there are no further approximations to

(4.22)

(4.23)

(4.21)
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be made because all quantities in Eq.14,241 are of order 1.

Equation 14.24] must now be solved exactly!

The change of variables

w = (l-2) 12 (4.25)

is useful because the resulting equation,

(w -1)Xw - yy+ c y ( ) =0 (4.26)

no longer contains a square-root term.

One strategy for solving Eq.14.26] is to transform the

dependent variable so that a Fourier transform in the y

variable gives a (hopefully soluble) first-order partial

differential equation. Of course, an immediate Fourier trans-

form of Eq.[4.26] is useless because of the y2 term. We are

thus led to the substitution.

X -y= f (w)/4A. 
(4.27)

The undetermined function f(w) will be chosen to eliminate

the y2 term from the differential equation for A. It will

then be profitable to Fourier transform that equation because

the highest power of y will be one. The above constraint on

f(w) takes the form of a Riccati equation:
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-W2-L 1)f ' w) - f2 Cw) + 1 - 2c + 2cw2 = 0. (4.28)

When Eq.14.151 is satisfied, the equation for A simplifies to

(w2 - 1)A Ayy + yf w) Ay + ±lf(w) - 1]A = 0. (4.29)

First we solve Eq.14.28]. A standard substitution which

linearizes the Riccati equation is

f(w) = (w2 - 1)u' (w)/u(w). (4.30)

We obtain

(1 - W 2)u" - 2wu' + u(2c 1 ) = 0.
1-W2 (4.31)

We gratefully recognize that Eq.[4.311 is the associated

Legendre equation (7 ) . Solutions to this equation are

u(w) = P (w), Q (w), (4.32)

where

v(v + 1) = 2c, 2 = 1. (4.33)

For definiteness we choose

u(w) =P (w) (4.34)
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Next, we return to Eq.1 4.2 9] and complete its solution.

It is clear that the strategy of the substitution in Eq,14.27]

has succeeded. That is, if we Fourier transform in the y

variable, the resulting equation will be first order and

should yield to the method of characteristics. However, we

are fortunate that there is an even simpler approach. We

change to new independent variables

(w,y) * (w,s = y/u(w)). (4.35)

In terms of these variables, Eq.14.29] becomes

S1) + 1 u2 (w)If(w) - l]A = A , (4.36)
ww2 - ) (w)Aw  2 ss

which is separable.

We now argue that the separation constant for Eq.[4.36]

is 0. To justify this contention explicitly we separate

A(w,s) = B(w)C(s). (4.37)

For separation constant a2, the equation for C(s) is

C"(s) = aC(s), whose solution is C(s) = cosh (as) = coshlay/u(w) .

Here we have kept only the even solution in y because only an

even solution can be matched to I in Eq.14.19]. However, u(w)

in Eq.[4.34] vanishes (see Eq.[4.421) at w=l and wgl is in the
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overlap of regions I and II (see Eqs,14.23] and 14.251).

Therefore, there is no asymptotic match of ý across regions

I and IT unless, of course, a2 0,

Having shown that a2=O and thus that C(s) is constant,

it is straightforward to solve for BCw). We obtain (omitting

a multiplicative constant)

B(w) = u (1l-w)/(l+w)] -14 (4.38)

Note that as w--l, B(w)+ a finite constant (see Eq.[4.44]).

Thus, it is possible to match I and I11 asymptotically in

the overlap region.

We have now solved Eq.14.14] in region II up to an overall

multiplicative constant B. Our final result is

x 2  - t 4 4 Et 4 12 dt]
( 4 ) expl- 4 ) t]

V2

x expl-y 2 f (w)/4 Iu (w) 2 [(l-w)/(l+w)] 4

(4.39)

It is easy to identify the physical meaning of the three types

of terms in Eq.14.391. There is a rapidly varying term from

geometrical optics and several slowly varying terms that do

not depend on y. These describe the amplitude along the MPEP.
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Finally, the term exp[-y 2f(w)/4] describes the falloff of

probability current in the tube surrounding the x-axis. A

quick calculation shows that as x approaches the turning line

[the line along which V(x,y)-E=0] at the end of the tunnel

near x=Es /2, w approaches 0, and, for positive c, the tube

gradually widens. At the turning line the tube flares out

like the bell of a trumpet. When -l<c<0, the tube narrows

as w0O. When c=0, the thickness of the tube is constant

along its length.

It might appear that our solution Eq. [4.39] is the result

of an amazing sequence of lucky substitutions whose applica-

tion is rather limited. Actually, these techniques immediately

generalize to all straight-line path problems [see IV E-F and

Appendix C]. Moreover, when we study an arbitrary curved path

problem in the next chapter, we show that factoring off the

geometrical optics behavior always leads to a Riccati equation

whose solution is related to the thickness of the tube. So,

on the contrary, the substitutions we have made are both

natural and general.
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2. Asymptotic Matching of Regions I and II

We now determine B by requiring that I in Eq.[4.19]

and I I in Eq.[4.391 become asymptotically equal in the

overlap of regions I and II. In this overlap region x is
--1 2

large compared with 1 but small compared with 2 . Thus,

we approximate

(x2  x 1 /4
4 4 2)

- 1/2
(4.40)

Lt2 St 4  1 /2 t1 2S 2 t /2dt
4 4 2 • -2

- x 2

S 4
1 1 1
+ log x + 4 + 0(x-).

(4.41)

Also, in the overlap of regions I and II, w'l. Thus, we

use

-1 -1/2
u(w) = P (w) n 2 (l-w)

Equation [4.42] implies that

f(w) - (w2 -1)u' (w)
u(w)

, when w'l. (4.42)

(4.43)
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u -1/2 ) . (4.44)
1+w

Combining Eqs. [4.39]-[4.44] gives

u e-(x2+y2) /r e / 4 /2 . (4.45)

Thus, comparing Eq. [4.45] and Eq. [4.19] gives

8 = 2 e . (4.46)

Now $ in region II is completely determined relative to the

normalization of 4 in region I.

3. Determination of the Probability Current J(x)

At the end of Chap. III we developed a trick for

evaluating the probability current for values of x further

from the origin than the turning line without ever doing

turning point analysis. Without further explanation we use

this technique to obtain the magnitude of the probability

current emerging from the end of the tube along the

positive x-axis
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x

t 't2 4t-2)/2d t.
J-2

Jly) = 12e^y2fC0)/2u-l0)expl

x I is the distant zero of the integrand. Note that J

function of y only.

The evaluation of the integral is given in Chap.

expEl- (t2-et4-2) /dt] e
/32 (e/) 1/2 (4.48)

To compute u(0O) and f(O) we use the formulas(1 0)

u(0) P (0) = ( )/ (

u'(0) = -P ,) = - cos -- r ( + )(1 +V ).dw v w= 0 2 2 2 2

(4.49)

From Eqs.[4.301 and 14.49] we have

f (0)
2

Trv 1 v 3 vcos L- ~- + -)r(. + -)2 2 2 2 2
Siln T-r )(1 + f) (4.50)

Finally, we combine Eqs.[4.46]-[4.48] and obtain

A Ai.

4,4 )

is a

III as
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Jcyl I e s e, expl yIft0)/2 /u 0), C4.51)

with uCO) and fC01/2 gvenr above.

4, Computation of ImE

To calculate ImE, we use Eq.12.24] and proceed to evaluate

the integrals in the denominator and numerator in turn.

The integral in the denominator is done by replacing $

with I in Eq.[4.11] and allowing V, the region of integration,

to be unbounded. This is a good approximation because the

dominant contribution comes from region I. We obtain

J p*k dv % 27 . (4.52)

V

The integral in the numerator is a surface integral which

reduces to an integral over y. We allow the endpoints of the

integral to be unbounded, use Eq.[4.51], and find that
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..... e -ye/2 f (0)/2

r3 r 2n 71/2

e 10 T (4.53)
siFiO0u 2 (0)

After using Eqs.14,49] and 14.50], Eq.[4.533 simplifies

drastically. From this result and Eqs.12.24] and 14.52],

we have finally

ImE = 2/ e/3 Iv(v+l)/E sin(Trv)1 . (4.54)

We have multiplied by an extra factor of 4 to obtain Eq.[4.54]

because the contributions to the integral for ImE come from

four equal tubes, As much current flows out along the positive

x-axis as along the negative x-axis and symmetrically along

the y-axis in both directions.
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5. Perturbation Theory in Large Order

From Eqs.[2.23] and [4.54], we have for large n

A v(v+l)T 12 2 2
n sin('rrv) I/ J dse

0

1 3-n-3
3 n 2 n+l

C (-1)

2[ 2crr 1/2 / (-1)n+l 3n (n+ ) .
= 2[ ] -2(-1) 3

sin (rrv) T/2

Equation [4.42a] is valid for c<l, v(v+l)=2c.

When c>l, we use Eqs. [2.23]and[4.17]to obtain

2 2c 1/2 n+l 3c+6 n 1
An 2[ ] (-1) ( ) F(n+) ,

sin(rrv) T

where v(v+l) = 2c = (3-c)/(l+c)

For c=l, we cite the result in Eq. [B.18], to wit

A (-1)n+l 6 3n F(n+l).
n Tr

(4.55a)

(4.55b)

(4.55c)
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6. Discussion

We can immediately verify Eq.[4.55a] for the case

c=0=>v=0. As v+0, the quantity in square brackets approaches

1, and we obtain exactly twice the result given in Ref. p.1*

for the one-dimensional oscillator. This is because now we

have two uncoupled anharmonic oscillators.

The other, and more interesting, limit to investigate

is c+l => v-l. Now the term in square brackets blows up.

This singularity corresponds with the onset of spherical

symmetry. Recall that our analytical procedures necessarily

break down for that case because there are no isolated

MPEP's - all radial paths are equally probable. The sudden

increase from 4 to an infinite number of MPEP's allows the

probability current to escape to infinity faster, reducing

the lifetime of the unstable state. We thus observe a

constructive interference phenomenon which causes an

enhancement in the rate of divergence of perturbation

theory - An in Eq.[4.55c] is larger than An in Eqs.[4.55a]

and [4.55b] by a factor of n42

One encounters many similar phenomena in optics.

Consider, for example, a light beam parallel to the z-axis
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and incident upon a flat elliptical plate centered about and

perpendicular to the z-axis. We use ray tracing to determine

the amplitude of the scattered wave at a point on the z-axis

behind the ellipse. Only two rays scattering off the edge

of the ellipse, namely those at the ends of the minor axes,

contribute appreciably to the amplitude. However, when the

lengths of the major and minor axes become equal, the

scattering amplitude suffers a discontinuous jump because

of constructive interference. All rays scattering off the

edge of the now circular disc contribute equally to the

scattered wave.

We describe the numerical verification of Eq. [4.55] in

Chap. VI.

E. The Case a,b3l

The generalization of the discussion of Secs. C and D

to the case where a,b7l in Eq. [4.1] is entirely straight-

forward. As before, we find the saddle points of V by

solving
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3V_ x - E(ax 3+cxy 2 ) = 0 ,ax 2

V Y - s(by3 +cx 2 y) = 0 ,
3y 2

and requiring that the Hessian matrix

S- (3ax 2+cy 2 ) -2cxye

H =

-2cxyE~1 e(3by 2 +cx 2)
-2cxy2

have negative determinant.

The critical points are (0,0), [0,±(2bE)- 2],

[±(2as) - /2,0], and + and - [2E(c2-ab)]- /2[(c-b) 1/2,(c - a) /21].

[0,±(2b )-'/2] are saddle points if c/b<l and [±(2a) -1 / 2, 0]

are saddle points if c/a<l. If c>max(a,b) then the off-axis

critical points are saddle points. (Recall that for the

Hamiltonian to be bounded below, we must have a>0O, b>0, and

c>-/ab.) All of the saddle points are radially directed.

As in Sec. D, the off-axis case can be reduced to the

case c/a<l by a rotation. To simplify the algebra we introduce

the following notation:
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D ab-c2 = Deta cD c b t (4.56a)

D b-c =DetI1 c
1 = b-c = Det b , (4.56b)

D = a-c = Deta 12 c 1 , (4.56c)

S = D1 + D2 = a + b - 2c . (4.56d)

Then a suitable rotation is

1/2 - 1 -x = (D1/S) x (D2/S) y

y = -(D2/S) x + (D1/S) 2y . (4.57)

In terms of the new variables the potential is

V (x2 + y) 2 (ax4+by4+2cx2 y 2) (4.58)

where

a = D/S ,

b = [(D 1-D 2 ) 2 +D]/S ,

c = 3D/S-2c . (4.59)
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Observe that

2D1D 2
c - a = 2D/S-2c S < 0

when a>0,b>0, and c>max(a,b).

Without loss of generality, then, we assume c<a. We

will solve the Schroedinger equation in a narrow tube

surrounding the x-axis. In region I where 0<x<Ec , we have

-,e(x 2 +y 2 )/4
(4.60)

In region II, E <X<I E 1/2 and we can approximate the

differential equation by

[ 2 x2 x 2  4+C2y
+ E(a+2cxy)-E]II (4.61)

Dx 2  y2- 4 4

The substitutions

c/a-c , (4.62)

reduce Eq.[4.61] to Eq.[4.20], which has already been solved.

We, therefore, immediately deduce that the large-order

behavior of perturbation theory is
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A = } a(-3B) r(n + 1) ,
Tr (4.63)

where

-2Trc '/2

a cos [-(1+8c/a)

8 = a, (4.64)

for the case a>b>O, a>c> -/V .

There is a factor of 2 missing from the expression for

a in Eq.[4.64] relative to Eq.[5.55] because the contribution

from the tube along the y-axis is negligible when a>b. Also,

we have used [4.33] to write v in terms of c. When b>a, we

have similar results:

-2rc /2

b cos[2(1+8c/b) i

8 = b, (4.65)

where b>a>O, b>c> -/a- .

For the off-axis case we use Eq.[4.59] to deduce that



-88-

'/2

ab,-c2  (4.66)

a+b-2c'

where a>O, b>O, c>max(a,b).

The results in Eqs. [4.64]-[4.66] agree to 6 places with

the numbers in Table I of Chap. VI.

F. Generalization to N Dimensions

It is natural to try to extend the techniques we have

developed for two mode oscillators to more complicated

problems. In this section we will show that such an extension

is possible for a large class of N-mode equal-mass oscillator

systems. Our aim will be to present a brief overview of what

can be accomplished in N dimensions, and we will not dwell on

algebraic or numerical details.

We begin by studying systems having potentials of the

form

N N
X. 2xj

V = + X, a x ,

i=l i,j=l (4.67)

Ot



-89-

where a.. is a real symmetric matrix. The Hamiltonian in
13

[4.67] must be bounded below, and, therefore, a must satisfy

I a.j.y.y. > 0 for y.i > 0 . (4.68)
1J 1 J - 1 -

When X=-E(E>0) the critical points of V are the solutions

of

N
0 V 1 x i a..x. 2 (4.69)

Sx. 2 jx .1 j=1

Thus

N

x. = 0, or 1 - ,a..x.
12 j= 13 (4.70)

We will first consider the case where all xi~0. Then Eq.[4.70]

has a solution if a is nonsingular. We define D. to be the1

determinant of the matrix obtained from a by replacing each

th
element of the i column by 1. Then Ea..D.=det(a) for all i,

and

D.
x2_ 1 D2 (4.71)
j 2 deta)

If this is to correspond to a point in real space, we must

have
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D.
et > O l<i<N . (4.72)det(a) 0

Of course, there are 2 N-1 vectors which satisfy Eq.[4.71]

because we can choose the sign of each component of xi

independently.

The Hessian matrix at the critical point is

6..

H.. 13 - 6.. akxk2  - 2Ex.x.a.. (4.73)
13 2 1 kij k 1 13

Using Eq. [4.71], we can rewrite this as

H.. = -2ex.x.a.. = (a / . a.. (4.74)
131 13 det(a) 1 j 13

where a. is the sign of x.. Note that D.D. is always positive
1 1 1 ]

(see Eq.17.72]). Equations [4.69] and [4.74] imply that

H13 i cr = -i D.Di 1 (4.75)

which means that the radial line through each critical point

is one of the critical point's principal axes. Furthermore,

the minus sign in Eq.[4.75] implies that along this radial

line, V has a maximum at the critical point. Thus, if all

the other eigenvalues of H at the critical point are positive,
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we have a radially directed saddle point.

A necessary condition for H to have one negative and

N-1 positive eigenvalues is

det H < 0 . (4.76)

But,

-N
det H = [-det(a)] det[oa.aV/DiDj aij]

-N-1 D.
= - [-det(a)] iH

i=l

Using Eq. [4.72], we see that

det H < 0<=>(-l) Ndet(a)< 0 . (4.77)

In two dimensions, Eq. [4.77] is indeed satisfied by the

off-axis saddle points that we discussed in Sec. VI. In

fact, this condition and Eq. [4.72] imply that c>max(a,b)

which we have shown to be a necessary and sufficient condition

for an off-axis saddle point in two dimensions. In higher

dimensions, however, we can have det H<0 without having one

negative and N-1 positive eigenvalues. It is difficult to

give a simple necessary and sufficient condition for saddle

points in the general N-dimensional case.
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If several of the x. are zero the procedure for finding
1

a saddle point is slightly more complicated. We choose to

label the axes so that the first M x. are zero. Then, the

condition for a critical point becomes

x. = 0, i = 1,...M,
1

22 a.ij x '3 '  i = M+1,...N (4.78)

j=M+l

The discussion proceeds as before in the subspace of nonzero

components. We find that the Hessian matrix is given by

N
1 a kx

k=M+l

N

-6 aMkXk2
k=M+1

-2ex.x.a..
1 ] 1]

where the xi 's are the solutions of Eq.[7.78]. Thus, in

addition to the usual conditions on the N-M dimensional matrix

x.x.a.., we must have

--
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N

2 E aikxk > 0 , i=1,...M

M+l

The special case of an on-axis critical point, where

all but one of the xi vanish, is important because any other

configuration can be reduced to this one by a rotation.

Here the condition for a saddle point becomes

1- aiNXN2 > 0, i=1,...N-l,

where

x 2 (4.79)
2aNN

It is now easy to generalize the arguments of Secs. IV

and VI to compute the contribution to the large-order

behavior of perturbation theory from this saddle point.
-1 -1

We observe that in the tube where 6 6 <XN < 2, x.=0(1),N -1

iAN, we can make the approximation

N-l

2ai x 2 X2 a j2 ax 4aijxi Xj 4 N Nj 4 aNNN
i,j j=l

Following the procedure of Sec. D, we factor a rapidly

varying WKB function of the xN variable out of the wave
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function and neglect all terms in the resulting equation

which vanish as 0+O. After a simple change of variables

(see Eq. 4.25]), we obtain a partial differential equation

which must be solved exactly:

N-l
(w2- x + 1 aiN x.2 (1-w2 )]X = 0.(w2-1)X + - - + X-- 1 "

Wx. 2 4 2 2aNN
i=l 1NN

The ansatz
N-1

X = Aexp[- f (w)x 2]
i=l

generates N-1 Riccati equations whose solutions govern the

thickness of the tube of probability current in the directions

perpendicular to the MPEP. Then the change of variables

w =w

s. = x.i/ui(w) , l<i<N-l ,

with

f. = (w2-1)u!(w)/u. (w)

reduces the equation for A to one that is separable:
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N-1 N-1 2
(w2 -1)A + [fi(w)-l]A (w)

i=l i=l u I

Finally, we require that the wave function in the

tunneling region match to a harmonic oscillator wave function

(the solution of the Schroedinger equation near the origin).

As in Sec. IV, this implies that A is a function only of w.

It is then easy to determine the probability current and

evaluate the dispersion integral. The resulting contribution

to the large-order behavior of perturbation theory is

N-I 8Tra.iN 12' 3 n
A =- [ aNNs r2(-3a) Fr(n+1)

i=l (NN vi) ]
(4.80)

where v.i(vi + ) = 2a iN/aNN

This expression will be equal to the true large-order

behavior if the xN axis is the MPEP. However, as we mentioned

above, we can use Eq.[7.14] even if the dominant saddle point

does not lie on this axis. As an example, let us consider the

case of a dominant critical point whose coordinates are

nonvanishing. Then the following rotation will align the

radial line through the saddle point with the xN axis:
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N

x. I R..x. , (4.81)
1 j=l 13 3

N
a l 1 aN- 1 (D Di= /2

=11

R =

al N aN-1 N (DN/ Di) / 2

i=l

We choose the first N-I column vectors of R to lie along

the other principal axes of the saddle point. In the new

coordinate system V will no longer have the simple form in

Eq.[4.67]. It will contain terms like x? x.. However, it

is easy to see that there are no terms of the form x3 x (jAN)

or x~x xj (i,j$N). Such terms would give a nonvanishing

contribution to x2V/ xi.x. at the critical point. (The

coordinates of the critical point are x. = 0, 1<j<N-1, x N0.)j-- N-

Thus V has the form

N 2 N-1
V= (a x + a x + b)i=l 4 4 NN N iNXi N ,

i=1

where b depends at most linearly on xN . In the tube where

x = 0(i), l<i<N-1, and e-iE<xN < we can clearly approximate

V by neglecting b entirely.
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We then use Eq. [4.80] to compute

of perturbation theory as before. The

all i is a tedious algebraic problem.

find the value of aNN, the coefficient

the large-order behavior

computation of aiN for

Still it is easy to

of XN4 in Z aijxizxj2 .

i,j

Using Eq. [4.81], it is

D DD _ det(a)
a NN a.. D Dj 1 D. det (a) = det(a)

ihj (tD.) 2  (Dj)h jZ D.

Thus, the large-order behavior of perturbation theory is

- / 2 N1 -3 det (a)]n (n+S- 7 2 K [ 1 nn+- (4.82)

The constant KN may be determined from Eq.[4.80] once we have

N-Ncomputed aiN for ifN. The factor 2
N - reflects the possible

choices of the sign of x. in Eq.[4.71]. Similar formulas exist

for the case where some of the x. vanish at the dominant saddle

point.

Equation [4.80] may also be used to find the large-order

behavior of the perturbation series for systems having an

infinite number of degrees of freedom. As an example, consider

r+ ru
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the sequence of potentials

N

v(N) = 1 X -

i=l

The critical points of V(N)

N

Sx i 2x 2

i,j=l
i vj

are given by

- (N) xi 2

0 xi  2 4 ji j1 2

whose solutions are

-1

(4.83)

(4.84)

x[ = 0 or x.2 = [2E(M-1)] . (4.8

M is the number of nonzero xi . Note that M can never be one,

so Eq. [4.85] always makes sense. The Hessian matrix is

6--
(N) ijH. = - M-1) - 2ex.x. + 3c6 (xi) . (4.813 2(M-I) 1 3 ij 1

Observe from Eq.[4.86] that we cannot have a saddle point if

any of the x. vanish because Eq.[4.79] is violated. Hence,

all xiYO and

H(N) ij i
ij 2 (N-l) (N-l)'

5)

6)

where ai is the sign of x . The eigenvalues of this matrix are1 1
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1 N which is negative and 2N- , the latter having multi-
2 N-1 N-1

plicity N-i. Therefore, we have a saddle point. There is a

different saddle point for each of the 2 N - 1 choices of sign

for x,.

To determine the large-order behavior of perturbation

theory for this system, we must compute D(N) and det[a (N)]

(see Eq.[4.82]). The matrix a(N) is given by

0 111 . .

1011...

1101...

1110

Thus,

det[a(N) = (N-) (- 1 )N - 1

and

D (N) (-1) N-, l<i<N

(N)We can also compute aiN because the potential is so

symmetric. We find that
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- (N) N-3
iN N ' l<iN-

-(N) N-1a(N) N (4.87)NN N

Therefore, from Eqs. [4.80] and [4.87], the large-order

behavior of perturbation theory is

A(N) - '/2n
(N-1)2 N-i n 1(-3 )r (n+l).2(4.88)

(4.88)

Now consider the limit as N+oo. This limit defines an

infinite-mode oscillator system which strictly speaking, is

some nonlocal field theory. The leading contribution to

Eq.[4.88] which comes from geometrical optics remains finite

in this limit:

N-in 1 n 1

(-3N rn(n+1) +(-3)nr(n+!)N 2 2
However, the constant from physical optics blows up. The

divergence of this constant derives from two sources. The

factor (8)N-)1 occurs in any N-mode problem in which no

axis passes through the dominant saddle point. The vanishing

of the cosine term as N-÷w is a more singular divergence of

the form NN/2 . It reflects the disappearance of the saddle
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point. The extreme symmetry of the potential makes the

saddle become flat as N becomes large. This kind of symmetry

is not present in potentials arising from ( N)2 quantum field

theories.

It is amusing that we can eliminate this divergence by

a mass renormalization. We will argue that by adding a lower-

order mass term to the potential we can insure that the N-*

limit of A(N) exists. Consider the effect of adding a termn
of the form R(N) N 1 . Because this term is at most

i=l 4 1
0(1) in the tunneling region, it cannot affect the determina-

tion of the MPEP. This term is merely a correction of order

0(s) to the mass, and thus can actually be viewed as a mass

renormalization. Following the scaling arguments of Sec. VII,

Ref.II.lwe find that this term contributes an overall multi-

plicative constant (independent of n) to the large-order

growth of perturbation theory, namely

(N)-NR
exp 2(N-1)]

On the other hand, we easily determine from Eq.[4.88] that

the two large-N divergences which we discussed give precisely
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1(N-l)
[6 (N-3)]

Hence, if we choose

(N) (N-1)2R (N- n(6N-18) , (4.89)
N

then the limit N+- may be taken. We obtain the remarkable

result that the large-order behavior of the Rayleigh-Schroe-

dinger coefficients An for the ground-state energy perturba-

tion series of the infinite-mode system described by the

potential

N 00

V = lim {[1-XR (N)] x + 1 x } (4.90)
i=l i,j=1

i j

is

A n - f 2(-3)nF(n+1) , (4.91)n 2

where N÷+ in such a way that XN is small. This is precisely

the result in Eq. [3.49] for the one-mode anharmonic oscillator.

Of course, it can be argued that the choice of the potential

in Eq. [4.90] is somewhat contrived. Nonetheless, we feel that

Eq.14.91] is just one more example of the extraordinary

simplification that takes place in the large-order limit of

perturbation theory.
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CHAPTER V

SYSTEMS WITH CURVED MPEPS

A. Introduction

The reader should be convinced by now that the tech-

niques we have introduced are practical means of computing

the large order behavior of perturbation theory for equal

mass oscillators. The essential feature which makes these

systems so tractable is the simplicity of their MPEP's -

they are straight lines. In this chapter we begin a study

of systems with curved MPEP's. The results obtained are

far from complete but they do show that our methods work for

curved MPEP's.

Our interestin curved path problems is not merely academic.

We will see in Chapter VII that cut off scalar field theories

are equivalent to systems of anharmonically coupled oscill-

ators with unequal masses (the "masses" here are just the

energies of the field modes). These systems have curved

MPEP's so it seems likely that any extension of our work to

real quantum field theories will have to deal with the problem

of curved paths.

The work which we present is organized as follows.

Section B gives a formal solution of the problem assuming

that the MPEP is known. Specifically, we show how to com-
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pute the physical optics (first-order WKB) approximation

to the wave function of a tunneling particle in terms of the

MPEP. The expressions we derive are surprisingly simple and

bear a remarkable resemblance to the expressions we found in

the straightline MPEP case treated in Chpater IV. As in IV

we obtain a Riccati equation which determines the thickness

of the tube surrounding the (curved) MPEP. In Section C we

use a perturbative approach to formally attack the problem of

finding the MPEP. We study potentials of the form V=U0+-U1

where U0 has straight-line MPEP's and n is small. We obtain

a perturbative expression for the MPEP and derive a compact

form for the geometrical optics approximation to the wave

function valid to second order in n.

In Sec. D we apply the general techniques of the previous

two sections to the specific potential

V = (x +y2 ) + X(x2+y 2+2c 2y2) + y 2 (5.1)

We calculate the large-order behavior of the ground-state

energy perturbation series ( a power series in X) to second

order in n. Chapter VI gives a comparison between the theo-

retical predictions in Section D and extensive computer cal-

culations. The agreement is excellent.
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B. Tunneling Along Curved Paths

In this section we present a formal semiclassical treat-

ment of tunneling along a curved path. For simplicity we

consider only two-dimensional problems defined by

(-V 2 +V-E)p=0 (5.2)

As explained in Chap. IV, the wave function is concentrated

in a narrow region surrounding the most probable escape path

(MPEP), which is the trajectory that minimizes the action

integral f(V-E) /2 . We emphasize that although the MPEP may

be curved, it is assumed to be known. Finding the MPEP is a

difficult but classical problem. Thus, in this section we

show how to reduce the quantum mechanical problem of tunneling

to a purely classical one.

We suppose the MPEP to be given parametrically by

X= 1 (s)
(5.3)

y=p 2 (s)

where s is the path length. Since we are interested in the re-

gion surrounding the MPEP, it is convenient to introduce a

suitable curvilinear coordinate system. We take one coordinate

to be the path length s and the other to be the perpendicular



-106-

distance n from the curve (see Fig. 5). Of course, this is

only a local definition valid for small n. It will not be

necessary to describe the global nature of the coordinate

system.

The tangent vector to the curve is

[c'(s), p'(s)]

This vector is a unit vector because

+d1 2 d2 d 2 (dx) 2+(dy)2 -

(ds) 2

A unit vector normal to the curve (that is, to the tangent

vector) is

[-V'(s)4,'(s)]

Hence the relation between the (s,n) and (x,y) coordinate

systems is

(5.4)
y= (s)+n ' (s)

Again we emphasize that these relations are local and must be

altered for sufficiently large n[1]
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To solve Eq.(5.2), we will need an expression for the

scalar product of two vectors in the (s,n) coordinate system.

This is most easily obtained in terms of the metric tensor

g1, which is given in the (s,n) coordinate system by [2 ]

- I

gss sn

sn nn

ax 2 ýy 2
7x-) + ( T)

n as ýn Ds

gýv in Eq.(5.5) may be simplified using

ýx ýx + DY ýy
Dn Ds Dn Ds

2x 2 t y 2
( ) + ( )

the relations

= :~ +nC j

2'1

= ~pi

We obtain

ss = 1+2n(2"-ý•,, ,")+n [(g ) 2+(g ) ]=(l+np) 2

= )= 12gnn 1 2 '

g =0,sn

5.5)

(5.6)

1
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where p, the curvature of the path, is given by2ý'I-4 • .

The off-diagonal elements of the metric tensor vanish

because Eq.(5.4) describes an orthogonal coordinate system.

Finally, we observe that the reciprocal of the metric tensor

is given by

g s=(l+np)-2

gnn=l ,

gns=0 (5.7)

Having established Eq.(5.7), we proceed to find the WKB

approximation to i in Eq.(5.2). Substituting

i=Ae-S (5.8)

into Eq.(5.2) gives

-V A+2A"sS+AV S-A ( S) +A (V-E)=0. (5.9)

The WKB approximation follows from the assumption that S2

and V-E are large and of the same order of magnitude. Eq-

uating powers of S gives the eikonal equation

(S) 2=V-E (5.10)

and the transport equation

2VA.VS+AV2S=0. (5.11)

We have disregarded the term V2A. We simplify Eq. (5.11) by
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multiplying by A:

" (A 2 S)=0. (5.12)

The n-dimensional eikonal equation is very hard to solve

in general. However, we need only solve it in the neighbor-

hood of the MPEP, which is an approximately one-dimensional

region. We expand V-E, S, and A as power series in n:

V-E=VO ( s ) + n V l ( s ) + n 2V 2 (s)+...., (5.13)

S=S 0 (s)+nS1 (s)+n2 S2 (s)+n3 S 3 (s)+...., (5.14)

A=A 0 (s)+.... . (5.15)

We will assume that the linear term S1 in the expansion of

S vanishes. This is the first place where we use the assump-

tion that $(s) describes a MPEP. We expect the amplitude to

reach a maximum on the MPEP and to fall of exponentially on

either side. This is not true if S O.

Using the expansion in Eq. (5.14) and Eq.(5.7), we express

the scalar product (ýS) as

gP V SV S=(l+np) -2S +S2
V s n

2 2
=S'2 - 2pnS'

0 0

+n2(3p 2S' +2S'S'+4S
0 0 2 2

+0(n 3 ) . (5.16)
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Matching powers of n reduces the eikonal equation [Eq.(5.10)]

to three equations:

S,2 = VOl

-2pSO 2 = V1 '

22 + 2
3p S + 2SS + 4 V2 (5.17)

The first of these equations has the familiar solution

S='+JV0, whence

s
So=+ J /V0 ds (5.18)

We choose the plus sign because we are describing tunneling.

The real part of the wave function i should decrease with

increasing path length.

The second equation may then be rewritten as

2V1  (5.19)= 2V0

This equation relates the path directly to the potential and

makes no reference to 4. We therefore view Eq.(5.19) as a

consistency condition for our approximation scheme. This

condition arises because we have assumed that S1=0. In

Appendix A we show that Eq.(5.19) is a consequence of the
classical equations of motion (the Euler-Lagrange equations
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of 6f/V-E=0). Thus, our approximation is valid along class-

ical paths.

The third equation is a Riccati equation:

-1/2S+2 -1/2 2 1 -/2S2+2V0 Sll= V0
2

(V2-3p VO)

To convert Eq.(5.20) into a linear second-order differential

equation, we substitute

S1v 1/2u/u.
120

Ul4(V6/v 0)u'=u(v 2-3p2 VO)/v 0

(5.21)

(5.22)

or in self-adjoint form

(u'v1/2 '+u(3p2 V1 /2  V V1)=O1 2 1/2 -1/2(u'V /),+u(3p V0 - V2V )=0 (5.23)

This equation can be further simplified to Schroedinger form

by introducing the new independent variable

t(s)=
-1/2

dsV
0

(5.24)

We obtain

d2  2d u+u(V2-3 p V)=0
dt2

(5.20)

Then,

(5.25)
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We have thus reduced the computation of S2 , which describes

the thickness of the beam of probability current, to the

solution of a second-order ordinary differential equation.

In Chap. IV, where we considered only straight-line (p=0)

MPEP's, Eq.(5.23) was an associated Legendre equation.

This completes our study of the eikonal equation. The

transport equation [Eq.(5.12)] need only be solved to zeroth

order in n. In this order it is

d 2 2
ds[AO S6] + 2S 2 A 0 = 0

or

dB -1/2dB + 2S V 1B = 0 , (5.26)
dS 1 0

2 1/2where B = A 0 2 V0
2  (5.27)

Hence,

B = (const.)exp[-2fsSiV0-1/2ds] ,

and A = (const.)V-1/4u-1/ 2 , (5.28)

where u is defined in Eq. (5.21).
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Combining Eqs. (5.8), (5.14), (5.18), (5.21), and (5.28),

our final WKB expression for the wave function is

1/2 1 2 1/2
-IsV0 -n V u'/u

= (const.)V 0 -1/ 1  ef V e

(5.29)

where u satisfies Eq.(5.22). To define u (and thus f) unique-

ly, boundary conditions must be imposed on Eq. (5.22). These

are determined by matching i asymptotically to the solutions

of Eq.(5.2) which are valid outside the tunneling region.

The matching procedure is exactly analogous to the one for

straight-line MPEP's described in Chap. IV.

Equation (5.29) is remarkably similar to the wave function

we found in IV [eq.(4.39)]. As in that expression we can

identify three physically distinct terms in the wave function 9.

Along the MPEP, 4 is given by a rapidly varying exponential

term from geometrical optics and a slowly varying term

1 2 1/2independent of n. The term exp(-2n V0  u'/u) describes the

spread of probability current into the area surrounding the

MPEP.

There are, of course, two difficulties present in

Eq. (5.29) which were not encountered in the straight-line

case. Equation (5.22) is a second-order differential equa-

tion and cannot always be solved. Moreover, the functions
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V0' V2 , and p appearing in Eqs.(5.22) and (5.29) are un-

determined until we have found the MPEP.

The first difficulty is not as bad as it might seem.

Because Eq. (5.22) contains a small parameter (the anhar-

monic coupling constant) for the class of problems in which

we are interested, it may be possible to treat it perturb-

atively. Furthermore, even if we cannot find u, Eq.(5.9)

still enables us to compute the dominant large-order be-

havior of perturbation theory. We demonstrated in the

proceding chapters that the leading behavior (the factorial

and power growth) could be computed directly from the

geometrical optics approximation to the wave function.

This approximation is given be

-Is/V 0 ds

and requires no knowledge of u.

The second difficulty, that of actually determining

the MPEP, is more serious and we have not found a general

way to avoid it. It might at first appear that the class-

ical equations may be treated perturbatively for small A.

However, as we show in the next section, this is not true.

A simple scaling of the dependent and independent variables

completely eliminates the anharmonic coupling constant from
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the classical equations, leaving a complicated system of

coupled nonlinear equations which must be solved exactly.

In the next section we show how to solve these equations

when the MPEP is very nearly a straight line.

C. Slightly Curved MPEP's

In this section we show how to obtain the MPEP pertur-

batively when it differs only slightly from a straight line.

A MPEP is a solution of the classical equations which

makes the action f/V-E ds a global minimum. The classical

equations are the Euler-Lagrange equations obtained from

6f/V-E ds = 0 , (5.30)

where s is the path length. Equation (5.30) is a constrained

variational problem because the path always satisfies

d (
[d #(s)] = 1 (5.31)

We can proceed by introducing either a Lagrange multiplier

or a dummy parameter t. Following the second method, we

derive the Euler-Lagrange equations of the new variation

problem
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1/2
6f/V-E [(• ) ] dt = 0 (5.32)

and then set t=s. Either way we obtain

2(V-E) + (. V)=VV (533)
ds 2  ds ds

where ( ) =1 and V means aV/a .

For the specific potential V in Eq.(5.1), Eq.(5.33) is

a pair of equations, the first of which is

[(x +y+ n)- (x +y4 +2cx 2y 2)-2E]x"(s)

+[s'(s)] 2 (X-ex -scxy )+x' (s)y' (S) (y-y - cyx )

= x-ex -Ecxy , (5.34)

where we must have X=-E<0 for tunneling to occur. The second

equation of the pair is similar. Equation (5.34) is very

difficult to solve in general and the following scaling argu-

ment shows that it cannot even be solved perturbatively for

-1/2 -1/2 -1/2
small cE Simply letting x-xF , yy 1/2, s+sE , and

neglecting E compared with x2 in the tunneling region gives

a new equation, almost identical to Eq.(5.34), in which all

reference to E has vanished. Fortunately, we do not have to

find all solutions to Eq. (5.34). The MPEP we seek is a special
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solution and has in the past been relatively easy to find.

In BBWI we found straight-line MPEP's for the equal-mass

case (n=O) even though the general solution remains unknown.

Here we show how to solve equations like Eq.(5.34) for the

MPEP as a perturbation series in n.

We proceed formally by assuming a potential of the form

V-E = U0 + nU 1 ' (5.35)

where U0 has a straight-line MPEP and 1 is small. U0 and

U1 are functions of $(s) and thus implicitly functions of s.

The straight-line solution of the unperturbed problem

is just

0(s) = 0 . (5.36)

$0 is a constant vector pointing along the path. Plugging

this result into Eq.(5.33) gives

0 I * U O [ (s)]} = U0[0 (s) ], (5.37)

in which (0)2=1. Eq.(5.37) may be written more simply as

U 0[ o (s ) ] = •o[•O(S)]I0 . (5.38)

From here on we simplify our notation by suppressing the

argument of any function which is evaluated at $0 (s). This

will shorten many of the formulas which are to follow, but we
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caution that it can lead to some confusion.

pute DW/D$ and evaluate the result at $=0.

does not imply that (a(s) ) 2W=0!

We now expand $(s) in a power series in

VW means com-

Thus, a(s) -W=0

. =$0+ f1+ n 2+.. (5.39)

The constraint [Eq.(5.31)] gives

co nn
) 2 n + m~, n'
n=1 m=0O n-mr

whence

m=0 ým n-m
m=0

= 0 . (5.40)

Also, we have

UO,() = 1 [ ( E Lm )m ]nu , ;l0)Oll n !0.
n=0

. (5.41)
m=l

Plugging these expressions into Eq.(5.33) and keeping terms

to first order in n gives

si . = 0 , (5.42)

and
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2Uo0i + 1j d Uo (s) + $', [$;Ugo+( .(.U o) +

0-UI = V(•.1 •o 0 +U1 ) . (5.43)

Equation (5.42) implies that 1 04 is a constant and we

choose the constant to be 0 without loss of generality.

Using Eq.(5.38) we then have

1 VU = 0 . (5.44)

Furthermore, since the component of 1 parallel to #0

vanishes, we need only consider the components of Eq.(5.43)

which are perpendicular to 40. The equation for these com-

ponents simplifies to

2Uo (4 )" + -U (s) ($4 ) '-1-f•) (~.)Uo=O (5.45)

where is a unit vector perpendicular to 0

We have not yet specified the boundary conditions that

T1 must satisfy. We will see later that the requirements

that $1 be finite and have a finite derivative are sufficient

to completely define the solution of Eq.(5.45).
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1. Calculation to First Order in n

It is surprising that we can calculate the wave function

in the geometrical optics approximation [see Eq. (5.18)],

-fi/v
ip= e

to first order in rj without even solving Eq. (5.44). The

solution of Eq.(5.45) is needed to compute k to second

order in fr.

To first order in f we have

V0 = UO + nU1 +n1l VU
0o

(5.46)

but Eq.(5.44) eliminates the last term from this equation.

Hence

b= xp -f [(U 0 +nUI ) (0(s))]} (5.47)

This expression is indeed independent of dli

2. Calculation to Second Order in f

In Chap. III we showed that the large-order behavior of

perturbation theory was determined up to a multiplicative

constant by the geometrical optics approximation to the wave

function. In particular, the barrier penetration factor P,
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given by

Sexp[-2 /2 (s)ds]P = exp[-2 j 0

is required. [sO and sl, the nearby and distant turning

points, are zeroes of V (s).]

We now calculate £nP to second order in n.

+ + 1 + . +0) +V0 = U0 + U 2[2VU0+ 1  V U0 +*VU I ]

Equation (5.38) gives
dU

2* U0 =O 2 d 0ds

We have

(5.49)

(5.50)

When n=2, Eq. (5.40) gives

, , =- 1÷2
$•" •n - w (5.51)

from which we have

(5.52)
s

2 0 [ (s)]2s .

sO

s0 is the nearby zero of Uo [0 (s)] and it differs from s , the

nearby zero of VO , by terms of order n.

We now approximate the expression forknP as follows:

(5.48)
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9nP=-2 ( { 0+.nU1 +T2  VU0 + •~1 V ) UO+ 1 *U 1]} ds

s
0O

1 dU0
2 ds

(U0 +nUI) 1/2

s1
-- ds

so (U0 +nUl) 1/2

Here we have used Eqs.(5.49)-(5.52). At this point in the

computation all reference to 2 has been eliminated. Because

2
the second integral in Eq.(5.53) is multiplied by 2 , we can

change its present limits, so and sl, to so and sl, the zeroes

of U0 . Also we can neglect the U1 term in the denominator.

Hence,

np=] 1(U0+U)/2 2 ds1/2 , 1 dU0-nP=-] (U+ Ul) 12sn 2 ds 102
0o 111

1 +2 + 3
+ (1"V) U 0 *lV)UI } +0(n (5.54)

Some manipulation of integrals must be done to simplify

Eq. (5.54). We define

s1

%-2 j

so

(5.53)

+2 1 +* +* 2÷+,(4 *V) U +($ )U1
_ 1i +5 1 20 1 1
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s

J -J

dU
-1/2 dUo1 {

-dsU ds
2 0

+ 2

Integrating by parts gives

s
-1/2 ( 1 2

J = O /() 
d s

s0 s

} . (5.55)

si1
+ I dsU0/2 ( q )

so
0i··~'·'

Integrating by parts again gives

1/2 s 1/2 d

J 0o j••

S1

sOos0

1 -1/2 dU0ds U0
2 0 ds

+ Ul/ 2ý.1 4

-
sO

Next, we use the differential equation for (1 [Eq. (5.43)

evaluate the last integral:

sO

1/2
dsU 0

(5.56)

to

-L -L

Tl*Tl
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1/ds2 ~1 1 s , . 2 ~1

(5.57)

We have used the result that ;l 0=0 to simplify Eq. (5.57).

Plugging Eq.(5.57) into Eq. (5.56) gives

j 1/2 2J = -U /1)2ds + Uo 1 . 1

s

-j 0dsU1/ 2 l.Uf11( ) 2U
1_.d+ s(-Tso

Finally, we substitute Eq. (5.58) into Eq. (5.54):

1/2 s3 -1/2
knP=-"2 J (Uo++nU1)/)ds-r? .dsU0 4(1 0 V)U1

(5.58)

s

1/2 2-O s (401) ds
1/2

+UO •'1l

so sO

3}+o(n ). (5.59)

*,,,I
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The linear differential equation for 1l [Eq.(5.43) has

singular points at the zeroes of U0, namely so and sl.

Therefore, the boundary terms in Eq.(5.59) do not obviously

1/2
vanish even though U0 / 2 vanishes at both sO and sl. For-

tunately, we are not interested in the general solution of

Eq. (5.43) because 1l must be interpreted as a real path.

Consequently, it is required that $l be everywhere finite.

Furthermore, since (1) =1 all along the path, 'i must also

be finite. Thus, we disregard surface terms and obtain

Sl =1/2 2 i1 -1/2 3)ZnP=-2 ds(U0 +nUI) - = dsU 0  ( 1•T*)U 1 +0( (

so sO

(5.60)

This is our final expression for £nP, which we will eval-

uate for the specific potential in Eq. (5.1) in the next section.

We will, at that time, pursue the question of the boundary

conditions for 1 in greater detail.

th
3. Comments on the n -Order Calculation

Unfortunately, the nonlinearity of Eq.(5.33) makes the

perturbation calculation that we have outlined quite complex

as the order n increases. However, we will show that there

are some features of the calculation that are true in all
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orders.

First, we emphasize that Eq.(5.60) is correct to second

order in q. The first-order term is independent of the

perturbed path, while the second-order term depends on the

first-order correction to the path. In general, the constr-

aint in Eq. (5.40) allows us to express the n th-order contri-

bution to P in terms of 0' , l' ..... ' n-l' but not ;n"

Second, in every order, the equation comparable to

Eq.(5.33) is a linear inhomogeneous differential equation.

The differential operator is the same in all orders; only

the inhomogeneous term changes from order to order. To

verify these assertions we introduce the following notation:

U0 [ (s)] = nnU n0  0,s) ,
n=0

Ul [ ( s)] = an n)I ( 0 ,s)

n=0

where U(n) 0(s) is the coefficient of nn in
i

1 m$ (s)]V.}nu
n=O n [
n=0 m=1 m 0(s)

U.n ) can of course be written in terms of multinomial co-I



-127-

efficients but the resulting expression is not very illum-

inating. We now express the nth order equation as

n n
2 [U(n-j) +U(n-j-1)]d (n-j) d (n-j-1)
j +U +j d0 U + (s)j=l j=0

(5.61)=ý[U0(n)+ Ul(n-1) ]

in which the relation

÷ -+ d +(s) " VU[ (s)] = d U[ (s)]ds

and the convention

TU (n) = 0 , n<0

have been used.

(n)Next we observe that in Eq.(5.61) the only term in U.
1

that contains ; is * U.. Also, n does not appear in
n n 1 n

U.m) for m(n+i. Thus, we rewrite Eq.(5.61) as
1 t •

(0)+ d U(0)+ d [T + (0) + + + (0) +

2U " + O), + [ ]VU ]
0 ds 0 n 0 ds0n n n [ 0n

(5.62)

where h does not depend on ;n. Hence, only the inhomo-
n

%2
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geneous term of Eq. (5.62) changes from order to order.

Since Eq.(5.40) determines $n '0 in terms of $,, *...,$ ,

we need only solve it for directions perpendicular to .
0

Hence, if $"0=0o we have

dU(0)

2U" + ds 0-(0;)(n'V)U0='hn . (5.63)0 n ds n n 0 n

Observe the similarity between Eqs. (5.45) and (5.63). The

computation of Tn to all orders is possible in principle if

we can solve the homogeneous equation corresponding to

Eq. (5.63) exactly. If we cannot, further approximations

must be made.

D. Illustrative Calculation

Our presentation to this point has been extremely formal

and general. In this section we illustrate the techniques

we have developed in the previous two sections by special-

izing to a particular oscillator. We consider the unequal

mass version of the two-mode oscillator that we studied in

Secs. C and D of Chap. IV:

1 4 cx2 y2 y 4 y2 -IJ 0O 1 (5.64)

V-E= (x2+y2)- E(x +2cx2 y+y )+ 2 -EU0+nU (5.64)

The specific calculation that we perform here is a geo-



-129-

metrical optics determination of the large-order behavior of

perturbation theory to second order in n for the potential

in Eq. (5.64). We will do this by evaluating the expression

for £nP given in Eq.(5.60). As is the case in IV [see

Eq.(4.6)] geometrical optics gives the factorial and power

growths of the Rayleigh-Schroedinger coefficients. At the

end of this section, we show that our results compare favor-

ably with a computer calculation.

1. Discussion of Saddle Points

Because we work to leading order in P, we may neglect E

in Eq.(5.64). Recall that when =0O, U0 has radially directed

saddle points at x=+y, y=+[2E(c+l)]-1/2 when c>l. The analy-

sis of Chap. IV. tells us that the MPEP's are straight lines

through these saddle points.

When rn0, we have saddle points at

- 1 / 2
=(2E) =0, l+n>c, (5.65a)

1/2 cc 1/2 1
x=2+( l+cf) , y=+( ) , -<l+T <c. (5.65c)

2Ec 2-2c 2Ec 2-2E c

The first two sets of saddle points face the origin but the

off-axis saddle points do not; we have straight-line MPEP's

if 1+<c or 1+) I , but otherwise we must solve a curved path
ifo
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problem. To solve this more difficult problem we assume that

for small n the MPEP's are perturbations of the four straight

lines through x= y, y= [2 (c+l)]-1/2. By symmetry we need

only perturb about one of these lines.

2. Perturbative Determination of the Path to First Order in

÷ 1
In the notation of Sec. C we have -0= /2 s(l,l). This

is the expression for the MPEP to lowest order in -r and is

all that is necessary to evaluate the first integral in

Eq.(5.60) for £nP. However, we defer this calculation until

part C of this section. We proceed to compute the first-order

correction to the MPEP because this result is needed to

evaluate the second integral in £nP.

The equation for 0 allows us to express the following

quantities as functions of s:

U0 ( 0 )= s [1-Eas2] ,

Ul 0 s ,

VUI ( 0 )  /2 s(0,1) , (5.66)

where

_1a2-(c+l)
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Equation (5.34) implies that fl has the form

Hence, Eqs. (5.64), (5.65), and (5.66) give

1x=y=2 /2 sT
1 1 12

=-2 2 E(3-c)s, - + c(3-c)s ]

Thus, ( ($b
1.)U 0 =O

(* )U=  s .=
0 14

and

(5.68)

Plugging the above expressions into the formal result in

Eq. (5.45), we finally obtain the differential equation for

$1(s):

d 2 l (s) dl (s)
s2[1-ea 2 ]  + s[l-2cas -] + (Cos 2 -1)l (s)

ds2 ds 1

1 =-/2 s4 (5.69)

where

(5.67)

(ý1'V)VU=0 iV[ x-(x3+C+xy2 Y -E (y3+cyx )] 1
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We convert Eq. (5.69) to a more familiar form by intro-

ducing the variables

(5.70)

and

(5.71)

In terms of these variables Eq. (5.69) becomes

(1-z2)f"(z)-2zf' (z)+[ - (1-z ) ]f(z)=- [2a(1-z2)]- / 2
a 2

(5.72)

We recognize this equation, from which all E dependence has

disappeared, as an inhomogeneous Legendre equation. [3 ] Homo-

geneous solutions are associated Legendre functions of the

form

+1 Q +1
V V

where v(v+l)=w/a .

A particular solution of Eq.(5.72) is found by noticing

that

[ (l-z ) d 2 d 1 (1_z2)d z2 dz]- (-
-1/2

= 0, (5.73)

z=(1-eas2)1/2

f(z)=E-1/2 1(s) .

dz2 dz 1-z2
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so that

[(z d d 1 -1/2 2  -1/2
[(1z2 ) -2z- ----- + //alc(l-z2) -1/2aw (12)-1/2

dz2  dZ 2 _l-z2

/2a
Therefore, if 0 = - 2 then

4w

(l-z 2 ) -1/2 (5.74)

is a particular solution of Eq. (5.72)

The general solution is then

1 1 /2cc -1/2f(z)=BP l (z)+yQ (z) /2 (1-z2 ) -1/2 (5.75)4w

3 and y are still arbitrary but, as we argued in Sec. C, f(s)

and f'(s) must be finite along the path. In particular, f and

its derivative must be finite at the endpoints of the path,

which in the notation of Sec. C, are the points s1 and so. s1

and s o are the distant and nearby turning points of V0 (s)

[see Eq. (5.49)]. Actually, we will require finiteness at sl

and so , the turning points of UO, because it is simplest to

work at these points. [Choosing to use so and s1 instead of

sO and sl can only affect the evaluation of £nP 
to third order

in q because s 0 -s 0 =0(n) and sl-sl=0(5 ).]

[4]
As s-s0 , z÷l and

lim zf(z)=lim - -(1-z)-1/2 / 1-z) 1/2
z+14z+1l2z4
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Thus, we must choose

y = -/2a / (4) ).

The distant zero of U0
is sl=(Ea) 1/2, which corresponds

to z=0. f(z) is finite at z=0. However, Eq.(5.70) gives

df Essdf - E f'(z)ds 1-eas 2

and thus the derivative of the path at sl is finite only if

f' (0)=0. But

f'(0) = P (z) + d (z)dz z=0 z=

This expression reduces to[5]

V 3 - r( v+l)4r( 2 + )sin +
f (0)=B[) 2 ]+¥ [

f/ru ( )
2

2r F(V 3 C (os +l)
2/F(-+2 )cos 2

r( ()

The vanishing of f'(0) thus requires that

1 1
S= 2yTrtan(2)Trv)

Combining Eqs. (5.75-5.77) completely determines f(z):

f(z)= 2 [1 1 1 1()+Q()+(1_2)-1/2 ] .
40 2 2 vV

This is our final result for the MPEP to first-order in n.

(5.70)

(5.77)

(5.78)
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To review, the first-order correction to the straight-line

path is given by ;$ through Eqs.(5.70) and (5.71). The

finiteness conditions of f(s) assure us that the boundary

terms in Eq. (5.59) vanish.

3. Evaluation of £nP. First Integral in Eq. (5.60)

The evaluation of the first term of £nP in Eq. (5.60) is

relatively easy. The integral is formally given by

1

-2 ds(U0 + U I ) 1/

s 0

For the case of the potential in Eq. (5.64) this integral is

just

S
1

s0

3 (1+- eas 2)3/2 . (5.79)
sois the larger zero of V0(s)=U0+ +0() [see Eq. (5.49).

s1 is the larger zero of VO(s)=U0+nU1+0(n2) [see Eq.(5.49).
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Therefore, (1+l- easl) 3 / 2 = [0(n2)]3/2 = 0(n 2 ). Furthermore,1

s O is 0(1). Thus, Eas 0 is negligible relative to 1+.-n. This

implies that we can approximate Eq. (5.79) by

1 1
3E (l2n

3/2 1 3 3= 3= a (1+4 32 )+0(- ) (5.80)

Equation (5.80) is the desired expression for the first contri-

bution to £nP. Observe that it was not necessary to know f(z)

to obtain Eq. (5.80).

4. Evaluation of £nP. Second Integral in Eq. (5.60)

The second integral contributing to £nP is formally

s s

t 0S0

But, according to Eq. (5.66)

( '1 •) 1  _ 1 f(z)

2/U 0 2E z

Furthermore, from Eq. (5.70)

ds= 1 z dz
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Hence, the integral in Eq. (5.79) reduces to

1
1 f f(z)dz (5.81)

25/2~2 l-z2

0

A glance at Eq. (5.78) shows that each of the three

contributions to Eq. (5.81) is separately divergent at z=l.

To extract a finite answer we must integrate up to x<l and

then let x tend to 1 at the end of the calculation. The third

term gives

x
Sdz 1 l+x 1 1

IJ 1 n -1n2- -9n(l-x) (5.82)
0 l-z2  2 l-x 2 2

for x\l.

The first and second terms are slightly more complicated.

1 1
Using the differential equations satisfied by Pl, 1 , and

(1_z 2 ) -1/2 [Eqs. (5.72) and (5.73)] it is easy to show that [ 6 ]

z=x
W(z)dz = 1 (l_z2) 1 / 22 zW W']

0 /l-z2  v(v+l) l-z 2  z=0

1 1
where W=P or Q . A substantial amount of algebra now givesvwhere W=P or Qv
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J dz [Trtan( -rv)Pl(z)+Ql(z) ]
0 l-z 2

1 d 1 1 1 1= -1 d 1 tan( f lrv)P (x) V1-x2 +Q1(x) /l-x2 }v(v+1) dx 2 2 v v

(5.83)

We must evaluate this expression for x near 1. P (x) is

finite near x=l, so it is sufficient to consider its leading

[7] 1 1-x 1/2behavior there: P l(x)_-v(V+l) ( )1/2 Thus,
v 2

d 1d- [P•p(x) V1-x2 ]% v(v+1). (5.84)

We must be more careful with the second term in Eq. (5.83).

We use an expression for Ql(x) in terms of hypergeometric

functions[8]

1
1 3/2 xtan(-•v)

Ql(x) = 2x 2 F (2,+;;x 2)

-7( ) (-- --)

cot(2 1 v v 1
+F( 2 2'I; ;x ) (5.85)

2r(- ) F() + )
2
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and an asymptotic expansion of F near x=l1 9 ]

F(a,b;a+b+l;x2)% (a+b+l)
F (a) F(b)

1
{_ +(1-x2)ab

[ n(1-x 2 )-h ]}ab

+0 [ (l-x 2 ) 2 Pn(1-x 2 ) ]

In Eq. (5.86)

hab = i(1)+ (2)- (a+l)-p(b+l) , (5.87)

where i is the logarithmic derivative of F.

We combine Eqs. (5.85)-(5.87) with the second term of

Eq. (5.83) and simplify.

leaving one that is only

The leading divergence drops out

logarithmic:

d /l-x2 Q(x)

dx
v (v+1)

sin 2 (T) 1
+ -+

v(v+l)

1
kn2

2

1
+ -~n(l-x)

2

1 1 1
- [h 1 sin (1v)+h2cos2 ( )

+ 0 [ (l-x)9 n (l-x)] ,

(5.86)

where

(5.88)
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h23)hl= (1)+ (2)- (1- 2)- (' + ') ,

1 - +h2= f(i)+f(2)-f(0 2) (5.89)

Observe that the divergent terms in Eqs. (5.82) and (5.88)

just cancel.

Next, we combine all the expressions in Eqs. (5.78) and

(5.81) - (5.88) and obtain a finite result:

1 1 sin ( ) 1 1
8 [9n2+-+ - -rtan(2 )

v(v+l)

1 1 1 12- hlsin 2 (v rv)- h os (r) ] (5.90)

This expression can be simplified using Eq. (5.89) and some

well-known identities for the i function.[10] Our final

result for the second contribution to £nP is

1 1 1
-Ec [y+ p(v+l)- y tan(2 v )  ]
8sc ran•Tv

(5.91)

where y is Euler's constant (=.5772156....).
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5. The Rayleigh-Schroedinger Coefficients

Adding together the results in Eqs. (5.80) and (5.91)

completes the evaluation of £nP:

1 3 1 1 3£nP = - 3~ -1+ +y+ % (v+l)- frtan(f7v) ]n2+0(n

(5.92)

1
where w=3-c, a=2(c+l), and v(v+l)=w/a.

It is more convenient to invert the expression in curly

brackets, to wit

n3 I]-1
£nP= -38o[1- V+I'2+0(T1 3 )

(5.93)

where we have introduced

3 5 a 1. tVI = [4 (Y+ý(v+l)- 2tan2 ) . (5.94)

The barrier penetration factor P is just the geometrical

optics contribution to the imaginary part of the energy.

Thus, inserting P into the dispersion representation for An

[Eq. (2.23) of Chap.II] we find that the large-n behavior of

the perturbation series for the potential in Eq. (5.64) is
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3n 24n 1An o-[-3a(1-+l I) ] n(n+ ) . (5.95)

This result is correct up to a multiplicative factor

independent of n.
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CHAPTER VI

COMPARISON WITH NUMERICAL DATA

In this chapter I will give a brief account of the computer

calculations that I have done to verify the theoretical

predictions of Equations [3.491, [4.55] , [4.64-66] , and [5.95].

The excellent agreement between theoretical and numerical

results attests to the essential correctness of our intuitive

but nonrigorous assumptions [in particular our choice of

straight line MPEP's for equal mass oscillators].

In the case of the one dimensional anharmonic oscillator

with polynomial self-interactions, the computer work was more

than just a check, it served to motivate the entire study.

Let me describe how this came about. In earlier work (1 ) on

the x4 oscillator, it was realized that for this system Wick

ordering had an essentially trivial effect on the large order

behavior of perturbation theory: it merely shifted the mass

of the oscillator in a X dependent way. A simple scaling

argument could then be used to find an exact relation between

the Wick ordered and unordered perturbation series. Asymptotic

analysis of this relation yielded
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A
nlim n e

liraA (wick)
n÷30 n (6.1)

The question then arose whether a similar result held for

the Wick Ordered x2N oscillator. For such a system Wick

ordering does more than merely shift the mass and the ordered

and unordered systems appear to be quite different.

To study this question I performed a computer evaluation

of the first terms in the perturbation series for an x6

oscillator and found that

A (6)
lim n = 42.521082

n A ) (wick)n-÷• n (6.2)

The number on the RHS of [6.21 is (to the accuracy available)

e1 5/. This remarkable result motivated the WKB calculations

that appear in Chapter III. (2)

To get down then to the details of the computer calcula-

tions. As stated in Chapter II, the Rayleigh Schrodinger

recursion relations for a harmonic oscillator with polynomial

perturbations may be reduced to a single nonlinear partial

difference equation. For the Hamiltonian in Eq.[4.1] the

difference equation is:
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(2i+2j)C ni j i+) (2i+l)C n,i + ( j+) (2j+l)C
nrij n,i+1,j n,i,j+1

+aCn-1, i-2,

n-1

-k=l
k=1

.+bC +2cC
j n-1,i,j-2 n-1,i-1,j-1

D n-kCkij
n-k k,i,j,

C +Cn
n,1,0 n,0,

C 0,0,0=1,

Cn,0, 0=0

C .=0
n,i,j

C .=0

=D =(-i) n+A ni n n

for n>0,

for i+j>2n

for i<0 or j<0.

Equation [6.3] is derived by

n=l

substituting

D (-_)n,n

(x) =e- (x2+y2 )/4{i+ B (x,y) (-1)n}n (6.6)

where

and

(6.3)

(6.4)

(6.5)
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2n

Bn(x,y)= (x 2/2) (y2/2) Cnij (6.7)

i,j=O

into Eq. [4.11 and collecting powers of (x2/2)i (y 2 /2)J and Xn

The computer program for solving Eq. 6.3 is straight-

forward. However, the number of entries in the matrix Cnij

grows as n3 and the convolution term in [6.3] requires us to

store C .. for all n less than the order of perturbation theorynl3

being computed. The limitations of core memory prevent a

calculation of An for n>20, and this is not sufficiently

far into the asymptotic region to pull out the precise

leading behavior. We therefore proceeded as follows: The

calculation of A20 was repeated using Eq.[6.3] with all but

the first and last terms of the convolution omitted. The

difference between the exact and approximate calculation

occurred only in the sixth decimal place. Therefore, we

used the approximate difference equation to compute An for

n<65. Further justification of this approximation may be

found in Ref.[l]of Chap. II.

The computer program then fits (to six significant

figures) the raw Rayleigh-Schroedinger coefficients to a

formula similar to but slightly less general than that in

Eq.[4.61 :
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/ 0 ( 3 n 1 Y1 Y2 3 4A = a (-3) n(n + -){1 + -- + - +- + -L}
n 3/2 2 n 2 3 4

(6.8)

The relevant numerical techniques are discussed in Ref.(3),

Appendices D and E.

The numerical predictions for a and B for various values

of a, b, and c are given in Table I. The predictions in

Eq.[4.55] are as follows:

For -l<c<l, a=b=l,

a={-8rc/cos[ F(1+8c) 1/2 1}/2

B=1, (6.9)

where we have eliminated v in favor of c using Eq. 14.33].

For c>l, a=b=l,

1/2

a = 87 (c-3)

(l+c)cos[ir(25-7c) 1/2(4+4c)-1/2

= (c+l)/2, (6.10)

where we have used Eq. 14.41. For a=b=l the values of a and B

in Table 1 agree to six places with the expressions in Eqs.

16.9] and [6.10]. Note than when the argument of the cosine
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function becomes imaginary, cos is replaced by cosh. The

function in the curly brackets is always positive.

We have done one further and rather amusing numerical

calculation for a=b=l which does not appear in Table I.

We computed An for c=-5. This problem has no apparent

physical significance because the Hamiltonian is not bounded

below, and therefore has no discrete eigenvalues. Neverthe-

less, the perturbation series is still well defined and we

found that 8=-2.00000. This result agrees with 8 in Eq.[6.10].

For a4b41 the relevant formulas are 14.64]-[4.66]. The

reader may verify for himself the 6 place agreement is again

found.

We now turn to our numerical computations for systems

with curved MPEPs. A slight generalization of the argument

given below 16.31 shows that for the potential in Eq.[5.11

the Rayleigh-Schroedinger coefficients are given by

A n=(-1) n(C +Cn. )
n ,1, n,1,0 )

where



-149-

(2j+2kVi+)Cnj C ,k=(j+l) (2j+l)Cnj+,k+(k+l) ( 2k+l)Cnjk+

k+2cC
+Cn-l,j,k-2+Cn-l,j-2,k+ n-l,j-l,k-

n-1

- (C,10+Cp,,)Cn-p, j,k (6.11)
p=l

We solved Eq.f6.11] for c=2 and a range of values of +17i and

fit the values of A near n=65 to the formula (4 )

n

A -F(n+1) (-3K) n. (6.12)
An

The values of K as a function of n are recorded in Table II.

Several remarks should be made about the entries in

Table II. First, when lT+p >/c = /2, k=l (to within the

expected accuracy) and when /V1+ < l//c = l//2, k=(l+n) -3 /2

These are just the values that we obtain from straight-line

MPEP's passing through the saddle points in Eq.[5.65a] and

15.65b]. That is, the curved path region lies, as it should,

for values of /Tpi between /2/2 and /2 . Second, when n=O

we have an equal-mass potential and the results of Chapter IV

imply that k=1.5. This suggests that near /lp = 1 our

6
numerical results in Table II are low by 4 parts in 1.5x106

This inaccuracy comes about because we used the approximate
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form of 16.11] to compute the numbers in the table.

With this in mind, we proceed to compare our theoretical

and numerical data. Our theoretical predictions from Eq.

15.951 take the form of a Taylor series valid near n=0:

3 9 + 1.378 2 +0(n 3 ) (6.13)
2 8

Equation 16.131 is obtained by evaluating the expression for

I in Eq. [5,941 using c=2, a=3/2, w=l, and v=-.5+11i/12 .

There is no simple formula that fits the numerical data

in Table II for VZ > -l+n > V/22. We can, however, compute

the first three terms in the Taylor series of K about /JT+ = 1.

Using the five values for K associated with J1+T = .98, .99,

1.00, 1.01, and 1.02 and assuming that the 4 parts in 1.5x10 6

discrepancy mentioned above holds for all these values of i1'n

we obtain the expansion

K=1.5 - (/IT -1)+4.388(/l7+-i)2+0(/(1 -l)3. Rewriting this

as a power series in , we obtain

K = 3 9 + 1.378n 2

in complete agreement with the theoretical predictions in

Eq. 16.131.
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TABLE CAPTION

Table 1. Numerical values of a and B in Eq.16.8] for various

values of a, b, and c in Eq.14.1]. The theoretical predictions

in Eqs. [4.55] and 14.64-66] and the numerical calculations of

a and B agree to six figures, which was the available limit

of computer accuracy. Some values of a were not computed.
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TABLE I

a b c a

1 1 -1 1.00000

1 1 -.5 1.00000

1 1 -.25 1.58242 1.00000

1 1 -1/6 1.70541 1.00000

1 1 -.05 1.90378 1.00000

1 1 -.005 1.99002 1.00000

1 1 0 2.00000 1.00000

1 1 .005 2.01002 1.00000

1 1 .05 2.10410 1.00000

1 1 .1 ----- 1.00000

1 1 1/6 2.38399 1.00000

1 1 .25 2.62372 1.00000

1 1 1/3 2.90740 1.00000

1 1 .5 3.67206 1.00000

1 1 1.5 4.33836 1.25000

1 1 2 2.90740 1.50000

1 1 2.5 2.32211 1.75000

1 1 3 2.00000 2.00000

1 1 5 1.47228 3.00000

1 1 33 17.0000

1 2 .25 ----- 2.00000

1 2 1 ----- 2.00000

1 2 5 ----- 3.28574

1 3 .25 3.00000

1 3 1 3.00000

1 3 5 ----- 3.66667

1 5 .25 ----- 5.00000

1 5 1 ----- 5.00000
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TABLE CAPTION

Table II. Numerical values of K as a function of n in

Eq. 16.12]. These values are in good agreement with the

theoretical predictions in Eq.16.13].
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TABLE II

IIT-i Ti K

0.4 -.84 15.625004

0.5 -.75 8.000003

0.75 -. 4375 2.534419

0.8 -. 36 2.216049

0.9 -.19 1.777643

0.98 -. 0396 1.546811

0.99 -. 0199 1.522942

1.00 0.0 1.499996

1.01 .0201 1.477928

1.02 .0404 1.456695

1.1 .21 1.312745

1.2 .44 1.183367

1.3 .69 1.092641

1.4 .96 1.038811

/T 1.0 1.032995

1.5 1.25 1.004064

1.7 1.89 .999954

1.8 2.24 .999994

1.9 2.61 .999999

2.0 3.00 1.000000

2.1 3.41 1.000000

2.9 7.41 1.000000

3.0 8.0 1.000000

3.1 8.61 1.000000
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CHAPTER VII

CONCLUSIONS AND SPECULATIONS

In this final chapter I will discuss the problems which

arise when one attempts to use the present methods to deal

with real quantum field theories. The discussion is divided

into three parts. We first discuss the perturbation series

for Green's functions. Then the problem of unequal mass

oscillators is discussed in the context of field theory.

Finally, we make some remarks about Fermion field theories.

A. Perturbation Theory for Green's Functions

The analysis we have presented so far relates to the

behavior of the perturbation series for energy levels. The

real objects of interest in field theory are Green's functions,

and it is natural to wonder what significance our results have

for them. Of course, the eigenvalues are the poles of the

Green's functions so that the results presented so far do say

something about the perturbation series for Green's functions.

However, the real issue is how the behavior of these series

changes with energy and, in particular, what happens in the

limiting case of very high energy. Conventional field theoretic

arguments (for example, the method of the renormalization
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group) indicate that the rate of growth of the perturbation

coefficients increases with increasing energy.

I will now show how the methods of this thesis may be

adapted to deal with these questions. Since I will do no

explicit calculations I will write all formulas in terms of

a single zero dimensional quantum field x(t). (A quantum

mechanical system with one degree of freedom.) The two point

Green's function is defined for positive coupling constant by

G(E) =edt eiEt <0 x(t)x(0) 0>
<010> (7.1)

where 10> is the ground state. To analytically continue this

formula, we insert a complete set of eigenstates and write a

spectral representation

G(E) = <Olx(O)In> 2. (7.2)

n <00><nln>(E-(E n-E ))

In the representation where x(0) is diagonal, we can write

<Olx(0) In> = dx x o (x) W n(X)

<mln> = dx 4m*(x) 4 n(x (7.3)
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For positive A the eigenfunctions are real on the real axis

and we can replace n* by 1n in 17.3]. We do this because n

is an analytic function of A while n* is not. We can now

analytically continue each term in (7.2] following the procedure

outlined in Chapter II. Notice that the integration contour

in 17.3] must be rotated as we change A so that it always goes

out to infinity in a sector in which n vanishes.

Each term in 17.2] will now satisfy a dispersion relation

like 12.15]. We assume that the domain of analyticity of the

entire sum is qualitatively the same as that of each term.

We can thus write a dispersion representation (in Afor fixed E)

for the perturbation coefficients of G(E) and conclude that the

large order behavior of the perturbation series is determined

by the discontinuity of G for small negative X. Eqs.[7.2]

and 17.3] show how to compute this discontinuity in terms of

wave functions and eigenvalues. This latter computation can

be performed by WKB methods.

There is an important difference between the calculations

required by 17.2] and those that we have already done. We

have always assumed that the energy eigenvalue En was 0(1),

but in 17.2] we have an infinite sum containing arbitrarily

large eigenvalues. For large n our WKB wave functions are no
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longer valid. Nonetheless, a slightly different WKB

approximation can be used to compute the eigenfunctions in

this domain. (The large eigenvalue region is, of course, the

traditional domain of applicability of the WKB method.)

I have done an initial calculation of this type for the

one dimensional potential - + 4 and there appear to be

some technical problems with the asymptotic matching procedure.

The first order WKB approximation that we have used so far in

this thesis does not appear to be sufficiently accurate to

produce a consistent match for the matrix elements <0lxln>.

This question certainly merits further study. I am sure that

a consistent approximation can be produced, if necessary, by

going to a higher order WKB approximation.

Even if this question of matching is cleared up,

calculations based on [7.2] may become very unwieldy in

multidimensional contexts because of the complexity of the

set of eigenstates. There is another way to write [7.1] which

may be simpler to deal with in N dimensions.

We introduce the eigenstates Ix,t> of the Heisenberg

operator x(t) and write
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G(E) 1
<010>

<0 0>

Jdte Et kdx' 0olxt>x<xtlx'O>x'<x'ODo>

dte (E-Et xdx' o* (x)x<xt x'O>x' (x')

(7.4)

To evaluate G(E) we thus need to know the ground state wave

function 0o and the transition amplitude

G(xt;x'O) = <xtlx'O>

G is the Green's function for the Schroedinger equation. It

satisfies

(i + 2 - V) G(xt,x' 0) = 6(x-x') 6(t)
at ax2

and

lim G(xt;x' 0) = 6(x-x') .
t-*0

Introducing the Fourier Transform of G

G(xtx' O) = dE d-iEt G(x,x',E) we obtain

dX2 
V+EE) 

=

(7.5)

(7.6)
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One would now hope that for small negative coupling constant

[7.6] may be solved by WKB methods. The precise form of the

WKB solution that must be used will depend on the value of

x', and we will have to slice up the two dimensional x,x'

space into several regions.

The advantage of [7.4] over [7.2] in multidimensional

situations becomes clear if we remember the path integral

discussion of Sec. A of Chap. IV. We argued there, that in

the tunneling region the dominant contribution to G(x,x',E)

came from a small tube surrounding the "classical" path

connecting x to x'. Furthermore, the wave function olCx)

vanishes very rapidly as x moves away from the particular

classical path which we have called the MPEP. Thus, for the

purposes of evaluating [7.4] for small negative (1), we need

only solve [7.61 in a small region surrounding the MPEP.

To conclude, it appears that aside from certain technical

complications related to matching (2 ) , the WKB methods that

we have introduced are applicable to the problem of computing

the large order behavior of the perturbation series for Green's

functions. I plan to do some explicit calculations in the

near future.
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B. Unequal Mass Oscillators and Realistic Field Theories

I have repeatedly emphasized that the problems of unequal

mass oscillators and curved MPEP's are unavoidable when one is

dealing with the Hamiltonians arising from cut off field

theories. I would like to demonstrate this explicity for a

cut off 2-dimensional ý4 theory, and to speculate about how

these problems may be overcome.

The Hamiltonian of the cut off ( 4)2 theory is defined

in terms of a scalar field

N
(x) = ak +a -k)e kx+(a k+a-k)e Pkx

+ (ao+a ) (7.7)

and its conjugate momentum

-1r(x) - + Pkx -_pk x
/Yr2- E (a k-a -k )e (a+a )e W 112

- (ak-a+-k) e - (a ak)ei kk=l

+ (ao-a+) 2(7.8)0a00o1 (7.1
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In 17.7-8] L is a spatial cutoff, pk L -' wk o

(-/p +Wo) and the upper limit of summation, N, is defined

in terms of an ultraviolet cutoff 2 as the largest integer

such that

27N <(7

L

The creation and annihilation operators satisfy

[aka+kl] = 6 kk' (7

We now introduce a set of canonical variables

Qk = (2 )-/2 [a +a+a +a+k]e(ven) kk k -k -k

Qk = -i(2w )-V2 [a+-a +a -a+
o (dd) k k k -k -k

pk =-1(2w /2a -a++a -a+
e 4 k k k -k -k

Pk + 1 1/2a +a+-a aa+
O 4  k(2w k k -k -k

1 a +a +
QO (o 0)

2 V

p = 0 (a+,-a.)

.9)

.10)

(7.lla)

(7.llb)

(7.11c)

(7 .11 ld)

(7.lle)

(7.llf)
v v
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It is easy to verify that

k k'
[Q , P ]e e

IQk pk]o0 o

= iikk

i6kkl

[QO , pO] = i

and that all other commutators vanish. Next we rewrite the

field operators in terms of canonical variables

SN kk Pkx
1 Q _ipx Q e

S(x) - Q + -- e +

k=l

T(x) 1 2PO +
/2- k=

k iPkx k -iPk
2- pke + /2 P+ e

where k k kwhere Q iQ and similarly for P+

The free Hamiltonian is given by

1 I (x) + (V ) 2 (x) + m 22(x) dx
O 2 O
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We note that

L

elnpk dx = 0 if n>l k>1l (7.12)

so H can be rewritten

2 2 N 2Qe
2 N k k2  o Q0 2  k k2  k2

H + (  + ) + Q + (Q k+Qo eo 04 e 0

(7.13)

The interaction Hamiltonian (without Wick ordering) is

HI = L 4 (x)dx (7.14)

X has dimensions L- . It is a straightforward but tedious

matter to rewrite 17.14] in terms of canonical variables:

HI =
o2 k k

+ 6Q02 (Qk2 + Q

k=l

+6/~ Qo

ij.=1

Q+(QQe -QoQj) +2Q+ (QQj )]
e ee 0o 0 eo

(cont.)
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N

+2 IQi+j+k Q (QkQe 3 Q Q j) Qi+ Q +k(QiQ - 3 QQj )j

ijk=l

Qi+j-k i j k i k k i j+3(QeQeQ - oo Q + 2oe
-oe eee e oQeQe

ijk=l

i+j-k i j k i j k k i j+ Q (Q Q Q - Q QeQ + 2Q Q Qo)]
(7.15)

i
We have set Qe = 0 for i>N and i<0. The total Hamiltonian

o
given by [7.13] and [7.15] is clearly that of a set of unequal

mass coupled anharmonic oscillators. To find the larger order

behavior of the perturbation series for this system, we must

find its MPEP's.

Is it possible that this system has straight line MPEP's?

The discussion of Chap. V suggests (although it does not prove)

that any straight line MPEP's must lie in a subspace of the

configuration space in which all oscillators have equal mass.

Here we will investigate the two most natural(?) possibilities:

We will search for straight MPEP's along the QO axis and in

the Q eN-Q N plane.

As in Chap. IV we search for radially directed saddle

points. The condition for a critical point on the QO axis is:



-166-

- Q - EQ 0 02

and the Hessian at the critical point is given by

2-O
0

1(w -3 2 )21 o

(7.16)

(W2 -3 2 )2 1 o

1(2 2

n o

(W2-3W )2N o
(7 . 17)

Thus we have a radially directed saddle point iff

W2 >3 2
1 0

or, using the definition of w:

L <
M o

O O (7.18)
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The only way to get a straight MPEP on the QO axis is

to impose a spatial cutoff on the order of the bare Compton

wavelength of the field quanta. Notice that if we try to

alleviate this problem by taking the bare mass to zero, then

the saddle point moves into the origin and disappears. Since

we eventually want to take the limit L+o, the bound [7.18]

makes the saddle point on the QO axis useless.

N N
Turning to the Q -Q plane, we note that the only terms

in the potential which have non-vanishing second derivative

there are contained in

N

0K2 K2 E o N2  N 2

Vo 2 0QO +k 2  (QeK+QK 2)  6 (QN +QN )
V = - 2 + 6Q

N 4 4 e o 4 e o
k=l

3 N2 +QN2 2
+ -(Q +Q)2 e o

N-1

N 2  N 2  K2 K2+ 6 (Q +Q ) (Q +Q )
e o e o

k=1

N N
We have critical points in the Q -Q plane when

N2 3£ N2  N2
SN 3(Qe +Q2 2 e o



-168-

and the Hessian at the critical point is

2 2

2 2

2
•i -•

-3EQe N 2

e

-3QeNQo N

-3Q eNQ Ne a

3 cQ0N

(7.19)

There are two problems with [7.19]. First, since the 2x2

submatrix in the right-hand corner has zero determinant, the

critical point is degenerate. This could be cured by going

to polar coordinates in the Q NQ N plane and using separation

of variables. (Although the full potential is not separable,

it reduces to VN, which is, in the vicinity of the plane.)
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It is not worth doing so however, for the other eigenvalues

of 17.193 are always negative! Thus we can never have an

N NMPEP in the Q-QN plane.
e o

The foregoing results have convinced me that none of the

equal mass substaces contain MPEP's in the limit of large

spatial cutoff. Thus, realistic field theories seem to lead

inevitably to curved path problems.

It seems hopeless to try to deal directly with the

hideously complicated Hamiltonian [7.15], but there appear

to be three possible directions in which future progress may

be made.

First, we could make the approximation that all masses

were equal and then use the perturbative methods of Chapter V.

This doesn't appear very promising because the mass differences

are not small. Furthermore, taking the masses equal corresponds

to dropping the spatial derivative in the configuration space

Hamiltonian. We then have an independent oscillator at every

point in space. A perturbation theory based on such a highly

degenerate system will have extra complications not encountered

in Chap. V.

The second possible avenue of prgress is a transformation

of variables which simplifies [7.151. It might then become
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possible to find the MPEP. I am not at all sure that the

straightforward canonical quantization that I have written

down is the best mode of approach to the problem at hand.

It might be interesting to see for example what happens

when we quantize in light-cone variables or use the

"radial" quantization scheme of Fubini, Jackiw, and Hanson(4 )

The approach in which I place the most hope, however,

is based on trying to find the MPEP only in the limit of

large momentum cutoff. In this limit the classical equations

arising from [7.13-151 are well approximated by the classical

q4 field theory. Since classical field theories are

notoriously simpler than large but finite systems of

oscillators, one might hope to find the MPEP (in field

space!) for the classical field theory and use it to

calculate the large order behavior of perturbation theory

for the quantum field theory.

C. Theories With Fermions

Although we are still quite far from calculating the

large order behavior of the perturbation series in Bose field

theories, I would like to say a word about more realistic

theories which contain Fermions.
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The difference between Fermi and Bose systems arises

from the fact that there are no differential operator

realizations of operators which obey canonical anti-

commutation relations (CAR). In fact, any representation

of a finite set of CAR is unitarily equivalent to certain

(5)
standard finite dimensional matrix representations(5)

Thus, in the study of cutoff Fermi theories, one is naturally

led to coupled systems of partial differential equations

rather than the single differential equations that we

have encountered in Bose theories. For example, if one

cuts off the standard y5 pion nucleon theory by letting

only s wave pions with zero momentum interact with the

nucleons, one obtains (6)

(--- + x2 - 2E) X (x) = -2/2gxx2 (x)
dx2  I

(_ d +x + 2+2M - 2E)X 2 = -2ygxX
dx2  x2  (7.20)

with

Sm(X2 +X2 ) = 1
Vf 1 2"
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Although it is not clear how to extend the methods of

this thesis to the equations in 17.20], one important remark

can be made. Since for large x, the coupling term in [7.201

is dominated by the unperturbed Hamiltonian, we would expect

that the perturbation series for [7.20] has a finite radius

of convergence. That this is indeed so has been verified

numerically by Ruijgrok (7 ). He also showed that the analytic

structure of the function E(g2 ) in the region outside the

radius of convergence was qualitatively the same as that

found by Bender and Wu (8 ) for the anharmonic oscillator.

If we cut off any Yukawa Type theory by restricting it

to a finite number of modes, we will obtain a set of coupled

partial differential equations with a behavior at large x

similar to that of [7.20]. This arises basically because

there is only one power of a boson field in the interaction

Hamiltonian. Thus, we might expect that the perturbation

series for any cut-off Yukawa theory had a finite radius

of convergence.

What do we expect to happen to the radius of convergence

in the limit as the cutoff goes away? The indications are

that it may go to zero in general. For example, renormali-

zation theory tells us that in four dimensions, the "5Ys0
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interaction Hamiltonian is not complete. In order to obtain

a finite S matrix, one must add a term hX4. If we now cut

off the complete Hamiltonian

HI = gýy5ý¢ + Xý4

we will find that the perturbation series for HI no longer

converges.

Similar speculations are prompted by the work of Simon (9 )

and Caianello(10 ) on cut-off Yukawa theories in two and

three dimensions. They used diagrammatic techniques to

obtain bounds on the Feynman-Dyson series and showed that

for finite cutoff, the series had a finite radius of

convergence. As the cutoff is taken to infinity, their

lower bounds on the radius of convergence go to zero. It

would be of great interest to extend the techniques of

this thesis to such problems, for in doing so we could

establish exact values for the radius of convergence (instead

of bounds), and thus make definite statements about its

behavior as the cutoff becomes infinite.
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D. Conclusion

We have made some progress and we have left some for

the future. In retrospect, I think that the most important

contribution of this thesis is the understanding we have

obtained about how the dispersion relation 12.23] makes

Dyson's heuristic remarks about "dominance of the interaction"

into a quantitative tool for studying the large order

behavior of perturbation theory. We have also shown that

this study can be reduced to a problem in classical mechanics

and hopefully in classical field theory. For the future

we leave the actual realization of this program. And now,

as the MPEP tunnels slowly out to infinity, we leave our

vibrant friends, the coupled anharmonic oscillators, and

come finally to

THE END
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APPENDIX A

In this appendix we show that Eq. [5.19] is valid when-

ever the path $(s) satisfies the classical equations of

motion.

The classical equations are given in Sec. B of Chap.

2{V[ (s) ]-E) ~ (s)• '(s) { (s) vý (s)]} = V[(s)
(A.1)

The functions V (s) and V (s)
1

which appear in Eq. [5.19]

defined in Eq. [5.13] as

V[ý(s)+nX(s)]-E = V (s)+nVl ( s ) + 0 (n 2 ) ,

where X(s) is the unit normal vector

X =

Expanding the left-hand

series in n we find that

side of Eq.[A.2] as a power

= V[$(s)]-E,

= x V v[$(s)] .

are

(A. 2)

V0 (s)

V (s) (A.3)
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Now we take the scalar product of [A.1] with X and use

X*' = 0 to obtain

2V ) XV(s)= Vl (s) . (A.4)

But,

" - 2 p . (A.5)

Hence

V
p = - 2V , (A.6)

which is Eq.[5.19]. It is clear then that Eq. [5.19] is just

the perpendicular component of the equation of motion. The

component of Eq. [A.1] parallel to the path (that is, parallel

to $') is a trivial identity because $'2=1 and $'*1"=0.

Thus, Eq.[5.19] is valid if and only if $ is a classical

path.
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APPENDIX B - OSCILLATORS WITH SPHERICAL SYMMETRY

Here we investigate the ground-state-energy perturbation

series for spherically coupled oscillators. This special case

obtains when we choose a=b=c=l in Eq.[4.1]. However, a

spherically symmetric configuration of oscillators is so

easy to treat that we immediately generalize from the two-mode

problem of Eq.[4.1] to the N-mode problem, which we define by

the equation

N N

+  ) +  (  2 - E()} (xi ) = 0

i=l i=l
(B.1)

where lim I ÷xIc =0 .

We use spherical symmetry to transform Eq. A.1] to

N-dimensional spherical coordinates. Moreover, we seek a

wave function i which depends only on r, the radial coordinate,

because the ground-state wave function has no angular depen-

dence. We thus reduce Eq.[B.1] to the ordinary differential

equation
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d 2  N-I d r2  Xr4S+ -- + E(x)](r) = 0
dr 2  r dr 4 4 (B. 2)

N
where r 2 = X1

i=l

Our problem is to compute the eigenvalue E(1) perturba-

tively in large order. We expand E(X) into the perturbation

series

N E ()nCE(X) = N - (-) n"
n=l (B.3)

We could solve this problem by removing the first derivative

term from Eq.[B.2] by making a suitable transformation and

then using WKB in the same manner as in the body of this paper.

However, we prefer a much simpler approach. We will convert

Eq.[A.2] into a partial difference equation which has already

been solved asymptotically in Ref.(l of Chap. II).

To transform Eq.[A.2] into a partial difference equation,

we substitute the expression

00 2n

r) = e-r /4{l+ (-)n (r2)J (B.4)n (r(B.4)

n=l j=l

and Eq.[B.31 into Eq. [B.2] and collect powers of rV2 and -X.
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The coefficient of (r22) j and (-_) n is the desired difference

equation:

2jCn j = (j+l)( 2 j+N)Cn,j+l+Cn-l,j-2

n-i
- C Cn , (B.5)p,l n-p,j
p=l

with initial value C = 1 and boundary condition C njO

for n>l and l<j<2n; C n,=0 otherwise. Cn is related to

Cn,j by

C = NC . (B.6)
n n,l

Following Part A, Sec. VI of Ref.(II-1), we approximate

Eq.[B.51 by dropping the nonlinear convolution term. As was

argued there, the neglected term does not affect the leading

asymptotic behavior of Cn,l for large n. Thus, the equation

to be solved is

2jC n, = (j+l)(2j+N)Cn,j+l+Cn-1,j_2 . (B.7)

We put Eq.[B.7] into a more useful form by substituting
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C n = D ./IjF(j+1-N)]. (B.8)

The equation satisfied by Dnj is

(j+ N-1)(j+-N-2) (B.9)
n,j n,j+l 2(j n-l,j-2 B9)

2(j-2)

Next, we replace Eq.[B.9] by a new approximate equation

satisfied by a new dependent variable E .j:

E = E + (j+N-1)E. (B.10)
n,j n,j+1 2 n-1,j-2

Equation IB.10] is derived by approximating the coefficient

of Dn-1,j-2 in Eq.[B.9] for large j, keeping terms of orders
-1

j and 1 and neglecting terms of order j .

We must introduce an extra condition which fixes the

multiplicative scale of En,j because Eq.[B.10] is homogeneous;

to wit, we require that

limn+~En,2n/Dn,2n = 1. (B.11)

From Eq.IB.10] we easily deduce that
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E n,2n E t0n+ (N+l)]/I1(N+1)] (B .12)n, 2 n ,0 2

E0,0 is the multiplicative factor which adjusts the scale of

E .. Also, from Eqs.[B.7] and IB.81 we have
n,]

Dn,2n =2nF(2n+ N)4- (B.13)

Combining Eqs.[B.11]-[B.131 gives

S= 1 (N+1)]2N/2 / 2 . (B.14)0,0 - F[-(. (B.14)

Finally, we recall that Part II, Sec. VI of Ref.(II-l)

gives a complete treatment of the asymptotic behavior of

solutions for difference equations like that in Eq.[B.10].

It is shown there that for large n

3n+N/2 (n+1N)

En,l E0,0 .1 (B.15)
2/F [2(N+1)]

Thus, we combine Eqs.[B.6], [B.8], and [B.15] to obtain

1 )3n6N/2 -l/F() . (B.16)
Cn (n+N)3 6 .

This is the precise leading asymptotic behavior of Cn for large

n and is the general result we have sought.

Two special cases of this equation are noteworthy. For
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the one-mode oscillator (N=1), the coefficients of the

ground-state-energy perturbation series grow like

Cn '6 2 /2 (n+)) 1 (B.17)
n 2

which agrees with Eq.[3.0] for a=l b=0.

Second, the coefficients for the two-mode oscillator

(N=2) diverge like

C %2 3n+ n! , (B.18)
n T

as in Eq.[4.55c].

Observe also that the rate of divergence of perturbation

theory increases with increasing N: F(n+N)ru(n)nN/2. This

is a phenomenon characteristic only of spherically symmetrically

coupled oscillators. As is shown in Chap. IV Section D.6,

it results physically from a kind of constructive interference.
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APPENDIX C - MORE ABOUT N MODE OSCILLATORS

Our discussion of N-dimensional oscillators in Sec. F

of Chap. IV was incomplete because we did not show that

straight lines through radially directed saddle points were

solutions of the classical orbit equations, and we did not

give criteria for the existence of saddle points. The purpose

of this appendix is to remedy these omissions.

Consider an N-dimensional potential of the form

x.2  X
V = --I-+ A. x. x.4iL 1 11"" 2M 1* 2M (C.1)

1 2M

The interaction term is the most general 2M- h order homogeneous

polynomial, subject to the restriction that V be bounded below

for X>O. Then we have the following theorem: If X=-I, E>O,

then the radial line through any critical point of V is a

solution of the classical equation [4.5]. Furthermore, this

radial line is a principal axis of the critical point and V

reaches a maximum at the critical point along this line.

Proof: Let a=(al,...,an) be a critical point of V. Then,
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a2
2 zS aV

X x.=a.
I 1

The radial line through a.
1

A.. a. a.
112". 2M .. 2 2M 0

is

a.
x.(s) =1 f7a-s (C.3)

Using Equations [C.2] and [C.3] we can evaluate the expressions

in Eq.14.5] in terms of s:

ai
Vi i ( s ) ] = 2as A 2Ms 2M-1

i2 2M

ais ai s) 2M-12IaIs s

•xI(s)V x.(s) = - s2
1i i 2 Iai2M-2

Thus, x (s) x (s)V. x.(s) = V.V(x (s)); and x.(s)
1 j 1 i  1

J

satisfies Eq.14.51, the equation of motion.

(C.2)

and

(C.4)

(c.5)
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Next, to show that the radial line x. (s) is a principal

axis of the critical point, we compute the Hessian matrix H :

H. = (a) = .-E(2M-1) A. . a. a.
13 •x.x 2 13 i313" 2M 13. 1 2M

1 i3,, 2M

(C.6)

Thus,

sa.
H..x (s) = (-M)

That is, xi(s) is an eigenvector of H with eigenvalue 1-M and

by definition it is a principal axis of the critical point.

Because 1-M is less than 0, the critical point is a maximum

along the xi direction. This completes the proof.

Next we will show that for almost all values of the

parameters of V in Eq.[C.11 there is at least one radially

directed saddle point.

Let us first review the results that we obtained in two

dimensions. For the potential V= +y2)_ e(ax 4 +2 2 +

there are three distinct possibilities:
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cfa, cfb, (C.7a)

a=b=c, (C.7b)

a=c>b. (C.7c)

In the first case we found that V always has a radial

saddle point. The second case is spherically symmetric and

is treated by separation of variables in Appendix B. The

third case was not treated in Chap. IV, but it is easy to

see that there is a degenerate critical point along the x

axis (the Hessian has a zero eigenvalue). We will see that

a similar trichotomy occurs for the general potential in

Eq. [C.1].

Let us consider an arbitrary unit vector u and study the

variation of V along the radial line through U:

r 2  e 2MT(.
4 2M (C.8)

where x.=rG. and T(')= .A . 2 . Then
3 1 •' •2M 1"' 2M.

i1 " 12M

DV r 2M-1
r 2 r (u(C.9)
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and,

2 V _ 1 - (2M-)r2M-2 T

3r 2  2 (C.10)

Thus V has a maximum on this radial line at

1

1 2M-2
r = (2T )) (C.11)

Eq. [C.11] defines an N-1 dimensional hypersurface B. It is

easy to show that V attains a minimum on B. If T(u) does not

vanish anywhere, then the hypersurface is compact and, because

V is continuous, a minimum exists.

Now let us supposed that T(G) does vanish somewhere.

Since T is a polynomial, the set of u for which it vanishes

intersects B in a hypersurface B of dimension <N-2. If weO

cover B with a set of "very narrow N-1 dimensional strips"

(the reader is advised to think of the case N=3 from which

this terminology arises), then the complement of these strips

in B will be a compact set, and V will have a minimum there.

Since the "strips" covering B can be made as "narrow" as we

wish, the point where V has its minimum is separated from B

by a finite distance. (Otherwise the minimum would lie along
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one of the directions where T vanishes; but this would be

absurd because V-++ in such a direction.)

There are now two possibilities. Either the minimum of

V is isolated or else V is constantly equal to its minimum

on some nontrivial connected subset of B. The latter case

corresponds to Eq.[C.7b] and is exceptional in the sense

that we can make the minimum isolated by changing the

interaction term A. 2M infinitesimally and we will
11"' 2M

therefore consider it further.

If the minimum is isolated, then we have a radially

directed saddle point because, by construction, V has a

maximum along the radial direction and a minimum in all other

directions. As we have shown above, the radial direction is

one of the principal axes of the saddle point. The saddle

point may, of course, be degenerate as in Eq.[C.7c]. (The

WKB methods which we have introduced depend on the existence

of a nondegenerate saddle point.) However, since degeneracy

is also extremely exceptional, there is almost always a saddle

point.

Surprisingly, the analytical techniques of Chap. IV

are easily generalized to any potential of the form [C.1],
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as long as a radial saddle point exists. We choose a coordinate

system which coincides with the principle axes of the saddle

point. The xl axis is the radial line through the saddle

point, whose coordinates are thus P=(P,o,o,...). Since this

is a critical point, we have

9x.
j p

= 0

A. = 0
3 111111

2M-1

(C.12)

Furthermore

32v
ax.ýx.

1 3 P
= 0

A.. -= 0ij 1...1=

2M-2

We are now ready to solve

(-V 2 + V - E)- = 0

iij

or

i+j (C.13)

(C.14)



-190-

in a narrow tube surrounding the xl axis. For notational

convenience we redefine the coefficients A.1 --'12M

N

i=l

X4 24 2M A. xi x.
1"' 2M 1". 2M

i1"' 2M=1

so that

(C.15)

and set X= -E (E>0), and A1111 11 = 1. This does not change

[C.12] or [C.13].

For xl near the origin, [C.14] reduces to the equation

for an isotropic harmonic oscillator, and is easily solved.

In the tunneling region we write

x 1 2 M-1 2-M 2M1/2)
= 4 2 x -1/2)

X exp

- 1/4

2 t M-1 2 -Mt2M 1/ 2 ) 1/2dt

V"2-
(C.16)

In the resulting differential equation for X, we set

(C.17)

and drop all terms which vanish as c-0O, obtaining:
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N N

Z(1-2 2 z2M2) X/2z Xxx +

i=2 1i=2

x 2 ci 2M-2 2
4 M-l z x2 -1/2)X = 0.4 2M-1 i

(C.18)

In [C.18] we have defined c. = A.. This equation,
1 ii 1 . This equation,

2M-2

like [4.24] must be solved exactly. To simplify [C.18] we

let

2-M 2N-2 1/2
w= (1-2 z )(C.19) (C.19)

which gives

+ x.2  c.
(M-) (w-1)Xw-  X4 2 2 (1-w2)xi2X =01 1 4

i=2 i=2

(C.20)

The ansatz

1
X = A e

N

i•fi (w)xi 21
i=2 (C.21)

leads us to a set of (N-I) Riccati equations which govern the

thickness of the tube of probability current:

-(M-l)(w 2-l)f.' (w) - f 2(w) + 1-2C. + 2C.w 2 = 01 1 1 1 (C.22)
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To linearize [C.22] we let

fi(w) = (M-) (w2-1)ui (w)/u(w)

and find that

(l-w 2 )ui 1-2Zu+ v.(v.+)- ]  = 01 1 1u 1w i

2c.

where v.i(vi + ) - c
(M-1) 2

(C.23)

(C.24)

-1= -l
(M-l)

This is an associated Legendre equation. As in Chap. IV, we

choose the solution

U. = P1
1. v (C.25)

When [C.22] is satisfied, the equation for A is much simpler

than [C.20] :

(M-l) (w2-1)A + [-A +f.x.A +1(f 1) =0i=2 x 1 1 i (C.26)

The substitution (w,x.)+(w,xi/ui (w)) reduces [C.26] to a

separable equation

N N
(M-l) (w2 -1)A + [f(w)-]A = 1 Aw 2 i u.2(w) sis.

i=2 i=2 1
(C.27)
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X.
where s. =- 1

Following Sec. IV, D.1, we now require that the wave

function in the tunneling region match to the oscillator wave

function near the origin, and find that A must be a function

of w only. It follows that, up to an arbitrary multiplicative

constant 8,

A = 8[ N (w)]2 [(1-w)/(l+w)] /4N-4
U. (C.28)

i=2

8 is determined by matching. In the matching region wal and

we have(1)

1
M-l 1 w 1/2(M-1)

P (w) ( K) /(M/M-1)V 2 2 (C.29)

Thus, from [C.25] and [C.28],

N-1-7-
A s r P [M/M-l]

for wkl
(C.30)

fi(w) U 1

We also have formulas similar to [4.40] and [4.411 which

enable us to conclude [see (C.16)] that in the matching region
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ý/X "% 212 e ' e-x i (C.31)

Combining Eqs.[C.21, C.30, C.31], we find that in order to

obtain a match to the groundstate wave function of an

oscillator (e- x4), we must have

S= e - 4 [ 2 r N - (M/M-l) ]- '/2 (C.32)

Continuing to follow Section D of Chap. IV, we use the

formulae (2)

_ 1 9+1 "- Y2, ·( I( 21P() = 2PosTr(p+V) (2 2 +2)
v 2 V( +cs1

+2 2 (C.33)

dPP .(l+. + )
(0) 2+l2 1r 2 sin r(1+v) r ( 2+dx 2 r T-t-l2 2 (C.34)

from which it follows that

sin (v.+7 )
f. (0) = 2(1-M)

cos2(iv.+1)
2 i

v.i '1.i P.
r (1+ -+ ) r (1+-

r 1 1 2 1i

(C.35)
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Eqs. [C.32-35] may now be used to determine J(x), and then

Im E, and finally the large n behavior of An . We omit this

calculation here because it is a straightforward generalization

of the one in Section IV D.4. The result is

An .. . -.

i=2

XT (nM-n + 12

nM-(C.+ 36)

(C.36)

The reader may check that this reduces to [4.80] in the

limit M-+2.

We conclude finally, that the straight line WKB methods

of Chapter IV are applicable to a very wide class of equal

mass coupled anharmonic oscillators.
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FIGURE CAPTION

Fig. 1 The domain of analyticity of E(X) rigorously

established by Simon. E(X) is analytic except

on the cut along the negative real axis and in the

shaded region. The contour appropriate for proving

Eq.[2.4] is indicated by a dashed line.
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FIGURE CAPTION

Fig. 2 The behavior of the potential for small negative

A which corresponds to convergence or divergence.

The perturbation series for V1 will converge

while that for V2 will diverge.
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FIGURE CAPTION

Fig. 3 The behavior of the real and imaginary parts of

the wave function for the x2N oscillator.
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FIGURE CAPTION

Fig. 4 The contour r which enables one to avoid the upper

turning point xl. If R is large enough, the WKB

approximation is good all along F.
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FIGURE CAPTION

Fig. 5 The coordinate system suitable for describing the

most probable escape path.
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Hill, New York, 1949), pg. 179 et. seq.

11) Ref. 1 of Chap. II.

Footnotes for Chapter IV

1) A discussion of the WKB approach to tunneling problems
may be found in L. D. Landau and E. M. Lifshitz,
Quantum Mechanics: Nonrelativistic Theory (Pergamon
Press, London, 1958), pg. 171 et. seq. We should point
out that considerable formal work has been done on the
multidimensional WKB approximation. See for example
V. Maslov, Method VKB mnogomermom slychae, prilozhenne
k kmge khedinga (Russian), (Matematika Mir, 1965).

2) See for example, L. I. Schiff, Quantum Mechanics (McGraw-
Hill, New York, 1949), pg. 179.

3) Equation [3.4] has a classical analogy. It is formally
identical to classical equations for the orbit of a.
particle in the potential V. Of course, for classical
motion to occur we must have E>V, while in the quantum
mechanical tunneling problem E<V. Thus, our most
probable escape paths are analytic continuations of the
classical orbits.

4) In a problem with a continuous symmetry, such as spherical
symmetry, the set of MPEP's will, of course, be continuous.
This happens in our problem only when c=l. When
cfl (and a=b=l), we have four paths because of reflection
symmetry in x and y.

5) It is also easy to show that these are the only straight-
line solutions of Eq.[3.4].

6) This transformation is, of course, motivated by the
direction of the MPEP's for c>l (they meet the x-axis at
450 angles). See Sec. III.
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7) BMP, Vol. 1, pg 121, Eq. (1).

8) We are, of course, free to choose any linear combination

of P' (w) and P•(w). It is most convenient and simplestV V
to make the choice in Eq. [4.21] because it is easy to
argue that a2, the separation constant for Eq.[4.23],
vanishes. For choices other than that in Eq.[4.21],
there may be an integral over separation constants.

9) BMP, Vol. 1, pg. 163, Eq. 8 .

10) BMP, Vol. 1, pg. 145, Eqs.(20) and (23). There is an
error in Eq. (23) which we have corrected.

Footnotes for Chapter V

1) Equation [5.4] is exactly true so long as the lines of
constant s, which are normal to the MPEP do not cross.
Thus, Eq.[5.4] is valid for In] less than the radius of

curvature p-1 (see Eq.[5.6]).

2) Recall that the path length (d9)2 is given by dxVdxpg.
guP in the (x,y) coordinate system is the 2x2 unit matrix.
Thus, dx dxP g =(dx) +(dy) . In the (n,s) system

(d) 2 =g ss(ds) 2 +g nn(dn) 2+2gn dsdn, whence Eq.[5.5],

using Eq.[5.3].

3) BMP, Vol. 1, pg. 121, Eq.(3.21).

4) BMP, Vol. 1, pg. 163, Eqs.(8) and (10).

5) BMP, Vol. 1, pg. 145, Eqs.(22) and (23). Equation (23)
has a misprint which we have corrected in the text.

6) See BMP, Vol. 1, pg. 169, Eq.(l).

7) See Ref. (4).
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8) BMP, Vol. 1, pg. 144, Eq.(12). There is an error in
this equation which we have corrected in the text.

9) BMP, Vol. 1, pg. 110, Eq.(12).

10) BMP, Vol. 1, Sec. (1.7.1).

Footnotes for Chapter VI

1) Ref. 1 of Chap. II.

2) We did not discuss Wick ordering explicitly in Chapter III.
The details may be found in reference 1 of that chapter.

3) C. M. Bender and T. T. Wu, Phys. Rev. 184, 1231 (1969).

4) The number of entries in the matrix Cnjk grows as n3

and the convolution term in Eq. [4.33] requires Cn,j,k for

all n less than the order of perturbation theory being

computed. The limitations of the core memory prevent a

calculation of an for n520. To go to order 65 in

perturbation theory, we retain only the first and last

terms in the convolution sum. This is a good approxima-

tion for n large and is justified in Ref. 1 of Chap. II.

It is this approximation which accounts for the 4 part

in 1.5x10 6 error in Table II.

Footnotes for Chapter VII

1) We have not proven a dispersion representation for G,
which would enable us to state with certainty that we
only need to compute G for small negative A. Nonethe-
less, I believe it to be true.

2) This matching difficulty may not appear when we use the
second method to compute the two-point function.
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3) See for example R. Jackiw, "Dilatation Symmetry and
Light Cone Commutators", lectures given at the
University of Turin, June, 1971, (Unpublished),

4) S. Fubini, A. Hanson, and R. Jackiw, phys. Rev. D7,
#6 (1972).

5) P. Jordan and E. Wigner, Zeits, fur Phys., 47, 631 (1928).

6) Th. W. WRuijgrok, CERN preprint, TH. 1393.

7) See. Ref. (6).

8) Ref. 3 of Chap. VI.

9) B. Simon, Nuovo Cimento 59, 199 (1969).

10) For an exact reference see 9.

Footnotes for Appendix C

1) See Ref. V-4.

2) See Ref. V-5.
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