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ABSTRACT

Metal-catalyzed nucleophilic substitution reactions of aryl halides have become one of
the most valuable and useful classes of reactions developed in the last 30 years. Foremost among
these processes are the classes of palladium- and copper-catalyzed reactions, which employ
heteroatom-based nucleophiles. Herein, newly designed catalyst systems are presented for the
palladium- and/or copper-catalyzed nucleophilic substitution reactions of aryl halides with a
variety of nucleophiles, including (benz)imidazoles, oxindoles, 2-, 3- and 4-hydroxypyridines,
anilines, and aliphatic, benzylic, allylic and propargylic alcohols. In many cases, catalyst
optimization and ligand structure are discussed and evaluated. Where applicable, the palladium-
and copper-based catalyst systems are contrasted to demonstrate the complementary
relationships between the employment of these two metals.
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Introduction

Preparations of Aromatic Amines

Aryl amines are a common motif in many biologically active compounds including those

with potential therapeutic applications.' These structures are also found in conducting and

photographic materials as well as electroluminecent devices.2 Further, N-aryl amines serve as

intermediates for the synthesis of heterocycles,3 and for the chemical synthesis of interesting

molecules."4

Non-metal-mediated routes for the preparation of N-substituted anilines involve benzyne

chemistry,5 by reductive amination,6 by an arene nitration/reduction sequence,6 and by

nucleophilic aromatic substitution of an activated aryl halide (Figure 1).7

Figure 1. Non-metal-catalyzed Preparations of Aromatic Amines

Benzyne R LNR2R3  1) Amination

X = halide 2) [H]
R

3

NR2R3

LiNR2R3  
1) HNO/H 2SO4

X = halide 2) reduction
R' = EWG R2, R3 = H

Aromatic R1 R Nitration/AromaticR-
Substitution n- • Reduction

The stringent conditions required by these methods (strong acid or base, high reaction

temperatures, use of stoichiometric metal reagents) and the inherent problems in achieving high

regioselectivity render these methods ill-suited for preparing certain targets. Additionally,



employing these strategies makes it difficult to rapidly and directly assemble multiple analogs of

a given target (core structure) in a simple fashion using mild conditions."

A classical transition-metal mediated approach to form C-heteroatom bonds developed

by Ullmann'o and Goldberg,11 involves Cu-mediated reactions of amines, phenols or amides with

aryl iodides (eq. 1). However, these reactions are severely limited by the harsh conditions often

required-exposure of substrates to high temperatures, typically 150-200 'C, for extended periods

of time using super-stoichiometric quantities of a copper compound.'2

Ullmann x CuX N(R2)2
Coupling R

1  
+ HN(R

2)2  150- R- N (1)

These limitations have led to the development of new complementary methods based on

metal-catalyzed cross-coupling reactions between amines and aryl halides. The newer Cu-9 and

Pd-8 based methodologies allow for the rapid, direct and efficient preparation of a wide variety of

N-aryl compounds under conditions that are mild enough to tolerate sensitive functional groups.

Palladium-catalyzed Aryl-Heteroatom Bond Formation

Early reports of Ni-'3 and Pd-catalyzed' 4 C-heteroatom bond formation using aryl halides

and sulfonate esters remained dormant for decades until extensive work by the groups of

Buchwald8 and Hartwig'5 significantly improved the reliability, generality, functional group

tolerance, and substrate scope of these reactions. Currently, these reactions are practiced on a

regular basis in industrial'6 and academic laboratories (eq. 2).3-4

X1  "Pd(O)" Phosphine Ligand . X2R2(R3)
HX2R2(R3) Base, Solvent, (Heat) (2)

X1 = I, Br, CI, OTs, OTf X2 = N, O, P, S

Both groups have contributed to the elucidation of the mechanism of Pd-catalyzed C-

heteroatom bond-forming reactions.81"5" 7For the Pd-catalyzed amination of aryl halides using the



dialkyl biarylmonophosphine ligands developed in our laboratory (Figure 2), oxidative addition

of an aryl halide to an LPd(O) complex affords the LIPd(II)(Ar)(X) complex (Figure 3). A two-

step transmetallation reaction occurs, involving coordination of an amine to the metal followed

by deprotonation of the acidified N-H bond, to generate an LIPd(II)(Ar)(NR'R") species.

Subsequently, reductive elimination provides the N-aryl amine, and regenerates the active

LPd(O) species.

Figure 2. Bulky Dialkyl Biarylmonophosphine Ligands

PR2  PCy2

NMe2

R = Cy, CyJohnPhos DavePhos SPhos
R = t-Bu, JohnPhos R =

R = t-B

= Cy, X = H XPhos
t-Bu, X = H, t-BuXPhos
*u, X = Me, Me4t-BuXPhos

R = Cy, BrettPhos
R = t-Bu, t-BuBrettPhos

Figure 3. Catalytic Cycle

Reductive

for Palladium-catalyzed Amination Reactions of Aryl Halides
Ligand Dissociation

(for monodentate phosphines)

(R2)RIN ~ LPd(ll) or LnPd(0) X

L1Pd (0)

Elimination Oxidative Addition

Base

JR'(R")

(R2)R'NH

Tranametallation
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Several properties of dialkylbiarylmonophosphine compounds make this class of ligand

attractive for practical use. In general, the crystalline state of the pure compounds and their high

stability towards oxidation" make them easy for users to manipulate under ambient conditions.

Catalytically, when employing bulky biarylmonophosphine ligands, both the oxidative addition,

and reductive elimination steps of the catalytic cycle are accelerated due to the electron-donating

ability and steric bulk of the ligands, respectively. The size of the ligand encourages formation of

the active LPd(O) complex, as opposed to an L2Pd(O) complex, which resides outside of the

catalytic cycle. Further, certain pathways of catalyst decomposition are retarded when employing

this class of ligand."9

Computational analyses of the metal complexes at various stages of the catalytic cycle

have further detailed the participation of the biarylmonophosphine ligands over the course of the

reaction. 2 -2 1 Specifically, rotation of the ligand about the P-Ca, bond facilitates the various

fundamental organometallic reactions within the catalytic cycle (Scheme 1). First, the LPd(O)

species (I) and the L,Pd(Ar)(X) oxidative addition product (IIa) are likely stabilized by

interactions between the Pd atom and at-electrons from the lower ring of the biaryl moiety (e.g.

XPhos), or a substituent on the lower ring (e.g. SPhos).20 Second, the coordination and

deprotonation events of the transmetallation (IIb-lII-IV) reaction likely occur after the P-Cy,

bond rotates so that the metal is distal to the lower biaryl ring, thus preventing the ligand from

sterically shielding the electrophilic metal from the nucleophile during the transmetallation

step.2 1 Most likely, rotation of the P-Caryl bond occurs prior to the reductive elimination step,

repositioning the metal above the lower biaryl ring (V). This event forces the amine and aryl

ligands into a cis-relationship, and encourages C-N bond-formation through steric

compression. 21



Scheme 1. Rotation about the P-C., Bond at Various Stages of the Catalytic Cycle
LZZ7 Ph

PhCI -- P-Pd-Cl Rotation
P -, ý ,MeO,

Me
I Ila Iib

PhNR 2  Reductive Elimination HNR 2  HNR 2
Fast Slow Fast

Z , 7 Ph

• P-Pd-NR 2  Rotation

MeO'

Base

-HCl

V IV

PhNR2 , ouw

P OMo RN-- P-Pd
MeMeOO

While the preceding discussion considered an amine as the nucleophile, the catalytic

cycle is analogous for other substrates, such as alcohols. However, for other nucleophiles, the

rate-determining step might be the reductive elimination, as opposed to transmetallation.22

Copper-catalyzed Aryl-Heteroatom Bond Formation

Recent work initiated by Lam, Chan and Evans has employed various stoichiometric

reagents as electrophilic components for Cu-mediated heteroatom-arylation reactions including,

aryllead triacetates, arylboronic acids, 4 triarylbismuths,2 5 hypervalent aryl siloxanes, 26 diaryl

iodonium salts,27 and arylstannanes (eq. 3).8 While these reactions generally operate at room

temperature, as opposed to the high temperatures normally employed in traditional Ullmann

reactions, they typically require stoichiometric quantities of copper. A second major drawback of

kI

M -rl ml·a ; MI; . 1.
U%.fi LVD lVG CIIIIIOtuIV I



these methods is the required use of toxic and/or unstable reagents that are generally accessed

from aryl iodides or bromides. Furthermore, in some cases, only one of multiple aryl groups is

transferred to the nucleophile. The direct use of aryl halides as the electrophilic coupling partner

resolves many of these drawbacks.

R1- + HNR 2R3  CU R1R- (3)

X = -B(OR)2 , -SiR3, -SnR 3, -Pb(OAc) 3, -BiAr2 , -IPh

A plethora of new hard-chelating ligands has been reported in the last decade, which

allow the Ullmann and Goldberg reactions to be run under significantly milder conditions-

typically rt-120 'C using weak inorganic bases. This development has greatly improved the

substrate scope, functional group tolerance and selectivity of these reactions (eq. 4).9

+ HX2R2(R3) RI- (4)
Rl-~ x , + HX2R2(Rs) Cat. "Cu(l)" Hard Chelating Ligand " R'• ] 'X2R2(R3)

+' HX 2R2(R) Base, Solvent, 80-120 *C I'll (4)

X'= I, Br X2 = N, O, P, S

Despite the progress in this field, the development of newer, more stable and more active

Cu-catalyzed C-heteroatom bond forming reactions has been limited by the poor understanding

of the catalytic cycle. Although the Ullmann Reaction is over 100 years old, few formal studies

of have shed light into its mechanism.9' 12 The following discussion will consider the arylation of

N-H-containing nucleophiles. At this point, it will be assumed that the mechanism is the same

for other nucleophiles.

Historically, one reason why Cu-catalyzed arylation reactions of amines with aryl halides

have historically been difficult to study is that Cu(0), Cu(I) and Cu(II) salts and complexes all

provide active catalysts.9 Although the crystal structure of an isolated ligated Cu(II) complex,

suggests that a Cu(II) species is the catalytically active precursor,29 more compelling evidence

involving electron paramagnetic resonance (EPR) studies and detailed



heterogeneous/homogenous studies run with Cu precursors at 0, +1 and +2 oxidation states

suggest that Cu(I) is the active precatalyst. 30 31

Although mechanisms involving addition-elimination mechanism via a Meisenheimer

complex have been proposed,32 the strong trend observed in leaving group reactivity of I > Br >>

Cl >> F for Cu-catalyzed processes indicates that the rate limiting step involves the C-halogen

bond cleavage, as opposed to rate-limiting addition of the nucleophile. 33

One plausible proposal has drawn similarities between the Pd(0)/Pd(II)-based catalyst

system and a potential Cu(I)/Cu(III)-based catalysts systems-both involving metals with d'0 /d8

electronic configurations-and suggested that the individual steps of the Cu catalytic cycle mimic

those of the Pd-catalyzed mechanism, that is, oxidative addition, followed by transmetallation

and reductive elimination.34 However, this mechanism is unlikely to occur, as kinetic evidence

obtained from catalytic and stoichiometric Cu(I)-catalyzed amidation reactions of aryl iodides

indicates that transmetallation precedes aryl halide activation (Figure 4).35

Figure 4. Proposed Cu(I)-Cu(III) Based Mechanism for Amination of Aryl Halides
(R2)R'N R3

( L2Cu(I)X HNRI(R2) + Base

VI

XL 2Cu(I) Base*HX
R3 

~R' 1
(R2

)

VII

Several potential mechanisms have been proposed for the aryl halide activation event

(Figure 5). After transmetallation, rate-limiting oxidative insertion of Cu(I) into the C-halogen

bound could potentially generate a Cu(III) intermediate (VII), which would reductively eliminate



the C-N bond to regenerate the L2Cu(I)X species (VI).36 Critics of this mechanism argue that the

existence of an instable Cu(III) intermediate within the catalytic cycle is unlikely. However,

Cu(III) complexes have been isolated, characterized and reported, thus reinforcing the possibility

of a short-lived, high-energy Cu(III) species.37 Although the oxidative addition/reductive

elimination pathway has been computationally supported,38 this mechanistic proposal neglects

the existence of the Cu(II) and organic radical species that have been observed by EPR in

Goldberg reactions."3 4

Figure 5. Potential Mechanisms for Aryl Halide Activation During Cu-Catalyzed Amination
Reactions

Oxidative 0-R3 Reductive

L2Cu(I ) X, -R
R3VIWRI(R

2) +

VII

Addition L2Cu(III)-X Elimination

NR' (R2)
VIII

Electron
Transfer

Electron e 1 e
S NR'(R 2)

IX

SAnion
Transfer

Atom f R3 L2 Cu(II)X

----- L2Cu(I)X + (R)RN -R 3

VI

Transfer A NR'(R2 )

X

Reasonable mechanisms, which account for this observation, invoke electron transfer and

atom transfer processes, which would generate Cu(II) intermediates (IX, X). An atom transfer

reaction between the aryl halide and VII would provide a Cu(II) species and an aryl radical (X),

which can decompose to provide the product by solvolytic, anion transfer, or oxidative

substitution (XI-VIII) mechanisms.41 Electron transfer from VII to an aryl halide would



generate Cu(II) and an anionic radical halide (IX).4 From complex IX, a sequential electron

transfer could generate VIII. This sequence of reactions would constitute an oxidative addition,

and generate a Cu(III) intermediate, albeit by a radical mechanism as opposed to an insertion

reaction. Alternatively, decomposition of IX into an aryl radical and a halide anion would form

IX, which could then provide the product.41-42

According to these potential mechanisms, the hard-chelating ligands employed for these

reactions help control the coordination sphere about the metal throughout the catalytic cycle and

provide high concentrations of complex VII prior to the rate-determining aryl halide activation

step.43 Further, the electron-donating ability of the ligands drastically lowers the oxidation

potential of the Cu(I)-Cu(II) couple, thus, stabilizing higher-oxidation state intermediates, and

accelerating the aryl halide activation process.3 5'44

Complementary Pd- and Cu-Based Catalyst Systems

Mechanistically, Pd- and Cu-based catalyst systems can be differentiated by the order of

the steps in the catalytic cycle; while oxidative addition is the first step for Pd-catalyzed process,

transmetallation precedes the aryl halide activation step for Cu. This suggests that the ideal

substrate scopes for the nucleophilic substitution reactions of catalysts derived from each metal

might be complementary. For instance, Pd-based catalysts have proven highly efficient in the N-

arylation of anilines under generally mild conditions.8 In contrast, more limited success has been

achieved for the N-arylation of N-containing heterocycles. 45 On the other hand, Cu-catalysts

typically provide inefficient systems for the N-arylation of anilines with aryl iodides and

bromides,9' while they are highly active for the reactions of N-H heterocycles with aryl iodides

and bromides. 7



Foreword

The following thesis will attempt to compare and contrast both Pd- and Cu-based catalyst

systems for C-heteroatom bond formation by highlighting the inherent differences in reactivity.

In Chapter 1, Pd-based catalyst systems for the N-arylation of imidazoles with aryl halides will

be discussed, as well as a newly designed Cu-based catalyst system that provides a highly active

and stable system for this transformation. In Chapter 2, the orthogonal chemoselectivity of Pd-

and Cu-based catalyst systems in reactions of oxindoles with aryl halides is explored, which

generate either the C3- or N1-aryl products, respectively. Chapter 3 details a series of three Cu-

based catalysts systems that successfully cross-couple 2-, 3-, and 4-hydroxypyridines and related

compounds. Pd-based catalyst systems have historically proven unsuccessful in accomplishing

these reactions. In Chapter 4, a general Cu-based catalyst system is developed for the cross-

coupling of anilines with aryl iodides and bromides, a reaction that has been dominated by Pd-

based catalyst systems for the last 10 years. In Chapter 5, an improved catalyst system is

developed for the Cu-catalyzed cross-coupling of aliphatic, benzylic, allylic alcohols with aryl

halides, reactions that typically provide high quantities of reduced arene when employing Pd-

based catalysts. By studying the following pages, the reader should gain insight into the

complementary relationship between Pd- and Cu-based catalyst systems for C-heteroatom bond-

forming reactions.
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Chapter One

Palladium and Copper-catalyzed Reactions of Imidazoles
and Benzimidazoles with Aryl Halides

2.5% Pd2dba 3, 10% Me4t-BuXPhos

K3PO 4, toluene
100 OC
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1.1 Introduction

N-Aryl imidazoles and benzimidazoles are found in many biologically active

compounds.1 Although traditional methods for their preparation (nucleophilic aromatic

substitution of an activated aryl halide and Cu-mediated coupling of the heterocycle with an aryl

iodide) can give access to a wide variety of N-arylated products, these methods suffer from

significant limitations. In the former case, the scope of the reaction is confined to the use of aryl

halides possessing strongly electron-withdrawing substituents. In the latter case, the range of

functional groups tolerated by the long-established Ullmann reaction is severely restricted by the

harsh conditions often required (exposure of substrates to high temperatures, typically 150-200

'C, for extended periods of time using stoichiometric quantities of a copper compound). 2

In recent years, mild transition metal-catalyzed cross coupling reactions of aryl halides

with N-H heterocycles 3" have complemented the traditional preparations of these structures.

Despite the continued development of hindered biaryl monophosphines 5 and other ligands3 for

improved Pd-catalyzed C-N bond-forming reactions, only two examples of Pd-catalyzed

reactions of imidazoles with aryl halides can be found in the literature (Scheme 1).-7 Both

examples require the use of activated electrophiles for C-N bond-formation to occur. Thus, Cu-

based catalysts have continued to provide the most effective systems for the N-arylation of

imidazoles. 4

Scheme 1. Literature Reports of Pd-Catalyzed N-Arylation Reactions of Imidazole6-7

MeO N HN- 2% Pd(OAc)2, 2% L N  r

MeO1 N C +  N NaOt-Bu, THF, rt, 12 h MeO N NN L=•76% ,N i-Pr i-Pr

NC
NC HN 51% Pd(OAc) 2, 5% dppf

+ B 4N DMF, 180 *C, mw N
B84% KN



Although the Cu-mediated N-arylation of imidazoles and benzimidazoles has been

accomplished using aryllead triacetate,8 arylboronic acid,9 triarylbismuth,'0 hypervalent aryl

siloxane," diaryl iodonium salt,'2 and arylstannane' 3 reagents, these methods generally require

the use of toxic and/or unstable reagents that can be difficult to prepare. Furthermore, in many

cases, only one of multiple aryl groups is transferred to the heterocycle. In contrast, the use of

more stable and readily available aryl halides as the electrophilic coupling partner resolves these

issues.

In an early report, 5 mol% bis-[copper(I) triflate] benzene [(CuOTf)2.PhH] facilitated the

coupling of imidazole with aryl iodides under moderate conditions [100% 1,10-phenanthroline,

(Lla)/10% dba/Cs2CO3/xylenes/1 10-125 *C/24-48 h, eq. 1].14 However, the scope of the catalyst

system was limited to the coupling of unhindered imidazoles with unhindered aryl iodides. The

use of the air-sensitive (CuOTf)2.PhH as the precatalyst required the use of inconvenient glove

box techniques for reaction set-up. The need for stoichiometric quantities of 1,10-phenanthroline

ligand and long reaction times were also undesirable.

5% (CuOTf)2 .PhH R'
R1 X R2  100% dba, 100% Lla /-1 R2

/1 + N > N /N (1)
N/NH A Cs2CO3 , xylenes

110-125 "C
X = Br, I

Subsequently, we developed effective ligands and catalyst systems for the Cu-catalyzed

coupling of aryl iodides and bromides with a variety of N-H containing azoles; however, little

progress was made with respect to the N-arylation of imidazoles.' 5 While reports by other groups

have disclosed the use of salicylaldoxime derivatives,'6" amino acid derivatives, 16b-c NN'-

dimethylethylenediamine derivatives (DMEDA),'•" ligands first reported for C-N couplings by

us,' 6c-e 4,7-dichloro-1,10-phenanthroline,' 6- 8-hydroxyquinoline, T' aminoarenethiol, 6g oxime-



phosphine oxides, 16h  phosphoramidites,'6  1,10-phenanthroline,' 6j  fluoroapetite, 6k 2-

aminopyrimidinediols, 161 3-ketoesters, 16m and pyrrolidinylmethylimidazole"'6 as supporting ligands

in the Cu-catalyzed N-arylation of imidazoles with aryl iodides, very few examples of the

coupling of imidazoles with aryl bromides or of even moderately hindered substrates (e.g. a 2-

substituted imidazole or a 2-substituted aryl halide) were disclosed until our communication

(Figure 1)."7 Furthermore, the use of heteroaryl halides and 4(5)-substituted imidazoles have not

been reported.

Figure 1. Reported Ligands for the Cu-Catalyzed N-Arylation Reactions of Imidazole and
Benzimidazole

R' X R2 Cat. Cu(I)IL 2== R2
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1.2 Results and Discussion

12.1 Palladium Catalysis

Imidazole itself acts a catalyst poison for Pd-based C-heteroatom bond-forming

reactions. A catalytic amount of this molecule can completely inhibit a simple amination reaction

of an aryl halide (Table 1, entries 1-2). Since the replacement of the N-H with an N-Me group

provides a more active catalyst (entry 4), the source of catalyst poisoning likely involves the free



N-H bond. Therefore, the development of a Pd-based catalyst system to cross-couple imidazole

with an aryl halide provides a significant challenge.

Table 1. Imidazoles as Catalyst Poisons and Catalyst Enhancers
o--

O /l !P, 0.5% Pd2dba3, 4% t-BuXPhos 0 N
NH a Me NaOt-Bu, toluene, 50 *C, 1 h M

Pt-Bu2
i-Pr Wi-Pr

i-Pr
t-BuXPhos

Additive (0.2 ea) GC Cony. (%) GC Yield (%)

None 49 48 t-uXPhosPd(Ar)

Imidazole 0 0 N/H(Me)
N

2-Methyl imidazole 0 0 Catalytically Inactive

1-Methyl imidazole 97 98

Due to the size and structure of pyrrole relative to imidazole (rigid, flat, 5-member ring),

insight into the challenge of coupling imidazole with aryl halides using a Pd-based catalyst

system can be obtained from Hartwig's studies of the Pd-catalyzed reaction of pyrroles with aryl

halides.'8 According to this work, due to the small size of the nucleophile, the slow reductive

elimination of the C-N bond from a (PPh3)Pd(Ar)(Pyrrole) intermediate allowed for the addition

of a second equivalent of pyrrole to occur to generate a Na[PPh3Pd(Ar)(Pyrrole)2] intermediate

(A), which resisted reductive elimination (Figure 2). By employing a bidentate ligand (dppf), the

authors were able to control the coordination sphere about the metal, inhibiting the formation of

the inactive intermediate A', and allow reductive elimination to occur. By analogy, the reductive

elimination of an LPd(Ar)(Imidazole) intermediate (B) should also be slow. However, the

formation of the analogous [LPd(Ar)(Imidazole)2]- intermediate (C) should be faster, since

addition of a second imidazole molecule to B involves the sp2-hybridized lone pair electrons,

compared to the reaction of pyrrole with L Pd(Ar)(Pyrrole) intermediate, where coordination of



the p-hybridized lone pair electrons, prior to deprotonation, results in a loss of aromaticity. Thus,

in order to successfully couple imidazole with an aryl halide the slow reductive elimination of

complexes complex B must be over come, and the formation of complexes of the type C must be

inhibited.

Figure 2. Potential Formation of Inactive Catalyst

Reductive N Pyrrole N Reductive
7- d PPh3Pd = Phsp 2 _Elimination Base Elimination

A
e

N Reductive
(dppf)Pd + I

Elimination

Reductive Imidazole
LEmination Base

Elimination Base

A'

Reductive

Elimination

B

Early attempts to employ a Pd-based catalyst system to cross-couple imidazole with a

simple aryl bromide provided no conversion of aryl halide or yield of product (eq. 1). A wide

variety of ligands including dialkyl biarylmonophosphino-, bis-phosphinobinaphthyl-,

ferrocenyl-, Xantphos-type trialkyl- and triaryl-phosphino-based ligands all provided inactive

catalysts for this transformation (Figure 3). In addition to the use of the N-H heterocycle, the

reaction of polymeric tri-n-butylstannyl imidazole and sodium tetra(imidazoyl) borate provided

no yield of product, even at elevated temperatures.

A'



SN >+

M Me Me

M = H, SnBu3, NaB(Imidazole)3

Figure 3. Summary of Unsuccessfully
Reactions of Imidazole
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The first success for this methodology came when employing the extremely hindered

dialkyl biarylmonophosphine ligand, Me4t-BuXPhos (Table 2). With a catalyst derived from this

ligand, unactivated aryl bromides and chlorides could be coupled with benzimidazoles (2a-c), as

well as unactivated aryl bromides with imidazole (2d). The catalyst system was not very tolerant

of steric hindrance, as neither 2-methyl imidazole nor 2-chlorotoluene were not efficiently

coupled with simple partners.



Table 2. Pd-Catalyzed N-Arylation of Imidazoles Using Me4t-BuXPhosa

Me
Me Me

N X 2.5% Pd2dba, 10% Me4t-BuXPhos " N Me Pt-Bu2

H -R K3PO4, toluene, 100 *C, 24 h

i-Pr

Me4t-BuXPhos

N OMe

II \> I\•> I \--Me I \>
NNN NM Me
Me MMe

2a 91% 2b 95% 2c 95% 2d 70% < 15% <10%
(X = Br) (X = Br) (X = CI) (X = Br, Me2 NPh) Conversion Conversion

a General Reaction Conditions: 1.2 mmol (benz)imidazole, 1.0 mmol ArX, 0.025 mmol Pd2dba 3,
0.10 mmol Me4t-BuXPhos, 2.0 mmol K3PO4, 1.0 mL toluene under Ar atmosphere at 100 "C for
24 h.

The fact that only Me 4t-BuXPhos serves as an appropriate ligand for this transformation

is intriguing. For Me4t-BuXPhos, the methyl substituent ortho to the phosphorous atom on the

biaryl ring resides directly between the t-butyl groups on the phosphine. This simple methyl

group impedes the rotation about the P-Cal bond, and thus controls the geometry around the

metal center and the coordination of the nucleophile to Pd.'9 For the Pd-catalyzed reaction of

imidazole with aryl halides, this phenomenon might have significant implications regarding the

formation of the presumed complex C (Scheme 2). For dialkyl biarylmonophosphine ligands that

lack the methyl-substituted top ring (R = H), transmetallation generally occurs after rotation

around the P-Caryl bond places Pd distil to the lower ring of the biaryl system (D-)E).20 This, in

turn, opens up a free binding site on Pd for a second equivalent of imidazole to coordinate to and

form inactive 16 e- complex C. When employing Me4t-BuXPhos as a ligand (R = Me), the metal

is locked directly above the lower biaryl ring, which impedes the transmetallation of a second

equivalent of imidazole due to the steric bulk about Pd (G-H). This should inhibit the



formation of inactive complex C. Thus, from the L1Pd(Ar)(Im) intermediate C, reductive

elimination should be the lowest energy pathway (H-I).

Scheme 2. Proposed Significance of Methylated Upper
For t-BuXPhos
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Due to the poor generality of this catalyst system, we sought to develop a more efficient

Cu-based catalyst system for the reactions of imidazoles with aryl halides.

122 Copper Catalysis

1.2.2.1 Method Development and Mechanistic Considerations. Our initial investigations

involving the coupling of 2-iodotoluene with imidazole demonstrated that 4,7-dimethoxy-1,10-

phenanthroline (L1c, Scheme 3)21 in combination with (CuOTf)2"PhH and Cs2CO3 in CH3CN

provided an improved catalyst system for this transformation relative to those previously

reported. Compared to that derived from Lla, the enhanced reactivity of the catalyst system

based on Cu(I)-Llc can be attributed to the increased sigma-donating ability of the ligand, as

evidenced by the difference in acidities of the corresponding conjugate acids of the free

phenanthrolines (pka Lla-H' = 4.86, pka Llc-H÷ = 6.45).22 The more electron-rich ligand should



further stabilize a higher oxidation state intermediate (Scheme 3, III-)I) and lower the oxidation

potential for the Cu(I)-Cu(II) or Cu(I)-Cu(III) redox pairs, thus accelerating rate limiting aryl

halide activation process.23

Scheme 3. Possible Catalytic Cycle
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R NN

R
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Recent reports have also demonstrated that increasing the solubility of the base can

accelerate metal-catalyzed amination reactions of aryl halides. Specifically,

cetyltrimethylammonium bromide has been used as a phase transfer catalyst (PTC) in Pd-

catalyzed amination reactions24 and as tetraethylammonium carbonate (TEAC) has been used as

a base in the Cu-catalyzed amination reactions"' of aryl halides. Therefore, we attempted to

employ tetraalkylammonium salts in our own system to increase the solubility of the base. While

the use of these reagents did provide increased reaction rates, product yields were low due to

alkylation of the starting material and products. Further, TEAC decomposed under the reaction

MeO



conditions to give NEt3 and CO2, which were detected by GCMS and by bubbling the gas

produced through IM HCl, respectively. The problems associated with TEAC could be

alleviated while maintaining faster reaction rates by employing non-tetraalkylammonium solid-

liquid phase transfer catalysts in combination with Cs2CO3.25 The key choice of poly(ethylene

glycol) (PEG) as an additive allowed for the use of inexpensive and stable copper salts (e.g.,

Cu20, CuI) as precatalysts, as opposed to air- and moisture-sensitive copper complexes, such as

[CuOTf]2"PhH.26

The use of PEG as a solid-liquid phase transfer catalyst increased the solubility of the

carbonate in organic media, increasing the rate of reaction by 10-30%.27 Without added PEG, the

observed reactivity of our system in nitrile solvents decreased in the order MeCN > EtCN > n-

PrCN at 110 °C-opposite the trend of their boiling points in the same series-suggesting that the

relative insolubility of the Cs2CO3 , or a polar Cu-complex (Scheme 3), in less polar solvents

retards the reaction. Reactions carried out in these three solvents in the presence of PEG proceed

at comparable rates at 110 OC.2 However, using PEG as a solvent was less effective, possibly

due to poor mass transport in the highly viscous solvent. While most of the chemistry described

herein generally uses either n-PrCN or NMP, it is also important to note that reactions using the

PEG/Cs2CO3 combination also show rate enhancements in solvents such as MeCN, EtCN, DMF,

DMA and DMSO; however, reactions ducted in these other solvents tend to be slower than those

conducted in butyronitrile or NMP. In addition, this imidazole N-arylation process is moderately

tolerant of water, as evidenced by the fact that our typical procedure involved weighing out a

hygroscopic base (Cs 2CO3) in the air with no protection from ambient moisture. Moreover, by

using 2.5-10% Cu20 as the precatalyst, water is necessarily produced.29



1.2.2.2 Substrate Scope. Using the catalyst system based on Lic, we explored the scope

of the reaction with unhindered aryl iodides (Table 3). Using a catalyst loading of only 0.05% Cu

we were able to N-arylate imidazole with iodobenzene in 48h at 110 OC (3a). To the best of our

knowledge, no Cu-based system for C-N bond formation has previously been reported to achieve

as many as 2000 turnovers. The reactions of aryl iodides possessing ester and nitrile groups were

inefficient under the standard conditions, due to the partial hydrolysis of the ester to benzoic

acid, and of the nitrile to benzamide. However, by lowering the reaction temperatures to 80-90

'C, excellent yields of the N-arylated products could be obtained (3b, 3d). Aryl iodides were

selectively coupled in the presence of substrates containing aryl bromides, chlorides and

fluorides (3e, 3j and 3k). Electron-rich, -neutral, and -deficient aryl iodides all provided products

in good to excellent yields. The coupling of hindered substrate combinations could also be

accomplished using this catalyst system; 2-alkyl and 2-aryl imidazoles (3j-1) and ortho-

substituted aryl iodides (3f-i) were effectively converted to product. The coupling of more

hindered substrate combinations (31-m) could be accomplished at higher reaction temperatures

(150 °C). When reacting imidazole with mesityl iodide, mesitylene from the reduction of the aryl

iodide was the major side-product.



Table 3. Coupling of Imidazoles with Aryl lodidesa
R1  1 R2 2.5% Cu20, 7.5% Lic R

2

N,,NH Cs2CO, PEG, n-PrCN, 110 "CON

N VN HON N/N02
NCN N NCO2Et NN Br NN

3a, 95,
b 92 c 3b, 95d 3c, 92e  3d, 87' 3e, 8 2g 3f, 94

i-Pr Ph Me Me
/ _y=N•, N F .-"\

N-NA 

Ny NoN

NNO NNN NN Me NPh _F N I N N I  Me

CI Me Me/
3g, 94 3h, 82h  3i, 93i  3j, 84 3k, 85 31, 86i 3m, 44k

a General Reaction Conditions: 1.2 mmol Imidazole, 1.0 mmol ArX, 0.025 mmol Cu2O, 0.075
mmol Llc, 1.4 mmol Cs2CO3, 200 mg PEG, 0.25-1.0 mL n-PrCN under Ar or N2 atmosphere at
110 "C for 24-48 h. b 12 mmol Imidazole, 10 mmol Arl, 14 mmol Cs2CO3, 0.0025 mmol Cu2O,
0.0075 mmol Liec, 2.0 g PEG, 2.5 mL n-PrCN. c Reaction run in NMP for 3 h. d Reaction run at
80 *C in MeCN. e Reaction run at 90 *C.I Reaction run at 80 *C in MeCN with 3 A mol. sieves. g
1.2 mmol Arl, 1.0 mmol Imidazole. 6 : 1 ratio of iodo- : bromo-substituted arene. h 0.05 mmol
Cu20, 0.15 mmol Lic, 120 "C. ' Reaction run in NMP with no PEG. j Reaction run in NMP at
150 "C. k Reaction run in DMSO at 150 *C.

Aryl bromides were also successfully coupled under our reaction conditions (Table 4).

However, higher quantities of catalyst and longer reaction times were often necessary to provide

good yields of product. The combination of 2-substituted imidazoles with aryl bromides

provided N-arylated products in good yields (4d-e). Additionally, the coupling of imidazole and

2-bromotoluene can be successfully accomplished (4f). Further, imidazole can be selectively

arylated in the presence of a free -OH or -NH 2 group (4b-c). This selectivity is particularly

interesting, as 1,10-phenanthroline derivatives have also been reported as ligands in the Cu-

catalyzed syntheses of aryl ethers and aryl amines from aryl halides.30



Table 4. Couplings of Imidazoles with Aryl Bromidesa
R Br 2  5% Cu20, 15% LIc /-h R2

N/NH r~ Cs2CO3, PEG, n-PrCN
110 °C, 12-48 h

\ 1 \ -\ NH2

t-Bu NOH Ph
5a, 93 5b, 84 5c, 92 5d, 81b

SMe /

NMe t-Bu NN"N NN N•,NN
Me

5e, 95 5f, 85C 5g, 90 5h, 97
c.
d

a Reaction Conditions: 1.2 mmol imidazole, 1.0 mmol ArX, 0.05 mmol Cu20, 0.15 mmol
L1c, 1.4 mmol Cs2CO3, 200 mg PEG, 0.25-1.0 mL n-PrCN under Ar at 110 "C for 24-48 hr. b
0.10 mmol Cu20, 0.30 mmol Lic at 120 "C. c Reaction run in NMP. d 1.0 eq. ArBr and 2.4 eq.
imidazole with 2.8 eq. Cs2CO3.

For many of the reactions described, butyronitrile was employed as a solvent, since it is

relatively volatile, non-polar and easy to remove from products compared to the higher boiling

point solvents such as DMF, DMSO and NMP. However, in some cases, the use of NMP as the

solvent provided faster reactions. For example, we found that we were able to arylate imidazole

with iodobenzene in excellent yields in 3 hours with 5% Cu in NMP (3a), while the same

reaction required 4 hours using n-PrCN. More difficult cases, such as reactions of hindered aryl

halides and 2-substituted imidazoles, also reacted more efficiently using NMP as the solvent (3i,

31, 4f, 4h and 6d). The rate enhancement using NMP will be revisited in Figures 5-8.

Despite the many reports of Cu-catalyzed methods for the N-arylation of heterocycles

with aryl iodides and aryl bromides,1 6 the inability of Cu(I) to activate the aryl chlorides has

traditionally been a major limitation.4 Since the Cu-catalyzed coupling of N-H-containing

heterocycles with activated aryl chlorides has been described,31 it seemed natural to extend the

scope of this reaction to unactivated aryl chlorides. Although 4-chlorotoluene was an unreactive



substrate when employing the general conditions described with aryl bromides and iodides, Cu20O

in combination with 4,7-dihydroxy-1,10-phenanthroline (Lib) and LIc catalyzed the amination

in good yield at 150 "C using a two-fold excess of aryl chloride (Table 5). Due to the high

temperatures, O-arylation from residual water in the base was a competing process. Therefore, it

was crucial to use anhydrous Cs2CO3, and minimize the exposure time of the base to moisture in

the air. As previously observed with iodides and bromides, reactions of hindered substrates were

significantly slower. Still, due to the commercial availability and relatively low cost compared to

iodides and bromides, the use of aryl chlorides in Cu-catalyzed cross-coupling reactions of aryl

halides remains a worthy goal.

Table 5. Coupling of Imidazoles with Aryl Chloridesa
CI N 5% Cu20, 15% Ligand

NFN\H up N -N
Me CS2C03, NMP, 150 C, 24 h Me

2.0 equiv

Entry Ligand Equiv ArCI Consumed GC Yield (%)

1 _b 0.02 0

2 0.34 11

3 Llc 0.72 60

4 L1b 1.36 86

5 Llbc 1.10 87

6 Llcd 1.49 78
Me

NMe n- Bu

22 % GC Yielda  15 % GC Yielda

a Reaction Conditions: 1.0 mmol Imidazole, 2.0 mmol ArX, 0.05 mmol Cu20, 0.15 mmol L, 2.0
mmol Cs2CO3, 0.25 ml NMP under Ar at 150 "C for 24 h. b No Cu. c Run with K2CO 3 as base. d
Reaction run in microwave (250 W) with Powermax function for 2 h at 150 OC.

The reactions of 4(5)-substituted imidazoles with aryl halides showed varying degrees of

regioselectivity, with the preferential formation of 4-substituted imidazoles (Table 6).32 With 4-



phenyl imidazole, the 1,4-diarylimidazole was the exclusive product observed (6a). Reactions of

4-methyl imidazoles with aryl bromides lacking an ortho-substituent showed similar selectivity

for formation of 1-aryl-4-alkyl imidazoles similar to that previously observed (6b-c). 14 As in the

study conducted by Collman on the coupling of 4-substituted imidazoles with aryl boronic

acids,32 the preferential selectivity for the 4-regioisomer over the 5-regioisomer is likely due to

the greater steric interactions when substituent R' resides at the 5-position compared to the 4-

position either prior to aryl halide activation (Scheme 4, V-VI) or upon activation of the aryl

halide (VII-VIII). In contrast, reactions of 4(5)-methylimidazole with ortho-substituted aryl

halides provided the 4-regioisomer with significantly better selectivity (6d-f). This increase in

regioselectivity when using a hindered aryl halide likely arises due to the additional unfavorable

steric interaction between the group ortho to the halide (R2) and R' when R' is situated in the 5-

position (IX) as opposed to the 4-position (X). The reaction of 4-bromo-2-methylimidazole with

4-iodoanisole provided 4-bromo-l-(4-methoxyphenyl)-2-methyl-1H-imidazole as the major

product (6g). Formation of the 5-bromo-1-(4-methoxyphenyl)-2-methyl-isomer was not detected

by GC or 'H NMR techniques. In this case, the selectivity is likely dictated by the increased

steric effects that exist on a high-oxidation state intermediate when the large bromide-substituent

resides at the 5-position (XI) relative to the 4-position (XII).



Table 6. Coupling of 4(5)-Substituted Imidazolesa' b

R Br R2  2.5-5 CU20, 7.5-15% L1c R2

R•-_ R 2 
R 2

N ,NH N Cs2CO3, PEG, n-PrCN, 110 'C N N

4-R' 5-R'

Ph Me Me Me

N9N0 SSMe NN SMe N"pN-8 F N N

i-Pr
6a, 96 (99 :1)b 6b, 97 (4.4 : 1)b 6c, 93 (5.1: 1)b 6d, 82 (44 : 1)c,d

Me Me Br

N ,N.N NN eN N, N.N

Me CIe

6e, 91 (16: 1)c 6f, 96 (15 : 1)c 6g, 76 e

a 4-R' : 5-R' Selectivity is reported in parentheses and was determined by GC analyses of the
crude reaction mixtures and/or 'H NMR spectra of the pure products. b Reaction Conditions for
ArBr: 1.2 mmol imidazole, 1.0 mmol ArBr, 0.05 mmol Cu20O, 0.15 mmol L1ci, 1.4 mmol
Cs2CO3, 200 mg PEG, 0.25-1.0 mL n-PrCN under Ar atmosphere at 110 *C for 24-30 h. Isolated
yields reported. c Reaction Conditions for ArI: 1.2 mmol imidazole, 1.0 mmol ArI, 0.025 mmol
Cu20, 0.075 mmol L1ci, with ArI. d NMP used as solvent. GC yield reported. e 1.2 mmol Arl, 1.0
mmol Imidazole, No PEG, 0.05 mmol Cul, 0.075 mmol Llc in 0.5 mL MeCN. Only one
regioisomer was detected by GC and 1H NMR.

Scheme 4. Consideration of Steric Effects in Reactions of 4(5)-Substituted Imidazoles
OMe OMe

ROMe 

ArX ,NOMe

V VII 5-R1

Unfavorable Minor Product

OMe OMe

bu -N -  
Ar • •X

• O Ee

N _" 
N•- '

2 N

N N u X N

Ri  VI VIII 4-RI

OMe OMe OMe OMe

ltý OMe tNgOMe Me OMe N oMe

N R 'B Nr R N NN,/

Unfavrctble IX X Unfavorable X OMe XII OMeInteraction xInteraction
Precursor to Precursor to Precursor to Precursor to

Minor Product Major Product Minor Product Major Product



Since N-heteroaryl imidazoles are interesting targets in drug discovery and medicinal

chemistry,33 the coupling of imidazoles with unactivated heteroaryl bromides and iodides was

examined (Table 7). An interesting result was observed in the reaction of imidazole with 2-

chloro-5-iodopyridine, a substrate activated at the 2-position for uncatalyzed SnAr. In this case,

the Cu-catalyzed substitution occurred predominantly at the iodide to provide 7a in good yield.

In the coupling of 5-iodoindole with imidazole (7b), the N-heteroaryl imidazole was isolated in

good yield, with trace amounts of N-aryl indole formed as a side product.34 This selectivity likely

arises from the more rapid transmetallation of imidazole with Cu(I) through the sp2-hybridized

lone pair electrons compared to the case of indole, where coordination of the p-hybridized lone

pair electrons results in a partial loss of aromaticity. Imidazoles were also successfully combined

with a variety of heteroaryl halides including 3-bromofuran (7c), 3-bromoisoquinoline (7d), 2-

iodothiophene (7e, 7g),35 and 3-bromobenzothiophene (7g).

Table 7. Couplings of Heteroaryl Halidesa
R

R 2.5-5% Cu20, 7.5-15% Llc R
F':J + Het-X N N, HetN NH Cs2CO 3, PEG, DMSO NpN.Het

110 'C, 24-48 h

NcN NC N NH N"N - O  NN.N NN N PN N N
Me N -Me

7a, 76 (X = I)a 7b, 83 (X = I) 7c, 60 (X = Br)b 7d, 85 (X = Br)b 7e, 70 (X = I)a 7f, 79 (X = Br)b 7g, 83 (X = I)a

a Reaction Conditions (ArI): 1.0 mmol imidazole, 1.2 mmol Arl, 0.025 mmol Cu20, 0.075 mmol
Liec, 1.4 mmol Cs2CO3, 200 mg PEG, 0.5 mL DMSO under Ar at 110 "C for 12-24 h. b Reaction
Conditions (ArBr): 1.0 mmol imidazole, 1.2 mmol ArBr, 0.05 mmol Cu20O, 0.15 mmol LIc, 1.4
mmol Cs2CO3, 200 mg PEG, 0.5 mL DMSO under Ar at 110 *C for 24-48 h. c 1.2 mmol
imidazole, 1.0 mmol Arl, 0.025 mmol Cu20, 0.075 mmol Lci, 1.4 mmol Cs 2CO3, 0.5 mL n-
PrCN under Ar at 110 *C for 16 h.

Generally, isolated yields for reactions of imidazoles with heteroaryl iodides and

bromides were slightly lower than those with simple aryl halides due to formation of the reduced



heteroarene as a byproduct.36 The use of DMSO as a solvent caused an increase in the yield of

the desired product and decreased the quantity of the dehalogenated by-product. Although the

Cu(I)-catalyzed reduction of aryl halides has been reported,37 the lack of an obvious hydride

source suggests an alternative pathway for the formation of the reduced arene. Since alkali

metals have long been known to reduce aryl halides by a radical anionic mechanism,"3 it is

plausible that a similar sequence involving the Cu(I)-Cu(II) redox pair might occur (Scheme 5).

Single electron transfer (SET) from Cu(I) to the aryl halide, would generate the radical anion,

which could homolytically cleave to generate an aryl radical and halogen anion. Abstraction of

H- from the solvent39 would then produce the dehalogenated arene. The observation that more

reduction is detected with N-containing heteroaryl halides than with aryl halides is consistent

with previous reports that SET to halo pyridines is faster than to halobenzenes due to the

electron-accepting nature of the imine-like C-N bond." Further, our observation that formation

of the reduced arene can be suppressed by using DMSO as a solvent in place of n-PrCN agrees

with the relative rates of radical anionic aryl halide cleavage in acetonitrile and DMSO.4 1

However, the mechanism of the reduction, like the mechanism for the amination itself has yet to

be properly elucidated.

Scheme 5. Possible Reduction Pathway in Cu-Catalyzed Amination Reactions
Cu' Cull X SH S.

ArX [ArX Ar * ArH

The use of DMSO and Lic also permits the successful coupling of benzimidazoles to

unactivated aryl bromides (Table 8), which until recently'"' had been limited to aryl iodides, and

unhindered aryl bromides using Cu-catalyzed methodology.14' 15g,' 6 As seen previously, substrates



containing a free anilino-NH2 groups (8e) were good substrates under our conditions. Ortho-

substituted aryl bromides, as well as 2-substituted benzimidazoles were successfully used as

partners (8a, 8c, 8e-f). In some cases, the use of 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene

(MTBD) as base provided better yields than the Cs2CO3/PEG combination (8a, 8c).42

Table 8. Coupling of Benzimidazoles with Aryl Bromidesa

Br 2  5-10% Cu20, 7.5-20-/% L1C R2
N NH + Cs2CO3/PEG or MTBD N N

R1  DMSO, 110-130 "C, 6-24 h R

NNN NyN--F1 .8V N-NýV N V

NNNF Nt-Bu t-BuMe e Bu N•-, H2N Me

8a, 8 2 b,c 8b, 81 8c, 8 2b,c 8d, 98 8e, 71 8f, 7 8 c,d

" General Reaction Conditions: 1.2 mmol benzimidazole, 1.0 mmol ArBr, 0.10 mmol Cu2O, 0.20
mmol Lci, 1.4 mmol Cs2CO3, 200 mg PEG, 0.5 mL DMSO under Ar or N2 atmosphere at 110
"C for 24 h. b MTBD used as base. c Reaction run at 130 "C for 24 h. d 0.05 mmol Cu20, 0.15
mmol LIc.

1.2.2.3 Evaluation of the Ligands Commonly Employed for the N-Arylation of Imidazoles.

After most of our work for on this topic was finished, several catalyst systems were reported for

the N-arylation of imidazoles and benzimidazoles (Figure 1)."'16 To evaluate our new catalyst

system in light of those previously published, we decided to undertake a study in order to

compare our system with those that had been previously reported for this coupling in addition to

other 1,10-phenanthroline derivatives (Figures 4-7). While ligands Lla, Lib, Lci, L2-L6 and

L10 are commercially available, L7-9 are only accessible through multiple step sequences.

Furthermore, the harsh conditions necessary for the use of L9-10 (145-160 "C) suggest that at the

time of the report these ligands were useful only in specific circumstances. For this reason, we

focused the following study on L1-L6. L11 was also examined to assess the significance of

44



ligand rigidity for this transformation. Importantly, no reaction was observed for control

reactions in which no ligand or PEG was added.



Figure 4. Reaction of Imidazole with 4-t-Butylbromobenzene
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Figure 5. Reaction of 2-Methylimidazole with 4-n-Butyliodobenzene
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Figure 6. Reaction of Imidazole with 2-Bromotoluene
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Figure 7. Reaction of 4-Methylimidazole with 2-Isopropyliodobenzene
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Case 1-Non-hindered aryl bromide: To examine a process in which steric hindrance was

not a significant factor, the reaction of 4-t-butylbromobenzene with imidazole was conducted

(Figure 4). Of the catalysts examined, only systems derived from the 4,7-disubstituted- 1,10-

phenanthrolines and L6 (with PEG/Cs2CO3 instead of TEAC) provided reasonable results (>

60% GC yield). Of these, the use of Llc provided nearly quantitative yield of N-aryl product,

followed by Lie, and Lib (86% and 76% GC yields, respectively).

Case 2-Aryl iodide, 2-substituted imidazole: The efficient N-arylation of 2-substituted

imidazoles had not been achieved prior to our earlier communication.17 '43 The reaction of 4-n-

butyliodobenzene with 2-methylimidazole was chosen to probe the sensitivity of each catalytic

system to substitution on the nucleophile (Figure 5). Only catalyst systems based on 4,7-

disubstituted-l1,10-phenanthrolines (Llb-e), L6 and L11 were effective for this transformation.

Of those mentioned, Lib, Liec, and L6b provided slightly better yields (> 95% GC yield) of

product than did Lie (86-88% GC yield). All other ligands were ineffective for this

transformation within a reasonable time period (< 20% GC yield).

Case 3-Hindered aryl bromide with imidazole: The very few examples of Cu-catalyzed

reactions of ortho-substituted aryl bromides with imidazole require high temperatures and/or

long reaction times.16bf. We, therefore, chose to examine the reaction of 2-bromotoluene with

imidazole (Figure 6). The majority of the ligands screened provided similarly efficacious

catalysts (40-60% GC yield). The use of Lie provided a slightly higher yield of product (66%).

Only the use of dimethoxy Lic and L6 as ligands provided synthetically useful yields (83-85 %

GC yield respectively) using PEG/Cs2CO3. However, using L6 and TEAC as the base, 15% of

the aryl bromide was lost.



Case 4-Hindered aryl iodide with 4(5)-substituted imidazole: To explore the effect of the

ligand employed on the regioselectivity of the coupling process, 4-methylimidazole was

combined with 2-isopropyliodobenzene (Figure 7). Systems based on most ligands provided low

catalytic activity (< 40% GC yield) and moderate selectivity in favor of the 4-regioisomer.

Reactions utilizing Llb and Lie provided reasonable reaction efficiencies (51 - 62% GC yield)

with excellent selectivity for the 4-alkyl imidazole (30 - 42 : 1). Once again, the use of Lic

provided the best result, giving an 82% GC yield with a selectivity of 37 : 1 in favor of the 4-

methyl regioisomer.

Summary of Ligand Comparisons Screens: In general, Lic outperformed other 1,10-

phenanthroline ligands lacking heteroatoms in the 4- and 7-positions (LMa and Llf). The catalyst

derived from anionic 4,7-dihydroxy derivative Lib showed higher reactivity than unsubstituted

Lia, but was generally less active than that with Lic. This may be due to the relative insolubility

of Llb in the solvents employed. Interestingly, Lic outperformed 4,7-dibutoxy-1,10-

phenanthroline (Lld)," which we had postulated might be a better ligand due to its increased

solubility. Reactions using chlorinated Lie as a ligand demonstrated good conversion to product,

which we found surprising considering the electron-deficient nature of the ligand compared to

the methoxy counterpart. However using Lie, re-isolation of the ligand at the end of the reaction

showed that the chlorides had been displaced at the 4- and 7-positions by a mixture of both the

residual water and imidazole. Thus, using the Cu/Lle combination, it is unclear as to the nature

of the actual ligand in the active catalyst. The increased efficiency of catalysts based on LIc

relative to L11, demonstrated the significance of the rigid phenanthroline backbone over the

2,2'-bipyridine structure, which contains conformational freedom about the biaryl bond. While

catalysts using ligands L3-L5 demonstrated sluggish reactivity with more challenging



imidazole/aryl halide substrate combinations under the reported conditions, 16 a-d their use with the

PEG/Cs2CO3 conditions described here provided higher conversions and yields. The effect of

PEG can be further seen as the Cu20/PEG combination, L2, (without a N-containing ligand)

which provided similar reactivity as when unsubstituted 1,10-phenantholine (Lla) was used as

the ligand. The use of L6 as ligand for these reactions provided high reactivity; however, the use

of TEAC as a base provided low yields as previously mentioned in this text. Using L6, the use of

PEG/Cs2CO3 instead of TEAC as the base provided higher yields of N-aryl imidazoles due to the

suppression of three side reactions: 1) reduction of the aryl halide, 2) O-arylation of the ligand,

3) N-alkylation of imidazole by the tetraalkylammonium cation. Due to their low cost, many of

these systems might still be attractive for the coupling of more facile substrate combinations;

however, there are significant limitations to the scope of imidazoles and aryl halides that can be

effectively coupled by these systems compared with Lic.

1.3 Conclusion

We have developed the first Pd-based catalyst system for the N-arylation of imidazoles

and benzimidazoles using unactivated aryl halides. Due to the poor substrate scope of this

catalyst system, a superior Cu-based catalyst system was developed. 4,7-Dimethoxy-1,10-

phenanthroline was revealed as an excellent ligand for the Cu-catalyzed arylation of imidazoles

and benzimidazoles with aryl and heteroaryl iodides and bromides in combination with PEG and

Cs 2CO3 . Not only is this system the most general reported to date, it also allows for the cross-

coupling of hindered substrate combinations. The mild conditions employed also manifest a high

functional group tolerance.



1.4 Experimental Procedures

All reactions were carried out in resealable test tubes with teflon septa and run under a

dry argon or nitrogen atmosphere. Copper (I) oxide (97%) was purchased from Aldrich as a red

powder. Pd2dba3 was obtained from Strem, Inc. and stored in a vacuum desiccator filled with

anhydrous calcium sulfate. Anhydrous Cs2CO3 (99.9%) was purchased from Alfa Aesar. K3PO4

(finely milled) was purchased from Fluka. The bulk of the bases were stored under nitrogen in a

Vacuum Atmospheres glovebox. Small portions (-5 g) were removed from the glovebox in glass

vials, stored in the air in a desiccator filled with anhydrous calcium sulfate, and weighed in the

air. Poly(ethylene glycol) (Mn 3,400) was purchased from Aldrich. Generally, aryl halides and

imidazoles were purchased from commercial sources and used without further purification.

When necessary, aryl halides were filtered through neutral alumina, or distilled. Butyronitrile (_

99%) was purchased from Aldrich and used without further purification. Anhydrous solvents

(NMP, DMSO, and Acetonitrile) were purchased from Aldrich in Sure-Seal ® bottles. Flash

column chromatography was performed with EM Science silica gel 60 (230-400 mesh). In all

cases, dichloromethane was used to load the crude reaction material onto a silica gel column. A

gradient elution technique was used for column chromatography, beginning with hexane and

continuing to the specified concentration of ethyl acetate in hexane.

Yields reported in the publication are isolated (except where noted) and represent an

average of at least two independent runs. Yields reported in the supporting information refer to a

single experiment. Compounds described in the literature were characterized by comparing their

'H NMR, and melting point (m.p.) to the previously reported data; their purity was confirmed by

gas chromatographic analyses (GC). For known compounds prepared using the new method

(conditions) described, a copy of the 'H NMR spectrum, of each, is included. GC analyses were



performed on a Hewlett Packard 6890 instrument with an FID detector and a Hewlett Packard 10

m x 0.2 mm i.d. HP-1 capillary column using dodecane as an internal standard. Previously

unknown compounds were synthesized, purified and analyzed from a single run and were then

repeated to determine an average yield. They were characterized by 'H NMR, 3C NMR, m.p., IR

and elemental analysis. Elemental analyses were performed by Atlantic Microlabs, Inc.,

Norcross, GA. For those compounds that did not give a satisfactory elemental analysis, a copy of

their 'H NMR spectrum is included. 'H NMR and '3C NMR were recorded on Varian 300 MHz

and 500 MHz instruments with chemical shifts reported relative to the deuterated solvent or

TMS. IR spectra were recorded on a Perkin-Elmer System 2000 FT-IR instrument for all

previously unknown compounds (KBr disc). Melting points (uncorrected) were obtained on a

Mel-Temp II capillary melting point apparatus.

Synthesis of Ligands

Lla, Llf, L3, L4, L5, L7 and L8 were purchased from commercial sources. L3 was

purified by recrystallization from hexane. Lld45 and complex L64 were prepared according to

literature precedent. The synthesis of Llb, Llc and Lle was adapted from literature precedent.47

A larger scale preparation of Llb, Llc and Lle can be preformed as described in the following

text. Alternatively, Llb and Lci can be purchased in small quantities from commercial sources.
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N 74 % Over 2 Steps

Lic L1e

1,2-Bis-[(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidenemethyl)amino]benzene (1). An oven-

dried 2 L 2-neck flask equipped with a mechanical stirrer was charged with trimethyl

orthoformate (850 mL, 7.8 mol) and Meldrum's acid (101 g, 0.700 mmol). The flask was fitted

with a reflux condenser; the contents were flushed with N2 and brought to a gentle reflux for 2 h.

The resulting red solution was cooled (~ 80 'C) and phenylene diamine (32.4 g, 300 mmol) was

added portionwise (exothermic reaction) resulting in the formation of a yellow solid. The

mixture was heated to reflux, stirred vigorously for an additional hour and then cooled to room

temperature. The resulting solid was filtered, washed with cold acetone (slightly soluble) and

dried to afforded 95 g (77%) of product as a flaky light-yellow solid. 'H NMR (CDCl3 , 400

MHz) 8 11.34 (br d, 2H), 8.50 (d, 2H), 7.41 (m, 4H), 1.74 (s, 12H). m.p. 208-210 °C, decomp.

(Lit. 209, decomp.).47a

4,7-Dihydroxy-1,10-phenanthroline (LMb). A 5 L 3-neck flask equipped with a mechanical

stirrer and a large air-cooled reflux condenser was charged with 3 L of diphenyl ether and was

heated to 240 *C using a heating mantle. Precursor 1 was added in small portions resulting in

vigorous gas evolution. When the addition was complete, the mixture was brought to reflux (260



aC) for 30 min. The mixture was allowed to cool to 80 *C, and the precipitate was isolated by

vacuum filtration and washed with acetone until the filtrate was colorless. The product was

further washed with excess hexane and diethyl ether. Drying by vacuum filtration, then under hi-

vac at 60 *C, afforded 41.5 g (86%) of a fine dark-brown powder. Although the title compound

was essentially insoluble in common NMR solvents, a spectrum could be obtained using NaOH

in D20. 1H NMR (D20, NaOH, 400 MHz) 8 8.17 (d, 2H, J = 5.6 Hz), 7.75 (s, 2H), 6.43 (d, 2H J

= 5.6 Hz). Anal Calc. for C12H8N2: C 67.92, H 3.80. Found: C 67.60, H 3.59. m.p. stable up to

250 oC (Lit. 471-474, decomp.).4

4,7-Dichloro-1,10-phenanthroline (Lie). A 1 L 2-neck round bottom flask equipped with a stir

bar, reflux condenser, and distillation apparatus was flame-dried and allowed to cool under an

atmosphere of N2. Phosphorous oxychloride (400 mL) and Lib (20.0 g, 94.3 mmol) were added

to the flask under a N2 purge. The apparatus was immersed in an oil bath and heated at reflux for

2 h (the condenser for the distillation apparatus was not filled with water at this time). After this

period, the circulation of water for the distillation apparatus was turned on and roughly half of

the excess phosphorous oxychloride was removed by gentle vacuum distillation. The solution

was cooled to room temperature and crushed ice was slowly added to the reaction mixture (very

exothermic!) while keeping the temperature below 30 *C with an ice bath. When HCI gas

evolution ceased, the acidic solution was stirred for one hour at room temperature to dissolve the

black solids that formed. The resulting dark cloudy solution was filtered through activated

charcoal (Darco®) to give a translucent-beige solution, which was brought to pH 13 by the slow

addition of 20% KOH solution while maintaining the temperature below 25 oC. The white

precipitate that formed was collected by suction filtration, washed with excess H20, and dried



under vacuum overnight at 60 oC affording Lle as a white solid. The product was used in the

subsequent step without further purification. 'H NMR (DMSO, 400 MHz) 6 9.09 (d, 2H, J = 4.8

Hz), 8.41 (s, 2H), 8.08 (d, 2H, J = 4.8 Hz). m.p. 245-247 (Lit. 249-250).47c

4,7-Dimethoxy-1,10-phenanthroline (Lic). An oven-dried 3-neck round bottom flask was

cooled under a stream of nitrogen. Anhydrous methanol (1.2 L) was added, and purged with N2

for 10 min. Sodium metal (9.20 g, 400 mmol) was slowly added in small pieces while the

solution was stirred. A reflux condenser was attached, and Lie (all that was produced in the

previous step) was added. The flask was heated to reflux for 24 hours under an atmosphere of N2.

Concentration of the resulting solution to -30 mL and addition of cold water (250 mL) resulted

in the precipitation of a tan solid. The flask was stored overnight in a refrigerator to allow

complete precipitation of the solid. The product was collected by filtration, washed with excess

water, and dried under vacuum overnight at 60 oC affording 16.7 g (74% over 2 steps) of a tan

solid, which can be recrystallized from benzene. 'H NMR (CDCl3, 300 MHz) 6 8.93 (d, 2H, J =

5.3 Hz), 8.18 (s, 2H), 7.03 (d, 2H, J = 5.3 Hz), 4.09 (s, 6H). m.p. 210-212 (Lit. 209-210) 47e

General procedure for the Pd/Me4t-BuXPhos N-arylation of imidazoles and

benzimidazoles.

An oven-dried Schlenk tube was charged with a magnetic stir bar, Pd2dba3 (0.025 mmol, 5 % Pd),

Me4t-BuXPhos (0.10 mmol), imidazole/benzimidazole (1.2 mmol) and K3PO4 (2.0 mmol). The

tube was evacuated and backfilled with argon, and this sequence was two additional times. Aryl

halide (1.00 mmol) and solvent (1.0 mL) were then added successively. The reaction tube was

sealed, and stirred in a pre-heated oil bath for the designated time period. The reaction mixture was

cooled to room temperature, diluted with ethyl acetate (10 mL), and filtered through a plug of celite,

eluting with additional ethyl acetate (50 mL). The filtrate was concentrated and the resulting residue



was purified by flash chromatography (100 % CH2CI2  - hexanes : ethyl acetate 3 : 1 - 1 : 3) to

provide the desired product.

N~-

3-benzoimidazol-1-yl-quinoline (2b)

The general procedure was followed using Pd2dba3 (23 mg, 0.025 mmol), Me4t-BuXPhos (48 mg,

0.10 mmol), K3PO4 (0.42 g, 2.0 mmol), 3-bromoquinoline (136 [L, 1.0 mmol), and benzimidazole

(165 mg, 1.2 mmol) with toluene (1.0 mL) as solvent for 24 h at 100 *C. Chromatographic

purification provided the title compound (white crystals, 232 mg, 95 %). 1'H NMR (500 MHz,

CDCl3) 8 9.02-9.01 (d, 1H, J = 2.3 Hz), 8.20-8.11 (m, 3H), 7.90-7.81 (m, 2H), 7.77-7.71 (m, 1H),

7.63-7.57 (m, 1H), 7.51-7.45 (m, 1H), 7.35-7.27 (m, 2H). 13C NMR (126 MHz, CDC13) 8 147.2,

146.3, 144.0, 142.1, 133.6, 130.3, 129.7, 129.6, 129.5, 128.1, 127.8, 127.7, 124.2, 123.2, 120.8,

110.0. m.p. 139-141 °C. (Lit. 136-137). 49

Me

1-p-tolyl-1H-benzoimidazole (2c)

The general procedure was followed using Pd2dba3 (23 mg, 0.025 mmol), Me4t-BuXPhos (48 mg,

0.10 mmol), K3PO4 (0.42 g, 2.0 mmol), 4-chlorotoluene (120 RL, 1.0 mmol), and benzimidazole

(165 mg, 1.2 mmol) with toluene (1.0 mL) as solvent for 24 h at 100 *C. Chromatographic

purification provided the title compound (yellow oil, 197 mg, 95 %). 1'H NMR (500 MHz, CDCl3)

6 8.15-8.11 (m, 1H), 7.91-7.88 (m, 1H), 7.54-7.51 (m, 1H), 7.43-7.32 (m, 6H), 2.48 (s, 3H). 13C

NMR (126 MHz, CDCl3) 8 142.4, 138.1,130.6, 123.9, 123.6, 122.7, 120.5, 110.5, 21.2.-



Me

1-p-tolyl-1H-imidazole (2d)

The general procedure was followed using Pd2dba3 (23 mg, 0.025 mmol), Me 4t-BuXPhos (48 mg,

0.10 mmol), K3PO4 (0.42 g, 2.0 mmol), 4-bromotoluene (171 mg, 1.0 mmol), and imidazole (82

mg, 1.2 mmol) with N,N-dimethylaniline (1.0 mL) as solvent for 24 h at 100 *C. Chromatographic

purification provided the title compound (white crystals, 108 mg, 68 %). 'H NMR (500 MHz,

CDCl3) 8 7.80 (bs, 1H), 7.28-7.22 (m, 511H), 7.18 (bs, 1H), 2.40 (s, 3H). 13C NMR (126 MHz,

CDCl3) 8 137.5, 135.7, 130.5, 130.3, 121.5, 118.5, 21.1. m.p. 48-49 *C. (Lit. 49-50).5'

Procedure for screening of the coupling of aryl iodides with imidazoles (Figures 6 and 8)

To a screw-cap test tube, was added copper precatalyst (0.025 mmol), ligand (0.05 mmol, solid),

imidazole (0.6 mmol), poly(ethylene glycol) (100 mg), Cs2CO3 (0.7 mmol), and a magnetic stir

bar. The reaction vessel was fitted with a rubber septum. The vessel was evacuated and back-

filled with argon or nitrogen. This was repeated two additional times. Aryl iodide (0.5 mmol),

ligand (0.375 mmol, liquid) and solvent (0.25 mL) were added. The reaction tube was sealed and

the contents were stirred in a pre-heated oil bath at 110 OC for the designated time period. The

reaction mixture was cooled to room temperature, and 113 mL dodecane and dichloromethane (5

mL) were added. This mixture was stirred, then filtered through a small plug of celite into a vial

for GC analysis. The average of two experiments is reported.

2.5% Cu20, 10% L
N NH + n-Bu Cs2CO3, PEG, n-PrCN -n-Bu

Me 110 "C, 20 h Me

Ligand Copper Source Solvent Additive Temperature(°C) GC Cony. (%) GC Yield (%)
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i-Pr Me MeMe H 2.5% Cu20, 10% L r--

N NH CS2C0 3 , PEG, n-PrCN N +

110 "C, 22h i-Pr i-Pr
4-Me 5-Me

Copper GC Conv. GC Yield Ratio
Ligand Solvent Additive Temperature(oC) (4 Me 5Source (%) (%)

Me)

Lla Cu20 PrCN PEG 110 32 31 11

Lib Cu20 PrCN PEG 110 56 51 42

Liec Cu20 PrCN PEG 110 68 61 41

Liec Cu20 PrCN - 110 64 53 30

Liec Cu20 NMP - 110 91 81 37

Lid Cu20 PrCN PEG 110 41 39 12

Lie Cu 20 PrCN PEG 110 43 37 11

Lie Cu20O NMP 110 77 62 32

Llf Cu2O PrCN PEG 110 39 35 19

L2 Cu20 PrCN PEG 110 31 30 15

L3a Cu20 CH3CN - 82 12 12 n. d.

L3b Cul PrCN PEG 110 34 29 8

L4a Cul DMSO 82 4 8 n.d.
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Procedure for screening the coupling of aryl bromides with imidazoles (Figures 5 and 7)

To a screw-cap test tube, was added copper precatalyst (0.05 mmol), ligand (0.01 mmol, solid),

imidazole (0.6 mmol), poly(ethylene glycol) (100 mg), Cs2CO3 (0.7 mmol), and a magnetic stir

bar. The reaction vessel was fitted with a rubber septum. The vessel was evacuated and back-

filled with argon or nitrogen. This procedure was repeated two times. Aryl bromide (0.5 mmol),

ligand (0.01 mmol, liquid) and solvent (0.25 mL) were then added successively. The reaction

tube was sealed and the contents were stirred in a pre-heated oil bath at 110 'C for the designated

time period. The reaction mixture was cooled to room temperature and 113 mL dodecane and

dichloromethane (5 mL) were added. This mixture was stirred, then filtered through a small plug

of celite into a vial for GC analysis. The average of two experiments is reported.

5% Cu20, 20% L

CS2CO 3, PEG, n-PrCN
110 "C, 12h

N / IN 't-Bu

Ligand Copper Source Solvent Additive Temperature GC Cony. (%) GC Yield (%)(oC) G y G

Lla Cu 20 PrCN PEG 110 30 28

Llb Cu 20 PrCN PEG 110 74 75

Lic Cu 20 PrCN PEG 110 97 97

Lic Cu2 0 PrCN - 110 68 67

Lic Cu 20 NMP 110 100 95

Lid Cu20 PrCN PEG 110 60 61

Lie Cu20 PrCN PEG 110 51 51

Lie Cu2 0 NMP 110 87 82

Llf Cu20 PrCN PEG 110 47 41

L2 Cu20 PrCN PEG 110 29 29

L5

L6a

L6b

L10

L4b Cul 110

. =\ . Br.
"' "'" ' "
i1 ln INt-B u
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iBr- 5% Cu2O, 20% L /--
NNNH + N, NM Cs 2CO, PEG, n-PrCN

110 -C, 24 h Me

TemperatureLigand Copper Source Solvent Additive Temperature GC Cony. (%) GC Yield (%)
_Lla Cu20 PrCN PEG 110 43 42

Lla Cu2 O PrCN PEG 110 43 42

Lib Cu20 PrCN PEG 110 42 40

Llcl Cu 20 PrCN PEG 110 76 78

Llc2 Cu 20 PrCN 110 56 53

L1c3 Cu2O NMP 110 89 83

Lld Cu20 PrCN PEG 110 52 50

LMel Cu20 PrCN PEG 110 49 47

L1e2 Cu20 NMP 110 71 66

Lif Cu20 PrCN PEG 110 42 41

L2 Cu20 PrCN PEG 110 43 41

L3a Cu20 CH3CN 82 16 14

L3b Cul PrCN PEG 110 51 52

L4a Cul DMSO 82 17 6

L4b Cul DMSO - 110 56 42

L5 Cul PrCN PEG 110 37 27

L6a Cul DMF/H20(10:1) - 110 93 61

L6b Cul PrCN PEG 110 100 85

L10 CuI PrCN PEG 110 48 47

General procedure for the N-arylation of imidazoles with aryl iodides

An oven-dried screw-cap test tube was charged with Cu2O (0.025 mmol), Lic (0.075 mmol),

imidazole (1.2 mmol), aryl iodide (1.00 mmol, if solid), poly(ethylene glycol) (200 mg), Cs2CO3

(1.4 mmol), and a magnetic stir bar. The reaction vessel was fitted with a rubber septum. The

CH3CNCu20



vessel was evacuated and back-filled with argon or nitrogen, and this sequence was repeated an

additional time. Aryl iodide (1.00 mmol, if liquid) and solvent (0.5 mL) were then added

successively. The reaction tube was sealed, and stirred in a pre-heated oil bath for the designated

time period. The reaction mixture was cooled to room temperature, diluted with dichloromethane

(10 mL), and filtered through a plug of celite, eluting with additional dichloromethane (50 mL).

The filtrate was concentrated and the resulting residue was purified by flash chromatography to

provide the desired product.

General procedure for the N-arylation of imidazoles with aryl bromides

An oven-dried screw-cap test tube was charged with Cu20 (0.05 mmol), Llc (0.15 mmol),

imidazole (1.2 mmol), aryl bromide (1.00 mmol, if solid), poly(ethylene glycol) (200 mg),

Cs2CO3 (1.4 mmol), and a magnetic stir bar. The reaction vessel was fitted with a rubber septum.

The vessel was evacuated and back-filled with argon or nitrogen, and this sequence was repeated

an additional time. Aryl bromide (1.00 mmol, if liquid), and solvent (0.5 mL) were then added

successively. The reaction tube was sealed, immersed, and stirred in a preheated oil bath for the

designated time period. The reaction mixture was cooled to room temperature, diluted with

dichloromethane (10 mL), filtered through a plug of celite, and eluted with additional

dichloromethane (50 mL). The filtrate was concentrated and the resulting residue was purified by

flash chromatography to provide the desired product.

Experimental procedures for all compounds contained in Table 1

1-phenyl-1H-imidazole (3a)



The general procedure was followed using Cu20 (3.6 mg, 0.025 mmol), Lci (18 mg, 0.075

mmol), PEG (200 mg), Cs 2CO 3 (0.45 g, 1.4 mmol), iodobenzene (112 tL, 1.00 mmol), and

imidazole (82 mg, 1.2 mmol), with NMP (0.5 mL) as solvent for 3 h at 110 OC. Chromatographic

purification (hexane / ethyl acetate 1 : 3) afforded 1-phenyl-1H-imidazole (slightly yellow oil,

131 mg, 92%). The low catalyst loading experiment was preformed using the general procedure

with Cu20 (0.4 mg, 0.0025 mmol), Lic (1.8 mg, 0.0075 mmol), PEG (2.0 g), Cs2CO 3 (4.50 g, 14

mmol), iodobenzene (1.12 mL, 10 mmol), and imidazole (820 mg, 12 mmol), in butyronitrile

(2.0 mL) as solvent for 48 h at 110 OC. Chromatographic purification (hexane / ethyl acetate 1 :

3) provided 1-phenyl-1H-imidazole (slightly yellow oil, 1.34 g, 93%). 'H NMR (300 MHz,

CDCI3) 67.82 (s, 1H), 7.47-7.41 (m, 2H), 7.36-7.29 (m, 3H), 7.25 (bs, 1H), 7.18 (bs, 1H). 52

f~ ---

CN

3-imidazol- I -yl-benzonitrile (3b)

The general procedure was followed using Cu20O (3.6 mg, 0.025 mmol), Llc (18 mg, 0.075

mmol), PEG (200 mg), Cs2CO3 (0.45 g, 1.4 mmol), 3-iodobenzonitrile (229 mg, 1.00 mmol), and

imidazole (82 mg, 1.2 mmol), with butyronitrile (0.5 mL) as solvent for 24 h at 90 OC.

Chromatographic purification (hexane / ethyl acetate 1 : 3) 3-imidazol-1-yl-benzonitrile (white

needles, 158 mg, 94%). 'H NMR (500 MHz, CDC13) 6 7.89 (s, 1H), 7.71-7.60 (m, 4H), 7.30 (bs,

1H), 7.25 (bs, 1H). m.p. 151-154 °C (Lit. 156-157 oC). 53

r- NO 2SN \

1-(3-nitro-phenyl)-1H-imidazole (3c)

The general procedure was followed using Cu20 (3.6 mg, 0.025 mmol), Lci (18 mg, 0.075

mmol), PEG (200 mg), Cs2CO 3 (0.45 g, 1.4 mmol), 3-nitroiodobenzene (249 mg, 1.00 mmol),



and imidazole (83 mg, 1.2 mmol) with acetonitrile (0.5 mL) as solvent for 29 h at 80 *C.

Chromatographic purification (hexane / ethyl acetate 1 : 3) 1-(3-nitro-phenyl)-IH-imidazole

(white solid, 177 mg, 93%). ' H NMR (500 MHz, CDCl3) 8 8.25 (t, 1H, J = 1.9), 8.19 (ddd, 1H, J

= 1.1, 1.9, 7.9 Hz), 7.94 (s, 1H), 7.75 (ddd, 1H, J = 1.4, 2.2, 8.1 Hz), 7.69 (t, 1H, J = 8.0 Hz),

7.36 (s, 1H), 7.23 (s, 1H). 13C NMR (100 MHz, CDCI3) 8 149.1, 138.3, 125.5, 131.5, 131.2,

126.9, 122.1, 118.0, 116.2. m.p. 109-110 *C (Lit. 109-110 *C).54

N4ýýN " COEt

4-imidazol- 1 -yl-benzoic acid ethyl ester (3d)

The general procedure was followed using Cu2O (3.6 mg, 0.025 mmol), Lic (18 mg, 0.075

mmol), PEG (200 mg), Cs2 CO3 (0.45 g, 1.4 mmol), ethyl-4-iodobenzoate (168 [pL, 1.00 mmol),

and imidazole (82 mg, 1.2 mmol), 3 A molecular sieves (200 mg, powdered, flame activated)

with acetonitrile (0.5 mL) as solvent for 23 h at 80 *C. Chromatographic purification (hexane /

ethyl acetate 1 : 3) 4-imidazol-1-yl-benzoic acid ethyl ester (white crystals, 184 mg, 84%). 1H

NMR (500 MHz, CDCl3) 8 8.18 (td, 2H, J = 1.8, 8.5 Hz), 7.96 (s, 1H), 7.48 (td, 2H, J = 1.8, 8.8),

7.37 (s, 1H), 7.26 (s, 1H), 4.43 (q, 2H, J = 7.1 Hz), 1.44 (t, 3H, J = 7.0 Hz). m.p. 101-103 *C

(Lit. 100-102 °C).55

1-(4-bromo-phenyl)-1H-imidazole" (3e)

The general procedure was followed using Cu20 (3.6 mg, 0.025 mmol), Lie (18 mg, 0.075

mmol), PEG (200 mg), Cs2CO3 (0.45 g, 1.4 mmol), 1-bromo-4-iodobenzene (340 mg, 1.20

mmol), and imidazole (68 mg, 1.0 mmol) with butyronitrile (0.5 mL) as solvent for 24 h at 90

OC. Chromatographic purification (hexane / ethyl acetate 1 : 1) provided 1-(4-bromo-phenyl)-1H-



imidazole (white crystals, 171 mg, 78%). 1H NMR (300 MHz, CDCl3) 6 7.83 (bs, 1H), 7.63 (m,

2H), 7.32-7.20 (m, 4H). m.p. 120-122 "C. GC/MS of the crude material showed an 6.1 : 1

mixture of 1-(4-bromo-phenyl)-1H-imidazole to 1-(4-iodo-phenyl)-1H-imidazole.

HO

(2-imidazol- 1-yl-phenyl)-methanol (3f)

The general procedure was followed using Cu2O (3.6 mg, 0.025 mmol), Llc (18 mg, 0.075

mmol), PEG (200 mg), Cs2CO3 (0.45 g, 1.4 mmol), 2-iodobenzylalcohol (234 mg, 1.00 mmol),

and imidazole (82 mg, 1.2 mmol) with butyronitrile (0.3 mL) as solvent for 24 h at 110 *C.

Chromatographic purification (hexane / ethyl acetate 1 : 1) provided (2-imidazol-1-yl-phenyl)-

methanol (clear crystals, 165 mg, 95%). 'H NMR (300 MHz, CDCl3) 8 7.62 (dd, 2H, J = 1.7, 7.6

Hz), 7.45 (td, 1H, J = 1.4, 7.5 Hz ), 7.38 (td, 1H, J = 1.4, 7.4 Hz), 7.23 (dd, 1H, J = 1.1, 7.7 Hz),

7.13 (s, 1H), 7.08 (s, 1H), 4.90 (bs, 1H), 4.46 (s, 1H). m.p. 102-104 *C (Lit. 100.5-102.5 aC).57

i-Pr

1-(2-isopropyl-phenyl)-1H-imidazole (3g)

The general procedure was followed using Cu2O (3.6 mg, 0.025 mmol), Lci (18 mg, 0.075

mmol), PEG (200 mg), Cs2CO3 (0.45 g, 1.4 mmol), 2-isopropyl iodobenzene (246 mg, 1.00

mmol), and imidazole (82 mg, 1.2 mmol) with butyronitrile (0.5 mL) as solvent for 48 h at 110

'C. Chromatographic purification (hexane / ethyl acetate 1 : 1) provided 1-(2-isopropyl-phenyl)-

1H-imidazole (white crystals, 171 mg, 92%). 'H NMR (300 MHz, CDCl3) 8 7.57 (bs, 1H), 7.46-

7.42 (m, 2H), 7.31-7.11 (m, 3H), 7.05 (m, bs), 2.74 (heptet, 1H, J = 6.9 Hz), 1.16 (d, 6H, J = 6.9

Hz). 13C NMR (100 MHz, CDCl3) 8 145.0, 135.1, 129.4, 129.2, 127.0, 126.7, 126.4, 121.1,27.4,

24.0. m.p. 76-77 *C (Lit. 67-68 OC). 58 Anal. Calc. for C12HI4N 2: C 77.38, H 7.58. Found: C 77.42,



H 7.78.

Ph

1-biphenyl-2-yl- 1H-imidazole (3h)

The general procedure was followed using Cu20 (7.2 mg, 0.05 mmol), LIe (36 mg, 0.15 mmol),

PEG (200 mg), Cs2CO3 (0.45 g, 1.4 mmol), 2-iodobiphenyl (176 [L, 1.00 mmol), and imidazole

(82 mg, 1.2 mmol) with butyronitrile (0.6 mL) as solvent for 72 h at 120 *C. Chromatographic

purification (hexane / ethyl acetate 1 : 1) provided 1-biphenyl-2-yl-1H-imidazole (slightly yellow

crystals, 179 mg, 81%). 'H NMR (300 MHz, CDC13) 8 7.50-7.33 (m, 5H), 7.30-7.24 (m, 3H),

7.02 (bs, 1H), 6.82 (bs, 1H). 13C NMR (100 MHz, CDC13) 8 137.8, 137.5, 135.2, 131.5, 128.7,

128.7, 128.6, 128.3, 127.8, 126.3. Anal. Calc. for C,5H,2N2: C 81.79, H 5.49. Found: C 81.50, H

5.46. m.p. 93-95 *C.

1-naphthalen-1-yl- 1H-imidazole (3i)

The general procedure was followed using Cu20 (7.2 mg, 0.05 mmol), Liec (36 mg, 0.15 mmol),

PEG (200 mg), Cs2CO3 (0.45 g, 1.4 mmol), 1-iodonaphthalene (146 [LL, 1.00 mmol), and

imidazole (82 mg, 1.2 mmol) with NMP (0.3 mL) as solvent for 24 h at 110 *C. The crude

reaction mixture was dissolved in 20 mL of water, and extracted with dichloromethane (5 x 30

mL). The combined organic layers were dried with MgSO 4, and the solvent was removed in

vacuo. Chromatographic purification (hexane / ethyl acetate 1 : 1) provided 1-naphthalen-1-yl-

1H-imidazole (yellow-white solid, 179 mg, 92%). 'H NMR (300 MHz, CDCI3) 8 7.94-7.92 (m,

2H), 7.76, (bs, 1H), 7.61-7.48 (m, 4 H), 7.43 (d, 1H, J = 7.0 Hz), 7.30 (bs, 1H), 7.25 (bs, 1H).

m.p. 63-64 *C (Lit. 62 *C).59



r/--CI
NN

Me
CI

1-(3,5-dichloro-phenyl)-2-methyl- 1H-imidazole (3j)

The general procedure was followed using Cu20O (7.2 mg, 0.05 mmol), Llc (36 mg, 0.15 mmol),

PEG (200 mg), Cs2CO3 (0.45 g, 1.4 mmol), 1,3-dichloro-5-iodobenzene (273 mg, 1.00 mmol), 2-

methylimidazole (100 mg, 1.2 mmol) with butyronitrile (0.5 mL) as solvent for 24 h at 110 *C.

Chromatographic purification (hexane / ethyl acetate 1 : 3) provided 1-(3,5-dichloro-phenyl)-2-

methyl- 1H-imidazole (white needles, 194 mg, 86%). IH NMR (300 MHz, CDCI3) 8 7.44 (t, 1H, J

= 1.8), 7.23 (d, 2H, J = 1.9), 7.05 (d, 1H, J = 1.2), 6.99, (d, 1H, J = 1.2), 2.40 (s, 3H). 13C NMR

(100 MHz, CDC13) 8 139.8, 135.8, 128.5, 128.4, 124.1, 14.0. IR (KBr disc, cmnf) 1534, 1501,

1463, 1451, 1405, 1305, 1176, 1143, 1115, 1099, 985, 850, 781. Anal. Calc. for CloH8 N2CI2: C

52.89, H 3.55. Found: C 52.95, H 3.44. m.p. 122-125 *C.

NYN,, 
F

1-(4-fluoro-phenyl)-2-phenyl-1H-imidazole (3k)

The general procedure was followed using Cu20 (3.6 mg, 0.025 mmol), Llc (18 mg, 0.075

mmol), PEG (200 mg), Cs2CO3 (0.45 g, 1.4 mmol), 4-fluoroiodobenzene (222 mg, 1.00 mmol),

2-phenylimidazole (173 mg, 1.2 mmol) with butyronitrile (0.3 mL) as solvent for 24 h at 110 *C.

Chromatographic purification (hexane / ethyl acetate 3 : .1) provided 1-(4-fluoro-phenyl)-2-

phenyl-1H-imidazole (white solid, 211 mg, 89%). 'H NMR (300 MHz, CDCl3) 6 7.36-7.30 (m,

2H), 7.24-7.16 (m, 4H), 7.15-7.09 (m, 2H), 7.06 (s, 1H), 7.03-6.96 (m, 2H). 13C NMR (100

MHz, CDCl3) 8 163.5, 160.2, 134.5, 129.0, 128.5, 128.4, 128.2, 127.6, 127.5, 116.5, 116.2. IR

(KBr disc, cm') 1509, 1501, 1466, 1414, 1303, 1285, 1233, 1212, 1151, 1128, 1091, 1068, 970,

915, 840, 775, 747, 715, 697. Anal. Calc. for C15H1-N 2F: C 75.62, H 4.65. Found: C 75.39, H



4.62. m.p. 112-114 *C.

Me

NyN6j

Me

2-methyl- 1-o-tolyl- 1H-imidazole (31)

The general procedure was followed using Cul (19 mg, 0.10 mmol), Lie (36 mg, 0.15 mmol),

PEG (200 mg), Cs2CO 3 (0.45 g, 1.4 mmol), 2-iodotoluene (127 gLL, 1.00 mmol), and imidazole

(82 mg, 1.2 mmol) except NMP (0.5 mL) was used as solvent and the reaction was carried out

for 48 h at 140 *C. Chromatographic purification (hexane / ethyl acetate 1 : 3) afforded 2-

methyl-l-o-tolyl-IH-imidazole (yellow oil, 149 mg, 86%). 'H NMR (300 MHz, CDCI3) 8 7.34-

7.09 (m, 4H), 6.99 (bs, 1H), 6.81 (bs, 1H), 2.12 (s, 3H), 1.99 (s, 3H). 13C NMR (100 MHz,

CDC13) 8 138.9, 137.6, 135.5, 133.5, 129.6, 129.1, 120.1, 21.1, 17.4. IR (KBr disc, cm-') 1524,

1501, 1461, 1416, 1303, 1178, 1141, 1093, 1045,986,770,726,697.

Me
N~N

MMe
Me

1-(2,4,6-trimethyl-phenyl)- 1H-imidazole (3m)

The general procedure was followed using Cu20 (7.2 mg, 0.05 mmol), Lic (36 mg, 0.15 mmol),

PEG (200 mg), Cs2CO3 (0.45 g, 1.4 mmol), 2-iodotoluene (127 [LL, 1.00 mmol), 2-

methylimidazole (100 mg, 1.2 mmol) except that DMSO (0.5 mL) was used as solvent and the

reaction was carried out for 48 h at 150 *C. Chromatographic purification (hexane / ethyl acetate

1 : 3) afforded 1-(2,4,6-trimethyl-phenyl)-1H-imidazole (yellow oil, 96 mg, 51%). 'H NMR (300

MHz, CDCl3) 8 7.42 (s, 1H), 7.21 (s, 1H), 6.95 (s, 2H), 6.87 (s, 1H), 2.32 (s, 3H), 1.97, (s, 6H).

'3C NMR (100 MHz, CDCl3) 8 145.1, 1r36.9, 135.3, 131.1, 129.1, 127.7, 127.4, 126.9, 120.4,

17.2, 13.1. m.p. 107-109 *C (Lit. 107-108 °C)."
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Experimental procedures for all compounds contained in Table 2

1-(4-tert-butyl-phenyl)- lH-imidazole61 (4a)

The general procedure was followed using Cu2O (7.2 mg, 0.05 mmol), Llc (36 mg, 0.175

mmol), PEG (200 mg), Cs2CO3 (0.45 g, 1.4 mmol), 4-t-butylbromobenzene (173 [iL, 1.00

mmol), and imidazole (82 mg, 1.2 mmol) with butyronitrile (0.25 mL) as solvent for 15 h at 110

*C. Chromatographic purification (hexane / ethyl acetate 1 : 3) afforded 1-(4-tert-butyl-phenyl)-

1H-imidazole (white crystals, 174 mg, 87%). 'H NMR (300 MHz, CDCl3) 8 7.78 (s, 1H), 7.3 (m,

2H), 7.25 (m, 2H), 7.20 (s, 1H), 7.15 (s, 1H), 1.30 (s, 9H). 13C NMR (100 MHz, CDCI3) 6 150.6,

135.6, 134.8, 130.2, 126.7, 121.1, 118.3, 34.6, 31.3. IR (KBr disc, cm-') 1525, 1462, 1365, 1302,

1266, 1243, 1120, 1106, 1061, 903. Anal Calc. for C13H,6N2: C 77.96, H 8.05. Found: 77.56, H

8.00. m.p. 90-91 *C.

F--\
N,,N-O-oH

4-imidazol-1-yl-phenol (4b)

The general procedure was followed using Cu2O (7.2 mg, 0. 05 mmol), LIc (36 mg, 0.15 mmol),

PEG (400 mg), Cs2CO3 (1.0 g, 3.0 mmol), 4-bromophenol (172 mg, 1.00 mmol), and imidazole

(82 mg, 1.2 mmol) with butyronitrile (0.5 mL) as solvent for 15 h at 110 *C. After cooling to

ambient temperature, the crude reaction mixture was dissolved in 20 mL 2M HCl(q), and washed

once with diethyl ether. The aqueous layer was brought to pH 8 with Na 2CO 3 , and extracted

repeatedly with CH2CI2 . The combined organic layers were dried with anhydrous MgSO 4, and

concentrated. Chromatographic purification (1% ethanol in ethyl acetate, dry pack) afforded 4-

imidazol-1-yl-phenol (white crystals, 198 mg, 90%). 1H NMR (300 MHz, CD3OD) 6 7.95 (bs,



1H), 7.41 (bs, 1H), 7.35-7.30 (m, 2H), 7.01 (bs, 1H), 6.92-6.87 (m, 2H). 13C NMR (100 MHz,

CD3OD) 8 158.7, 130.8, 129.8, 124.3, 117.4, 24.0. m.p. 196-198 *C (Lit. 188-190"C [203-205 *C

MeOH, H20]).62

NH2N N

3-imidazol- 1-yl-phenylamine (4c)

The general procedure was followed using Cu20O (7.2 mg, 0.05 mmol), Lci (36 mg, 0.15 mmol),

PEG (200 mg), Cs2 CO3 (0.45 g, 1.4 mmol), 3-bromoaniline (109 FtL, 1.00 mmol), and imidazole

(82 mg, 1.2 mmol) with butyronitrile (0.25 mL) as solvent for 20 h at 110 *C. Chromatographic

purification (ethyl acetate) afforded 3-imidazol-1-yl-phenylamine (white powder, 141 mg, 88%).

'H NMR (300 MHz, CDCI3) 8 7.79 (bs, 1H), 7.21-7.15 (m, 3H), 6.72-6.68 (m, 1H), 6.64-6.60

(m, 2H). 4.01 (bs, 2H). 13C NMR (100 MHz, CDC13) 8 148.2, 138.4, 135.6, 130.7, 130.1, 118.4,

114.0, 111.1, 107.7. m.p. 112-114 *C (Lit. 111-113 *C).63

1,2-diphenyl-1H-imidazole (4d)

The general procedure was followed using Cu20O (14.4 mg, 0.10 mmol), Lic (72 mg, 0.30

mmol), PEG (200 mg), Cs2CO3 (0.45 g, 1.4 mmol), 4-t-butylbromobenzene (173 [tL, 1.00

mmol), and imidazole (82 mg, 1.2 mmol) with butyronitrile (0.6 mL) as solvent for 72 h at 120

*C. Chromatographic purification (hexane / ethyl acetate 1 : 1) afforded 1,2-diphenyl-lH-

imidazole (white crystals, 198 mg, 90%). 'H NMR (300 MHz, CDCl3) 8 7.42-7.32 (m, 5H), 7.28-

7.16 (m, 6H), 7.14 (d, 1H, J = 1.1 Hz). 13C NMR (100 MHz, CDCl3) 8 138.6, 130.4, 129.5,

129.1, 128.6, 128.4, 128.2, 128.2, 125.9, 123.0. m.p. 88-89 *C (Lit. 90 *C).4



1-(4-tert-butyl-phenyl)-2-methyl- 1H-imidazole (4e)

The general procedure was followed using Cu2O (7.2 mg, 0.05 mmol), LIc (36 mg, 0.15 mmol),

PEG (200 mg), Cs2CO3 (0.45 g, 1.4 mmol), 4-t-butylbromobenzene (173 [L, 1.00 mmol), 2-

methylimidazole (100 mg, 1.2 mmol) with butyronitrile (0.25 mL) as solvent for 48 h at 110 *C.

Chromatographic purification (hexane / ethyl acetate 1 : 3) afforded 1-(4-tert-butyl-phenyl)-2-

methyl-1H-imidazole (yellow oil, 207 mg, 97%). 'H NMR (300 MHz, CDCl3) 8 7.41 (m, 2H),

7.12 (m, 1H), 6.94 (bs, 1H), 6.91 (bs, 1H), 2.28 (s, 3H), 1.29 (s, 9H). 13C NMR (100 MHz,

CDCl3) 8 151.1, 135.3, 127.5, 126.3, 124.9, 12.7, 34.6, 31.3, 13.8. IR (KBr Disc, cm -) 2962,

2870, 1608, 1579, 1513, 1463, 1419, 1365, 1302, 1269, 1178, 1139, 1114, 996, 986, 842, 730,

674, 571.

Me

1-ortho-tolyl- 1H-imidazole (4f)

The general procedure was followed using Cu20O (7.2 mg, 0.05 mmol), Lic (36 mg, 0.15 mmol),

PEG (200 mg), Cs2CO3 (0.45 g, 1.4 mmol), 2-bromotoluene (120 giL, 1.00 mmol), and imidazole

(82 mg, 1.2 mmol) with butyronitrile (0.3 mL) as solvent for 28 h at 110 *C. Chromatographic

purification (hexane / ethyl acetate 1 : 1) afforded 1-ortho-tolyl-1H-imidazole (yellow oil, 140

mg, 89%). 'H NMR (300 MHz, CDCl3) G 7.59 (bs, 1H), 7.37-7.28 (m, 3H), 7.23-7.20 (m, 2H),

7.06 (bs, 1H), 2.19 ( s, 3H). 13C NMR (100 MHz, CDCI3) 8 148.2, 138.4, 135.6, 130.7, 130.1,

118.4, 114.0, 111.1, 107.7.5

o

1-(4-imidazol- 1-yl-phenyl)-ethanone (4g)

The general procedure was followed using Cu20 (7.2 mg, 0.05 mmol), Llc (36 mg, 0.15 mmol),



PEG (200 mg), Cs2CO3 (0.45 g, 1.4 mmol), 4-bromoacetophenone (199 mg, 1.00 mmol), and

imidazole (82 mg, 1.2 mmol) with butyronitrile (0.4 mL) as solvent for 48 h at 110 *C.

Chromatographic purification (hexane / ethyl acetate 1 : 3) afforded 1-(4-imidazol-1-yl-phenyl)-

ethanone (white solid, 159 mg, 86%). 1'H NMR (300 MHz, CDCl3) 8 8.04, (m, 2H), 7.92 (bs,

1H), 7.46 (m, 2H), 7.33 (bs, 1H), 7.19 (bs, 1H), 2.59 (s, 3H). '3C NMR (100 MHz, CDC13) 6

196.6, 140.7, 135.7, 135.4, 131.2, 130.4, 120.7, 117.8, 26.7. m.p. 112-114 *C (Lit. 110-112 *C).66

1,4-bis(imidazol- 1-yl)-benzene67 (4h)

The general procedure was followed using Cu2O (7.2 mg, 0.05 mmol), Llc (36 mg, 0.15 mmol),

Cs2CO3 (0.90 g, 2.8 mmol), 1,4-dibromobenzene (236 mg, 1.00 mmol), and imidazole (164 mg,

2.4 mmol) with NMP (0.5 mL) as solvent for 30 h at 110 *C. The crude reaction mixture was

diluted in excess CH 2Cl2, and filtered through a celite plug. After removal of the solvent in

vacuo, the product was crystallized from EtOAc and stored in a freezer at -23 oC overnight, to

afford 1,4-bis(imidazol-1-yl)-benzene (white solid, 200 mg, 95%). 'H NMR (500 MHz, CDC13)

7.90 (bs, 2H), 7.54 (s, 4H), 7.32 (bs, 1H), 7.26 (bs, 1H). m.p. 190 *C (dec.). IR (KBr disc, cmn')

1534, 1485, 1304, 1248, 1105, 1059. Anal Calc. for C12H,0N4: C 68.56, H 4.79. Found C 68.49,

H 4.90.

Experimental procedures for all compounds contained in Table 5

An oven-dried screw-cap test tube was charged with Cu20 (0.05 mmol), ligand (0.15 mmol),

imidazole (1.0 mmol), Cs2CO3 (1.4 mmol), and a magnetic stir bar. The reaction vessel was fitted

with a rubber septum. The vessel was evacuated and back-filled with argon, and this sequence was

repeated an additional time. Aryl chloride (1.00 mmol, liquid) and NMP (0.25 mL) were then added



successively by syringe. The reaction tube was sealed, and stirred in a pre-heated oil bath at 150 °C

for 24. The reaction mixture was cooled to room temperature. Dichloromethane (10 mL), and 225

ýtL dodecane were stirred into the reaction mixture, which was subsequently filtered through a short

celite plug for GC Analysis.

Experimental procedures for all compounds contained in Table 6

Ph

'N- SMe

1-(4-methylsulfanyl-phenyl)-4-phenyl-1H-imidazole (6a)

The general procedure was followed using Cu20 (7.2 mg, 0.05 mmol), Llc (36 mg, 0.15 mmol),

PEG (200 mg), Cs2CO3 (0.45 g, 1.4 mmol), 4-bromothioanisole (203 mg, 1.00 mmol), 4-

phenylimidazole (173 mg, 1.2 mmol) with butyronitrile (0.4 mL) as solvent for 17 h at 110 OC.

Chromatographic purification (hexane / ethyl acetate 1 : 1) afforded 1-(4-methylsulfanyl-

phenyl)-4-phenyl-IH-imidazole (white crystals, 254 mg, 95%). GC analysis and 'H NMR

showed no trace of a second regioisomer. 'H NMR (300 MHz, CDCI3) 8 7.87-7.83 (m, 3H), 7.54

(d, 1H, 1.4 Hz), 7.44-7.34 (m, 6H), 7.32-7.26 (m, 2H), 2.53 (s, 3H). 13C NMR (75.5 MHz,

CDCl3) 8 143.3, 138.4, 135.8, 134.5, 133.8, 128.8, 127.8, 127.3, 125.1, 122.0, 113.9, 16.1. IR

(KBr disc, cm -') 1550, 1508, 1443, 1420, 1313, 1252, 1070, 957, 936, 920, 828, 817, 758, 703.

Anal. Calc. for C16H,4N2S: C 72.15, H 5.30. Found: C 71.98, H 5.34. m.p. 122-124°C.

Me Me

N N N N

-/SMe -O SMe

A B

4-methyl-i -(4-methylsulfanyl-phenyl)-1H-imidazole (6b)

The general procedure was followed using Cu20 (7.2 mg, 0.05 mmol), Llc (36 mg, 0.15 mmol),



PEG (200 mg), Cs2CO3 (0.45 g, 1.4 mmol), 4-bromothioanisole (203 mg, 1.00 mmol), 4-

methylimidazole (100 mg, 1.2 mmol) with butyronitrile (0.3 mL) as solvent for 48 h at 110 *C.

Chromatographic purification (hexane / ethyl acetate 1 : 1) afforded 4-methyl-1-(4-

methylsulfanyl-phenyl)-lH-imidazole (yellow oil, 203 mg, 100%). 'HNMR showed a 3.0 : 1

mixture of A : B. 'H NMR (300 MHz, CDCl3) 6 7.65 (bs, 1H), 7.28-7.11 (m, 4H), 6.90 (bs, 1H),

2.46 (s, minor regioisomer), 2.43 (s, major regioisomer). 13 C NMR (100 MHz, CDCI3) 6 138.5,

135.9, 134.6, 133.9, 128.9, 127.9, 125.1, 122.0, 113.9, 16.7, 15.6.. Anal. Calc. for C1 H1 2HN 2S: C

64.67, H 5.92. Found: C 64.29, H 5.93.

Me Me

N VN - F W ýN-N - F

A B

1-(4-fluoro-phenyl)-4-methyl-1H-imidazole (6c)

The general procedure was followed using Cu20O (7.2 mg, 0.05 mmol), Lci (36 mg, 0.15 mmol),

PEG (200 mg), Cs2CO3 (0.45 g, 1.4 mmol), 1-bromo-4-fluorobenzene (109 [tL, 1.00 mmol), 4-

phenylimidazole (173 mg, 1.2 mmol) with butyronitrile (0.5 mL) as solvent for 15 h at 110 *C.

Chromatographic purification (hexane / ethyl acetate 1 : 1) afforded 1-(4-Fluoro-phenyl)-4-

methyl-1H-imidazole (yellow solid/liquid, 161 mg, 92%). 'HNMR showed a 5.0 : 1 mixture of

regioisomers. By GC, the ratio of A : B was determined to be 5.7 : 1. 'H NMR (300 MHz,

CDCl3) 8 7.65 (bs, 1H), 7.31-7.24 (m, 2H), 7.15-7.07 (m, 2H), 6.92 (bs, 1H), 2.26 (s, 1H, major

regioisomer), 2.12 (s, 1H, minor regioisomer). 13C NMR (100 MHz, CDCl3) 8 162.5, 160.5,

139.8, 134.9, 133.9, 123.1, 116.8, 13.7. IR (KBr disc, cm'i ) 1519, 1449, 1324, 1293, 1227, 1160,

1101, 1071, 1007, 974, 926, 816. Anal. Calc. for CIoH 9N2F: C 68.17, H 5.15. Found: C 68.30, H

5.19. m.p. 22-24 *C



Me Me

i-Pr i-Pr

A B

1-(2-isopropyl-phenyl)-4-methyl- 1H-imidazole (6d)

The general procedure was followed using Cu2O (3.6 mg, 0.025 mmol), Lic (18 mg, 0.075

mmol), PEG (200 mg), Cs 2CO 3 (0.45 g, 1.4 mmol), 2-isopropyliodobenzene (160 LtL, 1.00

mmol), 4-methylimidazole (100 mg, 1.2 mmol) with butyronitrile (0.3 mL) as solvent for 20 h at

110 OC. GC and GC/MS analysis of the crude material showed an 82% yield and 41 : 1 ratio of A

: B. (See GC screens on p. S8) 'H NMR of the purified material showed a 16 : 1 ratio of A : B.

'H NMR (300 MHz, CDCl3) 8 7.48-7.40 (m, 3H), 7.28-7.15 (m, 2H), 6.75 (t, 1H, J = 0.9 Hz),

2.80 (heptet, 1H, J = 6.9 Hz), 2.31 (d, 3H, J = 0.8 Hz), 1.18 (d, 6H, J = 6.9 Hz).

Me Me

Me Me

A B

4-methyl- 1-o-tolyl- IH-imidazole 68 (6e)

The general procedure was followed using Cu20 (3.6 mg, 0.025 mmol), Lic (18 mg, 0.075

mmol), PEG (200 mg), Cs2CO3 (0.45 g, 1.4 mmol), 2-iodotoluene (127 ýtL, 1.00 mmol), 4-

methylimidazole (100 mg, 1.2 mmol), with butyronitrile (0.3 mL) as solvent for 24 h at 110 OC.

GC Analysis showed a 23 : 1 ratio of regioisomers. Chromatographic purification (hexane / ethyl

acetate 1 : 3) provided 4-methyl-1-o-tolyl-1H-imidazole (yellow oil, 154 mg, 87%). 'H NMR of

the purified material showed a 16 : 1 ratio of A : B. 1H NMR (300 MHz, CDCl3) 8 7.44 (bs, 1H),

7.35-7.14 (m, 4H), 6.75 (bs, 1H), 2.28 (s, 3H, major isomer), 2.17 (s, 3H, major isomer), 2.11 (s,

minor isomer), 1.97 (s, minor regioisomer). (KBr disc, cm -') 1507, 1448, 1386, 1364, 1294,

1269, 1231, 1191, 1122, 1073. 1002,971.



Me Me

N -N N ' N
CI CI

A B

1-(2-chloro-phenyl)-4-methyl- 1H-imidazole (6f)

The general procedure was followed using Cu20 (3.6 mg, 0.025 mmol), Liec (18 mg, 0.075

mmol), PEG (200 mg), Cs2CO3 (0.45 g, 1.4 mmol), 2-chloroiodobenzene (122 tL, 1.00 mmol),

4-methylimidazole (100 mg, 1.2 mmol) with butyronitrile (0.3 mL) as solvent for 15 h at 110 OC.

Chromatographic purification (hexane / ethyl acetate 1 : 1) afforded 1-(2-chloro-phenyl)-4-

methyl-1H-imidazole (yellow oil, 191 mg, 99%). 1HNMR showed a 12.1 : 1 mixture of A : B.

By GC, the ratio was determined to be 19 : 1. 'H NMR (300 MHz, CDCl3) 8 7.49 (bs, 1H), 7.47-

7.39 (m, 1H), 7.29-7.18 (m, 3H), 6.78 (bs, 1H), 2.21 (s, major regioisomer), 2.06 (d, minor

regioisomer). 13C NMR (100 MHz, CDC13) 8 135.1, 130.7, 129.4, 129.2, 127.7, 127.4, 13.6. IR

(KBr disc, cm -') 1593, 1570, 1503, 1447, 1392, 1369, 1290, 1232, 1202, 1131, 1084, 1059, 1035,

1004, 973, 819, 761,633. Anal. Calc. for CloH 9N2F: C 68.17, H 5.15. Found: C 68.30, H 5.19.

Br

N~ Y - OMe

Me'Y ~OMe

4-bromo- 1-(4-methoxy-phenyl)-2-methyl- 1H-imidazole (6g)

The general procedure was followed using Cul (9.5 mg, 0.05 mmol), Lci (18 mg, 0.075 mmol),

Cs2 CO3 (0.45 g, 1.4 mmol), 4-iodoanisole (280 mg, 1.2 mmol), 4-bromo-2-methylimidazole (161

mg, 1.00 mmol) with acetonitrile (1.0 mL) as solvent for 24 h at 110 OC. Chromatographic

purification (hexane / ethyl acetate 3 : 1) provided 4-bromo- 1-(4-methoxy-phenyl)-2-methyl-1H-

imidazole (white crystalline solid, 218 mg, 82%). 'H NMR (300 MHz, CDCI3) 8 7.09 (m, 2H),

6.89, (m, 2H), 6.82 (s, 1H), 3.79, (s, 3H), 2.12 (s, 3H) ' 3C NMR (100 MHz, CDCl3) 8 159.6,

145.1, 129.6, 126.7, 119.7, 114.6, 113.8, 55.53, 13.4. IR (KBr disc, cm -') 1559, 1507, 1457,



1437, 1419, 1299, 1239, 1181, 1167, 1135, 1108, 1032, 1020, 949, 668. Anal. Calc. for

C,1 H,lBrN20: C 49.46, H 4.15. Found: C 49.51, H 4.03. m.p. 136-137 *C.

Experimental procedures for all compounds contained in Table 7

N.- N-f/'•

Me NCI

2-chloro-5-(2-methyl-imidazol-1-yl)-pyridine (7a)

The general procedure was followed using Cu20 (3.6 mg, 0.025 mmol), Llc (18 mg, 0.075

mmol), PEG (200 mg), Cs2CO3 (0.45 g, 1.4 mmol), 5-iodo-2-chloropyridine (239 mg, 1.00

mmol), 2-methylimidazole (100 mg, 1.2 mmol) with butyronitrile (1.0 mL) as solvent for 24 h at

110 *C. Chromatographic purification (ethyl acetate) provided 2-chloro-5-(2-methyl-imidazol-1-

yl)-pyridine (white solid, 143 mg, 74%). 1H NMR (300 MHz, CDCl3) 8 8.33, (d, 1H, J = 2.9 Hz),

7.59 (dd, 1H, J = 2.9, 8.7 Hz), 7.43 (d, 1H, 8.7, Hz), 6.99 (d, 1H, 1.2 Hz), 6.95 (d, 1H, J = 1.6

Hz), 2.31 (s, 3H). 13C NMR (100 MHz, CDC13) 8 139.9, 136.0, 128.7, 128.5, 124.4, 124.2, 120.5,

120.4, 14.1. IR (KBr disc, cm -') 1503, 1476, 1415, 1386, 1300, 1177, 1151, 1109, 993, 982. m.p.

147-149 °C.

F1=\
"-,NNH

5-imidazol-1-yl- 1H-indole (7b)

The general procedure was followed using Cu20O (3.6 mg, 0.025 mmol), Llc (18 mg, 0.075

mmol), PEG (200 mg), CsCO3 (0.45 g, 1.4 mmol), 5-iodoindole (243 mg, 1.00 mmol), and

imidazole (82 mg, 1.2 mmol) with butyronitrile (0.3 mL) as solvent for 13 h at 110 *C.

Chromatographic purification (ethyl acetate) provided 5-imidazol-1-yl-1H-indole (white solid,

152 mg, 83%). 1H NMR (300 MHz, CDCI3/CD3CN) 8 10.0 (bs, 1H), 7.9 (1H), 7.79-7.65 (lH),



7.60-7.48 (1H), 7.44-7.43 (2H), 7.28 (s, 1H), 7.21 (dd, 1H), 6.68-6.60 (m, 1H). 1
3C NMR (100

MHz, CDCI3) 8 202.2, 136.5, 135.4, 129.6 128.4, 126.8, 119.9, 116.8, 114.3, 112.3, 102.6. IR

(KBr disc, cm'-1) 1541, 1498, 1457, 1436, 1346, 1309, 1268, 1241, 1110, 1055, 916, 870, 725.

Anal. Calc. for C1tH9N3: C 72.11, H 4.95. Found: C 72.43, H 4.95. m.p. 144-146 *C.

1-furan-3-yl-1H-imidazole (7c)

The general procedure was followed using Cu20 (7.2 mg, 0.05 mmol), Llc (36 mg, 0.15 mmol),

PEG (200 mg), Cs2CO3 (0.45 g, 1.4 mmol), 2-bromofuran (108 [tL, 1.2 mmol), and imidazole

(68 mg, 1.00 mmol) with DMSO (0.5 mL) as solvent for 24 h at 110 *C. Chromatographic

purification (ethyl acetate / hexane 3 : 1) provided 1-furan-3-yl-1H-imidazole (white solid, 89

mg, 67%). 1H NMR (300 MHz, CDCI3) 8 7.71 (bs, 1H), 7.62 (dd, 1H, J = 0.8, 1.7 Hz), 7.42 (dd,

1H, J = 1.7, 1.9 Hz), 7.22-7.06 (bs, 2H), 6.54 (dd, 1H, J = 0.8, 1.9 Hz). 13C NMR (100 MHz,

CDCl3) 8 143.9, 133.0, 126.0, 106.2. IR (neat, cm ') 2092, 1523, 1489, 1406, 1317, 1252, 1173,

1025. m.p. 39-41 *C.

N

4-imidazol-1-yl-isoquinoline (7d)

The general procedure was followed using Cu20O (7.2 mg, 0.05 mmol), Lie (36 mg, 0.15 mmol),

PEG (200 mg), Cs2CO3 (0.45 g, 1.4 mmol), 4-bromoisoquinoline (250 mg, 1.2 mmol), and

imidazole (68 mg, 1.00 mmol) with DMSO (0.5 mL) as solvent for 24 h at 110 *C.

Chromatographic purification (ethyl acetate / hexane 3 : 1) provided the title compound (clear

crystals, 165 mg, 85%). 1H NMR (300 MHz, CDCI3) 8 9.27 (d, 1H, 0.9 Hz), 8.48 (s, 1H), 8.08

(m, 1H), 7.78-7.62, (m, 4H), 7.30 (bs, 1H), 7.25 (bs, 1H). 13C NMR (100 MHz, CDCI3) 8 153.3,



139.6, 138.2, 132.1, 131.9, 130.2, 129.2, 128.8, 128.4, 127.9, 121.5, 121.2. IR (KBr disc, cmf')

1589, 1508, 1491, 1406, 1382, 1307, 1260, 1250, 1194, 1107, 1078, 1038, 942, 913, 782, 756,

660, 589. Anal. Calc. for CI2H9N3: C 73.43 H 4.65. Found: C 73.43, H 4.63. m.p. 67-71 *C.

Me

2-methyl- 1-thiophen-2-yl- 1H-imidazole (7e)

The general procedure was followed using Cu2O (3.6 mg, 0.025 mmol), LIe (18 mg, 0.075

mmol), PEG (200 mg), Cs2CO3 (0.45 g, 1.4 mmol), 2-iodothiophene (132 Rg, 1.2 mmol), 2-

methylimidazole (83 mg, 1.00 mmol) with DMSO (0.3 mL) as solvent for 24 h at 110 *C.

Workup was performed under an atmosphere of N2. Chromatographic purification (ethyl acetate /

hexane 3 : 1) provided 2-methyl-l-thiophen-2-yl-1H-imidazole (yellow oil, 90 mg, 55%). 'H

NMR (500 MHz, CDCl3) 6 7.25 (dd, 1H, J = 1.4, 5.5 Hz), 7.03-6.99 (m, 3H), 6.96 (dd, 1H, 1.5,

3.7 Hz), 2.39 (s, 3H). 13C NMR (100 MHz, CDC13) 6 128.0, 126.2, 124.1, 123.5, 122.3, 100.0,

13.7. IR (neat, cm -') IR (KBr disc, cm-') 1555, 1496, 1451, 1406, 1305, 1287, 1172, 1137, 987,

941. This compound turns dark brown upon exposure to air or after standing for 2-3 of days as

room temperature under an argon atmosphere.

1-benzo[b]thiophen-3-yl- 1H-imidazole (7f)

The general procedure was followed using Cu20O (7.2 mg, 0.05 mmol), Lie (36 mg, 0.05 mmol),

PEG (200 mg), Cs2CO3 (0.45 g, 1.4 mmol), 3-bromothianaphthene (131 iL, 1.00 mmol), and

imidazole (82 mg, 1.2 mmol) with DMSO (0.5 mL) as solvent for 48 h at 110 *C. The crude

reaction mixture was dissolved in 20 mL H20, and the organic material was extracted repeatedly

with CH2Cl 2. The combined organic extracts were washed once with brine, then dried over



MgSO 4 and concentrated to an oil. Chromatographic purification (ethyl acetate / hexane 3 : 1) 1-

benzo[b]thiophen-3-yl-1H-imidazole (yellow oil, 188 mg, 94%). 1H NMR (300 MHz, CDCI3)

7.89-7.85 (m, 1H), 7.80 (bs, 1H), 7.68-7.63 (m, 1H), 7.46-7.38 (m, 3H), 7.26 (bs, 2H). 13C NMR

(75 MHz, CDCl3) 6 139.0, 133.8, 130.5, 130.0, 125.8, 125.3, 123.44, 121.0, 119.7. IR (KBr Disc,

cm -') 3114, 1570, 1539, 1509, 1486, 1431, 1385, 1332, 1267, 1254, 1228, 1106, 1081, 1061,

1035, 912, 821, 731, 757, 659. After 2-3 days at room temperature under an argon atmosphere,

the compound turned dark brown in color.

s

1-thiophen-2-yl-1H-imidazole (7g)

The general procedure was followed using Cu2O (3.6 mg, 0.025 mmol), Lic (18 mg, 0.075

mmol), PEG (200 mg), Cs2CO3 (0.45 g, 1.4 mmol), 2-iodothiophene (132 mg, 1.2 mmol),

imidazole (68 mg, 1.00 mmol) with DMSO (0.3 mL) as solvent for 24 h at 110 *C.

Chromatographic purification (ethyl acetate / hexane 3 : 1) provided 1-thiophen-2-yl-1H-

imidazole (yellow oil, 125 mg, 83%). 1H NMR (300 MHz, CDCl3) 8 7.71 (bs, 1H), 7.15 (bs, 1H),

7.11 (bs, 1H), 7.09 (dd, 1H, J = 2.0, 5.2 Hz), 6.96-6.92 (m, 2H). '3C NMR (100 MHz, CDCl3)

139.0, 137.0, 130.2, 126.4, 121.8, 120.3, 119.0. This oil turned dark brown after 2-3 days as

room temperature under an argon atmosphere.

Experimental procedures for all compounds contained in Table 8

&YOMe

1-(3-methoxyphenyl)-2-methyl- 1H-benzo[d]imidazole (8a)

The general procedure was followed using Cu2O (14.3 mg, 0.10 mmol), Lic (48 mg, 0.20



mmol), MTBD (200 IL, 1.4mmol), 3-bromoanisole (126 [tL, 1.00 mmol), and 2-

methylbenzimidazole (159 mg, 1.2 mmol) with DMSO (0.5 mL) as solvent for 24 h at 130 *C.

The crude reaction mixture was dissolved in 20 mL of ammonium hydroxide and extracted with

dichloromethane (3 x 30 mL). The combined organic layers were then extracted with 20 mL of

brine. The resulting aqueous phase was extracted with dichloromethane (3 x 30 mL). The

combined organic layers were dried with anhydrous MgSO 4, and the solvent was removed in

vacuo. Chromatographic purification (hexane / ethyl acetate 1 : 1) afforded 1-(3-

methoxyphenyl)-1H-benzo[dlimidazole (white solid, 192 mg, 81%). 'H NMR (300 MHz,

CDCl3) 8 7.64 (d, 1H, J = 8.0), 7.37 (t, 1H, J = 8.1 Hz), 7.19-7.05 (m, 3H), 6.95 (ddd, 1H, J =

0.9, 2.5, 8.5 Hz), 6.80-6.87 (m, 2H), 3.75 (s, IH), 2.40 (s, 1H). 1'3C NMR (125 MHz, CDCI3) 8

160.7, 151.6, 142.6, 137.2, 136.4, 130.7, 122.6, 122.4, 119.3, 119.0, 114.4, 112.9, 110.1, 55.6,

14.5. IR (KBr disc, cm-') 1601, 1516, 1492, 1464, 1392, 1322, 1288, 1255, 1222, 1165, 1054,

1024, 928, 879, 830, 786, 751, 697, 435. Anal. Calc. for C15H14N20: C 75.61, H 5.92. Found C

75.22, H 5.79. m.p. 132.5-133.5 *C.

F

1-(4-fluroropheyl)-1H-benzop[dlimidazole (8b)

The general procedure was followed using Cu20 (14.3 mg, 0.10 mmol), Lic (48 mg, 0.20

mmol), PEG (200 mg), Cs2CO3 (0.45 g, 1.4 mmol), 1-bromo-4-fluorobenze (109 [L, 1.00

mmol), and benzimidazole (142 mg, 1.2 mmol) with DMSO (0.5 mL) as solvent for 9 h at 110

*C. The crude reaction mixture was dissolved in 20 mL of ammonium hydroxide and extracted

with dichloromethane (3 x 30 mL). The combined organic layers were then extracted with 20 mL

of brine. The resulting aqueous phase was extracted with dichloromethane (3 x 30 mL). The



combined organic layers were dried with anhydrous MgSO 4, and the solvent was removed in

vacuo. Chromatographic purification (hexane / ethyl acetate 1 : 2) afforded 1-(4-fluroropheyl)-

1H-benzop[d]imidazole (white solid, 180 mg, 85%). 'H NMR (300 MHz, CDCl3) 6 7.92 (s, 1H),

7.76-7.72 (m, 1H), 7.34-7.30 (m, 3H), 7.30-7.09 (m, 4H). 13C NMR (125 MHz, CDCl3) 6 162.9,

160.9, 143.9, 142.3, 133.8, 132.3, 126.0, 125.9, 123.8, 122.9, 120.6. 117.1, 116.9, 110.2. IR

(KBr disc, cm -') 3416, 3061, 1911, 1781, 1734, 1666, 1614, 1511, 1486, 1458, 1317, 1289, 1235,

1217, 1148, 1094, 1010, 980, 936, 887, 868, 845, 823, 815, 783, 766, 750, 716, 668, 647, 619,

589, 567, 531,483, 436, 411. Anal. Calc. for C, 3H9FN2: C 73.57, H 4.27. Found C 73.37, H 4.24.

m.p. 118.5-119.5 *C (Lit. 114-115 'C). 69

t-Bu

1-(4-tert-butylphenyl)2-methyl- 1H-benzo[dlimidazole (8c)

The general procedure was followed using Cu20 (14.3 mg, 0.10 mmol), Llc (48 mg, 0.20

mmol), MTBD (200 ixL, 1.4mmol), 1-bromo-4-t-butylbenzene (173 [L, 1.00 mmol), and 2-

methylbenzimidazole (159 mg, 1.2 mmol) with DMSO (0.5 mL) as solvent for 24 h at 130 *C.

The crude reaction mixture was dissolved in 20 mL of ammonium hydroxide and extracted with

dichloromethane (3 x 30 mL). The combined organic layers were then extracted with 20 mL of

brine. The resulting aqueous phase was extracted with dichloromethane (3 x 30 mL). The

combined organic layers were dried with anhydrous MgSO 4, and the solvent was removed in

vacuo. Chromatographic purification (hexane / ethyl acetate 1 : 1) afforded 1-(4-tert-

butylphenyl)2-methyl-1H-benzo[d]imidazole (white solid, 191 mg, 72%). 'H NMR (300 MHz,

CDCl3) 8 7.63 (d, 1H, J=7.9Hz), 7.44 (d, 2H, J=8.4), 8 7.15-7.13 (m, 3H), 7.05-7.03 (m, 2H),

2.39 (s, 3H), 1.29 (s, 9H). 13C NMR (125 MHz, CDCI3) 8 151.9, 151.7, 142.6, 136.6, 133.3,



126.8, 126.5, 122.4, 122.2, 118.9, 110.1, 34.9, 31.4, 14.5. IR (KBr disc, cm-1) 3399, 3050, 3038,

2964, 2868, 2717, 2320, 1924, 1883, 1847, 1806, 1766, 1664, 1612, 1587, 1518, 1477, 1456,

1397, 1367, 1324, 1314, 1285, 1269, 1248, 1204, 1186, 1145, 1122, 1108, 1033, 1011,998, 973,

942, 875, 860, 842, 764, 741, 704, 678, 644, 633, 593, 566, 534, 497, 429, 406. Anal. Calc. for

C18H2oN2: C 81.78, H 7.63. Found C 81.69, H 7.62. m.p. 132-133 *C.

t-Bu

1-(4-tert-butylphenyl)- H-benzo[dJimidazole (8d)

The general procedure was followed using Cu20 (14.3 mg, 0.10 mmol), Llc (48 mg, 0.20

mmol), PEG (200 mg), Cs2CO3 (0.45 g, 1.4 mmol), 1-bromo-4-t-butylbeneze (173 [IL, 1.00

mmol), and benzimidazole (142 mg, 1.2 mmol) with DMSO (0.5 mL) as solvent for 6 h at 110

*C. The crude reaction mixture was dissolved in 20 mL of ammonium hydroxide and extracted

with dichloromethane (3 x 30 mL). The combined organic layers were then extracted with 20 mL

of brine. The resulting aqueous phase was extracted with dichloromethane (3 x 30 mL). The

combined organic layers were dried with anhydrous MgSO 4, and the solvent was removed in

vacuo. Chromatographic purification (hexane / ethyl acetate 1 : 1) afforded 1-(4-tert-

butylphenyl)-1H-benzo[d]imidazole (white crystals, 240 mg, 96%). 1'H NMR (300 MHz, CDCI3)

8 7.94 (s, 1H), 7.77-7.74 (dd, 1H, J = 2.9, 6.2 Hz), 7.43-7.37 (m, 3H), 7.27-7.15 (m, 4H), 1.25 (s,

9H). 13C NMR (125 MHz, CDCl3) 8 151.2, 144.0, 142.3, 133.8, 133.7, 126.9, 123.6, 123.6,

123.5, 122.6, 120.5, 110.5, 34.7, 31.3. IR (KBr disc, cm-1) 3429, 3112, 3055, 2959, 2902, 2867,

1736, 1609, 1520, 1488, 1461, 1416, 1369, 1361, 1323, 1303, 1267, 1232, 1212, 1162, 1142,

1123, 1107, 1026, 1009, 977, 932, 890, 871, 846, 827, 783, 765, 741, 645, 621, 589, 565, 548,

500, 431. Anal. Calc. for C,7HisN 2: C 81.56, H 7.25. Found C 81.12, H 7.23. m.p. 150-151.5 *C.



NH2

2-(1H-benzo[d]imidzol- 1-yl)aniline (8e)

The general procedure was followed using Cu20O (14.3 mg, 0.10 mmol), Lie (48 mg, 0.20

mmol), PEG (200 mg), Cs2CO3 (0.45 g, 1.4 mmol), 2-bromoaniline (109 [LL, 1.00 mmol), and

benzimidazole (142 mg, 1.2 mmol) with DMSO (0.5 mL) as solvent for 15 h at 110 *C. The

crude reaction mixture was dissolved in 20 mL of ammonium hydroxide and extracted with

dichloromethane (3 x 30 mL). The combined organic layers were then extracted with 20 mL of

brine. The resulting aqueous phase was extracted with dichloromethane (3 x 30 mL). The

combined organic layers were dried with anhydrous MgSO4, and the solvent was removed in

vacuo. Chromatographic purification (with Biotage system with gradient of pure hexane to pure

ethyl acetate to hexane / ethyl acetate 1 : 1) afforded 2-(1H-benzo[d]imidzol-1-yl)aniline (orange

crystals, 157 mg, 75%). 'H NMR (300 MHz, CDC13) 8 7.83 (s, 1H), 7.73 (dd, 1H, J = 2.2, 6.3

Hz), 7.20-7.11 (m, 4H), 7.03 (dd, 1H, J = 1.4, 7.7 Hz), 6.80-6.71 (m, 2H), 3.67 (s, 2H) '3C NMR

(125 MHz, CDC 3) 8 143.5, 143.3, 142.9, 133.9, 130.3, 128.2, 123.6, 122.8, 121.1, 120.4, 118.6,

116.6, 110.9. IR (KBr disc, cm1') 3227, 3202, 1625, 1507, 1486, 1454, 1308, 1288, 1227, 1157,

977, 890, 785, 744, 503, 442, 428. Anal. Calc. for C13HIlN 3: C 74.62, H 5.30. Found C 74.45, H

5.25. m.p. 115-116 *C (Lit. 112.5-113 *C).70

1-o-tolyl- 1H-benzo[dJimidazole7 ' (8f)

The general procedure was followed using Cu20 (7.2 mg, 0.05 mmol), LIe (36 mg, 0.15 mmol),

PEG (200 mg), Cs 2CO3 (0.45 g, 1.4 mmol), 2-bromotoluene (120 IiL, 1.00 mmol), and



benzimidazole (142 mg, 1.2 mmol) with DMSO (0.5 mL) as solvent for 24 h at 130 *C. The

crude reaction mixture was dissolved in 20 mL of ammonium hydroxide and extracted with

dichloromethane (3 x 30 mL). The combined organic layers were then extracted with 20 mL of

brine. The resulting aqueous phase was extracted with dichloromethane (3 x 30 mL). The

combined organic layers were dried with anhydrous MgSO 4, and the solvent was removed in

vacuo. Chromatographic purification (with Biotage system with gradient of pure hexane to

hexane / ethyl acetate 1 : 1) afforded 1-o-tolyl-1H-benzo[d]imidazole (yellow oil, 186 mg, 78%).

'1H NMR (300 MHz, CDCI3) 6 7.88 (s, 1H), 7.81 (d, 1H, J = 7.9 Hz), 7.95-7.18 (m, 6H), 7.05

(dd, J = 7.9, 0.6 Hz), 2.01 (s, 3H). 13C NMR (125 MHz, CDCl3) 6 143.5, 143.1, 135.5, 134.9,

134.8, 131.7, 129.5, 127.8, 127.3, 123.6, 122.6, 120.6, 110.6, 17.8.
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795
01.3

37

nnn
c

can

Qt
I072

f

18 14
16 Ei4:

12 10 8 5 4 2 -0

1.1oo .3:gt • s
3.3SI.2S33

ppm

I_~i~



RAAIV52

mcpl 2put

SAFPLE
date Dec 14 200s dfr
sOqvent c tol di,
fftl ax dpwr

ACQUISiTItGI do•r
tfrq 50*.23S d

tn H.1. dmn
-t 3• 20 deBf
ap 64000 dse

sw ie00.i0 dre
Tb not us~ed home
bsý 8
tpwr 59 pro.
p w9. f,

lit I 49r8
al lck wan
a1c :1i lt
ýafin not usled wnt

Ito
Up °

DOTSýPLA.

Sp .-t3 .8vs

ino ph

i- r · ·· ·-- 15 -Tr

EC,. a VT
q 12S..195

CI3

1nn

1.0

PROCES3SI
ite

8
5.45 7. 025 i0344. 49

-0 ppm
.. .. . .. . . ... -. - . . .

---;-



expl szpul

SAMPLE
date Dec 14 2op0
Solvent CQCt3
file esp

AcOuS ITION
sfrq 500.2a35
tn MHi
at 3.200
np 64000
Sw r1000*,
fb not UStd
be 8
ss I
tpvr 59
pw 9.6
dl ii
tof 149'.2

Ct 1.5

gain not used
FLAGS

11 n
In 1
dp
hs nn

DSSPLAY
sp -998.4
wp 100004
vs 1S51

wct 250
hzbm 40.,0
is Lo00.
rfl 3a4.8
rfp 363.7
th 7
Mis 3.000
mi ph

x~iDEC. & VT
dfrq 125 .755
d~n' C L3
dpwr 37
dot .
dm nnn

df 10000o

dres 1.8

PROCESS9CO
wtfile
proc ft
tfn 310D7
math f

warr

Wb!9
wnt

~1

1. 14 12 10 I

16 14 12 aO 8
i L

0.65 0.73
,3 s94

0If ppm

3.00

---- Pt -- -- ·----- · ·- ~-- C-



STjANDARO PeROWO PARAM•NIRS

xp2 slput

SAMPLE DEC. a vT
a4te act 3 4DPS drrq 125.7.1

Ie•eMnt COC13 dn C13
file etp dpwr Vt

AOUIIoSEZ dot a
treq s00.235 dgu mln

to Ml dam C
at *,240 der 1190*
np 44411 10644
rt l0,101.1 res ,i
tb :not mumd hamo a
be a POWCteSI m
Ci I iat lS

tpur s p1C ft

1Ot math f

ot otrr

alock n uabe
gala not ped wnt

PLAOS
i
a n

DISP4AlV
ti -IS3.8

it m
ME 25I
hamz 40.4
Is t10,o1
rfl 4630,5
rfp a1136ý
th 7
Ins 1.110
r. ON

I I

14 12
In · r- -·- · 8

.... . • t ..

4 2 -g

U,5

rs

15 ppm

~ -~I-- .1 p --~- -- ------- 1 Iii

4..

,- .. -. . .. . . .. .



STAMIR6 MOi N MPARATERS

flpt *tpuil

BAMPtE De
dat. act i 20s drrq
slalvant C•C13 4in
fi le Oap dphlw

AtiISTIlMU 4101r
trrq I 41m
ti 12 4
at 5.2• dm?

IV III.1 (I41rS
rI Not used onnS

pa 1.2 dCrt

Up - -1 6 ll44l a dpur2tsf 141 .1 mEft lit 'MRCt lai diug
gain not wso$ d4*41
IlI n iom2
la n

0IAPLtAY OpwrS
sp -1044,19 ftf

so 9s ad"2
c 0 410•3WC 110 06e3

Ims 44.00 drasa
Is 142l, Ihm~
rn I 04.,0 PR
rTp I a ile

rm dc"• h00 fa

w•rrl

1."at

C. a VT
125-

14

RECS

674
CA:dSe

1.2mto

1.80

a

I3
d

C . JNM
& .

,------ -"' t . . . . '" , ..... . . ... • " • .14. '-' - " -"r " r r'; ,l - rr rr > . 'tr-l"'
" - - I1s"

16 14 12 10 8 6 4 2 -o ppm

iu0e 0,l4
a .61.44

I L~ I -n _.I.~I -~·--- ·· ' u
I ,

~;LAa~L



STANIPAR PROTN PARAPIETERIB

napl s2pul

.AIMPLE
date Nov tS apes
slivint CW1U1
file Qxp

sfrq @13.113

at 3 Ap
¢p t•t0a19w as"e -a

fb nr t ued
us t1
17wr 51

dl 0S
toif 1411.1
nt II
ct II
alaoc aI
galin not UISd

FLAGS
II ti
in n
dp y

hlsPtAY
sp -1114.5

vc D
rtlf

Ist I.rrl 45C5.
t•) rfp 3632.1

1th I?
nM cad ph

DEC. af V
Of rq .151174
dr CI3
Opur 34def 14".1
da nm
dm it

dsel

sran tadriudre 1I

03 aSal 4

Spatdlft toostret 1.0
hmos nuEC2

dpwS I

drels Ie

PfOCESSINO
wttile
proc FL

Warr

sumt
Wit

16 14 12 10 8 5 4 2 -o ppm

0. oS. to ."4
0.P•lu en.ue

pN

[I
1~~ l·· -·-·li~i- ..̂ -IN ~~· - ·~-~aC·Illl· YY YT



4TAl4RftD PIOTOi PARANIfTItS

ewpl s2pul

SAMnPLE
dia*t OCt 1 2aDS
.wivent CICIS
f 0ie exp

"L115I1TSN 0err 40S1,140
lit Ill
at 3.277
Vip 15Sl3
tw SSS1.,
rb rOt used
Ins 1

11 D0

aCL 14
block n
gain not usil

FLACS

dp y

DI 1PLAY

vs 1l1
IC s

h3m 40,95is 112.11
r'Ih 46z?.
rfg i.1
th P
ios 2.065
m caC pa h

Cn~qIEC- a VT
dFre 115.574
di C13
ulpar 34
dir 145516

dam w
41Dtq

ipwr t

art I
dnt

dres 1.0drck

,,drse ]I

dfr4t Idm4

dfrq3 a

pitts 5

dft go00

Wirllidres3 1.0vtflltwrt
wAbp
Wnt

16 14 1Z 10 6 4 p -1 ppe

1.15 2.0022 3.11,Lea 0.30 2.13,,.LF &.# 2,.13' •

II~B":~D-~--~-__ I~ (I·I:lsL·IU
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STApsau PROYTO PARAIETERS

AspI szput

SAMP LE
date Oct 3 2815
1o lvent l4d3

ACWtI$WIffIOs
%Irq $SIV235
tn Il

fb not used

LiS
.pw, Si
ipv N.4

ter 1424,

Ct tli
Ilock ni
gain rnot used

FLAGs
in n

dp y
Sig an

CISPLAY
SI *h

MC I

we IIIs 25N1
It 141.14
rt) 4616,.
fh I

as ph

DEC. a vv
dfrq 125.7ss
dn C13
dpwp, 37

d seq
dPr" 1,
hoev n

PRDCESSINB
wt f I le
prer of
fr~ 1311l1

warr

%4t

p4OtT
(*1) o

!1
7 7

S.4iO.ai,8
as.MAS

5 4 3: 2 21 -c pjs

1.31
1OI

12 11 10 9

'
L'*;e---- ------ --- ----------



STANDARD 1H OBSERVE

expl stdlh

SAMPLE
date Jul 19 2005
solvent CDC13
file exp

ACQUISITION
sfrq 300.100
tn Hi
at 1.395
np 17984
sw 4506.5
fb not used
bs 4
tpwr 54
pw 7.0
dl 1.000
tof 0
nt 20
ct 20
alock n
gain not used

FLAGS
11 n
in n
dp y

DISPLAY
sp _-144.1
wp 3244.8
vs 151
sc 0
wc 250
hamm 12.98
is 27292.88
rfl 718.7
rfp 0
th 69
ins 3.000
nr cdc ph

DEC. & VT
dfrq 300.10
dn H
dpwr 3
dof
dn nn
damn
dmf 20

PROCESSING
wtfile
proc f
fn not use

werr
wexp
wbs
wnt

0
1
0
0n

od

7 6 5

5.21 3.00
3.11 0.86

1 0 ppm

0.05

) I · ) I I I I I . I I . ý I

I



*yrin Aitnn 1I•nl•ephtfha tts:
a05e ntdit

SANPLE
data 9ic a 20•4

QwIft 0 C0C13
fi Pe rdata/ieport/-
hoewt/s Ibu ch,/ 4r r -
hl/4 ra -lenn a pitt

halena.e id
At. !.rum

04r 43*0.5
'f rwt used

pw 1.0
di 1.010
to( 0

Ct LO
a lavk in
gain not used

FLAOS
11 i
In a
dp y

p CISLAV
&p -?16,I
WPI 4506,3
vs 104
vp I 0
•wc 250

is 5n0.60
rrr 289S.B
rfp f11311.7

in& 4.800
fs cdc psh

OEC. a vT
dtrq 300.
dn
dpur
dcf
dr

f• nDot u

farr
ti.rp

hbs
Wit

.10

-ft
lsed

C>
U,

...-" .. ............... ................-. . .....

8 5 4 3

1.0O 1 13

1 -G -1 ppmII 11. 101 9

_·_~·····1 __1_1~_··(··1·~~·11(~~·(···__ _ I I L ___



Ryan Altman II p 260

exp5 stdlh

SAMPLE DEC. & VT
date Feb 28 2005 dfrq 300.100
solvent CDCIS dn HI
file /data/export/- dpwr 30
hone/slbuch/4ra/mr- dof 0
hat/4ra022805-Up2- da nnn

60.fid dmm c
ACQUISITION dmf 200

sfrq 300.100 PROCESSING
tn H1 wtfile
at 1.397 proc ft
np 26982 fn not used
sw 6756.8
fb not used werr
bs 16 waxp
tpwr 54 vbs
pw 7.0 wnt
dl 1.000
tot 0
nt 1i
ct 16
alock n
gain not used

FLAGS$t n

in n
dp y

DISPLAY
sp -1841.7
wp 6756.3
vs 151
sc 0
wc 250
hzam 27.03
is 500.00
rfl 4023.8
rfp 2181.7
th 20
ins 3.000
na cdc ph

I,

16 14 12 10 8 6 4 2

0.71.91
1.67

ri'

d I?-yk"
~~;trJ:

);\

c\

K'
111

-4 ppm

bl

............ ........... .. ...... . ......... .... ..... ..................... ...... ........ ....... . .......... A ý

~;~::~,· ·



/
Ryan Altman II p 236

exp5 stdth

SAMPLE DEC. & VT
date Feb 16 2005 dfrq 300.100
solvent CDC13 dn H1
file exp dpwr 30

ACQUISITION dof 0
sfrq 300.100 dm nnn
tn H1 dmm c
at 1.995 dmf 200
np 17984 PROCESSING
sw 4506.5 wtfile
fb not used proc ft
bs 16 fn not used
tpwr 54
pw 7.0 werr
dl 1.000 wexp
tof 0 wbs
nt 16 wnt
ct 16
alock n
gain not used

FLAGS
11 n
In n
dp y

DISPLAY
sp -716.8
wp 4506.3
vs 151
sc 0
wc 250
hzmm 18.03
Is 500.00
rfl 2898.8
rfp 2181.7
th 5
ins 2.000
nm cdc ph

12 11 10 9 8 7 6 5 4 3 2 1 -0

2. 8l19 8
3.8480

i1 I

-1 ppm

~cn'·i~

_~_~~
I I

L-~ I 1



STAm~lIRD IlN ~atRVE

rapL Iddlh

SAMPLE
dat AsuI 6 2I 8
solvent CDc13
fIle /datafe4port/-
homec/s butch/4lKter-"b iefdz 1 1e4e, Mi.rl

frrq 3]6,1O0
tai NI
Mt 1.115
np 17954
sw 45",SI
Fb not Iruad
lo 4
tp nr 54

lip
ot 14

alock

l4m 1'e.5-1lot ftp -04 11.4
S 45011.3

Vm ec ph

DIC, A VT
dFrq 3S00,0l
dn "Idr a
dpur 30
dO1" 0

diii 200
P•OCtESSUI

f I Pat I4 l

veer
was

12 11 10 5 9 7 6 5 4 2 2 1 -a -I pp"

-3. t, $
0. ieO$I

V.00
SID01

J
I

--

Ift
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Ryan Altman

exp2 stdlh

SAnPLE
date Dec 8 2004
solvent CDC13
file /data/export/-
home/slbuch/4ra/mr-
hat/4ra-l-im-4-tbu-

-benzene.fld
ACQUISITION

sfrq 300.100
tn H1
at 1.995
np 17984
sw 4506.5
fb not used
bs 16
tpwr 54
pw 7.0
dl 1.000
tof 0
nt 18
ct 16
alock n
gain not used

FLAGS
11 n
in n
dp y

DISPLAY
sp -716.7
wp 4506.3
vs 167
sc 0
wc 250
hzmM 18.03
is 2092.29
rfl 2898.7
rfp 2181.7
th 20
ins 9.000
na cdc ph

DEC. & VT
dfrq 300.100
dn Hi
dpwr 30
dof 0
dm nnn
dmm c
dmf 200

PROCESSING
wtflle
proc ft
fn not used

werr
wexp
wbs
wnt

00

12 11 10 9 8
Y Y WY

0.82 1 Sa1.8&!11

7 4 3 2 16 -1 ppm

i

I __ I I .. .. ,1

T' I i-- •
"H

r) . . . . . . . . . .

6



AII &#1

STANDUARD IN OBSIAVE

B I U oDgM
D5I LII Z fl

oB ,,l 1.03

r·~···-~-~--~--r~-------~-~- ..

· " '
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ITARtMRD RIlONl PIRAMETERS

ept1 s$put

SAMPLE C., a VT
Ste Iav 2t8 210 dfyrq 125,SI1
sol.•et C•WIS 41 C1n
Fi )e ep *pur J4

ACWTq17?Nh dot 14uu L
Oftq 4I1.41 dm mm
to sMt dm
*t S. M dot Sson#ap MS . .l d e10
SW 9 ]ia6 - drIw
rb not masd hoS m
as 1t WeC
tour s8 dfrt zl

Mt 16 dat €
slaco I dera ce;
per~ not moo Ig e!

FLAGS drst 1I.
a) mu hom2 n

Sto maEC
4p y MltrqB a
* mes dMal

EI|PLAY dpwrB I
Sp -lS.1.a idr) 0
vp 9Ig.4 di

e f rl do" a
kar 43.00 dre 14
Is .5E h2naG ra
rtm 4619.1 PmOESSINS
rip 263t 1 utmt-tli
tI I prac ft
Isa 1,906 rmI 615.1
- cdi ph Pot8 1

wlurr

vbs
Iatl

16 14 i2 10 6 5 4 2 -I ppe

1.9542.64

0u3

IU_ __I____~ I_ -·I~C--·IX-~-.·I r*r*)"~ -41--·1~ 1 I

·,4~4



$TAAt•RV PuReO# PAPA TErS

etpl spltl

SAMPLE DEC. A VT
dAte New 20 Z 305 dfrq 125.574
S• Ivenl t CUC13 dn CL3
fil e ep dpur 34

apulartu l T der 1458.1
sfrq 491.7419 twi mn
t•n r. dom
at 3.177 Str 18046
P 1S5358 stsq

su -•98.0 dre•s l_
fb not used hoams a
bM 15 DEC2
tpwr 55 dfrq2 a
pw M.2 dn2
dl 0 dpsrt 1
tor 1418.1 dfth 0
at Ii dni n

11 1) eat c
ale K a dt 20I
PiI1 not lsed dlseq

LAGS dr+s;2 1,0

In V OECS
dp y arrq$ U
hs dli

up *., .8 t• .v a
v 1S51 dmuf c
sc I dmf3 200re DSO d lS qll

031 dsioy
hzm 40.0 dreaS .I
1; 33.5? haeum U
rf1 4332.4 PROCaI31No
rfp 3033l. wtfile
th 7 pre t

no -of pb math f

w•reWaxp
wnt

t
X1 14 12 10 n 6 4 Z -o ppm

"'ran

ii

~FC T~C~GL~41i



Ryan Altman II p245

exp5 stdlh

SAMPLE
date Feb 23 2005
solvent CDC13
file exp

ACQUISITION
sfrq 300.100
tn H1
at 1.9955
np 17984
sw 4508.5
fb not used
bs 16
tpwr 54
pw 7.0
dl 1.000
tof 0
nt 16
ct 0
alock n
gain not used

FLAGS
tl n
in n
dp y

DISPLAY
sp -717.1
wp 4506.3
vs 151
sc 0
wc 250
hzmm 18.03
Is 500.00
rfl 2899.1
rfp 2181.7
th 20
ins 9.000
nm cdc ph

DEC. & VT
dfrq 300.100
dn H1
dpwr 30
dof 0
dm nnn
dmm c
dmf 200

PROCESSING
wtfile
proc ft
fn not used

werr
wexp
wbs
wnt

6 5 4 3 2 1 -0 -1 ppm

9.00
2.90

/

ii)

ii A
12 11 10 9 8 7

2.02 2.18
1.98

j' ~Y LL L

4 K*
Cýr



S%#IARDI 1H OMBERVE

empta tdUh

SAMPLE
date Jul 22 2•eD5
salvernt COds
fi le exp

srre 30i1

rip 17r14
sw 4548.1
fb 00t used
bs 4
twur 54

iti 10

lak W n
galaF ret used

FLAtO,
11 pi
In

OKIPLAY

Utt ISO1
hin 11.53
Is 371.0 9

rirp a
th 22
lirr 1,000
An cAc ph

C
CEC. a VT

df rq 300.,10

dpwr 34

dam 0dar a0
abs FRO1 SINCI

proc ftrn nut ussd

wams
unt

fur
Wý ý

i ,I

2

I' j
- - - . s, ' .

S 8 7 8 5 4 3 2 1 0 ppm

.090 l,,4 0 J2 3.1 0.9,1
5.-06 ao02 n r 84a

l

. . .

'1
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RAA III 259

expl s2pul

SAMPLE DEC. & VT

solvent CDCIS dn C13
file exp dpwr 34

ACQUISITION dof 1498.1
ofrq 499.749 dm nnn
tn H1 damnn w
at 3.277 dmf 10000
np 65536 dseq
sw 9998.8 dres 1.0
fb not used homo n
be 16 DEC2
tpwr 56 dfrq2 0
pw 8.2 dn2
di 0 dpwr2 1
tof 1498.1 dof2 0
nt 16 dm2 n
ct 16 dmm2 c
alock n dmf2 200
gain not used dseq2

FLAGS dres2 1.0
11 n homo2 n
in n DEC3
dp y dfrq3 0
hs nn dn3

DISPLAY dpwr3 1
sp -999.3 dof3 0
wp 9598.8 dm3 n
vs 151 dmmS C
SC 0 dmf3 200
wc 250 dseq3
hZmm 40.00 dres3 1.0
is 33.57 homo3 n
rfl 4832.4 PROCESSING

Srfp 3633.1 wtfile
th 7 proc ft
ins 1.000 fn 65536
nm cdc ph math f

werr
wexp
wbs
wnt

16 14 12 10 8 6 4 2 -0 ppm

1.00 0.80
1.8. 98

.. ..... .... .................

LL

i

i
i

i
i



STAN3tI i LDM UI•ELvt

mpI '.Ldlr

MHPL t
dale .ul 14 2005
solvent cao n
tilm eXF

ACQti I IITIO
•frq 30.101 l

at 1.995
r 017904"u q 005,
ft rnot dLId
bS 4
twr 54

to2f I
nt 14L
cL Id
alacK rF
gai•n not usoe

P'I 'rI
I1 r,

rr 1d1
sc Eb

is 953.67
r 718.1

th 24
rn (AC ph

12

dfrq 3f0a.(lq
dn H1

doC

d¢f 265
PRDCISSI3 5

-t, f i le
proc fL
on r• t used

writWntr

r- r

A4

..

-1 ppm10 9 8 7 6 5 4 3 2 1 -

A2..u• . • U uu • A
0.1U.2t 0.D9 5.06

o
,,
rO~s
h

·.. ·.

"~'"

__~___ ~~~,_~~~,~~__,, _~~·: hji-2



Ryan Altman II p 214

exp5 stdLh

SAMPLE
date Feb 8 2005 d
solvent COC13 d
file exp d

ACQUISITION d
sfrq 300.100 d
tn H1 d
at 1.995 d
np 17984
sw 4506.5 w
fb not used p
bs 16 f
tpwr 54
pw 7.0 w
dl 1.000 w
tof 0 w
nt 16 w
ct 16
alock n
gain not used

FLAGS
ii n
in 1n
dp y

DISPLAY
sp -717.1
wp 4506.3
vs 151
sc 0
we 250
hzmm 18.03
is 500.00
rfl 2899.1
rfp 2181.7
th 20
ins 100.000
nm cdc ph

DEC. & VT
Ifrq 300.
in
ipwr
dof
m
mm
dmf

PROCESSING
,tfile
roc
fn not u

err
,exp
fbs
nt

1~AL P

L/i
12 11 10 9 8 7

7.22 6.46
35.70

6 5 4 3 2 16 4 .3 z -0 -1 ppm
W YY

18.45.27
6.88.28

100
H1
30

0
nnn

c
200

ft
used

S.fl

i

,I) ý --A -, - . J I J• •A 

.I-

-- ·------------ ---. .... ..... ...... ...- -- -- --



STANDARD In OBSERVE

.M.1 .A Id

DEC. & VT
dfrq 300.100
dn HI
dpwr 30
dof 0
dm nnn
dam C
dof 200

PROCESSING
vtfils
proc ft
fn not used

werr
waexp
wbs

mt

I,, olD

6 5 4 3

lp

2 1 0 ppm

ft )If ,



Ryan Altman III 31

exp6 Stdlh

SAMPLE
date Apr 10 2005
solvent CDC13
file exp

ACQUISITION
sfrq 300.100
tn H1,
at 1.995
nip 17984
sw 4506.5
fb not used
be 16
tpwr 54
pw 7.0
dl 1.000
tof 0
nt 15
ct 0
alock n
gain not used

FLAGS
11 n
in n
dp y

DISPLAY
sp -714.6
wp 4506.3
vs 160
sc 0
wc 250
hzmm 18.03
is 534.90
rfl 2896.6
rfp 2181.7
th 20
Ins 1.000
nm cdc ph

12 11 10 9 8 7

0.06 3.14.00.10
0.05 1.48.0W.00

6 5 4 3 2 1

3.m2O4
1.20 0.0629

-0 -1 ppm
6.73

/
.100
H1
30

0

ft
used

DEC. & VT
dfrq 300
dn
dpwr
dof
da
dam
def

PROCESSING
wtflle
proc
fn not

werr
wexp
wbs
wnt

Fku1

.

.. 

... 

.

.. ...... ...

.......... . ........................

I--r-, l . r i , ? ··· ··!··-·r""?""'~~~~r ·· ··r~ ~ ~ r~7: T·.i ·- i · · · · l-i----·i--··-l--i-··- · · 1 · · · .· -'*I·r····*---·I·---r~-f~T. . .... ....... ;7··

.... ........................



Ryra Al iavw I p LDO

rrp2 stalu

SAMPLE
~ate Aug 12 2044
sulvant CDCI3
fi e jddataeuport/-
hea/s libu chp4ra4r-
Ihts4raDU 12041 p•io-

r id
AgU:IIJTTIIN

sfrqi flOodS

at 1.55
np 17U84
Su 45I4.5
rb not used
,,s 1I

p t.0o
41 1.00

tof 0
3t IssL I#

ba n rmt used
P| 1

In n
In V

VISPLAY
up -717,1
we 4SO6j

hzmnit 150
rfl ,

th 20
Ins 1,040
-m cdc ph

DEC, & VT
dfrq 344
in

aftItes
PROCESSUJO

wpre
fn np q

unp
w@4

.1C0
.li
30
a
4

ft
waed

V,

I.Iii I
1)'J i

12- 11 TII 9 8 7 6

1 .0.EI, L.
n

ta,3l t..

$ 4 3

31• BL

-I -1 ppm

I ·uL· I .J -- - -:-----

c -rlr^l~------- --r----- .*---ye^-_-~ -- --

Tý
_ ll*1.1-·L-b~i·9



Ryan Altman IIp 267

exp6 stdlh

SAMPLE DEC. & VT
date Mar 8 2005 dfrq 300.100
solvent CDC13 dn "I
file exp dpwr 30

ACQUISITION dof 0
sfrq 300.100 da nnn
tn H1 dmm C
at 1.995 dmf 200
np 17984 PROCESSING
sw 4506.5 wtfile
fb not used proc ft
bs 16 fn not used
tpwr 54
pW 7.0 werr
dl 1.000 wexp
tof 0 wbs
nt 16 wnt
ct 16
alock n
gain not used

FLAGS
tl n
in n
dp y

DISPLAY
sp -715.5
wp 4506.3
vs 151
sc 0
wc 250
hzmm 18.03
Is 500.00
rfl 2897.5
rfp 2181.7
th 20
ins 1.000
no cdc ph

..
r12 11 10 9 8 7 6- r•- 2r- - ------ r-- r , -1 Pr
12 11 10 9 8 7 6 5 4 3 2 1 -o -I ppm

1.13.20
1.08 1.00

3.38
0.28



Ryan Altman II p 155

exp3 stdlh

SAMPLE DEC. & VT
date Jan 12 2005 dfrq 300.100
solvent CDC13 dn H1
file /data/sibuch/- dpwr 30
4ra/4ra011205-IIp1- dof 0

55.fid dm nnn
ACQUISITION dmm c

sfrq 300.100 daf 200
tn H1 PROCESSING
at 1.995 wtfile
np 17984 proc ft
sw 4506.5 fn not used
fb not used
bs 16 werr
tpwr 54 wexp
pw 7.0 wbs
di 1.000 wnt
tof 0
nt 16
ct 16
alock n
gain not used

FLAGS
11 n
In n
dp Y

DISPLAY
sp -717.7
wp 4506.3
vs 151
sc 0
we 250
hzmm 18.03
Is 500.00
rfl 2899.7
rfp 2181.7
th 20
ins 3.000
nm cdc ph

12 11 10 9 8 7 6
y L-y

1.99.73
2.09

5 4 3 2 1 -0 -1 ppm

j I I
~-e~---..--s-/ t~LIL__--~--nc-..~l~,~~_______
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STANDARD 1H OBSERVE

expl stdlh

SAMPLE DEC. & VT
date Jul 18 2005 dfrq 300.
solvent CDC13 dn
ft le /data/export/- dpwr
home/slbuch/4ek/mar dotf
hat/edk-2-45-aceto- do

ne.fid dam
ACQUISITION dmf

sfrq 300.100 PROCESSING
tn HI vtfl lo
at 1.195 proc
np 17184 n not u
sw 4506.5
fb not used verr
bs 4 wexp
tpwr 54 WbS
pv 7.0 wnt
dl 1.000
tof 0
nt 20
ct 20
alocK n
gain not used

FLAGS
11 n
In n
dp y

DISPLAY
sp -719.8
wp 4500.3
vs 151
't 0
we 250
hzmu 18.03
is 500.00
rfl 720.1
rfp 0
th 20
Ins 1.000
am cdo ph

12 11 10 9 8

1.00

7 6

4.88 1.07
3.59

5 4 3 2 1 -0 -1 ppmn

0.06
0.44

A'
100
H1
30

nnn

200

ft
sed

I
ri I , I }--- ----- -- ---- -
i

-I --
I

i
~1Jv ~

' ' '

i, $



STANDARS PRTGCIM PAMETERw

pl S• s2pul

SAIPLE DEC, & VT
ACat Nov to 2015 etlq 12•.574

rolvnnt COC•I• en C13
l€* *irp Ipur 34

ACQto1lT•Al ear 14I18.1
ifrq 4*5•I141 da na
an Il I nm
at 3.277 diar 81100
np 555361 d•4q
WL 59114.6 6re 1.0
b ~o *i4ad htnw M
be it ecz
tp&t s6 StrqI a
pW 8~2 nZ2
dl 1 spwr2 1
lto 145sa. daft 0
frt IS d4n i
ct IS dtat C
0 1"m rI daf2 260
Ealrr ,not m 044042

FL.i•S dresl 1.
ii n haaO! Vi
in n GECM
dp y dlrql 3
he rwm d!

I!SPIAY dtWS I
sp -1Sas.s def3 4
vup 91S8- dm3 0

vs 151 dmda 9
se 4 dwf3 MH
we 250 diceS
h21m 43.34 dreiS 1.9
Is 818.95 hsom• n
rf s 46c 2 PtiaESSIlN
rrp 365.1 wltfI 4
th 7 proc fL
in 1,41 4•6 M534
Im adc oft eatb f

wart

,II

16 14 U21 8 6 4 2 -I ppm

1tI +S itL 18 59 l t)

A
- .. c. L..··~~ ___ 1__1_1~ -Y-.t. - +---

-zcL~

6~6~·?,

I
I i/1I

u *~



Ryan Altman II p 230

exp5 stdlh

SAMPLE
date Feb 16 2005
solvent COC13
file exp

ACQUISITION
sfrq 300.100
tn nH
at 1.995
np 17984
sw 4506.5
fb not used
bs 16
tpwr 54
pw 7.0
dl 1.000
tof 0
nt 16
ct 16
alock n
gain not used

FLAGS
il n
in n
dp y

DISPLAY
sp -716.8
wp 4506.3
vs 151
sc 0
wc 250
hzmm 18.03
is 500.00
rfl 2898.8
rfp 2181.7
th 20
ins 1.000
no cdc ph

DEC. & VT
dfrq 300.100
dn H1
dpwr 30
dof 0
dm nnn
dmm C
dmf 200

PROCESSING
wtfile
proc ft
fn not used

werr
wexp
wbs
wnt

J
12 11 10 9 8 7 6 5

1.00 1.06 2.17
0.95 4.14

! 3 2 1 -0 -1 pp----T-
3 2 1 -0 -1 ppm

.77-

-j I, - I
! ! d r i I I I I

I
i

- '- -----1-
I.
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STANDARD lH OBSERVE

9 8 7 6 5 4 3 2 1 ppm

0.89 2.91 1.83 2.95
0.96 0.93 3.00

--- . -4IIý



STANDARD 1H OBSERVE

expl stdlh

SAMPLE DEC. & VT
date Apr 11 2006 dfrq 300.100
solvent CDC13 dn H1
file exp dpwr 30

ACQUISITION dof 0
sfrq 300.100 dm nnn
tn H1 dmm C
at 1.995 dmf 200
np 17984 PROCESSING
sw 4506.5 wtfile
fb not used proc ft
bs 4 fn not used
tpwr 54
pw 7.0 werr
dl 1.000 waxp
tof 0 wbs
nt 16 wnt
ct 16
alock n
gain not used

FLAOS
11 n
in n
dp y

DISPLAY
sp -744.6
wp 4506.3
vs 151
sc 0
wc 250
hzmm 18.03
Is 500.00
rfl 744.9
rfp 0
th 30
ins 1.000
nm cdc ph

7 6 5 4 3 2

____.. · 1

11 10 9

;/I
1~9~3~

I,,

Q

.- I

i e

-----------------------------

I \--- L

t; - i I
12 1 -0 -1 ppm



STANDARD PROTON PARAMETERS

expl s2pul

SAMPLE
date Jul 25 2006
solvent CDC13
file exp

ACQUISITION
sfrq 500.235
tn H1
at 3.200
np 64000
sw 10000.0
fb not used
bs 4
ss 1I
tpwr 59
pw 9.8
dl 0
tof 1498.2
nt 16
Ct 16
alock n
gain not used

FLAGS
11 n
in n
dp y
hs nn

DISPLAY
sp -244.9
wp 4691.1
vs 151
sc 0
wc 250
hzrm 18.76
is 100.00
rfl 1046.5
rfp a
th 7
ins 3.000
na ph

DEC. & VT
dfrq 125.795
dn C13
dpwr 37
dof 0
dm nnn
dimm C
dmf 10000
dseq
dreS 1.0
homo n

PROCESSING
wtfile
proc ft
fn 131072
math f

werr
wexp
wbs
wnt

6 5 4.................. . -----
6 5 4

A "~" -

1 0 ppm8 7
r~-~~lr--------*··· ----:---------·:····-----~--1 ' !-- r

3 2

~T~

~

ti~A

I



STANDARD 1H OBSERVE

expl stdlh

SAMPLE
date Mar 13 2006
solvent CDC13
file exp

ACQUISITION
sfrq 300.100
tn H1
at 1.995
np 17984
sw 4506.5
fb not used
bs 4
tpwr 54
pw 7.0
dl 1.000
tof 0
nt 16
ct 16
alock n
gain not used

FLAGS
11 n
in n
dp y

DISPLAY
sp -141.9
wp 3025.6
vs 156
sc 0
we 250
hzmm 12.10
is 570.00
rfl 740.2
rfp 0
th 20
ins 9.000
nm cdC ph

DEC. & VT
dfrq 300.100
dn Hi
dpwr 30
dof 0
dm nnn
dmm c
daf 200

PROCESSING
wtfi le
proc ft
fn not used

werr
wexp
wbs
wnt

8

1.07 3.142.20
1.11 2.1%.21

5 4 3 2 1 0 ppm

9.00

- , .... • , -'--;" , • .,•, - - - • -,, . . . . . .



STANDARD PROTON PARAMETERS

expl sZpul

SAMPLE DEC
date Jul 25 2006 dfrq
Solvent COC13 dn
file exp dpwr

ACQUISITION dof
sfrq 500.235 dm
to 1H dmm
at 3.200 dmf1
np 64000 dseq
SW 10000.0 dres
fb not used homo
bs 4 PRO
SS 1 wtfile
tpwr 59 proc
pw 9.8 fn
dl 0 math
tof 1498.2
nt 16 werr
ct 16 wexp
alock n wbs
gain not used wnt

FLAGS
l n
In n
dp y
hs nn

DISPLAY
sp -235.6
wp 5440.1
vs 151
SC 0
wC 250
hzmm 21.76
is 100.00
rfl 1050.3
rfp 0th 7
Ins 2.000
nm ph

C. & VT
1251795

C13
37
0

nn
: C

10000

ICESSING

131172

10 9 7 6

0.65 3.12 0.77
0.70 0.73 0.77

r~Cb~ ~I

f

................. L

0 ppm

<

. ..... .............. ...

0.02



RAA IV 114

expl sepul

SAMPLE
date Jan 2 2006
Solvent COC13
file exp

ACQUISITION
sfrq 500.235
tn lI
at 3.200
np 64000
sw 10000.0
fb not used
bs 8
8s 1
tpwr 59
pw 9.8
dl 0
tot 1493.2
nt 16
ct 16
alock n
gain not used

FLAGS
11 n
in n
dp y
hs nn

DISPLAY
Sp -1043.6
Vp 100o0.0
VS 151
sc 0
vc 250
hzam 40.00
is 100.00
rfl 1043.6
rfp 0
th 7
ins 3.900
no ph

DEC. & VT
dfrq 125.795
dn C13
dpwr 37
dof 0
do nnn
dam c
dof 18006
dseq
dres 1.0
homo n

PROCESSING
wtftle
proc ft
fn 131072
math f

werr
waxp
wbs
wnt

. . . .. ....•... ............... . .. ... • . .. . . . . . .

16 14 12 10 8 6 4 2 -0 ppm

1.42 0.87 3.00
5.36 0.06 0.03

/
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Chapter Two

Orthogonal Selectivity in Palladium- and Copper-catalyzed
Reactions of Aryl Halides with Oxindoles

pKa= 18.5

H
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2.1 Introduction

In recent years, Pd- 1 and Cu-2 catalyzed nucleophilic substitution reactions of aryl halides

have been areas of intensive research. Our laboratory has been intimately involved in designing

and developing highly-efficient and user-friendly Pd- and Cu-based catalyst systems to cross-

couple aryl halides with a wide variety of nucleophiles, including amides3-4 and ketone enolate

derivatives.5-6

Generally, the Cu- and Pd-catalyzed arylation reactions of both linear and cyclic aliphatic

amides react at the more acidic N-H moiety as opposed to the less acidic C-H, position. For

instance, when reacting 2-pyrrolidinone with aryl halides, both Cu-diamine- and Pd-

biarylmonophosphine-based catalyst systems provide the N-aryl amide in excellent yield

(Scheme 1).34 Ongoing work in our and other laboratories7 has identified oxindole as a unique

substrate for chemoselective metal-catalyzed cross-coupling reactions with aryl halides. Due to

the identical acidities of the protons in positions C3 and NI (pKa = 18.5),8 the cross-coupling

reactions of oxindole with aryl halides might provide either the C-aryl or N-aryl products.

Scheme 1. Pd- and Cu-Catalyzed C- and N-Arylation of 2-Pyrrolidinone and Oxindole

pKa ~ 35 -

H

X-- -- + Cu or Pd Cat.

NH H
J X = I, Br (Cu)

pKa = 24 X = OTf, Br, CI, OTs (Pd)
pKa = 18.5

H
Pd Cat. X Cu Cat.

I 0 R
SNH C-Arylation H N-Arylation

pKa = 18.5 NR
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Importantly, NJ-aryl and C3-aryl oxindole products of the type generated from the

reactions described in this manuscript display interesting biological activities with therapeutic

applications (Figure 1).' In addition, the amide of the N-aryl oxindole can be cleaved to provide

access to a variety of derivatives of 2-(2-phenylamino)-phenyl)ethanoic acid non-steroidal anti-

inflammatory agents, such as Lumiracoxib'o and diclofenac."

Figure 1. Therapeutically

N/ Me

OMe

"GABAeric" Neurotransmitter
Inhibitor
Pfizer

Relevant C3-Aryl and N1-Aryl Oxindoles and Related Compounds

Me C02H  NHO2

F: Cl Cl,"( Cl

Lumiracoxib Diclofenac Antiproliferative Agent for MaxiPost
Novartis Generic the Treatment of Cancer Bristol-Myers Squibb

Hoffmann-La Roche

Herein, we describe improved reaction conditions for the Cu-catalyzed NI-arylation

reaction with aryl iodides and bromides, and general reaction conditions for the Pd-catalyzed C3-

arylation reaction of unprotected oxindoles with aryl chlorides and tosylates. Further, we report

computational studies that suggest reasonable explanations for the observed selectivity.

Figure 2. Ligands Employed for the Metal-Catalyzed C3- and N1-Arylation of Oxindole

I "
PCy2  ,N(H)Me

i-PrO OiPr 'N(H)Me

XPhos RuPhos CyDMEDA
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2.2 Results and Discussion

2.2.1 Palladium-Catalyzed C3-Arylation of Oxindole

The use of 1% Pd2(dba)3 and 5% XPhos (Figure 2) was found to facilitate the cross-

coupling of aryl chlorides with oxindoles unsubstituted at C3 using K2CO3 as the base in THF or

1,4-dioxane at temperatures ranging between 80 and 100 'C (Table 1). The use of bidentate or

other dialkylbiarylmonophosphine ligands provided low conversion of starting material and yield

of products. The Pd-catalyzed C3-arylation reaction of oxindoles with aryl chlorides tolerated a

variety of functional groups on the meta- and para-positions of the electrophile (entries 1-10);

however, ortho-substituted aryl chlorides provided low conversion of reactants (> 5%) even at

slightly elevated temperatures (up to 120 OC) with a variety of biarylmonophosphine ligands.

Under the standard reaction conditions, the use of 3-chlorobenzonitrile provided low yields of

coupled product due to partial hydrolysis of the nitrile functional group to an amide (entry 4).

This side reaction could be partially impeded by the addition of activated 4 A molecular sieves to

the reaction vessel. Using t-BuOH as a solvent, an unactivated aryl benzenesulfonate could be

successfully cross-coupled to provide the C-aryl product in modest yield (entry 5). Substrates

possessing substituents on the benzannulated backbone as well as on the nitrogen atom provided

more highly substituted products (entries 6-10). Using XPhos as a ligand, the reaction of a 3-

substituted oxindole was unsuccessful;7b however, using re-optimized reaction conditions

(RuPhos/NaOt-Bu/toluene), the cross-coupling reactions of 3-methyl- and 3-benzyl-oxindole

were successfully accomplished to generate quaternary stereocenters at the C3 positions to

produce racemic products (entries 11-12). In contrast to the previously reported catalyst systems

for the C3-vinylation of unprotected oxindoles and -arylation of protected oxindoles, which
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required strong bases such as KHMDS and LHMDS, respectively, for the reactions to proceed,7b-

C K2CO3 and NaOt-Bu were found to be suitable bases with our catalyst system.

Table 1. Pd-Catalyzed C3-Arylation of Oxindolesa
a

HN ClR
+-R2

R'

1% Pd2dba3, 5% XPhos

K2C03
THF or 1,4-dioxane

80-100 *C, 24 h

entry product

0
HN

OMe

HN CF3

3

CN
0

5•t-Bu

S N NMe 2

F

solvent temp. ("C) % yield entry product

O
HN CO 2Me

THF 80 92 7 3 /

CF3

1,4-dioxane 100 81 8 MeO 2C Me

THF 80 55C  10 N ON Me

t-BuOH 110 67 d  114 OMeMeN1,4-dioxane 100 8b0 1 29 F

NI

a Reactions Conditions: 1.0-1.2 mmol oxindole, 1.2-
mmol Pd2dba3, 0.050 mmol XPhos, 1.0 mL solvent,

solvent temp. (0C) % yield

THF 80 77

THF 80 63

THF 80 82

1,4-dioxane 80

toluene 100 90f

toluene 100 909

-1.0 mmol ArCI, 2.0 mmol K2CO3, 0.010
in a sealed tube under an Ar atmosphere.

Yields reported are an average of at least two runs determined to be > 95% pure by elemental
analysis or 1H NMR. b 3.0 mmol K2C0 3 . c 4 A mol Sieves. d From ArOSO 2Ph. ' K3PO4 used as
base. f From ArBr. RuPhos and NaOt-Bu employed as ligand and base. 9 h reaction time. g From
ArBr. RuPhos and NaOt-Bu employed as ligand and base. 20 h reaction time.
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222 Copper-Catalyzed N1-Arylation of Oxindole

The Cu-catalyzed N-arylation reactions of meta- and para-substituted aryl iodides

generally proceeded smoothly at temperatures ranging from 80 to 100 OC using 1-5% catalyst

loading, 4-10% CyDMEDA (Figure 2) as the ligand, K2CO3 as the base, and 1,4-dioxane as the

solvent (Table 2, entries 1-8). In these reactions, the C3-aryl product was not detected by GCMS

analysis of the crude reaction mixtures. Using this catalyst system, ortho-substituted aryl iodides

were unreactive, even at temperatures up to 150 °C in high boiling-point solvents. This serves to

reinforce the notion that ortho-substituted aryl halides can be quite difficult to activate in Cu-

catalyzed C-heteroatom bond-forming reactions. At 60-100 'C, the cross-coupling reaction of 1-

bromo-4-iodobenzene with oxindole provided a complex mixture of products; however, by

lowering the reaction temperature to 40 OC, the iodo-substituted product could be isolated in

acceptable yield (entry 3). The addition of activated 4 A molecular sieves to the reaction

mixtures was necessary for substrates containing hydroxide- or water-sensitive functional groups

(entries 4 and 7). As anticipated, substituents on the nucleophile were also tolerated (entries 6-7).

Aryl bromides also proved to be reactive in the Cu-catalyzed cross-coupling reactions

with oxindoles (entries 8-11), though higher catalyst loadings were necessary to ensure full

conversion of the substrates within a 24 h time period. Although the C3-aryl oxindole product

was not observed, up to 5% of the N1,C3-bis-arylated product (10% of aryl halide consumption)

was isolated in the reaction of 5-bromo-m-xylene (entry 9). A second common side product,

when using aryl bromides, was the reduced arene.
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Table 2. Cu-Catalyzed N -Arylation of Oxindolesa

Y% Cul, Z% L

K2C0 3 , 1,4-dioxane
40-100 "C, 8-24 h

entry product Y X Z temp. (°C) % yield entry product Y X Z temp. (0C) % yield

0

1 0 OMe

0
2

0

3

Q4 CN

5 N O

NO2

6 N

Me

a Reactions Conditions:

0
C 0

2Et
5 I 10 100 86 7 CI, N

0

1 1 4 100 94 8 N

5 I 10 40 61

5 I 10 80 7 2 b

1 I 4 80 85

0
Me

Me

0

10 _Q ·

0

11 6 --•i 
NMe

2

5 I 10 80 87b

10 Br 20 100 62

10 Br 20 100 71

10 Br 20 100 77

10 Br 20 100 72

5 I 10 80 69

1.0-1.2 mmol oxindole, 1.2-1.0 mmol ArI, 2.0 mmol K2CO3, 1.0 mL 1,4-
dioxane, in a sealed tube under an Ar atmosphere. Yields reported are an average of at least two
runs determined to be > 95% pure by elemental analysis or 'H NMR. b 4 A mol Sieves.

2.23 Computational Studies of Palladium- and Copper-Catalyzed Reactions

The catalytic cycle of Pd-catalyzed nucleophilic substitution reactions of aryl halides

involve three steps: 1) oxidative-addition; 2) transmetallation; 3) reductive-elimination (Scheme

2, Cycle A).1
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Scheme 2. Mechanisms of Pd- and Cu-Catalyzed Nucleophilic Substitution Reactions of Aryl
Halides

Nuc Cycle A Cycle B
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RKg Product Formation (
LIPd (U)
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Elimination Oxidativedi N i•-- R
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A
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Since oxindole does not participate in the oxidative addition step of the cycle, the

selectivity-controlling feature for the Pd-based catalyst system must involve either the

transmetallation or reductive-elimination steps. To gain further insight into the observed

selectivity, the relative energies and structures of various LPd(Ph)(oxindolate) complexes were

calculated by DFT methods.

In light of the experimental findings that catalysts derived from XPhos were the only

ones that produced high yields of the C3-arylation of oxindole product, it was critical to model

structures that contained the entire ligand without any approximations. The geometry of the

XPhos-Pd(Ph)(oxindolate) complex formed following transmetallation was minimized with the

Pd bound to either the nitrogen or a-carbon of the oxindole (Figure 3). This minimization was

performed with structures in which the Pd points towards or away from the lower biaryl ring.

Consistent with previous computational studies from our group,12 three-coordinate

Pd(II)/dialkylbiarylmonophosphine intermediates prefer the orientation shown in structures 1 and

2 with the Pd sitting above the lower biaryl ring. In both cases, the C-bound oxindolate was
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significantly higher in energy than the N-bound complex. This energy difference was 4.8

kcal/mol between 1 and 2 and 7.0 kcal/mol between 3 and 4.

Figure 3. Calculated Geometries
B3LYP a

.•F"''- .. .A•

and Energies of XPhos.Pd(Ph)(oxindolate)

\ P\
i-Pr., Pr Pd- i-Pr. Pr PdH

1 2

AErel= 0 kcal/mol 4.8 kcallmol

a Calculated at 298 K in THF.

3

5.9 kcal/mol

4

12.9 kcal/mol

/Pr

5

10.2 kcal/mol

.omplexes with

i-Pr. Pr Pd

-Pr

6

7.5 kcallmol

We then determined the energies of the K2-amidate (5,9), O-bound amidate and enolate

(6-7, 10-11), and q3-oxyallyl (8,12) structures as, they may be intermediates in the N to C

isomerization process (Figure 4). As expected, the three-coordinate O-bound enolate and amidate

structures are lower in energy when the Pd is pointing towards the lower ring. However, the four-

coordinate K2-amidate and r13-oxyallyl bound structures are lower in energy when the Pd is distal

to the lower ring.
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Figure 4. Calculated Geometries and Energies of the K2- 0- and q 3-oxyallyl-bound
XPhos-Pd(Ph)(oxindolate) Complexes with B3LYP.a,b

i-P~JPr Pd-~ i-r i-~~Pr Pd i-Pr -r Pd0*0

i-Pr i-Pr i-Pr
5 6 7 8

AErel= 5.6 kcal/mol 7.5 kcal/mol 10.2 kcal/mol 9.8 kcal/mol

Pd P
Pd

i-Pr i i-Pr
IttjTL

5-r I

Si-Pr
9 10 11 12

2.2 kcallmol 19.0 kcal/mol 18.4 kcal/mol 7.8 kcal/mol

a Calculated at 298 K in THF. b AEre, values are relative to complex 1 in Figure 3.

If the N-bound and C-bound structures exist in rapid equilibrium, then the barriers for

reductive elimination should be product determining. Thus, transition states for both C-C and C-

N reductive elimination processes were calculated. The mechanism for reductive elimination

from Pd-bound enolates has not been well studied, and could occur by different mechanisms

involving O-bound, C-bound, or rl3-oxyallyl Pd intermediates. Hartwig and Culkin 13 have put

forth circumstantial evidence in support of a simple reductive-elimination between an Yr-bound

enolate and the arene. However, these studies were primarily performed using bidentate ligands,

which may prevent q3-bound intermediates and relevant transition states. Several reports have

appeared, which indicate rl3-oxyallyl Pd intermediates may be involved in some Pd-enolate

based processes.14

Reasonable starting geometries for the transition states of enolate C-C reductive

elimination were arrived at by examining calculations reported by others for methyl-methyl
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reductive elimination from Pd.15 A prior publication by our group on the mechanism of aryl

amination provided us with reasonable starting geometries for amidate C-N reductive-

elimination. 12 We were then able to quickly find transition states for both C-C and C-N

reductive elimination towards and away from the lower biaryl ring (Figure 5). The AE* for 1-1-

TS was calculated to be 21.7 kcal/mol while the AE* for 2-.2-TS was significantly less at 14.5

kcal/mol. For the structures with the Pd swung away, the AE* of 3-m3-TS was calculated to be

20.9 kcal/mol and the AE* of 4-.4-TS was 12.6 kcal/mol. Although these barriers are lower than

when the Pd is pointed towards the lower biaryl ring, their absolute energies are much higher.

Therefore, it is unlikely that 3-TS and 4-TS contribute to the reaction course. We also attempted

to find a transition state for C-C reductive elimination, which proceeds through an r3 pathway,

but one could not be located.

Figure 5. Calculated Reductive-Elimination Transition States for XPhos-Pd(Ph)(oxindolate) with
B3LYPa,b

i rPd ,Lv 7  
iPPr Pd,.

Pr ': iPr
i PrO r DPr

1-TS 2-TS 3-TS 4-TS
AEre = 21.7 kcal/mol 19.3 kcal/mol 26.8 kcal/mol 25.6 kcal/mol

a Calculated at 298 K in THF. b AEre, values are relative to complex 1 in Figure 3.

Cu-catalyzed amidation reactions of aryl halides initiate by addition of the nucleophile to

a L2Cu(I)X complex to provide an L2Cu(I)amidate, followed by aryl halide activation and

subsequent product formation (Scheme 2, Cycle B).l -17 Although the Guo group has recently

published a computational study that calculates the transition states and intermediates of the
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catalytic cycle for the Goldberg reaction,18 this study only considered a mechanism based on an

insertion reaction between an L2Cu(I)(amidate) and an aryl halide to generate an L2Cu(III)

(Ar)(X)(amidate) species, and neglects to evaluate evidence that an electron-transfer mechanism

might be occurring, as suggested by Hida.19 Therefore, we will assume that the mechanism of the

rate-limiting aryl halide activation step is yet to be fully elucidated. According to this paradigm,

reaction of a molecule of oxindole with the CyDMEDA-CuI complex and base may provide

multiple regioisomeric products, which could react with aryl halides to provide the N-aryl and

C3-aryl products, respectively. In order to gain insight into the features that control the

selectivity of the reaction, the energies of relevant CyDMEDA-Cu(I)(oxindolate) complexes

were examined (Figure 6).

Figure 6. Calculated Geometries and Energies of CyDMEDA-Cu(Oxindolate) Complexes with
B3LYPa

-CNH CH3.,H
ýN \Cu CHaHO
CH Ui~cH zc1 3\N & CiH3

HN°

\CuH

H CH3 0

NH

Z 2 :: 4 Ho
13 14 15 16

AEre= 0 kcal/mol 14.1 kcallmol 9.7 kcal/mol 19.6 kcal/mol

a Calculated at 298 K.

As observed with the Pd-based catalyst system, the N-bound

(CyDMEDA)-Cu(oxindolate) 13 was found to be significantly lower in energy than both C3-

bound and O-bound structures. In this structure, the geometry around Cu is a distorted T-shape,

consistent with known neutral tricoordinate Cu(I) structures. 20 Interestingly, the calculation

predicts a hydrogen-bonding interaction between the carbonyl and one hydrogen of the amine

(O-H distance of 1.9 A). The C3-bound oxindolate 14 is significantly higher in energy by 14.1
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kcal/mol. It is noteworthy that the geometry about Cu is no longer planar but trigonal pyramidal

and equidistant to both nitrogen atoms. There also appears to be a hydrogen bond between the

carbonyl oxygen and amine hydrogen (O-H distance of 2.0 A). The O-bound amidate 15 and

enolate 16 are 9.3 kcal/mol and 19.2 kcal/mol higher in energy respectively than the N-bound

structure. We also optimized K2-amidate and r 3-oxyallyl bound structures but no reasonable

stationary points could be found.

2.2.4 Synthesis and Isolation of Diamine-Cu(I)-Oxindolate Complex

Although ligated-Cu(I)-amidate complexes relevant to the Goldberg reaction have been

generated and studied in situ, these species have not been isolated and characterized."2' Our

initial attempt to prepare the computationally predicted CyDMEDA-Cu-oxindolate complex (7)

involved reacting Cul with stoichiometric quantities of CyDMEDA, oxindole and K2CO3 (eq. 1).

Under these conditions, transmetallation did not occur, and a diamine-Cul dimer was formed.22

Even with the use of Ag 2CO 3 as a base to facilitate the removal of the halogen atom from copper,

13' was not observed. Complex 13' was successfully prepared by mixing equimolar quantities of

(Cu-mesityl) 5,, oxindole and CyDMEDA in toluene (eq. 2). The 'H NMR spectrum of this

species in both toluene-d8 shows a two-proton singlet signal at 3.20 ppm corresponding to the

C3-protons. No amide N-H peak was detected near 9 ppm. This complex proved to be sensitive

to oxygen, changing colors from off-white to blue upon exposure to the air.
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Scheme 3. Synthesis and Reactions of CyDMEDA-Cu(I)-Oxindolate Complex 13'

Me(H)N ,• K2CO3 or Ag2C0 3

H1 · Me(H)N,' 4D solvent, rt-100 "C

(1:1:1)

(1)

MeMe(H)N

+ O + McNt , rt I CyDMEDA-Cu-Oxindolate (2)(M: Me Me(H)Nt,' i toluene, rt
Me Me(1:1:1)

13' + (3)
/ OMe 1,4-dioxane

rt, 30 min
10 equiv 89% (GC)

OMe

The reactivity of 13' was examined to evaluate the competency of this species in

amidation reactions of aryl halides. Complex 13' was reacted with an excess of 4-iodoanisole at

room temperature to provide the N-aryl oxindole in 89% yield (eq. 3). The catalytic activity of

13' was compared to the activity of the CuI/CyDMEDA combination generally employed in

amidation reactions of aryl halides3 by monitoring the formation of the N-aryl product using in-

situ IR spectroscopy. A graphical plot of product formation vs. time for the cross-coupling

reaction of 4-iodoanisole with oxindole in 1,4-dioxane at 80 OC at 5% catalyst loading (1:1,

metal:ligand) using 13' or CuI/CyDMEDA demonstrated that both catalyst precursors were

equally efficient at promoting the amidation process (Figure 7).
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Figure 7. Catalytic Competence of 13' Compared to CuI/CyDMEDAa

I , 5% Cu, 5% CyDMEDA O

N·NH - OMe K2CO 3, 1,4-dioxane
80 °C

OMe

100

90

80

70

60

20

0

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00
Time (h)

" Reaction Conditions: 1.0 mmol Oxindole, 2.0 mmol 4-iodoanisole, 2.0 mmol K2CO 3 , and 1.0
mL 1,4-dioxane, under Ar at 80 *C. (0) 0.050 mmol 13'. (*) 0.050 mmol Cul and 0.050 mmol
CyDMEDA. Reactions monitored by in situ IR spectroscopy. Product observed at 1514 nm'.
Data recorded at 2 min intervals.

Complex 13' proved difficult to recrystallize, due to the propensity of the complex to

disproportionate into Cu(0) and Cu(II) under a variety of standard recrystallization techniques.24

However, crystals of 13', suitable for X-Ray analysis, were obtained by recrystallizing the

material from a saturated solution of acetonitrile, layered with pentane at -15 OC in the glovebox.

The material obtained in this fashion provided an unexpected dinuclear Cu-complex, with

disproportionated ligands (Figure 8). While to CyDMEDA ligands were bound to Cu(1) in a

pseudo-tetrahedral arrangement (CyDMEDA bite angle = 85.0 *, average bond length = 2.05 and

2.12 A), two anionic oxindole ligands were bound to Cu(2) in a nearly linear geometry (bond

angle = 176.3 0, average bond length = 1.85 A). No hydrogen-bonding interactions were present
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in the complex. The methyl groups on each diamine ligand were arranged in a trans fashion,

presumably to minimize steric interactions.

Figure 8. ORTEP Diagrama and Rendition of Crystallized 13'a

" ORTEP Diagram with thermal ellipsoids at 30% probability

2.2.5 Discussion

In metal-catalyzed amidation reactions of aliphatic amides, such as 2-pyrrolidinone,

coordination and deprotonation of the nucleophile during the transmetallation step of the

catalytic cycle occur at the more acidic N-H position as opposed to the less acidic C-H, position

(Scheme 1). In the case of oxindole, both the N-H and the C-H, protons are significantly

acidified due to the conjugation of the deprotonated anion with the aromatic ring. Further, the

predisposition for the anion to reside on the more electronegative nitrogen atom is overcome by

the aromatic stabilization gained from isomerization of the anion to generate an enolate.8 Thus, a

1:1 ratio of amidate:enolate exists in solution. As such, the difference in reactivity between

typical aliphatic amides and oxindole demonstrated by Cu- and Pd-based catalyst systems might

not be entirely unexpected.

Since a weak base was employed (K2CO3), the large pKa difference (~5) between
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oxindole and the base indicates that appreciable quantities of an anionic amidate species do not

exist in solution; thus, an intermolecular ligand exchange between an oxindolate anion and

XPhos-Pd(Ar)(C1) 17 is unlikely. As such, it is likely that the oxindole is further acidified by

reversible coordination of Pd(II) intermediate 17 to the oxindole carbonyl to form 18 (Scheme

4). Deprotonation of the acidified oxindole should occur at N as opposed to C3, since

deprotonation is kinetically faster from N-H than from C-H bonds, in which rehybridization

must occur at the carbon atom."5 Thus, deprotonation of 18 would initially lead to 6, followed by

an intramolecular migration of Pd from O to either N or C. If intramolecular isomerization is the

preferred pathway, then a plausible reaction sequence to form a C-bound Pd enolate that does not

involve formation a Pd-N bond may be 17-18-6-*7--8-'2. If a Pd-N bond does transiently

form, then the reaction pathway might proceed as such, 17-18--6--55-1-5 67--8--2.

Scheme 4. Transmetallation of oxindole to XPhos-Pd(Ph)(C1).

~i5 +i-Pr. P
+ CI

i-Pr

+ B'HCI

17 18 6

For the Pd-catalyzed C-arylation reaction of oxindole with aryl halides, transmetallation

of a molecule of oxindole to the LtPd(Ar)(X) complex can provide multiple isomeric species.

Two of these isomers, namely 1 and 2, would reductively eliminate to provide the N-aryl and C3-

aryl oxindole products, respectively. The energy profile illustrating the reaction course with the

relative energies of the key intermediates and transition states is shown in Figure 9. The C3-aryl

product, which is exclusively observed in the Pd-catalyzed reaction, must result from a rapid
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reductive elimination from the higher-energy Pd-C-bound enolate, 2, as opposed to the more-

stable Pd-N-bound amidate, 1. Therefore, the selectivity demonstrated by the Pd-catalyzed

reaction is kinetically governed according to the Curtin-Hammett principle? 6 The 2.4 kcal/mol

difference in energy between 1-TS and 2-TS is consistent with the observed selectivity of the

catalytic reaction. This difference in energy is likely a reflection of the relative

electronegativities of nitrogen and carbon and the overlap of the relevant molecular orbitals with

those of Pd?7

Figure 9. Energy Diagram for XPhos.Pd(Ph)(oxindolate) Reductive-elimination.

Q4T
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For the Cu-catalyzed N-arylation reaction, the computational studies of the relevant

CyDMEDA-Cu(oxindolate) species suggest that N-bound species 13 is favored by 14.1 kcal/mol
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over the C-bound isomer 14 (Scheme 5). Therefore, the selectivity observed for the Cu-catalyzed

N-arylation of oxindole might be governed by two different factors: (1) aryl halide activation

from 13 proceeds faster than from 14, or (2) aryl halide activation proceeds faster than the

isomerization process. If the first factor is selectivity-determining, there could be a dynamic

equilibrium in solution between 13 and 14. The nature of the aryl halide activation step in Cu-

catalyzed C-heteroatom bond-forming substitution reactions of aryl halides is not well

understood."7-19 Kinetic studies for the reaction of 2-pyrrolidinone with 4-iodo-m-xylene estimate

AG* to be 19.4 kcal/mol.' 7 Therefore, it is plausible that the C-bound enolate does exist in small

portions in solution, and that the selectivity is governed by the aryl halide activation processes

(k3 > k4). If the second factor is selectivity-determining, then the absence of a low energy

pathway for the interconversion of 13 and 14 determines the reaction's outcome. A better

understanding of the mechanism of aryl halide activation is required to properly estimate the

transition state energies to gain a full understanding for the observed chemoselectivity of the Cu-

catalyzed reaction.

Scheme 5. Mechanistic Considerations for the Cu-Catalyzed N-Arylation of Oxindole.
H H AE = 14.1 Cu(CyDMEDA)

(CyDMEDA)CuX kcalmol O

Base N
H' Cu(CyDMEDA) H

13 14

ArX k3  ArX k4

H Ar

Ar H

N-Aryl Product C-Aryl Product
Observed Not Observed

The stoichiometric (eq. 3) and catalytic (Figure 7) reactions of 4-iodoanisole with
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isolated complex 13' confirm that 13' is an active coupling agent possessing the nucleophilic

component to react with an aryl halide, thus providing evidence that 13 may be a possible

intermediate of the catalytic cycle.

Although the crystal structure of 13' does not match the computationally predicted

complex 13, several interesting features of 13' are worth considering. The linear geometry of the

Cu(2)(oxindolate) 2 species is consistent with a previously reported crystal structure of a linear

anionic [Cu{N(SiMePh2)2}2]- bis-amide complex containing tetrahedral-ligated Li-based cation, 28

and suggests that Cu(2) in 13' exist in the +1 oxidation state. However, the "cation" of 13'

contains a transition metal-based species, and thus allows for speculation as to the oxidation

states of each Cu atom of the complex. Although disproportionation of the Cu atoms could

generate a Cu(O)(CyDMEDA) 2 complex and the corresponding Cu(II)(oxindolate) 2 species, the

linear geometry of the Cu-bis-oxindolate species suggest that Cu(2) is a Cu(I) species.28 Further,

disproportionation of the Cu atoms is unlikely, as the tetrahedral Cu(O)(CyDMEDA) 2 complex

would possess 19 valence shell electrons.

The crystal structure obtained for 13' may be misleading, and likely does not accurately

represent the structure of the active complex. While Cu-catalyzed amination reactions of aryl

halides using diamine ligands are 1" order in Cu,17 a reaction based on a bimetallic Cu-complex

would involve a reaction that is 2nd order in Cu. Therefore, an active species based on the

structure of 13 is more likely. At a bare minimum, the crystallization of 13' reconfirms the

understanding of the lability of the amide and diamine ligands in solution,2' and reminds us that

crystal structures might not always adequately represent the actual structures of active catalysts

in solution.
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2.3 Conclusion

In summary, we have reported efficient and complementary Pd- and Cu-based catalyst

systems for the C3- and N-arylation reactions of unprotected oxindoles using aryl halides. The

use of a weak base allows for the presence of a wide variety of functional groups and substitution

patterns that are not tolerated with stronger bases.7b-c Theoretical calculations suggest that for

both the Pd- and Cu-based catalyst systems, the respective metallated oxindoles have a strong

preference for the oxindole moiety to coordinate as an N-bound amidate as opposed to a C3-

bound enolate. For the Pd-based catalyst system, the energy difference between the Pd-amide

and Pd-enolates is ~ 5 kcal/mol, however, the selectivity is governed by a rapid C-C reductive

elimination compared to C-N reductive elimination based on calculated transition state energies.

For the Cu-based catalyst system, the preference for the metal to bind at N1 is stronger (- 14

kcal/mol). In this case, the selectivity might be governed by rapid aryl halide activation from the

diamine-Cu(I)-amidate complex compared to the diamine-Cu(I)-enolate. Alternatively, a low

energy pathway for Cu to isomerize from N to C may not exist, and the C-bound enolate might

never form. The implications of this study should be useful for those chemists interested in

understanding the inherent differences between Pd- and Cu-based catalyst systems for

nucleophilic substitution reactions of aryl halides.

2.4 Experimental Procedures

All reactions were carried out in resealable test tubes with Teflon septa under a dry argon

or nitrogen atmosphere. Copper(I) iodide (98%) and Pd2dba3 were purchased from Strem.

Copper(I) mesityl was prepared according to literature precedent and stored in a -20 °C freezer in

a nitrogen-filled glovebox.29 Diamine ligands were purchased from Aldrich and used without
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further purification. XPhos was generously provided by Saltigo. RuPhos was prepared according

to literature precedent.30 Anhydrous K2CO3 (99%) and NaOt-Bu (98%) were purchased from

Aldrich and stored under nitrogen in a Vacuum Atmospheres glovebox. Small portions (~5 g)

were removed from the glovebox in glass vials, stored in the air in a desiccator filled with

anhydrous calcium sulfate, and weighed in the air. Oxindoles were purchased from commercial

sources and used without further purification. Aryl halides were purchased from commercial

sources and, when necessary, filtered through neutral alumina or distilled. Anhydrous 1,4-

dioxane was purchased from Aldrich in Sure-Seal@ bottles. Anhydrous THF was purchased from

J. T. Baker in CYCLE-TRAINER@ solvent delivery kegs and vigorously purged with argon for 2

h. The solvent was further purified by passing it through two packed columns of neutral alumina

under argon. The solvents were transferred by syringe from the solvent purification system or bottle

to the reaction flask. Flash column chromatography was performed using a Biotage SP4 Flash

Purification System using KP-Sil silica cartridges. In all cases, dichloromethane was used to

transfer the crude reaction material onto the silica gel samplet, which was subsequently air-dried

before usage. A gradient elution technique was performed, based on the recommendation from

the Biotage TLC Wizard. In situ monitoring of reactions using infrared spectroscopy was

performed with a Mettler Toledo iC10 ReactIR instrument equipped with a CiFiber with a

diamond-tipped probe.

Yields reported in the publication are of the isolated material and represent an average of

at least two independent runs. Yields reported in the supporting information refer to a single

experiment. Compounds described in the literature were characterized by comparing their 'H

NMR and '3C NMR spectra, and melting points (m.p.) to the previously reported data; their

purity was confirmed by gas chromatography (GC) or elemental analysis. GC analyses were

performed on a Hewlett Packard 6890 instrument with an FID detector and a Hewlett Packard 10
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m x 0.2 mm i.d. HP-1 capillary column using dodecane as an internal standard. Elemental

analyses were performed by Atlantic Microlabs, Inc., Norcross, GA. Previously unknown

compounds were synthesized, purified and analyzed from a single run and were then repeated to

determine an average yield. They were characterized by 'H NMR, 13C NMR, m.p., IR and

elemental analysis. For those compounds that did not give a satisfactory elemental analysis, a

copy of their 1H NMR spectra is included. 'H NMR and 13C NMR spectra were recorded on

Varian 500 MHz instruments with chemical shifts reported relative to the deuterated solvent or

TMS. IR spectra were recorded on a Perkin-Elmer System 2000 FT-IR instrument for all

previously unknown compounds (KBr disc). Melting points (uncorrected) were obtained on a

Mel-Temp II capillary melting point apparatus.

All calculations were performed with the Gaussian '0331 suite of programs. DFT

calculations employed the B3LYP functional32 using the 6-31G(d) basis set for all atoms in the

Cu complexes. Due to the size of the XPhos-Pd complexes, geometry optimization was first

performed using a two-layered ONIOM33 calculation (B3LYP/6-3 g(d):UFF) with the oxindole,

phenyl, Pd and P at a high level and the rest of the ligand at the low level. The resulting

structures were then reoptimized using all atom DFT B3LYP/6-31g(d) with the LANL2DZ basis

set and the Hay-Wadt effective core potential34 (ECP) for Pd. To obtain the final AE values,

single point energy calculations were performed with the 6-311g(d,p) basis set with implicit

solvation included. Frequency calculations were performed on all optimized structures to

confirm that the minima had no negative frequencies and transition states had a single imaginary

frequency. The Gibbs free energies were calculated at 298.15 K and 1 atm.

General procedure for the C3-arylation of oxindoles
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An oven-dried screw-cap test tube was charged with Pd2dba3 (0.010-0.020 mmol), XPhos (0.04-

0.08 mmol), oxindole (1.00 mmol), aryl halide (1.20 mmol, if solid), K2CO3 (2.0 mmol), and a

magnetic stir bar. The reaction vessel was fitted with a rubber septum. The test tube was

evacuated and back-filled with dry argon twice. Aryl halide (1.20 mmol, if liquid), and solvent

(0.50-1.0 mL) were then added successively. The rubber septum was removed and the reaction

tube was quickly sealed with a Teflon-lined septum. The vessel was immersed in a pre-heated oil

bath and stirred vigorously until TLC and/or GC analysis of the crude reaction mixture indicated

that the limiting reagent had been completely consumed. The reaction mixture was cooled to

room temperature, diluted with dichloromethane (15 mL), and filtered through a plug of celite,

eluting with additional ethyl acetate (50 mL). The filtrate was concentrated and the resulting

residue was purified by flash chromatography (hexanes/ethyl acetate or

hexanes/dichloromethane) to provide the desired product.

General procedure for the N1-arylation of oxindoles

An oven-dried screw-cap test tube was charged with Cul (0.010-0.10 mmol), oxindole (1.00

mmol), aryl halide (1.20 mmol, if solid), K2CO3 (2.0 mmol), and a magnetic stir bar. The

reaction vessel was fitted with a rubber septum. The test tube was evacuated and back-filled with

dry argon. Aryl halide (1.20 mmol, if liquid), rac-trans-N,N'-dimethylcyclohexane-1,2-diamine

(0.040-0.20 mmol) and 1,4-dioxane (0.50-1.0 mL) were then added successively. The rubber

septum was removed and the reaction tube was quickly sealed with a Teflon-lined septum. The

vessel was immersed in a pre-heated oil bath and stirred vigorously until TLC and/or GC

analysis of the crude reaction mixture indicated that the limiting reagent had been completely

consumed. The reaction mixture was cooled to room temperature, diluted with ethyl acetate (15
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mL), and filtered through a plug of silica, eluting with additional ethyl acetate (50 mL). The

filtrate was concentrated and the resulting residue was purified by flash chromatography

(hexanes/ethyl acetate) to provide the desired product.

Experimental procedures for compounds in Table 1

OMe

H

3-(4-methoxyphenyl)indolin-2-one (entry 1)

The general procedure was followed using Pd2dba3 (9.1 mg, 0.010 mmol), XPhos (24 mg, 0.050

mmol), K2CO3 (0.28 g, 2.0 mmol), 4-chloroanisole (128 mg, 1.20 mmol), and oxindole (133 mg,

1.00 mmol) with THF (1.0 mL) as solvent for 24 h at 80 *C. Isolation and chromatographic

purification (hexane / ethyl acetate) afforded the title compound as white solid (226 mg, 94%).

'H NMR (500 MHz, CDCl3) 8 9.53 (s, 1H), 7.25-6.86 (m, 8H), 4.60 (s, 1H), 3.80 (s, 3H). 13C

NMR (125 MHz, CDCI3) 8 179.7, 159.2, 142.0, 130.1, 129.7, 128.7, 128.5, 125.3, 122.8, 114.6,

110.3, 55.4, 52.2. m.p. 161-163 *C. (Lit. 163-165 *C)?5

/ \ CF3

H

3-(3-(trifluoromethyl)phenyl)indolin-2-one (entry 2)

The general procedure was followed using Pd2dba3 (9.1 mg, 0.010 mmol), XPhos (24 mg, 0.050

mmol), K 2CO3 (0.28 g, 2.0 mmol), (136 [L, 1.00 mmol), and oxindole (146 mg, 1.10 mmol)

with 1,4-dioxane (1.0 mL) as solvent for 24 h at 100 *C. Isolation and chromatographic

purification (hexane / ethyl acetate) afforded the title compound as white solid (228 mg, 82 %).
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'H NMR (500 MHz, CDCl3) 8 9.29 (s, 1H), 7.58 (d, 1H, J = 7.5 Hz), 7.52 (s, 1H), 7.47 (t, 1H, J

= 7.8 Hz), 7.28 (td, 1H, J = 0.6 Hz, 7.8 Hz), 7.12 (d, 1H, J = 7.3 Hz), 7.07 (m, 1H), 6.96 (d, 1H,

J = 7.9 Hz), 4.71 (s, 1H). 13C NMR (125 MHz, CDCl3) 8 178.3, 141.9, 137.6, 132.2, 131.4,

129.6, 129.0, 128.7, 128.1, 125.5, 125.4, 124.8, 123.2, 110.6, 52.5. IR (KBr disc, cm -') 3226,

1712, 1621, 1472, 1332, 1221, 1167, 1127, 1075, 751, 700, 671, 592. Anal. Calc. for

C15HIoF3NO: C 64.98, H 3.64. Found: C 65.08, H 3.89. m.p. 169-171 *C.

OH

H

3-(4-hydroxyphenyl)indolin-2-one (entry 3)

The general procedure was followed using Pd2dba3 (9.1 mg, 0.010 mmol), XPhos (24 mg, 0.050

mmol), K2CO3 (0.42 g, 3.0 mmol), (129 mg, 1.00 mmol), and oxindole (160 mg, 1.20 mmol)

with 1,4-dioxane (1.0 mL) as solvent for 24 h at 100 *C. After cooling to room temperature, the

reaction mixture was dissolved in 2M HCI (5mL) and extracted with EtOAc (3 x 15 mL). The

combined organic fractions were dried over MgSO4 and concentrated. The residue was stirred in

5 mL CH2CI2 to dissolve the soluble impurities. The product was then isolated by filtration and

washed with hexane to provide the title compound as an orange solid (240 mg, 90%). 'H NMR

(500 MHz, CD3OD) 8 7.13 (tt, 1H, J = 0.9, 7.6 Hz), 6.98 (m, 1H), 6.92-6.89 (m, 3H), 6.85 (d,

1H, J = 7.8 Hz), 6.67-6.89 (m, 2H), 3.27 (s, 1H). 13C NMR (125 MHz, CD3OD) 8 180.7, 157.3,

143.0, 131.4, 130.3, 128.9, 128.5, 125.7, 123.3, 116.4, 110.6, 54.4. IR (KBr disc, cmn ') 3266,

1700, 1616, 1559, 1541, 1512, 1471, 1219, 824, 751. m.p. 234-239 *C.
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CN

H

4-(2-oxoindolin-3-yl)benzonitrile (entry 4)

The general procedure was followed using Pd2dba3 (9.1 mg, 0.010 mmol), XPhos (24 mg, 0.050

mmol), K2CO3 (0.28 g, 2.0 mmol), 4-chlorobenzonitrile (166 mg, 1.20 mmol), oxindole (133 mg,

1.00 mmol), and 200 mg flame activated 4A mol sieves with THF (1.0 mL) as solvent for 24 h at

80 *C. Isolation and chromatographic purification (hexane / ethyl acetate) afforded the title

compound as white solid (135 mg, 58 %). 1H NMR (500 MHz, CDCl3) 8 9.29 (s, 1H), 7.66-7.64

(m, 2H), 7.38-7.36 (m, 2H), 7.31-7.28 (m, 1H), 7.12-7.06 (m, 2H), 6.97 (d, 1H, J = 7.8 Hz), 4.71

(s, 1H). 13C NMR (125 MHz, CDC13) 8 177.7, 141.9, 132.9, 129.5, 129.2, 128.2, 125.4, 124.7,

123.3, 118.7, 111.8, 110.6, 52.7. IR (KBr disc, cm-') 3250 (br), 2230, 1711, 1620, 1471, 1328,

1219, 1097, 1019, 914, 818,752,678. m.p. 176-178 *C.

t-Bu

H

3-(4-tert-butylphenyl)indolin-2-one (entry 5)

The general procedure was followed using Pd2dba3 (9.1 mg, 0.010 mmol), XPhos (24 mg, 0.050

mmol), K2CO3 (0.28 g, 2.0 mmol), 4-t-butyl-4-methylbenzenesulfonate (334 mg, 1.10 mmol),

and oxindole (133 mg, 1.00 mmol) with t-BuOH (1.0 mL) as solvent for 24 h at 80 *C. Isolation

and chromatographic purification (hexane / ethyl acetate) afforded the title compound as white

solid (164 mg, 64%). 'H NMR (500 MHz, CDCl3) 6 9.21 (s, 1H), 7.38-7.35 (m, 2H), 7.23 (t, 1H,

J = 7.8 Hz), 7.21-7.13 (m, 3H), 7.02, (1H, td, J = 7.9, 1.0 Hz) 6.88 (d, 1H, 7.8 Hz), 4.62 (s, 1H),
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1.31 (s, 9H). 13C NMR (125 MHz, CDCl3) 8 150.6, 141.9, 133.5, 130.0, 128.5, 128.2, 126.1,

125.4, 122.8, 110.2, 52.4, 34.9, 31.5. IR (KBr disc, cm-1) 3211 (br), 2963, 1709, 1620, 1515,

1471, 1328, 1269, 1220, 1018, 910, 818, 751, 677, 564. m.p. 170-172 *C.

/ \ NMe2

F

H

3-(3-(Dimethylamino)phenyl)-5-fluoroindolin-2-one (entry 6)

The general procedure was followed using Pd2dba3 (9.1 mg, 0.010 mmol), XPhos (24 mg, 0.050

mmol), K2CO3 (0.28 g, 2.0 mmol), (171 mg, 1.10 mmol), and 5-fluorooxindole (157 mg, 1.00

mmol) with 1,4-dioxane (1.0 mL) as solvent for 24 h at 100 *C. Isolation and chromatographic

purification (hexane / ethyl acetate) afforded the title compound as white solid (203 mg, 75 %).

1H NMR (500 MHz, CDCl3) 8 9.44 (s, 1H), 7.22 (dd, 1H, J = 7.5, 8.2 Hz), 6.94-6.82 (m, 3H),

6.69 (dd, 1H, J = 2.3, 5.9 Hz), 6.56 (t, 1H, J = 1.6 Hz), 6.50 (d, 1H, J = 7.6 Hz), 4.57, (s, 1H),

2.94 (s, 6H). 13C NMR (125 MHz, CDCl3) 8 180.0, 159.8, 151.7, 138.4, 137.4, 132.4, 132.3,

130.4, 116.9, 115.3, 113.7, 113.1, 112.7, 111.3, 54.4, 41.2. IR (KBr disc, cmn 1) 3219 (br), 3085,

2877, 2808, 1712, 1601, 1501, 1486, 1356, 1302, 1231, 1194, 1126, 999, 910, 815, 761, 732,

694, 592. Anal. Calc. for C16H15FN20: C 71.10, H 5.59. Found: C 70.87, H 5.61. m.p. 126-128

0C.

Methyl 3-(2-oxo-5-(trifluoromethyl)indolin-3-yl)benzoate (entry 7)

The general procedure was followed using Pd2dba3 (9.1 mg, 0.010 mmol), XPhos (24 mg, 0.050

mmol), K2CO 3 (0.28 g, 2.0 mmol), methyl 3-chlorobenzoate (153 [iL, 1.10 mmol), and 5-
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trifluoromethyloxindole (120 mg, 1.00 mmol) with THF (2.0 mL) as solvent for 24 h at 80 *C.

Isolation and chromatographic purification (dichloromethane / ethyl acetate, 1:0 - 9:1) afforded

the title compound as a slightly yellow foam (265 mg, 79%). 'H NMR (500 MHz, CDCl3) 8 9.94

(s, 1H), 8.01 (dt, 1H, J = 1.4, 7.8 Hz), 7.92 (t, 1H, J = 1.7 Hz), 7.52 (dt, 1H, J = 0.9, 8.2 Hz),

7.45 (m, 1H), 7.39 (dt, 1H, J = 1.4, 7.6 Hz) 7.34 (s, 1H), 7.01 (d, 1H, J = 8.2 Hz), 4.74 (s, 1H),

3.90 (s, 3H). 13C NMR (125 MHz, CDCl3) 8 178.9, 166.8, 145.0, 136.0, 133.1, 131.3, 129.9,

129.8, 129.6, 129.5, 126.6, 125.6, 122.3, 121.8, 110.5, 52.5, 36.3. IR (KBr disc, cm-') 3256,

2957, 1722, 1631, 1499, 1415, 1330, 1303, 1264, 1221, 1159, 1117, 1060, 91,0 829, 732, 695,

635, 543. m.p. 132-136 *C.

Me

H
CO2 Me

methyl 2-oxo-3-p-tolylindoline-7-carboxylate (entry 8)

The general procedure was followed using Pd2dba3 (9.1 mg, 0.010 mmol), XPhos (24 mg, 0.050

mmol), K2CO3 (0.28 g, 2.0 mmol), 4-chlorotoluene (130 [L, 1.10 mmol), and methyl oxindole-

7-carboxylate (191 mg, 1.00 mmol) with THF (2.0 mL) as solvent for 24 h at 80 *C. Isolation

and chromatographic purification (hexane / ethyl acetate) afforded the title compound as a white

solid (160 mg, 57%). 1H NMR (500 MHz, CDCl3) 8 9.22 (s, 1H), 7.86 (dt, 1H, J = 0.9, 8.1 Hz.),

7.29 (dd, 1H, J = 0.5, 7.3 Hz), 7.16 (d, 2H, J = 7.9 Hz), 7.01-7.03 (m, 3H), 4.60 (s, 1H), 3.96 (s,

3H), 2.34 (s, 3H). 13C NMR (125 MHz, CDCI3) 8 177.4, 166.6, 144.3, 137.7, 133.0, 131.1, 129.9,

129.8, 129.2, 128.4, 122.1, 111.6, 52.4, 51.5, 21.3. IR (KBr disc, cm' -1) 3267 (br), 3024, 3004,

2952, 1707, 1608, 1514, 1454, 1430, 1312, 1285, 1198, 1133, 1060, 993, 941, 916, 804, 774,

753, 737, 661, 496,460. m.p. 155-163 *C.
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OMe

N

Me

3-(4-methoxyphenyl)-1-methylindolin-2-one (entry 9)

The general procedure was followed using Pd2dba3 (9.1 mg, 0.010 mmol), XPhos (24 mg, 0.050

mmol), K2CO3 (0.28 g, 2.0 mmol), 4-chloroanisole (134 piL, 1.00 mmol), and 1-methyl oxindole

(147 mg, 1.10 mmol) with THF (1.0 mL) as solvent for 24 h at 80 *C. Isolation and

chromatographic purification (hexane / ethyl acetate) afforded the title compound as white solid

(201 mg, 79%). 'H NMR (500 MHz, CDCl3) 8 7.34 (tt, 1H, J = 0.8, 7.6 Hz), 7.20-7.12 (m, 4H),

7.08 (dt, 1H, J = 0.8, 8.5 Hz), 9.91-6.81 (m, 3H), 4.57 (s, 1H), 3.79 (s, 3H), 3.26 (s, 3H). 13C

NMR (125 MHz, CDCl3) 8 176.5, 159.2, 144.6, 129.6, 129.2, 128.8, 128.5, 125.2, 122.8, 114.5,

108.3, 55.5, 51.4, 26.6. Anal. Calc. for Ci6HI5NO2: C 75.97, H 5.97. Found: C 75.58, H 6.00.

m.p. 85-88 *C. (Lit. 90-91oC). 36

1-phenyl-3-(3-(phenylcarbonyl)phenyl)indolin-2-one (entry 10)

The general procedure was followed using Pd2dba3 (9.1 mg, 0.010 mmol), XPhos (24 mg, 0.050

mmol), K3PO4 (0.42 g, 2.0 mmol), 3-chlorobenzophenone (217 mg, 1.00 mmol), and 1-

phenyloxindole (251 mg, 1.20 mmol) with 1,4-dioxane (1.0 mL) as solvent for 24 h at 80 *C.

Isolation and chromatographic purification (hexane / ethyl acetate) afforded the title compound

as white solid (341 mg, 88 %). 'H NMR (500 MHz, CDC13) 8 7.95-7.81 (m, 3H), 7.75 (dt, 1H, J

= 1.6, 7.4 Hz), 7.62-7.41 (m, 10H), 7.30-7.25 (m, 2H), 7.12 (td, 1H, J = 0.8, 7.5 Hz), 6.90 (d,
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1H, J = 7.8 Hz), 4.89 (s, 1H). 13C NMR (125 MHz, CDCl3) 6 196.5, 175.0, 144.6, 138.3, 137.5,

137.3, 134.5, 132.7, 132.6, 130.4, 130.3, 129.8, 129.7, 129.0, 128.8, 128.5, 128.4, 128.1, 126.8,

125.5, 123.5, 109.9, 52.1. IR (KBr disc, cmf ') 1722, 1658, 1612, 1596, 1500, 1465, 1369, 1320,

1283, 1219, 1176, 911, 754, 722, 714, 698, 603. Anal. Calc. for C27H19NO2: C 83.27, H 4.92.

Found: C 83.62, H 4.92. m.p. 133-135 *C.

Me

H

3-(3-methoxyphenyl)-3-methylindolin-2-one (entry 11)

The general procedure was followed using Pd2dba3 (9.1 mg, 0.010 mmol), RuPhos (23 mg, 0.050

mmol), NaOt-Bu (0.20 g, 2.0 mmol), 3-bromoanisole (152 RxL, 1.20 mmol), and 3-

methyloxindole (146 mg, 1.00 mmol) with toluene (1.0 mL) as solvent for 9 h at 100 *C.

Isolation and chromatographic purification (CH2C12 / ethyl acetate) afforded the title compound

as yellow solid (228 mg, 90 %). 1'H NMR (500 MHz, CDCl3) 8 9.60 (s, 1H), 7.26-7.20 (m, 2H),

7.13 (td, 1H, J = 0.6, 7.5 Hz), 7.04 (td, 1H, J = 0.9, 7.65 Hz), 76.97 (d, 1H, J = 7.6 Hz), 6.93-

6.90 (m, 2H), 6.81 (ddd, 1H, J = 0.9, 2.5, 8.2 Hz), 3.77 (s, 3H), 1.83 (s, 3H). 13C NMR (125

MHz, CDCl3) 8 174.0, 159.7, 143.9, 143.6, 129.7, 129.4, 128.0, 128.0, 120.1, 113.1, 112.5, 55.3,

43.3, 37.9, 20.4. IR (KBr disc, cmn ') 3215, 1710, 1618, 1599, 1485, 1472, 1372, 1324, 1259,

1204, 1167, 1118, 1043, 912, 754, 696, 660. m.p. 131-133 *C.

F

NC
H

3-(4-fluorophenyl)-3-benzylindolin-2-one (entry 12)

The general procedure was followed using Pd2dba3 (9.1 mg, 0.010 mmol), RuPhos (19 mg, 0.040
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mmol), NaOt-Bu (0.20 g, 2.0 mmol), 1-bromo-3-fluorobenzene (132 [LL, 1.20 mmol), and 3-

benzyloxindole (223 mg, 1.00 mmol) with toluene (1.0 mL) as solvent for 20 h at 100 *C.

Isolation and chromatographic purification (hexane / ethyl acetate) afforded the title compound

as yellow solid (253 mg, 80 %). 'H NMR (500 MHz, CDCI3) 8 8.18 (bs 1H), 7.49-7.42 (m, 2H),

7.20-7.15 (m, 2H), 7.10-6.88 (m, 5H), 6.86-6.63 (m, 2H), 6.73-6.70 (m, 2H), 3.66 (d, 1H, J =

12.8 Hz), 3.44 (d, 1H, J = 12.8 Hz). 13C NMR (125 MHz, CDCl3) 8 180.3, 164.0, 141.0, 135.5,

131.7, 130.2, 129.1, 129.1, 128.6, 127.8, 126.9, 126.0, 122.5, 115.8, 110.2, 58.2, 44.0. IR (KBr

disc, cm-1) 3198, 1697, 1617, 1507, 147, 1225, 1201, 1163, 1014, 855, 815, 754, 697. m.p. 189-

191 *C.

Experimental procedures for compounds in Table 2

o

OMe

1-(4-methoxyphenyl)indolin-2-one (entry 1)

The general procedure was followed using CuI (9.5 mg, 0.050 mmol), rac-trans-N,N'-

dimethylcyclohexane-1,2-diamine (16 [tL, 0.10 mmol), K2CO3 (0.28 g, 2.0 mmol), 4-iodoanisole

(234 mg, 1.00 mmol), and oxindole (160 mg, 1.20 mmol) with 1,4-dioxane (1.0 mL) as solvent

for 24 h at 100 *C. Isolation and chromatographic purification (hexane / ethyl acetate) afforded

the title compound as white solid (204 mg, 85%). 1H NMR (500 MHz, CDC13) 8 7.33-7.30 (m,

311), 7.21 (td, J = 1.2, 7.8 Hz), 7.09-7.04 (m, 3H), 6.74 (dd, 1H, J = 0.3, 7.9 Hz), 3.87 (s, 3H),

2.71 (s, 2H). 13C NMR (125 MHz, CDC13) 8 174.9, 159.3, 145.88, 128.1, 127.9, 127.2, 124.7,

124.4, 122.8, 115.9, 109.4, 55.7, 36.1. Anal. Calc. for C,5H,3NO2: C 75.30, H 5.48. Found: C

75.17, H 5.41. m.p. 131-132 *C. (Lit. 118-122 *C).37
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F

1-(4-fluorophenyl)indolin-2-one (entry 2)

The general procedure was followed using Cul (1.9 mg, 0.010 mmol), rac-trans-N,N'-

dimethylcyclohexane-1,2-diamine (6.4 [LL, 0.040 mmol), K2CO3 (0.28 g, 2.0 mmol), 4-

fluoroiodobenzene (115 [L, 1.00 mmol), and oxindole (160 mg, 1.20 mmol) with 1,4-dioxane

(1.0 mL) as solvent for 24 h at 100 *C. Isolation and chromatographic purification (hexane /

ethyl acetate) afforded the title compound an orange solid (221 mg, 97 %). 'H NMR (500 MHz,

CDCl3) 8 7.42-7.39 (m, 2H), 7.34-7.32 (m, 1H), 7.25-7.21 (m, 2H), 7.10 (td, 1H, J = 0.9, 7.3

Hz), 6.75 (dd, J = 0.5, 7.9 Hz), 3.72 (s, 2H). 13C NMR (125 MHz, CDCl3) 8 174.7, 163.0, 161.1,

145.3, 128.7, 128.0, 124.9, 123.1, 116.9, 116.8, 109.4, 36.1. IR (KBr disc, cmn ') 1710, 1612,

1602, 1512, 1481, 1461, 1371, 1322, 1244, 1222, 1201, 1174, 1100, 952, 840, 814, 746. Anal.

Calc. for C14HoFNO: C 74.00, H 4.44. Found: C 73.68, H 4.37. m.p. 129-132 *C.

0o

Br

1-(4-bromophenyl)indolin-2-one (entry 3)

The general procedure was followed using CuI (9.5 mg, 0.050 mmol), rac-trans-N,N'-

dimethylcyclohexane-1,2-diamine (16 [L, 0.10 mmol), K2CO3 (0.28 g, 2.0 mmol), 1-bromo-4-

iodobenzene(340 mg, 1.20 mmol), and oxindole (133 mg, 1.00 mmol) with 1,4-dioxane (1.0 mL)

as solvent for 24 h at 40 *C. Isolation and chromatographic purification (hexane / ethyl acetate)

afforded the title compound as white solid (148 mg, 57%). 'H NMR (500 MHz, CDCl3) 8 7.67-

7.65 (m, 2H), 7.33-7.30 (m, 2H), 7.25-7.18 (m, 2H), 7.10 (t, 1H, J = 7.6 Hz), 6.81 (d, 1H, J =
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7.8 Hz), 3.72 (s, 2H). 13C NMR (125 MHz, CDC13) 8 174.3, 144.7, 138.9, 133.0, 128.3, 128.0,

124.9, 124.4, 123.2, 121.8, 109.4, 36.1. IR (KBr disc, cmn1) 1722, 1612, 1493, 1464, 1370, 1324,

1240, 1172, 1094, 1070, 1012, 821,751,673. m.p. 115-117 *C.

CN

4-(2-oxoindolin- 1-yl)benzonitrile (entry 4)

The general procedure was followed using Cul (9.5 mg, 0.050 mmol), rac-trans-N,N'-

dimethylcyclohexane-1,2-diamine (16 RL, 0.10 mmol), K 2CO3 (0.28 g, 2.0 mmol), 4-

iodobenzonitrile (343 mg, 1.20 mmol), oxindole (133 mg, 1.00 mmol) and 200 mg 4A flame

activated mol sieves with 1,4-dioxane (1.0 mL) as solvent for 24 h at 80 TC. Isolation and

chromatographic purification (hexane / ethyl acetate) afforded the title compound as white solid

(167 mg, 71%). IH NMR (500 MHz, CDCl3) 8 7.85-7.82 (m, 2H), 7.64-7.61 (m, 2H), 7.37-7.34

(m, 1H), 7.26 (td, 1H, J = 1.3, 8.0 Hz), 7.14 (td, 1H, J = 0.9 7.5, Hz), 6.90 (dd, 1H, J = 0.5, 8.0

Hz), 3.776 (s, 2H). 13C NMR (125 MHz, CDCI3) 8 174.1, 143.7, 138.8, 133.7, 128.1, 126.9,

125.2, 124.4, 123.8, 118.4, 111.4, 109.5, 39.7. IR (KBr disc, cm-n) 2231, 1714, 1607, 1513, 1463,

1365, 1242, 1167, 743, 630. m.p. 190-192 *C.

CF 3

1-(4-(trifluoromethyl)phenyl)indolin-2-one (entry 5)

The general procedure was followed using Cul (1.9 mg, 0.010 mmol), rac-trans-N,N'-

dimethylcyclohexane-1,2-diamine (6.4 [tL, 0.04 mmol), K2CO3 (0.28 g, 2.0 mmol), 4-

iodobenzotrifluoride (176 tL, 1.20 mmol), and oxindole (133 mg, 1.00 mmol) with 1,4-dioxane
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(1.0 mL) as solvent for 24 h at 100 *C. Isolation and chromatographic purification (hexane /

ethyl acetate) afforded the title compound as white solid (242 mg, 87%). 'H NMR (500 MHz,

CDCl3) 8 7.81 (d, 2H, J = 8.3 Hz), 7.61 (d, 2H, J = 8.2 Hz), 7.36 (dd, 1H, J= 0.5, 7.3 Hz), 7.26

(td, 1H, J = 1.0, 7.7 Hz), 7.14 (td, 1H, J = 0.8, 7.5 Hz), 6.88 (d, 1H, J = 8.0 Hz), 3.76 (s, 2H).

13C NMR (125 MHz, CDCI3) 6 174.3, 144.2, 137.9, 129.9, 128.0, 127.0, 126.9, 126.8, 125.1,

124.4, 123.5, 109.5, 36.1. IR (KBr disc, cm ') 1724, 1613, 1483, 1370, 1324, 1240, 1169, 1123,

1068, 1019, 750. Anal. Calc. for C,5sHIF 3NO: C 64.98, H 3.64. Found: C 64.83, H 3.57. m.p.

125-125 *C.

&Me N
b-N02

6-methyl-l-(3-nitrophenyl)indolin-2-one (entry 6)

The general procedure was followed using Cul (9.5 mg, 0.050 mmol), rac-trans-N,N'-

dimethylcyclohexane-l,2-diamine (16 [LL, 0.10 mmol 1), K2CO3 (0.28 g, 2.0 mmol), 3-

iodonitrobenzene (275 mg, 1.1 mmol), and 6-methyloxindole (147 mg, 1.00 mmol) with 1,4-

dioxane (0.5 mL) as solvent for 24 h at 80 *C. Isolation and chromatographic purification

(hexane / ethyl acetate) afforded the title compound as red/brown solid (196 mg, 73%). 'H NMR

(500 MHz, CDCl3) 8 8.35-8.32 (m, 2H), .84-7.77 (m, 2H), 7.65 (d, 1H, J = 7.7 Hz), 7.07-7.04

(m, 1H), 6.75 (s, 1H), 2.43 (s, 3H). 13C NMR (125 MHz, CDCl3) 8 181.1, 157.9, 151.5, 150.8,

149.3, 134.4, 132.4, 131.2, 126.4, 123.6, 121.2, 115.77, 111.8, 39.8, 17.1. IR (KBr disc, cm-')

3093, 2922, 2865, 1728, 1626, 1533, 1369, 1352, 1242, 1179, 1112, 912, 805, 738, 690, 602.

m.p. 170-180 *C (dec.).
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CI

bt-CO 2Et

methyl 3-(4-chloro-2-oxoindolin-1-yl)benzoate (entry 7)

The general procedure was followed using Cul (9.5 mg, 0.050 mmol), rac-trans-N,N'-

dimethylcyclohexane-1,2-diamine (16 [tL, 0.10 mmol), K2CO3 (0.28 g, 2.0 mmol), ethyl 3-

iodobenzoate (202 RtL, 1.20 mmol), and 4-chlorooxindole (168 mg, 1.00 mmol) with 1,4-dioxane

(0.5 mL) as solvent for 24 h at 80 *C. Isolation and chromatographic purification (hexane / ethyl

acetate) afforded the title compound as white solid (276 mg, 88 %). 1'H NMR (500 MHz, CDCI3)

6 8.13-8.08 (m, 2H), 7.65-7.60 (m, 2H), 7.17 (tt, 1H, J = 0.8, 8.0 Hz), 7.09 (dd, 1H, J = 0.8, 8.2

Hz), 6.68 (dd, 1H, J = 0.5, 7.9 Hz), 4.40 (q, 2H, J = 7.1 Hz), 3.73 (s, 2H), 1.40 (t, 3H, J = 7.1

Hz). 13C NMR (125 MHz, CDCl3) 8 173.5, 165.7, 145.9, 134.7, 132.5, 131.2, 131.0, 130.5,

129.6, 129.4, 127.8, 123.4, 123.1, 107.8, 61.6, 35.7, 14.5. IR (KBr disc, cm-') 1726, 1609, 1587,

1491, 1456, 1366, 1262, 1182, 1164, 1142, 1105, 1081, 1023, 755, 717, 687, 614. Anal. Calc. for

C16HI2CINO 3: C 64.67, H 4.47. Found: C 64.41, H 4.48. m.p. 114-116 *C.

& OMe

1-(3-methoxyphenyl)indolin-2-one (entry 8)

The general procedure was followed using Cul (19 mg, 0.10 mmol), rac-trans-N,N'-

dimethylcyclohexane-1,2-diamine (32 [IL, 0.20 mmol), K2C'O3 (0.28 g, 2.0 mmol), 3-

bromoanisole (152 ILL, 1.20 mmol), and oxindole (133 mg, 1.00 mmol) with 1,4-dioxane (1.0

mL) as solvent for 24 h at 100 *C. Isolation and chromatographic purification (hexane / ethyl

acetate) afforded the title compound as a slightly orange solid (139 mg, 58 %). 'H NMR (500
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MHz, CDCI3) 6 7.46-7.43 (m, 1H), 7.32 (dd, J = 0.6, 7.2 Hz), 7.22 (td, 1H, J = 1.1,7.9 Hz), 7.07

(td, 1H, J = 1.1,7.5 Hz), 7.02-6.96 (m, 3H), 6.83 (dd, 1H, J = 0.3, 7.9 Hz), 3.84 (s, 3H), 3.72 (s,

2H). 13C NMR (125 MHz, CDCl3) 8 174.5, 160.7, 145.3, 135.7, 130.5, 127.9, 124.7, 124.4,

122.9, 118.9, 114.2, 112.4, 109.6, 55.6, 36.2. m.p. 101-104 °C (Lit. 104-106 *C). 8

Me 

M e

1-(3,5-dimethylphenyl)indolin-2-one (entry 9)

The general procedure was followed using Cul (19 mg, 0.10 mmol), rac-trans-N,N'-

dimethylcyclohexane-1,2-diamine (32 ýIL, 0.20 mmol), K2CO3 (0.28 g, 2.0 mmol), 5-bromo-m-

xylene (163 RL, 1.20 mmol), and oxindole (133 mg, 1.00 mmol) with 1,4-dioxane (0.5 mL) as

solvent for 24 h at 100 *C. Isolation and chromatographic purification (hexane / ethyl acetate)

afforded the title compound as slightly yellow solid (143 mg, 60%). 1'H NMR (500 MHz, CDCl3)

8 7.31 (dd, 1H, J = 0.4, 7.3 Hz), 7.21 (td, 1H, J = 1.1,7.6 Hz), 7.09-7.04 (m, 2H), 7.03 (d, 2H, J

= 0.5 Hz), 6.7 (d, 1H, J = 7.6 Hz), 3.73 (s, 2H), 2.39 (s, 6H). 13C NMR (125 MHz, CDCl3) 8

174.7, 145.7, 139.6, 134.4, 130.1, 127.9, 124.6, 124.5, 124.4, 122.8, 109.6, 36.2, 21.5. IR (KBr

disc, cm-') 1725, 1614, 1593, 1489, 1465, 1369, 1325, 1304, 1240, 1197, 176, 1095, 848, 750,

733,696, 619. m.p. 92-94 OC.

CI

1-(4-chlorophenyl)indolin-2-one3 (entry 10)

The general procedure was followed using Cul (19 mg, 0.10 mmol), rac-trans-N,N'-

dimethylcyclohexane-1 ,2-diamine (32 iLL, 0.20 mmol), K2CO3 (0.28 g, 2.0 mmol), 1-bromo-4-
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chlorobenzene (287, 1.50 mmol), and oxindole (133 mg, 1.00 mmol) with 1,4-dioxane (1.0 mL)

as solvent for 24 h at 100 *C. Isolation and chromatographic purification (hexane / ethyl acetate)

afforded the title compound as white solid (192 mg, 79%). 'H NMR (500 MHz, CDCl3) 8 7.52-

7.49 (m, 2H), 7.40-7.37 (m, 2H), 7.334-7.31 (m, 1H), 7.23 (td, 1H, J= 0.8, 7.7 Hz), 7.10 (td, 1H,

J = 0.9, 7.5 Hz), 76.80 (dd, 1H, J = 0.6, 7.9 Hz). 13C NMR (125 MHz, CDCl3) 8 174.5, 144.8,

133.8, 133.1, 133.0, 130.0, 128.0, 124.9, 124.4, 123.2, 109.4, 36.1. m.p. 123-125 *C.

NMe 2

1-(4-(dimethylamino)phenyl)indolin-2-one (entry 11)

The general procedure was followed using Cul (19 mg, 0.10 mmol), rac-trans-N,N'-

dimethylcyclohexane-1,2-diamine (32 [IL, 0.20 mmol), K2CO3 (0.28 g, 2.0 mmol), 4-bromo-

N,N-dimethylaninline (200 mg, 1.00 mmol), and oxindole (160 mg, 1.20 mmol) with 1,4-dioxane

(1.0 mL) as solvent for 24 h at 100 *C. Isolation and chromatographic purification (hexane /

ethyl acetate) afforded the title compound as a tan solid (127 mg, 50%). 'H NMR (500 MHz,

CDCl3) 6 7.29 (dt, 1H, J = 0.5, 7.3 Hz), 7.24 (m 2H), 7.20 (td, 1H, J = 0.4, 7.8 Hz), 7.06 (td, 1H,

J = 0.9, 7.5 Hz), 6.8 (d, 2H, J = 8.8 Hz), 6.74 (d, 1H, J = 7.8 Hz), 3.70 (s, 2H), 3.02 (s, 6H). 13C

NMR (125 MHz, CDCl3) 8 175.2, 150.4, 146.4, 127.9, 127.7, 124.6, 124.5, 122.5, 113.2, 109.6,

105.3, 40.8, 36.2. IR (KBr disc, cm -1) 1712, 1610, 1524, 1483, 1462, 1354, 1241, 1168, 1095,

950, 8821,763, 631. Anal. Calc. for C,6H,6N20: C 76.16, H 6.39. Found: C 75.83, H 6.37. m.p.

171-172 *C.

Preparation of complex 13'
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In a nitrogen-filled glovebox, oxindole (1.33 g, 10.0 mmol) and rac-trans-N,N'-

dimethylcyclohexane-1 ,2-diamine (1.42 g, 10.0 mmol) were stirred in dry toluene (50 mL). To

this solution was slowly added copper(I) mesityl (1.82g, 10.0 mmol) dissolved in toluene (20

mL). After a short time period ( < 5 min) a tan solid began to precipitate. The solution was

allowed to stir for an additional 15 min, after which time pentane (30 mL) was added. After

stirring for an additional 10 min, complete precipitation was achieved by storing the solution at -

15 °C overnight. The resulting solid was filtered, washed with additional pentane and dried

under vacuum to provide 3.2 g (95%) of a white (slightly pink) solid. 'H NMR (500 MHz, C6D6)

8. 7.28 (br s, 1H), 7.19 (br s, 1H), 7.02 (br s, 1H), 6.90 (br t, 1H), 3.42 (s, 2H), 2.31 (s, 6H), 2.14

(br s, 2H), 1.85 (d, 2H, J = 13.4 Hz), 1.80 (m, 2H), 1.49 (m, 2H), 0.91 (m, 2H), 0.73 (m, 2H). 13C

NMR (125 MHz, DMF-d7) 8 185.7, 130.5, 127.8, 123.9, 118.8, 112.6, 67.9, 64.5, 38.4, 30.8,

26.0. This compound was stored in a refrigerator at -15 OC in a nitrogen-filled glovebox.

Although thermally stable, this complex was found to be sensitive to 02. Crystals of 13' suitable

for X-ray diffraction analysis were grown in a nitrogen-filled glovebox by preparing a near-

saturated solution of 13' in acetonitrile at rt. Pentane was layered on top of the acetonitrile

solution, and the biphasic mixture was stored in a freezer at -15 OC. Crystals grew from the

biphasic membrane downward into the acetonitrile layer.

Stoichiometric reaction of 13' with 4-iodoanisole

In a nitrogen-filled glovebox, a dry schlenk tube was charged with 13' (33.5 mg, 0.100

mmol), 4-iodoanisole (234 mg, 1.00 mmol), 1,4-dioxane (1.00 mL), and a magnetic stir bar. The

vessel was sealed, removed from the glovebox, and stirred at rt for 30 min. Dodecane (22.5 mL,

0.100 mmol), ethyl acetate (20 mL), and NH4OH(aq) (2 mL) were stirred into the reaction mixture.
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Analysis of the organic layer by GC confirmed an 88% corrected yield of 1-(4-

methoxyphenyl)indolin-2-one.

Cross coupling of 4-iodoanisole with oxindole monitored by IR spectroscopy (Figure 6)

In a nitrogen-filled glovebox, a dry 25 mL reaction vessel designed for use with the IR

probe was charged with either 13' (17 mg, 0.050 mmol) or Cul (9.5 mg, 0.050 mmol), oxindole

(133 mg, 1.00 mmol), 4-iodoanisole (351 mg, 1.50 mmol), K2CO3 (278 mg, 2.00 mmol), and a

magnetic stir bar. The vessel was sealed, removed from the glovebox, and attached to a vacuum

manifold. The tube was evacuated and back-filled with Ar. CyDMEDA (7.9 [L, 0.050 mmol, if

necessary), and 1,4-dioxane (1.00 mL) were added successively. Under a purge of Ar, the

reaction vessel was attached to a Mettler Toledo iC10 ReactlR, sealed and stirred in an oil bath at

80 °C, until the reaction was completed by IR monitoring. The reaction was cooled to room

temperature. Dodecane (225 mL) and ethyl acetate (20 ml) were added, and the reaction mixture

was sampled for GC analysis. The corrected GC yield was used to standardize the data obtained

from the IR.

Crystal data and structure refinement for 13'

Identification code 07067
Empirical formula C32 H48 Cu2 N6 02
Formula weight 675.84
Temperature 100(2) K
Wavelength 0.71073 =
Crystal system Monoclinic
Space group Cc
Unit cell dimensions a = 25.053(16) =

b = 8.747(6) =
c = 14.682(10) =

Volume 3204(4) =3
Z 4

a= 9000.
(3= 95.236(10)oo.
y = 9 0 00.
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Density (calculated)

Absorption coefficient
F(000)

Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta = 29.57c0
Absorption correction
Max. and min. transmission

Refinement method
Data / restraints / parameters

Goodness-of-fit on F2

Final R indices [I>2sigma(I)]
R indices (all data)
Absolute structure parameter

Largest diff. peak and hole

1.401 Mg/m 3

1.366 mm- 1

1424

0.50 x 0.23 x 0.05 mm3

2.47 to 29.5700.
-34<=h<=34, -12<=k<= 12, -20<=1<=20
32316
8810 [R(int) = 0.0342]
100.0 %
Semi-empirical from equivalents
0.9349 and 0.5484

Full-matrix least-squares on F2

8810 / 257 / 488

1.019
R1 = 0.0232, wR2 = 0.0575
R1 = 0.0265, wR2 = 0.0589
0.008(6)
0.350 and -0.173 e.= -3
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Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (=2x 103) for
13'. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

x y z U(eq)

Cu(1)
N(1)
C(1)
N(2)
C(2)
C(11)
C(12)
C(13)
C(14)
C(15)
C(16)
N(3)
C(3)
N(4)
C(4)
C(21)
C(22)
C(23)
C(24)
C(25)
C(26)
N(3A)
C(3A)
N(4A)
C(4A)
C(21A)
C(22A)
C(23A)
C(24A)
C(25A)
C(26A)
Cu(2)
N(5)
C(31)
0(1)
C(32)
C(33)
C(34)
C(35)
C(36)
C(37)

5714(1)
4986(1)
4961(1)
5255(1)
5499(1)
4564(1)
4010(1)
3585(1)
3736(1)
4289(1)
4721(1)
6353(1)
6302(2)
6296(1)
6149(2)
6838(1)
7358(1)
7854(1)
7810(1)
7305(1)
6795(1)
6336(3)
6249(6)
6367(2)
6270(6)
6835(4)
7347(3)
7848(5)
7862(3)
7378(3)
6848(3)
5831(1)
6574(1)
6854(1)
6663(1)
7451(1)
7464(1)
7874(1)
7752(1)
7229(1)
6812(1)

3379(1)
3463(1)
4560(2)
3635(1)
2881(2)
3772(2)
3224(2)
3584(2)
2890(2)
3410(2)
3086(2)
1922(2)
437(3)

5128(2)
6515(3)
2786(3)
1991(3)
2938(4)
4540(3)
5314(3)
4420(3)
1831(7)
212(12)

4812(6)
6413(12)
2434(10)
1693(8)
2457(11)
4146(9)
4875(10)
4179(10)
1493(1)
1587(1)
2872(2)
4160(1)
2487(2)

805(2)
-250(2)

-1767(2)
-2215(2)
-1150(2)

9689(1)
8939(1)
8181(1)

10836(1)
11659(1)
9565(1)
9178(1)
9824(1)

10763(1)
11151(1)
10510(1)
9645(2)

10117(2)
9848(2)
9319(3)
9991(2)
9779(2)

10069(3)
9661(2)
9921(2)
9592(2)

10089(6)
9855(8)
9383(5)
9688(9)
9772(7)

10245(6)
9949(11)

10138(7)
9622(7)
9891(6)
7189(1)
7310(1)
7142(1)
6994(1)
7150(1)
7353(1)
7462(1)
7631(1)
7697(1)
7613(1)

25(1)
25(1)
39(1)
24(1)
27(1)
23(1)
33(1)
35(1)
35(1)
29(1)
21(1)
22(1)
30(1)
33(1)
47(1)
24(1)
30(1)
37(1)
39(1)
36(1)
27(1)
19(1)
18(2)
16(1)
29(3)
16(2)
21(1)
25(2)
25(2)
21(2)
14(1)
20(1)
20(1)
25(1)
37(1)
30(1)
23(1)
34(1)
37(1)
34(1)
28(1)
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C(38)
N(6)
C(41)
0(2)
C(42)
C(43)
C(44)
C(45)
C(46)
C(47)
C(48)

6933(1)
5091(1)
4792(1)
4965(1)
4201(1)
4213(1)
3815(1)
3956(1)
4484(1)
4889(1)
4748(1)

360(2)
1295(1)
2026(2)
2909(1)
1589(2)
537(2)

-248(2)
-1161(2)
-1262(2)

-461(2)
427(2)

7430(1)
7015(1)
6324(1)
5770(1)
6339(1)
7154(1)
7551(1)
8316(1)
8682(1)
8281(1)
7512(1)

20(1)
21(1)
22(1)
28(1)
26(1)
24(1)
29(1)
32(1)
30(1)
25(1)
21(1)
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Bond lengths [=] and angles [oo] for 13'

Cu(1)-N(1)
Cu(1)-N(3)
Cu(1)-N(3A)
Cu(1)-N(4)
Cu(1)-N(2)
Cu(1)-N(4A)
N(1)-C(1)
N(1)-C(11)
N(2)-C(2)
N(2)-C(16)
C(11)-C(12)
C(11)-C(16)
C(12)-C(13)
C(13)-C(14)
C(14)-C(15)
C(15)-C(16)
N(3)-C(21)
N(3)-C(3)
N(4)-C(4)
N(4)-C(26)
C(21)-C(22)
C(21)-C(26)
C(22)-C(23)
C(23)-C(24)
C(24)-C(25)
C(25)-C(26)
N(3A)-C(3A)
N(3A)-C(21A)
N(4A)-C(26A)
N(4A)-C(4A)
C(21A)-C(26A)
C(21A)-C(22A)
C(22A)-C(23A)
C(23A)-C(24A)
C(24A)-C(25A)
C(25A)-C(26A)
Cu(2)-N(5)
Cu(2)-N(6)
N(5)-C(31)
N(5)-C(38)
C(31)-O(1)
C(3 1)-C(32)
C(32)-C(33)
C(33)-C(34)

2.0448(19)
2.052(2)
2.106(7)
2.111(2)
2.1359(17)
2.141(6)
1.467(2)
1.486(2)
1.461(2)
1.462(2)
1.529(3)
1.529(2)
1.520(3)
1.522(3)
1.518(3)
1.524(2)
1.481(3)
1.483(4)
1.469(4)
1.474(3)
1.536(3)
1.545(4)
1.521(4)
1.524(4)
1.515(4)
1.538(3)
1.469(10)
1.471(10)
1.467(9)
1.496(10)
1.536(11)
1.544(10)
1.520(12)
1.503(10)
1.510(10)
1.544(11)
1.8547(18)
1.8557(18)
1.359(2)
1.402(2)
1.235(2)
1.534(2)
1.501(3)
1.378(2)
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C(33)-C(38)
C(34)-C(35)
C(35)-C(36)
C(36)-C(37)
C(37)-C(38)
N(6)-C(41)
N(6)-C(48)
C(41)-O(2)
C(41)-C(42)
C(42)-C(43)
C(43)-C(44)
C(43)-C(48)
C(44)-C(45)
C(45)-C(46)
C(46)-C(47)
C(47)-C(48)

N(1)-Cu(1)-N(3)
N(1)-Cu(1)-N(3A)
N(3)-Cu(1)-N(3A)
N(1)-Cu(1)-N(4)
N(3)-Cu(1)-N(4)
N(3A)-Cu(1)-N(4)
N(1)-Cu(1)-N(2)
N(3)-Cu(1)-N(2)
N(3A)-Cu(1)-N(2)
N(4)-Cu(1)-N(2)
N(1)-Cu(1)-N(4A)
N(3)-Cu(1)-N(4A)
N(3A)-Cu(1)-N(4A)
N(4)-Cu(1)-N(4A)
N(2)-Cu(1)-N(4A)
C(1)-N(1)-C(1 1)
C(1)-N(1)-Cu(1)
C(11)-N(1)-Cu(1)
C(2)-N(2)-C(16)
C(2)-N(2)-Cu(1)
C(16)-N(2)-Cu(1)
N(1)-C(11)-C(12)
N(1)-C(11)-C(16)
C(12)-C(11 )-C(16)
C(13)-C(12)-C(1 1)
C(12)-C(13)-C(14)
C(15)-C(14)-C(13)
C(14)-C(15)-C(16)
N(2)-C(16)-C(15)

1.401(2)
1.389(3)
1.381(3)
1.397(3)
1.387(2)
1.365(2)
1.401(2)
1.2295(19)
1.529(2)
1.508(2)
1.381(2)
1.397(2)
1.397(3)
1.385(3)
1.406(2)
1.390(2)

131.77(7)
140.7(2)

18.24(19)
127.36(7)
85.47(9)
87.11(19)
84.41(7)

124.55(8)
106.5(2)
104.62(8)
121.85(17)
75.17(17)
82.8(2)
20.91(18)

125.5(2)
111.56(13)
113.88(12)
108.85(11)
115.08(12)
113.00(10)
104.49(9)
112.71(13)
110.62(13)
111.25(13)
111.55(15)
110.60(15)
111.32(15)
112.71(14)
114.66(13)
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N(2)-C(16)-C(11)
C(15)-C(16)-C(11)
C(21)-N(3)-C(3)
C(21)-N(3)-Cu(1)
C(3)-N(3)-Cu(1)
C(4)-N(4)-C(26)
C(4)-N(4)-Cu(1)
C(26)-N(4)-Cu(1)
N(3)-C(21)-C(22)
N(3)-C(21)-C(26)
C(22)-C(21)-C(26)
C(23)-C(22)-C(21)
C(22)-C(23)-C(24)
C(25)-C(24)-C(23)
C(24)-C(25)-C(26)
N(4)-C(26)-C(25)
N(4)-C(26)-C(21)
C(25)-C(26)-C(21)
C(3A)-N(3A)-C(21A)
C(3A)-N(3A)-Cu(1)
C(21A)-N(3A)-Cu( 1)
C(26A)-N(4A)-C(4A)
C(26A)-N(4A)-Cu(1)
C(4A)-N(4A)-Cu(1)
N(3A)-C(21A)-C(26A)
N(3A)-C(21A)-C(22A)
C(26A)-C(21A)-C(22A)
C(23A)-C(22A)-C(21A)
C(24A)-C(23A)-C(22A)
C(23A)-C(24A)-C(25A)
C(24A)-C(25A)-C(26A)
N(4A)-C(26A)-C(21A)
N(4A)-C(26A)-C(25A)
C(21A)-C(26A)-C(25A)
N(5)-Cu(2)-N(6)
C(3 1)-N(5)-C(38)
C(3 1)-N(5)-Cu(2)
C(38)-N(5)-Cu(2)
O(1)-C(31 )-N(5)
O(1)-C(31)-C(32)
N(5)-C(31)-C(32)
C(33)-C(32)-C(31)
C(34)-C(33)-C(38)
C(34)-C(33)-C(32)
C(38)-C(33)-C(32)
C(33)-C(34)-C(35)

108.63(12)
110.50(13)
112.9(2)
106.86(15)
115.4(2)
112.9(2)
113.8(2)
105.07(15)
112.6(2)
108.4(2)
111.9(2)
112.5(2)
111.3(3)
110.1(2)
112.5(2)
113.9(2)
108.9(2)
108.9(2)
112.5(8)
117.7(7)
108.0(5)
110.5(7)
106.3(5)
109.7(7)
109.3(7)
113.7(7)
110.9(7)
111.1(8)
112.7(9)
108.5(9)
112.0(7)
108.0(7)
114.0(7)
111.9(7)
176.29(6)
108.67(14)
123.32(11)
127.23(10)
126.05(16)
124.28(14)
109.66(14)
102.73(12)
120.49(16)
132.95(14)
106.55(13)
119.16(17)
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C(36)-C(35)-C(34)
C(35)-C(36)-C(37)
C(38)-C(37)-C(36)
C(37)-C(38)-C(33)
C(37)-C(38)-N(5)
C(33)-C(38)-N(5)
C(41)-N(6)-C(48)
C(41)-N(6)-Cu(2)
C(48)-N(6)-Cu(2)
O(2)-C(41)-N(6)
O(2)-C(41)-C(42)
N(6)-C(41)-C(42)
C(43)-C(42)-C(41)
C(44)-C(43)-C(48)
C(44)-C(43)-C(42)
C(48)-C(43)-C(42)
C(43)-C(44)-C(45)
C(46)-C(45)-C(44)
C(45)-C(46)-C(47)
C(48)-C(47)-C(46)
C(47)-C(48)-C(43)
C(47)-C(48)-N(6)
C(43)-C(48)-N(6)

120.58(16)
120.80(17)
118.51(17)
120.41(14)
127.20(14)
112.38(13)
108.58(13)
122.22(10)
129.19(11)
125.60(15)
124.57(14)
109.83(13)
102.41(13)
120.78(15)
132.45(16)
106.77(14)
118.94(16)
120.70(15)
120.44(16)
118.58(16)
120.55(14)
127.06(15)
112.39(14)

Symmetry transformations used to generate equivalent atoms:

Anisotropic displacement parameters (=2x 103) for 13'. The anisotropic displacement
factor exponent takes the form: -2p2 [ h2a*2 U11 + ... + 2 h k a* b* U12 ]

Ull U22 U33 U23 U13 U12

Cu(1)
N(1)
C(1)
N(2)
C(2)
C(11)
C(12)
C(13)
C(14)
C(15)
C(16)
N(3)
C(3)
N(4)

22(1)
32(1)
60(1)
25(1)
29(1)
25(1)
30(1)
24(1)
25(1)
25(1)
22(1)
23(1)
31(1)
33(1)

24(1)
22(1)
31(1)
24(1)
30(1)
21(1)
35(1)
37(1)
43(1)
35(1)
21(1)
20(1)
22(1)
22(1)

28(1)
22(1)
26(1)
23(1)
22(1)
21(1)
31(1)
44(1)
38(1)
27(1)
20(1)
22(1)
37(2)
45(1)

3(1)
1(1)
8(1)
-2(1)
-1(1)
-4(1)
-3(1)
-5(1)
-7(1)
-4(1)
-1(1)
-4(1)
1(1)

-9(1)

5(1)
2(1)
7(1)
0(1)
0(1)
-1(1)
-6(1)
-3(1)
5(1)
5(1)
1(1)
2(1)
-2(2)
12(1)

-1(1)
3(1)
7(1)
1(1)
5(1)
2(1)
0(1)
3(1)
-4(1)
-2(1)
1(1)
-2(1)
-2(1)
-3(1)
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C(4)
C(21)
C(22)
C(23)
C(24)
C(25)
C(26)
N(3A)
C(3A)
N(4A)
C(4A)
C(21A)
C(22A)
C(23A)
C(24A)
C(25A)
C(26A)
Cu(2)
N(5)
C(31)
0(1)
C(32)
C(33)
C(34)
C(35)
C(36)
C(37)
C(38)
N(6)
C(41)
0(2)
C(42)
C(43)
C(44)
C(45)
C(46)
C(47)
C(48)

47(2)
22(1)
26(1)
22(1)
31(1)
31(1)
29(1)
24(3)
20(5)
17(2)
30(6)
25(3)
25(3)
24(3)
19(3)
20(3)
16(2)
16(1)
19(1)
22(1)
30(1)
21(1)
20(1)
22(1)
39(1)
41(1)
27(1)
20(1)
18(1)
20(1)
29(1)
19(1)
22(1)
21(1)
33(1)
42(1)
26(1)
21(1)

19(1)
30(1)
33(1)
54(2)
44(2)
35(1)
24(1)
23(3)
18(3)
8(2)

12(3)
15(2)
19(3)
18(3)
21(3)
17(3)
16(2)
20(1)
21(1)
26(1)
24(1)
34(1)
30(1)
45(1)
38(1)
23(1)
24(1)
23(1)
18(1)
17(1)
24(1)
25(1)
20(1)
26(1)
26(1)
21(1)
22(1)
15(1)

78(3)
20(1)
32(1)
33(1)
43(1)
43(1)
29(2)
12(3)
15(5)
24(3)
44(6)
9(4)
17(3)
33(5)
34(4)
27(4)
9(4)
24(1)
21(1)
26(1)
57(1)
36(1)
20(1)
33(1)
33(1)
36(1)
32(1)
16(1)
26(1)
29(1)
31(1)
34(1)
29(1)
41(1)
41(1)
26(1)
26(1)
27(1)

4(1)
-6(1)
0(1)
-5(2)

-10(1)
-12(1)
-8(1)
2(3)
10(3)
-2(2)
-4(4)
9(3)
8(3)
-2(4)
-4(3)
-4(3)
-2(3)
1(1)
0(1)
5(1)
9(1)
12(1)
2(1)
7(1)
0(1)
0(1)
0(1)
-2(1)
3(1)
1(1)
7(1)
4(1)
-1(1)
-2(1)
0(1)
1(1)
0(1)
-3(1)

17(2)
2(1)
1(1)
0(1)
11(1)
11(1)
7(1)
7(3)
-1(4)
7(2)
3(5)
4(3)
-2(3)
-1(4)
-3(3)
3(3)
1(2)
-1(1)
-1(1)
0(1)
-1(1)
4(1)
0(1)
2(1)
-3(1)

-11(1)
-9(1)
-3(1)
-3(1)
-3(1)
-2(1)
-5(1)
1(1)
7(1)
19(1)
10(1)
1(1)
2(1)

-6(1)
-6(1)
1(1)

-7(1)
-15(1)
-14(1)
-8(1)
-3(2)
4(3)
3(2)
8(3)
5(2)
3(2)
3(3)
3(2)
4(2)
3(2)
-2(1)
-2(1)
-4(1)
-1(1)
-3(1)
-1(1)
6(1)
18(1)
1(1)

-3(1)
0(1)
-2(1)
0(1)
-5(1)
0(1)
0(1)
-2(1)
-2(1)
4(1)
3(1)
0(1)

Hydrogen coordinates ( x 104) and isotropic displacement parameters (=2 x 103 ) for 13'

x y z U(eq)

H(1) 4909(8) 2478(18) 8709(12)
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H(1A) 4601 4550 7858 58
H(1B) 5225 4277 7757 58
H(1C) 5042 5588 8422 58
H(2) 5237(8) 4723(16) 10933(12) 28
H(2A) 5273 3039 12162 40
H(2B) 5855 3314 11825 40
H(2C) 5532 1783 11543 40
H(11) 4544 4905 9642 27
H(12A) 3913 3725 8582 39
H(12B) 4020 2107 9074 39
H(13A) 3235 3169 9569 42
H(13B) 3549 4705 9882 42
H(14A) 3468 3195 11184 42
H(14B) 3731 1761 10714 42
H(15A) 4384 2883 11741 34
H(15B) 4279 4522 11274 34
H(16) 4743 1952 10435 25
H(3) 6383(10) 1750(30) 9053(12) 26
H(3A) 6597 -236 9981 45
H(3B) 5960 -40 9903 45
H(3C) 6317 607 10779 45
H(4) 6355(11) 5290(30) 10447(12) 39
H(4A) 6435 7277 9427 71
H(4B) 5814 6930 9512 71
H(4C) 6101 6264 8667 71
H(21) 6840 2867 10671 29
H(22A) 7386 993 10098 36
H(22B) 7345 1791 9113 36
H(23A) 8175 2423 9867 44
H(23B) 7899 3012 10745 44
H(24A) 8127 5150 9890 47
H(24B) 7802 4476 8987 47
H(25A) 7283 6353 9653 43
H(25B) 7325 5421 10595 43
H(26) 6774 4344 8910 32
H(3AN) 6380 1872 10710 23
H(3A1) 6251 78 9192 27
H(3A2) 5903 -119 10045 27
H(3A3) 6536 -404 10170 27
H(4AN) 6403 4795 8772 19
H(4A1) 6522 6660 10217 43
H(4A2) 5902 6503 9857 43
H(4A3) 6323 7124 9188 43
H(21A) 6827 2213 9102 19
H(22C) 7343 1782 10916 25
H(22D) 7352 592 10088 25
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H(23C)
H(23D)
H(24C)
H(24D)
H(25C)
H(25D)
H(26A)
H(32A)
H(32B)
H(34)
H(35)
H(36)
H(37)
H(42A)
H(42B)
H(44)
H(45)
H(46)
H(47)

8167
7865
8195
7857
7400
7381
6824
7586
7667
8235
8032
7151
6453
3976
4066
3452
3687
4573
5252

1973
2288
4596
4333
4736
5986
4401
2704
3069
57

-2503
-3260
-1454
2499
1055
-168

-1718
-1876

-526

10275
9285
9937

10802
8957
9750

10554
6550
7631
7421
7702
7801
7679
6422
5769
7307
8588
9207
8530

Hydrogen bonds for 13' [= and oo]

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

N(2)-H(2)...O(2)#1 0.964(14) 2.187(15) 3.109(3) 159.6(16)
N(3)-H(3)...N(5) 0.892(16) 2.650(17) 3.535(3) 171(2)
N(4)-H(4)...O(1)#1 0.891(16) 2.380(17) 3.261(3) 170(2)

Symmetry transformations used to generate equivalent atoms:
#1 x,-y+l,z+1/2
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RAAVI27S

expS stdlh

SAMPLE DEC. & VT
date May 7 2007 dfrq 300.100
solvent CDC13 dn H1
file exp dpwr 30

ACQUISITION dof 0
sfrq 300.101 dm nnn
tn HI dmra c
at 4.003 dmf 200
np 48052 PROCESSING
sw 6002.4 wtffle
fb not used proC ft
bs 4 fn 131072
tpwr 54
pw 8.0 werr
dl 0.050 wexp
tof 867.7 wbs
nt 16 wnt
ct 16
alock n
gain not used

FLAGS
Ii n
in n
dp y

DISPLAY
sp -13.4
wp 3076.0
vs 151
sc 0
wc 250
hzmm 12.30
Is 500.00
rfl 2778.8
rfp 2181.7
th 20
ins 1.000
na ph

CPU)

I-

Jr

I
(

Ii

hA
8 7

0.93 3.04 1.04
1.95 2.16

6 5 2 1

1.01

ppm

__.____ _L __ ___

/

·IC ~-J ~ "~·LT·W`U--
· · · · · ~-------r ~ -. . . . . ~I I I I 7 1 I r -I ; 1 . -, --. -. -. . . . . . . . . .



RAAVI280

exp3 s2pul

SAMIPLE DEC. & VT
date Apr 13 2007 dfrq 125.672
solvent CDC13 dn C13
file exp dpwr 30

ACQUISITION dof 0
sfrq 439.746 dm nnn
tn H1 dmm w
at 3.001 dmf 10000
np 63050 dseq
sw 10504.2 dres 1.0
fb not used homo n
bs 8 DEC2
tpwr 56 dfrq2 0
pw 8.6 dn2
dl 2.000 dpwr2 1
tof 1519.5 dof2 0
nt 16 dm2 n
ct 16 dmm2 c
alock n dmf2 200
gain not used dseq2

FLAGS dres2 1.0
11 n homo2. n
in n DEC3
dp y dfrq3 0
hs nn dn3

DISPLAY dpwr3 1
sp -198.1 dof3 0
wp 5314.1 dm3 n
vs 14 dmm3 c
sc 0 dmf3 200
wc 250 dseq3
hzam 21.26 dres3 1.0
is 33.57 homo3 n
rfl 4866.5 PROCESSING
rfp 3633.1 wtflle
th 7 proc ft
ins 1.000 fn 262144
al cdc ph math f

werr
wexp
wbs
wnt wft

10 9 8 7 6 5 4 3 2 1 ppm
y YYYYY Lr L7'

1.08 1.01.31 1.00
2.39.1%.08 11.84



10 9 8 7 6 5 4 3 2 1 ppm

13.25 3.90
50.121.37

/
I



STANDARD PROTON PARAMETERS

exp3 s2pul

SAMPLE
date Apr 6 2007
solvent CDC13
file exp

ACQUISITION
sfrq 499.746
tn HI
at 3.001
np 63050
sw 10504.2
fb not used
bs 8
tpwr 56
pw 8.6
dl 2.000
tof 1519.5
nt 16
ct 16
alock n
gain not used

FLAGS
11 n

DEC. & VT
dfrq 125
dn
dpwr
dof
dmi
daem
dmf 1I
dseq
dres
homo

DEC2
dfrq2
dn2
dpwr2
dof2
dm2
dmm2
def2
dseq2
dres2
homo2

ft
2144

f

werr
wexp
wbs
wnt wft

1.03

/
.672
C13
30
0

nnn
w

0000

1.0
n

0

1
0
n
c

200

1.0
n

I .... . .. ' II

9 8 7 6 5 4 3 2

1.183.42 3.35
1.00 2.09 1.00 3.39

ppm
__ _· _ _ __ _•· . . ,, .·

r\kj ý773-'zJ~



RAAVII86d

exp3 s2pul

SAMPLE
date Jul 26 2007
solvent COC13
file exp

ACQUISITION
sfrq 500.235
tn HI
at 3.200
np 64000
sw 10000.0
fb not used
bs 1
ss I
tpwr 63
pw 9.0
dl 0
tof 1498.2
nt 16
ct 0
alock n
gain not used

FLAGS
11 n
in n
dp y
hs nn

DISPLAY
sp -225.5
wp 5466.4
vs 151
SC 0
WC 250
hzmm 21.87
Is 342.18
Pfl 4622.3
rfp 3621.7
th 7
Ins 3.000
nm ph

DEC. & VT
dfrq 125,795
dn C13
dpwr 44
dof 0
dm nnn
dam c
dmf 10000
dseq
dres 1.0
homo n

PROCESSING
wtfile
proc ft
fn 131072
math f

werr
wexp
wbs
wnt

10 9 8 7

~-

6 5 4 3 2 1 ppm

1.84 0•.01
2.18.1188

/
laaa~a~aaa~ar~ I _Ix~*-*-raa~~-~--xr.ranll~·~~

0.99o 2.76 2.78



RAAVII156

expl stdlh

SAMPLE
date Nov 7 2007
solvent CDC13
file exp

ACQUISITION
sfrq 300.108
tn H1
at 4.003
np 48052
sw 6002.4
fb not used
bs 2
tpwr 54
pw 8.0
dl 0.050
tof 867.7
nt 20
ct 17
alock n
gain not used

FLAGS
ii n
in n
dp y

DISPLAY
sp -179.8
wp 3233.7
vs 151
sc 0
wc 250
hzmm 12.93
Is 500.00
rfl 661.0
rfp 0
th 20
ins 1.000
nm ph

DEC. & VT
dfrq 300.107
dn HI
dpwr 30
dof 0
dm nnn
dmm c
dmf 200
temp 20.0

PROCESSING
wtfile
proc ft
fn 131072

werr
wexp
wbs
wnt

10 9 8 7

0.70 1.76 2.05
1.64 5.24 1.

6 5 4 3 2 1 0 ppm

0.86
0.98

'SJ

iiI
Iii I/

1 V ji i

r

1
ei! r~l



1;/
C. & VT

125.795
C13
38

nnn
c

10000

1.0
n

OCESSING

ft
131072

I

- - - . r -- ----

10 9 8

0.37 2.9%.24
1.81 1.69 1.16

STANDARD PROTON PARAMETERS

expl s2pul

SAMPLE DE(
date Jan 30 2007 dfrq
solvent COC13 dn
file exp dpwr

ACQUISITION dof
sfrq 500.235 dm
tn Hi dae
at 3.200 dmf
np 64000 dseq
Sv 10000,0 dres
fb not used homo
bS 8 PR(
ss 1 wtftlt
tpwr 50 proc
pw 9.8 fn
dl 0 math
tof 1498.2
nt 16 werr
ct 16 wexp
alock 00 vbs
gain not used wnt

FLAGS
it n
in a
dp y

ppM

r-- f~g ~ c~

.~aisl~e~

I ; I-- -: I ; - ------"·- ·-- ·------ .. ....... ..........

a.rCEi c···

cU~-..l-~----.--..~....-... .................. ....... ii. ._.. ._ , , _Jl_

3.00

~T.r r a

'· "·' "

7M l--- ;-rrum00,·- :'~~.bn'lHl r'



RAAVI245

expl s2pul

SAMPLE
date Feb 25 2007
solvent COC13
file exp

ACQUISITION
sfrq 499.746
tn H1
at 3.001
np 63050
sw 10504.2
fb not used
bs 8
tpwr 56
pw 8.9
dl 2.000
tof 1519.5
nt 16
ct 16
alock n
gain not used

FLAGS
t1 n
In n
dp y
hs nn

DISPLAY
sp -100.8
wp 4789.5
vs 34
sc 0
wc 250
hzmm 19.16
is 33.57
rfl 1232.7
rfp 0
th 7
Ins 2.000
a$ cdc ph

DEC. & VT
dfrq 125.672
dn C13
dpwr 30
dof 0
da nnn
dmm w
dmf 10000
dseq
dres 1.0
homo n

DEC2
dfrq2 0
dn2
dpwr2 1
dof2 0
dm2 n
dmm2 C
dmf2 200
dseq2
dres2 1.0
homo2 n

DEC3
dfrq3 0
dn3
dpwr3 1
dof3 0
dm3 n
dmmA3 C
dmf3 200
dseq3
dres3 1.0
homo3 n

PROCESSING
tf tle

proc
fn
mat

wer
wax
wbs
wnt

ft
131072

f

wft

idtl
9

I 'I

ppm

1.61 0.00 0.97 0.86
1.65 0.800.87

.7

YIW

t:/Q

5
5

2.00

I ·__ ____

_ _

4ý\ý
\



RAAVI283

exp2 s2pul

SAMPLE
date May 9 2007
solvent CDC13
file exp

ACQUISITION
sfrq 499.746
tn H1
at 3.001
np 63050
sw 10504.2
fb not used
bs 2
tpwr 56
pw 8.6
dl 2.000
tof 1519.5
nt 16
ct 16
alock n
gain not used

FLAGS
11 n
in n
Op y
hs nn

DISPLAY
sp -17.3
wp 5024.3
vs 16
sc 0
wv 250
hzmm 20.10
is 505.43
rfl 4865.1
rfp 3633.1
th 7
ins 3.000
al cdc ph

DEC. & VT
dfrq 125.672
dn C13
dpwr 30
dof 0
dm nnn
dmm w
dmf 10000
dseq
dres 1.0
homo n

DEC2
dfrq2 0
dn2
dpwr2 1
dof2 0
dm2 n
dmn2 c
dmf2 200
dseq2
dres2 1.0
homo2 n

DEC3
dfrq3 0
dn3
dpwr3 1
dof3 0
dm3 n
dmm3 c
dmf3 200
dseq3
dres3 1.0
homO3 n

PROCESSING
wtfile
proc ft
fn 262144
math f

werr
wexp
wbs
Wnt wft

IL ii
7

.86 0.89
0.97 0.93

6

0.91 20
2.98

8

0.68 0
0.80

ppm

I_ 1L~ ....--1

2.08

... i 1I
· ; · -· -- · - ---- -- -- - · - · -- , , , , ~-....,.;,....... ,--~--~--~------------r· : q · · I

-~"

cr\e E~i
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STANDARD PROTON PARAMETERS

exp3 s2pul

SAMPLE DE
date Apr 6 2007 dfrq
solvent CDC13 dn
file exp dpwr

ACQUISITION dof
sfrq 499.746 dm
tn H1 dmm
at 3.001 dmf
np 63050 dseq
sw 10504.2 dres
fb not used homo
bs 8
tpwr 56 dfrq2
pw 8.6 dn2
dl 2.000 dpwr2
tof 1519.5 dof2
nt 16 dm2
ct 16 drmm2
alock n dmf2
gain not used dseq2

FLAGS dres2
S1 n homo2
in n
dp y dfrq3
hs nn dn3

DISPLAY dpwr3
sp -362.7 dof3
wp 4582.6 dm3
vs 15 dmS3
sc 0 dmf3
wc 250 dseq3
hzmm 18.33 dres3
is 33.57 homo3
rfl 4865.3 PRO
rfp 3633.1 wtfile
th 7 proc
ins 2.000 fn
at cdC ph math

C. &VT
125.672

C13
30

0
nnn

w
10000

1.0
n

DEC2
0

1
0
n
c

200

1.0
n

DEC3
0

1
0
n
c

200

1.0
n

ICESSING

262

H) -

ft
144

f

werr
wexp
wbs
wnt

Jd

0.881.77 0.90
1.08.51

Y

1.97

2-73

5.96

-O ppm

-^I---- " -A -Y

· · · · · · · ~· · · · · · · · -· ---

~flBi



Cartesian Coordinates for Complexes 1-16 and Transition States 1-TS-4-TS

Complex I

C -0.610381 2.338797 -0.191842
C -1.205948 2.173304-1.477423
C -2.574743 1.904434 -1.550257
C -3.386951 1.813495 -0.415244
C -2.787394 1.984173 0.833708
C -1.419580 2.251393 0.973850
C 0.778703 2.925792 -0.108323
C 1.989253 2.196228 -0.047975
C 3.206258 2.903506 -0.093313
C 3.249588 4.294298 -0.153380
C 2.057475 5.015976 -0.160884
C 0.845291 4.331700 -0.145143
H -3.027399 1.757751 -2.526400
H -3.398691 1.922058 1.728481
H 4.146157 2.363585 -0.088523
H 4.207648 4.805495 -0.189126
H 2.068373 6.101993 -0.194242
H -0.085748 4.889936 -0.177700
P 1.982067 0.351523 0.189316
Pd -0.183536 -0.557184 -0.208372
C 3.466187 -0.214449 -0.818764
C 3.882280 -1.679336 -0.559450
C 3.210341 0.027788 -2.323464
H 4.310491 0.418067 -0.511301
C 5.106369 -2.058700 -1.411597
H 3.053062 -2.349674 -0.800105
H 4.114372 -1.830262 0.500536
C 4.426851 -0.376409 -3.173576
H 2.336742 -0.557323 -2.636153
H 2.967539 1.081736 -2.503261
C 4.846185 -1.828741 -2.906637
H 5.365603 -3.108490 -1.225924
H 5.974855 -1.460368 -1.096107
H 4.193451 -0.232747 -4.236098
H 5.269278 0.293965 -2.945285
H 5.739004 -2.081327 -3.492711
H 4.045629 -2.504692 -3.238932
C 2.462274 0.227157 2.024295
C 2.047231 -1.118817 2.653706
C 3.925124 0.573978 2.371929
H 1.826197 1.002331 2.475742
C 2.291677 -1.129153 4.172015

198



H 2.607017 -1.940827 2.189786
H 0.989612 -1.307148 2.441660
C 4.157106 0.553443 3.894720
H 4.602302 -0.150549 1.900543
H 4.189810 1.561922 1.982077
C 3.747590 -0.788446 4.516461
H 2.020125 -2.110675 4.580642
H 1.624532 -0.396417 4.649730
H 5.212104 0.769927 4.106140
H 3.573265 1.362190 4.358201
H 3.887280 -0.761789 5.604439
H 4.406892 -1.582011 4.134628
C 0.429784 -2.419713 -0.653392
C 0.651887 -3.403825 0.313089
C 0.574285 -2.734021 -2.009718
C 1.075770 -4.681553 -0.074733
H 0.488100 -3.199889 1.365274
C 1.000437 -4.012345 -2.388969
H 0.320171 -2.004506 -2.771080
C 1.264229 -4.986488 -1.423265
H 1.249435 -5.438830 0.686628
H 1.109851 -4.245673 -3.445748
H 1.593461 -5.978818 -1.720470
C -0.864503 2.554223 2.366787
C -1.162226 1.442645 3.388891
C -1.382811 3.913391 2.881392
H 0.224515 2.639261 2.284375
H -0.766573 0.479034 3.052480
H -0.705423 1.684384 4.356534
H -2.237636 1.316442 3.554607
H -1.122699 4.726444 2.195117
H -2.473477 3.904014 2.990896
H -0.947998 4.144752 3.861346
C -0.413606 2.389633 -2.769056
C -0.642111 3.816434 -3.314821
C -0.722655 1.356908 -3.867882
H 0.650352 2.299992 -2.525981
H -0.344628 4.586082 -2.595761
H -0.061195 3.969308 -4.232610
H -1.700281 3.971297 -3.557775
H -0.719355 0.335341 -3.482857
H -1.710583 1.524476 -4.312980
H 0.014401 1.450268 -4.675049
C -4.888371 1.607299 -0.583888
C -5.589733 2.966395 -0.794517
C -5.552570 0.827236 0.561455
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H -5.024898 1.023457 -1.504616
H -5.164592 3.507121 -1.647298
H -6.661852 2.826119 -0.978549
H -5.478886 3.601033 0.093493
H -5.052892 -0.128821 0.746005
H -5.549151 1.398830 1.497659
H -6.601092 0.622865 0.315151
C -2.774274 -2.076119 0.629983
C -3.885170 -2.775443 0.103900
N -2.079142 -1.379800 -0.363771
C -3.900019 -2.527878 -1.378643
H -3.812871 -3.436719 -1.986182
C -4.717069 -3.508283 0.936370
H -5.571635 -4.044718 0.529091
C -4.443519 -3.558839 2.312718
H -5.087173 -4.132687 2.973735
C -3.343207 -2.871072 2.829433
H -3.135744 -2.913461 3.896319
C -2.500116 -2.122574 1.999010
H -1.648683 -1.585663 2.405929
C -2.647810 -1.647526 -1.586137
O -2.237274 -1.258517 -2.678039
H -4.791087 -1.992393 -1.730842

Complex 2

C 0.939518 -2.357536 -0.263768
C 1.521942 -2.055544-1.529013
C 2.885006 -1.743613 -1.585645
C 3.700099 -1.720363 -0.450134
C 3.104412 -1.991560 0.785803
C 1.747369 -2.311888 0.906259
C -0.398764 -3.061125 -0.221911
C -1.673581 -2.458445 -0.107273
C -2.814677 -3.282167 -0.163272
C -2.724235 -4.665390 -0.296476
C -1.467870 -5.263235 -0.371995
C -0.328941 -4.463465 -0.338934
H 3.327686 -1.506563 -2.548608
H 3.717208 -1.975394 1.682699
H -3.802186 -2.838297 -0.108484
H -3.628255 -5.266828 -0.337059
H -1.372170 -6.341385 -0.467690
H 0.650660 -4.925903 -0.419149
P -1.842304 -0.627968 0.184285
Pd 0.239060 0.558808 -0.241123

200



C -3.413186 -0.196759 -0.761122
C -3.940606 1.225355 -0.468311
C -3.184401 -0.394401 -2.276205
H -4.192141 -0.901299 -0.438897
C -5.217771 1.513182 -1.277582
H -3.176177 1.965280-0.721574
H -4.152967 1.342611 0.600014
C -4.454358 -0.082180 -3.085713
H -2.370700 0.266195 -2.600741
H -2.861133 -1.422002 -2.481077
C -4.988009 1.325072 -2.783408
H -5.556867 2.535428 -1.068162
H -6.023264 0.840453 -0.945032
H -4.241684 -0.190666 -4.156906
H -5.230054 -0.824904 -2.844797
H -5.918058 1.506758 -3.337193
H -4.260121 2.071848 -3.130212
C -2.281166 -0.596244 2.032521
C -1.995974 0.777907 2.676368
C -3.685846 -1.106548 2.414573
H -1.551175 -1.304367 2.451704
C -2.195779 0.736311 4.201059
H -2.657857 1.540059 2.245449
H -0.973362 1.089487 2.437060
C -3.871566 -1.139615 3.943369
H -4.451803 -0.450674 1.979475
H -3.855859 -2.109786 2.009664
C -3.593857 0.228525 4.580126
H -2.022878 1.735102 4.621417
H -1.437769 0.074798 4.646416
H -4.888901 -1.475801 4.181894
H -3.187248 -1.886467 4.372472
H -3.696097 0.168187 5.671086
H -4.349219 0.949622 4.234020
C -0.548234 2.362485 -0.702094
C -0.869848 3.308908 0.277031
C -0.825582 2.647458 -2.045853
C -1.507750 4.503734 -0.078977
H -0.617973 3.133628 1.318111
C -1.460604 3.844789 -2.397177
H -0.527278 1.956261 -2.828587
C -1.813790 4.772599 -1.414323
H -1.757280 5.227060 0.694564
H -1.666560 4.052858 -3.445149
H -2.307317 5.701700 -1.688323
C 1.198425 -2.693696 2.281485
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C 1.456094 -1.610322 3.345312
C 1.756901 -4.053929 2.747716
H 0.113292 -2.807940 2.189012
H 1.041714 -0.643798 3.038880
H 0.992596 -1.895522 4.297632
H 2.526822 -1.469870 3.532488
H 1.522033 -4.848111 2.031192
H 2.846583 -4.016428 2.862151
H 1.326622 -4.333814 3.716825
C 0.724223 -2.151932 -2.830637
C 0.948750 -3.515945 -3.518572
C 1.033377 -1.012083 -3.819806
H -0.337482 -2.084523 -2.571122
H 0.649090 -4.353242 -2.880993
H 0.366371 -3.571986 -4.446225
H 2.006201 -3.647586 -3.778178
H 1.057173 -0.031663 -3.336249
H 2.007413 -1.151689 -4.304028
H 0.279265 -1.003609 -4.616256
C 5.194620 -1.451517 -0.582664
C 5.991156 -2.770402 -0.503165
C 5.725445 -0.428982 0.437516
H 5.354215 -1.029938 -1.583911
H 5.654310 -3.484687 -1.262710
H 7.061179 -2.586688 -0.657935
H 5.869808 -3.244084 0.478883
H 5.168898 0.512770 0.390738
H 5.659205 -0.808316 1.464305
H 6.781238 -0.211189 0.238779
C 2.400198 2.490415 0.784108
C 2.606862 3.766556 0.206255
C 2.838377 4.900820 0.976272
H 2.991992 5.873012 0.515153
C 2.879465 4.750544 2.369106
H 3.062029 5.622115 2.992423
C 2.697997 3.497874 2.961499
H 2.744621 3.399928 4.042962
C 2.455729 2.365230 2.170680
H 2.311989 1.393593 2.636606
C 2.360627 2.304465 -1.570696
O 2.372448 1.930381 -2.739502
N 2.562235 3.629333 -1.178972
H 2.662538 4.375267 -1.852110
C 2.145021 1.521699 -0.308319
H 2.710337 0.586737 -0.284587
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Complex 3

H 5.791211 1.193580 -0.909510
C 5.527752 -0.895805 -0.497671
C 5.177878 0.453764 -0.402689
H 5.018116 -2.868682 0.149995
C 4.742335 -1.818497 0.195312
C 4.073571 0.887634 0.339266
C 3.625798 -1.442303 0.954207
C 3.266870 -0.070022 1.003513
P -0.015979 0.675735 -0.185884
C 2.117774 0.357177 1.886763
C 0.758910 0.537708 1.505645
H 3.490867 0.415659 3.531155
C 2.449283 0.528244 3.244657
C -0.192678 0.789055 2.519454
H -1.245271 0.880114 2.256551
C 1.501385 0.820095 4.222668
C 0.162440 0.929304 3.858952
H 1.809325 0.941726 5.257736
H -0.607530 1.124600 4.599481
C 1.059150 -0.145915 -1.488712
C 0.842231 -1.673251 -1.479365
C 0.816425 0.404593 -2.911495
H 2.098916 0.065841 -1.217928
C 1.751927 -2.377993 -2.498924
H -0.205705 -1.887248 -1.719715
H 1.009904 -2.078536 -0.477549
C 1.727517 -0.297444 -3.935107
H -0.233831 0.245053 -3.194526
H 1.000698 1.483502-2.954098
C 1.544436 -1.820438 -3.914004
H 1.550235 -3.456785 -2.482890
H 2.802661 -2.248890 -2.203267
H 1.523062 0.100375 -4.937369
H 2.775490 -0.053248 -3.707446
H 2.237256 -2.296022 -4.619828
H 0.528724 -2.067573 -4.256141
C 0.046822 2.541703 -0.572590
C -1.100284 2.910294 -1.546810
C -0.035276 3.450770 0.672483
H 1.008025 2.731707 -1.069753
C -1.056809 4.395628 -1.944318
H -2.065043 2.708283 -1.051358
H -1.081315 2.285241 -2.443961
C 0.008698 4.939239 0.282486
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H -0.969359 3.246862 1.213984
H 0.777275 3.230517 1.370760
C -1.100394 5.307602 -0.712095
H -1.893395 4.618576 -2.618124
H -0.135302 4.589121 -2.513675
H -0.070884 5.553399 1.188267
H 0.988278 5.166968 -0.164170
H -1.011388 6.359515 -1.011209
H -2.078065 5.202056 -0.219958
C 3.815786 2.388566 0.471281
C 3.950926 3.157495 -0.856130
C 4.740901 3.005873 1.541277
H 2.788289 2.522213 0.822179
H 3.352262 2.703055 -1.653619
H 3.615906 4.193409 -0.726574
H 4.989242 3.197355 -1.204613
H 4.595652 2.529180 2.516125
H 5.794472 2.885966 1.261859
H 4.539999 4.078165 1.654817
C 2.885390 -2.517381 1.758052
C 3.595353 -2.776076 3.105826
C 2.723044 -3.858914 1.016624
H 1.880637 -2.142656 1.980013
H 3.647155-1.874573 3.721940
H 3.060292-3.544339 3.676983
H 4.619810 -3.130981 2.939939
H 2.311207 -3.733211 0.011824
H 3.676548 -4.392134 0.924063
H 2.043242 -4.508700 1.578990
C 6.733669 -1.352019 -1.308920
C 8.049980 -0.773583 -0.754879
C 6.575625 -1.024926 -2.806227
H 6.789689 -2.445117 -1.215359
H 8.186071 -1.036931 0.299750
H 8.908389 -1.160150 -1.317115
H 8.067988 0.320197 -0.831288
H 5.661846-1.470191 -3.215401
H 6.524755 0.057604 -2.973662
H 7.428126-1.410283 -3.378186
Pd -2.333998 0.238590 -0.071139
C -2.233292 -1.728530 0.263691
C -2.702298 -2.597461 -0.725027
C-1.769611 -2.228187 1.481564
C -2.669664 -3.979236 -0.502753
H -3.107236 -2.214781 -1.656477
C -1.747324 -3.612594 1.695005
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H -1.435815 -1.559962 2.267766
C -2.188715 -4.490576 0.703979
H -3.033830 -4.651483 -1.276214
H -1.389103 -3.997578 2.647163
H -2.170707 -5.563701 0.875116
N -4.363642 0.283580 0.260172
C -4.749513 0.456590 1.573640
C -5.466131 -0.120510 -0.496708
C -6.265317 0.188794 1.692048
O -4.007492 0.774860 2.500956
C -6.640457 -0.196555 0.286409
C -5.508016 -0.399241 -1.864795
H -6.773716 1.090827 2.055284
H -6.441201 -0.598331 2.435571
C -7.847888 -0.557789 -0.290918
C -6.731680 -0.769533 -2.434893
H -4.609449 -0.318874 -2.471289
C -7.893320 -0.851919 -1.663066
H -8.753145 -0.614450 0.310026
H -6.776654 -0.991843 -3.498511
H -8.833924-1.139091 -2.124994

Complex 4

H 5.899073 0.721299 -0.868346
C 5.412931 -1.325692 -0.445980
C 5.204762 0.053722 -0.365704
H 4.687366 -3.229602 0.201853
C 4.523621 -2.155889 0.238360
C 4.139910 0.606460 0.354260
C 3.441402 -1.658581 0.977038
C 3.228909 -0.255691 1.013564
P 0.043953 0.835453 -0.207644
C 2.124605 0.297817 1.883723
C 0.796581 0.621397 1.488486
H 3.484371 0.219412 3.538252
C 2.462325 0.439620 3.243610
C -0.129670 0.971320 2.495695
H -1.163479 1.167893 2.218584
C 1.543325 0.834343 4.213140
C 0.225843 1.080439 3.837909
H 1.854279 0.928027 5.250197
H -0.525027 1.357378 4.572164
C 1.029697 -0.122744 -1.490281
C 0.623079 -1.610556 -1.454014
C 0.853436 0.428089 -2.922491
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H 2.088446 -0.037562 -1.224902
C 1.433649-2.441251 -2.462180
H -0.444824 -1.694270 -1.688655
H 0.742255 -2.015772 -0.444571
C 1.667243 -0.399140 -3.934150
H -0.209448 0.394056 -3.202170
H 1.168667 1.475682-2.983117
C 1.293263 -1.886301 -3.886629
H 1.100060 -3.486351 -2.427629
H 2.493569 -2.437175 -2.170439
H 1.513476 0.003917 -4.943468
H 2.738124 -0.285634 -3.709757
H 1.918125 -2.457656 -4.584938
H 0.253214 -2.008774 -4.222794
C 0.338422 2.675307 -0.611442
C -0.749109 3.161853 -1.600633
C 0.346001 3.602558 0.622722
H 1.319132 2.751974-1.100899
C -0.536630 4.628622 -2.012534
H -1.734372 3.072563 -1.111052
H -0.792090 2.527362 -2.490313
C 0.566724 5.071347 0.218759
H -0.613206 3.515151 1.152105
H 1.117227 3.298094 1.335885
C -0.483300 5.554524 -0.790507
H -1.337109 4.938365 -2.696166
H 0.404867 4.709464 -2.575922
H 0.551643 5.701961 1.116676
H 1.569901 5.178025 -0.220712
H -0.269824 6.585087 -1.100900
H -1.470568 5.570923 -0.306031
C 4.031357 2.127069 0.464441
C 4.263972 2.858567 -0.870704
C 4.995795 2.666317 1.541771
H 3.015940 2.364418 0.795018
H 3.633317 2.456153 -1.671516
H 4.035912 3.925378 -0.760173
H 5.305962 2.785852 -1.202607
H 4.787423 2.223561 2.521069
H 6.036586 2.436817 1.283591
H 4.902004 3.755209 1.635203
C 2.575744 -2.643910 1.770809
C 3.222455 -2.963934 3.136957
C 2.292018 -3.966897 1.032945
H 1.610160-2.165509 1.966673
H 3.349283 -2.067661 3.749618
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H 2.598135 -3.670093 3.697730
H 4.209428 -3.421927 2.998725
H 1.927077 -3.806477 0.015088
H 3.184659 -4.600828 0.973743
H 1.529327 -4.534440 1.577813
C 6.578415 -1.911950 -1.232607
C 7.937428 -1.498429 -0.635364
C 6.501607 -1.554012 -2.728946
H 6.503619 -3.005023 -1.151958
H 8.011005 -1.786090 0.419138
H 8.760322 -1.978072 -1.178845
H 8.086007 -0.413643 -0.696822
H 5.551754-1.881293 -3.166343
H 6.586490 -0.471937 -2.884620
H 7.316332 -2.034504 -3.283743
Pd -2.385129 0.619535 -0.133591
C -2.578894 -1.339752 0.254365
C -3.074141 -2.195757 -0.734056
C -2.155452 -1.859078 1.481409
C -3.105353 -3.576894 -0.505955
H -3.452855 -1.800651 -1.671660
C -2.202452 -3.240931 1.704822
H -1.792997 -1.203290 2.266264
C -2.668425 -4.103690 0.710879
H -3.485307 -4.236693 -1.282756
H -1.876130 -3.636960 2.664222
H -2.701611 -5.175838 0.887225
C -4.749135 0.696722 1.569124
C -5.464612 0.106150 -0.607319
O -4.262910 1.237158 2.557964
C -6.164742 -0.669183 0.348336
C -5.785094 -0.033620 -1.955569
C -7.146951 -1.582008 -0.017277
C -6.781823 -0.942043 -2.339360
H -5.263320 0.556885 -2.705931
C -7.447644 -1.710235 -1.380335
H -7.673669 -2.172556 0.727784
H -7.036557 -1.050592 -3.390226
H -8.214900 -2.414869 -1.690412
C -4.471903 0.930593 0.111107
N -5.703952 -0.320564 1.617761
H -6.030297 -0.706848 2.491768
H -4.424527 1.995977 -0.155309

Complex 5
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H 2.604766 1.727180 -2.962061
C 2.993218 2.542381 -1.018881
C 2.156225 2.083583 -2.040517
H 3.027436 3.409858 0.934682
C 2.391956 3.027390 0.140295
C 0.762912 2.078138 -1.922289
C 1.002359 3.054623 0.314907
C 0.173928 2.540470 -0.715291
P -1.999714 -0.014169 0.354419
C -1.322222 2.717374 -0.587899
C -2.274651 1.792374 -0.085694
H -1.057093 4.703314 -1.348911
C -1.782374 4.003330 -0.946709
C -3.600991 2.241251 0.103781
H -4.335310 1.574586 0.543616
C -3.101349 4.411188 -0.786706
C -4.020055 3.523470 -0.231963
H -3.400575 5.415180 -1.075048
H -5.051682 3.819287 -0.062516
C -3.445050 -0.787175 -0.601709
C -3.260793 -0.636339 -2.126183
C -3.774406 -2.245534 -0.220020
H -4.317799 -0.184514 -0.317745
C -4.479999 -1.170239 -2.898101
H -2.368713 -1.190284 -2.436957
H -3.097316 0.416536 -2.382074
C -4.991530 -2.763504 -1.009493
H -2.912769 -2.890049 -0.417127
H -3.992733 -2.319276 0.850894
C -4.791327 -2.625264 -2.523893
H -4.296240 -1.080913 -3.976420
H -5.355723 -0.541283 -2.677693
H -5.176413 -3.811047 -0.740171
H -5.888530 -2.200379 -0.709737
H -5.682663 -2.975310 -3.060087
H -3.957252 -3.268201 -2.839204
C -2.572145 -0.113828 2.162163
C -2.122227 -1.436066 2.827774
C -2.085501 1.075272 3.018752
H -3.672884 -0.094560 2.130909
C -2.663190 -1.549103 4.263331
H -1.024668 -1.454891 2.850840
H -2.435266 -2.305392 2.241689
C -2.608717 0.971887 4.462494
H -0.988165 1.082191 3.025626
H -2.411260 2.024422 2.582439

208



C -2.219687 -0.357865 5.122994
H -2.321152 -2.491572 4.709628
H -3.762486 -1.595875 4.238111
H -2.224984 1.816089 5.049303
H -3.705202 1.068158 4.457607
H -2.655930 -0.426760 6.127747
H -1.128108 -0.392581 5.249104
C -0.081229 1.654082 -3.126832
C 0.610197 0.618365 -4.033140
C -0.487040 2.869427 -3.990489
H -1.001423 1.197961 -2.745107
H 1.078730 -0.184347 -3.457080
H -0.119912 0.174425 -4.720043
H 1.389386 1.080120 -4.651081
H -1.091211 3.589007 -3.432735
H 0.405054 3.388847 -4.361123
H -1.071440 2.541771 -4.859368
C 0.443050 3.727669 1.572514
C 0.462684 5.265029 1.421175
C 1.176816 3.333111 2.868901
H -0.601579 3.421687 1.684799
H -0.126095 5.604588 0.563757
H 0.054604 5.742168 2.320891
H 1.489460 5.625924 1.286077
H 1.279460 2.249412 2.954393
H 2.180020 3.775171 2.914021
H 0.623037 3.715510 3.735513
C 4.508286 2.555803 -1.176171
C 4.953707 3.556727 -2.260686
C 5.083520 1.154267 -1.452296
H 4.926423 2.901773 -0.220549
H 4.584816 4.565741 -2.044993
H 6.047946 3.598346 -2.323779
H 4.573927 3.265933 -3.247592
H 4.797294 0.440340 -0.672889
H 4.727258 0.757148 -2.410154
H 6.178757 1.190673 -1.496771
Pd 0.173177 -0.929802 0.327336
C -0.257250 -2.561400 -0.746529
C -0.214314 -2.604183 -2.143167
C -0.446299 -3.756318 -0.035904
C -0.374870 -3.819677 -2.822118
H -0.051447 -1.697824 -2.713168
C -0.610165 -4.967581 -0.716643
H -0.458888 -3.751839 1.050250
C -0.578359 -5.004029 -2.112820
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H -0.335042 -3.833635 -3.909151
H -0.756061 -5.884387 -0.149790
H -0.702757 -5.946119 -2.640322
N 2.143258 -1.518811 0.785745
C 2.335283 -0.615559 1.751840
C 3.292115 -2.303974 0.639693
C 3.729218 -0.745604 2.364441
O 1.417842 0.200563 2.050374
C 4.291131 -1.894283 1.555869
C 3.519118 -3.353586 -0.248001
H 3.659132-0.950525 3.440137
H 4.285078 0.193438 2.251419
C 5.520563 -2.534236 1.581761
C 4.765860 -3.990974 -0.208611
H 2.747247 -3.663515 -0.945152
C 5.758323 -3.592765 0.690378
H 6.293332 -2.224200 2.281992
H 4.961765 -4.812680 -0.893207
H 6.717515 -4.102978 0.701579

Complex 6

C 0.284678 2.499120 0.298059
C 0.163307 2.965712 -1.045551
C -1.091640 3.365655 -1.509637
C -2.236559 3.326112 -0.710483
C -2.110523 2.827043 0.587319
C -0.878817 2.427408 1.118753
C 1.658292 2.469566 0.931236
C 2.514285 1.348129 1.026508
C 3.794568 1.514529 1.587158
C 4.230271 2.746389 2.069292
C 3.378730 3.847693 2.001292
C 2.114720 3.702479 1.435286
H -1.182502 3.738130 -2.526552
H -2.990403 2.772791 1.221611
H 4.473312 0.670847 1.645641
H 5.225650 2.841060 2.494330
H 3.697349 4.816242 2.376802
H 1.456267 4.563570 1.366420
P 1.924792 -0.324397 0.483921
Pd -0.064095 -0.064040 -0.694339
C 3.470492 -1.139049 -0.207324
C 3.300985 -2.645171 -0.508641
C 3.987622 -0.385376 -1.452630
H 4.231358 -1.053380 0.581184
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C 4.618433 -3.249830 -1.024136
H 2.517670 -2.786622 -1.258325
H 2.979259 -3.183908 0.388844
C 5.292832 -1.006091 -1.979752
H 3.221612 -0.426721 -2.236347
H 4.148912 0.673451 -1.218547
C 5.134450 -2.506450 -2.264033
H 4.465325 -4.311970 -1.252084
H 5.379264 -3.205957 -0.229901
H 5.610389 -0.474712 -2.885916
H 6.090489 -0.858388 -1.236168
H 6.089602 -2.933098 -2.595584
H 4.421304 -2.646468 -3.088838
C 1.545111 -1.163247 2.142978
C 0.541564 -2.328251 2.004999
C 2.774071 -1.569013 2.984072
H 1.027135 -0.361002 2.686769
C 0.138547 -2.875932 3.384307
H 0.984527 -3.138054 1.410087
H -0.350048 -1.986316 1.469383
C 2.346289 -2.120316 4.357466
H 3.349407 -2.342104 2.457514
H 3.443078 -0.713621 3.130049
C 1.357893 -3.286730 4.220327
H -0.542366 -3.726095 3.253041
H -0.428619 -2.103650 3.924573
H 3.236725 -2.432541 4.918367
H 1.877832 -1.312664 4.938864
H 1.044216 -3.6352615.212493
H 1.863550-4.135133 3.735354
C 0.166607 -1.727245 -1.801862
C -0.378072 -2.953177 -1.411559
C 0.779411 -1.609772 -3.054812
C -0.282732 -4.061923 -2.261746
H -0.903209 -3.042363 -0.467790
C 0.866004 -2.721460 -3.902404
H 1.187184 -0.660382 -3.387502
C 0.343357 -3.953171 -3.504723
H -0.710676 -5.011284 -1.947488
H 1.340810 -2.615937 -4.875525
H 0.413545 -4.816266 -4.161680
C -0.805569 2.036177 2.594874
C -1.866695 0.992638 2.993896
C -0.907608 3.281319 3.501099
H 0.180490 1.593840 2.772856
H -1.890376 0.143786 2.303114

211



H -1.663931 0.626497 4.008205
H -2.872375 1.429394 3.007774
H -0.108490 4.000968 3.294191
H -1.867062 3.791966 3.356970
H -0.837003 2.990905 4.556287
C 1.377392 3.128751 -1.960519
C 1.797180 4.609123 -2.073294
C 1.147087 2.531914 -3.361591
H 2.212279 2.583579 -1.508579
H 2.044105 5.034281 -1.095223
H 2.678923 4.709107 -2.717906
H 0.991726 5.211874 -2.509519
H 0.786536 1.500717 -3.297755
H 0.409860 3.106006 -3.934382
H 2.083104 2.541835 -3.932934
C -3.566393 3.837231 -1.246806
C -4.136425 4.975932 -0.379702
C -4.588471 2.699026 -1.415113
H -3.369719 4.251990 -2.244934
H -3.421833 5.801262 -0.283689
H -5.056962 5.371990 -0.824654
H -4.381833 4.625942 0.629898
H -4.182072 1.912152 -2.056442
H -4.840553 2.246850 -0.448482
H -5.515889 3.076762 -1.862598
C -3.858727 -2.041465 0.578282
C -4.800000 -2.002222 -0.477493
N -2.701536 -1.291343 0.310871
C -4.186628 -1.143699 -1.550705
C -6.007323 -2.675704 -0.380248
H -6.732336 -2.643786 -1.191289
C -6.285173 -3.409306 0.785096
H -7.225938 -3.946002 0.875309
C -5.353940 -3.452074 1.826300
H -5.580371 -4.023466 2.723816
C -4.133577 -2.770854 1.736666
H -3.413079 -2.801036 2.549818
C -2.857557 -0.754115 -0.885663
O -2.011939 0.001247 -1.497388
H -3.982507 -1.679989 -2.486523
H -4.780404 -0.260224 -1.811649

Complex 7

C 0.322192 2.499608 -0.033323
C -0.020168 2.699387 -1.403237

212



C -1.353117 2.957770 -1.735404
C -2.367039 3.031701 -0.780149
C -2.016397 2.827826 0.558518
C -0.700356 2.576634 0.957613
C 1.775790 2.588152 0.376157
C 2.664311 1.500807 0.549425
C 4.008064 1.768686 0.872744
C 4.477753 3.068348 1.047603
C 3.597524 4.139299 0.903905
C 2.268357 3.892775 0.569652
H -1.614250 3.109797 -2.778807
H -2.788618 2.900985 1.319943
H 4.710566 0.950543 0.985317
H 5.521896 3.238806 1.294848
H 3.942766 5.160414 1.040806
H 1.584373 4.726762 0.440697
P 2.048875 -0.246487 0.408623
Pd -0.047922 -0.213488 -0.615672
C 3.512271 -1.169671 -0.328714
C 3.356545 -2.707101 -0.303798
C 3.805879 -0.670848 -1.760453
H 4.379934 -0.925140 0.299908
C 4.598699 -3.393324 -0.899862
H 2.469990 -3.000611 -0.873408
H 3.205121 -3.061380 0.721387
C 5.036868 -1.373687 -2.358078
H 2.931463 -0.871807 -2.390539
H 3.960041 0.414667-1.763094
C 4.888797 -2.901217 -2.324323
H 4.449938 -4.480208 -0.893789
H 5.471970 -3.192551 -0.260459
H 5.192708 -1.025520 -3.387048
H 5.933578 -1.081358 -1.790998
H 5.794801 -3.380030 -2.716841
H 4.060960 -3.200468 -2.982673
C 1.935270 -0.765079 2.229974
C 0.982015 -1.960142 2.445648
C 3.283588 -0.983108 2.949205
H 1.459585 0.113281 2.688983
C 0.794707 -2.266137 3.941078
H 1.371859-2.851647 1.938467
H 0.014232 -1.742850 1.981774
C 3.073509 -1.291827 4.443313
H 3.823130 -1.820820 2.487701
H 3.919718 -0.097141 2.847640
C 2.137365 -2.490213 4.650267

213



H 0.147260 -3.144170 4.056537
H 0.269444 -1.425960 4.419006
H 4.045613 -1.476007 4.918326
H 2.646820 -0.406917 4.937927
H 1.978998 -2.667823 5.721333
H 2.613720 -3.396989 4.249070
C 0.002228 -2.096731 -1.334828
C -0.550845 -3.167010 -0.626718
C 0.493756 -2.308941 -2.628552
C -0.576208 -4.446814 -1.194272
H -0.987100 -3.015726 0.355056
C 0.459171 -3.589169 -3.194653
H 0.894582 -1.485049 -3.211832
C -0.065924 -4.663997 -2.474681
H -1.010150 -5.270389 -0.631953
H 0.837648 -3.738685 -4.203662
H -0.091118 -5.657817 -2.914083
C -0.384702 2.500409 2.451940
C -1.237221 1.452482 3.191190
C -0.531466 3.883298 3.120009
H 0.663855 2.204211 2.560378
H -1.120124 0.457638 2.747089
H -0.936665 1.389521 4.243929
H -2.302933 1.709161 3.174655
H 0.115426 4.626789 2.642541
H -1.563704 4.246502 3.055584
H -0.259405 3.828505 4.180993
C 1.035657 2.726305 -2.509896
C 1.317089 4.171714-2.970764
C 0.657757 1.843757 -3.714542
H 1.967799 2.329205 -2.095319
H 1.666734 4.798246 -2.143520
H 2.087723 4.181018 -3.751016
H 0.413676 4.634582 -3.385085
H 0.412111 0.825581 -3.397432
H -0.209726 2.239334 -4.254598
H 1.493484 1.800359-4.423394
C -3.790548 3.386909 -1.187765
C -4.171534 4.793391 -0.681254
C -4.824183 2.338573 -0.739202
H -3.809221 3.417072 -2.285375
H -3.463699 5.552056 -1.034433
H -5.172433 5.069548 -1.033496
H -4.182889 4.830593 0.415000
H -4.588970 1.347426 -1.136924
H -4.872549 2.261645 0.353757

214



H -5.823489 2.622209 -1.090394
C -4.336717 -1.555366 0.824766
C -4.786832 -2.096286 -0.419594
N -3.193744 -0.817000 0.558639
C -3.896357 -1.622210 -1.436787
C -5.922335 -2.924650 -0.412691
H -6.287367 -3.359087 -1.340512
C -6.580275 -3.177247 0.789613
H -7.461667 -3.814155 0.794091
C -6.126308 -2.621609 1.998779
H -6.660281 -2.829819 2.922359
C -4.993104 -1.805008 2.028021
H -4.635757 -1.378072 2.962880
C -2.946926 -0.813032 -0.827529
0 -1.986879 -0.090042 -1.335393
H -2.807895 -0.103636 1.159576
H -3.920612 -1.851958 -2.492751

Complex 8

H -1.988651 2.758101 -2.894183
C -2.474623 3.361344 -0.894174
C -2.259246 2.414641 -1.900509
H -3.041294 3.617886 1.150888
C -2.855839 2.894262 0.361524
C -2.403046 1.041088 -1.678564
C -3.012788 1.531746 0.643399
C -2.756151 0.586702 -0.381230
P -0.328711 -1.799439 0.412486
C -3.084644 -0.866235 -0.122296
C -2.202554 -1.899124 0.291720
H -5.125215 -0.392112 -0.578104
C -4.455704 -1.178912 -0.244566
C -2.761382 -3.150104 0.633667
H -2.118275 -3.940518 1.006436
C -4.977935 -2.429948 0.063606
C -4.120872 -3.423966 0.530071
H -6.042847 -2.617739 -0.043603
H -4.500231 -4.403546 0.807872
C 0.120023 -3.377931 -0.546038
C -0.236616 -3.237074 -2.040569
C 1.577050 -3.851120 -0.361938
H -0.521877 -4.165148 -0.129096
C 0.052570 -4.531804 -2.819694
H 0.347908 -2.418496 -2.474823
H -1.295545 -2.975963 -2.149010

215



C 1.845545 -5.144587 -1.154244
H 2.271444 -3.072540 -0.691362
H 1.782158 -4.039237 0.697714
C 1.507990 -4.983971 -2.641905
H -0.175467 -4.376608 -3.882084
H -0.621706 -5.327468 -2.468491
H 2.897017 -5.432257 -1.028302
H 1.243578 -5.963968 -0.732202
H 1.683241 -5.926431 -3.176646
H 2.179097 -4.235222 -3.085623
C 0.011588 -2.277617 2.219210
C 1.465314 -1.933005 2.617206
C -0.961103 -1.604425 3.210471
H -0.120672 -3.368752 2.286902
C 1.772400 -2.359361 4.063015
H 1.600883 -0.847119 2.520626
H 2.184138 -2.390482 1.931627
C -0.659186 -2.014807 4.663272
H -0.870055 -0.514811 3.110552
H -1.996793 -1.862151 2.968934
C 0.793998 -1.717684 5.055765
H 2.806264 -2.088381 4.313333
H 1.709333 -3.454959 4.143238
H -1.351275 -1.496719 5.339373
H -0.853869 -3.091368 4.782490
H 0.994436 -2.070861 6.075410
H 0.949739 -0.628788 5.062936
C -2.273283 0.078926 -2.860088
C -1.255351 0.532590 -3.921453
C -3.639829 -0.156169 -3.541093
H -1.929994 -0.883403 -2.467832
H -0.313149 0.853261 -3.468384
H -1.043972 -0.290114 -4.614569
H -1.637925 1.366488 -4.522018
H -4.368690 -0.596919 -2.855425
H -4.051317 0.790877 -3.910893
H -3.529635 -0.833822 -4.396973
C -3.532075 1.133358 2.027933
C -5.053556 1.376935 2.131601
C -2.814438 1.851237 3.187742
H -3.363675 0.060018 2.157658
H -5.612252 0.809099 1.380982
H -5.422177 1.081668 3.121912
H -5.286622 2.439160 1.989294
H -1.729038 1.780536 3.092285
H -3.078300 2.915106 3.228496

216



H -3.123955 1.408503 4.142907
C -2.332852 4.854428 -1.160694
C -3.373773 5.351718 -2.182799
C -0.906181 5.233878 -1.599881
H -2.531889 5.370286 -0.211411
H -4.393369 5.123819 -1.852518
H -3.293662 6.436847 -2.321248
H -3.226561 4.879328 -3.161557
H -0.166180 4.915770 -0.857416
H -0.645803 4.764948 -2.556547
H -0.816594 6.319537 -1.727998
Pd 0.875157 0.261034 0.006710
C 2.361879 -0.443117 -1.164039
C 2.256330 -0.568613 -2.555412
C 3.585832 -0.774077 -0.559824
C 3.332391 -1.039518 -3.319647
H 1.334246 -0.302299 -3.060125
C 4.658484 -1.249856 -1.321372
H 3.714826 -0.661801 0.513676
C 4.535687 -1.389693 -2.705655
H 3.224350 -1.127088 -4.398959
H 5.594055 -1.504684 -0.827895
H 5.370174 -1.756227 -3.298046
O 0.094198 1.845232 1.688028
C 1.235739 2.250004 1.345688
N 2.272892 2.553200 2.211072
C 3.453022 2.792888 1.494989
C 4.712481 3.146653 1.966385
C 3.171596 2.648101 0.113034
C 5.720205 3.367579 1.020876
H 4.908457 3.255634 3.029962
C 4.190464 2.887380-0.810381
C 5.461379 3.244594 -0.349910
H 6.715663 3.642007 1.359418
H 3.999748 2.779090-1.874452
H 6.260145 3.423339 -1.064438
C 1.761554 2.280218 -0.018655
H 2.205605 2.417188 3.209622
H 1.138670 2.653948 -0.827285

Complex 9

H 5.778881 1.384538 -0.628112
C 5.613832 -0.722011 -0.257721
C 5.180430 0.603543 -0.167839
H 5.185960 -2.729943 0.338692

217



C 4.845463 -1.698544 0.377949
C 4.010910 0.962171 0.511607
C 3.665652 -1.398976 1.072750
C 3.222519 -0.051116 1.112574
P -0.062896 0.584999 -0.220047
C 2.007388 0.297712 1.941505
C 0.658769 0.430015 1.504197
H 3.305288 0.368359 3.644436
C 2.272286 0.442903 3.317952
C -0.338077 0.612122 2.487745
H -1.375603 0.678279 2.169306
C 1.274787 0.661025 4.264056
C -0.050471 0.724863 3.845167
H 1.534025 0.763386 5.314346
H -0.857191 0.868191 4.558304
C 1.114108 -0.212798 -1.459354
C 0.979061 -1.748326 -1.472290
C 0.976991 0.337671 -2.896512
H 2.118250 0.044471 -1.104737
C 2.010349 -2.397222 -2.410164
H -0.027549 -2.018043 -1.807531
H 1.076510 -2.150601 -0.460093
C 1.996283 -0.322499 -3.843727
H -0.039860 0.152790 -3.270311
H 1.135980 1.419873 -2.916382
C 1.884378 -1.851442 -3.838674
H 1.871252 -3.485993 -2.405401
H 3.024705 -2.205290 -2.033130
H 1.854447 0.071972 -4.858103
H 3.010949 -0.032684 -3.533318
H 2.651856 -2.291196 -4.488469
H 0.910946 -2.146872 -4.256609
C 0.033177 2.449939 -0.589306
C -0.932180 2.856377 -1.732300
C -0.248148 3.333171 0.647125
H 1.067116 2.631579 -0.916379
C -0.775897 4.347035 -2.082417
H -1.960588 2.674377 -1.403851
H -0.771137 2.251818 -2.627897
C -0.116474 4.828732 0.305720
H -1.266081 3.132447 1.003802
H 0.434645 3.088296 1.466466
C -1.028820 5.235763 -0.858287
H -1.472178 4.603151 -2.891169
H 0.237410 4.534184 -2.470301
H -0.345413 5.424208 1.198901

218



H 0.929450 5.050311 0.042994
H -0.875151 6.292824 -1.111504
H -2.077740 5.129253 -0.549077
C 3.661058 2.443486 0.651995
C 3.860747 3.251094 -0.643907
C 4.462996 3.084113 1.804887
H 2.603040 2.513407 0.921864
H 3.365628 2.779266 -1.499994
H 3.447393 4.259437 -0.525636
H 4.920900 3.366447 -0.896411
H 4.267248 2.579371 2.756403
H 5.540475 3.027483 1.608875
H 4.194343 4.141132 1.920997
C 2.951280 -2.526558 1.826826
C 3.624197 -2.778716 3.194644
C 2.884120 -3.858763 1.054688
H 1.921485 -2.207144 2.017798
H 3.614984 -1.887843 3.828185
H 3.104673 -3.580642 3.733053
H 4.668570 -3.085154 3.059139
H 2.488121 -3.734753 0.043908
H 3.868700 -4.333876 0.974265
H 2.231766 -4.559435 1.588096
C 6.889987 -1.095918 -1.000402
C 8.136823 -0.462787 -0.353149
C 6.807699 -0.744195 -2.498129
H 6.998331 -2.186480 -0.924404
H 8.218437 -0.738890 0.703867
H 9.048103 -0.795185 -0.864539
H 8.103765 0.631759 -0.411311
H 5.942363 -1.222221 -2.970609
H 6.715639 0.338048 -2.648676
H 7.710606 -1.077228 -3.023694
Pd -2.359651 0.071136 -0.144856
C -2.097298 -1.905525 -0.153238
C -2.584574 -2.641428 -1.242353
C -1.578524 -2.584480 0.954984
C -2.541114 -4.040099 -1.223569
H -3.008381 -2.131746 -2.103357
C -1.545087 -3.984701 0.971529
H -1.196826 -2.033723 1.810153
C -2.020517 -4.716458 -0.117531
H -2.921445 -4.599200 -2.075690
H -1.144952 -4.500103 1.842063
H -1.990796 -5.802863 -0.103808
N -4.483273 0.104584 -0.017698

219



C -4.572629 1.430284 0.111699
C -5.766714 -0.455230 0.025002
C -6.025011 1.883257 0.249863
O -3.525208 2.143076 0.112528
C -6.745366 0.555391 0.180901
C -6.129781 -1.797282 -0.064181
H -6.289463 2.576841 -0.558308
H -6.171307 2.421256 1.194917
C -8.089768 0.224210 0.244537
C -7.491952 -2.116832 0.002335
H -5.373502 -2.566679 -0.182120
C -8.464820 -1.125805 0.153869
H -8.847212 0.995996 0.363898
H -7.794984 -3.158921 -0.065192
H -9.515325 -1.398966 0.202784

Complex 10

C -3.366826 -0.921406 -0.936542
C -3.383415 -2.215050 -0.360209
C -4.474672 -2.582081 0.438298
C -5.555704 -1.728760 0.670156
C -5.526351 -0.465114 0.072854
C -4.460396 -0.043301 -0.730188
C -2.296719 -0.558545 -1.934805
C -1.056451 0.088926 -1.687664
C -0.206027 0.325789 -2.794410
C -0.536302 -0.041469 -4.095692
C -1.750652 -0.678004 -4.332093
C -2.603814 -0.925074 -3.260509
H -4.494369 -3.574633 0.881247
H -6.365723 0.208222 0.224157
H 0.750893 0.814071 -2.628843
H 0.157909 0.161702 -4.905638
H -2.033104 -0.985210 -5.335202
H -3.552601 -1.422092 -3.440111
P -0.280258 0.715343 -0.096630
Pd 1.942741 0.062117 -0.514920
C -0.790919 2.528494 0.008877
C -0.136097 3.252776 1.207649
C -0.501749 3.312596 -1.289303
H -1.879413 2.511533 0.161518
C -0.648580 4.698918 1.324058
H 0.949456 3.264283 1.069010
H -0.324323 2.720263 2.145470
C -0.993800 4.767209 -1.179622

220



H 0.580724 3.307562 -1.476826
H -0.977651 2.830944 -2.149349
C -0.391195 5.488275 0.033647
H -0.160927 5.189396 2.175741
H -1.727198 4.691161 1.541639
H -0.749668 5.303834 -2.105122
H -2.090998 4.770263 -1.097472
H -0.801472 6.502590 0.116255
H 0.693364 5.596228 -0.110408
C -1.012906 -0.145321 1.421120
C 0.088510 -0.366896 2.487054
C -2.255436 0.507662 2.062410
H-1.307095-1.129674 1.039007
C -0.432676 -1.175316 3.687525
H 0.452611 0.605993 2.843247
H 0.948795 -0.873820 2.034311
C -2.766578 -0.316548 3.259450
H -2.003535 1.514294 2.417862
H -3.056677 0.613801 1.328728
C -1.673850 -0.527899 4.314395
H 0.367248 -1.277435 4.431777
H -0.682095 -2.194535 3.357980
H -3.634465 0.190076 3.700792
H -3.123589 -1.290380 2.898108
H -2.051768 -1.146870 5.137830
H -1.396407 0.442072 4.753423
C 2.889826 1.582385 0.366581
C 3.131701 1.613857 1.742658
C 3.417624 2.578136 -0.461947
C 3.890508 2.656039 2.290775
H 2.740200 0.839547 2.393331
C 4.169782 3.618426 0.096873
H 3.266543 2.542994-1.536335
C 4.4048913.662516 1.472447
H 4.077551 2.673158 3.361933
H 4.581217 4.386871 -0.553156
H 4.993396 4.469098 1.901131
C -4.542857 1.324514-1.412405
C -4.944500 2.462576-0.454666
C -5.507290 1.279119 -2.615997
H -3.549133 1.565678-1.804262
H -4.291466 2.507174 0.423838
H -4.882854 3.427247 -0.972134
H -5.974367 2.353641 -0.096230
H -5.194112 0.530943 -3.351216
H -6.524655 1.027466-2.293408

221



H -5.543311 2.253365 -3.118164
C -2.288771 -3.246511 -0.649457
C -2.741269 -4.228204 -1.751662
C -1.833433 -4.036040 0.592583
H -1.413479 -2.710573 -1.032909
H -2.984063 -3.705848 -2.681938
H -1.947369 -4.952615 -1.968707
H -3.631298 -4.785229 -1.435270
H -1.533450 -3.375821 1.413351
H -2.620640 -4.698934 0.969353
H -0.974492 -4.666631 0.336738
C -6.732937 -2.179539 1.525621
C -8.040144 -2.241188 0.712225
C -6.905049 -1.301782 2.780078
H -6.510360 -3.199905 1.866399
H -7.931415 -2.888475 -0.164846
H -8.858706 -2.633660 1.327099
H -8.337376 -1.246394 0.359433
H -5.990106 -1.285905 3.382298
H -7.146902 -0.266282 2.511906
H -7.720312 -1.681084 3.407593
C 6.781276 -1.901018 -0.772783
C 6.369632 -2.029778 0.575466
N 5.778106 -1.396654 -1.613903
C 4.939155 -1.565620 0.613660
C 7.241857 -2.496692 1.545670
H 6.928020 -2.593203 2.583487
C 8.547854 -2.850549 1.168287
H 9.244114 -3.222786 1.915443
C 8.954223 -2.727603 -0.164110
H 9.968696 -3.005500 -0.441171
C 8.079297 -2.252937 -1.148125
H 8.391630 -2.154127 -2.183633
C 4.720257 -1.206062 -0.864937
O 3.581946 -0.798705 -1.340070
H 4.226559 -2.340218 0.927656
H 4.775288 -0.692385 1.257199

Complex 11

C 3.406345 -0.730628 0.973803
C 3.381402 -2.110568 0.655240
C 4.393057 -2.632219 -0.161909
C 5.436233 -1.847009 -0.657284
C 5.452717 -0.493239 -0.309311
C 4.465656 0.082745 0.498568

222



C 2.426972 -0.176606 1.977389
C 1.156737 0.406374 1.721549
C 0.396331 0.839112 2.833412
C 0.845526 0.730440 4.146346
C 2.092101 0.162642 4.391779
C 2.855654 -0.280875 3.315876
H 4.380575 -3.691035 -0.408123
H 6.266043 0.131849 -0.667522
H -0.585454 1.273362 2.660341
H 0.218611 1.079210 4.961799
H 2.467201 0.057446 5.406047
H 3.826881 -0.730131 3.501851
P 0.243580 0.742654 0.113565
Pd -1.976294 0.252960 0.762542
C 0.787672 2.479102 -0.383855
C 0.041364 2.985058 -1.640348
C 0.635065 3.504679 0.759712
H 1.856860 2.391203 -0.622303
C 0.565019 4.365137 -2.074005
H -1.027399 3.057696 -1.416920
H 0.137855 2.278785 -2.470963
C 1.136986 4.895325 0.330911
H -0.424539 3.571956 1.039996
H 1.181056 3.177393 1.650366
C 0.436065 5.391976 -0.941127
H 0.011589 4.701616 -2.959531
H 1.620042 4.281328 -2.375404
H 0.987284 5.605604 1.153985
H 2.221812 4.847798 0.153271
H 0.850716 6.359548 -1.251065
H -0.629609 5.557523 -0.727667
C 0.820612 -0.414411 -1.271483
C -0.383890 -0.793766 -2.168225
C 2.007027 0.058174 -2.138775
H 1.133945 -1.319057 -0.737205
C 0.000145 -1.833229 -3.234660
H -0.768383 0.105847 -2.667061
H -1.204032 -1.171746 -1.546495
C 2.381193 -0.995462 -3.198679
H 1.741830 0.988113 -2.655706
H 2.878215 0.270862-1.516443
C 1.185871 -1.362315 -4.086704
H -0.870701 -2.043326 -3.868492
H 0.262057 -2.781161 -2.741579
H 3.210371 -0.614328 -3.808750
H 2.753853 -1.896489 -2.693117

223



H 1.469534 -2.139363 -4.807725
H 0.884121 -0.483480 -4.675742
C -2.957511 1.646995 -0.293585
C -3.434580 1.373685 -1.577868
C -3.264749 2.864372 0.323255
C -4.202066 2.331288 -2.252548
H -3.226735 0.422142 -2.056430
C -4.032832 3.816050 -0.358626
H -2.923824 3.075403 1.332599
C -4.497624 3.554637 -1.649033
H -4.572762 2.111046 -3.250954
H -4.272276 4.758611 0.128594
H -5.095287 4.294046 -2.175445
C 4.598807 1.555496 0.894474
C 4.918100 2.481840 -0.294475
C 5.658883 1.731698 2.001999
H 3.639354 1.880548 1.310574
H 4.199238 2.359365 -1.111891
H 4.889518 3.529312 0.028175
H 5.918419 2.297029 -0.702324
H 5.407812 1.148391 2.893640
H 6.646014 1.404820 1.653823
H 5.736417 2.785069 2.297179
C 2.333581 -3.060481 1.242697
C 2.904775 -3.811506 2.464657
C 1.772406 -4.074081 0.227394
H 1.491758 -2.456238 1.598056
H 3.238733 -3.118649 3.242957
H 2.143564 -4.469072 2.901281
H 3.761547 -4.431481 2.174329
H 1.385519 -3.584012 -0.672427
H 2.529554 -4.800435 -0.088768
H 0.951943 -4.640168 0.682978
C 6.531515 -2.461492 -1.520127
C 7.892367 -2.453805 -0.796219
C 6.636716 -1.784193 -2.899093
H 6.256326 -3.511489 -1.689670
H 7.831885 -2.971406 0.167416
H 8.656454 -2.952377 -1.404502
H 8.234716 -1.429785 -0.604519
H 5.679678 -1.815876 -3.431088
H 6.933898 -0.732751 -2.806739
H 7.388690 -2.287302 -3.518410
C -5.926640 -2.440514 -0.099337
C -6.833473 -1.615396 0.637825
N -4.647781 -2.022212 0.218896

224



C -6.046827 -0.714642 1.420541
C -8.213788 -1.827524 0.470354
H -8.929977 -1.214332 1.012271
C -8.653416 -2.830457 -0.389374
H -9.720131 -2.997526 -0.517332
C -7.740630 -3.635246 -1.096273
H -8.110096 -4.413904 -1.758505
C -6.364371 -3.446289 -0.959490
H -5.657426 -4.065685 -1.507224
C -4.708634 -0.991405 1.168546
O -3.629165 -0.480870 1.692645
H -3.792963 -2.508627 -0.004978
H -6.397502 0.057997 2.090129

Complex 12

H 5.712383 -0.095514 -1.201419
C 5.006686 -1.949416 -0.382436
C 4.986332 -0.561039 -0.540696
H 4.109898 -3.589372 0.654878
C 4.086369 -2.513481 0.502440
C 4.070472 0.253247 0.134789
C 3.148658 -1.747447 1.208333
C 3.117901 -0.344372 0.997763
P -0.008304 0.981211 -0.175548
C 2.178752 0.504801 1.822919
C 0.875564 0.957052 1.470253
H 3.667393 0.497075 3.363469
C 2.663514 0.822381 3.106860
C 0.117221 1.621878 2.456074
H -0.897151 1.921545 2.221834
C 1.909734 1.516334 4.049767
C 0.612928 1.902656 3.726056
H 2.329371 1.733730 5.028360
H -0.015763 2.414756 4.448664
C 0.775713 -0.275501 -1.338361
C 0.223104 -1.680859 -1.019326
C 0.546515 0.047950 -2.831874
H 1.853510 -0.270685 -1.148716
C 0.850148 -2.758541 -1.918661
H -0.866589 -1.670989 -1.164576
H 0.389606 -1.924073 0.034892
C 1.185425 -1.027005 -3.730209
H -0.530042 0.104125 -3.037639
H 0.974896 1.023413 -3.087913
C 0.656714 -2.430445 -3.405416

225



H 0.409851 -3.736724 -1.684010
H 1.923872 -2.835119 -1.696970
H 0.994954 -0.781048 -4.782822
H 2.277335 -1.011819 -3.596520
H 1.155944-3.181533 -4.031075
H -0.414588 -2.478359 -3.651995
C 0.454686 2.681380 -0.901148
C -0.631167 3.154566 -1.895502
C 0.701221 3.789385 0.144248
H 1.394765 2.524110 -1.449270
C -0.231463 4.470895 -2.582626
H -1.566841 3.302647 -1.338440
H -0.853756 2.393296-2.645803
C 1.102864 5.112229 -0.533903
H -0.214697 3.948750 0.730286
H 1.475957 3.494727 0.857985
C 0.060022 5.576169 -1.559674
H -1.030917 4.782074 -3.266723
H 0.661780 4.302269 -3.203015
H 1.256314 5.882506 0.233010
H 2.071975 4.977366 -1.037624
H 0.402046 6.488933 -2.064191
H -0.871184 5.837500 -1.035658
C 4.171456 1.770344-0.025849
C 4.364720 2.223158 -1.484866
C 5.298909 2.336169 0.863055
H 3.233824 2.207390 0.330190
H 3.607191 1.791790 -2.148575
H 4.294392 3.315263 -1.552461
H 5.348465 1.939729-1.876343
H 5.132408 2.095484 1.918060
H 6.271194 1.920456 0.572464
H 5.355168 3.427528 0.768867
C 2.249429-2.445757 2.235086
C 2.994175 -2.630284 3.576110
C 1.712459 -3.815344 1.774418
H 1.385096 -1.800250 2.423736
H 3.313739-1.6753914.001364
H 2.344502-3.124872 4.308338
H 3.885310 -3.254816 3.438683
H 1.244114 -3.770765 0.787298
H 2.504749 -4.571869 1.734402
H 0.963099 -4.175196 2.488871
C 6.006807 -2.823486 -1.128133
C 7.459671 -2.504894 -0.725925
C 5.824541 -2.730531 -2.655118

226



H 5.806023 -3.863176 -0.835420
H 7.602928 -2.607461 0.355344
H 8.157802 -3.184550 -1.229168
H 7.734925 -1.480334 -1.003585
H 4.800844 -2.987900 -2.949132
H 6.032175 -1.717299 -3.019489
H 6.509702 -3.415425 -3.168929
H -7.286039 -4.197359 -0.694443
C -6.749620 -3.252457 -0.680815
C -5.842998 -2.965106 -1.707155
C -6.976457 -2.339116 0.356580
C -5.171611 -1.748817 -1.651786
H -5.675243 -3.667390 -2.519626
C -6.296020 -1.118800 0.400116
H -7.687466 -2.584747 1.140659
C -5.373596 -0.816258 -0.603127
N -4.246468 -1.203059 -2.552158
H -6.465862 -0.420758 1.215193
C -4.514948 0.338733 -0.865037
C -3.830472 0.041871 -2.118280
H -3.765157 -1.710762 -3.280763
H -4.823439 1.355457 -0.637038
O -2.874900 0.706932 -2.612262
Pd -2.390150 0.590527 -0.275689
C -2.756367 0.191186 1.657865
C -3.469799 1.100572 2.454479
C -2.348923 -1.022170 2.230173
C -3.751242 0.810075 3.794818
H -3.812995 2.044174 2.036040
C -2.638348 -1.314745 3.567577
H -1.801297 -1.749065 1.635765
C -3.336068 -0.398636 4.356986
H -4.302964 1.530381 4.395801
H -2.315122 -2.263365 3.991416
H -3.558128 -0.626092 5.396563

Transition State 1-TS

C -0.556715 2.567021 -0.425372
C -1.190641 2.211590 -1.643748
C -2.567920 1.959315 -1.637623
C -3.345179 2.063346 -0.481732
C -2.699973 2.419507 0.705432
C -1.324750 2.673481 0.759965
C 0.876878 3.037191 -0.449920
C 2.028435 2.226000 -0.284154

227



C 3.293061 2.831300 -0.422752
C 3.444769 4.191457 -0.682692
C 2.312860 4.993403 -0.808418
C 1.052776 4.412391 -0.696435
H -3.054941 1.684958 -2.569824
H -3.284514 2.518566 1.616035
H 4.190214 2.229837 -0.333557
H 4.440053 4.616164 -0.782677
H 2.406384 6.058446 -1.003116
H 0.166236 5.029259 -0.813225
P 1.914471 0.415689 0.168575
Pd -0.130341 -0.699601 -0.225750
C 3.398505 -0.333811 -0.718683
C 3.659348 -1.795353 -0.295916
C 3.204242 -0.245144 -2.248138
H 4.290393 0.248070 -0.449735
C 4.858272 -2.390391 -1.056150
H 2.768183 -2.399905 -0.493708
H 3.850645 -1.856250 0.780995
C 4.401183 -0.844334 -3.005873
H 2.290866 -0.791477 -2.518865
H 3.054163 0.796810 -2.554908
C 4.673214 -2.292715 -2.576412
H 4.994580 -3.436848 -0.755313
H 5.777032 -1.857818 -0.766170
H 4.214444 -0.793518 -4.086287
H 5.296273 -0.232886 -2.815088
H 5.557545 -2.685191 -3.094915
H 3.824077 -2.923793 -2.874165
C 2.372349 0.487037 2.014228
C 1.897623 -0.767033 2.780641
C 3.842362 0.810394 2.351279
H 1.761100 1.329507 2.368820
C 2.117116 -0.618648 4.295679
H 2.434967 -1.653979 2.421150
H 0.838335 -0.945088 2.564800
C 4.052904 0.951690 3.870672
H 4.494680 0.009543 1.977044
H 4.156064 1.735969 1.857784
C 3.579909 -0.295375 4.629810
H 1.802064 -1.537592 4.806915
H 1.472553 0.187816 4.675765
H 5.112658 1.148801 4.078271
H 3.495602 1.829097 4.230722
H 3.702744 -0.152453 5.711022
H 4.213635 -1.151055 4.352882

228



C -0.111479 -2.814364 -0.492306
C 0.212769 -3.629243 0.608937
C 0.308812 -3.199526 -1.782538
C 0.988344 -4.774786 0.422419
H -0.123076 -3.375288 1.605360
C 1.079880 -4.351823 -1.943306
H 0.025370 -2.607131 -2.641100
C 1.431337 -5.146964 -0.848808
H 1.243749 -5.380460 1.289103
H 1.405203 -4.626406 -2.944349
H 2.028864 -6.043745 -0.985301
C -0.711563 3.119101 2.087472
C -1.038800 2.154537 3.243054
C -1.138436 4.557453 2.444911
H 0.377190 3.129894 1.968443
H -0.756825 1.126085 2.993586
H -0.499943 2.451223 4.151405
H -2.108237 2.155069 3.482946
H -0.845205 5.265588 1.662447
H -2.225701 4.627153 2.568415
H -0.671629 4.877749 3.384548
C -0.434188 2.185431 -2.973246
C -0.672324 3.492392 -3.759615
C -0.777978 0.968999 -3.850876
H 0.635654 2.132943 -2.747748
H -0.351182 4.372343 -3.192622
H -0.116135 3.477515 -4.705046
H -1.736103 3.614515 -3.997137
H -0.716444 0.029808 -3.294576
H -1.791911 1.035852 -4.262661
H -0.088257 0.921153 -4.702735
C -4.854464 1.863554 -0.548763
C -5.584917 3.222227 -0.536685
C -5.398102 0.941356 0.556132
H -5.070816 1.385058 -1.514093
H -5.238026 3.866284 -1.352354
H -6.667584 3.083904 -0.646611
H -5.407908 3.753429 0.406639
H -4.892708 -0.029829 0.556438
H -5.269614 1.383171 1.551371
H -6.471784 0.768898 0.413300
C -2.615093 -2.351825 0.688948
C -3.870003 -2.818647 0.257077
N -1.777782 -2.029020 -0.412508
C -3.898586 -2.761940 -1.242375
H -3.999626 -3.742064 -1.726773

229



C -4.844112 -3.177612 1.179319
H -5.815984 -3.531240 0.843298
C -4.563560 -3.072525 2.548168
H -5.315432 -3.355778 3.279200
C -3.325720 -2.583753 2.971340
H -3.121343 -2.480992 4.033883
C -2.342963 -2.205867 2.049224
H -1.402263 -1.782397 2.384492
C -2.523930 -2.177703 -1.594175
O -2.129745 -1.922675 -2.718677
H -4.690584 -2.121188 -1.647567

Transition State 2-TS

C 0.454677 2.617400 -0.576890
C -0.501793 2.451653 -1.609330
C -1.845022 2.744718 -1.341347
C -2.278942 3.199395 -0.094054
C -1.317991 3.349349 0.910836
C 0.037917 3.076194 0.696796
C 1.922144 2.503340 -0.911362
C 2.711659 1.328680 -0.818920
C 4.048970 1.390614 -1.257536
C 4.618765 2.563419 -1.748420
C 3.849799 3.723408 -1.809925
C 2.520297 3.681283 -1.398423
H -2.578079 2.634692 -2.137335
H -1.628667 3.710502 1.887642
H 4.666445 0.500082 -1.224146
H 5.654622 2.566568 -2.077053
H 4.274886 4.651052 -2.183847
H 1.911088 4.578828 -1.461957
P 2.045433 -0.258813 -0.092674
Pd -0.308609 -0.566927 0.113855
C 2.897373 -1.586478 -1.123315
C 2.656453 -2.998203 -0.545250
C 2.405155 -1.513225 -2.585653
H 3.980627 -1.403807 -1.112979
C 3.298134 -4.085237 -1.425239
H 1.579059 -3.182647 -0.465719
H 3.061759 -3.070389 0.470046
C 3.043755 -2.606290 -3.459221
H 1.312963 -1.633261 -2.594975
H 2.619228 -0.525046 -3.010308
C 2.803773 -4.005634 -2.875437
H 3.077668 -5.072716 -1.000568

230



H 4.393028 -3.973060 -1.407620
H 2.643009 -2.541843 -4.479194
H 4.126343 -2.424668 -3.537435
H 3.300177 -4.766665 -3.491380
H 1.727551 -4.229004 -2.899663
C 2.887126 -0.254877 1.612862
C 2.144649 -1.150295 2.630169
C 4.402858 -0.533835 1.632917
H 2.739270 0.785556 1.936826
C 2.735470 -0.997760 4.042451
H 2.214048 -2.202088 2.322773
H 1.076951 -0.902416 2.638065
C 4.981336 -0.385130 3.052836
H 4.597180 -1.554857 1.276802
H 4.929308 0.147109 0.955768
C 4.245239 -1.274995 4.063640
H 2.211291 -1.669155 4.734102
H 2.549723 0.025421 4.401133
H 6.053315 -0.622118 3.040122
H 4.897631 0.666064 3.365892
H 4.649906 -1.119623 5.072021
H 4.423949 -2.331525 3.813429
C -1.229510 -2.430255 0.142046
C -0.862470 -3.323999 1.162816
C -1.526638 -2.939759 -1.134326
C -0.732997 -4.688212 0.888287
H -0.679773 -2.954179 2.166137
C -1.379195 -4.303298 -1.401791
H -1.870510 -2.277909 -1.922095
C -0.980536 -5.184955 -0.393919
H -0.437753 -5.364605 1.687516
H -1.592653 -4.676087 -2.401161
H -0.882917 -6.247399 -0.600560
C 1.031371 3.345221 1.826752
C 0.619664 2.682004 3.154762
C 1.250257 4.859845 2.020434
H 1.996537 2.918815 1.533198
H 0.424961 1.611971 3.028708
H 1.415199 2.804041 3.900073
H -0.286964 3.134418 3.572940
H 1.615245 5.331264 1.101394
H 0.316185 5.358990 2.304873
H 1.985880 5.045603 2.812591
C -0.104946 2.030588 -3.024761
C -0.207325 3.218114 -4.003295
C -0.917112 0.827603 -3.537771

231



H 0.943336 1.718706 -3.001852
H 0.427343 4.051947 -3.684068
H 0.108359 2.917206 -5.009732
H -1.237344 3.588520 -4.070448
H -0.836260 -0.016773 -2.844154
H -1.979405 1.072184 -3.658215
H -0.542709 0.506806 -4.517625
C -3.739392 3.569541 0.136597
C -3.899708 5.085521 0.367595
C -4.381659 2.767591 1.283349
H -4.284049 3.318285 -0.783781
H -3.478962 5.660860 -0.464629
H -4.959057 5.351567 0.466449
H -3.388973 5.402808 1.284749
H -4.338773 1.691604 1.085749
H -3.877106 2.957024 2.238219
H -5.435118 3.047911 1.403225
C -3.695761 -1.082915 0.002711
C -4.600366 -1.694269 0.899012
C -5.890566 -2.045312 0.520690
H -6.575569 -2.515680 1.220861
C -6.285210 -1.761657 -0.793718
H -7.289173 -2.026431 -1.114392
C -5.413140 -1.137287 -1.688349
H -5.743728 -0.916537 -2.699440
C -4.112656 -0.793513 -1.292106
H -3.436131 -0.304168 -1.987146
C -2.703296-1.267701 2.151211
O -1.987440 -1.166588 3.137484
N -3.978479 -1.819348 2.144435
H -4.408141 -2.178566 2.984962
C -2.418938 -0.845931 0.727239
H -2.122889 0.229057 0.725203

Transition State 3-TS

H -5.828729 1.011747 1.035861
C -5.462191 -1.079481 0.728094
C -5.198901 0.279599 0.538444
H -4.875615 -3.054359 0.158211
C -4.662307 -1.994954 0.042811
C -4.159499 0.730826 -0.282759
C -3.609967 -1.601325 -0.794863
C -3.329773 -0.216149 -0.933644
P -0.027855 0.806681 0.057154
C -2.243134 0.216794 -1.891400

232



C -0.879849 0.488934 -1.582007
H -3.684119 0.083048 -3.471771
C -2.638435 0.266562 -3.242113
C 0.013729 0.688580 -2.656320
H 1.067296 0.839397 -2.432365
C -1.746611 0.521144 -4.281533
C -0.399765 0.709347 -3.986247
H -2.101925 0.548507 -5.308253
H 0.328318 0.874207 -4.775536
C -0.981933 -0.061807 1.426858
C -0.609550 -1.558461 1.426516
C -0.726367 0.541541 2.824268
H -2.049839 0.037874 1.208509
C -1.369905 -2.334870 2.513595
H 0.470770 -1.653701 1.595551
H -0.801060 -1.996126 0.441530
C -1.487082 -0.235453 3.914144
H 0.350598 0.514302 3.045438
H -1.034012 1.592586 2.856508
C -1.133602 -1.728387 3.903644
H -1.059232 -3.387785 2.500183
H -2.445669 -2.319536 2.287536
H -1.270366 0.204333 4.896316
H -2.568226 -0.118260 3.748690
H -1.720365 -2.263724 4.661217
H -0.075996 -1.852695 4.179901
C -0.295338 2.670991 0.345498
C 0.789268 3.220144 1.303701
C -0.277266 3.498141 -0.957938
H -1.279733 2.792363 0.818234
C 0.595629 4.719251 1.590685
H 1.773700 3.060636 0.838615
H 0.806180 2.665526 2.245863
C -0.469278 4.999962 -0.681856
H 0.685485 3.345019 -1.466136
H -1.048560 3.153196 -1.652559
C 0.579187 5.543442 0.297112
H 1.392782 5.069479 2.258916
H -0.351839 4.867110 2.130534
H -0.430729 5.551892 -1.629810
H -1.474587 5.165415 -0.265904
H 0.385654 6.601048 0.517553
H 1.572274 5.496454 -0.173167
C -3.997483 2.232787 -0.513738
C -4.154578 3.075871 0.765407
C -4.980234 2.725420 -1.597156

233



H -2.987224 2.403229 -0.896684
H -3.522819 2.703804 1.579764
H -3.875352 4.117123 0.565882
H -5.189405 3.084882 1.126653
H -4.823824 2.201597 -2.545568
H -6.018597 2.557638 -1.286750
H -4.849550 3.799470 -1.777749
C -2.859016 -2.679374 -1.585302
C -3.638204 -3.059051 -2.864150
C -2.567700 -3.962820 -0.783121
H -1.895820 -2.262528 -1.896942
H -3.792098 -2.198638 -3.520460
H -3.091363 -3.822261 -3.431113
H -4.622736 -3.469472 -2.608374
H -2.084898 -3.754297 0.174885
H -3.481011 -4.534924 -0.581373
H -1.902055 -4.613332 -1.361863
C -6.589027 -1.555720 1.635674
C -7.967027 -1.062501 1.154940
C -6.343644 -1.159986 3.104633
H -6.598411 -2.653276 1.587954
H -8.158658 -1.368122 0.120519
H -8.765151 -1.471951 1.785700
H -8.037613 0.030867 1.199191
H -5.381940 -1.543783 3.463269
H -6.334621 -0.070058 3.225753
H -7.133471 -1.560703 3.751408
Pd 2.284564 0.326796 -0.077386
C 3.081495 -1.589832 -0.498035
C 3.144125 -2.509269 0.561432
C 2.805934 -2.036352 -1.802740
C 2.867953 -3.857137 0.319596
H 3.393039 -2.188409 1.564170
C 2.533548 -3.388500 -2.017679
H 2.809062 -1.336513 -2.627122
C 2.557958 -4.307010 -0.964925
H 2.900980 -4.556684 1.151659
H 2.299901 -3.720272 -3.026688
H 2.349237 -5.357784 -1.145059
N 4.308175 -0.169580 -0.355043
C 4.960217 0.107098 -1.567733
C 5.274831 -0.214266 0.681080
C 6.476044 0.103055 -1.320896
O 4.410383 0.288779 -2.640164
C 6.577722 -0.083752 0.166161
C 5.056406 -0.298824 2.055979

234



H 6.915506 1.039887 -1.682740
H 6.926387 -0.709667 -1.906107
C 7.672294 -0.077418 1.019486
C 6.167968 -0.306632 2.906635
H 4.048118 -0.323428 2.456941
C 7.465506 -0.205592 2.399797
H 8.678945 0.032367 0.623037
H 6.012806 -0.378292 3.979996
H 8.314891 -0.207824 3.076993

Transition State 4-TS

H 5.933380 0.743906 -1.106226
C 5.480569 -1.315969 -0.713537
C 5.280532 0.059730 -0.571741
H 4.817044 -3.240235 -0.061124
C 4.652153 -2.168773 0.017265
C 4.275282 0.587346 0.246350
C 3.631181 -1.697401 0.853839
C 3.414412 -0.296985 0.943229
P 0.149415 0.831778 -0.052165
C 2.360756 0.220600 1.895751
C 1.008537 0.544615 1.588316
H 3.810456 0.079025 3.467678
C 2.772366 0.303392 3.240004
C 0.138095 0.830479 2.661963
H -0.908870 1.022974 2.440207
C 1.905095 0.640682 4.276609
C 0.565940 0.883569 3.986280
H 2.272339 0.690231 5.298247
H -0.144272 1.114931 4.775172
C 1.050415 -0.131182 -1.395346
C 0.602404 -1.606433 -1.340199
C 0.818412 0.434619 -2.812714
H 2.123533 -0.078713 -1.186829
C 1.313334-2.459701 -2.403112
H -0.483680 -1.652093 -1.497484
H 0.780980 -2.017466 -0.341177
C 1.533588 -0.418501 -3.875946
H -0.259199 0.454191 -3.031391
H 1.178832 1.466888 -2.883433
C 1.102497 -1.889361 -3.812623
H 0.946691 -3.493281 -2.352110
H 2.389534 -2.494521 -2.181169
H 1.335863 -0.002772 -4.872518
H 2.620093 -0.351779 -3.717425

235



H 1.656735 -2.480722 -4.552818
H 0.038529 -1.967430 -4.081147
C 0.500967 2.668121 -0.422233
C -0.561466 3.230731 -1.396267
C 0.536699 3.550587 0.844021
H 1.485540 2.718671 -0.906997
C -0.288163 4.702115 -1.753462
H -1.547426 3.148885 -0.916081
H -0.618651 2.632835 -2.309997
C 0.805782 5.026581 0.500100
H -0.428553 3.470564 1.364174
H 1.294682 3.196215 1.548576
C -0.218327 5.581255 -0.498228
H -1.069597 5.065226 -2.433353
H 0.662213 4.773691 -2.303403
H 0.803135 5.622044 1.422125
H 1.815604 5.118968 0.072607
H 0.030749 6.615817 -0.767000
.H -1.209352 5.610039 -0.022146
C 4.183325 2.102751 0.421756
C 4.368011 2.889504 -0.889242
C 5.196353 2.590534 1.479243
H 3.184961 2.333966 0.804078
H 3.714662 2.515449 -1.685485
H 4.136189 3.948819 -0.727701
H 5.399586 2.839800-1.256492
H 5.024830 2.110267 2.447848
H 6.223476 2.364653 1.168301
H 5.115526 3.675402 1.620073
C 2.847430 -2.709051 1.698009
C 3.636097 -3.076259 2.974704
C 2.479552 -4.006467 0.951938
H 1.911554 -2.235737 2.012394
H 3.849317 -2.198564 3.590347
H 3.065051 -3.786244 3.585179
H 4.592318 -3.546849 2.715052
H 1.981118 -3.811848 -0.001052
H 3.361275 -4.625621 0.749516
H 1.802058 -4.605696 1.570979
C 6.570574 -1.875260 -1.618724
C 7.976385 -1.424774 -1.178249
C 6.318306 -1.525453 -3.098205
H 6.533287 -2.969554 -1.528708
H 8.172005 -1.698821 -0.135766
H 8.745336-1.892483 -1.804719
H 8.093325 -0.337995 -1.265944

236



H 5.335106 -1.879994 -3.427418
H 6.354601 -0.441651 -3.261426
H 7.079231 -1.984900 -3.740540
Pd -2.215974 0.382362 0.106931
C -3.317859 -1.290738 0.594708
C -3.451577 -2.261578 -0.407905
C -3.235904 -1.682757 1.939204
C -3.429927 -3.617898 -0.069800
H -3.575157 -1.967470 -1.444753
C -3.219215 -3.042188 2.264296
H -3.208948 -0.933971 2.723541
C -3.311286 -4.013144 1.264350
H -3.516462 -4.364799 -0.855650
H -3.143665 -3.338275 3.308078
H -3.308004 -5.068529 1.524109
C -5.222490 0.461021 1.478173
C -5.368156 0.093388 -0.862684
O -4.898728 0.821363 2.599509
C -6.595927 -0.238449 -0.247806
C -5.259057 0.029347 -2.247562
C -7.700485 -0.648893 -0.984479
C -6.366307 -0.377447 -3.005726
H -4.321668 0.290186 -2.733202
C -7.567218 -0.717378 -2.378038
H -8.639954 -0.901277 -0.500280
H -6.288738 -0.429642 -4.088040
H -8.417192 -1.035018 -2.976036
C -4.412115 0.484655 0.201814
N -6.470835 -0.046189 1.129963
H -7.210617 -0.149624 1.809652
H -3.988907 1.505528 0.068400

Complex 13

C 2.770923 -0.864727 0.279571
C 2.567312 0.629174 -0.094172
C 3.833984 1.450660 0.210349
C 5.096440 0.849354 -0.422081
C 5.287739 -0.604976 0.026126
C 4.054309 -1.446958 -0.333124
H 3.679313 2.480923 -0.133060
H 2.390902 0.675205 -1.178398
H 2.860836 -0.913666 1.373513
H 5.018499 0.885235 -1.518466
H 5.972426 1.451735 -0.152290
H 6.179882 -1.040272 -0.439986

237



H 5.455260 -0.634974 1.112612
H 3.964079 -1.472648 -1.426720
H 4.186914 -2.486265 -0.002460
H 3.981108 1.501684 1.297571
N 1.333257 1.125997 0.529613
N 1.523234 -1.643577 -0.031147
Cu -0.014737 -0.460999 0.220787
N -1.690797 0.260903 -0.109839
C -1.759902 1.512613 -0.652350
C -3.231304 1.904106 -0.882604
H -3.395563 2.105974-1.948753
O -0.802091 2.251520 -0.938959
H -3.454724 2.835617 -0.347532
C -3.971468 0.702971 -0.365262
C -5.320885 0.401851 -0.268619
C -2.995602 -0.216674 0.075119
C -5.711241 -0.832129 0.275075
H -6.072334 1.111510 -0.609170
C -3.378171 -1.443161 0.618305
C -4.742812 -1.738999 0.712192
H -6.766157 -1.079457 0.357712
H -2.625193 -2.146483 0.965442
H -5.052023 -2.692166 1.135287
C 1.397073 1.644725 1.896421
H 2.027156 2.538629 2.011325
H 0.378145 1.900860 2.200286
H 1.763617 0.876946 2.588195
H 0.824751 1.784174 -0.074494
C 1.403505 -2.154812 -1.421202
H 2.207740 -2.850197 -1.692480
H 0.441907 -2.661825 -1.512149
H 1.407100 -1.318424 -2.123317
H 1.511217 -2.456674 0.583315

Complex 14

C 2.671791 0.713641 -0.621858
C 2.472456 -0.628174 0.129375
C 3.645551 -1.592035 -0.123532
C 5.005378 -0.949755 0.183982
C 5.192629 0.336708 -0.630219
C 4.054978 1.327094 -0.343378
H 3.500055 -2.498395 0.477490
H 2.445970 -0.404108 1.204298
H 2.605427 0.497052 -1.697237
H 5.072475 -0.715662 1.256176

238



H 5.810849 -1.662015 -0.031753
H 6.157210 0.804142 -0.398476
H 5.212468 0.092371 -1.702311
H 4.117301 1.627626 0.710421
H 4.178594 2.241155 -0.939572
H 3.641815 -1.907620 -1.175418
N 1.131123 -1.179603 -0.179777
N 1.519577 1.624896 -0.340879
Cu -0.123320 0.442428 -0.004193
N -2.461832 -1.562571 0.664594
C -1.499264 -0.764899 1.317235
C -1.809023 0.623782 0.960927
O -0.629356 -1.262065 2.075343
C -3.098650 0.579395 0.261598
C -3.963607 1.562293 -0.220198
C -3.455783 -0.783155 0.079523
C -5.144650 1.190224 -0.873150
H -3.720916 2.614529 -0.086878
C -4.616912 -1.166345 -0.583551
C -5.465394 -0.158788 -1.058496
H -5.818704 1.959103 -1.242685
H -4.868464 -2.216192 -0.715860
H -6.384228 -0.432165 -1.570916
H -2.517009 -2.556279 0.834597
H-1.629490 1.387347 1.719354
C 0.998318 -2.025850 -1.374747
H 1.592789 -2.949064 -1.335707
H -0.056253 -2.294652 -1.476245
H 1.287110-1.467362 -2.271443
H 0.771122 -1.676992 0.642234
C 1.616545 2.464652 0.874112
H 2.449147 3.179406 0.846964
H 0.677924 3.012448 0.979232
H 1.727362 1.828943 1.755965
H 1.410333 2.250714-1.136675

Complex 15

C 3.085366 -0.214017 0.010453
C 1.973628 0.862989 0.136835
C 2.562609 2.231224 0.529667
C 3.720946 2.664870 -0.378134
C 4.824877 1.600716 -0.389516
C 4.262957 0.251678 -0.860364
H 1.759171 2.978153 0.519571
H 1.507052 0.968441 -0.852959

239



H 3.462733 -0.407615 1.023780
H 3.355392 2.821629 -1.403414
H 4.119970 3.628389 -0.038402
H 5.650569 1.904865 -1.044082
H 5.246866 1.498541 0.620926
H 3.931061 0.366683 -1.899950
H 5.049116 -0.515721 -0.863148
H 2.933149 2.185658 1.562514
N 0.906846 0.367185 1.020706
N 2.474753 -1.518649 -0.423079
Cu 0.673369 -1.604612 0.284495
C 1.031879 0.589107 2.461205
H 1.057683 1.648159 2.757345
H 0.170678 0.119431 2.945323
H 1.933685 0.103320 2.852920
H -0.022194 0.657072 0.685043
O -1.088416 -2.188215 0.350490
C -1.972739 -1.279927 0.158481
C -4.075200 -0.276036 -0.107135
H -3.754575 -2.069203 1.119910
C -2.992917 0.626873 -0.224958
C -5.383564 0.161037 -0.236098
C -3.232178 1.978467 -0.475532
C -5.625588 1.521322 -0.487438
H -6.215807 -0.534222 -0.144682
C -4.556838 2.413285 -0.604240
H -2.402733 2.674672 -0.569237
H -6.646376 1.879565 -0.590931
H -4.755471 3.464803 -0.799317
N -1.743168 0.007502 -0.067024
C -3.465195 -1.625802 0.158511
H 3.071685 -2.266525 -0.071473
C 2.350110 -1.726623 -1.889599
H 3.318707 -1.729197 -2.405552
H 1.851992 -2.683570 -2.051199
H 1.721087 -0.945341 -2.321388
H -3.681769 -2.375782 -0.612929

Complex 16

C -3.121557 -0.139537 -0.187302
C -2.077413 0.977912 0.075451
C -2.587887 2.333268 -0.449570
C -3.975500 2.692496 0.100891
C -4.989068 1.583602 -0.209313
C -4.509740 0.237917 0.355383

240



H -1.857340 3.111538 -0.196019
H -1.955158 1.064664 1.164506
H -3.205142 -0.258267 -1.275953
H -3.917349 2.838406 1.189365
H -4.309925 3.646709 -0.323545
H -5.972070 1.830039 0.209227
H -5.122848 1.502592 -1.297650
H -4.474047 0.316026 1.449700
H -5.228951 -0.557886 0.117842
H -2.643253 2.300749 -1.545765
N -0.767521 0.557407 -0.439350
N -2.604220 -1.466119 0.291120
Cu -0.740569 -1.581931 -0.145960
C -0.495380 0.722654 -1.870437
H -0.502640 1.766265 -2.213195
H 0.489541 0.295111 -2.071742
H -1.226241 0.160301 -2.462361
H 0.003685 0.953799 0.095295
0 0.999440 -2.097307 -0.382943
C 1.908894 -1.208849 -0.092010
C 3.287003 0.406449 0.764952
H 1.328953 -0.147095 1.747330
C 3.919819 -0.162755 -0.382865
H 3.232766 -1.756364 -1.648523
C 3.964710 1.423850 1.455707
C 5.168373 0.255212 -0.833884
C 5.217397 1.844537 1.008590
H 3.517653 1.878807 2.337342
C 5.816173 1.270159 -0.123913
H 5.628316 -0.195166 -1.710892
H 5.740575 2.631082 1.547578
H 6.792967 1.614725 -0.453173
N 3.056380 -1.125016 -0.882071
C 2.023984 -0.256421 0.923963
H -3.140830 -2.186425 -0.192182
C -2.748850 -1.731179 1.746628
H -3.794212 -1.721406 2.077548
H -2.312348 -2.708805 1.956202
H -2.189342 -0.984764 2.313932
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Chapter Three

Copper-catalyzed Reactions of Hydroxypyridines
and Related Compounds with Aryl Halides

X.- R2  Cul cat.

base, 80-150 "C
X = Br, I

o

• N or N Oor R14 'R2

R2 -R2
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3.1 Introduction

N-Aryl 2-, 4-hydroxypyridines, and O-aryl 3-hydroxypyridines manifest significant

biological activities' and exhibit interesting photochemical properties.2 The successful N- or O-

arylation of 2-, 3-, and 4-hydroxypyridines with aryl halides have not been reported with the use

of Pd-based methods; 3' however, the use of Cu for this transformation has been described."

Although the Cu-mediated cross-coupling of 2-hydroxypyridines with aryl boronic acids,6 aryl

stannanes,7 and aryl bismuth reagents8 has been previously reported, aryl halides are preferred

substrates as these electrophiles tend to be more stable, easier to prepare, and/or less toxic than

the corresponding B, Sn, and Bi counterparts. Several accounts of the Cu-catalyzed N-arylation

of 2-hydroxypyridines with aryl halides have been reported without the use of added ligand and

with ligands 1, 2, and 5.9 However, the Cu-catalyzed N- and O-arylations of 4- and 3-

hydroxypyridines, respectively, are yet to be disclosed. Herein, we describe our recent progress

in coupling hydroxypyridines and hydroxyquinolines with aryl halides.

Figure 1. Ligands Employed for N- and O-Arylation of Hydroxypyridines.
OMe

O"N(H)Me N(H)Me OMe
NC. e OH

1 2 3 4 5

Previous accounts of the Cu-catalyzed N-arylation of 2-hydroxypyridine with N-

containing aryl halides reported that many substrates were incompatible with the methods.9 First,

N-containing heteroaryl halides could not be utilized. Li proposed that the coordination of the

sp2-hybridized nitrogen lone pair electrons of these electrophiles to the copper catalyst impeded

the cross-coupling reaction.d Second, ortho-substituted aryl halides were unreactive, as a
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maximum yield of 2% was reported for the reactions of 2-hydroxypyridines with such

substrates. 9 This finding agrees with the well-established notion that Cu-catalyzed C-heteroatom

bond-forming reactions of aryl halides are particularly sensitive to steric hindrance on the

electrophilic component.6 Finally, 2-hydroxypyridines bearing strongly electron-withdrawing

groups or containing substituents at the 6-position were also unreactive.df

3.2 Results and Discussion

While ligands 1 and 2 were first designed and reported for reactions of Cu-catalyzed N-

arylations of indoles lo and amides" (pKa = 21-26), using aryl iodides and bromides, 2-

hyroxypyridine is significantly more acidic (pK, = 17).12 Since the plK of imidazole (pK, = 19) is

closer to that of the hydroxypyridine, we felt that a good catalyst system for the N-arylation of

imidazoles13 might also be effective for the N-arylation 2-hydroxypyridines. We recently

reported that a catalytic system based on Cu20, 4,7-dimethoxy-1,10-phenanthroline (3) as a

ligand, and poly(ethylene glycol) as an additive was efficient for promoting the N-arylation of

imidazoles. Using a combination of Cul and 3, we found that N-containing heterocyclic aryl

halides could be coupled to 2-hydroxypyridine in modest to good yields (Table 1 entries 1-4).

The reactions of 2-hydroxypyridine with aryl iodides and bromides can be successfully

accomplished even in the presence of free N-H groups (Table 1, entries 3 and 6). By using this

catalyst system, a nonconjugated electron-withdrawing group at the 5-position was tolerated

(Table 1, entry 7). However, 2-hydroxy-3-methyl-5-nitropyridine was unreactive, presumably

due to the decreased coordinating ability (nucleophilicity) of the hydroxypyridine (Table 1, entry

8).

248



Table 1. N-Arylation of 2-Hydroxypyridinesa
0•NH :R2 Y% Cul, Z% L

R k +* X K2CO3 , DMSO
24-30 h

entry product X L Y/Z temperature yieldb entry
t(C) (%)

1 •NBr 3 5/7.5 1106N

O S
2 N N Br 3 5/7.5 110

O H,, NH

3 • 1I 110/20 100

4 ,
4 NIN 1 3 5/7.5 110

" General reaction conditions: 1.2 mmol
K2CO3, 1.0 mL of DMSO under Ar or N2

product X L Y/Z temperature yieldb
(CC) (%)

82c  5 ý• C I 3 10/15 110 80

NHO

850 6 N, Br 3 5/7.5 110 78

(I O NMe2

75 7 h N -• Br 3 10/15 120 71

47 8 Me - Me I 3 10/15 80-150 0

NO2

of 2-hydroxypyridine, 1.0 mmol of ArX, 2.0 mmol of
atmosphere. b Isolated yield. c DMF used as solvent.

In our own attempts to improve the reaction of 2-hydroxypyridine with hindered aryl

iodides, we discovered that a mixture of N- and O-aryl products was produced under the reaction

conditions, with the latter being the major product. This phenomenon had not been previously

reported for reactions of this type.' Using 5 as a ligand, we were able to achieve modest

selectivity for coupling the 2-substituted aryl halides with 2-hydroxypyridine to afford moderate

yields of 2-pyridylaryl ethers (Table 2). Under more forcing conditions, the selectivity changed

from O to N, providing the N-aryl product in poor yield with 3 as a ligand. Interestingly,

although N-arylation is the preferential pathway for the Cu-catalyzed arylation of 2-

hydroxypyridines with unhindered aryl halides, the milder conditions for achieving the O-aryl

product when using hindered aryl iodides suggest that the inherent preference for C-N bond-

formation over C-O can be overcome by steric effects. While the procedures are not very

selective, they do provide access to usable amounts of both the N-aryl and O-aryl products.
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Table 2. Arylation of 2-Hydroxypyridine with Hindered Aryl Iodidesa

A: 10% Cul, 20% 5
O K2CO3, DMSO + (0O

N 120 *C, 48 h O

H + I B: 10% Cul, 15%3 3 +
R K2CO3, DMSO R

150 'C, 96 h N-Aryl O-Aryl

entry Arl conditions a  N-Aryl O-Arylb yield of major productc

1 A 1.0 : 4.8 67
2 B 1.8:1.0 40

3 A 1.0:4.0 64
4 B 1.6:1.0 42

a Conditions A: 1.2 mmol of 2-hydroxypyridine, 1.0 mmol of ArI, 0.10 mmol of Cul, 0.15 mmol
of 3, 2.0 mmol of K2CO3, 1.0 mL of DMSO at 150 OC for 96 h under Ar or N2 atmosphere.
Conditions B: 1.2 mmol of 2-hydroxypyridine, 1.0 mmol of ArI, 0.10 mmol of CuI, 0.20 mmol
of 5, 2.0 mmol of K2CO3, 1.0 mL of DMSO at 120 OC for 48 h under Ar or N2 atmosphere. b

Detected by GC Analysis. c Isolated yield.

Although we have shown that 3 is a better ligand than diamines 1 and 2 for Cu-catalyzed

reactions of 2-hydroxypyridine with N-containing heteroaryl halides and with 2-substituted aryl

iodides, commercially available ligands 1-2 and 5 are still viable alternatives for other coupling

transformations of 2-hydroxypyridines with aryl halides. Attempts to arylate 2-hydroxy-6-

methylpyridine were met with limited success, even under forcing conditions. Presumably, the

hindered amide coordinates too poorly to Cu(I) for the catalytic reaction to proceed. If the

substrate does coordinate at N1, the methyl presumably impedes the aryl halide from interacting

with- the metal. On the other hand, if the methyl group provides too much hindrance to coordinate

at nitrogen, the resulting L-Cu(I)-O species might not react with the aryl halide, to form the 0-

aryl product.

Since with Cu-catalysis 2-hydroxypyridines reacted preferentially with aryl halides at

nitrogen instead of at oxygen, we became interested in exploring the selectivity difference

between the N- and the O-positions for 4-hydroxypyridines. Previous investigations have shown
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that, depending on the nature of the electrophile, reactions of 4-hydroxypyridine with an

electrophile can form the O-substituted product as the major product, the N-substituted product

as the major product, or mixtures of the N- and O-substituted products. 14 No O-arylation was

detected in reports of the uncatalyzed N-arylation of 4-hydroxypyridine with activated aryl

chlorides, 14 or in the Cu(II)-mediated vinylation with tetravinyl tin'" or arylation with arylboronic

acids.'6 Similarly, we have found that the Cu(I)-catalyzed coupling of 4-hydroxypyridine with a

variety of aryl and heteroaryl iodides and bromides showed complete selectivity for reaction at

nitrogen using ligands 3 and 4 (Table 3).17 The use of other N- and O-based chelating ligands,

including 1, 2, and 5, provided significantly lower yields of the N-substituted product. Only

when using 2-iodotoluene as the electrophile did we detect trace amounts of O-aryl product as

identified by GC/MS (Table 3, entry 4). However, we were unable to achieve selectivity for

formation of the aryl 4-pyridyl ether as the major product using a variety of conditions and

ligands. Reactions of 4-hydroxyquinolines were accomplished by employing a stronger base and

slightly higher temperatures (Table 3, entries 7 and 8). As with 2-hydroxypyridines, a 4-

hydroxyquinoline with an electron-withdrawing group conjugated with the nitrogen was

unreactive toward an aryl iodide under a variety of conditions (Table 3, entry 9).
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Table 3. N-Arylation of 4-Hydroxypyridines and Conjugated Hydroxyquinolinesa
R N Y% Cul, ZO/% L Ri -R2

+ -R2 K2CO3, DMSO
HOe •  24-48 h Oarid

tamn at ra• lrlb
entry product X L Y/Z

1 O N~•C OMe Br 3 5/7.5

I
OOQ2 O -O Br 3 7/7.5

3 (••~Me Br 4 5/20

OL NMe,

4 O N I 4 10/40

5 ~IN Br 4 10/40

a General reaction conditions: 1.2
K2CO3, 1.0 mL of DMSO under Ar

enp proue enL /
I.ry podctX YZt -J 1(%1

Me

110 95

0 OMe
110 89

7

110 92

8 1N N
110 63 0O

temperature yieldb
('C) (%)

I 4 2/8 110 90

I 4 10/40 120 68c

I 4 10/40 120

110 76
I 4 10/40 140 0

mmol of hydroxypyridine, 1.0 mmol of ArX, 2.0 mmol of
or N2atmosphere. b Isolated yield. c K3PO4 used as base.

For the 2- and 4-hydroxypyridines, we tentatively propose that the selectivity favoring N-

arylation occurs due to one of two factors. If the Cu-N binding affinity is significantly stronger

than that for the Cu-O bond, isomerization from Cu-N to Cu-O might be slower than aryl halide

activation (Scheme 1). Thus, the N-aryl product would form selectively. In the case that a non-

negligible amount of the Cu-O species is present in solution, the selectivity might be due to a

lower activation barrier for oxidative addition to the Cu-N species. Further work is necessary to

interrogate these hypotheses.
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Scheme 1. Selectivity of Cu-Catalyzed Reactions of 2- and 4-Hydroxypyridines with Aryl
Halides.

OCuLXn 
O

CUCuXLnXn

O-Aryl Product ArX ArX N-Aryl Product
Not Observed -------------------- or or Observed

OtCuL2  N O
CuL2

For 3-hydroxypyridine and related compounds, N-arylation is not a viable reaction

pathway, and exclusive O-arylation might be possible. In our previous attempts to O-arylate 3-

hydroxypyridines with aryl halides (using Pd catalysts), none of the desired product was

observed.4 To construct the aryl-3-pyridyl ether structure, it was necessary to cross-couple the 3-

halopyridine with a phenol.

We have found that using a system based on Cul and 2,2,6,6-tetramethylheptane-3,5-

dione, 4,18 3-hydroxypyridines were successfully coupled with aryl bromides. The use of other

N- and O-based chelating ligands in this reaction, including those depicted in Figure 1 and other

fP-diketones,1 9 provided lower conversions and yields of product. Reactions of 3-

hydroxypyridines with aryl halides containing water and/or base-sensitive functional groups

could be accomplished at a lower temperature (80 °C) with the addition of molecular sieves to

prevent hydrolysis of the nitrile and ester groups (Table 4, entries 2 and 7). The reaction of an

aryl bromide was successful with a catalyst loading of 1% Cu, making this one of the most

efficient Cu-catalyzed N- or O-arylation reaction of an aryl bromide reported to date (Table 4,

entry 3). To O-arylate 8-hydroxyquinoline (Table 4, entry 4), ligand was not necessary, although

more forcing conditions were required to achieve complete conversion of the aryl halide. In

contrast, the presence of a neighboring coordinating group on the nucleophile has been
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demonstrated to accelerate the N-arylation of R-amino acids significantly.20 The requirement for

more strenuous conditions to O-arylate 8-hydroxyquinoline is not surprising since it is an

effective ligand for Cu-catalyzed O-arylation reactions of phenols. 21 Reactions of 3-

hydroxypyridines with 3-bromoquinoline and 4-bromoisoquinoline were successful (Table 4,

entries 2 and 6). This is notable, since the 3-pyridyl-3-(iso)quinolinyl ether structure cannot be

accessed by other direct routes such as Pd-catalyzed methods or SnAr of the corresponding 3-

halopyridine under mild conditions without further activation (e.g., using 3-hydroxypyridine N-

oxide). Under standard reaction conditions, the use of an aryl iodide gave significant amounts of

diaryl ether as a byproduct. However, by using 4 A molecular sieves and Cs2CO3 as a base,22 a

higher yield of aryl-pyridyl ether could be obtained (Table 4, entry 8).

Table 4. O-Arylation of 3-Hydroxypyridine and Nonconjugated Hydroxyquinolinesa
O X _ Y%fCul, Z% L 0 '--__R Y + X R2  1 R O R2

K3PO 4, DMF24-48 h

entry product X L Y/Z temperature yieldb entry product X L Y/Z temperature yieldb
('C) (%) ('C) (%)

1 •( /•- Br 4 5/20 110 82CI O 0r
c Me 5 Br 4 10/40 120 69

2 O CN Br 4 10/40 80 78C

6 ia, Br - 10/0 110 77
3 \OMe Br 4 1/4 120 91 N e t-Bu

NMe2

Me yO k0A CO 2Et
M e. 1 4 10 140 80 gle

4 > Br 4 10/40 130 56d 7 N 4 10/40 80 91 e

" General reaction conditions: 1.2 mmol of hydroxypyridine, 1.0 mmol of ArX, 2.0 mmol of
K3PO4, 1.0 mL of DMF under Ar or N2 atmosphere. b Isolated yield. c MeCN used as solvent
with 3 A molecular sieves. d DMSO used as solvent. e Cs2CO3 used as base with 3 A molecular
sieves.
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3.3 Conclusion

In conclusion, we have developed a series of catalysts for the N- and O-arylation of

hydroxypyridines and hydroxyquinolines. Future efforts will be devoted both to maximizing the

efficiency and scope of this method as well as to determining the mechanistic basis behind the

observed selectivity.

3.4 Experimental Procedures

All reactions were carried out in resealable test tubes with teflon septa under a dry argon

or nitrogen atmosphere. Copper(I) iodide (99.99%) was purchased from Strem as an off-white

solid. Ligands 1, 2, 4 and 5 were purchased from commercial sources and used without further

purification. Ligand 3 was prepared according to our previously reported procedure.23 Anhydrous

K2CO3 (99.99%) was purchased from Aldrich in glass ampules. Powdered K3PO4 was purchased

from Riedel-de Haen. Cs 2CO3 (99.9%) was purchased from Alfa Aesar. The bulk of the bases

were stored under nitrogen in a Vacuum Atmospheres glovebox. Small portions (~5 g) were

removed from the glovebox in glass vials, stored in the air in a desiccator filled with anhydrous

calcium sulfate, and weighed in the air. Hydroxypyridines and hydroxyquinolines were

purchased from commercial sources and used without further purification. Aryl halides were

purchased from commercial sources and filtered through neutral alumina or distilled. Anhydrous

solvents were purchased from Aldrich in Sure-Seal® bottles. Flash column chromatography was

performed using a Biotage SP4 Flash Purification System using KP-Sil silica cartridges. In all

cases, dichloromethane was used to transfer the crude reaction material onto the silica gel

samplet. A gradient elution technique was performed, based on the recommendation from the

Biotage TLC Wizard.

Yields reported in the publication are of the isolated material and represent an average of
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at least two independent runs. Yields reported in the supporting information refer to a single

experiment. Compounds described in the literature were characterized by comparing their 'H

NMR and '3C NMR spectra, and melting points (m.p.) to the previously reported data; their

purity was confirmed by gas chromatography (GC) or elemental analysis. GC analyses were

performed on a Hewlett Packard 6890 instrument with an FID detector and a Hewlett Packard 10

m x 0.2 mm i.d. HP-1 capillary column using dodecane as an internal standard. Previously

unknown compounds were synthesized, purified and analyzed from a single run and were then

repeated to determine an average yield. They were characterized by 'H NMR, 13C NMR, m.p., IR

and elemental analysis. Elemental analyses were performed by Atlantic Microlabs, Inc.,

Norcross, GA. For those compounds that did not give a satisfactory elemental analysis, a copy of

their 'H NMR spectra is included. 'H NMR and '3C NMR spectra were recorded on Varian 500

MHz instruments with chemical shifts reported relative to the deuterated solvent or TMS. IR

spectra were recorded on a Perkin-Elmer System 2000 FT-IR instrument for all previously

unknown compounds (KBr disc). Melting points (uncorrected) were obtained on a Mel-Temp II

capillary melting point apparatus.

General procedure for the N- and O-Arylation of hydoxypyridines and hydroxyquinolines

An oven-dried screw-cap test tube was charged with Cul, ligand (if solid), hydroxypyridine (1.2

mmol), aryl halide (1.00 mmol, if solid), base (2.0 mmol), and a magnetic stir bar. The reaction

vessel was fitted with a rubber septum. The test tube was evacuated and back-filled with dry

argon or nitrogen. Aryl halide (1.00 mmol, if liquid), ligand (if liquid) and solvent were then

added successively. The rubber septum was removed and the reaction tube was quickly sealed

with a Teflon septum. The vessel was immersed in a pre-heated oil bath and stirred vigorously
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for the designated time period.

Workup A: The reaction mixture was cooled to room temperature, diluted with ethyl acetate (15

mL), and filtered through a plug of silica, eluting with additional ethyl acetate (50 mL). The

filtrate was concentrated and the resulting residue was purified by flash chromatography to

provide the desired product.

Workup B: The crude reaction mixture was diluted in CH2CI, (15 mL) and filtered through a

celite plug eluting with additional CH2C12 (20 mL). The filtrate was washed successively with

aqueous NH4OH then brine. The combined aqueous layers were extracted twice with CHzCI2.

The combined organic layers were dried over MgSO 4 and then concentrated. The resulting

residue was purified by flash chromatography to provide the desired product.

Experimental procedures for compounds in Table 1

1-(quinolin-3-yl)pyridin-2(1H)-one (entry 1)

The general procedure was followed using CuI (9.5 mg, 0.05 mmol), 3 (36 mg, 0.15 mmol),

K2CO3 (0.28 g, 2.0 mmol), 3-bromoquinoline (136 ýL, 1.00 mmol), 2-hydroxypyridine (114 mg,

1.2 mmol) with DMF (0.5 mL) as solvent for 24 h at 110 "C. Workup B, followed by

chromatographic purification (hexane / ethyl acetate) provided the title compound as a white

solid (177 mg, 80%). 1H NMR (500 MHz, CDCI3) 8 8.95 (d, 1H, J= 2.4 Hz), 8.21 (d, 1H, J= 2.3

Hz), 8.16 (d, 1H, J = 8.5 Hz), 7.85 (d, 1H, J = 8.4 Hz), 7.78 (m, 1H), 7.61 (m, 1H), 7.47-7.40 (m,
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3H), 6.72 (d, 1H, J = 9.7 Hz), 6.33 (td, 1H, J = 6.7, 1.2 Hz). 13C NMR (125 MHz, CDC13) 6

162.6, 148.5, 147.5, 140.6, 137.7, 134.5, 133.0, 130.6, 129.6, 128.2, 127.8, 122.3, 106.9. IR

(KBr disc, cm ') 1661, 1584, 1535, 1148, 927, 767, 759, 747. Anal. Calc. for C14H10N20: C

75.66, H 4.54. Found: C 75.34, H 4.71. m.p. 145-146 *C. (Lit. 145-146 "C).2 4

1-(thiazol-2-yl)pyridin-2(1H)-one (entry 2)

The general procedure was followed using Cul (19 mg, 0.10 mmol), 3 (36 mg, 0.15 mmol),

K2CO3 (0.28 g, 2.0 mmol), 2-bromothiazole (90 [L, 1.00 mmol), 2-hydroxypyridine (114 mg,

1.2 mmol) with DMF (1.0 mL) as solvent for 24 h at 110 "C. Workup A followed by

chromatographic purification (hexane / ethyl acetate) provided the title compound (white solid,

142 mg, 80%). tH NMR (500 MHz, CDC13) 8 8.74 (ddd, 1H, J = 0.6, 1.9, 8.2 Hz), 7.59 (d, 1H, J

= 3.5 Hz), 7.37-7.34 (m, 1H), 7.17 (d, 1H, 3.5 Hz), 6.68 (dt, 1H, J = 1.0, 9.2 Hz), 6.33 (m, 1H).

'3C NMR (125 MHz, CDCI3) 8 160.6, 156.1, 139.8, 137.9, 131.9, 121.6, 118.8, 107.5. IR (KBr

disc, cm-') 3118, 1670, 1543, 1500, 1275, 1138, 981, 867, 844, 771, 717, 621. Anal. Calc. for

C8 H6N2OS: C 53.92, H 3.39. Found: C 53.94, H 3.42. m.p. 89-90 "C. (Lit. 85.5-86 *C).25

0 N

1-(1H-indol-5-yl)pyridin-2(1H)-one (entry 3)

The general procedure was followed using Cul (19 mg, 0.10 mmol), 1 (32 mL, 0.40 mmol),

K2CO3 (0.28 g, 2.0 mmol), 5-iodoindole (243 mg, 1.00 mmol), 2-hydroxypyridine (114 mg, 1.2

mmol) with DMSO (0.5 mL) as solvent for 24 h at 110 "C. Workup A followed by

chromatographic purification (CH 2C12 / ethyl acetate), and then recrystallization from CH2C12,

provided 165 mg of the product as a white solid (78%). 1H NMR (500 MHz, DMSO-D6) 8 11.3
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(bs, 1H), 7.65 (dd, J = 1.6, 6.8 Hz), 7.51-7.45 (m 3H), 7.03 (dd, 1H, J = 4.3, 6.1 Hz), 6.50-6.45

(m, 2H), 6.28 (td, 1H, J = 6.7, 1.7 Hz). 13C NMR (125 MHz, DMSO-D 6) 6 161.8, 140.3, 140.0,

135.0, 133.0, 127.5, 126.9, 120.4, 119.9, 118.0, 111.5,105.1,101.6. m.p. 218-220 "C.

1-(pyrimidin-5-yl)pyridin-2(1H)-one (entry 4)

The general procedure was followed using CuI (19 mg, 0.10 mmol), 3 (36 mg, 0.15 mmol),

K2CO3 (0.28 g, 2.0 mmol), 5-bromopyrimidine (159 mg, 1.00 mmol), 2-hydroxypyridine (114

mg, 1.2 mmol) with DMSO (0.5mL) as solvent for 24 h at 110 *C. The crude reaction mixture

was diluted with CH 2CI2 and filtered. The filtrate was concentrated to a white/yellow solid. The

product was recrystallized from hot EtOAc to provide 1-(pyrimidin-5-yl)pyridin-2(1H)-one as a

white solid (83.5 mg, 48%). 'H NMR (500 MHz, CDC13) 8 9.26 (s, 1H), 8.91 (s, 2H), 7.47 (m,

1H), 7.31 (m, 1H), 6.70 (m, 1H), 7.36 (m, 1H). 13C NMR (125 MHz, CDCI3) 8 161.9, 158.0,

154.6, 141.1, 136.5, 122.4, 107.5, 100.0. IR (KBr disc, cm -') 1664, 1591, 1415, 1299, 1147, 994,

847, 765, 721. Anal. Calc. for C9H7N30: C 62.42, H 4.07. Found: C 62.63, H 4.03. m.p. 201-202

"C.

0 C1

1-(4-chlorophenyl)pyridin-2( H)-one (entry 5)

The general procedure was followed using Cul (19 mg, 0.10 mmol), 3 (36 mg, 0.15 mmol),

K2CO3 (0.28 g, 2.0 mmol), 1-chloro-4-iodobenzene (243 mg, 1.00 mmol), 2-hydroxypyridine

(114 mg, 1.2 mmol) with DMSO (0.5 mL) as solvent for 24 h at 110 "C. Workup B, followed by

chromatographic purification (hexane / ethyl acetate) provided the title compound (white solid,
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169 mg, 82%). 1H NMR (500 MHz, CDCl3) 8 7.49-7.45 (m, 2H), 7.43-7.39 (m, 1H), 7.35-7.25

(m, 2H), 7.30 (ddd, J = 0.8, 2.1, 6.9 Hz), 6.66 (m, 1H), 6.26 (td, 1H, J = 6.7, 1.3 Hz). 13C NMR

(125 MHz, CDCl3) 8 162.4, 140.2, 139.5, 137.8, 1344.6, 129.7, 128.1, 122.2, 106.4. Anal. Calc.

for C,,H 8NOCl: C 64.25, H 3.92. Found: C 64.09, H 3.92. m.p. 122-124 "C. (Lit. 133 °C)26

NH2

1-(3-aminophenyl)pyridin-2(1H)-one (entry 6)

The general procedure was followed using Cul (19 mg, 0.10 mmol), 3 (36 mg, 0.15 mmol),

K2CO3 (0.28 g, 2.0 mmol), 3-bromoaniline (109 [IL, 1.00 mmol), 2-hydroxypyridine (114 mg,

1.2 mmol) with DMSO (0.5 mL) as solvent for 24 h at 110 "C. Workup A followed by

chromatographic purification (ethyl acetate / isopropanol) provided the title compound (off-white

solid, 162 mg, 87%). 1H NMR (500 MHz, CDCl3) 8 7.41-7.19 (m, 3H), 6.70-6.21 (m, 3H), 62.1

(td, 1H, J = 1.1, 6.9 Hz), 3.54 (bs, 2H). 13C NMR (125 MHz, CDCl3) 8 162.7, 147.8, 142.0,

140.0, 138.3,130.3,121.8, 116.1,115.4, 113.4, 105.9. m.p. 180-182 "C. (Lit. 182.5-184.50 C).27

0 . NMe2

4-chloro-l-(4-(dimethylamino)phenyl)pyridin-2(1H)-one (entry 7)

The general procedure was followed using Cul (19 mg, 0.10 mmol), 3 (36 mg, 0.15 mmol),

K2CO3 (0.28 g, 2.0 mmol), N,N-dimethyl-4-bromoanilne (200 mg, 1.00 mmol), 5-chloro-2-

hydroxypyridine (156 mg, 1.2 mmol) with DMSO (1.0 mL) as solvent for 24 h at 110 "C.

Workup B, followed by chromatographic purification (hexane / ethyl acetate) provided the

product as a pale yellow solid (193 mg, 78%). 'H NMR (500 MHz, CDCl3) 8 7.39 (d, 1H, J = 2.9

Hz), 7.32 (dd, 2.9, J = 9.8 Hz), 7.21-7.18 (m, 2H), 6.77-6.74 (m, 2H), 6.61 (d, 1H, J = 9.8 Hz),
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3.00 (s, 6H). 13C NMR (125 MHz, CDC13) 8 161.5, 150.6, 140.6, 136.4, 129.2, 126.9, 122.5,

112.5, 112.1. IR (KBr disc, cm- ') 1664, 1363, 1266, 1120, 1062, 944, 782, 728, 646. Anal. Calc.

for C13H13CIN20: C 62.78, H 5.27. Found: C 62.52, H 5.24. m.p. 159-160 "C.

Experimental procedures for compounds in Table 2

2-(o-tolyloxy)pyridine2 8 (entry 1)

The general procedure was followed using Cul (19 mg, 0.10 mmol), 5 (29 mg, 0.20 mmol),

K2CO3 (0.28 g, 2.0 mmol), 2-iodotoluene (127 tL, 1.00 mmol), 2-hydroxypyridine (114 mg, 1.2

mmol) with DMSO (1.0 mL) as solvent for 48 h at 120 "C. GC analysis of the crude reaction

mixture showed full conversion of the aryl iodide and a 1.0 : 4.7 ratio of N- to O-arylated

products. Workup B, followed by chromatographic purification (hexane / ethyl acetate) provided

the O-arylated product (white solid, 135 mg, 73%). 'H NMR (500 MHz, CDCI3) 8 8.09 (dd, J =

1.2, 4.9 Hz), 7.59-7.56 (m, 1H), 7.20-7.14 (m, 2H), 7.06 (td, 1H, J = 0.8, 7.5 Hz), 6.98 (dd, 1H, J

= 1.2, 7.9 Hz), 6.87 (ddd, 1H, J = 0.9, 5.0, 7.2 Hz), 6.77 (m, 1H), 2.10 (s, 3H). 13C NMR (125

MHz, CDCI3) 8 163.9, 152.4, 148.0, 139.5, 133.3, 131.6, 131.0, 130.7, 127.3, 125.4, 122.0,

118.1, 110.8, 16.6. m.p. 44-45.5 "C.

0N

Me

1-o-tolylpyridin-2(1H)-one 29 (entry 2)

The general procedure was followed using Cul (19 mg, 0.10 mmol), 3 (36 mg, 0.15 mmol),

K2CO3 (0.28 g, 2.0 mmol), 2-iodotoluene (153 [tL, 1.20 mmol), 2-hydroxypyridine (96 mg, 1.0

mmol) with DMSO (0.5 mL) as solvent for 96 h at 150 "C. GC analysis of the crude reaction
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mixture showed full conversion of the aryl iodide and a 1.6 : 1 ratio of N- to O-arylated products.

Workup B, followed by chromatographic purification (hexane / ethyl acetate) provided the N-

arylated product as a slightly yellow solid (79 mg, 43%). 'H NMR (500 MHz, CDCI3) 6 7.45-

7.42 (m, 1H), 7.36-7.30 (m, 3H), 7.21-7.18 (m, 2H), 6.69-6.67 (m, 1H), 6.27-6.24 (m, 1H), 2.16

(s, 3H). 13C NMR (125 MHz, CDCI3) 8 162.21, 140.3, 140.1, 138.1, 135.1, 131.2, 129.2, 127.2,

127.1, 121.9, 105.9, 17.7. Anal. Calc. for C,2H,,NO: C 77.81, H 77.19. Found: C 77.49, H 6.03.

m.p. 71-72.5 *C.

2-(naphthalen- 1-yloxy)pyridine (entry 3)

The general procedure was followed using Cul (19 mg, 0.10 mmol), 5 (36 mg, 0.15 mmol),

K2CO3 (0.28 g, 2.0 mmol), 1-iodonaphthalene (260 IL, 1.00 mmol), 2-hydroxypyridine (114 mg,

1.2 mmol) with DMSO (1.0 mL) as solvent for 48 h at 120 "C. GC analysis of the crude reaction

mixture showed full conversion of the aryl iodide and a 1.0 : 3.7 ratio of N- to O-arylated

products. Workup B, followed by chromatographic purification (hexane / ethyl acetate) provided

137 mg of the O-arylated product (white solid, 62%). 'H NMR (500 MHz, CDCI3) 6 8.2 (dd, 1H,

J= 1.3, 4.6 Hz), 8.04-8.02 (m, 1H), 7.91 (dd, 1H, J = 0.6, 8.2 Hz), 7.76 (d, 1H, J = 8.2 Hz), 7.53-

7.46 (m, 3H), 7.26 (dd, 1H, J = 0.9, 7.5 Hz), 7.02-6.99 (m, 1H), 6.96 (d, 1H, J = 8.2 Hz). "3C

NMR (125 MHz, CDCl3) 6 150.2, 148.2, 139.7, 125.2, 128.2, 127.7, 126.6, 126.3, 126.0, 125.2,

122.2, 118.6, 117.3, 111.1. IR (KBr disc, cm-') 1592, 1465, 1426, 1387, 1282, 1156, 1070, 1037,

1013, 890, 839, 799, 773, 672, 534. Anal. Calc. for C15H,lNO: C 81.43, H 5.01. Found: C 81.27,

H 4.98. m.p. 80.5-82 "C.
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0

1-(naphthalen- 1-yl)pyridin-2(1H)-one (entry 4)

The general procedure was followed using Cul (19 mg, 0.10 mmol), 3 (36 mg, 0.15 mmol),

K2CO3 (0.28 g, 2.0 mmol), 1-iodonaphthalene (175 [tL, 1.20 mmol), 2-hydroxypyridine (96 mg,

1.0 mmol) with DMSO (0.5 mL) as solvent for 96 h at 150 *C. GC analysis of the crude reaction

mixture showed full conversion of the aryl iodide and a 1.7 : 1.0 ratio of N- to O-arylated

products. Workup B, followed by chromatographic purification (hexane / ethyl acetate) provided

97 mg of the N-arylated product (yellow solid, 44%). ' H NMR (500 MHz, CDC13) 8 7.98-7.89

(m, 1H), 7.60-7.46 (m, 7H), 7.33-7.31 (m, 1H), 6.77 (dd, 1H, J = 0.8, 9.3 Hz), 6.32 (td, 1H, J =

6.7, 1.2 Hz). 13C NMR (125 MHz, CDC13) 8 162.9, 140.5, 139.1, 137.8, 134.5, 129.7, 129.4,

128.1, 127.6, 126.9, 125.6, 125.2, 122.5, 122.0, 106.0. IR (KBr disc, cm-') 3062, 1660, 1590,

1571, 1394, 1284, 1136, 964, 773. Anal. Calc. for Cs5H, NO: C 81.43, H 5.01. Found: C 81.05,

H 5.00. m.p. 132-134 *C.

Experimental procedures for compounds in Table 3

N "I OMe

1-(3-methoxyphenyl)pyridin-4(1H)-one (entry 1)

The general procedure was followed using Cul (19 mg, 0.10 mmol), 3 (36 mg, 0.15 mmol),

K 2CO3 (0.28 g, 2.0 mmol), 3-bromoanisole (125 [iL, 1.00 mmol), 4-hydroxypyridine (114 mg,

1.2 mmol) with DMF (0.5 mL) as solvent for 24 h at 110 *C. Workup B, followed by

chromatographic purification (ethyl acetate/ isopropanol) provided 197 mg of product (white
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solid, 98%). 'H NMR (500 MHz, CDCl3) 8 7.64-759 (m, 2H), 7.43 (t, 1H, J = 8.3 Hz), 7.00-6.91

(m, 2H), 6.85 (t, 1H, J = 2.5 Hz), 6.52 (m, 2H), 3.88 (s, 3H). 13C NMR (125 MHz, CDCl3) 6

179.1, 160.0, 144.3, 139.2, 131.1, 119.0, 114.8, 113.8, 109.0, 55.8. IR (KBr disc, cm-') 3034,

2954, 16.6, 1569, 1347, 1286, 1051, 845, 762, 679. Anal. Calc. for C12H,,NO 2: C 71.63, H 5.51.

Found: C 71.85, H 5.43. m.p. 151-152 *C.

1-(pyridin-3-yl)pyridin-4( H)-one (entry 2)

The general procedure was followed using Cul (19 mg, 0.10 mmol), 3 (36 mg, 0.15 mmol),

K2CO3 (0.28 g, 2.0 mmol), 3-bromopyridine (98 RL, 1.00 mmol), 4-hydroxypyridine (114 mg,

1.2 mmol) with DMSO (0.5 mL) as solvent for 24 h at 110 "C. Workup A followed by

chromatographic purification (ethyl acetate/ isopropanol) provided 1-(pyridin-3-yl)pyridin-

4(IH)-one (white solid, 167 mg, 97%). 'H NMR (500 MHz, CDCl3) 8 8.71-8.69 (m, 2H), 7.74

(m, 1H), 7.59 (m, 2H), 7.30 (m, 1H), 6.52 (m, 2H). '3C NMR (125 MHz, CDCl3) 8 178.9, 149.8,

144.1, 141.0, 139.0, 130.4, 124.6, 119.5. m.p. 205-206 "C. (Lit. 189-191 "C)30

o0

N JO 
Me

1-(4-propanoylphenyl)pyridin-4(1H)-one (entry 3)

The general procedure was followed using Cul (9.5 mg, 0.05 mmol), 4 (20 mL, 0.20 mmol),

K2CO3 (0.28 g, 2.0 mmol), 4'-bromopropiophenone (213 mg, 1.00 mmol), 4-hydroxypyridine

(114 mg, 1.2 mmol) with DMSO (0.5 mL) as solvent for 24 h at 110 "C. Workup B, followed by

chromatographic purification (ethyl acetate/ methanol) provided the title compound as a white

solid (199 mg, 87%). 1H NMR (500 MHz, CDCl3) 8 8.10 (m, 2H), 7.65 (m, 2H), 7.44 (m, 2H),
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6.48 (m, 2H), 3.02 (q, 2H, J = 7.2 Hz), 1.22 (t, 3H, J = 7.2 Hz). 13C NMR (125 MHz, CDCl3)

199.2. 179.0. 146.1. 138.6. 138.3. 130.2. 122.5. 119.3. 32.0. 8.1. IR (KBr disc, cml') 1636, 1412,

1342, 1281, 1192, 1017, 952. m.p. 182-184"C.

Me

I-o-tolylpyridin-4(1H)-one (entry 4)

The general procedure was followed using Cul (19 mg, 0.10 mmol), 4 (40 mL, 0.40 mmol),

K2CO3 (0.28 g, 2.0 mmol), 2-iodotoluene (127 [iL, 1.00 mmol), 4-hydroxypyridine (114 mg, 1.2

mmol) with DMSO (1.0 mL) as solvent for 24 h at 110 "C. Workup B, followed by

chromatographic purification (ethyl acetate/ methanol) provided a white solid (121 mg, 65%). 1H

NMR (500 MHz, CDCI3) 67.41-7.31 (m, 4H), 7.24 (dd, 1H, J = 1.2, 7.8 Hz), 6.48-6.45 (m, 2H).

13C NMR (125 MHz, CDCI3) 8 178.9, 1.42.4, 140.5, 133.9, 132.0, 129.9, 127.7, 126.3, 118.7,

17.6. m.p. 149-150 "C. (Lit. 148 "C).31

1-(benzo[b]thiophen-3-yl)pyridin-4(1H)-one (entry 5)

The general procedure was followed using Cul (19 mg, 0.10 mmol), 4 (42 mL, 0.40 mmol),

K 2CO3 (0.28 g, 2.0 mmol), 3-bromothianaphthene (131 pL, 1.00 mmol), 4-hydroxypyridine (114

mg, 1.2 mmol) with DMSO (0.5 mL) as solvent for 24 h at 110 "C. Workup B followed by

chromatographic purification (ethyl acetate/ methanol) provided the title product as an oil, which

was then triturated with CH2Cl2 and hexane (white solid, 164 mg, 72%). 1 H NMR (500 MHz,

CDC13) 7.95-7.93 (m, 1H), 7.66-7.49 (m, 6H), 6.56-6.53 (m, 2H). 13C NMR (125 MHz, CDCI3)

8 179.1, 140.4, 139.1, 135.7, 133.2, 126.3, 125.8, 123.8, 121.5, 120.6, 119.1. IR (KBr disc, cm-')
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1632, 1558, 1402, 1367, 1191, 939, 855, 760, 586, 564. Anal. Calc. for C13H9NOS: C 68.70, H

3.99. Found: C 68.44, H 4.12. m.p. 188.5-190 *C.

Me

1-(3,5-dimethylphenyl)pyridin-4(1H)-one (entry 6)

The general procedure was followed using Cul (3.8 mg, 0.020 mmol), 4 (8 mL, 0.08 mmol),

K2CO3 (0.28 g, 2.0 mmol), 5-iodo-m-xylene (144 4L, 1.00 mmol), 4-hydroxypyridine (114 mg,

1.2 mmol) with DMSO (0.5 mL) as solvent for 24 h at 110 "C. Workup B followed by

chromatographic purification (ethyl acetate/ methanol) provided the product as a white solid (175

mg, 88%). '11 NMR (500 MHz, CDC13) 8 7.59-7.57 (m, 2H), 7.07 (s, 1H), 6.95 (s, 2H), 6.49-6.47

(m, 2H). 13C NMR (125 MHz, CDCl3) 8 179.1,143.3,140.4, 139.4, 130.2, 120.6, 119.0,21.4. IR

(KBr disc, cm -') 1650, 1617, 1555, 1457, 1333, 1203, 846, 696. Anal. Calc. for CI3H13NO: C

78.36, H 6.58 Found: C 77.96 H 6.49. m.p. 138-139 "C.

OMe

7-chloro- 1-(4-methoxyphenyl)quinolin-4(1H)-one (entry 7)

The general procedure was followed using Cul (19 mg, 0.10 mmol), 4 (40 mL, 0.15 mmol),

K3PO4 (0.42 g, 2.0 mmol), 4-iodoanisole (234 mg, 1.00 mmol), 7-chloro-4-

hydroxyphenanthroline (216 mg, 1.2 mmol) with DMSO (1.0 mL) as solvent for 24 h at 120 "C.

Workup B followed by chromatographic purification (hexane / ethyl acetate) provided 198 mg of

the title compound as a white solid (69%). 'H NMR (500 MHz, CDCI3) 8 8.28 (dd, 1H, J = 0.5,

8.7 Hz), 7.47 (d, 1H, J = 7.8 Hz), 7.24-7.20 (m, 3H), 7.03-7.00 (m, 2H), 6.88 (d, 1H, J = 3.3 Hz),
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6.24 (d, 1H, J = 7.8 Hz), 3.84 (s, 3H). 13C NMR (125 MHz, CDCl3) 8 177.7, 160.5, 143.6, 142.6,

138.4, 133.6, 128.7, 128.4, 125.0, 124.6, 117.1, 115.7, 110.7, 55.9. IR (KBr disc, cmr') 1603,

1510, 1449, 1252, 1169, 1032, 909, 813, 734, 646. Anal. Calc. for C1,H12NO2CI: C 67.26, H

4.23. Found: C 66.99, H 4.19. m.p. 173-176 TC.

4-(pyridin-3-yl)thieno[3,2-b]pyridin-7(4H)-one (entry 8)

The general procedure was followed using Cul (9.5 mg, 0.05 mmol), 4 (21 mL, 0.20 mmol),

K3PO4 (0.42 g, 2.0 mmol), 2-bromopyridine (49 [pL, 1.00 mmol), thieno[3,2-b]pyridin-7-ol (90

mg, 1.2 mmol) with DMSO (0.5 mL) as solvent for 24 h at 110 "C. Workup B followed by

chromatographic purification (ethyl acetate/ methanol) provided the product (white solid, 83 mg,

73%). 1H NMR (500 MHz, CDCl3) 8 8.76-8.74 (m, 2H), 7.87 (ddd, 1H, J = 1.5, 2.6, 8.1 Hz),

7.61 (d, 1H, J = 5.5 Hz), 7.56 (dd, 1H, J = 4.7, 8.1 Hz), 7.49 (d, 1H, J = 7.6 Hz), 6.76 (d, J = 5.5

Hz), 6.33 (d, 1H, J = 7.6 Hz). 13C NMR (125 MHz, CDCl3) 8 174.1, 150.6, 147.1, 144.5, 139.9,

133.7, 132.5, 130.7, 129.7, 124.7, 117.3, 112.1. IR (KBr disc, cmr-) 1610, 1493, 1425, 1291,

1221, 1124, 877, 820, 711. m.p. 189-190 "C.

Experimental procedures for compounds in Table 4

3-(2-methylpyridin-3-yloxy)quinoline (entry 1)

The general procedure was followed using Cul (9.5 mg, 0.05 mmol), 4 (20 mL, 0.20 mmol),

K3PO4 (0.42 g, 2.0 mmol), 3-bromoquinoline (136 [L, 1.00 mmol), 3-hydroxy-2-methylpyridine
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(131 mg, 1.2 mmol) with DMF (1.0 mL) as solvent for 24 h at 110 *C. Workup B followed by

chromatographic purification (hexane / ethyl acetate) provided the title compound as a white

solid (184 mg, 78%). 1H NMR (500 MHz, CDCl3) 6 8.84 (d, 1H, J = 2.7 Hz), 8.42 (dd, 1H, J =

1.2, 4.7 Hz), 8.12 (d, 1H, J = 8.4 Hz), 7.69-7.52 (m, 3H), 7.37 (d, 1H, J = 2.7 Hz), 7.30 (m, 1H),

7.21 (m, 1H), 2.56 (s, 3H). 13C NMR (125 MHz, CDCI3) 8 151.7, 150.7, 150.5, 145.4, 144.9,

144.6, 129.4, 128.6, 128.3, 127.7, 127.2, 126.9, 122.6, 119.1, 19.6. IR (KBr disc, cm-') 1602,

1497, 1424, 1342, 1246, 1175, 984, 911,783, 754. Anal. Calc. for C15H12N20: C 76.25, H 5.12.

Found: C 76.36, H 5.09. m.p. 67-69 "C.

3-(quinolin-3-yloxy)benzonitrile (entry 2)

The general procedure was followed using Cul (19 mg, 1.0 mmol), 4 (42 mL, 0.40 mmol),

K3PO4 (0.42 g, 2.0 mmol), 3-bromobenzonitrile (182 mg, 1.00 mmol), 6-hydroxyquinoline (174

mg, 1.2 mmol) and 3A mol. sieves (200 mg flame activated under vacuum) with DMF (1.0 mL)

as solvent for 24 h at 110 "C. Workup A followed by chromatographic purification (hexane /

ethyl acetate) provided 191 mg of the title compound as a white solid (78%). 'H NMR (500

MHz, CDCI3) 8 8.85 (s, 1H), 8.10 (d, 1H, J = 9.2 Hz), 8.02 (dd, 1H, J = 1.4, 8.2 Hz), 7.45-7.37

(m, 4H), 7.28-7.24 (m, 3H). 13C NMR (125 MHz, CDCl3) 8 157.5, 153.9, 149.9, 145.7, 135.5,

132.1, 131.0, 127.3, 123.5, 123.3, 122.0, 118.2, 115.1, 114.8, 113.8. IR (KBr disc, cm-1) 2232,

1622, 1579, 1500, 1480, 1326, 1216, 1156, 967, 795, 682. Anal. Calc. for C1 6H10N 20: C 78.03, H

4.11. Found: C 77.99, H 4.11. m.p. 85-87 "C.

(yO 
Me

Me

3-(3,5-dimethylphenoxy)pyridine (entry 3)
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The general procedure was followed using CuI (1.9 mg, 0.01 mmol), 4 (4 mL, 0.04 mmol),

K3PO4 (0.42 g, 2.0 mmol), 5-iodo-m-xylene (145 [LL, 1.00 mmol), 2-hydroxypyridine (114 mg,

1.2 mmol) with DMF (1.0 mL) as solvent for 24 h at 110 "C. Workup A followed by

chromatographic purification (hexane / ethyl acetate) provided the title compound as a yellow oil

(177 mg, 89%). 'H NMR (500 MHz, CDCI3) 8 8.40 (s, 1H), 8.34 (d, 1H, J = 3.6 Hz), 7.29-7.23

(m, 2H), 6.79 (m, 1H), 6.64 (m, 2H). 13C NMR (125 MHz, CDCl3) 8 156.3, 144.2, 141.5, 140.0,

125.9, 125.5, 124.1, 116.8, 21.4. IR (KBr disc, cm-') 1615, 1573, 1475, 1422, 1297, 1137, 1022,

950, 853, 803, 709. Anal. Calc. for C13H13NO: C 78.36, H 6.58. Found: C 78.55, H 6.80.

8-(benzo[d][1,3]dioxol-5-yloxy)quinoline (entry 4)

The general procedure was followed using CuI (19 mg, 0.10 mmol), 4 (42 mL, 0.40 mmol),

K3PO4 (0.42 g, 2.0 mmol), 4-bromo-1,2-methylenedioxybenzene (120 RL 1.00 mmol), 8-

hydroxyquinoline (174 mg, 1.2 mmol) with DMSO (1.0 mL) as solvent for 48 h at 130 "C.

Workup B followed by chromatographic purification (hexane / ethyl acetate) provided 145 mg of

the title compound (yellow oil, 56%). 'H NMR (500 MHz, CDCI3) 8 8.99 (dd, 2H, J = 1.7, 4.1

Hz), 8.18 (dd, 1H, J = 1.7, 8.4 Hz), 7.50 (dd, 1H, J = 1.2, 8.2 Hz), 7.39 (t, 1H, J = 7.9 Hz), 7.01

(dd, 1H, J = 1.2, 7.8 Hz), 6.80 (d, 1H, J = 8.3 Hz), 6.72 (d, 1H, J = 2.2.3 Hz), 6.65 (dd, 1H, J =

2.3, 8.4 Hz), 5.99 (s, 2H). 13C NMR (125 MHz, CDC13) 8 155.0, 151.1, 150.2, 148.5, 144.4,

140.6, 136.2, 129.8, 126.7, 122.1, 121.8, 114.0, 113.2, 108.6, 103.1, 101.7. IR (KBr disc, cm -')

1614, 1500, 1373, 1315, 1181, 1125, 1037, 930, 792, 770. Anal. Calc. for C,6HIINO 3: C 72.45, H

4.18. Found: C 72.16, H 4.39.
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CI(

4-(5-chloropyridin-3-yloxy)isoquinoline (entry 5)

The general procedure was followed using Cul (19 mg, 0.05 mmol), 4 (40 mL, 0.40 mmol),

K3PO4 (0.42 g, 2.0 mmol), 4-bromoisoquinoline (229 mg, 1.00 mmol), 5-chloro-3-

hydroxypyridine (130 mg, 1.2 mmol) with DMF (0.8 mL) as solvent for 24 h at 120 "C. Workup

B followed by chromatographic purification (hexane / ethyl acetate) provided a yellow solid (180

mg, 70%). 'H NMR (500 MHz, CDC 3) 8 9.19 (bs, 1H), 8.37-8.15 (m, 3H), 8.07 (dd, 1H, J = 0.7,

8.2 Hz), 8.00 (d, 1H, J = 8.4 Hz), 7.77-7.68 (m, 2H), 7.23 (m, 1H). 13C NMR (125 MHz, CDCl3)

6 154.7, 149.7, 143.7, 138.4, 133.2, 131.2, 130.5, 129.5, 128.6, 127.9, 126.7, 124.5, 120.8. IR

(KBr disc, cm-') 1627, 1574, 1499, 1417, 1386, 1305, 1252, 1164, 1092, 1064, 1051, 920, 872,

783, 626. Anal. Calc. for C,4HN 20Cl: C 65.51, H 3.53. Found: C 65.65, H 3.57. m.p. 153-155

"C.

NMe 2

1-(3-(4-tert-butylphenoxy)pyridin-2-yl)-N,N-dimethylmethanamine (entry 6)

The general procedure was followed using CuI (19 mg, 0.05 mmol), K3PO4 (0.42 g, 2.0 mmol),

4-tert-butylbromobenzene (173 RtL, 1.00 mmol), 2(dimethylaminomethyl)-3-hydroxypyridine

(182 mg, 1.2 mmol) with DMF (0.8 mL) as solvent for 24 h at 110 "C. Workup B followed by

chromatographic purification (ethyl acetate/ methanol) provided the product as a brown oil (214

mg, 75%). 'H NMR (500 MHz, CDCI3) 6 8.37 (dd, 1H, J= 1.5, 4.5 Hz), 7.36-7.34 (m, 2H), 7.19-

7.12 (m, 2H), 6.91-6.89 (m, 2H), 3.68 (s, 2H), 2.34 (s, 6H), 1.31 (s, 9H). ' 3C NMR (125 MHz,

CDCl3) 154.5, 152.5, 150.4, 146.7, 144.1, 128.9, 125.8, 123.1, 118.2, 59.3, 45.9, 34.5, 31.6. IR

270



(KBr disc, cm7) 1575, 1508, 1364, 1211, 1179, 1105, 1014, 853, 728, 608, 550.

O,(,C02Et

ethyl 3-(pyridin-3-yloxy)benzoate (entry 7)

The general procedure was followed using Cul (9.5 mg, 0.05 mmol), 4 (20 mL, 0.20 mmol),

Cs2CO3 (0.65 g, 2.0 mmol), ethyl-3-iodobenzoate (140 [xL, 1.00 mmol), 3-hydroxypyridine (114

mg, 1.2 mmol) and 3A mol sieves (200 mg flame activated under vacuum) with DMF (1.0 mL)

as solvent for 36 h at 80 *C. Workup A followed by chromatographic purification (hexane / ethyl

acetate) provided the title compound (yellow oil, 260 mg, 89%). 1H NMR (500 MHz, CDCl3) 8

8.42 (bs, 1H), 8.40 (bs, 1H), 7.84 (m, 1H), 7.68 (dd, 1H, J = 1.5, 10.1 Hz), 7.44 (td, 1H, J = 7.8,

0.5 Hz), 7.31-7.28 (m, 2H), 7.23-7.21 (m, 1H). 13C NMR (125 MHz, CDCI3) b 165.9, 156.6,

144.9, 141.7, 132.8, 130.8, 130.2, 125.8, 125.4, 124.4, 123.5, 119.9, 61.5, 14.5. IR (KBr disc,

cm-1) 1717, 1575, 1444, 1161, 1100, 1021, 940, 756, 692, 621. Anal. Calc. for CI4HI4NO 3: C

69.12, H 5.39. Found: C 68.86, H 5.45.
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RAAV1 1

expl s2pul

SAMPLE DEC. & VT
date Jul 29 2006 dfrq 125.673
Solvent DMS5 dn C13
file /datafslbuch/- dpwr 30
4ra/4ra072t0?$5vi.- dof 0

fid d- 
Vnt

ACOUISITION dma w
sfrq 499.751 def 10000
in HI dseq
at 3.001 dres 1.0
np 63050 homo n
(sw 10504.2 DEC2
fb not used dfrq2 0
bs 8 dn2
tpwr 58 dpwr2 I
pw 8.9 dof2 0
d1 2.000 dm2 n
tof 1519.5 dmm2 C
nt 16 dmf2 200
crt 16 dspeq

alack n dres2 1.0
gain not U$ed homO2 n

FLAGS DEC3
if n dfrq3 0
in n dn3
dp y dpwr3 1
hs nn dof3 0

DISPLAY d4n3 n
sp -142.7 dmm3 cc ChIn : rlnC? Gnn

12 11 10 9 8 7 6 5 4 3 2 1 ppm

1.00 2.92 1.43
0.80 0.76 0.81
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/

ij
Jiii

1.13 2.03
3.14/

DEC. & VT
dfrq 125.
dn
dpwr
dof
dmi
dam
duf 10
dseq
dres
homo

DEC2
dfrq2
dn2

RAAV 17

expl szpul

SA1MPLE
date Aug 7 2006
solvent CDC13
file exp

ACQUISITION
sfrq 499.749
tn H1l
at 3.001
np 63050
SW 10504.2
fb not used
bs 8
tpwr 56
pw 8.9
dl 2.000
tof 1519.5
nt 16
ct 16
alock n
gain not used

FLAGS
1l n
in n
dp y
hs nn

DISPLAY
sp 5.7
wp 4016.7
vs 151
sc 0
wc 250
hzmmr 16.07
is 49.54
rfl 4869.8
rfp 3633.1
th 7
ins 1.000
nm cdc ph

PROCESSING
wtfil s.
proc
fn 131
math

673
CIS
30
0

nnn
w

000

1.0
n

ft
.072

f

wft

i
ppm

1.00

werr
waxp
wbs
wnt

ft IF

6

1.03

,--W'·· -1---- ------·- ·---------

~ _~___ ~~. .. I ---~--·1-L-F--~----~--T 7 --- 1 ; · ~ ·

3.57

. . . . : - i

dpwr2
dof2
dm2

dmf2
dseq2
dresZ
homoz

DECS
dfr q3
0n3

dpWr3
dof3
dm3

def3
dSeq3
dres3
ho0o3

) .. . . t . . .



RAAV173

exph z2put

SAMPLE
date Jul 17 2006
solvent COC13
file exp

ACQUISITION
sfrq 500.235
tn H1
at 3.200
np 64000
sw 10000.0
fb not used
bs 1

tpwr 59
pw 9.8
dl a
tof 149s8.
nt 16
Ct 16
alock n
gain not used

FLAGS
11 n
In n
dp y
hs nn

DISPLAY
sp -164.5
wp 4691.1
vs 138
sc 0
wc 250
hzmm 18.79
is 388.-42
rfl 1044.8
rfp a
th 7
ins 3.000
nm ph

DEC. & VT
dfrq 125.
dno
dpwr
dof
dmc
dmm
dmf 10
dseq
dres
homo

PROCESSING
wt ri e
proc
fn 131
math

werr
weRp
wbhs
wnt

.195
C13
37

nnn
:c

1000

1.0

ft
1072

r

% ... .... ..... - ---- ------- ....... ----- -- -- .... ..... ..I.

[ i~ii~1
• •.. , :ftIIII•

.... .p... . . ................

2 i ppma-----·-·-

0.81 1,730. 770.83
o .85 0. a.88

C-x

''

~1

3.00



STANDARD 1H OBSERVE

expl stdlh

SAMPLE
date Aug 23 2006
Solvent CDCIS
file exp

ACQUISITION
sfrq 300.100
tn HI
at 1.935
np 17984
sw 4505.5
fb not used
bs 16
tpwr 54
pW 7.0
dl 1.000
tof 0
nt 16
ct 16
alock n
gain not used

FLAOS
11 n
In n
dp y

DISPLAY
sp -716.6
wp 4506.3
vs 74
sc 0
wc 250
hzmm 18.03

DEC. & VT
dfrq 300.
dn
dpwr
dof

dmedmm
dmf

PROCESSING
wtfile
proc
fn not L

werr
wexp
Wbs
wilt

12 11 10 9 8 7 6 5 4 3 2 1 -0 -1 ppm

2.12
1.•8.03

/
SZAP\A ~

100
Hi
30

0
nnn

c
200

ft
sed

013

U\
VJ-

180I .s 2.00



RAAVS6

exp.i Stdih

12 11 10 9 8 7 6 5 4 3 2 1 -0 -t ppm

1.02 0.93
i_99 1.0n 1.09 1.560.$9



RAAVSI

exp4 s2pul

SAMPLE
date May 10 2006
Solvent coC13
file -exp

ACQUISITION
sfrq 500.235
tn HI
at 3.200
np 64000
sw 3000,0
fb not used
bs ;8
ss I
tpwr 59
pw 9S.8

tof 1498.2
nt 16
ct Is
alock n
gain not used

FLAGS

in n
dp y
hs nn

DISPLAY
sp -155.3
wp 4730•.
vs 151
sc .2
wc 254

DEC. & VT
dfrq 125.
dn
dpwr
dof
din
dmm
dfT 10
dseq
dres
homa

PROCESSING
vtfTle
proc
fn 131
math

werr
wexp
vbs
Wnt

hzam 18.92
Is 100.80
rfl 4632..9
rfp 3636.7:
th 7
ins 3.000
nim ph

II

9 &8 7 :6 4

2.011.90
2.34

3 2 1 ppm

3.00

NVt795
C'3
37

nnn

1000

1.0

it
.072

I. ,jI;III
I I

w"----··--·"---IU"-'"~~'-



RAAV82

exps sZpul

SAMPLE
date Jun 2 2006
solvent CIC13
file exp

ACQUISITION
sfrq 500.235
tn HI
at 3.200
np 64000
sw 10000.0
fb not used
bs B
SS I
tpwr 59
pw 9.8
dl 0
tot 14i8.2
nt 16
ct a
elock n
gain not used

FLAGS
i1 n
in n
dp y
hS nn

DISPLAY
sp -50.3
wp 5124.7
vs 41
sc 0
WC 250
hzmm 20.50
is 148.75
rf1 4633.1
rfp 36.7
th 3
ins 2.000
nom ph

DEC. & VT
dfrq 125
dn
dpwr
dot
dam
dmm
dmf 1
dseq
dres
homo

PROCESSING
wtftle
proc
fO 134
math

werr
we p
wbs
wnt

.795
C13
37
0

nnn
C

000

1.0

ft
107Z

f

A'P

10 9 8

4.09 1. AI 73
1.86 1.70

7 6 5 4 3 2 1 ppm

1.72
1.56

L ............. i ; I1



RAAVI 10

expl s:Zpu

SAMPLE
date Jun 21 2006
solvent CoC13
file exp

ACQUISITION
sfrq 500.235
tn Hi
at 3.200
np 64000
sw 10000.0
fb not used
bs 8
ss I
tpwr 59
pw 9.8
dl 0
tof 1498.2
at 16at is

ablock r
gain not used

FLAGS
i1 n
in n
dp y
hs nn

DISPLAY
sp -77.3
wp 4625.5
vs 151
sc 0
wc 250
hzmm 18.50
Is 201.49
rfl 4633.9
rfp 3636.7
th 7
Ins 2.000
nm ph

DEC. & VT
dfrq 125
dn
dpwr
dot
dm
dmm

dseq
dres
homo

PROCE£SSING
wtfile
proc
In 13,
math

wer r
wexp
wbs
wnt

.795
CL3

37
0

nan

00 0

1,0
n

ft
1072

1?

I A I` __ _ _ __ __ _ _ _

I.___________________________

9 8 7 6 5 4 3 2 1 ppm

2,00

-I

-·.· .I·.^.^XI^..1~·XLIX_~11Jl_^_rm

0 r'
9.699 1,60

1.76 1.53
9.11

1,44
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Chapter Four

Pyrrole-2-carboxylic Acid as a Ligand for the Cu-catalyzed
Reactions of Primary Anilines with Aryl Halides

10% Cul
X , 20% L5

R
2

K3PO4, DMSO
80-100 oC, 20-24 h
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4.1 Introduction

The diaryl amine moiety can be found in a variety of biologically active pharmaceuticals,

natural products, and materials.1 Metal-catalyzed cross-coupling reactions of anilines with aryl

halides are among the foremost methods for assembling this substructure." For reactions of

poorly nucleophilic primary anilines with aryl halides, Pd-based catalyst systems are highly

efficient.' This is due, in great part, to the rapid transmetallation of anilines to Pd(II), a

phenomenon that arises from the large increase in acidity of the nucleophile when coordinated to

Pd(II).3 The complementary nature of Pd- and Cu-catalyzed C-N bond-forming processes, and

the issues involving removal of the trace Pd from the products encourage the development of Cu-

based catalyst systems for the preparation of diaryl amines.

In recent years, Cu-catalyzed C-N bond-forming reactions have evolved as reliable

alternatives to Pd-catalyzed reactions. 2 However, Cu-based catalyst systems for the synthesis of

diaryl amines are less general and useful than the Pd-based protocols.4 The Cu-catalyzed

reactions of anilines with aryl halides are slow enough that a wide variety of N-H and O-H

nucleophiles, including amides, nitrogen heterocycles, aliphatic, benzylic and allylic amines, as

well as aliphatic and benzylic alcohols are selectively arylated in the presence of an anilino-NH2

group.5 In the absence of a competing reactant, the poor nucleophilicity of the aniline, when

employing Cu-based catalysts, further manifests itself in the need to use high catalyst loadings (>

20% Cu),a" long reaction times (> 30 h),4 b-c'e strong bases that preclude the presence of many

common functional groups,4g and/or anilines with strong electron-withdrawing groups in the

para-position.4b Further, the few examples of Cu-catalyzed reactions of anilines with ortho-

substituted aryl halides require even higher catalyst loadings (35-50% Cu).4f Finally, when

employing Cu-based catalysts, the propensity of the diaryl amine product to undergo further N-
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arylation to form a triarylamine provides an added level of complexity to developing a suitable

catalyst system.6

4.2 Results and Discussion

We began our investigation into the Cu-catalyzed reactions of aromatic amines with aryl

iodides, by evaluating previously reported catalysts for this transformation. 4 Since the more

successful systems employed proline-type ligands,4b-e we sought to evaluate the use of new

ligands that would provide a more active and generally applicable catalyst for the reaction of

aniline with an aryl iodide (Table 1). While several heterocyclic-2-carboxylic acids, including

some previously reported as ligands for Cu-catalyzed and -mediated nucleophilic substitution

reactions of aryl halides,7 provided poor results for this transformation (entries 1-4), pyrrole-2-

carboxylic acid, L5, manifested good catalytic activity (entry 5). Both the N-H and carboxylate

functional groups of this ligand are important to the activity of the catalysts derived from it. This

can be seen as modification of these groups provided less-active catalysts (entries 6-8).

Benzannulated analogs L9 and L10 also provided less-active catalyst (entries 9-10); presumably

because they are too hindered. Finally, L5 provided a more active catalyst system than those

derived from commercially-available ligands previously reported for this transformation (i.e., 11-

14 ).4a -bdf
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Figure 1. Ligands Examined for N-Arylation Reactions of Aniline

co 2 H CO2 H NCO2H N CO2H OH
CO2H H Me H O H OH

L1 L2 L3 L4 L5 L6 L7 L8

Co2H N COH CO2  H NCO2H N(H)Me

L9 L10 L11 L12 L13 L14 L15

Table 1. Cu-Catalyzed Reaction of Aniline with lodobenzene
10"/% Cul

K3PO4, DMSO
80oC, 17h

Entry Ligand GC Conversion (%) GC Yield (%)

1 L1 58 35

2 L2 46 27

3 L3 47 27

4 L4 0 0

5 L5 94 68

6 L6 57 37

7 L7 55 22

8 L8 66 0

9 L9 62 26

10 L10 60 22

11 L11 64 34

12 L12 64 29

13 L13 48 15

14 L14 64 19

15 L15 51 30

a Reactions Conditions: 1.0 mmol ArNH2, 0.5 mmol Arl, 1.0 mmol K3PO4, 0.050 mmol Cul,
0.10 mmol ligand, 0.25 mL DMSO, at 80 'C in a sealed tube under an N2 atmosphere for 17 h.

Further optimization of the reaction conditions using L5 revealed that the base/solvent

combination of K3PO4/DMSO typically provided a superior system than combinations involving

K2CO3, Cs2CO3, KOH, and NaOt-Bu in DMF, 1,4-dioxane, toluene, and acetonitrile. Since diaryl

ether and phenolic products (up to 20% of ArX consumption) were frequently produced under
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the reaction conditions and observed by GC/MS,8 the base was flame-dried under reduced

pressure then cooled under a positive pressure of N2 prior to use.

The reaction conditions we developed (1.0 equiv ArX/2.0 equiv ArNH2/10% CuI/20%

L5/K3PO4/DMSO/80-90 °C) could be used to couple aryl iodides with anilines in moderate to

good yields (Table 2). For the reaction of p-anisidine with 4-chloroiodobenzene, the catalyst

loading and reaction temperature could be reduced to 5% Cul and 70 'C, respectively (entry 1).

Substrates containing base-sensitive functional groups such as benzoic esters and benzonitriles,

which do not tolerate heating in the presence of hydroxide," were transformed to the desired

product in respectable yields (entries 2-3). In addition, the presence of an ortho substituent on the

aryl halide was tolerated (entry 4). Using the standard conditions, reactions of anilines containing

strongly electron-withdrawing substituents at the 4-position provided the diaryl amine product in

lower yields (entries 5-7). In these reactions, significant quantities of triarylamine byproducts

were observed. d Although the reaction of 4-nitroaniline with an aryl iodide provided the

triarylamine as the major product, an aryl halide could be coupled with N-(4-

aminophenyl)acetamide to provide a product with a similar substitution pattern (entry 8). As

previously noted, the Cu-catalyzed coupling of an anilino-NH2 group in the presence of an amide

is unusual for a Cu-catalyzed reaction of this type.~ -b In this case, the observed chemoselectivity

is likely due to the slow reaction of secondary amides.9 In contrast to this result, the reaction of

4-aminobenzamide with 4-iodoanisole provided a complex mixture of products. Lastly, the

Cu/L5-catalyzed reaction of 2-aminobenzothiazole with 4-iodoanisole arylated the heterocyclic

nitrogen as opposed to the anilino-NH 2 (entry 9).'0 This result is noteworthy, since the Pd-

catalyzed reactions of this nucleophile with aryl bromides selectively react at the anilino-NH 2

position."
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Table 2. Cu-Catalyzed Reactions of Anilines with Aryl lodidesa
10% Cul

,NH2 I. 20% LS H
Rc + R2 R1R2K3 P0 4 , DMSO R  

R2
24 h

entry product temperature (°C) yield (%)b entry product temperature (*C) yield (%)b

H H
1N 70 82c  5 = eR Ac 90 60

6 CO2 Et 90 50
MeO CI 90 52

H Me

2 NN RR =CO2 Et 80 78 H
3 I1 CN 80 73 N

8Me ,'O 8 80 82

Me Me N OMe
H H

4 N 80 71 S f N H

qe9 / N 90 68

Me
OMe

a General reactions conditions: 2.0 mmol ArNH2, 1.0 mmol ArI, 2.0 mmol K3PO4 , 0.10 mmol
Cul, 0.20 mmol L5, 0.5 mL DMSO, in a sealed tube under an N2 atmosphere for 24 h. b Yields
reported are the average of at least two runs determined to be > 95% pure by elemental analysis
or 'H NMR. c 5% Cul, 10% L5, 1.5 mmol ArNH2

Aryl bromides were also successfully coupled using the CuI/L catalyst system (Table 3),

although higher temperatures were required (100 °C). Increasing the reaction temperature to 110

'C provided significant quantities of N-arylated and decarboxylated pyrrole, and low yields of

the diarylamine products. Electron-donating and -withdrawing substituents were tolerated on

both the nucleophile and electrophile (entries 1-4). In addition, anilines and aryl bromides

containing ortho-substituents were effectively combined (entries 5-8). When employing 3-

bromoquinoline as a substrate, a significant quantity of reduced heteroarene was observed (entry

9). The formation of this byproduct is common for Cu-catalyzed reactions of heteroaryl halides

with amines."
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Table 3. Cu-Catalyzed Reactions of Anilines with Aryl Bromidesa
10% Cul

NH2 Br- 20% L5 H

K3PO4 , DMSO R  R2
100 *C, 24 h

entry product yield (%)b entry product yield (%)b

H H

2 N X 76 R = 2,5-Me 2  7 5 c

Me
H

FC N k OMe  55 H_6
7 R =Me 74d

8 OMe 67d

4 N 71 Me H

F' SMe 9 51

Me

a General reactions conditions: 2.0 mmol ArNH 2, 1.0 mmol ArBr, 2.0 mmol K3PO4, 0.10 mmol
Cul, 0.20 mmol L5, 0.5 mL DMSO, in a sealed tube under an N2 atmosphere for 24 h. b Yields
reported are the average of at least two runs determined to be > 95% pure by elemental analysis
or 1H NMR. c 20% L15 employed as a ligand in DMF at 110 oC. d 30 h.

4.3 Conclusion

In conclusion, pyrrole 2-carboxylic acid was employed as a suitable ligand for the Cu-

catalyzed monoarylation of anilines with aryl iodides and bromides. Anilines and aryl halides

possessing diverse electronic properties and useful functional groups were all tolerated. In many

cases, the relatively low catalyst loading (10% Cu), the breadth of functional groups tolerated by

the catalyst system, and the cost and commercial availability of the metal and ligand, might

offset the required use of two equivalents of amine, and the moderate yields obtained. We are

continuing our investigations to develop newer and more active Cu-based catalyst systems for

this transformation.

4.4 Experimental Procedures

All reactions were carried out in resealable test tubes with Teflon septa under an argon or
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nitrogen atmosphere. Copper(I) iodide (98%) was purchased from Strem. Pyrrole-2-carboxylic

acid was purchased from Aldrich. Finely milled K3PO4 was purchased from Fluka. The base was

flame-dried under vacuum and cooled under nitrogen immediately before usage. The base is

hygroscopic and excessive amounts of water lead to the formation of phenol and diaryl ether

byproducts. Anilines were purchased from commercial sources and, when necessary, purified by

distillation or sublimation. Aryl halides were purchased from commercial sources and, when

necessary, were distilled or filtered through a plug of alumina before use. Anhydrous

dimethylsulfoxide (DMSO) and N,N'-dimethylformamide (DMF) were purchased from Aldrich

in SureSeal@ bottles and used as received. Flash column chromatography was performed using a

Biotage SP4 Flash Purification System using SNAP 10g silica cartridges. In all cases,

dichloromethane was used to transfer the crude reaction material onto the silica gel samplet. The

samplet was then air-dried before usage. A gradient elution using hexanes and ethyl acetate was

performed, based on the recommendation from the Biotage TLC Wizard.

Yields reported in the publication are of isolated material and represent an average of at

least two independent runs. Yields reported in the supporting information refer to a single

experiment. Compounds described in the literature were characterized by comparing their 'H

NMR and 13C NMR spectra, and melting points (m.p.) to the previously reported data; their

purity was confirmed by gas chromatography (GC) or elemental analysis. GC analyses were

performed on a Hewlett Packard 6890 instrument with an FID detector and a Hewlett Packard 10

m x 0.2 mm i.d. HP-1 capillary column using dodecane as an internal standard. Elemental

analyses were performed by Atlantic Microlabs, Inc., Norcross, GA. Previously unknown

compounds were synthesized, purified and analyzed from a single run and the reactions used to

form them were then repeated to determine an average yield. They were characterized by 'H
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NMR, 13C NMR, m.p., IR and elemental analysis. 'H NMR and 13C NMR spectra were recorded

on Varian 500 MHz instruments with chemical shifts reported relative to the deuterated solvent

or TMS. IR spectra were recorded on a Perkin-Elmer System 2000 FT-IR instrument for all

previously unknown compounds (KBr disc). Melting points (uncorrected) were obtained on a

Mel-Temp II capillary melting point apparatus.

General procedure for the Cu-catalyzed cross-coupling of anilines with aryl halides

An oven-dried screw-cap test tube was charged with K3PO4 (424 mg, 2.0 mmol). The

tube was sealed and the base was flame-dried under vacuum, and cooled under a purge of N2.

Cul (19 mg, 0.10 mmol), Pyrrole-2-carboxylic acid (22 mg, 0.20 mmol), aryl halide (1.0 mmol,

if solid), amine (2.0 mmol, if solid) and a magnetic stir bar were added to the cooled vessel. The

tube was then evacuated and back-filled with nitrogen. The evacuation/backfill sequence was

repeated two additional times. Aryl halide (1.0 mmol, if liquid), amine (2.0 mmol, if liquid) and

DMSO (0.50 mL) were then added by syringe. The vessel was immersed in a preheated oil bath

and the reaction mixture was stirred vigorously until TLC and/or GC analysis of the crude

reaction mixture indicated that the aryl halide had been completely consumed. The reaction

mixture was cooled to room temperature. Ethyl acetate (15 mL), NH4CI(aq) (2 mL), and H20

(lmL) were added and the mixture was stirred. The organic layer was separated, and filtered

through a plug of silica. The aqueous layer was extracted twice more with ethyl acetate (10 mL),

and each extract was sequentially filtered through the pad of silica gel. The filtrate was

concentrated and the resulting residue was purified by flash chromatography (hexanes/ethyl

acetate, gradient elution) to provide the desired product.
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Experimental procedure for the reactions described in Table 1

An oven-dried screw-cap test tube was charged with Cul (9.5 mg, 0.050 mmol), ligand

(0.20 mmol, if solid), and a magnetic stir bar. The tubes were transferred into a nitrogen-filled

glove box where flame-dried anhydrous K3PO4 (212 mg, 1.0 mmol) was added. The tubes were

sealed with a Teflon septum and removed from the glovebox, where iodobenzene (56 [L, 0.5

mmol), aniline (92 mL, 1.0 mmol) and DMSO (0.25 mL) were successfully added by syringe.

The vessel was immersed in a pre-heated oil bath and stirred vigorously for 12 h at 80 OC. The

reaction mixture was cooled to room temperature. Dodecane (112 IiL), ethyl acetate (15 mL),

NH4CI(aq) (2 mL), and H20 (lmL) were added and stirred. The organic layer was sampled for GC

analysis.

Experimental procedures for compounds in Table 2

H

4-chloro-N-(4-methoxyphenyl)aniline (Entry 1)

The general procedure was followed using Cul (19 mg, 0.10 mmol), pyrrole-2-carboxylic acid

(22 mg, 0.20 mmol), K3PO4 (424 mg, 2.0 mmol), 4-chloroiodobenzene (238 mg, 1.00 mmol),

and p-anisidine (182 mg, 1.5 mmol) with DMSO (0.50 mL) as solvent for 20 h at 80 *C. Workup

and chromatographic purification (hexanes / ethyl acetate 1:0 - 4:1) afforded the title compound

as an off-white solid (188 mg, 81 %). m.p. 49-50.5 °C (lit. 50-51oC).12 'H NMR (500 MHz,

CDCI3) 8 7.18-7.13 (2H, m), 7.09-7.03 (2H, m), 6.90-6.80 (m, 4H), 5.48 (1H, bs), 3.81 (3H, s).

13C NMR (125 MHz, CDCl3) 8 155.8, 144.1, 135.4, 129.4, 124.5, 122.7, 116.8, 114.9, 55.8.

H
Me, N C0 2Et
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ethyl 3-(p-tolylamino)benzoate (Entry 2)

The general procedure was followed using Cul (9.5 mg, 0.05 mmol), pyrrole-2-carboxylic acid

(11 mg, 0.10 mmol), K3PO4 (424 mg, 2.0 mmol), ethyl-3-iodobenzoate (167 RL, 1.00 mmol),

and p-toluidine (214 mg, 2.0 mmol) with DMSO (0.50 mL) as solvent for 24 h at 80 *C. Workup

and chromatographic purification (hexanes / ethyl acetate 1:0 - 4:1) afforded the title compound

as a tan solid (199 mg, 78 %). m.p. 95-96 'C. 'H NMR (500 MHz, CDCI3) 6 7.66 (1H, dd, J =

1.8, 2.0 Hz), 7.54 (1H, ddd, J= 1.1, 1.5, 7.6 Hz), 7.29 (1H, t, J = 7.8 Hz), 7.20 (1H, ddd, J= 0.9,

2.5, 8.1 Hz), 7.13-7.11 (2H, m), 7.04-7.01 (2H, m), 5.73 (1H, bs), 4.37 (2H, q,J = 7.1 Hz), 2.33

(3H, s), 1.39 (3H, t, J = 7.1 Hz). '3C NMR (125 MHz, CDCI3) 8 166.9, 144.4, 139.8, 131.8,

130.2, 120.4, 121.2, 120.6, 119.5, 117.5, 61.1,20.9, 14.5. IR (KBr disc, cm ') 3356, 1701, 1604,

1589, 1526, 1487, 1367, 1280, 1219, 1106, 1025, 829, 801, 752. Anal. Calc. for C16H17NO 2: C

75.27, H 6.71. Found: C 75.51, H 6.74.

H

3-(p-tolylamino)benzonitrile (Entry 3)13

The general procedure was followed using Cul (9.5 mg, 0.05 mmol), pyrrole-2-carboxylic acid

(11 mg, 0.10 mmol), K3PO4 (424 mg, 2.0 mmol), 3-iodobenzonitrile (229 mg, 1.00 mmol), and

p-toluidine (214 mg, 2.0 mmol) with DMSO (0.50 mL) as solvent for 24 h at 90 *C. Workup and

chromatographic purification (hexanes / ethyl acetate 1:0 - 4:1) afforded the title compound as

an tan solid (150mg, 72 %). m.p. 71-730C. 'H NMR (500 MHz, CDCI3) 8 7.30-7.28 (1H, m),

7.20-7.15 (2H, m), 7.13 (1H, ddd, J = 0.9, 2.4, 7.4 Hz), 7.09 (1H, ddd, J = 1.1, 1.4, 7.5 Hz), 7.05-

7.02 (2H, m), 5.78 (1H, bs), 2.35 (3H, s). 13C NMR (125 MHz, CDCl3) 8 145.5, 138.4, 133.3,

130.4, 130.3, 123.1, 120.1, 119.3, 118.1, 113.2, 21.0. IR (KBr disc, cm1n) 3398, 2226, 1598,

1523, 1489, 1312, 996, 867, 818, 780, 681. Anal. Calc. for C14H12N2: C 80.74, H 5.81. Found: C
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80.49, H 5.74.

Me

2-methyl-N-m-tolylaniline (Entry 4)14

The general procedure was followed using Cul (19 mg, 0.10 mmol), pyrrole-2-carboxylic acid

(22 mg, 0.20 mmol), K3PO4 (424 mg, 2.0 mmol), 2-iodotoluene (127 [tL, 1.00 mmol), and m-

toluidine (216 [L, 2.0 mmol) with DMSO (0.50 mL) as solvent for 30 h at 80 OC. Workup and

chromatographic purification (hexanes / ethyl acetate 1:0 - 4:1) afforded the title compound as

a tan oil (144 mg, 75 %). 'H NMR (500 MHz, CDCl3) 8 7.26 (1H, d, J = 6.9 Hz), 7.22 (1H, d, J

= 7.5 Hz), 7.17 (2H, m), 6.97-6.94 (1H, m), 6.81-6.75 (m, 3H), 5.36 (1H, bs), 2.33 (3H, s), 2.28

(3H, s). 13C NMR (125 MHz, CDCl3) 6 144.0, 141.5, 139.3, 131.1, 129.3, 128.3, 126.9, 122.0,

122.5, 118.9, 118.3, 114.7, 21.7, 18.1.

H

Me

1-(4-(3,5-dimethylphenylamino)phenyl)ethanone (Entry 5)

The general procedure was followed using Cul (19 mg, 0.10 mmol), pyrrole-2-carboxylic acid

(22 mg, 0.20 mmol), K3PO4 (424 mg, 2.0 mmol), 5-iodo-m-xylene (144 ýtL, 1.00 mmol), and 1-

(4-aminophenyl)ethanone (270 mg, 2.0 mmol) with DMSO (0.50 mL) as solvent for 24 h at 90

*C. Workup and chromatographic purification (hexanes / ethyl acetate 1:0 -- 4:1) afforded the

title compound as a yellow solid (136 mg, 57 %). m.p. 131-134 oC. 1H NMR (500 MHz, CDCl3)

6 7.90-7.86 (2H, m), 7.01-6.97 (2H, m), 6.81 (2H, s), 6.74 (1H, s), 6.02 (1H, bs), 2.54 (3H, s),

2.32 (6H, s). 13 C NMR (125 MHz, CDCl3) 8 196.6, 148.8, 140.6, 139.5, 130.8, 129.0, 125.4,

118.7, 114.6, 26.4, 21.6. IR (KBr disc, cm -1 ) 3331, 1653, 1570, 1342, 1274, 1181, 1168, 827.
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Anal. Calc. for C,,H,7NO: C 80.30, H 7.16. Found: C 80.22, H 7.18.

Me

ethyl 4-(3,5-dimethylphenylamino)benzoate (Entry 6)

The general procedure was followed using Cul (19 mg, 0.10 mmol), pyrrole-2-carboxylic acid

(22 mg, 0.20 mmol), K3PO 4 (424 mg, 2.0 mmol), 5-iodo-m-xylene (144 p[L, 1.00 mmol), and

ethyl-4-aminobenzoate (330 mg, 2.0 mmol) with DMSO (0.50 mL) as solvent for 24 h at 90 *C.

Workup and chromatographic purification (hexanes / ethyl acetate 1:0 - 4:1) afforded the title

compound as a white solid (138 mg, 51%). m.p. 119-120 'C. 1H NMR (500 MHz, CDCl3) 8

7.94-7.91 (2H, m), 7.00-6.96 (2H, m), 6.81 (2H, m), 6.72 (1H, m), 5.96 (1H, s), 4.35 (2H, q, J =

7.1 Hz), 2.31 (3H, s), 1.38 (3H, t, J = 7.1 Hz). 13C NMR (125 MHz, CDCI3) 8 166.7, 148.3,

141.0, 139.4, 131.6, 125.1, 121.4, 118.3, 114.8, 60.6, 21.6, 14.6. IR (KBr disc, cm-') 2241, 1697,

1595, 1509, 1352, 1285, 1170, 830, 769. Anal. Calc. for C,7H,9NO 2: C 75.81, H 7.11. Found: C

76.13, H 6.94.

NC N me
Me

4-(3,5-dimethylphenylamino)benzonitrile (Entry 7)15

The general procedure was followed using Cul (19 mg, 0.10 mmol), pyrrole-2-carboxylic acid

(22 mg, 0.20 mmol), K3PO4 (424 mg, 2.0 mmol), 5-iodo-m-xylene (144 [L, 1.00 mmol), and 4-

aminobenzonitrile (236 mg, 2.0 mmol) with DMSO (0.50 mL) as solvent for 24 h at 90 *C.

Workup and chromatographic purification (hexanes / ethyl acetate 1:0 - 4:1) afforded the title

compound as a yellow solid (113 mg, 51%). m.p. 154-155 'C. 'H NMR (500 MHz, CDCl3) 6

2.32 (3H, S)7.49-7.46 (2H, m), 6.97-6.94 (2H, m), 6.80 (2H, s), 6.77 (1H, s), 6.00 (1H, bs). 13C
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NMR (125 MHz, CDCl3) 8 148.1, 139.7, 139.4, 133.7, 125.7, 120.0, 118.9, 114.8, 101.1, 21.3.

IR (KBr disc, cm-') 3335, 2214, 1591, 1532, 1350, 1170, 826. Anal. Calc. for C15H,4N 2: C 81.05,

H 6.35. Found: C 80.76, H 6.33.

H

Me N NMe
H

N-(4-(4-methoxyphenylamino)phenyl)acetamide (Entry 8)

The general procedure was followed using Cul (19 mg, 0.10 mmol), pyrrole-2-carboxylic acid

(22 mg, 0.20 mmol), K3PO4 (424 mg, 2.0 mmol), 4-iodoanisole (234 mg, 1.00 mmol), and N-(4-

aminophenyl)acetamide (300 mg, 2.0 mmol) with DMSO (0.70 mL) as solvent for 24 h at 80 *C.

Workup and chromatographic purification (hexanes / ethyl acetate 1:0 - 4:1) afforded the title

compound as a white solid (212 mg, 83 %). m.p. 138-139 'C (lit. 138 oC).16 'H NMR (500 MHz,

CDCI3) 8 7.33-7.30 (2H, m), 7.16 (1H, bs), 7.10-7.02 (2H, m), 6.90-.84 (m, 4H), 5.47 (1H, bs),

3.80 (3H, s), 2.15 (3H, s). 13C NMR (125 MHz, CDC13) 8 168.4, 155.2, 142.1, 136.3, 130.4,

122.2, 121.7, 116.7, 114.9, 55.8, 24.6. IR (KBr disc, cmf1) 3270, 1653, 1512, 1297, 1248, 1035,

819. Anal. Calc. for C1,,HN 20 2: C 70.29, H 6.29. Found: C 70.55, H 6.32.

S.•,NH

N1OMe

3-(4-methoxyphenyl)benzo[d]thiazol-2(3H)-imine (Entry 9)

The general procedure was followed using Cul (19 mg, 0.10 mmol), pyrrole-2-carboxylic acid

(22 mg, 0.20 mmol), K2CO3 (280 mg, 2.0 mmol), 4-iodoanisole (234 mg, 1.00 mmol), and 2-

aminobenzothiazole (298 mg, 2.0 mmol) with DMSO (0.80 mL) as solvent for 24 h at 90 *C.

Workup and chromatographic purification (hexanes / ethyl acetate 1:0 - 4:1) afforded the title

compound as a white solid (169 mg, 66 %). m.p. 91.5-92 *C. 'H NMR (500 MHz, CDCI3) 8 7.53
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(1H, td, J = 0.6, 7.8 Hz), 7.-7.41 (1H, m), 7.31 (1H, dd, J = 0.6, 8.2 Hz), 7.13-7.07 (3H, m), 6.07

(1H, bs), 6.84-6.82 (2H, bs), 3.78 (3H, s). '3C NMR (125 MHz, CDC13) 8 159.3, 139.0, 136.6,

131.2, 130.7, 125.0, 124.2, 119.9, 115.4, 115.3, 110.4, 55.6. IR (KBr disc, cmrn) 3220, 2235,

1591, 1580, 1493, 1404, 1289, 1246, 1175, 1021,824, 753. Anal. Calc. for C14HI2N20S: C 65.60,

H 54.72. Found: C 65.64, H 4.75.

Experimental procedures for compounds in Table 3

H

MeO N CI
4-chloro-N-(4-methoxyphenyl)aniline (Entry 1)

The general procedure was followed using CuI (19 mg, 0.10 mmol), pyrrole-2-carboxylic acid

(22 mg, 0.20 mmol), K3PO4 (424 mg, 2.0 mmol), 1-bromo-4-chlorobenzene (191 mg, 1.00

mmol), and p-anisidine (248 mg, 2.0 mmol) with DMSO (0.50 mL) as solvent for 24 h at 100 *C.

Workup and chromatographic purification (hexanes / ethyl acetate 1:0 - 4:1) afforded the title

compound as a tan solid (180 mg, 77 %). m.p. 50-51 °C (lit. 50-51oC).17 'H NMR (500 MHz,

CDCl3) 7.18-7.13 (2H, m), 7.09-7.03 (2H, m), 6.90-6.80 (m, 4H), 5.48 (1H, bs), 3.81 (3H, s).

H

Meo rN F

4-fluoro-N-(4-methoxyphenyl)aniline (Entry 2)

The general procedure was followed using Cul (19 mg, 0.10 mmol), pyrrole-2-carboxylic acid

(22 mg, 0.20 mmol), K3PO4 (424 mg, 2.0 mmol), 1-bromo-4-fluorobenzene (109 pL, 1.00

mmol), and p-anisidine (248 mg, 2.0 mmol) with DMSO (0.50 mL) as solvent for 24 h at 80 *C.

Workup and chromatographic purification (hexanes / ethyl acetate 1:0 4 4:1) afforded the title
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compound as a tan solid (155 mg, 71 %). m.p. 57-59 'C (lit. 59 oC).' 8 1H NMR (500 MHz,

CDCI3) 8 7.03-7.00 (2H, m), 6.96-6.85 (6H, m), 5.40 (1H, bs), 3.81 (3H, s). 13C NMR (125 MHz,

CDCl3) 6 158.3, 155.2, 141.3 (d), 136.7, 121.4, 117.9 (d), 116.1, 115.9, 114.9, 55.8.

H
F3C N OMe

3-methoxy-N-(3-(trifluoromethyl)phenyl)aniline (Entry 3)19

The general procedure was followed using Cul (19 mg, 0.10 mmol), pyrrole-2-carboxylic acid

(22 mg, 0.20 mmol), K3PO4 (424 mg, 2.0 mmol), 3-bromoanisole (127 [tL, 1.00 mmol), and 3-

aminobenzotrifluoride (250 IL, 2.0 mmol) with DMSO (0.50 mL) as solvent for 24 h at 100 OC.

Workup and chromatographic purification (hexanes / ethyl acetate 1:0 - 4:1) afforded the title

compound as an orange oil (153 mg, 57%). 1H NMR (500 MHz, CDC13) 8 7.36 (1H, t, J = 7.9

Hz), 7.30 (IH, s), 7.26-7.20 (2H, m), 7.16 (1H, d, J = 7.8 Hz), 6.70 (1H, dd, J = 1.2, 8.1 Hz),

6.67 (1H, s), 6.59 (1H, d, J = 8.2 Hz), 5.85 (1H, bs), 3.81 (3H, s). 13C NMR (125 MHz, CDC13)6

160.9, 143.9, 143.4, 132.1, 130.5, 130.0, 129.9, 120.4, 117.3 (q), 113.0 (t), 111.4 (d), 107.6 (d),

104.7, 55.4.

H

F N SMe

4-fluoro-N-(4-(methylthio)phenyl)aniline (Entry 4)

The general procedure was followed using Cul (19 mg, 0.10 mmol), pyrrole-2-carboxylic acid

(22 mg, 0.20 mmol), K3PO4 (424 mg, 2.0 mmol), 4-bromothioanisole (203 mg, 1.00 mmol), and

4-fluoroaniline (189 [L, 2.0 mmol) with DMSO (0.50 mL) as solvent for 24 h at 100 'C.

Workup and chromatographic purification (hexanes / ethyl acetate 1:0 - 4:1) afforded the title

compound as a brown oil (170 mg, 73 %). 'H NMR (500 MHz, CDCl3) 8 7.21-7.17 (2H, m),

7.02-6.92 (4H, m), 6.89-6.86 (2H, m), 5.56 (1H, bs), 2.41 (3H, s). 13C NMR (125 MHz, CDCl 3)6
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159.2, 142.4, 139.0 (d), 130.3, 129.7, 120.6 (d), 117.7, 116.1 (d), 18.2. IR (KBr disc, cm ') 3396,

1595, 1508, 1314, 1223, 817, 506. Anal. Calc. for C,,H,2F3NS: C 66.93, H 5.18. Found: C 67.16,

H 5.20.

HMe N Me
e Me

Me

N-(3,5-dimethylphenyl)-2,5-dimethylaniline (Entry 5)

The general procedure was followed using Cul (19 mg, 0.10 mmol), 2-isobutyrylcyclohexanone

(33 RL, 0.20 mmol), K3PO4 (424 mg, 2.0 mmol), 5-bromo-m-xylene (136 RL, 1.00 mmol), and

2,5-dimethylaniline (249 [L, 2.0 mmol) with DMF (0.50 mL) as solvent for 24 h at 110 *C.

Workup and chromatographic purification (hexanes / ethyl acetate 1:0 - 4:1) afforded the title

compound as a yellow oil (166 mg, 74 %). 'H NMR (500 MHz, CDC13) 8 7.05-7.02 (2H, s), 6.72

(1H, td, J = 0.4, 7.6 Hz), 6.56 (2H, d, J = 0.6 Hz), 6.53 (1H, t, J = 0.6 Hz), 5.22 (1H, bs), 2.26

(3H, s), 2.23 (6H, s), 2.17 (3H, s). 13C NMR (125 MHz, CDCl3) 8 144.2, 141.3, 139.2, 136.6,

130.9, 125.4, 122.8, 122.4, 119.9, 116.8, 115.4, 21.6, 21.4, 17.7. IR (KBr disc, cn1') 3383, 3020,

2919, 1601, 1578, 1522, 1466, 1221, 1177, 829, 802. Anal. Calc. for C,4H,2F3NO: C 62.92, H

4.53. Found: C 63.13, H 4.46.

OMe
Np Me

Me

N-(2-methoxyphenyl)-3,5-dimethylaniline (Entry 6)20

The general procedure was followed using Cul (19 mg, 0.10 mmol), pyrrole-2-carboxylic acid

(22 mg, 0.20 mmol), K 3PO4 (424 mg, 2.0 mmol), 5-bromo-m-xylene (136 RL, 1.00 mmol), and

o-anisidine (225 tiL, 2.0 mmol) with DMSO (0.50 mL) as solvent for 24 h at 100 *C. Workup

and chromatographic purification (hexanes / ethyl acetate 4:1 - 1:0) afforded the title compound
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as an orange oil (155 mg, 68%). 'H NMR (500 MHz, CDC13) 8 7.33-7.31 (1H, m), 6.91-6.84

(3H, m), 6.81 (2H, d, J = 0.6 Hz), 6.62 (1H, t, J = 0.6 Hz), 6.10 (1H, s), 3.89 (3H, s), 2.30 (3H,

s). 13C NMR (125 MHz, CDCl3) 6 148.4, 142.8, 139.1, 123.2, 121.0, 119.8, 118.7, 116.5, 115.0,

110.6, 55.8, 21.6.

Me

Me

2-methyl-N-m-tolylaniline (Entry 7)3

The general procedure was followed using Cul (19 mg, 0.10 mmol), pyrrole-2-carboxylic acid

(22 mg, 0.20 mmol), K3PO4 (424 mg, 2.0 mmol), 2-bromotoluene (120 RL, 1.00 mmol), and m-

toluidine (216 [tL, 2.0 mmol) with DMSO (0.50 mL) as solvent for 30 h at 100 *C. Workup and

chromatographic purification (hexanes / ethyl acetate 1:0 -) 4:1) afforded the title compound as

a tan oil (129 mg, 66 %). 'H NMR (500 MHz, CDCl3) 8 7.26 (1H, d, J = 6.9 Hz), 7.22 (1H, d, J

= 7.5 Hz), 7.17 (2H, m), 6.97-6.94 (1H, m), 6.81-6.75 (3H, m), 5.36 (1H, bs), 2.33 (3H, s), 2.28

(3H, s). 13C NMR (125 MHz, CDCI3) 8 144.0, 141.5, 139.3, 131.1, 139.3, 128.3, 126.9, 122.0,

122.5, 118.9, 118.3, 114.7, 21.7, 18.1.

OMe

Me

2-methoxy-N-m-tolylaniline (Entry 8)21

The general procedure was followed using CuI (19 mg, 0.10 mmol), pyrrole-2-carboxylic acid

(22 mg, 0.20 mmol), K3PO4 (424 mg, 2.0 mmol), 2-bromoanisole (125 [L, 1.00 mmol), and m-

toluidine (216 [L, 2.0 mmol) with DMSO (0.50 mL) as solvent for 30 h at 100 *C. Workup and

chromatographic purification (hexanes / ethyl acetate 1:0 4 4:1) afforded the title compound as

an orange oil (142 mg, 66%). ' H NMR (500 MHz, CDCI3) 8 7.36-7.33 (1H, m), 7.23-7.18 (1H,
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m), 7.02-6.87 (5H, m), 6.81 (1H, d, J = 7.5 Hz), 6.16 (1H, bs), 3.29 (3H, s), 2.36 (3H, s). 13C

NMR (125 MHz, CDCl3) 8 148.4, 142.8, 139.3, 133.2, 129.3, 122.2, 121.0, 119.9, 119.4, 115.8,

114.9, 110.6, 55.8, 21.7.

MeN

Me

N-(3,5-dimethylphenyl)quinolin-3-amine (Entry 9)

The general procedure was followed using Cul (19 mg, 0.10 mmol), pyrrole-2-carboxylic acid

(22 mg, 0.20 mmol), K3PO4 (424 mg, 2.0 mmol), 3-bromoquinoline (136 [tL, 1.00 mmol), and

3,5-dimethylaniline (248 ILL, 2.0 mmol) with DMSO (0.50 mL) as solvent for 24 h at 100 *C.

Workup and chromatographic purification (hexanes / ethyl acetate 4:1 - 1:0) afforded the title

compound as a green oil (135 mg, 54 %). 'H NMR (500 MHz, CDCl3) 8 .72 (1H, d, J = 2.8 Hz),

8.02 (1H, dd, J = 0.6, 8.2 Hz), 7.70 (1H, d, J = 2.8 Hz), 7.65 (1H, dd, J = 1.2, 8.1 Hz), 7.54-7.46

(2H, m), 6.82 (2H, s), 6.71 (1H, d, J = 0.6 Hz), 6.12 (1H, s), 2.32 (6H, s). 13C NMR (125 MHz,

CDCl3) 8 145.3, 143.7, 141.9, 139.6, 137.4, 120.2, 129.1, 127.2, 126.6, 126.5, 124.4, 117.2,

116.5, 21.6. IR (KBr disc, cm1- ) 3265, 3038, 1596, 1491, 1470, 1361, 1215, 1140, 908, 834, 781,

749,732.
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RAAVII2S4g

expl stdlh

SAMPLE
date Feb 10 2008
solvent C0C13
file exp

ACQUISITION
sfrq 300.108
tn 1I
at 4.003
np 48852
sw 6002.4
fb not used
be I
tpwr 54
pw 8.0
d1 0.058
tof 86?.7
nt 32
Ct 22
alock n
gain not used

FLAGS
11 n
In n
dp y

DISPLAY
sp -58.3
wp 2918.3
vs 151
6c 0
we 250
hbam 11.67
tI 393.43
rfl 2839.5
rfp 2181.8
th 20
ins 3.000
mn ph

DEC. 8 VT
dfrq 300.107
dn "I
dpwr 30
dof 0
da nn
dom c
daf 200
temp 20.0

PROCESSING
wtfile
proc ft
In 131072

wmrr
wexp
wbs
wnt

4 3

2.971.82 3.89
1.92

A

r

._ Ji_______,,

9 2 1 ppm

~--- - ~ ---- I--~~~~~~~~~~~~~~~~~~~~~~-~------
........ .....? I I ; I I- t - , . . ----- -----------~tr.··-



RAA/VIISc
fxpt s2pul

SAMPLE DEC. & VT
date Feb ZO 2008 dfrq 125.794
solvent CAC13 dn C13
ftile exp dpwr 37

ACQUISITION dotf
strq 500.231 do nn
tn H1 dam c
at 3.200 datf 1000
np 64000 dseq
sw 10300.0 dres 1.3

CA W,LtV r

fb not used homo a
bs 1 PROCESSING
Us 1 vtftle
tpwr So proc ft
pw -.0 fn 131072
dl 0 math f
tot 1498.2
nt 15 warr
ct veexp
&lock n wbs
gain not used wnt

FLAGS
11 n
in a
dp y
hs an

DZSPLAY
sp -77,4
wp 4754.2
vs 151
mc U
w: 250
hams 19.18
is 400.08
rtf 4633.1
rfp 3035.7
th 3
ins 3.006
no ph

1 0;

...................~.. ... . . . ...................... .. . ...........

9 8 7 6 5 4 3 2 1 pps

0.08 1.12.74 1.3O 3.22
0.78 0.91.83 1.95 2,95

r'

...................... ...... .--l-
A I



STANDARD CARBON PARAMETERS

expl s2pul

SAMPLE DEC
date Feb 15 2006 dfrq
solvent CDCIS dn
file exp dpwr

ACQUISITION dof
sfrq 125.872 dm
tn CiS diam
at 2.000 dmf
np 125588 dseq
sw 31357.2 dres
fb not used homo
bs 8
tpwr 57 dfrq2
pW 6.7 dn2
d4 3.000 dpwr2
tof 0 dof2
nt 128 dm2
ct 24 deal
alock n dmf2
gain not used dseq2

FLAGS dres2
S1 n homo2
in n
dp y dfrql
ha nn dn3

DISPLAY dpwr3
sp -3770.4 dOf3
wp 31326.7 dm3
vs 319 dmaS
sc 0 def3
wc 250 dseq3
hzm 125.,5 dres3
is 500.00 homo3
rfl 13475.6 PRO
rfp 9704.7 lb
th 68 wtfile
Ins 100.000 proc
%I cdc ph fn

math

werr
wsxp
wbs
wnt

.& VT
499

11

DEC2

DEC3

CESSINO

13

.744
nH
41
0

yyy
w

0000

1.0
n

0

1
0

c
0000

1.0
rl

0

1
0

c
0000

1.0
n

1.00

ft
1072

N m NWl~ U11
" 0 180-.. . 1- 14 10 10 . . 0... -.. 2 T0 -

Y~)UYIOL~~~IY~~YYYUy'L-Yir~LYLli~l·~rYWL OY··r Y1 w*U. L··IYI· I·LI~·I(Y~·U~L*·L·T1Y 01,1 0,11 IN 1111-1111-i~li~yl~. . W
I .

200 180 160 140o 120 100o 80 6'0 49 20 ppm
I



RAAVIIISC

exp2 s2pul

SAMPLE
date Feb 20 2008
solvent COCS3
file exp

ACQUISITION
sfrq 500.231
tn H1
at 3.200
np 64000
sw 10000.0
fb not used
bs 1
ss I
tpwr 59
pw 9,0
dl 0
tof 1498.2
nt 16
Ct 0
alock n
gain not used

FLAGS
1t n
in n
dp y
hS nn

DISPLAY
sp -11.8
wp 4441.4
vs 151
sc 0
we 250
hzam 17.77
is 400.00
rfl 4633.9
rfp 3636.7
th 3
ins 3.000
no ph

DEC. & VT
dfrq 125.794
dn C13
dpwr 37
dof 0
do nnn
dma c
dmf 10000
dseq
dres 1.0
homo n

PROCESSING
wtftle
proc ft
fn 131072
math f

werr
wexp
wbs
wnt

1.17 1.71
4.00

IY1"Y

0.90



RAAVIIAShb

expl s2pul

SAMPLE
date Nar 6 2888,
solvent CDCI3
file, exp

ACQUISITION
ufrq 500.231
ton HI
at 3.200
np 44000
SW 10010.0
fb not used
bs I
as 1
tpvr 5S

tof 1498.2
nt 1is
ct L6
alock n
gain not used

FLAGS
fl n
in A
dp y
hs nn

DISPLAY
sp -SI3.8
Vp S177.4
vs 151
sc 8
wve 250
hzam 20.71
is 18.8o0
rtl 4633.4
rfp 3636.7
th 7
ins 3.800
na ph

DEC. & VT
dfrq 125,794
dn C13
dpwr 37
dof 6
da nnn
d Pm c
dat 100008

dVes 2.0
homo n

PROCESSING
vtfild
proc ft
tn 131872
sath f

verr
vexp
wbo
vnt

itt .1~*

.. .. .•. ..... T ......... .% ". ....... . .. ." ." " ...... . . .. ............ ...... .. .. . . . . . ... ..... . .. . ... .... ...... .. . . .... .

9 8 7 6 5 4 3 2 1 -0 ppm

L.2822 2.15 1.21 4.08
1.571.98.04 3.88

,I

AO



RAAVIIlX7A

expt stpul

SAMPLE
date Feb 25 20a8
solvent COC13
file exap

ACQUISITION
efrq Se.it st
tU HI
at 3.206
Rp $&lot
sv 106498.6
fb not used
be 1

tpwr SS

tof 1498.2
nt 16
ct 0
alock n
gain not Used

FLAGS

in n
dp y
hs nn

DISPLAY
Sp -11.8
Wp 4851.7
ve 151
sc a
Wvc 25,
hzae 18.61
is 405.08
rfl 48.3.9
rfp 3630.7
th 3
Insg 6.80
nM ph

DEC. & VT
dfrq IZS.794
dn c13
dpwr 37
dOf 6
di non
dam c
dIr 18008

dseq
dres 1.5

PROCESfNG
vtf iti
proc ft
fn 131072
math f

wfrr
waxp
vbs
Wnt

ir
il/li:

f"
,r

__a._..._..__ .... ^. ~_...~~....~. .... ,.,

9 8 7 6 5 4 3

.0891.64
2.070.72

2 1 ppm

2.87

7

ii,'

1,73



STANDARD CARBON PARAMETERS

expl s2pul

SAMPLE
date Feb 20 2008
solvent CDC13
file exp

ACQUISITION
sfrq 125.795
tn C13
at 1.736
np 131010
Sw 37735.8
fb not used
be 8
ss 1
tpwr 53
pw 8.9
di 0.783
tof 631.4
nt 256
ct 0
alock n
gain not used

FLAGS
11 n
In n
dp y
hs nn

DISPLAY
sp -6289.2
wp 37735.8
vs 375
sc 0
wc 250
hzmm 8.33
is 500.00
rfl 16004.1
rfp 9714.9
th 10
ins 1.000
al ph

DEC. & VT
dfrq 500.229
dn H1
dpwr 37
dof -500.0
dm y
dam w
dmf 10000
dseq
dres 1.0
homo n

PROCESSING
lb 0.30
wtfile
proc ft
fn 131072
math f

werr
wexp
wbs
wnt

240 220 200 180 160 140 120 100 80 60 40 20 0 -20 ppm

Y~wusa~luu*J~ivur~Y*~Y~Uua*-*rci~U·uULLi ~ai~i·
rU~rLurprllP~1"*CYLIYI·Y~LIwo i

nF~

"
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RAAVIII17b

expz 92pul

SAMPLE
date Feb 20 2008
solvent CDC13
file exp

ACQUISITION
sfrq 500.231
tn HI
at 3,200
np 64000
sw 100O0.0
fb not used
bS 1
ss 1
tpwr 59
pw 9.0
dl 0
tof 1498,2
at 16
Ct S
alock n
gain not used

FLAGS
ii n
in n
dp y
hs nn

DISPLAY
sp -261.4
wp 4783.1
VS 151
SC 4
we 250
hzam 19,13
1s 400.00
rft 4633.9
rfp 3636.7
th a
Ins 6.000
no ph

DEC, 6 VT
dfrq 125.794
dn C13
dpwr 37
dof 0
d nonn
dmm C
dmf 10000
dseq
dres 1.0
homo n

PROCESSING
wtfile
proc ft
fn 131072
math f

werr
wexp
wbs
wnt

j I....
7 6 4 3 2 1 0 ppm

1.70
1.99 0.73

1.011.63
1.95

/

C~



STANDARD CARBON PARAMETERS

expl s2pul

SAMPLE DEC. & VT
date Feb 20 2808 dfrq 5#9.229
solvent CDC13 dn H1
file exp dpwr 37

ACQUISITION dof -590.0
sfrq 125.735 d y
to C13 deo v
at 1.736 dof 10068
np 131010 dseq
sv 37735.8 dres 1.0
fb not used homo n
be a PROCESSING
ss 1 lb 3.30
tpwr S3 wtfile
pw 6.9 prOC ft
di 0.763 fn 131072
tof 631.4 math f
nt 256
ct 0 warr
SloCk n vexp
gain not used wbs

FLAGS wnt

240 220 200 180 160 140 120

14
r"

/-=

20 0 -20 ppm100 80 60 40



RAAVIII17C

exp2 s2pul

SAMPLE
date Feb 20 2008
solvent C0C13
file exp

ACQUISITION
sfrq 500.231
tn III1
at 3.200
np o4000
Sw 10000.0
fb not used
bs 1
ss 1
tpwr 59
pw 9.0
dl 0
toa 1498.2
nt 16
ct 0
alock n
gain not used

FLAGS
11 n
in n
dp y
he nn

OISPLAY
sp -12.5
wp 5124.7
vs 151
sc 0
wc 250
hzma 20.50
is 400.00
rfl 4634.8
rfp 3636.7
th 5
ins 6.000
no ph

10 9

DEC. & vT
dfrq 125.
in
dpwr
dot

dl:
dseq

dres
homo

PROCESSING
wtfile
proc
fn 131
ath

werr
wexp
wbs
wnt

794
C13

37
0

nnn
c

000

1.0n

ft
072
1f

s 7

2.56 3.97
3.20

4

9.95
1.51

/

,-;i\ %

I_,JII
1 ppm



RAAVI16A

exp2 sapul

SAMPLE
date Feb 2 2008
solvent COC13
file exp

ACQUISITION
sfrq SI8.231
th Ml
at 3.20s
Op 84086
sv 1000410
fb not used
be S
as 1
tpwr S$
dpv 9.8

dl C
to? 1458.2
at 10
ct 0
o0ock n
gain not used

FLAGS
81
in al

dp y
hs nn

DISPLAY
Sp -18.8
wp 49S4.0
vs 151
2C 0ac OSc 250
hame 19.82
Is lot.$$IS 1600,0
rfl 4033.9
rfp 863e.7
th 7
ins 2.C0O
re ph

DbC. & VT
dfrq 125.794
dn C13
dpwr 37

dot Padm ann
dee C

def 11080
dsoq
dres 1.6

PRO SIN a
PAOCSSSINO

tftle
proc
In 1314
math

War' r
wexp
vwbs
wat

..9 .. 7 6 5 4 3 2 1 pp....

2.56 2.34 3.50
1.18 4.61 3.03

/

ft
III

1.1e 
4.61 

3.63 I.S

i g ",q•.



RAAVIIIZSB

exp2 S2pul

SAMPLE
date Feb 25 2008
solvent CDC13
file exp

ACQUISITION
sfrq 415.746
tn H1
at 3.001
np 63050
sw 10504.2
fb not used
bs 1
tpwr 59
P4 8.6
di 2.000
tof 1519.5
nt 16
ct 16
alock n
gain not used

FLAGS
11 n
in n
dp yhe on

DISPLAY
sp -55.2
wp 4535.5
vs 34
sc 0
wc 250
heaz 18.38
to 33.57
rfl 46684.1
rfp 3633.1
th ?
ins 3.000
a1 cdc ph

DEC. & VT
dfrq 125.872
dn CIS
dpwr 30

da ann

dmf 10000
dse4
dres 1.0
homo n

DEC2
dfrq2 0
d02
dpwr2
def2
dem2

dmf2 200
dseq2
dres2 1.0
homo2 n

DEC3
dfrq3 0
d"3
dpwr3 I
dof3 0

dm3 c
dof3 200

dresS 1.0
homo3 a

PROCESSING
wtfile
proc ft
fn 262144
math f

worr
wexp
•bswnt wft

[ili
0,910.91 0.96

0.55 2.82 1.90

S t~"%

ppm
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STANDARD CARBON PARAMETERS

exp2 s2pul

SANPLU
date Feb 14 2088
solvent CDCl13
tfile exp

ACQUZSITION
1frq 125.795
tn 1CS
at 1.736
np 1391810
SWv 7735.8
Tb not used
bs 8

tpwr 53
pw 6.9
d1 0.173
tof 531.4
nt 25s
ct 170
clock n
gain not used

FLAGS
I1 n

in n
dp y
hs nn

DISPLAY
sp -8292.7
wp 37735.8
vl 356

6c 0
wc 250
brhzas 158.94
is 51S0.94
rfl 18117.6
rfp 9714.9
th 8

tos 1.888
ai ph

DEC. & VT
dfrq s00.222
dn HIapwr 37
det -Sce.1
da y
def 10804
dseq
dres 1.0
howe n

PROCESSING
lb .0.30
wtftle
proc ft
fn 13187Z
math f

warr
vexp
wbs
unt
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AAAVII246

expl 22pul

SANPLE
date Feb Z 2880
solvent COC13
file esp

ACQUISIfTONU
Sfrq 530.,231
to Hli
at 3.200
np 64000
sw 10008.0
fb not used
bs 8
es 1

tpyr so
PW 9.0
dl 0
tot 1498.2
nt 16
Ct 18
Klock n
gain not used

FLAGS
fi n
in n

hbs nn
DISPLAY

sp -143.7Wp 4*38.6
vs 151
Sc e
vCe tSO
h0m: 18.58
IS 185.00
rfl 4634.5
rfp 3638.7
th 7
ina 3.100
na ph

DEC. & VT
dfrq 125.794
dn C13pvwr 37
as nn

dot 104g8
deeodres 1.0

homn
PRoESSING

wtftle
proc ft
tn 131072
eath f

Warr
wexp
wbVWnt

1 h1 fA
..... . .. ...... .... . . ......... ................. .... .,................... . ......... .....

8 7 6 5 4 3 2 1 ppm

1.,It27 3.00
1.64 0.85

/

_+



RAAVIII57

exp2 s2pul

SAMPLE
date Mar 20 2008
solvent COC13
flie exp

ACQUISITION
sfrq 500.231
tn Nl
at 3.200
np 64000
sw 10000.0
fb not used
bs 1
sS 1
tpwr 59
pw 9,0
di 0
tof 1498.2
nt 10
Ct I1
alock n
gain not used

FLAGS
11 n
in n
dp y
hE nn

DISPLAY
sp -182,5
wp 4091.1
vs 151
SC 0
wc 250
hrzm 18.76
is 100.00
rfl 4633.9
rfp 363,.7
th 12
Ins 2.000
no ph

DEC. & VT
dfrq 125.794
do C13
dpwr 37
dof 0
do n0n
don c
dof 10000
dseq
dres 1.0
homo n

PROCESSING
wtfile
proc ft
fn 131072
math f

werrwarr
wexp
wbs
wnt

I-
jc1 i; : ;I
i;i: ii

1.23
4.19



RAAVIII56

exp2 s2pul

SAMPLE
date Mar 20 2008
solvent CODCI
ftile exp

ACQUISITION
sfrq 500.231
tn HI
at 3.200
np 64000
Sw 10000.0
fb not used
bs 1
ss I
tpwr 59
pw 9.0
dl 0
to? 1498.2
nt 16
ct 16
alock n
gain not used

FLAGS
t1 n
in n
dp y
hs ni

DISPLAY
sp -109,4
wp 5045.9
vs 151
sc 0
wc 250
hzma 20.18
Is 100.00
rfl 4633.9
rfp 3636.7
th 7
Ins 2.000
nam ph

DEC. & VT
dfrq 125.794
dn C 3
dpwr 37
dof 0
da nnndo cnn

der 10000
dseq
dres 1.0
homo n

PROCESSING
wtftle
proc ft
fn 131072
math f

werr
waxp
wbs
wnt

8 7

1.87 1.94
3.48

/

I'-

4

2.80

ppm

0.98



RAAVIIZ54a

exp2 s2pul

SAMPLE
date Feb 2 2008
solvent CDC13
file exp

ACQUISITION
sfrq 500.231
tn "I
at 3.200
np 64000
sw 10000.0
fb not used
bs 8
ss 1
tpwr 59
pw 9.0
dl 0
tof 1498.2
nt 1S
ct 16
alock n
gain not used

FLAGS
1i n
in n
dp y
hs no

DISPLAY
sp -118.3
wp 4704.2
vS 151
sc 0
wC 250
hzam 18.82
Is 100.D0
rfl 4635.2
rfp 3636.7
th 7
Ins 1.000
na ph

9 8

DEC. & VT
dfrq 125.794
dn C13
dpwr 37
dot 0
do nnn
dom c
dmf 10000
dseq
dres 1.0
homo n

PROCESSING
wtfile
proc ft
fn 131072
math f

werr
wexp
wbs
wnt

7

2.18 2.11
S .a&.00

/IIII

1
3

7.68)
4 .C!33

ppms



STANDOAAD CARBON PARAMETERS

expi s2pul

SAMPLE DEt
date Feb 2 2008 dfrq
solvent CDC13 do
file exp dpwr

ACQUXISTION dof
sfrq 125.795 da
tn C13 dam
at 1.730 daf
np 131810 daeq
sw 37735.6 dresa
fb not used homo
bs 8 PRC
s I lb
tpvr 53 vt:flle
pw .g9 proc
di 6.763 tn
tof $31.4 math
nt 256
ct 104 warr
alocc n waxp
gain not used Vbe

's aIR rl•

£. VT
500.229:

141
37

-500.0
y
V

10000

1.e

0CESSING
6.30

131872
f

240 220 200 180 160 140 120 100 80 60 40 20 0 -20 ppM



RAAVI•6S3

expt s2pul

SAMPLE
date war 20 8 a 0
solvent CDC31
file axp

ACOUISITION
strq S0|.281
tn H1
at 3.200
np e4e00
sw 1o50e.1
fb not used
bs 1
Is 1

tot 1498.2
It 54
Ct 26
alack n
gain not used

FLAGS
It n
in an
dp y

DISPLAY
sp -34.4
wp 4783.1
vs 151
sc 8
Wc 260
hzxm 13.13
Is 180.00
rf)l 4634.8
rfp 3893.7
th 4
Ins 5.008
no ph

DEC. & VT
dtfrq 125.794
dn C13
dpwr 37
dotf
da nnn
dam c

dres 1.0
home a

PROCESSING
vtfile
proc ft
tn 131072
auth ?

wearr
waxp

wnt

Mk

I
9 B 7 6 5 4 3 2 1 ppm

0.84 1.63 8.80 5.96
2.43 0.1I 3.15

/

LL
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//

DEC. A VT
dfrq L25.794
dn C13
dpwvr 3
dof 8
do an"
dma cdam loodef 10000
dseq
dres 1.0
homo n

PROCESSING
wtftle
proc ft
fn 131072

'math f

warr
vexp
vbs
vnt

10 9 8 7

0.90 1.78.82
0.90 2.80

6 5 4 3 2 1 ppm

3.64

RAAVIZII4a

expi s2pul

SANPLE
date Mar 1 2018
solvent COCI3
file exp

ACQUISITION
Sfrq 500.231
tn hM
at 3.200
np 94088
Sw 1006l.0
fb not used
be 2
sI 1
tpwr 50

tot 1418.2
nt 1I
ct t1
alock npain not used

VLAGS
01 n
In n
dp y
hs an

DISPLAY
sp -63.9
wp 5137.9
vs 151

vc 2s50
huma 24.55
Is 100.00
rfl 4633.6
rfp 36365.7
th 7
ins 3.000
no ph

onr

L\

EI I7~j~c ·cs
i

fl~L

.J L"... .... .... ... ....... .. ..... ............ ... ..... .... .- -... ... ...

0.87



RAAVIII58

expZ s2pul

SAMPLE
date Mar o2 2008
solvent COCI3
file exp

ACQUISITION
sfrq 500.231
tn HI
at 3.200
np 64000
sw 10000.0
fb not used
bs 1
ss 1
tpwr S9
pw 9.0
dl 0
tof 1498.2
nt 16
ct 16
alock n
gain not used

FLAGS
ti n
in n
dp y
hs nn

DISPLAY
sp -116.9
wp 5269.2
vs 151
sc 0
wC 250
hzma 21.08
Is 100.04
rfl 4633.9
rfp 3636.7
th 5
Ins 6.000
nm ph

DEC, a VT
dfrq 125.794
dn C13
dpwr 37
dot 0
do nnn
dmu c
dof 1•009
dseq
dres 1.0
homo n

PROCESSING
wtftle
proc ft
fn 131072
math f

warr
waxp
wbs
wnt

0.92.78 0.75
0.78 0.96 1.73

/

i
ppm

a

jt

O.84

4At
t**t-



STANDARD CARSON PARAMETERS

aepl sZpul
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Chapter Five

An Improved Copper-based Catalyst System for the
Reactions of Aryl Halides with Aliphatic Alcohols

d X 5% Cul, 10% Me4-Phen OR2

+ HOR2 CS2 C003, toluene
R 80-130 °C, 12-30 h R

X = I, Br R2= 1 0 and 20 Alkyl, Benzyl, Allyl, Propargyl

329



5.1 Introduction

Recently developed transition metal-catalyzed nucleophilic substitution reactions of aryl

halides have complemented traditional approaches for synthetic organic chemists to prepare C-

heteroatom bonds. For the synthesis of alkyl aryl ethers, a traditional preparation might involve

nucleophilic displacement of an alkyl halide by a phenol,' while the complementary metal-

catalyzed variant would involve displacement of an aryl halide with an aliphatic alcohol. While

the scope of products that can be accessed by the former method might be limited by the

nucleophilicity of the phenol and the steric hindrance at the electrophilic carbon atom, the latter

reaction can be limited by the activation of the aryl halide or reductive elimination processes.

In our continuing quest to improve metal-catalyzed C- heteroatom bond-forming reactions,

we have developed several Pd- and Cu-based catalyst systems for the intermolecular coupling

reactions of aliphatic alcohols with aryl halides to prepare alkyl aryl ethers.2-3 Using Pd-based

catalysts, the low yields observed in the coupling of certain substrates have been attributed to the

slow rate of CO reductive elimination relative to P-hydride elimination from the

LPd(II)(Ar)(alkoxide) intermediate.la 'b4 In these cases, Cu-based catalyst systems can provide

complementary reactivities, as the analogous intermediates derived from these catalysts do not

readily undergo 3-hydride elimination reactions.5
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Figure 1. Competitive 13-Hydride Elimination Pathway in Pd-Catalyzed Arylation of Aliphatic
Alcohols

R'R2 HC,o.Ar

LnPd

Ar R1 R2HC, ,

I p-Hydride 0 LnPd-Ar
LnPd-H . I I
L,Pd-H Elimination LnPd-Ar X

R'R C= O

Base-HX

2HC OH

LnPd-Ar R'R2HC'OH

X
n n-n-u= + Lnru + rn BaseBase

The substrate scopes and the overall utility of the traditional Cu-based methods for the

synthesis of alkyl aryl ether are severely limited by (1) the use of superstoichiometric quantities

of Cu, (2) high reaction temperatures, and (3) the use of strong alkoxide bases.6 Currently, few

generally applicable Cu-based catalyst systems, which facilitate the reaction under mild

conditions, have been reported for the cross-coupling of aliphatic alcohols with aryl halides.2'7-8

In 2002, we reported that 10 mol % of Cul in conjunction with 20 mol % of 1,10-

phenanthroline (Phen, Figure 1) could facilitate CO bond formation between aryl iodides and

aliphatic alcohols under mild reaction conditions (Cs2CO3/ 110 *C/18-38 h); however, in most

cases, the use of the alcohol as a solvent was required to achieve satisfactory yields, thus

rendering the procedure impractical for the use of precious or highly functionalized alcohols.2 In

certain simple cases, toluene could be utilized as a solvent to reduce the quantity of alcohol

required for the reactions. Recently developed catalysts systems that employ amino acids as

ligands or KF/A120 3 as the base have also failed to overcome the required use of excess

quantities of alcohols for these reactions.7 In addition, reactions of both secondary (20) cyclic and

acyclic alcohols provided the corresponding products in low yields due to incomplete conversion
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of the aryl iodides in reasonable time periods (24 h).2'7 More recently, we reported that the use of

a commercially available ligand, 3,4,7,8-tetramethyl-1,10-phenanthroline (Me 4-Phen, Figure 2),

improved the Cu-catalyzed nucleophilic substitution reactions of aryl iodides and alkyl-

substituted vinyl iodides with amino alcohols and allylic alcohols, respectively; however, the

scope of the reaction was not investigated/explored beyond these selected substrates. 9-'0 Herein,

we report an in-depth account of the use of Me4-Phen in Cu-catalyzed CO bond-forming

reactions that presents the scope and limitations of this catalyst system.

Figure 2. 1,10-Phenanthroline-based Ligands for Cu-catalyzed C-O Bond-formation
7 6 Me

8 Me

N 3 N
2 Me

Phen Me4-Phen

5.2 Results and Discussion

A variety of 1,10-phenanthroline-substituted ligands were tested in the reaction of 4-

iodoanisole with n-hexanol using the following catalyst system: 5 mol % Cul/10 mol %

ligand/Cs2CO 3/toluene/80 °C/12 h (Table 1). The data presented suggest that the presence of

methyl and phenyl substituents in positions 3-5 of the phenanthroline backbone increase the

activity of the catalyst (entries 17). More specifically, the catalytic activity of the methyl-

substituted ligands increases as a function of the number of methyl substituents present on the

Phen core: Phen 4-Me-Phen 5-Me-Phen 4,7-Me2-Phen 5,6-Me2-Phen Me4-Phen. Two hypotheses

to explain the high activity of the catalyst systems, which employ methyl-substituted Phen

ligands, are (1) the alkyl substituents might increase the solubility of the metal catalyst in a

nonpolar organic solvent, thus raising the effective concentration of catalyst in solution, and/or
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(2) the presence of the alkyl substituents on the ligand increases the o-donating ability of the

nitrogen atoms" and accelerates the rate-limiting aryl halide activation step. Neocuproine (2,9-

Me2-Phen) is not a good ligand for this transformation and reinforces the notion that Cu-

catalyzed C-heteroatom bond-forming reactions are extremely sensitive to steric hindrance.4

When 4,7-(MeO)2-Phen is employed as a ligand for this transformation, 1,4-dimethoxybenzene

is produced as a byproduct (15% GC yield), presumably due to nucleophilic displacement of the

methoxy groups of the ligand by n-hexanol, followed by cross-coupling of the resulting

methoxide nucleophile with the aryl iodide (entry 9). Interestingly, the combined yield of

methoxy- and n-hexyloxy-substituted products (81%) when employing the dimethoxy-

substituted ligand is comparable to the yield of product observed when Me4-Phen is used (79%),

suggesting that these two catalyst systems facilitate C-O bond formation at comparable rates.

Other 4,7-bis-heteroatom-substituted-Phen derivatives provide relatively inactive catalysts

(entries 10, 11).
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Table 1. Cu-Catalyzed Reaction of 4-Iodoanisole with n-Hexanol Using 1,10-Phenanthroline-
derived Ligandsa

HI n 15e/65% Cul, 10% Ligand On-Hex

Cs 2CO3, toluene
M -C,1280 *C, 12heO

entry ligand conversion (%) yield (%)

1 1, 10-phenanthroline (Phen) 50 44

2 4-Me-Phen 56 54

3 5-Me-Phen 55 51

4 4,7-Me2-Phen 68 57

5 5,6-Me2-Phen 64 54

6 Me4-Phen 82 79

7 4,7-Ph2-Phen 63 64

8 neocuproine 10 0

9 4,7-(MeO)2-Phen 83 66

10 4,7-(NMe)2-Phen 37 19

11 4,7-CI2-Phen 35 33

" Reaction conditions: 1.0 mmol of 4-iodoanisole, 1.5 mmol of n-hexanol, 0.050 mmol of Cul,
0.10 mmol of ligand, 1.5 mmol of Cs2CO3, and 0.5 mL of toluene under Ar atmosphere at 80 °C
for 12 h. Corrected conversion and yield data were calculated from GC analyses of the crude
reaction mixtures using dodecane as an internal standard.

Using the optimized reaction conditions, a wide variety of substrates containing useful

functional groups can be success- fully cross-coupled (Table 2). The reaction of our model

substrates (n-hexanol with 4-iodoanisole) proceeds in excellent yield at temperatures as low as

80 °C using 5% catalyst (entry 1). At 110 °C using 2% and 5% catalyst loading, this same

reaction proceeds in 24 and 12 h, respectively (entries 2, 3).

The catalyst system is tolerant of ortho-substituents on the aryl halide (entries 4-6), as well

as both electron-donating and withdrawing substituents on the aromatic ring. Aryl iodides can be

selectively cross-coupled in the presence of aryl bromides, chlorides, and fluorides (entries 8-

10). Low-boiling point alcohols, as well as allyl, propargyl, and benzyl alcohols, furnish the

corresponding aryl ethers in good to excellent yields (entries 7, 8, 10-13). The latter example
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provides ready access to the corresponding phenols, as the resulting aryl benzyl ether can be

readily cleaved. 12 Remarkably, the catalyst system can selectively cross-couple alcohols in the

presence of an unprotected aniline (entry 11) or aliphatic amines.9

Although the Cu-catalyzed reaction of ethyl 4-iodobenzoate with n-hexanol provides a

complex mixture of transesterified and cross-coupled products, the formation of the

transesterified product can be drastically reduced by employing the tert-butyl ester (entry 14).

Heterocyclic compounds can be employed either as the electrophilic or nucleophilic reactant

(entries 12, 13, 15-18). Products containing water-sensitive functional groups can be provided in

good yields by adding activated molecular sieves to the reaction mixtures. (entries 17, 18).

The Cu-catalyzed cross-coupling reactions of secondary alcohols with aryl halides are

particularly important reactions, due to the increased propensity for 20 alcohols to undergo 3-

hydride elimination using Pd-based catalyst systems.' Further, the complementary uncatalyzed

Williamson reactions of 20 alkyl halides with poorly nucleophilic phenols typically provide low

yields of the aryl alkyl ether products. 13 The CuI/Me4-Phen- catalyzed reactions of 20 cyclic

alcohols with aryl iodides are generally slower than the respective primary (10) alcohol

counterparts (entries 18-20), requiring higher reaction temperatures (110 'C compared to 80 OC).

However, the reactions of secondary acyclic alcohols (e.g., isopropyl alcohol and 3-pentanol)

with simple aryl iodides are unsuccessful, unless the reactions are run in neat alcohol. This

difference in reactivity can be exploited to selectively cross-couple a 10 alcohol in the presence

of a 20 alcohol (entry 21). We speculate that this selectivity difference occurs due to the poor

coordinating ability of the 20 alcohol relative to the 10 alcohol.
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Table 2. CuI/Me4-Phen-Catalyzed Cross-coupling Reactions of Alcohols with Aryl Iodides and
Bromidesa

5% Cul, 10% Me4-Phen
+ HOR2

CS2CO3 , toluene 80-110 0C
X = Br, I 9-24 h

entry product X = temperature time yield
(0C) (h) (%)

entry product X = temperature time yield
(0C) (h) (%)

2 •MO O'n-Hex3 MeO"':

4 O R= Me
5 • -Hex OMe
6 RCI

8 BM O Me

MeOMe

0rkaMe

10 0

11 F O

H2N O

12 N

Me
13 O - Me

14 t-BuO 
'-Hex

O

87
b

99b,c

95b
83
94
80

I 80 20 82

I 80 24 72d

I 80 16 75

I 80 20 74

I 80 16 81

I 80 20 92

1 80 16 59

1 80 24 92e

15 0 '
n-H e

x

16

17

18

19 O

MeO.C

20
F3C

21 Me 0 Me

22 MeO. O .k

23 MeO ;k
O 'n H ex

80 16 86

I 110 24 95

80 24 78'

I 110 24 85'

I 110 24 88

110 24 75

80 24 739

110 24 94 h

Br 130 24 77'

a Reaction conditions: 1.0 mmol of ArX, 1.5 of mmol alcohol, 0.050 of mmol Cul (5%), 0.10
mmol of Me4-Phen (10%), 1.5 mmol of Cs2CO3,
atmosphere. The isolated yields reported are averages
be 95% pure by 'H NMR and/or elemental analysis.

and 0.50 mL of toluene under an Ar
of two or more runs of material judged to
b GC yield reported. c 2% Cul, 4% Me4-

Phen. d GC analysis: 14:1 mixture of I- to Br-substituted products that were separated by column
chromatography. e Inseparable 7:1 mixture of depicted product and n-hexyl 4-
(hexyloxy)benzoate. 1 200 mg of 4 A mol sieves added to reaction mixture. g One regioisomer
detected by GCMS and 'H NMR. h 10% Cul, 20% Me4-Phen. i 130 °C, 0.50 mL of n-hexanol
used as solvent.

The cross-coupling reactions of aryl bromides are less successful than their iodide

counterparts. At a 10% catalyst loading, the reaction of benzyl alcohol with 3-bromoanisole
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proceeds smoothly (entry 22). However, the Cu-catalyzed reactions of other aliphatic alcohols

are more challenging for this catalyst system. An aryl bromide can be successfully cross-

coupled in neat n-hexanol at an elevated temperature (130 'C, entry 23). However, the reactions

of both 20 cyclic and acyclic alcohols do not proceed to full conversion under these and more

rigorous conditions. These data suggest that the efficacy of Cu- catalyzed cross-coupling

reactions of various alcohols with aryl halides follows the trend benzylic 10 alkyl 20 cyclic alkyl

20 acyclic alkyl. We suspect that the efficiency of reactions that employ benzylic alcohols is due,

in large part, to their enhanced acidity relative to other aliphatic alcohols.14

5.3 Conclusion

In summary, we have explored the utility of Me4-Phen as a ligand in the Cu-catalyzed

cross-coupling reactions of aryl iodides and bromides with alcohols. With this protocol, the

cross-coupling reactions of aryl iodides with alcohols can be run under mild conditions without

the required use of excess quantities of nucleophile in the reaction. This catalyst system

complements Pd-based catalyst systems, as well as traditional Williamson reactions, and

nucleophilic substitution reactions of activated aryl halides for the preparation of alkyl aryl

ethers. We believe that chemists in both academic and industrial laboratories will find this

improved catalyst system useful in their work.

5.4 Experimental Procedures

All reactions were carried out in resealable test tubes with teflon septa under a dry argon

or nitrogen atmosphere. Copper(I) iodide (98%) was purchased from Strem. Me4-Phen was

purchased from Acros. The Anhydrous finely powdered Cs2CO3 was a generous gift from
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Chemetall. This base was stored under nitrogen in a Vacuum Atmospheres glovebox. (The base

is hygroscopic and excessive amounts of water lead to the formation of phenol and diaryl ether

byproducts.) Small portions of the base (~5 g) were removed from the glovebox in glass vials,

stored in the air in a desiccator filled with anhydrous calcium sulfate, and weighed in the air.

Alcohols were purchased from commercial sources and used without further purification. Aryl

halides were purchased from commercial sources and, when necessary, filtered through neutral

alumina or distilled. Anhydrous toluene was purchased from J. T. Baker in CYCLE-TRAINER®

solvent delivery kegs and vigorously purged with argon for 2 h. The solvent was further purified

by passing it through two packed columns of neutral alumina under argon. The solvents were

transferred by syringe from the solvent purification system to the reaction flask. Flash column

chromatography was performed using a Biotage SP4 Flash Purification System using KP-Sil

silica cartridges. In all cases, dichloromethane was used to transfer the crude reaction material

onto the silica gel samplet. The samplet was dried in an oven before usage. A gradient elution

using hexane and ethyl acetate was performed, based on the recommendation from the Biotage

TLC Wizard.

Unless specified, yields reported in the publication are of the isolated material and

represent an average of at least two independent runs. Yields reported in the supporting

information refer to a single experiment. Compounds described in the literature were

characterized by comparing their 1H NMR and 13C NMR spectra, and melting points (m.p.) to the

previously reported data; their purity was confirmed by gas chromatography (GC) or elemental

analysis. GC analyses were performed on a Hewlett Packard 6890 instrument with an FID

detector and a Hewlett Packard 10 m x 0.2 mm i.d. HP-1 capillary column using dodecane as an

internal standard. Elemental analyses were performed by Atlantic Microlabs, Inc., Norcross, GA.
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Previously unknown compounds were synthesized, purified and analyzed from a single run and

were then repeated to determine an average yield. They were characterized by 'H NMR, 13C

NMR, m.p., IR and elemental analysis. For those compounds that did not give a satisfactory

elemental analysis, a copy of their 'H NMR spectra is included. 'H NMR and 13C NMR spectra

were recorded on Varian 500 MHz instruments with chemical shifts reported relative to the

deuterated solvent or TMS. IR spectra were recorded on a Perkin-Elmer System 2000 FT-IR

instrument for all previously unknown compounds (KBr disc). Melting points (uncorrected) were

obtained on a Mel-Temp II capillary melting point apparatus.

General procedure for the Cu-catalyzed cross-coupling of alcohols with aryl halides

An oven-dried screw-cap test tube was charged with Cul (9.5 mg, 0.050 mmol), Me4-Phen (24

mg, 0.10 mmol), aryl halide (1.0 mmol, if solid), Cs2 CO3 (490 mg, 1.5 mmol), and a magnetic

stir bar. The reaction vessel was fitted with a rubber septum. The test tube was evacuated and

back-filled with dry argon. Aryl halide (1. 0 mmol, if liquid), and toluene (0.50 mL) were then

added by syringe. The rubber septum was removed and the reaction tube was quickly sealed with

a Teflon-lined septum. The vessel was immersed in a pre-heated oil bath and stirred vigorously

until TLC and/or GC analysis of the crude reaction mixture indicated that the aryl halide had

been completely consumed. The reaction mixture was cooled to room temperature, diluted with

ethyl acetate (15 mL), and filtered through a plug of silica, eluting with additional ethyl acetate

(30 mL). The filtrate was concentrated and the resulting residue was purified by flash

chromatography (hexane/ethyl acetate) to provide the desired product.
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Experimental procedures for compounds in Table 2

MeOI O • M e

4-(hexyloxy)-anisole (Entries 1-3)

The general procedure was followed using Cul (9.5 mg, 0.050 mmol), Me4-Phen (24 mg, 0.10

mmol), Cs2CO3 (391 mg, 1.2 mmol), 4-iodoanisole (234 mg, 1.00 mmol), and n-hexanol (186

[tL, 1.50 mmol) with toluene (0.50 mL) as solvent for 15 h at 80 *C. After cooling to room

temperature, dodecane (225 mL, 1.0 mmol) and ethyl acetate (20 mL) were stirred into the

reaction mixture. The mixture was filtered through a small plug of silica gel, and sampled for GC

analysis. In order to standardize this compound for GC analysis, the product was purified by

flash chromatography (hexane / ethyl acetate 1:0 - 9:1) to afford the title compound as a

colorless oil (162 mg, 78%). ' H NMR (300 MHz, CDCl3) 8 6.85 (4H, s), 3.94-3.89 (3H, t, J =

6.6 Hz), 3.78 (3H, s), 1.79-1.72 (2H, m), 1.49-1.37 (2H, m), 1.36-1.32 (4H, m), 0.94-0.90 (3H, t,

J = 7.0 Hz). 13C NMR (125 MHz, CDCI3) 8 153.9, 153.5, 115.6, 115.0, 68.9, 56.0, 31.9, 29.6,

26.0, 22.9, 14.3. IR (KBr disc, cmn ') 2937, 1510, 1466, 1290, 1235, 1113, 1036, 827,726, 532.

Anal. Calc. for C13H200 2: C 74.96, H 9.68. Found: C 74.78, H 9.74.

CMMe

2-(hexyloxy)-toluene (entry 4)'

The general procedure was followed using Cul (9.5 mg, 0.050 mmol), Me4-Phen (24 mg, 0.10

mmol), Cs2CO3 (490 mg, 1.5 mmol), 2-iodotoluene (127 xiL, 1.00 mmol), and n-hexanol (187

[tL, 1.50 mol) with toluene (0.50 mL) as solvent for 24 h at 110 *C. Chromatographic

purification (hexane / ethyl acetate 1:0 - 9:1) afforded the title compound as a clear oil (159

mg, 83%). 'H NMR (500 MHz, CDCl3) 8 7.16-7.12 (2H, m), 6.85-6.80 (2H, m), 3.96 (2H, t, J =
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6.4 Hz), 2.23 (3H, s), 1.85-1.76 (2H, m), 1.56-1.32 (6H, m), 0.94-0.88 (3H, m). 13C NMR (125

MHz, CDCI3) 157.6, 130.9, 127.1, 127.0, 120.3, 111.1, 68.1, 32.0, 29.7, 26.2, 23.0, 16.6, 14.4.

IR (KBr disc, cm -' ) 2955, 2931, 2860, 1603, 1496, 1463, 1379, 1245, 119, 1122, 1050, 749, 713.

Anal. Calc. for C13H200: C 81.20, H 10.48. Found: C 81.41, H 10.33.

2-(hexyloxy)-anisole (entry 5)15

The general procedure was followed using Cul (9.5 mg, 0.050 mmol), Me 4-Phen (24 mg, 0.10

mmol), Cs2CO3 (490 mg, 1.5 mmol), 2-iodoanisole (130 [tL, 1.00 mmol), and n-hexanol (187

[L, 1.50 mol) with toluene (0.50 mL) as solvent for 30 h at 110 *C. Chromatographic

purification (hexane / ethyl acetate 1:0 -) 9:1) afforded the title compound as a clear oil (195

mg, 94%). '1H NMR (500 MHz, CDCl3) 8 6.92-6.90 (4H, m), 4.03 (2H, t, J = 7.0 Hz), 3.88 (3H,

s), 1.86 (2H, m), 7.49-1.34 (8H, m), 0.93-0.90 (3H, m). 13C NMR (125 MHz, CDCl3) 8 149.6,

148.8, 121.0, 121.0, 113.2, 112.0, 69.2, 56.2, 31.9, 29.4, 25.9, 22.8, 14.3. IR (KBr disc, cmn')

2932, 2860, 1593, 1507, 1456, 1253, 1228, 1180, 1125, 1030, 740. Anal. Calc. for Cl3H200 2: C

74.96, H 9.68. Found: C 74.69, H 9.68.

Oc7 Me

1-chloro-2-(hexyloxy)benzene (entry 6)16

The general procedure was followed using Cul (9.5 mg, 0.050 mmol), Me4-Phen (24 mg, 0.10

mmol), Cs2CO3 (490 mg, 1.5 mmol), 1-chloro-2-iodobenzene (122 [tL, 1.00 mmol), and n-

hexanol (187 tL, 1.50 mol) with toluene (0.50 mL) as solvent for 24 h at 110 *C.

Chromatographic purification (hexane / ethyl acetate 1:0 - 1:3) afforded the title compound as a

clear oil (185 mg, 87%). 1H NMR (500 MHz, CDC13) d 7.36 (1H, dd, J = 1.7, 7.9 Hz), 7.20
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(1H, m), 6.94-6.85 (2H, m), 4.03 (2H, t, J = 6.5 Hz), 1.85 (2H, m), 1.54-1.31 (m, 6H), 0.94-0.89

(m, 3H).

1,4-dimethoxybenzene (entry 7)17

The general procedure was followed using Cul (9.5 mg, 0.050 mmol), Me4-Phen (24 mg, 0.10

mmol), Cs 2CO3 (391 mg, 1.2 mmol), 4-iodoanisole (234 mg, 1.00 mmol), and methanol (81 JIL,

2.00 mmol) with toluene (0.50 mL) as solvent for 15 h at 80 *C. Chromatographic purification

(hexane / ethyl acetate 1:0 -- 9:1) afforded the title compound as a colorless oil (108 mg, 78%).

'H NMR (300 MHz, CDCl3) 8 6.84 (4H, s), 3.77 (6H, s). IR (KBr disc, cm'1) 2933, 2860, 1509,

1467, 1233, 1181, 1107, 1042, 824, 742,724, 523.

O-Me
Br-a OMe

1-bromo-4-ethoxybenzene (entry 8)18

The general procedure was followed using Cul (9.5 mg, 0.050 mmol), Me4-Phen (24 mg, 0.10

mmol), Cs2CO3 (490 mg, 1.5 mmol), 1,bromo-4-iodobenzene (283 mg, 1.00 mmol), and ethanol

(116 [L, 2.0 mol) with toluene (0.50 mL) as solvent for 24 h at 80 *C. Chromatographic

purification (hexane / ethyl acetate 1:0 - 9:1) afforded the title compound as a clear oil (130

mg, 65%). 1H NMR (500 MHz, CDCl3) 6 7.39-7.36 (2H, m), 6.80-6.77 (2H, m), 4.00 (2H, q, J =

7.0 Hz), 1.42 (t, 3H, J = 7.0 Hz). 13C NMR (125 MHz, CDCl3) 8 158.2, 132.4, 116.4, 112.8,

63.9, 14.9. IR (KBr disc, cm -') 2981, 2927, 1592, 1579, 1489, 1475, 1393, 1286, 1245, 1172,

1115, 1072, 1048, 1002, 923, 820, 639, 507. Anal. Calc. for CsHBrO: C 47.79, H 4.51. Found:

C 47.62, H 4.55.
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Me

0..Me

4-((4-chlorophenoxy)methyl)-2,2-dimethyl-1,3-dioxolane (entry 9)

The general procedure was followed using Cul (9.5 mg, 0.050 mmol), Me 4-Phen (24 mg, 0.10

mmol), Cs2CO 3 (650 mg, 2.0 mmol), 4-chloro-l-iodobenzene (238 mg, 1.00 mmol), and solketal

(249 [tL, 2.00 mmol) with toluene (0.50 mL) as solvent for 15 h at 80 OC. Chromatographic

purification (hexane / ethyl acetate 1:0 -4 9:1) afforded the title compound as a colorless oil (202

mg, 83%). 'H NMR (300 MHz, CDCl3) 8 7.268-7.209 (2H, m), 6.872-6.819 (2H, m), 4.512-

4.434 (1H, m), 4.192-4.143 (1H, dd, J = 6.4, 8.5 Hz), 4.046-3.996 (1H, dd, J = 5.5, 9.5 Hz),

3.938-3.868 (2H, m), 1.465 (3H, s), 1.407 (3H, s). 13C NMR (125 MHz, CDC13) 8 157.3, 129.5,

126.2, 116.0, 110.0, 74.1, 69.2, 66.9, 27.0, 25.5. IR (KBr disc, cm -') 2980, 2932, 1489, 1451,

1371, 1240, 1203, 1169, 1152, 1075, 1051, 1000, 973, 893,831,658. Anal. Calc. for C 12H1 5CIO 3:

C 59.39, H 6.23. Found: C 59.57, H 6.30.

(E)- 1-(but-2-enyloxy)-4-fluorobenzene (entry 10)' 9

The general procedure was followed using Cul (9.5 mg, 0.050 mmol), Me 4-Phen (24 mg, 0.10

mmol), Cs2CO3 (490 mg, 1.5 mmol), 1-fluoro-4-iodobenzene (115 tL, 1.00 mmol), and (E)-

crotyl alcohol (127 [tL, 1.50 mol) with toluene (0.50 mL) as solvent for 24 h at 80 OC.

Chromatographic purification (hexane / ethyl acetate 1:0 -- 9:1) afforded the title compound as a

clear oil (117 mg, 70%). 'H NMR (500 MHz, CDCI3) 8 7.00-6.95 (2H, m), 6.89-6.83 (2H, m),

5.90-5.83 (1H, m), 5.75-5.70 (1H, m), 4343 (2H, dd, J = 0.9, 6.2 Hz), 1.77 (3H, d, J = 6.4 Hz).

13C NMR (125 MHz, CDC13) 8 156.4, 155.0, 130.9, 126.1, 116.0, 115.8, 69.5, 18.1. IR (KBr
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disc, cmn ) 3025, 2941, 2919, 2859, 1506, 1463, 1379, 1293, 1246, 1208, 1097, 1009, 967, 828,

780, 741, 514. Anal. Calc. for C1o0HIFO: C 72.27, H 6.67. Found: C 72.00, H 6.81.

H2Nj 0r
4-(benzyloxy)aniline (entry 11)20

The general procedure was followed using CuI (9.5 mg, 0.050 mmol), Me4-Phen (24 mg, 0.10

mmol), Cs2CO3 (391 mg, 1.2 mmol), 4-iodoaniline (219 mg, 1.00 mmol), and benzyl alcohol

(210 [tL, 2.00 mmol) with toluene (0.50 mL) as solvent for 15 h at 80*C. Chromatographic

purification (hexane / ethyl acetate 1:0 - 9:1) afforded the title compound as a red solid (158

mg, 79%). 'H NMR (300 MHz, CDCl3) 8 7.45-7.32 (5H, m), 6.86-6.80 (2H, m), 6.68-6.63

(2H,m), 3.428 (2H, b s). 13C NMR (125 MHz, CDC13) 6 152.1, 140.4, 137.7, 128.7, 128.0, 127.7,

116.5, 116.2, 70.9. IR (KBr disc, cm-') 2932, 2960, 1585, 1568, 1462, 1382, 1274, 1228, 1127,

1109, 1014, 829, 727, 673, 627,423. m.p. 45-46.5 *C.

1-(4-(pent-2-ynyloxy)phenyl)-1H-pyrrole (entry 12)

The general procedure was followed using Cul (9.5 mg, 0.050 mmol), Me4-Phen (24 mg, 0.10

mmol), Cs2CO3 (391 mg, 1.2 mmol), 1-(4-iodophenyl)pyrrole (269 mg, 1.00 mmol), and 2-

pentyn-1-ol (139 [L, 1.50 mmol) with toluene (0.50 mL) as solvent for 24 h at 80 *C.

Chromatographic purification (hexane / ethyl acetate 1:0 - 9:1) afforded the title compound as a

white solid (209 mg, 92%). 1H NMR (300 MHz, CDC13) 8 7.35-7.30 (2H, m), 7.06-7.01 (4H, m),

6.34-6.33 (2H, t, J = 2.2 Hz), 4.71-4.70 (2H, , J = 2.2 Hz), 2.31-2.22 (2H, m), 1.19-1.14 (3H, t, J

= 7.5 Hz). 13C NMR (125 MHz, CDCl3) 8 156.0, 122.2, 119.9, 115.9, 110.1, 90.0, 74.1, 57.0,
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44.8, 13.8, 12.7. IR (KBr disc, cm -') 3132, 2977, 1522, 1325, 1258, 1243, 1190, 1070, 1018,

1006, 920, 824, 734. m.p. 57.5-59.0 *C.

(E)-2-(hex-2-enyloxy)thiophene (entry 13)

The general procedure was followed using Cul (9.5 mg, 0.050 mmol), Me4-Phen (24 mg, 0.10

mmol), Cs2CO3 (650 mg, 2.0 mmol), 3-iodothiophene (102 [LL, 1.00 mmol), and (E)-hex-2-en-1-

ol (236 iL, 2.00 mmol) with toluene (0.50 mL) as solvent for 15 h at 80 *C. Chromatographic

purification (hexane / ethyl acetate 1:0 4 12.5:1) afforded the title compound as a yellow oil

(125 mg, 69%). 'H NMR (300 MHz, CDCl3) 6 7.191-7.163 (1H, dd, J = 3.1, 5.3 Hz), 6.789-

6.767 (1H, dd, J = 1.6, 5.3 Hz), 6.274-6.258 (1H, q, J = 1.6 Hz), 5.906-5.811 (1H, m), 5.765-

5.666 (1H, m), 4.461-4.438 (2H, dd, J = 1.0, 6.0 Hz), 2.119-2.045 (2H, m), 1.507-1.384 (2H, m),

0.951-0.902 (3H, t, J = 7.3 Hz). 13C NMR (125 MHz, CDC13) 6 157.7, 136.1, 124.9, 124.7,

119.8, 97.6, 71.1, 34.6, 22.3, 13.9. IR (KBr disc, cmm') 3118, 2959, 2929, 2871, 1544, 1421,

1366, 1234, 1177, 1010, 970, 873, 831, 752, 627. Anal. Calc. for CloH 40OS: C 65.89, H 7.74.

Found: C 66.05, H 7.92.

NO Me

t-BuO .-

0

tert-butyl 4-(hexyloxy)benzoate (entry 14)

The general procedure was followed using CuI (9.5 mg, 0.050 mmol), Me4-Phen (24 mg, 0.10

mmol), Cs2CO3 (490 mg, 1.5 mmol), tert-butyl-4-iodo benzoate21 (304 mg, 1.00 mmol), and n-

hexanol (187 IAL, 1.50 mol) with toluene (0.50 mL) as solvent for 24 h at 80 *C.

Chromatographic purification (hexane / ethyl acetate 1:0 -> 19:1) afforded a mixture of the title

compound and n-hexyl 4-(hexyloxy)benzoate (7:1 by 'H NMR and GC) as a clear oil (264 mg,
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95%). 'H NMR (500 MHz, CDC13) 8 7.98-7.92 (2H, m), 6.92-6.87 (2H, m), 4.00 (2H, t, J = 6.6

Hz), 1.83-1.76 (2H, m), 1.49-1.44 (2H, m), 1.35-1.30 (2H, m), 0.92 (3H, m). 13C NMR (125

MHz, CDCl3) 8 165.9 ,162.8, 131.5, 124.4, 114.0, 80.6, 68.3, 31.8, 29.3, 28.5, 25.9, 22.8, 14.2.

IR (KBr disc, cm-1 ) 2933, 2872, 1710, 1607, 1510, 1368, 1293, 1253, 1160, 1116, 1010, 848,

771,696.

CI N

2-chloro-5-(hexyloxy)pyridine (entry 15)

The general procedure was followed using Cul (9.5 mg, 0.050 mmol), Me4-Phen (24 mg, 0.10

mmol), Cs2CO3 (391 mg, 1.2 mmol), 2-chloro-5-iodopyridine (239 mg, 1.00 mmol), and n-

hexanol (249 RpL, 2.00 mol) with toluene (0.50 mL) as solvent for 15 h at 80 *C.

Chromatographic purification (hexane / ethyl acetate 1:0 - 9:1) afforded the title compound as a

colorless oil (179 mg, 84%). 1H NMR (300 MHz, CDCl3) 6 8.03-8.02 (1H, dd, J = 0.8, 2.9 Hz),

7.22-7.19 (1H, dd, J = 0.8, 8.7 Hz), 7.17-7.14 (1H, dd, J = 2.9, 8.7 Hz), 3.99-3.94 (2H, t, J =

6.4), 1.80-1.73 (2H, m), 1.47-1.30 (6H, m), 0.92-0.87 (3H, m). 13C NMR (125 MHz, CDCl3)6

154.9, 142.6, 137.0, 125.2, 124.7, 69.3, 31.9, 29.4, 26.0, 23.0, 14.4. IR (KBr disc, cm -') 2902,

2863, 1516, 1454, 1245, 1016, 917, 814, 736, 697, 517. Anal. Calc. for C11H16CINO: C 61.82, H

7.55. Found: C 62.02, H 7.65.

3-(2-(naphthalen- 1-yloxy)ethyl)thiophene (entry 16)

The general procedure was followed using Cul (9.5 mg, 0.050 mmol), Me4-Phen (24 mg, 0.10

mmol), Cs 2CO3 (490 mg, 1.5 mmol), 1-iodonaphthalene (175 [iL, 1.00 mmol), and 2-(3-thieno)-

ethanol (168 [tL, 1.50 mol) with toluene (0.50 mL) as solvent for 24 h at 110 *C.
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Chromatographic purification (hexane / ethyl acetate 1:0 - 9:1) afforded the title compound as a

tan oil (252 mg, 99%). 1H NMR (500 MHz, CDCl3) 6 8.31-8.29 (1H, m), 7.82 (1H, dd, J = 2.1,

6.4 Hz), 7.53-7.48 (1H, m), 7.45 (1H, d, J = 8.2 Hz), 7.39 (1H, d, J = 8.0 Hz), 7.31 (1H, dd, J =

2.9, 4.9 Hz), 7.19-7.18 (1H, m), 7.14 (1H, dd, J = 1.2, 4.9 Hz), 6.83 (1H, d, J = 7.5 Hz), 4.38

(2H, d,J = 6.7 Hz), 3.31 (2H, d,J = 6.4 Hz). 13C NMR (125 MHz, CDC13) 8 154.7. 138.9. 134.7.

128.7. 127.7. 126.6. 126.0. 125.9. 125.7. 125.4. 122.2. 121.8. 120.5. 104.8. 68.4. 30.5. IR (KBr

disc, cm-~ ) 3052, 2928, 2873, 1594, 1580, 1508, 1460, 1405, 1269, 1240, 1100, 1071, 1020, 790.

Anal. for C16H140S: C 75.55, H 5.55. Found: C 75.28, H 5.50.

3-(2-(pyridin-3-yl)ethoxy)benzonitrile (entry 17)

The general procedure was followed using CuI (9.5 mg, 0.050 mmol), Me4-Phen (24 mg, 0.10

mmol), Cs2CO3 (490 mg, 1.5 mmol), 3-iodobenzonitrile (229 mg, 1.00 mmol), and 2-(3-

pyridyl)ethanol (172 RL, 1.50 mol) with toluene (0.50 mL) as solvent for 24 h at 80 *C.

Chromatographic purification (hexane / ethyl acetate 1:0 - 3:1) afforded the title compound as a

clear oil (174 mg, 78%). 1H NMR (500 MHz, CDC13) 8 8.56 (1H, d, J = 2.2 Hz), 8.22 (1H, dd, J

= 1.6, 4.7 Hz), 7.65-7.60 (1H, m), 7.40-7.33 (1H, m), 7.29-7.23 (2H, m), 7.13-7.09 (2H, m), 4.20

(2H, t, J = 6.5 Hz), 3.12 (2H, t, J = 6.5 Hz). 13C NMR (125 MHz, CDCl3) 6 158.8, 150.5, 148.5,

136.6, 133.6, 130.6, 125.0, 123.6, 119.9, 118.8, 117.6, 113.4, 68.5, 33.0. IR (KBr disc, cm -1)

3033, 2934, 2878, 2230, 1597, 1578, 1480, 1431, 1328, 1292, 1148, 1033, 971,715, 682. Anal.

Calc. for C14 H12N20: C 74.98, H 5.39.

2-(cyclohexyloxy)pyridine (entry 18)
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The general procedure was followed using Cul (9.5 mg, 0.050 mmol), Me4-Phen (24 mg, 0.10

mmol), Cs2CO3 (490 mg, 1.5 mmol), 4 A molecular sieves (200 mg, flame activated under

vacuum) 2-iodopyridine (106 [IL, 1.00 mmol), and cyclohexanol (158 [LL, 1.50 mmol) with

toluene (0.50 mL) as solvent for 24 h at 110 *C. Chromatographic purification (hexane / ethyl

acetate 1:0 - 9:1) afforded the title compound as a clear oil (164 mg, 93%). 'H NMR (500

MHz, CDC13) 8 8.14 (1H, ddd, J = 0.8, 2.1, 5.0 Hz), 7.54 (1H, ddd, J = 2.0, 7.2, 8.4 Hz), 6.81

(1H, ddd, J = 0.9, 5.0, 7.1 Hz), 6.69 (1H, dt, J = 8.4, 0.8 Hz), 5.06-5.00 (1H, m), 2.05-2.01 (2H,

m), 1.82-1.76 (2H, m), 1.66-1.39 (4H, m), 1.34-1.25 (2H, m). "3C NMR (125 MHz, CDC13) 6

163.7, 147.1, 138.7, 116.4, 111.9, 73.2, 32.1, 25.9, 24.2. IR (KBr disc, cmn ') 3025, 2942, 1614,

1516, 1328, 1249, 1161, 1110, 1061,961, 837, 749. Anal. Calc. for C,,H,5NO: C 74.54, H 8.53.

Found: C 74.50, H 8.63.

1-(cyclopentyloxy)-4-methoxybenzene (entry 19)22

The general procedure was followed using Cul (9.5 mg, 0.050 mmol), Me 4-Phen (24 mg, 0.10

mmol), Cs2CO3 (490 mg, 1.5 mmol), 4-iodoanisole (234 mg, 1.00 mmol), and cyclopentanol

(136 yIL, 1.50 mol) with toluene (0.50 mL) as solvent for 24 h at 110 *C. Chromatographic

purification (hexane / ethyl acetate 1:0 - 9:1) afforded the title compound as a clear oil (168 mg

mg, 88%). 'H NMR (500 MHz, CDCl3) 8 6.83 (4H, s), 4.71-4.66 (1H, m), 3.78 (3H, s), 1.90-1.76

(6H, m), 1.65-1.56 (2H, m). 13C NMR (125 MHz, CDCl3) 8 152.3, 116.8, 114.8, 80.0, 55.9, 33.0,

24.2. IR (KBr disc, cm -r ) 2960, 2872, 1833, 1507, 1465, 1441, 1231, 1173, 1106, 1040, 990, 824.

Anal. Calc. for C12H,60 2: C 74.97, H 8.39. Found: C 74.56, H 8.25.

FaC O-
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1-(4-(trifluoromethyl)phenoxy)-1,2,3,4-tetrahydronaphthalene (entry 20)

The general procedure was followed using Cul (9.5 mg, 0.050 mmol), Me4-Phen (24 mg, 0.10

mmol), Cs2CO3 (490 mg, 1.5 mmol), 4-iodobenzotrifluoride (147 [LL, 1.00 mmol), and (±)-1-

tetralol (222 mg, 1.50 mol) with toluene (0.50 mL) as solvent for 24 h at 110 *C.

Chromatographic purification (hexane / ethyl acetate 1:0 - 9:1) afforded the title compound as a

clear oil (217 mg, 75%). 'H 4NMR (500 MHz, CDCl3) 6 7.59 (2H, d, J = 8.8 Hz), 7.36-7.19 (4H,

m), 7.10 (d, J = 8.8 Hz), 5.47 (1H, t, J = 4.3 Hz), 2.96-2.91 (1H, m), 2.84-2.78 (1H, m), 2.21-

2.15 (1H, m), 2.09-1.99 (2H, m), 1.87-1.80 (1H, m). 13C NMR (125 MHz, CDC13) 8 138.0,

135.1, 129.6, 129.4, 128.4, 127.3, 127.2, 127.1, 126.4, 116.1, 74.2, 29.2, 28.0, 18.9. IR (KBr

disc, cmn) 3024, 2942, 1614, 1516, 1328, 1250, 1161, 1110, 1061,961,837,749. Anal. Calc. for

C17H_5F3OX: C 69.85, H 5.17. Found: C 69.74, H 5.24.

Me 1  MOH

1-(p-tolyloxy)hexan-5-ol (entry 21)

The general procedure was followed using Cul (9.5 mg, 0.050 mmol), Me4-Phen (24 mg, 0.10

mmol), Cs2CO3 (490 mg, 1.5 mmol), 4-iodotoluene (218 mg, 1.00 mmol), and 1,5-hexanediol

(181 [tL, 1.50 mol) with toluene (0.50 mL) as solvent for 24 h at 80 *C. Chromatographic

purification (hexane / ethyl acetate 1:0 - 4:1) afforded the title compound as a clear oil (156

mg, 75%). 1H NMR (500 MHz, CDCl3) 8 7.09-7.07 (2H, m), 6.82-6.79 (2H, m), 3.95 (2H, t, J =

6.5 Hz), 6.87-3.81 (1H, m), 2.30 (3H, t), 1.83-1.78 (2H, m), 1.61-1.47 (6H, m), 1.22 (3H, dd, J =

0.6, 6.3 Hz). 13C NMR (125 MHz, CDC13) 8 157.1, 130.0, 129.9, 114.5, 68.2, 68.0, 39.2, 29.5,

23.7, 22.6, 20.7. IR (KBr disc, cm 1) 3363 (br), 3031, 2940, 2867, 1614, 1584, 1512, 1474, 1376,

1291, 1244, 1176, 1111, 1037,952,818,511.
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MeO "

1-(benzyloxy)-3-methoxybenzene (entry 22)2

The general procedure was followed using Cul (19 mg, 0.050 mmol), Me4-Phen (48 mg, 0.10

mmol), Cs2CO3 (490 mg, 1.5 mmol), 3-bromoanisole (127 [tL, 1.00 mmol), and benzyl alcohol

(155 [tL, 1.50 mol) with toluene (0.50 mL) as solvent for 24 h at 110 *C. Chromatographic

purification (hexane / ethyl acetate 1:0 - 9:1) afforded the title compound as a clear oil (199

mg, 93%). 'H NMR (500 MHz, CDCl3) 6 7.51-7.36 (5H, m), 7.23 (1H, m), 6.64-6.57 (3H, m),

5.08 (2H, s), 3.82 (3H, s). 13 C NMR (125 MHz, CDCI3) 8 161.0, 160.2, 137.1, 130.1, 128.8,

128.1, 127.7, 107.1, 106.7, 101.5, 70.2, 55.4. IR (KBr disc, cm'- ) 3032, 2939, 2835, 1592, 1492,

1453, 1381, 1288, 1264, 1199, 1151, 1082, 1045, 835, 761, 734, 697. Anal. Calc. for C,4HI40 2: C

78.48, H 6.59. Found: C 78.39, H 6.59.

3-(hexyloxy)-anisole (entry 23)24

The general procedure was followed using Cul (9.5 mg, 0.050 mmol), Me4-Phen (24 mg, 0.10

mmol), Cs2CO3 (490 mg, 1.5 mmol), 3-bromoanisole (127 [IL, 1.00 mmol), and n-hexanol (0.5

pL) as solvent for 24 h at 130 *C. Chromatographic purification (hexane / ethyl acetate 1:0 -

9:1) afforded the title compound as a clear oil (160 mg, 77%). 'H NMR (500 MHz, CDCl3) 6

7.19 (1H, t, J = 4.5 Hz), 6.53-6.48 (3H, m), 3.95 (2H, t, J = 6.7 Hz), 3.79 (3H, s), 1.81-1.76 (2H,

m), 1.49-1.45 (2H, m), 1.38-1.33 (4H, m), 0.94-0.91 (3H, m). 13C NMR (125 MHz, CDCl3) 6

161.0, 160.6, 130.0, 106.8, 106.3, 101.1, 77.0, 55.5, 31.8, 29.5, 26.0, 22.8, 14.3. IR (KBr disc,

cm -') 3000, 2933, 28871, 1599, 1493, 1468, 1455, 1334, 1287, 1265, 1201, 1153, 1046, 835,

762,687.
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Project: Synthesis of small molecules aimed at understanding the chemical basis of alcohol
induced liver injury

Tutor for Athletic Department (Chemistry and Spanish) 2001-2003

ACADEMIC HONORS AND AWARDS

NIH Ruth L. Kirschstein National Research Service Award Predoctoral Fellow 2007-2008
Pfizer Diversity in Organic Chemistry Predoctoral Fellow 2006-2007
MIT Institute Fellow 2003-2004
Omaha World Herald Presidential Scholar 2002-2003
Creighton University Presidential Scholar 1999-2002

American Institute of Chemists Award-for the outstanding senior chemistry major 2003
Department of Chemistry Award-for distinguished academic achievement 2003
Phi Lambda Upsilon-National Chemistry Honor Society 2003
Missouri Valley Conference (NCAA Division I) President's Academic Excellence Award 2003

*In recognition of outstanding academic achievement as a Student-Athlete
The POLYED Award in Organic Chemistry 2001

*For the outstanding chemistry major in organic chemistry (given by the American Chemical
Society Polymer Education Committee, Division of Polymer Chemistry, Division of Polymeric
Materials: Science and Engineering and The Industrial Sponsors)

National Dean's List 2001-2003
National Society of Collegiate Scholars 2000-2003
Dean's List (8 Semesters) 1999-2003
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Imidazoles" Altman, R. A.; Buchwald, S. L. Org. Lett. 2006, 8, 2779-2782.

2) "Monodentate Phosphines Provide Highly Active Catalysts for Pd-Catalyzed C-N Bond-forming
Reactions of Heteroaromatic Halides/Amines and (H)N-Heterocycles" Anderson, K. W.; Tundel,
R. E.; Ikawa, T.; Altman, R. A.; Buchwald, S. L. Angew. Chem. Int. Ed. 2006, 45, 6523-6527.
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4) "Copper-Catalyzed N-Arylation of Imidazoles and Benzimidazoles" Altman, R. A.; Koval, E. D.;
Buchwald, S. L. J. Org. Chem. 2007, 72, 6190-6199.

5) "Cu-Catalyzed Goldberg and Ullmann Reactions of Aryl Halides Using Diamine and 13-Diketone
Ligands" Altman, R. A.; Buchwald, S. L. Nature Prot. 2007, 2, 2474-2479.

6) "Pd-Catalyzed Amination Reactions of Aryl Halides Using Bulky Biarylmonophosphine
Ligands" Altman, R. A.; Buchwald, S. L. Nature Prot. 2007, 2,2881-2887.

7) "Pd-Catalyzed Suzuki-Miyaura Reactions of Aryl Halides Using Bulky Biarylmonophosphine
Ligands" Altman, R. A.; Buchwald, S. L. Nature Prot. 2007, 2, 3115-3121.

8) "An Improved Cu-Based Catalyst System for the Reactions of Alcohols with Aryl Halides"
Altman, R. A.; Shafir, A.; Choi, A. C.; Lichtor, P. A.; Buchwald, S. L. J. Org. Chem. 2008, 73,
284-286.

9) "1,10-Phenanthroline, 4,7-Dimethoxy-" Altman, R. A. Electronic Encyclopedia of Reagents
Organic Synthesis, in press.

10) "Pyrrole-2-carboxylic Acid as a Ligand for the Cu-Catalyzed Reactions of Primary Anilines with
Aryl Halides" Altman, R. A.; Anderson, K. W.; Buchwald, S. L. Manuscript submitted for
publication.

11) "Orthogonal Pd- and Cu-Based Catalyst Systems for the C- and N-arylation of Oxindoles"
Altman, R. A.; Hyde, A. M.; Huang, X.; Buchwald, S. L. Manuscript submitted for publication.

PRESENTATIONS

Poster: "Cu-Catalyzed C-Heteroatom Bond-Formation: A New 1,10-Phenanthroline Ligand and the
Application of Solid/Liquid Phase Transfer Catalysis for the N-Arylation of Imidazoles and
Benzimidazoles and the N- and O-arylation of 2-, 3- and 4-Hydroxypyridines" Pfizer Symposium
Supporting Diversity in Organic Chemistry, Groton, CT. October 13, 2006.

Oral: "Orthogonal Pd- and Cu-Based Catalyst Systems for the C- and N-Arylation of Oxindoles"
Pfizer Symposium Supporting Diversity in Organic Chemistry, Groton, CT. September 28, 2007.

Oral: "Metal-Catalyzed N-Arylation of Heterocycles: Pd- and Cu-Based Catalyst Systems for
Amination Reactions of Aryl Halides Can Provide Complementary and Orthogonal Reactivities"
Massachusetts Institute of Technology, Cambridge, MA. May 2007.
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