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Abstract

The symbiosis between Sinorhizobium meliloti and its plant host Medicago sativa,
offers a tractable model to explore the bacterial requirements for endocytic survival in a
eukaryotic host. It has been shown that during development of this symbiosis, M. sativa
releases an oxidative burst that S. meliloti must be able to overcome in order for
symbiotic development to continue. Employing a novel two-part screen, I identified
Sinorhizobium meliloti mutants that were both sensitive to oxidative stress and
symbiotically defective on the host plant Medicago sativa. The mutants affect a wide
variety of cellular processes and represent both novel and previously identified genes
important in symbiosis.

One mutant I identified was disrupted in sitA, which encodes the periplasmic
binding protein of the putative iron/manganese ABC transporter SitABCD. Disruption of
sitA causes elevated sensitivity to the reactive oxygen species hydrogen peroxide and
superoxide. Disruption of sitA leads to elevated catalase activity and a severe decrease in
superoxide dismutase B (SodB) activity and protein level. The decrease in SodB level
strongly correlates with the superoxide sensitivity of the sitA mutant. I demonstrate that
all free-living phenotypes of the sitA mutant can be rescued by the addition of exogenous
manganese but not iron, a result that strongly implies SitABCD plays an important role in
manganese uptake in S. meliloti.

A second mutant I identified in my screen was disrupted in a previously
unexplored orf, SMcOlll3. SMcOlll3 produces anl8 kD protein that is a member of a
highly conserved family, universal among bacteria. In addition to being required for S.
meliloti symbiosis with alfalfa, SMc01113 is also required to protect the bacterium from a
wide range of environmental stresses. Our findings support a role for this novel protein
in RNA and/or phospholipid metabolism.

The striking pleiotropy of the SMcO1113 mutant lead me to further investigate the
molecular function of SMcO 1113. I show that the SMcO 1113 protein is part of a large
Cluster of Orthologous Group (COG), COG0319 and that homologs of this protein are
functionally equivalent. Using the model system of Escherichia coli, I demonstrate that
the E. coli homolog, YbeY, is required for ribosome maturation. Loss of YbeY activity
affects maturation of both 16S and 23S rRNA and causes a severe loss of polysomes.
70S ribosomes formed in a Aybe Y mutant show reduced translational activity and fidelity.
I further demonstrate the human homolog, C21 orf57, may play a similar role in human
mitochondria.

While investigating the Aybe Y mutant, I found that, in contrast to the wide range
of stresses it was sensitive to, the AybeYmutant was very resistant to the DNA replication
inhibitor hydroxyurea. Using a systems-level analysis of the genomic transcriptional
response to hydroxyurea, I show that hydroxyurea triggers pathways involved in both cell
survival and cell death, and suggest a model where, for any given bacterium in a
population, hydroxyurea can induce a molecular switch from a survival mode to a
programmed cell death mode. I use this model to explore possible mechanisms for the
increased resistance of the AybeY mutant to hydroxyurea
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Chapter 1

Introduction



My thesis covers several areas of bacterial research. I began by studying the

symbiosis between the soil bacterium Sinorhizobium meliloti and its host plant Medicago

sativa (alfalfa). This led me to explore role of manganese in oxidative stress protection,

and also a novel protein of unknown function that is part of a highly conserved protein

family, universally conversed among bacteria. My investigation of this protein family led

me into several fields including protein translation and DNA replication. Each of these

fields covers a wide breadth of research. In the following introduction I will confine my

discussion to the material most applicable to my work.

Sinorhizobium meliloti Symbiosis and the Role of Oxidative Stress.

Under conditions of poor nitrogen availability, the _-proteobacterium

Sinorhizobium meliloti can invade and establish a chronic symbiotic infection within the

host plant Medicago sativa (alfalfa) (1, 2). The development of the symbiosis is

complex. It begins by an intricate chemical conversation with each organism secreting,

and responding to, small molecule signals. These chemical exchanges induce

physiological changes in the plant host including cortical cell division in the roots to

produce nodules, and root hair curling that traps nearby bacteria, creating an entry point

for S. meliloti (1-4). Through a plant-derived structure called an infection thread, S.

meliloti cells traverse the root hair cell until they are finally endocytosed into the cells

within the developing plant nodule (4, 5). In the nodule, S. meliloti differentiates into a

nitrogen-fixing bacteroid capable of converting atmospheric nitrogen into a usable form

for plant consumption (1, 2).



While in the infection thread, S. meliloti is exposed to an oxidative burst released

by the host plant that is composed of at least hydrogen peroxide (H20 2) and superoxide

(6). S. meliloti encodes a set of enzymes to defend against these reactive oxygen species

(ROS) including superoxide dismutases, catalases and alkylhydroperoxidases (7). It has

become evident that S. meliloti must be able to manage oxidative stress while in the host

plant as loss of certain oxidative stress defense mechanisms cause symbiotic defects. For

example, S. meliloti strains deficient in both catalase B and catalase C (katBiC) or both

catalase A and catalase C (katAiC), enzymes that detoxify H20 2, are symbiotically

defective (8, 9). However, exactly which rhizobial defenses are required to combat

oxidative stress is a complex question. Several genes known to be required for defense

against ROS in the free living state are dispensable for symbiosis. For example,

disruption of the global regulator of H20 2 protection, oxyR, makes the free-living strain

extremely sensitive to H20 2, but does not affect symbiosis (10).

I was interested in identifying novel genes involved in S. meliloti oxidative stress

protection and determining if these genes also played a role in the development of

symbiosis. To explore this question I undertook a two-part screen to identify transposon

mutants of S. meliloti that were both sensitive to H20 2 and symbiotically defective (see

Chapter 2). Through this screen I identified several genes that have not previously been

recognized as being important either in symbiosis or in oxidative stress protection for S.

meliloti. One mutant identified in the screen has a transposon insertion in the sitA gene.

sitA is the first gene in the four gene operon sitABCD that had been annotated as coding

for a putative iron/manganese ABC transporter (7).



The Role of Manganese in Oxidative Stress Protection

Iron and manganese are important metals for oxidative stress protection. Iron is

used as a cofactor in defense enzymes such as catalase (11). Although in this context

iron is helpful in protection against ROS, free iron in the Fe 2+ state, can serve to

exacerbate oxidative stress by producing hydroxyl radicals from peroxides through

Fenton chemistry (12). In contrast to iron, manganese ions can help defend against ROS

by scavenging both H202 and superoxide, as part of low molecular weight complexes

with cellular ligands such as phosphate, lactate or bicarbonate. Although the exact

chemistry of the scavenging has not been determined, the mechanism is thought to

involve manganese ions cycling between the Mn 2+ and Mn3+ states (13-16). In its

enzymatic capacity, manganese also aids in oxidative stress defense by acting as the

essential cofactor in dedicated ROS scavenging enzymes such as manganese-containing

superoxide dismutases and catalases (17, 18). In addition to safe guarding bacteria

against ROS, manganese has also been shown to play an important role in virulence.

Disruption of manganese uptake in pathogens Salmonella enterica serovar Typhimurium

and Streptococcus pyogenes attenuates their virulence (19, 20).

Considering the known roles for manganese in oxidative stress protection and the

requirement of manganese uptake in pathogen/host interactions, the sitA mutant I

identified was an intriguing candidate for further exploration. To define the role of SitA

in S. meliloti free-living and symbiotic physiology, I first determined the deficiency

responsible for the sitA mutant free-living phenotypes and subsequently explored the

downstream effectors that contribute to the oxidative stress sensitivity and symbiotic

defect (Chapter 3).



Investigation of a Highly Conserved Protein of Unknown Function Required for S.

meliloti Symbiosis and Environmental Stress Protection.

The genome of S. meliloti strain Rm1021 was recently sequenced and revealed

6204 predicted protein-coding regions. Of these 6204 genes, a putative function could be

postulated for only 59.7% of Rml021 genes on the basis of bioinformatics analysis. An

even smaller percentage of genes have actually been biochemical validated (7). These

facts highlight a major stumbling block in all current omic level efforts. At best, we

understand the function of only 54% of genes in any organism we are examining (21,

22). For E. coli, arguably the most highly studied organism, we currently understand the

actually biological function of only 53.1% percent of the genes (21). This numbers drops

for the majority of the other sequenced prokaryotes and dips precipitously for most

eukaryotic and archaeal organisms (22, 23). This lack of knowledge of the fundamental

functions of the majority of genes in the every genome is a serious stumbling block in all

omic efforts (22). With advances into areas of network modeling and systems biology a

more complete knowledge of the genome is becoming increasingly important in order to

build and interpret accurate models.

Continuation of the screening strategy I developed to identify oxidative stress

sensitive and symbiotically deficient S. meliloti mutants (Chapter 2) led to the discovery

that orf SMc01113, which encodes a protein of unknown function, is essential for

symbiosis (Chapter 4). The SMcO 1113 protein is part of a highly conserved protein

family (24), present in all bacteria. The family is also one of 206 that comprise the

predicted minimal genome required to be a bacteria (25). In S. meliloti, I found that the



function of SMcO 1113 is not only critically required to establish the chronic intracellular

infection necessary for symbiosis, but also for defense against a wide range of

environmental stresses (Chapter 4). The universal conservation of this protein among

bacteria and extremely pleiotropic nature of the S. meliloti SMcOlll113 mutant drove me to

continue my studies of this highly conserved and very important protein family, not only

to learn more about S. meliloti requirements for symbiosis, but also to deepen our

knowledge of all bacteria.

I show that homologs of this protein are functionally equivalent (Chapter 5). As

we describe in this thesis, deletion of the Escherichia coli homolog, ybeY, resulted in

highly pleiotropic strain, similar to that observed by the disruption of SMcOlll3 in S.

meliloti. Due to the greater utility of biochemical and genetic techniques, I continued my

investigation of this protein family in E. coli where I identified a role for the E. coli

homolog, YbeY, in ribosome maturation (Chapter 5).

Ribosome Maturation and Protein Translation

Protein translation is a complicated process performed by the ribosome and its

associated factors (27-30). In bacteria, a large 50S subunit and smaller 30S subunit

associate to form an active 70S ribosome, competent for translation. The 50S subunit is

composed of a 23S and 5S rRNA along with 33 ribosomal proteins while the 30S

subunits is composed of a 16S rRNA and 21 ribosomal proteins (28, 30, 31). While

reconstitution of active 30S and 50S subunits has been performed in vitro using only their

respective rRNA and ribosomal proteins (32, 33), it is well recognized that many

additional accessory factors are required for 50S and 30S formation in vivo (29, 34).



Proper assemble of the ribosome is crucial to its function. Several mutants have been

identified that disrupt processing of rRNA or assembly of subunits that have detrimental

affects on ribosome synthesis and cell viability (29, 34).

Ribosome maturation occurs in a cooperative and ordered fashion (29, 34).

Before transcription is even complete, ribosomal proteins associate with rRNA forming

ribonuclieoprotein particles that are acted on by RNase III. RNase III begins rRNA

maturation cleaving it into precursors that will go onto become mature 16S, 23S and 5S

rRNA. RNases capable of the final maturation of the 23S (35, 36) and the 5' end of 16S

rRNA (37) have been identified, however the enzyme responsible for the 3'maturation of

16S rRNA has remained elusive (37). Immature 23S rRNA can form functional

ribosomes (38), but immature 16S rRNA cannot (39). While final maturation of some

rRNA termini can be performed in vitro using 70S ribosomes (37), it appears that the

final maturation steps for both 16S and 23S rRNA in vivo may actually require formation

of polysome structures (38, 39).

Protein translation proceeds through 4 stages; initiation, elongation, termination

and ribosome recycling. Initiation of protein synthesis is a complex process (40). While

it cannot be entirely separated from the preceding ribosome recycling phase of

translation, I will outline the general steps of initiation following 70S dissociation.

Initiation begins with the 30S subunit bound by initiation factors (IF) 1 and 3. IF1 Binds

specifically to the base of the tRNA binding aminoacyl (A) site of the 30S ribosomal

subunit and is thought to direct the initiator tRNA (fMet-tRNAfMet) to the ribosomal

peptidyl (P) tRNA binding site (41, 42). IF2, initiator tRNA and mRNA than associate

with the 30S subunit in an as of yet unknown order (34). IF2 is a GTP/GDP-binding



protein whose main function is to specifically interact with fMet-tRNAfMe and to position

it correctly in the ribosomal P-site, thereby increasing the fidelity and rate of translation

initiation (43, 44). IF2 also promotes 30S/50S subunit association (45). The Shine-

Dalgamo (SD) sequence of canonical mRNAs interact with the anti-SD sequence of the

16S rRNA (46), and the initiation codon is adjusted to the P-site of the ribosome (47).

fMet-tRNAfMet is than positioned in the P-site and, after a conformational change in the

30S subunit promoting fMet-tRNAfMet codon-anticodon interactions, the 30S initiation

complex is formed (48, 49). IF1 and IF3 are ejected from the complex, while IF2

promotes association with the 50S subunit (50). fMet-tRNAfet is adjusted to the correct

position in the P-site, and IF2 is released from the complex. The resulting complex is

then competent to enter elongation phase of translation.

Error rates of translation in vivo have been estimated to be on the order of 10-3 to

10-4 (51). Translational errors can arise from improper tRNA aminoacylation, incorrect

tRNA selection by the ribosome, or frameshifting during translation. tRNA

aminoacylation is very accurate. For example Ile-tRNAnle-synthetase will exclude Val

with an efficiency of 2.5 x 105- (52, 53). This suggests that the errors in decoding by the

ribosome are responsible the cause of most translation errors.

Translational frameshifting occurs by slipping of the ribosome to an alternate

reading frame. Frameshifting is generally detrimental as it changes the reading frame of

the message being translated producing a truncated protein (54). The exact mechanism of

frameshifting has not been established (55), however factors known to potentiate the

event have been discovered. These factors include certain mutations in 23S and 16S

rRNA (56, 57), mutations in ribosomal proteins (58, 59) and elongation factor 2 (60) as



well as loss of certain tRNA modifications (61). Interestingly however, expression of

certain genes actually require frameshifting for expression such as the Gag-Pol-Pro

protein in retroviruses (62) that require -1 frameshifting or the E. coli prfB gene that

requires +1 frameshifting (63).

I present data that supports a role for YbeY in ribosome maturation. Specifically

YbeY may act in the, as yet undetermined, process of 16S 3' maturation. Not only does

loss of YbeY activity affect ribosome maturation but the ribosomes that are formed show

decreased translational activity and increased frameshifting. I further demonstrate that

the human homolog, C2 I orf57, may perform a similar task as YbeY in human

mitochondria.

Hydroxyurea and Damage-Independent DNA Replication Fork Inhibition

While investigating the E. coli AybeY mutant I constructed, I made another

intriguing observation. Although this mutant exhibited extreme sensitivity to several

environmental stresses, it was very resistant to hydroxyurea. Hydroxyurea (HU) is

commonly used in both prokaryotes and eukaryotes to study DNA damage-independent

replication fork arrest (64-66). HU is potent inhibitors of class I ribonucleotide reductase

(RNR), the enzyme responsible for the synthesis of dNTPs under aerobic conditions in

many organisms. Depletion of dNTP pools through HU treatment leads to replication

fork arrest, most likely through substrate starvation (66-68).

DNA damage, induced by mutagens such as UV, interferes with DNA replication

through a mechanism different from that caused by HU (67, 69). When a replication fork

encounters DNA damage caused by UV, replication proceeds discontinuously, leaving



gaps juxtaposed to the lesion (70). The excess ssDNA generated results in formation of

the RecA/ssDNA nucleoprotein filaments that facilitate auto-cleavage of the

transcriptional repressor LexA and derepression of the SOS-regulon. The SOS response,

involves the upregulation of more then 40 genes involved in numerous aspects of DNA

repair and other cellular functions (71). The genomic response to UV damage has been

investigated and described in two independent studies using microarray analysis (72, 73).

The majority of genes identified in these experiments belong to the SOS-regulon. The

authors identified only a small subset of genes that varied independently of the major

SOS transcriptional repressor, LexA, or that were downregulated in response to UV. HU

treatment had been shown to upregulate two genes of the SOS-regulon, recA and sulA

(74) however the extent of SOS induction as well as other cellular responses brought

about by HU-dependent fork arrest had not been investigated in detail.

Before investigating the AybeYmutant's resistance to HU, I needed to understand

the full spectrum of cellular effects incurred by HU treatment. Work by several groups

has shown that HU is exquisitely specific for inhibiting DNA synthesis through RNR

inhibition (75, 76). However, a complete picture of the subsequent effects of dNTP pool

depletion and replication fork arrest on cell physiology had been lacking. In addition, it

was not known how Escherichia coli responds differently to replication interference

resulting from DNA damage compared to a damage-independent mechanism.

In collaboration with Jim Collin's group at Boston University, I combined

microarray technology with systems level analysis to determine the genome-wide

transcriptional response to HU in the model organism Escherichia coli (Chapter 6).

Using my collaborators analysis of the transcriptional response to HU in E. coli to guide



my investigation, I demonstrate that HU induces global molecular changes that

encompass not only DNA repair but importantly pathways that extend into envelope

stress, iron transport and toxin-antitoxin regulation. These data support a model that E.

coli induces a distinctive transcriptional profile in response to damage-independent fork

arrest that permits individual cells in the population to switch from a survival mode to a

programmed cell death mode.

A Role for YbeY in DNA Replication?

Recently a body of work has emerged suggesting an intricate coupling of protein

translation and DNA replication (67, 77, 78). The highly conserved GTPase,

ObgE/CtgA, exemplifies this association. ObgE/CtgA has been shown to bind the

ribosome (79, 80) and is required for ribosome assembly (78, 81). ObgE/CgtA has also

been shown to regulate chromosome partitioning and subsequent cell events (67, 82, 83).

In Chapter 7, I explored the possibility that, like ObgE/CtgA, YbeY may act as a

mediator between translation and replication and how this role may lead to the increased

resistance to HU observed in the AybeY mutant.

With my model of the cellular response of E. coli to HU, I began studying the

resistance of the Aybe Y mutant to HU. I used a systems-level analysis of genome-wide

transcriptional response of the AybeY mutant to HU treatment and compared this to the

response of the parental strain MC4100. The results showed a striking deviation in

response. The Aybe Y mutant initiated the major DNA repair response like the parental

strain MC4100, but was much less sensitive to activation of cell death programs (Chapter



7). In addition I show that YbeY expression is responsive to HU treatment and YbeY

directly associates with ribonucleotide reductase in vivo.



Chapter 2

Identification of Novel Sinorhizobium meliloti Mutants Compromised for Oxidative

Stress Protection and Symbiosis.*

* Davies, B. W., and G. C. Walker, 2007. Identification of Novel Sinorhizobium
meliloti Mutants Compromised for Oxidative Stress Protection and Symbiosis. J.
Bacteriol. 189: 2110-2113.
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Abstract

Employing a novel two-part screen, we identified Sinorhizobium meliloti mutants

that were both sensitive to hydrogen peroxide and symbiotically defective on the host

plant Medicago sativa. The mutants affect a wide variety of cellular processes and

represent both novel and previously identified genes important in symbiosis.



Introduction

During symbiotic development with the host plant Medicago sativa, Sinorhizobium

meliloti is subjected to a prolonged oxidative burst released by its host (6). The burst is

composed of at least superoxide and hydrogen peroxide (H20 2), both of which are

deleterious to cell survival. The prolonged burst is a chronic stress for S. meliloti with

both superoxide and H20 2 readily detected in nodules several weeks after infection (6). It

has become apparent that S. meliloti must be able to manage oxidative stress while in its

host, but the issue is complex. For example, S. meliloti single mutants that lack either

catalase A (katA) or catalase C (katC), which detoxify H20 2, are symbiotically proficient,

whereas the katA/katC double mutant is symbiotically defective. Furthermore, novel

regulatory mechanisms may control the S. meliloti response to oxidative stress in planta

as disruption of the major regulator of H20 2 defense in the free-living bacterium, oxyR,

does not adversely affect symbiosis (8, 9). Given the obvious necessity of managing

oxidative stress in the plant, and the apparent complexity of the defense network required

to meet this stress, we hypothesized there might be additional oxidative stress defense

mechanisms outside the spectrum of classic defense enzymes required for symbiosis. To

explore this hypothesis, we undertook a novel two-part screen to identify S. meliloti

mutants that are both sensitive to oxidative stress in the free-living state and

symbiotically defective. Through this screen we identified several genes that have not

previously been recognized as being important either in symbiosis or in oxidative stress

protection for S. meliloti.



Identification of H20 2-sensitive and symbiotically defective S. meliloti

mutants. S. meliloti is exposed to a chronic H20 2 stress in the infection thread and

nodule (6). Previous work has shown that certain S. meliloti strains compromised for

H20 2 detoxification are symbiotically defective (8, 9). Considering this work, we choose

to use H202 as the oxidative stress agent with which to screen S. meliloti mutants. We

obtain a random pool of S. meliloti mutants by mutagenizing the wild type strain,

Rml021, with mTn5-GusNm (mTnS) (84, 85). The mTn5 was introduced into Rml021

on a plasmid by triparental mating (85, 86). mTn5 mutants were selected on Luria-

Bertani (LB) agar plates containing 200 _g/ml neomycin at 30 OC. We measured the

endogenous peroxide level of LB using the Amplex Red Hydrogen Peroxide/Peroxidase

Assay Kit (Molecular Probes) and found it to be 1.8 tiM. Since a sublethal dose of H20 2

for wild type S. meliloti is 1 mM we felt confident the endogenous peroxide levels of the

LB would not perturb our study (10). Matings were diluted so as to obtain approximately

100 colonies per plate and H202-sensitive mutants were subsequently identified by

replica plating onto LB plates containing 0.7 mM H20 2 and 10 mM HEPES pH 7.0.

After 3 days, we identified colonies unable to grow on plates containing H202. H20 2

sensitivity was confirmed by zone of inhibition assays (87). The mTn5 mutants

showing sensitivity to H202 were tested for symbiotic proficiency with the plant host

Medicago sativa (88). After 4 weeks, plant height was measured and compared to

Rml021-inoculated plants. Mutant-inoculated plants that were statistically shorter than

Rml021-inoculated plants were initially considered symbiotically defective. To confirm

that the mTn5 was linked to both the H20 2 sensitivity and symbiotic deficiency, each

mutant allele was transduced back into the parental strain Rm1021 (89). Three



independent transductants for each mutant allele were tested for both H202 sensitivity and

symbiotic proficiency. To more precisely analyze the symbiotic phenotype, nitrogenase

activity was then determined using acetylene reduction (90).

Santos, R., et. al., showed that S. meliloti is exposed to chronic oxidative stress while

in the plant (6). Furthermore, Herouart D., et. al. (91) demonstrated that S. meliloti

defective in katA are sensitive to acute oxidative stress but do not show a symbiotic

defect. These results suggest that chronic resistance to oxidative stress may be an

important factor for S. meliloti to establish a functional symbiosis. Because of these

observations, we employed assays such as zone of inhibition that measure S. meliloti

sensitivity to chronic oxidative stress. In total, we screened 1.5x10 4 mTn5 mutants.

After transduction, we isolated 112 H20 2-sensitive mutants. Of these, 9 mutants were

also symbiotically defective. To more broadly characterize the oxidative stress

sensitivity of these mutants, we tested them for chronic sensitivity to superoxide by zone

of inhibition assay using the superoxide generator menadione.

We used random primer PCR to identify the insertion point of the mTn5 in each

mutant (Table 1) (85). The mTn5 has not been tested to determine if it contains the

outward reading promoter present in the parental Tn5 (92, 93). As such, insertion of the

mTn5 may cause polar effects on downstream genes, however work from our lab shows

expression of downstream genes can occur in at least some of these contexts (94).

The exoP::mTn5, glgAl::mTn5 and sitA::mTn5 mutants all show small increases

in sensitivity to H20 2 by zone of inhibition assay (Table 1). To better quantify the H20 2

sensitivity of these mutants, cultures of each mutant strains and Rml021 were serially

diluted and spread on LB plates and LB plates containing 0.3 mM H20 2 to determine



their relative plating efficiencies. After 3 days of growth, visible colonies were counted.

Using this chronic stress method we determined that exoP::mTn5, glgAl::mTn5 and

sitA::mTn5 show plating efficiencies of 2.1 % ± 0.2 %, 11.3 % + 2.3 %, and 4.6 % ± 2.1

%, respectively, relative to Rm1021 on LB plates containing 0.3 mM H20 2.

Defects in genes associated with succinoglycan production cause H20 2

sensitivity. Rm1021 produces an acidic exopolysaccharide, succinoglycan that is

required for proper symbiotic development (88 73). Succinoglycan is produced in both

high and low molecular weight forms and carries succinyl, acetyl and pyruvyl

modifications (95, 96). The low molecular weight fraction of succinoglycan is of

particular interest because past studies have reported that the low molecular weight

succinoglycan, rather than the high molecular weight succinoglycan, is able to restore the

ability of invasion-deficient mutants to invade nodules (97-99). Our screen identified

three genes previously shown to be required for succinoglycan production and symbiosis

(Table 1) (100).

ExoP is required for polymerization of the succinoglycan monomer. It is thought

to work in conjunction with ExoQ, to produce high molecular weight succinoglycan or

with ExoT to produce the low molecular weight form (100, 101). A role for

succinoglycan in protection against oxidative stress has not previously been reported for

S. meliloti. One possibility is that succinoglycan can act as a diffusion barrier against

H20 2 thereby protecting cells against exogenous H20 2 . Consistent with this hypothesis,

we find that an exoY mutant, which completely lacks succinoglycan, shows increased

sensitivity towards H20 2(zone of inhibition = 5.9 ± 0.1 cm) (101). This hypothesis is



supported by studies on the nodulation of Sesbania rostrata by Azorhizobium

caulinodans. The early stages of this symbiosis are characterized by a massive

production of H20 2 by the plant host. In situ H20 2 localization demonstrated that

increased exopolysaccharide production by A. caulinodans prevented the incorporation of

H202 inside the bacterium, suggesting a role for exopolysaccharide in protecting A.

caulinodans against H20 2 (102). Additionally, the extensive pyruvyl modifications on

Rm1021 succinoglycan may also play a role in protection against H20 2 as pyruvate has

been shown to scavenge H202 non-enzymatically (103). The sensitivity of these

exopolysaccharide mutants appears specific to H202 as none of the exopolysaccharide

mutants showed increased sensitivity to menadione relative to Rm1021 (Table 1).

We also identified exoD in our screen. Although mutations in exoD lead to

altered succinoglycan production, no biosynthetic role in succinoglycan synthesis has

been attributed to exoD. Furthermore, genetic evidence has shown that altered

production of succinoglycan is not the cause of the symbiotic defect in an exoD mutant

(104). Although efforts have been made to define a physiological function for ExoD,

further research will be required to explain why loss of this gene causes increased H20 2

sensitivity.

Metabolic defects cause H20 2 sensitivity and symbiotic defects. Our screen

identified mutants in several different metabolic pathways, including nucleoside

biosynthesis and sugar storage and metabolism (Table 1). We identified tkt2, which

encodes one of two paralogs of transketolase found in the Rm1021 genome. This mutant

is sensitive to both H20 2 and menadione. Transketolase functions at two stages in the



non-oxidative steps of the pentose phosphate pathway (105). Enhanced flux of sugars

through the pentose phosphate pathway has been linked to oxidative stress resistance,

possibly by increasing the production of reducing power in the form of NADPH (106-

108).

Another mutant which is both sensitive to H20 2 and symbiotically defective has a

mTn5 insertion in glgA1, which is a putative glycogen synthase that adds glucose to

growing starch chains. In S. meliloti, glgAl lies directly upstream of the gene for

phosphoglucomutase (pgm). pgm is also an exo gene (exoC) which catalyzes the

reversible conversion of glucose-1-phosphate to glucose-6-phosphate for entry into

carbon metabolism. S. meliloti exoC mutants induce empty, ineffective nodules on

alfalfa and are dim on calcofluor due to a deficiency in succinoglycan synthesis (88).

Calcofluor is a dye that fluoresces under UV light when bound to certain _-linked

polysaccharides, such as succinoglycan (88). In contrast to exoC mutants, our glgA1

mutant is bright on calcofluor (data not shown) and indistinguishable from Rm1021

indicating that the mTn5 insertion in our glgA1 mutant is not polar on exoC. A role for

glucose storage in oxidative stress protection has not previously been reported in S.

meliloti and will require further investigation to elucidate its role. Interestingly, a

glycogen synthase mutant identified in Rhizobium tropici shows enhanced symbiotic

performance on the plant host Phaseolus vulgaris. This contrasting result highlights how

different symbiotic associations can have significantly different host/symbiont

requirements (109).

Our screen also identified purL, which encodes

phosphoribosylformylglycinamidine (FGAM) synthetase, the fourth enzyme in the



pathway for purine biosynthesis (110). Purine auxotrophs of most rhizobial species,

including S. meliloti, have previously been shown to be symbiotically defective, however

they have not been reported as sensitive to oxidative stress (111-113). It was recently

shown that a Sinorhizobiumfredii purL mutant has an altered lipopolysaccharide (LPS)

layer though the reasons for this remain unclear (111). We considered the possibility that

an altered LPS layer might allow easier diffusion of H20 2 into the cell, thus explaining an

increased sensitivity. However, we found that, unlike S. fredii, disruption ofpurL in S.

meliloti does not cause an observable change in the LPS layer by SDS-PAGE analysis

(data not shown).

Defects in metal transport, protein biosynthesis and cytochrome C biogenesis

cause H20 2 sensitivity and symbiotic defects. SitA is the periplasmic binding protein

of a putative Mn/Fe ABC transporter. Our investigation of the sitA::mTn5 mutant is

discussed in the accompanying manuscript (114).

We were very surprised to identify peptidyl-tRNA hydrolase (pth) in our screen

since Rml021 has only one copy ofpth in its genome (7). Pth scavenges peptidyl-tRNA

molecules that arise normally during protein biosynthesis, is ubiquitous among bacteria

and, in most cases, is an essential enzyme (115). Ourpth::mTn5 mutant also shows

considerable sensitivity to menadione suggesting that Pth may have a general role in

oxidative stress protection. One possibility is that translation increases in response to

oxidative stress that in turn increases the demand on tRNA recycling.

The final gene we identified was cycK. cycK is part of the cycHJKL operon

involved in cytochrome C-type biosynthesis. cyc mutants have been identified previously



in S. meliloti and other rhizobial species as required for symbiosis, but not for oxidative

stress protection (116-118). The cycK::mTn5 mutant exhibits the greatest increase in

sensitivity to H20 2 and menadione (Table 1). In S. meliloti, C-type cytochromes are

required for nitrate reduction explanta and nitrogen fixation in root nodules (117). The

role of cycK and cytochrome-C in oxidative stress defense will require further

investigation.

Of the 112 mTn5 mutants we identified that were H20 2-sensitive but

symbiotically proficient, we identified the mTn5 insertion point for the 3 mutants that

displayed the most severe H20 2 sensitivity (Table 2). The mutant exhibiting the greatest

sensitivity was disrupted in the global regulator of H20 2 protection, oxyR, which has

previously been shown not to be required for symbiosis (10). actR was originally

identified in S. meliloti as part of a two component system required for growth at low pH

(119). Recent work in E. coli has shown that pH changes and oxidative stress affect the

regulation of a large and overlapping set of genes suggesting a strong relationship

between acid stress and oxidative stress (120). Interestingly, the actR::mTn5 mutant is

also very sensitive to menadione suggesting a general role in oxidative stress protection.

We also identified a putative orf (SMc01853) coding for a protein with a DnaJ-domain.

As oxidative stress causes protein damage, SMc01853 may act as a chaperon to manage

oxidized proteins.

Comparison of Table 1 and Table 2 shows that the sensitivity of a mutant strain to

H20 2 or menadione ex planta does not correlate with its ability to effectively nodulate

alfalfa. This suggests that, of the several oxidative stress defense systems available to S.

meliloti, only a specific subset may be required to combat the oxidative stress



encountered in planta. This may be due to the specific composition of the oxidative burst

S. meliloti experiences in planta, which has not been fully characterized (6). Further

study of Table 1 also shows a lack of correlation between the sensitivity of a strain to

H20 2 or menadione ex planta and its capacity to fix nitrogen in planta. This may be

because the oxidative stress sensitivity of some of the mutants is not the cause of their

symbiotic deficiency. Alternatively, the different oxidative stress defense systems may

be required at different developmental stages, allowing some mutants to proceed further

in symbiosis than others. Our screen has identified several genes previously not

associated with oxidative stress protection in S. meliloti. The results of this screen

suggest that oxidative stress protection encompasses a much broader range of cellular

functions than traditionally recognized.
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Table 1. Rm1021 mTn5 mutants identified as both H20 2 sensitive and symbiotically

defective.

Mutant H20 2  Menadione Plant Height Acetylene

Zone of Zone of (cm) Reduction

Inhibition (cm) Inhibition (cm) (pmol/nod/h)

Rml021 (WT) 4.6±0.1 2.6+0.1 7.8±1.8 48.5±5.3

exoP 4.9+0.1 2.6+0.1 1.8-0.4 0.0+0

exoD 5.5+0.1 2.6+0.1 2.1+0.8 0.0+0

exoQ 5.2+0.1 2.6±0.1 1.8+0.1 3.1+1.4

glgA1 4.9+0.1 2.7+0.1 1.6+1.0 11.8+15.8

tkt2 5.6±0.1 3.0+0.1 2.2±0.5 5.9±5.2

purL 5.0+0.1 2.7+0.1 1.7+0.4 3.5±2.5

sitA 4.9+0.1 3.5+0.1 3.8±2.1 15.9±18.4

cycK 7.0+0.1 >8.0 1.7+0.4 0.3±0.3

pth 5.3+0.1 3.7+0.1 2.0+0.6 0.2+0.3

Blank control --- --- 2.1+0.1 0.0+0



Table 2. Rm1021 mTn5 mutants that were symbiotically proficient but displayed high

sensitivity to H20 2.

Mutant H20 2  Menadione

Zone of Inhibition (cm) Zone of Inhibition (cm)

Rml021 (WT) 4.6±0.1 2.6±0.1

actR 5.3±0.2 6.0±0.1

oxyR 7.4±0.1 4.2±0.1

SMc01853 (contains DnaJ 5.6±0.1 2.7±0.1

domain)
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Abstract

During the initial stages of symbiosis with the host plant Medicago sativa,

Sinorhizobium meliloti must overcome an oxidative burst produced by the plant in order

for proper symbiotic development to continue. While identifying mutants defective in

symbiosis and oxidative stress defense, we isolated a transposon-insertion mutant of sitA,

which encodes the periplasmic binding protein of the putative iron/manganese ABC

transporter SitABCD. Disruption of sitA causes elevated sensitivity to the reactive

oxygen species hydrogen peroxide and superoxide. Disruption of sitA leads to elevated

catalase activity and a severe decrease in superoxide dismutase B (SodB) activity and

protein level. The decrease in SodB level strongly correlates with the superoxide

sensitivity of the sitA mutant. We demonstrate that all free-living phenotypes of the sitA

mutant can be rescued by the addition of exogenous manganese but not iron, a result that

strongly implies SitABCD plays an important role in manganese uptake in S. meliloti.



Introduction

Symbiosis with the gram-negative _-proteobacterium Sinorhizobium meliloti

allows the host plant, Medicago sativa (alfalfa), to utilize atmospheric nitrogen fixed by

the microsymbiont. Through a complex exchange of chemical signals, S. meliloti induces

root hair curling and nodule formation on alfalfa. S. meliloti trapped in the curled root

hairs invade M sativa through a tube-like structure called an infection thread and are

eventually released into the cells of the developing nodule where they differentiate into

nitrogen-fixing bacteroids (1, 2).

While in the infection thread, S. meliloti is exposed to an oxidative burst released

by the host plant that is composed of at least hydrogen peroxide (H20 2) and superoxide

(6). S. meliloti encodes a set of enzymes to defend against these reactive oxygen species

(ROS) including superoxide dismutases, catalases and alkylhydroperoxidases(7). It has

become evident that S. meliloti must be able to manage oxidative stress while in the host

plant as loss of certain oxidative stress defense mechanisms cause symbiotic defects. For

example, S. meliloti strains deficient in both catalase B and catalase C (katBiC) or both

catalase A and catalase C (katAiC), enzymes that detoxify H20 2, are symbiotically

deficient (8, 9). However, exactly which rhizobial defenses are required to combat

oxidative stress is a complex question. Several genes known to be required for defense

against ROS in the free living state are dispensable for symbiosis. For example,

disruption of the global regulator of H20 2 protection, oxyR, makes the free-living strain

extremely sensitive to H20 2, but does not affect symbiosis (10).

We were interested in identifying novel genes involved in S. meliloti oxidative

stress protection and determining if these genes also played a role in the development of



symbiosis. To explore this question we undertook a two-part screen to identify

transposon mutants of S. meliloti that were sensitive to H20 2, and that were also defective

in symbiosis (114). One mutant identified in the screen has a transposon insertion in the

sitA gene. sitA is the first gene in the four gene operon sitABCD that has been annotated

as coding for a putative iron/manganese ABC transporter (7).

Iron and manganese are important metals for oxidative stress protection. Iron is

used as a cofactor in defense enzymes such as catalase (11). Although in this context

iron is helpful in protection against ROS, free iron in the Fe2+ state, can serve to

exacerbate oxidative stress by producing hydroxyl radicals from peroxides through

Fenton chemistry (12). In contrast to iron, manganese ions can help defend against ROS

by scavenging both H20 2 and superoxide, as part of low molecular weight complexes

with cellular ligands such as phosphate, lactate or bicarbonate. Although the exact

chemistry of the scavenging has not been determined, the mechanism is thought to

involve manganese ions cycling between the Mn2+ and Mn3+ states (13-16). In its

enzymatic capacity, manganese also aids in oxidative stress defense by acting as the

essential cofactor in dedicated ROS scavenging enzymes such as manganese-containing

superoxide dismutases and catalases (17, 18).

In addition to safe guarding bacteria against ROS, manganese has also been

shown to play an important role in virulence. Disruption of manganese uptake in

pathogens Salmonella enterica serovar Typhimurium and Streptococcus pyogenes

attenuates their virulence (19, 20). Furthermore, in S. pyrogenes disruption of manganese

uptake has also been linked to oxidative stress sensitivity (20). The use of manganese in

virulence is most pointedly observed in the extreme case of the Lyme disease pathogen



Borrelia burgdorferi. B. bugrdorferi has dispensed with a requirement for iron and has

evolved survival strategies that are fully accommodated by manganese (121).

Considering the known roles for manganese in oxidative stress protection and the

requirement of manganese uptake in pathogen/host interactions, the sitA mutant we

identified was an intriguing candidate for further exploration. To define the role of SitA

in S. meliloti free-living and symbiotic physiology, we first determined the deficiency

responsible for the sitA mutant free-living phenotypes and subsequently explored the

downstream effectors that contribute to the oxidative stress sensitivity and symbiotic

defect.

Materials and Methods

Bacterial strains, phage, plasmids and growth conditions. Bacterial strains,

generalized transducing phage and plasmids are listed in Table 1. E. coli strains were

cultured at 37 OC in LB. S. meliloti strains were cultured at 30 oC in either LB

supplemented with 2.5 mM MgSO 4 and 2.5 mM CaC12 (LB/MC) or M9 minimal media

with 15 mM succinate (M9) (122). M9 was prepared without iron or manganese sources

in plastic containers and filter sterilized. Manganese (Mn2+) was added as MnSO 4

(Sigma) and iron (Fe 2+) as FeSO 4 (Sigma). Plastic tubes were used for growth and

sensitivity assays. Unless otherwise stated, strains were initially grown on LB/MC before

dilution into M9. The following antibiotics were used: streptomycin (500 gg/ml),

neomycin (200 [pg/ml), chloramphenicol (20 gg/ml), and tetracycline (10 gg/ml).



Genetic techniques and DNA manipulations. Transductions with fM12 were

performed as described (89). Random mini-Tn5-GusNm (mTn5) mutagenesis and tri-

parental matings were performed as described (85, 86). The protocols of Sambrook (123)

were used for routine manipulations of plasmid and chromosomal DNA. To construct

strains GWBD2, GWBD8, GWBD9 and GWBD10 a 300-500bp internal fragment of

sodB, pphA, degPI or relA was cloned into pKNOCK-Tc respectively. To construct

strains GWBD4, and GWBD 11, a 300-500bp internal fragment of sitB or degP2 was

cloned into pJH104 respectively. The resulting plasmids were conjugated into Rm1021

via triparental mating to introduce a disruption by single-crossover homologous

recombination. Single-crossover disruptions were transduced into Rml021 and verified

by PCR. To construct plasmid pGW1, full length sitA was PCR amplified and cloned

into pMSO4. pGW1 was introduced into GWBD1 by triparental mating.

Hydrogen peroxide and plumbagin sensitivity assays. For H20 2 sensitivity

assays, S. meliloti cultures were diluted into M9 medium and grown 3 days to OD 600 1.0-

1.2. These cultures were diluted to OD 600 0.1 into M9 with or without 10 tM MnSO 4 or

30 giM FeSO4 and grown 2 h at 30 oC before the addition of H20 2 to a final concentration

of 8 mM. At the indicated times, samples were taken, serially diluted, and spotted onto

LB agar. After 4 days of growth at 30 OC, the number of colony forming units was

determined. For plumbagin sensitivity assays S. meliloti cultures were diluted into M9

medium with or without 10 tiM MnSO 4 or 30 [M FeSO4 and grown overnight to OD 600

1.0-1.2. These cultures were diluted to OD600 0.1 into M9 with or without 10 jiM MnSO 4

or 30 giM FeSO 4 before the addition of plumbagin to a final concentration of 0.75 mM.



At the indicated times, samples were taken, serially diluted, and spotted onto LB agar.

After 4 days of growth at 300C, the number of colony forming units was determined.

H20 2 concentrations in solution were determined using Amplex Red Hydrogen

Peroxide/Peroxidase Assay Kit (Molecular Probes).

Bacterial lysates, enzyme activity assays and immunoblots. S. meliloti lysates

were obtained from cultures grown in M9 with or without 10 gpM MnSO 4 or 30 giM

FeSO4. Cells were disrupted by sonication and protein concentration was determined by

Bradford assay. In-gel catalase and superoxide dismutase assays were performed as

previously described (124, 125). Immunoblotting was performed as previously described

(126) with polyclonal Mn superoxide dismutase antibody (QED Biosciences).

RNA isolation and RT-PCR. Total RNA was isolated from S. meliloti cultures

grown in M9 using Qiagen RNeasy Mini Kit and quantified by OD260. DNA

contamination was tested for by PCR amplification of 23S rRNA genomic sequence in

the absence of RT. RT-PCR was performed using SuperScript One Step RT-PCR Kit

(Invitrogen) using increasing amounts of RNA for 15 or 35 PCR cycles to determine the

linear range for each target transcript. Primers were designed to amplify 300-500bp

internal sequences for the indicated genes. RT-PCR reactions with primers specific to

23S rRNA were used as a control to ensure equal amounts of RNA template between

reactions.



Plant assays. Alfalfa seedlings were nodulated on Petri dishes of Jensen agar as

previously described (88). Three-day-old seedlings were inoculated with approximately

107 bacteria. Plant height, nodule number and nitrogen fixation were determined after 4

weeks of growth. Nitrogen fixation was quantified via the acetylene reduction assay (90)

Ethylene-acetylene separation and quantitation were carried out on a Shimadzu GC-8A

gas chromatograph. The amount of ethylene produced was calculated by peak integration

and conversion to picomoles of ethylene formed per nodule by comparison to a standard

curve developed from injected standard amounts of ethylene. 4 week old nodules were

examined by electron microscopy using standard techniques (127, 128).

Bacteria were isolated as previously described (129). Briefly, nodules were

surface sterilized with 70% ethanol for 30 s, followed by three water washes, and

treatment with 10% bleach for 30 s, followed by three water washes. The nodules were

then crushed with a sterile pestle in 100 _1 of LB/MC medium containing 0.3 M glucose.

The nodule suspension was serially diluted (100 to 10-6) and plated onto LB/MC medium

containing 0.3 M glucose.

Results

The sitA::mTn5 mutant is symbiotically defective on Medicago sativa. The

sitA mutant we identified is disrupted by a mTn5 transposon at base 162 of the 903 bp

sitA open reading frame. After determining the H20 2 sensitivity and symbiotic defect of

the original isolate, we transduced the sitA::mTn5 allele into the parental wild type strain,

Rm1021. We tested several transductants and confirmed that both the H20 2 sensitivity



and symbiotic defect are linked to the mTn5 insertion in sitA. We selected one

transductant, GWBD1, for further study. For clarity, we refer to strain GWBD1 as

sitA::mTn5.

We inoculated sitA::mTn5 and Rml021 onto Medicago sativa seedlings. After 4

weeks, we assayed nodule number, plant height and ability to fix nitrogen as measured by

acetylene reduction (Table 2). Both sitA::mTn5 and Rml021-inoculated plants began

producing nodules after 1 week. After 4 weeks, sitA::mTn5-inoculated plants showed

approximately 20% more nodules than Rml021-innoculated plants. Nodules from

Rml021-innoculated plants were mostly pink (Fig. 1A) due to leghemoglobin which is a

marker of a healthy symbiosis (130).

In contrast, all sitA::mTn5-innoculated plants produced mainly small white

nodules indicative of a defective symbiosis (Fig. 1B). In addition to the small white

nodules, sitA::mTn5-inoculated plants produced another type of nodule that was

intermediate in size between healthy pink nodules and defective white nodules (Fig. 1 C).

This type of nodule has a slight pink zone at the base proximal to the root. We did

observe an occasional pink nodule on a sitA::mTn5-innoculated plant but at a very low

frequency.

sitA::mTn5-inoculated plants were significantly shorter and had a substantial

reduction in acetylene reduction activity compared with Rml021-inoculated plants

(Table 2). These characterizations were consistent with the decrease in healthy pink

nodules observed on sitA::mTn5-inoculated plants. While we were characterizing

sitA::mTn5, a report describing a sitA deletion was published (131). In agreement with

our observations, that report showed acetylene reduction was decreased for alfalfa



inoculated with the sitA deletion strain but did not further characterize the physiology of

the symbiotic defect.

sitA::mTn5-inoculated plants showed reduced but measurable levels of acetylene

reduction, suggesting that the strain is able to colonize the nodules. However, the

majority of nodules produced by sitA::mTn5 were small and white, indicative of a failed

symbiosis. This suggests that if sitA::mTn5 is able to colonize nodules it does so with a

greatly reduced efficiency. To gain a better understanding of the effect of the sitA

transposon disruption on symbiotic development of S. meliloti, we examined the

ultrastructure of each type of nodule induced by sitA::mTn5 by electron microscopy (Fig.

lE). Each nodule type from sitA::mTn5-inoculated plants had a similar ultrastructure that

differs markedly from nodules induced by the parental strain Rm1021 (Fig. ID). The

most striking difference was the presence of large starch granules in sitA::mTn5-induced

nodules. These large deposits found lining the wall of the plant cell in sitA::mTn5-

induced nodules were completely absent from Rml021-induced nodules. Deposits of

large starch granules have also been observed in several other symbiotically defective

strains of S. meliloti, though the reason for their presence is still not understood (132-

134). We also observed that the plant vacuoles in sitA::mTn5-induced nodules were

much smaller and displayed more irregular shapes than vacuoles in Rml021-induced

nodules.

We found it intriguing that, although sitA::mTn5 clearly produces three

morphologically distinct types of nodules, the ultrastructure of each type was very

similar. This observation led us to hypothesis that, although sitA::mTn5 were found in

each type of nodule, perhaps their intracellular survival varies. To determine the number



of bacteria in the nodules, we crushed each type of nodule from sitA::mTn5-inoculated

plants as well as nodules induced by Rm1021 to recover any bacteria present and plated

for colony forming units. Interestingly, although the micrographs show comparable

number of bacteria in each type of sitA::mTn5-induced nodule, we were only able to

recover bacteria from the pink nodules. However, these nodules contained approximately

1000-fold fewer bacteria than pink nodules from Rm1021-inoculated plants (data not

shown).

It was possible that the bacteria recovered from sitA::mTn5-induced nodules had

acquired a suppressor mutation allowing for their survival. To determine if a suppressor

had accumulated, we confirmed the presence of the mTn5 insertion in sitA in bacteria

isolated from pink sitA::mTn5-induced nodules, and used these isolates to re-inoculate M

sativa. After 4 weeks, we found the same plant phenotypes and spectrum of nodules as

were found when inoculating with the original sitA::mTn5 strain (data not shown). This

result indicates that the pink nodules formed by sitA::mTn5 are not due to the acquisition

of a suppressing mutation. As M. sativa is an outbred tetraploid, we hypothesize that the

formation of pink nodules with sitA::mTn5 is most likely due to the genetic variability of

the plant host (135).

Genetic characterization of sitA::mTn5. sitA is the first transcribed gene of the

sitABCD operon (7). We therefore felt it essential to determine the effect of the mTn5

disruption on expression of the downstream genes in the operon, sitBCD. We performed

RT-PCR on genes sitB, sitC and sitD. In sitA::mTn5, sitB, sitC and sitD are all expressed

but at reduced levels compared to that in Rm1021 (Fig. 2). Although there is decreased



expression from sitBCD, we nevertheless found that expression of sitA alone from a

plasmid was sufficient to rescue the sitA::mTn5 symbiotic defect (data not shown).

However, sitBCD expression is still important for symbiotic development since a strain

carrying a polar disruption of sitB (GWBD4) shows a symbiotic defect equivalent to that

of sitA::mTn5 (data not shown).

Growth of sitA::mTn5 is limited for manganese. When we first isolated the

sitA transposon mutant we observed that it formed colonies more slowly than Rm1021 on

LB plates. sitA is part of the sitABCD operon which is designated as a putative

iron/manganese ABC transporter in the S. meliloti genome (7). It seemed likely that the

decreased growth rate of sitA::mTn5 is due to insufficient uptake of one or both of these

metals. We subsequently found that sitA::mTn5 has a decreased growth rate compared to

Rm1021 in LB liquid media and the growth defect is even more severe in M9 medium.

Rml021 was able to grow in M9 alone, however sitA::mTn5 showed no appreciable

growth (Fig. 3A). To determine if either iron or manganese limitation was responsible

for the growth defect, we supplemented the growth medium with either MnSO 4 or FeSO4.

Addition of 10 _M MnSO 4 completely restored the growth rate of sitA::mTn5 to that of

Rml021 (Fig. 3B). Addition of FeSO 4 caused an increase in the growth rate of Rml021

but did not affect the growth of sitA::mTn5 even when included at 30 [M (Fig. 3C).

Taken together, these data indicate that the growth defect of sitA::mTn5 is due to a defect

in manganese uptake and not a defect in iron uptake.



sitA::mTn5 sensitivity to H202 is specifically rescued by manganese.

sitA::mTn5 was identified as H20 2-sensitive in our initial screen (114). In that study, we

assayed H20 2 sensitivity using zone of inhibition assays on LB plates. Under those

conditions sitA::mTn5 appeared only slightly more sensitive than Rm1021 to H20 2.

Similar to the growth defect, we postulated that the sensitivity would be more apparent in

minimal medium. As sitA::mTn5 does not grow in M9, we first grew the strain in M9

supplemented with 10 _M MnSO 4. We then diluted the culture in M9 without

supplement and allowed the cultures to grow for 3 days to starve the cells for Mn2+ before

assaying H20 2 sensitivity. Indeed, the sitA::mTn5 cultures starved for Mn2+ showed a

substantial increase in sensitivity to H20 2 relative to Rm1021 (Fig. 4A). Furthermore, we

found that if manganese-starved sitA::mTn5 cultures were then supplemented with 10 _M

MnSO 4 for 2 hours, the increased sensitivity to H202 was greatly diminished (Fig. 4B).

We did not observe increased rescue with longer incubation times or increased MnSO 4

concentrations up to 100 _M (data not shown). Also in agreement with the growth

phenotypes, supplementing the medium with FeSO 4 does not rescue the H20 2 sensitivity

(Fig. 4C).

As discussed previously, Mn2+ ions in low molecular weight complexes are able

to detoxify H20 2. We were concerned that the rescue of H202 sensitivity by MnSO4

might be a general detoxification of the medium by free Mn2+. To test this, we monitored

the decomposition of H20 2 in M9 with and without 10 ýtM MnSO 4 over time using the

Amplex Red Detection system. We found that addition of 10 LIM MnSO 4 does not affect

H202 concentration in solution (data not shown).



Catalases are the major component of an adaptive response to H20 2 and have

been shown to be upregulated in bacteria compromised for other oxidative stress defenses

(91, 136, 137). S. meliloti contains three catalases, KatA, KatB and KatC, none of which

are manganese-dependent (8, 9, 91). We speculated that since sitA::mTn5 exhibits

increased sensitivity to H20 2, catalase activity may be altered in this strain. We assayed

total cell lysates of sitA::mTn5 and Rml021 grown in M9, with and without MnSO 4, for

catalase activity and observed an altered catalase activity profile in sitA::mTn5 (Fig. 5).

Most notably, KatA activity is upregulated in sitA:mTn5. KatA is controlled by the

global sensor of H20 2 stress, OxyR (10). Upregulation of KatA suggests that even during

normal growth, sitA::mTn5 experiences an increased intracellular stress from reactive

oxygen species. Furthermore, we found that sitA::mTn5 grown in M9 supplemented with

MnSO4 showed a catalase profile that appeared identical to Rm1021, indicating that

manganese starvation is responsible for the increase in oxidative stress (Fig. 5).

When comparing the catalase profile of sitA::mTn5 to its sensitivity to H20 2 we

noted two intriguing phenomenon. First, although KatA activity is strongly up regulated

in sitA::mTn5 the strain is still quite sensitive to H20 2. Second, although addition of 10

jiM MnSO 4 restores the sitA::mTn5 catalase activity profile to that of Rm1021 (Fig. 5),

sitA::mTn5 still remains slightly sensitive to H20 2 (Fig. 4B). These results suggest that

there is an additional mechanism employed by S. meliloti to manage H20 2 stress that is

dependent on SitA and possibly on full SitBCD activity as well.

sitA::mTn5 shows increased sensitivity to superoxide that is specifically

rescued by manganese. Our initial characterization of sitA::mTn5 indicated an



increased sensitivity to superoxide (114). This phenotype was more apparent in M9,

where sitA::mTn5 showed very strong sensitivity to plumbagin (Fig. 6A), a redox cycling

quinone that generates superoxide (138). sitA::mTn5 sensitivity to plumbagin appears

much more pronounced than its sensitivity to H20 2 as sitA::mTn5 requires only overnight

starvation of Mn2+ before sensitivity to plumbagin is observed. As with the sensitivity

to H20 2, growing sitA::mTn5 in M9 supplemented with MnSO 4 prior to assaying with

plumbagin decreased its sensitivity (Fig. 6B). Also like H20 2 sensitivity,

supplementation with FeSO 4 did not rescue sitA::mTn5 plumbagin sensitivity (Fig. 6C).

The addition of MnSO 4 had an even greater affect on sitA::mTn5 plumbagin sensitivity

than on its H2 0 2 sensitivity as addition of MnSO 4 to the assay completely abolished

sitA::mTn5 sensitivity to plumbagin.

SodB activity is decreased in the sitA::mTn5 mutant and correlates with a

decrease in intracellular SodB level. Having established the ability of MnSO 4 to

alleviate sitA::mTn5 sensitivity to both H20 2 and plumbagin, we sought to determine the

mechanism(s) manganese was acting through to provide oxidative stress protection.

There is an increasing list of enzymes that require Mn 2+ for activity (12). S. meliloti

encodes a superoxide dismutase (SodB) that can use either Fe 2+ or Mn 2+ as a cofactor,

but shows a much higher activity when utilizing Mn2+ (18). In gel activity assays using

total cell lysates from M9 cultures showed that SodB activity is greatly reduced in

sitA::mTn5 (Fig. 7A). The decrease in activity parallels a similar decrease in SodB

protein level from the same lysate (Fig. 7B). Addition of MnSO 4 to the cell lysate does

not rescue SOD activity (data not shown). However, if cell lysates were made from



sitA::mTn5 cultures grown in M9 supplemented with 10 _M MnSO 4, both SodB activity

and protein levels were restored nearly to wild type levels (Fig. 7A,B). This rescue is

specific as addition of FeSO4, even at 30 _M, to sitA::mTn5 cultures did not restore SodB

activity (data not shown).

To understand at which level of expression Mn2+ affects SodB, we performed RT-

PCR using mRNA extracted from Rm1021 and sitA::mTn5 cultures grown in M9. Using

primers specific to a 300 bp internal fragment of the sodB gene we found that

transcription of sodB is unaffected in sitA::mTn5 under these conditions (Fig. 7C). In

conjunction with the western blot showing a substantial decrease in SodB levels this

implies that the Mn2+ is affecting the production of SodB by either enhancing translation

of sodB mRNA and/or stabilizing SodB once translated.

Our biochemical data implicates SodB in the oxidative stress sensitivity of

sitA::mTn5. We constructed a sodB mutant (GWBD2) and sitA::mTn5 sodB double

mutant (GWBD3) to test for epistasis of oxidative stress sensitivity. Unfortunately we

were unable to find conditions under which we could accurately compare the plumbagin

sensitivity of sitA::mTn5 and the sodB mutant due to the >10 6-fold increase in plumbagin

sensitivity of the sodB mutant relative to sitA::mTn5. However we did find that the

decrease in SodB was not responsible for sitA::mTn5 H20 2 sensitivity as the sodB mutant

did not show increased sensitivity to H202 compared to Rm1021 (data not shown).

The decrease in SodB activity is not the cause of the sitA::mTn5 symbiotic

defect. The genetic and biochemical data offered strong evidence that the plumbagin

sensitivity of sitA::mTn5 is due to a decrease in SodB. To determine if a loss of SodB



activity could also be responsible for the symbiotic defect, we inoculated alfalfa with our

sodB mutant. After 4 weeks the plant height and acetylene reduction activity were

measured (Table 2). We found the sodB mutant inoculated plants to be indistinguishable

from Rm1021 inoculated plants discounting the decrease in SodB activity as the cause of

the sitA::mTn5 symbiotic defect. In agreement with this result, we also found that plants

inoculated with our sitA::mTn5 sodB double mutant exhibited the same degree of

symbiotic deficiency as sitA::mTn5-innoculated plants alone (Table 2).

Discussion

The recognized roles of manganese in bacterial physiology are steadily growing

(139). Proper uptake of manganese through SitABCD transporter homologs of S.

enterica serovar Typhimurium and S. pyogenes have been shown to be required for full

virulence of these pathogens (19, 20). We have shown that in S. meliloti, sitA is involved

in Mn2+ uptake and a disruption of SitA results in a symbiotic defect thus extending the

requirement of manganese to bacterial/plant symbiosis as well.

We found that a polar disruption of sitB causes a symbiotic defect similar to that

of sitA::mTn5 thereby implicating sitB, and potentially sitCD as well, as being required

for proper symbiotic development. A previous study that isolated a sitB transposon

mutant found that disruption of sitB did not affect symbiosis (140). That study used both

a different strain of S. meliloti (strain 242) and different cultivar of Medicago sativa

(Creola), which may explain the discrepancy between their results and ours. However, in

agreement with this previous study, we found that our sitB mutant (GWBD4) had a



severe growth defect in media lacking manganese. As with sitA::mTn5, our sitB mutant

did not grow in M9 and this defect was fully complemented by the addition of 10 _M

MnSO 4 (data not shown). As our sitA::mTn5 and sitB mutants share very similar

phenotypes both in planta and in free-living states, we feel that phenotypes we observe in

sitA::mTn5 represent a defect in the entire SitABCD transporter which requires all of its

components to function efficiently.

Our work demonstrates that SitABCD plays a very important role in Mn2+

transport in S. meliloti and that it is a deficiency in Mn2+ that is responsible for the

oxidative stress sensitivity and growth defect observed from disrupting sitA in Rm1021.

Our findings are consistent with studies of SitABCD homologs in S. enterica serovar

Typhimurium which showed that SitABCD can transport both Fe2+ and Mn 2+, however

transport of Mn 2+ is favored 100 times over Fe2+ (141). Previous work suggested that

Mn2+ alone could not rescue the growth defect of a sitA deletion (131). The authors of

that work graciously sent us their sitA deletion strain for comparison with our sitA::mTn5

strain. We found the discrepancy in results is due to the concentration of MnSO 4 added

to the medium. The previous authors reported that 1 pM MnSO 4 was not sufficient to

rescue the sitA deletion strain growth defect. We also found that 1 piM MnSO 4 was not

sufficient to rescue our sitA::mTn5 strain growth defect but that adding 10 pM MnSO 4

rescues the growth phenotype of both our and their sitA mutant strains when tested under

our conditions (data not shown).

Our work has established the important role for manganese in oxidative stress

protection in S. meliloti. The requirement for manganese in this capacity is most likely

much greater than what we have observed. Since manganese is needed for growth, we



were required to provide a low level of manganese to serve this function. As such, we

are unable to observe the actual severity of oxidative stress sensitivity in a truly

manganese-free S. meliloti culture.

Our biochemical analysis strongly suggests that superoxide sensitivity of

sitA::mTn5 is due to a decrease in SodB activity and abundance. S. meliloti SodB has

previously been shown to be able to utilize either iron or manganese but has stronger

activity in the presence of manganese (18). Given the dual metal utilization of SodB, we

found it interesting that disruption of manganese uptake specifically causes a decrease in

SodB activity and protein level. Our results suggest a strong role for manganese, but not

iron, for SodB to carry out its physiological role.

Our work has shown that the transcription of sodB is not affected in the

sitA::mTn5 background. This indicates that Mn 2+ regulates SodB at the translational or

post-translational level. One possibility is that Mn2+ is required for translation of sodB

transcript, possibly by binding to the transcript and altering its secondary structure in a

riboswitch-type manner (142). Alternatively, Mn2+ insertion in SodB may be required for

enzyme stability so that in the absence of Mn2+ SodB is rapidly degraded.

Superoxide is dismutated by superoxide dismutase into 02 and H20 2, the latter of

which is decomposed by catalase to 02 and water (138). Given the decrease in SodB

activity observed in sitA::mTn5, the 10 000- fold increase in sensitivity to plumbagin is

understandable (Fig. 6A). We found that a sodB mutant does not show increased

sensitivity to H20 2, ruling out SodB deficiency as the cause of the H20 2 sensitivity of

sitA::mTn5. Since SodB functions upstream of hydrogen peroxide detoxification, it is not

unexpected that the sodB mutant was not sensitive to hydrogen peroxide.



Rm1021 does not appear to encode a Mn2+-dependent catalase or any other

obvious Mn2+-dependent enzyme that could detoxify H20 2 (7). So what is the SitA-

dependent mechanism responsible for the H1120 2 sensitivity observed in sitA::mTn5? One

explanation is that intracellular manganese alone acts as an oxidative stress defense

mechanism. In non-protein low molecular weight complexes, Mn2+ has been shown to

decompose H20 2 (15, 16). Supporting this idea are the results that the sensitivity to H20 2

of sitA::mTn5 could be alleviated by growing the sitA::mTn5 with MnSO 4 for only 2 h

after starvation while protection against plumbagin required a much longer growth period

in the presence of MnSO 4. This may be because time is required for de novo synthesis of

SodB after addition of Mn2+, whereas once uptaken, Mn2+ ions alone are able to

attenuate the toxicity of H20 2 , decreasing the time required for rescue. Complicating this

however, is the observation that the addition of exogenous Mn2+ does not fully restore

sitA::mTn5 resistance to H20 2 (Fig. 4B). This may be because once depleted of

manganese, sitA::mTn5 uptake of Mn 2+ is not adequate to fully restore sufficient

intracellular levels required for H20 2 resistance.

sitA::mTn5 is symbiotically defective. Although a sodB mutant in Rm5000 has

previously been reported as symbiotically deficient we find that a sodB mutant in the

Rm1021 background does not exhibit a detectable symbiotic defect (143). This

discrepancy may be due to differences in strain background. Our findings eliminate the

decrease in SodB level in sitA::mTn5 as the cause of the symbiotic defect. Thus the

question still remains, what causes the symbiotic defect in the sitA::mTn5 mutant? From

homology searches, potential Mn2+-dependent enzymes encoded in the S. meliloti

genome include DegPl, DegP2, PphA, RelA/SpoT, and SodB. We have created



disruptions of each of these genes using single cross-over suicide plasmids and have

found that only the relA/spoT mutant shows a symbiotic defect, a result that was shown

previously (144). The relA/spoT mutant and sitA::mTn5 do share some free-living

phenotypes, such as an inability to grow in M9, however sitA::mTn5 does not possess

other characteristics of the relA/spoT mutant such as overproduction of succinoglycan

(data not shown). We are continuing to investigate this relationship. Although we

postulate that the sitA::mTn5 symbiotic defect is due to loss of a Mn2+-dependent

enzymatic activity it may be that S. meliloti is part of an increasing list of bacteria that

utilize the activities of Mn2+ alone and that it is simply a decrease in intracellular Mn2+

that is the cause of the symbiotic defect in sitA::mTn5.
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Table 1. Bacterial strains, phages and plasmids

Strain/Phage/ Relevant Characteristics Source/Reference

Plasmid

Strain

MT616

DH5_

DH5_ _pir

E. coli MM294 pRK600, CmR

E. coli endAl hsdR1 7 supE44 thi-1 recAl

gyrA relAl D(lacZYA-argG) U169 deoR

E. coli endAl hsdR17 supE44 thi-1 recAl

gyrA relAl D(lacZYA-argG) U169 deoR

R6K ori

T. Finan

BRL corp.

BRL corp.

SU47 SmR

Rm1021 sitA::mTn5 original isolate

Rml021 sitA::mTn5 transduced

Rm1021 sodB::pKNOCK-Tc

GWBD 1 sodB::pKNOCK-Tc

Rm1021 sitB::pJH104

GWBD1 pGW1

GWBD1 pMSO4

Rm1021 pMSO4

Rm1021

sitA

GWBD1

GWBD2

GWBD3

GWBD4

GWBD5

GWBD6

GWBD7

F. Ausubel

This study

This study

This study

This study

This study

This study

This study

This study



GWBD8

GWBD9

GWBD10

GWBD 11

AsitA

Phage

fM12

Plasmid

pKNOCK-Tc

pCRS487

pJH104

pMSO4

pGW1

R6K ori TcR

pUT::mTn5-GNm; ApR Km5

NmR

SpR

sitA complementation plasmid

M. Alexeyev

W. Reeve

This study

This study

This study

Rml021 pphA ::pKNOCK-Tc

Rml021 degPI ::pKNOCK-Tc

Rm1021 relA::pKNOCK-Tc

Rml021 degP2::pJH1O04

Rm1021 derivative, AsitA, 025009-01

Generalized transducing phage

This study

This study

This study

This study

T. Chao

T. Finan



Table 2. Plant height and nitrogenase activity of M sativa plants inoculated with Rm 1021

and indicated derivative strains after 4 weeks of growth.

Strain

Rm1021

sitA::mTn5 (GWBD1)

sodB (GWBD2)

sitA::mTn5 sodB (GWBD3)

Plant Height (cm)

11.1+ 1.8

5.5 ± 1.6

9.5 + 0.8

4.9 ± 2.1

Acetylene Reduction (pmol/nodule/h)

46.2 + 13.5

12.3 + 8.0

35.3 ± 11.3

9.9 + 6.3

Fig. 1. Morphology and ultrastructure of M. sativa nodules induced by Rm1021 and

sitA::mTn5. (A) Pink nodule induced by Rm1021. (B) Small white nodule induced by

sitA::mTn5. (C) Intermediate nodule induced by sitA::mTn5. (D) Ultrastructure of pink

nodule induced by Rml021 (Bar = 1.2 jtM). (E) All nodules induced by sitA::mTn5 had

a similar ultrastructure. The ultrastructure of a small white nodule induced by sitA::mTn5

is shown (Bar = 1.5 ýpM). Starch granules (S) and plant vaculos (V) are indicated.

Fig. 2. Transcript levels of sitB, sitC and sitD were analyzed by RT-PCR from total RNA

extracted from Rm1021 and sitA::mTn5 strains grown in M9 medium. Transcript level of

23S rRNA was determined as a loading control.

Fig. 3. Growth of Rml021 and sitA::mTn5 in M9 minimal medium. Strains grown on

LB medium were diluted to OD 600 = 0.001 in M9 and growth was monitored by OD 600.

--



Due to detection limitations of the spectrophotometer, we could only determine

measurements above OD 600 = 0.01. (A) Rml021 ( and sitA::mTn5 ( growth in M9.

(B) Rml021 ( and sitA::mTn5 ( growth in M9 supplemented with 10 tM MnSO 4.

(C) Rml021 ( and sitA::mTn5 ( growth in M9 supplemented with 30 [tM FeSO4.

Fig. 4. Sensitivity of Rm1021 and sitA::mTn5 to H20 2. Strains grown in M9 minimal

medium were diluted to OD 600 = 0.1 in M9 alone or M9 supplemented with 10 tM

MnSO 4 or 30 giM FeSO4. After 2 h, the strains were challenged with 8 mM H20 2.

Samples were taken at the indicated times post challenge and plated for cfu. The data is

represented as % survival relative to t = 0 h. (A) Rml021 ( and sitA::mTn5 () in M9.

(B) Rml021 ( and sitA::mTn5 ( in M9 supplemented with 10 tM MnSO4. (C)

Rml021 ( and sitA::mTn5 () in M9 supplemented with 30 [tM FeSO 4.

Fig. 5. Catalase activity pattern of Rm1021 and sitA::mTn5 in M9 minimal medium.

Total protein lysates were isolated from saturated cultures grown in M9 supplemented

with or without 10 tM MnSO 4. 35 jig from each lysate were submitted to

electrophoresis through a native 7.5% polyacrylamide gel and assayed for catalase

activity. The positions of KatA, KatB and KatC are noted according to Siguad et. al.

(1999).

Fig. 6. Sensitivity of Rm1021 and sitA::mTn5 to plumbagin. Strains grown overnight in

M9 supplemented with or without 10 jiM MnSO 4 or 30 jiM FeSO4 were diluted to OD 600

= 0.1 in the same respective medium and challenged with 0.75 mM plumbagin. Samples



were take at the indicated times post challenge and plated for cfu.

as % survival relative to t = 0 h. (A) Rml021 U and sitA::mTn5

Rml021 ( and sitA::mTn5 (_ in M9 supplemented with 10 [tM

( and sitA::mTn5 ( in M9 supplemented with 30 tM FeSO4.

The data is represented

(_) inM9. (B)

MnSO 4. (C) Rml021

Fig. 7. Superoxide dismutase activity pattern and protein profile ofRml021 and

sitA::mTn5 in M9 minimal medium. Total protein lysates were isolated from saturated

cultures grown in M9 supplemented with or without 10 jiM MnSO 4. 35 jig of each lysate

were submitted to electrophoresis and (A) stained for superoxide dismutase activity or,

(B) blotted for SodB protein. A sodB mutant strain (GWBD2) is shown as a negative

control for the absence of SodB. (C) Transcript level of sodB was analyzed by RT-PCR

from total RNA extracted from Rm1021 and sitA::mTn5 strains grown in M9 medium.

Transcript level of 23S rRNA was determined as a loading control.
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Absract

The composite genome of the soil bacterium Sinorhizobium meliloti encodes 6204

predicted protein-coding regions. Decades of research have helped to elucidate the

function of a small percentage of these genes, but complete biochemical annotation is still

far from complete. Detailed knowledge of the functional genome is crucial not only for

understanding the basic biology of S. meliloti but also how it develops in symbiosis. We

report here the first characterization of the symbiotically essential orf SMc01113.

SMc01113 produces anl 8 kD protein that is a member of a highly conserved protein

family, universal among bacteria. In addition to being required for S. meliloti symbiosis

with alfalfa, SMc01113 is also required to protect the bacterium from a wide range of

environmental stresses. Our findings support a role for this novel protein in RNA and/or

phospholipid metabolism.



Introduction

Under conditions of poor nitrogen availability, the _-proteobacterium

Sinorhizobium meliloti can invade and establish a chronic symbiotic infection within the

host plant Medicago sativa (alfalfa) (1, 2). The development of the symbiosis is

complex. It begins by an intricate chemical conversation with each organism secreting,

and responding to, small molecule signals. These chemical exchanges induce

physiological changes in the plant host including cortical cell division in the roots to

produce nodules, and root hair curling that traps nearby bacteria, creating an entry point

for S. meliloti (1-4). Through a plant-derived structure called an infection thread, S.

meliloti cells traverse the root hair cell until they are finally endocytosed into the cells

within the developing plant nodule (4, 5). In the nodule, S. meliloti differentiates into a

nitrogen-fixing bacteroid capable of converting atmospheric nitrogen into a usable form

for plant consumption (1, 2).

Numerous symbiotically deficient mutants of S. meliloti have been identified that

are affected in a wide array of biochemical pathways, from intermediary metabolism to

cell envelope synthesis (4, 145). Characterization of these mutants has provided insights

into bacterial functions necessary for each developmental stage of symbiosis. For

example, mutations that disrupt exopolysaccharide production by S. meliloti strain

Rml021 result in early developmental defects characterized by aborted infection threads

and the absence of bacteria in plant nodules (4, 100, 146). Other mutations, including

some that alter lipopolysaccharide synthesis, do not affect early development of

symbiosis but instead result in severe defects in later stages (4, 147). However, despite



the many genetic studies that have been carried out, we still do not have a clear picture of

the full genomic complement required by S. meliloti to successfully complete each

developmental stage of symbiosis.

The genome of S. meliloti strain Rm1021 was recently sequenced and revealed

6204 predicted protein-coding regions. Of these 6204 genes, a putative function could be

postulated for only 59.7% of Rml021 genes on the basis of bioinformatics analysis. An

even smaller percentage of genes have actually been biochemical validated (7). This fact

highlights a major stumbling block in all current omic level efforts. At best, we

understand the function of only 50% of genes in any organism we are examining (21, 22).

A screening strategy we developed for identifying symbiotically deficient mutants (148)

led to the discovery that SMc01113, which encodes a protein of unknown function, is

essential for symbiosis. The SMc0 1113 protein is highly conserved, being present in all

bacteria, and its function is critically required both to establish the chronic intracellular

infection necessary for symbiosis and for defense against a wide range of environmental

stresses.

Materials and Methods

Bacterial strains, phage, plasmids and growth conditions. Bacterial strains,

generalized transducing phage and plasmids are listed in Table 1. E. coli strains were

cultured at 370 C in LB. S. meliloti strains were cultured at 300C in LB supplemented



with 2.5 mM MgSO 4 and 5.0 mM CaC12 (LB/MC) (122). The following antibiotics were

used: streptomycin (500 [pg/ml), neomycin (200 [tg/ml) and spectinomycin (100 [ig/ml).

Genetic techniques, DNA manipulations and protein purification.

Transductions with QM12 were performed as described (89). Random mini-Tn5-GusNm

(mTn5) mutagenesis and tri-parental matings were performed as described (148). The

protocols of Sambrook (123) were used for routine manipulations of plasmid and

chromosomal DNA. To construct plasmid pGW2, full length SMc01113 was PCR

amplified and cloned into pMSO4. pGW2 was introduced into GWBD12 by triparental

mating to produce strain GWBD14. His-tagged SMc01113 was purified using Qiagen

Ni-NTA agarose according to manufactures protocol.

Stress assays and enzyme activity assays. Zone of inhibition assays were

performed as previously described (149). 10il of each stress agent was used at the

following concentration, methyl methane sulfonate (99% pure), naladixic acid (2 M),

tetracycline (10 mg/ml), chloramphenicol (20 mg/ml), crystal violet (4 mg/ml), ampicillin

(100 mg/ml), cefotaxime (10 mg/ml), menadione (1 M), hydrochloric acid (16 M).

Efficiency of plating (EOP) assays were performed as described (150). For UV

sensitivity assays, cultures were serially diluted and plated on LB agar. Plates were

irradiated at 25 J/m 2 for the indicated times and cfu determined. Phage resistance assays

were preformed as described (87). In-gel catalase assays were preformed as previously

described by (150).

Plant assays. Alfalfa seedlings were nodulated on Petri dishes of Jensen agar as

previously described (88). Three-day-old seedlings were inoculated with approximately

107 bacteria. Plant height, nodule number and nitrogen fixation were determined after 4



weeks of growth. Nitrogen fixation was quantified via the acetylene reduction assay

(90). Ethylene-acetylene separation and quantitation were carried out on a Shimadzu GC-

8A gas chromatograph. The amount of ethylene produced was calculated by peak

integration and conversion to picomoles of ethylene formed per nodule by comparison to

a standard curve developed from injected standard amounts of ethylene. 4 week old

nodules were examined by electron microscopy using standard techniques (128).

Results

A SMcOlll3::mTn5 mutant is severely defective for symbiosis with alfalfa.

We previously described a two-part screening strategy we used to identify a number of

mTn5 mutants of S. meliloti strain Rm1021 that were both sensitive to H20 2 and

defective in symbiosis with alfalfa (148). Continuation of that screen identified an

additional mutant disrupted in the hypothetical orf SMcO1113.

The SMcOlll3 mutant we identified is disrupted by a mTn5 transposon inserted

at base 284 of the 507 bp SMcO1113 open reading frame. After determining the H2 0 2

sensitivity and symbiotic defect of the original isolate, we transduced the

SMcO1113::mTn5 allele into the parental strain, Rm1021. We tested several transducants

and confirmed that both the H2 0 2 sensitivity and symbiotic defect are linked to the mTn5

insertion in SMcOlll3. We selected one transductant, GWBD12 for further

investigation. We will refer to strain GWBD12 as the SMcOlll13::mTn5 mutant.



The SMcO1113::mTn5 mutant had a striking symbiotic defect with the plant host

alfalfa. To quantify the symbiotic defect of the SMcO1113::mTn5 mutant, we inoculated

the SMcO1113::mTn5 mutant and its Rm 1021 parent onto alfalfa seedlings. After 4

weeks, we assayed plant height, nodule type, and ability to fix nitrogen as measured by

acetylene reduction (Table 2). After 4 weeks, Rm1021 inoculated plants were on average

80% taller than the SMcOl113::mTn5 mutant inoculated plants, and were a healthy green

color compared the unhealthy yellow color of plants inoculated with the

SMcO1113::mTn5 mutant (Fig. lA, Table 2). Nodules from Rml021 inoculated plants

were mostly pink (Table 2, Fig. IB), a color due to leghemoglobin, which is a marker of

a successful symbiosis (130). In contrast, SMc01113::mTn5 mutant inoculated plants

produced only small white nodules (Table 2, Fig. 1 C) indicative of a failed symbiosis.

Consistent with both of these observations, Rm1021 inoculated plants showed much

higher levels of nitrogen fixation than those inoculated with the SMcOl113::mTn5 mutant

(Table 2). The symbiotic defect of the SMcO1113::mTn5 mutant was fully

complemented by ectopic expression of SMc01113 from a plasmid (Table 2).

To gain a better understanding of the nature of the symbiotic deficiency, we

examined the ultrastructure of the white nodules produced by plants inoculated with the

SMcO11l3::mTn5 mutant. Nodule cells from plants inoculated with Rml021 were full of

bacteroids (Fig. 1D). In striking contrast, nodule cells from plants inoculated with the

SMcO1113::mTn5 were completely devoid of bacteroids (Fig. 1E). The absence of

bacteroids explains the extremely low acetylene reduction capacity of SMcO1 113::mTn5

mutant inoculated plants (Table 2). In addition, plant cells of SMcO1113::mTn5 mutant



induced nodules were misshapen and lacked observable vacuoles when compared to

those from Rml021 induced nodules (Fig. ID vs. lE).

The small white nodules produced by plants inoculated with the

SMcOll13::mTn5 mutant were very similar to nodules induced by Rm 1021 strains

defective in exopolysaccharide production, both in gross morphology and in

ultrastructure (88, 151). This similarity led us to test the SMcO113::mTn5 mutant for an

alteration in exopolysaccharide production, however we found no change in

exopolysaccharide (succinoglycan) production by the SMcO1113::mTn5 mutant as

measured by calcofluor binding assays (data not shown) (151). Nonetheless, the absence

of bacteroids in nodules from plants inoculated with the SMcO1113::mTn5 mutant or

exopolysaccharide mutants contrasts strikingly with nodules induced by Rm1021

lipopolysaccharide (LPS) mutants, which are also proficient for exopolysaccharide

synthesis. While defective for symbiosis, nodules from plants inoculated with LPS

mutants are still filled with bacteroids (147). This suggests that the symbiotic defect of

the SMcO1113::mTn5 mutant resembles that of exopolysaccharide deficient mutants in

that the nodule invasion process is aborted before release of invading bacteria in the cells

of the developing nodule.

SMc01113 is a member of a highly conserved protein family. SMcO1113

codes for a hypothetical, highly conserved protein of unknown function (7). The protein

family that includes SMc01113 is designated as COG0319 (24, 152). We cloned orf

SMcOJl13 into a protein expression vector and found that it did produce an 18kD protein

as predicted (Fig. 2A).



Homologs of SMcO 1113 are found in all sequenced bacteria and are predicted to

be putative metal-dependent hydrolases (24, 152). The predicted function is based on a

conserved motif H(X) 3H(X) 4DH (Fig. 2B) that bears a resemblance to certain eukaryotic

metal-dependent proteases (153). Homologs are strongly conserved throughout the

alphaproteobacteria (Fig. 2B). The crystal structure of the homolog from Aquifex

aecolius was recently solved and revealed that the spatial arrangement of three conserved

histidines could allow them bind a metal ion (154). The same authors tested the purified

protein for more than 15 different general biochemical activities but obtained only

negative results in all assays (154). This suggests that the SMc0 1113 protein may have a

unique or unusual substrate rather than having a generalized hydrolytic function active

against a variety of substrates. This study is the first to offer insight into the biological

role(s) of this universally conserved bacterial gene.

The SMcOl113::mTn5 mutant is sensitive to agents targeting key biological

processes. Previous computational and biochemical analyses failed to elucidate a

function for the SMcO 1113 protein family (152, 154). However, as described below,

when we tested the SMcOl113::mTn5 mutant for altered sensitivity to several different

stresses we found that the strain was sensitive to a remarkably wide spectrum of

environmental stresses targeting several key cellular processes and structures. These

included oxidative stress protection, DNA repair, cell wall synthesis, protein synthesis

and cell envelope stability (Table 3, Fig. 3 and 4). All SMcOlll3::mTn5 mutant

sensitivities were fully complemented by ectopic expression of SMcO1113 from a

plasmid (data not shown).



(i) Oxidative Stress. We originally identified the SMc01113::mTn5 mutant

based on its increased sensitivity to H202 (148). We initially measured the sensitivity of

the SMcOlll3::mTn5 mutant to H20 2 by a plating assay, where we observed a 16%

increase of its zone of inhibition (ZI) relative to the parental strain Rm1021 (Table 3). To

better quantify the difference in H20 2 sensitivity, we determined the efficiency of plating

(EOP) of each strain. Cultures of Rml021 and the SMc0lll13::mTn5 mutant were

serially diluted, plated on LB agar containing increasing concentrations of H20 2 and cfu

were counted after 4 days growth. We found the SMc0lll3::mTn5 mutant was

substantially more sensitive than Rm1021 over a range of H20 2 concentrations (Fig. 3A).

Bacteria deficient in catalase activity also show increased sensitivity to H20 2 (8, 9, 136).

We assayed total cell lysates of Rm1021 and the SMc01113::mTn5 mutant for catalase

activity and found no observable differences in catalase activity between the two strains

(Fig. IB). This suggests that an alteration in catalase activity is not responsible for the

increased sensitivity of the SMcO1113::mTn5 mutant to H20 2. We also tested the

SMcO1113::mTn5 mutant for sensitivity against the superoxide generator menadione

(138) by ZI assay. The SMcOlll3::mTn5 mutant did not show altered sensitivity to

menadione (Table 3). This suggests that oxidative stress deficiency defect of the mutant

is specific to H20 2-induced stress.

(ii) DNA Metabolism. Since H20 2 causes DNA damage (136), we tested the

sensitivity of the SMc01113::mTn5 mutant to other agents that damage DNA; methyl

methane sulfonate (MMS), ultraviolet radiation (UV) and nalidixic acid. MMS produces

a variety of DNA lesions including N3-methyladenine, lethal lesions that inhibit DNA

synthesis and need to be actively repaired (155-157). UV induces a variety of



photoproducts that interfere with DNA replication (70). Nalidixic acid targets DNA

gyrase, whose role is to overcome topological problems encountered during DNA

replication (158). Strikingly, we found that the SMc01113::mTn5 mutant displayed an

increased sensitivity to all of these agents (Table 3, Fig. 4A). These results indicate that

the SMcOlll3::mTn5 mutant has a general problem dealing with DNA damage or DNA

replication problems rather than a defect in a specific DNA repair process.

(iii) Protein Synthesis. Our recognition that the SMcOlll3::mTn5 had a

pleiotropic phenotype then led us to test the sensitivity of the strain to agents that inhibit

protein synthesis. We found that the SMc01113::mTn5 mutant exhibited increased

sensitivity to both tetracycline and chloramphenicol (Table 3). Both antibiotics inhibit

translation, however tetracycline does so by blocking the binding of the incoming

aminoacylated tRNA to the A site (159, 160) while chloramphenicol inhibits peptide

bond formation (161).

In addition, we used the Phenotype MicroArrays (PMs) system to simultaneously

test the mutant strain for further phenotypes (162). Using this technology we found that

the SMcOlll3::mTn5 mutant was also sensitive to the aminocyclitol spectinomycin, the

aminoglycoside hygromycin B and macrolides spiramycin and tylosin (Table 4). As each

of these antibiotics affects ribosome activity in a different way, these results suggest a

possible defect in ribosome structure or general impairment of translation that increases

its sensitive to all types of ribosome directed antibiotics.

(iv) Cell Envelope Integrity. Maintenance of cell envelope integrity has been

shown to be crucial for Rml021 to develop a normal symbiosis (87, 147, 149). We

tested the integrity of the SMcOl I13::mTn5 mutant cell envelope with crystal violet and



the detergent deoxycholate (DOC). An altered sensitivity to detergents is usually an

indicator of a change in the bacterial cell envelope and the hydrophobic dye, crystal

violet, is frequently used as an indicator of alterations in the cell envelope such as those

caused by changes in the LPS (149). The SMc01113::mTn5 mutant showed increased

sensitivity to crystal violet when assayed by zone of inhibition assay (Table 3). The

SMcOlll3::mTn5 mutant was also very sensitive to DOC by EOP assay (Fig. 4B). The

increased sensitivity to both these agents strongly suggests that the SMc01113::mTn5

mutant has a cell envelope defect in addition to the other defects described above.

Lipopolysaccharide (LPS) comprises the outer leaflet of the outer membrane of

Gram-negative bacteria. S. meliloti mutants with alterations in their LPS layer not only

exhibit sensitivity to detergents but also show alteration in phage sensitivity, and often

have symbiotic defects (87). The striking sensitivity of the SMc01113::mTn5 mutant to

DOC and crystal violet, along with its severe symbiotic defect, had us question whether

the LPS layer was drastically altered in the mutant. We tested the mutant and parental

strain against a panel of phage but found both strains showed the same pattern of

sensitivity and resistance (Table 5). We also found that the SMc01113::mTn5 strain was

not sensitive to low pH (Table 3), another indicator of LPS alterations (149). This

suggests that a gross LPS alteration is not the cause of the cell envelope instability of the

SMc01113::mTn5 mutant.

(v) Peptidoglycan Synthesis. The severe sensitivity of the SMc01113::mTn5

mutant to agents that affect outer cell envelope integrity led us to question whether

additional components of the cell envelope may also be compromised. We tested

SMcO I13::mTn5 mutant against two inhibitors of peptidoglycan synthesis; ampicillin



and cefotaxime. Both ampicillin and cefotaxime inhibit the transpeptidase reaction

required to crosslink glycan-linked peptide chains to form the mature peptidoglycan layer

(163). The SMcO1113::mTn5 mutant was severely sensitivity to both cell wall inhibitors

(Table 3). To better quantify this sensitivity, we performed an EOP assay to measure

cefotaxime sensitivity and found a 105-fold increase in sensitivity at high doses (Fig. 4C).

Since the peptidoglycan layer connects the inner and outer membrane, a weakened cell

wall may perturb the outer membrane leading to increased sensitivity other cell envelope

destabilizing agents such as DOC and crystal violet.

Discussion

S. meliloti SMcO 1113 is a member of a highly conserved family that is found in

every bacterium whose genome has been sequenced and is said to be part of the 206

genes that are required to be a bacterium (25). This genetic study offers the first insights

into the biological function of this gene family in any bacterium. We were struck by the

wide spectrum of stresses to which the SMc01113::mTn5 mutant is sensitive. These

results would seem to imply that the SMcO 1113 protein either plays numerous

independent biological roles or that it instead perturbs a fundamental cellular function

that affects a wide range of processes. Considering the striking diversity of the chemical

structures and modes of action of agents to which the SMc01113::mTn5 mutant is

sensitive, we consider it more likely that the SMcO 1113 protein affects one central

biological function rather than playing an active role in many different stress responses.



In addition to identifying phenotypes of the SMc01113::mTn5 mutant, we used

computational analysis to identify gene neighbors of SMc01113 and its homologs

throughout the bacterial domain (164, 165). The repeated occurrence of genes in each

other's neighborhood in genomes has been shown to indicate a functional association

between the proteins they encode (164). Our analyses showed that SMc01113 and its

homologs were always present near genes that function in RNA and phospholipid

metabolism. These include genes for tRNA processing and ribosome maturation such as

trmB and era, as well as those responsible for phospholipid turnover and modification

including lnt and dgkA . A recent paper describing a similar analysis of the SMc01113

genomic locus arrived at a similar conclusion (166).

A defect in either RNA or phospholipid metabolism could explain why the

SMcOlll3::mTn5 mutant is sensitive to so many agents or treatments. Sensitivity to

DOC, crystal violet, ampicillin and cefotaxime all suggest a weakened cell envelope in

the SMc01113::mTn5 mutant. Altered phospholipid metabolism could result in a

destabilized cell membrane that in turn could disrupt synthesis of new cell wall. This

combination could lead to sensitivity of the observed agents. However, exactly how

altered phospholipid metabolism would affect DNA metabolism or ribosome function is

unclear.

A defect in RNA metabolism could occur at many levels. The large spectrum of

ribosome inhibitors to which the SMcO1113::mTn5 mutant is sensitive raises the

possibility the mutant may have a defect in ribosome assembly or function. Stress

conditions often activate bacteria to synthesis defense proteins (136). Decreased

translation efficiency could hinder this response and leave a bacterium vulnerable to a



wide array of stresses. Recent reports have also shown that ribosome maturation and

DNA replication are intimately linked, which could explain the additional sensitivities of

the SMcOlll3::mTn5 mutant to UV, MMS and nalidixic acid (67, 81). In addition, we

found that the SMc01113::mTn5 mutant had a modest growth defect in LB (doubling

time Rml021= 3.0 + 0.1 h vs. SMcOlll3::mTn5 = 4.4 + 0.3 h). Since growth rate is

intimately coupled to protein synthesis (167) a defect in ribosome maturation could also

account for the difference in growth rate.

Our previous report of our two part screening strategy for symbiotic mutants

identified a mutant defective in translation (148). This mutant had a mTn5 insertion in

the gene coding for peptidyl-tRNA hydrolase and also exhibited a severe symbiotic

phenotype and increased sensitivity to H20 2 (148). If SMc0 1113 is involved in protein

translation, these results suggest that symbiotic development is very sensitive to any

perturbation to translation.

While its biochemical function remains elusive, our results clearly show that

SMc01113 is absolutely required for Rm1021 to establish an intracellular infection with

alfalfa (Fig. 1). Since homologs of SMcO 1113 are found in every sequenced bacteria,

this gene cannot have evolved for solely for function in Rhizobial symbiosis.

Nevertheless, in the many nodulation assays we have carried out with the

SMcO1113::mTn5 mutant, we have never observed the formation of a pink nodule (data

not shown). This suggests that the function of SMc01113 cannot be compensated for by

any other gene or pathway in S. meliloti during symbiosis. Serious effort will be required

to identify the functional defect of such a pleiotropic mutant. Future work to identify the

specific pathway the SMc 01113 protein functions in will not only increase our



understanding of symbiosis but will also expand our knowledge of the role this novel

protein plays in all bacteria.
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Table 1. Bacterial strains, phages and plasmids

Strain/Phage/ Relevant Characteristics Source/Reference

Plasmid

Strain

MT616

DH5_

DH5_ _pir

E. coli MM294 pRK600, CmR

E. coli endAl hsdR17 supE44 thi-1 recAl

gyrA relAl D(lacZYA-argG) U169 deoR

E. coli endAl hsdR17 supE44 thi-1 recAl

gyrA relA1 D(lacZYA-argG) U169 deoR

R6K ori

T. Finan

BRL corp.

BRL corp.

SU47 SmR

Rm1021 SMc01113::mTn5 original isolate

Rm 1021 SMcOl 3::mTn5 transduced

Rm1021 (pMSO4)

SMcOlll3::mTn5 (pMSO4)

SMcOlll3::mTn5 (pGW2)

G. Campbell

Rml021

SMc01113

GWBD12

GWBD5

GWBD13

GWBD14

F. Ausubel

This study

This study

B. Davies

This study

This study

Phage (Q)

M1



M5

M6

M7

M9

MIO

M1l

M12

G. Campbell

G. Campbell

G. Campbell

G. Campbell

G. Campbell

G. Campbell

T. Finan

W. Reeve

M. Barnett

This study

Novagen

This study

Generalized transducing phage

pUT::mTn5-GNm; ApR Km 5

SpR

SMc0 113 complementation plasmid

T7 promoter, ApR

SMc0lll3 in pETI la

Plasmids

pCRS487

pMSO4

pGW2

pETl la

pGW3



Table 2. Plant heights, nodule types and nitrogenase activities of alfalfa inoculated with

Rm1021 and derivative strains after 4 weeks of growth.

Strain Plant Pink White Acetylene

Height nodules nodules Reduction

(cm) (%/plant) (%/plant) (nmol/nodule/h)

Rm1021 10.2±1.0 93.6±8.3 6.4±8.3 19.5+0.4

SMcOl113::mTn5 2.2+1.0 0 100 1.1±1.1

Rml021(pMSO4) 10.8+2.0 93.4+8.2 6.6±7.5 N/A

SMcO1113::mTn5(pMS04) 2.6+0.6 0 100 N/A

SMcO113::mTn5(pGW2) 11.1+2.2 91.1±9.9 8.9+10.0 N/A

N/A: not available



Table 3. Zone of inhibition (ZI) results for Rml021 and SMc0113::mTn5 mutant strains

screened against several environmental stresses.

Stress Zone of Inhibition (cm)

H20 2

Menadione

Methyl methane sulfonate

(MMS)

Nalidixic Acid (NA)

Tetracycline (Tc)

Chloramphenicol (Cm)

Crystal Violet

Cone. Hydrochloric Acid

Ampicillin (Ap)

Cefotaxime (Cf)

Rm1021 SMcO13::mTn5

3.7±0.1 4.3±0.1

3.2±0.1 3.2±0.1

4.4±0.1 5.0±0.1

5.4±0.1

6.0±0.1

5.5±0.1

3.6±0.1

4.2±0.1

5.1±0.1

4.1±0.1

6.3±0.1

6.6±0.1

6.1±0.1

4.2±0.1

4.2±0.2

7.7±0.1

6.8±0.1



Table 4. Mutant Phenotypes of the SMc01113::mTn5 mutant by Phenotype Microarray

analysis.

Testa Differenceb

Spectinomycin -105

Hygromycin B -101

Spiramycin -103

Tylosin -125

a Chemicals were tested in 96-well PMs

b The OmniLog-Pm software generates time course curves for respiration (tetrazolium

color formation) and calculates differences in the areas for mutant and control cells. The

units are arbitrary. Negative values indicate that the control showed greater rates of

respiration than the mutant. The differences are averages of values reported for two or

more mutants of each type compared with the corresponding control strains.

Table 5. Phage sensitivity of Rml021 and SMcO I1113::mTn5 mutant strains.

Strain Phage Sensitivity

M1 M5 M6 M7 M9 M10 M11 M12

Rml021 S S S S S R R S

SMcOI113::mTn5 S S S S S R R S

R: resistant, S: sensitive.



Fig. 1. Nodule morphology and ultrastructure of alfalfa inoculated by Rm1021 and

SMcOlll3::mTn5. A. Plants inoculated with either Rm1021 or the SMcO1113::mTn5

mutant after 4 weeks growth. Plants were inoculated as indicated. B. Pink nodule

induced by Rml021. C. Small white nodule induced by SMcOlll13::mTn5. D.

Ultrastructure of pink nodule induced by Rm1021 (Bar = 1.0 [tM). E. The ultrastructure

of a small white nodule induced by the SMcOlll13::mTn5 mutant is shown (Bar = 1.0

tM). Plant vacuoles (V) are indicated.

Fig. 2. Protein expression and sequence alignment of SMc 1113. A. Purified His-

tagged SMc0 1113 run by SDS PAGE. B. SMc01113 homologs were aligned using T-

coffee (168). The red bar underlines the conserved motif used to classify this protein

family.

Fig. 3. Sensitivity of Rml021 and the SMc01113::mTn5 mutant to H20 2. A. Strains

grown in LB/MC were diluted to OD600 0.1 in LB/MC, serially diluted and spotted on

LB agar containing increasing amounts of H20 2. Cfu were counted after 4 days growth at

300C. Rm1021 (_ and SMcO1113::mTn5 (_). B. Catalase activity pattern of Rml021

and SMcOl113::mTn5. Total protein lysates were isolated from saturated cultures grown

in LB/MC. 35 ýtg from each lysate were submitted to electrophoresis through a native

7.5% polyacrylamide gel and assayed for catalase activity.



Fig. 4. Sensitivity of Rml021 and the SMcOlll3::mTn5 mutant to UV, deoxycholate

and cefotaxime (Cf). Strains grown in LB/MC were diluted to OD 600 0.1 in LB/MC,

serially diluted and spotted on LB agar. A. Plates were irradiated for increasing periods

of time at 25 J/m 2. B. Plates contained increasing amounts of deoxycholate. C. Plates

contained increasing amounts of cefotaxime (Cf). Cfu were counted after 4 days growth

at 300C. Rml021 (_) and SMc01113::mTn5 (_).
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Chapter 5

Identification of a universally conserved bacterial protein required for ribosome

maturation



Abstract

In Chapter 3, I introduced the symbiotically essential orf in S. meliloti, SMcOI 113.

The striking pleiotropy of the SMc01113 mutant lead me to further investigate the

molecular function of SMcO 1113. I show here that the SMcO 1113 protein is part of a

large Cluster of Orthologous Group (COG), COG0319 and that homologs of this protein

are functionally equivalent. Using the model system of Escherichia coli, I demonstrate

that the E. coli homolog, YbeY, is required for maturation of the ribosomes. Loss of

YbeY activity affects maturation of both 16S and 23S rRNA and causes a severe loss of

polysomes. 70S ribosomes formed in a AybeYmutant show reduced translational activity

and fidelity. I further demonstrate the human homolog, C21 orf57, may play a similar

role in human mitochondria.



Introduction

Protein translation is a complicated process performed by the ribosome and its

associated factors (27-30). In bacteria the ribosome is dived into two main two units; a

large 50S subunit and smaller 30S subunit. The 50S subunit is composed of a 23S and 5S

rRNA along with 33 ribosomal proteins while the 30S subunit is composed of a 16S

rRNA and 21 ribosomal proteins (28, 30, 31). These two subunits come together to form

an active 70S ribosome that is competent for translation. Although reconstitution of

active 30S and 50S subunits has been performed in vitro using only their respective

rRNA and proteins (32, 33), it is recognized that many accessory factors are required for

50S and 30S formation in vivo (29, 34). Proper assembly of the ribosome is crucial to its

function. Several mutants have been identified that disrupt processing of rRNA or

assembly of subunits that have detrimental affects on ribosome synthesis, translation

fidelity and cell viability (29, 34).

The maturation of a ribosome occurs in a cooperative and ordered fashion (29,

34). 16S, 23S and 5S rRNA are cotranscribed as part of a large precursor. Before

transcription is even complete ribosomal proteins associate with rRNA forming

ribonucleoprotein complexes that are acted on by RNase III. RNase III begins rRNA

maturation, cleaving it into precursors that will go onto become mature 16S, 23S and 5S

rRNA. RNases capable of the final maturation of the 23S (35, 36) and the 5' end of 16S

rRNA (37)have been identified, however the identity of the enzyme responsible for the

3'maturation of 16S rRNA has remained elusive (37). While final maturation of certain

rRNA termini can be performed using only 70S ribosomes in vitro (37), it appears that



the final rRNA maturation steps in vivo may actually require formation of polysome

structures (38, 39).

Protein translation proceeds through 4 stages; initiation, elongation, termination

and ribosome recycling. Initiation of protein synthesis is a complex process (40). While

it cannot be entirely separated from the preceding ribosome recycling phase of

translation, I will outline the general steps of initiation following 70S dissociation.

Initiation begins with the 30S subunit bound by initiation factors (IFs) 1 and 3. IF1 Binds

specifically to the base of the tRNA binding aminocyl (A) site of the 30S ribosomal

subunit and is thought to direct the initiator tRNA (fMet-tRNAfet) to the ribosomal

peptidyl (P) tRNA binding site (41, 42). IF2, initiator tRNA and mRNA then associate

with the 30S subunit in an as of yet unknown order (34). IF2 is a GTP/GDP-binding

protein whose main function is to specifically interact with fMet-tRNAfMet and to position

it correctly in the ribosomal P-site, thereby increasing the fidelity and rate of translation

initiation (43, 44). IF2 also promotes 30S/50S subunit association (45). The Shine-

Dalgamo (SD) sequence of canonical mRNAs interact with the anti-SD sequence of the

16S rRNA (46), and the initiation codon is adjusted to the P-site of the ribosome(47).

fMet-tRNAfMet is then positioned in the P-site and, after a conformational change in the

30S subunit promoting fMet-tRNAfMet codon-anticodon interactions, the 30S initiation

complex is formed (48, 49). IF1 and IF3 are ejected from the complex, while IF2

promotes association with the 50S subunit to the 30S complex(50). fMet-tRNAfMt is

adjusted to the correct position in the P-site, and IF2 is released from the complex. The

resulting complex is then competent to enter elongation phase of translation.



Error rates of translation in vivo have been estimated to be on the order of 10- to

10-4 (51). Translational errors can arise from improper tRNA aminoacylation, incorrect

tRNA selection by the ribosome, or frameshifting during translation. tRNA

aminoacylation is very accurate. For example Ile-tRNA'le-synthetase will exclude Val

with an efficiency of 2.5 x 10-' (52, 53). This suggests that the errors in decoding by the

ribosome are responsible the cause of translation errors.

Translational frameshifting occurs by slipping of the ribosome to an alternate

reading frame. Frameshifting is generally detrimental as it changes the reading frame of

the message being translated producing a truncated protein (54). The exact mechanism of

frameshifting has not been established (55), however factors known to potentiate the

event have been discovered. These factors include certain mutations in 23S and 16S

rRNA (56, 57), mutations in ribosomal proteins (58, 59) and elongation factor 2 (60), as

well as loss of certain tRNA modifications (61). Interestingly however, expression of

certain genes actually require frameshifting for expression such as the Gag-Pol-Pro

protein in retroviruses (62) that require -1 frameshifting or the E. coli prfB gene that

requires +1 frameshifting (63).

In Chapter 4, I discussed the identification of a universally conserved bacterial

protein of unknown function, required for symbiosis of Sinorhizobium meliloti with the

plant host Medicago sativa. I show here that homologs of this protein are functionally

equivalent, and that the E. coli homolog, YbeY, is required for maturation of the

ribosomes. Loss of YbeY activity affects maturation of both 16S and 23S rRNA and

causes a severe loss of polysomes. 70S ribosomes formed in a AybeYmutant show

reduced translational activity and fidelity.



Materials and Methods

Strains, plasmids, growth conditions and DNA manipulations. Strains and plasmids

are shown in Table S1. Strains were grown aerobically in Luria-Berani (LB) at 37 oC.

Ampicillin was used at 100 gg/ml. Allele deletion was performed using the methods of

Warner (169). Allele transfers were done by P1 transduction. DNA manipulations were

done according to the methods of Sambrook (123).

Phenotypic analysis. Stress and plant assays were performed as previously described

(150). Methonine and uridine incorporation assays were performed essential as described

(170).

Protein purification. ybeYwas cloned into pET28A with a C-terminal FLAG-TEV-

MBP-His tag. YbeY expression was induced with 1mM IPTG. Protein lysates were

bound to amylase resin (NEB), loaded into a column and washed with 10 column

volumes of buffer. Protein was eluted in 10 ml buffer with 10mM maltose. The eluted

proteins were digested with TEV protease for 48 h at 40C. The digested sample was

passed over a sizing column. YbeY fractions were collected and concentrated in a final

buffer of 20mM Tris pH 7.5, 200mM NaCl, 5mM CaC12, 5mM ZnSO4, 2 mM BME and

10% glycerol. Final protein concentration was determined by Bradford.

Polysome and rRNA analysis. Polysome profiles were obtained essentially as described

(171). rRNA was extracted from logarithmically growing cultures in LB at 370C using



Qiagen RNasey Mini Kit. Synergel/Agarose gel electorphoresis and northern analysis

was performed as described (123, 172).

Ribonuclease protection assay were performed using RPA III assay from Ambion as per

manufactures instructions. Primer extension assays were performed using AMV reverse

transcriptase primer extension system from Promega as per manufactures instructions.

Protein lysates and immunoblots. Strains were grown in and lysed by two passages

through a bead beater with glass beads. Immunoblotting was performed as previously

described (126), loading equal amounts of protein for each sample.

In vitro translation and lacZ assays. In vitro translation assays were performed

essentially as described (173). LacZ assays were performed as described (122).

Results

Members of COG0319 show functional equivalency across bacterial genuses.

In Chapter 4, I reported on the characterization of a mutant of the plant symbiont

Sinorhizobium meliloti that was extremely defective in symbiosis and also showed

increased sensitivity to a wide spectrum of environmental stresses. This mutant was

disrupted in an orf of unknown function, SMcO1113. The SMc0O113 protein is part of a

large Cluster of Orthologous Group (COG), COG0319. A Cluster of Orthologous Group

(COG) consists of individual homologous genes or homologous groups of paralogs from



several completely sequenced genomes, which will ultimately correspond to an ancestral

domain (152). Members of COG0319 are predicted metal-dependent hydrolases based

on a conserved motif HXXXHXXXXDH (Fig. 1). This protein family is ubiquitous

among bacteria and is part of the predicted 206 genes comprising the minimal bacterial

genome (25). My computational analysis showed that homologs are also present in

eukaryotes including humans (Fig. 1). My analysis also revealed another highly

conserved motif NXXXRXXXXTXVXSF (Fig. 1).

The universal conservation of this protein among bacteria and extreme pleiotropic

nature of the S. meliloti SMcO 113 mutant drove me to continue my studies of this highly

conserved and very important protein family not only to learn more about its role in S.

meliloti symbiosis, but also to more broadly understand its function in all bacteria.

Due to its experimental tractability and vast information resources, I choose to use E. coli

to further study the function of this family of protein. In E. coli, the COG0319 homolog

is designated ybe Y. I constructed an unmarked, non-polar deletion ofybe Y in E. coli

strain MC4100 by the methods of Warner (169), which I refer to as the AybeYmutant.

Like the S. meliloti SMc0113 mutant I described in Chapter 3, the E. coli AybeYmutant

exhibited a decreased growth rate in rich media compared to the parental strain MC4100

(40 ± 2 min vs. 28 ± 3 min) (Fig. 2A), and significant sensitivity to DOC, _-lactams,

H20 2 and temperature (Fig. 2B, C, D and Fig. 3). All phenotypes are rescued by ectopic

expression of ybe Y in the AybeY mutant background (Fig. 3 and Supporting Figure (S)

Fig. Si).

The similar spectrum of phenotypes shared by the E. coli and S. meliloti

COG0319 mutants strongly suggested that these homologs play a similar role in their
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respective bacterium. To test for functional complementation between COG0319

members I expressed the S. meliloti homolog SMcOl113, as well as the B. subtilis

homolog, yqfG, in the E. coli AybeY mutant background. Expression of either homolog

rescued the AybeYmutant phenotypes as effectively as ybeY itself (Fig. 3 and Fig. S1,

S2). I also expressed ybeYin the S. meliloti background and found it was able to rescue

all free-living and symbiotic phenotypes (Fig. S3 and Table S2). These results strongly

support a universally conserved role for COG0319 members in bacteria.

AybeY is defective in 70S formation. My bioinformatics analysis on the

genomic location of ybeYhomologs in similar gene clusters in non-closely related

bacteria proposed that ybeYhomologs were functionally linked to the modification of the

translation machinery in different classes of bacteria (164, 165). This information, in

combination with the pleiotropic nature of AybeYmutant led me to hypothesis that YbeY

may function in protein translation.

Since the ribosome is the fundamental unit of translation (30), I began my

molecular analysis of the defect in the Aybe Y mutant by analyzing the polysome profile

of MC4100 and AybeY mutant strains. Cell extracts from logarithmically growing

cultures were separated over a sucrose gradient to evaluate the cellular content of 30S,

50S, 70S and polysome particles. In comparison to MC4100, the AybeYprofile showed a

dramatic decrease in polysomes and a striking increase in both free 50S and free 30S

subunits (Fig. 4A vs. B). Integration of the area under these curves showed that the

polysome decrease is equal to the 30S and 50S subunit increase in the AybeYmutant

(data not shown). Expotic expression ofybeYrestored the AybeYmutant polysome
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profile to that of the MC4100 strain demonstrating that the defect was due to the absence

ofybeY(Fig. S4).

YbeY is required for 16S and 23S rRNA maturation. Ribosomes are

composed of 3 rRNA molecules and their associated ribosomal proteins (30). To explore

the cause of the AybeYmutant abnormal polysome profile, I first looked at protein

content of the 70S, 50S and 30S peaks from MC4100 and AybeYmutant strains.

However, I did not observe any gross differences in ribosomal protein content between

MC4100 and AybeYmutant 70S, 50S or 30S particles (Fig. S5).

Next I examined the rRNA. E. coli ribosomes contain 3 different rRNAs; a 16S in

the 30S subunit and a 23S and 5S both in the 50S subunit. These three rRNA are

originally transcribed as part of a large precursor RNA that is then processed through a

series of cleavage events, to give the individual mature species (174). I found that in the

AybeYmutant, there was in increased amount of a 16S precursor (pl6S) (Fig. 5A). This

precursor was also found in MC4100 rRNA but at a much lower level suggesting it is a

natural precursor on its way to forming maturel6S (ml6S). Ecoptic expression ofybeY

relieved this maturation defect in AybeY(Fig. 6A). The increase in immature 16S

accumulation was not due to the slower growth rate of the AybeYmutant, as I observed

the same elevated level of pl6S rRNA in the AybeY mutant when grown at the same rate

as MC4100 (data not shown).

I wanted to determine how this precursor 16S rRNA species was distributed

among the 70S and 30S particles. In the WT strain both ml6S and pl6S rRNA were

found in the 30S fraction however, only the mature form was found in the 70S ribosome
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(Fig. 5B). In the AybeYmutant, pl6S rRNA was the dominate form ofrRNA found in

the 30S fraction (Fig. 5B). ml6S was present in the AybeYmutant 30S particles along

with another faster migrating band not seen in MC4100 30S rRNA I refer to it as 16S*.

Interestingly, there was a substantial amount of pl6S rRNA in the AybeY mutant 70S

ribosomes (Fig. 5B). Immature 16S rRNA is not competent for translation (175)

suggesting that a large fraction of the 70S ribosomes in Aybe Y mutant are not functional.

The absence of the 16S* from 70S ribosomes (Fig. 6B) suggest that it results from

improper processing of pl6S in the AybeY mutant that prevents its 30S subunit from

being incorporated into mature ribosomes.

After being cotranscribed, RNase III cleaves 16S rRNA away from the remaining

transcript as a 17S precursor species (174). 17S rRNA is acted on at both 5' and 3' ends

to yield ml6S. Two enzymes, CafA and RNase E act to remove 155 bp from the 5' end

of the 17S rRNA (37). The enzyme responsible for removing 33 bp from the 3' end of

17S is not known (37). To determine if the p16S from the AybeYmutant was 17S rRNA,

I began by using Northern analysis with probes that annealed the ends of the 17S

precursor (Fig. 6A). I found that both 5' and 3' immature ends of 17S rRNA were

present in the Aybe Y mutant and at much higher levels than in MC4100 (Fig. 6B, C). To

further support this finding I compared the mobility of the AybeYmutant pl6S rRNA to

that of a AcafA mutant which is known to be defective mainly in 5' processing (37) (Fig.

6D). Side by side comparison showed that 16S from the AcafA strains runs slower than

WT 16S but faster than the p16S in the AybeYmutant, supporting that the AybeY mutant

is defective in both 5' and 3' processing and is 17S rRNA.
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The AcafA strain shows altered 5' 16S maturation but grows normally (37). This

suggests that the phenotypes of the AybeY mutant may arise from difficulty in processing

the 3' end of 17S rRNA. I finely mapped the 3' and 5' termini of MC4100 and the Aybe Y

mutant 16S rRNA to determine if there were aberrant species found in the Aybe Y mutant

(Fig. 7A, B). The AybeY mutant had more precursor 5' end than MC4100 but the length

of the 5' end of the precursor was identical in both strains (Fig. 7B). The AybeYmutant

also contained more precursor 3' end, than MC4100 (Fig. 7A) and shows several bands

between the immature and mature bands. All of these bands are also found in the

MC4100 sample but to a far lesser extent. This suggests that the intermediary bands

between mature and immature species represent real intermediates in 3' 16S processing.

Fig. 7A shows several distinct bands between the mature and immature 3' 16S rRNA

species but also at least one smear that may represent single base pair loses. These data

are consistent with both endo and exoribonucleases activities being involved in

maturation of the 16S rRNA 3' end.

Precursor 23S rRNA contains only 3 or 7 extra bases on the 5' end and 7-9 extra

bases on the 3' end (176, 177). These additional bases would not cause a significant shift

on my agarose/synergels. Final processing of 23S is thought to occur in polysomes (38).

Since the AybeY mutant had a severe decrease in polysomes (Fig. 4) I questioned if 23 S

rRNA may also be affected in the mutant. I mapped the 5' and 3' ends of 23S rRNA as I

had done for 16S and found an increase in immature state for both 5' and 3' 23S rRNA

ends in the ybeY mutant (Fig. 7).
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YbeY associates with 50S subunits and 70S ribosomes in vivo. My

bioinformatics analysis of COG0319 family members in the context of their genomic

location showed that SMcO1113 and its homologs were always present near genes that

function in RNA metabolism (164, 165). These include genes for tRNA processing and

ribosome maturation such as miaB and era respectively (178, 179). Era has been shown

to bind the 30S subunit in vitro (180) and depletion of Era leads to accumulation of 17S

rRNA (181). I considered that YbeY may act directly as a ribosome maturation factor. If

so I thought it should be possible to localize YbeY to 30S or 50S subunits. I added an

epitope to the C-terminus of the genomic copy ofybeYin MC4100. This strain behaved

like the parental strain, MC4100, in all assays tested (data not shown) suggesting the

epitope does not interfere with YbeY function. I was able to detect the tagged protein in

whole cell lysates and determined that YbeY is present at approximately 1000 molecules

per cell growing logarithmically in rich media at 370 C (data not shown). I made

polysome profiles as above (Fig. 4), isolated the peak fractions of the 30S, 50S, 70s and

first polysome fractions and blotted for YbeY. However, I was unable to detect YbeY in

any of these fractions and only found it in the non-ribosomal part of the gradient (data not

shown).

I postulated that the association of YbeY with the ribosome may be very transient

especially since levels were so much lower than the number of ribosomes in a cell (1000

YbeY/cell vs. 20 000 ribosomes/cell in logarithmic growth (30)). I thought that if YbeY

did act in ribosome maturation then I may be able to trap it on the ribosome if I slowed

down the ribosome maturation process. To do this I deleted rnc, that codes for RNAse

III. RNAse III is responsible for the initial cleavage events that separate 16S, 23S and 5S
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precursors immediately after transcription (174). Disruption of RNAse III greatly slows

the maturation of these RNA species (174). Interestingly, disruption of rnc caused an

increase in the levels of YbeY protein (Fig. 8A). In the Arnc mutant I was able to

localize YbeY in the polysome profile and found it associated with 50S, 70S and 2X

polysomes (Fig. 8B). I also blotted 3X polysomes but did not find YbeY present (data

not shown). I used equivalent A260 values when analyzing each fraction. This result

suggests that equal YbeY binds equally well to 50S subunits and 70S ribosomes.

AybeY mutant shows altered initiation factor association with 30S subunit.

The AybeY mutant shows a drastic relative increase in 30S and 50S particles to 70S (Fig.

4). Immature 23S in 50S particles can be efficiently associated into polysomes

suggesting the processing defect of the 23S would not account for the decrease in

polysomes. Immature 16S is not found in great abundance in 70S ribosomes of WT cells

(Fig. 5B) and 30S particles with immature 16S are not functional for translation (175). I

postulated the immature 16S rRNA in the AybeYmutant 30S particles slowed them from

forming initiation complexes that could associate to form active 70S ribosomes. This

would in turn decrease the abundance of polysomes. To explore this hypothesis, I

examined initiation factor association with MC4 100 and Aybe Y mutant ribosomes, 30S

and 50S particles. Initiation factor 1 (IF 1) guides the initiator tRNA to the A site as well

as stimulates IF3 anti-association activity, while initiation factor 2 (IF2) is required for

30S and 50S association to form the active 70S initiation complexes (40). In total cell

extracts, I found an increase in both IF1 and IF3, and a decrease in IF2 in AybeY mutant

levels relative to MC4100 (Fig. 10A). Examining 30S particles, I found modest decrease
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in IF1 binding and increase in IF3 binding the AybeYmutant relative to MC4100 (Fig.

9B). However I observed a striking 30 fold decrease in IF2 bound to 30S subunits of the

AybeYmutant (Fig. 9B). Interestingly I also observed an increase in IF3 binding in 70S

ribosomes for the AybeYmutant (Fig. 9B). This was a very intriguing finding as IF3 has

only been reported as binding the 30S subunit after ribosome disassembly to help release

deacylated tRNA during ribosome recycling (182). These results indicate that, not only

is 70S formation perturbed in the AybeYmutant, but 70S disassociation may also be

promoted.

AybeYmutant 70S ribosomes show decreased activity in vitro. The AybeY

mutant contained an equal number of 70S ribosomes as MC4100 but far fewer polysomes

(Fig. 4). 70S ribosomes from the AybeYmutant also showed increased content of 17S

rRNA (Fig. 5B) and IF1 and IF3 (Fig. 9B). This suggested that 70S ribosomes from the

AybeY mutant were not as active as those from MC4100. To test this directly, I

reconstituted translation in vitro using 70S ribosomes from the AybeY mutant and

MC4100 (Fig. 10) and found a significant reduction in translation efficiency in ribosome

isolated from the AybeYmutant. As 30S particles containing 17S precursor are inactive

in translation (175), the increased abundance of 17S in the AybeYmutant ribosomes

could account for the decreased activity I observe in vitro (Fig. 10).

The AybeY mutant has reduced translational fidelity. 70S ribosomes from the

AybeY mutant contained a significant proportion of 17S precursor (Fig. 5B) and showed

significantly lower translation activity (Fig. 10). While the increased content in 17S
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could account for the decreased activity, I questioned if the ribosomes that were formed

in the AybeY mutant had any additional functional defects. I tested the translation fidelity

of the Aybe Y mutant using lacZ constructs that contained either nonsense codons or

frameshifts early in lacZ. Read through would be required to bypass the nonsense

codons, while frameshifting would be necessary to restore the reading frame distorted by

addition or subtraction of a base pair. I found a small increase in read through in the

AybeYmutant (Fig. 11 B) but a substantial increase in frameshifting (Fig. 11A). This

suggests that the decoding center in the AybeYmutant is perturbed.

Characterization of the human homolog of YbeY. By computational analyses

found a human homolog of YbeY (Fig.1). This human homolog, designated C21orf57, is

found on the long arm of chromosome 21 (183). I asked if this striking conservation was

also at the functional level. I cloned C21orf57 into pBR322 and introduced it into the

AybeYmutant. Expression of C21orf57 was comparable to the endogenous expression of

YbeY (Fig. 12A). I tested temperature and _-lactam sensitivity and was intrigued to find

that C21orf57 did partially complement the AybeYmutant (Fig. 12B). Expression of

C21orf57 conferred a near 1000 fold increase in resistance to the AybeY mutant. The

temperature sensitivity of the AybeY mutant is bactericidal (Fig. 12B). While expression

of C21orf57 did restore growth of the AybeY mutant at 420C, the cells did survive and

recover when put back to 370C (Fig. 12B). These results suggest that YbeY and

C21 orf57 share a similar activity.

The components of the human ribosome of different from those of bacteria

ribosome (30). If YbeY functions in maturation of the E. coli ribosome I was uncertain
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how the human homolog could play a similar role in maturation of the human ribosome.

I examined the primary sequence of C21 orf 57 using mitoprot (184), which predicts

mitochondrial targeting sequences, and found C21orf57 has a very strong mitochondrial

targeting sequence (p = 0.987). Mitochondria contain their own ribosomes and are

thought to have evolved from _-proteobacteria (185). This relation to bacteria made the

conservation of function between C2 1 orf57 and YbeY more understandable if C21 orf57

functioned in mitochondrial ribosome maturation.

Discussion

I describe here the first report on the function of a hitherto unknown class of

proteins classified as COG0319. Members of this family are highly conserved and

present in every sequenced prokaryotic genome. This putative gene is part of the

predicted minimal bacterial genome set (25) and agreeing with this estimation is essential

in several bacteria including Mycoplasma genitalium (186), which has the smallest

genome of any free living prokaryote .

The protein structures of homologs from E. coli, Thermotoga maritime and

Aquifex aeolicus have recently been solved (154, 187, 188). These structures support the

hypothesis that members this protein family are metal-dependent hydrolases based on

structural similarities to known metallohydrolases. The A. aeolicus was rigorously tested

for more than 15 different biochemical activities including protease, nuclease and

phosphatase, however, no activity could be detected for this protein (154).
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Deletion of ybe Y perturbs ribosome maturation, specifically slowing, and

potentially altering, rRNA processing (Fig. 5). Similar rRNA processing defects have

been observed in E. coli strains depleted for essential protein Era and ObgE, which are

thought to be required for ribosome maturation (81, 181). ObgE is present at

approximately equal amounts to the estimated number of ribosomes per cell (83), while I

have found that the total number of YbeY per cell is approximately only 1/20 h the

amount of ribosomes suggesting if YbeY acts in ribosome maturation it would do so

catalytically with rapid turnover. ObgE has been localized to the 30S and 50S subunits in

vivo (81), and Era has been localized to the 30S subunit (180). I have localized YbeY to

the 50S subunit in vivo, but also to the 70S and first polysome (Fig. 8B). This suggests

that YbeY may act in a step after initial assembly of 30S and 50S subunits.

Due to it binding to 70S ribosomes and polysomes, it is possible that YbeY may

act as a translation factor, however, I would also then have expected it to associate with

polysomes beyond the first polysome peak which I do not observe. Nonetheless I did test

the affects of adding YbeY to an in vitro translation reaction (Fig. 13). I found that at

low concentrations YbeY had no affects on translation but at higher concentrations YbeY

actually inhibited translation suggesting it does not act as a translation factor but can

potentially bind the ribosome inhibiting translation.

The major ribosome defect I observe in the AybeY mutant is accumulation of

unprocessed 16S and 23S precursors. Unprocessed 23S precursors can be assembled into

active ribosomes (189). A Arnc strain cannot process its 23S rRNA to the mature form

but I have found that 50S and 30S subunits do not accumulate in that strain as I observe

in AybeYmutant (data not shown). This suggests that it is the unprocessed 16S rRNA
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accumulation that is responsible for effects on the ribosome. Agreeing with this, it has

been shown that precursor 16S rRNA does not form 30S subunits competent for

translation (175).

Interestingly, final processing of the 5' end of the 23S rRNA occurs in the

polysome (38). Polysome formation has also been shown to enhance the 3' maturation of

23S rRNA as well (36). The enzymes responsible for processing the 5' end of 16S rRNA

have been identified but the 3' processing enzyme(s) remain elusive (37). Interestingly

16S rRNA 5' processing can be disrupted without detrimental effects to the cell (37).

Taken together, these results suggest that it is the accumulation of unprocessed 3' 16S

rRNA end that maybe the cause of the ribosome phenotypes observed in the AybeY

mutant. The extreme 3' end of the mature 16S rRNA contains that anti Shine-Dalgarno

sequence required to recognize the Shine-Dalgarno sequence in the incoming mRNA

(46). This recognition helps position the ribosome to begin translating at the correct start

site. An immature 3' 16S rRNA end could interfere with mRNA binding possible

leading to translation defects like frameshifting we observe in the AybeYmutant. It may

also interfere with IF2 binding causing the decease in IF2 association with the 30S

subunit we observe in the AybeY mutant (Fig. 9).

All known E. coli RNases have been tested for 16S rRNA processing function

but none have shown activity (190). Like 23S rRNA precursor 16S rRNA has been

found in polysomes in vivo (39). Since precursor 16S rRNA are not active in translation

(175), why would it be found in polysomes? I speculate that, like precursor 23S rRNA,

precursor 16S rRNA final processing occurs in the polysome state. I found that YbeY

associates with 70S ribosomes and polysomes. I was able to identify this localization
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only after deletion of RNase III which slows maturation of 16S rRNA (Fig. 8B) (174). I

also found that YbeY levels increased in the Arnc background (Fig. 8A). These results

suggest that YbeY may be involved in processing rRNA. Since precursor 23S rRNA is

functional in translation and not lead to accumulation of 30S and 50S subunits, and the

enzymes responsible for 5' 16S maturation are known (37), I suggest YbeY may be

involved in the processing of the 3' end of 16S rRNA and have begun assays to address

this possibility.

Fig. 1. Sequence alignment of COG0319 homologs from several different bacteria and

eukaryotes. Alignments were performed using T-coffee (168). The red bar underlines

the conserved 3 His domain that is used to classify members of this family.

The blue bar underlines a second highly conserved domain.

Fig. 2. Phenotypic analysis of the E. coli AybeY mutant. A. Growth curves of MC4100

and the AybeY mutant in LB at 370 C. Logarithmically growing cultures were diluted to

OD 600 0.01 in LB. Growth was monitored by OD 600. Sensitivity of the AybeY mutant

to stresses DOC (B), cefotaxime (C) and H20 2 (D). Cultures were serially diluted and
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plated on increasing concentrations of the indicated stress. Cfu were determined after 24

h of growth. MC4100 (), Aybe Y mutant ().

Fig. 3. Temperature sensitivity of the AybeYmutant. MC4100 and Aybe Ymutant strains

complemented by ybeY homologs were serially diluted and plated on LB plates. Plates

were incubated at either 37°C or 45"C for 16 h. EV is empty vector.

Fig. 4. Poly some profile for MC4100 (A) and the AybeY mutant (B). Cell extracts were

separated on a 10 - 40% sucrose gradient. The gradient was fractionated and the A260 Of

each sample was determined. The positions of polysomes, 70S, 50S and 30S particles are

indicated.

Fig. 5. A. 500ng of total RNA extracted from each indicated strain was separated on an

agarose/synergel mix and stained with ethidum bromide. EV is empty vector control and

"p" indicates that the gene indicated is expressed from a plasmid. B. 500ng of rRNA

purified from 30S and 70S fractions of MC4100 and the AybeYmutant were separated on

an agarose/synergel mix and stained with ethidum bromide.

Fig. 6. A. A diagram of 17S rRNA show the location of the 5' and 3' Northern probes

used in B and C relative to the maturation cut sites (_). 500ng of total RNA from

MC4100 and the AybeY mutant were separated on an agaorse gel, transferred to a

HyBond-N+ membrane and probed for 5' (A) and 3' (B) 17S ends. D. Total RNA from
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MC4100, Aybe Y and AcafA mutants was separated on an agarose/synergel mix and strain

with ethidum bromide.

Fig. 7. 3' ribonuclease protection (RPA) assays and 5' primer extension (PE) assays to

map the 3' and 5' ends of 16S and 23S rRNA from MC4100 and AybeYmutant. A. RPA

for 16S rRNA. B. PE for 16S rRNA. C. RPA for 23S rRNA. D. PE for 23S rRNA.

Mature (m) and precursor (p) ends are indicated for each assay.

Fig. 8. A. Lystaes from MC4100 and a Arnc strain were blotted for the presence of

FLAG-tagged YbeY. B. Western blot for YbeY-FLAG in 30S, 50S, 70S and 2X

polysome fractions. Lysate from a Arnc strain carrying a FLAG tagged ybe Y gene at its

genomic location was fractionated over a 10 - 40% sucrose gradient. Peak fractions were

collected and equivalent A260 amounts were blotted for the FLAG epitope.

Fig. 9. Western blot for IF 1, IF2 and IF3 in MC4100 and the AybeY mutant. A. Total

cell lysates. B. Fractionated 70S, 50S and 30S particles. OmpA was used as a control for

protein load.

Fig. 10. In vitro translation. A. MC4100 S100 fractions were mixed with MC4100 70S

or AybeY mutant 70S ribosomes. Translation activity is normalized to MC4100. This

assay was performed 5 times. A representative experiment is shown.
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Fig. 11. Readthrough and frameshifting in the Aybe Ymutant. Plasmids carrying lacZ

with (A) nonsense codons or (B) frameshift were transformed into MC4100 and the

AybeY mutant. LacZ activity was assayed as described in materials and methods.

Fig. 12. Rescue of the AybeYmutant by human homolog C21orf57. A. E. coli strains

were serially diluted and plated on LB plates containing increasing concentrations of

cefotaxime (Cf). Colony formation was counted after 24 h growth at 370 C.

MC4100+EV (, AybeY+EV (, AybeY+pC21orf57 U. B. Strains were serially diluted

and plated on LB plates. Plates were incubated at either 370C or 450C for 16 h. Plates at

450C were then incubated at 370C for 16h. EV is empty vector control and "p" indicates

that the gene indicated is expressed from a plasmid.

Fig. 13. Effect of YbeY on in vitro protein translation. MC4100 S100 fractions were

mixed with MC4100 70S. Purified YbeY protein was added at a final concentration of

2.0 jiM or 0.2 jiM (1:10 dilution). Control is YbeY buffer only.
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Table S1. Bacterial strains and plasmids used in this study

Strain/plasmid

Strain

MC4100

AybeY

BWD10

BWD11

BWD12

BWD13

BWD14

BWD15

Rml021

BWD16

GWBD12

BWD17

BWD18

Plasmid

pBR322

pBWDI

Relevant genotype and property

F araD139 AlacUl69 ArelA1 rpsL150

thi mot flb5301 deoC7ptsF25 rbsR

ybe Y deletion in MC41 00

MC4100 carrying pBR322

Aybe Y carrying pBR322

Aybe Y carrying pBWD 1

Aybe Y carrying pBWD2

Aybe Y carrying pBWD3

AybeY carrying pBWD4

SU47 SmR

Rml021 carrying pMSO3

Rm1021 SMcO1113::mTn5 transduced

GWBD 12 carrying pMSO3

GWBD12 carrying pBWD5

ApR, TCR

pBR322 expressing ybe Y

Source

Laboratory stock

This study

This study

This study

This study

This study

This study

This study

(84)

This study

Chapter 3

This study

This study

(191)

This study

Vin



Table S2. Complementation of the S. meliloti SMcOlJ13::mTn5 mutant symbiotic

phenotype by ybeY. M sativa seedling were inoculated with the indicated strains below.

After 4 weeks of growth, plant height and nodule distribution were determined. The

11

pBWD2

pBWD3

pBWD4

pMS03

pBWD5

pSG25

pSG163

pSG853

pSG3/4

plac7

plac l0

pET28A

pBR322 expressing SMcOlll3

pBR322 expressing yqfG

pBR322 expressing C21orf57

SpR

pMSO3 carrying ybeY

lacZ

lacZ carrying UAG interruption

lacZ carrying UAA interruption

lacZ carrying UGA interruption

lacZ carrying +1 frameshift

lacZ carrying -1 frameshift

T7 promoter, MBP tag, ApR

This study

This study

This study

(192)

This study

(193)

(193)

(193)

(193)

(193)

(193)

Lab stock



decrease in plant height and increase in white nodules in the SMc0lll3::mTn5 mutant

are indicative of a failed symbiosis. EV is empty vector control and "p" indicates that the

gene indicated is expressed from a plasmid.

Strain Plant Height (cm) White Nodules Pink Nodules

(%/plant) (%/plant)

Rml021 + EV 11.1 ± 2.2 1.0 + 0.9 8.2 ± 2.1

SMcOJ113::mTn5 + 2.1 + 1.2 17.8 ± 6.7 0

EV

SMcO 113::mTn5 + 10.5 + 3.0 1.0 ± 1.3 8.2±2.4

pybeY

Fig. S1. Complementation of the AybeY mutant phenotypes with ybeYor the B. subtilis

homolog, yqfG. A. E. coli strains were diluted to OD600 0.01 in LB at 370 C. Growth

over time was monitored by OD600. E. coli strains were serially diluted and plated on LB

plates containing increasing concentrations of (B) DOC, (C) cefotaxime (Cf) and (D)

H20 2. Colony formation was counted after 24 h growth at 370 C. MC4100+EV (_),

AybeY+EV (_), AybeY+pybe Y (_) and AybeY+pyqfG (_). EV is empty vector control and

"p" indicates that the gene indicated is expressed from a plasmid.

Fig. S2. Complementation of the Aybe Y mutant phenotypes with the S. meliloti homolog

SMc01113. A. E. coli strains were diluted to OD600 0.01 in LB at 370 C. Growth over

time was monitored by OD600 . E. coli strains were serially diluted and plated on LB

119



plates containing increasing concentrations of (B) DOC, (C) cefotaxime (Cf) and (D)

H20 2 . Colony formation was counted after 24 h growth at 370 C. MC4100+EV (_,

AybeY+EV (_) and AybeY+pSMc0lll3 (9. EV is empty vector control and "p" indicates

that the gene indicated is expressed from a plasmid.

Fig. S3. A. Complementation of S. meliloti SMcOll13::mTn5 mutant by ybeY. S.

meliloti strains were diluted to OD 600 0.01 in LB at 370 C. Growth over time was

monitored by OD 600. S. meliloti strains were serially diluted and plated on LB plates

containing increasing concentrations of (B) DOC and (C) cefotaxime. Colony formation

was counted after 96 h growth at 300 C. Rml021+EV (_), SMcOll13::mTn5+EV (_) and

SMcO1113::mTn5+pybe Y (_). EV is empty vector control and "p" indicates that the gene

indicated is expressed from a plasmid.

Fig. S4. Poly some profile for MC4100+EV (A), AybeY+EV (B) and AybeY+pybeY. Cell

extracts were separated on a 10 - 40% sucrose gradient. The gradient was fractionated

and the A260 of each sample was determined. The positions of polysomes, 70S, 50S and

30S particles are indicated. EV is empty vector control and "p" indicates that the gene

indicated is expressed from a plasmid.

Fig. S5. Polysome, 70S, 50S and 30S particles were purified by sucrose gradient

sedimentation from MC4100 and Aybe Y. Equal A260 amounts of each peak for each

strain were separated by SDS-PAGE and silver stained.
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Damage-independent replication fork arrest in Escherichia coli reveals a molecular

switch from cell survival to cell death*
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Abstract

DNA-damaging agents induce lesions in genomic DNA that can interfere with

DNA replication. Other agents that perturb replication, such as hydroxyurea (HU), can

lead to fork arrest through a damage-independent mechanism by depleting the cellular

concentration of deoxyribonucleotide triphosphates (dNTPs). Both DNA-damage and

damage-independent methods of replication fork blockage elicit profound physiological

responses including cell death. The genome-wide transcriptional response to DNA

damage has been extensively examined, while the transcriptional response to damage-

independent replication blockage has remained largely unexamined. In this work, we

used a systems-level approach to determine the genomic and physiological responses of

E. coli to a damage-independent mechanism of replication fork arrest. Our genome-wide

analysis of the transcriptional response to HU-inducing replication fork arrest was

compared to 530 different expression profiles, including the damage-dependent SOS

transcriptional response. Our population and single-cell analysis shows the complex

cellular response to HU triggers pathways involved in both cell survival and cell death.

We suggest a model where, for any given bacterium in a population, HU can induce a

molecular switch from a survival mode to a programmed cell death mode.
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Introduction

Hydroxyurea (HU) is commonly used in both prokaryotes and eukaryotes to study

DNA damage-independent replication fork arrest (64-66). HU is a potent inhibitor of

class I ribonucleotide reductase (RNR), the enzyme responsible for the synthesis of

dNTPs under aerobic conditions in many organisms. Depletion of dNTP pools through

HU treatment leads to replication fork arrest, most likely through substrate starvation (66-

68).

DNA damage, induced by mutagens such as UV, interferes with DNA replication

through a mechanism different from that caused by HU (67, 69). When a replication fork

encounters DNA damage caused by UV, replication proceeds discontinuously, leaving

gaps juxtaposed to the lesions (70). The excess ssDNA generated results in formation of

the RecA/ssDNA nucleoprotein filaments that facilitate auto-cleavage of the

transcriptional repressor LexA and derepression of the SOS-regulon. The SOS response

involves the upregulation of more than 40 genes involved in numerous aspects of DNA

repair and other cellular functions (71). The genomic response to UV damage has been

investigated and described in two independent studies using microarray analysis (72, 73).

The majority of genes identified in these experiments belong to the SOS-regulon. The

authors identified only a relatively small subset of genes that varied independently of the

major SOS transcriptional repressor, LexA, or that were downregulated in response to

UV. HU treatment has been shown to upregulate two genes of the SOS regulon, recA
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and sulA (74). However, the extent of SOS induction, as well as other cellular responses

brought about by HU-dependent fork arrest, has not been investigated in detail.

To investigate the full spectrum of cellular effects of HU treatment, we combined

microarray technology with systems-level analysis to determine the genome-wide

transcriptional response to HU in the model organism Escherichia coli. Work by several

groups has shown that HU is exquisitely specific for inhibiting DNA synthesis through

RNR inhibition (75, 76). However, a complete picture of the subsequent effects of dNTP

pool depletion and replication fork arrest on cell physiology is lacking. In addition, it has

not been known how Escherichia coli's response to replication interference compares to

its response to DNA damage.

Using our analysis of the transcriptional response to HU in E. coli to guide our

investigation, we demonstrate that HU induces global molecular changes that encompass

not only DNA repair but importantly pathways that extend into envelope stress, iron

transport and toxin-antitoxin regulation. These data support a model that E. coli induces

a distinctive transcriptional profile in response to damage-independent fork arrest that

permits individual cells in the population to switch from a survival mode to a

programmed cell death mode.

Results

Genome-wide analysis defines transcription perturbations induced by HU

treatment. Treatment with 100 mM HU for 6 h in liquid culture results in less than 1%
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survival of E. coli strain MC4100 (Fig. 1). As noted by Godoy et al., the number of

visible cells observed by microscopy after 5 h of HU treatment is greatly reduced (68).

This indicates that HU does more than arrest replication; it sets in motion a chain of

events that results not only in cell death, but also cell lysis. After only 1 h of HU

treatment, MC4100 does not show a decrease in survival, but does show growth

inhibition relative to the untreated culture (Fig. 1). To gain insights into the early cellular

events that led to cell death and lysis, our gene expression analysis used E. coli MC4100

exponential cultures treated with HU for 1 h. RNA from cultures treated with or without

HU were analyzed using Affymetrix Antisense Genome microarrays. The expression

results were integrated into an E. coli microarray expression database (T Gardner, Boston

University, http://m3d.bu.edu) for analysis comparing the HU results to over 500

additional expression profiles (194) (see experimental procedures). This procedure

allowed us to identify genes that show altered transcript levels specifically in response to

HU.

Treatment with HU has previously been shown to increase the expression of the

two genes encoding E. coli class I RNR, nrdA and nrdB (195). We also observed a

substantial increase in expression for these genes [Supporting Information (SI) Table 1].

We used western blots to confirm that the levels of NrdA and NrdB proteins similarly

increased in response to HU treatment (SI Fig. 7A, B).

In addition, genes encoding E. coli anaerobic class III RNR (nrdDG) and a cryptic

RNR (nrdEF) (196) showed significant transcriptional increases (SI Table 1). The nrdEF

operon had been previously shown to respond to HU (197), however very little is known

about nrdDG regulation other than its induction by anaerobic growth (198). We were
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surprised to find substantial induction of nrdDG, since any NrdDG produced would be

irreversibly inactivated under our aerobic conditions (196). These observations suggest

that upregulation of all RNR genes in response to HU-induced dNTP pool depletion is a

strong survival response.

The SOS response is induced by exposure to HU. As expected from previous

work showing that HU treatment induces the expression of two SOS-regulated genes

(74), our microarray analysis revealed that numerous genes in the SOS network were

induced by HU treatment (SI Table 1). These include many genes involved in

recombination and repair. In agreement with the transcriptional data, immunoblots for

SulA and RecA showed a significant increase of both these proteins following HU

challenge (SI Fig. 8A, B).

Recent work has shown that small subpopulations of cells can account for large

transcriptional changes in microarray analyses of the SOS response (199). To determine

the population of SOS-induced cells after HU treatment, we used the pL(lexO)-GFP

construct in which GFP expression is controlled by LexA (200) as a single-cell marker of

SOS induction. We observed low GFP fluorescence in the untreated control cells (Fig.

2A). However, after a 1 hour exposure to HU, GFP fluorescence was clearly visible in

the vast majority of cells (Fig. 2A), indicating that SOS induction occurred in the bulk of

the population.

To explore the contribution of the SOS response to HU survival, we tested the

sensitivity of the lexA3 mutant strain to increasing amounts of HU (Fig. 2B). The lexA3

strain carries a non-cleavable form of LexA resulting in a strain defective for SOS
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induction (201, 202). The lexA3 strain showed a marked increase in sensitivity to HU

relative to the parental strain indicating that induction of the SOS-regulated genes helps

cells survive HU exposure.

DNA damaging agents such as UV induce the expression of RecA, as well as

promote formation of RecA-GFP foci at what is thought to be the replisome (203). We

used RecA-GFP focus formation to compare the cellular effects of SOS induction by

damage-dependent and damage-independent stresses. During growth in rich medium, we

observed that RecA-GFP foci appear in approximately half of E. coli cells (49 %, n =

597), confirming previous observations (203). Exposure to HU results in nearly every

cell containing at least one RecA-GFP focus (99 %, n = 521). In addition, these foci

appeared larger in size with threads extending from most foci (SI Fig. 8C). Taken

together, these results show that HU challenge induces both localization of RecA-GFP as

foci and an increase in the cellular level of RecA protein (SI Fig. 8B), akin to what is

observed under conditions of UV damage.

HU induces expression of genes required for DNA replication restart. Our

array analysis revealed that components of the primosome, PriA and PriB, were

substantially upregulated by HU treatment (SI Table 1). PriA and PriB can assemble

forks on either the leading or lagging strand (204-206). The PriA pathway for replication

restart is most efficient on fork structures without gaps in the leading strand. This

structure could be formed after the collapse of a replication fork. An alternative PriC-

dependent pathway preferentially utilizes forks with large gaps in the leading strand. We
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did not observe upregulation ofpriC (SI Table 1), an observation consistent with the

mode of fork damage induced by HU treatment.

Microarray analyses of the transcriptional response to UV damage did not identify

genes involved in replication restart as being differentially regulated (72, 73), which

suggests that induction of these genes is specific to replication fork blockage.

Considering the mode of action of UV and HU, this difference in expression pattern is

reasonable. UV damage causes discontinuous DNA replication, but does not stop fork

progression (70), whereas HU treatment leads to stalled replication forks that have the

potential to collapse, requiring primosome function to reassemble (67).

Septum formation is perturbed by exposure to HU. A functionally linked

cluster of genes involved early in cell division showed significant down-regulation in our

microarray array (SI Table 1). These included several genes involved in septum

formation (e.g.,ftsZ,ftsQ, zipA) and a positive regulator offtsZ, rcsB. In agreement with

the transcriptional result, we also observed a decrease in FtsZ at the protein level (SI Fig.

9A). Downregulation of genes required for septum formation offers a simple explanation

for the extreme filamentation and eventual lysis observed in E. coli upon HU treatment

(68).

To determine if the observed downregulation of genes required for septum

assembly was sufficient to perturb septum formation, we analyzed Z-ring formation at the

single-cell level. We used anftsZ-GFP fusion under the plac promoter placed into the

MC4100 genome at the _ att site (207). FtsZ-GFP does not functionally complement

endogenous FtsZ, but this fusion protein is able to decorate the wild-type protein forming
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Z rings allowing for visualization by fluorescence microscopy (208). Expression of FtsZ-

GFP was comparable in HU-treated and non-treated cultures ensuring any observed

effects were not due to unequal induction of FtsZ-GFP (SI Fig. 9B). Upon addition of

IPTG, we observed septal ring formation in MC4100 cells at mid-cell (Fig. 3). When

IPTG was added after HU treatment, the elongated cells did not show Z ring formation

(Fig. 3). Lack of an observable Z ring in HU-treated cells correlates well with the

decrease inftsZ expression after HU addition (SI Table 1) and strongly suggests that the

decreased expression of septum assembly genes is sufficient to perturb normal septum

formation.

SOS induction upregulates expression of SulA that can bind FtsZ preventing cell

division (202). HU treatment strongly upregulated SulA (SI Fig. 8A), which could result

in continued cell growth without division. However, UV exposure, which also induces

the SOS response and SulA upregulation, does not result in the extreme filamentation

observed after HU treatment (data not shown). Previous microarray analysis has also

shown thatftsZ expression is not perturbed by UV (72, 73). This suggests that the

extreme filamentation caused by HU is not due to sequestration of FtsZ by elevated levels

of SulA, but results from the HU-specific downregulation of several genes involved in

formation of septum, includingftsZ.

HU induces the expression of genes required for iron uptake. An extremely

striking observation from our microarray analysis was that many genes encoding several

different iron uptake systems were significantly upregulated after HU treatment (SI Table

1). Several of these genes were among the most highly expressed. Upregulation of iron
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mobilization genes was not observed in microarray analyses of UV-irradiated cells (72,

73).

While iron plays a catalytic role for several enzymes such as cytochromes and

ribonucleotide reductases (209, 210), excess free iron can also be deleterious to E. coli,

producing the highly destructive hydroxyl radical through Fenton chemistry (12). We

postulated that such strong upregulation of many different iron uptake systems would

result in a substantial increase in intracellular iron concentration that would in turn be

detrimental to the cell. To test this hypothesis we disrupted tonB, which is required for

ferric uptake through the Fep, Fec and Fhu transport systems (211), all of which were

substantially upregulated in our microarray (SI Table 1). We found that, although HU

induced expression of genes required for iron uptake, disruption of tonB greatly increased

resistance of the strain to HU (Fig. 4A).

Our discovery that tonB expression promotes HU-induced lethality was in

startling contrast to the results we described above. The induction of SOS-regulated

genes and genes involved in replication restart by HU, together with the HU-induced

down-regulation of genes required for cell division (SI Table 1), represent responses that

would be expected to promote survival and allow the bacterium time to repair damage to

its genome (202). However, the upregulation of iron transporters appear to be promoting

cell death (Fig. 4A).

To understand the paradox of why cells would induce responses to promote both

cell survival and cell death, we decided to determine whether only a subpopulation of

cells upregulated iron transport systems after HU challenge and, if so, to examine how

this subpopulation changed over time. The three major iron transport systems
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upregulated in our microarray, Fec, Fep and Fhu, are all regulated by the iron-responsive

transcriptional regulator Fur (212). We therefore used plasmid pL(furO)-GFP that

expresses GFP under control of Fur (200, 209) as a molecular marker for induction of

these systems . Strains carrying pL(furO)-GFP showed little fluorescence in the absence

of HU (Fig. 4B). Treatment with HU resulted in a striking increase in GFP fluorescence

in all cells in the population (Fig. 4B) in agreement with the upregulation of Fur-

regulated iron transport systems we observed in our microarray results.

However, there was heterogeneity to the response, as our microscopy indicated

that there were two populations of GFP-expressing cells in the HU-treated sample. Both

subpopulations showed GFP fluorescence well above the untreated control, however one

subpopulation was more fluorescent than the other (Fig. 4B). Taken together, these

observations showed that induction of iron transport systems occurs in the bulk of the

population but does so in a strikingly non-uniform fashion.

To explore this phenomenon in more detail, we used FACS analysis to follow

Fur-regulated GFP expression over time after HU challenge (Fig. 4C). We observed

increased GFP expression in all cells after 1 h (Fig. 4C, peak B) in agreement with our

microscopy results. However the differentiation into two subpopulations was not

observed until 2 h at which point the overall fluorescence of the culture had reached

maximum (peak C). This offset in timing (2 h vs. I h) of observing two subpopulations

is most likely due to the lower sensitivity of the FACS analysis. Cell survival began to

decrease 2 h post HU treatment (Fig. 1), which correlates with the appearance of peak C

(Fig. 4C). This suggests that cells in peak C have entered a cell death pathway. This

inference is supported by our observation that the number of cells in peak C decreases
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with time after HU exposure. We also observe increased side scattering in the FACS

analysis over this period of time, consistent with increased cell debris from lysis. The

bacteria are not reverting to a lower level of GFP expression as peak B does not increase

in size as peak C decreases after 3 h. We suggest the transition of cells from peak B to

peak C represents a profound switch in cell physiology from a state that promotes

survival to a state that commits cells to death.

The rpoE-rseA-rseB-rseC operon is downregulated by HU. We were intrigued

to find that the operon containing the alternative sigma factor, rpoE, was strongly

downregulated after HU treatment (SI Table 1). RpoE controls a stress response pathway

that regulates the expression of genes encoding periplasmic chaperons, proteases,

biosynthetic enzymes for lipid A and proteins that produce components of the envelope

(213). In HU-treated cells, the entire rpoE operon was downregulated. This includes

rseA and rseB, which encode regulators of RpoE activity. We performed immunoblots

for RpoE and RseA on samples from HU-treated cultures and found that indeed both

RpoE and RseA levels decreased in HU-treated cultures relative to the untreated control

(SI Fig. 10A, B).

Decreased RpoE levels would affect a bacterium's ability to manage envelope

stress. Downregulation of the rpoE operon, like increased iron accumulation, could

promote cell death. In fact, recent work has shown that cells that have lost RpoE function

die because they overreact to the absence of this sigma factor by triggering a cell death

signal (214).
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mazEF and relBE toxin-antitoxin systems show a synergistic affect with HU

treatment and act separately from iron-induced cell death. Toxin-antitoxin systems

have been identified in several different bacteria (215, 216). Each pair consists of a

stable toxin and an unstable antitoxin that interferes with the toxin activity. When

conditions lead to a decrease in antitoxin synthesis, it is rapidly degraded exposing the

cell to the lethal effects of the toxin.

It has previously been shown that disruption of the toxin-antitoxin pairs, mazEF

or relBE, in certain strains of E. coli increases HU resistance (68). Our observations of

increased iron uptake and downregulation of rpoE after HU treatment led us to ask

whether the MazF and/or RelE toxin were activated under our conditions and contribute

to the eventual death of the HU-treated MC4100. Our microarray results showed only

small perturbations in expression of mazF relative to mazE and relE relative to relB in the

direction that would promote toxin activity (SI Table 1). However, these changes were

so small as to leave their biological significance questionable.

We constructed strains carrying deletions of each of the mazEF and relBE toxin-

antitoxin pairs and also a strain deleted for both toxin-antitoxin pairs. When challenged

with HU, we found that in MC4100, deletion of mazEF led to increased resistance to HU

in agreement with previous work (Fig. 5A) (68). Our MC4100 ArelBE strain, however,

was indistinguishable from the parental strain for HU survival (Fig. 5B). Strikingly, we

found that deletions of both mazEF and relBE act synergistically to promote HU

resistance to levels well above that observed in a AmazEF strain alone (Fig. 5C). Our

results suggest that both mazEF and relBE contribute to a toxin-induced cell death

pathway initiated by HU challenge. Since HU causes only very small changes in



transcript level of the toxin-antitoxin pairs, HU treatment appears to be affecting toxin

activation at a post-transcriptional level.

We showed above that HU challenge causes a striking upregulation of iron

transport genes in MC4100 (SI Table 1), and that disruption of iron uptake, through

deletion of tonB, increased the strain's resistance to HU (Fig. 4A). We asked if the cell

death program promoted by increased iron uptake was part of the cell death pathway

through which mazF and relE toxins operated. To address this question, we constructed a

strain carrying deletions for mazEF and relBE as well as tonB, and tested its sensitivity to

HU (Fig. 5D). Our AmazEFArelBEAtonB was even more resistant to HU than our

AmazEFArelBE strain (Fig. 5D). The increase in resistance of our AmazEFArelBEAtonB

strain above that of our AmazEFArelBE strain is comparable in magnitude to the increase

in resistance observed of our AtonB strain above the parental strain, MC4100 (Fig. 4A).

Thus the HU resistance conferred by deletion of AmazEFArelBE and AtonB are additive

suggesting they induce cell death through different pathways.

Discussion

Our systems-level analysis of the transcriptional response of E. coli to HU stress

has revealed an intricate response, coordinating events that first promote cell survival but

that later can switch to promoting cell death. Consistent with a response promoting cell

survival, HU-challenged E. coli show clear induction of the SOS response in all cells in

the population. This also demonstrates that replication fork interference by either DNA
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damage-dependent or damage-independent means results in upregulation of this defense

pathway. Our analysis showed that HU treatment also induced additional mechanisms to

promote cell survival that are not induced by DNA-damaging agents such as UV

irradiation (SI Table 1) (72, 73). This includes upregulation ofpriA and priB for

replication restart and downregulation of cell division genes, such asftsZ, ftsQ and zipA

that would allow the bacterium added time to repair its genome before dividing. These

results indicate that damage-dependent (i.e., UV) and damage-independent (i.e., HU) fork

interference share some overlap in DNA damage response, however damage-independent

events invoke additional levels of protective responses.

Besides the activation of these protective responses, we were intrigued to find that

a set of cellular responses which promote cell death were also activated by HU (SI Table

1). Our analysis showed that, following HU treatment, E. coli strain MC4100 cell death

is mediated in part by MazF and RelE since deletion of mazEF and relBE results in a

significant increase in survival (Fig. 5C). The dependence of cell death on

toxin/antitoxin pairs after HU treatment suggests a mechanism similar to thymineless

death which also results from depletion of substrate for DNA replication and is dependent

on MazF (217).

We also identified two additional mediators of cell death. HU treatment induced

several iron uptake systems (SI Table 1). Deletion of the gene encoding the common

outer membrane component for these transport systems, tonB, resulted in a significant

increase in HU resistance (Fig. 4A), suggesting that iron uptake also contributes to cell

death. The resistance against HU afforded by deleting tonB was additive with the
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resistance given by disruption of mazEF and relBE (Fig. 5D), suggesting two distinct

pathways activated by HU that can lead to cell death.

The major iron transport systems upregulated in our array, Fec, Fep and Fhu, are

Fur regulated. Fur acts as a repressor when bound to ferrous ions. While Fur binds

ferrous iron, the Fec, Fep and Fhu transport systems uptake ferric iron (209). De-

repression of Fur-regulated genes implies a lowered level of active Fur repressor. This

could arise by an HU-induced reduction in the concentration of ferrous ions available to

bind Fur. HU treatment may affect the reduction of ferric iron to the ferrous form. In

this model, increased intracellular ferric ion concentration may than activate a cell death

response.

An alternative explanation is that HU induces a reduction in Fur protein levels by

fur mRNA being targeted for degradation by MazF or RelE. We did not observe a

decrease in fur transcript in our microarray analysis. However our analysis only

examined the transcriptional response after 1 h of HU treatment. We did not observe cell

death beginning until 2 h after HU treatment, the same time we observed maximum Fur-

regulated GFP expression. Measurable degradation of fur mRNA by MazF or RelE

might not occur until after 1 h of HU treatment. With this model, intracellular ferrous

ions could accumulate without activating Fur repression. Accumulation of ferrous ions

may help activate a cell death pathway by entering into a redox cycle producing

destructive hydroxyl radicals (218). This mode of killing may be similar to that

observed in early stage treatment with bactericidal antibiotics (219). Kohanski et al.

showed that bactericidal antibiotics caused accumulation of intracellular iron that

activated hydroxyl radical formation eventually causing cell death. However, the
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increase in iron from bactericidal antibiotic treatment was found to come from release of

iron from iron-sulfur containing proteins rather than external iron sources as we observe

for HU treatment. It will be interesting to test if the cell death induced by increased

uptake of iron following HU treatment is also due to radical formation.

HU treatment also induced the downregulation of the rpoE operon (SI Table 1).

Recent work has suggested that, in the absence of RpoE, E. coli activates a cell death

pathway that could function by activating MazF (214). Thus the activation of toxin-

dependent cell death we observe after HU treatment may be the consequence of several

cell signals including downregulation of rpoE. In addition, loss of RpoE would hinder

the cell's ability to respond to membrane stress, possibly, making it more susceptible to

lysis which we observed after HU treatment.

Our single-cell analyses offered insights that could not be gained from microarray

studies, which report population averages. Our single-cell analysis of the SOS response

revealed that all cells in the population experience a similar induction of a protective

response that promotes survival soon after HU treatment. However, the situation is

different with respect to the HU induction of Fur-regulated iron transport, which appears

to promote cell death. In this case, the HU-induced increase in Fur-regulated genes is

heterogeneous within the population. Initially, all the cells in the population experience

an increase in the expression of Fur-regulated genes. Then, between 1-2 h after HU

treatment, a second population of cells is observed that expresses extreme levels of Fur-

regulated genes. These cells slowly disappear, presumably by lysis, while additional

cells switch from the lower level of Fur-regulated gene expression to the higher state.
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Our killing curve shows that HU treatment halts growth by 1 h, and by 2 h the bacteria

begin to loss viability (Fig. 1).

From these observations, we have developed a model (Fig. 6) where the SOS

response is initiated early in the population after HU treatment in an attempt to save each

individual bacterium. At some point after initial exposure, some bacteria may no longer

be able to repair themselves and switch to a complex cell death mode. As this switch is

not synchronized in the population, different bacteria initiate this process at different

times. We observe this differential switch as a heterogeneous increase in expression of

iron-regulated GFP fluorescence that increases in intensity over time as more bacteria

switch on programmed cell death. It will be interesting to determine if a bimodal

distribution, similar to iron uptake in a population, is also observed for activation of

toxin/antitoxins and for repression of rpoE after HU treatment.

Programmed cell death is observed in higher organisms following dNTP

depletion, suggesting that eukaryotes and prokaryotes share a similar response to this

stress (220). In a multicellular organism there are clear reasons for elimination of

individual cells if it benefits the organism as a whole (221). Rationales have also been

suggested for bacterial programmed cell death as in the case of cannibalism during B.

subtilis sporulation (222). Considering the cannibalism model, we were intrigued to find

that genes responsible for the utilization of hexauronates showed significant upregulation

in response to HU (SI Table 1). We hypothesis that degraded peptidoglycan components,

released from lysed bacteria, are shuttled through the hexauronate system to provide

precursors for dNTPs synthesis and energy supplies for the surviving cells.
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Thymine starvation provokes DNA damage involving a unique breaking/twisting

of the chromosome into a configuration that defies all the repair systems (223, 224)

which is thought to activate the MazF toxin. Both HU and thymine starvation interfere

with DNA replication suggesting that both may lead to a common class of events than

then leads to an activation of the complex cell death program. We have reported that the

activation of both DNA polIV (DinB) and DNA polV (UmuD' 2C) carrying out limited

mutagenic DNA synthesis is able to make cells resistant to killing by HU, presumably by

stabilizing the replication fork under conditions of dNTP depletion (68). These

observations suggest that some type of replication fork problem or collapse may be the

event that triggers a cell death response. It is not yet clear what signal transduction

events lend the replication fork problem to activation of the cell death program. By

activating a cell death program, cells that have terminally lost the ability to replicate

because of an insurmountable DNA problem are able to lyse and release their nutrients to

aid the surviving members of the population in their battle to withstand stress.
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Materials and Methods

Strains, plasmids and growth conditions. Strains and plasmids are shown in SI Table

2. All strains were grown aerobically in Luria-Berani (LB) at 37 oC. ForftsZ-GFP

assays, LB was supplemented with 0.2 % glucose and 1.0 gjM to 2.5 [tM IPTG. Where

indicated, antibiotics were used at the following concentrations: ampicillin (100 gg/ml

except for BWDO5 that used 25 gg/ml), kanamycin (30 gg/ml) and spectinomycin (100

pg/ml). Allele transfers were done by P1 transduction.

RNA isolation and microarray analysis. MC4100 was grown to mid-exponential

phase. Cultures were diluted and grown +/- 100mM hydroxyurea (Sigma) for 1 h after

which RNA was isolated using the Qiagen RNeasy extraction kit and samples were

treated with DNase treated using dna-free (Ambion). cDNA preparation and microarray

analysis were performed as described (200).

Hydroxyurea sensitivity assays. Liquid culture assays were done as described (68).

For chronic assays, strains were serially diluted and plated on LB agar containing

increasing amounts of hydroxyurea. Cfu were counted after 24 h growth at 370C.
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Protein lysates and immunoblots. Strains were grown in mid-log +/- 100 mM

hydroxyurea for 1 h. Cultures were lysed by two passages through a bead beater with

glass beads. Immunoblotting was performed as previously described (126), loading equal

amounts of protein for each sample.

Microscopy and FACS analysis. Strains were grown to mid-exponential phase, diluted,

and grown for 1 h +/- 100 mM hydroxyurea. Preparation of cells for live-cell microscopy

was done essentially as described (68). FACS analysis was performed as described

(200).
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Fig. 1. Exponentially growing MC4100 cultures were treated with 0 or without (0100

mM HU.

Fig. 2. (A) MC4100 pL(lexO)-GFP treated with or without HU. (B) WT AB 1157 ( and

AB 1157 lexA3 ( were spotted on LB agar plates containing increasing concentrations of

HU.

Fig. 3. MC4100 carrying PlacftsZ-GFP treated with 2.0 jtM IPTG in the presence or

absence of 100 mM HU.

Fig. 4. (A) MC4100 ( and MC4100 AtonB::KmR ( were serially diluted and spotted

on LB agar plates containing increasing concentrations of HU. (B) MC4100 pL(furO)-

GFP treated with or without 100 mM HU. Each panel is a merge of the membrane (red)

and GFP (green) images. (C) MC4100 pL(furO)-GFP treated with 100 mM HU and

sorted by FACS as previously described (200).

Fig. 5. (A) MC4100 0 and MC4100 AmazEF::KmR (. (B) MC4100 0 and MC4100

ArelBE U. (C) MC4100 ( and MC4100 ArelBEAmazEF::KmR U. (D)

ArelBEAmazEF::KmR ( and ArelBEAmazEF::KmRAtonB U. In each experiment the

strains were spotted on LB agar plates containing increasing concentrations of HU.
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Fig. 6. Model of E. coli cellular response to HU. Following HU exposure, E. coli

activates a series of survival mechanisms. At a later time point, cells that are unable to

repair their damaged genomes activate a complex cell death program.
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Supplemental

SI Table 1. Functional grouping for differentially regulated genes identified by

microarray analysis.

Gene

nrdA

nrdB

nrdD

nrdG

nrdH

nrdI

nrdE

nrdF

sulA

dinB

recA

recN

umuC

umuD

Z Score

(+HU vs. -HU)

Gene Product/Function

Ribonucleotide Reductase

subunit A class I ribonucleotide reductase

subunit B class I ribonucleotide reductase

class III ribonucleotide reductase, anaerobic

NrdD activating enzyme

electron transport system for NrdEF

part of nrdHIEF operon; function unknown

subunit _ cryptic class I ribonucleotide reductase

subunit _ cryptic class I ribonucleotide reductase

SOS Network

inhibits FtsZ ring formation

DNA polymerase IV

recombinational repair

recombinational repair

DNA polymerase V

DNA polymerase V

170

+3.16

+4.34

+3.76

+3.99

+4.07

+4.39

+3.98

+4.23

+2.55

+1.48

+1.75

+1.33

+2.70

+2.62



ruvA

ruvB

uvrB

uvrD

priA

priB

dnaB

dnaC

dnaN

ftsZ

zipA

ftsQ

rcsB

fecA

fecB

fecC

fecD

171

Holliday junction recognition

Branch migration of Holliday structures

Excision nuclease subunit B

DNA-dependent ATPaseI-DNA helicase II

DNA Replication Restart

primosome factor Y

primosome protein

helicase

sliding clamp subunit

sliding clamp subunit

Cell Division

initiates septum ring formation

septal ring structural protein

growth of cell wall at septum

ftsZ regulator

Iron Uptake

receptor, citrate-dependent ferric iron transport

periplasmic protein, ferric iron transport

ferric iron transport

membrane protein, ferric iron transport

+2.04

+2.69

+2.62

+1.50

+2.16

+1.76

+0.70

+1.65

+2.58

-2.14

-2.59

-1.58

-1.20

+3.48

+3.09

+3.08

+2.31



fecE

fecl

fecR

feoA

feoB

fepA

fepB

fepC

fepD

fepE

fepG

jhuA

fhuB

JhuC

jhuD

jhuE

jhuF

tonB

exbB

exbD

rpoE

179

ferric iron transport

ferric iron transport

regulator of ferric iron transport

ferrous iron uptake system

membrane protein, ferrous iron uptake system

outer membrane protein, ferribactin transport

periplasmic protein, ferrienterbactin transport

inner membrane protein, ferrienterobactin transport

ferrienterobactin permease

ferric enterobactin uptake

ferrienterobactin permease

ferrichrome OMP

hydroxamate-dependent ferric uptake

hydroxamate-dependent ferric uptake

hydroxamate-dependent ferric uptake

ferric-rhodotorulic acid outer membrane receptor

ferric hydroxamate transport

iron uptake

iron uptake

iron uptake

RpoE Related

alternative sigma factor, envelope stress response

+2.72

+3.73

+1.97

+1.11

+1.23

+3.16

+2.07

+2.55

+2.19

+0.73

+2.47

+2.72

+3.59

+2.72

+2.31

+1.45

+4.12

+3.25

+4.19

+3.64

-4.02



rseA

rseB

rseC

fkpA

surA

mazE

mazF

relB

relE

uxaA

uxaC

uxuA

uxuB

171

negative regulator of RpoE

binds RseA, negative regulator of RpoE

positively regulates RpoE

periplasmic chaperone

periplasmic chaperone

Toxin-Antitoxin Pairs

suppressor of MazF activity

toxic protein, growth inhibitor

suppressor of RelE activity

toxic protein, growth inhibitor

Hexauronate Metabolism

altronate hydrolase galacturonate

uronate isomerase galacturonate

mannonate hydrolase glucuronate

mannonate oxidoreductase glucuronate

-3.43

-4.78

-3.07

-2.23

-1.86

-0.57

+0.19

-0.34

-0.07

+4.63

+3.87

+3.54

+3.17



SI Table 2. Bacterial strains and plasmids used in this study

Strain

MC4100

DM49

DFJ135

CH971

CH972

JW1224

BWD01

BWD02

BWD03

BWD04

EC448

BWDO5

SS1744

BWD06

BWD07

Laboratory stock

Laboratory stock

F araD139 Alac U69 ArelAl rpsL150 thi

motflb5301 deoC7ptsF25 rbsR

F thr-1 leuB6proA2 his4 thil argE3 lacYi

galK2 rpsL supE44 ara-14 xyl-15 mtl-1 txs-33

AB 1157 lexA3

AB 1157 lexA(Def), sulA 11

CH113 AmazEF::KmR

CH113 ArelBE::KmR

BW25113 AtonB::KmR

MC4100 AmazEF::KmR

MC4100 ArelBE

MC4100 AmazEF::KmR, ArelBE

MC4100 AtonB::KmR

MC4100 A(attL-lom):..bla lacf P208-ftsZ-gfp

MC4100 A(attL-lom)..bla lacP P20o-ftsZ-gfp

174

(201)

Laboratory stock

(225)

(225)

(226)

This study

This study

This study

This study

(207)

This study

(203)

This study

This study

AB1157

recA4136-gfp

MC4100 recA4136-gfp

MC4100 lexA-gfp plasmid
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SI Fig. 7. Whole cell lysates from MC4100 treated +/-100 mM HU immunblotted for (A)

NrdA or (B) NrdB.

SI Fig. 8. Whole cell lysates from MC4100 treated +/- 100 mM HU immunoblotted for

SulA-GFP (A) using anti-GFP antibodies or RecA (B) using a monoclonal antibody

against RecA. (C) RecA-GFP localization in MC4100 with, and without, HU treatment.

For cell images in (C), the membrane was visualized using FM4-64 ("experimental

procedures").

SI Fig. 9. (A) Whole cell lysates from MC4100 treated +/- 100 mM HU immunoblotted

for FtsZ. (B) Whole cell lysates from MC4100 carrying PlacftsZ-GFP treated with IPTG

in the presence or absence of 100 mM HU followed by immunoblotting for FtsZ-GFP

using monoclonal anti-GFP antibodies.

SI Fig. 10. Whole cell lysates from MC4100 treated +/- 100 mM HU immunoblotted for

(A) RpoE or (B) RseA.
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Chapter 7

Investigations into the Mechanism of Hydroxyurea Resistance Conferred by Loss of

YbeY Activity

1 P



Abstract

While investigating the AybeY mutant (Chapter 5), I found that, in contrast to the

wide range of stresses it was sensitive to, the AybeY mutant was very resistant to the

DNA replication inhibitor hydroxyurea. In Chapter 6, I presented a model where, for any

given bacterium in a population, hydroxyurea can induce a molecular switch from a

survival mode to a programmed cell death mode. Here, I use that model to explore

possible mechanisms for the increased resistance of the Aybe Y mutant to hydroxyurea. I

demonstrate that the AybeY mutant induces a cell-survival pathway in response to HU but

is much less sensitive to triggering activation of cell death pathways. Furthermore, I

show that the increased resistance to HU cannot be simply explained by the decreased

growth rate of the AybeY mutant and offer evidence that YbeY may act more directly in

sensing HU-related stress.
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Introduction

Hydroxyurea (HU) is commonly used in both prokaryotes and eukaryotes to study

DNA damage-independent replication fork arrest (64-66). HU is a potent inhibitor of

class I ribonucleotide reductase (RNR), the enzyme responsible for the synthesis of

dNTPs under aerobic conditions in many organisms. Depletion of dNTP pools through

HU treatment leads to replication fork arrest, most likely through substrate starvation (66-

68)

DNA damage, induced by mutagens such as UV, interferes with DNA replication

through a mechanism different from that caused by HU (67, 69). When a replication fork

encounters DNA damage caused by UV, replication proceeds discontinuously, leaving

gaps juxtaposed to the lesion (70). The excess ssDNA generated results in formation of

the RecA/ssDNA nucleoprotein filaments that facilitate auto-cleavage of the

transcriptional repressor LexA and derepression of the SOS-regulon. The SOS response

involves the upregulation of more then 40 genes involved in numerous aspects of DNA

repair and other cellular functions (71). The genomic response to UV damage has been

investigated and described in two independent studies using microarray analysis (72, 73).

The majority of genes identified in these experiments belong to the SOS-regulon. The

authors identified only a small subset of genes that varied independently of the major

SOS transcriptional repressor, LexA, or that were downregulated in response to UV. HU

treatment had been shown to upregulate two genes of the SOS-regulon, recA and sulA

(74), however the extent of SOS induction as well as other cellular responses brought

about by HU-dependent fork arrest had not been investigated in detail.

1 R?



In Chapter 6, I investigated the cellular response of E. coli to HU. Using a

systems-level analysis of the transcriptional perturbations induced by HU to guide my

experiments, I showed that HU induces global molecular changes that encompass not

only DNA repair but importantly pathways that extend into envelope stress, iron transport

and toxin-antitoxin regulation. These data support the model that E. coli induces a

distinctive transcriptional profile in response to damage-independent fork arrest that

permits individual cells in the population to switch from a survival mode to a

programmed cell death mode.

In Chapter 5, I presented my study of a previously undescribed family of proteins

designated as COG0319. I demonstrated that the E. coli homolog, YbeY, is required for

ribosome maturation. The AybeY mutant is very pleiotropic displaying increased

sensitivity to a wide variety of environmental stresses (Chapter 5). During my study of

the AybeY mutant I was intrigued to find that it was also highly resistant to HU. I present

here my investigation into the mechanism(s) of HU resistance of the AybeY mutant. I

demonstrate that the AybeYmutant is capable of activating HU-inducible cell death

pathways but requires higher doses of HU to trigger their activation, which suggest that

YbeY may act to enhance the signal to activate cell death pathways.

Materials and Methods

Strains, plasmids and growth conditions. Strains and plasmids are shown in Table 1.

All strains were grown aerobically in Luria-Berani (LB) at 37 oC. Where indicated,
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antibiotics were used at the following concentrations: ampicillin (100 [tg/ml), kanamycin

(30 ýtg/ml) and chloramphenicol (20 ýtg/ml). Allele transfers were done by P1

transduction.

RNA isolation and microarray analysis. MC4100 was grown to mid-exponential

phase. Cultures were diluted and grown +/- 100mM hydroxyurea (Sigma) for 1 h after

which RNA was isolated using the Qiagen RNeasy extraction kit and samples were

treated with DNase using dna-free (Ambion). cDNA preparation and microarray analysis

were performed as described (200).

Hydroxyurea sensitivity assays. Liquid culture assays were done as described (68).

For chronic assays, strains were serially diluted and plated on LB agar containing

increasing amounts of hydroxyurea. Cfu were counted after 24 h growth at 370C.

Protein lysates and immunoblots. Strains were grown in mid-log +/- 100 mM

hydroxyurea for 1 h. Cultures were lysed by two passages through a bead beater with

glass beads. Immunoblotting was performed as previously described (126), loading equal

amounts of protein for each sample.

Microscopy and FACS analysis. Strains were grown to mid-exponential phase, diluted,

and grown for 1 h +/- 100 mM hydroxyurea. Preparation of cells for live-cell microscopy

was done essentially as described (68). FACS analysis and run-out assays were

performed as described (67).
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Co-immunoprecipitation assays. Co-immunoprecipitation assay were performed using

Aybe Y mutant strains carrying ybe Y (+/- FLAG-tag) on a plasmid. Assays were

preformed as described by manufacture (Sigma FLAG-tag system).

Results

The Aybe Y mutant is highly resistant to drugs that induce DNA damage-

independent replication arrest. In Chapter 5, I described a novel, universally

conserved protein in bacteria, YbeY, required for ribosome maturation. I constructed a

strain carrying a deletion of ybeY, which I refer to as the AybeYmutant. The AybeY

mutant is very pleiotropic with increased sensitivity to a wide-range of environmental

stresses (Chapter 5). While investigating the physiology of the AybeYmutant, I made the

striking observation that the mutant was very resistant to the DNA replication inhibitor

hydroxyurea (HU) (Fig. lA). HU specifically inhibits class I ribonucleotide reductase

(RNR) (57), depleting cellular dNTP pools and causing replication fork arrest,

presumably through substrate level starvation (68). The AybeY mutant was also resistant

to a derivative of HU, guanozle (Fig. IB), which also inhibits RNR (57). These results

suggest that disruption of ybe Y confers resistance against DNA-damage independent fork

arrest from substrate starvation by RNR inhibition. The resistance to HU was fully

complemented by ectopic expression of ybeY from a plasmid (Fig. 1 C).
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The AybeY mutant induces the SOS-regulon in response to HU but fails to

downregulate cell division genes and upregulate replication restart genes. We began

to investigate the striking resistance of the AybeY mutant to HU using a system-level

analysis of its genome-wide transcriptional response to HU as we had previously in

Chapter 6. In Chapter 6, I presented a model for affects of HU that eventually led to cell

death and lysis in MC4100. I used this model as a comparison to determine similarities

and differences in the AybeY mutant's transcriptional response to HU that could account

for its resistance to HU (Table 2).

Like the parental strain MC4100, the AybeY mutant activates the genes involved

in the SOS response when challenged with HU (Table 2). Many genes in the SOS-

regulon were strongly upregulated in the AybeY mutant following HU treatment and to

approximately the same levels observed in MC4100 after HU treatment. Recent work

has shown that small subpopulations of cells can account for large transcriptional changes

in microarray analyses of the SOS response (199). To determine the population of SOS

induced cells after HU treatment, we used a construct pL(lexO)-GFP in which GFP

expression is controlled by LexA (200) as a single cell marker of SOS induction. We

observed low GFP fluorescence in the untreated control cells (Fig. 2A). However, after a

1 hour exposure to HU, GFP fluorescence was clearly visible in the vast majority of cells

(Fig. 2A) indicating that SOS induction occurred in the bulk of the AybeYmutant

population.

After 1 h exposure to HU, MC4100 downregulates genes required for cell

division (Table 2). In Chapter 5, I suggested that this could account for the filamentation

of MC4100 induced by HU and may contribute to the eventual lysis of the cell. I was
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intrigued to find that expression of cell division genes were unaffected in the AybeY

mutant after 1 h of HU treatment (Table 2). This observation agrees with the decreased

filamentation observed in a AybeY mutant cell after 1 h of HU treatment, compared to

MC4100 (Fig. 4A vs. 4B).

In my model for the E. coli HU response, I showed that genes involved in

primosome assembly are upregulated, most likely as part of a survival response (Chapter

6, and Table 2). Interestingly, I found that AybeYmutant did not show a significant

transcriptional increase of primosome components in response to HU (Table 2). If

primosome genes are upregulated in response to replication arrest caused by HU, then the

absence of their upregulation would imply that the replication forks in the AybeY mutant

do not require as much repair. This observation would agree with the increased

resistance of the AybeYmutant to HU if the signal to activate cell death in MC4100 is

replication fork blockage and/or possibly collapse.

The AybeY mutant requires increased levels of HU to activate cell death

programs promoted by MazF and increased iron uptake. In Chapter 6, I showed that,

after prolonged exposure, HU induces a molecular switch activating cell death pathways

in E. coli. At least three mechanisms are involved in cell death and lysis following HU

treatment: activation of toxins, increased iron uptake and downregulation of the rpoE

operon. Analysis of the transcriptional response of the AybeY mutant following HU

treatment showed a stark divergence in these systems compared with the response from

the parental strain (Table 2).
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Much of the cell death induced by HU is mediated by MazF toxin. The action of

MazF is negated by the antitoxin MazE. In the AybeY mutant, I found that mazE

transcript levels were much higher than in MC4100 after 1 h of HU treatment (Table 2).

Genetic analysis showed that deleting mazEF still did enhance survival of the AybeY

mutant, however this effect was not observed until much higher levels of HU were used

(Fig. 3A). This suggests that MazF can still be activated in the AybeY mutant but the

signal activating it requires a much higher dose of HU. We also tested the affect of

deleting toxin/antitoxin relBE and found that, as in MC4100, it did not affect survival of

the AybeYmutant (Fig. 3B).

In Chapter 6, I made an interesting discovery that HU treatment increased iron

uptake, which was detrimental to cell survival. I showed data suggesting that the

increased iron uptake was due to strong upregulation of Fur-dependent transporters Fhu,

Fep and Fec. Our transcriptional analysis of the AybeY mutant following HU treatment

showed these transport systems were upregulated, but to a lesser extent than in MC4100

(Table 2). In MC4100, upregulation of iron transport systems is heterogeneous in the

population (Chapter 6). To determine if the AybeY mutant population had a similar

heterogeneous distribution, I observed GFP fluorescence from a AybeY mutant population

carrying Fur-regulated GFP construct (pL(furO)-GFP) as a marker of Fur-dependent iron

transporter activation.

Under non HU-treated conditions I observed only background fluorescence in

from MC4100 and AybeY mutant population carrying pLfurO-GFP (Fig. 4A, B; -HU).

After HU treatment I observed heterogeneous GFP fluorescence in the MC4100

population (Fig. 4A; +HU). In contrast, the pattern of GFP expression in the AybeY
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mutant population did not significantly change following HU treatment (Fig. 4B; +HU).

There was a general increase in overall fluorescence, but far less than observed with

MC4100. This result is consistent with the transcriptional data showing a significantly

smaller induction of iron transport genes in the AybeYmutant following HU treatment

(Table 2) and the increased resistance to HU of the AybeYmutant (Fig. lA).

I tested if iron uptake still affected the AybeY mutant survival following HU-

treatment by deleting tonB. I found that deletion of tonB in the AybeY mutant did

promote survival in the AybeYmutant following HU treatment but, like mazF, the affects

were not observed until higher levels of HU were used (Fig. 4C). This suggests that

increased iron uptake following HU-treatment is detrimental to the AybeY mutant,

however, compared to MC4100, higher levels of HU are required to induce iron uptake in

the AybeYmutant. Taken together, these results suggest that the AybeYmutant can

activate cell death pathways involving toxins and iron uptake following HU treatment,

however the signal to activate these pathways requires a higher dose of HU.

The AybeY mutant shows decreased replication initiation. Given that HU

inhibits RNR which in turn depletes dNTP pools and leads to replication blockage

through substrate level starvation (68, 210), it is possible that the signal to activate cell

death programs in response to HU is initiated by blocked or damaged replication forks.

This would suggest that a cell with more blocked replication forks may induce a stronger

signal. The AybeYmutant grows slower than MC4100 in rich media at 370C (40 ± 2 min

vs. 28 ± 3 min, Chapter 5). As replication initiation is coupled to cell mass (227), the

slower growing AybeY mutant could be expected to have fewer initiated replication forks
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during logarithmic growth compared to MC4100. This could in turn account for the

increased resistance to HU.

I used FACS analysis to determine the DNA content of MC4100 and AybeY

mutant cells during logarithmic growth (Fig. 5). I used the dnaA46 TS allele to

determine the IN DNA content position using run-out assays (Fig. 5A) (67). At the non-

permissive temperature, the dnaA46 strain should arrest with one chromosome (67).

During logarithmic growth, MC4100 shows a DNA content distribution around the 2N

position (Fig. 5B). Run-out experiments, which allow origin replication to complete but

inhibits new rounds of initiation, showed that MC4100 cells contain either 2N or 4N

genome contents (Fig. 5C). In contrast, during logarithmic growth, the Aybe Ymutant

shows a DNA content distribution around IN (Fig. 5D) and run-out experiments show

that AybeYmutant cells contain either 1N or 2N content of DNA (Fig. 5E). This suggests

that fewer initiation events are occurring in the AybeY mutant during logarithmic growth.

To more clearly define the number of replisomes in MC4100 compared to the

AybeY mutant I used microscopy to visualize the localization patterns of SeqA fused to

GFP in the cell. SeqA binds hemi-methylated DNA following replication, in part, to

prevent aberrant reinitiation events (227, 228). During logarithmic growth, SeqA-GFP

foci were clearly evident in both MC4100 and AybeY mutant cell, however there were

more foci, on average, observed in MC4100 cells (Fig. 6A, B; -HU). When treated with

HU for 1 h, MC4100 cells showed increased numbers of SeqA-GFP foci per cell on

average, as well as more diffuse foci (Fig. 6A; +HU). As HU can lead to fork collapse,

reinitiation may occur at oriC before full replication of the chromosome can occur. This

could lead to an increase number of blocked forks in MC4100 following HU treatment
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that could activate a cell death signal. In contrast, HU treatment did not greatly affect the

SeqA-GFP localization pattern of the AybeY mutant (Fig. 7B; +HU). This result agrees

with the decreased DNA content of the AybeY mutant (Fig. 5E) and suggests that the

mutant contains fewer replisomes than MC4100.

Translation defects and decreased growth rate alone do not account for

increased HU resistance. My results from Fig. 5 and Fig. 6 support a model where the

increased resistance of the AybeY mutant is due to its decreased growth rate. The

decreased growth rate could be attributed to the translation defects of the AybeYmutant

(Chapter 5). If the increased HU resistance of the Aybe Y mutant is solely a consequence

of defective protein translation and subsequent slowed growth rate, then all slow growing

strains should show increased HU resistance. I should also be able to induce resistance in

MC4100 by disrupting protein translation and slowing its growth rate.

To test this theory, I began by examining if inhibition of protein translation would

increase resistance to HU in MC4100. I assayed the survival of MC4100 on 7.5 mM and

15 mM HU in the presence of subinhibitory concentrations of chloramphenicol (Cm).

Cm functions by inhibiting peptidyl transferase and preventing peptide bond formation

(229). I found that subinhibitory concentrations of Cm did dramatically increase survival

of MC4100 at 7.5 mM HU, however it had little affect on survival at 15 mM HU (Fig.

7A). This suggests the resistance of the AybeYmutant at low levels of HU can be

attributed to defective translation, however this does not account for the increased

resistance I observe in the AybeY mutant at higher HU doses.
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I followed this result by testing the sensitivity of a Arnc strain I constructed in

MC4100. rnc codes for the RNase III enzyme that initially separates 16S, 23S and 5S

into their respective precursors (174). Loss of RNase III activity greatly slows the

maturation of 16S rRNA, prevents proper maturation of 23S rRNA and decreases the

translation rate (38). I found that the Arnc and Aybe Y mutants both grew at the same rate

in rich media (dT: Arnc = 41 ± 1 min, AybeY = 40 ± 2 min). Therefore, the Arnc strain

phenocopies the AybeY mutant in that it has a decreased growth and rRNA maturation

defects compared to MC4100. Interestingly, I found that disruption of rnc conferred only

a very minor increase in resistance to HU (Fig. 7B) and this was not substantial relative

to the effect of deleting ybeY(Fig. lA). Taken together, these results suggest that a

defect in translation or a decrease in growth rate cannot fully account for the increased

HU resistance of the AybeY mutant.

YbeY is downregulated in response to HU and associates with RNR. Given

the striking resistance of the AybeY mutant to HU, I questioned if HU treatment affected

the expression of YbeY. I blotted protein extracts from MC4100, carrying an epitope

tagged ybeY gene, treated with or without HU treatment and found that YbeY expression

substantially decreased following HU treatment (Fig. 8A).

The AybeY mutant can activate cell death pathways following HU treatment but

requires much higher doses of HU to trigger the activation than MC4100 (Fig. 3 and 4).

It also appears that slower growth rates and decreased DNA initiation cannot fully

account for increased resistance to HU (Fig. 7). I speculated that, in addition to its role in

ribosome maturation, YbeY may also play a role in DNA replication. Although UV and
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HU induce DNA damage, UV does not induce the cell death programs and lysis we

observe after HU treatment (72, 73). RNR is the target of HU inhibition and loss of RNR

activity leads to the subsequent blockage of replication forks. I questioned if the state of

RNR could be acting as the signal to activate cell death and if YbeY somehow influences

this. I performed co-immunoprecipitation experiments to determine if RNR interacted

with YbeY. I immunoprecipitated YbeY and found the _-subunit of RNR, NrdA, bound

YbeY (Fig. 8B). I also observed a much weaker interaction with the _-subunit, NrdB

(Fig. 8B). These results suggest that the expression of YbeY is responsive to HU and that

it may act directly in monitoring the state of RNR.

Discussion

Recently a body of work has emerged suggesting an intricate coupling of protein

translation and DNA replication (67, 77, 78). The highly conserved GTPase,

ObgE/CtgA, exemplifies this association. ObgE/CtgA has been shown to bind the

ribosome (79, 80) and is required for ribosome assembly (78, 81). ObgE/CgtA has also

been shown to regulate chromosome partitioning (67, 82, 83). These results prompted

me to explore the possibility that, like ObgE/CtgA, YbeY may act in both translation and

replication and how this role may lead to the increased resistance to HU observed in the

Aybe Y mutant.

My systems-level and single cell analysis of the AybeY mutant's response to HU

showed clear induction of SOS response. This result suggests that HU is causing
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sufficient DNA damage in the AybeY mutant to induce the SOS-regulon. However, I do

not observe induction of genes involved in replication restart or downregulation of genes

for cell division as I had for MC4100 (Table 2). This suggests that, while HU causes

DNA-damage in the Aybe Y mutant significant enough to induce the SOS-response, it is

either interpreted differently by the cell or not sufficient to induce the additional cell

survival response of replication restart activation and downregulation of cell division.

The AybeY mutant appears able to able to activate cell death programs but

requires higher doses of HU to do so (Fig. 3 and 4). I had suggested perhaps this was due

to the slower growth rate of the AybeY mutant. A slower growth rate would imply fewer

replication initiation events, which is supported by FACS analysis and SeqA-GFP

localization (Fig. 5 and 6). As HU inhibits RNR preventing dNTP synthesis, having

fewer replication forks would decrease the rate at which dNTP pools are depleted. The

depletion of dNTPs causes replication fork arrest, and potentially collapse (67, 68).

Accumulation of collapsed replication forks could be the signal to activate cell death

pathways. MC4100 has more replication forks following HU treatment (Fig. 6), and

therefore more potential to accumulate collapsed replication forks. This could then lead

to more rapid activation of cell death pathways compared to the AybeY mutant (Fig. 3 and

4). Thus, this model suggests how the decreased growth rate of the AybeYmutant can

account for its increased resistance to HU.

However, I found that slowing protein translation does not affect HU resistance at

high levels (Fig. 7A). More importantly, the Arnc mutant, which grows at the same rate

as the AybeY mutant, does not show a substantial increase in resistance to HU (Fig. 7B).

These observations, suggest that the decreased growth rate of the AybeY mutant cannot
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fully account for its dramatically increased resistance to HU. In addition, I found that

YbeY expression decreased upon HU treatment and that YbeY physically interacted with

RNR subunits (Fig. 8) suggesting a more direct role for YbeY in the cellular response to

HU. It will be interesting to determine if YbeY modulates the activity of RNR.

A recent proteome-wide protein interaction map for Campylobacterjejuni

identified NrdB interacting with several ribosomal proteins (230). This study was unable

to determine if NrdB interacts with the ribosomal proteins in isolation or as part of the

ribosome. Growth rate and DNA replication are intimately coupled (227). It is possible

that the specific ribosome defects of the Aybe Ymutant may also contribute to the

increased resistance of the mutant by interfering with a signaling event transduced

through RNR.
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strains and plasmids used in this study

Strain/plasmid

Strain

MC4100

AybeY

BWD10

BWD11

BWD12

BWD19

BWD01

BWD02

BWD04

BWD20

BWD21

BWD22

BWD23

Plasmids

pBR322

pBWD1

pBWD5

Relevant genotype and property

F araD139 AlacU169 ArelAl rpsL150

thi motflb5301 deoC7ptsF25 rbsR

ybe Y deletion in MC4100

MC4100 carrying pBR322

AybeY carrying pBR322

Aybe Y carrying pBWD 1

AybeY carrying pBWD5

MC4100 AmazEF::KmR

MC4100 ArelBE

MC4100 AtonB::KmR

AybeYAmazEF: :KmR

AybeYArelBE

Aybe YAtonB: :Km R

MC41 OOArnc

ApR, TcR

pBR322 expressing ybe Y

pBR322 expressing ybe Y-FLAG

Source

Laboratory stock

Chapter 4

Chapter 4

Chapter 4

Chapter 4

This study

Chapter 5

Chapter 5

Chapter 5

This study

This study

This study

This study

(191)

Chapter 4

This study
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pL(lexO)GFP GFP under LexA control (200)

pL(furO)GFP GFP under Fur control (200)

Table 2. Functional grouping for differentially regulated genes identified by microarray

analysis.

Gene Gene Product/Function Z Score

(AybeY +HU vs. (WT +HU vs.

AybeY-HU) WT -HU)

SOS Network

inhibits FtsZ ring formation

DNA polymerase IV

recombinational repair

recombinational repair

DNA polymerase V

DNA polymerase V

Cell Division

initiates septum ring formation

septal ring structural protein

growth of cell wall at septum

ftsZ regulator

+1.38

+1.36

+1.31

+1.12

+1.16

+1.00

sulA

dinB

recA

recN

umuC

umuD

ftsZ

zipA

ftsQ

rcsB

+1.48

+1.54

+0.97

+0.71

+1.57

+1.49

-0.48

-0.85

+0.03

-0.85

-1.29

-1.53

-0.93

-0.71
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DNA Replication Restart

priA primosome factor Y -0.17 +1.20

priB primosome protein +0.31 +1.03

dnaB helicase +0.03 +0.41

dnaC sliding clamp subunit +0.08 +0.95

dnaN sliding clamp subunit +0.77 +1.52

Toxin-Antitoxin Pairs

mazE suppressor of MazF activity +0.79 -0.38

mazF toxic protein, growth inhibitor -0.17 +0.10

relB suppressor of RelE activity -0.52 -0.21

relE toxic protein, growth inhibitor -0.49 -0.04

Iron Uptake

fecA citrate-dependent ferric iron transport +1.95 +2.20

fecB periplasmic protein, ferric iron transport +1.65 +1.80

fecC ferric iron transport +1.56 +1.77

fecD membrane protein, ferric iron transport +1.80 +1.33

fecE ferric iron transport +1.47 +1.58

fecI ferric iron transport +1.66 +2.16

fecR regulator of ferric iron transport +1.43 +1.12

feoA ferrous iron uptake system -0.15 +0.60
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feoB ferrous iron uptake system +0.36 +0.76

fepA ferribactin transport +1.45 +1.84

fepB ferrienterbactin transport +0.72 +1.19

fepC ferrienterobactin transport +0.90 +1.50

fepD ferrienterobactin permease +1.39 +1.23

fepE ferric enterobactin uptake +0.16 +0.40

fepG ferrienterobactin permease +1.50 +1.40

JhuA ferrichrome OMP +0.73 +1.59

fhuB hydroxamate-dependent ferric uptake +0.80 +2.07

jhuC hydroxamate-dependent ferric uptake +1.06 +1.59

fhuD hydroxamate-dependent ferric uptake +0.30 +1.34

fhuE ferric-rhodotorulic acid receptor +0.70 +0.86

JhuF ferric hydroxamate transport +1.51 +2.38

tonB iron uptake +0.75 +1.88

exbB iron uptake +1.72 +2.49

exbD iron uptake +1.63 +2.11

RpoE Related

rpoE alternative sigma factor, stress response -0.88 -2.29

rseA negative regulator of RpoE -0.83 -1.95

rseB binds RseA, negative regulator of RpoE -0.50 -2.75

rseC positively regulates RpoE -0.08 -1.82
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Fig. 1. Sensitivity of the AybeY mutant to (A) HU and (B) guanazole. Cultures were

serially diluted and plated on increasing concentrations of the indicated stress. Cfu were

determined after 24 h of growth. MC4100 (), Aybe Y (_. (C) Ectopic express ofybe Y

in the AybeY mutant complements the HU phenotype. Same assay as used in A and B.

MC4100+EV (), AybeY+EV (), Aybe Y+pybeY (9. EV is empty vector control and "p"

indicates that the gene indicated is expressed from a plasmid.

Fig. 2. (A) MC4100 pL(lexO)-GFP and (B) AybeYmutant pL(lexO)-GFP treated with or

without HU.

Fig. 3. (A) MC4100 (, AybeY (), MC4100 AmazEF::KmR (9 and

AybeYAmazEF::KmR (U. (B) MC4100 (), Aybe Y (), MC4100 ArelBE (9 and

AybeYArelBE (_). In each experiment the strains were spotted on LB agar plates

containing increasing concentrations of HU.

Fig. 4. (A) MC4100 pL(furO)-GFP and (B) AybeY pL(furO)-GFP, treated with or

without 100 mM HU. (C) MC4100 (9 and MC4100 AtonB::KmR (_) were serially

diluted and spotted on LB agar plates containing increasing concentrations of HU.

Fig. 5. FACS analysis of the DNA content MC4100 and the AybeYmutant. (A) Run-out

experiment using dnaA46 strain to mark iN DNA content. (B) DNA content of

logarithmically growing MC4100. (C) Run-out experiment of logarithmically growing
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MC4100. (D) DNA content of logarithmically growing AybeY mutant. (E) Run-out

experiment of logarithmically growing Aybe Y mutant.

Fig. 6. SeqA-GFP localization in (A) MC4100 and (B) AybeYmutant with and without

treatment with 100 mM HU.

Fig. 7. (A) Affect of sub-inhibitory concentrations on survival of MC41 00 on LB plates

containing 7.5 mM or 15 mM HU. (B) Sensitivity of MC4100 (), the AybeY mutant (9

and MC4100 Arnc (9 to increasing concentrations of HU.

Fig. 8. (A) Immunoblot for YbeY using whole cell lysates from MC4100 treated with

out without 100 mM HU. (B) Western blots for NrdA and NrdB from YbeY-FLAG

immunoprecipitated complex. The control strain carried a non-FLAG tagged ybe Y gene

and was assayed side-by-side the ybeY-FLAG tagged strain.
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Chapter 8

Perspectives and Future Direction

910



My thesis work has covered several areas of research. I will focus on YbeY and

its family members in this Chapter.

Antibiotic resistant bacteria are becoming an increasing public health problem. A

recent study has shown that drug-resistant Staphylococcus aureus deaths are now

exceeding death due to AIDS in the U.S. (231). Nearly 70% of bacteria that cause

infections in hospitals are resistant to at least one of the antibiotics most commonly used

to treat infections (232). While several "new" antibiotics have emerged over the past two

decades, the vast majority of these are derivatives of previously known antibiotics that

bacteria rapidly gain resistance to (233, 234). A great challenge confronting the medical

community is to identify new bacterial targets for antimicrobial action (233, 234).

Ideally, an antibiotic should target an essential bacterial function. Targeting of a

non-essential function may slow bacterial growth in hopes that the immune system can

then clear the infection, however this also allows a bacterium more time to develop

resistance. Recently, several novel GTPases have been identified that are essential in

bacteria, including Era and ObgE (29), and have been advocated as potential drug targets

(235). However, it has been difficult to suggest how to specifically inhibit these bacterial

GTPases without also harming the host.

YbeY homologs are found in all sequenced prokaryotes. A screen for essential

genes in B. subtilis identified the YbeY homolog YqfG, suggesting it is essential in this

organism and possibly in all gram-positive bacteria (236). I attempted to specifically

delete yqfG in B. subtilis but was unsuccessful supporting its possible essential role in

this bacterium (unpublished data). I have shown that while YbeY has a human homolog,
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they are not completely equivalent, suggesting there is possible divergence in the active

or substrate binding sites. Indeed primary sequence analysis shown in Chapter 5 shows

several areas of divergence between human and bacterial homologs. Structural similarity

searches show that the putative active site of YbeY resembles that of matrix

metalloproteases (154). Many different protease inhibitors have been developed over the

years, demonstrating the tractability of a protease-like active site as a potential dug target.

I suggest that the YbeY protein family would make an excellent drug target and am in the

processes of developing a screen to identify small molecule inhibitors of YbeY.

I was struck to find that the human homolog C21orf57 was able to partially

complement the AybeY mutant. The discovery of a mitochondrial signaling sequence on

C21 orf57 clarified how a bacterial protein involved in ribosome maturation could have

such a strong human homolog. Mitochondria synthesize their own ribosomes and are

thought to have evolved from _-proteobacteria (237). C21orf57 is located near the

telomere on the long arm of chromosome 21 (238). This region is classified as the

critical region in Down Syndrome as it is thought that genes located in this distal portion

of 21q are responsible for the physical manifestations of the genetic abnormality (239).

The function of very few genes on chromosome 21 have been identified and, while no

single gene is thought to be responsible for the pathology of Down syndrome, knowledge

of the gene products on chromosome 21 will greatly help elucidate the mechanisms

(240). I hypothesize that, like YbeY in E. coli, C21orf57 plays a role in ribosome

maturation in human mitochondria. In Chapter 5, I speculated that YbeY may be
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involved in 3' maturation of 16S rRNA. Interestingly, the enzyme responsible for 3'

processing of mitochondrial rRNA is also unknown (241).

There is general agreement in the field that a disturbance in the balance of

reactive oxygen species (ROS) may be a key point in the pathogenesis of Down

Syndrome (242). The mitochondrial respiration chain is the most important intracellular

source of ROS (242). The mitochondria have a central role in apoptosis, and numerous

studies have demonstrated that the accumulation of mitochondrial DNA mutations is a

major contributor to neurodegenerative diseases and aging (242). Interestingly, most

Down syndrome patients develop Alzheimer's disease neuropathology (243). This

development of Alzheimer's disease in Down syndrome patients may be related to the

overexpression of the amyloid _ precursor protein due to increased gene dosage (244).

Recent studies have shown that mitochondrial dysfunction may play a significant role in

development of Alzheimer' s disease in Down syndrome patients by promoting aberrant

amyloid _ precursor protein processing (242).

I have begun experiments in human 293T cells to look at the effect of knocking

down C21orf57 expression. I have achieved a 4 fold knockdown of C21orf57 mRNA

using siRNA technology and will shortly be assaying the affect on mitochondrial activity

and rRNA processing. If an effect is observed it will be very interesting to overexpress

C21 orf57 in human 293T cells and determine if detrimental cellular affects ensue.
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