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ABSTRACT

Inherently characterized by the interaction of geometry and forces, the unique
nature of long span dome, shell, and membrane structures readily allows collaboration
between architects and engineers in the examination of their optimal form. Through the
elimination of bending and shear forces in the structure, less material and reinforcement
is needed. By minimizing the use of materials, a form that is economical, sustainable and
aesthetically attractive emerges. However, this optimization must be done through form-
finding methods, whereby the structure itself defines its own shape based on its figure of
equilibrium under applied loads. Unlike free forms which are defined mathematically,
form-finding shapes rely on the structure and loads themselves for definition. Before the
use of computers, these equilibrium shapes could only be found through cumbersome
physical models. As technology has advanced, numerical methods have evolved to solve
for the optimal shape.

This paper presents a brief history of physical methods formerly used, as well as
common applications for these structures. Two numerical methods, the Pucher's
equation method and the force-density method (FDM), are then presented. Pucher's
equation relies on a prescribed stress resultant throughout the structure, while the force-
density method relies on prescribed force-to-length ratios in each bar or cable, leading to
a single system of linear equations. Advantages and disadvantages of both methods are
discussed, as well as examples illustrating the types of structures that can be formed.
These methods are shown to be powerful tools that can be generalized to a number of
situations with minimal input required by the designer. The structures are able to define
themselves, leading to extremely rational and beautiful forms.

Thesis Supervisor: Jerome J. Connor

Title: Professor of Civil and Environmental Engineering



Acknowledgements

I would like to thank everyone who has helped me in making this thesis and degree
possible. To Professor Jerome J. Connor, who has provided his incredible knowledge,
advice, and continuous encouragement to me throughout the year. To the MEng class of
2008, for your friendship and hours of work in the MEng room, I never would have made
it without you. To Kate, who has always been an amazing friend and the best editor. To
Conall, for being so understanding and supportive through everything. And mostly to my
parents, who have always believed in me and encouraged me in everything that I do-I
owe this all to you.



Table of Contents

Chapter 1: Introduction ................................................... 6
Chapter 2: Historical Context ............................................................................................. 8
Chapter 3: Applications .................................................................................................... 11
Chapter 4: Design M ethods ............................................................... ......................... 16

4.1: Pucher's Equation M ethod........................................................................... 16
4.1.1: Form ulation..................................................................................................... 16
4.1.2: Design Exam ples .................................................................................. 21
4.1.3: Advantages................................................................................................... 31
4.1.4: Lim itations .................................................. 32

4.2: Force-Density M ethod ............................................................ ......................... 32
4.2.1: Background ..................................................................................................... 32
4.2.2: Form ulation.................................................................................................... 33
4.2.3: M odified Force-Density M ethod ........................................ .......... 36
4.2.4: Advantages...................................................................................................... 37
4.2.5: Lim itations .................................................................... ............................ 37
4.2.6: Design Exam ples .............................................................. ........................ 38

Chapter 5: Com parison ..................................................................................................... 46
Chapter 6: Conclusions ............................................. .................................................. 55
References .................................................... 56
Appendix A : M atlab Codes ............................................................... ......................... 58

A .1: Pucher's Equation Code........................................................ 59
A .2: Force-Density M ethod Code ............................................................................ 63

Appendix B: Sam ple Program Input.................................................. .......................... 66
B. 1: Pucher's Equation Input.................................... ....................................... 67
B.2 Force-Density M ethod Input ..................................................... ....................... 69



Table of Figures

Figure 2-1: Service station, Deitingen Sud, Switzerland (Brew and Lewis, 2007)......... 10
Figure 3-1: Denver International Airport (Berger, 1999) .............................................. 12
Figure 3-2: Denver Airport Elevation (Berger, 1999) ..................................... ... 13
Figure 3-3: One of the 24 unites of the Riyadh Stadium Roof (Berger, 1999).................. 13
Figure 3-4: Point-Supported Structure: Riyadh Stadium (www.skyscrapercity.com).. 14
Figure 3-5: A-frame Supported Structure: Mitchell Performing Arts Center (Berger,

1999) ....................................................................... ............................... 14
Figure 3-6: Arch-Supported Structure-Wimbledon Indoor Tennis Facility (Berger,

1999) ............................... ........................................ ............................... 15
Figure 4-1: Actual and Projected Stress Resultants (Connor, Wolf, Miller, 1965) .......... 17
Figure 4-2 : Triangular Coordinate System ......................................... ............ 19
Figure 4-3: Plan of Surface with Element and Node Numbers ...................................... 22
Figure 4-4: Resultant Equilibrium Shape from Pucher's Equation Method.................. 23
Figure 4-5: Isometric view of the two principal stresses ............................................... 24
Figure 4-6: Plan view of the two principal stresses ....................................................... 25
Figure 4-7: Stresses along section line A..................... .... ............... 25
Figure 4-8: Stresses along section line B........................................ .............. 26
Figure 4-9: Effect of load. P = -1/2 (blue), -1 (green), -2 (red) ..................................... 27
Figure 4-10: Effect of stress resultant. P = 1, N = 10. Ratio = 0.1 ................................ 28
Figure 4-11: Effect of stress resultant. P = 1, N = 1. Ratio = 1 .................................... 29
Figure 4-12: Effect of stress resultant. P = -1, N = 1. Ratio = -1 ................................... 30
Figure 4-13: Effect of stress resultant. P = -1, N = 10. Ratio = -0.1 .............................. 31
Figure 4-14: Plan of Surface with Element and Node Numbers (Topology Graph) ........ 39
Figure 4-15: Resultant equilibrium shape..................................... ............... 39
Figure 4-16: Effect of Load. Pz = -1 (up) ......................................... .............. 40
Figure 4-17: Effect of Load. Pz = 0 ...................................................................... 41
Figure 4-18: Effect of force-density. Perimeter q = 100, interior q =1 ......................... 42
Figure 4-19: Effect of force-density. Perimeter q = 10, interior q =1 ........................... 43
Figure 4-20: Effect of force-density. Perimeter q = 1, interior q =1 ............................. 44
Figure 4-21: Effect of fixed nodes. Prescribed center height ......................................... 45
Figure 5-1: Pucher's equation method (blue) and FDM (red) comparison. Prescribed

border nodes .................................................................................................... 47
Figure 5-2: Pucher's equation method (blue) and FDM (red) comparison. Prescribed

comrner nodes. .................................................................................................. 48
Figure 5-3: Pucher's equation method (blue) and FDM (red) comparison with applied

load .......................... ................................... . . ............................................. 49
Figure 5-4: Kresge Auditorium (www.wikipedia.com)...................... ............ 50
Figure 5-5: FDM. P = 1 everywhere, border q = 100, interior q = 1. ............................ 51
Figure 5-6: Pucher's equation method. Pz = 1, N = 100 ..................................... . 52
Figure 5-7: Pucher's equation method. Pz = 1/2, N = 100 ..................................... 53
Figure 5-8: Comparison of Pucher's equation method (blue) and the FDM (red) ........... 54



Chapter 1: Introduction

A distinct emergence in the modem system of building design is the lack of

interaction between engineer and architect in the earliest stages of conceptualization.

Oftentimes the architect will determine the shape and form of a building, while the

engineer is purely an aide to make the imagined form work from a practical, structural

point of view. One major exception is that of long span dome, shell and membrane

forms, which are inherently characterized by the interaction of geometry and forces.

Consequently, a structure emerges that is governed by neither aesthetics nor mathematics

alone, but is a collaboration of engineering and architecture that together create a rational

form that expresses its true function. The minimization of materials, which allows for

abundant light and large open spaces, often results in an aesthetically pleasing,

economical and sustainable structure.

As David P. Billington states, "The disciplines of structural art are efficiency and

economy, and the freedom lies in the potential it offers for the expression of a personal

style motivated by a conscious aesthetic search for engineering elegance" (Billington,

1983). If a structure is efficient in resisting its applied forces, then it will be economical

in material usage and can achieve elegance in form. In order to achieve this, shape must

be derived solely from applied forces and self weight. If the form of a tension or

compression surface, which can only carry axial forces, reflects the load path, and thus

represents the equilibrium shape, no bending will occur. The alternative to employing

these self-equilibrium shapes to define a surface is using free form shapes. Free forms

are defined by elements of geometrical shapes, such as lines, spheres, ellipses and

hyperbolas, and are in no way functions of the forces acting in them. While this makes

the surfaces easy to describe mathematically, the loads are completely independent from

the shape determination process, leading to bending forces under both self weight and

applied loads. These forces must be resisted by increasing the thickness and

reinforcement of the structure, and do not make effective use of material.



Before the use of computers, efficient equilibrium-shaped forms could only be

found through measurements on scaled physical models. With the improvement of

technology, a number of numerical methods have been developed to combat the

deficiencies of experimental models in achieving precision and generalibility.

This thesis examines the use of Pucher's equation in the 1960s to solve for the

optimal shape, and more recently the use of the force-density method, which addresses a

number of problems previously faced in quickly and easily visualizing the optimal

surface. Examples illustrating the scope and limitations of both methods are presented,

along with comparisons between the two.



Chapter 2: Historical Context

Evidence of dwellings from ancient prehistoric communities indicates that

efficient and optimal structures were formed through intuitive and experimental means

well before these very theories were even formulated as the ideal. The earliest evidence

of human dwellings, located in southern France in a camp called Terra Amata, can be

dated back approximately 380,000 years. These remains indicate that stick-framed dome

structures were developed by prehistoric people, similar to those found throughout the

world in indigenous communities. The structures discovered at Terra Amata were

believed to have been formed by closely placing tree branches in an oval shape on the

ground, surrounding a central ridge beam supported by posts. When bent inward toward

the ridge beam and attached to each other, the branches formed a series of arches, often

tied together with horizontal branches effectively acting as ring beams (Berger, 2007).

Rocks and boulders were also placed around the edges to support the frame. This form

reflects aspects of the two primary types of prehistoric stick-framed habitations found

throughout the world. These are radial structures with arches meeting in the center, or

orthogonal structures with sets of arches crossing at right angles, tied with horizontal

members. While these structures of arches and hoops were obviously determined based

on experience and available materials, it is an extremely efficient system that carries the

forces of self weight and wind to the ground in the most direct fashion. It is now known

that a funicular shape is the most materially efficient form, able to resist the maximum

load per structural weight or area. This funicular form is the shape a structure takes

under its own weight and loads, acting like a chain with no stiffness, hinged at every

point. When many of these chains are linked together into a two-way net, and reversed to

form arches, a very stable grid dome structure emerges, greatly resembling prehistoric

structures. These ancient constructions were formed based on practical considerations

such as ease of construction, maximization of internal space and empirical structural

efficiency through minimizing materials. The result was the development of extremely

efficient structures, only limited by the materials from which they were built. Today,



these same considerations continue to dominate in choosing the structural form, and thus

many of the same forms found by prehistoric peoples continue to be employed in long

span shell structures today.

Early pioneers in form-finding lightweight structure design, which began in the

1950s, relied on physical models and natural forms to mimic desired behavior. Frei Otto

used soap bubbles and soap film within edges to represent membranes in equilibrium

with uniform stress in all directions and no bending or shear stresses. When these same

shapes are used in buildings, they form tensile membranes and prestressed cable nets.

These minimal, uniformly loaded membrane surfaces were the start of today's interest in

fabric tensile design (Wakefield, 2006). This shape cannot be described mathematically,

thus close measurements of the models had to be performed to replicate the shape. As

technology advanced, Otto was one of the first to move away from physical models and

to use computer methods to investigate and quantify these optimal forms.

Another equilibrium shape is the freely hanging cable, which forms a catenary

curve carrying forces only in tension. An arch in perfect compression results when this

shape is flipped. The architect Gaudi was one of the first to investigate this property, and

made many physical models of hanging cables, which were used to construct vaults in a

number of his projects in Barcelona.

Taking this catenary concept further, Heinz Isler was a pioneer in thin-shell

concrete construction through his investigations of the catenary behavior of suspended

fabric. His method for finding the shape of a doubly curved surface involved hanging

wet fabric and letting it freeze, or using hung fabric soaked in a cement mix that was

allowed to dry. The sagged form acts like a catenary in tension under its own weight,
which could then be inverted into a structural shell model in compression. As a result, he

was able to achieve extremely durable, thin and light structures. Furthermore, Isler found

that even when using the same amount of material, his doubly curved shells could

support up to three times the load as a flat structure before failure (Linkwitz, 1999). By

using these methods, Isler was able to design the service station in Deitingen Sud,
Switzerland as a concrete shell structure with a thickness of just nine centimeters. The
model of frozen fabric can clearly be visualized in this form (Figure 2-1).



Figure 2-1: Service station, Deitingen Sud, Switzerland (Brew and Lewis, 2007)



Chapter 3: Applications

At present, sports arenas and airport terminals are driving long span roof

structural design. Airports have become "inextricably linked to crystal-clear wayfinding,

expansive views, and abundant daylight" (Solomon, 2005). Long span roofs that

minimize vertical supports allow for both maximum light and circulation through the

space. Their shape also mimics the aerospace industry in terms of expressing flexibility

and fluidity, and the large scale reflects that of the airplane itself. These roofs can also

have a psychological effect by which "the volumes and undulating shapes made possible

by their inherent geometries can help lift the spirits of most any weary traveler"

(Solomon, 2005). Stadiums roofs are often very similar to airport terminal roofs. Also

motivated by the desire to create large unobstructed spaces, many times they too are the

key signature feature of this type of structure.

Fabric has a long history of use in building design. Simple tents have been used

for centuries, and continue to be employed as temporary accommodations for recreational

or refugee purposes. However, modem fabric structures for permanent buildings have

also been used for approximately 40 years (Berger, 1999). Their lightness, speed of

erection, control of air quality and daylight, acoustic properties and visual appeal make

them a desirable feature for large venues and arenas. While mainly seen in canopy roofs,
structural fabric is also now being employed as part of the building enclosure itself.

The most basic tensile roof surface requires at least four supports, one of which

must be outside of the plane defined by the other three. Using an orthogonal grid, the

four-point structure requires cables along the edges, or alternatively, a polar coordinate

grid could be used to form a radial tent with catenary edges. Since the material lacks

substantial weight, elements must be added to resist upward wind loads as well. The
placement of support points, which can be at the high points, low points, and perimeter of

the structure, are what determine the ultimate shape. Using form-finding computer

programs, discussed later, an equilibrium shape can be determined by prescribing a
specified surface stress pattern along with these fixed support points. As Berger states,



modifying the popular principal of Louis Sullivan, "form clearly follows structural

function." In addition, "...the structural form defines the sculptural shape of the building

on the outside and the form of the space on the inside. There is no longer any distinction

between engineering and architecture."

Fabric tensile roofs may be divided into categories based on their supports,

namely point-supported structures, A-frame supported structures and arch-supported

structures (Berger, 1999). Point-supported structures are formed by ridge cables draped

over high mast supports. The roof structure at the Denver International airport, shown in

Figure 3-1, makes use of this system. Ridge cables carry the downward loads, while

valley cables placed between ridge cables run parallel and form arches to carry the

required upward load. The downside is the addition of horizontal forces in the anchors,

which are seen in Figure 3-2 to be resisted through diagonal members in the supports.

Figure 3-1: Denver International Airport (Berger, 1999)



Figure 3-2: Denver Airport Elevation (Berger, 1999)

The Riyadh Stadium, in Saudi Arabia, uses pole supported tent units to form one

of the largest span roof structures of the present day. Twenty-four units are arranged in a

circle, with each unit having "a vertical main mast, a pair of suspension and stabilizing

cables, and an anchorage system of stay cables; the units are tied together and stressed by

a central ring cable" (Knudson, 1991), as demonstrated in Figure 3-3 and Figure 3-4.

Figure 3-3: One of the 24 unites of the Riyadh Stadium Roof (Berger, 1999)



Figure 3-4: Point-Supported Structure: Riyadh Stadium (www.skyscrapercity.com)

Point-supported structures can sometimes result in spatially inefficient forms,

however. Either the mast of the peak is forced to be at the center, providing height at the

expense of free interior space. Alternatively, masts moved to the exterior would remove

the interior obstructions, but would create a tent high at the edges and low at the center.

A-frame supports can be used instead. Employed in the roof of the Cynthia Woods

Mitchell Center of the Performing Arts, Figure 3-5, three A-frames along with the stage

house structure form the support system (Berger, 1999). Here, compression struts

connect the support columns and edge cable anchors to the stage house. The supports of

the A-frames now form the low points of the surface, while compression struts

connecting the support columns and edge cable anchors to the stage house balance the

horizontal forces in the membrane.

Figure 3-5: A-frame Supported Structure: Mitchell Performing Arts Center (Berger, 1999)



Finally, arch-supported structures are particularly efficient for spans in rectilinear

structures. In the McClain Practice facility at the University of Wisconsin, prefabricated

steel arches were able to be used to span the full width of the field. Fabricated in the

shop, they were bolted together in the field to form half arches, before being lifted and

pinned in the center. By doing so, each arch took only one day to erect, illustrating a

great benefit of this arch system (Berger, 1999). An additional feature is the roof

material itself. The outer edges are covered by a stainless steel roof, while the center is

covered by a fabric membrane spanning between the arches. This allows light to

concentrate in the center, a desirable effect for a sports arena, as well as a reduction in

thermal energy consumption (Berger, 1999). Arches can also be placed on the outside to

avoid the visual obstruction in the interior space, as was employed at the Wimbledon

Indoor Tennis Facility (Figure 3-6).

Figure 3-6: Arch-Supported Structure-Wimbledon Indoor Tennis Facility (Berger, 1999)



Chapter 4: Design Methods

Until 30 or 40 years ago, form-finding structures could only be determined

through the use of physical models to ascertain their figures of equilibrium under applied

loads. While these methods were adequate for simple structures, they were not precise

enough for increasingly complex situations. The desire among designers arose to have a

method that, unlike modeling, was not problem specific and could be generalized to a

wide variety of applications and materials. Rapidly evolving computer methods, such as

finite element analysis, have revolutionized the way these structures can be formulated.

A few methods that have been developed and employed will be discussed.

4.1: Pucher's Equation Method

4.1.1: Formulation

In the design of membrane shell structures, an initial approximation for the

optimal shape can be determined through a specialized form of the membrane force-

equilibrium equations. For isotropic materials in compression, the strength is limited by

the maximum principle stress. An idealized optimal membrane is assumed to carry axial

forces, but can not resist bending or shear forces. An optimal shape, therefore, is one in

which the material behaves in the most efficient manner by having the two principal

stresses equal at every point. With the assumption that the two principal stresses are

equal, the condition of zero shear force is implicitly satisfied.

The force-equilibrium equations can be reduced to one differential equation,
called Pucher's equation, which is a function of the membrane stress, F(x,y), and the

elevation z(x,y) at each point. Assuming a load per unit projected area in the positive

vertical direction, P., Pucher's equation can be expressed as



(4.1)

using subscript notation to represent partial derivatives.

In the design phase to determine the shell shape, F is specified everywhere and

the elevation, z, at each point is determined. Using Nj to represent stress resultants, and

Nu the projected stress resultants in the x-y plane, see Figure 4-1, the following

definitions apply

Nxx " Fyy

Ny =F,xx

Nxy = -F,xy

' y

Nyr

(4.1)

'~ rNH,

Figure 4-1: Actual and Projected Stress Resultants (Connor, Wolf, Miller, 1965)

z,yy F,xx -2 z,xy Fxy +zxx F,yy = -PZ

1w" N×X



As mentioned, to optimize the shape, the stress resultants in the two principal

directions are assumed to be equal, while the shear stress is assumed to be zero. If

N represents the desired stress resultant everywhere, then

F,,, = N xx = N
F,, = Ny =N (4.2)

F,x, = 0

N = specified value = constant

Pucher's equation, from equation (4.1), can then be rewritten as

PZ
z,,+z,,yy = -- (4.4)

N

subjected to prescribed elevations, z(x,y), at specified locations.

Equation 4.4 represents a form of Laplace's equation, which can be solved by

using finite element analysis principles. Applying Galerkin's method, the equation is

transformed to

-- +• "-- dx dy = - z-Sz dA (4.5)ax ax +y ay i xy N

If triangular elements are used, as shown in Figure 4-2, a relation between Cartesian

coordinates, x,y,z, and triangular coordinates, ý1, 4 2, 4 3, must be established. For an

arbitrary point p(x,y) = p(ý1, 42) from Figure 4-2 it can be written

x=X3 +(x1 -X3) 41 +(x2 - X) 2
(4.6)

Y= Yz + (Y - Y3) r( + (Y2 -3 2) 2



(Io)

X r. I

Figure 4-2 : Triangular Coordinate System

It also follows that of the three triangular area coordinates 4i, only two are independent

such that

a + ý2 + 3 =1 (4.7)

From equations 6 and 7, the triangular coordinates are written as

1 = (2A + bx + ay)
2A

= (2AO
2 2A2A

3 = 2A2A

+b2x+ a2y)

+ b3x+ a3y)

(4.8)

where the parameters are defined as

a, = X3 -X2

a2 = X 3 - X3

; 2A = x 2 3 -x 3Y2

; bi=y 3
a3 =-a 1 -a 2 = 2 -x 1

-Y ; 2A = X3Y - X1Y3

; b = -b - b2 = - Y2 2A° = A- A - A-A

A = (ba 2 - b2a,) = area of triangle
2

(4.9)

" 0"

; bl = Y2 - Y3

.- . .*-



Using these interpolation functions, a function for z can be proposed that varies linearly

over the triangular element

z = 4,z, + 42z2+ 3z3 = D Tz (4.10)

where

z, = nodal values, i = 1,2,3

z =[z1 z2 3]
( =[ I 2 431

From equation 4.9, and using the chain rule, it is readily seen that

az _z a4,
ax -ý dx

az a52
a02 dx

+ a =(zlbI+z2b2a 3 dx 2A
+z3b,)= bTz

2A

OSz 1
x bT6z

Ox 2A

+ z3a3) = aTz
2A

z- aTSZ
oy 2A

where

a =[a,a2 a 3 ;b=[b, b2 b3]

In order to solve the right side of equation 4.5, which from equation 4.10 reduces to

- z JQ" dA
NA

the relation can be used that

f dA
A

az a4
a4, dy

az •y2+ d+
84,2 dy

aZ ay3
a43 dy

_= (zlal+z2a2
2A

(4.11)

-'r (4.12)

1 A
3 2A =
3! 3

(4.13)



Substituting equations 4.11 and 4.13 into equation 4.5 and simplifying, Pucher's

equation reduces to

-(bb +aaT)z =_-  (4.14)
4A 3N

Noting that equation 4.14 is of the form KU = R, the stiffness and load matrices

for each element can be obtained. From these, the global stiffness and global load

matrices can be formulated, and the nodal elevations, z, for the structure can be solved

for. It is also important to note that the boundary conditions must be applied. In general,

these are fixed nodal elevations at specified locations. To do so, the displacement,

stiffness and load vector are modified. The element of the load matrix, R, corresponding

to the prescribed condition is modified by subtracting the corresponding K row multiplied

by the given elevation. Namely, for a prescribed condition at node i, the R term is now R

-Zi,prescribed K(row i) Also, the row and column of the stiffness matrix, K, corresponding to

each prescribed elevation is set to zero for the off diagonal elements and one for the

diagonal element.

The above methods were used to generate a program in Matlab to solve Pucher's

equation. The full program is given in Appendix A.

4.1.2: Design Examples

A preliminary example using the Pucher's equation method was performed to

illustrate the results that can be obtained. The desired structure is rectangular in plan,
with prescribed elevations along the boundaries following the equation of a parabola with

the corners at elevation zero. The surface was discretized into triangular elements, shown

in Figure 4-3, resulting in 60 elements and 39 nodes (note: nodes are numbered inside

circles). Each node has fixed (x,y) locations, given in Figure 4-3, using a uniform two by

two grid. All values of dimensions, loads, and stresses are just presented for the

examination of their effects and ratios and are not based on actual measurements. Thus,



the results can be scaled by an appropriate amount to simulate a realistic situation. Of

these 39 nodes, the 16 perimeter nodes have prescribed elevations, while the remaining

node elevations are to be calculated. Included in Appendix B are the coordinate,

interconnectivity and boundary condition matrices that were used as input for the

program.

Figure 4-3: Plan of Surface with Element and Node Numbers

The surface was subjected to an arbitrary compression load of Pz = -1 and a

stress resultant of N= 10. Figure 4-4 shows the resultant shape. Since the shape is

defined at a set of discrete points, the surface itself is modeled as a series of triangular flat

surfaces. In reality a spline function would have to be used to determine the actual

curved shape to fit the calculated points, and thus the true membrane. In addition, the

mesh that was used could be refined by adding more points and reducing the distances

between them, which would create a smoother approximation of the curved surface. For

purposes of visualization here, this refinement is unnecessary.
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Figure 4-4: Resultant Equilibrium Shape from Pucher's Equation Method

To validate this method, the obtained geometry from Matlab was modeled in the

finite element analysis program ADINA. A shell of unit thickness was modeled as a

triangularly faceted surface, as previously described. The same design uniform load of -1

in the vertical direction only was applied to all surfaces. An additional outcome using

this form of Pucher's equation is that the projected normal boundary force, N nn in Figure

4-1, is not zero, but is actually equal to N. Therefore, a force along the boundaries

parallel to the xy plane equal to N, in this case ten, was applied. If this is not done, the

ADINA solution will not be as expected. In addition, constraints were placed along the

boundary lines to fix motion in the vertical direction, while allowing the other degrees of

freedom to remain unrestrained.

The results to be examined are the principal stresses. As mentioned, the two in

plane principal stresses are expected to be equal and have the value of the prescribed

stress resultant N, equaling ten in this situation since there is a unit thickness. Since the

4

F==="

11



structure is under compression, the values given by ADINA will be negative. In addition,

since Pl>P2>P3, it is expected that P 1 will equal zero everywhere, while P2 = P3 = -10.

The structure was modeled with varying degrees of mesh refinement by altering

the number of subdivisions along each line in order to achieve a more accurate solution.

Figure 4-6 graphically illustrates the two principal stresses obtained from a very refined

mesh. While the expected result is a uniform value across the entire surface, the band

plots clearly show variation. However, closer inspection of the legend indicates that the

range is quite small, though it is difficult to see just how large this disparity is. To more

clearly understand the variance in stresses and how far they are from the expected value,

sections were cut through the surface in two directions, shown in Figure 4-6 by lines A

and B. The stress values as a function of position along the two lines were exported from

ADINA and plotted in Figure 4-6. The sections verify that the stress values, P2 and P3,

are actually each quite close to the expected value of-10. In addition, P1 is zero as

expected.

Figure 4-5: Isometric view of the two principal stresses
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Figure 4-6: Plan view of the two principal stresses
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Figure 4-8: Stresses along section line B

Overall, the results clearly yield principal stresses that are approximately -10, as

expected. However, it is obvious that the results are not uniform at specific locations,

namely where the structure changes curvature, such as at a distance of two and eight

along Line B. This is justified, though, since the surface is not modeled as curved, as is

the actual case. Instead, the surface is approximated by breaking it into triangular flat

panels, leading to slight errors in the results. Aside from this, the values only vary by

small amounts, and can be considered uniform for most practical engineering purposes.

This validates the initial shell shape that was determined through Pucher's equation.

Effect of Load

The shape of the structure greatly depends upon the applied load. Figure 4-9

shows the structure under three different uniform surface loads, clearly seen in the

elevation drawings. For the three cases the stress resultant N is equal to one. Again,



these loads do not represent actual values but are used to show the shape under different

ratios of load to stress resultant, length, etc. The highest peak is that formed under an

applied downward vertical load of two, the middle under a downward load of one, and

the shallowest under a downward load of one-half. Clearly, as the load down onto the

structure increases the structure must increase in height and have larger vertical

components of the member forces to resist these loads.
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Figure 4-9: Effect of load. P = -1/2 (blue), -1 (green), -2 (red)

Effect of Stress Resultant

Figure 4-10 through Figure 4-12 illustrate different combinations of prescribed

forces and stress resultants, and their influence on the shape. The first example presented

using this method, shown in Figure 4-4, gave an example with a compressive load.

Figure 4-10 shows the opposite condition of an upward tensile load onto the structure,



maintaining the same stress resultant of 10. Clearly the structure now dips in more to

offset the upward load. However, if the stress resultant is decreased to one, as is the case

in Figure 4-11, it is obvious that this stress resultant is not large enough and the structure

has snapped through to compensate for the upward load. If instead a downward load is

used, the mirror image of this situation is formed, given in Figure 4-12. This can be

directly compared to the case previously shown, with a downward load of one and a

stress resultant of ten, shown again in Figure 4-13. Clearly this structure is reduced in

height since the desired stress resultant is to be higher. The lower desired stress resultant

leads to a higher, more rounded shape.
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4.1.3: Advantages

Pucher's equation lends itself to simple and quick visualization of a curved

surface under specified conditions. For most situations in which this would be applied,

such as roof structures, the applied load is uniform and vertical as required. In addition,

there is very minimal input needed. The only requirement by the user is the discretization

of the surface, numbering of the elements and nodes, and formulation of the

interconnectivity matrix indicating which nodes correspond to which elements. The

accuracy of the surface is dependent on the refinement of the grid, thus it is up to the user

to determine how many elements are desired and how much input they would like to use.
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4.1.4: Limitations

As mentioned, the normal boundary force, N ., is not zero but is actually equal

to N. Thus, in practical applications this boundary force would have to be applied to

mimic the desired behavior. In addition, the form of Pucher's equation described here

only considers a uniform load that is purely in the vertical direction. However, there are

many situations that require variable loading, or loads that are in different directions,

which cannot be accounted for with this method. Furthermore, the prescribed stress

resultant, N, must also be uniform everywhere, a condition that is not always desired.

Finally, the x and y coordinates of each node must be known. This implies that

something about the final shape must also be known prior to design. While this is not an

issue for simple structures, for complex shapes knowing where the non-fixed nodes

should be placed in the x and y directions is harder to ascertain if certain conditions, such

as equidistant final node location, are desired. Aside from vertical adjustment to satisfy

equilibrium, this method does nothing to allow for the modification of the nodal locations

to meet other constraints such as desired bar length or actual forces in the members.

4.2: Force-Density Method

4.2.1: Background

The force density method (FDM), first developed by Klaus Linkwitz and H.-J.

Sheck in 1971, was motivated by the desire to analytically solve for the shape of a doubly

curved surface simply and with minimal input. This method is based on the force-to-

length ratio, called the force-density, of each branch of the net structure. The branches

are physically either the cables or rods that make up the structure, and are schematically

drawn as the lines that connect node points. The result is a simple, single system of

linear equations, with the only requirement that the shape must be in equilibrium,
implying that the sum of all forces at each node is zero.



The development of this method was based on the physical experiments on a free

hanging membrane performed by Heinz Isler, as previously described. This idealized

membrane is assumed to be inelastic and transmit tensile forces, but has no resistance to

bending or shear stresses. While it has a fixed area, the membrane has no fixed shape,

and its geometry is allowed to change based on the applied forces. Again using Mohr's

circle, the two principal stresses must be equal to eliminate shear forces. As a result, by

requiring the principal stresses at every point equal in all directions and using membrane

theory, the shape that a free hanging membrane would take can be found. While the

principal stresses must be uniform in all directions for each point, this value does not

have to remain constant over the surface.

To achieve this condition of uniform stress at each point, the FDM prescribes a

value of the force-density for each branch of the structure. With no other constraints, the

equilibrium structure having those prescribed force-densities can be determined.

4.2.2: Formulation

The formulation of the FDM described below is based off of the methods initially

presented by Schek. To start, an arrangement of a pin-jointed network of branches,

numbered 1 to m, and nodes, numbered 1 to n, is formed in the 2D plane, called topology

mapping. This topology graph that is formed only indicates the connectivity between

nodes, and thus the same graph can be used for many equilibrium shapes depending on

the applied loads, as explained by Hernandez-Montes, Jurado-Pina, and Bayo (2006).

These authors have also examined different methods for topological mapping based on

the desired network and final configuration. However, this is beyond the scope of the

present discussion, and in fact has little impact on the initial visualization. It is therefore

assumed that the structure is mapped somewhat arbitrarily, but includes enough branches

to adequately define the surface. It is also helpful for later equation formulation that the

nodes are numbered such that the free nodes are first, numbered 1 through nfree, while

the fixed nodes are at the end of the numbering sequence, nfree+l to n, totaling nfixed.



Each branch, j, is connected to two nodes, numbered i(j) and k(j). Requiring i <

k, meaning node number i is the smaller of the two connecting nodes, the branch-node

matrix, Cs is an m x n matrix defined by

+1 fori(j)=r
C,(j,r)= -1 fork(j)=r (4.15)

0 otherwise

This overall branch-node connectivity matrix is really a combination of the

branch-node matrix for the free nodes, C, which are the columns 1 through nfree, and for

the fixed nodes Cf, columns nfree+l through n, in the Cs matrix.

The nodal coordinates of all points are grouped in the size nfree vectors x, y, z, for

the free nodes, and the size nfixed vectors xfi y, zf, for the fixed nodes, containing the x,y,

and z coordinates of each node. The size m vectors I and s contain the length 1j of each

branch j, and the branch forces sy, respectively. The nodal loads are formed by the p

matrix of size nfree x 3, containing the vectors px, py, pz, representing the respective

component of the applied load at each node.

The coordinate differences, represented by u, v, w of the nodes that are connected

by branches can be obtained through the branch-node matrix as

u = Cx + Cf Xf

v=C y+Cf yf (4.16)

w = Cz+Cf Zf

With U, V, W, and L representing the diagonal matrixes of u, v, w, and 1, respectively,

imposing the constraint of equilibrium, in other words summing the forces of each node

to be zero, results in

CTUL-1s = px

CTVL-'s = py (4.17)

CTWL - Is = p7



Defining q as the m sized vector containing the force-density ratios qj = sj/lj of each

branch, for the equations in 4.17 to be linear, it is assumed, that

q = L-'s (4.18)

With Q defined as the diagonal matrix of q, the following identities can be written

Uq = Qu

Vq = Qv
Wq = Qw

(4.19)

Combining equations 4.17, 4.18, and 4.19 with equation 4.16, the equilibrium equations

can be rewritten as

CTQCx + CTQCfxf = px

CTQCy +CQCfyf = py

CTQCz + CTQCzf = pZ

(4.20)

Defining D = CTQC and Df = CTQCf, for simplicity, the final equilibrium shape for a

given q matrix is

x = D-(px -Dfxf)

y= D- (p, -Dfy,)

z= D-'(p -Dfzf )

(4.21)

L can then be found from the nodal coordinates given by equation 4.21

(4.22)1- = (uY + v + (w2 Y



thus giving the forces in each branch as

s=Lq (4.23)

The above equations, given the interconnection, load, fixed nodes and force-

densities, are enough to solve for the complete set of free node coordinates and branch

forces. These equations were used to generate a program in Matlab, given in full in

Appendix A. It is also clear that the shape changes if the force-densities, q, change.

While it initially may seem that prescribing the force-densities prior to shape

determination is difficult, it has been shown through many investigations that trivial force

densities are adequate to generate figures of equilibrium. In most cases a value of one

assigned for each branch inside the network and a value inversely proportional to the

branch length in the boundary is sufficient (Linkwitz, 1999).

4.2.3: Modified Force-Density Method

While the previous method described the formation of an equilibrium state

without consideration of materials or other geometrical requirements, in practical

situations these factors are often significant. Additional conditions are, in general,
nonlinear, thus the modified force density method will also be nonlinear. However, if the

constraints can be formed as linear functions with respect to the force densities and

coordinates, the above formulation can be used as the starting shape for iterations on the

non-linear behavior. Without going into great detail here, some of the constraints that

can be prescribed are described by Schek in "The Force Density Method for Form

Finding and Computation of General Networks." These include prescribed node

distances in specified branches to account for desired bar or cable lengths, prescribed

forces in specified branches and prescribed unstrained lengths of the branches. Various

factors of the project and desired structure dictate which conditions to use and where

these conditions are applicable. As previously mentioned, these nonlinear additional



conditions will not be fulfilled by the initial linear equilibrium shape. Therefore,

iterations must be performed until the shape is satisfactory.

4.2.4: Advantages

There are incredible advantages to using the force-density method to form the

shape of a doubly-curved surface. For initial visualization, the only parameters to be

defined are the force densities of all branches in the net, the coordinates of any fixed

nodes and the connectivity of the structure, which simply specifies the nodes that each

branch is desired to span between. The result is a system of linear equations which can

be solved for, without iterations, in one step. Further, the equations for this initial shape

do not contain anything relating to the materials used in the structure, which would only

be considered if other geometrical constraints on the structure are required. This

completely separates the first step, which involves pure shape determination based on the

force-densities coming from prestress in the structure, from the second step, which

involves material considerations and the behavior under applied loads. Furthermore,

aside from the fixed nodes, this method eliminates the need to specify any initial

coordinates. In addition, there is no limitation on the direction of applied loading it can

handle, since the system of linear equations involves equilibrium in the directions of x,y,
and z.

4.2.5: Limitations

For most structures to which this method would be employed, the nature of the

applied loading is a uniform vertical surface load. However, the formulation of the force-

density method requires the load to be specified as a point load at the nodal locations.

Since the shape of the structure is obviously unknown, and the nodes are free to move in

the x, y, and z directions, it is impossible to calculate the tributary area per node ahead of

shape determination. Therefore, if an accurate result is required there will have to be

some initial estimation of the amount of load taken by each node. When the initial shape

is determined, the actual tributary area, and thus tributary load to each node, can be



found. The nodal loads can then be adjusted as such, and a more accurate shape

determined. This can be iterated on until the user determines that the loads are acceptable

representations of the true surface area load. This is primarily an issue for complex

shapes, where it is difficult to initially estimate the distribution of load.

4.2.6: Design Examples

The same structure that was previously designed with Pucher's equation method

in section 4.1.2: is designed using the force-density method. The same topology graph as

before is to be used. However, in the FDM the branches, as opposed to the triangular

elements, must be numbered. In addition, for ease programming the nodes must be

renumbered so that the free nodes in the interior are labeled first and the fixed, perimeter

nodes are last. As shown in Figure 4-14, there are 39 nodes and 98 branches. The same

fixed nodes were used as in section 4.1.2. A downward vertical load of pz = 1 was

applied to each node. Note that a positive value of load indicates down for this method,

whereas the opposite is true in Pucher's equation. The force-density was set to one for all

of the interior branches, and 100 for the perimeter. This helps to ensure that the edges

will be straight. Included in Appendix B are the input matrices of connectivity, fixed

nodes, force-density and load. Figure 4-15 shows the resultant shape.
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Figure 4-14: Plan of Surface with Element and Node Numbers (Topology Graph)
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Effect of Load

To examine the influence of the load on the shape the same input as previously

described was used, with the p matrix modified. As stated, Figure 4-15 gives the shape

under compressive loading with nodal loads equaling one in the vertical direction (down).

Figure 4-16 gives the reverse shape, that of the structure under tensile loading of negative

one (up). Finally, Figure 4-17 shows the pure equilibrium shape under no applied loads.
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Figure 4-17: Effect of Load. Pz = 0

Effect of Force-Densities

Since the FDM is based around prescribed force-densities, it is important to

understand what effect the modification of these values has on the structure so that

desired behavior can be obtained. To illustrate, the structure used previously is modified.

While the nodes and branches remain the same, the fixed points are changed so that only

the comers have prescribed conditions. They are set so that two opposite comers have

the same prescribed height, while the other two are on the ground with a height of zero.

This action can be likened to propping up two corners of a tent. It is important to note

that for the program to run, the nodes must be renumbered so that the four corner nodes

are labeled last. This also means that the connectivity matrix must be reformulated. The



designers must therefore decide ahead of time which nodes they may want fixed so that

the numbering is done in a way that requires the least amount of changes.

The ratio of the perimeter to the interior force-densities is examined in Figure

4-18, Figure 4-19, and Figure 4-20. As previously mentioned, a force-density of 100 for

the perimeter branches yields fairly straight borders. As the desired force-density is

decreased in the perimeter branches, the branches themselves increase in length to

achieve this result, and the perimeter curves. This is why, for the structure in Figure

4-15, the force-density was set to 100 for the perimeter and 1 for the interior to obtain the

desired result of straight borders in plan.
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Figure 4-19: Effect of force-density. Perimeter q = 10, interior q =1
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Figure 4-20: Effect of force-density. Perimeter q = 1, interior q =1

Effect of Fixed Nodes

The same structure has already been looked at with two different fixed node

conditions. Specifically, in Figure 4-15 the borders were given the shape of parabolic

openings, while in Figure 4-18 the comers were given set heights for openings. Both of

these involved fixed nodes at the edge of the structure. Another desired condition might

be to employ prescribed nodes in the center, representing the desired height the structure

is to reach. This is analogous to having a post in the center with a tent draped over it.

With a height of five at the central node and a height of three for the four surrounding

nodes, Figure 4-21 shows the equilibrium shape from this situation.
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Chapter 5: Comparison

The Pucher's equation method and the force-density method both have their

advantages and disadvantages, as previously described. All of these considerations must

be taken into account when considering which method is appropriate for the specific

situation. However, it is also important to examine whether the two methods are actually

analogous and will yield the same results.

To compare the two methods, the structure previously used with prescribed edge

coordinates forming parabolic openings is examined. For ease of initial comparison, the

shape is formed using both methods with an applied load of zero, representing the pure

equilibrium shape of the structure itself. This is done for preliminary comparison since it

is more difficult to compare the situations with applied loading due to the different nature

of specified loads. As already stated, Pucher's equation requires a uniform area load,

while the FDM requires this load to be discretized into concentrated loads at the nodal

locations. Furthermore, the relationship between prescribed stress resultant and

prescribed force-densities must be established to relate the two methods. It is possible to

estimate the loading, stress resultant and force-densities to obtain equivalent conditions

between the two methods, which is illustrated later.

Figure 5-1 shows the resultant shapes from the two methods with the applied load

of zero. Pucher's equation method is shown with blue surfaces and lines, while the FDM

is shown with red lines. Clearly the two structures almost exactly overlap and match

each other. The nodal locations in the plan view show that they are in the same x and y

positions. The elevation views show that the structures follow almost the same shape.

However, there is a slight discrepancy between the two methods in the doubly curved

central portion, where the elevations are slightly off.
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Figure 5-1: Pucher's equation method (blue) and FDM (red) comparison. Prescribed border nodes.

This discrepancy between the shapes obtained from the two methods is even more

pronounced in the case where only the corner nodes are prescribed and the borders are

free to move. The designed shapes from the two methods are shown in Figure 5-2, again

with Pucher's method in blue surfaces with blue lines and the FDM method in red lines.

The two structures follow the same overall shape, and they both reach the same elevation

in the center. However, the nature of the curved interior is different between the two.

Since the nodes are free to move in any direction in the FDM, as compared to the fixed x

and y locations of the nodes in the Pucher's equation method, the FDM yields a smoother

and more rounded shape. Since the nodes can adjust, the branches can increase or

decrease in length, as required, to form a smooth surface. This is also seen in the plan

view, where the borders are no longer projected as straight lines but are now required to

be curved inward. In contrast, the nodes in Pucher's method are fixed in x and y, thus the

borders must be fixed as straight. In addition, to accommodate the x and y nodal

coordinates the surface is not smooth, and has visible bulges and portions that stick out.
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In this situation is it more beneficial to use the FDM to visualize the surface since it

results in a smooth shape that is more realistic.
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Figure 5-2: Pucher's equation method (blue) and FDM (red) comparison. Prescribed corner nodes.

As briefly mentioned, it is more difficult to compare the two methods with the

situation of structures under applied loads since the input of the two methods is different.

However, with some thought and initial trial and error, the structure was formed having

approximately the same conditions in each method. Using the situation of prescribed

perimeter nodes, the FDM structure was modeled with force densities of one for the

interior branches and 100 for the exterior branches, ensuring straight borders as

previously illustrated. In addition a load of one was applied to each node. Pucher's

equation method was formed with a downward area load of one and a stress resultant of

four. This yielded approximately the same form, shown in Figure 5-3. However, it is

clear the elevations deviate slightly from each other. Here the Pucher's method gives a

smoother surface. The lengths of the interior branches of the FDM structure are too long,

L

/

!

I I I I



and must be adjusted to give a smoother structure. This is beyond the scope of design

here. However, it is clear that both methods yield approximately the same shape, which

would be sufficient for initial visualization and design.
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Figure 5-3: Pucher's equation method (blue) and FDM (red) comparison with applied load

To further illustrate the capabilities of these two methods, a design example with

a different shape was performed. This form is based on the Kresge auditorium at MIT,

shown in Figure 5-4, which is a shell structure supported at three points. The shape of

the building in plan was scaled from drawings, as well as the height of the parabolic

openings along the borders. These are the fixed nodes to be used in both methods.
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Figure 5-4: Kresge Auditorium (www.wikipedia.com)

While the plan dimensions and fixed elevations were based on Kresge, the

prescribed load and other parameters were chosen arbitrarily to generate a shape just for

purposes of visualization.

Figure 5-5 shows an example of this structure formed with the FDM with a load

of pz = 1 at all nodes and a force-density of one for the interior branches and 100 for the

perimeter branches. The structure would have to be iterated on to obtain uniform branch

lengths since the initial view, as shown in plan, yields some unsymmetrical conditions

which are not ideal. Also, the mesh used to generate the shape could be refined to obtain

further accuracy. However, more refinement means more time to label the structure and

to generate the connectivity matrix, so an appropriate balance between time and accuracy

must be decided upon.

Similarly, Figure 5-6 shows the preliminary design of a structure with these

boundary conditions using Pucher's equation method. In this case, the load was a

uniform area load of one downward, while the prescribed stress resultant was 100.
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Figure 5-5: FDM. P = 1 everywhere, border q = 100, interior q = 1.
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Figure 5-6: Pucher's equation method. Pz = 1, N = 100

To compare this structure between the two methods, the conditions for Pucher's

equation were modified to generate a shape comparable to that formed by the FDM.

Using a surface area load of one-half, while keeping the desired stress resultant as 100,

yields the structure in Figure 5-7. The structure generated with the FDM is overlaid with

this shape in Figure 5-8, where the structures are almost exactly the same and it is

difficult to see the differences between the two. However, different topology graphs

were used so that the outline of branches from Pucher's equation, shown in blue, can be

distinguished from the FDM structure, depicted with red lines.
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Chapter 6: Conclusions

The previous section has shown that both the force-density method and Pucher's

equation method yield comparable results in the formation of curved membrane or shell

surfaces. Both of these methods are powerful tools that enable a designer to quickly

visualize a surface with very minimal input. For this initial visualization, both methods

are based on statically determinate structures, requiring nothing to be specified regarding

the material. This allows great generalization and applicability to a wide range of

situations. In addition, it is very easy to modify the prescribed conditions if there is a

change in design or if the resultant shape is not as desired.

The implications of these methods are enormous. By forming an equilibrium

shape based on the unique design conditions, a structure emerges that is optimal for its

own specific nature. This allows efficiency, minimization of material and lightweight

rational structures. The thinness offers a unique aesthetic, while the structure itself is

economic as well as sustainable.

The force-density method actually has the ability to take these ideas further. With

a modified force-density method, the entire structure can be designed. This includes the

shape, the branches and the actual membrane surface. Once the overall shape is known,
the rods or cables can be adjusted to obtain prescribed lengths to make the structure

buildable, and the actual forces within them can be specified so that specific sizes can be

designed for. In addition, the surface can be discretized so that the appropriate membrane

or shell can be formed.

These methods offer a vast improvement from physical models, which were the

only option before the general use of computers. Whereas earlier methods were

cumbersome, imprecise and time consuming, analytical methods offer ease, accuracy and

flexibility. The result is structures that are able to rationally define their own shape.

Rather than the designer giving the structure its form, the structure actually gives its own

form to the designer.
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Appendix A: Matlab Codes



A.1: Pucher's Equation Code

function Pucher(COORD,ICONN,Pz,N,BC)

%Use 3-node triangular elements
%Define NN: Number of Nodes; NE: Number of Elements;
%COORD[NN,3]:Coordinate Matrix with columns l)node number, 2)x

coordinate, 3)y coordinate;
%ICONN[NE,4]:Interconnectivity Matrix for the elements with columns

l)element number, 2)node 1 number, 3)node 2 number, 4)node 3 number;
%nodes entered counterclockwise
%COORD and ICONN entries can be in any order
%Ar: Element Area
%KE[3,3]: Local Element Stiffness/Influence Coefficient Matrix;
%K[NN,NN]: Global Stiffness Matrix;
%BC[N,z]: Boundary Condition Matrix for prescribed conditions with

columns l)node number, 2)prescribed condition;
%Pz : Prescribed surface loading per unit projected area in +z

direction; N: desired stress;
%PE[3,1]: Local Element Load Matrix;
%P[NN,NN]: Global Load Matrix

%Define arrays of x and y coordinates from input COORD matrix
X = COORD(:,2); % x coord is second column of coord matrix
Y = COORD(:,3); % y coord is third column of coord matrix
[NN,coord] = size(COORD);
[NE,iconn] = size(ICONN);
K = zeros(NN,NN); %set global stiffness to zero initially. Size is

Number Nodes x Number Nodes
P = zeros(NN,1); %sets load matrix to zero initially. size is

Number Nodes x 1

%Assemble local stiffness matrix
for E=1:NE %loop over the elements

al = X(ICONN(E,4))-X(ICONN(E,3)); %x3-x2
a2 = X(ICONN(E,2))-X(ICONN(E,4)); %xl-x3
a3 = -al-a2; %x2-xl
bl = Y(ICONN(E,3))-Y(ICONN(E,4)); %y2-y3
b2 = Y(ICONN(E,4))-Y(ICONN(E,2)); %y3-yl
b3 = -bl-b2; %yl-y2
%Al = 1/2*(X(ICONN(E,3))*Y(ICONN(E,4))-

X(ICONN(E,4) )*Y(ICONN(E,3)));
%A2 = 1/2*(X(ICONN(E,4))*Y(ICONN(E,2))-

X(ICONN(E,2) ) *Y(ICONN(E,4)));
Ar = 1/2*(bl*a2-b2*al);
%A3 = A-Al-A2;
B = [bl; b2; b3];
A = [al; a2; a3];
KE = zeros(3,3); %set element stiffness matrix to zero

initially
KE = 1/(4*Ar)*(B*transpose(B)+A*transpose(A));
%Assemble local element stiffness matrix into global stiffness

matrix
%loop over nodes in element



for i=2:4
for j=2:4

K(ICONN(E,i),ICONN(E,j)) = K(ICONN(E,i),ICONN(E,j)) +
KE(i-1,j-1);

end
end

%Assemble element Loading Matrix, PE, and put into global P
Matrix

PE = zeros (3,1); %set element load matrix to zero initially
for i=2:4 %loop over nodes in element
PE(i-1,1) = -1/3*Pz/N*Ar;
P(ICONN(E,i),1) = P(ICONN(E,i),1) + PE(i-1,1);
end

end
%K %Prints Global K Matrix
%P %Prints Global P Matrix

%Boundary Conditions
[nrow,ncol] = size(BC); % number of boundary conditions
for i=l:nrow %loop through prescribed conditions

P = P - BC(i,2)*(K(:,BC(i,1))); %multiply prescribed condition
by corresponding column of K matrix and subtr from P

K(:,BC(i,1)) = 0; K(BC(i,1),:) = 0; %set corresponding row and
column of K matrix to zero

K(BC(i,1),BC(i,1)) = 1; %set corresponding diagonal of K matrix
to 1

end
for i = l:nrow

P(BC(i,1),1) = BC(i,2);
end

%P %Prints Global K Matrix
%K %Prints Global P Matrix

Z = inv(K)*P; %Solves Elevation Matrix

%Nodal Geometry
Geometry_NodeNumber X Y_Z = [COORD(:,1) X Y Z]

%%%%%%%PLOTTING
f = ICONN; f(:,l) = [1; %f is ICONN matrix with just the node

numbers and not the first col of element number
verticesl = [X Y Z]; vertices = sortrows(verticesl,3); %x,y,z

coordinates sorted in ascending z order
new = sortrows(Geometry_NodeNumber_X_Y_Z,4); % geometry sorted in

ascending z order
n = 1:1:NN;
sorted = [n' new]; %matrix with first column the new node number,

second column the old node number, 3-5:x,y,z coordinates

%rename nodes in f matrix to reflected sorted node number for
plotting

for i = 1:NN



for k = 1:NN
if sorted(i,2) == k

for a = 1:NE
for j=1:3

if f(a,j)== k
faces(a,j)=i;

end
end

end
else continue
end

end
end

[s,c] = size(Z);
%r = (0:1/3:(s-1)/3)/s;
r = (1:1:s)/s;
%g = (0:3:(s-l)*3)/s;
g = (0:1/3:(s-1)/3)/s;

b = (s:-l:1)/s;
color = [r' g' b'];

%subplot(2,1,1)
subplot(2,2,1)

patch('Faces',faces,'Vertices',vertices,'FaceVertexCData',color, FaceCo
lor','black','LineStyle','-.','LineWidth', 'FaceAlpha',.2)

xlabel('X Distance','FontSize',20)
ylabel('Y Distance','FontSize',20)
zlabel( 'Elevation','FontSize',20)
view(15,40)
title('Perspective','FontWeight', 'bold','FontSize',23)

subplot(2,2,3)

patch('Faces',faces,'Vertices',vertices,'FaceVertexCData',color,'FaceCo
lor','black', 'LineStyle','-.','LineWidth' ,, 'FaceAlpha',.2)

zlabel('Elevation','FontSize',20)
xlabel('X Distance','FontSize',20)
ylabel('Y Distance','FontSize',20)
view(0,0)
title('Elevation 1','FontWeight','bold','FontSize',23)

subplot(2,2,4)

patch('Faces',faces,'Vertices',vertices,'FaceVertexCData',color,'FaceCo
lor','black','LineStyle','-.','LineWidth',, 'FaceAlpha',.2)

zlabel('Elevation','FontSize',20)
xlabel('X Distance','FontSize',20)
ylabel('Y Distance','FontSize',20)
view(90,0)
title('Elevation 2','FontWeight', 'bold', 'FontSize',23)



subplot (2,2,2)

patch('Faces',faces,'Vertices',vertices,'FaceVertexCData',color,'FaceCo
lor','black', 'LineStyle','-.','LineWidth',l,'FaceAlpha',.2)

zlabel('Elevation','FontSize',20)
xlabel('X Distance','FontSize',20)
ylabel('Y Distance', 'FontSize',20)
view(0,90)
title('Plan','FontWeight','bold','FontSize',23)



A.2: Force-Density Method Code

function fd(n,CONN,nfixed,q,p)

% m = number branches
% n = number nodes
%number nodes so free nodes numbered first (1,2,..), fixed nodes
numbered after
% CONN = m x 3,coll=branch number co12 = node 1 number, co13 = node 2
number.
% presorted so node number 1 < node number 2
%Cs[m,n] = branch-node matrix
%C[m,nfree] = free nodes branch-node matrix . Cf(m,fn) = fixed nodes
%branch-node matrix
%nfixed[fn,4] = fixed nodes coll=node col2=x col3=y col4=z
%q[m,l] = force-densities
%p[n,4] = loads, coll=node number(free nodes) col2=px col3=py col4=pz

[m,three] = size(CONN); %determine number of branches

Cs = zeros(m,n); %initialize C to zero
for j = 1:m %loop over branches

for r = 1:n %loop over nodes
if CONN(j,2) == r

Cs(j,r) = 1; %C(branch, node) = 1 if first node
end
if CONN(j,3) == r

Cs(j,r) = -1; %C(brance, node) = -1 if second node
end

end
end

[fn,four] = size(nfixed); %fn = number fixed nodes. determine fn

%seperate Cs matrix into fixed (Cf) and free (C) portions corresponding
to
%the node condition

for i = 1: fn
Cf(:,i) = Cs(:,nfixed(i,l));

end

C = Cs;
for i = fn:-1:1

C(:,nfixed(i,1))=[];
end

%Cf
%C

Q = diag(q);



D = transpose(C)*Q*C;
Df = transpose(C)*Q*Cf;

%Solve for free node coordinates
x = inv(D)*(p(:,2)-Df*nfixed(:,2));
y = inv(D)*(p(:,3)-Df*nfixed(:,3));
z = inv(D)*(p(:,4)-Df*nfixed(:,4));

for i =l1:n-fn
Xtot(i,l) = x(i,l);
Ytot(i,l) = y(i,l);
Ztot(i,l) = z(i,l);

end

for j = (n-fn)+l:n
Xtot(j,l) = nfixed(j-(n-fn),2);
Ytot(j,1) = nfixed(j-(n-fn),3);
Ztot(j,l) = nfixed(j-(n-fn),4);

end

%Nodal Coordinates
Geometry = [Xtot Ytot Ztot]

%Solve for branch lengths
for i = l:m
lx(i,l) = abs(Xtot(CONN(i,2),1)-Xtot(CONN(i,3),1));
ly(i,l) = abs(Ytot(CONN(i,2),l)-Ytot(CONN(i,3),1));
lz(i,l) = abs(Ztot(CONN(i,2),1)-Ztot(CONN(i,3),1));
l(i,l) = sqrt((lx(i,l))^2+(ly(i,1))^2+(lz(i,1))^2);
end
1
L = diag(l);

%branch fores
s = L*q

%%%%%%PLOTTING
subplot(2,2,1)
for i = 1:m

line([Xtot(CONN(i,2),1) Xtot(CONN(i,3),1)],[Ytot(CONN(i,2),1)
Ytot(CONN(i,3),1)],[Ztot(CONN(i,2),l)
Ztot(CONN(i,3),1)],'Color','black')

xlabel('X Distance','FontSize',20)
ylabel('Y Distance','FontSize',20)
zlabel('Elevation','FontSize',20)
view(-20,25)
title('Perspective', 'FontWeight','bold', 'FontSize',23)

end

subplot(2,2,2)
for i = 1:m

line([Xtot(CONN(i,2),1) Xtot(CONN(i,3),1)],[Ytot(CONN(i,2),1)
Ytot(CONN(i,3),1)],[Ztot(CONN(i,2),1)
Ztot(CONN(i,3),1)],'Color','black')

xlabel('X Distance','FontSize',20)



ylabel('Y Distance','FontSize',20)
zlabel('Elevation', 'FontSize',20)
view(0,90)
title('Plan', 'FontWeight', 'bold', 'FontSize',23)

end

subplot(2,2,3)
for i = l:m

line([Xtot(CONN(i,2),l) Xtot(CONN(i,3),)],,[Ytot(CONN(i,2),l)
Ytot(CONN(i,3),1)],[Ztot(CONN(i,2),l)
Ztot(CONN(i,3),l)], 'Color','black')

xlabel('X Distance','FontSize',20)
ylabel('Y Distance','FontSize',20)
zlabel('Elevation','FontSize',20)
view(0,0)
title('Elevation 1','FontWeight','bold', 'FontSize',23)

end

subplot(2,2,4)
for i = l:m

line([Xtot(CONN(i,2),l) Xtot(CONN(i,3),l)],[Ytot(CONN(i,2),1)
Ytot(CONN(i,3),1)],[Ztot(CONN(i,2),l)
Ztot(CONN(i,3),1)],'Color', 'black')

xlabel('X Distance', 'FontSize',20)
ylabel('Y Distance', 'FontSize',20)
zlabel('Elevation','FontSize',20)
view(90,0)
title('Elevation 2','FontWeight', 'bold', 'FontSize',23)

end



Appendix B: Sample Program Input



B.1: Pucher's Equation Input

See Figure 4-3 for number reference

COORD
Node # X position Y position

1 0 0
2 2 0
3 4 0
4 6 0
5 8 0
6 10 0
7 1 1
8 3 1
9 5 1

10 7 1
11 9 1
12 0 2
13 2 2
14 4 2
15 6 2
16 8 2
17 10 2
18 1 3
19 3 3
20 5 3
21 7 3
22 9 3
23 0 4
24 2 4
25 4 4
26 6 4
27 8 4
28 10 4
29 1 5
30 3 5
31 5 5
32 7 5
33 9 5
34 0 6
35 2 6
36 4 6
37 6 6
38 8 6
39 10 6

BC
Node#

1
2
3
4
5
6

12
17
23
28
34
35
36
37
38
39

Z position
0

1.28
1.92
1.92
1.28

0
1.777778
1.777778
1.777778
1.777778

0
1.28
1.92
1.92
1.28

0



ICONN
Element # Nodel Node2 Node3

2 8

3 3 4' 9

4 4 5 10
5 5 6 11
6 1 7 12
7 2 13 7
8 2 8 13
9 3 14 8

10 3 9 14
11 4 15 9
124 1 15

13 5 16 10
14 5 11 16
15 6 17 11
16 7 13 12
17 8 14 13
18 9 15 14
19 10 16 15
20 11 17 16
21 12 13 18
22 13 14 19
23 14 15 20

14 5 16 21
25 16 17 2
26 12 18 23
27 13 24 1
28 13 19 24
29 - 14 75 19
30 -14 20 25~5
31 15 26 M
3 15 21 26
3 61 27 21
34 16 22 27
35 17 28 22
36 18 24 23
37 19 25 24
38 20 26 25
39 21 27 26
40 22 28 27
41 23 24 29
42 24 25 30
43 25 26 31
44 26 27 32
45 27 28 33
46 23 29 34
47 24 35 29
48 24 30 35
49 25 36 30
50 25 31 36
51 26 37 31
52 26 32 37
53 27 38 32
54 27 38
55 28' 39 33

56 29 35 34
57 30 36 35
58 3137 - 36
59 32 38, 37M E 37 5 0

_5- 7



B.2 Force-Density Method Input

See Figure 4-14 for number reference

nfixed
Node x Position y Position z Position

24 0 0 0
25 2 0 1.28
26 4 0 1.92
27 6 0 1.92
28 8 0 1.28
29 10 0 0
30 10 2 1.777778
31 10 4 1.777778
32 10 6 0
33 8 6 1.28
34 6 6 1.92
35 4 6 1.92
36 2 6 1.28
37 0 6 C
38 0 4 1.777778
39 0 2 1.777778

n=39

p
node px py pz

1 0 0 1
2 0 0 1
3 0 0 1
4 0 0 1
5 0 0 1
6 0 0 1
7 0 0 1
8 0 0 1
9 0 0 1

10 0 0 1
11 0 0 1
12 0 0 1
13 0 0 1
14 0 0 1
15 0 0 1
16 0 0 1
17 0 0 1
18 0 0 1
19 0 0 1
20 0 0 1
21 0 0 1
22 0 0 1
23 0 0 1



CONN
Branch Node i Node j

1 24 2F
2 25 21
3 26 2'
4 27 2_
5 28 21
6 29 31
7 30 3,
8 31 3:
9 32 3:

10 33 34
11 34 3_ 1
12 35 31
13 36 3;
14 37 3_
15 38 3_
16 24 3_
17 1 2,
18 1 2!
19 1 (_
20 1 3_
21 2 2_ 1
22 2 2(
23 2 _

24 2 (_
25 3 2(
26 3 27
27 3 _

28 3 7
29 4 27
30 4 2E
31 4 C
32 4 E
33 5 2E
34 5 29
35 5 3C
36 5 9
37 6 39
38 6 7
39 7 8
40 8 9
41 9 30
42 10 39
43 6 10
44 10 15
45 10 38
46 6 11
47 7 11
48 11 16
49 11 15

(continued)
Branch Node i Nodej

50 7 1:
51 8 1:
52 12 1
53 12 1_
54 8 1
55 9 1
56 13 1l
57 13 1"
58 9 1,
59 14 3(
60 14 3'
61 14 1_
62 15 3_
63 15 1(
64 16 1_
65 17 1_
66 18 31
67 19 3_
68 15 1._
69 19 35
70 19 31
71 15 2(
72 16 2(
73 20 35
74 20 36
75 16 21
76 17 21
77 21 34
78 21 35
79 17 22
80 18 22
81 22 33
82 22 34
83 18 23
84 23 31
85 23 32
86 23 33
87 6 25
88 6 15
89 15 36
90 7 26
91 7 16
92 16 35
93 8 27
94 8 17
95 17 34
96 9 28
97 9 18
98 18 33



q
104
10'
10'
10(
104
104
10(
10(
10(
10(
10(
10(
10(
101
10(
10(

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
11
1


