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ABSTRACT

This thesis proposes a new Anisotropic Matsuoka-Nakai (AMN) criterion to characterize the
failure of transversely isotropic rocks under true triaxial stress states. One major obstacle in
formulating an anisotropic criterion is that it usually involves six stress components, instead of
three principal stresses. As such, anisotropic criteria usually lead to complicated mathematical
expressions, and cannot be directly visualized in three-dimensional space. This problem is solved
by introducing the Material Normal Stress System (MNSS), which is the space formed by the
three normal stress components reflecting the material anisotropy. Within this system, the failure
behavior of transversely isotropic rocks in conventional triaxial tests can be represented with
geometrical features in the MNSS. These features are then incorporated into the failure surface of
the original Matsuoka-Nakai criterion in the Material Normal Stress System, resulting in the
Anisotropic Matsuoka-Nakai criterion. This criterion, combined with the Coulomb criterion, is
validated against both conventional and true triaxial test data, that are collected from an
extensive literature review. The combination of the AMN criterion and the Coulomb criterion
satisfactorily characterizes the measured strength from an extensive program of true triaxial tests
on a schist, which confirms the ability of the proposed criterion. Finally, this combination of
criteria is applied to the borehole stability problem. The necessary mud pressure against borehole
collapse and the onset of borehole failure are examined.
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1 Introduction

The strength of rock is a very important topic in the research and practice of civil engineering.
For example, in underground construction shafts, caverns, and tunnels have to remain stable for
the entire life time. Recently, the oil industry is drilling deeper and uses inclined boreholes in
search of unexplored oil reserves. The strength of rock must be such that no borehole collapse is
induced. Other scenarios in which rock strength can be critical include rock slope stability, etc.

Characterization of rock strength in the laboratory started as early as the 19" century. The earliest
conventional triaxial tests on rock specimens seem to be reported by Von Karmén (1911) and
Boker (1915). Over the years, conventional triaxial tests (including uniaxial compression tests)
became standard tests for rock strength determination. Meanwhile, many researchers proposed
mathematical models to fit the observed rock strength in conventional triaxial tests. For example,
one of the widely used failure criteria was proposed by Hoek and Brown (Hoek and Brown,
1980), based on data from conventional triaxial tests on many different rocks and rock masses.

Nowadays, conventional triaxial failure criteria are still widely used in real world applications,
because they require few parameters. There is a significant database of experience accumulated
for a range of parameters for different rock types. Besides, the mathematical formulations of
these criteria are usually simple, which also facilitates their use in practice. However, it is
gradually realized that there are two limitations of the conventional triaxial failure criteria. On
the one hand, two of the principal stresses are always equal in the conventional triaxial tests. The
conventional triaxial criteria therefore cannot describe the failure of rock under true triaxial
stress. On the other hand, these criteria usually assume that the rock is isotropic. Natural rocks,
however, are more or less anisotropic. This assumption is not applicable to some sedimentary
and metamorphic rocks (for example, shale, slate, schist, etc.).

It is well recognized that the strength of rock does vary with the level of the intermediate
principal stress 0. In a real project, obviously the three principal stresses are usually not the
same. In order to characterize rock strength under a true triaxial stress state, laboratory tests were
performed on specimens subject to true triaxial stresses (with three independent principal
stresses). It seems that these types of tests were first performed in the 1960°s. To date, quite a few
rocks have been tested in true triaxial tests, by different researchers (Chang and Haimson, 2000,
2005, 2007, Haimson and Chang, 2000; Hojem and Cook, 1968; Hoskins, 1969; Hunsche, 1990;
Mogi, 2007; Takahashi and Koide, 1989; Wawersik et al., 1997; etc.). Mathematical models that
describe the strength of rock under true triaxial stresses were also proposed (Lade, 1993;
Lundborg, 1972; Wiebols and Cook, 1968; Zhou, 1994; etc.). For example, the modified Lade
criterion (Lade, 1993) seems to give good predictions for many different rocks. However,
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strength anisotropy (or the directional dependence of strength) was not measured in most of the
experimental efforts. As a result, most of the true triaxial failure criteria still treat the rock as an
isotropic material.

In general, natural rocks are more or less anisotropic. Typical anisotropic rocks include the
sedimentary rocks (e.g. shale, mudrock, sandstone, etc.) and the metamorphic rocks (e.g. slate,
schist, phyllite, gneiss, etc.). Research has also been performed to characterize the strength of
anisotropic rocks. The behavior of anisotropic rock is different in different directions, which
causes difficulties in characterizing their strength. Many experiments have been performed on
these materials, most of which are conventional triaxial tests. It is found that the conventional
triaxial strength of an anisotropic rock is a function of both the confining pressure and the
material orientation. There is a much smaller database of true triaxial tests on anisotropic rocks.
Several authors have proposed failure criteria for anisotropic rocks (Tsai and Wu, 1971; Pariseau,
1972; Cazacu, 1998, 1999; etc.), but they have only been validated under conventional triaxial
stress states.

To the author’s knowledge, there have been no failure criteria that are able to predict the strength

of anisotropic rock subject to true triaxial stress states. The research presented in this thesis aims

at filling this gap. The strength and failure of rock is a very rich topic. For example, many

different failure modes have been observed for anisotropic rock in conventional triaxial tests. It is

obvious that one cannot expect to describe all phenomena with one unified model. It is therefore

very important to restrict the type of phenomena that will be described by this research. The

scope of this research is as follows:

® One specific type of anisotropy, the transverse isotropy, is dealt with in detail in this thesis.
Transversely isotropic materials have only one privileged direction, and they have rotational
symmetry with regard to this direction. Within planes perpendicular to this direction, the
mechanical behavior is isotropic. Rocks with bedded structures, for example, shales, slates,
etc., can be considered to be transversely isotropic.

® The research aims at proposing a failure model to describe the continuous type of strength
anisotropy, i.e. the continuous variation of strength with orientation. This continuous type of
strength anisotropy can be caused by microscopic features. For example, in some crystals the
density of atoms in different directions are different; clays that have experienced
one-dimensional loading have oriented platy clay minerals, etc. Contrary to the continuous
type of strength anisotropy, anisotropy can also be caused by macroscopic discontinuities.
For example, jointed rocks have anisotropic strength due to the existence of joints, even if
the strength of the host rock is isotropic. This type of anisotropy is called a discontinuous
type of strength anisotropy. It is frequently observed that the failure of transversely isotropic
materials possesses both continuous and discontinuous features. Therefore, they are
somewhere along the smooth transition from a continuous to a discontinuous type of
anisotropy. This research will provide a model to first describe the continuous component of
the strength of transversely isotropic rocks. Finally, the proposed continuous criterion will be
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used together with a discontinuous criterion to characterize the strength of transversely
isotropic rocks.

® Only shear failure under all compressive stress is intended to be captured. There does not
seem to be abundant data sets for tensile failure of anisotropic rocks.

The entire thesis is organized in the following manner:

Chapter 2 concentrates on the true triaxial testing on rocks that are close to isotropic (i.e. rocks
that do not have anisotropic features like bedding planes, oriented minerals, etc., and the
measured strength of them seem to fit in isotropic failure criteria). Experimental results are first
collected on these true triaxial experiments. The properties of the rock specimens in each data set,
and the instruments are briefly introduced. The measured strength in each data set is tabulated in
Appendix A. True triaxial failure criteria for isotropic rocks are then reviewed and discussed.
Based on the analysis of collected data, it is found that a convenient way to represent the failure
surface of an isotropic rock is to describe its meridian cross-section and its normalized w-plane
cross-section. For many of the collected data sets, the n-plane cross-sections are curved triangles.
Finally, a failure model is proposed based on the idea of describing the meridian and the n-plane
cross-section separately.

Failure of anisotropic rocks is studied in Chapter 3. This chapter is composed of two parts. The
first part compiles the experimental data on anisotropic rocks published in the literature.
Altogether, the experimental measurements for fifteen different rocks are reported, and they
belong to five different rock types (shale, phyllite, slate, schist, and diatomite). The magnitude of
strength and the failure modes as functions of the confining pressures and isotropic plane
orientations are summarized and discussed in detail. It will be shown that the conventional
triaxial strength of anisotropic rocks can be represented by “U” shaped curves with uneven ends.
The second part of this chapter concentrates on the existing anisotropic failure criteria, which are
categorized into four different types: the empirical criteria, the continuous criteria, the critical
plane approach, and the discontinuous models. Some of the existing criteria have been applied to
predict the conventional triaxial strength of anisotropic rocks, and they seem to be able to
generate the observed “U” shaped curves. However, there does not seem to be a model that gives
satisfying results for anisotropic rock in true triaxial tests.

Chapter 4 presents the major result of this research. It proposes a new failure criterion for
transversely isotropic rocks under true triaxial stress states. A new approach, the Material Normal
Stress System, is introduced. This new system has the ability to describe the coupling between
material orientation and principal stress orientation. The stress path of a conventional triaxial test
is first examined in the Material Normal Stress System. An isotropic failure criterion, the
Matsuoka-Nakai criterion, is then studied. It will be shown that a failure criterion can be
visualized in the Material Normal Stress System by a bounding failure surface when the shear
stresses are all zero, and by the variation of the geometry of this bounding failure surface with
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non-zero shear stresses. Anisotropy is then introduced into both the bounding failure surface, and
its geometry variation. The proposed Anisotropic Matsuoka-Nakai criterion is then applied to
interpret the experimental results from both conventional and true triaxial tests of transversely
isotropic rocks. The agreement between the predicted and the measured strengths is satisfactory.

In Chapter 5, the proposed criterion is applied to the borehole stability problem. Assumptions are
made for a borehole at 4000m below ground. Based on the Anisotropic Matsuoka-Nakai criterion
the critical mud pressures that keep the borehole from collapsing and the development of failure
around a certain borehole are calculated. The results are consistent with the failures observed in
real boreholes.

3
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2 Failure of Isotropic Rocks

2.1 Introduction

Isotropy means that the behavior of the material is the same in all directions. Natural rocks, due
to their complicated formation process, mineral composition, and stress history, are rarely
isotropic. Whether a rock specimen behaves more or less isotropically can only be known after
being tested in the lab. In addition, even if a rock specimen is isotropic with regard to strength, it
may not have isotropic stiffness. The word “isotropy” is therefore used here only as an
approximation in the sense of strength. In some cases, the strength of rock in different directions
is quantitatively measured. For example, before running his true triaxial tests, Mogi (1967)
observed that the uniaxial compression strength of a rock specimen in different directions differ
less than 5%. In other cases, rock specimens are identified as isotropic because they do not have
significant physical features that generate anisotropy, for example, bedding planes, aligned joints,
oriented minerals, etc.

In order to describe the behavior of anisotropic rocks, it is necessary to start by studying
isotropic rocks. To date, most of the lab experiments are performed on (more or less) isotropic
rocks. The results from these tests are analyzed with isotropic constitutive laws, where principal
stresses and stress invariants play a major role. The observations and the isotropic formulations,
serve as a starting point for further generalization to anisotropy.

Depending on the type of experiment, the stress states a rock specimen is subject to can be
divided into two categories: the conventional triaxial stress and the true triaxial stress (or
polyaxial stress). In a conventional triaxial test, o» is identical to either the minor or the major
principal stresses. The test is called a conventional triaxial compression (CTC) test in the first
case, and a conventional triaxial extension test (CTE) in the second. Uniaxial compression (UC)
test is a special case of the conventional triaxial compression test, with the minor principal stress
o3 = 0. A number of different experiments can create the true triaxial stress state, in which all
three principal stresses can be varied independently. Among these experiments, the thick-walled
hollow cylinder test (without imposing the torsional shear) and the true triaxial test seem to give
reliable measurements of the principal stresses. The biaxial test is another important type of test
to create a true triaxial stress state. It can be considered a special case of a true triaxial test,
where one of the three principal stresses is always zero. Obviously, the conventional triaxial
stress is a special case of the true triaxial stress.
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Conventional triaxial compression tests (including uniaxial compression tests) are widely used in
practice to obtain the strength of rock. Throughout the years, theoretical endeavors and
experimental facts all indicate that the intermediate stress has a considerable effect on rock
strength. The effect of the intermediate stress on rock strength was noticed at the beginning of
the 20™ century, by performing CTC and CTE tests on the same type of rock. Von Kérman (1911)
performed conventional triaxial compression tests on cylindrical specimens of Carrara marble, in
which the confining fluid pressure was kept constant, and the specimens was brought to failure
with increasing axial load. Boker (1915), with the same rock, kept the axial stress constant while
increasing the confining pressure to bring the specimens to failure. The strength at the same
confining pressure was consistently higher for Boker’s tests than for Von Karman’s tests (Figure
2.1). However, the strength difference between Boker and Von Kéarmén’s measurements might be
caused by other factors, for example, the accuracy of measurements, the specimen size, the
natural heterogeneity of the specimens, the anisotropy of the material, etc. Therefore, it is not a
conclusive evidence of the effect of the intermediate stress.

Mogi (1967) compared the CTC and CTE strength of three different rocks: Westerly granite,
Dunham dolomite, and Solnhofen limestone. The results from Mogi’s tests are plotted in Figure
2.2. Mogi’s tests were very carefully controlled. The isotropy of the rocks was verified by UC
tests in different directions, and the strength variation with orientation was within 5%. Various
corrections were applied to improve the accuracy of strength measurements in CTE tests.
According to Mogi’s test results, both Westerly granite and Dunham dolomite showed larger
CTE strength, which confirmed the finding of Boker. In the case of Solnhofen limestone, the
difference between two strengths was not significant.

In order to obtain how rock strength varies continuously with the intermediate stress, it is
necessary to apply a true triaxial stress state on rock specimens. Many researchers made their
contributions along this line. For example, Handin et al. (1967) reported on thin-walled hollow
cylinder tests. Hoskins (1969) performed thick-walled hollow cylinder tests on a few different
types of rock. True triaxial tests were reported by Mogi (1969, 1970), Michelis (1985), Hunsche
(1990), Smart (1995), Wawersik et al. (1997), etc. Today, the true triaxial test results are
available for various types of rock, even though it is still not standard practice.

Meanwhile, theories that can explain the effect of the intermediate stress were also proposed. The
earliest theory was proposed by Wiebols and Cook (1968), from an energy point of view.
Lundborg (1972) proposed a statistical theory, which seems to be more general than Wiebols and
Cook’s approach. Mogi (1971) proposed that the failure criterion should be formulated by
writing the octahedral shear stress as a function of the average of the major and minor principal
stresses. Many existing models were also modified for this purpose, among which the most
widely used is the Drucker-Prager model. These theories are more general than the many criteria
that describe the strength of rock in conventional triaxial tests. Since the intention of this
research is to describe a more general phenomenon, the anisotropic strength, it is necessary to
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start from such a general isotropic strength theory.

This chapter first reviews the significant work that advanced the true triaxial test technology, and
the various experiments that are reported in the literature. The general isotropic strength theories
are then described. In order to achieve more flexibility in modeling, it is proposed that the failure
surface should be described by a meridian cross-section (describes the pressure dependence of
the rock) and a normalized m-plane cross-section (describes the Lode angle dependence of the
rock).

2.2 Tests with True Triaxial Stress States

In order to explore the effect of the intermediate stress, it is necessary to perform experiments
that can create true triaxial stress states in the specimen. Mogi (2007) classifies these tests into
four categories (Figure 2.3), based on the shape of the specimen and the application of the
boundary conditions. According to Mogi’s classification, Type (A) test is the hollow cylinder test,
while Type (B), (C) and (D) are all true triaxial tests with rectangular prismatic specimens. The
difference between Type (B), (C) and (D) tests are the application of stresses, where a thick
arrow stands for a solid piston, while a thin arrow stands for fluid pressure. The difference
between these two types of boundary conditions will be explained later. This section summarizes
the different type of tests that are reported in the literature, and their experimental results.

2.2.1 Hollow Cylinder Test

True triaxial stress state can be created in hollow cylinder tests (Figure 2.4). By independently
controlling the internal and external pressures (p; and p., respectively), the radial and tangential
stress o; and oy at any radius 7 can be obtained based on the elastic theory:

_Rezpc—’Rlzpi_Relez(pe_pl)
0',._ ReZ_RiZ rZ(Rez—R‘-Z) ' (2.1)
2 _p2 2 p2 —
o Kp-Rp KR (p,-p) (2.2)

" R-R  FR-R)
where R; and R, are the inner and outer radius, respectively. Varying the internal and external
pressure, different values of o; and oy can be obtained. The axial stress o; is increased to bring
the specimen to failure. Figure 2.5 shows the stress distribution along the wall of the hollow
cylinder with R./R; = 2, but different p./p;. p./p = 2.0 in Figure 2.5 (a), while it is 0.5 in Figure
2.5 (b). Obviously, the shear stress (0,~0y)/2.0 is always larger at the inner wall of the hollow

cylinder. Therefore, it is usually assumed in the literature that failure initiates from the inner
wall.

Handin et al. (1967) used thin walled hollow cylinders to create polyaxial stress state in rock.
The materials they tested include limestone, dolomite and glass. This approach was later
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criticized by Mogi (2007) to be of low accuracy and repeatability, because in “fabrication of such
thin hollow cylinder of brittle rock, generation of micro-cracks is inevitable (Mogi, 2007)”.

Hoskins (1969) made use of thick-walled hollow cylinders to create a true triaxial stress state.
Hoskins’ tests were performed in an altered triaxial pressure cell (Figure 2.6). The rock
specimens Hoskins used had 5 cm outer diameter, and 2.5 cm inner diameter. The internal and
external pressures were controlled separately to create different principal stress ratios. The
principal stresses at the inner wall were calculated with the elastic equations. The specimens
were brought to failure by the piston in the axial direction. The materials that Hoskins tested
include Bowral Trachyte, Gosford Sandstone, Carrara Marble.

Apart from these rocks, the same researcher also performed hollow cylinder tests on smaller
specimens (2.2 cm outer diameter and 1.2 cm inner diameter) on a limestone and a
quartz-dolomite rock, together with conventional triaxial compression tests (2.2 cm diameter by
5.7 cm long solid cylinder). The results of all these tests are reported in Table A.1 through Table
A.7. A brief description of the physical properties of these rocks can be found at the end of each
table.

More recently, Wang and Kemeny (1995) reported on conventional triaxial tests and thick-walled
hollow cylinder tests on Apache Leap Tuff. The data are compiled in Table A.8 and Table A.9.
The hollow cylinder specimens had an external diameter of 50mm, and internal diameter of
25mm, 16mm and 13mm. They observed that failure of the hollow cylinder initiated from the
inner wall.

Thick-walled hollow cylinders, although easier to fabricate and introducing fewer microcracks,
are still not ideal for applying a true triaxial stress state. The stress distribution along the radial
direction in the wall is not uniform. Both o, and oy vary from inner surface to outer surface. The
variation depends on both the boundary conditions and the material behavior. On the one hand,
the stress gradient may have an effect on the rock strength, which is unknown before the test.
Also, at the onset of failure, part of the rock may become plastic and the elastic solutions in
Equations (2.1) and (2.2) are not applicable. Therefore, the principal stresses at which the
specimens fail can be different from those calculated from the elasticity theory.

2.2.2 True Triaxial Test

In view of the shortcomings of the hollow cylinder apparatus in creating the true triaxial stress
conditions, true triaxial testing apparati were designed. The specimens in these tests are usually
of rectangular prismatic shape. Three different principal stresses can be simultaneously applied
to the three directions on the specimen to create polyaxial stress state. These tests correspond to
Type (B), (C), and (D) of Mogi’s classification (Figure 2.3).
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2221 Type (B) True Triaxial Cell

Many of these apparati involve independent loading in three axes, using rigid pistons (Type (B)
in Figure 2.3). Due to the friction between the pistons and the surfaces of the specimen, the
uniformity of stress in the specimen is in question. In order to overcome this problem, lubrication
is usually used to reduce friction. However, the strength measured maybe different for different
types of lubrication (Mogi, 2007). Although there is a certain problem with the stress uniformity,
this type of true triaxial test apparatus is still popular because it is relatively easy to construct, the
load capacity can be very large, and its cost is relatively low.

Hunsche and Albrecht (1990) used this type of true triaxial apparatus to test the strength of rock
salt under a true triaxial stress state and at elevated temperature (Figure 2.7). The pistons on the
opposite side of the specimen were hydraulically connected so that the center of the specimen
did not move even for large deformation. The vertical pistons were equalized by a
counter-weight. The maximum force can be applied was 2000 kN per axis. The shape of the
specimen was cubical, with a maximum of 20 cm side length. The size of the specimen that was
actually used was 5 cm. The use of solid pistons also facilitated the installation of heaters to
control the specimen temperature (up to 400 °C).

In Hunsche’s tests, the specimens were first loaded isotropically up to the desired isotropic stress
level. Then deviatoric load was applied to bring the specimen to failure, where the three principal
stresses were changed simultaneously so that the isotropic stress remained constant. A total of
183 tests were performed, under different stress states and temperatures.

2222 Type (C) True Triaxial Cell

It is possible to increase the uniformity of stress in the specimen by using fluid pressure in
different axes (Type (C) in Figure 2.3). For example, Hojem and Cook (1968) reported on a true
triaxial apparatus where both the least and the intermediate principal stresses were applied with
copper flat jacks with fluid pressure (Figure 2.8). Rectangular prismatic specimens (6 in Figure
2.8) were used, with the dimension of 1 inch square and 3 inch long. Lateral pressure was
applied by two opposing pairs of copper flat jacks (9 in Figure 2.8). These flat jacks press against
segmental brass spacers (4 in Figure 2.8), which in turn transfer the pressure to the steel cylinder
(3 in Figure 2.8). Hojem and Cook (1968) used their true triaxial cell to study the intermediate
stress effect on Karroo dolerite (Figure 2.8).

In the Type (C) true triaxial cell, different fluid pressures must be applied in two perpendicular

directions. The two fluid systems thus must be separated. In the design of Hojem and Cook
(1968), this is achieved by using two pairs of copper flat jacks. Due to the limited strength of the
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thin copper flat jack, the magnitude of the applied stress is limited. From Figure 2.9, it is evident
that the maximum intermediate stress is around 6kpsi, which is slightly lower than 45MPa.

2223 Type (D) True Triaxial Cell

Mogi (1969, 1970) reported on another type of true triaxial apparatus, where the minor principal
stress was applied by fluid pressure, while the intermediate and the major principal stresses were
both applied by solid pistons (Type (D) shown in Figure 2.3). This type of apparatus was
designed because the minor principal stress has a greater influence on rock strength than the
intermediate principal stress. Therefore, the uniformity of the minor principal stress in the
specimen is most important. Since only one fluid pressure is used, the entire assembly can be
enclosed in a pressure vessel, thus very high fluid pressures can be obtained. In Mogi’s design,
the minor principal stress was applied by using a thick walled high pressure vessel, so that the
minor principal stress o3 > 800MPa (Figure 2.10). The intermediate stress was applied by a
piston with 300 kN capacity, while the greatest principal stress piston had a capacity of 700 kN.
In this way, Mogi’s true triaxial apparatus balances the stress uniformity with the load capacity.
In order to keep the rock specimen at the same location during loading, the vertical and
horizontal loading pistons were suspended by soft springs. During the deformation of the
specimen, the center of the specimen can move with the deformation of it, which also
contributed to the stress uniformity. It seems that with this design, Mogi solved this problem of
reproducibility and accuracy of true triaxial tests (Takahashi and Koide, 1989).

The specimen that Mogi used was a rectangular prism 1.5 cm square by 3.0 cm long. For most of
the tests Mogi performed, Teflon sheets were used to reduce the friction between the piston and
the rock specimen. In order to prevent the intrusion of Teflon into the specimen, the surfaces of
the specimen were jacketed with thin copper sheets.

Mogi tested seven different isotropic homogeneous rocks in the 1970’s. These rocks are Dunham
dolomite, Solnhofen limestone, Yamaguchi marble, Mizuho Trachyte, Manazuru andesite, Inada
granite, and Orikabe monzonite. The strengths measured from different rocks were compiled in
Mogi (2007), and are reported in Table A.10 through Table A.16.

Takahashi and Koide (1989) built a larger Mogi type true triaxial cell, and the specimen size they
used was 3.5x3.5x7.0cm (maximum size 5.0x5.0x10.0cm). The minor principal stress in their
true triaxial cell was o3 < 50MPa, which is much lower then Mogi’s apparatus. The different
rocks that were testes include: Shirahama Sandstone, Izumi Sandstone, Horonai Sandstone,
Yuubari Shale, and Yamaguchi marble. The data are compiled in Table A.17 through Table A.20.
The residual strength of Shirahama sandstone and Yuubari shale were also reported, at certain
minor principal stresses (Figure 2.11). It was noted that, although the peak strength depends on
the intermediate stress, the residual strength stays more or less constant.
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Wawersik et al. (1997) reported on the fabrication of new true triaxial cells at Sandia National
Lab, which are similar to Mogi’s design (Figure 2.12). A smaller and a larger true triaxial cell
were designed, and the larger one was more sophisticated. Therefore, only the larger true triaxial
cell will be described here. This true triaxial cell was designed to test larger specimens with
controllable pore pressure and fluid transport.

The entire assembly is hosted in a cylindrical pressure vessel, with inside diameter 17.8cm. The
specimen size is as large as 7.6%7.6x17.8cm. The minor principal stress is again applied with
fluid pressure. The intermediate principal stress is applied with a pair of hydraulically loaded
nested pistons, which react against the internal wall of the pressure vessel. To insure the uniform
stress distribution, a rubber sheet is put between the two pistons. The largest difference between
the intermediate and the least principal stresses is 150 MPa, when the least principal stress is 100
MPa.

This triaxial cell has the ability to control pore pressure and fluid transport, by means of the fluid
ports on top and bottom of the specimen. The pressure vessel is set on a circular, inflatable seal,

- so that the center location of the specimen can be readily adjusted to be half of the axial sample
shortening. Therefore, it can accommodate large strains up to at least 15%.

Two sandstones, the Gosford sandstone and the Castlegate sandstone, were tested with this true
triaxial cell. The experiments on Gosford sandstone were intended to determine the shape of the
failure surface on the n-plane. The stress invariants at failure were reported in Wawersik et al.
(1997), and are shown in Table A.21. Principal stresses at failure are calculated based on these
stress invariants.

Haimson et al. (2000) described a new true triaxial cell at the University of Wisconsin (Figure
2.13). The structure of the apparatus is similar to Mogi’s, with the minor principal stress applied
by fluid pressure while the intermediate and the major principal stresses are applied with solid
pistons. However, this triaxial cell is more compact and portable since it uses a biaxial loading
apparatus for the intermediate and the major principal stresses (Figure 2.13 (a)). Both stresses are
in the horizontal direction, and thus no compression testing machine is necessary. The maximum
capacity of this triaxial cell is o3 < 400 MPa, while o3 and o7 < 1600 MPa.

The specimen’s shape and size used in this triaxial cell are rectangular prismatic specimens with
19 mm sides and 38 mm long. Stearic acid-based lubricant is used to reduce friction. A few
measures were taken to make the stress distribution more uniform in the specimen. Metal spacers
are placed between the piston and the specimen (Figure 2.13 (b)). A thin copper sheet is in turn
placed between the spacer and the specimen to reduce the localization of the applied load. A thin
layer of polyurethane is used to cover the surface of the specimen subject to fluid pressure.
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Quite a few different rocks were tested with this true triaxial cell by different researchers. The
results of experiments on the following rocks were found from the literature: Westerly granite
(Haimson and Chang, 2000), KTB amphibolite (Chang and Haimson, 2000), Long Valley
hornfels (Chang and Haimson, 2005), Long Valley metapelite (Chang and Haimson, 2005),
Pohang Rhyolite (Chang and Haimson, 2007), and Chelungpu siltstone (Oku et al., 2007). Apart
from the Pohang Rhyolite, the measurements for all other rocks are tabulated in Table A.22
through Table A.26.

2.23 Other Types of Tests

Apart from the true triaxial cells with rectangular prismatic specimens, Smart (1995) presented a
design that uses a cylindrical specimen to create true triaxial stress conditions with the trapped
tube concept (Figure 2.14). In Smart’s design, the pressure on the specimen is supplied by 24
PVC tubes that surround the specimen. The PVC tubes were heat treated so that on one side they
are in close contact with the specimen, while on the other side they press against the inner wall
of the cell. Since these tubes have limited burst pressure, the largest magnitude of stress is
around 50 MPa, with the pressure difference between adjacent tubes less than 7 MPa. The tubes
are arranged to apply an elliptical stress distribution on the specimen surface.

2.3  Strength Theories of Isotropic Rock

Many failure criteria have been proposed to characterize the strength of rock. Many of these
criteria are formulated with only two principal stresses, o1 and o3;. These criteria, although
ignoring the effect of the intermediate principal stress, are widely used because of their
simplicity and small number of parameters. Since the effect of the intermediate principal stress
was noticed, there have been many researchers who proposed various criteria to characterize this
effect. Most of these criteria are phenomenological models. These models will be introduced in
the principal stress space.

2.3.1 Principal Stresses and Principal Stress Space

The principal stress space is the space formed by the three principal stresses o1, 02 and 3. Note
that in this section, the subscripts “1”, “2” and “3” do not imply their relative magnitude. Instead,
they are used to define the physical axes of the tests. In triaxial tests, the axial stress is denoted
by o1, and the confining pressures are o> = o;. Therefore, o7 can be smaller than o and o3 in
CTE tests. In true triaxial tests, o; stands for the stress that is changed to bring the specimen to
failure. It is also the greatest principal stresses if it is increased to fail the specimen.

A stress state can be represented by one point (61, 02, 63) in the principal stress space. In the
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principal stress space, the hydrostatic line is defined as the line where oy = 03 = 03. Any plane in
this space that is perpendicular to the hydrostatic line is defined as a w-plane (shown in Figure
2.15). A vector in this space can be decomposed into a volumetric component and a deviatoric
component:

o, (0,+0,+0,)/3 (20,-0,-0,)/3

o, |=| (0, +0,+0,)/3 |+| (-0, +20,-0,)/3 2.3)
o, (o,+0,+0,)/3) \(-0,-0,+20,)/3

Obviously, the volumetric component is a vector along the hydrostatic line, while the deviatoric
component is a vector within the n-plane.

The same point (o1, 02, 03) can also be represented by a polar coordinate system (r, 6, z), based
on the decomposition shown in Equation (2.3). The deviatoric component is within the n-plane,
the length and direction of which are represented by (r, 6). As shown in Figure 2.15, 8 = 0°
coincides with the projection of the oy axis on the n-plane. The hydrostatic line is the Z axis,

where Z=(0,+0,+0,)/\/3 gives the length of the volumetric component in Equation (2.3). In

the polar system, a n-plane has the equation of Z = constant.

The general stress tensor usually has six independent components: three normal stresses o3, o,
03, and three shear stresses o;,, 0, 0. When the coordinate system is rotated, these components
change accordingly. However, stress invariants are indifferent to coordinate system
transformations. The three invariants for the stress tensor are:
IL,=0,+0,+0,=0,+0,+0,
I,=-0,0,-0,0,-0,0,+0, +0, +0. =—(0,0, + 0,0, +0,7,) 24)
I, =0,0,0,+20,0,0,-0,0, -0,0, -0,0., =0,0,0,
Sometimes, the following invariants are used:
t(o)=0,+0,+0, =1,
t(0*) =0} +0, +0. +2(0, +0L +02) =1 +2I, (2.5)

tr(0”) =0} +0, +0; +30,(0% +03,) +30,(0}, + 02 ) +30,(0, +02)+60,0,0,, = I} +211, +3I,

The stress deviator tensor s is defined as:

s= 0-—1—3‘—I (2.6)
where | is the identity tensor. The three invariants for the stress deviator tensor are:
J, =tr(8)=0
J, = %tr(s’) =%(112 +2I) = %[(ax -0,)’ +(0,-0,) +(0,-0,)’1+02, +0%, +02, 2.7
Jy = %tr(s’) = 517(21,3 +911, +271,)
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The invariants that are most frequently used are I}, /> and the Lode angle A, which is defined as:
A= —%sin“ [ﬁ J; ] (2.8)

> 7

The physical meaning of the Lode angle is better revealed by another equivalent expression:

1 20,-0,-0 1{o,—-0, 0-0
A=arctan| —=—2—1—3 |=arctan| —| 2—2-—L1 2% 2.9
[\/5 0,-0, J I:\/g(o'l_o's Gl_as)jl (29)

If 61 > 02 > o3 is assumed, then the Lode angle shows the relative location of o3 between o7 and
03. In conventional triaxial compression tests, oz = 03 and A = -30° (or —n/6). In conventional
triaxial extension tests, 0z = oy and 4= 30° (or +n/6). This is illustrated in Figure 2.15.

In the polar representation (r, 6, Z), the three coordinates can be easily linked with these
invariants. Z is linked with /; by:
I]
Z= 5 (2.10)
Z indicates the volumetric stress level, or the pressure in the specimen. Any criterion that has Z
as its parameter describes the pressure dependence. The volumetric stress level is also
represented by the octahedral normal stress:

_0,+0,+0;

Oo 3 (2.11)
Clearly, 1, Z, and o, have the same physical meaning, but differ only in scalar magnitude.
The coordinate r is associated with J, by:
r=42J, (2.12)
J> is a measure of the deviatoric stress level. The octahedral shear stress is defined as:
IENCIA 2.13)

Therefore, J,, r, and 7, are also linked by scalar relationships.

Finally, @is geometrically equivalent to the Lode angle but with a few differences (Figure 2.15).
The original definition of the Lode angle is from —30° to 30°, due to the assumption that 61 = 02 =
3. Since this is not imposed in the discussion here, franges from 0° to 360°. = 0° corresponds to

=-30°. Also, & is taken to be positive in the clockwise direction. 8 can be calculated with the
principal stresses by:

mg=M (2.14)

20,-0,~-0;

The r axis in @ direction is denoted r. Based on this definition, reo through 73¢9 are shown in
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Figure 2.15. Along these axes, two of the principal stresses are equal and the stress state is the
conventional triaxial stress state. Starting from an isotropic stress state, the stress path is
conventional triaxial compression along o, 7120, 7240, While it is conventional triaxial extension
along rso, 7180, 7300-

Since the polar coordinate (7, 6, Z) is just another way to represent a stress point (o1, 03, 03), the
principal stresses can be expressed as functions of (7, 6, Z):

J6
==t @
g, \/54' 3 rCos
z J6 . =«
g, —E—Trsm(g+9) (2.15)
z J6 . =«
g, —E—TI’SIH('E—Q)

Failure is usually described by a continuous failure surface in principal stress space (Figure 2.16).
In order to better understand its geometry and physical significance, several cross-sections of the
surface are often studied. They are the n-plane cross-section, the triaxial plane cross-section, and
the biaxial plane cross-section.

The m-plane cross-section is the intersection of the failure surface with a n-plane at a certain
pressure level Z (Figure 2.17 (a)). The distance from a point on this cross-section to the origin is
defined as the radius of this n-plane cross-section. The radius of the n-plane cross-section will be
denoted by R (instead of r), which signifies that this is the location at failure. Clearly, R is a
function of both @ and Z: R = R(6,Z). The shape of the n-plane cross-section determines how R
varies with @ at a certain Z level. This variation will be termed the Lode angle dependence of the
strength. For an isotropic material, the failure surface on the n-plane thus possesses the six fold
symmetry. There must be Ry = Ri20 = Ra40, and Rep = Ri1g0 = R3go (Ro through R3g9 shown in Figure
2.17 (a)).

The triaxial plane is the plane (ro, Z) in Figure 2.16. This plane is described by the equation o3 =
03. Any point on this plane describes a conventional triaxial stress state, hence its name. The
intersection of the triaxial plane with the failure surface contains two branches: one describes the
variation of Ry with Z, the other the variation of Rig with Z (Figure 2.17 (b)). Physically, they
correspond to the conventional triaxial compression test and extension test, respectively.
Together, they show how the size of the n-plane cross-section varies with the octahedral stress
level. Therefore, they describe the pressure dependence of the material.

The biaxial plane is a plane where one of the principal stresses is always zero. Figure 2.17 (c)

shows the intersection of the plane o, = 0 with the failure surface. This intersection is a closed
curve, and it describes the failure of the material in a biaxial test.
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2.3.2 Conventional Triaxial Models

Although the intention of this section is to review the more general true triaxial failure criteria, it
is necessary to first examine some of the very widely accepted conventional triaxial failure
criteria. Many of the true triaxial failure criteria are extensions or modifications of these basic
criteria.

The most widely used criterion is probably the Coulomb criterion. According to this criterion, the
shear strength on a plane is determined linearly with the normal stress on the same plane:

|| =S+ uo, (2.16)

where S is the cohesion, and u is the coefficient of internal friction. The Coulomb criterion can
also be expressed with the major and minor principal stresses:

_ 1+sin¢a_ +28 cos g

1-sing ° 1-sing
where ¢ is the friction angle, and x4 = tan(g). The Coulomb criterion is plotted in o} vs. o3 space
in Figure 2.19 (a).

1

2.17)

Another widely used criterion is the Hoek-Brown criterion, which was proposed by Hoek and
Brown (1980). This is an empirical criterion that can be applied to both intact rock and rock
masses. It seems that this criterion is developed purely by curve fitting of conventional triaxial
compression data. According to this criterion, the conventional triaxial compression strength of
rock is expressed as:

172

a‘=0'3+Co(m£ri+sJ (2.18)
CO

where Cp is the uniaxial compression strength of the rock, while both m and s are material

parameters depending on how broken the rock mass is. For intact rocks, s = 1. The value of m

and s for different types of intact rock and rock masses can be found in Hoek and Brown (1980).

The Hoek-Brown criterion, when plotted in o7 vs. 03 space, is a parabola (Figure 2.19 (b)).

The Griffith (1924) Criterion is based on fracture mechanics. It assumes that a rock specimen
contains many randomly oriented cracks. When subject to a certain stress field, tensile stresses
develop along crack boundary. Crack propagation initiates when the tensile stress along the crack
boundary reaches a critical value. The following is a reinterpretation of Griffith’s (1924) stress
based failure criterion by Hoek (1980). Assuming that oy>03, for a particular crack oriented S
degree from o7 direction (Figure 2.18), crack propagation starts when:

(o, sin* B +0, cos® B) - J(of sin® B+07; cos’ B) = 2T, (2.19)

where T is the magnitude of the tensile strength of the specimen, which is positive. Since cracks
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are randomly oriented, the specimen fails in the orientation that satisfies Equation (2.19) first.
This critical orientation is:

g, -0
cos B = —2(0'_1 " a:) (2.20)
This critical orientation only exists when o1+3 03>0. If 61+303<0, then 3<0 is required, and the
specimen fails in tension. Substituting Equation (2.20) to (2.19), the failure of the specimen
occurs at:
(0,-0,) =8T,(0,+0,) ifo,+30,>0 @21)
o, =-T; if o, +30, <0
The Griffith criterion, using Hoek’s reinterpretation, is plotted in the oy vs. o3 space in Figure

2.19 (c).
2.3.3 Soil Mechanics Models

The modified Lade criterion is based on the original Lade criterion, which was proposed by Lade
(1977) to describe the plasticity of soils. It was later expanded to describe the behavior of
concrete (Lade, 1982) and rock (Kim and Lade, 1984). This criterion takes the form:

(I]’3 /[3' ~'27)(-[1'/17a )" =n, (222)

in which p, is the atmospheric pressure in the same unit of the stresses, so that I'y/p, is a
dimensionless number. I’y and I'; are the first and third invariants of the transformed stress tensor,
where the normal stresses are transformed by:

0, =0,+ap,;0,=0,+ap,;0, =0, +ap, (2.23)

With this transformation, the modified Lade criterion produces non-zero cohesion when the
material is sheared with /; = 0. Both m and 7, are material parameters. Lade (1993) suggested

that they can be determined by plotting (7°/1;-27) vs. (p,/I)) on a log-log diagram and

fitting a straight line through the data points. Lade (1993) evaluated this criterion based on
experimental data from many different rocks. In most of the case, the agreement is good to
excellent. Based on this evaluation, Lade (1993) suggested that typical values of the three
parameters are: a = 100, 7, = 108, and m = 1.0.

The modified Lade criterion describes non-linear pressure dependence at m > 0, and the
non-linearity is controlled by both 7, and m. In order to illustrate this point, the triaxial plane
cross-section for the combination of 7, = 10°, 10® and m = 1, 2 are shown in Figure 2.20 (with a
=100 in all combinations). Non-linearity seems to increase with increasing m and decreasing 7,.
When 7; is as large as 10%, both r(Z) and r180(Z) are very close to linear. Increasing m from 1 to
2 only brings in slightly more non-linearity. When 7, is reduced to 10°, significant non-linearity
is obtained with the same increase of m. It is also shown that the tip of the failure surface is
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located at Z = —a/+/3 . The parameter a does not change the shape of the failure surface.

In the m-plane, the modified Lade criterion has a curved triangular shape. This shape is
determined by a shape factor f, which is defined as:
_Ry(@)
B(2)= 2,2)
The variation of f§; with Z as specified by the modified Lade criterion can be calculated based on
the triaxial plane cross-section. The results are shown in Figure 2.21 for the same combination of
m and m. The shape varies continuously with the value of f;. As shown in Figure 2.23. f; is
between 0.5 and 1. When f; = 0.5, the shape is a right triangle. When f; = 1.0, the shape is a
circle. According to Figure 2.21, f; approaches 0.5 at the tip of the failure surface, and it
gradually increases with increasing Z. Therefore, the n-plane cross-section of the modified Lade
criterion is close to a triangle at the tip, and gets more rounded with increasing Z. The rate of
variation, however, is dependent on the values of 7, and m.

(2.24)

The Matsuoka-Nakai criterion was first proposed by Matsuoka and Nakai (1974) based on the
concept of “spatial mobilized plane” (SMP). The mobilized plane is the plane where the shear to
normal stress ratio is maximized. Physically, it is the plane where soil particles are most mobilized
to move by friction. The orientation of this plane can be obtained by drawing a line tangent to the
Mohr circle (Figure 2.24 (a)). In a two dimensional case where only oy and o3 are considered, the
normal direction of the mobilized plane is (45°+¢"3/2) from the oy direction (o7 > o3 assumed).

@"13 is the mobilized friction angle in this stress system. Because tan(45°+¢/2)=4/o, /0, , the
orientation of this mobilized plane can be obtained by drawing a line connecting /o, on the oy

axis and /o, on the o3 axis (Figure 2.24 (b)). It can be verified that the normal to this mobilized

plane, which is a line perpendicular to this line, makes an angle of (45°+¢"13/2) from the o
direction. Mobilized planes can be obtained in the (o3, 3) and (o1, 03) system following the same
procedure.

Matsuoka and Nakai (1974) extended this idea of three two-dimensional mobilized planes to one
spatial mobilized plane, which is the triangle enclosed by all three two dimensional mobilized
planes. A new yield criterion is proposed stating that soil fails when the shear to normal stress
ratio on the spatial mobilized plane reaches a critical value:

T _ /ﬂz_‘& =K (2.25)
O smp I

This expression can be rearranged to give the following simplified form:

LI -k, =0 ' (2.26)
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in which &k =9(1+K?). This is the first criterion to use all three stress invariants.

The failure surface of the Matsuoka-Nakai criterion is shown in Figure 2.22. This criterion
describes a linear pressure dependence with no cohesion. Therefore, on the triaxial plane, Ry(Z)
and R;30(Z) are both straight lines through the origin. Its ®-plane cross-section is also a curved
triangle described by the group of curves in Figure 2.23. The Matsuoka-Nakai criterion matches
the Mohr-Coulomb criterion at all its six vertices (shown as point A through F in Figure 2.22).

The group of shapes shown in Figure 2.23 can be described by a uniform formulation. Bardet
(1990) proposed the LMN (Lade, Matsuoka-Nakai) dependence as a uniform way to describe the
shape of this group of curves. The LMN dependence defines the normalized shape of the n-plane
cross-sections with R’y = 1.0 and R’ = f; (with R’ representing the normalized radius). Between
6= 0° and 60°, R'(0) is expressed by:

v 3 B 1
R(O)= T (2.27)

where &’ is an intermediate variable defined as:

201 A\2
T Lleost|ELUB) o 2a0)-1] if 050<%
3 6 2 (B -B,+)) 6

201_ a\2
Yoot | L LAY o0np)-1| itZ<o<r
6 |2 (B-B+D 6 3

6" = (2.28)

This formulation describes the m-plane cross-section of both the Lade criterion and the
Matsuoka-Nakai criterion, hence the name LMN dependence. When f; varies from 0.5 to 1.0, the
Equations (2.27) and (2.28) give the shape of the group of curves shown in Figure 2.23.

234 Mogi Type Models

Mogi, based on his true triaxial test results, found that when the data are plotted in the 7, vs.
Om,2 System, the strength of the specimen tested at different o3 and o, nicely follow one line. He
thus proposed that a general failure criterion can be formulated as:

100! = f(dm,z) (2.29)

0,10,

where o, = . This criterion later was widely accepted. For example, Al-Ajmi and

Zimmerman (2005) proposed taking f'to be a linear function 7, =a+bo, ,, and termed this linear

Mogi criterion the Mogi-Coulomb failure criterion since it reduces to the Coulomb criterion

given o3 = o3. Haimson and Chang (2000) used the power law function 7, = 40, to fit their
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true triaxial tests data on Westerly granite, and found good agreement between the fitted curve
and the data.

The triaxial plane cross-sections of the Mogi type criteria are shown by two examples (Figure
2.25 (a)). The solid lines are based on the equation of Al-Ajmi and Zimmerman (2006),
describing the strength of Dunham Dolomite:

7,, =58.32+0.54540, , (2.30)

This equation describes a linear pressure dependence. The dashed lines are based on the equation
of from Haimson and Chang (2000), describing the strength of Westerly Granite:

7, =1.510,5 , (2.31)

A non-linear pressure dependence is clearly seen.

The n-plane cross-section of these two criteria are shown in Figure 2.25 (b), at Z = 577.3MPa.
The shapes of these two criteria are very similar, even though they have very different
mathematical forms. Both of them are neither smooth, nor convex. In fact, this non-smoothness
and non-convexity seem to be common to the Mogi type criterion. Zhang and Zhu (2007), in an
attempt to extend the Hoek-Brown criterion to true triaxial stress, also obtained similar n-plane
cross-section for their model. Colmenares and Zoback (2002) showed that the non-convexity can
cause numerical problems for the uniqueness of the solution. In some cases, two values of oy can
be solved from these criteria at the same o and o3.

2.3.5 Drucker-Prager Type Models

The von Mises criterion was proposed by von Mises (1913) to describe the yielding of metals.
According to this criterion, failure occurs when the second invariant of the deviatoric stress
tensor reaches a critical value:

JT =k | (232)

The n-plane cross-section for von Mises criterion is a circle, because it does not depend on the
Lode angle. In addition, it is pressure independent since it does not depend on the volumetric
stress ;.

Drucker and Prager (1952) introduced pressure dependence to the von Mises model. The
Drucker-Prager model writes:

T =al,+k (2.33)

This criterion describes linear pressure dependence. Its n-plane cross-section is still a circle, but
the radius of the circle increases with Z. The Drucker-Prager model is actually an extension of
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the Coulomb criterion. If o3 = o3 is specified in Equation (2.33), it can be represented in the (r, 6,
Z) system by a line (Figure 2.26 (a)):

A =%a2+k (2.34)
Using the principal stresses, this can also be written as:
_2\BBa+1 3k 2.35)

o, = o,+
1-3a 1-\Ba
which can be identified with Equation (2.17). Therefore, the Coulomb criterion can be
represented by a straight line in the principal stress space, which is in the triaxial plane. The
Drucker-Prager criterion simply is a revolution of the line with regard to the hydrostatic line

(Figure 2.26 (b)).

Along this line, many other criteria were proposed following the function form of:
T, = f(0,) (2.36)

Geometrically, this function describes a failure surface that is a revolution of a curve in the
triaxial plane, which represents the behavior under conventional triaxial tests. The n-plane
cross-sections of these models are circles. For example, Murrell (1963) extended the Griffith
theory to three dimensions and proposed that:

Tour =810, (2.37)

This criterion describes quadratic pressure dependence. Zhou (1994) presented a failure criterion
which reads:

JJ, =4+Bo,, +Co?, (2.38)

2.3.6 Other Models

Wiebols and Cook (1968) proposed an energy criterion to explain the effect of the intermediate

principal stress on the strength of rock. The basic assumptions of their theory are:

® The rock specimen is considered a homogeneous isotropic elastic material, with a large
number of uniformly distributed, randomly oriented, closed plane cracks.

® All principal stresses are compressive, so all of the cracks are closed. The coefficient of
sliding friction between the crack walls are a constant for all the cracks.

® The total strain energy stored in the rock specimen can be divided into two parts: the strain
energy of the same specimen subject to the same boundary conditions but with no cracks,
and the additional strain energy due to the existence of the cracks.

® The rock specimen fails when the additional strain energy reaches a threshold value.
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An effective shear stress is then defined as:

7,y =|e| - po, ' (2.39)

with o, =0, +m’c, +n’c, and 1’ =10} +m’c? +n*cl -’ being the normal and shear stress

along a crack, where /, m, n are the direction cosines of the normal to the crack surface with
respect to the principal stress axes. u is the coefficient of sliding friction between crack walls. If
7.4 is positive, then sliding occurs between the crack walls and additional strain energy is stored
compared with the non-cracked media. Wiebols and Cook (1968) then assume that the additional
strain energy due to the existence of one average crack is:

W, =k if 1,50 (2.40)

where k is a factor obtained by averaging the contribution for all of the cracks. W, is summed
for all of the cracks in all orientations to obtain the effective shear strain energy W,z which is the
strain energy contribution by the sliding of cracks. For a general stress state, this summation
process is performed by numerical integration with a computer. Failure is supposed to occur
when W.greaches a critical value.

Figure 2.27 shows one example of Wiebols and Cook’s results, with the coefficient of sliding

friction, p = 0.5. Cp in Figure 2.27 is the uniaxial compression strength, which is used to
normalize the stress values. Some of the key observations are summarized below:

® For conventional triaxial tests, no matter o3 = 03 (CTC) or o3 = 01 (CTE), the strength o
varies linearly with 3. As shown in Figure 2.27, along the lines of 0> = g3 and 03 = a1, 0}
varies linearly with o3. This is not true for most of the rocks, since the oy usually varies
non-linearly with o3.

® At any o3, the CTC strength is always smaller than the CTE strength, which agrees with the

observations of Biker and Mogi.

At o3 = 0, the ratio between the CTE strength and the CTC strength increase linearly with 2.

® When o is increased from o3 to oi, the strength of the rock first increases and then

decreases, which again agrees with the many observations described earlier..

Wiebols and Cook (1968) qualitatively explained the effect of 0. However, the coefficient of
sliding friction x is hard to obtain.

Lundborg (1972) proposed a statistical theory to explain the effect of o> on the strength of rock.
Similar to Wiebols and Cook (1968), the effective shear stress is defined by Equation (2.39).
However, in Lundborg’s theory, u stands for the coefficient of internal friction, instead of sliding
friction. Lundborg’s procedure also involves identifying the orientations with 7z > 0. An
example was shown in Lundborg (1972) where o1 = 8kb, o3 = 1kb and u = 1 (Figure 2.28). The
orientation in which 7> 0 at different o levels are marked on a unit sphere by the area Q in
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Figure 2.28.

Weibull (1939) defined the probability of rupture in tension with:
S(x) =1-exp(-kX) (2.41)

where X = J' o¥dQ, and k and M are material constants. Lundborg (1972) similarly defined the

probability of failure in shear in the same form but with the definition of X being:

X = [rhdQ (2.42)

where Q is the solid angle with 77 > 0. The rock specimen is assumed to fail when the
probability S(x) reaches a critical value. If & is assumed to be a constant, then the rock specimen
will fail when X reaches a critical value. X can be calculated through Equation (2.42) with the
knowledge of 4 and M. An additional freedom of the model is provided by assuming u to be
function of the normal stress ;. Lundborg (1972) used the function:

i (2.43)

'u=1+,uoo',,/rx

where 14 is a constant and 7 is the friction stress when g; tends to infinity.

The strength variation with o, at different M when # =1 and o3 = 0 is shown in Figure 2.29.
Clearly, when M varies from 2 to infinity, different strength dependence on o3 can be described.
When M = 2, the Wiebols and Cook (1968) theory is obtained. When M = oo, the strength is
independent of o».

2.4 A New True Triaxial Model for Intact Isotropic Rock

The models that were described in the previous section have been applied in different areas.
Colmenares and Zoback (2002) reported on a comprehensive evaluation of the predictive power
of some of the models. It seems that the modified Lade model (Equation (2.22)) can predict the
strength of different types of rocks reasonably well. The pressure dependence and Lode angle
dependence of this model have been analyzed in previous sections, and are shown in Figure 2.20
through Figure 2.23. It was also shown in the literature that the original Lade criterion captures
the isotropic failure behavior of soil very well. The original and the modified Lade criterion
differ only in their pressure dependence. While the original formulation has a linear pressure
dependence, in the modified criterion this dependence is non-linear. Therefore, it is reasonable to

believe that the predictive power of these models comes from their n-plane cross-section, which
is described by the LMN dependence.

In order to obtain a generalized model, it is desirable to separate the pressure dependence and the
Lode angle dependence, so that the m-plane cross-section of the Lade models can be used
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together with any triaxial plane cross-section. The modified Lade model, however, has a coupled
pressure dependency and Lode angle dependency. The same parameters m and 7, define both the
triaxial cross-section and the m-plane cross-section, as is evident from Figure 2.20 and Figure
2.21. With this coupling, any changes on the n-plane cross-section will inevitably affect the
triaxial plane cross-section. This seriously restricts the flexibility of the model, when more

complicated features are added to the n-plane cross-sections to describe the failure of anisotropic
rocks.

Apart from the desired flexibility of the model, there are other reasons why the pressure
dependence and the Lode angle dependence should be separately described. On the one hand,
these two dependencies have different physical backgrounds. Pressure dependency describes the
strength variation with octahedral stress. This is geometrically shown as the triaxial plane
cross-section. Lode angle dependency describes the strength dependence on stress path
orientation at the same octahedral stress. This is geometrically shown as the n-plane
cross-section. On the other hand, the data compiled seem to support that the shape of the n-plane
cross-section is not significantly affected by octahedral stress level.

The idea of separating these two dependencies will be explored in this section, and a new failure
criterion is proposed based on it.

24.1 Formulation of the Proposed Model

The idea of decoupling pressure and Lode angle dependence is not new. Desai and Salami (1987)
proposed the following functions for the yielding behavior of soft rock:

J,=FF, = (_aiz;' + 71,2)(1— BS,)" (244)

0
in which a, n, 7, f and m are material parameters, and o = 1 (but with the same unit as stress).

S,=3fJ,1{J, is the stress ratio, which has the same role as the Lode angle. Clearly,

F, = ~ 2 "+y1? describes the pressure dependence of the criterion. F, =(1-AS,)" describes the
@,

Lode angle dependence.

Hunsche and Albrecht (1990) used the following function to describe the failure of rock salt:
7o = [ (0, )8 (m)A(T) (2.45)

where m is the Lode parameter, and T is temperature. Obviously f{o,.) describes the pressure
dependence, while g(m) describes the Lode dependence. 4(7), on the other hand, describes the
variation of strength with temperature.
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Aubertin and Simon (1996) proposed the MSDP criterion which writes:
JJ, =F,F. (2.46)

In this formulation, F, describes the pressure dependence, with:

1
5 G ~op o) forn <, 247)
al, +k forf, 21,

where Ir marks the point of brittle-ductile transition. When I; < I, a non-linear pressure
dependence is specified, with o, and o; being material parameters. When ; > I, there is a linear
pressure dependence. F, describes the Lode angle dependence:

b

F = 2.48
T B +(1-b%)sin’(45°-1.54) (2.48)

Where b specifies the ratio Rjs0/Ry, and A is the Lode angle.

Along the line of these models, it is proposed here that the separation should be obtained by two
different functions. The most direct way to obtain pressure dependence is through conventional
triaxial tests at different confining pressures. The measured strengths from these tests give one
branch of the triaxial plane cross-section Ry(Z) (Figure 2.17 (b)). It is found that power law
functions can usually be used to fit the data to obtain Ro(Z):

R(2)=a-2" | (2.49)

However, one can use any functional form that fits the experimental data, and physically makes
sense.

The shape of the n-plane cross-section is assumed to be described by the LMN dependence,
which is a group of curved right triangles with R'g = 1.0 (refer to Figure 2.23). As indicated
before, the shapes are normalized against Ry. Under this assumption, the radius (the distance

between a certain point on the n-plane cross-section and the hydrostatic line) of the n-plane
~ cross-section at a certain Z level and a certain orientation &is:

V3 5@ !
2 \B.(2) - B(2)+1 cos@)

R(6,Z) =R, (Z)R'(6) = R,(Z) (2.50)
where R'(6) is the LMN dependence expressed by Equation (2.27), and 0” is the intermediate
variable defined by Equation (2.28). The shapes shown in Figure 2.23 will be frequently used in
this research, because they are applicable to both soils and rocks and because there is only one
parameter f; involved. Lade (1993) indicates that the shape of the n-plane cross-section may
change with the pressure level. The shape is closer to a triangle at lower Z values, and
increasingly resembles a circle with the increase of Z. This indicates that f; should be a function

47



of Z, as explicitly shown in Equation (2.50). While applying the proposed model to the existing
data sets, however, it will be shown that in most case f; can be treated as a constant.

24.2 Application of the Proposed Model

The application of the model will be shown by a numerical example, based on Mogi’s data on
Dunham dolomite (Table A.10). Since this model is constructed based on the idea of separation
of pressure and Lode angle dependency, there are obviously two steps when applying it. The first
step is to find the pressure dependence function Ry(Z). The second step is to determine the shape
factor f; in the LMN dependence.

Step 1: Determination of Ry(Z)

From Table A.10, the data in which the rock specimens fail in conventional triaxial stress states
(6= 0°) are first retrieved and listed in Table 2.1. With the principal stresses at failure known, the
values of Ry and Z at failure can be calculated based on Equations (2.12) and (2.10). The results
are also shown in Table 2.1.

These data can be plotted in the Ry-Z system, as shown in Figure 2.30. It was found that a power
function can be used to fit the conventional triaxial compression data. In the case of the Dunham
dolomite, the pressure dependence can be expressed by:

R,(Z) =8.8637Z°5% . (2.51)

This gives one branch of the triaxial plane cross-section of the failure surface for Dunham
dolomite.

Step 2: Determination of £.(Z)

In order to obtain £(Z), those data points in Table A.10 where the rock fails in true triaxial stress

state must be used. These data are collected in Table 2.2. For each data point, the failure stress in

the polar coordinate system (R,6,Z) is calculated. R and Z can be calculated with Equations (2.12)
and (2.10), as shown in Step 1. @ can be calculated with Equation (2.14). Since this point

represents failure, it must be located on the n-plane cross-section of the failure surface. Then the

conventional triaxial strength Ry at this Z level is obtained from the power law function, Equation

(2.51). Normalizing R to Ry, a point (R/Ry,0,Z) on the normalized n-plane cross-section at this Z

level is obtained. To fully define the shape of the n-plane cross-section at this Z level, a few data

points are necessary which have various @ values from 0° to 60° (due to the six-fold symmetry).

[ value at this Z level can then be calculated by its definition (Equation (2.24)):

_Rw(2) _Re(2) 2.52
B.(2Z) 2D - RO (2.52)
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s may also be obtained visually by comparing the shape determined by the data points against
Figure 2.23, the group of shapes determined from LMN dependence. If, however, all the
normalized failure points fall on a unique n-plane cross-section regardless of their failure Z level,
then the shape of the n-plane cross-section is indifferent to the Z value and f; can be taken as a
constant.

For Dunham dolomite, all the normalized data points are plotted on the n-plane in Figure 2.31.
Each data point fails a different Z value, ranging from 475 MPa to 900 MPa. However, after
normalization, all points indeed fall on a unique failure surface. A constant f; can thus be used in
Equation (2.50) to describe the strength of Dunham dolomite. Comparing the shape determined
by the data points in Figure 2.31 against Figure 2.23, £ is obtained to be around 0.74. The
n-plane cross-section with f; = 0.74 is also shown in Figure 2.31. The final expression to
describe the strength of Dunham dolomite subject to a true triaxial stress state is:

VB 0.74 1 2.53)

R(6,Z) =8.86372°5%. _
2 J0.74* —0.74 +1 cos(8")

where @' is a function of & specified by Equation (2.28). The strength of Dunham Dolomite, as
described by Equation (2.53), is compared with the experimental data in Figure 2.32.

It is important to note that the conventional triaxial compression data only covers Z values
around 150-560 MPa, while true triaxial tests cover a Z range from 475 to 900 MPa. Between
560MPa and 900MPa, the form of Ry(Z) shown in Equation (2.51) is not supported by any data
points. One should be cautious of its applicability in this range of Z values. Whenever possible, it
is recommended that more conventional triaxial tests should be performed to cover the entire
range of Z values at which the rock may fail.

It is also important to note that the data points in Figure 2.31 only cover & value from 0° to -30°.
In order to define the n-plane cross-section with the least uncertainty, ideally the data should be
distributed between 0° to —60°. Again, caution should be exercised when the model predicts a
failure where @is between —30° and —60°.

Most of the other data sets from true triaxial tests were processed in the same manner. The
pressure dependence functions Ry(Z) are fitted with power functions. Data with all three different
principal stresses are then normalized to the Ry value calculated from Ry(Z). The normalized data
are then plotted on the n-plane. For most of the data sets, a unique n-plane cross-section can be
obtained. This indicates that the shape factor f; is either constant or it does not vary significantly
with pressure level. The data points and the predicted n-plane cross-section are plotted in Figure
2.33 through Figure 2.46. For most of them, it can be seen that the LMN dependence describes
the m-plane cross-section very well.

The pressure dependence function Ry(Z), and the parameter 3, are tabulated in Table 2.3. In order
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to show the quality of the data, three additional columns are included in the table:

® 7 from CTC tests: This column gives the Z value range covered by the available
conventional triaxial compression data. The pressure dependence function Ry(Z) fitted with
these data is most reliable within this range of Z value. Outside of this range, one should be
careful about the applicability of the fitted Ry(Z) function.

® Zfrom TTT tests: This column gives the Z values that are covered by the true triaxial data.

® Minimum & In order to define the shape of the n-plane cross-section, it is best to have data
points ranges from 6= 0° to —60°. However, none of the data set covers such a wide range.
The closer this minimum @ is to —60°, the better defined the shape of the =m-plane
cross-section is.

In short, the closer the “Z from CTC tests” to the “Z from TTT tests”, the better the quality of the

data, since Ro(Z) that is used to normalize the data is more reliable. The closer “Minimum 6” is
to —60°, the better quality of the data, since it covers wider Lode angle.

To summarize, a true triaxial failure model for intact isotropic rock is proposed in this section,
based on the separation of pressure and Lode angle dependence. The application of this model is
shown through a numerical example. In order to obtain the necessary parameters, the results
from a few conventional triaxial compression tests and a few true triaxial tests should be
available. The prediction power of the model depends on the available data based on which the
model parameters are obtained. The conventional triaxial data should cover as wide a range of Z
values as possible, while the true triaxial data should cover #values from 0° to 60°.

25 Summary

The problem of isotropic intact rock strength was examined in this section, from the
experimental methods to the theoretical prediction. The experimental data where rock specimens
are subject to a polyaxial stress state were compiled. It seems that many different types of rocks
have been tested under a true triaxial stress state.

The modified Lade criterion seems to perform very well in predicting the strength of rock. In
order to preserve its predictive power while at the same time obtaining more flexibility, a new
criterion is proposed based on the separation of pressure dependence and Lode angle dependence.
The m-plane cross-section of the proposed model is the same as that of the modified Lade
criterion, while its pressure dependence is described by Ro(Z), which is obtained from
conventional triaxial compression tests. The proposed model is applied to most of the data that
were collected here.

For most of the rocks, it seems that the shape of the n-plane cross-section is not significantly
affected by pressure level. Therefore, §; can be taken as a constant. It was pointed out that the
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accurate determination of f; requires true triaxial tests.
Based on the data shown in Table 2.3, it seems that most of the rocks have a m-plane

cross-section with f; ranging from 0.55 to 0.75. This explains why the Drucker-Prager criterion,
which has a n-plane cross-section with f; = 1.0, does not predict the strength of rocks very well.
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Table 2.1 Tests on Dunham Dolomite with Conventional Triaxial Stress State

o3 loj3 o Z 0 Ry
(MPa) |(MPa) |(MPa) |(MPa) |(° (MPa)
0 0 265 152.998 | 0 216.372
0 0 258 148.956 |0 210.656
25 25 400 259.808 | 0 306.186
45 45 486 332.554 |0 360.075
60 60 540 381.051 |0 391.918
65 65 568 402.99 0 410.698
85 85 620 456.107 | 0 436.826
105 105 682 514996 |0 471.119
125 125 725 562917 |0 489.898
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Table 2.2 Tests on Dunham Dolomite with True Triaxial Stress State

o3 o o1 Z 0 Normalized R
(MPa) |(MPa) |(MPa) |(MPa) |(°)

25 66 475 326.78 | —4.72593 0.99588
25 96 495 355.648 | —8.05467 0.96085
25 129 560 412.228 | -10.5628 0.97929
25 174 571 44456 | -15.3057 0.92861
25 229 586 484.974 | -21.0517 0.88394
25 272 545 486.129 | —28.3465 0.80848
45 97 570 411.073 | -5.15681 1.00042
45 126 576 431.281 |-8.13887 0.95959
45 160 606 468.231 | -11.1887 0.94332
45 183 639 500.563 | —12.8243 0.94841
45 240 670 55137 | -17.7521 0.91737
45 266 670 566.381 | —20.405 0.8938
45 294 622 554.834 | —25.4803 0.82692
65 117 638 473.427 | -4.70642 1.00168
65 153 644 497.676 | -8.10719 0.95539
65 208 687 554.256 | —12.6783 0.93147
65 262 685 584.278 | -18.1153 0.87587
65 318 746 651.828 | —21.5609 0.8877
65 393 701 669.149 | —31.0401 0.80662
85 128 684 517.883 | —3.68951 0.9975
85 153 719 552.524 | -5.6056 0.99722
85 233 744 613.146 | -12.3581 0.92707
85 306 773 672.036 | —18.3359 0.88839
85 376 | 818 738.431 |-23.2173 0.87914
85 445 793 763.834 | -30.5607 0.82529
105 167 778 606.218 | —4.7808 1.00454
105 205 786 632.776 | -7.81482 0.96637
105 270 863 71476 | -11.9442 0.96942
105 268 805 680.119 | —12.8566 0.91935
105 334 824 729.193 | -18.1632 0.88196
105 356 | 840 751.133 | -19.6283 0.8803
105 415 822 774.804 | —25.5338 0.83071
125 187 824 655.87 | —4.59553 0.99387
125 239 860 706.677 | —8.28489 0.96897
125 293 863 739.586 | —12.5421 0.92047
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125 362 897 799.053 | —17.4362 0.89585
125 414 941 854.478 | —20.4414 0.89807
125 463 918 869.49 | -25.1311 0.85424
125 516 886 881.614 | -30.9128 0.80974
145 253 883 739.586 | —7.78638 0.94846
145 296 927 789.815 | —10.4865 0.94668
145 324 923 803.672 | —12.6888 0.91962
145 349 922 817.528 | —14.6671 0.89936
145 392 1015 896.048 | —15.9896 0.94417
145 410 1002 898.934 | -17.5764 0.92214
145 455 952 896.048 | —22.3799 0.85732
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Table 2.3 Parameters of the Proposed Criterion for Different Rock Types

Z from | Z from
Min
Rock Name | Data Source Ry(2)' B CTC? tests | TTT tests p fomum
(MPa) (MPa)

g‘;ﬂ’;‘i’;‘e Mogi (2007) 5=10282° | 074 | 560 MPa |900MPa |-31°
ii’rlnn;‘t’j:; Mogi (2007) 5 =23.002" | 075 | 400 MPa |820MPa |—46°
;;ag;ge“ch‘ Mogi (2007) r,=53312"% 079 | 186 MPa |517 MPa |-39°
'ﬁﬁhy(:e Mogi (2007) r=59712"% | 075 |367MPa |573 MPa |-55°
rna;‘eazsi“’te“ Mogi (2007) r=34272"" | 062 | 660 MPa |680MPa |—24°
Inada . 0.791
Granite Mogi (2007) r=40572""" | 0.6 | 1129 MPa | 1200 MPa | —12°
g{::z‘z;i o | Mogi (2007) r=53342" | 065 | 870 MPa | 1210 MPa | -16°
Westerly Haimson  and 0846

=2.946Z" . ~10°
Granite Chang (2000) | " 0.57 | 700 MPa | 890 MPa |19
KTB Chang and 0824

=3.144Z" —§130°
Amphibolite | Haimson (2000) o 0.63 |835MPa | 1185 MPa | -53
Long Valley | Chang and 0640

=7.084Z" —53°
Hornfels Haimson (2007) " 0.63 | 385MPa | 543 MPa 53
glll‘fslt‘;’;gep“ Oku et al. (2007) | , =32432 |07 |370MPa |560 MPa |-58°
Shirahama | Takahashi and

=17.131Z>% —46°
Sandstone | Koide (1989) | 0.71 |187MPa |300MPa |—46
Izumi Takahashi and

=3.017Z%% —18°
Sandstone | Koide (1989) | 0.57 | 381 MPa |480MPa |-18
Yuubari Takahashi and

=4.7322°%% °
Shale Koide (1989) | " 0.73 |200MPa |270MPa |-43

Note:

1: All Ry(Z) are fitted with power law functions.

2: CTC stands for conventional triaxial compression tests.
3: TTT stands for true triaxial tests.
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Figure 2.1 Comparison between Boker and Von Karman's Strength (from Haimson, 2006)
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Figure 2.3 Mogi's Classification of Experiments with Polyaxial Stress State (from Mogi, 2007)
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Figure 2.4 Thick-walled Hollow Cylinder
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Figure 2.7 True Triaxial Tests Performed by Hunsche (Hunsche, 1990)
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Figure 2.8 True Triaxial Cell Reported by Hojem and Cook (1968)
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Figure 2.11 Residual Strength of Shirahama Sandstone and Yuubari Shale (Takahashi and Koide, 1989)
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Figure 2.13 True triaxial cell of the University of Wisconsin (Haimson, 2000)
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Figure 2.20 Triaxial Plane Cross-Section of Modified Lade Criterion
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67



(a) Mohr Circles and the Mobilized Friction Angles (b) Construction of the Spatial Mobilized Plane
Figure 2.24 The SMP Concept by Matsuoka and Nakai (1974)
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Figure 2.30 Conventional Triaxial Compression Data for Dunham Dolomite (data from Mogi, 2007)

72



Figure 2.31 Normalized Failure Points of Dunham Dolomite on the n-Plane with Bs = 0.74 (data from Mogi,

2007)
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Figure 2.32 Predicted Strength with Proposed Criterion for Dunham Dolomite (data from Mogi, 2007)
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Figure 2.33 Dunham Dolomite: Measured and Predicted Normalized n-Plane Cross-Section (8,=0.74, data
from Mogi, 2007)

Figure 2.34 Solnhofen Limestone: Measured and Predicted Normalized n-Plane Cross-Section (£:=0.75,
data from Mogi, 2007)
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Figure 2.35 Yamaguchi Marble: Measured and Predicted Normalized n-Plane Cross-Section (8s=0.79,
data from Mogi, 2007)

Figure 2.36 Mizuho Trachyte: Measured and Predicted Normalized n-Plane Cross-Section (8s=0.75, data
from Mogi, 2007)
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Figure 2.37 Manazuru Andesite: Measured and Predicted Normalized n-Plane Cross-Section (6=0.62,
data from Mogi, 2007)

Figure 2.38 Inada Granite: Measured and Predicted Normalized n-Plane Cross-Section (5:=0.6, data from
Mogi, 2007)
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Figure 2.39 Orikabe Monzonite: Measured and Predicted Normalized n-Plane Cross-Section (5:=0.65,
data from Mogi, 2007)

Figure 2.40 Westerly Granite: Measured and Predicted Normalized n-Plane Cross-Section (8~0.57, data
from Haimson and Chang, 2000)

77



Figure 2.41 KTB Amphibolite: Measured and Predicted Normalized n-Plane Cross-Section (5:=0.63, data
from Chang and Haimson, 2000)

Figure 2.42 Long Valley Hornfels: Measured and Predicted Normalized n-Plane Cross-Section (4,=0.63,
data from Chang and Haimson, 2007)
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Figure 2.43 Chelungpu Siltstone: Measured and Predicted Normalized n-Plane Cross-Section (5s=0.7,
Oku et al., 2007)

Figure 2.44 Shirahama Sandstone: Measured and Predicted Normalized n-Plane Cross-Section (5s=0.71,
Takahashi and Koide, 1989)
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Figure 2.45 Izumi Sandstone: Measured and Predicted Normalized n-Plane Cross-Section (8s=0.57,
Takahashi and Koide, 1989)

Figure 2.46 Yuubari Shale: Measured and Predicted Normalized =n-Plane Cross-Section (8:=0.73,
Takahashi and Koide, 1989)
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3 Failure of Anisotropic Rocks

In the previous chapter, rocks are treated as isotropic materials. However, natural rocks are more
or less anisotropic, and isotropy is therefore only an approximation. Whether the strength of a
particular rock can be reasonably well described by isotropic models or not is only known after
extensive testing of the rock at different orientations. If it turns out that the strength strongly
depends on orientation, then an anisotropic strength model must be used to characterize its
strength. It is usually hard to identify rocks whose strengths are close to isotropic by visual
inspection. Rocks that are strongly anisotropic, however, may reveal its strength anisotropy
through various structural features that are easily identified. For example, shales are known to
have the bedded structure that is formed by sedimentation; slates can sometimes split along the
cleavage planes; schists may clearly show the elongated minerals, etc. For these rocks, an
isotropic failure criterion is usually inadequate.

Anisotropy comes from very different origins. For intact rocks, anisotropy can be generated from
the orientation of minerals or other textural features, and from stress history. For rock masses, the
anisotropy is more complicated due to the existence of large scale discontinuities. It is not the
intention of this thesis to study all these various types of anisotropy. In fact, the focus of this
research is on a particular type of anisotropic rocks, those that can be reasonably described as
transversely isotropic materials.

Many different geo-materials can be reasonably well described to be transversely isotropic, for
example, soft clay that has experienced one dimensional consolidation. The clay particles are
compressed in the direction of the consolidation, which makes this direction the privileged
direction of anisotropy. In the plane orthogonal to the direction of deposition, mechanical
properties are assumed to be isotropic. Many sedimentary rocks and some metamorphic rocks
can also be classified as transversely isotropic, for example, shales, slates, etc. In the case of
shale, due to the sedimentary process, shale usually possesses layered features, which is called
the bedding planes. The mechanical behavior is isotropic within the bedding planes, but is
different from that perpendicular to them.

For a transversely isotropic material, there is always a plane in which the mechanical behavior is
isotropic. This plane will be termed the isotropic plane in a general mathematical model. While
describing a specific data set, the isotropic plane will be referred as the cleavage plane, bedding
plane etc., depending on the materials that are under discussion. There is one privileged direction
of a transversely isotropic material, which is the normal to the isotropic planes. Therefore, the
behavior of a transversely isotropic material is orientation dependent.

The failure of anisotropic rock is a very complicated topic. The strength is not only a function of
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the stress tensor, like the failure of isotropic rock, but also a function of the material structure. In
addition, there are different modes of failure that have been observed. This chapter summarizes
past efforts on characterization of anisotropic rock strength. The material of this chapter is
divided into two parts: experimental results and existing models.

The first part of this chapter presents experimental results on fifteen transversely isotropic rocks,
which belong to five different rock types: Slate, Phyllite, Schist, Shale, and Diatomite. The
experiments performed are mainly conventional triaxial tests, except for one rock (the Chichibu
Green Schist), where true triaxial test results are available. The variation of strength and failure
modes with isotropic plane orientation and principal stresses will be presented for each
anisotropic rock.

In order to present the test results in a clear and consistent manner, it is necessary to set up
coordinate systems. Two different coordinate systems are shown in Figure 3.1. The x;x,X3 system
is the principal stress system, where x; is the direction of the principal stress o, etc. The STN
system is the material coordinate system, where N is the direction normal to the isotropic planes,
while the ST plane is the isotropic plane. In order to describe the relative orientation of the STN
system with regard to the x1x;X3 system, three angles must be specified. The angle between x;
and N is 0, while o stands for the angle between x3 and the projection of N onto x,x3 plane. The
orientation of N is completely defined by 6 and ®. In order to fix the directions of S and T, A is
defined as the angle between T and the intersection of the ST plane and the x,x3; plane. Under the
assumption of transverse isotropy, the material behaves isotropically within the ST plane.
Therefore, the constitutive law should be independent of A.

In the case of the conventional triaxial tests, where o, = o3, the angle o is irrelevant too, and the
orientation of the isotropic planes with regard to the principal stresses can be represented by 6
only. This is evident by setting the direction S and x; to coincide (Figure 3.1 (b)). In Figure 3.2, a
triaxial specimen is shown to illustrate the orientation of the isotropic plane with regard to the
axial direction. Most of the experiments presented in this chapter are conventional triaxial tests,
where the configuration is the same as Figure 3.2. Instead of using 0 to describe the isotropic
plane orientation with regard to x;, many researchers use the angle between the isotropic plane
and x;, which is (/2 — 0). From now on, 0 is called the isotropic plane normal orientation, while
(/2 — 0) will be called the isotropic plane (or cleavage plane, bedding plane, etc.) orientation.
The isotropic plane orientation is denoted S following McLamore and Gray (1967). Figure 3.2
also shows the special cases where the isotropic planes are parallel and perpendicular to the axial
direction.

Existing anisotropic strength criteria are summarized in the second part of this chapter. Based on
how these criteria are derived, they are divided into four categories: empirical criteria,
continuous criteria, critical plane approach, and discontinuous models. Efforts were made to
show the interrelations between the different criteria.
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3.1 Experimental Results on Anisotropic Rocks

3.1.1 Donath’s Data

Donath (1964) reported a series of conventional triaxial tests on Martinsburg slate. The
specimens were prepared so that the cleavage plane orientation 8 = 0° to 90° with 15° intervals.
The specimens were ground at both ends to form perfect right cylinders. The specimens had two
different sizes. Larger specimens had 1 inch diameter and 2.5 inch length. They were subject to
three different confining pressures: 35, 105 and 350 bars. Smaller specimens had 0.5 inch
diameter and 1 inch length. They were subject to higher confining pressures: 500, 1000 and 2000
bars. For each combination of orientation and confining pressure, two tests were performed to
ensure the repeatability. The axial stresses at failure are compiled in Table B.1. The variation of
o, at failure with cleavage plane orientation and confining pressure is shown in Figure 3.3. At
any £ value, the strength clearly increases with the confining pressure. At any confining pressure,
the strength variation with isotropic plane orientation £ can be represented by a “U” shaped
curve with uneven shoulders, as is evident in Figure 3.3. Two local maxima are reached at = 0°
and 90°. In the case of the Martinsburg slate, the strength at = 90° is larger than that at = 0°.
The minimum strength is reached around B = 30°. This is most probably because of the slip
along the cleavage planes.

Donath (1964) also carefully described the failure mode of the specimens. It seemed that all of
the specimens were failed by shear faulting, so that one part of the specimen moved relative to
the other part along the fault. The shear faults were formed by either slipping along the cleavage
planes, or shearing across them (i.e. faulting through matrix material). The faulting process can
be brittle or ductile, depending on the level of confining pressure. The strike of the fault plane
was always parallel to that of the cleavage. It seemed that the fault orientation (the angle
between the fault plane and the axial direction) was very heavily dependent on the cleavage
orientation. The fault orientations at various confining pressures were measured and plotted
against the cleavage orientation in Figure 3.4. Any points that fall along the 45° line indicate the
fault orientation is the same as the cleavage plane orientation, and thus failure along the cleavage
plane is observed. The following phenomena are noted:

® (= 0°: There is a wide scatter of fault orientations. At smaller confining pressure (triangular
symbols in Figure 3.4),‘the fault orientations are close to 0°, so that the faults more or less
follow the cleavage. This is believed to be caused by tensile failure along the cleavage at
small confining pressure. The fault orientation is larger for larger confining pressure
(circular symbols), and it can get close to 30°. In this case, the faulting is through the matrix
material.

® S =15°to 30° For these S values, the cleavage planes are steeply inclined. At smaller
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confining pressures, it seems that the specimens fails by slipping along a single cleavage
plane in a brittle manner. With increasing confining pressure, it seems that the failure mode
changes to slipping along multiple cleavage planes, and then to development of kink bands
(see Figure 3.5 for failed specimens with B = 15°). The kink band is a zone where the
cleavage is rotated from its original orientation. Further deformation causes faulting within
and parallel to the kink band boundaries. It is obvious that large deformation occurs with the
development of kink bands. Therefore, it is a ductile type of failure. Figure 3.6 shows the
kink band on the cross-sections of failed specimens with increasing confining pressure. At
1000bar confining pressure, a very wide kink band can be identified in which the cleavage
planes rotate. At the two ends of the specimen, the cleavage orientation is not changed,
possibly because of the constraint of rigid platens. The width of the kink band gets smaller
with increasing confining pressure, as can be shown for specimens failed at 1600 to 2000bar.

® [ =45°to 75°: In this range of cleavage plane orientation, the specimen can fail along or
across the cleavage planes. For = 45°, most of the specimens fail by slipping along the
cleavage planes (Figure 3.4). Again, slipping along single cleavage plane is observed for
smaller confining pressure, and multiple slipping for larger confining pressure (Figure 3.7).
With increasing f, the fault orientation deviates from the cleavage plane orientation (Figure
3.4) and is smaller than S. Based on Figure 3.4, this deviation is larger for smaller confining
pressures. The fault orientation peaks around £ = 75°.

® [=90°: The fault orientation is close to 30° regardless of the confining pressure. Therefore,
faulting only occurs through matrix material.

It is worth noting that the observed trend of fault orientation on Martinsburg slate may not be
applicable to other anisotropic rocks. For example, Donath (1961) reported the fault orientation
measured from Longwood shale specimens subject to 420bar confining pressure (Figure 3.8). It

seems the fault orientation remains close to 30° for any isotropic plane orientation larger than
30°.

3.1.2 Hoek’s Data

Hoek (1964) reported proportional triaxial compression tests on a South African slate.
Proportional triaxial compression tests were performed with the ratio o3/oy being constant
through the entire test. Three different ratios were applied: 03/01 = 0 (uniaxial tests), 0.113 and
0.171. B, the orientation of bedding planes, was from 0° to 90° at 15° intervals. The size of the
specimens was 0.85 inch diameter and 1.7 inch length. At any combination of B and o3/0y, two
specimens were tested to check the repeatability of the results. The failure axial stresses are listed
in Table B.2, and plotted in Figure 3.9.

84



Since the tests reported are proportional triaxial tests, each curve in Figure 3.9 represent the tests
with a certain o3/0y ratio. Therefore, they are different from the curves shown in Figure 3.3 for
Martinsburg slate. Nevertheless, the general trends are the same. For each £ value, the strength
increases with the stress ratio. At a certain stress ratio, the strength variation with £ forms a “U”
shaped curve. The minimum strength is reached at f = 30°. However, a description of failure
modes is not given by Hoek (1964).

3.13 McLamore and Gray’s Data

McLamore and Gray (1967) investigated the behavior of three different anisotropic rock
materials: a fine-grained black slate (termed the Austin slate) and two types of Green River Shale.
The slate has “no discernible bedding planes within the material but cleavage was well
developed”. Green River Shale is “composed of fine-grained calcite and dolomite particles
interbedded with a solid native high molecular weight organic material called kerogen”. The first
type of Green River Shale has higher strength among the two and usually fails in a brittle manner.
The second type, on the other hand, is more ductile and fails after considerable plastic strain.

Conventional triaxial tests were performed on these materials. The final dimension of the triaxial
specimens was approximately 0.5inch diameter by 1.0 inch long. The confining pressure and the
bedding plane orientation were varied to observe strength anisotropy. The anisotropic strengths
for these three materials are plotted in Figure 3.10 through Figure 3.12. The numerical values of
axial stresses at failure are tabulated in Table B.3 through Table B.5. The basic trends are similar
to those of Martinsburg slate and South African Slate. However, there is something special for
the Austin slate. The cleavage plane orientation § where the minimum strength is reached
increases with the confining pressure, from 30° at 5000psi to around 40° at 40000psi. This is not
observed in the Green River Shale specimens.

McLamore and Gray (1967) also discussed carefully the observed failure modes and summarized
their observations (Figure 3.13). The failure modes that were observed are generally consistent
with those reported by Donath (1964). The “Shear” failure mode describes brittle failures either
along or across the bedding planes, at lower confining pressures. The failure mode “Plastic Flow
or Slip” along bedding planes in Figure 3.13 roughly corresponds to multiple slip along cleavage
planes in Donath’s observations (for example, see failed Martinsburg specimen in Figure 3.7
with B = 45° and o3 = 1000bar). The “Kink Flow” failure mode describes the development of
ductile kink band.

All three different failure modes in Figure 3.13 were observed in the Austin slate specimens. At

confining pressures below 15000psi, brittle failure was observed. The fault developed along the
bedding planes for § = 10°, 20° and 30°. At larger confining pressures, the failure mode becomes
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plastic flow along the bedding planes or kinking. McLamore and Gray (1967) also observed that
the kink zone usually have two parallel boundaries, and kinking occurred only at § = 10°, 20°
and 30°, while plastic flow occurred for other orientations. Figure 3.14 shows the failed
specimens of slate, with B = 30° and various confining pressures.

All Green River Shale I specimens failed in the “Shear” failure mode. Figure 3.15 shows the
failed specimens of Green River Shale-1 at 15000psi confining pressure and various bedding
plane orientations. Specimens with § = 20° and 30° failed along the bedding planes at this
confining pressure. This rock seemed to be very brittle, and a small amount of plastic
deformation was only observed on specimens with 25000psi confining pressure.

All three failure modes were observed in Green River Shale II specimens. Figure 3.16 shows the
failed specimens with B = 10° at various confining pressures. As summarized before, the failure
mode changes from brittle failure to wide kink zone with an indistinct boundary, then to narrow
kink zone with a distinctive boundary. For specimens of § = 20° to 40°, shear faulting occurs
along bedding planes, with multiple slip at higher confining pressures. For specimens with B =
60°, shear faulting occurs across the bedding planes for lower confining pressures (1000 to
10000psi), while it follows the bedding planes for higher confining pressures. This is consistent
with the observations made by Donath (1964) (Figure 3.4 B = 60°). For specimens with § = 90°,
ductile shear fault develops across the bedding planes at a fault orientation of 34°, for all
confining pressures larger than S000psi.

3.14 Attewell & Sandford’s Data

Attewell & Sandford (1974) reported on conventional triaxial tests on Penrhyn slate specimens,
with 1 inch diameter and 2.5 inch length. The cleavage plane orientation {3 ranges from 0° to 90°
with 15° intervals. Six different confining pressures are applied: 0, 2000, 4000, 6000, 8000, and
10000 1b/in®. The measured peak strengths are listed in Table B.6 and plotted in Figure 3.17 (a).

After a shear fault is clearly defined, the axial stress is then reduced to obtain the post-peak
behavior, which is plotted in Figure 3.18. The post-peak strengths, when plotted against the
cleavage plane orientation B, also produce “U” shaped curves. However, when comparing Figure
3.17 with Figure 3.18, it is clear that the post-peak “U” shaped curves are flatter. Therefore, the
post-peak strength anisotropy is much smaller than the peak strength anisotropy.

The shear fault orientations are plotted in Figure 3.19 against the cleavage plane orientation. It
seems that the shear faults roughly follow the cleavage planes for f = 15° and 30°. At larger 8
values, the shear fault orientation increases to between 30° and 40°, then decrease slightly at § =
90°. The trend is consistent with the observation of Donath (1964) on Martinsburg slate (Figure
3.5). However, the maximum shear fault orientation is smaller than that of Martinsburg slate.
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3.1.5 Mogi’s Data

Mogi (2007) reported on true triaxial tests performed on Chichibu green schist, with the true
triaxial apparatus described in Section 2.2.2.3. The experimental measurements were
summarized. Chichibu green schist is a macroscopically homogeneous green crystalline schist
with a distinct, dense foliation, from the Chichibu Mountain, west of Tokyo.

In true triaxial tests, the specimens were prepared so that four different loading modes were
performed (Figure 3.20). B is 30° for loading modes I, II and III. The difference between these
three modes lies in ®, which defines the dip direction of the foliation planes. In mode I, the
foliation planes dip into o3 direction. In mode II, the dip of the foliation planes is 45° between o
and o;. In this case, the angle between the side of the specimen and the trace of the bedding
planes on the specimen surface is f' ~ 39° (see Figure 3.20, Mode II). In mode III, the dip
direction is in the o3 direction. Mode IV, on the other hand, has B = 90° so that the foliation
planes coincide with the x,x3 plane. For all the true triaxial tests, the minor principal stress is o3
= 50MPa. The principal stresses at failure are summarized in Table B.8. The failure o vs. o3 is
plotted in Figure 3.21 for all four different modes.

Conventional triaxial compression tests were also performed with mode I, II and IV specimens,
with the following confining pressures: 0, 25, 50, 75MPa. Since o> = o3 in a conventional triaxial

“test, Mode I and Mode II are essentially the same, and both correspond to B = 30°. Mode IV
specimens, on the other hand, correspond to B = 90°. The principal stresses at failure in
conventional triaxial tests are summarized in Table B.7 and plotted in Figure 3.22.

It seems that most of the specimens failed in a brittle manner. Mogi (2007) showed the pictures
of failed specimens for Mode I, II, and IV specimens. In order to present their results in a clear
manner, Plane A and B in Figure 3.23 are defined as the two surfaces of the specimen that are
perpendicular to the o, direction. Figure 3.24 shows a failed specimen of Mode I, where the
failure principal stresses (o1, 03, 03) = (206MPa, 100MPa, 50MPa). A single, very even failure
plane is clearly observed, which is around 30° from the oy direction and dips into o3 direction.
Therefore, this failure plane most probably occurs along one of the foliation planes.

Failure is more complicated in Mode II, where the dip of the foliation planes is 45° between o,
and o3 directions. Figure 3.25 (a) shows the failed specimen with (o1, 03, 03) = (244MPa, 50MPa,
50MPa). Although tested in the true triaxial apparatus, this is actually a conventional triaxial
stress state, which may explain why the images on Plane A and Plane B are more or less
symmetric. Multiple sub-parallel fault planes can be identified on both planes. The orientation of
these faults is close to B’, which is the orientation of the trace of foliation planes (B’ ~ 39°, refer
to Figure 3.20). Therefore, they most likely occur along the foliation. In Figure 3.25 (b) where
(01, o, 03) = (346MPa, 168MPa, 50MPa), the stress state is true triaxial. The faults are less
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planar, and the fracture patterns on Plane A and Plane B are no longer symmetric.

In Mode III, where the foliation dips in o direction, the fault planes also dip in o direction. This
clearly shows the influence of anisotropy features to the failure mode. If the rock were isotropic,

the fault planes should always dip in o3 direction. Unfortunately, no picture of failed specimens
is reported for this mode.

One failed specimen is shown for Mode IV (Figure 3.26). The fault plane seems to be well
developed and its orientation is about 30° to the oy direction. However, the failure surface does
not seem to be very planar. The reason may be that the fault is across the foliation planes.

Based on these experimental results, it is clearly shown that the orientation of the foliation plane
has a significant impact on the orientation of the shear fault in a true triaxial test.

3.1.6 Allirot and Boehler’s Data

Allirot and Boehler reported conventional triaxial tests on diatomite specimens (Allirot and
Boehler, 1979). Their specimens had 39mm diameter and 78mm length. The bedding plane
orientation f ranges from 0° to 90° with 15° intervals. Six different confining pressures were
applied: 0, 0.5, 1.0, 2.0, 4.0 and 6.0MPa. However, only the strengths at 0.5, 1.0 and 2.0MPa
confining pressure were reported in Allirot and Boehler (1979). The strength variation with B at
these three confining pressures are listed in Table B.9 and plotted in Figure 3.27. A brief
description of the mineralogy of diatomite from Dolley (2000) is attached at the end of Table
B.9.

Allirot and Boehler (1979) also supplied the pictures of failed specimens with B = 90°, 30° and
0° (shown as 0 = 0°, 60° and 90° in Figure 3.28). At zero confining pressure, tensile splitting is
observed at B = 0° and 90°, while faulting along the bedding plane is observed for § = 30°. For
non-zero but small confining pressures (less than 2MPa), the specimens fail in a brittle manner,
either across or along the bedding planes, depending on the value of B. For larger confining
pressures, ductile failures are observed. Kink bands can be observed for the specimen with =
30° and o3 = 6MPa. The specimen with p = 0° and g3 = 4MPa obviously has experienced large
plastic deformation. It is very interesting to see that for o3 > 1MPa, conjugate shear faults are
always observed on specimens with B = 0°.

3.1.7 Aristorenas’ Data

Aristorenas (1992) performed a series of tests on Opalinus and Lias o shale samples. Two
batches of samples were used in the tests. One batch of samples was taken from the Diepflingen
and Wittinsburg boring sites of the Wisenberg tunnel project in Switzerland. The other batch was
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from Erzingen in Southern Germany. The samples and their initial properties are listed in Table
B.10. The mineralogy of these samples is shown in Table B.11. The shale samples had an
average diameter of 7.9cm. They were received wrapped in thick aluminum foil and sealed with
wax. They were stored in a humid room until specimens were prepared for testing.

Several different types of experiments were performed, including isotropic consolidation tests,
Ky consolidation tests, and conventional triaxial tests. Shear strength data from the conventional
triaxial tests will be described below.

The conventional triaxial tests in this data set were performed with three conventional triaxial
apparati, one large high pressure triaxial cell and two small high pressure triaxial cells were used.
The large triaxial cell was developed by Bellwald (1990). The specimens for the large triaxial
cell have an average diameter of 8cm. The large specimens were directly cut from the samples, to
a length that was at least twice the diameter, by a disc saw. Lateral displacement was measured
by proximity sensors for large specimens. Since it takes a very long time for the large specimens
to reach full drainage, the large triaxial cell was used solely for undrained tests, and the small
triaxial cells were used for drained tests. The specimens for the small triaxial cell have an
average diameter of 3.6cm. They were cored from the bored samples with a diamond-tipped
coring device.

Based on the stress analysis for a circular tunnel in an isotropic elastic medium with an isotropic
in-situ stress (vertical and horizontal stresses are equal), one can assume that an element at the
crown or springline of the tunnel is subject to pure shear plane strain stress change (total stress)
due to excavation. Therefore, the total stress paths were selected to be pure shear, where both the
axial pressure and the cell pressure were changed so that the mean total stress remains constant.
The typical total stress path in compression is shown in Figure 3.29, where:
o‘oc,=G’+20’,0';“=0-”+20-;,q=0‘~0.3 3.1)
2 2 2
with o) being the axial stress, and o3 the lateral stress (in a conventional triaxial test, o3 = 03).
The specimen was first brought to a low effective octahedral stress (point A, 0.5MPa to 1.0MPa)
for saturation with a back pressure of 1.0MPa to 1.3MPa. The B-value was checked to confirm
saturation. The specimen was then consolidated (from point A to B) to its pre-shear stress state. It
was then sheared up to failure in pure shear (from point B to C). Three different combinations of
drainage and loading conditions were applied: undrained compression (UC), undrained extension
(UE) and drained compression (DC).

A total of 15 conventional triaxial shear tests were performed on Opalinus shale, of which 5 were
undrained compression tests, 4 were undrained extension tests, and 6 were drained compression
tests. The tests performed are listed in Table B.12. Each “Specimen ID” in this table is composed
of two parts. The first part stands for the sample from which the specimen was cut. The second
part shows the type of test performed on it. Only one test was performed on the Erzingen
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specimens because they were not properly wrapped. Note that all the specimens have bedding
plane orientation (i.e. ) to be 90°.

While performing the tests, however, some of the specimens did not strictly follow the stress
path shown in Figure 3.29, due to different practical reasons. In undrained extension tests,
specimens 26B-4(UE), 26B-6(UE), and ERZ4(UE) were not isotropically consolidated. In the
drained compression tests, specimen 26B-8(DC) was not isotropically consolidated. The ratio
between the confining pressure and axial stress during consolidation is defined by K,:
o, '

AT (3.2)
If the consolidation is performed so that the horizontal strain is zero, then K, is specifically
denoted as Ky. The values of Ko and K, are shown in Table B.12. In the five drained
compression tests, only two follow the pure shear stress path (Table B.12):. 26B-6(DC) and

26B-8(DC). The other three are explained below:

® Specimen 23-1(DC) was sheared with Ap' = 0, where p' = (0%+0%)/2 is the MIT definition
of mean effective stress. The third load increment involved a lowering of the back pressure
by 0.5MPa to keep the back pressure smaller than the cell pressure. Otherwise, tensile
effective stress may be generated in radial direction.

® Specimen 23-5(DC) was sheared to simulate an undrained effective stress path.

® Specimen 23-9(DC) was aimed at determining the material’s time dependent behavior at
60% and 98% of the estimated shear strength.

For all tests, the following results were reported in Aristorenas (1992):

@ The total and effective stress paths (example shown in Figure 3.30 (a)). For undrained tests,
the effective stress path was obtained by the total stress minus the pore pressure, which was
directly measured in the tests.

® The shear stress vs. shear strain relationship (example shown in Figure 3.30 (b)). Here, the
shear stress is defined as:

0,-0;

- (3.3)

q

while the shear strain is defined as:
y=le -5 (3.4

Therefore, they are different from the axial stress-strain curves usually reported. For the
large specimens, the lateral strain & was directly measured. For the small specimens, the
lateral strain was back calculated from the volumetric and axial strains.

® For undrained tests, the development of excess pore pressure was reported (example shown
in Figure 3.30 (c)). For drained tests, the volumetric strain caused by shearing was reported.
® For drained tests, the volumetric and shear strains were reported against time, so that the
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time dependent behavior can be studied. For specimen 26B-8(DC), variation of volumetric
and shear strains with time were also reported for its isotropic and anisotropic consolidation.

® The modes of failure were described for different types of tests. Two different modes of
failure were observed in the tests, which are illustrated in Figure 3.31.

Table B.13 partly reproduces these results, for the purpose of strength analysis. The principal
effective stresses after consolidation and at failure, the excess pore pressure due to shearing, and
the failure mode recorded by Aristorenas are summarized. Since the isotropic plane orientation is
not varied, strength anisotropy due to material structure is not obtained from this data set.
However, this dataset is the only one that has pore pressure measurements. From Table B.13, it
can be seen that for most of the undrained shear tests, the excess pore pressure Au is negative.
This is very similar to the observations on highly over-consolidated clays. Considering that
Opalinus shale samples have a considerable clay content (refer to Table B.11), the models that
are developed for over-consolidated clay may be able to describe the behavior of this shale too.

In addition, this data set is the only one where conventional triaxial extension tests are performed.
Very interesting observations on different failure modes for triaxial compression and extension
were made by Aristorenas (1992). It is noted that specimens subject to undrained and drained
compression mostly fail in Mode A, which is characterized by the presence of one or more shear
faults (see illustration in Figure 3.31). Specimens subject to undrained extension tests, on the
other hand, fail predominantly in Mode B, where “fracture planes” develop more or less along
the bedding planes. On these fracture planes, local areas of smooth and rough surfaces are
observed. Aristorenas (1992) therefore proposed that the failure mechanism of Mode B maybe a
combination of shearing and tension, with some of the fracture planes failing by tension only.
This statement is supported by the principal stresses at failure. Based on Table B.13, it is evident
that the o'iy at failure for all of the undrained extension tests are very small. In specimen
26B-6(UE), it is even negative, which clearly shows that tensile effective stress developed at
failure. Besides, it is also observed that Mode B failure occurs suddenly, which also hints that
tensile stress may be the major factor of failure.

3.1.8 Ramamurthy’s Data

Ramamurthy (1993) reported experimental results on three different phyllites: a quartzitic
phyllite, a carbonaceous phyllite, and a micaceous phyllite. Uniaxial compression tests and
conventional triaxial compression tests were performed to obtain the compressive strength of the
phyllites.

The specimens used in triaxial tests were cubic specimens with 3.8cm side length. The

orientation of the foliation planes B took the following values: 0°, 15°, 30°, 45°, 60°, 75°, 90°.
However, the real B can be a few degrees off these values because the foliation planes are not
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perfectly planar. The strength data were reported with real B values. The following confining
pressures were applied: 0, 5, 15, 30, 50 and 70MPa. The four edges parallel to the axial loading
direction were rounded to prevent membrane rupture. Ramamurthy (1993) shows some of the
triaxial specimens (Figure 3.32).

The measured triaxial strengths are shown in Figure 3.33 through Figure 3.35 for all three
phyllites. The numerical values of these strengths are listed in Table B.14 through Table B.16.
Typical failure modes observed on the failed specimens were sketched (Figure 3.36). For
specimens with B = 0°, tensile splitting develops at low confining pressure. Increasing confining
pressure partly inhibits the development of tensile fracture, so that shear faults across the
foliation planes and tensile crack along the foliation planes are both observed. For specimens
with B = 30° and 60°, slipping along the foliation planes is observed for smaller confining
pressures. At higher confining pressure, the shear fault is step-shaped, composed of shear faults
both along and across the foliation planes. Specimens with B = 90° fails mostly by shearing
across the foliation planes. There is no information on whether failures are brittle or ductile.

3.1.9 Niandou’s Data

Niandou (1994) reported on a series of tests performed on Tournemire shale specimens. These
tests were conducted at the University of Lille of France. The samples were taken from the
Tournemire site near Aveyron, France. Tournemire shale is from the Toarcian stage, Lower
Jurassic period. The mineralogy of Tournemire shale determined from X-Ray diffraction test is:
Argillite (clay) minerals: 55%, Quartz: 19%, Calcite: 15%, others: 11% (including dolomite,
siderite, feldspar, and pyrite). Among the clay minerals are Kaolinite 50%, Illite 30%, and Mixed
Layer Clays (Interstratified I/S) 15%, and Chlorite 5%. The water content of the material varies
from 4.5% to 8%. The porosity and density of the rock dried at different temperatures are shown
in the Table B.17.

Various experiments were performed on these samples, including isotropic compression tests,
conventional triaxial compression tests, and the proportional triaxial tests. The triaxial tests are
described here since they give shear strengths.

3.1.91 Conventional Triaxial Compression Tests

Conventional triaxial compression tests were performed on specimens of 37mm diameter and
75mm length. Each test is uniquely defined by the following three factors:

@ Confining pressure: Varies between OMPa (uniaxial compression test) to SOMPa.
® Bedding plane orientation JB: Varies between 0° to 90°.
® Loading sequence: Three different loading sequences are possible, monotonic loading, cyclic
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loading with partial unloading cycles, and cyclic loading with complete unloading cycles.
The entire matrix of different combinations of these three factors is shown in Table B.18. Each of
these tests will be identified by the following notations:
Bedding plane orientation/Confining pressure/Loading sequence-Test Number
For example, 0/50/M-1 stands for a test with f = 0°, confining pressure 50MPa, monotonic
loading test 1.

The axial strain rate for monotonic loading was &, = 2.0x107 sec”, and that for load-unload

cycles was &, = 4.5x107 sec”'. The loading rate for force controlled tests was 1.86x10>MPa

per second. The conventional triaxial tests were performed with the drainage line open to the
atmosphere. However, there was no fluid coming out of the drainage line, probably due to the
partial saturation of the specimens, or the small permeability of the shale. The saturation of each
specimen was not checked.

Three strain gauges were applied on each specimen. Figure 3.37 shows their configuration for a
general bedding plane orientation. Gauge 1 measured axial strain . An LVDT was also used to
measure the axial deformation of the sample. Both the gauge strain and the LVDT strain were
reported by Niandou (1994). When the axial loading direction is not perpendicular to the bedding
planes, the lateral strains are anisotropic. Gauge 2 measured strain in x, direction, which was also
the strain in S direction. Gauge 3 measured the strain in x3 direction, which was the strain in NT
plane. In a triaxial compression test, the two lateral strains are generally different, with & < &
(positive in compression).

For all conventional triaxial tests, the stress-strain curves were reported in Niandou (1994),
including the axial strain (measured by gauge and LVDT), two lateral strains, and the volumetric
strain. Pictures were also included for some of the failed specimens. LVDT strain measurements
were only reported for tests with monotonic loading and for complete unload cycles.

Sample stress-strain curves are shown in Figure 3.38 (a) and (b), for a specimen with £ = 90° and
o3 = 30 MPa. Strains measured from strain gauges are shown in Figure 3.38 (a). They seem to
give better measurements during specimen deformation, and are less affected by the seating
problems than the LVDT measurements. LVDT measured strains are shown in Figure 3.38 (b).
LVDT tends to give downward convex stress strain curves during initial loading due to seating
problems. However, strain gauges ceased to work after the peak, where major fractures are likely
to be created in the specimen, and the strain is localized. The LVDT can still give post-peak
stress strain curves, which is the only source for post-peak behavior.

Peak strength and post-peak strength are read from the stress-strain curves, and are compiled in
Table B.19 and Table B.20. When there are multiple tests for the same experimental settings, the
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strength values are averaged. As explained before, post-peak strengths are only available for tests
where LVDT strains are reported. The peak strengths are plotted in Figure 3.39. The post-peak
strengths are plotted in Figure 3.40, for confining pressures of 1 and 20MPa only. Comparing
Figure 3.39 and Figure 3.40, it is evident that the variation of the post-peak strength with f is
much smaller than that of the peak strength. In fact, the post-peak strength “U” shaped curves are

so flat that they are almost independent of 5. The post-peak strength, therefore, is less anisotropic
than the peak strength.

3.1.9.2 Proportional Loading Triaxial Compression Tests

In this group of experiments, the ratio between the axial and lateral stress is kept constant for the
entire loading process. The way this loading path is achieved is by a stepwise approximation.
First, both o3 and o; were set to zero. Then o3 is increased by a small increment Ao; (Sbars or
10bars). Then o is increased by KAos, where K is the desired ratio. This stepwise approximation
is shown in Figure 3.41.

This type of test was only performed for specimens with = 0° and 90°, with the following K
values: 1.5, 2.5, 3.5, 5, and 8. For the tests with K no greater than 2.5, the specimen was not
failed even if o3 reached the limit of the equipment (o3 = 60MPa), because the amount of shear
Stress is not adequate. These specimens were then brought to failure by reducing o3 while
keeping o) constant, i.e. following the horizontal dotted line shown in Figure 3.41.

The stress-strain curves are reported for these tests. However, the failure stresses cannot be
obtained from these curves.

3.1.9.3 Unloading Triaxial Compression Tests

In this group of test, the stress on the specimen is first raised isotropically to a high level. Then
o1 is kept constant while o3 is decreased to bring the specimen to failure. These tests, therefore,
are triaxial compression unloading tests. This type of tests was also only performed on specimens
with 8 = 0° and 90°. The initial isotropic stresses were 30MPa, 50MPa and 60MPa. In the case of
30MPa initial isotropic stress, the specimens were not failed even if o3 is reduced to OMPa.

The pictures of some of the failed specimens are reported in Niandou (1994). Niandou (1997)
summarized the observed failure modes in a sketch (Figure 3.42). It seems that for smaller §§ (0°
< B < 15°), failure occurs by tensile splitting at smaller confining pressures, and by shear across
the bedding planes at higher confining pressures. For 15° < B < 60°, failure generally occurs by
slipping along the bedding planes. However, at larger confining pressures, shearing through the
matrix material is also possible. For 65° < < 90°, the specimens usually fail by shearing across
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the bedding planes, and the shear fault orientation increases with confining pressure.

3.1.10 Behrestaghi and Nasseri’s Data

Behrestaghi (1996), Nasseri (1997) and Nasseri (2003) reported various tests on Himalayan
schists. Four different varieties of schists were obtained from the Himalaya region: Quartzitic
schist, Chlorite Schist, Quartz mica schist and Biotite schist. The specimens had a size of 3.8cm
diameter and 7.6cm length. The foliation plane orientation B ranges from 0° to 90°, with 15°
intervals (Figure 3.43). The specimens were oven dried at 105°C for 24 hours. The specimens
were tested with the following confining pressures: 5, 15, 35, 50 and 100MPa. The triaxial
strengths for all of the schists are summarized in Table B.21 through Table B.24, and plotted in
Figure 3.44 through Figure 3.47.

3.1.11 Duveau et al.’s Data

Duveau et al. (1998) assessed the predictive power of a few anisotropic failure criteria, based on
the conventional triaxial tests on a middle Ordovician schist from Angers, France. A total number
of 78 triaxial compression tests were performed. Most of the specimens have isotropic plane
orientation of 0° to 90° with 15° intervals. The rest of the specimens may be a few degrees off
these orientations. The confining pressures were 0, 5, 10, 20, 30 and 40MPa. The raw data are
plotted in Figure 3.48 (a). It can be seen that for each combination of confining pressure and
foliation plane orientation, more than one test may have been performed. In this case, an
averaged strength was reported for this combination. The averaged strengths are reported in
Table B.25 and plotted in Figure 3.48 (b).

Duveau et al. (1998) described the failure modes that were observed from the tests. At smaller
confining pressure, specimens with B = 0° are dominated by tensile splitting. Increasing the
confining pressure causes a mixed mode of failure, where both shearing through the matrix and
tensile splitting along foliation planes can be observed. Specimens with § = 90° usually fail by
shear faulting through the matrix, and the fault orientation is usually 25°, regardless of the
confining pressures. Slipping along the foliation planes usually occurs for B between 30° and 60°.
For other foliation plane orientations, both slipping along the foliation planes and shearing across
them can be observed.

3.1.12 Summary

Experimental results, mainly from conventional triaxial compression experiments, are obtained
from the literature and compiled in this section. In addition to conventional triaxial compression
experiments, proportional triaxial compression and true triaxial compression results are also
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presented, if available. Five different types of anisotropic rock are involved:

1. Slate: Martinsburg slate, Austin slate, Penrhyn slate, South African slate each reported in a
different reference.

2. Phyllite: Quartzitic phyllites, Carbonaceous phyllites, Micaceous phyllites, all from one
reference.

3. Schist: Quartzitic schist, Chlorite schist, Quartz Mica schist, Biotite schist, Angers schist.
The first four are from one reference, and the Angers schist from another reference.

4. Shale: Green River shale I, Green River shale II, Tournemire shale, Opalinus shale. The first
two from one reference and the other two from two references.

5. Diatomite. _

The axial stresses at failure are tabulated in Appendix B for all different anisotropic rocks, and

are plotted against the isotropic plane orientation B. It can be seen that the variation of the failure

axial stress with B forms a “U” shaped curve, regardless of the type of rock. However, the shapes

of the “U” shaped curves vary with the confining pressure for certain types of rock. Since there is

only one Diatomite tested, it is unlikely to give any general conclusions regarding its strength.

Therefore, only the other four rock types will be analyzed here.

3.1.121 Geometry of the “U” Shaped Curves

In order to capture the geometry of the “U” shaped curves, two ratios are defined. One ratio is
(0,—03)¢
(01— 03 )are

= (° (i.e. axial direction of specimen parallel to isotropic planes) and f = 90° (i.e. axial direction

of specimen perpendicular to isotropic planes). Geometrically, it shows how uneven the two ends
of a “U” shaped curve are.

, Which is the unevenness ratio. This ratio describes the strength difference between

min(o, - 7,)

The other ratio is , which is the depth ratio of the “U” shaped curves. The maximum

max(o, - 7;)
strength max(o; — o03) can be obtained either at B = 0° or at B = 90°, whichever is larger. In a
geometrical sense, this ratio shows the relative depth of the “U” shaped curve. This ratio does not

have a very clear physical meaning, because the minimum strength min(o; — o3) can be obtained
either by failure along the isotropic planes or across them.

The two ratios are calculated for each “U” shaped curve, and then plotted against the confining
pressure for each group of rocks.

Figure 3.49 shows the variation of unevenness ratio with confining pressure for different types of

rocks. Some interesting observations can be obtained by examining these plots:

@ The unevenness ratio can be larger or smaller than 1 for all four rock types, which means
that maximum strength can be obtained either at p = 0° or at f = 90°.
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® This unevenness ratio is insensitive to confining pressure for shales, and relatively
insensitive to confining pressure for slates. Although it varies a little (for both shales and
slates) when confining pressure is increased from 0 to around SOMPa, continued increase of
the confining pressure has very small effects on the ratio. At high confining pressures (150 to
200 MPa), the unevenness ratio is between 0.8 to 1.2.

® For most rocks in the phyllite and schist category, the unevenness ratio seems to increase
with confining pressure. It varies with confining pressure up to 100MPa (but no data are
available beyond that). The unevenness ratio moves toward 1 with increasing confining
pressure, and the rate of change decreases. As a result, the unevenness ratios are quite close
to 1 for these two types of rocks at high confining pressure (around 100MPa). For example,
the last data points for all the schists and two of the phyllites are between 0.9 and 1.

These observations may indicate that the anisotropy has two components. One component is

effectively reduced with increasing confining pressure. The other, however, is not sensitive to the

confining pressure change. For shales and slates, the second component is predominant, while

the first component predominates for phyllites and schists. At this stage, it is very difficult to

associate these two components with the mineralogy and structure of the rocks.

Figure 3.50 shows the variation of the depth ratio with confining pressure for different types of

rocks. Again, some interesting observations are summarized:

® For all the rocks, the depth ratio increases with confining pressure.

® Apart from the Angers schist, the depth ratio is the smallest for all slates, and the Micaceous
phyllites. This indicates that there is some mechanism that seriously decreases the overall
strength from the matrix strength (obtained for p = 0° and 90°). For slates, this mechanism is
most probably related to the well developed cleavage planes, so that at a certain B (usually
between 30° and 45°), it is the shear resistance along the cleavage planes that controls the
strength. For Micaceous phyllites, it can be the mica plates, which is a platy mineral with
very smooth surfaces. It is not clear why Angers schist has such a low depth ratio (around
0.1).

® For all other rocks, the magnitude of this ratio is comparable. It increases from 0.4-0.6 at 0
confining pressure, to 0.6-0.8 at larger confining pressures (between 100MPa to 200MPa).
The rate of increase decreases with increasing confining pressure.

As a result, it seems that the “U” shaped curves for a certain rock gets shallower with increasing

confining pressure.

Obviously, the closer these two ratios are to 1, the smaller the anisotropy is. Based on these

observations just summarized, it seems that increasing confining pressure does decrease the
degree of anisotropy for most of the rocks.
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3.1.12.2 Failure Modes

Many different failure modes have been observed from the failed specimens. These failure
modes have been presented in the previous part of this section. These failure modes are
summarized in Table 3.1. It must be noted that the division of confining pressure and B is
somewhat arbitrary and it is only in a relative sense. For example, medium confining pressure for
one rock can be high confining pressure for another rock.

For two different rocks (Penrhyn slate and Tournemire shale), the post-peak strength is also
available. It has been shown that the anisotropy for the post-peak strength is weaker than that of
the peak strength.

It has been stated at the beginning of this thesis that failure of rocks is a very rich topic. The
failure modes shown in Table 3.1 are summarized from previous research, and therefore can only
be regarded as a rough guideline. In reality, the true failure mode of a specimen is only known by
carefully examining the specimen after failure. For example, Figure 3.51 (a) shows a shear fault
that is non-planar. In this case, even if the fault orientation and the isotropic plane orientation are
very close to each other, it does not indicate a slip along the isotropic plane. On the other hand,
Figure 3.51 (b) with a close to planar shear fault, most probably failed by slipping along the
isotropic planes.

3.2 Anisotropic Failure Criteria

The experimental work reported in the literature was compiled in the previous section. The
results cover many different transversely anisotropic rocks. The strength of the anisotropic rock
varies with the isotropic plane orientation, with minimum strength attained around B = 30°-40°.
It was also shown that different failure modes are possible for anisotropic rocks. It can be brittle
or ductile. Shear faults can occur along the isotropic planes or across them. Tensile splitting can
occur at small confining pressure. The failure of anisotropic rock, therefore, is a very
complicated problem. Nevertheless, there have been long standing efforts of characterizing the
failure strength and failure modes with theoretical models. These models and their development
will be reviewed in this section.

Duveau et al (1998) classified the widely used anisotropic failure criteria into three categories:
the mathematical continuous criteria, the empirical continuous criteria, and the weakness plane
criteria. Duveau et al (1998) also compared the predictions of some of the failure criteria with the
conventional triaxial experiments on a schist from Angers, France. The organization of this
section roughly follows Duveau et al (1998)’s classification. However, the existing criteria are
classified into four categories: Empirical Approaches, Continuous Criteria, Critical Plane
Approaches, and Discontinuous Criteria.
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The empirical approaches are introduced first. These approaches are based purely on the
observation of anisotropic strength of rocks in conventional triaxial tests. They aim at fitting the
variation of strength with isotropic plane orientation, rather than explaining the physics behind it.
As a result, they are simple but cannot be extended to more complicated scenario.

Continuous criteria are introduced next, where failure is described with a continuous failure
surface in the stress space. There are many different ways to construct a continuous criterion.
The most rational and rigorous approach seems to be based on the tensor representation theory. It
is a general theory that is applicable to the description of both strength and stress-strain behavior.
It gives the necessary conditions a constitutive law must satisfy, and the general forms that the
constitutive law must take. Therefore, the tensor representation theory approach is first
introduced. Other ways of constructing a continuous criterion include extending the existing
isotropic criterion, or reducing from a general form of criterion. Many of these criteria seem to
be originally proposed to characterize the failure of composite materials. Some of the composite
materials, like glass-fiber reinforced plastic, are also transversely isotropic. The failure modes
observed in the experiments on these materials are quite similar to those observed in rocks. This
gives a physical basis to apply these models on rock strength anisotropy.

The critical plane approach is introduced next. This approach assumes that failure occurs through
planes, and a failure function is assumed for planes at different orientations. The form of this
failure function is usually the same for all planes. However, the parameters can vary
continuously with plane orientation. The direction of the plane which first satisfies this failure
function is called the critical direction, which must be found by maximizing the failure function.
The failure of the material is then identified with the failure along the critical plane. This method,
therefore, gives both the failure strength and the failure direction.

Discontinuous criteria are finally described. These criteria assume that different types of
discontinuities exist in a matrix material, for example, joints and cracks in rock. Failure occurs
when joints start to slip, or cracks start to propagate. Under certain assumptions, for example
randomly oriented cracks, this method is similar to the critical plane approach, because the crack
orientation that propagates first needs to be identified, which is the critical orientation. However,
there are still important differences between the critical plane approach and the discontinuous
approach. In the critical plane criteria, the plane defines the orientation of failure. Before failure
occurs, the material can be a continuous medium. In the discontinuous criteria, however, the
discontinuities exist even before failure occurs.

The coordinate system that is set up in the previous section will again be used in this chapter, for
consistent presentation. The STN system is a material coordinate system. In case of transverse
isotropy, S and T are in the isotropic plane while N is the normal. In case of orthotropy, S, T and
N are the three principal directions of anisotropy. x;X,x; is the principal stress system, which is
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aligned with the principal stresses oy, 03 and 3.

3.2.1 Empirical Criteria

The criteria in this category are proposed based on the observation of the conventional triaxial
compression strength variation with isotropic plane orientation. Different functional forms are
proposed to produce the “U” shaped curve, and any shoulders that it may have. The material
parameters in these models are obtained from curve fitting. Consequently, these criteria have
little or no physical significance, and are only applicable to conventional triaxial compression

strength.
3.21.1 McLamore and Gray’s Approach

In an attempt to extend Jaeger’s Variable Cohesive Strength Theory (introduced later in this
chapter), McLamore and Gray (1967) proposed that the cohesive strength of a specimen can be
expressed by:

S=4 -Blcos2(B-B,)  for0°<B<p,

(3.5)
S = A4, - B,[cos2(8- B, for B, < B <90°

where S, is the orientation of isotropic planes where S takes its minimum. It usually has the
value of 30°. 4 and B’s are constants describing the variation of S over the two ranges. The factor
n determines the shape of the curve. Smaller » values produce “U” shaped curves, while larger n
values give “U” shaped curves with shoulders. The coefficient of internal friction x is also
supposed to vary with the same type of law:

p=C -Deos2(f-F)"  for0°<p<p,

(3.6)
u=C,—D,[cos2(8- 6. )" for B8, < f <90°

The strength of the specimen at a certain orientation of isotropic planes can then be obtained by
invoking the Coulomb law, with the orientation dependent cohesion and friction.

McLamore and Gray (1967) applied their criterion to the experimental data on the Austin slate
(shown in Figure 3.10). At any orientation 8, the values of p and S can be obtained by plotting
the Mohr failure circles at different o3 and constructing a linear envelope over all the Mohr
circles. McLamore and Gray (1967) reported the variation of p and S with B for Austin slate
(circular and triangular symbols in Figure 3.52 (a), where the cohesion is denoted by 7). The
parameters in Equations (3.5) and (3.6) are obtained by curve fitting, so that:

4 =0.600-0.280[cos 2(B — 50°)]; S = 9440 - 5600[cos 2(5 — 30")]3 3.7

The fitted functions are shown in Figure 3.52 (a) as a dashed line for the coefficient of friction,
and as a solid line for the cohesion. The predicted strengths based on Equation (3.7) are
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compared with the measured strengths in Figure 3.52 (b), for confining pressures of 5000psi and
20000psi.

3.21.2 Ramamurthy et al.’s Approach

Ramamurthy and coworkers (Ramamurthy, 1993) proposed a nonlinear strength criterion for
intact isotropic rocks in conventional triaxial compression:

0,-0; =B, [ﬁ) ' (3.8)

o, o,

where o is the uniaxial compressive strength. B; and o; are material parameters that are obtained
by fitting the experimental data. Ramamurthy indicated that this expression should only be
applied at confining pressure o3 > 0.05a,. This nonlinear criterion was later extended to describe
the dependence of conventional triaxial compression strength on isotropic plane orientation. At a
certain orientation S, the strength of the anisotropic is expressed by:

4% =Bj[a°jJ (3.9)
o, o,

where o is the uniaxial compression strength at this orientation. B; and ¢; are also parameters

specific to this orientation, and they can be obtained from oy;:

ﬁ{&f.j% ’; &{&»TS (3.10)

122 Oco0 By, Q;

where the subscript 90 means the corresponding parameters at 8 = 90°. The variation of the
uniaxial compression strength o; with f§ is proposed to be:

0, =4, —D[cos2(30°-p)]  for B between 0° and 30°

(3.11)
o, = 4, - D,[cos2(30° - B)] for S between 30° and 90°

where A’s and D’s are parameters that must be obtained from curve fitting.

While applying this criterion, a few uniaxial compression tests at different § values are necessary
to obtain the parameters involved in Equation (3.11). Ramamurthy (1993) recommended that
three uniaxial tests at = 0°, 30°, 90° can be used to determine the parameters in Equation (3.11).
The determination of any and By in Equation (3.10) requires a minimum of two conventional
triaxial tests on specimens with B = 90°. Once these parameters are obtained, Equation (3.9) can
be applied to predict the strength of transversely isotropic rocks. Ramamurthy applied this
approach to a few different data sets. Figure 3.53 shows its predicted strength for Penrhyn slate,
tested by Attewell and Sanford (1974).
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3.21.3 Hoek and Brown’s Approach

Hoek and Brown (1980) modified the original Hoek Brown criterion to describe anisotropic rock
strength. It is proposed that the two parameters m and s shown in Equation (2.18) must vary with

the isotropic plane orientation f. By a process of trial and error, Hoek and Brown (1980)
proposed that:

m =my[1- N, exp(-6)*]; s=1-P exp(-¢)* (3.12)
where my is the value of m for intact rock with #=90°. fand ¢ are defined as:
__B-5B, B-5,
"N, +NB {—P+P,B 3.13)

in which 3, and f; are the orientation where m and s are minimum, respectively. All the N’s and
P’s are constants, which must come from fitting the experimental data.

Hoek and Brown (1980) applied this approach on the slate tested by McLamore and Gray (1967),
and reasonable agreement was achieved. Nevertheless, Hoek and Brown (1980) pointed out that
the agreement is not surprising because the number of parameters is large, and questioned the use
of this model in practice.

3.2.2 Continuous Criteria

3.2.21 Tensor Representation Theory

The application of tensor representation theory in describing the yielding and failure of
anisotropic material is mainly reported by Boehler and coworkers. They performed a series of
theoretical and experimental works on anisotropic material behavior. To name a few of them,
Boehler and Sawczuk (1976, 1977) thoroughly examined the formulation of yield criteria for
transversely isotropic bodies based on tensor representation theory. Boehler and Raclin (1985)
reported the experiments on glass-fiber reinforced composites, and proposed a failure criterion
for this type of material. Allirot and Boehler (1977, 1979, 1981) reported experiments on a
diatomite, and on a corresponding failure criterion. These experimental and theoretical efforts
were later summarized in Boehler (1987).

Tensor representation theory treats the basic problem of representing a tensor as a function of
other tensors. Since a constitutive law links the stress tensor with the strain tensor, both of which
are symmetric second order tensors, it is of interest to study the following function form:

T=F({D,M) (3.14)

where both T and D are symmetric second order tensors. One of them is identified with stress,
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and the other is identified with strain (or stress and strain increment). M is the structural tensor,
which describes the symmetry of the material. It is also a symmetric second order tensor. In the
case of transverse isotropy, for example, the privileged direction is the isotropic plane normal n,
which can be represented by [0,0,1] in the STN coordinate system. The material structure M can
be expressed by the following tensor in the STN system:

000
M=n®n={0 0 0 (3.15)
0 01

In order for Equation (3.14) to be a constitutive equation, it must first satisfy the Principle of
Isotropy of Space, which means that the equation is objective and it does not change when the
coordinate system changes. If Q stands for any rigid body rotation, then under this rotation the
tensors in Equation (3.14) can be transformed:

T'=QTQ'; D'=QDQ"; M'=QMQ’; (3.16)
The Principle of Isotropy of Space is the mathematically expressed as:
F'(D,£)=F(D',£) (3.17)

Equation (3.14) must also satisfy the requirement of material symmetry. For example, a
transversely isotropic material has rotational symmetry with regard to its privileged direction
(normal to the isotropic planes). Therefore, the constitutive equation must be invariant to any
rotation with regard to the privileged direction. Suppose P stands for a rotation that retains
material symmetry, then the structural tensor M is invariant under this rotation. It follows that:

F(D,£) =F(D,£") : (3.18)

Tensor representation theory specifies the general form of Equation (3.14), so that it
automatically satisfies the Principle of Isotropy of Space and the material symmetry.

A failure criterion is usually formulated as a scalar function o, M), with /> 0 corresponding to
failure. In order for this scalar function to satisfy both the Principle of Isotropy of Space and
material symmetry, ténsor representation theory states that it must be represented by a basic set
of polynomial scalar invariants (/;, b, ..., I,) of o and M. This group of invariants is called a
“functional basis”, following Boehler (1987). For different types of anisotropy, there are different
sets of functional basis.

The functional basis for transversely isotropic materials includes the following invariants of the
stress and the mixed invariants of the stress o and the structure tensor M:

tro,tro’,tre’, tr Mo, trMg> (3.19)
The first three quantities have been shown in Section 2.3.1, and they are represented by:
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tr(o)=0,+0,+0, =1,
tr(0?) =0’ +o} +0 +2(0} +0’ +02) = I} +2I, (3.20)

tr(@’) =0} + 0, +0. +30,(c’, +02)+30,(0% +02)+30,(0% +02) +60,0,0, = I} + 211, +3I,

They are equivalent to the three stress invariants. With Equation (3.15), one can obtain:
trMo =o,,;ttM¢* =0, + 0, +0? (3.21)

Therefore, the representation of a scalar function in transversely isotropic media must take the
form:

f(@,M) = f(tro,tre’,trg*, trMo, tr Mo?) (3.22)

which has five independent parameters. For an isotropic material, only three parameters are
necessary, which are the three stress invariants. The two new invariants involve M and hence
introduce material anisotropy into the criterion. Tensor representation theory thus provides a
rigorous and strict foundation for the development of strength criteria. Any strength theory that
can be written as the function of the invariants in (3.22) is free of contradictions.

The functional basis shown in Equation (3.19) is further reduced for triaxial tests, where the only
independent variables are the isotropic plane orientation (0 or B), the confining pressure o3, and

the axial stress o;. This reduction was given by Boehler and Raclin (1985). Defining the stress
deviator tensor s:

s=a—(§tra)l (3.23)
The functional basis is reduced to three invariants:
tro =20, + 0,
rs? =§(a, —o,) (3.24)

trMs = %(o‘1 -0,)(3cos’ 8-1)

Boehler and Raclin (1985) performed a series of triaxial compression and uniaxial tension tests
on a chopped strand mat laminate. The specimens for the triaxial compression tests were prisms
with square cross-section, whose dimensions are shown in Figure 3.54. The orientation of the
mat planes, which are the isotropic planes in this material, were varied from 0° to 90°, with 15°
intervals. Four different confining pressures were applied: 0, 25, 50 and 75MPa. Figure 3.55
shows the failed specimens. The orientations of mat strata (which cannot be identified in the
picture) are specified with 8 = n/2—p. Two distinctive failure modes were identified by observing
the failed specimens: the “parallel mode” and the “across mode”. The parallel mode is the slip
along the mat planes, which is observed in specimens with the isotropic plane normal orientation
0 = 45°, 60° and 75°. The across mode is faulting across the mats’ strata, which is generally
observed for other orientations. At 6 = 90° and zero confining pressure, the specimen fails by
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splitting of the mats’ strata. These failure modes are very similar to those observed in rock
specimens.

For the “parallel mode” of failure, Boehler and Raclin (1985) proposed a generalized Coulomb’s
law to describe the friction between mats:

7| = A +a,0, +a,0})0, tan é, + (1 +a,0, +a,07)c, (3.25)

where o, and 7 are the normal and shear stresses on the isotropic planes. ¢, and ¢y are the friction
angle and cohesion at zero confining pressure characterizing the frictional behavior of the
isotropic planes. ao through a; are material parameters specifying the confining pressure
dependence. This criterion indeed can be expressed as a function of the three invariants in (3.24),
because:

7| = ltrsz +—1-trMs\/trsz ~tr’Ms
3 J6

o, = uMs+§ua (3.26)

o, =~;—(tra'—‘/%trszJ

where o1 > o3 is assumed.

For the “across mode” of failure, the following criterion was proposed:
(1+a,0, +a,07 )0, - 0,)’ +(b, + b0, +b,07)(0, - 7,)* cos’ 8 +(c, +¢,0, +¢,07 )0, —7,)* cos* @ = k*

3.27)
where a;, b;, and ¢; are material parameters (different from those in Equation (3.25)) and k is a
constant. This criterion can also be expressed with the invariants in Equation (3.24), because:

,3 2
0'1—0'3= Etrs
(3.28)
cos20=l+,’——2—2trMs
3 3trs

The predicted strength is compared with the measured strength in Figure 3.56, with the following

parameters (Boehler and Raclin, 1985):

® For “Parallel Mode”: tandy = 0.42, ¢y = 47.5, ap = 2.127GPa}, a; = 31.10GPa2, a,
6.741GPa™*, a; = —6.66GPa™

® For “Across Mode”: k = 0.335GPa, a; = 7.842GPa’}, a, = 2531GPa2, by = 1.539, b, =
28.36GPa ', b, = 309.8GPa >, ¢y = 2.052, ¢; = 34.14GPa™, c; = 328.5GPa™

The predictions from both the “parallel mode” criterion and the “across mode” criterion are

shown in the figure. For 8 around 60°, the “parallel mode” criterion predicts lower strength, and

the specimen therefore fails along the isotropic planes. For @ values on the two sides, the “across

mode” criterion predicts lower strength. Correspondingly, failure occurs across the isotropic
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planes. The overall agreement is excellent.

3.2.2.2 General Polynomial Approach

Some researchers start from a general function form, which is supposed to apply to the most
general case of anisotropy, and then simplify the function form to fit for specific types of
anisotropy. This function form is usually of polynomial type. This seems to have been inspired
by the von Mises criterion, which involves the invariant J,. When expressed with principal
stresses, J is a homogeneous quadratic polynomial of the principal stresses.

Homogeneous Quadratic Polynomial

One group of researchers starts from a polynomial that is a homogeneous quadratic of the stress
components (similar to the Mises criterion), and states that the material reaches failure when:

Hyo0,0, =1 (3.29)

In order for the fourth order tensor H to satisfy the Principal of Isotropy of Space, both H and ©

must be transformed according to tensor transformation rules. When the coordinate system is
rotated with the rotation tensor Q, the new components of H must be calculated by:

H,ppr = Oin 2O O H (3.30)
Due to the symmetry of the stress tensor, certain symmetry must also be possessed by H:

Hyy =H;y =Hy, =Hy (3.31)

Therefore, H has at most 21 independent elements for the most general anisotropy. It usually
takes the simplest form when the coordinate system is aligned with the principal direction of
anisotropy STN. For example, in the case of orthotropic anisotropy, the components of H in the
STN system are:

(Hyy Hun Hup 0 0 0 W
Hyy Hypp Hysy 0 0 0
o= H, Hyy Hiyy, 0 0 0 (3.32)
0 0 0 4H,, 0 0
0 0 0 0 4H,,,, 0
| 0 0 0 0 0 4H,y;, |

The number of independent parameters is reduced to 9. In the case of transversely isotropic
material with index 1 and 2 in the isotropic plane, the following conditions must apply:

1 .
H\yy = Hyps Hyay = Hypyys Hygpy = Hyp 3 Hygy =‘2‘(Huu —-H,;3) (333)

The number of independent parameters is further reduced to 5. The matrix H is similar to the

106



elastic matrix of anisotropic material as shown in Equation (3.32) and (3.33), because Equation
(3.29) has a similar form as the elastic strain energy.

Olszak and Urbanowski (1956) proposed one such form of yield criterion, in an effort of
extending the von Mises criterion. The von Mises criterion for isotropic material is also called
the maximum distortion strain energy criterion. It states that metal yields when the elastic energy
of distortion Wy reaches a critical value. For a material with general anisotropy, the elastic strain
energy cannot be decomposed into a volumetric part and a distortion part. Olszak and
Urbanowski (1956), however, defined the generalized distortion energy @y for an anisotropic
medium:

1
I =FS,]-HO'--O'H (3.34)
where the tensor S is obtained from the elasticity matrix of the anisotropic material E:
Spu =2G"[ Eyy V" Ejpu By 8,45, | (3.35)

V* and G* are the generalized bulk modulus and shear modulus:
1 1 1
I—/'— = Eyu(fuéu,? = (EW _SEi'jkIé‘ld )5!] (3.36)
®@rdoes not change with an isotropic stress increment. Following the von Mises criterion, a yield
criterion can be formulated by stating that yielding occurs when @rreaches a critical value K:

®, =1 5,0,0,=K (3.37)

i
Obviously, this yield criterion can be simplified as:

H0,0, =1 (3.38)

Since it was intended to extend the von Mises criterion, which satisfies the condition of
incompressibility (plastic volumetric strain is always 0), this condition is also imposed by Olszak
and Urbanowski (1956). The condition of incompressibility can be expressed by:

Hy6, =0 (3.39)

Equation (3.39) consists of 6 independent equations. Therefore, in the most general case, H in
Equation (3.38) has 15 independent components. In the case of orthotropic anisotropy and
transverse isotropy and expressed in the STN system, Equation (3.32) can be substituted into
(3.39), and the condition of incompressibility is simplified to:

H,\ +Hyp +Hypyy =0

Hoyppy + Hypy + Hypyy =0 (3.40)

Hyy +Hypy + Hyyyy =0
The number of independent components of H is reduced to 6 for orthotropic anisotropy and 3 for
transverse isotropy.

Dafalias (1979), also in an effort to extend Mises yield criterion, proposed the following yield
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criterion:
f=Hijld(Sij—7ij)(skI_7kl)=1 (3.41)

where s is the stress deviator, while ¥ is the translation of yield surface in deviatoric stress space.
Since there are only 5 independent components in a stress deviator, the number of independent
elements in H reduces to 15, which is consistent with Olszak and Urbanowski (1956)’s results.
However, Dafalias (1979) also examined the hardening of material, i.e. the variation of H with
the development of plastic strain €’. He stated that the form of H as shown in Equation (3.32) is
only applicable to an orthotropically anisotropic material before any plastic deformation is
developed. Once there is any plastic strain, the material loses its initial structure and it now
possesses general anisotropy. Tensor H becomes fully populated even in the original STN
system.

Both Dafalias’ criterion and Olszak and Urbanowski’s criterion, however, are indifferent to
isotropic stresses. Therefore, they are not applicable to materials like rocks. Kaar et al. (1989),
realizing this deficiency, proposed to remove the incompressibility condition from the
formulation of Olszak and Urbanowski (1956). In the case of a transversely isotropic material
without the incompressibility condition, Equation (3.38) can be expanded to be:

A (07 +0})+ A, 02 +4,0,(0,+0)+4,0,0,+(24,-4,)0 +B (62 +02)=1 (3.42)

st

in the STN system. It can be identified that:
A, =H,,4,, =Hypy, 4, =2H,,43, A, =2H, 5, B, =4H,y, (3-43)

Kaar (1989) also introduced an exponential term to describe pressure dependence, and used this
criterion to model the failure of columnar grained sea ice.

Quadratic Polynomial with Linear Terms

Any criterion based on the homogeneous quadratic polynomial, containing only quadratic terms,
predicts the same strength in uniaxial tension and uniaxial compression. This is not real for some
materials, including rocks and soils. Gol’denblat and Kopnov (1966), in their effort to describe
glass reinforced plastics, realized that a model should predict different uniaxial tensile strength
and uniaxial compressive strength in the same direction, due to the different failure mechanism.
In addition, shear strength in a certain direction depends not only on the magnitude of shear
stress, but also on its sign. Figure 3.57 (a) and (b) shows the pure shear stress states where the
magnitude of the shear stresses are the same, which the directions of the shear stresses are
reversed. Each of the pure shear stress states is equivalent to a deviatoric normal stresses state. If
the gray lines represent isotropic planes in rock, then the strength in Figure 3.57 (a) and (b) must
be different.

Gol’denblat and Kopnov (1966) proposed a general expression that has these features:
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(I1,0,)" +(IT

§%y 1O + Mgy 00,40, Y -+ =1 (3.44)

where Iy, Ilimn, ILapcaes; ... are strength tensors of different orders. When the coordinate system
is transformed, these tensors must change according to tensor transformation rules. Gol’denblat
and Kopnov (1966) then proceeded to examine a specific case where =1 and £ = 0.5, and their
strength criterion is written as:

0,6, + 10y Cpm =1 (3.45)

kimn

Due to the symmetry of the stress tensor, and the invariance of the equation, the strength tensors
are also symmetric in the following sense:
I, =11,
. I = Wiy, = Mgy = Ty
Therefore, in the most general case, there are 6 elements in the second degree tensor, and 21
elements in the fourth degree tensor.

(3.46)

Tsai and Wu (1971) developed a general criterion for filamentary composites. In order to
simplify the notation, the stress components are numbered from 1 through 6:

{0,,0,,0,,0,,05,0,}={0,,,0,,,0,,,0,,,0,,,0,,} (3.47)

Tsai and Wu (1971) started from a general quadratic form:
Fo,+Fi00;=1 (3.48)

F; and Fj; are tensors that obey the transformation rules. F; is a second degree tensor, while Fj; is
a fourth degree tensor (similar to H in Equation (3.29)). In their most general form, F; has 6
independent elements, and F;; has 21. Moreover, certain stability conditions were imposed on the
elements of the tensor Fj;: all diagonal terms must be positive, and the off diagonal terms must
satisfy the following inequality:

FF,—F>0 (3.49)

Ll i

where F;; and Fj; are diagonal terms (repeated subscripts do not stand for summations) and Fj; is
an off-diagonal term. This specifies that the failure surface must be an ellipsoid, and it intercepts
all stress axes. This general form proposed by Tsai and Wu (1971) is actually equivalent to
Gol’denblat and Kopnov’s criterion (3.45). This can be readily shown by moving the first term in
Equation (3.45) to the right hand side, squaring both sides, and regrouping all the terms into
linear and quadratic groups.

The number of independent elements decreases with increasing material symmetry. For
orthotropically anisotropic material, where the coordinate system coincides with the principal
axes of symmetry STN, the independent elements reduce to 3 and 9 for these two tensors. If the
stress vector is defined as:

Oy} (3.50)

{0-1’0-230-3’0-430'5266} = {O’_‘,O'I,O'",O'm,
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in the STN system, the two tensors F; and F; can be expressed as:
F=[F F, F, 00 (]

K K, K, 0 0 0

F;Z F22 F23 0 0 0
p|Fs Ba Fs 0 0 0 (3.51)
1o o o0 F, 0 o

0 0 0 0 F, 0

0 0 0 0 0 Fg]

For transversely isotropic materials with ST being the isotropic plane, due to material symmetry
there must be:

F =F;F, =F,,F,=F,,F, =F;,F = 2F,-F,) (3-52)

The last expression in Equation (3.52) is obtained because a pure shear stress state in the
isotropic plane is equivalent to a deviatoric normal stress state (Figure 3.58). If the specimen
fails at o, = Q in pure shear, Tsai and Wu criterion gives:

Fe0’ =1 (3.53)

The material also fails o; = —Q and o; = Q, which is the deviatoric stress state. Therefore, it must
also be satisfied that:

Fy(-Q)* +2F,0-(-Q)+ F,0" = 2(F, - F,)Q" =1 (3.54)

where the condition F'j; = F»; is used. Comparing Equation (3.53) and (3.54), Fss must always be
identical to 2(F; — F»;). The criterion (3.48) can be written out as:

A (0} +0})+ 4,0 + 4,0,(0, +0,)+(24, —B,)0,0,+B,0% +B, (02, +02)+a,0, +a,(0, +0,) =1

5t st

| (3.55)
There are 7 independent parameters involved in Equation (3.55), and they can be identified as:

A.u = F;l’Ann = F;S’Am' = 2F'137B:t = F'SS’Bm = F44’an = F'S’as = F; (3'56)
Equation (3.55) has both quadratic and linear terms. The quadratic terms are the same as those in

Equation (3.42).

The parameters involved in Equation (3.55) can be determined from the engineering strengths of
the material. In the following discussion, C,, T,, both larger than 0, will be used to denote the
magnitudes of the uniaxial compressive and tensile strength, respectively. Under simple
compression and tension, the failure of the material can be predicted by Tsai and Wu criterion as
(with compression positive):

A,,"Ci +ancn = 1’ Ann]:nz —anI;z =1 (3‘57)

Solving these two equations simultaneously, two parameters can be obtained:
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1 1 1

=——g =——— 3.58
A= TN TTT (3.58)
Similar equations can be written for S direction:
A4,C*+aC, =14, T’ -aT =1 (3.59)

to obtain the following parameters:

1 1 1
= =— .60
A CT, UC, T @ )

5 s

Denoting the pure shear strength in the TN plane to be R, Tsai and Wu criterion predicts that the
material fails at:

B R*=1 3.61)
There must be:

B, = 7;7 (3.62)
If the pure shear strength in the ST plane is Q, there should be:

B,0* =1 (3.63)
and B, can be obtained to be:

B, =@17 (3.64)

The only parameter that is left to be determined is Aps, or F13. The determination of Fi3 requires
the measured strength under combined stress state. For example, an isotropic stress state in the
ST plane: o; = 0, = P can be used. Applying Tsai and Wu criterion to this stress state, one can
obtain:

P (4,+4,+4,)+P(a, +a)=1 (3.65)

Since Apn, Ass, an and a, are already obtained, 4,; can be solved. Tsai and Wu (1971) discussed
extensively the determination of Fj;3 and concluded that it “is a very sensitive and critical
quantity in this proposed theory”. It seems that the reliability of F;3 depends heavily on the stress
combination that is used to determine it.

3.2.2.3 Extension of Isotropic Criteria

The continuous failure criteria in this category are obtained from extension of existing isotropic
criteria. One of the earliest of these models seems to be proposed by Hill (1948) to describe
metal anisotropy. Anisotropy can be introduced in isotropic metal through various forming
processes. For example, in cold rolling process, the metal is extended in one direction and
squeezed in the other. The yielding stress after rolling is orientation dependent. In order to
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describe metal anisotropy, Hill (1948) assumed that the anisotropy is orthotropic. In the material
coordinate system STN, the following yielding criterion is proposed:

F(o,-o0,) +G(o,, -0,) +H(0, -0,)" +2Lo% +2Ma?, + 2No? =1 (3.66)

where F, G, H, L, M, N are material parameters. Six material parameters are involved, which can
be determined by three simple tension tests and three simple shear tests with respect to the
principal axes of anisotropy. If the tensile strengths are denoted X, Y, Z while the shear strengths
are denoted R, S, T, the six parameters can be expressed by:

72 72 Xz; R
1 1 1 1
2G=?+—)(—2—F; 2M =:S'T (3.67)
1 1 1 1
Mgty Vg

It should be pointed out that the Hill criterion, which has a homogeneous quadratic form, is a
special case of the general homogeneous quadratic polynomial criterion (Equation (3.29)) subject
to the incompressibility condition (Equation (3.40)). Indeed, substituting Equation (3.40) into the
reduced H matrix in Equation (3.32) for orthotropic anisotropy material, the H matrix becomes:

_anz _Huzz Hmz Huaa 0 0 0
H] 122 -H, nz2 - H 2233 H 2233 0 0 0
H= H,y3, Hyy —H, 33~ H s 0 0 0 (3 .68)
0 0 0 4H,,, 0 0
0 0 0 0 4H,, O
0 0 0 0 0  4H,,|

Substituting this H matrix to Equation (3.29) and regrouping the terms, it can be obtained that:
~H,1,(0 —0,)" = Hypy (0 = 033) — Hyyy (03 — 0,y) +8H 5,07 +4H .05 +4H 00 =1 (3.69)

The similarity between Equation (3.69) and Equation (3.66) is obvious. In addition, this clearly
shows that the Hill’s criterion satisfies the incompressibility condition, and cannot be applied to
rocks.

Pariseau (1972) proposed a yield criterion for materials with orthotropic anisotropy. Pariseau
observed that criteria describing failure in a conventional triaxial test can be expressed as:

%(0', o) =%(0',+0'3)A+B (n21) (3.70)

where A4, B, and n are material parameters. For example, the Tresca criterion can be obtained by
setting 4 = 0, B = Cy/2, n = 1. Pariseau continued to extend Equation (3.70) to the general stress
state, by introducing stress invariants:

(J7,) =41, +B (3.71)

This equation is then extended to orthotropic anisotropy, in a way that is similar to Hill’s
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approach. The final expression reads:

(JF(a, —0,)+G(0,-0,) +H(0,-0,) + Lo’ + Mo, + No? ) ~Uo, +Vo,+Wa,)=1 (3.72)

Clearly, the extension of the J, part is exactly the same as Hill’s criterion.

It seems that Pariseau (1972) only examined the case where n = 1. In this case, this criterion can
be expressed as a homogeneous quadratic of the stress components. When n = 2, this criterion
has both quadratic and linear terms of the stress components. In both cases, it is a special case of
Tsai and Wu’s criterion. For n > 2, higher order terms are involved.

3.2.24 Transformed Stress Tensor Approach

Based on the general theory outlined previously, Boehler and Sawczuk (1977) also provided a
simplified approach, which involves the linear transformation of the stress tensor by a fourth
order tensor A:

o'=a0 (3.73)
Existing isotropic failure criteria can then be extended to anisotropy by substituting ¢ with ¢'.
For the case of transversely isotropy, Boehler and Sawczuk (1977) suggested using the following
tensor:

y 00 0 0 0
0y 0 0 0 0
a0 0@ 0 0 0 (374
000 B8/2 0 0
000 0 B/2 0
000 0 0 /2]

By substituting the stress tensor with the transformed stress tensor in an existing isotropic
criterion, an anisotropic criterion is readily obtained. This simplified method is very
straightforward to use, and it can make use of the existing isotropic criteria.

Cazacu (1998) used a different transformation tensor, and developed a criterion that seems to
work well for a number of anisotropic rocks under conventional triaxial compression. For
transversely isotropic rock, the transformation tensor was proposed to be:

a b b 0 0 0
b d e 0 0 0
b e d 0 0 0
B= 3.75
0 0 0 (d-e/2 0 0 ( )
0 0O 0 c/2 0
000 0 0 ¢/2)
A new criterion is then proposed using the transformed stress tensor ¢”:
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3s- o=
il 1 (3.76)

where s is the deviator of the transformed stress. In the case of isotropy, this criterion reduces to
the Mises-Schleicher criterion. Hence this criterion is name the Anisotropic Mises-Schleicher
criterion (AMS) by Cazacu (1998). Equation (3.76) can be expanded into the following form:

4,02+ 4, (07 +0})+24,0,(0, +0,)+(24,, -B,)0,0,+B,0%: +B, (0 +0.)+a,0, +a,(0, +0,) =1

st st

3.77)
There are seven parameters involved in Equation (3.77). Since there are originally six
independent quantities in this formulation (a, b, c, d, e in the matrix B and m from Equation
(3.76)), only six of the parameters are independent. Cazacu (1998) gives the expression of the
following six parameters:

4 = (b-e)+(d-e) +(b-d)’

4, =(a-b)*;B, =3(d-e)’;

m 2 (3.78)
B —3ctg =_mMax2h) _ mbretd)
ns sWy 3 a, 3
The parameter 4, is not independent and takes the following form (Cazacu, 1998):
4o = Aulhat4) .

2
According to the geometrical theory of conical surfaces, the value of 4, ensures that when all
shear stresses are zero, the failure surface of AMS criterion is an elliptic paraboloid in the space
(03, o, 0y). This is not surprising since the original Mises-Schleicher criterion has a parabolic
ellipsoid failure surface in the principal stress space.

In addition, Cazacu (1998) applied the AMS criterion to a transversely isotropic specimen
subject to principal stresses oy, 0> and o3. The isotropic plane orientation is 8 from the oy
direction, and the dip of the isotropic planes is into the o3 direction. In the principal stress space
(61, 03, 03), the geometry of the failure surface is dependent on S. Cazacu (1998) stated that in
order for the failure surface to be an elliptic paraboloid for any S values, the following conditions
must be satisfied:

4,<0;4, =44, -B, (3.80)

The number of independent parameters is then further reduced to 5.

Comparing Equation (3.77) with (3.55), it is obvious that the AMS criterion and the Tsai and Wu

criterion have the same quadratic and linear terms. In terms of mathematical form, they are

essentially the same. However, the following differences should be noted:

1. The Tsai and Wu criterion keeps all the seven parameters independent, while there are only
five independent parameters in the AMS criterion.

2. With the stability requirement in Equation (3.49), the failure surface of the Tsai and Wu
criterion is an ellipsoid. With the expression of 4, in Equation (3.79) and 4,, in Equation
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(3.80), the failure surface of the AMS criterion is an elliptic paraboloid.

3. In the AMS criterion the parameter A4,; is not independent. It is automatically obtained
through Equation (3.79) once all other parameters are obtained. The sensitivity problem of
F1;5 to the different stress state combinations that exists for the Tsai and Wu criterion is thus
avoided.

Due to the same mathematical structure, other parameters involved in the AMS criterion can be
determined from the engineering strength following the same procedure outlined for the Tsai and
Wau criterion. Following the same notation, the independent parameters that are involved in the
AMS criterion can be expressed by:

gt L1 1, L -1 p-L (3.81)
¢, 7 ¢ T Crn’ Cr’" R

Clearly, they are the same as the corresponding parameters in the Tsai and Wu criterion. With

these parameters, A4, is then obtained from Equation (3.79), and Bj, is obtained from Equation
(3.80).

Cazacu (1998, 1999) applied this criterion on several anisotropic rocks under conventional
triaxial tests. The applications of the AMS criterion to Tournemire shale, Diatomite and
Martinsburg slate are shown in Figure 3.59, Figure 3.60, Figure 3.61, respectively. It seems that
“U” shaped curves with uneven ends can be generated by this criterion.

3.23 Critical Plane Approach

This approach assumes that a material fails along a plane. The failure condition along any plane
is described by a failure function, which usually takes the same form for planes in all possible
orientations. The parameters in this failure function, however, can vary with plane orientation to
create anisotropic behavior. Through one material point, failure is possible along planes in all
directions. Failure actually occurs along the plane where this failure function is first satisfied.
The direction of this plane is called the critical direction, which must be determined through
maximizing the failure function.

According to this definition, Coulomb criterion is probably the earliest critical plane criterion. In
a two dimensional stress state, the direction of a plane can be represented by S, the angle
between this plane and the major principal stress o7 (o1 > o3 is assumed, see Figure 3.62). For
the time being, B is assumed to be between 0° than 90°. The normal and shear stress along this
plane can be written as:

o=0,~-1,c0828;, t=r1,sin2p (3.82)

with ,, = (01 + 03)/2 and 5, = (01 — 03)/2. Failure along this plane, according to the Coulomb
criterion, occurs when:
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1, sin2p = u(o, -7, cos2f)+S (3.83)

where 4 is the coefficient of friction, and S is the cohesion. The failure function is then defined
as:

F =7, (sin2f + pcos2f)—(uo, +S)<0 (3.84)

The critical direction can be obtained by finding the 4 that maximizes F. Let:
oF
5" 0 (3.85)

and solve for f, the critical direction is obtained:
B, =45°-¢/2 (3.86)

In fact, there are two critical directions symmetric to the oy direction. Substitute Equation (3.86)
into (3.83), the failure condition for the material is obtained:

o =, LXS0E  )g_cos¢

1-sing 1-sing
Therefore, the critical plane method gives both the strength of the material and the direction of
the failure.

(3.87)

Since the same parameters are applied to all the planes, the Coulomb criterion is an isotropic
criterion. In order to describe the failure of anisotropic rock, Jaeger (1960) proposed that the
cohesive strength S in the Coulomb criterion should be made direction dependent. The cohesive

strength along a direction S from the major principal stress o1 (o1 > o3 is assumed) is supposed
to vary according to:

S=8-8,cos2(8-B,) (3.88)

where £, is the orientation where S takes a minimum. The coefficient of internal friction 4, on
the other hand, is independent to orientation. The failure function now becomes:

F =(z, +S,sin2p, )sin2p+(ur, +5,cos2p,)cos2f—(S, + uo, ) <0 (3.89)

The critical orientation can again be obtained by maximizing the failure function. It can be
solved that this maximum is reached when £ satisfies:
(0,-0,)+28,sin2p,
Mo, —0,)+2S,cos2p,
Substituting Equation (3.90) into (3.89), the failure criterion for the specimen is obtained:

2 . 2 . 2
7 o, +0, +£1_ Qe o, -0, +5, sin2p, +ﬂ:052ﬂm - 52 1_(51112,3.., +,U<;052ﬂm) (3.91)
2 7] 2 1+ 4 1+ u

tan2f, = (3.90)

The ideas have been revived by Pietruszczak and Mréz (2000, 2001), where a general failure
parameter 7 is supposed to vary according to a second degree tensor:
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n=nymn; =10,(1+Qnn;) (3.92)

g

where n is the normal of the plane whose failure parameter is to be determined. 7, is the
volumetric component while € is the deviatoric component normalized by 7. As such, the trace
of Q is zero. In the case of transverse anisotropy € and n can be represented by:

Q 0 0 n,
Q=0 Q 0 n=in (3.93)
0 0 Q n,
in the principal axis of anisotropy. Considering that Q; = Q, = -0.5Q, and > +n’+n} =1,
Equation (3.92) can also be written as:
1 =m,[1+Q,(1-3n,)] (3.94)

Pietruszczak and Mréz (2001) extended the Coulomb criterion in which both the coefficient of
friction and the cohesion vary according to Equation (3.94). The critical plane orientation and the
strength of the material can again be found by maximizing procedure, even though the
mathematics is more complex.

This general form of failure parameter is later extended to include higher order terms in
Pietruszczak et al. (2002):

nn) 4] (3.95)

AR}

n= 770[1+Qijninj +b| (Q.nn

AN

) +b,(Q

Equation (3.95) was applied in Pietruszczak et al. (2002) to describe the variation of uniaxial
compression strength of Tournemire shale specimens with bedding plane orientation. A
satisfactory fit of the experimental data was achieved with the inclusion of up to the fourth order
term (Figure 3.63), with parameters 70 = 22MPa, Qs = 0.0170251, b, = 515.49, b, = 61735.3, b3
= 2139820.0 (Pietruszczak et al., 2002). The fitted uniaxial compression strength is then
introduced into the formulation of a yield function, so that anisotropy in the stress-strain
relationship is described.

3.24 Discontinuous Models

In the previous section, various ways of introducing anisotropy into the constitutive laws are
described. All those models treat the material as an anisotropic continuum, where stress and
strain have a continuous distribution over the entire material body. This can be a very good
approximation of the physical image, for example, when anisotropy is caused by a stress history,
or when minerals in a rock are aligned. However, anisotropy in rocks can also be caused by
various discontinuous features, including joints and cracks. In this section, a few discontinuous
models will be introduced.
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3.24.1 Single Plane of Weakness Model

Jaeger (1960) examined the failure of isotropic rock with one set of joints. Both the rock and the
joints are supposed to obey the Coulomb criterion. The coefficient of internal friction for the
intact rock is 4 = tang, and the cohesion is S. For joints, these two parameters are ¢/ = tang’ and
S'. Jaeger (1960) considered a two dimensional stress state where the joint orientation is S from
the major principal stress o1 (o1 > o3 is assumed, see Figure 3.62). For a certain o3, the o
necessary to induce failure along the joint is expressed as:

_S+o,(u'+p'cos2B+sin2f)

o= (—p'+ p'cos2f +sin2f) (3.96)

This o7 has a minimum at g= 45°—% , and approaches infinity when £ approaches 0° or 90°. In

order to induce matrix failure, the necessary oj is:

o =a, t:ﬁﬁ +2slf‘;si:¢ (3.97)
This o does not depend on £ since the matrix material is supposed to be isotropic. The actual o
at failure will be the smaller of the two. The effect of the joint is that there is a “U” shaped
portion of the failure o; versus S at a certain o3 (Figure 3.64). In addition, for a certain joint
orientation S, o is a linear function of o3.

A necessary prediction of Jaeger’s criterion is that the strength of the specimen is the same for S
= 0° and 90°, so that the “shoulders” of the curve in Figure 3.64 are at the same level. However,
this is not true for many anisotropic rocks, as clearly shown from the data sets presented in the
previous section. In order to describe this difference, Duveau and Shao (1998) propose that
different parameters should be used for £ close to 0° and 90°. Four different parameters are used:
So, o for B close to 0°, and Sy, w90 for B close to 90°. This way, the two shoulders are at
different levels (Figure 3.65). It is also assumed that a non-linear friction law is applicable to
describe slipping along the weak plane. The friction law proposed by Barton (1976) is used here,
which reads:

T =atan(alog "wb) (3.98)

o+

where o and 7 are the normal and shear stress along the weak plane. oy is the uniaxial
compression strength in the direction normal to the weak plane. @ and b are both material
parameters. Duveau and Shao (1998) applied this criterion to Angers schist, and found better
agreement with the experimental data than with Jaeger’s original criterion. Figure 3.66 shows the
comparison of experimental data and the prediction at 40 MPa confining pressure. The
parameters for the predicted curve are: g = 0.94, Sp = 26.10MPa, oo = 0.86, Sgp = 40.04MPa, a
= 28.12, b =9.29MPa, oo = 150MPa.

118



3.24.2 Fracture Mechanics Models

The Griffith criterion introduced in Section 2.3.2 was improved by McClintock and Walsh
(1962), by considering the crack closure effect and friction between crack walls when they are
closed. The assumptions of Griffith (1924) were retained. In addition, it was assumed that a crack
closes when the normal stress normal to the crack walls reaches a critical value o, (note that the
sign convention here is compression positive, which is different from McClintock and Walsh’s

original work.). The normal stress along the crack wall is thus expressed:
{O for open crack

0,0, for closed crack

(3.99)

g =

where o, is the applied stress normal to crack walls. The coefficient of friction between crack
walls is 4, so the shear stress that the crack can sustain is:

o, = uo, (3.100)

In order to initiate crack propagation for the cracks oriented S degrees from the oy direction, the
following condition must be satisfied when the cracks are fully closed:

o, =#\/_’;:;5 (3.101)
where o* is defined as:
o*= (0, - 0,)sin 2 - (0, + ;) - (0, — ;) cos 2 5] (3.102)
The critical orientation is found to be:
ﬂ=4s°—§ (3.103)

where ¢ is the friction angle between crack walls. The failure of the specimen is again identified
with crack propagation in the critical orientation. McClintock and Walsh (1962) showed that

failure occurs when:
1 2 cc 4
a'l_————l > [0'3(\,14"/1 +ﬂ)+41;] ’1+ . 20'0/[] (310 )

This is clearly a linear dependence of o7 on 3. When the confining pressure o3 is small enough
that all the cracks are open, then the original Griffith’s criterion still applies. According to the
original Griffith criterion, the cracks oriented S degree from the o; direction start to propagate
when:

(0, sin* B+0, cos’ B) —\/(0'12 sin’ B+0; cos’ B) = -2T, (3.105)
The critical orientation is specified by:
cosf=—"T_ (3.106)

20, +03)
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The failure of the specimen occurs at:
(6,-0,) =8T(0,+0,) ifo,+30,>0
o, =-1, . ifo,+30, <0
McClintock and Walsh (1962) also give the transition criterion when only part of the cracks are
closed.

(3.107)

If o, = 0 is assumed then Equation (3.104) takes a simpler form:

o = 4T, +o,(u+ pcos2B+sin2p)
"7 (~p+pcos2f+sin2p)

It is remarkable to see that Equation (3.108) and (3.96) are almost identical, except that S’ = 475,

In this case, the McClintock and Walsh theory reduces to Jaeger’s Single Plane of Weakness

theory.

(3.108)

3.25 Summary

Existing anisotropic failure criteria have been summarized in this section. It seems that most of
the criteria that have been applied to rocks in conventional triaxial experiments. For example, the
- AMS criterion by Cazacu (1998, 1999) was applied to predict the conventional triaxial
experiments of several anisotropic rocks. Therefore, it is important to develop and evaluate
criteria that can capture the strength of anisotropic rock under true triaxial stress states. However,
it is difficult to extend the existing models. For example, the criterion of Tsai and Wu (1971) is a
general quadratic polynomial, and therefore gives the general form of failure criterion for
transversely isotropic rock with only linear and quadratic terms. If more complicated criteria are
to be constructed along this line, cubic terms must be added. Possible cubic terms can be
expressed by Fjo;0;0%. Clearly, there are 6x6x6 = 216 possible cubic terms possible, which
makes it impractical to either keep all of them or select a few terms that are applicable to a
certain rock. In order to bypass this problem, a new approach will be proposed in the next
chapter, which leads naturally to a true triaxial failure criterion of anisotropic rock.
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Table 3.1 Possible Failure Modes of Anisotropic Rocks in Conventional Triaxial Compression Tests

Brittle Failure Ductile Failure

B values (0° to 90°) Low Confining Pressure Medium Confining Pressure High Confining Pressure

0° Tensile splitting Mixed mode of tensile splitting | Shearing across the isotropic
and shearing through the matrix planes, with plastic

: deformation

Low Tensile splitting, or shearing | Shearing along the isotropic | Development of kink band,

(typical range 0°<B<30°) along the isotropic planes planes, or Mixed mode of shearing | with plastic deformation
along and across the isotropic
planes

Medium Shearing along the isotropic | Shearing along the isotropic | Shearing  along  multiple

(typical range 30°<f<60°)

planes

planes, or Mixed mode of shearing
along and across the isotropic
planes

isotropic planes, or shearing
across the isotropic planes,
with plastic deformation

High
(typical range 60°<pf<90°)

Shearing across the isotropic
planes

Shearing the isotropic

planes

across

Shearing across the isotropic
planes, with plastic
deformation
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(a) General Case (b) S coincides with x;
Figure 3.1 Orientation of Bedding Planes with regard to the Principal Stresses
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Figure 3.2 Orientation of Bedding Planes with regard to the Principal Stresses
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Figure 3.3 Triaxial Strength of Martinsburg Slate (data from Donath, 1964)
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Figure 3.4 Fault vs. the Cleavage Orientation for Martinsburg Slate (data from Donath, 1964)
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1000 bars 1400 bars

Figure 3.5 Variation of Failure Mode with Confining Pressure for 4 = 15° (from Donath, 1964)
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2000 bars

Figure 3.6 Cross-Sections of Failed Martinsburg Slate Specimens with B = 15° (from Donath 1964)

(a) 500bar : (b) 1000bar
Figure 3.7 Failed Specimens with B = 45° at Different Confining Pressure (from Donath 1964)
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Figure 3.8 Fault Orientation vs. Cleavage Orientation for Longwood Shale with o3 = 420bar (data from
Donath, 1964)
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Figure 3.9 Proportional Triaxial Strength of South African Slate (data from Hoek, 1964)
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Figure 3.10 Triaxial Strength of Austin Slate (McLamore and Gray, 1967)
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Figure 3.11 Triaxial Strength of Green River Shale-1 (McLamore and Gray, 1967)
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Figure 3.12 Triaxial Strength of Green River Shale-2 (McLamore and Gray, 1967) _
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Figure 3.13 Failure Modes Observed by McLamore and Gray (McLamore and Gray, 1967)
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Figure 3.14 Failed Specimens of Austin Slate at p = 30° and Various Confining Pressures (McLamore and
Gray, 1967)
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Figure 3.15 Failed Specimens of Green River Shale-1 at Confining Pressure 15000psi and Various
Bedding Plane Orientations (McLamore and Gray, 1967)
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Figure 3.17 Triaxial Strength of Penrhyn Slate (data from Attewell and Sandford, 1974)
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Figure 3.18 Post-Peak Strength of Penrhyn Slate (data from Attewell and Sandford, 1974)
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Figure 3.19 Shear Fault Orientation vs. Cleavage Plane Orientation Penrhyn Slate (Symbol definition
same as Figure 3.17) (data from Attewell and Sandford, 1974)
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Figure 3.20 Loading Modes for True Triaxial Tests of Chichibu Green Schist (from Mogi, 2007)
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Figure 3.21 True Triaxial Strength of Chichibu Green Schist at 3 = 50MPa (data from Mogi, 2007)
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Figure 3.22 Conventional Triaxial Strength of Chichibu Green Schist (data from Mogi, 2007)
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Plane A = Plane ABCD
Plane B = Plane EFGH

Figure 3.24 Failed Specimens of Chichibu Green Schist Mode | (6;=206MPa, o>=100MPa, 03=50MPa)
(from Mogi, 2007)
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(b) Mode 11, (o1, 03, 03) = (346MPa, 168MPa, 50MPa)
Figure 3.25 Failed Specimens of Chichibu Green Schist Mode Il (from Mogi, 2007)
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Figure 3.26 Failed Specimens of Chichibu Green Schist Mode IV (0,=540MPa, 0,=156MPa, 03=50MPa)

(from Mogi, 2007)
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Figure 3.27 Triaxial Strength of Diatomite (data from Allirot and Boehler, 1979)
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Figure 3.28 Failed Specimens of Diatomite (from Allirot and Boehler, 1979)
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Figure 3.29 Typical Total Stress Path of Aristorenas’s Tests (Aristorenas, 1992)
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Figure 3.30 Sample Test Results for Specimen 23-10 in Pure Shear Undrained Compression (from

Aristorenas, 1992)
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Multiple conjugate shear tailure planes
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n = number of planes

Mode B

Multiple fracture planes
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Figure 3.31 Two Failure Modes Observed (from Aristorenas, 1992)
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Tests: (a) Quartzitic phyllite, (b) carbonaceous phyllite, and (c)
micaceous phyllite. (from Ramamurthy et al., 1993)

Figure 3.32 Specimens for Triaxial
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Figure 3.33 Triaxial Strength of Quartzitic Phyllite (data from Ramamurthy et al., 1993)
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Figure 3.34 Triaxial Strength of Carbonaceous Phyllite (data from Ramamurthy et al., 1993)
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Figure 3.35 Triaxial Strength of Micaceous Phyllite (data from Ramamurthy et al., 1993)
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Figure 3.36 Failure Modes of Triaxial Compression Specimens of Phyllites (from Ramamurthy et al., 1993)
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Figure 3.37 Strain Gauge Configuration (from Niandou, 1994)
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(b) Axial Strain Measured by LVDT
Figure 3.38 Sample Stress Strain Curves with 4= 90° and o3 = 30 MPa (data from Niandou, 1994)
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Figure 3.39 Triaxial Strength of Tournemire Shale (data from Niandou, 1994)
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Figure 3.40 Post-Peak Strength of Tournemire Shale Specimens (data from Niandou, 1994)
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Figure 3.41 Stepwise Loading Path to Approximate Proportional Loading
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Figure 3.42 Sketch of Failure Modes Observed from Tournemire Shale Specimens (from Niandou, 1997)
Note: 0 =n/2-
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Figure 3.43 Himalaya Schist Specimens (from Nasseri, 2003)
Note: Vertical lines on specimens are probably reference lines for measuring orientation.
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Figure 3.44 Triaxial Strength of Quartzitic Schist (data from Behrestaghi, 1996)
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Figure 3.45 Triaxial Strength of Chlorite Schist (data from Behrestaghi, 1996)
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Figure 3.46 Triaxial Strength of Quartz Mica Schist (data from Behrestaghi, 1996)
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Figure 3.47 Triaxial Strength of Biotite Schist (data from Behrestaghi, 1996)
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Figure 3.48 Triaxial Strength of Angers Schist (data from Duveau et al., 1998)
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Figure 3.53 Application of the Theory by Ramamurthy et al. on Penrhyn Slate (from Ramamurthy, 1983)

157



IP side

28

Figure 3.54 Specimen Dimension of Glass-Fiber Reinforced Composite, Units in mm (modified from
Boehler and Raclin, 1985)
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Figure 3.55 Failed Specimens of Glass-Fiber Reinforced Composite (from Boehler and Raclin, 1985)
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Figure 3.56 Comparison of Measured and Predicted Strength (modified from Boehler and Raclin, 1985)
Note: Solid lines show the lower predicted strength of the “parallel mode” and the “across mode” criteria.
When the “across mode” criterion produces higher strength, it is shown with a dashed line.
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(b) Left: Pure Shear Stress State; Right: Equivalent Deviatoric Normal Stress State
Figure 3.57 Pure Shear Stress States with Same Magnitude but Different Directions of Shear Stresses
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Figure 3.58 Equivalence of a Pure Shear Stress (Left) and Deviatoric Normal Stress (Right)
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Figure 3.59 Application of the AMS Criterion on Tournemire Shale (from Cazacu, 1999) Note: 6 = /2 -
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Figure 3.60 Application of the AMS Criterion on Diatomite (from Cazacu, 1998) Note: 6 = /2 —
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Figure 3.61 Application of the AMS Criterion on Martinsburg Slate (from Cazacu, 1999) Note: 8 = /2 — B

Figure 3.62 Isotropic Rock Body with One Set of Joints
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Figure 3.63 Fitting of Uniaxial Compression Strength of Tournemire Shale (modified from Pietruszczak et

al., 2002)
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Figure 3.64 Failure Stress Predicted by Jaeger (1960)
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Figure 3.65 Failure Stress Predicted by Duveau and Shao (1998)
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Figure 3.66 Comparison of the Experimental Data on Angers Schist and the Prediction of Duveau and

Shao (1998)
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4 A New Approach to Anisotropic Failure

Criteria

The previous chapter has described laboratory measurements of the shear strength of anisotropic
rocks, together with a series of failure criteria that have been proposed to characterize anisotropic
shear strength. It has been shown that there are several different ways to generate anisotropic
failure criteria. In terms of continuous functions, polynomials of order two (e.g. the AMS
criterion) can describe “U” shaped curves that characterize the shear strength of transversely
isotropic rocks in conventional triaxial tests. There are certain difficulties in formulating
anisotropic failure criteria that use higher order polynomials. On the one hand, there are so many
cubic terms of the stress components, as shown by Tsai and Wu (1971), that they become
impractical. On the other hand, failure criteria of anisotropic rock are usually a function of all six
stress components. Geometrically, they are surfaces in a six dimensional space, whose shapes
cannot be directly imagined and understood. The shapes are even more complicated with higher
order terms. In contrast, the failure surface of isotropic failure criteria can be directly observed in
the principal stress space, which greatly facilitates the formulation of failure criteria. To the
author’s knowledge, polynomials of higher orders have not been applied to represent anisotropic
rock strength.

In this chapter, a new approach for constructing anisotropic failure criteria is proposed. It makes
the visualization of anisotropic failure criteria in a three dimensional space possible. Desirable
features of anisotropic failure surfaces are identified geometrically. Mathematical expressions
that can generate these features are identified by studying the geometry of existing criteria.
Isotropic failure criteria can be extended to anisotropy by incorporating these expressions.

In order to visualize the failure surface in a three dimensional space, a Material Normal Stress
System (MNSS) is proposed to describe the failure of both isotropic and anisotropic materials. As
a new system to visualize the failure phenomena, the representation of failure for isotropic and
anisotropic materials in MNSS is very different from that in the principal stress system. It will be
shown first how this system can help to visualize the coupling between the structure orientation
and the stress tensor. As the name implies, this system only captures the normal stresses. Each
point in this space can represent numerous stress states, with different shear components. Hence,
other conditions must be enforced to eliminate this ambiguity.

One way to do this is to assume that the orientation of the three principal stresses does not
change with regard to the material coordinate system. This is exactly the case in the conventional
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and true triaxial tests on anisotropic rock. With this assumption, stress paths of these tests can be
drawn in the MNSS. Conventional triaxial tests will be examined in this context. The direction of
the stress path changes with the orientation of the specimen, even for the same principal stress
increment. It will also be shown that isotropic materials fail along a straight line which is located
on a n-plane in the MNSS.

An alternate approach to eliminate ambiguity is to assume the same shear stresses for all points
in this space. By doing this, failure surfaces become three dimensional surfaces in the MNSS,
whose geometry varies with shear stress level. Isotropic failure criteria, including the
Drucker-Prager and the Matsuoka-Nakai criteria, are then examined in the MNSS. The geometry
of their failure surfaces in the MNSS is visualized, first with all zero shear stresses and then with
non-zero shear stresses. The mathematical expressions of both failure criteria are then examined,
and the effect of each term on the failure surface geometry is discussed. It is found that the two
key ingredients in formulating a failure criterion in the MNSS are: the bounding failure surface
with all zero shear stresses and the variation of its geometry with non-zero shear stresses.
Combining the representation of stress path and the representation of failure surfaces, failure of
the material can be predicted in the MNSS.

Based on the study of anisotropic rock failure in conventional triaxial tests, the desirable
geometry features of an anisotropic failure surface are then proposed. The Matsuoka-Nakai
failure criterion is extended to anisotropy, based on the study of failure surface geometry of
isotropic failure criteria in the MNSS. Anisotropy is introduced in both its bounding failure
surface, and the variation of its geometry with non-zero shear stresses. Correspondingly, two new
parameters are introduced in the formulation. Each parameter controls a certain geometric
feature of the anisotropic n-plane cross-section. A parametric study is then provided to illustrate
the effect of these parameters on the conventional triaxial strength. Finally, the Anisotropic
Matsuoka-Nakai criterion is applied to some of the data sets compiled in Section 3.1.

In the following discussion, two coordinate systems are frequently referred to, that are consistent
with those used in Chapter 3. One is the material system STN, in which S, T and N are principal
directions of anisotropy. In the case of transverse isotropy, N is taken as the normal to the
isotropic planes, while S and T are two directions in the isotropic plane. In this system, the stress
tensor generally has six independent components: oy, 0, Gn Om, Ons, Os (Figure 4.1 (a)). The
other coordinate system X;X,X3 is set up based on principal directions of stress, so that oy is in the
x; direction and so on. In this system, the stress tensor has only three components, which are the
principal stresses o1, 02, 03. All shear stresses are zero.

4.1 Material Normal Stress System

For isotropic material, a strength criterion can usually be expressed as a function of stresses and
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a few material parameters. Isotropic failure surfaces can usually be visualized in the
three-dimensional principal stress space. Likewise, an anisotropic failure criterion is the function
of the material stresses and material parameters. Since there are six components of the material
stresses, it is impossible to visualize all of them in a three dimensional system. One way to solve
this problem is to introduce the Material Normal Stress System, which is the stress space formed
by only the material normal stresses o;0;0;, (Figure 4.1 (a)). The state of the material normal
stresses can be described by a point (o, o;, 0;) in the MNSS.

Similar to the principal stress space, the hydrostatic line and the n-plane can be defined in the
MNSS (Figure 4.1 (b)). Along the hydrostatic line, o; = 6; = 0;. The n-plane is a plane that is
perpendicular to the hydrostatic line (i.e. plane ABC). Another plane that is useful for later
discussion is the plane where o; = o (i.e. plane AOD). This plane is defined as the triaxial plane
of the MNSS (compare with the triaxial plane with 0 = o3 in the principal stress system). In a
triaxial test where N is in the axial direction of the triaxial cell (8 = 90°), the stress state of the
specimen is located on this plane since o; = o; always holds in this test. This plane passes
through both the o, axis and the hydrostatic line. Therefore, the projection of this plane on the
n-plane is a straight line, which coincides with the projection of &, on the n-plane (Figure 4.1
(c)). The o; and o; axes are symmetric with regard to this plane.

A polar coordinate system (r ,0,Z) can be established, where the Z axis is the hydrostatic line and
(r ,0) are on the n-plane (Figure 4.1 (c)). Both Z and r can be expressed in terms of the material
normal stresses.

_o,+0,+0, I ( 4.1)

Therefore, Z is associated with the first stress invariant and describes the average confining
pressure in the material.  is the distance from a stress point (a5, o, 6,) to the hydrostatic line in
the m-plane:

r= J%[(a, -0,) +(0,-0,) +(o, - 0',)2] =\2J,, (4.2)

where J3, is the part of J, that can be represented by normal stresses only. It is worth noting that
Ja2n is not a stress invariant, although J; is. Correspondingly, J>; will be used to represent the part
of the J; related to the shear stresses only, which is expressed by:

J,, =cl+0l +02 4.3)

so that J, = Jp, + Jo,. @ is the angle between a radial direction and the projection of o; on the
n-plane, which is expressed by:

_3(,-0,)
20,-0, -0,

tan § (4.49)

0 is also not a stress invariant. Finally, the normal stresses can be expressed as functions of (r, 6,

2).
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c, =%——§rsm(%+€)
o, =%—§rsin(%—0) : 4.5)
o =£+[6—rc050

n \/5 3

The radial dimensions r(€) will be denoted rg. The point at failure along this direction will be
denoted Ry, and called the radius of the m-plane cross-section in this direction. Similar to the
principal stress space, stress paths along ro, 760, ... 300 (shown in Figure 4.1 (c)) represent
conventional triaxial tests. However, in the MNSS, the isotropic plane orientation is also
specified. For example, rg, 7120 and ry4 represent the triaxial compression test with N, T and S
being the axial direction, respectively. For a transversely isotropic material, Rj2g = Ra4 due to
material symmetry.

This system seems to be very similar to the principal stress space and its polar representation
reported in Chapter 2. However, all the stresses in this space are material normal stresses instead
of principal stresses. In the principal stress space, r and &1in the n-plane are both stress invariants.
In this system, however, both of them are not stress invariants since only the normal stresses are
considered.

4.2 Coupling of the Structure and Stress in MNSS

In the principal stress space, one point stands for a certain set of principal stresses, whose
orientation with regard to the STN system is not explicitly specified. The material structure
therefore cannot be considered in this space. In the MNSS, however, the same principal stresses
correspond to different points depending on the material structure orientation. Figure 4.2 shows a
general case where the principal directions of anisotropy STN do not coincide with the principal
directions of stress x;x,x3. In the following discussion, the magnitude and the direction of the
principal stresses are kept constant. For the time being, it is assumed that oy > o, > o3, all of
which are compressive stresses.

The Mohr circles of this stress state are shown in Figure 4.3. When the STN system is rotated,
the material normal stresses (o5, 0;, ;) will be changed accordingly. Assuming that the vector N
can be represented by [N, N, N3] in the x;X;X3 system, then o, can be calculated by:

o 0 0N,
o,=N-¢-N=[N,,N,,N,]] 0 o, 0 |[|N,|=0,N}+0,N]+0,N,; (4.6)
0 0 of|N,

o; and o; can be similarly obtained. The stresses on the ST plane, TN plane and NS plane all fall
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in the shaded area in Figure 4.3 (see, for example, Zoback, 2007). The following conclusions can

be made regarding the material normal stresses:

® The magnitude of any one of the material normal stresses must be between o3 and o7. This
conclusion is quite straightforward by examining the shaded area in Figure 4.3.

® The point (o;, 0, 0,) always remains on the n-plane with Z = (o, +0,+0,)/+/3 (shown by

the dashed line triangle in Figure 4.4 (a)). This is because oy+o;+0;, = I}, which is the first
invariant of the stress tensor.

® If the N direction is kept constant, the rotation of the ST directions causes the point (a;, o,
o) to travel along a straight line, which has the equation oy+0; = constant. If the N direction
is constant, then o, = o\N;*+»N>>+03N;> must also be constant. Therefore, oto; =
(o1tostos)-0, is a constant. Geometrically, this line is parallel to the (o;, o) plane, and
forms a 45° angle with regard to both o; and o; axes (for example, line MN in Figure 4.4 (a)
and (b)). This conclusion also holds if T or S is held constant, and the other two directions
are rotated.

With these conclusions, it is then easy to understand that the material normal stress point (o3, o,
0,) remains in a hexagon in the n-plane, Z=(o,+0,+0,)/+3, for any orientation of the STN

system with regard to the x;x;x3 system. Figure 4.4 illustrates this statement. Figure 4.4 (a)
shows a three dimensional view of this hexagon. Figure 4.4 (b) shows its projection onto the (o5,
oy) plane. Figure 4.4 (c) shows the plan view of this hexagon, and how the rotation of STN
system determines the location of (o3, 0, 0). As an example, assume that initially o; = 03, 0; =
o3, and o, = o0i. The stress point (a;, 03, gy) is at point A shown in Figure 4.4. If N is kept
constant and ST are rotated, the point (o3, 6, ;) follows line AB until it reaches point B, where
o; = 03, 0y = O3, and 0, = 0. Based on the previous analysis, line AB is parallel to the (o, o7)
plane and forms a 45° angle to both o; and o; axes. At this point, if S is kept constant (currently
in the x3 direction) and TN are rotated, point (o;, 61, 0,) marches from point B to point D. Line
BD is parallel to the (o, 0,) plane and forms a 45° angle to both o; and &, axes. When (a3, o;, 0;)
reaches point N, if direction N is again kept constant and ST are rotated, then point (o3, o, 03)
follows the line MN. Line MN is parallel to line AB, but is inside the hexagon. By observation, it
can be concluded that:

® At the vertices of this hexagon, the principal directions of anisotropy STN coincide with the
principal directions of stress x;x;X3.

® Along the sides of this hexagon, only one of the principal directions of anisotropy coincides
with one of the principal directions of stress.

® Within this hexagon, none of the principal directions of anisotropy coincides with the
principal directions of stress.
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To summarize, one particular principal stress state (a1, 03, 03) corresponds to a hexagonal locus

in the MNSS. This hexagonal locus is defined in the n-plane with Z =(o, +0, +0,)/+/3. The

location of the corresponding point (o3, o7, ;) in this hexagon depends on the relative orientation
of the principal directions of anisotropy to the principal directions of stress. Compared with the

principal stress space, where (o1, 02, 03) is only represented with one point, the MNSS describes
the coupling between the material structure and the stress.

4.3 Conventional Triaxial Tests in the MNSS

The conventional triaxial compression test is the most common laboratory test on anisotropic
rocks, as shown in the previous chapter. In the special case of a conventional triaxial stress state,
0120>=03. From Figure 4.4 (b), it can be seen that point A and B must coincide and the length of
line AB reduces to zero. In fact, the hexagon is reduced to a right triangle. Figure 4.5 shows the
three dimensional view and the projection of the triangle onto the (o;, o7) plane. In the case
where all three principal stresses are equal, there must be o=0~=0;,, the triangle is further
reduced to a point on the hydrostatic line. A cylindrical specimen is usually used in these tests. In
a very general configuration, none of the principal directions of anisotropy coincides with any of
the principal stress directions (Figure 4.6 (a)).

During the test, the principal directions of both anisotropy and stress are unchanged. In a typical
conventional triaxial compression test, the specimen is first loaded isotropically to a certain
confining pressure o3. In this process, there must always be o;=0/=0;, so that the stress path
follows the hydrostatic line in the MNSS. Then o, the axial stress, is either increased or
decreased to shear the specimen to failure, so that Aoy # 0, and Aoz = 0 for any load increment.
The increment of the material normal stresses can be calculated by:

Ao, =Ao,SH Ao, = Ac\ T Ao, = Ao, N} 4.7)

in which the components of S, T and N are represented in the principal stress system X;jX;Xj.
Obviously, Acs:Aci:Ac;, = Si2: T2 Ny and the stress path must follow a straight line in the
MNSS. This stress path in a conventional triaxial compression test is shown in Figure 4.7 (a).
The segment OPy represents the isotropic loading. Shearing starts from point Pg and proceeds to
point P4 at time #,, P at time #,, etc. The representation of the stress state changes from the point
Py, to the smaller triangle A1B4C1 at time ¢, then to the larger triangle A;B,C; at time #,. As

discussed before, each of these triangles is in a n-plane with Z = (c,(t) +20,) /3 .

The locations of the stress points P; at time #; in the corresponding triangles are specified by the
orientation of STN system relative to the x1X,x3 system. In the previous chapters, the orientation
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of isotropic plane is described by the angle S between the isotropic planes and the axial direction.
This simple representation is possible because the S direction and the x, direction are assumed to
always coincide (Figure 4.6 (b)). In this case, the stress point P; always falls on the side AB; of
the stress triangles in Figure 4.7 (b). The relationship between the material normal stresses and
the principal stresses are:

o,=0,
o, =0, sin” f+0,cos’ B (4.8)

o, =0, cos’ B+0,sin’ B
With a load increment Ao, there must be:
Ao, =0;A0, = Ao, cos’ B;Ac, = Ao, sin® B 4.9)

Geometrically, the stress paths follow straight lines which are parallel to the (o, 6;) plane, with
the slope Ac;/Ac; = sin’f /cos’f. Since all the stress paths start from the point Py, they are
located in one plane (plane PgAB; in Figure 4.7 (b)), whose equation is o; = 3. This is actually
the plane traversed by line A;B; along the growth of the stress triangle. The stress paths of g = 0°
to 90° with 15° interval are shown in Figure 4.7 (b). The projections of these stress paths on the
n-plane are shown in Figure 4.7 (c). In the n-plane, the distance of a stress point to the origin is
determined by J,,, according to Equation (4.2). The growing length of the stress paths, therefore,
can be physically identified with the increasing material distortion due to normal material
stresses.

The preceding analysis does not involve any material property. Therefore, it applies to both
isotropic and anisotropic materials. A material coordinate system can also be established for an
isotropic material. For example, N can be taken as the vertical direction when the specimen was
in the ground, while S and T are in horizontal directions. Specimens can be cut so that the axial
direction is different from the in-situ vertical direction. Because the failure of isotropic
specimens does not depend on orientation, all specimens fail at the same oy given the same
confining pressure 3. As a result, the stress paths at any  must end at the same stress triangle,

in the n-plane with Z = (o,, +20,)/+3 . Geometrically, the failure of an isotropic specimen in a

conventional triaxial test with specific confining pressure o3 can be represented by a straight line,
which is the side AB of the failure stress triangle. This line will be called the Isotropic Failure
Line.

If the material under discussion is an anisotropic material, its behavior in the conventional
triaxial compression test can be similarly described. It has been shown that the conventional
triaxial strength variation with # for anisotropic rocks can be described by “U” shaped curves
with unequal ends (Figure 4.8). Two local maxima are reached at = 0° and = 90°. In this case,
an imaginary isotropic material can be defined, whose strength is independent of B, and is the
same as the anisotropic strength at § = 90° (the horizontal line in Figure 4.8). It has just been
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shown that the imaginary isotropic material fails along the side AB of the failure stress triangle
(shown in Figure 4.9 (a)), whose location Z is determined by the strength at #=90°. At a specific
[, the anisotropic material follows the same stress path as the imaginary isotropic material, but
fails before or after the stress path reaches line AB, depending on whether the anisotropic
strength is smaller or larger than the imaginary isotropic strength. Therefore, the “U” shaped line
shown in Figure 4.8 maps into the MNSS to form the curved locus shown in Figure 4.9. This
curve will be termed the Anisotropic Failure Curve. Since all stress paths are in the same plane
o; = 03, the anisotropic failure curve must also be in the plane PoAB.

Since the MNSS only captures the normal stress components, it does not have enough
information to fully describe the stress state at one point. Each point (o5, o, 63) in this space can
represent numerous stress states, depending on how shear stresses are determined. In the
previous discussion about the triaxial tests, shear stresses are implicitly specified. The magnitude
and the directions of the principal stresses are known, together with the principal directions of
anisotropy. In this case, the normal and shear stresses in the material coordinate system can be
uniquely determined. While plotting the stress paths, only the normal stress components are
considered. The material shear stresses can be expressed by:

o, =0;0, =%sin2ﬂ;am =0 (4.10)

Obviously, oy, increases linearly with oy, under a specific confining pressure o3 and isotropic
plane orientation £. At each point along a stress path, therefore, the shear stresses are different. In
the following sections, in which the failure criteria are discussed, shear stresses will be explicitly
specified, so that they are the same for any point (a;, o, G,).

4.4 Drucker-Prager Criterion in the MNSS

In order to predict the failure of anisotropic materials in the MNSS, it is necessary to study how
to represent failure criteria in the MNSS. A relatively simple isotropic model, the Drucker-Prager
criterion, will be studied first. As discussed previously, a material coordinate system STN is set
up on an isotropic material that obeys the Drucker-Prager criterion.

The Drucker-Prager criterion can be written in invariant form as:

2, =k, +c (4.11)
where ¢ stands for the cohesion when the material is sheared with zero octahedral stress, while k&
specifies the pressure dependence. By squaring both sides of Equation (4.11), dividing the

invariant J, into components J,, and J;, and using Equations (4.1) and (4.2), the polar
representation of Drucker-Prager criterion in the MNSS is obtained:

R2_—.(\/§kZ+C)2—2(0}2;+0';+03s) (412)
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R and Z are expressions of o;, 0;, 03, the normal stresses in the STN system. oy, 03, Oy are the
shear stresses in the STN system.

In the first case, zero shear stresses are specified, such that oy, = o3, = ;s = 0. This condition is
explicitly imposed on all points in the MNSS. In this case, Equation (4.12) reduces to:

R, =\3kZ +c (4.13)

This failure surface is termed the bounding failure surface, because it is the largest failure
surface that the Drucker-Prager criterion describes in the MNSS. Accordingly, Rp is used to
represent its radius on the n-plane. Equation (4.13) represent a cone in the MNSS (Figure 4.10
(a)), whose radius varies linearly with pressure level (i.e. it describes a linear pressure
dependence) and whose m-plane cross-section is a circle. The geometry of Drucker-Prager failure
surface in the MNSS is the same as it is in the principal stress space. This is because the normal
material stresses are the principal stresses when shear stresses are all zero. Physically, this
corresponds to true triaxial tests where the principal stresses are applied in the principal
directions of anisotropy (i.e. S, T, and N).

When any of the shear stresses are not zero, it can be directly obtained from Equation (4.12) that:

R=+{(BkZ +c)* -2(c? +0? +02) (4.14)

Since R also does not depend on &, the n-plane cross-section is still circular. However, R is
always smaller than Rjp at the same Z level (Figure 4.10 (b)). As the magnitude of shear stresses
increases, the ratio R/Rp reduces. The variation of R with Z is obtained by taking the derivative of
Equation (4.14) to Z:

R _ 3k (4.15)
daz 1_2(af,+a;+ai)
(3kZ +¢)?

Clearly, dR/dZ is always larger than dRp/dZ, which is a constant 3k. At a given level of Z, the
difference is larger for larger shear stresses. At constant shear stresses, the difference is larger for
smaller Z values. When Z approaches infinity, dR/dZ approaches +3k. The failure surface of
Drucker-Prager criterion with non-zero shear stress is shown in Figure 4.10 (b). Since dR/dZ
depends on Z, this relationship describes a nonlinear pressure dependence. Note that the r in the

MNSS system is defined as ./2J,, , which is different from its definition /27, in the principal

stress system. As shown in Equation (4.11), /2J, obviously depends linearly on I;. Therefore,

the Drucker-Prager criterion describes a linear pressure dependence in the principal stress system,
while there is a non-linear pressure dependence in the MNSS system.

Since this criterion is an isotropic criterion, it must predict that the material fails at the same oy,
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regardless of the orientation £. In fact, if Equations (4.8) and (4.10) are substituted into Equation
(4.12), the terms with S will cancel out. The predicted oy values are:
o, - (2+6k)£3/6k -
2-3k ?
at confining pressure o3. They are, indeed, independent to f:

(4.16)

To summarize, the representation of the Drucker-Prager criterion in the MNSS is composed of
two parts: 1) a bounding failure surface with radius Rz (Equation (4.13)), and 2) the variation of
its size with shear stress magnitude. The bounding failure surface is reached for all zero shear
stresses (03 = O = Oy = 0). As such, it is entirely a function of material normal stresses. This is
the largest failure surface in the MNSS for the Drucker-Prager criterion. The shape of the
bounding failure surface is the same as its shape in the principal stress space. Physically, the
bounding failure surface describes the failure of specimens in true triaxial tests, where the
principal stresses are applied in the principal directions of anisotropy S, T and N. The size
reduction is controlled by the magnitude of the shear stresses. For isotropic models, they must be
such that the failure surface always meets the stress paths along the side AB of the failure stress
triangle, as shown in Figure 4.7.

The concept of stress paths and of failure surfaces can be combined to predict material failure.
Figure 4.11 (a) and (b) show the conventional triaxial compression tests on specimens with § =
90° and 0°, respectively. As shown in Figure 4.7, the stress paths of these two shear modes are in
the OA and OB directions. Because oy = 0y, = g, = 0 always holds in these tests, the bounding
failure surface always applies. Therefore, failure occurs at point A and point B, respectively, for
these two shear modes. For 0° <  <90°, as shown in Figure 4.11 (c), the stress path OM is
between OA and OB, depending on the value of B, as shown in Figure 4.7. However, in this
scenario shear stress o, is not zero, and it increases with o3 (Equation (4.10)). The failure
surface then shrinks with increasing shear stress oy, until it finally meets the stress path at point
M. Point M is the point where failure occurs, and it is located on line AB.

Clearly, the normal and shear stresses play separate roles in the MNSS. In a conventional triaxial
test, each loading step drives the stress path farther away from the hydrostatic line. The radius of
the current stress point on the n-plane is determined by Equation (4.2), which is solely a function
of material normal stresses. At the same time, shear stresses also increase (in a general scenario
like Figure 4.11 (¢)) according to Equation (4.10). With this increase of shear stress, the failure
surface shrinks. At one point, the stress path meets the failure surface and failure occurs. The
normal stresses therefore control the stress path, and the shear stresses control the variation of
failure surface size.
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4.5 Matsuoka-Nakai Criterion in the MNSS

In Chapter 2, it was concluded that the n-plane cross-section described by the LMN dependence,
combined with a pressure dependence function Ry(Z), captures the failure behavior of isotropic
rock in a polyaxial stress state. The LMN dependence describes a group of curved right triangles
whose shapes are entirely defined by one shape factor f£;. Both the Lade criterion and the
Matsuoka-Nakai criterion have this type of m-plane cross-section. In this section, the
Matsuoka-Nakai criterion will be analyzed in the MNSS system. This criterion will be developed
into an anisotropic criterion, based on the results of this section.

The Matsuoka-Nakai criterion is expressed in the invariant form as:
LI -k, =0 4.17)

The invariants in this equation can be expressed as functions of the material stresses: o3, o;, oy,
Ost, Om, Ons. The three normal stresses can in turn be expressed by R, 8 and Z with Equation (4.5).
After regrouping the terms, the Matsuoka-Nakai criterion can finally be expressed by R, 6, Z and
the material stresses:

1 3 1_3k 2 1-9k 3 1_3k 2 2 2 2 2 2 2
——=Rc0s30+—=RZ=—=2" -—(0,+0, +0,)2 ——=(0oLr, +O,1, +OL1) +20,0,0, 4.18
3\/6 2\/5 36 ‘/5 ( ! m Jg t L t it tn ( )
in which r,, ; and r; are defined as:
1 1 1
r,=—=Q20,-0,-0,)r,=—=20,-0,-0,);r,=—=0, -0, -0, 4.19
Jg( t t \/6 t ) JE t ) ( )

Clearly, these quantities are associated with the stress deviator. Geometrically, these quantities
are determined by the location of a stress point (a;, 6, 0,) on the n-plane. Defining the r,, 7 and
r; axes to be the projection of the o,, o;, and o; axes on the n-plane respectively, as shown in
Figure 4.13, these quantities can be obtained by projecting the stress point onto the three axes (7,
rs and ;) on the n-plane.

When all shear stresses are zero, Equation (4.18) is simplified to:

-ﬁR’ cos36 + 12’ jgk RZ= 1;/95" z (4.20)
The three dimensional representation of the failure surface is shown in Figure 4.14 (a). It is the
same as the failure surface of the Matsuoka-Nakai criterion in the principal stress space. The
geometry of this surface was described in previous chapters. A few important aspects will be
restated here. Equation (4.20) describes a conic shape failure surface. This failure surface

specifies a linear pressure dependence, with:

3V1-10k +9k* +(1-9k)
o 7

Z;Rg = 4.21)

3J1-10k +9%2 —(1—9k)Z
V2

The triaxial plane cross-section of this failure surface is shown in Figure 4.14 (c), where both
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Ro(Z) and R;30(Z) are straight lines. Its n-plane cross-section is shown in Figure 4.14 (b), which
is a curved right triangle described by the LMN dependence. The size of the curved right triangle
at a certain octahedral stress level can be determined by (Ry+R)s0). The shape of the triangle is
determined by:

3V1-10k +9k* - (1-9k)

= 0/ =
b= R T By 3W1-10k +9k* —(1-9%)

(4.22)

It is also important to note that this criterion is a one-parameter criterion. The only parameter k&
defines the shape of the n-plane cross-section and the linear pressure dependence of the triaxial
plane cross-section. k is associated with friction angle of a material by:

k=1(1— 8sin’ ¢ J 4.23)
9{" 9-sin’¢g .

This is because the Matsuoka-Nakai failure surface matches the Mohr-Coulomb criterion in
conventional triaxial compression and extension tests.

When any of the shear stresses are not zero, Equation (4.18) specifies the size and shape of the
failure surface. Due to the complexity of this expression, a numerical example is shown here to
illustrate how the size and shape of the surface vary with shear stresses. It will be assumed that
the friction angle of the material is ¢ = 30°, so that £k = 0.0857. In order to further simplify the
problem, it is assumed that only one of the shear stresses o;, is non-zero. The failure surface at
om =0, 0.1, 0.2, 0.3 are shown in Figure 4.15. Clearly, the failure surface shrinks as the shear
stress increases. It is important to note that the size reduction of the failure surface is different in
different directions. With non-zero o, the size reduction is the largest for R,49, while it is the
smallest for Rgo. Due to this direction dependent size reduction, the shape of the failure surface
distorts during its size reduction.

This distortion can be physically explained through a simple thought experiment. Since the
Matsuoka-Nakai failure criterion matches the Mohr-Coulomb criterion in conventional triaxial
states, the strength Ry4 and Rgp can also be determined by Mohr-Coulomb criterion with the
same friction angle and zero cohesion. As shown in Figure 4.14 (b), Ra40 represents the strength
of a conventional triaxial compression test, with S being the axial direction; while Reo represents
the strength of a conventional triaxial extension test, with S being the axial direction. Figure 4.16
shows a specimen with friction angle ¢ = 30° and zero cohesion. A conventional triaxial test is
first performed with S being the axial direction. The confining pressures are assumed to be o; =
o, = 10MPa. With the Mohr-Coulomb criterion, one obtains o; at failure to be 30MPa in triaxial
compression and 3.3MPa in triaxial extension, as shown by the solid Mohr circles in Figure 4.16.
Now the shear stress o, is increased to 2MPa. The principal stresses in the TN plane are 8MPa
and 12MPa, based on the dotted Mohr Circle. If o; is again changed to bring the specimen to
failure, the dashed Mohr circles apply and the specimen fails at 24MPa in compression and
4MPa in extension. Comparing with the strengths at o, = 0, the conventional triaxial
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compression strengtli is reduced by 6MPa, while the extension strength is increased by 0.7MPa
only. This explains why the failure surface shrinks significantly in the Ry4 direction but only
slightly in the R¢o direction at non-zero oy, (Figure 4.15). Clearly, the distortion of failure surface
with non-zero shear stress is a necessary consequence of the frictional nature of the material.

It is worth examining Equation (4.18), to see how the non-uniform size reduction is generated
mathematically. The size and shape of the failure surface depend on the right hand side of
Equation (4.18). At all zero shear stresses, the right hand side is 1% 75 Non-zero shear

33

stresses changes the size and shape of the failure surface by modifying this term. The term
—1—:/—%5(0; +o0, +02)Z in (4.18) is always negative, and it does not depend on €. Geometrically, it

reduces the size of the bounding failure surface, but the reduced surface still possesses six-fold
symmetry. As shown in Figure 4.17, this term reduces the bounding failure surface from the solid

line to the dashed line. The term --= o’r,, on the other hand, can be positive or negative. To the

J6
left of the r; = 0 line, this term is negative and it causes the size of the failure surface to reduce.
To the right of this line, this term is positive and the size of the failure surface increases. This
term is O on the line r; = 0, therefore the reduced surface (dashed surface in Figure 4.17) and the
distorted surface (smaller solid surface in Figure 4.17) intersect. Since this term depends linearly
on ry, it is called a linear shape distortion. When there are more than one non-zero shear stresses,

+o.r,+o.r) , which simply adds up the

st'n

the shape distortion is described by —%(o’zr

contribution of different shear stresses.
The Matsuoka-Nakai criterion has a more complicated failure geometry than Drucker-Prager.
However, both have similar representations in the MNSS system. The only difference is that

non-zero shear stresses control not only the size reduction, but also the shape distortion of the
Matsuoka-Nakai failure surface.

46 An Anisotropic Matsuoka-Nakai Criterion for

Transversely Isotropic Rocks

4.6.1 General Considerations

Based on the preceding discussion of the Drucker-Prager criterion and the Matsuoka-Nakai
criterion in the MNSS, it can be concluded that the representation of a failure criterion in the
MNSS has two essential components: the bounding failure surface, which is entirely a function
of material normal stresses, and how its size and shape vary with non-zero shear stresses. Earlier
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in this chapter, it has been observed that “U” shaped curves with unequal end points are obtained
when the strengths of transversely isotropic rocks are plotted against isotropic plane orientation f.
In order to describe the failure behavior of anisotropic rocks, therefore, these observations must
be incorporated in an anisotropic failure criterion.

Bounding Failure Surface for Anisotropic Material

The bounding failure surface describes failure under true triaxial stresses, where the principal
stresses are in the principal material directions (i.e. directions S, T and N). Conventional triaxial
tests with B = 0° and 90°, as shown in Figure 4.11 (a) and (b), are two special cases. They
correspond to the two shoulders of the “U” shaped curves.

The bounding failure surface is conceptually illustrated in Figure 4.18 (a). The conventional
triaxial strength of the rock specimens with B = 90° and = 0° but at various confining pressure
can be described by the functions Ry(Z) and Ri2(Z), respectively. Geometrically, they can be
represented by the intersections of the bounding failure surface with plane (ro, Z) and (7120, Z), as
shown in Figure 4.18 (a). Figure 4.18 (b) shows the planes (r, Z) and (r120, Z) overlapped. o;, is
in the (7o, Z) plane, and its orientation with regard to the Z axis can be described by ©:

© = arctan /2 ~ 54.74° (4.24)
o; is in the (r20, Z) plane, but with the same orientation. Therefore, o; and o; coincide in the
overlapped view. If a conventional triaxial test is performed with B = 90°, the stress path should

be parallel to o, direction. The length of the stress path at failure is (o7, -o,), where o3 is the

confining pressure and ¢"sis the axial stress at failure. The same statements are also true for a
conventional triaxial test performed with p = 0°. When overlapped, a stress path in the (7120, Z)
plane must be parallel to one that is in the (ry, Z) plane. If a conventional triaxial test with § =
90° and one with B = 0° are performed at the same confining pressure, then their stress paths start
from the same point along the Z axis (point O’ in Figure 4.18). Since these two tests have
different strengths, their lengths to failure must be different and they must end at different points
on the overlapped plane (shown in Figure 4.18 as point A for § = 90° and point B for = 0°).
This means that the functions Ro(Z) and Rj20(Z) must be different. Consequently, the n-plane
cross-section of the bounding failure surface for an anisotropic material can have a different
radius in © = 0° and © = 120°, and will lose the six-fold symmetry that is characteristic of
isotropic failure surfaces.

Variation of Bounding Failure Surface Geometry for Anisotropic Material
The representation of failure for isotropic and anisotropic materials has been discussed earlier. It
is concluded that the failure of isotropic materials must always be along one side of the failure

stress triangle, as shown in Figure 4.7. The failure of an anisotropic material can be represented
by a “U” shaped curve in the MNSS, as shown in Figure 4.9.
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The failure of an anisotropic material and the corresponding imaginary isotropic material are
plotted in Figure 4.19, where the imaginary isotropic material has a constant strength that
matches the anisotropy material strength at point A, which corresponds to the failure of a
specimen with B = 90°, as shown in Figure 4.11 (a). Failure of the anisotropic material is
represented by a solid curve AND, and that of the imaginary isotropic material by a dashed line
AB. Suppose there is an isotropic failure criterion that can predict the strength of the imaginary
isotropic material, the geometry variation of its failure surface with non-zero shear stress must be
such that it always meets the stress paths along line AB, as illustrated by point M in Figure 4.19.
If an anisotropic criterion is to be built based on this isotropic criterion, the geometry variation
must be modified so that the failure surface meets the same stress path along the anisotropic
failure curve, in this case point N along curve AND.

Based on the above discussions, two modifications must be made to extend the Matsuoka-Nakai

criterion to anisotropy:

® Its bounding failure surface must be modified to eliminate the six-fold symmetry.

® The variation of its bounding failure surface geometry with non-zero shear stresses must be
modified so that it meets the stress paths along the anisotropic failure curve in the MNSS.

Before extending the Matsuoka-Nakai criterion to anisotropy, its pressure dependence and Lode
angle dependence will first be separated. With this separation, the n-plane cross-section can be
manipulated without worrying about the triaxial plane cross-section. Equation (4.18) is first
normalized by R, in Equation (4.21), and then the parameter & is substituted by f; according to
Equation (4.22). The normalized form of the Matsuoka-Nakai criterion is:

—(1-B)R"cos30+(1-B,+ B2)R* = B2 -2(1- B, + B> ) o + 02 +0"?)
5 5 5 £ 4 s 5 st n ns
-6(1-B)otr, + o +alr)+66(1- B,)ol, 0000,

S

(4.25)

If the pressure dependence is described by a non-linear function Ry(Z), then the normalized
quantities are simply defined by R’ = R/Ry(Z), etc. When all shear stresses are zero, this equation
is identical to the LMN dependence. It defines n-plane cross-sections that have curved triangular
shape, with R'o = R'lzo = R'240 =1.0 and R'so = R'lgo = R'300 = ﬂs (refer to Figure 2.23).

4.6.2 Extension of the Bounding Failure Surface

For anisotropic rocks, two pressure dependence functions Ryo(Z) and R;20(Z) can be different. As
shown previously, Ry(Z) describes the conventional triaxial compression strength where N is the
axial direction, which corresponds to £ = 90°. Ryy(Z) describes conventional triaxial
compression strength where T is the axial direction, which cotrespoxids to g = 0°. A detailed
example has been shown in Chapter 2 on how to obtain Ry(Z) based on the conventional triaxial
compression tests. The same technique can be used to obtain Ry(Z) and R;»(Z) for anisotropic
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rocks, based on conventional triaxial compression tests performed with = 90° and 8 = 0°,
respectively. The difference of these two strengths at the same Z level can be described by the

ratio Ri20(Z)/Ro(Z). This ratio will be used to specify the shape of the n-plane cross-section of the
anisotropic Matsuoka-Nakai criterion.

Normalized values of Rj20(Z) and Ry(Z) will be used in the following discussion, because
R'120(2)/R' o(Z) = Ri20(Z)/Ro(Z). When the ratio R'120(Z2)/R'¢(Z) is different from 1, the shape of the
n-plane cross-section must be distorted accordingly. In the isotropic Matsuoka-Nakai criterion,

shape distortion is controlled by the linear term ——g—(af,r" +olr, +o.r). The mechanism of this

\/g mn

linear shape distortion is shown in Figure 4.17. It turns out that the linear shape distortion can be
used to provide the desired features. Due to material symmetry for a transversely isotropic
material, the distorted m-plane cross-section must be symmetric with regard to the projection of
o, axis on the m-plane, which is the r, axis (refer to Figure 4.13). Therefore, only the linear term
of r, can be included. Based on the same mechanism, a generalized linear form of r, is proposed
in its normalized form, which reads:

AZ)B; (=1 (4.26)

This term can be added to the right side of Equation (4.25) to generate the desired shape
distortion. If this term is positive, it increases the right hand side of Equation (4.25) and the size
of the m-plane cross-section is increased. If this term is negative, then the size of the m-plane
cross-section is decreased. 7', is a reference level of . At this level, Equation (4.26) becomes
zero and the original shape intersects with the distorted shape. 4 is a factor whose sign and
magnitude control how much the original shape is distorted with regard to #',,0. The effect of this
term on the shape of the m-plane cross-section is illustrated in Figure 4.20, where the original
n-plane cross-section with six fold symmetry is shown with a dashed line, and the distorted
shape is shown by a solid line. When 4 > 0, the shape shrinks above 7',y and expands below it, as
shown in Figure 4.20 (a). For 4 < 0, the effect is reversed (Figure 4.20 (b)). Clearly, the distorted
shapes have R'120(Z)/R'o(Z) # 1. By carefully selecting the value of 4, the desired R'120(Z)/R'o(Z)
value can be obtained. The parameter 4 is made a function of Z, because the ratio H ,
1 3790°
which indicates how unequal the ends of a “U” shaped curve are, varies with confining pressure

(Figure 3.49). Finally, ,Bsz is added in Equation (4.25) to control its dependence on f.

Although theoretically 7', can take any value, it is most convenient to choose either 7,0 = 1.0 or
'm0 =—0.5. F'o = 1.0 corresponds to R’y = 1.0, while #',o = —0.5 corresponds to R'129 and R'240 =
1.0 on the original normalized m-plane cross-section. Figure 4.21 through Figure 4.23 plot the
effect of Equation (4.26) on the original n-plane cross-sections with g ranging from 0.6 to 0.8.
There are two subplots in each plot: subplot (a) is for 7,0 = 1.0, and subplot (b) is for 7', =—0.5.
For each combination of f; and ', 4 is taken to be between —0.5 and 0.5 at 0.05 intervals. In all
the plots, the shape with the thick black line is the original shape with six-fold symmetry, which
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corresponds to 4 = 0. The shapes with solid thin black lines are for 4 = 0.1, £0.2, -, £0.5, while
the shapes with dotted thin black lines are for 4 = £0.05, +0.15, -, £0.45.

Discussion on Subplot (a)’s in which ', = 1.0

Figure 4.21 (a), Figure 4.22 (a) and Figure 4.23 (a) all have 7', = 1.0, but with different values of
[s. The distorted shapes intersect the original shape at R'g = 1.0. When A4 increases from 0, it can
be seen from the subplot (a)’s that the failure surfaces expanded downwards. However, the
bottom of the failure surface is approaching a triangle with the increase of 4, as shown by dashed
lines in Figure 4.21 (a) and Figure 4.22 (a). This limits how far the failure surface can be
expanded (e.g. limits the possible value of R'120(Z)/R'o(Z) that can be described), and poses
restrictions on the possible values A can take. For smaller £; values, the original n-plane
cross-section is closer to a right triangle. Therefore, this restriction is more significant for g, =
0.6 than for £; = 0.8. The limiting values are as follows:

® S,=0.6, limit of 4 ~ 0.076, maximum R'(Z)/R'y(Z) =~ 1.207,

® [,=0.7, limit of 4 ~ 0.349, maximum R'(Z)/R'y(Z) ~ 1.637,

® [, =0.8, limit of 4 is larger than 0.5, R'120(Z)/R'o(Z) = 1.485 for 4 = 0.5;

For 4 < 0, the bottom of the distorted shape shrinks into the original shape, and it gets more
rounded with decreasing A. There is no restriction on values of 4 < 0. The 4 values and
corresponding R'120(Z)/R'¢(Z) values for 7,0 = 1.0 are tabulated in Table 4.1, and plotted in
Figure 4.24 (a). '

Discussion on Subplot (b)’s in which 7', =—0.5

The results in Figure 4.21 (b), Figure 4.22 (b) and Figure 4.23 (b) correspond to the case where
r'»0 = —0.5. The distorted shapes intersect the original shape at R'150 = 1.0 and R'249 = 1.0. When
A decreases from 0, the failure surface expands in the 8= 0° direction, with a more pointed apex
as A decreases. In this case, the top of the distorted shape approaches the top of a triangle, which
is shown as dashed lines in Figure 4.21 (b) and Figure 4.22 (b). Therefore, the restriction on 4 is
in the negative part, as listed below:

® f,=0.6, limit of A ~ —0.070, minimum R’15(Z)/R'o(Z) = 0.837,;

® f,=0.7, limit of 4 » —0.296, minimum R’;2(Z)/R'o(Z) = 0.620;

® [3,=0.8, limit of A is smaller than —0.5, R'120(Z)/R'o(Z) = 0.634 for A =-0.5;

For 4 > 0, the top of the distorted shape shrinks into the original shape, and it gets more rounded.
Thus there is no restriction on the magnitude of 4. The 4 values and corresponding R’ 120(Z)/R'o(Z)
values for 7', = —0.5 are tabulated in Table 4.2, and plotted in Figure 4.24 (b). For this group of
distorted m-plane cross-sections, obviously R’y is different from 1 while R'1590 = R’z = 1.
Therefore, the normalized quantities must be normalized against R;»(Z), instead of Ry(Z).

181



4.6.3 Extension of Geometry Variation with Non-Zero Shear

Stresses

It has been shown in Figure 4.19 that the failure surface must meet the stress path on the
anisotropic failure curve AND, instead of the isotropic failure line AB. Along the stress path
shown in Figure 4.19, the anisotropic material fails earlier than the imaginary isotropic material.
The geometry variation with non-zero shear stresses of the isotropic Matsuoka-Nakai criterion
must be modified so that the predicted failure point is at point N instead of at point M. It is
possible to change both the shape distortion and size reduction to obtain this feature. To keep the
formulation simple, however, only the uniform size reduction will be modified.

In the original Matsuoka-Nakai criterion, the uniform size reduction of the failure surface is

controlled by the term —%(aﬁ,+aj+aﬁs)z. The term involving oy must not be changed,

B

because o 1s in the isotropic plane and its effect on failure should be described by an isotropic
criterion. The term involving o3, must be changed, because it is the only non-zero shear stress in
a conventional triaxial compression test, and as such it must be the shear stress that controls
anisotropic size reduction. Any change on o3, must be also made on o, due to material
symmetry. Based on these considerations, the following term is proposed:

~-K(Z) (o} +022) (4.27)

K is a positive parameter, while .o/’ +0"

n ns

is the normalized resultant shear stress on the

isotropic plane. Clearly, this term is always smaller than zero when there is non-zero shear stress
on the isotropic plane. When this term is added to the right hand side of Equation (4.25), it
speeds up the size reduction of the failure. The failure surface then meets the stress path earlier
compared with the isotropic case, and the required anisotropy is then predicted. The larger KX is,
the faster the size reduces with non-zero shear stress and the corresponding AND curve deviates
farther from the isotropic failure line AB (Figure 4.19). The depth of the “U” shaped curve in
Figure 4.8 is clearly correlated with the value of K(Z).

4.6.4 The Anisotropic Matsuoka-Nakai (AMN) Criterion

Incorporating both the linear shape distortion of the bounding failure surface and the anisotropic
size reduction, the final expression for the normalized anisotropic m-plane cross-section
becomes:

~(1-B)R"®cos30+(1- B, + B} )R = B} —2(1- B, + B N0l + 0.} +070)
~6(1- B )0 +olr +olr) + 6\6(1- B.)o' 0" 0!, + A(Z) B2 (rly — 1) - K(Z)(0} +52)

ns Si i~ ns

(4.28)
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Equation (4.28), together with the two pressure dependence functions Ry(Z) and Ri3(Z),
completes the formulation of AMN criterion. Both the bounding failure surface and the geometry
variation are modified to incorporate anisotropic features. These anisotropic features of the AMN
criterion will be termed the bounding failure surface anisotropy and the geometry variation
anisotropy from now on.

Figure 4.25 shows the bounding failure surface of the AMN criterion in the MNSS and its
n-plane cross section at a certain Z level. Functions Ry(Z) and R;»(Z) determine how the size of
the m-plane cross-section varies with pressure level. They can be obtained through conventional
triaxial compression tests on specimens with § = 90° (to obtain Ry(Z)) and B = 0° (to obtain
R120(2)). For the m-plane cross-section at a certain Z, the lengths of Ry and R;y of this n-plane
cross-section (i.e. length of OA and OC in Figure 4.25) are determined through Ry(Z) and R;20(2). -
Compared with isotropic materials, where there is only one pressure dependence function, there
are two pressure dependence functions for a transversely isotropic material.

Once R'120(Z)/R'o(Z) is known, the shape of the n-plane cross-section at this Z level depends on
the value of #,,0 and f;. The parameter A can be determined from Figure 4.24 based on the value
of R'120(Z)/R'o(Z) and ¥ . Therefore, the parameter A is transparent to the end user of the model.
In an ideal situation, 7,0 and f; must be obtained through true triaxial tests on the anisotropic
rock, where the principal stresses are in the principal material directions S, T and N. The
anisotropic m-plane cross-section is symmetric to the projection of the o, axis, but does not
possess the six-fold symmetry at R';20(Z)/R'o(Z) different from 1. Therefore, true triaxial tests
must be performed so that data points cover the entire range of ABCD in Figure 4.25, or half of
the n-plane cross-section. The n-plane cross-section obtained from the experiments can then be
compared with the shapes shown in Figure 4.21 through Figure 4.23, to determine the most
suitable 7,0 and f;. In the case of an isotropic material, only one-sixth of the m-plane
cross-section (section AB for example) needs to be covered by experimental results, and f; is the
only parameter that describes the shape of the n-plane cross-section.

Parameter K determines the extra size reduction of the bounding failure surface, which is added
to the isotropic size reduction. This parameter determines the depth of the “U” shaped curve,
which is obtained through a series of triaxial compression tests with varying B but with the same
confining pressure. Therefore, K should be calibrated based on a series of “U” shaped curves at
various confining pressures.

Once all parameters are obtained, computer programs can be written to implement the AMN
criterion. While implementing this failure criterion, it is frequently necessary to judge whether a
stress point is inside or outside of the failure surface. Therefore, a failure function is defined
based on Equation (4.28):
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f(r'.60.,.0,,0.,) = ~(1= B)r" cos30+(1- B, + B} )r* = B +2(1- B, + B )o) + 02 +02)
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m=ns

(4.29)

Equation (4.28) is equivalent to f= 0. If < 0 for a given stress point, then this point is inside the
failure surface, and it is safe. Otherwise the point is either on or outside of the failure surface,
and failure occurs.

4.7 Parametric Study

A parametric study will be shown here to illustrate how the parameters of the AMN model affect
the conventional triaxial strength. In Chapter 2, the pressure dependence function Ry(Z) has been
thoroughly discussed for isotropic rocks. A numerical example was presented to illustrate how
Ro(Z) can be obtained from conventional triaxial compression tests. In the case of anisotropic
rocks, Ry(Z) shows the pressure dependence in the N direction, while R;29(Z) shows the pressure
dependence in S and T directions. The procedures presented in Chapter 2 can still be used to
obtain Ry(Z) and R;,y(Z) for anisotropic rocks. Therefore, in this parametric study, only the three
parameters involved in Equation (4.28) will be discussed. These parameters are »',9, 5, and K.
The effect of these parameters on the predicted conventional triaxial compression strength will
be calculated for a number of different combinations of these parameters. It has been shown that
Equation (4.28) must be used together with a pressure dependence function. In order to make the
calculations possible, the pressure dependence function of Chichibu Green Schist (Equation
(4.37)) will be used.

The parameters r',o and f;, together with R'120(Z2)/R'¢(Z), define the shape of the normalized
n-plane cross-section of the bounding failure surface. The parameter X, on the other hand,
defines how the geometry of the bounding failure surface varies with non-zero shear stresses.
Eight different combinations of the parameters are assumed, as shown in Table 4.3.

The anisotropic bounding failure surfaces for these combinations are first studied. Figure 4.26 (a)
shows the bounding failure surfaces for R'120(Z)/R'o(Z) = 0.9, B = 0.6, and for r',,p = both —0.5
and 1.0. Figure 4.26 (b) shows similar results but with g; = 0.8. The bounding failure surfaces
with R'120(Z)/R'o(Z) = 1.1 and different combinations of £ and »', are shown in Figure 4.27. It
can be seen that for the same R’ 1o(Z)/R'o(Z) and f;, the shapes determined by 7,0 = —0.5 and #'»o
= 1.0 are close to each other. Therefore, as long as the limit of the shapes are not exceeded, the
choice of 7,0 = —0.5 and #',,0 = 1.0 should give similar results on the material strength. It is also
shown that larger f; results in more rounded shapes, which is consistent with the role of f; on the
isotropic m-plane cross-section. The parameter K does not have any effect on the shape of the
bounding failure surface, and it is irrelevant here.

The predicted conventional triaxial compression strengths are then plotted against the isotropic
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plane orientation, for these eight combinations. Figure 4.28 (a) plots the triaxial strengths with
R'120(Z)/R'(Z) = 0.9, B; = 0.6, and ', = 1.0. The three curves correspond to K =0, 0.8 and 1.6,
respectively. The following observations are made:

Observation 1: When X = 0, the strength monotonically increases from 8= 0° to = 90°. This
variation of strength is solely generated by the anisotropy of the bounding failure surface.
Observation 2: The depth of the “U” shaped curves increase with K. The rate of increase is
faster from 0 to 0.8 than from 0.8 to 1.6.

Figure 4.28 (b) plots similar results but for ',y = —0.5. Comparing corresponding curves in
Figure 4.28 (a) and (b), the effect of 7',y on the strength can be observed:

Observation 3: When K = 0, the strength with #',,0 = 0.5 and that with 7,0 = 1.0 are very close
to each other, which is consistent with the observations on the shape of their n-plane
cross-sections.

Observation 4: For X larger than 0, the minimum strength predicted with 7,0 = —0.5 is slightly
smaller than the minimum strength predicted with 7,0 = 1.0.

The effect of 7,0 on the predicted strength, therefore, is very small for the parameters considered
here.

Figure 4.29 shows similar results as those in Figure 4.28, the only difference is that 5; = 0.8.
Observations 1 through 4 are still true in Figure 4.29. The following additional observations are
made by comparing Figure 4.29 with Figure 4.28:

Observation 5: At the same K value, the depth of the “U” shaped curve is smaller for §; = 0.8
than for B, = 0.6. Therefore, the effect of K on the depth of the “U” shaped curves decreases with
increasing f;.

Observation 6: The strength difference between the case ',0 = —0.5 and #,0 = 1.0 is even
smaller for S, = 0.8. Therefore, it seems that the effect of 7,9 decreases with increasing f.
Observation 7: The minimum strength is obtained at f smaller than 45°. This is also true in
Figure 4.28, but is less evident there.

Figure 4.30 and Figure 4.31 are similar to Figure 4.28 and Figure 4.29, with the only difference
being R'120(Z)/R'o(Z) = 1.1. Some of the previous observations must be changed for R'120(Z)/R'o(Z)
=1.1:

Observation 1: When X = 0, the strength monotonically decreases from = 0° to = 90°. This
variation of strength is solely generated by the anisotropy of the bounding failure surface.
Observation 2: Not changed.

Observation 3: Not changed.

Observation 4: For K larger than 0, the minimum strength predicted with #,, = —0.5 is
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somewhat /arger than the minimum strength predicted with ', = 1.0.

Observation 5: Not changed.

Observation 6: Not changed.

Observation 7: The minimum strength is obtained at § somewhat /arger than 45°. This is also
true in Figure 4.30, but is less evident there.

Based on this parametric study, it is clear that the AMN criterion has the ability to describe the
strength of transversely isotropic rocks in conventional triaxial tests.

4.8 Application of the AMN Criterion

The Anisotropic Matsuoka-Nakai criterion can be applied to different anisotropic rocks, to
predict their strength in conventional and true triaxial tests. It has been found that there are
different failure modes involved in the conventional triaxial tests. For example, single or multiple
sliding along the isotropic planes, kink banding, shear faulting across the isotropic planes, etc. It
is only natural that one criterion cannot be used to describe all these failure phenomena. In this
research, it is assumed that anisotropic rocks fail in two different modes: along and across the
isotropic planes. The AMN criterion will be applied only to shear faulting across the isotropic
planes. When the rock fails along the isotropic planes, the shear behavior along the isotropic
plane then must take over. This philosophy is consistent with Boehler and Raclin (1985), where
the behavior of a chopped strand mat laminate is modeled with a “Parallel Mode” criterion and
an “Across Mode” criterion (refer to Section 3.2.2.1). Therefore, in order to explain the strength
of anisotropic rocks in conventional triaxial tests, two failure criteria will be simultaneously used:
the AMN criterion and the shear criterion along the isotropic plane.

Throughout this section, the Coulomb criterion will be assumed to be applicable to the isotropic
planes:

7,=0,tang+c (4.30)

The frictional criterion along the isotropic plane can be obtained by plotting the normal and shear
stresses along the isotropic plane. It was observed that many anisotropic rocks tend to fail
through their bedding planes at S around 30° to 40°. Therefore, the normal and shear stresses on
the isotropic plane at this orientation usually define the Coulomb envelope.

In this section, the AMN criterion and the Coulomb criterion will be applied to two different
anisotropic rocks: the Martinsburg slate and the Chichibu Green Schist. The conventional triaxial
strength will be predicted for the Martinsburg slate, and the true triaxial strength will be
predicted for the Chichibu Green Schist.
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4.8.1 Martinsburg Slate

The conventional triaxial strength of the Martinsburg Slate as reported by Donath (1964) was
plotted in Figure 3.3 and tabulated in Table B.1 in Appendix B.

Obtaining the Coulomb Envelope

Based on the axial stress oy at failure and the confining pressure o3, the normal and shear stress
on the isotropic plane at failure can be obtained by the following equations:

0,0,

sin2; (4.31)

o, =0,cos’ f+0,sin’ B, =

o, and 7, can be calculated for every test in Table B.1. These 7, are plotted against o, in Figure
4.32. For the orientations with B = 15°, 30°, 45°, and 60°, the 7, against o; curves are close to
straight lines, and they plot very close to each other. The 7, against o;, curves for = 0°, 75°, 90°
plot below the other curves. Based on the observations of Donath (1964), most specimens with
= 15° to 60° fail along the isotropic planes. Therefore, they define the Coulomb envelope of the
isotropic plane of Martinsburg slate. Of these envelopes, the one with B = 45° seems to be the
topmost. A straight line is thus fitted through the 7, against o; data points for B = 45°, which will
be used as the Coulomb envelope (Figure 4.32). The equation for this line is:

7, =0.33960, +130.7 (bar) (4.32)

The cohesion of the isotropic plane of this rock, therefore, is 130.7 bar. Its friction angle can be
calculated to be around 19°.

Obtaining Pressure Dependence Functions Ry(Z) and R;2(2)

In order to obtain Ry(Z), the oy at failure measured from specimens with § = 90° are collected.
For each data point, Ry and Z are calculated based on the following equations:

R =\/-;7[(a, -0,)' +(0,-0,) +(o, —0',)2] =J—§-(a, -a,);

4.33
Z=0'3+0',+0',,=a',+20'3; ( )

3 V3

In order to obtain R120(Z), the oy at failure measured from specimens with B = 0° are collected.
For each data point, R and Z are calculated based on the following equations:

Ry, = \/-;—[(0', ._o-r)2 +(o, —(J'u)2 +(o, —a’,)z] = \/%_(0'1 -03);

700, +0, 0 +20;
3 N
The Ry and Ry values are then plotted against corresponding Z values in Figure 4.33. These data

can be fitted with power law functions, so that:

(4.34)
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R,(Z)=14.287Z°%; R, (Z) =9.2491Z°7%; (4.35)

For this specific rock there is R'120(Z)/R'¢(Z) < 1. The variation of the ratio R'120(Z)/R'o(Z) with Z
as calculated from the fitted functions is plotted in Figure 4.34.

Obtaining Parameters r',,¢, f§;, and K

Since there are no true triaxial test data available for this rock, it is impossible to know the exact
shape of the anisotropic m-plane cross-section. Therefore, it is assumed that ', = 1.0 and S, =
0.7 is applicable to this rock. Based on Figure 4.24, the formulation of the AMN criterion can
describe R'120(Z)/R'o(Z) up to 1.637 at f; = 0.7. The observed R'120(Z)/R'¢(Z) for Martinsburg
slate is always less than 1. Therefore, the shape limit of the formulation for #,0 = 1.0 and 8, = 0.7
as shown in Figure 4.22 (a) will not be a problem with these assumed #',,9 and f; values.

Finally, K must be obtained by matching the “U” shaped curves. This can be achieved simply by
trial and error. If X is too small, then the predicted “U” shaped curve will be shallower than the
experimental curve. It X is too large, then the predicted “U” shaped curve will be deeper than the
experimental curve. After this trial and error process, K is determined to be 1.8 for Martinsburg
slate.

Based on these parameters, the conventional strength of Martinsburg slate at various confining
pressures and different isotropic plane orientations is calculated. The predicted strength is
compared with the measured strength in Figure 4.35. Note that the axial stress at failure is plotted,
instead of the stress difference. Both the strength calculated by the AMN criterion and that by the
Coulomb criterion are plotted. The true failure strength is taken as the lower of the two, and
plotted as solid lines in Figure 4.35. When the AMN strength is larger than the Coulomb strength,
the AMN strength is plotted by dashed lines. It seems that failure is controlled by the Coulomb
criterion for 3 roughly between 10° and 60°, which is consistent with the observations of Donath
(1964), that most specimens with B = 15° to 60° fail along the isotropic planes. For other
values, failure seems to be controlled by the AMN criterion. In general, the agreement seems to
be very good.

4.8.2 Chichibu Green Schist

The experimental results on Chichibu Green Schist were reported by Mogi (2007), and they were
summarized in Chapter 3. In these tests, the specimens were sheared in four different modes
(Figure 4.36), under conventional triaxial stress and true triaxial stress. Conventional triaxial
tests were performed on specimens with 8= 30° and g = 90°, with confining pressures 0, 25, 50
and 75MPa. These results are plotted in Figure 4.37. The strength of = 90° is higher because it
is always at one end of the “U” shaped curves at different confining pressures. All true triaxial
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tests were performed with o3 = SOMPa, and the results are plotted in Figure 4.38.
Obtaining the Coulomb Envelope

In order to obtain the Coulomb envelope of Chichibu Green Schist, the normal and shear stresses
on the bedding planes are calculated and plotted in Figure 4.39 for all of the tests, except those
with Mode IV where the shear stress is always 0 on the isotropic planes. In Figure 4.39, the solid
symbols are for conventional triaxial tests, while the empty ones are for true triaxial tests. Since
the conventional triaxial tests were performed with 8 = 30°, it is reasonable to assume that most
of these specimens fail along the bedding plane. Indeed, in Figure 4.39 they fall in a narrow band
between the two dashed lines, which can be considered to be the Coulomb envelope of this rock.
Some of the true triaxial tests also fall in this band, and thus may also fail through the bedding
planes. Finally, the Coulomb envelope is assumed to be in the middle of the band:

7, =0.65750, +17 (4.36)

Therefore, the cohesion along the bedding planes is around 17MPa, and the friction angle is
around 33°.

Obtaining Pressure Dependence Functions Ry(Z) and R;2¢(Z)

Following the procedures shown in Section 2.4.2, the conventional triaxial strength of 8 = 90°
can be used to obtain the pressure dependence function Ry(2):

Ry(Z) =5.29882"™% 4.37)

Since no triaxial test was performed with = 0°, it is impossible to fit function Ry3o(Z) directly
from experimental data. It will be assumed that R;20(Z) = Ro(Z) for this rock, which is explained
below.

Obtaining Parameters r' 9, £, and K

In order to obtain the shape of the n-plane cross-section for the bounding failure surface, the true
triaxial tests of Mode IV are normalized with Ry(Z) (Equation (4.37)) and plotted in Figure 4.40.
The solid line in Figure 4.40 shows the shape defined by the LMN dependence with 5, = 0.75. It
seems that the original shapes without distortion can be used to fit the n-plane cross-section very
well. Therefore, f; = 0.75 is assumed, and the original non-distorted n-plane cross-section is
assumed to apply (i.e. R'120(Z2)/R'o(Z) = 1.0, which means that R30(Z) = Ry(Z)). Since no shape
distortion is necessary, the value of 7/, is irrelevant. Based on these considerations, the value of
K is then obtained through trial and error to be K = 1.5.

This set of parameters is then used to predict the strength of Chichibu green schist in true triaxial
tests. The predictions are shown as solid lines in Figure 4.41. The predicted true triaxial strength
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of Chichibu green schist is shown by four solid lines. The left end of each line stands for the
condition where o, = o3 = 50MPa. These lines show how the failure axial stress oy varies with
the increase of o at different shear modes, until o, = &y at the right ends of the lines. At each o,
value, the strength predicted by the Coulomb criterion and that by the AMN criterion are both
calculated, and the smaller one is taken as the real strength. With reasonable scatter, the behavior
of Chichibu Green Schist in true triaxial tests is well captured, for all of the test modes.

The predicted failure mode of this rock is not immediately clear. Figure 4.42 shows the strength
predicted by both the Coulomb criterion and the AMN criterion, for different modes. In Mode I,
it is evident from Figure 4.42 (a) that the Coulomb strength is lower than the AMN strength for
all the o values. In this test mode, therefore, it is predicted that all specimens fail along the
isotropic planes. Also, the Coulomb strength does not change with o3. This is because the
isotropic planes dip into o3 direction in this mode, and the normal and shear stresses on the
isotropic plane are independent to o».

Figure 4.42 (b) shows the Coulomb and AMN strength of Mode II specimens. At lower o> values,
the Coulomb strength is smaller. However, the Coulomb strength increases very quickly with
increasing oy, and it is larger than the AMN strength at larger o, values. Therefore, the failure of
the specimens in the mode is along the isotropic plane for smaller o>, and across the isotropic
plane for larger o.

Figure 4.42 (c) shows the two strengths for Mode III specimens. The variation of these strengths
is similar to that of Mode II. However, in this case the Coulomb strength increases even faster
with o3, and thus failure along the isotropic planes only occurs when o3 is very close to o;.

According to these calculations, it is evident that failure strength and failure mode of an
anisotropic rock subject to true triaxial stress are controlled by both the stress and the isotropic
plane orientation. Unfortunately, a systematic summary of the observation of failure modes
cannot be found in the literature to verify the predicted failure modes, and its variation with o
level.

4.8.3 Application to Other Rocks

The AMN criterion combined with the Coulomb criterion is also applied to other transversely
isotropic rocks that have been collected in this research. Section 3.1 offers a complete description
of these transversely isotropic rocks and their experimental results. Except for Chichibu Green
Schist, there are only conventional triaxial test results available for other rocks. Therefore, the
same procedures are followed as outlined in Section 4.8.1 for Martinsburg slate data set. The
parameters for the AMN criterion and the Coulomb criterion are compiled in Table 4.4. The
predicted strengths are compared with the measured strengths in Figure 4.43 through Figure
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4.47.

Figure 4.43 compares the predicted and measured strengths for shales, including the Green River
Shale I, Green River Shale II, and Tournemire Shale. For Green River Shale I and II (Figure 4.43
(a) and (b)), the strengths predicted by both the AMN criterion and the Coulomb criterion are
shown. The strength predicted by the AMN criterion forms the two shoulders of the “U” shaped
curves. For £ around 30°, the strengths predicted from the Coulomb criterion are smaller than
those of the AMN criterion, and the AMN strengths are shown with dashed lines. Within the
range of f values where the Coulomb strengths are lower, the differences between Coulomb
strengths and the AMN strengths are not significant for these two shales. For Tournemire shale,
the predicted strengths in Figure 4.43 (c) are solely predicted from the AMN criterion, and the
agreement is very good. These observations may indicate that shales are closer to a continuous
material than to a discontinuous material.

Figure 4.44 compares the predicted and measured strengths for slates, including the Austin Slate,
the Martinsburg Slate, and the Penrhyn Slate. It is also observed that for £ values around 30°, the
Coulomb strength is smaller than the AMN strength. However, the differences between the
Coulomb strength and the AMN strength are much larger than those of shales. The ranges of £
where Coulomb strengths are smaller are generally larger too. Compared with shale, slates seem
to be closer to a discontinuous material. This is physically grounded, since slates can be
separated into slabs following their cleavage planes. The cleavage planes are therefore close to a
set of joints.

Figure 4.45 compares the predicted and measured strengths for phyllites, including the
Carbonaceous Phyllite, the Micaceous Phyllite, and the Quartzitic Phyllite. It is difficult to make
a unique statement for these three phyllites about the relative magnitude of the Coulomb strength
and the AMN strength. For Carbonaceous phyllite (Figure 4.45 (a)), the difference between the
Coulomb strengths and the AMN strengths are not very significant, which is quite similar to the
case of shales. For Micaceous phyllite (Figure 4.45 (b)), the difference seems to be large and the
ranges of f where the Coulomb strength is smaller than the AMN strength is comparable to those
of slates. For Quartzitic phyllite (Figure 4.45 (b)), the differences between the Coulomb strengths
and the AMN strengths are quite significant. However, the range of 8 where the Coulomb
strength is smaller is not as large as slates. It is therefore difficult to decide whether phyllites are
closer to a continuous or to a discontinuous material. Each phyllite must be studied individually.

Figure 4.46 compares the predicted and measured strengths for schists, including the Angers
Schist, the Biotite Schist, the Chlorite Schist, the Quartz Mica Schist, and the Quartzitic Schist.
For the Angers Schist and the Biotite Schist (Figure 4.46 (a) and (b)), the strengths are predicted
with only the AMN criterion. Although the Coulomb parameters are also obtained and listed in
Table 4.4, it is found that reasonable agreement is obtained with the AMN criterion alone. For the
Chlorite Schist and the Quartz Mica Schist (Figure 4.46 (c) and (d)), the differences between the
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Coulomb strength and the AMN strength when the Coulomb strength is lower are very small. In
fact, the agreement between the predicted and the measured strength will not be affected even if
only the AMN criterion were used. For the Quartzitic Schist (Figure 4.46 (€)), the differences
between the Coulomb strength and the AMN strength is larger than the other schist, but still not

as large as the slates. Therefore, it is reasonable to conclude that schists are closer to continuous
materials.

Figure 4.47 compares the predicted and measured strengths for diatomite. Smce there is only one
data set available, it is hard to make any general conclusions.
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Table 4.1 Variation of R'120/R’p with A for different g, values at o = 1.0 (Refer to Figure 4.24 (a) for Plot)

B,=0.7

B,=06 5,=038
A R'120/R'g A R'120/R'g A R'120/R'g
-0.500 0.491 -0.500 0.534 -0.500 0.562
-0.450 0.532 -0.450 0.578 -0.450 0.607
-0.400 0.574 -0.400 0.621 -0.400 0.651
-0.350 0.617 -0.350 0.665 -0.350 0.695
-0.300 0.661 -0.300 0.710 -0.300 0.738
-0.250 0.706 -0.250 0.755 -0.250 0.781
-0.200 0.754 -0.200 0.801 -0.200 0.825
-0.150 0.806 -0.150 0.848 -0.150 0.868
-0.100 0.862 -0.100 0.897 -0.100 0.912
-0.050 0.925 -0.050 0.947 -0.050 0.956
0 1.000 0 1.000 0 1.000
0.050 1.103 0.050 1.056 0.050 1.045
0.076 1.207 0.100 1.115 0.100 1.090
Limit Limit - 0.150 1.180 0.150 1.136
0.200 1.252 0.200 1.182
0.250 1.335 0.250 1.230
0.300 1.441 0.300 1.278
0.349 1.637 0.350 1.328
Limit Limit 0.400 1.379
0.450 1.431
0.500 1.485
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Table 4.2 Variation of R'150/R’p with A for different S; values at r';p = —0.5 (Refer to Figure 4.24 (b) for Plot)

B,=0.6 B.=0.7 B,=08
4 R'120/R'g A R'120/R'o A R'120/R'y
-0.500 0.634
-0.450 0.666
-0.400 0.699
Limit Limit -0.350 0.732
-0.296 0.620 -0.300 0.766
-0.250 0.718 -0.250 0.801
-0.200 0.782 -0.200 0.838
Limit Limit -0.150 0.839 -0.150 0.876
-0.070 0.837 -0.100 0.893 -0.100 0.915
-0.050 0.902 -0.050 0.946 -0.050 0.957
0 1.000 0 1.000 0 1.000
0.050 1.079 0.050 1.055 0.050 1.046
0.100 1.153 0.100 1.111 0.100 1.094
0.150 1.225 0.150 1.169 0.150 1.144
0.200 1.297 0.200 1.229 0.200 1.198
0.250 1.370 0.250 1.292 0.250 1.254
0.300 1.446 0.300 1.359 0.300 1.315
0.350 1.524 0.350 1.429 0.350 1.379
0.400 1.605 0.400 1.502 0.400 1.447
0.450 1.690 0.450 1.581 0.450 1.520
0.500 1.780 0.500 1.664 0.500 1.598
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Table 4.3 Combination of Parameters Used in the Parametric Study

Case# | R'1po(Z2)/ R'o(2D) | s 7'n0 K

1 0.9 0.6 1.0 0,08,1.6
2 0.9 0.6 -0.5 0,0.8,1.6
3 0.9 0.8 1.0 0,0.8,1.6
4 0.9 0.8 -0.5 0,08,1.6
5 1.1 0.6 1.0 0,0.8,1.6
6 1.1 0.6 -0.5 0,08,1.6
7 1.1 0.8 1.0 0,08,1.6
8 1.1 0.8 -0.5 0,08,1.6
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Table 4.4 Model Parameters for Different Transversely Isotropic Rocks

Rock Name and Unit Coulomb AMN Criterion

Criterion Ro(Z) Rlzo(Z) ﬂg K
Green River Shale I (psi) =0.58230+6317 | 74.162>>%7 91.972°°™¢ 0.7 |0.1
Green River Shale II (psi) 7=0.33630+4634 | 0.36052+10445 | 0.379Z+11669 | 0.7 | 0.2
Tournemire Shale (MPa) 7=0.4093 0+8.027 | 6.8982°%" 4.7392°%% 107 |0.8
Austin Slate (psi) =0.27160+6474 | 119.47°54¢ 71.082°%% 107 |14
Martinsburg Slate (bar) 7=0.33960+130.7 | 14.292°6552 9.2497°78% 107 |1.8
Penrhyn Slate (psi) 7=0.44880+2489 | 0.78447+9915 | 0.7617Z+8724 0.7 | 1.6
Carbonaceous Phyllite | 7=0.59130+12.08 | 5.1872°%% 43162°%® 107 |05
(MPa) :
Micaceous Phyllite (MPa) | =0.42640+9.866 | 6.8572°%% 3.0632°7% 107 |12
Quartzitic Phyllite (MPa) =0.50790+14.94 | 6.8442°6136 3.8662° 107 |04
Angers Schist (MPa) =0.74240+15.31 | 4.0362°™" 5.5572°7 0.7 |96
Biotite Schist (MPa) 7=0.44050+20.36 | 7.653Z2>>"% 5.3262°7 107 |08
Chlorite Schist (MPa) 7=0.65130+17.76 | 7.6502°% 4.0222°™7 107 |0.8
Quartz Mica Schist (MPa) | =0.589205+19.67 | 7.3572°%!2 5.0852%67 0.7 |08
Quartzitic Schist (MPa) =0.49250+41.76 | 27.602°*2 12.162°%*7 0.7 |08
Diatomite (MPa) =0.61110+0.936 | 1.7082>716 2.597°47% 0.7 (0.3
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(a) STN Coordinate System (b) Hydrostatic Line and Triaxial Plane
Figure 4.1 Material Normal Stress Space

Figure 4.3 Mohr Circles of Principal Stress State (o1, 02, o3)
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Figure 4.4 Representation of True Triaxial Stress in MNSS

fop¥ § (77} B
(o11203) ol
O3
A C
> Oy
O3 (9]
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Figure 4.5 Representation of Conventional Triaxial Stress in MNSS

(a) General Case (b) S and x, Coincide
Figure 4.6 Orientation of Isotropic Planes in a Cylindrical Specimen
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(a) General Case (b) S and x, coincide (c) n-Plane Representation
Figure 4.7 Stress Paths of Conventional Triaxial Compression Test
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Figure 4.8 Failure of Anisotropic Rock in Conventional Triaxial Compression Test
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(a) 3D View (b) n-Plane Representation
Figure 4.9 Failure of Anisotropic Material in MNSS
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Figure 4.12 Prediction of Conventional Triaxial Strength by Drucker-Prager Criterion in MNSS
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Figure 4.18 Bounding Failure Surface for an Anisotropic Material
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Figure 4.21 Distorted n-plane Cross-Sections at g; = 0.6
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Figure 4.22 Distorted n-plane Cross-Sections at S, = 0.7
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Figure 4.23 Distorted n-plane Cross-Sections at ;= 0.8

206



0.8 i AL . . 4
L e

y

0. i i
-6.5 04 -03 0201 0 01 02 03 04 05

A
(a) ”ro = 1.0
2 r r e i T P
1.8 . 4
1.6 — s
! ' (,/‘/‘Ai// :
1.4 - //"f//:; :

B, ¥0.7

0. i
44).5 04 -03-02-01 0 01 02 03 04 05
A

®)rp=-0.5
Figure 4.24 Variation of R4,0/Ry with A(Z) at Different r',p and S

207



Os D ‘ Ot

Figure 4.25 Bounding Failure Surface of the Anisotropic Matsuoka-Nakai Failure Criterion
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(a) Bs=0.6 (b) Bs=0.8

Figure 4.26 n-plane Cross-section of Bounding Failure Surface with R'12¢/R'¢ = 0.9
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Figure 4.27 n-plane Cross-section of Bounding Failure Surface with R'150/R’o = 1.1
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Figure 4.28 Predicted Triaxial Strength at R'120/R's =0.9, 5= 0.6
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Figure 4.29 Predicted Triaxial Strength at R'1,0/R’s = 0.9, #; =0.8
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Figure 4.40 Normalized Bounding Failure Surface n-Plane Cross-Section for Chichibu Green Schist (Bs =

0.75, R120/R0 = 10)
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S Application of the AMN Criterion in the
Borehole Stability Problem

A new anisotropic criterion, the anisotropic Matsuoka-Nakai criterion was proposed in Chapter 4.
It has been applied to interpret the experimental result on anisotropic rocks, both for
conventional and true triaxial tests. The agreement between the predictions and the experimental
results are generally very good. In this chapter, the AMN criterion will be applied to analyze the
problem of borehole stability.

Before the criterion can be applied, the stress distribution around a borehole in anisotropic rock
must be obtained. In order to do so, the theory outlined by Lekhnitskii (1963) and Amadei (1983)
for a cylindrical hole in homogeneous, linearly elastic, anisotropic medium will be applied. A
computer program was developed to implement this theory. The AMN criterion will be applied to
the stresses obtained from the program, and the stability of borehole will be studied.

5.1 Problem Statement

It is assumed that the borehole is drilled within Chichibu green schist to a depth of 4000m. The
total density of the rock is assumed to be 2.5t/m>. The total vertical stress can then be obtained to
be oy = 100MPa (assuming g = 10m/s?). The formation pore pressure, Dy, is assumed to be
hydrostatic, so that pr = 40MPa. The larger total horizontal stress is denoted o, which is
assumed to be oy = 0.850 = 85MPa. The smaller total horizontal stress is denoted o, and it is
assumed to be o3 = 0.70y = 70MPa. Assuming that the Terzaghi’s law of effective stress applies,
the in-situ effective stresses are:

o, = 60MPa,c}, = 45MPa,o, =30MPa (5.1)

The mud pressure inside the borehole is denoted p,,. The effective mud pressure is defined as:

p=p,-p, (5.2)
which is the pressure applied on the rocks. Finally, the radius of the borehole is assumed to be:
a=1.0m (5.3)

The effective mud pressure that prevents the borehole from collapsing will be calculated based
on the AMN criterion. The mode of failure of the borehole collapsing will also be studied.
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5.2 Coordinate Systems

Three different coordinate systems are involved (Figure 5.1 (a)) in the borehole stability problem
in a transversely isotropic medium: 1) the global coordinate system XYZ, 2) the local borehole
frame xyz, and 3) the material coordinate system STN.

The global coordinate system can be arbitrarily selected. In this research, it will be specified that
Z is in vertical direction, while X and Y are in horizontal directions. The local borehole frame
xyz is based on the orientation of the borehole, where z defines the axis of the borehole, while x
and y form the local normal cross-section. The orientation of z axis in the XYZ system is
described by two angles: the inclination £ and the azimuth «, as shown in Figure 5.2 on a unit
sphere. [ is defined as the angle between the Z axis and the z axis, and « the angle between the
projection of z onto XY plane and the X axis. The material system STN has been widely used in
previous chapters to describe the behavior of anisotropic rock. For the case of a transversely
isotropic rock, N is normal to the isotropic planes, while S and T form the isotropic plane. The
orientation of N relative to the global coordinate system is also expressed by the inclination and
the azimuth (refer to Figure 5.2). In the following discussion, o; and f; are used to specify the
azimuth and the inclination of the borehole, while o, and f, those of the transversely isotropic
rock.

In order to illustrate the orientation of z and N in the global coordinate system in a two
dimensional manner, the projection of the upper unit hemisphere onto the horizontal plane is
used. Figure 5.3 shows the projection of the latitude and meridian lines on the upper hemisphere
onto the horizontal plane. For illustration purpose, the latitude lines of = 0° (which is the north
pole), 30°, 60°, 90° (which is the équator) are shown. The meridional lines of o= 0°, 90°, 180°,
and 270° are shown, with & = 0° being the positive X direction. The orientation of the material
and the borehole will be shown on the two dimensional projection.

Also shown in Figure 5.3 is the orientation of in-situ stresses. It is assumed that gj is in the X
direction, oy in the Y direction, and oy in the Z direction. Therefore:

oy =0, =30MPa; 0}, =0, =45MPa;0;, =0, = 60MPa; 5.4

5.3 Calculation of Stresses around the Borehole

In order to assess the stability of the borehole, the effective stresses induced by drilling the
borehole must first be calculated. The problem of an anisotropic homogeneous body bounded
internally by a cylindrical surface of arbitrary cross-section has been discussed by Lekhnitskii
(1963) and Amadei (1983). Solutions were provided on the distribution of stresses, strains, and
displacements around the cylindrical surface. The solutions of stress distribution are applied in
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this research to calculate the drilling induced stress.

In the most general form of their solution, there is only one assumption regarding the boundary
conditions, that the surface forces and body forces do not vary along the axis of the borehole.

Amadei (1983) also discussed the forms of the solution with certain simplifications. In this
research, the implementation is based on a simplified version of the solution with the following
additional assumptions: 1) The cylindrical hole has a circular cross-section; 2) There is a uniform
internal pressure applied along the surface of the hole. Body forces are supposed to be absent;
and 3) Generalized plane strain condition exists such that all components of stress, strain,
displacement, body and surface forces must be identical in all planes perpendicular to the axis of
the borehole. It should be noted that the assumptions on surface and body forces are consistent
with the generalized plane strain condition. Under this assumption, the only zero strain is &,
which is the normal strain in the axis direction of the borehole.

Based on these assumptions, the problem of introducing a hole with internal pressure into an

anisotropic linear elastic medium subject to far-field stresses is then decomposed into the

superposition of three sub-problems:

1. The far-field stress is applied to an anisotropic linear elastic medium with no opening.

2. The hole is introduced into the medium. Existing stresses are relieved to zero around the
surface of the hole.

3. The surface of the hole is uniformly pressurized with the internal pressure.

Due to the assumption of the generalized plane strain condition, sub-problem 2 and 3 introduce

zero longitudinal strain &,.

A MATLAB program was written to implement the solution of Amadei (1983). The following

input parameters are necessary for the calculation:

1. Orientations of the coordinate systems: «;, and £, for the borehole system, &, and S, for the
material system.

2. Anisotropic elastic parameters of rock: E,, E;, Vi, Vus, Gns. These parameters define the
following elastic relationship for a transversely isotropic rock:
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Since the strain energy of an elastic material must always be positive, the elastic parameters
must satisfy the following conditions:
E, >0,E, >0,G, >0,-1<v, 51,%(1—v,,)—2v3,, >0 (5.6)

where v, =%v,“. Note that these parameters are in the local material coordinate system

n

STN.
3. The far effective field stress in the XYZ system. :
4. The radius of the borehole a, the mud pressure p,,, and the formation pore pressure py.
Based on these information, the program gives the effective stress components at any point
around the borehole.

The solutions from Lekhnitskii (1963) and Amadei (1983) are briefly summarized in Appendix C
of this thesis. Only the part of the solutions that is implemented with the MATLAB code is
presented. The MATLAB code that calculates the stress distribution around the borehole is listed
in Appendix D.

5.4 Strength and Stiffness Parameters

Since the formation rock is assumed to be Chichibu green schist, the strength parameters are the
same as those reported in Section 4.8.2, with a Coulomb criterion describing failure along the
isotropic planes, and AMN criterion describing failure across the isotropic planes.

The elastic parameters can be obtained only from the stress-strain curves. Mogi (2007) reported
the stress-strain curves from true triaxial tests for different test modes (see Figure 3.20 for
different test modes). Figure 5.4 shows the stress-strain curves of five tests on Mode I specimens,
where o3 = 50MPa and o = 50, 85, 100, 133, and 166MPa. Figure 5.5 shows the stress-strain
curves of five tests on Mode III specimens, with o3 = SOMPa and o, = 50, 86, 97, 121, and
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155MPa. Figure 5.6 shows the stress-strain curves of five true triaxial tests on Mode IV
specimens, where o3 = SOMPa and o, = 50, 71, 75, 227, and 316MPa.

For a specimen with isotropic plane orientation B, the Young’s Modulus in the axial direction is
defined as:
do,

E,= e 5.7
which can be obtained by measuring the slope of the initial elastic part of the stress-strain curves.
It can be seen from Figure 5.4 and Figure 5.5 that the isotropic plane orientations for both Mode
I and III are 30°. Therefore, both Figure 5.4 and Figure 5.5 give the Young’s Modulus E;;. By
averaging the initial slope of these stress-strain curves, one obtains E;y = 34.0GPa for Mode I
specimens and E3o = 37.9 for Mode III specimens. Finally, Es is taken as the average of the two,
which is 36.0GPa. The Young’s Modulus Egy, which is E, in Equation (5.5), can be obtained
from the stress-strain curves in Figure 5.6. The initial slope of these curves are measured and
averaged, and one obtains Eq = E,, = 29.3GPa.

For a transversely isotropic material, the Young’s Modulus for a specimen with isotropic plane
can be expressed by (see, for example, Amadei 1983):

1 _sin’ ﬂ+cos‘ﬂ+sin2(2ﬂ)( € _z_v&) (5.8)
E, E E 4 G, E

n 5 sn £

The shear modulus G;, is not reported for Chichibu green schist. Therefore, its value has to be

estimated by:
1 1 1 2

=—+—+— (5.9
Gl‘ll ES E'l ES
Substitute Equation (5.9) to (5.8), the following result can be obtained:
i=sin4ﬂ+cos4ﬂ+sin2(2ﬂ)(i+i} (5.10)
E, E, 4 \E E,

Substitute B = 30°, Eg = 36.0GPa, and E, = 29.3GPa into Equation (5.10), it is solved that E; =
38.9GPa. The Poisson’s ratios are assumed to be: vy, = 0.25 and v,, = 0.2. To summarize, the
elastic parameters are:

E, =29.3GPa, E; = 38.9GPa, G;, = 13.6GPa, v;;, = 0.25, v, = 0.2

5.5 Effective Mud Pressure against Borehole Collapsing

In order to prevent failure of the wellbore, the mud pressure inside the borehole must be large
enough to prevent yield from occurring in the surrounding rock mass. The effective mud pressure
below which the borehole collapses is called the critical mud pressure, and will be denoted p'...
The smaller the critical mud pressure, the less support the borehole needs. Hence, borehole
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stability can be evaluated from the critical mud pressure that corresponds to the onset of failure
in the rock. The intention of this calculation is to determine the critical mud pressure for a given
material orientation and borehole orientation.

Seven material orientations have been chosen for this study, denoted material orientation I
through VII. The orientation of direction N in these material orientations are shown in Figure 5.7

by ® symbols. The inclination f, and azimuth «, of these seven material orientations are also
listed in Figure 5.7.

For each material orientation, many different borehole orientations are calculated. These
borehole orientations are shown as black dots in Figure 5.8. The borehole orientations are
arranged in a grid with intervals A, = 10° and AB;, = 10°. Altogether, there are 36x9 = 324
borehole orientations whose critical mud pressures are calculated for each material orientation
shown in Figure 5.7. For each borehole orientation, the effective mud pressure p’ inside the
borehole is increased until there is no failure at any point around the borehole. This p’
corresponds to the critical mud pressure p’,. for this particular borehole orientation.

Figure 5.9 (a) through (c) are pseudocolor plots of the variation of p’, with borehole orientation,
at Material Orientations I, II and III respectively (refer to Figure 5.7 for Material Orientations).
The orientation of N in these material orientations is still shown with ® symbols. The scale is
shown to the right most of the plot. To the blue end of the scale, the effective mud pressure is
OMPa (corresponding mud pressure in the borehole is p,, = pr = 40MPa). To the red end of the
scale, the effective mud pressure is 20MPa (corresponding mud pressure in the borehole is p,, =
pr +20MPa = 60MPa). The upper hemisphere projections in Figure 5.9 are placed according to
Figure 5.3, so that g;, is in the left-right direction, while oy is in the up-down direction.

Figure 5.9 (a) shows the distribution of critical mud pressure p’. when the isotropic planes are
horizontal. It is clearly shown that the critical mud pressure is larger when the borehole
orientation is closer to parallel to the isotropic planes (i.e. closer to horizontal direction). When
the borehole orientation is moving toward the vertical direction (i.e. toward the normal direction
of the isotropic planes), the critical mud pressure decreases (between OMPa to 2MPa for a large
area surrounding the N orientation). If the borehole is horizontal, the critical mud pressure
depends on the azimuth of the borehole. When the borehole is aligned with o}, (o= 0° and 180°),
the critical mud pressure is larger, and it is between 8MPa to 10MPa according to the plot. When
the borehole is aligned with oy (a= 90° and 270°), the critical mud pressure is between OMPa to
2MPa, which is much smaller. A horizontal borehole is indifferent to the material anisotropy
because it is parallel to the isotropic planes. The variation of mud pressure with borehole azimuth,
therefore, must be caused by the stress anisotropy within the isotropic plane.

The orientation of the N direction in Figure 5.9 (b) is £, = 45° and o, = 0°, so that it is 45°
inclined toward oy, direction. The isotropic plane intersects the upper hemisphere in a half circle,
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whose projection onto the horizontal plane is represented by the dashed line in the plot. In an
area close to the dashed line, the critical mud pressure is elevated. This again shows that a
borehole tends to be unstable if it is close to parallel to the isotropic planes, and more support
from the mud is necessary. The critical mud pressure is smaller if the borehole orientation is
closer to the normal direction. The lowest critical mud pressure is again obtained in an area
surrounding the isotropic plane normal, which is between OMPa to 2MPa. When the borehole is
parallel to the isotropic planes, the critical mud pressure is between 18MPa to 20MPa at £, = 90°
and a; = 90° (i.e. when the borehole axis is aligned with oy direction), and it is between 6MPa to
8MPa at £, = 45° and o, = 180° (i.e. 45° between oy direction and o direction). The difference
is a result of stress anisotropy.

In Figure 5.9 (c), the isotropic plane normal direction coincides with the oy direction, hence it is
horizontal and the isotropic planes are vertical. Once again, one observes that the critical mud
pressure is higher for borehole orientations that are close to parallel to the isotropic planes. In
this case, it is between 14MPa to 16MPa at 8, = 90° and &, = 90° (i.e. when the borehole axis is
aligned with oy direction), and between 6MPa to 8MPa at S, = 0° (i.e. when the borehole axis is
aligned with oy direction).

To summarize, the following observations can be made based on Figure 5.9:

Observation 1: If the borehole orientation is close to the direction normal to the isotropic planes,
the borehole tends to be stable with no or little support from the mud. If the borehole is close to
parallel to the isotropic planes, then the critical mud pressure becomes higher, and the borehole
tends to be unstable.

Observation 2: The critical mud pressure is also affected by the far-field stress anisotropy. As a
result, when the borehole is parallel to the isotropic planes, the critical mud pressure still varies
with the borehole orientation within the isotropic plane.

Figure 5.10 and Figure 5.11 show similar results for Material Orientations I, IV, V and Material
Orientation I, VI, VII, respectively. Similar observations as just made apply to these plots, too.

5.6 Failure Contours of Boreholes

Figure 5.9 through Figure 5.11 in the previous section only illustrate the critical mud pressure
marking the onset of failure in the rock. However, they do not show the mechanism of incipient
borehole collapse for p’ smaller than the critical mud pressure. In this section, calculations are
performed to illustrate this.

In order to show how failure occurs around a certain borehole, it is necessary to define failure
functions. For the Coulomb criterion, a failure function F¢ is defined as:
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Fy = Tdos = Cdoe (5.11)

(% e
where (%,)mob 1S the mobilized shear strength on the isotropic planes, while (7%)max is the
maximum shear strength on the isotropic planes. Their definitions are shown in Figure 5.12. With
this definition, if F¢ > 0 then failure occurs according to the Coulomb criterion. A failure
function F4 is defined for the AMN criterion, which is the same as function fin Equation (4.29).
If F4 > 0, then failure occurs according to the AMN criterion.

The failure function distributions are calculated for a borehole embedded in the rock with
Material Orientation I (vertical N direction and horizontal isotropic planes) and aligned in o
direction (i.e. £, = 90°, a, = 0°), as shown in Figure 5.13. The orientation of the isotropic planes
and the far-field stress on the cross-section of the borehole are shown in Figure 5.14. During the
calculation, p' is reduced from a large value until F¢ = 0 or F4 = 0 is reached. Based on the
calculation, failure occurs according to the Coulomb criterion at p’ = 6.1MPa (corresponding to a
mud pressure in the borehole p,, = ps+6.1MPa = 46.1MPa). At this point, the failure function F¢c
is plotted in Figure 5.15. It can be seen that Fc = 0 is obtained at four locations around the
- borehole wall, where failure initiates according to the Coulomb criterion. These four locations
are symmetric with regard to the horizontal and vertical directions. Therefore, the location of
these four points around the borehole wall can be determined by the angle between the top two
failure locations. In this case, this angle is 67°.

At p' = 6.1MPa, there is still F4 < 0. If, on the other hand, it is assumed that failure is controlled
by the AMN criterion, then p’ must be further reduced to induce failure. It is found that when p’
is reduced to 4.4MPa (corresponding to mud pressure in the borehole p, = pr +4.4MPa =
44 4MPa), F, = 0 is obtained at four locations around the borehole wall (Figure 5.16). With the
AMN criterion, the angle between the top two failure locations is 101.4°. Due to the complex
mathematical expression of the AMN criterion, it is not intuitively clear why this angle is larger
for the AMN criterion than for the Coulomb criterion.

With the previous analysis, it is evident that with either the Coulomb criterion or the AMN
criterion, failure initiates at four locations around the borehole wall. The only difference between
Figure 5.15 and Figure 5.16 is the exact location of these four points. This is consistent with the
double-lobed failure pattern that is often observed in the boreholes drilled in bedded rocks (for
example, see Zoback 2007).

5.7 Summary

In this chapter, the AMN criterion, together with the Coulomb criterion, is applied to the
borehole stability problem. The results about critical mud pressure can be used as the rule of
thumb of drilling in a transversely isotropic rock, i.e. less mud support is necessary if a well is
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closer to the normal direction of the isotropic planes. Both the AMN criterion and the Coulomb
criterion can predict the four-lobed failure style that has been observed on wells in transversely
isotropic rocks. These results also indicate that the AMN criterion and its combination with the
Coulomb criterion are physically grounded, and can be used to solve real problems.
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Figure 5.2 Inclination B and Azimuth o
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Material OrientationI:  3,=0, a,=0
Material Orientation II:  3,=45, a,=0
Material Orientation IIl:  £,=90, o, =0
Material Orientation IV: g, =45, o, = 45
On Material Orientation V: 3, =90, o, = 45
Material Orientation VI: g, =45, o, =90
Material Orientation VII: g, =90, a, =90
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Figure 5.7 The Seven Material Orientations Shown on the Projection of the Upper Hemisphere
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(a) Material Orientation I (b) Material Orientation II (c) Material Orientation III
Figure 5.9 Critical Mud Pressure p;, Distributions for Material Orientation I, Il and lI
Note: The ® symbol marks the orientation of N. The dashed line marks the trace of isotropic plane on upper hemisphere.
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(a) Material Orientation I (b) Material Orientation IV (c) Material Orientation V

Figure 5.10 Critical Mud Pressure p, Distributions for Material Orientation [, 1V, and V
Note: The ® symbol marks the orientation of N. The dashed line marks the trace of isotropic plane on upper hemisphere.
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(a) Material Orientation I (b) Material Orientation VI (c) Material Orientation VII
Figure 5.11 Critical Mud Pressure p, Distributions for Material Orientation I, VI, and VII
Note: The ® symbol marks the orientation of N. The dashed line marks the trace of isotropic plane on upper hemisphere.
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Figure 5.12 Definition of Failure Function for Coulomb Criterion
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Figure 5.13 Orientation of the Borehole (B = 90° and o = 0°) Whose Failure Functions are Calculated
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Figure 5.14 lllustration of the Borehole with § = 90° and a = 0°
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Figure 5.16 AMN Failure Function at p’ = 4.4MPa for a Borehole with B =90° and o = 0°
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6 Summary, Conclusions and Recommendations

6.1

Summary

The goal of this research is to provide a way to characterize the failure of transversely isotropic
rocks under true triaxial stress states. While reviewing the literature, it was found that existing
anisotropic models, for example the Tsai and Wu criterion (Tsai and Wu, 1971), the Anisotropic
Mises-Schleicher criterion (Cazacu, 1998, 1999), etc. were only validated against data from
conventional triaxial tests. Therefore, a new failure criterion for transversely isotropic rocks
under true triaxial stress states is proposed and validated in this thesis. For this purpose, the
following tasks have been fulfilled:

1.

4.

Data sets of true triaxial experiments on more or less isotropic rocks are first compiled and
analyzed. Some of the isotropic failure criteria that characterize rock strength under true
triaxial stress states are then presented and reviewed.

Experimental results on transversely isotropic rocks are also collected, most of which are
from conventional triaxial tests. The most comprehensive true triaxial test data are reported
by Mogi (2007), on Chichibu green schist. This set of data is later used to validate the
proposed model. Existing anisotropic criteria are categorized and reviewed.

A new approach, the Material Normal Stress System, is proposed, which helps to visualize
anisotropic failure surfaces, and facilitates the development of anisotropic failure criteria.
The observations on isotropic rock failure under true triaxial stress state, and those on
transversely isotropic rock failure under conventional triaxial stress state are expressed in the
system as geometrical characteristics of the failure surface. These geometrical features are
incorporated into the failure surface of the Matsuoka-Nakai criterion, which produces the
Anisotropic Matsuoka-Nakai criterion. The Anisotropic Matsuoka-Nakai criterion should be
used to capture the continuous component of strength anisotropy, while the Coulomb
criterion should be used to describe the discontinuous component of strength anisotropy.
This combination is then validated against the conventional triaxial test data of different rock
types and the true triaxial test data (i.e. Chichibu green schist data set only) of transversely
isotropic rocks. It seems that this combination of criteria is capable of capturing the failure
of transversely isotropic rocks under both conventional and true triaxial stress states.

The Anisotropic Matsuoka-Nakai criterion combined with the Coulomb criterion is then

applied to the problem of borehole stability. It is assumed that a borehole is drilled at 4000m
depth in Chichibu green schist, whose stress-strain behavior is described by transversely
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isotropic elasticity. The necessary mud support to keep the borehole from collapsing (critical
mud pressure) is calculated as a function of the orientation of the isotropic planes and the
borehole axis. For a certain borehole orientation, the failure modes at the onset of failure as
predicted by the combination of the Anisotropic Matsuoka-Nakai and the Coulomb criterion
are discussed. The critical pressures and the failure modes as calculated are consistent with
the observations made in real wellbore failures.

6.2 Conclusions

The following conclusions can be drawn:

1.

The failure of more or less isotropic rocks can be described by a continuous failure surface
in the principal stress space. For many rocks, the shape of the n-plane cross-section of this
failure surface can be formulated by the LMN (Lade, Matsuoka-Nakai) dependence, which
describes a group of curved triangular shapes. There is only one parameter () in the
formulation of the LMN dependence, which specifies the roundness of the curved triangles.
When f; varies from 0.5 to 1.0, the shape described by the LMN dependence varies from a
right triangle to a circle. Based on the data fitting of the true triaxial test results of many
different rocks, it seems that £; does not vary significantly with the pressure level, i.e. the
shape of the n-plane cross-section does not change significantly along the hydrostatic line.

In order to provide greater flexibility to the model, it is recommended to describe the failure
surface by two cross-sections. The triaxial cross-section of the failure surface, which is a
meridian cross-section, defines how the conventional triaxial strength increases with the
average confining pressure. The shape of the m-plane cross-section, which is a normal
cross-section, describes the variation of its radius with the Lode angle. For example, the
closer the shape is to a circle (f; approaching 1.0), the smaller the variation of its radius with
the Lode angle. Physically, this approach corresponds to the separation of the pressure
dependence and the Lode angle dependence.

The strength of anisotropic rocks in conventional triaxial tests is a function of both the
isotropic plane orientation f and the confining pressure o3. Specimens with g = 0° have
isotropic planes parallel to the axial direction. Specimens with = 90° have isotropic planes
perpendicular to the axial direction. For a particular S, the strength increases with confining
pressure o3. For a particular o3, the strength variation with f# can be described by a “U”
shaped curve, which has local maxima at # = 0° and 90°, and reaches its minimum for S
around 30° to 40°. The two maxima of the “U” shaped curve (at = 0° and 90°) are usually
not equal (i.e. specimens with isotropic planes parallel to the axial direction usually have a
different strength than those with isotropic planes perpendicular to the axial direction). The
geometry of this “U” shaped curve can be captured by the unevenness ratio and the depth
ratio. These ratios seem to be related to the lithology of the rocks.
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Several different failure modes have been observed for transversely isotropic rocks in

conventional triaxial tests.

® For small confining pressures, the failure is brittle. Specimens can fail by tensile
splitting when the isotropic planes are close to the axial direction. Shearing along or
across the isotropic planes or a mixture of both may also occur.

® For large confining pressures, failure is usually ductile. A kink band may develop,
usually for steeply inclined isotropic planes. Slipping along multiple isotropic planes or
shear faulting across the isotropic planes may also occur.

In a material coordinate system STN, where N is the normal to the isotropic planes while S
and T form the isotropic plane, the stress has six components: three normal components oy,
0;, O, and three shear components oy, oy, Oy Existing anisotropic failure criteria can
usually be expressed in terms of all six components. It seems that the criteria expressed as
quadratic polynomials of the stress components have the ability to describe the “U” shaped
curves that characterize the conventional triaxial compression strength of transversely
isotropic rocks. To the author’s knowledge, however, these criteria have only been validated
against conventional triaxial test data.

Isotropic failure criteria can usually be expressed by corresponding failure surfaces in the
principal stress space. The failure behavior described by these criteria can thus be directly
visualized and understood. This greatly facilitates the development of isotropic failure
criteria. On the contrary, anisotropic failure criteria are the functions of all six stress
components, hence cannot be directly visualized in three-dimensional space. This is believed
to pose great difficulty in understanding and further developing the existing anisotropic
criteria. In order to solve this problem, the Material Normal Stress System is proposed.

Similar to the principal stress space, which is the space formed by the three principal stresses
(o1, 02, 03), the Material Normal Stress System is a space that is formed by the three normal
stress components, (o;, 0;, 0,). For a certain set of principal stresses, the normal stresses
vary when the orientation of the STN coordinate system changes with regard to the principal
stress directions. Therefore, the Material Normal Stress System can capture the coupling
between the material orientation and the principal stress orientation. A certain principal
stress state (ay, 02, 03), described by one point in the principal stress space, corresponds to a
hexagonal locus on the n-plane in the Material Normal Stress System. The exact location of
the point (o5, 03, 0,) within this hexagon is determined by the relative orientation of the STN
coordinate system with regard to the principal stress directions.

A conventional triaxial stress state (i.e. 0z = o3) corresponds to a right triéngle on the

n-plane in the Material Normal Stress System. In a conventional triaxial test at a certain
confining pressure, the stress path is a straight line in the Material Normal Stress System.

247



10.

The failure points of an isotropic material in conventional triaxial tests with the same
confining pressure but different specimen orientation fall on one straight line, which forms
one side of the failure stress triangle (termed the isotropic failure line). The failure of
transversely isotropic rock in conventional triaxial compression tests, on the other hand, is
described by a curve in the Material Normal Stress System, which is called the anisotropic
failure curve.

Since the Material Normal Stress System only describes the three normal stresses,
anisotropic failure criteria involving all six stress components can be visualized in the
MNSS. Based on the discussion of two isotropic failure criteria, the Drucker-Prager criterion
and the Matsuoka-Nakai criterion, it is found that a failure criterion in the Material Normal
Stress Space can be described by two components: the bounding failure surface at all zero
shear stresses (oy, = oy = 0y = 0), and the variation of its geometry with non-zero shear
stresses. Physically, the bounding failure surface describes the failure of the anisotropic
material under true triaxial stress conditions, where the principal stress directions and the
material directions (S, T and N) coincide. For isotropic failure criteria, their bounding failure
surfaces have the same geometry as their failure surfaces in the principal stress space. With
non-zero shear stresses, the shape of the bounding surface usually distorts, and its size
usually reduces. Shape distortion with non-zero shear stresses seems to be a necessary
consequence of the frictional behavior (i.e. pressure dependence of strength). Therefore, it
should be incorporated in any criteria that describe the failure of soils and rocks.

Based on the observation of failure of isotropic rocks under true triaxial tests, the isotropic
Matsuoka-Nakai criterion is chosen to be the foundation for developing a new anisotropic
failure criterion. This criterion is selected because its m-plane cross-section can be described
by the LMN (Lade, Matsuoka-Nakai) dependence, which is known to capture the strength of
isotropic rocks under true triaxial stress states. Based on the observation of failure of
transversely isotropic rocks in conventional triaxial tests, anisotropy must be introduced into
two different aspects of the original Matsuoka-Nakai criterion. For the bounding failure
surface, anisotropy is introduced by using a distorted m-plane cross-section that does not
possess the six-fold symmetry. Such a failure surface can predict different strengths at g = 0°
and = 90°. The variation of failure surface geometry with non-zero shear stresses must also
be changed so that the shrunk failure surface meets the stress path on the anisotropic failure
curve instead of the isotropic failure line. The “U” shaped variation of strength with f can be
generated by this modification. The proposed criterion is named the Anisotropic
Matsuoka-Nakai criterion. It can be seen that the Material Normal Stress System greatly
facilitates the development of the Anisotropic Matsuoka-Nakai criterion. In this system, the
behavior of isotropic rocks and the behavior of transversely isotropic rocks can be
represented by geometrical features of the failure surface, and combined in a straightforward
way.
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11.

12.

13.

14.

15.

In the Anisotropic Matsuoka-Nakai criterion, three parameters are used to describe the shape

of its bounding failure surface in the n-plane cross-section and its variation with non-zero

shear stresses.

® J is from the original LMN dependence, which describes the roundness of the n-plane
cross-section.

® 4 controls the distortion of the m-plane, and therefore controls the difference between
the strength at # = 0° and the strength at 5= 90°.

® K controls the size reduction of the n-plane cross-section with increasing non-zero shear
stress. Higher K values produce deeper “U” shaped curves.

The proposed Anisotropic Matsuoka-Nakai criterion can capture the continuous component
of the strength anisotropy of transversely isotropic rocks, where the specimen fails across the
isotropic planes. If the specimen fails along the isotropic planes (i.e. the isotropic planes
behave like macroscopic joints), the strength anisotropy is of the discontinuous type, and can
be characterized by the Coulomb criterion. The Anisotropic Matsuoka-Nakai criterion,
together with the Coulomb criterion, has been applied to interpret the experimental results
reported in the literature. It seems that the combination of these two criteria makes it
possible to describe the failure of transversely isotropic rocks under true triaxial stress states.

While applying the combination of criteria to different transversely isotropic rocks tested in
conventional triaxial tests, it is found that the relative importance of the Anisotropic
Matsuoka-Nakai criterion and the Coulomb criterion for characterizing strength anisotropy
varies with rock type (e.g. shales, slates, phyllites, schists, etc.). This relative importance
reveals where a certain type of rock is located within the transition from a continuous type of
strength anisotropy to a discontinuous type of strength anisotropy. Based on the brief
analysis of fifteen different rocks, it seems that slates are closer to the discontinuous end,
shales and schists are closer to the continuous end. No general conclusions can be made for
phyllites, based on the limited data currently available.

The critical mud pressure, below which borehole collapse occurs, is most significantly
affected by the orientation of the borehole with regard to the orientation of the isotropic
planes of the rock. If the borehole orientation is closer to the normal of the isotropic planes,
the borehole tends to be safer and less mud support is necessary. If the borehole is more or
less parallel to the isotropic planes, the borehole is prone to failure, and more mud support is
necessary. The critical mud pressure is also affected by far-field anisotropic stress conditions.
Due to the complexity of the problem, it is difficult to draw a general conclusion on the
effect of stress anisotropy.

The failure of a borehole embedded in a transversely isotropic rock starts at four locations

around the borehole, which creates a double-lobed failure mode. This is consistent with the
observations made on real borehole failures, and serves as further support of the validity of
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the proposed criterion.

6.3 Recommendations

The predictive power of the Anisotropic Matsuoka-Nakai criterion combined with the Coulomb
criterion is confirmed by their application to the conventional triaxial strength data of fifteen
different rocks, to the true triaxial strength of Chichibu green schist, and to the problem of
borehole stability. As a newly proposed model, however, more work is necessary before it is
widely applied and accepted.

1.

The combination of the Anisotropic Matsuoka-Nakai criterion and the Coulomb criterion has
only been validated with the true triaxial strength of Chichibu green schist. This is because
the data on true triaxial tests of transversely isotropic rocks are rarely found in the literature.
In order to further validate this combination of criteria, more experimental data are necessary.
It is suggested that a true triaxial test program should be performed on different types of
transversely isotropic rocks (e.g. shales, phyllites, slates, schists, etc.), and the criterion
should be calibrated against all these data. A database of typical values of the model
parameters for different rocks should be set up.

It would be very interesting to understand the underlying mechanism for the discontinuous
and continuous components of strength anisotropy, and to try to explain the observed
relative importance of the two components for certain types of rocks. For some transversely
isotropic rocks, it may be easier to understand why they are closer to the continuous or to the
discontinuous strength anisotropy. For example, slates have well developed cleavage planes
which act like discontinuities if failure occurs along them. Therefore, the discontinuous
component of strength anisotropy (i.e. failure by Coulomb criterion) is more important for
slates than for shales and schists, where failure along the foliation surfaces in bedding planes
may not occur. For other rock types, however, explanations based on their lithology,
mineralogy, etc. are still desirable. For example, the strength anisotropy of some phyllites
seems to have more continuous characteristics than others. Further research may discover
possible mechanisms underlying these observations.

The Anisotropic Matsuoka-Nakai criterion combined with the Coulomb criterion is applied
to the borehole stability problem in this thesis. The stiffness law used there is transversely
isotropic elasticity. A failure criterion combined with an elastic constitutive law only applies
up to the first occurrence of failure, which produces a lower bound to the problem. Real
failures are much more complicated. For example, plastic strains may develop before failure
occurs, which cannot be captured by a linear elastic law. After the first occurrence of failure,
the stress can be redistributed so that the failure zone may propagate, resulting in a
progressive failure. This is also not captured in the present analysis. In order to describe
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these real phenomena, more realistic constitutive laws may have to be used together with the
proposed failure criteria, which are capable of describing the plastic deformation. Advanced
numerical methods may also be necessary.

Finally, the Anisotropic Matsuoka-Nakai criterion may also be applicable for other
geo-materials that are transversely isotropic, for example, varved clay. Considering that the
Matsuoka-Nakai criterion was originally proposed to describe soil behavior, this is entirely
possible. However, failure may not be as clearly defined for soil as it is defined for rock,
since large deformations usually occur, and the stress-strain curves may not have a
noticeable peak.
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