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ABSTRACT

This thesis proposes a new Anisotropic Matsuoka-Nakai (AMN) criterion to characterize the
failure of transversely isotropic rocks under true triaxial stress states. One major obstacle in
formulating an anisotropic criterion is that it usually involves six stress components, instead of
three principal stresses. As such, anisotropic criteria usually lead to complicated mathematical
expressions, and cannot be directly visualized in three-dimensional space. This problem is solved
by introducing the Material Normal Stress System (MNSS), which is the space formed by the
three normal stress components reflecting the material anisotropy. Within this system, the failure
behavior of transversely isotropic rocks in conventional triaxial tests can be represented with
geometrical features in the MNSS. These features are then incorporated into the failure surface of
the original Matsuoka-Nakai criterion in the Material Normal Stress System, resulting in the
Anisotropic Matsuoka-Nakai criterion. This criterion, combined with the Coulomb criterion, is
validated against both conventional and true triaxial test data, that are collected from an
extensive literature review. The combination of the AMN criterion and the Coulomb criterion
satisfactorily characterizes the measured strength from an extensive program of true triaxial tests
on a schist, which confirms the ability of the proposed criterion. Finally, this combination of
criteria is applied to the borehole stability problem. The necessary mud pressure against borehole
collapse and the onset of borehole failure are examined.
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1 Introduction

The strength of rock is a very important topic in the research and practice of civil engineering.
For example, in underground construction shafts, caverns, and tunnels have to remain stable for
the entire life time. Recently, the oil industry is drilling deeper and uses inclined boreholes in
search of unexplored oil reserves. The strength of rock must be such that no borehole collapse is
induced. Other scenarios in which rock strength can be critical include rock slope stability, etc.

Characterization of rock strength in the laboratory started as early as the 19h century. The earliest
conventional triaxial tests on rock specimens seem to be reported by Von Kdrman (1911) and
Baker (1915). Over the years, conventional triaxial tests (including uniaxial compression tests)
became standard tests for rock strength determination. Meanwhile, many researchers proposed
mathematical models to fit the observed rock strength in conventional triaxial tests. For example,
one of the widely used failure criteria was proposed by Hoek and Brown (Hoek and Brown,
1980), based on data from conventional triaxial tests on many different rocks and rock masses.

Nowadays, conventional triaxial failure criteria are still widely used in real world applications,
because they require few parameters. There is a significant database of experience accumulated
for a range of parameters for different rock types. Besides, the mathematical formulations of
these criteria are usually simple, which also facilitates their use in practice. However, it is
gradually realized that there are two limitations of the conventional triaxial failure criteria. On
the one hand, two of the principal stresses are always equal in the conventional triaxial tests. The
conventional triaxial criteria therefore cannot describe the failure of rock under true triaxial
stress. On the other hand, these criteria usually assume that the rock is isotropic. Natural rocks,
however, are more or less anisotropic. This assumption is not applicable to some sedimentary
and metamorphic rocks (for example, shale, slate, schist, etc.).

It is well recognized that the strength of rock does vary with the level of the intermediate
principal stress o2. In a real project, obviously the three principal stresses are usually not the
same. In order to characterize rock strength under a true triaxial stress state, laboratory tests were
performed on specimens subject to true triaxial stresses (with three independent principal
stresses). It seems that these types of tests were first performed in the 1960's. To date, quite a few
rocks have been tested in true triaxial tests, by different researchers (Chang and Haimson, 2000,
2005, 2007; Haimson and Chang, 2000; Hojem and Cook, 1968; Hoskins, 1969; Hunsche, 1990;
Mogi, 2007; Takahashi and Koide, 1989; Wawersik et al., 1997; etc.). Mathematical models that
describe the strength of rock under true triaxial stresses were also proposed (Lade, 1993;
Lundborg, 1972; Wiebols and Cook, 1968; Zhou, 1994; etc.). For example, the modified Lade
criterion (Lade, 1993) seems to give good predictions for many different rocks. However,



strength anisotropy (or the directional dependence of strength) was not measured in most of the
experimental efforts. As a result, most of the true triaxial failure criteria still treat the rock as an
isotropic material.

In general, natural rocks are more or less anisotropic. Typical anisotropic rocks include the
sedimentary rocks (e.g. shale, mudrock, sandstone, etc.) and the metamorphic rocks (e.g. slate,
schist, phyllite, gneiss, etc.). Research has also been performed to characterize the strength of
anisotropic rocks. The behavior of anisotropic rock is different in different directions, which
causes difficulties in characterizing their strength. Many experiments have been performed on
these materials, most of which are conventional triaxial tests. It is found that the conventional
triaxial strength of an anisotropic rock is a function of both the confining pressure and the
material orientation. There is a much smaller database of true triaxial tests on anisotropic rocks.
Several authors have proposed failure criteria for anisotropic rocks (Tsai and Wu, 1971; Pariseau,
1972; Cazacu, 1998, 1999; etc.), but they have only been validated under conventional triaxial
stress states.

To the author's knowledge, there have been no failure criteria that are able to predict the strength
of anisotropic rock subject to true triaxial stress states. The research presented in this thesis aims
at filling this gap. The strength and failure of rock is a very rich topic. For example, many
different failure modes have been observed for anisotropic rock in conventional triaxial tests. It is
obvious that one cannot expect to describe all phenomena with one unified model. It is therefore
very important to restrict the type of phenomena that will be described by this research. The
scope of this research is as follows:
* One specific type of anisotropy, the transverse isotropy, is dealt with in detail in this thesis.

Transversely isotropic materials have only one privileged direction, and they have rotational
symmetry with regard to this direction. Within planes perpendicular to this direction, the
mechanical behavior is isotropic. Rocks with bedded structures, for example, shales, slates,
etc., can be considered to be transversely isotropic.

* The research aims at proposing a failure model to describe the continuous type of strength
anisotropy, i.e. the continuous variation of strength with orientation. This continuous type of
strength anisotropy can be caused by microscopic features. For example, in some crystals the
density of atoms in different directions are different; clays that have experienced
one-dimensional loading have oriented platy clay minerals, etc. Contrary to the continuous
type of strength anisotropy, anisotropy can also be caused by macroscopic discontinuities.
For example, jointed rocks have anisotropic strength due to the existence of joints, even if
the strength of the host rock is isotropic. This type of anisotropy is called a discontinuous
type of strength anisotropy. It is frequently observed that the failure of transversely isotropic
materials possesses both continuous and discontinuous features. Therefore, they are
somewhere along the smooth transition from a continuous to a discontinuous type of
anisotropy. This research will provide a model to first describe the continuous component of
the strength of transversely isotropic rocks. Finally, the proposed continuous criterion will be



used together with a discontinuous criterion to characterize the strength of transversely
isotropic rocks.

* Only shear failure under all compressive stress is intended to be captured. There does not
seem to be abundant data sets for tensile failure of anisotropic rocks.

The entire thesis is organized in the following manner:

Chapter 2 concentrates on the true triaxial testing on rocks that are close to isotropic (i.e. rocks
that do not have anisotropic features like bedding planes, oriented minerals, etc., and the
measured strength of them seem to fit in isotropic failure criteria). Experimental results are first
collected on these true triaxial experiments. The properties of the rock specimens in each data set,
and the instruments are briefly introduced. The measured strength in each data set is tabulated in
Appendix A. True triaxial failure criteria for isotropic rocks are then reviewed and discussed.
Based on the analysis of collected data, it is found that a convenient way to represent the failure
surface of an isotropic rock is to describe its meridian cross-section and its normalized n-plane
cross-section. For many of the collected data sets, the n-plane cross-sections are curved triangles.
Finally, a failure model is proposed based on the idea of describing the meridian and the n-plane
cross-section separately.

Failure of anisotropic rocks is studied in Chapter 3. This chapter is composed of two parts. The
first part compiles the experimental data on anisotropic rocks published in the literature.
Altogether, the experimental measurements for fifteen different rocks are reported, and they
belong to five different rock types (shale, phyllite, slate, schist, and diatomite). The magnitude of
strength and the failure modes as functions of the confining pressures and isotropic plane
orientations are summarized and discussed in detail. It will be shown that the conventional
triaxial strength of anisotropic rocks can be represented by "U" shaped curves with uneven ends.
The second part of this chapter concentrates on the existing anisotropic failure criteria, which are
categorized into four different types: the empirical criteria, the continuous criteria, the critical
plane approach, and the discontinuous models. Some of the existing criteria have been applied to
predict the conventional triaxial strength of anisotropic rocks, and they seem to be able to
generate the observed "U" shaped curves. However, there does not seem to be a model that gives
satisfying results for anisotropic rock in true triaxial tests.

Chapter 4 presents the major result of this research. It proposes a new failure criterion for
transversely isotropic rocks under true triaxial stress states. A new approach, the Material Normal
Stress System, is introduced. This new system has the ability to describe the coupling between
material orientation and principal stress orientation. The stress path of a conventional triaxial test
is first examined in the Material Normal Stress System. An isotropic failure criterion, the
Matsuoka-Nakai criterion, is then studied. It will be shown that a failure criterion can be
visualized in the Material Normal Stress System by a bounding failure surface when the shear
stresses are all zero, and by the variation of the geometry of this bounding failure surface with



non-zero shear stresses. Anisotropy is then introduced into both the bounding failure surface, and
its geometry variation. The proposed Anisotropic Matsuoka-Nakai criterion is then applied to
interpret the experimental results from both conventional and true triaxial tests of transversely
isotropic rocks. The agreement between the predicted and the measured strengths is satisfactory.

In Chapter 5, the proposed criterion is applied to the borehole stability problem. Assumptions are
made for a borehole at 4000m below ground. Based on the Anisotropic Matsuoka-Nakai criterion,
the critical mud pressures that keep the borehole from collapsing and the development of failure
around a certain borehole are calculated. The results are consistent with the failures observed in
real boreholes.



2 Failure of Isotropic Rocks

2.1 Introduction

Isotropy means that the behavior of the material is the same in all directions. Natural rocks, due
to their complicated formation process, mineral composition, and stress history, are rarely
isotropic. Whether a rock specimen behaves more or less isotropically can only be known after
being tested in the lab. In addition, even if a rock specimen is isotropic with regard to strength, it
may not have isotropic stiffness. The word "isotropy" is therefore used here only as an
approximation in the sense of strength. In some cases, the strength of rock in different directions
is quantitatively measured. For example, before running his true triaxial tests, Mogi (1967)
observed that the uniaxial compression strength of a rock specimen in different directions differ
less than 5%. In other cases, rock specimens are identified as isotropic because they do not have
significant physical features that generate anisotropy, for example, bedding planes, aligned joints,
oriented minerals, etc.

In order to describe the behavior of anisotropic rocks, it is necessary to start by studying
isotropic rocks. To date, most of the lab experiments are performed on (more or less) isotropic
rocks. The results from these tests are analyzed with isotropic constitutive laws, where principal
stresses and stress invariants play a major role. The observations and the isotropic formulations,
serve as a starting point for further generalization to anisotropy.

Depending on the type of experiment, the stress states a rock specimen is subject to can be
divided into two categories: the conventional triaxial stress and the true triaxial stress (or
polyaxial stress). In a conventional triaxial test, a2 is identical to either the minor or the major
principal stresses. The test is called a conventional triaxial compression (CTC) test in the first
case, and a conventional triaxial extension test (CTE) in the second. Uniaxial compression (UC)
test is a special case of the conventional triaxial compression test, with the minor principal stress

'3 = 0. A number of different experiments can create the true triaxial stress state, in which all
three principal stresses can be varied independently. Among these experiments, the thick-walled
hollow cylinder test (without imposing the torsional shear) and the true triaxial test seem to give
reliable measurements of the principal stresses. The biaxial test is another important type of test
to create a true triaxial stress state. It can be considered a special case of a true triaxial test,
where one of the three principal stresses is always zero. Obviously, the conventional triaxial
stress is a special case of the true triaxial stress.



Conventional triaxial compression tests (including uniaxial compression tests) are widely used in
practice to obtain the strength of rock. Throughout the years, theoretical endeavors and
experimental facts all indicate that the intermediate stress has a considerable effect on rock
strength. The effect of the intermediate stress on rock strength was noticed at the beginning of
the 20 t century, by performing CTC and CTE tests on the same type of rock. Von Kdrmin (1911)
performed conventional triaxial compression tests on cylindrical specimens of Carrara marble, in
which the confining fluid pressure was kept constant, and the specimens was brought to failure
with increasing axial load. B6ker (1915), with the same rock, kept the axial stress constant while
increasing the confining pressure to bring the specimens to failure. The strength at the same
confining pressure was consistently higher for B6ker's tests than for Von Kirmrn's tests (Figure
2.1). However, the strength difference between B6ker and Von KirmAn's measurements might be
caused by other factors, for example, the accuracy of measurements, the specimen size, the
natural heterogeneity of the specimens, the anisotropy of the material, etc. Therefore, it is not a
conclusive evidence of the effect of the intermediate stress.

Mogi (1967) compared the CTC and CTE strength of three different rocks: Westerly granite,
Dunham dolomite, and Solnhofen limestone. The results from Mogi's tests are plotted in Figure
2.2. Mogi's tests were very carefully controlled. The isotropy of the rocks was verified by UC
tests in different directions, and the strength variation with orientation was within 5%. Various
corrections were applied to improve the accuracy of strength measurements in CTE tests.
According to Mogi's test results, both Westerly granite and Dunham dolomite showed larger
CTE strength, which confirmed the finding of B6ker. In the case of Solnhofen limestone, the
difference between two strengths was not significant.

In order to obtain how rock strength varies continuously with the intermediate stress, it is
necessary to apply a true triaxial stress state on rock specimens. Many researchers made their
contributions along this line. For example, Handin et al. (1967) reported on thin-walled hollow
cylinder tests. Hoskins (1969) performed thick-walled hollow cylinder tests on a few different
types of rock. True triaxial tests were reported by Mogi (1969, 1970), Michelis (1985), Hunsche
(1990), Smart (1995), Wawersik et al. (1997), etc. Today, the true triaxial test results are
available for various types of rock, even though it is still not standard practice.

Meanwhile, theories that can explain the effect of the intermediate stress were also proposed. The
earliest theory was proposed by Wiebols and Cook (1968), from an energy point of view.
Lundborg (1972) proposed a statistical theory, which seems to be more general than Wiebols and
Cook's approach. Mogi (1971) proposed that the failure criterion should be formulated by
writing the octahedral shear stress as a function of the average of the major and minor principal
stresses. Many existing models were also modified for this purpose, among which the most
widely used is the Drucker-Prager model. These theories are more general than the many criteria
that describe the strength of rock in conventional triaxial tests. Since the intention of this
research is to describe a more general phenomenon, the anisotropic strength, it is necessary to



start from such a general isotropic strength theory.

This chapter first reviews the significant work that advanced the true triaxial test technology, and
the various experiments that are reported in the literature. The general isotropic strength theories
are then described. In order to achieve more flexibility in modeling, it is proposed that the failure
surface should be described by a meridian cross-section (describes the pressure dependence of
the rock) and a normalized n-plane cross-section (describes the Lode angle dependence of the
rock).

2.2 Tests with True Triaxial Stress States

In order to explore the effect of the intermediate stress, it is necessary to perform experiments
that can create true triaxial stress states in the specimen. Mogi (2007) classifies these tests into
four categories (Figure 2.3), based on the shape of the specimen and the application of the
boundary conditions. According to Mogi's classification, Type (A) test is the hollow cylinder test,
while Type (B), (C) and (D) are all true triaxial tests with rectangular prismatic specimens. The
difference between Type (B), (C) and (D) tests are the application of stresses, where a thick
arrow stands for a solid piston, while a thin arrow stands for fluid pressure. The difference
between these two types of boundary conditions will be explained later. This section summarizes
the different type of tests that are reported in the literature, and their experimental results.

2.2.1 Hollow Cylinder Test

True triaxial stress state can be created in hollow cylinder tests (Figure 2.4). By independently
controlling the internal and external pressures (pi and p,, respectively), the radial and tangential
stress a•, and o' at any radius r can be obtained based on the elastic theory:

R -R pi R (p - P) (2.1)
Re2 _ R.2  r2 (R2 -R1

2 )
_R2 pe -Rp, R2R (p -pi)

r -= •.2  + e (2.2)
R . r2 (R, -_•2)

where Ri and Re are the inner and outer radius, respectively. Varying the internal and external
pressure, different values of oa and oo can be obtained. The axial stress a, is increased to bring
the specimen to failure. Figure 2.5 shows the stress distribution along the wall of the hollow
cylinder with Re/Ri = 2, but different pe/Pi. Pe/p = 2.0 in Figure 2.5 (a), while it is 0.5 in Figure
2.5 (b). Obviously, the shear stress (r,--oo)/2.0 is always larger at the inner wall of the hollow
cylinder. Therefore, it is usually assumed in the literature that failure initiates from the inner
wall.

Handin et al. (1967) used thin walled hollow cylinders to create polyaxial stress state in rock.
The materials they tested include limestone, dolomite and glass. This approach was later



criticized by Mogi (2007) to be of low accuracy and repeatability, because in "fabrication of such
thin hollow cylinder of brittle rock, generation of micro-cracks is inevitable (Mogi, 2007)".

Hoskins (1969) made use of thick-walled hollow cylinders to create a true triaxial stress state.
Hoskins' tests were performed in an altered triaxial pressure cell (Figure 2.6). The rock
specimens Hoskins used had 5 cm outer diameter, and 2.5 cm inner diameter. The internal and
external pressures were controlled separately to create different principal stress ratios. The
principal stresses at the inner wall were calculated with the elastic equations. The specimens
were brought to failure by the piston in the axial direction. The materials that Hoskins tested
include Bowral Trachyte, Gosford Sandstone, Carrara Marble.

Apart from these rocks, the same researcher also performed hollow cylinder tests on smaller
specimens (2.2 cm outer diameter and 1.2 cm inner diameter) on a limestone and a
quartz-dolomite rock, together with conventional triaxial compression tests (2.2 cm diameter by
5.7 cm long solid cylinder). The results of all these tests are reported in Table A.1 through Table
A.7. A brief description of the physical properties of these rocks can be found at the end of each
table.

More recently, Wang and Kemeny (1995) reported on conventional triaxial tests and thick-walled
hollow cylinder tests on Apache Leap Tuff. The data are compiled in Table A.8 and Table A.9.
The hollow cylinder specimens had an external diameter of 50mm, and internal diameter of
25mm, 16mm and 13mm. They observed that failure of the hollow cylinder initiated from the
inner wall.

Thick-walled hollow cylinders, although easier to fabricate and introducing fewer microcracks,
are still not ideal for applying a true triaxial stress state. The stress distribution along the radial
direction in the wall is not uniform. Both a, and o- vary from inner surface to outer surface. The
variation depends on both the boundary conditions and the material behavior. On the one hand,
the stress gradient may have an effect on the rock strength, which is unknown before the test.
Also, at the onset of failure, part of the rock may become plastic and the elastic solutions in
Equations (2.1) and (2.2) are not applicable. Therefore, the principal stresses at which the
specimens fail can be different from those calculated from the elasticity theory.

2.2.2 True Triaxial Test

In view of the shortcomings of the hollow cylinder apparatus in creating the true triaxial stress
conditions, true triaxial testing apparati were designed. The specimens in these tests are usually
of rectangular prismatic shape. Three different principal stresses can be simultaneously applied
to the three directions on the specimen to create polyaxial stress state. These tests correspond to
Type (B), (C), and (D) of Mogi's classification (Figure 2.3).



Type (B) True Triaxial Cell

Many of these apparati involve independent loading in three axes, using rigid pistons (Type (B)
in Figure 2.3). Due to the friction between the pistons and the surfaces of the specimen, the
uniformity of stress in the specimen is in question. In order to overcome this problem, lubrication
is usually used to reduce friction. However, the strength measured maybe different for different
types of lubrication (Mogi, 2007). Although there is a certain problem with the stress uniformity,
this type of true triaxial test apparatus is still popular because it is relatively easy to construct, the
load capacity can be very large, and its cost is relatively low.

Hunsche and Albrecht (1990) used this type of true triaxial apparatus to test the strength of rock
salt under a true triaxial stress state and at elevated temperature (Figure 2.7). The pistons on the
opposite side of the specimen were hydraulically connected so that the center of the specimen
did not move even for large deformation. The vertical pistons were equalized by a
counter-weight. The maximum force can be applied was 2000 kN per axis. The shape of the
specimen was cubical, with a maximum of 20 cm side length. The size of the specimen that was
actually used was 5 cm. The use of solid pistons also facilitated the installation of heaters to
control the specimen temperature (up to 400 'C).

In Hunsche's tests, the specimens were first loaded isotropically up to the desired isotropic stress
level. Then deviatoric load was applied to bring the specimen to failure, where the three principal
stresses were changed simultaneously so that the isotropic stress remained constant. A total of
183 tests were performed, under different stress states and temperatures.

2.2.2.2 Type (C) True Triaxial Cell

It is possible to increase the uniformity of stress in the specimen by using fluid pressure in
different axes (Type (C) in Figure 2.3). For example, Hojem and Cook (1968) reported on a true
triaxial apparatus where both the least and the intermediate principal stresses were applied with
copper flat jacks with fluid pressure (Figure 2.8). Rectangular prismatic specimens (6 in Figure
2.8) were used, with the dimension of 1 inch square and 3 inch long. Lateral pressure was
applied by two opposing pairs of copper flat jacks (9 in Figure 2.8). These flat jacks press against
segmental brass spacers (4 in Figure 2.8), which in turn transfer the pressure to the steel cylinder
(3 in Figure 2.8). Hojem and Cook (1968) used their true triaxial cell to study the intermediate
stress effect on Karroo dolerite (Figure 2.8).

In the Type (C) true triaxial cell, different fluid pressures must be applied in two perpendicular
directions. The two fluid systems thus must be separated. In the design of Hojem and Cook
(1968), this is achieved by using two pairs of copper flat jacks. Due to the limited strength of the

2.2.2.1



thin copper flat jack, the magnitude of the applied stress is limited. From Figure 2.9, it is evident
that the maximum intermediate stress is around 6kpsi, which is slightly lower than 45MPa.

2.2.2.3 Type (D) True Triaxial Cell

Mogi (1969, 1970) reported on another type of true triaxial apparatus, where the minor principal
stress was applied by fluid pressure, while the intermediate and the major principal stresses were
both applied by solid pistons (Type (D) shown in Figure 2.3). This type of apparatus was
designed because the minor principal stress has a greater influence on rock strength than the
intermediate principal stress. Therefore, the uniformity of the minor principal stress in the
specimen is most important. Since only one fluid pressure is used, the entire assembly can be
enclosed in a pressure vessel, thus very high fluid pressures can be obtained. In Mogi's design,
the minor principal stress was applied by using a thick walled high pressure vessel, so that the
minor principal stress qO3 > 800MPa (Figure 2.10). The intermediate stress was applied by a
piston with 300 kN capacity, while the greatest principal stress piston had a capacity of 700 kN.
In this way, Mogi's true triaxial apparatus balances the stress uniformity with the load capacity.
In order to keep the rock specimen at the same location during loading, the vertical and
horizontal loading pistons were suspended by soft springs. During the deformation of the
specimen, the center of the specimen can move with the deformation of it, which also
contributed to the stress uniformity. It seems that with this design, Mogi solved this problem of
reproducibility and accuracy of true triaxial tests (Takahashi and Koide, 1989).

The specimen that Mogi used was a rectangular prism 1.5 cm square by 3.0 cm long. For most of
the tests Mogi performed, Teflon sheets were used to reduce the friction between the piston and
the rock specimen. In order to prevent the intrusion of Teflon into the specimen, the surfaces of
the specimen were jacketed with thin copper sheets.

Mogi tested seven different isotropic homogeneous rocks in the 1970's. These rocks are Dunham
dolomite, Solnhofen limestone, Yamaguchi marble, Mizuho Trachyte, Manazuru andesite, Inada
granite, and Orikabe monzonite. The strengths measured from different rocks were compiled in
Mogi (2007), and are reported in Table A. 10 through Table A. 16.

Takahashi and Koide (1989) built a larger Mogi type true triaxial cell, and the specimen size they
used was 3.5x3.5x7.0cm (maximum size 5.0x5.0x10.0cm). The minor principal stress in their
true triaxial cell was q03 < 50MPa, which is much lower then Mogi's apparatus. The different
rocks that were testes include: Shirahama Sandstone, Izumi Sandstone, Horonai Sandstone,
Yuubari Shale, and Yamaguchi marble. The data are compiled in Table A. 17 through Table A.20.
The residual strength of Shirahama sandstone and Yuubari shale were also reported, at certain
minor principal stresses (Figure 2.11). It was noted that, although the peak strength depends on
the intermediate stress, the residual strength stays more or less constant.



Wawersik et al. (1997) reported on the fabrication of new true triaxial cells at Sandia National
Lab, which are similar to Mogi's design (Figure 2.12). A smaller and a larger true triaxial cell
were designed, and the larger one was more sophisticated. Therefore, only the larger true triaxial
cell will be described here. This true triaxial cell was designed to test larger specimens with
controllable pore pressure and fluid transport.

The entire assembly is hosted in a cylindrical pressure vessel, with inside diameter 17.8cm. The
specimen size is as large as 7.6x7.6x17.8cm. The minor principal stress is again applied with
fluid pressure. The intermediate principal stress is applied with a pair of hydraulically loaded
nested pistons, which react against the internal wall of the pressure vessel. To insure the uniform
stress distribution, a rubber sheet is put between the two pistons. The largest difference between
the intermediate and the least principal stresses is 150 MPa, when the least principal stress is 100
MPa.

This triaxial cell has the ability to control pore pressure and fluid transport, by means of the fluid
ports on top and bottom of the specimen. The pressure vessel is set on a circular, inflatable seal,
so that the center location of the specimen can be readily adjusted to be half of the axial sample
shortening. Therefore, it can accommodate large strains up to at least 15%.

Two sandstones, the Gosford sandstone and the Castlegate sandstone, were tested with this true
triaxial cell. The experiments on Gosford sandstone were intended to determine the shape of the
failure surface on the 7n-plane. The stress invariants at failure were reported in Wawersik et al.
(1997), and are shown in Table A.21. Principal stresses at failure are calculated based on these
stress invariants.

Haimson et al. (2000) described a new true triaxial cell at the University of Wisconsin (Figure
2.13). The structure of the apparatus is similar to Mogi's, with the minor principal stress applied
by fluid pressure while the intermediate and the major principal stresses are applied with solid
pistons. However, this triaxial cell is more compact and portable since it uses a biaxial loading
apparatus for the intermediate and the major principal stresses (Figure 2.13 (a)). Both stresses are
in the horizontal direction, and thus no compression testing machine is necessary. The maximum
capacity of this triaxial cell is o3 400 MPa, while 02 and ao • 1600 MPa.

The specimen's shape and size used in this triaxial cell are rectangular prismatic specimens with
19 mm sides and 38 mm long. Stearic acid-based lubricant is used to reduce friction. A few
measures were taken to make the stress distribution more uniform in the specimen. Metal spacers
are placed between the piston and the specimen (Figure 2.13 (b)). A thin copper sheet is in turn
placed between the spacer and the specimen to reduce the localization of the applied load. A thin
layer of polyurethane is used to cover the surface of the specimen subject to fluid pressure.



Quite a few different rocks were tested with this true triaxial cell by different researchers. The
results of experiments on the following rocks were found from the literature: Westerly granite
(Haimson and Chang, 2000), KTB amphibolite (Chang and Haimson, 2000), Long Valley
hornfels (Chang and Haimson, 2005), Long Valley metapelite (Chang and Haimson, 2005),
Pohang Rhyolite (Chang and Haimson, 2007), and Chelungpu siltstone (Oku et al., 2007). Apart
from the Pohang Rhyolite, the measurements for all other rocks are tabulated in Table A.22
through Table A.26.

2.2.3 Other Types of Tests

Apart from the true triaxial cells with rectangular prismatic specimens, Smart (1995) presented a
design that uses a cylindrical specimen to create true triaxial stress conditions with the trapped
tube concept (Figure 2.14). In Smart's design, the pressure on the specimen is supplied by 24
PVC tubes that surround the specimen. The PVC tubes were heat treated so that on one side they
are in close contact with the specimen, while on the other side they press against the inner wall
of the cell. Since these tubes have limited burst pressure, the largest magnitude of stress is
around 50 MPa, with the pressure difference between adjacent tubes less than 7 MPa. The tubes
are arranged to apply an elliptical stress distribution on the specimen surface.

2.3 Strength Theories of Isotropic Rock

Many failure criteria have been proposed to characterize the strength of rock. Many of these
criteria are formulated with only two principal stresses, or and o3. These criteria, although
ignoring the effect of the intermediate principal stress, are widely used because of their
simplicity and small number of parameters. Since the effect of the intermediate principal stress
was noticed, there have been many researchers who proposed various criteria to characterize this
effect. Most of these criteria are phenomenological models. These models will be introduced in
the principal stress space.

2.3.1 Principal Stresses and Principal Stress Space

The principal stress space is the space formed by the three principal stresses o0, a2 and q 3.Note
that in this section, the subscripts "1", "2" and "3" do not imply their relative magnitude. Instead,
they are used to define the physical axes of the tests. In triaxial tests, the axial stress is denoted
by 0l, and the confining pressures are a2 = o3. Therefore, a0 can be smaller than a2 and o3 in
CTE tests. In true triaxial tests, 0a stands for the stress that is changed to bring the specimen to
failure. It is also the greatest principal stresses if it is increased to fail the specimen.

A stress state can be represented by one point (0a, o2, o3) in the principal stress space. In the



principal stress space, the hydrostatic line is defined as the line where o- = o2 = o3. Any plane in
this space that is perpendicular to the hydrostatic line is defined as a n-plane (shown in Figure
2.15). A vector in this space can be decomposed into a volumetric component and a deviatoric
component:

as(, + a2 a3)/3 (2a, -a2 -a3)/3
2 = (a 2+3)/3 +3 (-q+2a2-o3)/3 (2.3)

a3 ) (a, +o2 +o-3)/3) J(-o -o 2 +2a,)/3)

Obviously, the volumetric component is a vector along the hydrostatic line, while the deviatoric
component is a vector within the 7n-plane.

The same point (oi, qa, 03) can also be represented by a polar coordinate system (r, 0, z), based
on the decomposition shown in Equation (2.3). The deviatoric component is within the n-plane,
the length and direction of which are represented by (r, 6). As shown in Figure 2.15, 9 = 00
coincides with the projection of the a, axis on the n-plane. The hydrostatic line is the Z axis,

where Z = (o- + a2 +q3) /4 gives the length of the volumetric component in Equation (2.3). In

the polar system, a n-plane has the equation of Z = constant.

The general stress tensor usually has six independent components: three normal stresses ox, a,,
a,, and three shear stresses aoz, o-x, oay. When the coordinate system is rotated, these components
change accordingly. However, stress invariants are indifferent to coordinate system
transformations. The three invariants for the stress tensor are:

I = a, +-O, +O=aUz = +Oa2 +a 3

12 = -a,0a - Cy , - (o-a + a-2 + a -2 +0 -2 =--(a1" 2 + a"U 3 + a"3") (2.4)

13 = cr.or• + 2aoar- -  -oo -,r 2 
- z- 

2 = a,"a2u 3

Sometimes, the following invariants are used:

tr(a) = a,+ + a + = I,

tr(a'2) = 2 + -2 +0 -2 + 2(a,2 + o 2 + o) = I 2 + 21 2  (2.5)

tr(ar) = cr3 +o• +o +3a( + •)+ 3aY(a 2 + o2)+3a, (a 2 +o r2)+66ora a. =I +2112 +313

The stress deviator tensor s is defined as:

s = a-/L I (2.6)
3

where I is the identity tensor. The three invariants for the stress deviator tensor are:

J, = tr(s) = 0

J2 = tr(2 +212) = 22 [(ae. - ,y)2 + (y -_) 2 +(az _a -)2]+0a2 + C"2 (2.7)

J, I tr(S)= (21 , +911 +2713)
3 27



The invariants that are most frequently used are li, .2 and the Lode angle 2, which is defined as:

A sin`- 3, 3 J2 (2.8)
3 2 j,/23I

The physical meaning of the Lode angle is better revealed by another equivalent expression:

S= arctan1 2 - =arctan[ 1 (2.9)

If a > o2 > a3 is assumed, then the Lode angle shows the relative location of a between a, and
o3. In conventional triaxial compression tests, a2 = o3 and A = -30* (or -7t/6). In conventional
triaxial extension tests, a2 = a, and 2 = 300 (or +rt/6). This is illustrated in Figure 2.15.

In the polar representation (r, 0, Z), the three coordinates can be easily linked with these
invariants. Z is linked with I, by:

S= (2.10)

Z indicates the volumetric stress level, or the pressure in the specimen. Any criterion that has Z
as its parameter describes the pressure dependence. The volumetric stress level is also
represented by the octahedral normal stress:

oct, = + 2 + (2.11)3

Clearly, II, Z, and oact have the same physical meaning, but differ only in scalar magnitude.

The coordinate r is associated with J2 by:

r 2= 2-2 (2.12)

J2 is a measure of the deviatoric stress level. The octahedral shear stress is defined as:

, = J2 (2.13)

Therefore, J2 , r, and roct are also linked by scalar relationships.

Finally, 0 is geometrically equivalent to the Lode angle but with a few differences (Figure 2.15).
The original definition of the Lode angle is from -30' to 300, due to the assumption that a 2 > 2
o3. Since this is not imposed in the discussion here, Oranges from 00 to 3600.. = 00 corresponds to
A = -30'. Also, 0 is taken to be positive in the clockwise direction. 0 can be calculated with the
principal stresses by:

tanO= 2) (2.14)
2a, -a 2 - aa"3

The r axis in 9 direction is denoted ro. Based on this definition, r60 through r300 are shown in



Figure 2.15. Along these axes, two of the principal stresses are equal and the stress state is the
conventional triaxial stress state. Starting from an isotropic stress state, the stress path is
conventional triaxial compression along r0, r120, r240, while it is conventional triaxial extension
along r60o, r1so80, r300.

Since the polar coordinate (r, 0, Z) is just another way to represent a stress point (0-, o2, 03), the
principal stresses can.be expressed as functions of (r, , Z):

S+ - r cos 93 3

U2 --Zr6sin(- +90) (2.15)J[ 3 6

Z= -- rsin( -9)
ý73 3 6

Failure is usually described by a continuous failure surface in principal stress space (Figure 2.16).
In order to better understand its geometry and physical significance, several cross-sections of the
surface are often studied. They are the 7t-plane cross-section, the triaxial plane cross-section, and
the biaxial plane cross-section.

The nt-plane cross-section is the intersection of the failure surface with a nt-plane at a certain
pressure level Z (Figure 2.17 (a)). The distance from a point on this cross-section to the origin is
defined as the radius of this x-plane cross-section. The radius of the t-plane cross-section will be
denoted by R (instead of r), which signifies that this is the location at failure. Clearly, R is a
function of both 0 and Z: R = R(0,Z). The shape of the n-plane cross-section determines how R
varies with 0 at a certain Z level. This variation will be termed the Lode angle dependence of the
strength. For an isotropic material, the failure surface on the it-plane thus possesses the six fold
symmetry. There must be Ro = R120 = R240, and R60 = R180 = R300 (Ro through R300 shown in Figure
2.17 (a)).

The triaxial plane is the plane (ro, Z) in Figure 2.16. This plane is described by the equation 2 =
o3. Any point on this plane describes a conventional triaxial stress state, hence its name. The
intersection of the triaxial plane with the failure surface contains two branches: one describes the
variation of Ro with Z, the other the variation of R180 with Z (Figure 2.17 (b)). Physically, they
correspond to the conventional triaxial compression test and extension test, respectively.
Together, they show how the size of the n-plane cross-section varies with the octahedral stress
level. Therefore, they describe the pressure dependence of the material.

The biaxial plane is a plane where one of the principal stresses is always zero. Figure 2.17 (c)
shows the intersection of the plane a2 = 0 with the failure surface. This intersection is a closed
curve, and it describes the failure of the material in a biaxial test.



2.3.2 Conventional Triaxial Models

Although the intention of this section is to review the more general true triaxial failure criteria, it
is necessary to first examine some of the very widely accepted conventional triaxial failure
criteria. Many of the true triaxial failure criteria are extensions or modifications of these basic
criteria.

The most widely used criterion is probably the Coulomb criterion. According to this criterion, the
shear strength on a plane is determined linearly with the normal stress on the same plane:

Ir = S+pa, (2.16)

where S is the cohesion, and u is the coefficient of internal friction. The Coulomb criterion can
also be expressed with the major and minor principal stresses:

1 + sin # cos #o0 = 1+sin a + 2S (2.17)
1-sino 1-sin#

where # is the friction angle, and p = tan(6). The Coulomb criterion is plotted in or vs. U3 space
in Figure 2.19 (a).

Another widely used criterion is the Hoek-Brown criterion, which was proposed by Hoek and
Brown (1980). This is an empirical criterion that can be applied to both intact rock and rock
masses. It seems that this criterion is developed purely by curve fitting of conventional triaxial
compression data. According to this criterion, the conventional triaxial compression strength of
rock is expressed as:

a, = '3 + C0Om3 +s (2.18)

where Co is the uniaxial compression strength of the rock, while both m and s are material
parameters depending on how broken the rock mass is. For intact rocks, s = 1. The value of m
and s for different types of intact rock and rock masses can be found in Hoek and Brown (1980).
The Hoek-Brown criterion, when plotted in oa vs. o3 space, is a parabola (Figure 2.19 (b)).

The Griffith (1924) Criterion is based on fracture mechanics. It assumes that a rock specimen
contains many randomly oriented cracks. When subject to a certain stress field, tensile stresses
develop along crack boundary. Crack propagation initiates when the tensile stress along the crack
boundary reaches a critical value. The following is a reinterpretation of Griffith's (1924) stress
based failure criterion by Hoek (1980). Assuming that o1>o'3, for a particular crack oriented 0/
degree from ao direction (Figure 2.18), crack propagation starts when:

(a, sin' Pfl +3 cos2 fl)- V(,2 sin 2 fp + 2 cos 2 fl) = -2To (2.19)

where To is the magnitude of the tensile strength of the specimen, which is positive. Since cracks



are randomly oriented, the specimen fails in the orientation that satisfies Equation (2.19) first.
This critical orientation is:

cos/ =( 0 1 
-+"3 (2.20)

2(a- + a3)

This critical orientation only exists when o-+3 o3>0. If o-+3 o3<0, then 03<0 is required, and the
specimen fails in tension. Substituting Equation (2.20) to (2.19), the failure of the specimen
occurs at:

(01-03 ) 2 = 8T( + o) if r + 3 3 >0 (2.21)
a3 = -To  if o + 30 3 < 0

The Griffith criterion, using Hoek's reinterpretation, is plotted in the o• vs. o3 space in Figure
2.19 (c).

2.3.3 Soil Mechanics Models

The modified Lade criterion is based on the original Lade criterion, which was proposed by Lade
(1977) to describe the plasticity of soils. It was later expanded to describe the behavior of
concrete (Lade, 1982) and rock (Kim and Lade, 1984). This criterion takes the form:

(I,3 / ,' - 2 7 )(1I / pa) m = 771 (2.22)

in which p, is the atmospheric pressure in the same unit of the stresses, so that 'i/pa is a
dimensionless number. Tl and '3 are the first and third invariants of the transformed stress tensor,
where the normal stresses are transformed by:

O' = a, + aPal; = a, + apa; c = a, + aPa (2.23)

With this transformation, the modified Lade criterion produces non-zero cohesion when the
material is sheared with Ii = 0. Both m and r17 are material parameters. Lade (1993) suggested

that they can be determined by plotting (1,'3 / 13 -27) vs. (pa /I,') on a log-log diagram and

fitting a straight line through the data points. Lade (1993) evaluated this criterion based on
experimental data from many different rocks. In most of the case, the agreement is good to
excellent. Based on this evaluation, Lade (1993) suggested that typical values of the three

parameters are: a = 100, 1q7 = 106, and m = 1.0.

The modified Lade criterion describes non-linear pressure dependence at m > 0, and the
non-linearity is controlled by both r71 and m. In order to illustrate this point, the triaxial plane
cross-section for the combination of 717 = 106, 108 and m = 1, 2 are shown in Figure 2.20 (with a
= 100 in all combinations). Non-linearity seems to increase with increasing m and decreasing ri.
When 171 is as large as 108, both ro(Z) and ri80(Z) are very close to linear. Increasing m from 1 to
2 only brings in slightly more non-linearity. When 171 is reduced to 106, significant non-linearity
is obtained with the same increase of m. It is also shown that the tip of the failure surface is



located at Z = - a / 43 .The parameter a does not change the shape of the failure surface.

In the i7-plane, the modified Lade criterion has a curved triangular shape. This shape is
determined by a shape factor AP, which is defined as:

(Z) = SR1 (Z) (2.24)

The variation of fl with Z as specified by the modified Lade criterion can be calculated based on
the triaxial plane cross-section. The results are shown in Figure 2.21 for the same combination of
ri and m. The shape varies continuously with the value of A,. As shown in Figure 2.23. /A is
between 0.5 and 1. When Af = 0.5, the shape is a right triangle. When /A = 1.0, the shape is a
circle. According to Figure 2.21, A, approaches 0.5 at the tip of the failure surface, and it
gradually increases with increasing Z. Therefore, the n-plane cross-section of the modified Lade
criterion is close to a triangle at the tip, and gets more rounded with increasing Z. The rate of
variation, however, is dependent on the values of i71 and m.

The Matsuoka-Nakai criterion was first proposed by Matsuoka and Nakai (1974) based on the
concept of "spatial mobilized plane" (SMP). The mobilized plane is the plane where the shear to
normal stress ratio is maximized. Physically, it is the plane where soil particles are most mobilized
to move by friction. The orientation of this plane can be obtained by drawing a line tangent to the
Mohr circle (Figure 2.24 (a)). In a two dimensional case where only ol and o3 are considered, the
normal direction of the mobilized plane is (45 0+/"13/2) from the a, direction (Oq > 03 assumed).

r13 is the mobilized friction angle in this stress system. Because tan(45 0 +  / 2) = -Io, the

orientation of this mobilized plane can be obtained by drawing a line connecting 4& on the a'

axis and - on the o3 axis (Figure 2.24 (b)). It can be verified that the normal to this mobilized

plane, which is a line perpendicular to this line, makes an angle of (45°+r13/2) from the ao
direction. Mobilized planes can be obtained in the (o2, o3) and (01, o2) system following the same
procedure.

Matsuoka and Nakai (1974) extended this idea of three two-dimensional mobilized planes to one
spatial mobilized plane, which is the triangle enclosed by all three two dimensional mobilized
planes. A new yield criterion is proposed stating that soil fails when the shear to normal stress
ratio on the spatial mobilized plane reaches a critical value:

rSMP = 1 1 -9I, - K (2.25)
0

SMP 13

This expression can be rearranged to give the following simplified form:

I,,1 -kl = 0 (2.26)



in which k = 9(1 + K2). This is the first criterion to use all three stress invariants.

The failure surface of the Matsuoka-Nakai criterion is shown in Figure 2.22. This criterion
describes a linear pressure dependence with no cohesion. Therefore, on the triaxial plane, Ro(Z)
and Rls8 (Z) are both straight lines through the origin. Its it-plane cross-section is also a curved
triangle described by the group of curves in Figure 2.23. The Matsuoka-Nakai criterion matches
the Mohr-Coulomb criterion at all its six vertices (shown as point A through F in Figure 2.22).

The group of shapes shown in Figure 2.23 can be described by a uniform formulation. Bardet
(1990) proposed the LMN (Lade, Matsuoka-Nakai) dependence as a uniform way to describe the
shape of this group of curves. The LMN dependence defines the normalized shape of the 7n-plane
cross-sections with R'o = 1.0 and R'lso = As (with R' representing the normalized radius). Between
0 = 0' and 600, R'(0) is expressed by:

R'(0) = J ~p~i os (2.27)
2 / - f + 1 cos(0")

where I' is an intermediate variable defined as:

1 1 f27 f;(1- l,) 2r ---cos •' 27f ) c os 2 (3 ) - 1 if 0 09<-
3 6 2 (y -2 +1)' 601= (2.28)1 - 27 8,2(1 _8,)2 2

-cos -  cos'(30)-1 if - <<-
6 [2 (/, -fJ +1)' 6 3

This formulation describes the i7-plane cross-section of both the Lade criterion and the
Matsuoka-Nakai criterion, hence the name LMN dependence. When Als varies from 0.5 to 1.0, the
Equations (2.27) and (2.28) give the shape of the group of curves shown in Figure 2.23.

2.3.4 Mogi Type Models

Mogi, based on his true triaxial test results, found that when the data are plotted in the rct vs.
am,2 system, the strength of the specimen tested at different o3 and o2 nicely follow one line. He
thus proposed that a general failure criterion can be formulated as:

rt = f(o,,2) (2.29)

where ., 2 = .+1 + * This criterion later was widely accepted. For example, Al-Ajmi and2

Zimmerman (2005) proposed takingfto be a linear function roc, = a + br,2,, and termed this linear

Mogi criterion the Mogi-Coulomb failure criterion since it reduces to the Coulomb criterion

given a2 = O'3. Haimson and Chang (2000) used the power law function ro, = Aob., to fit theiroc b, o i hi



true triaxial tests data on Westerly granite, and found good agreement between the fitted curve
and the data.

The triaxial plane cross-sections of the Mogi type criteria are shown by two examples (Figure
2.25 (a)). The solid lines are based on the equation of Al-Ajmi and Zimmerman (2006),
describing the strength of Dunham Dolomite:

roc, = 58.32 + 0.5454a.,2  (2.30)

This equation describes a linear pressure dependence. The dashed lines are based on the equation
of from Haimson and Chang (2000), describing the strength of Westerly Granite:

t= 1 5 0~.89.= 1.51a,29 (2.31)

A non-linear pressure dependence is clearly seen.

The n-plane cross-section of these two criteria are shown in Figure 2.25 (b), at Z = 577.3MPa.
The shapes of these two criteria are very similar, even though they have very different
mathematical forms. Both of them are neither smooth, nor convex. In fact, this non-smoothness
and non-convexity seem to be common to the Mogi type criterion. Zhang and Zhu (2007), in an
attempt to extend the Hoek-Brown criterion to true triaxial stress, also obtained similar n-plane
cross-section for their model. Colmenares and Zoback (2002) showed that the non-convexity can
cause numerical problems for the uniqueness of the solution. In some cases, two values of o- can
be solved from these criteria at the same '2 and '3.

2.3.5 Drucker-Prager Type Models

The von Mises criterion was proposed by von Mises (1913) to describe the yielding of metals.
According to this criterion, failure occurs when the second invariant of the deviatoric stress
tensor reaches a critical value:

2 = k (2.32)

The n7-plane cross-section for von Mises criterion is a circle, because it does not depend on the
Lode angle. In addition, it is pressure independent since it does not depend on the volumetric
stress Ii.

Drucker and Prager (1952) introduced pressure dependence to the von Mises model. The
Drucker-Prager model writes:

S= ac + k (2.33)

This criterion describes linear pressure dependence. Its n-plane cross-section is still a circle, but
the radius of the circle increases with Z. The Drucker-Prager model is actually an extension of



the Coulomb criterion. If 2 = o3 is specified in Equation (2.33), it can be represented in the (r, 9,
Z) system by a line (Figure 2.26 (a)):

ro = -aZ + k (2.34)

Using the principal stresses, this can also be written as:
2 a+1 x/3ka, = -a 3 + -3 (2.35)

which can be identified with Equation (2.17). Therefore, the Coulomb criterion can be
represented by a straight line in the principal stress space, which is in the triaxial plane. The
Drucker-Prager criterion simply is a revolution of the line with regard to the hydrostatic line
(Figure 2.26 (b)).

Along this line, many other criteria were proposed following the function form of:

ra = f(a•,) (2.36)

Geometrically, this function describes a failure surface that is a revolution of a curve in the
triaxial plane, which represents the behavior under conventional triaxial tests. The n-plane
cross-sections of these models are circles. For example, Murrell (1963) extended the Griffith
theory to three dimensions and proposed that:

Tr, = 8T0cr, (2.37)

This criterion describes quadratic pressure dependence. Zhou (1994) presented a failure criterion
which reads:

S = A + Boa, + C.,, (2.38)

2.3.6 Other Models

Wiebols and Cook (1968) proposed an energy criterion to explain the effect of the intermediate
principal stress on the strength of rock. The basic assumptions of their theory are:
* The rock specimen is considered a homogeneous isotropic elastic material, with a large

number of uniformly distributed, randomly oriented, closed plane cracks.
* All principal stresses are compressive, so all of the cracks are closed. The coefficient of

sliding friction between the crack walls are a constant for all the cracks.
* The total strain energy stored in the rock specimen can be divided into two parts: the strain

energy of the same specimen subject to the same boundary conditions but with no cracks,
and the additional strain energy due to the existence of the cracks.

* The rock specimen fails when the additional strain energy reaches a threshold value.



An effective shear stress is then defined as:

eff =ITl-Hpn (2.39)

with a, = 12 + m2
2+n2 ' 3 and r 2 =l2a 1+ m2 - + n 2  - ,2 being the normal and shear stress

along a crack, where 1, m, n are the direction cosines of the normal to the crack surface with
respect to the principal stress axes. p is the coefficient of sliding friction between crack walls. If
reff is positive, then sliding occurs between the crack walls and additional strain energy is stored
compared with the non-cracked media. Wiebols and Cook (1968) then assume that the additional
strain energy due to the existence of one average crack is:

wý = k, if r > 0 (2.40)

where k is a factor obtained by averaging the contribution for all of the cracks. W, is summed
for all of the cracks in all orientations to obtain the effective shear strain energy Weff, which is the
strain energy contribution by the sliding of cracks. For a general stress state, this summation
process is performed by numerical integration with a computer. Failure is supposed to occur
when Wef reaches a critical value.

Figure 2.27 shows one example of Wiebols and Cook's results, with the coefficient of sliding
friction, ýt = 0.5. Co in Figure 2.27 is the uniaxial compression strength, which is used to
normalize the stress values. Some of the key observations are summarized below:

* For conventional triaxial tests, no matter 02 = 03 (CTC) or 2 = a0 (CTE), the strength a0
varies linearly with 03. As shown in Figure 2.27, along the lines of 02 = 03 and 02 = 01, a0

varies linearly with 03. This is not true for most of the rocks, since the a0 usually varies

non-linearly with 03.

* At any a3, the CTC strength is always smaller than the CTE strength, which agrees with the

observations of B6ker and Mogi.

* At a0 = 0, the ratio between the CTE strength and the CTC strength increase linearly with p.

* When 02 is increased from 03 to o0, the strength of the rock first increases and then

decreases, which again agrees with the many observations described earlier..

Wiebols and Cook (1968) qualitatively explained the effect of 02. However, the coefficient of
sliding friction p is hard to obtain.

Lundborg (1972) proposed a statistical theory to explain the effect of 02 on the strength of rock.
Similar to Wiebols and Cook (1968), the effective shear stress is defined by Equation (2.39).
However, in Lundborg's theory, p stands for the coefficient of internal friction, instead of sliding
friction. Lundborg's procedure also involves identifying the orientations with ff > 0. An
example was shown in Lundborg (1972) where a1 = 8kb, a3 = 1kb and p = 1 (Figure 2.28). The
orientation in which rf > 0 at different a2 levels are marked on a unit sphere by the area Q in



Figure 2.28.

Weibull (1939) defined the probability of rupture in tension with:

S(x) = 1 - exp(-kX) (2.41)

where x = fcrMdn, and k and M are material constants. Lundborg (1972) similarly defined the

probability of failure in shear in the same form but with the definition of Xbeing:

X = irdn (2.42)

where Q is the solid angle with zef > 0. The rock specimen is assumed to fail when the
probability S(x) reaches a critical value. If k is assumed to be a constant, then the rock specimen
will fail when X reaches a critical value. X can be calculated through Equation (2.42) with the
knowledge of p and M. An additional freedom of the model is provided by assuming p to be
function of the normal stress a,. Lundborg (1972) used the function:

0 = P (2.43)
1++ po0./ rx

where Ao is a constant and rx is the friction stress when oa, tends to infinity.

The strength variation with q2 at different M when p = 1 and o3 = 0 is shown in Figure 2.29.
Clearly, when M varies from 2 to infinity, different strength dependence on o2 can be described.
When M = 2, the Wiebols and Cook (1968) theory is obtained. When M = oo, the strength is
independent of o2.

2.4 A New True Triaxial Model for Intact Isotropic Rock

The models that were described in the previous section have been applied in different areas.
Colmenares and Zoback (2002) reported on a comprehensive evaluation of the predictive power
of some of the models. It seems that the modified Lade model (Equation (2.22)) can predict the
strength of different types of rocks reasonably well. The pressure dependence and Lode angle
dependence of this model have been analyzed in previous sections, and are shown in Figure 2.20
through Figure 2.23. It was also shown in the literature that the original Lade criterion captures
the isotropic failure behavior of soil very well. The original and the modified Lade criterion
differ only in their pressure dependence. While the original formulation has a linear pressure
dependence, in the modified criterion this dependence is non-linear. Therefore, it is reasonable to
believe that the predictive power of these models comes from their n-plane cross-section, which
is described by the LMN dependence.

In order to obtain a generalized model, it is desirable to separate the pressure dependence and the
Lode angle dependence, so that the n-plane cross-section of the Lade models can be used



together with any triaxial plane cross-section. The modified Lade model, however, has a coupled
pressure dependency and Lode angle dependency. The same parameters m and r71 define both the
triaxial cross-section and the ni-plane cross-section, as is evident from Figure 2.20 and Figure
2.21. With this coupling, any changes on the i-plane cross-section will inevitably affect the
triaxial plane cross-section. This seriously restricts the flexibility of the model, when more
complicated features are added to the n-plane cross-sections to describe the failure of anisotropic
rocks.

Apart from the desired flexibility of the model, there are other reasons why the pressure
dependence and the Lode angle dependence should be separately described. On the one hand,
these two dependencies have different physical backgrounds. Pressure dependency describes the
strength variation with octahedral stress. This is geometrically shown as the triaxial plane
cross-section. Lode angle dependency describes the strength dependence on stress path
orientation at the same octahedral stress. This is geometrically shown as the n-plane
cross-section. On the other hand, the data compiled seem to support that the shape of the it-plane
cross-section is not significantly affected by octahedral stress level.

The idea of separating these two dependencies will be explored in this section, and a new failure
criterion is proposed based on it.

2.4.1 Formulation of the Proposed Model

The idea of decoupling pressure and Lode angle dependence is not new. Desai and Salami (1987)
proposed the following functions for the yielding behavior of soft rock:

J =FbF = a v+y2I (1- _Sr) (2.44)

in which a, n, y, 8/ and m are material parameters, and a0o = 1 (but with the same unit as stress).

s, = Ff/ 2 is the stress ratio, which has the same role as the Lode angle. Clearly,

Fb = - n-" +y4/ describes the pressure dependence of the criterion. F, = (1 - S,)" describes the
a0

Lode angle dependence.

Hunsche and Albrecht (1990) used the following function to describe the failure of rock salt:

t o = f(ao,,)g(m)h(T) (2.45)

where m is the Lode parameter, and T is temperature. Obviously J(oot) describes the pressure
dependence, while g(m) describes the Lode dependence. h(T), on the other hand, describes the
variation of strength with temperature.



Aubertin and Simon (1996) proposed the MSDP criterion which writes:

,2= FOF. (2.46)

In this formulation, Fo describes the pressure dependence, with:

F0 = [(o'-ot)I, +-co'] forl <Ir  (2.47)

aI, +k for I, >2

where IT marks the point of brittle-ductile transition. When I, < IT, a non-linear pressure
dependence is specified, with oa, and ot being material parameters. When I, > IT, there is a linear
pressure dependence. F, describes the Lode angle dependence:

b
F, = (2.48)

/b2 + (1-b2) sin2 (450 -1.52)

Where b specifies the ratio R180/Ro, and A is the Lode angle.

Along the line of these models, it is proposed here that the separation should be obtained by two
different functions. The most direct way to obtain pressure dependence is through conventional
triaxial tests at different confining pressures. The measured strengths from these tests give one
branch of the triaxial plane cross-section Ro(Z) (Figure 2.17 (b)). It is found that power law
functions can usually be used to fit the data to obtain Ro(Z):

Ro (Z)= a Zb (2.49)

However, one can use any functional form that fits the experimental data, and physically makes
sense.

The shape of the n-plane cross-section is assumed to be described by the LMN dependence,
which is a group of curved right triangles with R'o = 1.0 (refer to Figure 2.23). As indicated
before, the shapes are normalized against R0. Under this assumption, the radius (the distance
between a certain point on the n-plane cross-section and the hydrostatic line) of the 7n-plane
cross-section at a certain Z level and a certain orientation 0is:

R(O,Z) = Ro(Z)R'(9)= Ro(Z )  (2.50)
2 1(Z)2 -fl(Z)+1 cos(O")

where R'(O) is the LMN dependence expressed by Equation (2.27), and 0" is the intermediate
variable defined by Equation (2.28). The shapes shown in Figure 2.23 will be frequently used in
this research, because they are applicable to both soils and rocks and because there is only one
parameter A, involved. Lade (1993) indicates that the shape of the 7n-plane cross-section may
change with the pressure level. The shape is closer to a triangle at lower Z values, and
increasingly resembles a circle with the increase of Z. This indicates that Af should be a function



of Z, as explicitly shown in Equation (2.50). While applying the proposed model to the existing
data sets, however, it will be shown that in most case 1A can be treated as a constant.

2.4.2 Application of the Proposed Model

The application of the model will be shown by a numerical example, based on Mogi's data on
Dunham dolomite (Table A.10). Since this model is constructed based on the idea of separation
of pressure and Lode angle dependency, there are obviously two steps when applying it. The first
step is to find the pressure dependence function Ro(Z). The second step is to determine the shape
factor Af in the LMN dependence.

Step 1: Determination of Ro(Z)

From Table A.10, the data in which the rock specimens fail in conventional triaxial stress states
(9= 0) are first retrieved and listed in Table 2.1. With the principal stresses at failure known, the
values of Ro and Z at failure can be calculated based on Equations (2.12) and (2.10). The results
are also shown in Table 2.1.

These data can be plotted in the Ro-Z system, as shown in Figure 2.30. It was found that a power
function can be used to fit the conventional triaxial compression data. In the case of the Dunham
dolomite, the pressure dependence can be expressed by:

R (Z) = 8.8637Z.6366  (2.51)

This gives one branch of the triaxial plane cross-section of the failure surface for Dunham
dolomite.

Step 2: Determination of Af(Z)

In order to obtain AV(Z), those data points in Table A.10 where the rock fails in true triaxial stress
state must be used. These data are collected in Table 2.2. For each data point, the failure stress in
the polar coordinate system (R,9,Z) is calculated. R and Z can be calculated with Equations (2.12)
and (2.10), as shown in Step 1. 0 can be calculated with Equation (2.14). Since this point
represents failure, it must be located on the n-plane cross-section of the failure surface. Then the
conventional triaxial strength Ro at this Z level is obtained from the power law function, Equation
(2.51). Normalizing R to Ro, a point (R/Ro,9,Z) on the normalized n-plane cross-section at this Z
level is obtained. To fully define the shape of the -n-plane cross-section at this Z level, a few data
points are necessary which have various 0 values from 00 to 600 (due to the six-fold symmetry).

Af value at this Z level can then be calculated by its definition (Equation (2.24)):

,(Z) = = R60(Z) (2.52)
&(z) RO(Z)



A may also be obtained visually by comparing the shape determined by the data points against
Figure 2.23, the group of shapes determined from LMN dependence. If, however, all the
normalized failure points fall on a unique n-plane cross-section regardless of their failure Z level,
then the shape of the nt-plane cross-section is indifferent to the Z value and /A can be taken as a
constant.

For Dunham dolomite, all the normalized data points are plotted on the n-plane in Figure 2.31.
Each data point fails a different Z value, ranging from 475 MPa to 900 MPa. However, after
normalization, all points indeed fall on a unique failure surface. A constant Af can thus be used in
Equation (2.50) to describe the strength of Dunham dolomite. Comparing the shape determined
by the data points in Figure 2.31 against Figure 2.23, /A is obtained to be around 0.74. The
7n-plane cross-section with Al = 0.74 is also shown in Figure 2.31. The final expression to
describe the strength of Dunham dolomite subject to a true triaxial stress state is:

R(O,Z) = 8.8637Z26366  (2.53)
2 0.742 -0.74+1 cos(O")

where 0' is a function of 0 specified by Equation (2.28). The strength of Dunham Dolomite, as
described by Equation (2.53), is compared with the experimental data in Figure 2.32.

It is important to note that the conventional triaxial compression data only covers Z values
around 150-560 MPa, while true triaxial tests cover a Z range from 475 to 900 MPa. Between
560MPa and 900MPa, the form of Ro(Z) shown in Equation (2.51) is not supported by any data
points. One should be cautious of its applicability in this range of Z values. Whenever possible, it
is recommended that more conventional triaxial tests should be performed to cover the entire
range of Z values at which the rock may fail.

It is also important to note that the data points in Figure 2.31 only cover 8 value from 0O to -30.
In order to define the n-plane cross-section with the least uncertainty, ideally the data should be'
distributed between 0O to -600. Again, caution should be exercised when the model predicts a
failure where 0 is between -30' and -600.

Most of the other data sets from true triaxial tests were processed in the same manner. The
pressure dependence functions Ro(Z) are fitted with power functions. Data with all three different
principal stresses are then normalized to the Ro value calculated from Ro(Z). The normalized data
are then plotted on the n-plane. For most of the data sets, a unique 7-plane cross-section can be
obtained. This indicates that the shape factor Af is either constant or it does not vary significantly
with pressure level. The data points and the predicted 7c-plane cross-section are plotted in Figure
2.33 through Figure 2.46. For most of them, it can be seen that the LMN dependence describes
the 7c-plane cross-section very well.

The pressure dependence function Ro(Z), and the parameter A, are tabulated in Table 2.3. In order



to show the quality of the data, three additional columns are included in the table:
* Z from CTC tests: This column gives the Z value range covered by the available

conventional triaxial compression data. The pressure dependence function Ro(Z) fitted with
these data is most reliable within this range of Z value. Outside of this range, one should be
careful about the applicability of the fitted Ro(Z) function.

* Z from TTT tests: This column gives the Z values that are covered by the true triaxial data.
* Minimum 61 In order to define the shape of the nt-plane cross-section, it is best to have data

points ranges from 8 = 00 to -600. However, none of the data set covers such a wide range.
The closer this minimum 0 is to -600, the better defined the shape of the 7n-plane
cross-section is.

In short, the closer the "Z from CTC tests" to the "Z from TTT tests", the better the quality of the
data, since Ro(Z) that is used to normalize the data is more reliable. The closer "Minimum 0" is
to -600, the better quality of the data, since it covers wider Lode angle.

To summarize, a true triaxial failure model for intact isotropic rock is proposed in this section,
based on the separation of pressure and Lode angle dependence. The application of this model is
shown through a numerical example. In order to obtain the necessary parameters, the results
from a few conventional triaxial compression tests and a few true triaxial tests should be
available. The prediction power of the model depends on the available data based on which the
model parameters are obtained. The conventional triaxial data should cover as wide a range of Z
values as possible, while the true triaxial data should cover 0values from 00 to 600.

2.5 Summary

The problem of isotropic intact rock strength was examined in this section, from the
experimental methods to the theoretical prediction. The experimental data where rock specimens
are subject to a polyaxial stress state were compiled. It seems that many different types of rocks
have been tested under a true triaxial stress state.

The modified Lade criterion seems to perform very well in predicting the strength of rock. In
order to preserve its predictive power while at the same time obtaining more flexibility, a new
criterion is proposed based on the separation of pressure dependence and Lode angle dependence.
The i-plane cross-section of the proposed model is the same as that of the modified Lade
criterion, while its pressure dependence is described by Ro(Z), which is obtained from
conventional triaxial compression tests. The proposed model is applied to most of the data that
were collected here.

For most of the rocks, it seems that the shape of the 7i-plane cross-section is not significantly
affected by pressure level. Therefore, fs can be taken as a constant. It was pointed out that the



accurate determination of A requires true triaxial tests.

Based on the data shown in Table 2.3, it seems that most of the rocks have a 7n-plane
cross-section with Af ranging from 0.55 to 0.75. This explains why the Drucker-Prager criterion,
which has a n-plane cross-section with A, = 1.0, does not predict the strength of rocks very well.



Table 2.1 Tests on Dunham Dolomite with Conventional Triaxial Stress State

U3 02 a Z 0 Ro
(MPa) (MPa) (MPa) (MPa) (0) (MPa)
0 0 265 152.998 0 216.372
0 0 258 148.956 0 210.656
25 25 400 259.808 0 306.186
45 45 486 332.554 0 360.075
60 60 540 381.051 0 391.918
65 65 568 402.99 0 410.698
85 85 620 456.107 0 436.826
105 105 682 514.996 0 471.119
125 125 725 562.917 0 489.898



Table 2.2 Tests on Dunham Dolomite with True Triaxial Stress State

C3 a2 aZ 0 Normalized R
(MPa) (MPa) (MPa) (MPa) (0)
25 66 475 326.78 -4.72593 0.99588
25 96 495 355.648 -8.05467 0.96085
25 129 560 412.228 -10.5628 0.97929
25 174 571 444.56 -15.3057 0.92861
25 229 586 484.974 -21.0517 0.88394
25 272 545 486.129 -28.3465 0.80848
45 97 570 411.073 -5.15681 1.00042
45 126 576 431.281 -8.13887 0.95959
45 160 606 468.231 -11.1887 0.94332
45 183 639 500.563 -12.8243 0.94841
45 240 670 551.37 -17.7521 0.91737
45 266 670 566.381 -20.405 0.8938
45 294 622 554.834 -25.4803 0.82692
65 117 638 473.427 -4.70642 1.00168
65 153 644 497.676 -8.10719 0.95539
65 208 687 554.256 -12.6783 0.93147
65 262 685 584.278 -18.1153 0.87587
65 318 746 651.828 -21.5609 0.8877
65 393 701 669.149 -31.0401 0.80662
85 128 684 517.883 -3.68951 0.9975
85 153 719 552.524 -5.6056 0.99722
85 233 744 613.146 -12.3581 0.92707
85 306 773 672.036 -18.3359 0.88839
85 376 818 738.431 -23.2173 0.87914
85 445 793 763.834 -30.5607 0.82529
105 167 778 606.218 -4.7808 1.00454
105 205 786 632.776 -7.81482 0.96637
105 270 863 714.76 -11.9442 0.96942
105 268 805 680.119 -12.8566 0.91935
105 334 824 729.193 -18.1632 0.88196
105 356 840 751.133 -19.6283 0.8803
105 415 822 774.804 -25.5338 0.83071
125 187 824 655.87 -4.59553 0.99387
125 239 860 706.677 -8.28489 0.96897
125 293 863 739.586 -12.5421 0.92047



125 362 897 799.053 -17.4362 0.89585
125 414 941 854.478 -20.4414 0.89807
125 463 918 869.49 -25.1311 0.85424
125 516 886 881.614 -30.9128 0.80974
145 253 883 739.586 -7.78638 0.94846
145 296 927 789.815 -10.4865 0.94668
145 324 923 803.672 -12.6888 0.91962
145 349 922 817.528 -14.6671 0.89936
145 392 1015 896.048 -15.9896 0.94417
145 410 1002 898.934 -17.5764 0.92214
145 455 952 896.048 -22.3799 0.85732



Table 2.3 Parameters of the Proposed Criterion for Different Rock Types

Z from Z from
Minimum

Rock Name Data Source Ro(Z)' f CTC2 tests TTT3 tests
(MPa) (MPa)

Dunham
Dolomite Mogi (2007) ro = 10.28Zo612  0.74 560 MPa 900 MPa -310Dolomite
SolnhofeniSonhofen Mogi (2007) ro = 23.09Zo.4" 0.75 400 MPa 820 MPa -460
Limestone

Yamaguchi Mogi (2007) ro = 5.331Zo.656  0.79 186 MPa 517 MPa -390
Marble
Mizuho

Mogi (2007) ro = 5.977Z0.65 3  0.75 367 MPa 573 MPa -55*Trachyte
ManazuruManazuru Mogi (2007) ro = 3.427Zos0 7  0.62 660 MPa 680 MPa -240
Andesite

Inada
Granite Mogi (2007) ro = 4.057Zo79' 0.6 1129 MPa 1200 MPa -12OGranite
Orikabe
Monzonite Mogi (2007) ro = 5.334Zo0 738  0.65 870 MPa 1210 MPa -160Monzonite
Westerly Haimson and

ro = 2.946Z0.8 46  0.57 700 MPa 890 MPa -190
Granite Chang (2000)
KTB Chang and

ro = 3.144Z0 824  0.63 835 MPa 1185 MPa -531
Amphibolite Haimson (2000)
Long Valley Chang and

ro = 7.084Z 0640  0.63 385 MPa 543 MPa -530Hornfels Haimson (2007)
Chelungpu Oku et al. (2007) ro = 3.243Zo.756  0.7 370 MPa 560 MPa -58O
Siltstone
Shirahama Takahashi and

ro = 7.1310 °.584  0.71 187 MPa 300 MPa -460
Sandstone Koide (1989)
Izumi Takahashi andmi Takahashi and ro = 3.017Z0.8 29  0.57 381 MPa 480 MPa -180
Sandstone Koide (1989)
Yuubari Takahashi and

a ro = 4.732Z0. 659  0.73 200 MPa 270 MPa -43OShale Koide (1989)
Note:
1: All Ro(Z) are fitted with power law functions.
2: CTC stands for conventional triaxial compression tests.
3: TTT stands for true triaxial tests.
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Figure 2.4 Thick-walled Hollow Cylinder
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Figure 2.5 Stress Distribution along the Wall of a Thick Walled Hollow Cylinder
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Figure 2.6 Hoskins' Thick-walled Hollow Cylinder Tests
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Figure 2.7 True Triaxial Tests Performed by Hunsche (Hunsche, 1990)
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Figure 2.10 Sketch of Mogi's True Triaxial Apparatus (after Mogi, 2007)
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Figure 2.14 True triaxial cell reported by Smart (1990)
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Figure 2.16 Three Dimensional View of Failure Surface in Principal Stress Space

1(1nfl

(a) x-Plane Cross-Section (b) Triaxial Plane Cross-Section
Figure 2.17 Cross-Sections of the Failure Surface

(c) Biaxial Plane Cross-Section

) 4J x

tItt
Figure 2.18 Assumption of Crack Orientation in Griffith Criterion



q,+

-2S Co C- -3
1 + sin 2 1

(a) Mohr-Coulomb Criterion (b) Hoek-Brown Criterion (c) Griffith Stress Based Criterion
Figure 2.19 Failure Criteria for Conventional Triaxial Tests (a) Mohr-Coulomb (b) Hoek-Brown (c) Griffith

P 7a 1 108

Z/Pa

2
1

0 50 100 150 200

200

150

100 p
'ip

50 i

z4 ~

-50

-100
-50

sdoPa

qi= 106

m 1

m 2
~ ; .. ... .. .. .. .... ... ... .................

Z/Pa

m1

0 50 100 150 200

(a) rq = 108
Figure 2.20 Triaxial Plane Cross-Section of Modified Lade Criterion

(b) i71 = 106

LUU

150

100

50

0

-50

1 Anf
-- 50
-50

·/
i tE



1.0 ......

0.9 ............

0.8 ..

0 .7 ......................

0.5
-50

......... ......... ........... .

i...

1.0

0.9

0.8 .

0.7

0.6

A AZ

0 50 100

m150 200

150 200

Tip--

(a) M = 108
Figure 2.21 Shape factor p, of Modified Lade Criterion

(a) 3D View

r180

(b) Triaxial Plane Cross-Section

17 106

,

m=1
- i

0 50 100 150 200

(b) 71 = 106

(c) x-Plane Cross-Section
Figure 2.22 Failure Surface of the Matsuoka-Nakai Criterion

I
r

-··t··-·-· -··--·-···-·;···;·- · ··;·;···· ;····

i

-·--··-·

J I 1-Sr

.. ~... . ... .... ... .... ... ... . . ~ .;~.;

Ii-
V.5

-50



Figure 2.23 it-Plane Cross-Section Specified by the LMN Dependence
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Figure 2.24 The SMP Concept by Matsuoka and Nakai (1974)
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Figure 2.31 Normalized Failure Points of Dunham Dolomite on the n-Plane with Ps = 0.74 (data from Mogi,
2007)
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Figure 2.32 Predicted Strength with Proposed Criterion for Dunham Dolomite (data from Mogi, 2007)
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3 Failure of Anisotropic Rocks

In the previous chapter, rocks are treated as isotropic materials. However, natural rocks are more
or less anisotropic, and isotropy is therefore only an approximation. Whether the strength of a
particular rock can be reasonably well described by isotropic models or not is only known after
extensive testing of the rock at different orientations. If it turns out that the strength strongly
depends on orientation, then an anisotropic strength model must be used to characterize its
strength. It is usually hard to identify rocks whose strengths are close to isotropic by visual
inspection. Rocks that are strongly anisotropic, however, may reveal its strength anisotropy
through various structural features that are easily identified. For example, shales are known to
have the bedded structure that is formed by sedimentation; slates can sometimes split along the
cleavage planes; schists may clearly show the elongated minerals, etc. For these rocks, an
isotropic failure criterion is usually inadequate.

Anisotropy comes from very different origins. For intact rocks, anisotropy can be generated from
the orientation of minerals or other textural features, and from stress history. For rock masses, the
anisotropy is more complicated due to the existence of large scale discontinuities. It is not the
intention of this thesis to study all these various types of anisotropy. In fact, the focus of this
research is on a particular type of anisotropic rocks, those that can be reasonably described as
transversely isotropic materials.

Many different geo-materials can be reasonably well described to be transversely isotropic, for
example, soft clay that has experienced one dimensional consolidation. The clay particles are
compressed in the direction of the consolidation, which makes this direction the privileged
direction of anisotropy. In the plane orthogonal to the direction of deposition, mechanical
properties are assumed to be isotropic. Many sedimentary rocks and some metamorphic rocks
can also be classified as transversely isotropic, for example, shales, slates, etc. In the case of
shale, due to the sedimentary process, shale usually possesses layered features, which is called
the bedding planes. The mechanical behavior is isotropic within the bedding planes, but is
different from that perpendicular to them.

For a transversely isotropic material, there is always a plane in which the mechanical behavior is
isotropic. This plane will be termed the isotropic plane in a general mathematical model. While
describing a specific data set, the isotropic plane will be referred as the cleavage plane, bedding
plane etc., depending on the materials that are under discussion. There is one privileged direction
of a transversely isotropic material, which is the normal to the isotropic planes. Therefore, the
behavior of a transversely isotropic material is orientation dependent.

The failure of anisotropic rock is a very complicated topic. The strength is not only a function of



the stress tensor, like the failure of isotropic rock, but also a function of the material structure. In
addition, there are different modes of failure that have been observed. This chapter summarizes
past efforts on characterization of anisotropic rock strength. The material of this chapter is
divided into two parts: experimental results and existing models.

The first part of this chapter presents experimental results on fifteen transversely isotropic rocks,
which belong to five different rock types: Slate, Phyllite, Schist, Shale, and Diatomite. The
experiments performed are mainly conventional triaxial tests, except for one rock (the Chichibu
Green Schist), where true triaxial test results are available. The variation of strength and failure
modes with isotropic plane orientation and principal stresses will be presented for each
anisotropic rock.

In order to present the test results in a clear and consistent manner, it is necessary to set up
coordinate systems. Two different coordinate systems are shown in Figure 3.1. The X1X2X3 system
is the principal stress system, where xl is the direction of the principal stress qo, etc. The STN
system is the material coordinate system, where N is the direction normal to the isotropic planes,
while the ST plane is the isotropic plane. In order to describe the relative orientation of the STN
system with regard to the x1x2x3 system, three angles must be specified. The angle between xl
and N is 0, while o stands for the angle between x3 and the projection of N onto x2X3 plane. The
orientation of N is completely defined by 0 and c. In order to fix the directions of S and T, X is
defined as the angle between T and the intersection of the ST plane and the x2x3 plane. Under the
assumption of transverse isotropy, the material behaves isotropically within the ST plane.
Therefore, the constitutive law should be independent of k.

In the case of the conventional triaxial tests, where 2 = 03, the angle co is irrelevant too, and the
orientation of the isotropic planes with regard to the principal stresses can be represented by 0
only. This is evident by setting the direction S and x2 to coincide (Figure 3.1 (b)). In Figure 3.2, a
triaxial specimen is shown to illustrate the orientation of the isotropic plane with regard to the
axial direction. Most of the experiments presented in this chapter are conventional triaxial tests,
where the configuration is the same as Figure 3.2. Instead of using 0 to describe the isotropic
plane orientation with regard to xi, many researchers use the angle between the isotropic plane
and xi, which is (7c/2 - 0). From now on, 0 is called the isotropic plane normal orientation, while
(7c/2 - 0) will be called the isotropic plane (or cleavage plane, bedding plane, etc.) orientation.
The isotropic plane orientation is denoted /1 following McLamore and Gray (1967). Figure 3.2
also shows the special cases where the isotropic planes are parallel and perpendicular to the axial
direction.

Existing anisotropic strength criteria are summarized in the second part of this chapter. Based on
how these criteria are derived, they are divided into four categories: empirical criteria,
continuous criteria, critical plane approach, and discontinuous models. Efforts were made to
show the interrelations between the different criteria.



3.1 Experimental Results on Anisotropic Rocks

3.1.1 Donath's Data

Donath (1964) reported a series of conventional triaxial tests on Martinsburg slate. The
specimens were prepared so that the cleavage plane orientation /8 = 0O to 900 with 150 intervals.
The specimens were ground at both ends to form perfect right cylinders. The specimens had two
different sizes. Larger specimens had 1 inch diameter and 2.5 inch length. They were subject to
three different confining pressures: 35, 105 and 350 bars. Smaller specimens had 0.5 inch
diameter and 1 inch length. They were subject to higher confining pressures: 500, 1000 and 2000
bars. For each combination of orientation and confining pressure, two tests were performed to
ensure the repeatability. The axial stresses at failure are compiled in Table B.1. The variation of
oa1 at failure with cleavage plane orientation and confining pressure is shown in Figure 3.3. At
any f value, the strength clearly increases with the confining pressure. At any confining pressure,
the strength variation with isotropic plane orientation /8 can be represented by a "U" shaped
curve with uneven shoulders, as is evident in Figure 3.3. Two local maxima are reached at P = 00
and 900. In the case of the Martinsburg slate, the strength at f = 900 is larger than that at / = 00.
The minimum strength is reached around 8 = 30°. This is most probably because of the slip
along the cleavage planes.

Donath (1964) also carefully described the failure mode of the specimens. It seemed that all of
the specimens were failed by shear faulting, so that one part of the specimen moved relative to
the other part along the fault. The shear faults were formed by either slipping along the cleavage
planes, or shearing across them (i.e. faulting through matrix material). The faulting process can
be brittle or ductile, depending on the level of confining pressure. The strike of the fault plane
was always parallel to that of the cleavage. It seemed that the fault orientation (the angle
between the fault plane and the axial direction) was very heavily dependent on the cleavage
orientation. The fault orientations at various confining pressures were measured and plotted
against the cleavage orientation in Figure 3.4. Any points that fall along the 450 line indicate the
fault orientation is the same as the cleavage plane orientation, and thus failure along the cleavage
plane is observed. The following phenomena are noted:

* p= 00: There is a wide scatter of fault orientations. At smaller confining pressure (triangular
symbols in Figure 3.4), the fault orientations are close to 00, so that the faults more or less
follow the cleavage. This is believed to be caused by tensile failure along the cleavage at
small confining pressure. The fault orientation is larger for larger confining pressure
(circular symbols), and it can get close to 300. In this case, the faulting is through the matrix
material.

* p = 150 to 300: For these / values, the cleavage planes are steeply inclined. At smaller



confining pressures, it seems that the specimens fails by slipping along a single cleavage
plane in a brittle manner. With increasing confining pressure, it seems that the failure mode
changes to slipping along multiple cleavage planes, and then to development of kink bands
(see Figure 3.5 for failed specimens with P = 150). The kink band is a zone where the
cleavage is rotated from its original orientation. Further deformation causes faulting within
and parallel to the kink band boundaries. It is obvious that large deformation occurs with the
development of kink bands. Therefore, it is a ductile type of failure. Figure 3.6 shows the
kink band on the cross-sections of failed specimens with increasing confining pressure. At
1000bar confining pressure, a very wide kink band can be identified in which the cleavage
planes rotate. At the two ends of the specimen, the cleavage orientation is not changed,
possibly because of the constraint of rigid platens. The width of the kink band gets smaller

with increasing confining pressure, as can be shown for specimens failed at 1600 to 2000bar.

* p = 450 to 750: In this range of cleavage plane orientation, the specimen can fail along or

across the cleavage planes. For / = 450, most of the specimens fail by slipping along the

cleavage planes (Figure 3.4). Again, slipping along single cleavage plane is observed for

smaller confining pressure, and multiple slipping for larger confining pressure (Figure 3.7).

With increasing /, the fault orientation deviates from the cleavage plane orientation (Figure

3.4) and is smaller than ,. Based on Figure 3.4, this deviation is larger for smaller confining

pressures. The fault orientation peaks around P8= 75.

* p = 90': The fault orientation is close to 300 regardless of the confining pressure. Therefore,

faulting only occurs through matrix material.

It is worth noting that the observed trend of fault orientation on Martinsburg slate may not be
applicable to other anisotropic rocks. For example, Donath (1961) reported the fault orientation
measured from Longwood shale specimens subject to 420bar confining pressure (Figure 3.8). It
seems the fault orientation remains close to 300 for any isotropic plane orientation larger than
300.

3.1.2 Hoek's Data

Hoek (1964) reported proportional triaxial compression tests on a South African slate.
Proportional triaxial compression tests were performed with the ratio 03/o0 being constant
through the entire test. Three different ratios were applied: o3/o1 = 0 (uniaxial tests), 0.113 and
0.171. A, the orientation of bedding planes, was from 00 to 900 at 150 intervals. The size of the
specimens was 0.85 inch diameter and 1.7 inch length. At any combination of P and 3/o"1, two
specimens were tested to check the repeatability of the results. The failure axial stresses are listed
in Table B.2, and plotted in Figure 3.9.



Since the tests reported are proportional triaxial tests, each curve in Figure 3.9 represent the tests
with a certain o3/jo ratio. Therefore, they are different from the curves shown in Figure 3.3 for
Martinsburg slate. Nevertheless, the general trends are the same. For each P value, the strength
increases with the stress ratio. At a certain stress ratio, the strength variation with p forms a "U"
shaped curve. The minimum strength is reached at p = 300. However, a description of failure
modes is not given by Hoek (1964).

3.1.3 McLamore and Gray's Data

McLamore and Gray (1967) investigated the behavior of three different anisotropic rock
materials: a fine-grained black slate (termed the Austin slate) and two types of Green River Shale.
The slate has "no discernible bedding planes within the material but cleavage was well
developed". Green River Shale is "composed of fine-grained calcite and dolomite particles
interbedded with a solid native high molecular weight organic material called kerogen". The first
type of Green River Shale has higher strength among the two and usually fails in a brittle manner.
The second type, on the other hand, is more ductile and fails after considerable plastic strain.

Conventional triaxial tests were performed on these materials. The final dimension of the triaxial
specimens was approximately 0.5inch diameter by 1.0 inch long. The confining pressure and the
bedding plane orientation were varied to observe strength anisotropy. The anisotropic strengths
for these three materials are plotted in Figure 3.10 through Figure 3.12. The numerical values of
axial stresses at failure are tabulated in Table B.3 through Table B.5. The basic trends are similar
to those of Martinsburg slate and South African Slate. However, there is something special for
the Austin slate. The cleavage plane orientation / where the minimum strength is reached
increases with the confining pressure, from 300 at 5000psi to around 400 at 40000psi. This is not
observed in the Green River Shale specimens.

McLamore and Gray (1967) also discussed carefully the observed failure modes and summarized
their observations (Figure 3.13). The failure modes that were observed are generally consistent
with those reported by Donath (1964). The "Shear" failure mode describes brittle failures either
along or across the bedding planes, at lower confining pressures. The failure mode "Plastic Flow
or Slip" along bedding planes in Figure 3.13 roughly corresponds to multiple slip along cleavage
planes in Donath's observations (for example, see failed Martinsburg specimen in Figure 3.7
with p = 450 and a3 = 1000bar). The "Kink Flow" failure mode describes the development of
ductile kink band.

All three different failure modes in Figure 3.13 were observed in the Austin slate specimens. At
confining pressures below 15000psi, brittle failure was observed. The fault developed along the
bedding planes for P = 100, 200 and 300. At larger confining pressures, the failure mode becomes



plastic flow along the bedding planes or kinking. McLamore and Gray (1967) also observed that
the kink zone usually have two parallel boundaries, and kinking occurred only at P = 100, 200
and 30', while plastic flow occurred for other orientations. Figure 3.14 shows the failed
specimens of slate, with p = 300 and various confining pressures.

All Green River Shale I specimens failed in the "Shear" failure mode. Figure 3.15 shows the
failed specimens of Green River Shale-1 at 15000psi confining pressure and various bedding
plane orientations. Specimens with P = 200 and 300 failed along the bedding planes at this
confining pressure. This rock seemed to be very brittle, and a small amount of plastic
deformation was only observed on specimens with 25000psi confining pressure.

All three failure modes were observed in Green River Shale II specimens. Figure 3.16 shows the
failed specimens with P = 100 at various confining pressures. As summarized before, the failure
mode changes from brittle failure to wide kink zone with an indistinct boundary, then to narrow
kink zone with a distinctive boundary. For specimens of P = 200 to 400, shear faulting occurs
along bedding planes, with multiple slip at higher confining pressures. For specimens with P =
600, shear faulting occurs across the bedding planes for lower confining pressures (1000 to
10000psi), while it follows the bedding planes for higher confining pressures. This is consistent
with the observations made by Donath (1964) (Figure 3.4 P = 600). For specimens with P = 900,
ductile shear fault develops across the bedding planes at a fault orientation of 340, for all
confining pressures larger than 5000psi.

3.1.4 Attewell & Sandford's Data

Attewell & Sandford (1974) reported on conventional triaxial tests on Penrhyn slate specimens,
with 1 inch diameter and 2.5 inch length. The cleavage plane orientation P ranges from 0O to 900
with 150 intervals. Six different confining pressures are applied: 0, 2000, 4000, 6000, 8000, and
10000 lb/in2. The measured peak strengths are listed in Table B.6 and plotted in Figure 3.17 (a).

After a shear fault is clearly defined, the axial stress is then reduced to obtain the post-peak
behavior, which is plotted in Figure 3.18. The post-peak strengths, when plotted against the
cleavage plane orientation 1, also produce "U" shaped curves. However, when comparing Figure
3.17 with Figure 3.18, it is clear that the post-peak "U" shaped curves are flatter. Therefore, the
post-peak strength anisotropy is much smaller than the peak strength anisotropy.

The shear fault orientations are plotted in Figure 3.19 against the cleavage plane orientation. It
seems that the shear faults roughly follow the cleavage planes for P = 150 and 300. At larger P
values, the shear fault orientation increases to between 300 and 400, then decrease slightly at P =
900. The trend is consistent with the observation of Donath (1964) on Martinsburg slate (Figure
3.5). However, the maximum shear fault orientation is smaller than that of Martinsburg slate.



3.1.5 Mogi's Data

Mogi (2007) reported on true triaxial tests performed on Chichibu green schist, with the true
triaxial apparatus described in Section 2.2.2.3. The experimental measurements were
summarized. Chichibu green schist is a macroscopically homogeneous green crystalline schist
with a distinct, dense foliation, from the Chichibu Mountain, west of Tokyo.

In true triaxial tests, the specimens were prepared so that four different loading modes were
performed (Figure 3.20). P is 300 for loading modes I, II and III. The difference between these
three modes lies in co, which defines the dip direction of the foliation planes. In mode I, the
foliation planes dip into o3 direction. In mode II, the dip of the foliation planes is 450 between o2
and a3. In this case, the angle between the side of the specimen and the trace of the bedding
planes on the specimen surface is P' ; 390 (see Figure 3.20, Mode II). In mode III, the dip
direction is in the o2 direction. Mode IV, on the other hand, has P = 900 so that the foliation
planes coincide with the X2X3 plane. For all the true triaxial tests, the minor principal stress is o3
= 50MPa. The principal stresses at failure are summarized in Table B.8. The failure al vs. o2 is
plotted in Figure 3.21 for all four different modes.

Conventional triaxial compression tests were also performed with mode I, II and IV specimens,
with the following confining pressures: 0, 25, 50, 75MPa. Since o2 = o3 in a conventional triaxial
test, Mode I and Mode II are essentially the same, and both correspond to [ = 300. Mode IV
specimens, on the other hand, correspond to P = 900. The principal stresses at failure in
conventional triaxial tests are summarized in Table B.7 and plotted in Figure 3.22.

It seems that most of the specimens failed in a brittle manner. Mogi (2007) showed the pictures
of failed specimens for Mode I, II, and IV specimens. In order to present their results in a clear
manner, Plane A and B in Figure 3.23 are defined as the two surfaces of the specimen that are
perpendicular to the o2 direction. Figure 3.24 shows a failed specimen of Mode I, where the
failure principal stresses (o-1, 02, o3) = (206MPa, 100MPa, 50MPa). A single, very even failure
plane is clearly observed, which is around 300 from the o' direction and dips into a3 direction.
Therefore, this failure plane most probably occurs along one of the foliation planes.

Failure is more complicated in Mode II, where the dip of the foliation planes is 450 between o2
and 03 directions. Figure 3.25 (a) shows the failed specimen with (ol, o2, o3) = (244MPa, 50OMPa,
50MPa). Although tested in the true triaxial apparatus, this is actually a conventional triaxial
stress state, which may explain why the images on Plane A and Plane B are more or less
symmetric. Multiple sub-parallel fault planes can be identified on both planes. The orientation of
these faults is close to p', which is the orientation of the trace of foliation planes (3' ; 390, refer
to Figure 3.20). Therefore, they most likely occur along the foliation. In Figure 3.25 (b) where
(•1 , a2 , a3) = (346MPa, 168MPa, 50MPa), the stress state is true triaxial. The faults are less



planar, and the fracture patterns on Plane A and Plane B are no longer symmetric.

In Mode III, where the foliation dips in a02 direction, the fault planes also dip in o'2 direction. This
clearly shows the influence of anisotropy features to the failure mode. If the rock were isotropic,
the fault planes should always dip in 03 direction. Unfortunately, no picture of failed specimens
is reported for this mode.

One failed specimen is shown for Mode IV (Figure 3.26). The fault plane seems to be well
developed and its orientation is about 300 to the ao direction. However, the failure surface does
not seem to be very planar. The reason may be that the fault is across the foliation planes.

Based on these experimental results, it is clearly shown that the orientation of the foliation plane
has a significant impact on the orientation of the shear fault in a true triaxial test.

3.1.6 Allirot and Boehler's Data

Allirot and Boehler reported conventional triaxial tests on diatomite specimens (Allirot and
Boehler, 1979). Their specimens had 39mm diameter and 78mm length. The bedding plane
orientation p ranges from 00 to 900 with 150 intervals. Six different confining pressures were
applied: 0, 0.5, 1.0, 2.0, 4.0 and 6.0MPa. However, only the strengths at 0.5, 1.0 and 2.0MPa
confining pressure were reported in Allirot and Boehler (1979). The strength variation with P at
these three confining pressures are listed in Table B.9 and plotted in Figure 3.27. A brief
description of the mineralogy of diatomite from Dolley (2000) is attached at the end of Table
B.9.

Allirot and Boehler (1979) also supplied the pictures of failed specimens with P = 900, 300 and
00 (shown as 0 = 00, 600 and 900 in Figure 3.28). At zero confining pressure, tensile splitting is
observed at P = 00 and 900, while faulting along the bedding plane is observed for P = 30° . For
non-zero but small confining pressures (less than 2MPa), the specimens fail in a brittle manner,
either across or along the bedding planes, depending on the value of P. For larger confining
pressures, ductile failures are observed. Kink bands can be observed for the specimen with P =
300 and 03 = 6MPa. The specimen with P = 00 and o3 = 4MPa obviously has experienced large
plastic deformation. It is very interesting to see that for o3 > IMPa, conjugate shear faults are
always observed on specimens with 0 = 00.

3.1.7 Aristorenas' Data

Aristorenas (1992) performed a series of tests on Opalinus and Lias ac shale samples. Two
batches of samples were used in the tests. One batch of samples was taken from the Diepflingen
and Wittinsburg boring sites of the Wisenberg tunnel project in Switzerland. The other batch was



from Erzingen in Southern Germany. The samples and their initial properties are listed in Table
B.10. The mineralogy of these samples is shown in Table B.11. The shale samples had an
average diameter of 7.9cm. They were received wrapped in thick aluminum foil and sealed with
wax. They were stored in a humid room until specimens were prepared for testing.

Several different types of experiments were performed, including isotropic consolidation tests,
K0 consolidation tests, and conventional triaxial tests. Shear strength data from the conventional
triaxial tests will be described below.

The conventional triaxial tests in this data set were performed with three conventional triaxial
apparati, one large high pressure triaxial cell and two small high pressure triaxial cells were used.
The large triaxial cell was developed by Bellwald (1990). The specimens for the large triaxial
cell have an average diameter of 8cm. The large specimens were directly cut from the samples, to
a length that was at least twice the diameter, by a disc saw. Lateral displacement was measured
by proximity sensors for large specimens. Since it takes a very long time for the large specimens
to reach full drainage, the large triaxial cell was used solely for undrained tests, and the small
triaxial cells were used for drained tests. The specimens for the small triaxial cell have an
average diameter of 3.6cm. They were cored from the bored samples with a diamond-tipped
coring device.

Based on the stress analysis for a circular tunnel in an isotropic elastic medium with an isotropic
in-situ stress (vertical and horizontal stresses are equal), one can assume that an element at the
crown or springline of the tunnel is subject to pure shear plane strain stress change (total stress)
due to excavation. Therefore, the total stress paths were selected to be pure shear, where both the
axial pressure and the cell pressure were changed so that the mean total stress remains constant.
The typical total stress path in compression is shown in Figure 3.29, where:

oc,  a oc, +2 q - 3  (3.1)2 2 2
with o1 being the axial stress, and 0-3 the lateral stress (in a conventional triaxial test, 02 = 3).

The specimen was first brought to a low effective octahedral stress (point A, 0.5MPa to 1.OMPa)
for saturation with a back pressure of 1.OMPa to 1.3MPa. The B-value was checked to confirm
saturation. The specimen was then consolidated (from point A to B) to its pre-shear stress state. It
was then sheared up to failure in pure shear (from point B to C). Three different combinations of
drainage and loading conditions were applied: undrained compression (UC), undrained extension
(UE) and drained compression (DC).

A total of 15 conventional triaxial shear tests were performed on Opalinus shale, of which 5 were
undrained compression tests, 4 were undrained extension tests, and 6 were drained compression
tests. The tests performed are listed in Table B.12. Each "Specimen ID" in this table is composed
of two parts. The first part stands for the sample from which the specimen was cut. The second
part shows the type of test performed on it. Only one test was performed on the Erzingen



specimens because they were not properly wrapped. Note that all the specimens have bedding
plane orientation (i.e. /) to be 900.

While performing the tests, however, some of the specimens did not strictly follow the stress
path shown in Figure 3.29, due to different practical reasons. In undrained extension tests,
specimens 26B-4(UE), 26B-6(UE), and ERZ4(UE) were not isotropically consolidated. In the
drained compression tests, specimen 26B-8(DC) was not isotropically consolidated. The ratio
between the confining pressure and axial stress during consolidation is defined by KA:

KA =U (3.2)

If the consolidation is performed so that the horizontal strain is zero, then KA is specifically
denoted as Ko. The values of KA and Ko are shown in Table B.12. In the five drained
compression tests, only two follow the pure shear stress path (Table B.12): 26B-6(DC) and
26B-8(DC). The other three are explained below:

* Specimen 23-1(DC) was sheared with Ap' = 0, where p' = (cr'+d 3)/2 is the MIT definition

of mean effective stress. The third load increment involved a lowering of the back pressure
by 0.5MPa to keep the back pressure smaller than the cell pressure. Otherwise, tensile

effective stress may be generated in radial direction.

* Specimen 23-5(DC) was sheared to simulate an undrained effective stress path.

* Specimen 23-9(DC) was aimed at determining the material's time dependent behavior at

60% and 98% of the estimated shear strength.

For all tests, the following results were reported in Aristorenas (1992):

* The total and effective stress paths (example shown in Figure 3.30 (a)). For undrained tests,
the effective stress path was obtained by the total stress minus the pore pressure, which was

directly measured in the tests.

* The shear stress vs. shear strain relationship (example shown in Figure 3.30 (b)). Here, the

shear stress is defined as:

q al -Us (3.3)
2

while the shear strain is defined as:

y = 1,1 - -31 (3.4)

Therefore, they are different from the axial stress-strain curves usually reported. For the
large specimens, the lateral strain E3 was directly measured. For the small specimens, the
lateral strain was back calculated from the volumetric and axial strains.

* For undrained tests, the development of excess pore pressure was reported (example shown

in Figure 3.30 (c)). For drained tests, the volumetric strain caused by shearing was reported.

* For drained tests, the volumetric and shear strains were reported against time, so that the



time dependent behavior can be studied. For specimen 26B-8(DC), variation of volumetric

and shear strains with time were also reported for its isotropic and anisotropic consolidation.
0 The modes of failure were described for different types of tests. Two different modes of

failure were observed in the tests, which are illustrated in Figure 3.31.

Table B.13 partly reproduces these results, for the purpose of strength analysis. The principal
effective stresses after consolidation and at failure, the excess pore pressure due to shearing, and
the failure mode recorded by Aristorenas are summarized. Since the isotropic plane orientation is
not varied, strength anisotropy due to material structure is not obtained from this data set.
However, this dataset is the only one that has pore pressure measurements. From Table B.13, it
can be seen that for most of the undrained shear tests, the excess pore pressure Au is negative.
This is very similar to the observations on highly over-consolidated clays. Considering that
Opalinus shale samples have a considerable clay content (refer to Table B.11), the models that
are developed for over-consolidated clay may be able to describe the behavior of this shale too.

In addition, this data set is the only one where conventional triaxial extension tests are performed.
Very interesting observations on different failure modes for triaxial compression and extension
were made by Aristorenas (1992). It is noted that specimens subject to undrained and drained
compression mostly fail in Mode A, which is characterized by the presence of one or more shear
faults (see illustration in Figure 3.31). Specimens subject to undrained extension tests, on the
other hand, fail predominantly in Mode B, where "fracture planes" develop more or less along
the bedding planes. On these fracture planes, local areas of smooth and rough surfaces are
observed. Aristorenas (1992) therefore proposed that the failure mechanism of Mode B maybe a
combination of shearing and tension, with some of the fracture planes failing by tension only.
This statement is supported by the principal stresses at failure. Based on Table B.13, it is evident
that the d'l at failure for all of the undrained extension tests are very small. In specimen
26B-6(UE), it is even negative, which clearly shows that tensile effective stress developed at
failure. Besides, it is also observed that Mode B failure occurs suddenly, which also hints that
tensile stress may be the major factor of failure.

3.1.8 Ramamurthy's Data

Ramamurthy (1993) reported experimental results on three different phyllites: a quartzitic
phyllite, a carbonaceous phyllite, and a micaceous phyllite. Uniaxial compression tests and
conventional triaxial compression tests were performed to obtain the compressive strength of the
phyllites.

The specimens used in triaxial tests were cubic specimens with 3.8cm side length. The
orientation of the foliation planes P took the following values: 00, 150, 300, 450, 600, 750, 900.
However, the real p can be a few degrees off these values because the foliation planes are not



perfectly planar. The strength data were reported with real P values. The following confining
pressures were applied: 0, 5, 15, 30, 50 and 70MPa. The four edges parallel to the axial loading
direction were rounded to prevent membrane rupture. Ramamurthy (1993) shows some of the
triaxial specimens (Figure 3.32).

The measured triaxial strengths are shown in Figure 3.33 through Figure 3.35 for all three
phyllites. The numerical values of these strengths are listed in Table B.14 through Table B.16.
Typical failure modes observed on the failed specimens were sketched (Figure 3.36). For
specimens with p = 00, tensile splitting develops at low confining pressure. Increasing confining
pressure partly inhibits the development of tensile fracture, so that shear faults across the
foliation planes and tensile crack along the foliation planes are both observed. For specimens
with p = 300 and 600, slipping along the foliation planes is observed for smaller confining
pressures. At higher confining pressure, the shear fault is step-shaped, composed of shear faults
both along and across the foliation planes. Specimens with P = 900 fails mostly by shearing
across the foliation planes. There is no information on whether failures are brittle or ductile.

3.1.9 Niandou's Data

Niandou (1994) reported on a series of tests performed on Tournemire shale specimens. These
tests were conducted at the University of Lille of France. The samples were taken from the
Tournemire site near Aveyron, France. Tournemire shale is from the Toarcian stage, Lower
Jurassic period. The mineralogy of Tournemire shale determined from X-Ray diffraction test is:
Argillite (clay) minerals: 55%, Quartz: 19%, Calcite: 15%, others: 11% (including dolomite,
siderite, feldspar, and pyrite). Among the clay minerals are Kaolinite 50%, Illite 30%, and Mixed
Layer Clays (Interstratified I/S) 15%, and Chlorite 5%. The water content of the material varies
from 4.5% to 8%. The porosity and density of the rock dried at different temperatures are shown
in the Table B.17.

Various experiments were performed on these samples, including isotropic compression tests,
conventional triaxial compression tests, and the proportional triaxial tests. The triaxial tests are
described here since they give shear strengths.

3.1.9.1 Conventional Triaxial Compression Tests

Conventional triaxial compression tests were performed on specimens of 37mm diameter and
75mm length. Each test is uniquely defined by the following three factors:

* Confining pressure: Varies between OMPa (uniaxial compression test) to 50MPa.
* Bedding plane orientation P: Varies between 00 to 900.
* Loading sequence: Three different loading sequences are possible, monotonic loading, cyclic



loading with partial unloading cycles, and cyclic loading with complete unloading cycles.
The entire matrix of different combinations of these three factors is shown in Table B. 18. Each of
these tests will be identified by the following notations:

Bedding plane orientation/Confining pressure/Loading sequence-Test Number
For example, 0/50/M-1 stands for a test with 8 = 0', confining pressure 50MPa, monotonic
loading test 1.

The axial strain rate for monotonic loading was a = 2.0x 10- 6 sec- 1, and that for load-unload

cycles was a = 4.5x10- 6 sec-1. The loading rate for force controlled tests was 1.86x10-3MPa

per second. The conventional triaxial tests were performed with the drainage line open to the
atmosphere. However, there was no fluid coming out of the drainage line, probably due to the
partial saturation of the specimens, or the small permeability of the shale. The saturation of each
specimen was not checked.

Three strain gauges were applied on each specimen. Figure 3.37 shows their configuration for a
general bedding plane orientation. Gauge 1 measured axial strain El. An LVDT was also used to
measure the axial deformation of the sample. Both the gauge strain and the LVDT strain were
reported by Niandou (1994). When the axial loading direction is not perpendicular to the bedding
planes, the lateral strains are anisotropic. Gauge 2 measured strain in x2 direction, which was also
the strain in S direction. Gauge 3 measured the strain in x3 direction, which was the strain in NT
plane. In a triaxial compression test, the two lateral strains are generally different, with e3 < 62

(positive in compression).

For all conventional triaxial tests, the stress-strain curves were reported in Niandou (1994),
including the axial strain (measured by gauge and LVDT), two lateral strains, and the volumetric
strain. Pictures were also included for some of the failed specimens. LVDT strain measurements
were only reported for tests with monotonic loading and for complete unload cycles.

Sample stress-strain curves are shown in Figure 3.38 (a) and (b), for a specimen with /= 900 and
0 3 = 30 MPa. Strains measured from strain gauges are shown in Figure 3.38 (a). They seem to
give better measurements during specimen deformation, and are less affected by the seating
problems than the LVDT measurements. LVDT measured strains are shown in Figure 3.38 (b).
LVDT tends to give downward convex stress strain curves during initial loading due to seating
problems. However, strain gauges ceased to work after the peak, where major fractures are likely
to be created in the specimen, and the strain is localized. The LVDT can still give post-peak
stress strain curves, which is the only source for post-peak behavior.

Peak strength and post-peak strength are read from the stress-strain curves, and are compiled in
Table B. 19 and Table B.20. When there are multiple tests for the same experimental settings, the



strength values are averaged. As explained before, post-peak strengths are only available for tests
where LVDT strains are reported. The peak strengths are plotted in Figure 3.39. The post-peak
strengths are plotted in Figure 3.40, for confining pressures of 1 and 20MPa only. Comparing
Figure 3.39 and Figure 3.40, it is evident that the variation of the post-peak strength with P is
much smaller than that of the peak strength. In fact, the post-peak strength "U" shaped curves are
so flat that they are almost independent of p. The post-peak strength, therefore, is less anisotropic
than the peak strength.

3.1.9.2 Proportional Loading Triaxial Compression Tests

In this group of experiments, the ratio between the axial and lateral stress is kept constant for the
entire loading process. The way this loading path is achieved is by a stepwise approximation.
First, both o3 and a, were set to zero. Then a3 is increased by a small increment Ao3 (5bars or
10bars). Then oa is increased by KAo3, where K is the desired ratio. This stepwise approximation
is shown in Figure 3.41.

This type of test was only performed for specimens with P = 00 and 900, with the following K
values: 1.5, 2.5, 3.5, 5, and 8. For the tests with K no greater than 2.5, the specimen was not
failed even if 03 reached the limit of the equipment (o0 = 60MPa), because the amount of shear
stress is not adequate. These specimens were then brought to failure by reducing o3 while
keeping a1 constant, i.e. following the horizontal dotted line shown in Figure 3.41.

The stress-strain curves are reported for these tests. However, the failure stresses cannot be
obtained from these curves.

3.1.9.3 Unloading Triaxial Compression Tests

In this group of test, the stress on the specimen is first raised isotropically to a high level. Then
ao is kept constant while o3 is decreased to bring the specimen to failure. These tests, therefore,
are triaxial compression unloading tests. This type of tests was also only performed on specimens
with 0 = 00 and 900. The initial isotropic stresses were 30MPa, 50MPa and 60MPa. In the case of

30MPa initial isotropic stress, the specimens were not failed even if a3 is reduced to OMPa.

The pictures of some of the failed specimens are reported in Niandou (1994). Niandou (1997)
summarized the observed failure modes in a sketch (Figure 3.42). It seems that for smaller P (00
< p < 150), failure occurs by tensile splitting at smaller confining pressures, and by shear across
the bedding planes at higher confining pressures. For 150 < P < 600, failure generally occurs by
slipping along the bedding planes. However, at larger confining pressures, shearing through the
matrix material is also possible. For 650 < P < 900, the specimens usually fail by shearing across



the bedding planes, and the shear fault orientation increases with confining pressure.

3.1.10 Behrestaghi and Nasseri's Data

Behrestaghi (1996), Nasseri (1997) and Nasseri (2003) reported various tests on Himalayan
schists. Four different varieties of schists were obtained from the Himalaya region: Quartzitic
schist, Chlorite Schist, Quartz mica schist and Biotite schist. The specimens had a size of 3.8cm
diameter and 7.6cm length. The foliation plane orientation P ranges from 00 to 900, with 150
intervals (Figure 3.43). The specimens were oven dried at 1050C for 24 hours. The specimens
were tested with the following confining pressures: 5, 15, 35, 50 and 100MPa. The triaxial
strengths for all of the schists are summarized in Table B.21 through Table B.24, and plotted in
Figure 3.44 through Figure 3.47.

3.1.11 Duveau et al.'s Data

Duveau et al. (1998) assessed the predictive power of a few anisotropic failure criteria, based on
the conventional triaxial tests on a middle Ordovician schist from Angers, France. A total number
of 78 triaxial compression tests were performed. Most of the specimens have isotropic plane
orientation of 00 to 900 with 150 intervals. The rest of the specimens may be a few degrees off
these orientations. The confining pressures were 0, 5, 10, 20, 30 and 40MPa. The raw data are
plotted in Figure 3.48 (a). It can be seen that for each combination of confining pressure and
foliation plane orientation, more than one test may have been performed. In this case, an
averaged strength was reported for this combination. The averaged strengths are reported in
Table B.25 and plotted in Figure 3.48 (b).

Duveau et al. (1998) described the failure modes that were observed from the tests. At smaller
confining pressure, specimens with P = 00 are dominated by tensile splitting. Increasing the
confining pressure causes a mixed mode of failure, where both shearing through the matrix and
tensile splitting along foliation planes can be observed. Specimens with P = 900 usually fail by
shear faulting through the matrix, and the fault orientation is usually 250, regardless of the
confining pressures. Slipping along the foliation planes usually occurs for 3 between 300 and 60".
For other foliation plane orientations, both slipping along the foliation planes and shearing across
them can be observed.

3.1.12 Summary

Experimental results, mainly from conventional triaxial compression experiments, are obtained
from the literature and compiled in this section. In addition to conventional triaxial compression
experiments, proportional triaxial compression and true triaxial compression results are also



presented, if available. Five different types of anisotropic rock are involved:
1. Slate: Martinsburg slate, Austin slate, Penrhyn slate, South African slate each reported in a

different reference.
2. Phyllite: Quartzitic phyllites, Carbonaceous phyllites, Micaceous phyllites, all from one

reference.
3. Schist: Quartzitic schist, Chlorite schist, Quartz Mica schist, Biotite schist, Angers schist.

The first four are from one reference, and the Angers schist from another reference.
4. Shale: Green River shale I, Green River shale II, Tournemire shale, Opalinus shale. The first

two from one reference and the other two from two references.
5. Diatomite.
The axial stresses at failure are tabulated in Appendix B for all different anisotropic rocks, and
are plotted against the isotropic plane orientation P. It can be seen that the variation of the failure
axial stress with 3 forms a "U" shaped curve, regardless of the type of rock. However, the shapes
of the "U" shaped curves vary with the confining pressure for certain types of rock. Since there is
only one Diatomite tested, it is unlikely to give any general conclusions regarding its strength.
Therefore, only the other four rock types will be analyzed here.

3.1.12.1 Geometry of the "U" Shaped Curves

In order to capture the geometry of the "U" shaped curves, two ratios are defined. One ratio is
(o- -o-3)0o(0 -1 )o ' which is the unevenness ratio. This ratio describes the strength difference between P

= 00 (i.e. axial direction of specimen parallel to isotropic planes) and P = 90 ° (i.e. axial direction
of specimen perpendicular to isotropic planes). Geometrically, it shows how uneven the two ends
of a "U" shaped curve are.

The other ratio is min(o - • 3) , which is the depth ratio of the "U" shaped curves. The maximum
max(a1 -a 3)

strength max(ao - o3) can be obtained either at P = 00 or at P = 900, whichever is larger. In a
geometrical sense, this ratio shows the relative depth of the "U" shaped curve. This ratio does not
have a very clear physical meaning, because the minimum strength min(a1 - o3) can be obtained
either by failure along the isotropic planes or across them.

The two ratios are calculated for each "U" shaped curve, and then plotted against the confining
pressure for each group of rocks.

Figure 3.49 shows the variation of unevenness ratio with confining pressure for different types of
rocks. Some interesting observations can be obtained by examining these plots:
* The unevenness ratio can be larger or smaller than 1 for all four rock types, which means

that maximum strength can be obtained either at P = 00 or at P = 900.



* This unevenness ratio is insensitive to confining pressure for shales, and relatively
insensitive to confining pressure for slates. Although it varies a little (for both shales and
slates) when confining pressure is increased from 0 to around 50MPa, continued increase of
the confining pressure has very small effects on the ratio. At high confining pressures (150 to
200 MPa), the unevenness ratio is between 0.8 to 1.2.

* For most rocks in the phyllite and schist category, the unevenness ratio seems to increase
with confining pressure. It varies with confining pressure up to 100MPa (but no data are
available beyond that). The unevenness ratio moves toward 1 with increasing confining
pressure, and the rate of change decreases. As a result, the unevenness ratios are quite close
to 1 for these two types of rocks at high confining pressure (around 100MPa). For example,
the last data points for all the schists and two of the phyllites are between 0.9 and 1.

These observations may indicate that the anisotropy has two components. One component is
effectively reduced with increasing confining pressure. The other, however, is not sensitive to the
confining pressure change. For shales and slates, the second component is predominant, while
the first component predominates for phyllites and schists. At this stage, it is very difficult to
associate these two components with the mineralogy and structure of the rocks.

Figure 3.50 shows the variation of the depth ratio with confining pressure for different types of
rocks. Again, some interesting observations are summarized:
* For all the rocks, the depth ratio increases with confining pressure.
* Apart from the Angers schist, the depth ratio is the smallest for all slates, and the Micaceous

phyllites. This indicates that there is some mechanism that seriously decreases the overall
strength from the matrix strength (obtained for P = 00 and 900). For slates, this mechanism is
most probably related to the well developed cleavage planes, so that at a certain P (usually
between 30' and 450), it is the shear resistance along the cleavage planes that controls the
strength. For Micaceous phyllites, it can be the mica plates, which is a platy mineral with
very smooth surfaces. It is not clear why Angers schist has such a low depth ratio (around
0.1).

* For all other rocks, the magnitude of this ratio is comparable. It increases from 0.4-0.6 at 0
confining pressure, to 0.6-0.8 at larger confining pressures (between 100MPa to 200MPa).
The rate of increase decreases with increasing confining pressure.

As a result, it seems that the "U" shaped curves for a certain rock gets shallower with increasing
confining pressure.

Obviously, the closer these two ratios are to 1, the smaller the anisotropy is. Based on these
observations just summarized, it seems that increasing confining pressure does decrease the
degree of anisotropy for most of the rocks.



3.1.12.2 Failure Modes

Many different failure modes have been observed from the failed specimens. These failure
modes have been presented in the previous part of this section. These failure modes are
summarized in Table 3.1. It must be noted that the division of confining pressure and P is
somewhat arbitrary and it is only in a relative sense. For example, medium confining pressure for
one rock can be high confining pressure for another rock.

For two different rocks (Penrhyn slate and Tournemire shale), the post-peak strength is also
available. It has been shown that the anisotropy for the post-peak strength is weaker than that of
the peak strength.

It has been stated at the beginning of this thesis that failure of rocks is a very rich topic. The
failure modes shown in Table 3.1 are summarized from previous research, and therefore can only
be regarded as a rough guideline. In reality, the true failure mode of a specimen is only known by
carefully examining the specimen after failure. For example, Figure 3.51 (a) shows a shear fault
that is non-planar. In this case, even if the fault orientation and the isotropic plane orientation are
very close to each other, it does not indicate a slip along the isotropic plane. On the other hand,
Figure 3.51 (b) with a close to planar shear fault, most probably failed by slipping along the
isotropic planes.

3.2 Anisotropic Failure Criteria

The experimental work reported in the literature was compiled in the previous section. The
results cover many different transversely anisotropic rocks. The strength of the anisotropic rock
varies with the isotropic plane orientation, with minimum strength attained around P = 300-400.
It was also shown that different failure modes are possible for anisotropic rocks. It can be brittle
or ductile. Shear faults can occur along the isotropic planes or across them. Tensile splitting can
occur at small confining pressure. The failure of anisotropic rock, therefore, is a very
complicated problem. Nevertheless, there have been long standing efforts of characterizing the
failure strength and failure modes with theoretical models. These models and their development
will be reviewed in this section.

Duveau et al (1998) classified the widely used anisotropic failure criteria into three categories:
the mathematical continuous criteria, the empirical continuous criteria, and the weakness plane
criteria. Duveau et al (1998) also compared the predictions of some of the failure criteria with the
conventional triaxial experiments on a schist from Angers, France. The organization of this
section roughly follows Duveau et al (1998)'s classification. However, the existing criteria are
classified into four categories: Empirical Approaches, Continuous Criteria, Critical Plane
Approaches, and Discontinuous Criteria.



The empirical approaches are introduced first. These approaches are based purely on the
observation of anisotropic strength of rocks in conventional triaxial tests. They aim at fitting the
variation of strength with isotropic plane orientation, rather than explaining the physics behind it.
As a result, they are simple but cannot be extended to more complicated scenario.

Continuous criteria are introduced next, where failure is described with a continuous failure
surface in the stress space. There are many different ways to construct a continuous criterion.
The most rational and rigorous approach seems to be based on the tensor representation theory. It
is a general theory that is applicable to the description of both strength and stress-strain behavior.
It gives the necessary conditions a constitutive law must satisfy, and the general forms that the
constitutive law must take. Therefore, the tensor representation theory approach is first
introduced. Other ways of constructing a continuous criterion include extending the existing
isotropic criterion, or reducing from a general form of criterion. Many of these criteria seem to
be originally proposed to characterize the failure of composite materials. Some of the composite
materials, like glass-fiber reinforced plastic, are also transversely isotropic. The failure modes
observed in the experiments on these materials are quite similar to those observed in rocks. This
gives a physical basis to apply these models on rock strength anisotropy.

The critical plane approach is introduced next. This approach assumes that failure occurs through
planes, and a failure function is assumed for planes at different orientations. The form of this
failure function is usually the same for all planes. However, the parameters can vary
continuously with plane orientation. The direction of the plane which first satisfies this failure
function is called the critical direction, which must be found by maximizing the failure function.
The failure of the material is then identified with the failure along the critical plane. This method,
therefore, gives both the failure strength and the failure direction.

Discontinuous criteria are finally described. These criteria assume that different types of
discontinuities exist in a matrix material, for example, joints and cracks in rock. Failure occurs
when joints start to slip, or cracks start to propagate. Under certain assumptions, for example
randomly oriented cracks, this method is similar to the critical plane approach, because the crack
orientation that propagates first needs to be identified, which is the critical orientation. However,
there are still important differences between the critical plane approach and the discontinuous
approach. In the critical plane criteria, the plane defines the orientation of failure. Before failure
occurs, the material can be a continuous medium. In the discontinuous criteria, however, the
discontinuities exist even before failure occurs.

The coordinate system that is set up in the previous section will again be used in this chapter, for
consistent presentation. The STN system is a material coordinate system. In case of transverse
isotropy, S and T are in the isotropic plane while N is the normal. In case of orthotropy, S, T and
N are the three principal directions of anisotropy. x1x2x3 is the principal stress system, which is



aligned with the principal stresses 0 1, 02 and q3.

3.2.1 Empirical Criteria

The criteria in this category are proposed based on the observation of the conventional triaxial
compression strength variation with isotropic plane orientation. Different functional forms are
proposed to produce the "U" shaped curve, and any shoulders that it may have. The material
parameters in these models are obtained from curve fitting. Consequently, these criteria have
little or no physical significance, and are only applicable to conventional triaxial compression
strength.

3.2.1.1 McLamore and Gray's Approach

In an attempt to extend Jaeger's Variable Cohesive Strength Theory (introduced later in this
chapter), McLamore and Gray (1967) proposed that the cohesive strength of a specimen can be
expressed by:

S = A, - B,[cos 2(, -f ,)] n  for 0< <P (3.5)

S= A2 -B 2[cos2( - fl,)] n  for •, < fl <900

where i,, is the orientation of isotropic planes where S takes its minimum. It usually has the
value of 300. A and B's are constants describing the variation of S over the two ranges. The factor
n determines the shape of the curve. Smaller n values produce "U" shaped curves, while larger n
values give "U" shaped curves with shoulders. The coefficient of internal friction p is also
supposed to vary with the same type of law:

u = Cý - D,[cos 2(f- p')]" for 0<fl <P"  (3.6)
u= C2 -D,[cos2(fl3-f',)]" for fl' <0 <900

The strength of the specimen at a certain orientation of isotropic planes can then be obtained by
invoking the Coulomb law, with the orientation dependent cohesion and friction.

McLamore and Gray (1967) applied their criterion to the experimental data on the Austin slate
(shown in Figure 3.10). At any orientation P, the values of pt and S can be obtained by plotting
the Mohr failure circles at different 03 and constructing a linear envelope over all the Mohr
circles. McLamore and Gray (1967) reported the variation of ýt and S with P for Austin slate
(circular and triangular symbols in Figure 3.52 (a), where the cohesion is denoted by ro). The
parameters in Equations (3.5) and (3.6) are obtained by curve fitting, so that:

p = 0.600 - 0.280 [cos 2(/ - 500)]; S = 9440 - 5600 [cos 2(/ - 300)]3 (3.7)

The fitted functions are shown in Figure 3.52 (a) as a dashed line for the coefficient of friction,
and as a solid line for the cohesion. The predicted strengths based on Equation (3.7) are



compared with the measured strengths in Figure 3.52 (b), for confining pressures of 5000psi and
20000psi.

3.2.1.2 Ramamurthy et al.'s Approach

Ramamurthy and coworkers (Ramamurthy, 1993) proposed a nonlinear strength criterion for
intact isotropic rocks in conventional triaxial compression:

I3= B (E' (3.8)
0"3 U3)

where a• is the uniaxial compressive strength. Bi and al are material parameters that are obtained
by fitting the experimental data. Ramamurthy indicated that this expression should only be
applied at confining pressure o3 > 0.05a,-. This nonlinear criterion was later extended to describe
the dependence of conventional triaxial compression strength on isotropic plane orientation. At a
certain orientation f, the strength of the anisotropic is expressed by:

J - 3  Ia,- C - (3.9)

where o'j is the uniaxial compression strength at this orientation. Bj and aj are also parameters
specific to this orientation, and they can be obtained from o':

a= oB = g a 0B 1  (3.10)

where the subscript 90 means the corresponding parameters at P = 900. The variation of the
uniaxial compression strength oc with p is proposed to be:

ucj = A1 - D [cos 2(300 - f)] for fl between 00 and 300

a = A2 -D2[cos 2(300 - )] for fl between 30* and 900

where A's and D's are parameters that must be obtained from curve fitting.

While applying this criterion, a few uniaxial compression tests at different P values are necessary
to obtain the parameters involved in Equation (3.11). Ramamurthy (1993) recommended that
three uniaxial tests at p = 00, 300, 900 can be used to determine the parameters in Equation (3.11).
The determination of a90 and B90 in Equation (3.10) requires a minimum of two conventional
triaxial tests on specimens with P = 900. Once these parameters are obtained, Equation (3.9) can
be applied to predict the strength of transversely isotropic rocks. Ramamurthy applied this
approach to a few different data sets. Figure 3.53 shows its predicted strength for Penrhyn slate,
tested by Attewell and Sanford (1974).



Hoek and Brown's Approach

Hoek and Brown (1980) modified the original Hoek Brown criterion to describe anisotropic rock
strength. It is proposed that the two parameters m and s shown in Equation (2.18) must vary with
the isotropic plane orientation fl. By a process of trial and error, Hoek and Brown (1980)
proposed that:

m = m90[1- N, exp(-0) 4]; s = 1- P exp(-') 4  (3.12)

where m90 is the value of m for intact rock with P= 900. 0and ýcare defined as:

= - . f , (3.13)
N2 +N3 ' P2 +P3P

in which &m and f• are the orientation where m and s are minimum, respectively. All the N's and
P's are constants, which must come from fitting the experimental data.

Hoek and Brown (1980) applied this approach on the slate tested by McLamore and Gray (1967),
and reasonable agreement was achieved. Nevertheless, Hoek and Brown (1980) pointed out that
the agreement is not surprising because the number of parameters is large, and questioned the use
of this model in practice.

3.2.2 Continuous Criteria

3.2.2.1 Tensor Representation Theory

The application of tensor representation theory in describing the yielding and failure of
anisotropic material is mainly reported by Boehler and coworkers. They performed a series of
theoretical and experimental works on anisotropic material behavior. To name a few of them,
Boehler and Sawczuk (1976, 1977) thoroughly examined the formulation of yield criteria for
transversely isotropic bodies based on tensor representation theory. Boehler and Raclin (1985)
reported the experiments on glass-fiber reinforced composites, and proposed a failure criterion
for this type of material. Allirot and Boehler (1977, 1979, 1981) reported experiments on a
diatomite, and on a corresponding failure criterion. These experimental and theoretical efforts
were later summarized in Boehler (1987).

Tensor representation theory treats the basic problem of representing a tensor as a function of
other tensors. Since a constitutive law links the stress tensor with the strain tensor, both of which
are symmetric second order tensors, it is of interest to study the following function form:

T = F(D,M) (3.14)

where both T and D are symmetric second order tensors. One of them is identified with stress,

3.2.1.3



and the other is identified with strain (or stress and strain increment). M is the structural tensor,
which describes the symmetry of the material. It is also a symmetric second order tensor. In the
case of transverse isotropy, for example, the privileged direction is the isotropic plane normal n,
which can be represented by [0,0,1] in the STN coordinate system. The material structure M can
be expressed by the following tensor in the STN system:

M=nn= 0 0 0 (3.15)
0 01

In order for Equation (3.14) to be a constitutive equation, it must first satisfy the Principle of
Isotropy of Space, which means that the equation is objective and it does not change when the
coordinate system changes. If Q stands for any rigid body rotation, then under this rotation the
tensors in Equation (3.14) can be transformed:

T'= QTQT ; D'= QDQ T; M'=QMQT ; (3.16)

The Principle of Isotropy of Space is the mathematically expressed as:

F'(D, ) = F(D', ') (3.17)

Equation (3.14) must also satisfy the requirement of material symmetry. For example, a
transversely isotropic material has rotational symmetry with regard to its privileged direction
(normal to the isotropic planes). Therefore, the constitutive equation must be invariant to any
rotation with regard to the privileged direction. Suppose P stands for a rotation that retains
material symmetry, then the structural tensor M is invariant under this rotation. It follows that:

F(D, ) = F(D, ') (3.18)

Tensor representation theory specifies the general form of Equation (3.14), so that it
automatically satisfies the Principle of Isotropy of Space and the material symmetry.

A failure criterion is usually formulated as a scalar functionfAa, M), with f2 0 corresponding to
failure. In order for this scalar function to satisfy both the Principle of Isotropy of Space and
material symmetry, tensor representation theory states that it must be represented by a basic set
of polynomial scalar invariants (Ii, 12, ... , I,) of a and M. This group of invariants is called a
"functional basis", following Boehler (1987). For different types of anisotropy, there are different
sets of functional basis.

The functional basis for transversely isotropic materials includes the following invariants of the
stress and the mixed invariants of the stress a and the structure tensor M:

tr a, tr r2, tr3, trMa,trMa 2  (3.19)
The first three quantities have been shown in Section 2.3.1, and they are represented by:



tr() = a, + a +a, = I,1
tr(2) = 02 + ao +2 +2(o, + a. + qo) = I, + 212  (3.20)
tr(a') = a,' + a,' + a'(+3 +a)+3 + 3(a + ,2+3a,(a0f + o-)+ 6a,,,a,t = I +21112 +313

They are equivalent to the three stress invariants. With Equation (3.15), one can obtain:

trMo = a,,;trMa2 =M 2 +02 +a2 (3.21)

Therefore, the representation of a scalar function in transversely isotropic media must take the
form:

f(a,M) = f(tra,tra 2 ,tr3 ,trMe,trMr 2 ) (3.22)

which has five independent parameters. For an isotropic material, only three parameters are
necessary, which are the three stress invariants. The two new invariants involve M and hence
introduce material anisotropy into the criterion. Tensor representation theory thus provides a
rigorous and strict foundation for the development of strength criteria. Any strength theory that
can be written as the function of the invariants in (3.22) is free of contradictions.

The functional basis shown in Equation (3.19) is further reduced for triaxial tests, where the only
independent variables are the isotropic plane orientation (0 or P), the confining pressure o3, and
the axial stress o'. This reduction was given by Boehler and Raclin (1985). Defining the stress
deviator tensor s:

s=U - 1tra)I (3.23)

The functional basis is reduced to three invariants:

tra = 2a 3 + a,

trs 2 =(2 (0, 3)2 (3.24)
3
1

trMs = -(a, - a3)(3cos 2 9-1)
3

Boehler and Raclin (1985) performed a series of triaxial compression and uniaxial tension tests
on a chopped strand mat laminate. The specimens for the triaxial compression tests were prisms
with square cross-section, whose dimensions are shown in Figure 3.54. The orientation of the
mat planes, which are the isotropic planes in this material, were varied from 00 to 900, with 150
intervals. Four different confining pressures were applied: 0, 25, 50 and 75MPa. Figure 3.55
shows the failed specimens. The orientations of mat strata (which cannot be identified in the
picture) are specified with 0 = n/2-P. Two distinctive failure modes were identified by observing
the failed specimens: the "parallel mode" and the "across mode". The parallel mode is the slip
along the mat planes, which is observed in specimens with the isotropic plane normal orientation
0 = 450, 600 and 750. The across mode is faulting across the mats' strata, which is generally
observed for other orientations. At 0 = 900 and zero confining pressure, the specimen fails by



splitting of the mats' strata. These failure modes are very similar to those observed in rock
specimens.

For the "parallel mode" of failure, Boehler and Raclin (1985) proposed a generalized Coulomb's
law to describe the friction between mats:

Irl = (1+a0,o + a•a•)o, tan 0o +(1+a 2a3 +a 3oa)c (3.25)

where oa, and r are the normal and shear stresses on the isotropic planes. OA and co are the friction
angle and cohesion at zero confining pressure characterizing the frictional behavior of the
isotropic planes. ao through a3 are material parameters specifying the confining pressure
dependence. This criterion indeed can be expressed as a function of the three invariants in (3.24),
because:

S= 1 trs2 + tr Msrtrv - tr2 Ms

1a, = trMs+-tr (3.26)
3

U 3 = 3tro. 2trS2J

where 0• > o3 is assumed.

For the "across mode"' of failure, the following criterion was proposed:

(1+ aa, + a2c 2)(c, - 3)2 +(b + + b2o32)(o 1 -03)
2 COS2 0 +(co + C2oa•)(o1 - a3)2 cos4 9= k2

(3.27)
where aj, bi, and c, are material parameters (different from those in Equation (3.25)) and k is a
constant. This criterion can also be expressed with the invariants in Equation (3.24), because:

01 -a3 trs
2

(3.28)
cos 2 =-1+ trMs

3 3trs2

The predicted strength is compared with the measured strength in Figure 3.56, with the following
parameters (Boehler and Raclin, 1985):
* For "Parallel Mode": tanO0 = 0.42, co = 47.5, ao = 2.127GPa - 1, al = 31.10GPa-2 , a2 =

6.741GPa-' 1 , a3 = -6.66GPa 2

* For "Across Mode": k = 0.335GPa, a, = 7.842GPa -1, a2 = 25.31GPa-2, bo = 1.539, bl =
28.36GPa- ', b2 = 309.8GPa- 2, co = 2.052, c1 = 34.14GPa- ', c2 = 328.5GPa -2

The predictions from both the "parallel mode" criterion and the "across mode" criterion are
shown in the figure. For 0 around 60', the "parallel mode" criterion predicts lower strength, and
the specimen therefore fails along the isotropic planes. For 0 values on the two sides, the "across
mode" criterion predicts lower strength. Correspondingly, failure occurs across the isotropic



planes. The overall agreement is excellent.

3.2.2.2 General Polynomial Approach

Some researchers start from a general function form, which is supposed to apply to the most
general case of anisotropy, and then simplify the function form to fit for specific types of
anisotropy. This function form is usually of polynomial type. This seems to have been inspired
by the von Mises criterion, which involves the invariant J2. When expressed with principal
stresses, J2 is a homogeneous quadratic polynomial of the principal stresses.

Homogeneous Quadratic Polynomial

One group of researchers starts from a polynomial that is a homogeneous quadratic of the stress
components (similar to the Mises criterion), and states that the material reaches failure when:

Hyoklt-oyC =1 (3.29)

In order for the fourth order tensor H to satisfy the Principal of Isotropy of Space, both H and a

must be transformed according to tensor transformation rules. When the coordinate system is
rotated with the rotation tensor Q, the new components of H must be calculated by:

H = QII, pk QqI HUk (3.30)

Due to the symmetry of the stress tensor, certain symmetry must also be possessed by H:

Hu = Hjkl = Hulk = HkM (3.31)

Therefore, H has at most 21 independent elements for the most general anisotropy. It usually
takes the simplest form when the coordinate system is aligned with the principal direction of
anisotropy STN. For example, in the case of orthotropic anisotropy, the components of H in the
STN system are:

H 1111 H1122 H1133 0 0 0
H111122 H2222  H2233  0 0 0

H1133  H2233  H3333  0 0 0

0 0 0 4H 2323  0 0

0 0 0 0 4H3131  0
0 0 0 0 0 4H 1212

(3.32)

The number of independent parameters is reduced to 9. In the case of transversely isotropic
material with index 1 and 2 in the isotropic plane, the following conditions must apply:

H11 = H2 222 ; H1 133 = H 2233; H 2 323 = H3131;H212 = (H1111 - H1122) (3.33)

The number of independent parameters is further reduced to 5. The matrix H is similar to the

-=



elastic matrix of anisotropic material as shown in Equation (3.32) and (3.33), because Equation
(3.29) has a similar form as the elastic strain energy.

Olszak and Urbanowski (1956) proposed one such form of yield criterion, in an effort of
extending the von Mises criterion. The von Mises criterion for isotropic material is also called
the maximum distortion strain energy criterion. It states that metal yields when the elastic energy
of distortion WD reaches a critical value. For a material with general anisotropy, the elastic strain
energy cannot be decomposed into a volumetric part and a distortion part. Olszak and
Urbanowski (1956), however, defined the generalized distortion energy Df for an anisotropic
medium:

Of = S•G- A -U-• (3.34)

where the tensor s is obtained from the elasticity matrix of the anisotropic material E:

S, = 2G* [Eu - V*E E,,, SE ,,, ]  (3.35)

V* and G* are the generalized bulk modulus and shear modulus:
1 1 ( 1

V--=E= =E- EIjuu;- -Eq5, S (3.36)

f does not change with an isotropic stress increment. Following the von Mises criterion, a yield
criterion can be formulated by stating that yielding occurs when Df reaches a critical value K:

O = 4 S oj Al = K (3.37)

Obviously, this yield criterion can be simplified as:

HU-a~a =1 (3.38)

Since it was intended to extend the von Mises criterion, which satisfies the condition of
incompressibility (plastic volumetric strain is always 0), this condition is also imposed by Olszak
and Urbanowski (1956). The condition of incompressibility can be expressed by:

Hiug u =0 (3.39)

Equation (3.39) consists of 6 independent equations. Therefore, in the most general case, H in
Equation (3.38) has 15 independent components. In the case of orthotropic anisotropy and
transverse isotropy and expressed in the STN system, Equation (3.32) can be substituted into
(3.39), and the condition of incompressibility is simplified to:

H111 + H1122 + H1113 0
H2211 + H2222 + H2233 = 0 (3.40)
H3311 +H3322 + H3333 = 0

The number of independent components of H is reduced to 6 for orthotropic anisotropy and 3 for
transverse isotropy.

Dafalias (1979), also in an effort to extend Mises yield criterion, proposed the following yield



criterion:

f = Hu (s, - Y,)(s, - yk) = 1 (3.41)

where s is the stress deviator, while y is the translation of yield surface in deviatoric stress space.
Since there are only 5 independent components in a stress deviator, the number of independent
elements in H reduces to 15, which is consistent with Olszak and Urbanowski (1956)'s results.
However, Dafalias (1979) also examined the hardening of material, i.e. the variation of H with
the development of plastic strain EP. He stated that the form of H as shown in Equation (3.32) is
only applicable to an orthotropically anisotropic material before any plastic deformation is
developed. Once there is any plastic strain, the material loses its initial structure and it now
possesses general anisotropy. Tensor H becomes fully populated even in the original STN
system.

Both Dafalias' criterion and Olszak and Urbanowski's criterion, however, are indifferent to
isotropic stresses. Therefore, they are not applicable to materials like rocks. Kaar et al. (1989),
realizing this deficiency, proposed to remove the incompressibility condition from the
formulation of Olszak and Urbanowski (1956). In the case of a transversely isotropic material
without the incompressibility condition, Equation (3.38) can be expanded to be:

A,,(c, 2 + a2) , + A. A,O,, O+ A (a +c,)+A,o',a + (2A,, - A,t), +B,,(a + •) =1 (3.42)

in the STN system. It can be identified that:

A,, = H,,1 ,Ann = H3333 ,Ans = 2H,133 , A, = 2H 122,Bn = 4H2323 (3.43)

Kaar (1989) also introduced an exponential term to describe pressure dependence, and used this
criterion to model the failure of columnar grained sea ice.

Quadratic Polynomial with Linear Terms

Any criterion based on the homogeneous quadratic polynomial, containing only quadratic terms,
predicts the same strength in uniaxial tension and uniaxial compression. This is not real for some
materials, including rocks and soils. Gol'denblat and Kopnov (1966), in their effort to describe
glass reinforced plastics, realized that a model should predict different uniaxial tensile strength
and uniaxial compressive strength in the same direction, due to the different failure mechanism.
In addition, shear strength in a certain direction depends not only on the magnitude of shear
stress, but also on its sign. Figure 3.57 (a) and (b) shows the pure shear stress states where the
magnitude of the shear stresses are the same, which the directions of the shear stresses are
reversed. Each of the pure shear stress states is equivalent to a deviatoric normal stresses state. If
the gray lines represent isotropic planes in rock, then the strength in Figure 3.57 (a) and (b) must
be different.

Gol'denblat and Kopnov (1966) proposed a general expression that has these features:
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(lio.) + (,,a,) + (-M. o.ef a Oedaf)Y + ... = 1 (3.44)

where Hi, Iy , IIkln,abcdef, ... are strength tensors of different orders. When the coordinate system
is transformed, these tensors must change according to tensor transformation rules. Gol'denblat
and Kopnov (1966) then proceeded to examine a specific case where a = 1 and f = 0.5, and their
strength criterion is written as:

InIo, + •n•c,ao = 1 (3.45)

Due to the symmetry of the stress tensor, and the invariance of the equation, the strength tensors
are also symmetric in the following sense:

r = ri(3.46)S= = = rim.
klmn Lbnn klnm mnkl

Therefore, in the most general case, there are 6 elements in the second degree tensor, and 21
elements in the fourth degree tensor.

Tsai and Wu (1971) developed a general criterion for filamentary composites. In order to
simplify the notation, the stress components are numbered from 1 through 6:

{o",az,a0,4,(,7 a)= {axI Oy,o,,oX,a,} (3.47)

Tsai and Wu (1971) started from a general quadratic form:

Fo-a + Fja, = 1 (3.48)

Fi and Fy are tensors that obey the transformation rules. Fi is a second degree tensor, while Fy is
a fourth degree tensor (similar to H in Equation (3.29)). In their most general form, Fi has 6
independent elements, and Fy has 21. Moreover, certain stability conditions were imposed on the
elements of the tensor Fj: all diagonal terms must be positive, and the off diagonal terms must
satisfy the following inequality:

F,F, -F' 20 (3.49)

where Fii and Fj are diagonal terms (repeated subscripts do not stand for summations) and Fy is
an off-diagonal term. This specifies that the failure surface must be an ellipsoid, and it intercepts
all stress axes. This general form proposed by Tsai and Wu (1971) is actually equivalent to
Gol'denblat and Kopnov's criterion (3.45). This can be readily shown by moving the first term in
Equation (3.45) to the right hand side, squaring both sides, and regrouping all the terms into
linear and quadratic groups.

The number of independent elements decreases with increasing material symmetry. For
orthotropically anisotropic material, where the coordinate system coincides with the principal
axes of symmetry STN, the independent elements reduce to 3 and 9 for these two tensors. If the
stress vector is defined as:

{o1,2,, a "4,3,a"} = {a7,at,an, tn,oan ,a ,} (3.50)
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in the STN system, the two tensors Fi and Fy can be expressed as:
F,=[F, F F, 0 0 0]

F1I F12 F13 0 0 0

'F2 F22 F23  0 0 0

F.= F23 F33 0 0 0 (3.51)
F= 0 0 0 F44 0 0

0 0 0 0 F55 0

0 0 0 0 F,66

For transversely isotropic materials with ST being the isotropic plane, due to material symmetry
there must be:

F, = F;F2 = F22,F = F23,F44 = F55,F66 = 2(F, -F12) (3.52)

The last expression in Equation (3.52) is obtained because a pure shear stress state in the
isotropic plane is equivalent to a deviatoric normal stress state (Figure 3.58). If the specimen
fails at ot = Q in pure shear, Tsai and Wu criterion gives:

F6e6Q = 1 (3.53)

The material also fails a = -Q and at = Q, which is the deviatoric stress state. Therefore, it must
also be satisfied that:

F,,(-Q)2 + 2F 2Q. (-Q) + F22Q 2 = 2(FI -F12) = 1 (3.54)

where the condition F1l = F22 is used. Comparing Equation (3.53) and (3.54), F66 must always be
identical to 2(F11 - F22). The criterion (3.48) can be written out as:

A, (a,2 +a,2)+ +A '2 + Aa,, (q, + at,)+ (2A, -B,,)a, ta + B M,2+ B,.(a 2 + )++a,,, + a,(a, + ot)

(3.55)
There are 7 independent parameters involved in Equation (3.55), and they can be identified as:

A,, = F,,, A,, = F3,A., = 2 F,, B,t = F6,B,, = F44,a, = F3,a, = F, (3.56)

Equation (3.55) has both quadratic and linear terms. The quadratic terms are the same as those in
Equation (3.42).

The parameters involved in Equation (3.55) can be determined from the engineering strengths of
the material. In the following discussion, C,, T,, both larger than 0, will be used to denote the
magnitudes of the uniaxial compressive and tensile strength, respectively. Under simple
compression and tension, the failure of the material can be predicted by Tsai and Wu criterion as
(with compression positive):

A.. C2 + a,C, = 1, A.. T,.2 aT = 1 (3.57)

Solving these two equations simultaneously, two parameters can be obtained:



1 1 1
A. = , a, = (3.58)

c.T. c. T.
Similar equations can be written for S direction:

A,,C 2 + a, C, = 1,AT,2 -a,T = 1 (3.59)

to obtain the following parameters:
1 1 1

A, ,a, (3.60)
CIT, C, T,

Denoting the pure shear strength in the TN plane to be R, Tsai and Wu criterion predicts that the
material fails at:

B,, R
2 =1 (3.61)

There must be:

B, =2- (3.62)

If the pure shear strength in the ST plane is Q, there should be:

B,,t 2 =1 (3.63)

and B3 t can be obtained to be:

B, =- (3.64)

The only parameter that is left to be determined is A,., or F13. The determination of F13 requires
the measured strength under combined stress state. For example, an isotropic stress state in the
ST plane: o~ = oa, = P can be used. Applying Tsai and Wu criterion to this stress state, one can
obtain:

P (A, + A,, + A.)+ P(a, + a.) = 1 (3.65)

Since A,, Ass, a, and as are already obtained, A,,, can be solved. Tsai and Wu (1971) discussed
extensively the determination of F13 and concluded that it "is a very sensitive and critical
quantity in this proposed theory". It seems that the reliability of F13 depends heavily on the stress
combination that is used to determine it.

3.2.2.3 Extension of Isotropic Criteria

The continuous failure criteria in this category are obtained from extension of existing isotropic
criteria. One of the earliest of these models seems to be proposed by Hill (1948) to describe
metal anisotropy. Anisotropy can be introduced in isotropic metal through various forming
processes. For example, in cold rolling process, the metal is extended in one direction and
squeezed in the other. The yielding stress after rolling is orientation dependent. In order to



describe metal anisotropy, Hill (1948) assumed that the anisotropy is orthotropic. In the material
coordinate system STN, the following yielding criterion is proposed:

F(a, - .a,) + G(a,, - ,) 2 + H(, - ,)' + 2Luo + 2Ma, + 2Nt 2 = 1 (3.66)

where F, G, H, L, M, N are material parameters. Six material parameters are involved, which can
be determined by three simple tension tests and three simple shear tests with respect to the
principal axes of anisotropy. If the tensile strengths are denoted X, Y, Z while the shear strengths
are denoted R, S, T, the six parameters can be expressed by:

1 1 1 1
2F = -+ - 2L =

Y2 Z2 X 2 ' RZ
1 1 1 1

2G =-+- ; 2M = (3.67)2  X 2 Y2  S2

1 1 1 1
2H - + y2 2N=X2  2Z T2

It should be pointed out that the Hill criterion, which has a homogeneous quadratic form, is a
special case of the general homogeneous quadratic polynomial criterion (Equation (3.29)) subject
to the incompressibility condition (Equation (3.40)). Indeed, substituting Equation (3.40) into the
reduced H matrix in Equation (3.32) for orthotropic anisotropy material, the H matrix becomes:

-H1122 -H1122 H1122 H1133 0 0 0

H1122 -H1122 -2233 H2233 0 0 0

S H1133 H2233 -H1133 -H 2233  0 0 0 (3.68)
0 0 0 4H 2323  0 0
0 0 0 0 4H 3131  0

0 0 0 0 0 4H1212

Substituting this H matrix to Equation (3.29) and regrouping the terms, it can be obtained that:

-H 1 12 2(0 1 1  22)
2 - H2233( 22-33)

2 -_ H3 311(233 - )2 + 4H23230"23 + 4H313121 +4H1212 122 = 1 (3.69)

The similarity between Equation (3.69) and Equation (3.66) is obvious. In addition, this clearly
shows that the Hill's criterion satisfies the incompressibility condition, and cannot be applied to
rocks.

Pariseau (1972) proposed a yield criterion for materials with orthotropic anisotropy. Pariseau
observed that criteria describing failure in a conventional triaxial test can be expressed as:

(Oa - -3 • (a 1 + '3)A+B (n 1) (3.70)

where A, B, and n are material parameters. For example, the Tresca criterion can be obtained by
setting A = 0, B = Co/2, n = 1. Pariseau continued to extend Equation (3.70) to the general stress
state, by introducing stress invariants:

(ý2)" = AI, +B (3.71)

This equation is then extended to orthotropic anisotropy, in a way that is similar to Hill's



approach. The final expression reads:

F(o, - .)2' +G(o,, - ,)2 +H(o, - t)2 + Lo + Ma + No,2t) -(Uo, + Vr +Wao) =1 (3.72)

Clearly, the extension of the J2 part is exactly the same as Hill's criterion.

It seems that Pariseau (1972) only examined the case where n = 1. In this case, this criterion can
be expressed as a homogeneous quadratic of the stress components. When n = 2, this criterion
has both quadratic and linear terms of the stress components. In both cases, it is a special case of
Tsai and Wu's criterion. For n > 2, higher order terms are involved.

3.2.2.4 Transformed Stress Tensor Approach

Based on the general theory outlined previously, Boehler and Sawczuk (1977) also provided a
simplified approach, which involves the linear transformation of the stress tensor by a fourth
order tensor A:

o' = Aa (3.73)
Existing isotropic failure criteria can then be extended to anisotropy by substituting a with a'.
For the case of transversely isotropy, Boehler and Sawczuk (1977) suggested using the following
tensor:

y O 0 0 0 0
O y O 0 0 0

00a 0 0 0

0 0 j0 /2 0 0

0 0 0 0 /3/2 0
0 0 0 0 0 v/ 2

(3.74)

By substituting the stress tensor with the transformed stress tensor in an existing isotropic
criterion, an anisotropic criterion is readily obtained. This simplified method is very
straightforward to use, and it can make use of the existing isotropic criteria.

Cazacu (1998) used a different transformation tensor, and developed a criterion that seems to
work well for a number of anisotropic rocks under conventional triaxial compression. For
transversely isotropic rock, the transformation tensor was proposed to be:

abb 0 0 0

bde 0 0 0

b e d 0 0 0
a = (3.75)

0 0 0 (d-e)/2 0 0

0 0 0 0 c/2 0

0 0 0 0 0 c/2

A new criterion is then proposed using the transformed stress tensor a':

A



3 trs'-tra'= 1 (3.76)
2 3

where s is the deviator of the transformed stress. In the case of isotropy, this criterion reduces to
the Mises-Schleicher criterion. Hence this criterion is name the Anisotropic Mises-Schleicher
criterion (AMS) by Cazacu (1998). Equation (3.76) can be expanded into the following form:

A..a + A,,(a 2, + a,t) + 2A.,, (q, +) + (2A,, - B,,),a, + B,,ta2, + B, (a~, + ,.) + ao. + a, (a, + t,) = 1

(3.77)
There are seven parameters involved in Equation (3.77). Since there are originally six
independent quantities in this formulation (a, b, c, d, e in the matrix B and m from Equation
(3.76)), only six of the parameters are independent. Cazacu (1998) gives the expression of the
following six parameters:

(b - e)2 +(d-e)2 + (b - d)2 ;A =(a-b)2;B, =3(d-e)2;
2 (3.78)

m(a + 2b) m(b+e+d)
B, = 3cZ; a, = ;3 a, =

The parameter A,, is not independent and takes the following form (Cazacu, 1998):

A, (A, + ,) (3.79)
2

According to the geometrical theory of conical surfaces, the value of A,, ensures that when all
shear stresses are zero, the failure surface of AMS criterion is an elliptic paraboloid in the space
(at, ot, o,). This is not surprising since the original Mises-Schleicher criterion has a parabolic
ellipsoid failure surface in the principal stress space.

In addition, Cazacu (1998) applied the AMS criterion to a transversely isotropic specimen
subject to principal stresses ai, q2 and 0q3. The isotropic plane orientation is 8 from the oa
direction, and the dip of the isotropic planes is into the 03 direction. In the principal stress space
(oa, C02, q3), the geometry of the failure surface is dependent on 8. Cazacu (1998) stated that in
order for the failure surface to be an elliptic paraboloid for any , values, the following conditions
must be satisfied:

A< 0;A,, =4A,, -B, (3.80)

The number of independent parameters is then further reduced to 5.

Comparing Equation (3.77) with (3.55), it is obvious that the AMS criterion and the Tsai and Wu
criterion have the same quadratic and linear terms. In terms of mathematical form, they are
essentially the same. However, the following differences should be noted:
1. The Tsai and Wu criterion keeps all the seven parameters independent, while there are only

five independent parameters in the AMS criterion.
2. With the stability requirement in Equation (3.49), the failure surface of the Tsai and Wu

criterion is an ellipsoid. With the expression of A,, in Equation (3.79) and A,, in Equation



(3.80), the failure surface of the AMS criterion is an elliptic paraboloid.
3. In the AMS criterion the parameter Ans is not independent. It is automatically obtained

through Equation (3.79) once all other parameters are obtained. The sensitivity problem of
F13 to the different stress state combinations that exists for the Tsai and Wu criterion is thus
avoided.

Due to the same mathematical structure, other parameters involved in the AMS criterion can be
determined from the engineering strength following the same procedure outlined for the Tsai and
Wu criterion. Following the same notation, the independent parameters that are involved in the
AMS criterion can be expressed by:

1 1 1 1 1 1
a - ,as  = , A, A, '= ,Bn, =- (3.81)

C", T CS T, R., T" CS TS

Clearly, they are the same as the corresponding parameters in the Tsai and Wu criterion. With
these parameters, Ans is then obtained from Equation (3.79), and Bst is obtained from Equation
(3.80).

Cazacu (1998, 1999) applied this criterion on several anisotropic rocks under conventional
triaxial tests. The applications of the AMS criterion to Tournemire shale, Diatomite and
Martinsburg slate are shown in Figure 3.59, Figure 3.60, Figure 3.61, respectively. It seems that
"U" shaped curves with uneven ends can be generated by this criterion.

3.2.3 Critical Plane Approach

This approach assumes that a material fails along a plane. The failure condition along any plane
is described by a failure function, which usually takes the same form for planes in all possible
orientations. The parameters in this failure function, however, can vary with plane orientation to
create anisotropic behavior. Through one material point, failure is possible along planes in all
directions. Failure actually occurs along the plane where this failure function is first satisfied.
The direction of this plane is called the critical direction, which must be determined through
maximizing the failure function.

According to this definition, Coulomb criterion is probably the earliest critical plane criterion. In
a two dimensional stress state, the direction of a plane can be represented by /, the angle
between this plane and the major principal stress a1 (oi > 03 is assumed, see Figure 3.62). For
the time being, P is assumed to be between 00 than 900. The normal and shear stress along this
plane can be written as:

c= am -r. cos2P; rm=r.sin2pf (3.82)

with om = (a1 + O3)/2 and zr = (oa - o3)/2. Failure along this plane, according to the Coulomb
criterion, occurs when:



r, sin 2,8 = pu(c, - ,r cos 2P8) + S

where p is the coefficient of friction, and S is the cohesion. The failure function is then defined
as:

F = r. (sin 23 + p cos 2) - (po, + S) < 0 (3.84)

The critical direction can be obtained by finding the/3 that maximizes F. Let:
8FS= o0 (3.85)
ap

and solve for A, the critical direction is obtained:

fl =450-0/2 (3.86)

In fact, there are two critical directions symmetric to the a, direction. Substitute Equation (3.86)
into (3.83), the failure condition for the material is obtained:

1 + sin # cosCo, =ý +2S (3.87)
1-sino 1-sino

Therefore, the critical plane method gives both the strength of the material and the direction of
the failure.

Since the same parameters are applied to all the planes, the Coulomb criterion is an isotropic
criterion. In order to describe the failure of anisotropic rock, Jaeger (1960) proposed that the
cohesive strength S in the Coulomb criterion should be made direction dependent. The cohesive
strength along a direction / from the major principal stress a1 (0 > o-3 is assumed) is supposed
to vary according to:

S = s, -2 cos 2(/ - f,) (3.88)

where flm is the orientation where S takes a minimum. The coefficient of internal friction p, on
the other hand, is independent to orientation. The failure function now becomes:

F = (r, + S2 sin2fl, )sin 2fl +(Tr, + S2c os2fl. )cos2f -(S , +,Uo,) 0 (3.89)

The critical orientation can again be obtained by maximizing the failure function. It can be
solved that this maximum is reached when / satisfies:

tan 2A = (a, -a 3)+2S 2 Sin2 (3.90)
4u(a, - a 3 )+2S 2 cos 2(,

Substituting Equation (3.90) into (3.89), the failure criterion for the specimen is obtained:

S2 l+ 0 _(+2) a -( 3 +.S2 sin 28 +2p cos 2. (sin 2P +u cos 2P ) (3.91)
2 2 1+,p 2  1+ U2

The ideas have been revived by Pietruszczak and Mr6z (2000, 2001), where a general failure
parameter q is supposed to vary according to a second degree tensor:

(3.83)



77 = qrnnj = 70 (1 + Q, nin j )

where n is the normal of the plane whose failure parameter is to be determined. qo is the
volumetric component while 0 is the deviatoric component normalized by 10o. As such, the trace
of 0 is zero. In the case of transverse anisotropy 0 and n can be represented by:

O, O 0 n,
= 0 t, O ; n n, (3.93)

0 0 f. nn

in the principal axis of anisotropy. Considering that 2s = Ot= -0.5Q2n and n,2 +n,+n =1,

Equation (3.92) can also be written as:

17 = 10[1 + , (1- 3n )] (3.94)

Pietruszczak and Mr6z (2001) extended the Coulomb criterion in which both the coefficient of
friction and the cohesion vary according to Equation (3.94). The critical plane orientation and the
strength of the material can again be found by maximizing procedure, even though the
mathematics is more complex.

This general form of failure parameter is later extended to include higher order terms in
Pietruszczak et al. (2002):

rl= rlo[l + Qijninj +b (ijnnin j )2 +b2( ninj) 3 +] (3.95)

Equation (3.95) was applied in Pietruszczak et al. (2002) to describe the variation of uniaxial
compression strength of Tournemire shale specimens with bedding plane orientation. A
satisfactory fit of the experimental data was achieved with the inclusion of up to the fourth order
term (Figure 3.63), with parameters qo = 22MPa, s, = 0.0170251, bi = 515.49, b2 = 61735.3, b3

= 2139820.0 (Pietruszczak et al., 2002). The fitted uniaxial compression strength is then
introduced into the formulation of a yield function, so that anisotropy in the stress-strain
relationship is described.

3.2.4 Discontinuous Models

In the previous section, various ways of introducing anisotropy into the constitutive laws are
described. All those models treat the material as an anisotropic continuum, where stress and
strain have a continuous distribution over the entire material body. This can be a very good
approximation of the physical image, for example, when anisotropy is caused by a stress history,
or when minerals in a rock are aligned. However, anisotropy in rocks can also be caused by
various discontinuous features, including joints and cracks. In this section, a few discontinuous
models will be introduced.

(3.92)



3.2.4.1 Single Plane of Weakness Model

Jaeger (1960) examined the failure of isotropic rock with one set of joints. Both the rock and the
joints are supposed to obey the Coulomb criterion. The coefficient of internal friction for the
intact rock is u = tano, and the cohesion is S. For joints, these two parameters are p' = tano# and
S'. Jaeger (1960) considered a two dimensional stress state where the joint orientation is / from
the major principal stress a-1 (a-1 > 03 is assumed, see Figure 3.62). For a certain 03, the a1
necessary to induce failure along the joint is expressed as:

0 = S'+ a (p'+ p'cos2fl + sin2f6) (3.96)
(-p'+ p'cos 2fl + sin 2fl)

This a, has a minimum at f = 450 - , and approaches infinity when f approaches 00 or 900. In
2

order to induce matrix failure, the necessary a, is:
1 + sin ¢ cos #

1 = a3  + 2S (3.97)
1-sino 1-sine

This a- does not depend on 8 since the matrix material is supposed to be isotropic. The actual a0
at failure will be the smaller of the two. The effect of the joint is that there is a "U" shaped
portion of the failure a-r versus / at a certain a3 (Figure 3.64). In addition, for a certain joint
orientation , a-i is a linear function of a03.

A necessary prediction of Jaeger's criterion is that the strength of the specimen is the same for /
= 00 and 900, so that the "shoulders" of the curve in Figure 3.64 are at the same level. However,
this is not true for many anisotropic rocks, as clearly shown from the data sets presented in the
previous section. In order to describe this difference, Duveau and Shao (1998) propose that
different parameters should be used for 8 close to 00 and 90 °. Four different parameters are used:
So, uo for / close to 00, and S90, p90 for / close to 900. This way, the two shoulders are at
different levels (Figure 3.65). It is also assumed that a non-linear friction law is applicable to
describe slipping along the weak plane. The friction law proposed by Barton (1976) is used here,
which reads:

r = atan alog co (3.98)

where a0 and r are the normal and shear stress along the weak plane. 0o is the uniaxial
compression strength in the direction normal to the weak plane. a and b are both material
parameters. Duveau and Shao (1998) applied this criterion to Angers schist, and found better
agreement with the experimental data than with Jaeger's original criterion. Figure 3.66 shows the
comparison of experimental data and the prediction at 40 MPa confining pressure. The
parameters for the predicted curve are: Po = 0.94, So = 26.10MPa, P90 = 0.86, S90 = 40.04MPa, a

= 28.12, b = 9.29MPa, o•o = 150MPa.



3.2.4.2 Fracture Mechanics Models

The Griffith criterion introduced in Section 2.3.2 was improved by McClintock and Walsh
(1962), by considering the crack closure effect and friction between crack walls when they are
closed. The assumptions of Griffith (1924) were retained. In addition, it was assumed that a crack
closes when the normal stress normal to the crack walls reaches a critical value oa, (note that the
sign convention here is compression positive, which is different from McClintock and Walsh's
original work.). The normal stress along the crack wall is thus expressed:

=0 for open crack (3.99)

= - - o- for closed crack

where a,, is the applied stress normal to crack walls. The coefficient of friction between crack
walls is u, so the shear stress that the crack can sustain is:

or = Pa, (3.100)

In order to initiate crack propagation for the cracks oriented / degrees from the oa direction, the
following condition must be satisfied when the cracks are fully closed:

2T= a (3.101)

where o* is defined as:

* = (a0 - a3)sin 2fl-p[("1 + a 3)-(ao -o 3)cos 2P] (3.102)

The critical orientation is found to be:

f = 450 - -  (3.103)
2

where # is the friction angle between crack walls. The failure of the specimen is again identified
with crack propagation in the critical orientation. McClintock and Walsh (1962) showed that
failure occurs when:

a'= 1+ - ( +[+pt)+4To 1+j -20-cpi (3.104)

This is clearly a linear dependence of o' on 03. When the confining pressure ca3 is small enough
that all the cracks are open, then the original Griffith's criterion still applies. According to the
original Griffith criterion, the cracks oriented P degree from the ao direction start to propagate
when:

(o, sin' P+U3 cos2 fl)- (sin 2 fl +0- COs2 fl) = -2To (3.105)

The critical orientation is specified by:

cos = 0 -a3 (3.106)
2(o~ + q 3 )



The failure of the specimen occurs at:
(a 1 -a"3)2 = 8T(a + 3) if a, + 3 > 0 (3.107)
a3 = -To  if a, +3a 3 <0

McClintock and Walsh (1962) also give the transition criterion when only part of the cracks are
closed.

If o' = 0 is assumed then Equation (3.104) takes a simpler form:
4To + 3(• + p cos 2f + sin 2/3)

o-, = (3.108)(-p + p cos 2,8 + sin 2fl)

It is remarkable to see that Equation (3.108) and (3.96) are almost identical, except that S' = 4T0.
In this case, the McClintock and Walsh theory reduces to Jaeger's Single Plane of Weakness
theory.

3.2.5 Summary

Existing anisotropic failure criteria have been summarized in this section. It seems that most of
the criteria that have been applied to rocks in conventional triaxial experiments. For example, the
AMS criterion by Cazacu (1998, 1999) was applied to predict the conventional triaxial
experiments of several anisotropic rocks. Therefore, it is important to develop and evaluate
criteria that can capture the strength of anisotropic rock under true triaxial stress states. However,
it is difficult to extend the existing models. For example, the criterion of Tsai and Wu (1971) is a
general quadratic polynomial, and therefore gives the general form of failure criterion for
transversely isotropic rock with only linear and quadratic terms. If more complicated criteria are
to be constructed along this line, cubic terms must be added. Possible cubic terms can be
expressed by Fukac jok. Clearly, there are 6x6x6 = 216 possible cubic terms possible, which
makes it impractical to either keep all of them or select a few terms that are applicable to a
certain rock. In order to bypass this problem, a new approach will be proposed in the next
chapter, which leads naturally to a true triaxial failure criterion of anisotropic rock.



Table 3.1 Possible Failure Modes of Anisotropic Rocks in Conventional Triaxial Compression Tests

Brittle Failure Ductile Failure
p values (0o to 900) Low Confining Pressure Medium Confining Pressure High Confining Pressure
00 Tensile splitting Mixed mode of tensile splitting Shearing across the isotropic

and shearing through the matrix planes, with plastic
deformation

Low Tensile splitting, or shearing Shearing along the isotropic Development of kink band,
(typical range 00<3<300) along the isotropic planes planes, or Mixed mode of shearing with plastic deformation

along and across the isotropic
planes

Medium Shearing along the isotropic Shearing along the isotropic Shearing along multiple
(typical range 300 <P<600 ) planes planes, or Mixed mode of shearing isotropic planes, or shearing

along and across the isotropic across the isotropic planes,
planes with plastic deformation

High Shearing across the isotropic Shearing across the isotropic Shearing across the isotropic
(typical range 600<P<900 ) planes planes planes, with plastic

deformation
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Figure 3.1 Orientation of Bedding Planes with regard to the Principal Stresses
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Figure 3.3 Triaxial Strength of Martinsburg Slate (data from Donath, 1964)
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Figure 3.4 Fault vs. the Cleavage Orientation for Martinsburg Slate (data from Donath, 1964)
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Figure 3.5 Variation of Failure Mode with Confining Pressure for p = 150 (from Donath, 1964)
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Figure 3.6 Cross-Sections of Failed Martinsburg Slate Specimens with P = 150 (from Donath 1964)

(a) 500bar (b) 1000bar
Figure 3.7 Failed Specimens with P = 450 at Different Confining Pressure (from Donath 1964)
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Figure 3.8 Fault Orientation vs. Cleavage Orientation for Longwood Shale with 03 = 420bar (data from
Donath, 1964)
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Figure 3.9 Proportional Triaxial Strength of South African Slate (data from Hoek, 1964)
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Figure 3.10 Triaxial Strength of Austin Slate (McLamore and Gray, 1967)
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Figure 3.11 Triaxial Strength of Green River Shale-1 (McLamore and Gray, 1967)
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Figure 3.12 Triaxial Strength of Green River Shale-2 (McLamore and Gray, 1967)
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Figure 3.13 Failure Modes Observed by McLamore and Gray (McLamore and Gray, 1967)
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Figure 3.14 Failed Specimens of Austin Slate at 13 = 300 and Various Confining Pressures (McLamore and
Gray, 1967)
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Figure 3.15 Failed Specimens of Green River Shale-1 at Confining Pressure 15000psi and Various
Bedding Plane Orientations (McLamore and Gray, 1967)



Figure 3.16 Failed Specimens of Green River Shale-2 at f = 100 and Various Confining Pressures
(McLamore and Gray, 1967)
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Figure 3.17 Triaxial Strength of Penrhyn Slate (data from Attewell and Sandford, 1974)
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Figure 3.18 Post-Peak Strength of Penrhyn Slate (data from Attewell and Sandford, 1974)
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Figure 3.19 Shear Fault Orientation vs. Cleavage Plane Orientation Penrhyn Slate (Symbol definition
same as Figure 3.17) (data from Attewell and Sandford, 1974)
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Figure 3.20 Loading Modes for True Triaxial Tests of Chichibu Green Schist (from Mogi, 2007)
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Figure 3.21 True Triaxial Strength of Chichibu Green Schist at a3 = 50OMPa (data from Mogi, 2007)
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Plane A = Plane ABCD

Plane B = Plane EFGH

Figure 3.23 Definition of Planes A and B (from Mogi, 2007)

Figure 3.24 Failed Specimens of Chichibu Green Schist Mode I (ol=206MPa, o-2=100MPa, o-3=50MPa)
(from Mogi, 2007)



(a) Mode II, (a0, q 2, 03) = (244MPa, 50MPa, 50MPa)

(b) Mode II, (q0, 02, 03) = (346MPa, 168MPa, 50MPa)
Figure 3.25 Failed Specimens of Chichibu Green Schist Mode II (from Mogi, 2007)
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Figure 3.26 Failed Specimens of Chichibu Green Schist Mode IV (o-1=540MPa, o2=156MPa, C3=50MPa)
(from Mogi, 2007)
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Figure 3.27 Triaxial Strength of Diatomite (data from Allirot and Boehler, 1979)



i 1 i : I I i

I I 1

I P a PhiMl"M p v w U fl m1I. p "n11111"• -

Figure 3.28 Failed Specimens of Diatomite (from Allirot and Boehler, 1979)
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Mode A

Multiple conjugate shear failure planes
at an inclination of =

n = number of planes

Mode B

Multiple fracture planes
at an inclination of 9

n = number of planes

Figure 3.31 Two Failure Modes Observed (from Aristorenas, 1992)
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Figure 3.32 Specimens for Triaxial Tests: (a) Quartzitic phyllite, (b) carbonaceous phyllite, and (c)
micaceous phyllite. (from Ramamurthy et al., 1993)
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Figure 3.33 Triaxial Strength of Quartzitic Phyllite (data from Ramamurthy et al., 1993)
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Figure 3.34 Triaxial Strength of Carbonaceous Phyllite (data from Ramamurthy et al., 1993)
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Figure 3.35 Triaxial Strength of Micaceous Phyllite (data from Ramamurthy et al., 1993)
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Figure 3.37 Strain Gauge Configuration (from Niandou, 1994)
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Figure 3.38 Sample Stress Strain Curves with f= 900 and 3s = 30 MPa (data from Niandou, 1994)
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Figure 3.39 Triaxial Strength of Tournemire Shale (data from Niandou, 1994)
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Figure 3.40 Post-Peak Strength of Tournemire Shale Specimens (data from Niandou, 1994)
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Figure 3.41 Stepwise Loading Path to Approximate Proportional Loading

Figure 3.42 Sketch of Failure Modes Observed from Tournemire Shale Specimens (from Niandou, 1997)
Note: 0 = n/2 - 13
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Figure 3.43 Himalaya Schist Specimens (from Nasseri, 2003)
Note: Vertical lines on specimens are probably reference lines for measuring orientation.
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Figure 3.44 Triaxial Strength of Quartzitic Schist (data from Behrestaghi, 1996)
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Figure 3.45 Triaxial Strength of Chlorite Schist (data from Behrestaghi, 1996)
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Figure 3.46 Triaxial Strength of Quartz Mica Schist (data from Behrestaghi, 1996)

I--(U

U)

LL

(U
CO)I:,

3UU

250

200

150

1001

50

a3(MPa)
100
50
35

15

5

10 20 30 40 50 60
p (Degree)

70 80 90

Figure 3.47 Triaxial Strength of Biotite Schist (data from Behrestaghi, 1996)
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Figure 3.51 Failure along the Isotropic Plane with Non-Planar and Planar Shear Faults
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Figure 3.53 Application of the Theory by Ramamurthy et al. on Penrhyn Slate (from Ramamurthy, 1983)
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Figure 3.54 Specimen Dimension of Glass-Fiber Reinforced Composite, Units in mm (modified from

Boehler and Raclin, 1985)
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Figure 3.55 Failed Specimens of Glass-Fiber Reinforced Composite (from Boehler and Raclin, 1985)
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Figure 3.56 Comparison of Measured and Predicted Strength (modified from Boehler and Raclin, 1985)
Note: Solid lines show the lower predicted strength of the "parallel mode" and the "across mode" criteria.
When the "across mode" criterion produces higher strength, it is shown with a dashed line.



(a) Left: Pure Shear Stress State; Right: Equivalent Deviatoric Normal Stress State

(b) Left: Pure Shear Stress State; Right: Equivalent Deviatoric Normal Stress State
Figure 3.57 Pure Shear Stress States with Same Magnitude but Different Directions of Shear Stresses
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Figure 3.58 Equivalence of a Pure Shear Stress (Left) and Deviatoric Normal Stress (Right)
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Figure 3.59 Application of the AMS Criterion on Tournemire Shale (from Cazacu, 1999) Note: 0 = 7c/2 - 1
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Figure 3.61 Application of the AMS Criterion on Martinsburg Slate (from Cazacu, 1999) Note: 0 = n/2 - P

Figure 3.62 Isotropic Rock Body with One Set of Joints
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Figure 3.65 Failure Stress Predicted by Duveau and Shao (1998)
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4 A New Approach to Anisotropic Failure

Criteria

The previous chapter has described laboratory measurements of the shear strength of anisotropic
rocks, together with a series of failure criteria that have been proposed to characterize anisotropic
shear strength. It has been shown that there are several different ways to generate anisotropic
failure criteria. In terms of continuous functions, polynomials of order two (e.g. the AMS
criterion) can describe "U" shaped curves that characterize the shear strength of transversely
isotropic rocks in conventional triaxial tests. There are certain difficulties in formulating
anisotropic failure criteria that use higher order polynomials. On the one hand, there are so many
cubic terms of the stress components, as shown by Tsai and Wu (1971), that they become
impractical. On the other hand, failure criteria of anisotropic rock are usually a function of all six
stress components. Geometrically, they are surfaces in a six dimensional space, whose shapes
cannot be directly imagined and understood. The shapes are even more complicated with higher
order terms. In contrast, the failure surface of isotropic failure criteria can be directly observed in
the principal stress space, which greatly facilitates the formulation of failure criteria. To the
author's knowledge, polynomials of higher orders have not been applied to represent anisotropic
rock strength.

In this chapter, a new approach for constructing anisotropic failure criteria is proposed. It makes
the visualization of anisotropic failure criteria in a three dimensional space possible. Desirable
features of anisotropic failure surfaces are identified geometrically. Mathematical expressions
that can generate these features are identified by studying the geometry of existing criteria.
Isotropic failure criteria can.be extended to anisotropy by incorporating these expressions.

In order to visualize the failure surface in a three dimensional space, a Material Normal Stress
System (MNSS) is proposed to describe the failure of both isotropic and anisotropic materials. As
a new system to visualize the failure phenomena, the representation of failure for isotropic and
anisotropic materials in MNSS is very different from that in the principal stress system. It will be
shown first how this system can help to visualize the coupling between the structure orientation
and the stress tensor. As the name implies, this system only captures the normal stresses. Each
point in this space can represent numerous stress states, with different shear components. Hence,
other conditions must be enforced to eliminate this ambiguity.

One way to do this is to assume that the orientation of the three principal stresses does not
change with regard to the material coordinate system. This is exactly the case in the conventional



and true triaxial tests on anisotropic rock. With this assumption, stress paths of these tests can be
drawn in the MNSS. Conventional triaxial tests will be examined in this context. The direction of
the stress path changes with the orientation of the specimen, even for the same principal stress
increment. It will also be shown that isotropic materials fail along a straight line which is located
on a n-plane in the MNSS.

An alternate approach to eliminate ambiguity is to assume the same shear stresses for all points
in this space. By doing this, failure surfaces become three dimensional surfaces in the MNSS,
whose geometry varies with shear stress level. Isotropic failure criteria, including the
Drucker-Prager and the Matsuoka-Nakai criteria, are then examined in the MNSS. The geometry
of their failure surfaces in the MNSS is visualized, first with all zero shear stresses and then with
non-zero shear stresses. The mathematical expressions of both failure criteria are then examined,
and the effect of each term on the failure surface geometry is discussed. It is found that the two
key ingredients in formulating a failure criterion in the MNSS are: the bounding failure surface
with all zero shear stresses and the variation of its geometry with non-zero shear stresses.
Combining the representation of stress path and the representation of failure surfaces, failure of
the material can be predicted in the MNSS.

Based on the study of anisotropic rock failure in conventional triaxial tests, the desirable
geometry features of an anisotropic failure surface are then proposed. The Matsuoka-Nakai
failure criterion is extended to anisotropy, based on the study of failure surface geometry of
isotropic failure criteria in the MNSS. Anisotropy is introduced in both its bounding failure
surface, and the variation of its geometry with non-zero shear stresses. Correspondingly, two new
parameters are introduced in the formulation. Each parameter controls a certain geometric

feature of the anisotropic n-plane cross-section. A parametric study is then provided to illustrate
the effect of these parameters on the conventional triaxial strength. Finally, the Anisotropic
Matsuoka-Nakai criterion is applied to some of the data sets compiled in Section 3.1.

In the following discussion, two coordinate systems are frequently referred to, that are consistent

with those used in Chapter 3. One is the material system STN, in which S, T and N are principal
directions of anisotropy. In the case of transverse isotropy, N is taken as the normal to the

isotropic planes, while S and T are two directions in the isotropic plane. In this system, the stress

tensor generally has six independent components: as, oa, on oa, o-,, cot (Figure 4.1 (a)). The

other coordinate system X1X2X3 is set up based on principal directions of stress, so that or is in the
xl direction and so on. In this system, the stress tensor has only three components, which are the

principal stresses oa, -2, q3. All shear stresses are zero.

4.1 Material Normal Stress System

For isotropic material, a strength criterion can usually be expressed as a function of stresses and



a few material parameters. Isotropic failure surfaces can usually be visualized in the
three-dimensional principal stress space. Likewise, an anisotropic failure criterion is the function
of the material stresses and material parameters. Since there are six components of the material
stresses, it is impossible to visualize all of them in a three dimensional system. One way to solve
this problem is to introduce the Material Normal Stress System, which is the stress space formed
by only the material normal stresses aotoan (Figure 4.1 (a)). The state of the material normal
stresses can be described by a point (q, at, o-n) in the MNSS.

Similar to the principal stress space, the hydrostatic line and the n-plane can be defined in the
MNSS (Figure 4.1 (b)). Along the hydrostatic line, a = ot = on. The n-plane is a plane that is
perpendicular to the hydrostatic line (i.e. plane ABC). Another plane that is useful for later
discussion is the plane where a, = at (i.e. plane AOD). This plane is defined as the triaxial plane
of the MNSS (compare with the triaxial plane with o2 = 03 in the principal stress system). In a
triaxial test where N is in the axial direction of the triaxial cell (,8 = 900), the stress state of the
specimen is located on this plane since a = ot always holds in this test. This plane passes
through both the o-, axis and the hydrostatic line. Therefore, the projection of this plane on the
n-plane is a straight line, which coincides with the projection of o-n on the n-plane (Figure 4.1
(c)). The a, and at axes are symmetric with regard to this plane.

A polar coordinate system (r , ,Z) can be established, where the Z axis is the hydrostatic line and
(r , ) are on the n-plane (Figure 4.1 (c)). Both Z and r can be expressed in terms of the material
normal stresses.

Z +=++ =I (4.1)

Therefore, Z is associated with the first stress invariant and describes the average confining
pressure in the material. r is the distance from a stress point (o6, ot, on) to the hydrostatic line in
the n-plane:

r = (a, - +(o) on)2 +(o a,)2] =2 (4.2)

where J2n is the part of J2 that can be represented by normal stresses only. It is worth noting that
J2n is not a stress invariant, although J2 is. Correspondingly, J2~ will be used to represent the part
of the J2 related to the shear stresses only, which is expressed by:

Js,I + ~o + a U (4.3)

so that J2 = J2n + J9Z. 0 is the angle between a radial direction and the projection of oa, on the
n-plane, which is expressed by:

tan= (4.4)
2a, -o, - at,

0 is also not a stress invariant. Finally, the normal stresses can be expressed as functions of (r, 0,
Z):



a, Z [rsin(6+0 )
.-r3 3 6

o' = rsin( - 0) (4.5)
-5 3 6

a, = +- r cosO73 3

The radial dimensions r(6) will be denoted ro. The point at failure along this direction will be
denoted R0, and called the radius of the it-plane cross-section in this direction. Similar to the
principal stress space, stress paths along ro, r60, ... r300 (shown in Figure 4.1 (c)) represent
conventional triaxial tests. However, in the MNSS, the isotropic plane orientation is also
specified. For example, ro, r120 and r240 represent the triaxial compression test with N, T and S
being the axial direction, respectively. For a transversely isotropic material, R120 = R240 due to
material symmetry.

This system seems to be very similar to the principal stress space and its polar representation
reported in Chapter 2. However, all the stresses in this space are material normal stresses instead
of principal stresses. In the principal stress space, r and 0 in the i-plane are both stress invariants.
In this system, however, both of them are not stress invariants since only the normal stresses are
considered.

4.2 Coupling of the Structure and Stress in MNSS

In the principal stress space, one point stands for a certain set of principal stresses, whose
orientation with regard to the STN system is not explicitly specified. The material structure
therefore cannot be considered in this space. In the MNSS, however, the same principal stresses
correspond to different points depending on the material structure orientation. Figure 4.2 shows a
general case where the principal directions of anisotropy STN do not coincide with the principal
directions of stress x1x2x3. In the following discussion, the magnitude and the direction of the
principal stresses are kept constant. For the time being, it is assumed that oI > o2 > a3, all of
which are compressive stresses.

The Mohr circles of this stress state are shown in Figure 4.3. When the STN system is rotated,
the material normal stresses (-s, ot, O,,) will be changed accordingly. Assuming that the vector N
can be represented by [NI, N2, N3] in the X1X2X3 system, then o, can be calculated by:

a0 0 0N,
, =N.u.N =[N,,N,N3] 0 a- 0 N2 =,N 2  

2N
2 +o-3N 2  (4.6)

0 0 a-3 N

oa, and ot can be similarly obtained. The stresses on the ST plane, TN plane and NS plane all fall



in the shaded area in Figure 4.3 (see, for example, Zoback, 2007). The following conclusions can
be made regarding the material normal stresses:

* The magnitude of any one of the material normal stresses must be between 03 and ao. This
conclusion is quite straightforward by examining the shaded area in Figure 4.3.

* The point (o, 0t, o0,) always remains on the 7c-plane with Z=( (• +0"2 +a3))/43 (shown by

the dashed line triangle in Figure 4.4 (a)). This is because c++o,+a- = I,, which is the first
invariant of the stress tensor.

* If the N direction is kept constant, the rotation of the ST directions causes the point (a,, ot,

a,) to travel along a straight line, which has the equation s+0ot = constant. If the N direction

is constant, then a,, = ON12+N22+ 3 2 must also be constant. Therefore, s+t =
(+a2+c203)-q0 is a constant. Geometrically, this line is parallel to the (s, o,) plane, and

forms a 450 angle with regard to both a, and at axes (for example, line MN in Figure 4.4 (a)
and (b)). This conclusion also holds if T or S is held constant, and the other two directions
are rotated.

With these conclusions, it is then easy to understand that the material normal stress point (a,, 0t,

a,) remains in a hexagon in the 7n-plane, Z=( (o + a2 + 3)/!%f, for any orientation of the STN

system with regard to the X1X2X3 system. Figure 4.4 illustrates this statement. Figure 4.4 (a)
shows a three dimensional view of this hexagon. Figure 4.4 (b) shows its projection onto the (o,
at) plane. Figure 4.4 (c) shows the plan view of this hexagon, and how the rotation of STN
system determines the location of (a,, 0t, q,). As an example, assume that initially as = 02, t =
a0, and oa, = 0a. The stress point (a, a0, a,) is at point A shown in Figure 4.4. If N is kept
constant and ST are rotated, the point (ak, at, a,,) follows line AB until it reaches point B, where
a,= o3, at = qo2, and a. = a•. Based on the previous analysis, line AB is parallel to the (as, ao)
plane and forms a 450 angle to both ar and 0t axes. At this point, if S is kept constant (currently
in the x3 direction) and TN are rotated, point (oj, at, a,,) marches from point B to point D. Line
BD is parallel to the (0t, a,) plane and forms a 450 angle to both at and oa, axes. When (q, 0t, 0c,)

reaches point N, if direction N is again kept constant and ST are rotated, then point (as, t, on)
follows the line MN. Line MN is parallel to line AB, but is inside the hexagon. By observation, it
can be concluded that:

* At the vertices of this hexagon, the principal directions of anisotropy STN coincide with the
principal directions of stress xlx 2x 3.

* Along the sides of this hexagon, only one of the principal directions of anisotropy coincides
with one of the principal directions of stress.

* Within this hexagon, none of the principal directions of anisotropy coincides with the
principal directions of stress.
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To summarize, one particular principal stress state (a0, 02, 03) corresponds to a hexagonal locus

in the MNSS. This hexagonal locus is defined in the n-plane with Z = (o +c2 +a 3)/l . The

location of the corresponding point (u,, o0, u0) in this hexagon depends on the relative orientation
of the principal directions of anisotropy to the principal directions of stress. Compared with the
principal stress space, where (o00, 02, 03) is only represented with one point, the MNSS describes
the coupling between the material structure and the stress.

4.3 Conventional Triaxial Tests in the MNSS

The conventional triaxial compression test is the most common laboratory test on anisotropic
rocks, as shown in the previous chapter. In the special case of a conventional triaxial stress state,
c0021 =003. From Figure 4.4 (b), it can be seen that point A and B must coincide and the length of
line AB reduces to zero. In fact, the hexagon is reduced to a right triangle. Figure 4.5 shows the
three dimensional view and the projection of the triangle onto the (a,, at) plane. In the case
where all three principal stresses are equal, there must be 0o=0t=00, the triangle is further
reduced to a point on the hydrostatic line. A cylindrical specimen is usually used in these tests. In
a very general configuration, none of the principal directions of anisotropy coincides with any of
the principal stress directions (Figure 4.6 (a)).

During the test, the principal directions of both anisotropy and stress are unchanged. In a typical
conventional triaxial compression test, the specimen is first loaded isotropically to a certain
confining pressure a 3. In this process, there must always be a=a0t= , so that the stress path
follows the hydrostatic line in the MNSS. Then a1, the axial stress, is either increased or
decreased to shear the specimen to failure, so that A001 # 0, and Aa3 = 0 for any load increment.
The increment of the material normal stresses can be calculated by:

Au = Aa,1S1
2;Ao, = Ao-I, 2;Aac =AoN, (4.7)

in which the components of S, T and N are represented in the principal stress system x1X2x 3.
Obviously, Aq:Aa0t:Aa, = S12: T12: N12 and the stress path must follow a straight line in the
MNSS. This stress path in a conventional triaxial compression test is shown in Figure 4.7 (a).
The segment OPo represents the isotropic loading. Shearing starts from point Po and proceeds to
point Pi at time t1, P2 at time t2, etc. The representation of the stress state changes from the point
Po, to the smaller triangle A1B1C1 at time t1, then to the larger triangle A2B2C2 at time t2. As

discussed before, each of these triangles is in a in-plane with Z = (o- (t) + 2o3) / 4 .

The locations of the stress points Pi at time ti in the corresponding triangles are specified by the
orientation of STN system relative to the X1X2X3 system. In the previous chapters, the orientation



of isotropic plane is described by the angle f between the isotropic planes and the axial direction.
This simple representation is possible because the S direction and the x2 direction are assumed to
always coincide (Figure 4.6 (b)). In this case, the stress point Pi always falls on the side AiBi of
the stress triangles in Figure 4.7 (b). The relationship between the material normal stresses and
the principal stresses are:

a, = a3
a, = a sin 2 + a' COs 2 f (4.8)
a0, = a3 c os2 6 + sin 2 p

With a load increment Aol, there must be:

ao = 0; A,= Aa, cos2 f; A sq = a" sin2 p (4.9)

Geometrically, the stress paths follow straight lines which are parallel to the (oat, o'n) plane, with
the slope Ao,/Aot = sin2f /cos 2Pf. Since all the stress paths start from the point Po, they are
located in one plane (plane PoAiBi in Figure 4.7 (b)), whose equation is o, = 03. This is actually
the plane traversed by line AiBi along the growth of the stress triangle. The stress paths of p = 00
to 900 with 150 interval are shown in Figure 4.7 (b). The projections of these stress paths on the
in-plane are shown in Figure 4.7 (c). In the ni-plane, the distance of a stress point to the origin is
determined by J2,,, according to Equation (4.2). The growing length of the stress paths, therefore,
can be physically identified with the increasing material distortion due to normal material
stresses.

The preceding analysis does not involve any material property. Therefore, it applies to both
isotropic and anisotropic materials. A material coordinate system can also be established for an
isotropic material. For example, N can be taken as the vertical direction when the specimen was
in the ground, while S and T are in horizontal directions. Specimens can be cut so that the axial
direction is different from the in-situ vertical direction. Because the failure of isotropic
specimens does not depend on orientation, all specimens fail at the same oif given the same
confining pressure o3. As a result, the stress paths at any , must end at the same stress triangle,

in the n-plane with Z = (at, + 20a3) / 3. Geometrically, the failure of an isotropic specimen in a

conventional triaxial test with specific confining pressure o3 can be represented by a straight line,
which is the side AB of the failure stress triangle. This line will be called the Isotropic Failure
Line.

If the material under discussion is an anisotropic material, its behavior in the conventional
triaxial compression test can be similarly described. It has been shown that the conventional
triaxial strength variation with , for anisotropic rocks can be described by "U" shaped curves
with unequal ends (Figure 4.8). Two local maxima are reached at P = 00 and 6 = 900. In this case,
an imaginary isotropic material can be defined, whose strength is independent of f, and is the
same as the anisotropic strength at P = 900 (the horizontal line in Figure 4.8). It has just been



shown that the imaginary isotropic material fails along the side AB of the failure stress triangle
(shown in Figure 4.9 (a)), whose location Z is determined by the strength at/ = 900. At a specific

r, the anisotropic material follows the same stress path as the imaginary isotropic material, but
fails before or after the stress path reaches line AB, depending on whether the anisotropic
strength is smaller or larger than the imaginary isotropic strength. Therefore, the "U" shaped line
shown in Figure 4.8 maps into the MNSS to form the curved locus shown in Figure 4.9. This
curve will be termed the Anisotropic Failure Curve. Since all stress paths are in the same plane
a = 3 , the anisotropic failure curve must also be in the plane PoAB.

Since the MNSS only captures the normal stress components, it does not have enough
information to fully describe the stress state at one point. Each point (q,, o0t, a,) in this space can
represent numerous stress states, depending on how shear stresses are determined. In the
previous discussion about the triaxial tests, shear stresses are implicitly specified. The magnitude
and the directions of the principal stresses are known, together with the principal directions of
anisotropy. In this case, the normal and shear stresses in the material coordinate system can be
uniquely determined. While plotting the stress paths, only the normal stress components are
considered. The material shear stresses can be expressed by:

a, = 0; = 2; , 3 sin 2/; c,, = 0 (4.10)

Obviously, 0,, increases linearly with a0, under a specific confining pressure 03 and isotropic
plane orientation 8. At each point along a stress path, therefore, the shear stresses are different. In
the following sections, in which the failure criteria are discussed, shear stresses will be explicitly
specified, so that they are the same for any point (u, at, ,n).

4.4 Drucker-Prager Criterion in the MNSS

In order to predict the failure of anisotropic materials in the MNSS, it is necessary to study how
to represent failure criteria in the MNSS. A relatively simple isotropic model, the Drucker-Prager
criterion, will be studied first. As discussed previously, a material coordinate system STN is set
up on an isotropic material that obeys the Drucker-Prager criterion.

The Drucker-Prager criterion can be written in invariant form as:

22 = kH + c (4.11)

where c stands for the cohesion when the material is sheared with zero octahedral stress, while k
specifies the pressure dependence. By squaring both sides of Equation (4.11), dividing the
invariant J2 into components J2, and J2s, and using Equations (4.1) and (4.2), the polar
representation of Drucker-Prager criterion in the MNSS is obtained:

R2 =(kZ +c)2 - 2(c,2 , +) (4.12)



R and Z are expressions of -,, ot, ao,, the normal stresses in the STN system. ag, ot,,, oa, are the
shear stresses in the STN system.

In the first case, zero shear stresses are specified, such that at = ot,, = o-, = 0. This condition is
explicitly imposed on all points in the MNSS. In this case, Equation (4.12) reduces to:

R, = f3kZ + c (4.13)

This failure surface is termed the bounding failure surface, because it is the largest failure
surface that the Drucker-Prager criterion describes in the MNSS. Accordingly, RB is used to
represent its radius on the in-plane. Equation (4.13) represent a cone in the MNSS (Figure 4.10
(a)), whose radius varies linearly with pressure level (i.e. it describes a linear pressure
dependence) and whose n-plane cross-section is a circle. The geometry of Drucker-Prager failure
surface in the MNSS is the same as it is in the principal stress space. This is because the normal
material stresses are the principal stresses when shear stresses are all zero. Physically, this
corresponds to true triaxial tests where the principal stresses are applied in the principal
directions of anisotropy (i.e. S, T, and N).

When any of the shear stresses are not zero, it can be directly obtained from Equation (4.12) that:

R = (f3-kZ + c)2 - 2(o, + a + .) (4.14)

Since R also does not depend on 0, the n-plane cross-section is still circular. However, R is
always smaller than RB at the same Z level (Figure 4.10 (b)). As the magnitude of shear stresses
increases, the ratio R/IR reduces. The variation of R with Z is obtained by taking the derivative of
Equation (4.14) to Z:

dR _k

dR 43,k (4.15)
dZ 2(a,+, ++a .)1-

(413kZ + c)2

Clearly, dR/dZ is always larger than dRB/dZ, which is a constant fik. At a given level of Z, the
difference is larger for larger shear stresses. At constant shear stresses, the difference is larger for
smaller Z values. When Z approaches infinity, dR/dZ approaches \k. The failure surface of
Drucker-Prager criterion with non-zero shear stress is shown in Figure 4.10 (b). Since dR/dZ
depends on Z, this relationship describes a nonlinear pressure dependence. Note that the r in the

MNSS system is defined as 1fti, which is different from its definition J2_j in the principal

stress system. As shown in Equation (4.11), J2~ obviously depends linearly on Ii. Therefore,

the Drucker-Prager criterion describes a linear pressure dependence in the principal stress system,
while there is a non-linear pressure dependence in the MNSS system.

Since this criterion is an isotropic criterion, it must predict that the material fails at the same o•f,
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regardless of the orientation 8. In fact, if Equations (4.8) and (4.10) are substituted into Equation
(4.12), the terms with p will cancel out. The predicted oif values are:

(2 + 6k2) + 3r6k
oI1f -= 23k 2  

0U3 (4.16)

at confining pressure 03. They are, indeed, independent to P:

To summarize, the representation of the Drucker-Prager criterion in the MNSS is composed of
two parts: 1) a bounding failure surface with radius RB (Equation (4.13)), and 2) the variation of
its size with shear stress magnitude. The bounding failure surface is reached for all zero shear
stresses (ast = On = a,,ns = 0). As such, it is entirely a function of material normal stresses. This is
the largest failure surface in the MNSS for the Drucker-Prager criterion. The shape of the
bounding failure surface is the same as its shape in the principal stress space. Physically, the
bounding failure surface describes the failure of specimens in true triaxial tests, where the
principal stresses are applied in the principal directions of anisotropy S, T and N. The size
reduction is controlled by the magnitude of the shear stresses. For isotropic models, they must be
such that the failure surface always meets the stress paths along the side AB of the failure stress
triangle, as shown in Figure 4.7.

The concept of stress paths and of failure surfaces can be combined to predict material failure.
Figure 4.11 (a) and (b) show the conventional triaxial compression tests on specimens with P =
900 and 0', respectively. As shown in Figure 4.7, the stress paths of these two shear modes are in
the OA and OB directions. Because ost = an = "ns = 0 always holds in these tests, the bounding
failure surface always applies. Therefore, failure occurs at point A and point B, respectively, for
these two shear modes. For 00 < p <900, as shown in Figure 4.11 (c), the stress path OM is
between OA and OB, depending on the value of 3, as shown in Figure 4.7. However, in this
scenario shear stress ao, is not zero, and it increases with a1 (Equation (4.10)). The failure
surface then shrinks with increasing shear stress at,, until it finally meets the stress path at point
M. Point M is the point where failure occurs, and it is located on line AB.

Clearly, the normal and shear stresses play separate roles in the MNSS. In a conventional triaxial
test, each loading step drives the stress path farther away from the hydrostatic line. The radius of

the current stress point on the n-plane is determined by Equation (4.2), which is solely a function
of material normal stresses. At the same time, shear stresses also increase (in a general scenario
like Figure 4.11 (c)) according to Equation (4.10). With this increase of shear stress, the failure
surface shrinks. At one point, the stress path meets the failure surface and failure occurs. The
normal stresses therefore control the stress path, and the shear stresses control the variation of
failure surface size.



4.5 Matsuoka-Nakai Criterion in the MNSS

In Chapter 2, it was concluded that the n-plane cross-section described by the LMN dependence,
combined with a pressure dependence function Ro(Z), captures the failure behavior of isotropic
rock in a polyaxial stress state. The LMN dependence describes a group of curved right triangles
whose shapes are entirely defined by one shape factor Af,. Both the Lade criterion and the
Matsuoka-Nakai criterion have this type of n-plane cross-section. In this section, the
Matsuoka-Nakai criterion will be analyzed in the MNSS system. This criterion will be developed
into an anisotropic criterion, based on the results of this section.

The Matsuoka-Nakai criterion is expressed in the invariant form as:

I2I, - k 3 =0 (4.17)

The invariants in this equation can be expressed as functions of the material stresses: a, at, ao,,
,t, oa,,, oa,. The three normal stresses can in turn be expressed by R, 0 and Z with Equation (4.5).

After regrouping the terms, the Matsuoka-Nakai criterion can finally be expressed by R, 0, Z and
the material stresses:

1 +1- 3 k 1- 9 kZ3 1- 3 k(a.2 2+ 2 r
R3 COS30+ R Z = Z2 (3 2+ )Z (ar, + oa r, +ar,)+ 2,ata, (4.18)

in which r,, r, and rt are defined as:
1 1 1

r, = (2o-, -a -a-);r, = (2a, -a, -o-a) (4.19)

Clearly, these quantities are associated with the stress deviator. Geometrically, these quantities
are determined by the location of a stress point (a,, oat, ,) on the n-plane. Defining the rn, r, and
rt axes to be the projection of the a,, a-•, and ot axes on the n-plane respectively, as shown in
Figure 4.13, these quantities can be obtained by projecting the stress point onto the three axes (rn,
r, and rt) on the in-plane.

When all shear stresses are zero, Equation (4.18) is simplified to:
1 1-3k 1-9kR' cos30+ - R Z= (4.20)3 2, 3,

The three dimensional representation of the failure surface is shown in Figure 4.14 (a). It is the
same as the failure surface of the Matsuoka-Nakai criterion in the principal stress space. The
geometry of this surface was described in previous chapters. A few important aspects will be
restated here. Equation (4.20) describes a conic shape failure surface. This failure surface
specifies a linear pressure dependence, with:

3 1-10k+9k 2 +(1-9k) 3.-10k+9k2 -(1-9k)The= Z;2 Rl 3 = Z (4.21)

The triaxial plane cross-section of this failure surface is shown in Figure 4.14 (c), where both



Ro(Z) and R1 80(Z) are straight lines. Its 7n-plane cross-section is shown in Figure 4.14 (b), which
is a curved right triangle described by the LMN dependence. The size of the curved right triangle
at a certain octahedral stress level can be determined by (Ro+Rls0). The shape of the triangle is
determined by:

3/J 1-Ok +9k - (1-9k)
3 1-lOk +9k2 -(1- 9k)

It is also important to note that this criterion is a one-parameter criterion. The only parameter k
defines the shape of the nr-plane cross-section and the linear pressure dependence of the triaxial
plane cross-section. k is associated with friction angle of a material by:

k=(1 8sin2 - 1 (4.23)
9 9-sin' )

This is because the Matsuoka-Nakai failure surface matches the Mohr-Coulomb criterion in
conventional triaxial compression and extension tests.

When any of the shear stresses are not zero, Equation (4.18) specifies the size and shape of the
failure surface. Due to the complexity of this expression, a numerical example is shown here to
illustrate how the size and shape of the surface vary with shear stresses. It will be assumed that
the friction angle of the material is 0 = 300, so that k = 0.0857. In order to further simplify the
problem, it is assumed that only one of the shear stresses a, is non-zero. The failure surface at
at, = 0, 0.1, 0.2, 0.3 are shown in Figure 4.15. Clearly, the failure surface shrinks as the shear
stress increases. It is important to note that the size reduction of the failure surface is different in
different directions. With non-zero at,, the size reduction is the largest for R240, while it is the
smallest for R60. Due to this direction dependent size reduction, the shape of the failure surface
distorts during its size reduction.

This distortion can be physically explained through a simple thought experiment. Since the
Matsuoka-Nakai failure criterion matches the Mohr-Coulomb criterion in conventional triaxial
states, the strength R240 and R60 can also be determined by Mohr-Coulomb criterion with the
same friction angle and zero cohesion. As shown in Figure 4.14 (b), R240 represents the strength
of a conventional triaxial compression test, with S being the axial direction; while R60 represents
the strength of a conventional triaxial extension test, with S being the axial direction. Figure 4.16
shows a specimen with friction angle 0 = 300 and zero cohesion. A conventional triaxial test is
first performed with S being the axial direction. The confining pressures are assumed to be ao =
o,, = 10MPa. With the Mohr-Coulomb criterion, one obtains ac at failure to be 30MPa in triaxial
compression and 3.3MPa in triaxial extension, as shown by the solid Mohr circles in Figure 4.16.
Now the shear stress at is increased to 2MPa. The principal stresses in the TN plane are 8MPa
and 12MPa, based on the dotted Mohr Circle. If a, is again changed to bring the specimen to
failure, the dashed Mohr circles apply and the specimen fails at 24MPa in compression and
4MPa in extension. Comparing with the strengths at a,, = 0, the conventional triaxial
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compression strength is reduced by 6MPa, while the extension strength is increased by 0.7MPa
only. This explains why the failure surface shrinks significantly in the R240 direction but only
slightly in the R60 direction at non-zero am (Figure 4.15). Clearly, the distortion of failure surface
with non-zero shear stress is a necessary consequence of the frictional nature of the material'

It is worth examining Equation (4.18), to see how the non-uniform size reduction is generated
mathematically. The size and shape of the failure surface depend on the right hand side of

Equation (4.18). At all zero shear stresses, the right hand side is 1-9kZ'. Non-zero shear

stresses changes the size and shape of the failure surface by modifying this term. The term
1-3k

(a., 1 + +a' )Z in (4.18) is always negative, and it does not depend on 0. Geometrically, it

reduces the size of the bounding failure surface, but the reduced surface still possesses six-fold
symmetry. As shown in Figure 4.17, this term reduces the bounding failure surface from the solid

2line to the dashed line. The term -ar,, on the other hand, can be positive or negative. To the

left of the r, = 0 line, this term is negative and it causes the size of the failure surface to reduce.
To the right of this line, this term is positive and the size of the failure surface increases. This
term is 0 on the line rs = 0, therefore the reduced surface (dashed surface in Figure 4.17) and the
distorted surface (smaller solid surface in Figure 4.17) intersect. Since this term depends linearly
on rs, it is called a linear shape distortion. When there are more than one non-zero shear stresses,

the shape distortion is described by - ( (r + • r,+ r,), which simply adds up the

contribution of different shear stresses.

The Matsuoka-Nakai criterion has a more complicated failure geometry than Drucker-Prager.
However, both have similar representations in the MNSS system. The only difference is that
non-zero shear stresses control not only the size reduction, but also the shape distortion of the
Matsuoka-Nakai failure surface.

4.6 An Anisotropic Matsuoka-Nakai Criterion for

Transversely Isotropic Rocks

4.6.1 General Considerations

Based on the preceding discussion of the Drucker-Prager criterion and the Matsuoka-Nakai
criterion in the MNSS, it can be concluded that the representation of a failure criterion in the
MNSS has two essential components: the bounding failure surface, which is entirely a function
of material normal stresses, and how its size and shape vary with non-zero shear stresses. Earlier



in this chapter, it has been observed that "U" shaped curves with unequal end points are obtained
when the strengths of transversely isotropic rocks are plotted against isotropic plane orientation P.
In order to describe the failure behavior of anisotropic rocks, therefore, these observations must
be incorporated in an anisotropic failure criterion.

Bounding Failure Surface for Anisotropic Material

The bounding failure surface describes failure under true triaxial stresses, where the principal
stresses are in the principal material directions (i.e. directions S, T and N). Conventional triaxial
tests with p = 00 and 90*, as shown in Figure 4.11 (a) and (b), are two special cases. They
correspond to the two shoulders of the "U" shaped curves.

The bounding failure surface is conceptually illustrated in Figure 4.18 (a). The conventional
triaxial strength of the rock specimens with P = 900 and P = 00 but at various confining pressure
can be described by the functions Ro(Z) and R120(Z), respectively. Geometrically, they can be
represented by the intersections of the bounding failure surface with plane (ro, Z) and (r12o, Z), as
shown in Figure 4.18 (a). Figure 4.18 (b) shows the planes (ro, Z) and (r120, Z) overlapped. a,, is
in the (ro, Z) plane, and its orientation with regard to the Z axis can be described by &:

E = arctan F2 54.740 (4.24)

oa is in the (rl20, Z) plane, but with the same orientation. Therefore, oa, and oa coincide in the
overlapped view. If a conventional triaxial test is performed with P = 900, the stress path should

be parallel to oa, direction. The length of the stress path at failure is (o," --a), where 03 is the

confining pressure and o' f is the axial stress at failure. The same statements are also true for a
conventional triaxial test performed with P = 00. When overlapped, a stress path in the (rl20, Z)
plane must be parallel to one that is in the (ro, Z) plane. If a conventional triaxial test with P =
900 and one with p = 00 are performed at the same confining pressure, then their stress paths start
from the same point along the Z axis (point O' in Figure 4.18). Since these two tests have
different strengths, their lengths to failure must be different and they must end at different points
on the overlapped plane (shown in Figure 4.18 as point A for P = 900 and point B for P = 00).
This means that the functions Ro(Z) and R120(Z) must be different. Consequently, the n-plane
cross-section of the bounding failure surface for an anisotropic material can have a different
radius in 0 = 00 and 0 = 1200, and will lose the six-fold symmetry that is characteristic of
isotropic failure surfaces.

Variation of Bounding Failure Surface Geometry for Anisotropic Material

The representation of failure for isotropic and anisotropic materials has been discussed earlier. It
is concluded that the failure of isotropic materials must always be along one side of the failure
stress triangle, as shown in Figure 4.7. The failure of an anisotropic material can be represented
by a "U" shaped curve in the MNSS, as shown in Figure 4.9.



The failure of an anisotropic material and the corresponding imaginary isotropic material are
plotted in Figure 4.19, where the imaginary isotropic material has a constant strength that
matches the anisotropy material strength at point A, which corresponds to the failure of a
specimen with [3 = 900, as shown in Figure 4.11 (a). Failure of the anisotropic material is
represented by a solid curve AND, and that of the imaginary isotropic material by a dashed line
AB. Suppose there is an isotropic failure criterion that can predict the strength of the imaginary
isotropic material, the geometry variation of its failure surface with non-zero shear stress must be
such that it always meets the stress paths along line AB, as illustrated by point M in Figure 4.19.
If an anisotropic criterion is to be built based on this isotropic criterion, the geometry variation
must be modified so that the failure surface meets the same stress path along the anisotropic
failure curve, in this case point N along curve AND.

Based on the above discussions, two modifications must be made to extend the Matsuoka-Nakai
criterion to anisotropy:
* Its bounding failure surface must be modified to eliminate the six-fold symmetry.
* The variation of its bounding failure surface geometry with non-zero shear stresses must be

modified so that it meets the stress paths along the anisotropic failure curve in the MNSS.

Before extending the Matsuoka-Nakai criterion to anisotropy, its pressure dependence and Lode
angle dependence will first be separated. With this separation, the ni-plane cross-section can be
manipulated without worrying about the triaxial plane cross-section. Equation (4.18) is first
normalized by Ro in Equation (4.21), and then the parameter k is substituted by Af according to
Equation (4.22). The normalized form of the Matsuoka-Nakai criterion is:

-(1-Pi,)R'3 cos30+(1-,8 +,2)R" = 2 -2(1-J +(,42)( +o)2 + ()

(4.25)
-6(1 - ,)(o-r,' + o-,r,' + o2r,'r) + 6 (1 -fl,)a,ta'a',

If the pressure dependence is described by a non-linear function Ro(Z), then the normalized
quantities are simply defined by R' = RIRo(Z), etc. When all shear stresses are zero, this equation
is identical to the LMN dependence. It defines n-plane cross-sections that have curved triangular
shape, with R'o = R'120 = R'240 = 1.0 and R'60o = R'180 = = fl (refer to Figure 2.23).

4.6.2 Extension of the Bounding Failure Surface

For anisotropic rocks, two pressure dependence functions Ro(Z) and R120 (Z) can be different. As
shown previously, Ro(Z) describes the conventional triaxial compression strength where N is the
axial direction, which corresponds to P = 900. R120(Z) describes conventional triaxial
compression strength where T is the axial direction, which corresponds to f = 00. A detailed
example has been shown in Chapter 2 on how to obtain Ro(Z) based on the conventional triaxial
compression tests. The same technique can be used to obtain Ro(Z) and R120(Z) for anisotropic
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rocks, based on conventional triaxial compression tests performed with P = 900 and 8 = 0' ,

respectively. The difference of these two strengths at the same Z level can be described by the
ratio R120(Z)/Ro(Z). This ratio will be used to specify the shape of the it-plane cross-section of the
anisotropic Matsuoka-Nakai criterion.

Normalized values of R120(Z) and Ro(Z) will be used in the following discussion, because
R'120(Z)/R'o(Z) = R 120(Z)/Ro(Z). When the ratio R'120 (Z)/R'o(Z) is different from 1, the shape of the
7n-plane cross-section must be distorted accordingly. In the isotropic Matsuoka-Nakai criterion,

2 + o-.). The mechanism of this
shape distortion is controlled by the linear term (asr, + or, + nr,). The mechanism of this

linear shape distortion is shown in Figure 4.17. It turns out that the linear shape distortion can be
used to provide the desired features. Due to material symmetry for a transversely isotropic
material, the distorted n-plane cross-section must be symmetric with regard to the projection of
a, axis on the n-plane, which is the rn axis (refer to Figure 4.13). Therefore, only the linear term
of rn can be included. Based on the same mechanism, a generalized linear form of rn is proposed
in its normalized form, which reads:

A(Z)/f 3(r'o - r,) (4.26)

This term can be added to the right side of Equation (4.25) to generate the desired shape
distortion. If this term is positive, it increases the right hand side of Equation (4.25) and the size
of the in-plane cross-section is increased. If this term is negative, then the size of the n-plane
cross-section is decreased. r'no is a reference level of r'n. At this level, Equation (4.26) becomes
zero and the original shape intersects with the distorted shape. A is a factor whose sign and
magnitude control how much the original shape is distorted with regard to r'no. The effect of this
term on the shape of the n-plane cross-section is illustrated in Figure 4.20, where the original
in-plane cross-section with six fold symmetry is shown with a dashed line, and the distorted
shape is shown by a solid line. When A > 0, the shape shrinks above r',no and expands below it, as
shown in Figure 4.20 (a). For A < 0, the effect is reversed (Figure 4.20 (b)). Clearly, the distorted
shapes have R'1 20(Z)/R'o(Z) # 1. By carefully selecting the value of A, the desired R'1 20(Z)/R'o(Z)

value can be obtained. The parameter A is made a function of Z, because the ratio (r - a3 )0o

(al -U 3)90'

which indicates how unequal the ends of a "U" shaped curve are, varies with confining pressure
(Figure 3.49). Finally, A12 is added in Equation (4.25) to control its dependence on /A.

Although theoretically r',o can take any value, it is most convenient to choose either r'no = 1.0 or
r'no = -0.5. r'no = 1.0 corresponds to R'o = 1.0, while r'no = -0.5 corresponds to R'120 and R' 240 =

1.0 on the original normalized nt-plane cross-section. Figure 4.21 through Figure 4.23 plot the
effect of Equation (4.26) on the original i-plane cross-sections with As ranging from 0.6 to 0.8.
There are two subplots in each plot: subplot (a) is for r'no = 1.0, and subplot (b) is for r'no = -0.5.
For each combination of A and r'no, A is taken to be between -0.5 and 0.5 at 0.05 intervals. In all
the plots, the shape with the thick black line is the original shape with six-fold symmetry, which



corresponds to A = 0. The shapes with solid thin black lines are for A = ±0.1, ±0.2, 1.0 , +0.5, while
the shapes with dotted thin black lines are for A = ±0.05, +0.15, ..., ±0.45.

Discussion on Subplot (a)'s in which r',o = 1.0

Figure 4.21 (a), Figure 4.22 (a) and Figure 4.23 (a) all have r'no = 1.0, but with different values of
fl. The distorted shapes intersect the original shape at R'o = 1.0. When A increases from 0, it can
be seen from the subplot (a)'s that the failure surfaces expanded downwards. However, the
bottom of the failure surface is approaching a triangle with the increase of A, as shown by dashed
lines in Figure 4.21 (a) and Figure 4.22 (a). This limits how far the failure surface can be
expanded (e.g. limits the possible value of R' 120(Z)/R'o(Z) that can be described), and poses
restrictions on the possible values A can take. For smaller Af values, the original nc-plane
cross-section is closer to a right triangle. Therefore, this restriction is more significant for Af =
0.6 than for 3, = 0.8. The limiting values are as follows:

* f = 0.6, limit ofA A 0.076, maximum R' 120(Z)/R'o(Z) ; 1.207;

* fl = 0.7, limit ofA A 0.349, maximum R'i20(Z)/R'o(Z) . 1.637;

A* , = 0.8, limit of A is larger than 0.5, R'120(Z)/R'o(Z) = 1.485 for A = 0.5;
For A < 0, the bottom of the distorted shape shrinks into the original shape, and it gets more
rounded with decreasing A. There is no restriction on values of A < 0. The A values and
corresponding R' 120(Z)/R'o(Z) values for r'no = 1.0 are tabulated in Table 4.1, and plotted in
Figure 4.24 (a).

Discussion on Subplot (b)'s in which r'.0o = -0.5

The results in Figure 4.21 (b), Figure 4.22 (b) and Figure 4.23 (b) correspond to the case where
r'no = -0.5. The distorted shapes intersect the original shape at R'120 = 1.0 and R'240 = 1.0. When
A decreases from 0, the failure surface expands in the 0 = 00 direction, with a more pointed apex
as A decreases. In this case, the top of the distorted shape approaches the top of a triangle, which
is shown as dashed lines in Figure 4.21 (b) and Figure 4.22 (b). Therefore, the restriction on A is
in the negative part, as listed below:

* fA = 0.6, limit ofA & -0.070, minimum R' 12l(Z)IR'o(Z) = 0.837;

A* , = 0.7, limit ofA A -0.296, minimum R' 120(Z)/R'o(Z) = 0.620;

* fA = 0.8, limit of A is smaller than -0.5, R'120(Z)/R'o(Z) = 0.634 for A = -0.5;
For A > 0, the top of the distorted shape shrinks into the original shape, and it gets more rounded.
Thus there is no restriction on the magnitude of A. The A values and corresponding R'120(Z)/R'o(Z)
values for r'no = -0.5 are tabulated in Table 4.2, and plotted in Figure 4.24 (b). For this group of
distorted In-plane cross-sections, obviously R'o is different from 1 while R'1 20 = R'240 = 1.
Therefore, the normalized quantities must be normalized against RI20(Z), instead of Ro(Z).



4.6.3 Extension of Geometry Variation with Non-Zero Shear

Stresses

It has been shown in Figure 4.19 that the failure surface must meet the stress path on the
anisotropic failure curve AND, instead of the isotropic failure line AB. Along the stress path
shown in Figure 4.19, the anisotropic material fails earlier than the imaginary isotropic material.
The geometry variation with non-zero shear stresses of the isotropic Matsuoka-Nakai criterion
must be modified so that the predicted failure point is at point N instead of at point M. It is
possible to change both the shape distortion and size reduction to obtain this feature. To keep the
formulation simple, however, only the uniform size reduction will be modified.

In the original Matsuoka-Nakai criterion, the uniform size reduction of the failure surface is

controlled by the term -3k (0.2a + + )Z. The term involving at must not be changed,

because at is in the isotropic plane and its effect on failure should be described by an isotropic
criterion. The term involving at, must be changed, because it is the only non-zero shear stress in
a conventional triaxial compression test, and as such it must be the shear stress that controls
anisotropic size reduction. Any change on n,, must be also made on ons, due to material
symmetry. Based on these considerations, the following term is proposed:

-K(Z)(r,'2 + o2) (4.27)

K is a positive parameter, while ot'2 + o2 is the normalized resultant shear stress on the

isotropic plane. Clearly, this term is always smaller than zero when there is non-zero shear stress
on the isotropic plane. When this term is added to the right hand side of Equation (4.25), it
speeds up the size reduction of the failure. The failure surface then meets the stress path earlier
compared with the isotropic case, and the required anisotropy is then predicted. The larger K is,
the faster the size reduces with non-zero shear stress and the corresponding AND curve deviates
farther from the isotropic failure line AB (Figure 4.19). The depth of the "U" shaped curve in
Figure 4.8 is clearly correlated with the value of K(Z).

4.6.4 The Anisotropic Matsuoka-Nakai (AMN) Criterion

Incorporating both the linear shape distortion of the bounding failure surface and the anisotropic
size reduction, the final expression for the normalized anisotropic 7c-plane cross-section
becomes:

-(1 -p,)R' 3 cos 30 + (1- , +P,2)R = ,2 -2(1-P,8 +,2)( +2 )(4.28)

-6(1- ,)( r' + o72 rs + o.2ns rt) + 6F6 (1 - ) o a',a,a', ' + A(Z)82 (r , -r)-K(Z)(,t2 +nu2)



Equation (4.28), together with the two pressure dependence functions Ro(Z) and R120(Z),
completes the formulation of AMN criterion. Both the bounding failure surface and the geometry
variation are modified to incorporate anisotropic features. These anisotropic features of the AMN
criterion will be termed the bounding failure surface anisotropy and the geometry variation
anisotropy from now on.

Figure 4.25 shows the bounding failure surface of the AMN criterion in the MNSS and its
n-plane cross section at a certain Z level. Functions Ro(Z) and R120(Z) determine how the size of
the n-plane cross-section varies with pressure level. They can be obtained through conventional
triaxial compression tests on specimens with p = 900 (to obtain Ro(Z)) and P = 00 (to obtain
R120(Z)). For the n-plane cross-section at a certain Z, the lengths of Ro and R120 Of this nc-plane
cross-section (i.e. length of OA and OC in Figure 4.25) are determined through Ro(Z) and R1 20(Z).
Compared with isotropic materials, where there is only one pressure dependence function, there
are two pressure dependence functions for a transversely isotropic material.

Once R' 120(Z)IR'o(Z) is known, the shape of the nc-plane cross-section at this Z level depends on
the value of r'no and A. The parameter A can be determined from Figure 4.24 based on the value
of R' 120(Z)/R'o(Z) and r'no. Therefore, the parameter A is transparent to the end user of the model.
In an ideal situation, r'no and A, must be obtained through true triaxial tests on the anisotropic
rock, where the principal stresses are in the principal material directions S, T and N. The
anisotropic n-plane cross-section is symmetric to the projection of the o-, axis, but does not
possess the six-fold symmetry at R' 120(Z)IR'o(Z) different from 1. Therefore, true triaxial tests
must be performed so that data points cover the entire range of ABCD in Figure 4.25, or half of
the n-plane cross-section. The n-plane cross-section obtained from the experiments can then be
compared with the shapes shown in Figure 4.21 through Figure 4.23, to determine the most
suitable r'no and A6. In the case of an isotropic material, only one-sixth of the 7c-plane
cross-section (section AB for example) needs to be covered by experimental results, and fl is the
only parameter that describes the shape of the n-plane cross-section.

Parameter K determines the extra size reduction of the bounding failure surface, which is added
to the isotropic size reduction. This parameter determines the depth of the "U" shaped curve,
which is obtained through a series of triaxial compression tests with varying P but with the same
confining pressure. Therefore, K should be calibrated based on a series of "U" shaped curves at
various confining pressures.

Once all parameters are obtained, computer programs can be written to implement the AMN
criterion. While implementing this failure criterion, it is frequently necessary to judge whether a
stress point is inside or outside of the failure surface. Therefore, a failure function is defined
based on Equation (4.28):



(r' ,;,,, ') -(1-fl)r' 3 cos3+(1-, +/2)r2 ra 2Z +2(1-g +,2)(o2 +i,2 +2 c)
(4.29)

+6(1-)('2 t2 s+fr' (1-)a,_ A(Z)2 € -r,)+K(Z)(2 2

Equation (4.28) is equivalent tof= 0. Iff< 0 for a given stress point, then this point is inside the
failure surface, and it is safe. Otherwise the point is either on or outside of the failure surface,
and failure occurs.

4.7 Parametric Study

A parametric study will be shown here to illustrate how the parameters of the AMN model affect
the conventional triaxial strength. In Chapter 2, the pressure dependence function Ro(Z) has been
thoroughly discussed for isotropic rocks. A numerical example was presented to illustrate how
Ro(Z) can be obtained from conventional triaxial compression tests. In the case of anisotropic
rocks, Ro(Z) shows the pressure dependence in the N direction, while R120(Z) shows the pressure
dependence in S and T directions. The procedures presented in Chapter 2 can still be used to
obtain Ro(Z) and R12 0(Z) for anisotropic rocks. Therefore, in this parametric study, only the three
parameters involved in Equation (4.28) will be discussed. These parameters are r',o, Al, and K.
The effect of these parameters on the predicted conventional triaxial compression strength will
be calculated for a number of different combinations of these parameters. It has been shown that
Equation (4.28) must be used together with a pressure dependence function. In order to make the
calculations possible, the pressure dependence function of Chichibu Green Schist (Equation
(4.37)) will be used.

The parameters r'~o and f6, together with R'120(Z)/R'o(Z), define the shape of the normalized
7r-plane cross-section of the bounding failure surface. The parameter K, on the other hand,
defines how the geometry of the bounding failure surface varies with non-zero shear stresses.
Eight different combinations of the parameters are assumed, as shown in Table 4.3.

The anisotropic bounding failure surfaces for these combinations are first studied. Figure 4.26 (a)
shows the bounding failure surfaces for R'120(Z)/R'o(Z) = 0.9, s = 0.6, and for r'no = both -0.5
and 1.0. Figure 4.26 (b) shows similar results but with /3 = 0.8. The bounding failure surfaces
with R' 120(Z)/R'o(Z) = 1.1 and different combinations of /A and r',o are shown in Figure 4.27. It
can be seen that for the same R'l 20(Z)/R'o(Z) and fl, the shapes determined by r'~o = -0.5 and r'nO
= 1.0 are close to each other. Therefore, as long as the limit of the shapes are not exceeded, the

choice of r'no = -0.5 and r'~o = 1.0 should give similar results on the material strength. It is also
shown that larger /- results in more rounded shapes, which is consistent with the role of f on the
isotropic 7r-plane cross-section. The parameter K does not have any effect on the shape of the
bounding failure surface, and it is irrelevant here.

The predicted conventional triaxial compression strengths are then plotted against the isotropic



plane orientation, for these eight combinations. Figure 4.28 (a) plots the triaxial strengths with
R' 120(Z)/R'o(Z) = 0.9, As = 0.6, and r'no = 1.0. The three curves correspond to K = 0, 0.8 and 1.6,
respectively. The following observations are made:

Observation 1: When K = 0, the strength monotonically increases from /8 = 00 to = 900. This
variation of strength is solely generated by the anisotropy of the bounding failure surface.
Observation 2: The depth of the "U" shaped curves increase with K. The rate of increase is
faster from 0 to 0.8 than from 0.8 to 1.6.

Figure 4.28 (b) plots similar results but for r'no = -0.5. Comparing corresponding curves in
Figure 4.28 (a) and (b), the effect of r',o on the strength can be observed:

Observation 3: When K = 0, the strength with r',o = -0.5 and that with r'nO = 1.0 are very close
to each other, which is consistent with the observations on the shape of their tC-plane
cross-sections.
Observation 4: For K larger than 0, the minimum strength predicted with r'no = -0.5 is slightly
smaller than the minimum strength predicted with r',o = 1.0.

The effect of r',o on the predicted strength, therefore, is very small for the parameters considered
here.

Figure 4.29 shows similar results as those in Figure 4.28, the only difference is that A = 0.8.
Observations 1 through 4 are still true in Figure 4.29. The following additional observations are
made by comparing Figure 4.29 with Figure 4.28:

Observation 5: At the same K value, the depth of the "U" shaped curve is smaller for Af = 0.8
than for f = 0.6. Therefore, the effect of K on the depth of the "U" shaped curves decreases with
increasing ,.
Observation 6: The strength difference between the case r'no = -0.5 and r'no = 1.0 is even
smaller for , = 0.8. Therefore, it seems that the effect of r'no decreases with increasing As.
Observation 7: The minimum strength is obtained at / smaller than 450. This is also true in
Figure 4.28, but is less evident there.

Figure 4.30 and Figure 4.31 are similar to Figure 4.28 and Figure 4.29, with the only difference
being R' 12o(Z)/R'o(Z) = 1.1. Some of the previous observations must be changed for R' 20(Z)/R'o(Z)
= 1.1:
Observation 1: When K = 0, the strength monotonically decreases from 8 = 00 to 8 = 900. This
variation of strength is solely generated by the anisotropy of the bounding failure surface.
Observation 2: Not changed.
Observation 3: Not changed.
Observation 4: For K larger than 0, the minimum strength predicted with r',o = -0.5 is



somewhat larger than the minimum strength predicted with r'no = 1.0.
Observation 5: Not changed.
Observation 6: Not changed.
Observation 7: The minimum strength is obtained at 8 somewhat larger than 45' . This is also
true in Figure 4.30, but is less evident there.

Based on this parametric study, it is clear that the AMN criterion has the ability to describe the
strength of transversely isotropic rocks in conventional triaxial tests.

4.8 Application of the AMN Criterion

The Anisotropic Matsuoka-Nakai criterion can be applied to different anisotropic rocks, to
predict their strength in conventional and true triaxial tests. It has been found that there are
different failure modes involved in the conventional triaxial tests. For example, single or multiple
sliding along the isotropic planes, kink banding, shear faulting across the isotropic planes, etc. It
is only natural that one criterion cannot be used to describe all these failure phenomena. In this
research, it is assumed that anisotropic rocks fail in two different modes: along and across the
isotropic planes. The AMN criterion will be applied only to shear faulting across the isotropic
planes. When the rock fails along the isotropic planes, the shear behavior along the isotropic
plane then must take over. This philosophy is consistent with Boehler and Raclin (1985), where
the behavior of a chopped strand mat laminate is modeled with a "Parallel Mode" criterion and
an "Across Mode" criterion (refer to Section 3.2.2.1). Therefore, in order to explain the strength
of anisotropic rocks in conventional triaxial tests, two failure criteria will be simultaneously used:
the AMN criterion and the shear criterion along the isotropic plane.

Throughout this section, the Coulomb criterion will be assumed to be applicable to the isotropic
planes:

r, = r, tano +c (4.30)

The frictional criterion along the isotropic plane can be obtained by plotting the normal and shear
stresses along the isotropic plane. It was observed that many anisotropic rocks tend to fail
through their bedding planes at P around 300 to 400. Therefore, the normal and shear stresses on
the isotropic plane at this orientation usually define the Coulomb envelope.

In this section, the AMN criterion and the Coulomb criterion will be applied to two different
anisotropic rocks: the Martinsburg slate and the Chichibu Green Schist. The conventional triaxial
strength will be predicted for the Martinsburg slate, and the true triaxial strength will be
predicted for the Chichibu Green Schist.



4.8.1 Martinsburg Slate

The conventional triaxial strength of the Martinsburg Slate as reported by Donath (1964) was
plotted in Figure 3.3 and tabulated in Table B. 1 in Appendix B.

Obtaining the Coulomb Envelope

Based on the axial stress a, at failure and the confining pressure 0"3, the normal and shear stress
on the isotropic plane at failure can be obtained by the following equations:

on, = 3 cos'2 p+ a, sin2 p;r,, = ' -"3 sin2f8; (4.31)
2

oa, and r, can be calculated for every test in Table B.1. These r, are plotted against %o in Figure
4.32. For the orientations with P = 150, 300, 450, and 600, the r against o- curves are close to
straight lines, and they plot very close to each other. The z, against o curves for P = 00, 750, 900
plot below the other curves. Based on the observations of Donath (1964), most specimens with 3
= 150 to 600 fail along the isotropic planes. Therefore, they define the Coulomb envelope of the
isotropic plane of Martinsburg slate. Of these envelopes, the one with P = 45* seems to be the
topmost. A straight line is thus fitted through the r, against on data points for P = 450, which will
be used as the Coulomb envelope (Figure 4.32). The equation for this line is:

r, = 0.3396a, + 130.7 (bar) (4.32)

The cohesion of the isotropic plane of this rock, therefore, is 130.7 bar. Its friction angle can be
calculated to be around 19".

Obtaining Pressure Dependence Functions Ro(Z) and R120(Z)

In order to obtain Ro(Z), the at at failure measured from specimens with P = 900 are collected.
For each data point, Ro and Z are calculated based on the following equations:

= I[(a.- -,)2 +(o-, -,)2 1(+(a- -)27 2 ,

= o- ++o, a,+ 2o 
(4.33)

In order to obtain R1 20(Z), the o1 at failure measured from specimens with P = 00 are collected.
For each data point, R120 and Z are calculated based on the following equations:

R120  _ as )2 +-(0, _a) 2 +(a. _'a) 2  (at --a3) ;

Z o, +a, +, o, +2a 2(4.34)

The Ro and R120 values are then plotted against corresponding Z values in Figure 4.33. These data
can be fitted with power law functions, so that:



Ro(Z) = 14.287Z0.6662; Rz (Z)= 9.249107063; (4.35)

For this specific rock there is R' 120(Z)/R'o(Z) < 1. The variation of the ratio R' 120(Z)/R'o(Z) with Z
as calculated from the fitted functions is plotted in Figure 4.34.

Obtaining Parameters r'no, ps, and K

Since there are no true triaxial test data available for this rock, it is impossible to know the exact
shape of the anisotropic ·7-plane cross-section. Therefore, it is assumed that r'no = 1.0 and A =
0.7 is applicable to this rock. Based on Figure 4.24, the formulation of the AMN criterion can
describe R' 120(Z)/R'o(Z) up to 1.637 at A, = 0.7. The observed R' 120(Z)/R'o(Z) for Martinsburg
slate is always less than 1. Therefore, the shape limit of the formulation for r'no = 1.0 and Ai = 0.7
as shown in Figure 4.22 (a) will not be a problem with these assumed r'no and /A values.

Finally, K must be obtained by matching the "U" shaped curves. This can be achieved simply by
trial and error. If K is too small, then the predicted "U" shaped curve will be shallower than the
experimental curve. It K is too large, then the predicted "U" shaped curve will be deeper than the
experimental curve. After this trial and error process, K is determined to be 1.8 for Martinsburg
slate.

Based on these parameters, the conventional strength of Martinsburg slate at various confining
pressures and different isotropic plane orientations is calculated. The predicted strength is
compared with the measured strength in Figure 4.35. Note that the axial stress at failure is plotted,
instead of the stress difference. Both the strength calculated by the AMN criterion and that by the
Coulomb criterion are plotted. The true failure strength is taken as the lower of the two, and
plotted as solid lines in Figure 4.35. When the AMN strength is larger than the Coulomb strength,
the AMN strength is plotted by dashed lines. It seems that failure is controlled by the Coulomb
criterion for p roughly between 100 and 600, which is consistent with the observations of Donath
(1964), that most specimens with P = 150 to 600 fail along the isotropic planes. For other P3
values, failure seems to be controlled by the AMN criterion. In general, the agreement seems to
be very good.

4.8.2 Chichibu Green Schist

The experimental results on Chichibu Green Schist were reported by Mogi (2007), and they were
summarized in Chapter 3. In these tests, the specimens were sheared in four different modes
(Figure 4.36), under conventional triaxial stress and true triaxial stress. Conventional triaxial
tests were performed on specimens with P = 300 and f8 = 900, with confining pressures 0, 25, 50
and 75MPa. These results are plotted in Figure 4.37. The strength of / = 900 is higher because it
is always at one end of the "U" shaped curves at different confining pressures. All true triaxial



tests were performed with o3 = 50MPa, and the results are plotted in Figure 4.38.

Obtaining the Coulomb Envelope

In order to obtain the Coulomb envelope of Chichibu Green Schist, the normal and shear stresses
on the bedding planes are calculated and plotted in Figure 4.39 for all of the tests, except those
with Mode IV where the shear stress is always 0 on the isotropic planes. In Figure 4.39, the solid
symbols are for conventional triaxial tests, while the empty ones are for true triaxial tests. Since
the conventional triaxial tests were performed with f = 300, it is reasonable to assume that most
of these specimens fail along the bedding plane. Indeed, in Figure 4.39 they fall in a narrow band
between the two dashed lines, which can be considered to be the Coulomb envelope of this rock.
Some of the true triaxial tests also fall in this band, and thus may also fail through the bedding
planes. Finally, the Coulomb envelope is assumed to be in the middle of the band:

r, = 0.6575- n +17 (4.36)

Therefore, the cohesion along the bedding planes is around 17MPa, and the friction angle is
around 330

Obtaining Pressure Dependence Functions Ro(Z) and R120(Z)

Following the procedures shown in Section 2.4.2, the conventional triaxial strength of f = 900
can be used to obtain the pressure dependence function Ro(Z):

R (Z) = 5.298820. 7032  (4.37)

Since no triaxial test was performed with f = 00, it is impossible to fit function R120(Z) directly
from experimental data. It will be assumed that R120(Z) = Ro(Z) for this rock, which is explained
below.

Obtaining Parameters r',o, Afs, and K

In order to obtain the shape of the n-plane cross-section for the bounding failure surface, the true
triaxial tests of Mode IV are normalized with Ro(Z) (Equation (4.37)) and plotted in Figure 4.40.
The solid line in Figure 4.40 shows the shape defined by the LMN dependence with P, = 0.75. It
seems that the original shapes without distortion can be used to fit the n-plane cross-section very
well. Therefore, fs = 0.75 is assumed, and the original non-distorted 7c-plane cross-section is
assumed to apply (i.e. R'120(Z)/R'o(Z) = 1.0, which means that R20o(Z) = Ro(Z)). Since no shape
distortion is necessary, the value of r'no is irrelevant. Based on these considerations, the value of
K is then obtained through trial and error to be K = 1.5.

This set of parameters is then used to predict the strength of Chichibu green schist in true triaxial
tests. The predictions are shown as solid lines in Figure 4.41. The predicted true triaxial strength
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of Chichibu green schist is shown by four solid lines. The left end of each line stands for the
condition where o = a3 = 50MPa. These lines show how the failure axial stress a" varies with
the increase of a2 at different shear modes, until qo = a1 at the right ends of the lines. At each 02
value, the strength predicted by the Coulomb criterion and that by the AMN criterion are both
calculated, and the smaller one is taken as the real strength. With reasonable scatter, the behavior
of Chichibu Green Schist in true triaxial tests is well captured, for all of the test modes.

The predicted failure mode of this rock is not immediately clear. Figure 4.42 shows the strength
predicted by both the Coulomb criterion and the AMN criterion, for different modes. In Mode I,
it is evident from Figure 4.42 (a) that the Coulomb strength is lower than the AMN strength for
all the a2 values. In this test mode, therefore, it is predicted that all specimens fail along the
isotropic planes. Also, the Coulomb strength does not change with 02. This is because the
isotropic planes dip into a3 direction in this mode, and the normal and shear stresses on the
isotropic plane are independent to o72.

Figure 4.42 (b) shows the Coulomb and AMN strength of Mode II specimens. At lower a2 values,
the Coulomb strength is smaller. However, the Coulomb strength increases very quickly with
increasing 02, and it is larger than the AMN strength at larger a2 values. Therefore, the failure of
the specimens in the mode is along the isotropic plane for smaller 02, and across the isotropic
plane for larger q 2.

Figure 4.42 (c) shows the two strengths for Mode III specimens. The variation of these strengths
is similar to that of Mode II. However, in this case the Coulomb strength increases even faster
with 02, and thus failure along the isotropic planes only occurs when a2 is very close to 03.

According to these calculations, it is evident that failure strength and failure mode of an
anisotropic rock subject to true triaxial stress are controlled by both the stress and the isotropic
plane orientation. Unfortunately, a systematic summary of the observation of failure modes
cannot be found in the literature to verify the predicted failure modes, and its variation with a"2
level.

4.8.3 Application to Other Rocks

The AMN criterion combined with the Coulomb criterion is also applied to other transversely
isotropic rocks that have been collected in this research. Section 3.1 offers a complete description
of these transversely isotropic rocks and their experimental results. Except for Chichibu Green
Schist, there are only conventional triaxial test results available for other rocks. Therefore, the
same procedures are followed as outlined in Section 4.8.1 for Martinsburg slate data set. The
parameters for the AMN criterion and the Coulomb criterion are compiled in Table 4.4. The
predicted strengths are compared with the measured strengths in Figure 4.43 through Figure



4.47.

Figure 4.43 compares the predicted and measured strengths for shales, including the Green River
Shale I, Green River Shale II, and Toumemire Shale. For Green River Shale I and II (Figure 4.43
(a) and (b)), the strengths predicted by both the AMN criterion and the Coulomb criterion are
shown. The strength predicted by the AMN criterion forms the two shoulders of the "U" shaped
curves. For 8 around 300, the strengths predicted from the Coulomb criterion are smaller than
those of the AMN criterion, and the AMN strengths are shown with dashed lines. Within the
range of f values where the Coulomb strengths are lower, the differences between Coulomb
strengths and the AMN strengths are not significant for these two shales. For Tounemire shale,
the predicted strengths in Figure 4.43 (c) are solely predicted from the AMN criterion, and the
agreement is very good. These observations may indicate that shales are closer to a continuous
material than to a discontinuous material.

Figure 4.44 compares the predicted and measured strengths for slates, including the Austin Slate,
the Martinsburg Slate, and the Penrhyn Slate. It is also observed that for P values around 300, the
Coulomb strength is smaller than the AMN strength. However, the differences between the
Coulomb strength and the AMN strength are much larger than those of shales. The ranges of 8
where Coulomb strengths are smaller are generally larger too. Compared with shale, slates seem
to be closer to a discontinuous material. This is physically grounded, since slates can be
separated into slabs following their cleavage planes. The cleavage planes are therefore close to a
set of joints.

Figure 4.45 compares the predicted and measured strengths for phyllites, including the
Carbonaceous Phyllite, the Micaceous Phyllite, and the Quartzitic Phyllite. It is difficult to make
a unique statement for these three phyllites about the relative magnitude of the Coulomb strength
and the AMN strength. For Carbonaceous phyllite (Figure 4.45 (a)), the difference between the
Coulomb strengths and the AMN strengths are not very significant, which is quite similar to the
case of shales. For Micaceous phyllite (Figure 4.45 (b)), the difference seems to be large and the
ranges of 8 where the Coulomb strength is smaller than the AMN strength is comparable to those
of slates. For Quartzitic phyllite (Figure 4.45 (b)), the differences between the Coulomb strengths
and the AMN strengths are quite significant. However, the range of / where the Coulomb
strength is smaller is not as large as slates. It is therefore difficult to decide whether phyllites are
closer to a continuous or to a discontinuous material. Each phyllite must be studied individually.

Figure 4.46 compares the predicted and measured strengths for schists, including the Angers
Schist, the Biotite Schist, the Chlorite Schist, the Quartz Mica Schist, and the Quartzitic Schist.
For the Angers Schist and the Biotite Schist (Figure 4.46 (a) and (b)), the strengths are predicted
with only the AMN criterion. Although the Coulomb parameters are also obtained and listed in
Table 4.4, it is found that reasonable agreement is obtained with the AMN criterion alone. For the
Chlorite Schist and the Quartz Mica Schist (Figure 4.46 (c) and (d)), the differences between the



Coulomb strength and the AMN strength when the Coulomb strength is lower are very small. In
fact, the agreement between the predicted and the measured strength will not be affected even if
only the AMN criterion were used. For the Quartzitic Schist (Figure 4.46 (e)), the differences
between the Coulomb strength and the AMN strength is larger than the other schist, but still not
as large as the slates. Therefore, it is reasonable to conclude that schists are closer to continuous
materials.

Figure 4.47 compares the predicted and measured strengths for diatomite. Since there is only one
data set available, it is hard to make any general conclusions.



Table 4.1 Variation of R'120/R'o with A for different P,, values at r',o = 1.0 (Refer to Figure 4.24 (a) for Plot)

A,8=0.6 A,= 0.7 A,= 0.8
A R' 120/R'o A R'120/R'o A R'120/R'o
-0.500 0.491 -0.500 0.534 -0.500 0.562
-0.450 0.532 -0.450 0.578 -0.450 0.607
-0.400 0.574 -0.400 0.621 -0.400 0.651
-0.350 0.617 -0.350 0.665 -0.350 0.695
-0.300 0.661 -0.300 0.710 -0.300 0.738
-0.250 0.706 -0.250 0.755 -0.250 0.781
-0.200 0.754 -0.200 0.801 -0.200 0.825
-0.150 0.806 -0.150 0.848 -0.150 0.868
-0.100 0.862 -0.100 0.897 -0.100 0.912
-0.050 0.925 -0.050 0.947 -0.050 0.956
0 1.000 0 1.000 0 1.000
0.050 1.103 0.050 1.056 0.050 1.045
0.076 1.207 0.100 1.115 0.100 1.090
Limit Limit 0.150 1.180 0.150 1.136

0.200 1.252 0.200 1.182
0.250 1.335 0.250 1.230
0.300 1.441 0.300 1.278
0.349 1.637 0.350 1.328
Limit Limit 0.400 1.379

0.450 1.431
0.500 1.485



Table 4.2 Variation of R'1201R'o with A for different P, values at r',,no = -0.5 (Refer to Figure 4.24 (b) for Plot)

A = 0.6 ,A= 0.7 A = 0.8
A R'120/R'o A R'120/R'o A R'120lR'o

-0.500 0.634
-0.450 0.666
-0.400 0.699

Limit Limit -0.350 0.732
-0.296 0.620 -0.300 0.766
-0.250 0.718 -0.250 0.801
-0.200 0.782 -0.200 0.838

Limit Limit -0.150 0.839 -0.150 0.876
-0.070 0.837 -0.100 0.893 -0.100 0.915
-0.050 0.902 -0.050 0.946 -0.050 0.957
0 1.000 0 1.000 0 1.000
0.050 1.079 0.050 1.055 0.050 1.046
0.100 1.153 0.100 1.111 0.100 1.094
0.150 1.225 0.150 1.169 0.150 1.144
0.200 1.297 0.200 1.229 0.200 1.198
0.250 1.370 0.250 1.292 0.250 1.254
0.300 1.446 0.300 1.359 0.300 1.315
0.350 1.524 0.350 1.429 0.350 1.379
0.400 1.605 0.400 1.502 0.400 1.447
0.450 1.690 0.450 1.581 0.450 1.520
0.500 1.780 0.500 1.664 0.500 1.598



Table 4.3 Combination of Parameters Used in the Parametric Study

Case # R'120(Z)/ R'o(Z) As r'no K
1 0.9 0.6 1.0 0, 0.8, 1.6
2 0.9 0.6 -0.5 0, 0.8, 1.6
3 0.9 0.8 1.0 0, 0.8, 1.6
4 0.9 0.8 -0.5 0, 0.8, 1.6
5 1.1 0.6 1.0 0, 0.8, 1.6
6 1.1 0.6 -0.5 0, 0.8, 1.6
7 1.1 0.8 1.0 0, 0.8, 1.6
8 1.1 0.8 -0.5 0, 0.8, 1.6



Table 4.4 Model Parameters for Different Transversely Isotropic Rocks

Rock Name and Unit Coulomb AMN Criterion
Criterion Ro(Z) RI20(Z) Ps K

Green River Shale I (psi) vz=0.5823oo+6317 74.1620.5907 91.9720.5736 0.7 0.1
Green River Shale II (psi) z=0.3363o+4634 0.3605Z+10445 0.379Z+11669 0.7 0.2
Tournemire Shale (MPa) z=0.4093 o+8.027 6.89820.5072 4.73920.595 0.7 0.8

Austin Slate (psi) r=0.2716o+6474 119.40.5446 71.0820.5 995  0.7 1.4
Martinsburg Slate (bar) r=0.3396o+130.7 14.2920.6662 9.24920.7068 0.7 1.8
Penrhyn Slate (psi) r=0.4488o+2489 0.7844Z+9915 0.7617Z+8724 0.7 1.6

Carbonaceous Phyllite z-=0.5913o+12.08 5.18720.6657 4.31620.6859 0.7 0.5
(MPa)
Micaceous Phyllite (MPa) z=0.4264o+9.866 6.85720.6087 3.06320.7862 0.7 1.2
Quartzitic Phyllite (MPa) z=0.5079o-+14.94 6.84420.6136 3.86620.7141 0.7 0.4

Angers Schist (MPa) z=0.7424o+15.31 4.03620.7471 5.55720.7 0.7 9.6
Biotite Schist (MPa) z=0.4405 o+20.36 7.65320.5726 5.32620.6197 0.7 0.8
Chlorite Schist (MPa) r=0.6513~+17.76 7.65020.624 4.02220. 7357  0.7 0.8
Quartz Mica Schist (MPa) z=0.5892o+19.67 7.35720.6112 5.08520. 673  0.7 0.8
Quartzitic Schist (MPa) z=0.4925o+41.76 27.6020.422 12.1620. 5547  0.7 0.8

Diatomite (MPa) z-=0.6111 o+0.936 1.70820.7816 2.5920.4798 0.7 0.3
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(a) General Case (b) S and x2 coincide
Figure 4.7 Stress Paths of Conventional Triaxial Compression Test
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Figure 4.8 Failure of Anisotropic Rock in Conventional Triaxial Compression Test
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Figure 4.9 Failure of Anisotropic Material in MNSS
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Figure 4.16 Explanation of the Shape Distortion of Matsuoka-Nakai Failure Surface
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Figure 4.18 Bounding Failure Surface for an Anisotropic Material
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Figure 4.19 Variation of Failure Surface Geometry for an Anisotropic Material in the MNSS
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Figure 4.20 Creating Distorted n-plane Cross-Section of Matsuoka-Nakai Criterion in the MNSS Based on
Linear Shape Distortion
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(a) r'no = 1.0
Figure 4.23 Distorted ,t-plane Cross-Sections at I, = 0.8
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(a) Ps = 0.6 (b) p• = 0.8
Figure 4.26 c-plane Cross-section of Bounding Failure Surface with R'i120R'o = 0.9
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Figure 4.27 7-plane Cross-section of Bounding Failure Surface with R'12o0R'o = 1.1
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Figure 4.40 Normalized Bounding Failure Surface 7r-Plane Cross-Section for Chichibu Green Schist (13s =
0.75, R12 0/Ro = 1.0)

0 100 200 300 400
02 (MPa)

500 600

Figure 4.41 Comparison of Predicted and Experimental Strength of Chichibu Green Schist
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5 Application of the AMN Criterion in the

Borehole Stability Problem

A new anisotropic criterion, the anisotropic Matsuoka-Nakai criterion was proposed in Chapter 4.
It has been applied to interpret the experimental result on anisotropic rocks, both for
conventional and true triaxial tests. The agreement between the predictions and the experimental
results are generally very good. In this chapter, the AMN criterion will be applied to analyze the
problem of borehole stability.

Before the criterion can be applied, the stress distribution around a borehole in anisotropic rock
must be obtained. In order to do so, the theory outlined by Lekhnitskii (1963) and Amadei (1983)
for a cylindrical hole in homogeneous, linearly elastic, anisotropic medium will be applied. A
computer program was developed to implement this theory. The AMN criterion will be applied to
the stresses obtained from the program, and the stability of borehole will be studied.

5.1 Problem Statement

It is assumed that the borehole is drilled within Chichibu green schist to a depth of 4000m. The
total density of the rock is assumed to be 2.5t/m3. The total vertical stress can then be obtained to
be ov = 100MPa (assuming g = 10m/s 2). The formation pore pressure, pf, is assumed to be
hydrostatic, so that pf = 40MPa. The larger total horizontal stress is denoted nH, which is
assumed to be oH = 0.8 5 0r = 85MPa. The smaller total horizontal stress is denoted Oah, and it is
assumed to be -h = 0.7av = 70MPa. Assuming that the Terzaghi's law of effective stress applies,
the in-situ effective stresses are:

o', = 60MPa,a o- = 45MPa, o- = 30MPa (5.1)

The mud pressure inside the borehole is denoted p,. The effective mud pressure is defined as:

p' = p, - Pf (5.2)

which is the pressure applied on the rocks. Finally, the radius of the borehole is assumed to be:
a = l.Om (5.3)

The effective mud pressure that prevents the borehole from collapsing will be calculated based
on the AMN criterion. The mode of failure of the borehole collapsing will also be studied.
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5.2 Coordinate Systems

Three different coordinate systems are involved (Figure 5.1 (a)) in the borehole stability problem
in a transversely isotropic medium: 1) the global coordinate system XYZ, 2) the local borehole
frame xyz, and 3) the material coordinate system STN.

The global coordinate system can be arbitrarily selected. In this research, it will be specified that
Z is in vertical direction, while X and Y are in horizontal directions. The local borehole frame
xyz is based on the orientation of the borehole, where z defines the axis of the borehole, while x
and y form the local normal cross-section. The orientation of z axis in the XYZ system is
described by two angles: the inclination f and the azimuth a, as shown in Figure 5.2 on a unit
sphere. f is defined as the angle between the Z axis and the z axis, and a the angle between the
projection of z onto XY plane and the X axis. The material system STN has been widely used in
previous chapters to describe the behavior of anisotropic rock. For the case of a transversely
isotropic rock, N is normal to the isotropic planes, while S and T form the isotropic plane. The
orientation of N relative to the global coordinate system is also expressed by the inclination and
the azimuth (refer to Figure 5.2). In the following discussion, a% and fz are used to specify the
azimuth and the inclination of the borehole, while a. and fl, those of the transversely isotropic
rock.

In order to illustrate the orientation of z and N in the global coordinate system in a two
dimensional manner, the projection of the upper unit hemisphere onto the horizontal plane is
used. Figure 5.3 shows the projection of the latitude and meridian lines on the upper hemisphere
onto the horizontal plane. For illustration purpose, the latitude lines of P = 00 (which is the north
pole), 300, 600, 900 (which is the equator) are shown. The meridional lines of a = 0*, 900, 1800,
and 2700 are shown, with a = 00 being the positive X direction. The orientation of the material
and the borehole will be shown on the two dimensional projection.

Also shown in Figure 5.3 is the orientation of in-situ stresses. It is assumed that ah is in the X
direction, o-H in the Y direction, and or in the Z direction. Therefore:

aK~ = 'A = 30MPa; a, = o-, = 45MPa; azz = ao = 60MPa; (5.4)

5.3 Calculation of Stresses around the Borehole

In order to assess the stability of the borehole, the effective stresses induced by drilling the
borehole must first be calculated. The problem of an anisotropic homogeneous body bounded
internally by a cylindrical surface of arbitrary cross-section has been discussed by Lekhnitskii
(1963) and Amadei (1983). Solutions were provided on the distribution of stresses, strains, and
displacements around the cylindrical surface. The solutions of stress distribution are applied in
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this research to calculate the drilling induced stress.

In the most general form of their solution, there is only one assumption regarding the boundary
conditions, that the surface forces and body forces do not vary along the axis of the borehole.

Amadei (1983) also discussed the forms of the solution with certain simplifications. In this
research, the implementation is based on a simplified version of the solution with the following
additional assumptions: 1) The cylindrical hole has a circular cross-section; 2) There is a uniform
internal pressure applied along the surface of the hole. Body forces are supposed to be absent;
and 3) Generalized plane strain condition exists such that all components of stress, strain,
displacement, body and surface forces must be identical in all planes perpendicular to the axis of
the borehole. It should be noted that the assumptions on surface and body forces are consistent
with the generalized plane strain condition. Under this assumption, the only zero strain is ez,
which is the normal strain in the axis direction of the borehole.

Based on these assumptions, the problem of introducing a hole with internal pressure into an
anisotropic linear elastic medium subject to far-field stresses is then decomposed into the
superposition of three sub-problems:
1. The far-field stress is applied to an anisotropic linear elastic medium with no opening.
2. The hole is introduced into the medium. Existing stresses are relieved to zero around the

surface of the hole.
3. The surface of the hole is uniformly pressurized with the internal pressure.
Due to the assumption of the generalized plane strain condition, sub-problem 2 and 3 introduce
zero longitudinal strain F.

A MATLAB program was written to implement the solution of Amadei (1983). The following
input parameters are necessary for the calculation:
1. Orientations of the coordinate systems: ca and 8z for the borehole system, a% and &, for the

material system.
2. Anisotropic elastic parameters of rock: E,, E,, vst, v,n, G,,. These parameters define the

following elastic relationship for a transversely isotropic rock:
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6,

6.

7.

6 n"

1 vt v, 0

E, E, E.

' I .0 0 0
E t  E t  E,.

Vn1  v,. 1. 0 0 0
En, E, E,

1

0 0 0 0 0

G,

0 0 0 0 0 Gt

(5.5)

Since the strain energy of an elastic material must always be positive, the elastic parameters
must satisfy the following conditions:

E, > 0,E, > 0, G, > 0, -1 v,, <,E' (1- v,,)- 2v)n 2 0 (5.6)
E.

where v,, = L' v. Note that these parameters are in the local material coordinate system

STN.
3. The far effective field stress in the XYZ system.
4. The radius of the borehole a, the mud pressure p,, and the formation pore pressure p.
Based on these information, the program gives the effective stress components at any point
around the borehole.

The solutions from Lekhnitskii (1963) and Amadei (1983) are briefly summarized in Appendix C
of this thesis. Only the part of the solutions that is implemented with the MATLAB code is
presented. The MATLAB code that calculates the stress distribution around the borehole is listed
in Appendix D.

5.4 Strength and Stiffness Parameters

Since the formation rock is assumed to be Chichibu green schist, the strength parameters are the
same as those reported in Section 4.8.2, with a Coulomb criterion describing failure along the
isotropic planes, and AMN criterion describing failure across the isotropic planes.

The elastic parameters can be obtained only from the stress-strain curves. Mogi (2007) reported
the stress-strain curves from true triaxial tests for different test modes (see Figure 3.20 for
different test modes). Figure 5.4 shows the stress-strain curves of five tests on Mode I specimens,
where a0 = 50MPa and 02 = 50, 85, 100, 133, and 166MPa. Figure 5.5 shows the stress-strain
curves of five tests on Mode III specimens, with o3 = 50MPa and 02 = 50, 86, 97, 121, and
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155MPa. Figure 5.6 shows the stress-strain curves of five true triaxial tests on Mode IV
specimens, where o3 = 50OMPa and o2 = 50, 71, 75, 227, and 316MPa.

For a specimen with isotropic plane orientation 3, the Young's Modulus in the axial direction is
defined as:

E = (5.7)

which can be obtained by measuring the slope of the initial elastic part of the stress-strain curves.
It can be seen from Figure 5.4 and Figure 5.5 that the isotropic plane orientations for both Mode
I and III are 300. Therefore, both Figure 5.4 and Figure 5.5 give the Young's Modulus E30. By
averaging the initial slope of these stress-strain curves, one obtains E30 = 34.0GPa for Mode I
specimens and E30 = 37.9 for Mode III specimens. Finally, E30 is taken as the average of the two,
which is 36.0GPa. The Young's Modulus E90, which is En in Equation (5.5), can be obtained
from the stress-strain curves in Figure 5.6. The initial slope of these curves are measured and
averaged, and one obtains E90 = En = 29.3GPa.

For a transversely isotropic material, the Young's Modulus for a specimen with isotropic plane 1
can be expressed by (see, for example, Amadei 1983):

1 sin4  CO4 f sin2 (2l) 1( 2v1 (,,+_ + (5.8)
E, E, E, 4 G,, E,

The shear modulus G,, is not reported for Chichibu green schist. Therefore, its value has to be
estimated by:

1 1 1 2v3•--= +-+ -- (5.9)G,, E, E. E,
Substitute Equation (5.9) to (5.8), the following result can be obtained:

1 sin4 + cos4 + sin2(2f) 1 1+ +# (5.10)
E, E, E, 4 E, E,

Substitute 3 = 300, Ep = 36.0GPa, and En = 29.3GPa into Equation (5.10), it is solved that E, =
38.9GPa. The Poisson's ratios are assumed to be: vt = 0.25 and v, = 0.2. To summarize, the
elastic parameters are:

E, = 29.3GPa, Es = 38.9GPa, Gs, = 13.6GPa, vst = 0.25, v,, = 0.2

5.5 Effective Mud Pressure against Borehole Collapsing

In order to prevent failure of the wellbore, the mud pressure inside the borehole must be large
enough to prevent yield from occurring in the surrounding rock mass. The effective mud pressure
below which the borehole collapses is called the critical mud pressure, and will be denoted p'c.
The smaller the critical mud pressure, the less support the borehole needs. Hence, borehole
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stability can be evaluated from the critical mud pressure that corresponds to the onset of failure
in the rock. The intention of this calculation is to determine the critical mud pressure for a given
material orientation and borehole orientation.

Seven material orientations have been chosen for this study, denoted material orientation I
through VII. The orientation of direction N in these material orientations are shown in Figure 5.7
by 0 symbols. The inclination /, and azimuth a,, of these seven material orientations are also
listed in Figure 5.7.

For each material orientation, many different borehole orientations are calculated. These
borehole orientations are shown as black dots in Figure 5.8. The borehole orientations are
arranged in a grid with intervals Aa% = 100 and Aflz = 100. Altogether, there are 36x9 = 324
borehole orientations whose critical mud pressures are calculated for each material orientation
shown in Figure 5.7. For each borehole orientation, the effective mud pressure p' inside the
borehole is increased until there is no failure at any point around the borehole. This p'
corresponds to the critical mud pressure p'c for this particular borehole orientation.

Figure 5.9 (a) through (c) are pseudocolor plots of the variation of p'c with borehole orientation,
at Material Orientations I, II and III respectively (refer to Figure 5.7 for Material Orientations).
The orientation of N in these material orientations is still shown with 0 symbols. The scale is
shown to the right most of the plot. To the blue end of the scale, the effective mud pressure is
OMPa (corresponding mud pressure in the borehole is pm = Pf = 40MPa). To the red end of the
scale, the effective mud pressure is 20MPa (corresponding mud pressure in the borehole is Pm =
pf +20MPa = 60MPa). The upper hemisphere projections in Figure 5.9 are placed according to
Figure 5.3, so that oh is in the left-right direction, while oH is in the up-down direction.

Figure 5.9 (a) shows the distribution of critical mud pressure p'c when the isotropic planes are
horizontal. It is clearly shown that the critical mud pressure is larger when the borehole
orientation is closer to parallel to the isotropic planes (i.e. closer to horizontal direction). When
the borehole orientation is moving toward the vertical direction (i.e. toward the normal direction
of the isotropic planes), the critical mud pressure decreases (between OMPa to 2MPa for a large
area surrounding the N orientation). If the borehole is horizontal, the critical mud pressure
depends on the azimuth of the borehole. When the borehole is aligned with oh (a= 00 and 1800),
the critical mud pressure is larger, and it is between 8MPa to 10MPa according to the plot. When
the borehole is aligned with orH (a = 900 and 2700), the critical mud pressure is between OMPa to
2MPa, which is much smaller. A horizontal borehole is indifferent to the material anisotropy
because it is parallel to the isotropic planes. The variation of mud pressure with borehole azimuth,
therefore, must be caused by the stress anisotropy within the isotropic plane.

The orientation of the N direction in Figure 5.9 (b) is /A = 450 and a% = 00, so that it is 450
inclined toward oh direction. The isotropic plane intersects the upper hemisphere in a half circle,
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whose projection onto the horizontal plane is represented by the dashed line in the plot. In an
area close to the dashed line, the critical mud pressure is elevated. This again shows that a
borehole tends to be unstable if it is close to parallel to the isotropic planes, and more support
from the mud is necessary. The critical mud pressure is smaller if the borehole orientation is
closer to the normal direction. The lowest critical mud pressure is again obtained in an area
surrounding the isotropic plane normal, which is between OMPa to 2MPa. When the borehole is
parallel to the isotropic planes, the critical mud pressure is between 18MPa to 20MPa at Af = 900
and a = 900 (i.e. when the borehole axis is aligned with o' direction), and it is between 6MPa to
8MPa at Af = 450 and a = 1800 (i.e. 450 between or direction and oh direction). The difference
is a result of stress anisotropy.

In Figure 5.9 (c), the isotropic plane normal direction coincides with the oh direction, hence it is
horizontal and the isotropic planes are vertical. Once again, one observes that the critical mud
pressure is higher for borehole orientations that are close to parallel to the isotropic planes. In
this case, it is between 14MPa to 16MPa at A = 900 and a = 900 (i.e. when the borehole axis is
aligned with o' direction), and between 6MPa to 8MPa at /z = 00 (i.e. when the borehole axis is
aligned with o' direction).

To summarize, the following observations can be made based on Figure 5.9:

Observation 1: If the borehole orientation is close to the direction normal to the isotropic planes,
the borehole tends to be stable with no or little support from the mud. If the borehole is close to
parallel to the isotropic planes, then the critical mud pressure becomes higher, and the borehole
tends to be unstable.
Observation 2: The critical mud pressure is also affected by the far-field stress anisotropy. As a
result, when the borehole is parallel to the isotropic planes, the critical mud pressure still varies
with the borehole orientation within the isotropic plane.

Figure 5.10 and Figure 5.11 show similar results for Material Orientations I, IV, V and Material
Orientation I, VI, VII, respectively. Similar observations as just made apply to these plots, too.

5.6 Failure Contours of Boreholes

Figure 5.9 through Figure 5.11 in the previous section only illustrate the critical mud pressure
marking the onset of failure in the rock. However, they do not show the mechanism of incipient
borehole collapse for p' smaller than the critical mud pressure. In this section, calculations are
performed to illustrate this.

In order to show how failure occurs around a certain borehole, it is necessary to define failure
functions. For the Coulomb criterion, a failure function Fc is defined as:



Fc (= ( ob ). (5.11)

where (Tn)mob is the mobilized shear strength on the isotropic planes, while (n)max is the
maximum shear strength on the isotropic planes. Their definitions are shown in Figure 5.12. With
this definition, if Fc 2 0 then failure occurs according to the Coulomb criterion. A failure
function FA is defined for the AMN criterion, which is the same as function fin Equation (4.29).
If FA 2 0, then failure occurs according to the AMN criterion.

The failure function distributions are calculated for a borehole embedded in the rock with
Material Orientation I (vertical N direction and horizontal isotropic planes) and aligned in ah
direction (i.e. Af = 900, az = 00), as shown in Figure 5.13. The orientation of the isotropic planes
and the far-field stress on the cross-section of the borehole are shown in Figure 5.14. During the
calculation, p' is reduced from a large value until Fc = 0 or FA = 0 is reached. Based on the
calculation, failure occurs according to the Coulomb criterion at p' = 6.1MPa (corresponding to a
mud pressure in the borehole p, = pf +6.1MPa = 46.1MPa). At this point, the failure function Fc
is plotted in Figure 5.15. It can be seen that Fc = 0 is obtained at four locations around the
borehole wall, where failure initiates according to the Coulomb criterion. These four locations
are symmetric with regard to the horizontal and vertical directions. Therefore, the location of
these four points around the borehole wall can be determined by the angle between the top two
failure locations. In this case, this angle is 67'.

At p' = 6.1MPa, there is still FA < 0. If, on the other hand, it is assumed that failure is controlled
by the AMN criterion, then p' must be further reduced to induce failure. It is found that when p'
is reduced to 4.4MPa (corresponding to mud pressure in the borehole p, = pf +4.4MPa =
44.4MPa), FA = 0 is obtained at four locations around the borehole wall (Figure 5.16). With the
AMN criterion, the angle between the top two failure locations is 101.40. Due to the complex
mathematical expression of the AMN criterion, it is not intuitively clear why this angle is larger
for the AMN criterion than for the Coulomb criterion.

With the previous analysis, it is evident that with either the Coulomb criterion or the AMN
criterion, failure initiates at four locations around the borehole wall. The only difference between
Figure 5.15 and Figure 5.16 is the exact location of these four points. This is consistent with the
double-lobed failure pattern that is often observed in the boreholes drilled in bedded rocks (for
example, see Zoback 2007).

5.7 Summary

In this chapter, the AMN criterion, together with the Coulomb criterion, is applied to the
borehole stability problem. The results about critical mud pressure can be used as the rule of
thumb of drilling in a transversely isotropic rock, i.e. less mud support is necessary if a well is
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closer to the normal direction of the isotropic planes. Both the AMN criterion and the Coulomb
criterion can predict the four-lobed failure style that has been observed on wells in transversely
isotropic rocks. These results also indicate that the AMN criterion and its combination with the
Coulomb criterion are physically grounded, and can be used to solve real problems.
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Figure 5.1 Three Coordinate Systems in the Borehole Stability Problem
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Figure 5.2 Inclination p and Azimuth a
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Figure 5.3 Projection of the Upper Hemisphere
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Figure 5.4 Stress-Strain Curves of Five Mode I Specimens (data from Mogi, 2007)
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Material Orientation I:
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Figure 5.7 The Seven Material Orientations Shown on the Projection of the Upper Hemisphere

238

4H
900

1800

2700



900

1800 a= 00°

2700

Figure 5.8 The Borehole Orientation Calculated in Each Case

239



(a) Material Orientation I (b) Material Orientation II (c) Material Orientation III

Figure 5.9 Critical Mud Pressure p' Distributions for Material Orientation I, 11 and III

Note: The 0 symbol marks the orientation of N. The dashed line marks the trace of isotropic plane on upper hemisphere.

(a) Material Orientation I (b) Material Orientation IV (c) Material Orientation V

Figure 5.10 Critical Mud Pressure p' Distributions for Material Orientation I, IV, and V

Note: The 0 symbol marks the orientation of N. The dashed line marks the trace of isotropic plane on upper hemisphere.
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(a) Material Orientation I (b) Material Orientation VI (c) Material Orientation VII
Figure 5.11 Critical Mud Pressure p', Distributions for Material Orientation I, VI, and VII
Note: The 0 symbol marks the orientation of N. The dashed line marks the trace of isotropic plane on upper hemisphere.
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6 Summary, Conclusions and Recommendations

6.1 Summary

The goal of this research is to provide a way to characterize the failure of transversely isotropic
rocks under true triaxial stress states. While reviewing the literature, it was found that existing
anisotropic models, for example the Tsai and Wu criterion (Tsai and Wu, 1971), the Anisotropic
Mises-Schleicher criterion (Cazacu, 1998, 1999), etc. were only validated against data from
conventional triaxial tests. Therefore, a new failure criterion for transversely isotropic rocks
under true triaxial stress states is proposed and validated in this thesis. For this purpose, the
following tasks have been fulfilled:

1. Data sets of true triaxial experiments on more or less isotropic rocks are first compiled and
analyzed. Some of the isotropic failure criteria that characterize rock strength under true
triaxial stress states are then presented and reviewed.

2. Experimental results on transversely isotropic rocks are also collected, most of which are
from conventional triaxial tests. The most comprehensive true triaxial test data are reported
by Mogi (2007), on Chichibu green schist. This set of data is later used to validate the
proposed model. Existing anisotropic criteria are categorized and reviewed.

3. A new approach, the Material Normal Stress System, is proposed, which helps to visualize
anisotropic failure surfaces, and facilitates the development of anisotropic failure criteria.
The observations on isotropic rock failure under true triaxial stress state, and those on
transversely isotropic rock failure under conventional triaxial stress state are expressed in the
system as geometrical characteristics of the failure surface. These geometrical features are
incorporated into the failure surface of the Matsuoka-Nakai criterion, which produces the
Anisotropic Matsuoka-Nakai criterion. The Anisotropic Matsuoka-Nakai criterion should be
used to capture the continuous component of strength anisotropy, while the Coulomb
criterion should be used to describe the discontinuous component of strength anisotropy.
This combination is then validated against the conventional triaxial test data of different rock
types and the true triaxial test data (i.e. Chichibu green schist data set only) of transversely
isotropic rocks. It seems that this combination of criteria is capable of capturing the failure
of transversely isotropic rocks under both conventional and true triaxial stress states.

4. The Anisotropic Matsuoka-Nakai criterion combined with the Coulomb criterion is then
applied to the problem of borehole stability. It is assumed that a borehole is drilled at 4000m
depth in Chichibu green schist, whose stress-strain behavior is described by transversely
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isotropic elasticity. The necessary mud support to keep the borehole from collapsing (critical
mud pressure) is calculated as a function of the orientation of the isotropic planes and the
borehole axis. For a certain borehole orientation, the failure modes at the onset of failure as
predicted by the combination of the Anisotropic Matsuoka-Nakai and the Coulomb criterion
are discussed. The critical pressures and the failure modes as calculated are consistent with
the observations made in real wellbore failures.

6.2 Conclusions

The following conclusions can be drawn:
1. The failure of more or less isotropic rocks can be described by a continuous failure surface

in the principal stress space. For many rocks, the shape of the n-plane cross-section of this
failure surface can be formulated by the LMN (Lade, Matsuoka-Nakai) dependence, which
describes a group of curved triangular shapes. There is only one parameter (8fl) in the
formulation of the LMN dependence, which specifies the roundness of the curved triangles.
When fA varies from 0.5 to 1.0, the shape described by the LMN dependence varies from a
right triangle to a circle. Based on the data fitting of the true triaxial test results of many
different rocks, it seems that A, does not vary significantly with the pressure level, i.e. the
shape of the n-plane cross-section does not change significantly along the hydrostatic line.

2. In order to provide greater flexibility to the model, it is recommended to describe the failure
surface by two cross-sections. The triaxial cross-section of the failure surface, which is a
meridian cross-section, defines how the conventional triaxial strength increases with the
average confining pressure. The shape of the n-plane cross-section, which is a normal
cross-section, describes the variation of its radius with the Lode angle. For example, the
closer the shape is to a circle (,8, approaching 1.0), the smaller the variation of its radius with
the Lode angle. Physically, this approach corresponds to the separation of the pressure
dependence and the Lode angle dependence.

3. The strength of anisotropic rocks in conventional triaxial tests is a function of both the
isotropic plane orientation P and the confining pressure o3. Specimens with f = 00 have
isotropic planes parallel to the axial direction. Specimens with PJ = 900 have isotropic planes
perpendicular to the axial direction. For a particular f, the strength increases with confining
pressure o3. For a particular o3, the strength variation with /P can be described by a "U"
shaped curve, which has local maxima at / = 00 and 900, and reaches its minimum for f
around 300 to 400. The two maxima of the "U" shaped curve (at f8 = 00 and 900) are usually
not equal (i.e. specimens with isotropic planes parallel to the axial direction usually have a
different strength than those with isotropic planes perpendicular to the axial direction). The
geometry of this "U" shaped curve can be captured by the unevenness ratio and the depth
ratio. These ratios seem to be related to the lithology of the rocks.
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4. Several different failure modes have been observed for transversely isotropic rocks in
conventional triaxial tests.
* For small confining pressures, the failure is brittle. Specimens can fail by tensile

splitting when the isotropic planes are close to the axial direction. Shearing along or
across the isotropic planes or a mixture of both may also occur.

* For large confining pressures, failure is usually ductile. A kink band may develop,
usually for steeply inclined isotropic planes. Slipping along multiple isotropic planes or
shear faulting across the isotropic planes may also occur.

5. In a material coordinate system STN, where N is the normal to the isotropic planes while S
and T form the isotropic plane, the stress has six components: three normal components as,
at, on, and three shear components om, o-,, at. Existing anisotropic failure criteria can
usually be expressed in terms of all six components. It seems that the criteria expressed as
quadratic polynomials of the stress components have the ability to describe the "U" shaped
curves that characterize the conventional triaxial compression strength of transversely
isotropic rocks. To the author's knowledge, however, these criteria have only been validated
against conventional triaxial test data.

6. Isotropic failure criteria can usually be expressed by corresponding failure surfaces in the
principal stress space. The failure behavior described by these criteria can thus be directly
visualized and understood. This greatly facilitates the development of isotropic failure
criteria. On the contrary, anisotropic failure criteria are the functions of all six stress
components, hence cannot be directly visualized in three-dimensional space. This is believed
to pose great difficulty in understanding and further developing the existing anisotropic
criteria. In order to solve this problem, the Material Normal Stress System is proposed.

7. Similar to the principal stress space, which is the space formed by the three principal stresses
(oa', o2, a3), the Material Normal Stress System is a space that is formed by the three normal
stress components, (ot, ot, an,). For a certain set of principal stresses, the normal stresses
vary when the orientation of the STN coordinate system changes with regard to the principal
stress directions. Therefore, the Material Normal Stress System can capture the coupling
between the material orientation and the principal stress orientation. A certain principal
stress state (oa, a-2, a3), described by one point in the principal stress space, corresponds to a
hexagonal locus on the n-plane in the Material Normal Stress System. The exact location of
the point (ai, ati, a-,) within this hexagon is determined by the relative orientation of the STN
coordinate system with regard to the principal stress directions.

8. A conventional triaxial stress state (i.e. -2 = a3) corresponds to a right triangle on the
7n-plane in the Material Normal Stress System. In a conventional triaxial test at a certain
confining pressure, the stress path is a straight line in the Material Normal Stress System.
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The failure points of an isotropic material in conventional triaxial tests with the same
confining pressure but different specimen orientation fall on one straight line, which forms
one side of the failure stress triangle (termed the isotropic failure line). The failure of
transversely isotropic rock in conventional triaxial compression tests, on the other hand, is
described by a curve in the Material Normal Stress System, which is called the anisotropic
failure curve.

9. Since the Material Normal Stress System only describes the three normal stresses,
anisotropic failure criteria involving all six stress components can be visualized in the
MNSS. Based on the discussion of two isotropic failure criteria, the Drucker-Prager criterion
and the Matsuoka-Nakai criterion, it is found that a failure criterion in the Material Normal
Stress Space can be described by two components: the bounding failure surface at all zero
shear stresses (ao,, = o,, = at = 0), and the variation of its geometry with non-zero shear
stresses. Physically, the bounding failure surface describes the failure of the anisotropic
material under true triaxial stress conditions, where the principal stress directions and the
material directions (S, T and N) coincide. For isotropic failure criteria, their bounding failure
surfaces have the same geometry as their failure surfaces in the principal stress space. With
non-zero shear stresses, the shape of the bounding surface usually distorts, and its size
usually reduces. Shape distortion with non-zero shear stresses seems to be a necessary
consequence of the frictional behavior (i.e. pressure dependence of strength). Therefore, it
should be incorporated in any criteria that describe the failure of soils and rocks.

10. Based on the observation of failure of isotropic rocks under true triaxial tests, the isotropic
Matsuoka-Nakai criterion is chosen to be the foundation for developing a new anisotropic
failure criterion. This criterion is selected because its c-plane cross-section can be described
by the LMN (Lade, Matsuoka-Nakai) dependence, which is known to capture the strength of
isotropic rocks under true triaxial stress states. Based on the observation of failure of
transversely isotropic rocks in conventional triaxial tests, anisotropy must be introduced into
two different aspects of the original Matsuoka-Nakai criterion. For the bounding failure
surface, anisotropy is introduced by using a distorted 7c-plane cross-section that does not
possess the six-fold symmetry. Such a failure surface can predict different strengths at 8 = 00
and f = 900. The variation of failure surface geometry with non-zero shear stresses must also
be changed so that the shrunk failure surface meets the stress path on the anisotropic failure
curve instead of the isotropic failure line. The "U" shaped variation of strength with P can be
generated by this modification. The proposed criterion is named the Anisotropic
Matsuoka-Nakai criterion. It can be seen that the Material Normal Stress System greatly
facilitates the development of the Anisotropic Matsuoka-Nakai criterion. In this system, the
behavior of isotropic rocks and the behavior of transversely isotropic rocks can be
represented by geometrical features of the failure surface, and combined in a straightforward
way.
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11. In the Anisotropic Matsuoka-Nakai criterion, three parameters are used to describe the shape
of its bounding failure surface in the 7n-plane cross-section and its variation with non-zero
shear stresses.

* A, is from the original LMN dependence, which describes the roundness of the nT-plane
cross-section.

* A controls the distortion of the 7c-plane, and therefore controls the difference between
the strength at P = 00 and the strength at P = 900.

* K controls the size reduction of the n-plane cross-section with increasing non-zero shear
stress. Higher K values produce deeper "U" shaped curves.

12. The proposed Anisotropic Matsuoka-Nakai criterion can capture the continuous component
of the strength anisotropy of transversely isotropic rocks, where the specimen fails across the
isotropic planes. If the specimen fails along the isotropic planes (i.e. the isotropic planes
behave like macroscopic joints), the strength anisotropy is of the discontinuous type, and can
be characterized by the Coulomb criterion. The Anisotropic Matsuoka-Nakai criterion,
together with the Coulomb criterion, has been applied to interpret the experimental results
reported in the literature. It seems that the combination of these two criteria makes it
possible to describe the failure of transversely isotropic rocks under true triaxial stress states.

13. While applying the combination of criteria to different transversely isotropic rocks tested in
conventional triaxial tests, it is found that the relative importance of the Anisotropic
Matsuoka-Nakai criterion and the Coulomb criterion for characterizing strength anisotropy
varies with rock type (e.g. shales, slates, phyllites, schists, etc.). This relative importance
reveals where a certain type of rock is located within the transition from a continuous type of
strength anisotropy to a discontinuous type of strength anisotropy. Based on the brief
analysis of fifteen different rocks, it seems that slates are closer to the discontinuous end,
shales and schists are closer to the continuous end. No general conclusions can be made for
phyllites, based on the limited data currently available.

14. The critical mud pressure, below which borehole collapse occurs, is most significantly
affected by the orientation of the borehole with regard to the orientation of the isotropic
planes of the rock. If the borehole orientation is closer to the normal of the isotropic planes,
the borehole tends to be safer and less mud support is necessary. If the borehole is more or
less parallel to the isotropic planes, the borehole is prone to failure, and more mud support is
necessary. The critical mud pressure is also affected by far-field anisotropic stress conditions.
Due to the complexity of the problem, it is difficult to draw a general conclusion on the
effect of stress anisotropy.

15. The failure of a borehole embedded in a transversely isotropic rock starts at four locations
around the borehole, which creates a double-lobed failure mode. This is consistent with the
observations made on real borehole failures, and serves as further support of the validity of
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the proposed criterion.

6.3 Recommendations

The predictive power of the Anisotropic Matsuoka-Nakai criterion combined with the Coulomb
criterion is confirmed by their application to the conventional triaxial strength data of fifteen
different rocks, to the true triaxial strength of Chichibu green schist, and to the problem of
borehole stability. As a newly proposed model, however, more work is necessary before it is
widely applied and accepted.

1. The combination of the Anisotropic Matsuoka-Nakai criterion and the Coulomb criterion has
only been validated with the true triaxial strength of Chichibu green schist. This is because
the data on true triaxial tests of transversely isotropic rocks are rarely found in the literature.
In order to further validate this combination of criteria, more experimental data are necessary.
It is suggested that a true triaxial test program should be performed on different types of
transversely isotropic rocks (e.g. shales, phyllites, slates, schists, etc.), and the criterion
should be calibrated against all these data. A database of typical values of the model
parameters for different rocks should be set up.

2. It would be very interesting to understand the underlying mechanism for the discontinuous
and continuous components of strength anisotropy, and to try to explain the observed
relative importance of the two components for certain types of rocks. For some transversely
isotropic rocks, it may be easier to understand why they are closer to the continuous or to the
discontinuous strength anisotropy. For example, slates have well developed cleavage planes
which act like discontinuities if failure occurs along them. Therefore, the discontinuous
component of strength anisotropy (i.e. failure by Coulomb criterion) is more important for
slates than for shales and schists, where failure along the foliation surfaces in bedding planes
may not occur. For other rock types, however, explanations based on their lithology,
mineralogy, etc. are still desirable. For example, the strength anisotropy of some phyllites
seems to have more continuous characteristics than others. Further research may discover
possible mechanisms underlying these observations.

3. The Anisotropic Matsuoka-Nakai criterion combined with the Coulomb criterion is applied
to the borehole stability problem in this thesis. The stiffness law used there is transversely
isotropic elasticity. A failure criterion combined with an elastic constitutive law only applies
up to the first occurrence of failure, which produces a lower bound to the problem. Real
failures are much more complicated. For example, plastic strains may develop before failure
occurs, which cannot be captured by a linear elastic law. After the first occurrence of failure,
the stress can be redistributed so that the failure zone may propagate, resulting in a
progressive failure. This is also not captured in the present analysis. In order to describe
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these real phenomena, more realistic constitutive laws may have to be used together with the
proposed failure criteria, which are capable of describing the plastic deformation. Advanced
numerical methods may also be necessary.

4. Finally, the Anisotropic Matsuoka-Nakai criterion may also be applicable for other
geo-materials that are transversely isotropic, for example, varved clay. Considering that the
Matsuoka-Nakai criterion was originally proposed to describe soil behavior, this is entirely
possible. However, failure may not be as clearly defined for soil as it is defined for rock,
since large deformations usually occur, and the stress-strain curves may not have a
noticeable peak.
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Appendix A Data for Isotropic Rocks

In this appendix, the strength of more or less isotropic rocks under true triaxial stress is
summarized for all the data sets. The mineralogy of these rocks (if available) is summarized at
the end of each table, most of which is cited from the original literature word for word.



Table A.1 Thick-walled Cylinder Tests on Bowral Trachyte (Hoskins, 1969)

a3 (kb) 2 (kb) a, (kb) a3 (kb) a2 (kb) a (kb)
0 0 1.63 0.21 0.21 3.19
0 0.19 2.29
0 0.34 2.53 0.35 0.35 4.07
0 0.46 3 0.35 1.31 5.35
0 0.77 3.3 0.35 2.28 6.13
0 0.97 3.51
0 1.45 3.89 0.52 0.52 4.66
0 1.93 3.92 0.52 1 5.3
0 2.32 4.4 0.52 1.97 6.03
0 2.42 4.06

0 2.7 3.39 0.69 0.69 5.17
0 2.9 3.62 0.69 1.69 6
0 2.76 3.38
0 2.57 3.62 1.03 1.03 6.61
0 2.62 3.86

0.16 0.35 3.4

0.17 0.17 2.59
0.17 0.46 3.47
0.17 0.66 3.9
0.17 1.14 4.69
0.17 1.62 5.05
0.17 2.59 5.52
0.17 3.08 5.56

Note:
"This is the commercial name for a rock that has been more accurately described by
Joplin as an altered micro-syenite. It is an even-grained, isotropic igneous rock
consisting predominantly of orthoclase and aegerine-augite 1 mm in grain size with
minor amounts of quartz, calcite, and altered ferro-magnesian minerals."



Table A.2 Thick-walled Hollow Cylinder Tests on Carrara Marble (Hoskins, 1969)

o3 (kb) 02 (kb) (kb ( k3 (kb) 2 (kb) a1 (kb)
0 0 0.8 0.35 0.35 2.13
0 0.46 1.54 0.35 2.17 3.78
0 0.93 2.03

0 1.38 2.39 0.5 0.5 2.38
0 1.84 2.59
0 2.3 2.82 0.69 0.69 3.18
0 2.71 2.75 0.69 1.67 3.97

0.07 0.07 1.11 1.03 1.03 4.11
0.07 0.44 1.63
0.07 0.8 2.14
0.07 1.72 3.02
0.07 3.09 3.28
Note:
"A uniform medium-to-fine-grained isotropic essentially pure calcite marble. The
grain size varies from piece to piece of this material but a single block with
average grain size of about 0.2 mm was used for all of the specimens in these
experiments. "
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Table A.3 Thick-walled Hollow Cylinder Tests on Gosford Sandstone (Hoskins, 1969)

'3 (kb) U2 (kb) a1 (kb) o3 (kb) o2 (kb) oa (kb)

0 0 0.49 0.17 0.17 0.98
0 0.09 0.67 0.17 0.66 1.4
0 0.18 0.8 0.17 1.43 1.54
0 0.46 1.08 0.17 1.62 2.1
0 0.77 1.12 0.17 2.34 2.59
0 0.92 1.29
0 1 1.16 0.35 0.35 1.67
0 1.21 1.37 0.35 1.31 2.26
0 0.73 1.45 0.35 2.28 2.67
0 1.14 1.47
0 0.83 1.66 0.5 0.5 1.93
0 0.87 1.74

0.69 0.69 2.22

0.07 0.07 0.8 0.69 1.66 2.84
0.07 0.45 1.15

0.07 0.62 1.42 1.04 1.04 2.78
0.07 0.8 1.53

0.07 1.07 1.59

0.07 1.33 1.85

0.07 1.42 1.84

0.07 1.62 1.85

Note:
"A very uniform, isotropic, fine-grained, weakly cemented, quartz sandstone with
a sugary texture."



Table A.4 Conventional Triaxial Tests on a Limestone (Hoskins, 1969)

aU =- (kb) oa (kb)
0 1.97
0 2.3
0 2.17
0.17 2.85
0.35 3.46
0.5 3.87
0.5 3.86
0.69 4.07
0.69 4.16
1 4.79

Table A.5 Thick-walled Hollow Cylinder Tests on a Limestone (Hoskins, 1969)

C (kb) a2 (kb) a (kb)
0 0 2.06
0 0.59 2.88
0 0.98 3.24
0 1.46 3.4
0 1.95 3.78
0 3.41 4.15
0 3.9 4.43
Note:
"a lithographic limestone (presumed to
be Solnhofen)"



Table A.6 Conventional Triaxial Tests on a Quartz-Dolomite Rock (Hoskins, 1969)

3 = C2 (kb) ai (kb)
0 2.28
0 2.13
0 1.78
0.35 4.83
0.35 5.13
0.35 5.13
0.69 6.13
0.69 5.49
0.69 6.03
1.03 6.71
1.03 7.35
1.03 7.28

Table A.7 Thick-walled Hollow Cylinder Tests on a Quartz-Dolomite Rock (Hoskins, 1969)
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U3 (kb) U2 (kb) a, (kb)
0 0 2.14
0 0 4.27
0 0 1.55
0 0.17 3.94
0 0.17 3.1
0 0.17 3.7
0 0.5 4.42
0 0.5 4.22
0 0.5 4.64
0 0.84 5.3
0 0.84 4.6
0 0.84 4.95
0 1.67 5.7
0 1.67 6.04
0 1.67 6.02
0 3.34 7.85
0 3.34 7.1
0 3.34 7.1
Note:
"from Mt Isa, Australia"



Table A.8 Conventional Triaxial Tests on Apache Leap Tuff (Wang and Kemeny, 1995)

o3(MPa) o2(MPa) o-(MPa)
0 0 141.9
0 0 141.9
0 0 155.2
0 0 152.9
0 0 169.5
0 0 120.6
0 0 145.5
0 0 131.3
0 0 152.6
0 0 161.5
3.4 3.4 181.8
6.9 6.9 197
10.3 10.3 240.4
13.8 13.8 248.9
13.8 13.8 250
17.2 17.2 265.3
20.7 20.7 242.3
24.1 24.1 308.4
27.6 27.6 329.8
31 31 356.7
34.5 34.5 360.2
37.9 37.9 396.5
41.4 41.4 419.5
44.8 44.8 456.1

48.3 48.3 434.1
55.2 55.2 464.9



Table A.9 Thick Walled Hollow Cylinder Tests on Apache Leap Tuff (Wang and Kemeny, 1995)

o3(MPa) cr2(MPa) -l(MPa) o3(MPa) q2(MPa) -l(MPa)
0 14.8 164.7
0 15.4 180.3 3.4 8.6 170.1
0 18.4 190.1 6.9 17.2 223.9
0 30.7 218.1 10.3 25.7 200.2
0 29.6 221.4 13.8 34.5 255.6
0 36.8 227.8 17.2 43.1 241.9
0 44.5 247.1 20.7 51.7 289.3
0 55.2 241.1 24.1 60.3 373.9
0 50.7 276.6 27.6 68.9 419.1
0 61.5 272.6
0 59.3 286.6 6.9 8.6 170.9
0 73.5 286 10.3 12.9 242.3
0 79.9 333.7 13.8 17.2 201.7
0 92.3 341.3 17.2 21.5 260.1
0 110.3 325.9 20.7 25.9 244.8
0 88.9 349.6 24.1 30.2 328.8

27.6 34.5 295.9
31 38.8 340.3
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Table A.10 True Triaxial Tests on Dunham Dolomite (Mogi, 2007)

o3(MPa) q2(MPa) qI(MPa) c3(MPa) q2(MPa) ql(MPa)
0 0 (265) 105 105 682
0 0 (258) 105 167 778

105 205 786
25 25 400 105 268 805
25 66 475 105 270 863
25 96 495 105 334 824
25 129 560 105 356 840
25 174 571 105 415 822
25 229 586
25 272 545 125 125 725

125 187 824
45 45 486 125 239 860
45 97 570 125 293 863
45 126 576 125 362 897
45 160 606 125 414 941
45 183 639 125 463 918
45 240 670 125 516 886
45 266 670
45 294 622 145 145 *

145 253 883
60 60 540 145 296 927

145 324 923
65 65 568 145 349 922
65 117 638 145 392 1015
65 153 644 145 410 1002
65 208 687 145 455 952
65 262 685
65 318 746 200 200 *
65 393 701

85 85 620
85 128 684
85 153 719
85 233 744
85 306 773
85 376 818
85 445 793
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Note:
*: Ultimate stress was not determined in the test because of high ductility.
"This rock is highly homogeneous and isotropic".
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Table A.11 True Triaxial Tests on Solnhofen Limestone (Mogi, 2007)

03(MPa) ~2(MPa) oI(MPa) q3(MPa) q2(MPa) a,(MPa)
0 0 310 80 80 538

80 126 572
20 20 397 80 150 577
20 51 417 80 208 647
20 92 413 80 225 591
20 165 453 80 283 677
20 206 460 80 298 665
20 233 465 80 378 650

80 454 680
40 40 449
40 40 446 105 105 *
40 80 486 105 185 *
40 113 499 105 293 711
40 193 530 105 341 *
40 274 547 105 439 *
40 315 535 105 528 *

105 577 727
60 60 473
60 87 517 120 120 *
60 102 537 120 294 *
60 113 530 120 362 *
60 164 576 120 450 *
60 197 550 120 533 *
60 275 553
60 345 557
Note:

*: Ultimate stress was not determined in the test because of high ductility.
This rock "is highly homogeneous and isotropic".



Table A.12 True Triaxial Tests on Yamaguchi Marble (Mogi, 2007)

-3(MPa) q2(MPa) aO(MPa) O 3(MPa) o2(MPa) i(MPa)
) 0 82 55 55 *

55 82 *
5 6 118 55 107 369

55 138 388
12.5 12.5 140 55 167 390
12.5 26 179 55 200 396
12.5 28 177 55 231 390
12.5 45 196
12.5 67 213 70 70 *
12.5 90 225 70 108 *
12.5 105 228 70 148 *
12.5 115 200 70 181 454

70 214 464

25 25 189 70 243 440

25 39 209 70 268 462

25 48 240

25 78 252 85 85 *
25 107 275 85 119 *
25 132 268 85 157 *
25 157 268 85 194 *
25 168 250 85 238 535

85 274 537
40 40 243

40 64 290 100 100 *
40 88 288 100 133 *
40 88 309 100 169 *
40 112 319 100 207 *
40 143 307 100 279 *
40 160 336
40 177 321 150 150 *
40 208 341 150 150 *

200 00 *
200 200 *

Note:
*: Ultimate stress was not determined in the test because of high ductility.
"This rock a medium-grained calcite marble quarried at Mine, Yamaguch
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prefecture, Japan".
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Table A.13 True Triaxial Tests on Mizuho Trachyte (Mogi, 2007)

r3(MPa) 02(MPa) ao(MPa) r3(MPa) r2(MPa) ol(MPa)
0 0 100 75 75 368

75 108 405

15 15 196 75 147 415

75 210 438

30 30 259 75 279 440

75 318 430
45 45 302 75 363 452

45 58 314
45 67 327 100 100 437

45 90 341 100 126 463

45 138 350 100 171 493

45 204 359 100 256 497
45 281 368 100 354 522
45 323 353 100 384 510

60 60 341
60 83 353
60 133 386
60 186 401

60 212 403

60 254 401
60 306 381
Note:
"This rock, quarried at Tomisaki, Gunma prefecture, Japan, is a moderately porous
and fairly homogeneous silicate rock.".



Table A.14 True Triaxial Tests on Manazuru Andesite (Mogi, 2007)

-3(MPa) c-2(MPa) ol(MPa)
0 0 140

16 16 349

20 20 364
20 20 381
20 67 470
20 124 516
20 186 538

40 40 552
40 75 577
40 112 632
40 126 669
40 206 653
40 278 626

70 70 671
70 101 735
70 152 735
70 193 808
70 275 812
70 313 801
70 375 833

100 100 806

110 110 875

130 130 881
Note:
"This andesite quarried at Manazuru,
Kanagawa prefecture, Japan, is a
compact, light gray rock."
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Table A.15 True Triaxial Tests on Inada Granite (Mogi, 2007)

c3(MPa) c2(MPa) ai(MPa) c3(MPa) Ž2(MPa) ri(MPa)
0 0 226 150 150 1138

0 0 232 150 150 1198
150 164 1223

20 20 508 150 195 1279

20 44 556 150 215 1316

20 46 611 150 273 1332

20 74 643 150 309 1342

20 101 624 150 317 1275

20 127 607 150 365 1307

40 40 692 200 200 1301

40 63 722 200 200 1398

40 88 743 200 200 1438

40 120 802 200 200 1388

40 142 760 200 200 1334

40 147 791 200 216 1425

40 174 834 200 233 1441

200 281 1545

70 70 841 200 309 1523

70 70 879 200 383 1554

200 439 1587

100 100 1003

100 100 1023 230 230 1497

100 138 1046

100 148 1037

100 199 1083

100 239 1141

100 291 1125
100 336 1131
Note:
"This biotite granite quarried at Inada, Ibaraki prefecture, Japan, is medium-grainec

and light gray in color."
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Table A.16 True Triaxial Tests on Orikabe Monzonite (Mogi, 2007)

q3(MPa) q2(MPa) ai(MPa) q3(MPa) a2(MPa) qa(MPa)
0 0 236 140 140 943
0 0 232 140 140 981

140 205 1098
5 5 339 140 259 1144

140 331 1161

20 20 504 140 424 1168

40 40 583 200 200 1107

40 40 571 200 235 1168

40 40 600 200 251 1244

40 59 636 200 298 1305

40 80 698 200 343 1352
40 101 673 200 401 1329

40 102 775 200 473 1358

40 121 739 200 537 1364

40 143 747
40 168 777

40 187 748

80 80 718
80 80 742
80 80 794
80 95 834
80 108 810
80 117 836
80 135 854
80 147 893
80 182 889

80 183 930
80 216 906

80 218 973

80 281 926
80 284 956
80 311 966
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Table A.17 True Triaxial Tests on Shirahama Sandstone (Takahashi and Koide, 1989)

c3(MPa) a2(MPa) aI(MPa) a3(MPa) 2(MPa) al(MPa)
8 8 118.561 40 40 220.317
8 14.3883 110.129 40 40 231.959
8 25.401 129.764 40 40 216.087
8 40.169 131.959 40 59.8249 244.761
8 60.2195 132.594 40 69.8158 254.867
8 71.8512 126.306 40 79.8531 251.745

40 99.3723 253.436
15 15 147.7 40 99.8385 270.899
15 28.4722 156.764 40 99.9223 247.09
15 40.0331 170.582 40 119.917 263.597
15 59.582 163.807 40 139.925 276.402
15 79.6382 162.855 40 159.522 255.87
15 85.4223 168.706 40 160.527 270.162

15 93.871 167.163
50 50 242.597

20 28.3941 178.986 50 50 224.079
20 40.5013 187.516 50 60.2503 273.864
20 48.9555 184.386 50 70.3267 259.631
20 60.0427 182.857 50 80.7689 291.433
20 69.5059 192.96 50 90.8901 264.502

20 82.1724 192.498 50 110.972 256.143

20 99.0903 183.593 50 130.456 267.886

20 100.136 186.244 50 150.973 285.984
50 171.072 272.863

30 30 185.873 50 190.578 278.257
30 30 196.457
30 30 180.056
30 47.7754 219.829
30 68.859 226.819
30 87.3097 232.208
30 108.425 230.203
30 130.023 240.9
30 148.547 225.654
30 168.107 215.704
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Table A.18 True Triaxial Tests on Izumi Sandstone (Takahashi and Koide, 1989)

o3(MPa) 2(MPa) c i(MPa)
20 20 341.656
20 20 352.218
20 39.6713 441.146
20 39.794 429.516
20 50.1243 450.718
20 60.3925 377.812
20 78.1995 390.595
20 98.6258 455.204
20 110.346 444.692

20 120.576 475.411
20 139.019 427.925
20 149.606 424.809

50 50 552.229
50 50 560.682
50 71.0369 569.258
50 89.7653 594.734
50 99.7497 648.715
50 120.125 618.158
50 130.092 573.8
50 148.787 602.448
50 168.682 617.357
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Table A.19 True Triaxial Tests on Yuubari Shale (Takahashi and Koide, 1989)

a3(MPa) a2(MPa) qo(MPa)
25 25 160.975
25 25 167.713
25 35 181.677
25 35 187.369
25 45 175.326
25 55 175.05
25 65 186.264
25 75 199.69
25 80 193.765
25 85 196.405
25 95 200.678
25 100 194.04
25 115 185.64
25 125 197.359
25 135 183.191

50 50 28.364

50 50 38.904
50 50 244.782
50 70 257.171
50 90 260.564
50 100 265.544
50 110 259.656
50 120 259.761
50 130 285.345
50 150 265.797
50 160 255.91
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Table A.20 True Triaxial Tests on Horonai Sandstone (Takahashi and Koide, 1989)

q3(MPa) ~2(MPa) ) i(MPa) 3(MPa) C2(MPa) cI(MPa)
HOSS-I 5 5 117.303 50 129.481 362.946

5 14.8585 121.52 50 169.811 320.448
5 25.4717 122.908 50 169.811 327.52
5 37.5 122.88 50 170.519 333.874
5 51.6509 127.087 50 190.33 309.799
5 73.5849 112.901 50 199.528 317.551

50 210.849 328.125
10 10 138.493
10 19.8113 154.017 HOSS-III 10 10.6132 234.604
10 39.6226 140.543 10 43.1604 235.941
10 60.1415 174.417 10 60.8491 250.74
10 77.1226 172.963 10 63.6792 271.935

15 15 137.774 20 22.6415 305.954
15 28.3019 163.891 20 31.1321 316.534
15 46.6981 185.049 20 39.6226 343.37
15 70.0472 193.475 20 58.7264 351.805
15 77.1226 176.497

15 83.4906 191.323
15 95.5189 194.828
15 116.745 189.831

HOSS-II 15 24.7642 202.062
15 29.0094 211.239
15 30.42 252.23

15 39.6226 232.415
15 45.9906 228.16
15 58.7264 233.784

15 64.3868 243.665
15 79.2453 258.471

15 96.934 245.001
15 118.16 240.711



Table A.21 True Triaxial Tests on Gosford Sandstone (Wawersik, 1997)

Deviatoric Stress Path Load 11/3 2 3

Angle
0(O) (MPa) (MPa) (MPa) (MPa) (MPa)

02 = 03, I1/3 = constant 0 76.9 78.0 167.0 31.87 31.87

03 = constant, proportional 21.0 77.0 63.4 145.3 65.54 20.11

02 = constant, 11/3 , constant, pure shear 31.3 77.7 65.6 142.4 79.42 11.26
03 = constant, plane strain 45.8 76.9 58.8 124.2 95.89 11.08
02 = q3 = constant, CTC 0 78.8 80.6 171.9 32.27 32.27

03 = constant, proportional 21.0 74.2 61.2 140.2 63.15 19.28
Note: The principal stress values are calculated from the three stress invariants, which are
reported in Wawersik (1997).



Table A.22 True Triaxial Tests on Westerly Granite (Haimson & Chang, 2000)

o3 (MPa) o2(MPa) qo(MCF3 o(MPa) 2(MPa) q(MPa)
0 0 201 60 60 747
0 40 306 60 90 811
0 60 301 60 114 821
0 80 317 60 180 860
0 100 304 60 249 861

2 2 231 77 77 889
2 18 300 77 102 954
2 40 328 77 142 992
2 60 359 77 214 98
2 80 353 77 310 1005
2 100 355

100 100 1012
20 20 430 100 165 1103
20 40 529 100 167 1147
20 60 602 100 216 1155
20 61 553 100 259 1195
20 62 554 100 312 1129
20 79 532
20 100 575
20 114 567
20 150 601
20 202 638

38 38 605
38 38 620
38 57 700
38 78 733
38 103 720
38 119 723
38 157 731
38 198 781
Note:
Westerly granite "is a fine-medium grained Late-Pennsylvanian to Permian rock found mainly in
the southeast comer of Rhode Island. Its important properties include very low porosity, high
strength, almost complete isotropy, linear elasticity, and homogeneity".
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Table A.23 True Triaxial Tests on KTB Amphibolite (Chang & Haimson, 2000)

o3(MPa) ~2(MPa) oi(MPa) c 3(MPa) c2(MPa) il(MPa)
0 0 158 100 100 790
0 0 160 100 100 868
0 0 176 100 160 959
0 40 272 100 200 1001
0 80 346 100 250 945
0 150 291 100 270 892
0 200 347 100 300 1048

0 230 267 100 350 1058
100 440 1155

30 30 410 100 600 1118
30 60 479
30 100 599 150 150 1147

30 200 652 150 200 1065

30 250 571 150 200 1112

30 300 637 150 250 1176

150 250 1230

60 60 702 150 300 1431

60 90 750 150 350 1326

60 100 766 150 400 1169

60 155 745 150 450 1284

60 200 816 150 500 1265

60 250 888 150 640 1262

60 300 828
60 350 887

60 400 954
60 450 815

Note:
"The amphibolite samples used in our experimental study were prepared from core (234 mm
diameter) extracted from the main KTB borehole at a depth of 6355-6360 m. Generally, it is a
massive metamorphic rock, which at that depth has little or no foliation. We analyzed a thin
section of the amphibolite using a point-counting method and derived its mineral composition as
being 58% amphibole (mainly homblende, average grain size 0.4 mm), 25% plagioclase
(average grain size 0.2 mm), 5% garnet, 2% biotite, and 7% minor opaque minerals. The
amphibole, which is the dominant mineral, is evenly distributed and randomly oriented."



Table A.24 True Triaxial Tests on Long Valley Hornfels (Chang & Haimson, 2005)

cr3(MPa) r2(MPa) •i(MPa)
0 0 141.239
0 0 141.239

15 15 275.044

30 30 289.912
30 30 272.814
30 55.9367 321.293
30 96.0422 293.726
30 98.153 273.764
30 148.813 258.555
30 197.361 281.369

45 45 340.885

60 60 418.407
60 60 423.954
60 118.206 429.658
60 187.863 403.042
60 246.966 414.449
60 297.625 348.859

100 100 466.195
100 100 466.73
100 199.472 479.087
100 299.736 471.483
100 397.889 442.966
Note:
"The hornfels samples used in our experiments came from a depth range of 2256-2262 m, and
displayed weakly defined banding, dipping 50'. Hornfels is an ultra-fine-grained crystalline rock
that has been metamorphic under high temperature under hydrostatic pressure. This process has
left the grains randomly oriented with no schistosity or planes of weakness, i.e. the rock can be
considered isotropic. The uniaxial compressive strength is 152 MPa regardless of the orientation
to the banding."
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Table A.25 True Triaxial Tests on Long Valley Metapelite (Chang & Haimson, 2005)

o3(MPa) r2(MPa) rl(MPa)
0 0 183.65
0 48.8127 159.696
0 97.6253 173.004

30 65.9631 258.175

30 87.0712 318.061

30 143.799 312.738

60 149.077 505.703
60 238.786 509.696
60 341.689 419.202

100 100.264 552.281
100 296.834 644.106
100 349.604 582.89
100 497.361 589.544
Note:
"The metapelite samples came from core extracted at 2641-2644 m. Metapelite is a metamorphic
rock derived from clay-rich sediments or sedimentary rocks, which is characterized by extremely
small grain size. A set of clearly defined banding planes traversed the metapelite core at an
average dip of 400. The banding in the metapelite exhibited slight local curvature, which reflects
a degree of ductile deformation during its formation. The metapelite exhibited clear anisotropy,
with its UCS varying from 111 MPa to 308 MPa, depending on banding inclination."
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Table A.26 True Triaxial Tests on Chelungpu Siltstone (Oku et al., 2007)

3((MPa) q2(MPa) ai(MPa) q(MPa) a2(MPa) i(MPa)
10 10 113.369 60 60 317.647
10 20 154.011 60 122.03 375.401
10 40 157.219 60 178.186 379.679
10 60 188.235 60 238.661 403.209
10 80 200 60 300 333.7
10 100 193.583 60 300 360.428
10 120 185.027

100 100 441.711
25 25 203.209 100 200 489.84
25 50 195.722 100 300 495.187
25 70 263.102 100 400 467.38
25 75 251.337
25 100 251.337
25 125 244.92
25 150 260.963
25 175 263.102
25 200 270.588
25 217.063 224.599

40 40 262.032
40 60 317.647
40 80 271.658
40 126.35 313.369
40 160 304.813
40 200 282.353
40 220 298.396
Note:
"The composition of tested siltstone was determined by using a point-counting method that
yielded 68% quartz, 19.5% clay, 9.5% k-feldspar, and 3% biotite. The UCS is 79.5±2.2 MPa.
From this initial study, the siltstone can be characterized as a very fine-grained, clay-rich,
low-porosity, medium-strength, and highly deformable rock."
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Appendix B Data for Transversely Isotropic
Rocks

In this appendix, the strength of more or less isotropic rocks under true triaxial stress is
summarized for all the data sets. The mineralogy of these rocks (if available) is summarized at
the end of each table, most of which is cited from the original literature word for word.
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Table B.1 Axial Stress oa at Failure for Martinsburg Slate (Donath, 1964) (Unit: bar)

p 35bar 105bar 350bar 500bar 1000bar 2000bar

00 1326.9 1668.5 2653.0 3552.0 5362.4 7457.3
150 520.3 824.2 1294.0 1809.0 2955.0 5022.2

300 219.0 457.4 843.0 1273.7 2307.3 4187.3
450 395.3 633.9 1047.3 1459.6 2549.3 4382.3

600 749.4 1006.5 1467.0 1916.4 3193.5 5326.1
750 1253.2 1594.8 2139.2 2776.0 4446.1 6672.3

900 1963.5 2417.3 3364.5 4141.7 6064.2 8215.4
Note:
Martinsburg slate is Ordovician, from Bangor, Pennsylvania.
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Table B.2 Axial Stress at Failure for South African Slate (Hoek, 1964) (Unit: Ib/in2)

S0"3/0" = 0 03/0 =0.113 3/0 = 0.171
00 17600 39200 55700
00 21600 36000 49300
150 6900 18300 34200
150 8700 30000 39000

300 4500 7300 8730

300 4150 --- 7840
450 5540 13900 15000

450 6560 11000 16300

600 11850 24600 29600

600 11600 19400 32400
750 16000 31200 41400

750 16600 31900 42900

900 15600 30600 41700
900 16100 --- 39300
Note:
Sample of this slate is from the Pretoria area.



Table B.3 Axial Stress at Failure for Austin Slate (McLamore & Gray, 1967) (Unit: psi)

Note:
"The slate used in this study was a fine-grained black slate. There were
no discernible bedding planes within the material but cleavage was well
developed. The material was obtained from a building site on the
University of Texas campus. Attempts to determine the exact geological
age and formation of the mother material were fruitless."
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p 5000 10000 20000 30000 40000
00 50243.5 68864.7 95243 120972.9 135999.6
100 39360.5 54089.9 77873.3 98089.7 112143.4
200 25072.4 37855.8 60179.8 83477.3 99315.1
300 21648.5 31350.9 53351.1 71297 86486.2
400 24387.6 34252.2 53332.9 68684.5 84522

500 28261.6 36504.5 53477.4 71261.4 86288.7
600 32621.7 43134.9 63512.9 83243.7 97621.5
700 38279.7 48955.3 73063.1 92144.4 108630.2
800 44585.2 52504.4 78558.3 100882.9
900 47649.2 60270.5 85513 105567 124161.8



Table B.4 Axial Stress at Failure for Green River Shale I (McLamore & Gray, 1967) (Unit: psi)

p 1000 5000 10000 15000 25000
00 36552.9 50090.2 63637.9 78085 103920.5
150 30059.7 46566 61103.4 75191 99137
200 28165.4 42692.2 58399.2 72936.4 98232.3

300 23206.5 37733.3 53710.3 68337.9 96333.1

450 31649.2 43387 58824 74891.2 96767.6

600 32174 44091.9 61328.1 74336.1 99361.7
750 31439 44346.5 60953.3 75310.8 100516.3
900 33223.5 46671 61927.8 76645.2 100591.3
Note:
"Green River Shale is also commonly known as Colorado Oil Shale or
just oil shale. In actuality, it is neither a shale nor an oil-bearing rock in
the usual sense of the word. It is composed of fine-grained calcite and
dolomite particles interbedded with a solid native high molecular
weight organic material called kerogen. Upon retort in the 700-800 deg
F range, Green River Shale yields a synthetic crude oil of about 30 deg
API gravity."

"Green River Shale I was quite competent mechanically and failed in a
brittle (shear) manner over the pressure range studied. Upon retort,
samples of this material yielded 18-22 gal/ton of synthetic crude oil.
Physically this material was light gray to light brown in appearance and
was finely laminated."

"Obtained from the Bureau of Mines' demonstration mine near Rifle,
Colo."



Table B.5 Axial Stress at Failure for Green River Shale II (McLamore & Gray, 1967) (Unit: psi)
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p 1000 5000 10000 15000 25000
00 21555.6 29444.5 40959.7 51666.5 71515.1
100 19226.9 27368.3 38479.3 48782.4 66560.2
200 16291.8 24635.4 34736.3 45393.1 64180.9
300 13559.1 21498.5 30639.9 40437.9 58619.5
400 14714.8 22755.5 32957.5 42957.5 61442.1
600 17380.4 25723.9 36632.7 46531.9 64107.7
900 18676.8 27272.7 38080.8 47929.3 67373.8
Note:
"Green River Shale is also commonly known as Colorado Oil Shale or
just oil shale. In actuality, it is neither a shale nor an oil-bearing rock in
the usual sense of the word. It is composed of fine-grained calcite and
dolomite particles interbedded with a solid native high molecular
weight organic material called kerogen. Upon retort in the 700-800 deg
F range, Green River Shale yields a synthetic crude oil of about 30 deg
API gravity."

"Green River Shale II was much darker in appearance and yielded
38-40 gal/ton of synthetic crude oil when retorted. Mechanically, the
material behaved in a plastic manner and as a rule failed in shear only
after considerable plastic strain."

"Obtained from the Bureau of Mines' demonstration mine near Rifle,
Colo."



Table B.6 Conventional Triaxial Tests on Penrhyn Slate (Attewell & Sandford, 1974) (Unit: Ib/in 2)
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p 0 1000 2000 6000 8000 10000

00 27167.4 29372.5 40012.5 51461.7 55104.9 70907.7
150 16431.9 21485.1 29496.1 37001.6 41192.5 50203.4
300 6353.68 13378.7 18541.5 29662 27170.6
300 23856

450 9092.33 14802.8 20403.8 25280.1 33414.7 36948.4
600 12488.3 18308.3 25442.9 32510.2 37139.3 40125.2
750 18403.8 24442.9 31139.3 37439.7 43931.1 50751.2
900 30234.7 36383.4 45270.7 52557.1 63320.8 77918.6



Table B.7 Conventional Triaxial Tests on Chichibu Green Schist (Mogi, 2007) (Unit: MPa)
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a1 U2  U3

Mode I 59 0 0

71 0 0

154 25 25
244 50 50
328 75 75

Mode II 66 0 0

68 0 0

171 25 25
233 50 50

243 50 50

244 50 50

325 75 75
336 75 75

Mode IV 147 0 0

149 0 0
294 25 25
385 50 50
501 75 75

Note:

"A macroscopically homogeneous green
crystalline schist with a distinct, dense foliation,
from Chichibu mountain, west of Tokyo was
selected for the experiment."



Table B.8 True Triaxial Tests on Chichibu Green Schist (Mogi, 2007) (Unit: MPa)

al c2 C_3 _ Cr2 C3

P=30 0 , 0=0 244 50 50 P=30 , co=900  219 50 50
225 85 50 244 50 50
206 100 50 311 86 50
208 121 50 318 97 50
240 133 50 397 121 50
225 166 50 445 155 50

488 156 50
P=30", c=450  233 50 50 428 192 50

244 50 50 432 193 50
247 50 50
273 56 50 P=900  385 50 50

290 70 50 446 71 50

294 86 50 447 74 50

300 97 50 486 75 50

298 97 50 502 103 50

346 121 50 528 115 50

335 121 50 531 148 50

318 144 50 540 156 50

308 156 50 577 192 50

319 167 50 563 227 50

346 168 50 546 249 50

304 180 50 562 262 50

320 203 50 565 316 50
376 203 50

313 227 50
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Table B.9 Axial Stress at Failure for Diatomite (Allirot & Boehler, 1979) (Unit: MPa)
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P 0.5 1 2
00 6.91007 8.67098 11.56234
150 5.76294 8.25923 10.54732
300 4.90478 6.5603 9.68854
450 5.72797 7.14723 10.48547

600 6.94596 8.4958 14.7245
750 8.1105 10.97393 15.9416
900 8.32844 11.2452 16.1594
Note:
"Diatomite is a chalk-like, soft, friable, earthy,
very fine-grained, siliceous sedimentary rock,
usually light in color (white if pure, commonly
buff to gray in situ, and rarely black). It is very
finely porous, very low in density (floating on
water at least until saturated), and essentially
chemically inert in most liquids and gases.
(Dolley, 2000)"



Table B.10 Summary of Samples of Opalinus Shale (Aristorenas,1987)

Sample Formation Depth Water Void Saturation Grain Specific Liquid Plastic

ID Content Ratio Density Weight Limit Limit

(m) (%) (%) (g/cm3 ) (%) (%)

23-1 Opalinus 22 9.6 0.269 99.9 2.79 2.20 31.5 18.6

23-5 Opalinus 50 7.5 0.220 94.2 2.75 2.25 31.6 19.1

23-6 Opalinus 55 5.1 0.185 76.3 2.77 2.34 33.1 20.2

23-9 Lias 73 5.7 0.199 29.6 2.79 2.33 28.6 23.7

23-10 Lias 77 6.2 0.175 99.5 2.83 2.40 28.2 23.5

26B-4 Opalinus 38 5.7 0.168 92.4 2.73 2.34 32.7 22.4

26B-6 Opalinus 47 6.7 0.203 90.6 2.75 2.29 30.7 21.3

26B-8 Opalinus 58 6.4 0.184 98.0 2.80 2.36 31.4 21.7

ERZ4 Opalinus 21 8.9 0.323 78.2 2.35 2.15 36.7 25.5
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Table B.11 Mineralogical Composition of Opalinus Shale (Aristorenas,19 8 7 )
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Table B.12 Conventional Triaxial Tests on Opalinus Shale Specimens (Aristorenas,1987)

Specimen Shale 0 Consolidation Drainage Stress Path

ID Type Condition

23-1(UC) Opalinus 0* Isotropic Undrained Pure shear stress path

23-5(UC) Opalinus 00 Isotropic Undrained Pure shear stress path

23-6(UC) Opalinus 00 Isotropic Undrained Pure shear stress path

23-9(UC) Lias a 00 Isotropic Undrained Pure shear stress path

23-10(UC) Lias a 00 Isotropic Undrained Pure shear stress path

23-1(DC) Opalinus 00 Isotropic Drained Explained in text

23-5(DC) Opalinus 00 Isotropic Drained Explained in text

23-9(DC) Lias a 00 Isotropic Drained Explained in text

26B-6(DC) Opalinus 00 Isotropic Drained Pure shear stress path

26B-8(DC) Opalinus 00 KA=0.5 Drained Pure shear stress path

26B-4(UE) Opalinus 00 Ko=0.58 Undrained Pure shear stress path

26B-6(UE) Opalinus 00 Isotropic Undrained Pure shear stress path

26B-8(UE) Opalinus 00 KA=2.0 Undrained Pure shear stress path

ERZ4(UE) Opalinus 00 Ko=0.68 Undrained Pure shear stress path



Table B.13 Failure of Opalinus Shale Specimens (Aristorenas,1987)

Specimen d10o o30  dif d3f AU Mode n S Remarks

ID (MPa) (MPa) (MPa) (MPa) (MPa) (0)

23-1(UC) 5.0 5.0 8.72 2.31 0.567 - - - Specimen broke into several pieces at failure

23-5(UC) 1.3 1.3 6.82 0.21 -0.810 A 2 55

23-6(UC) 1.3 1.3 6.11 0.74 -1.236 A 2 50

23-9(UC) 2.5 2.5 8.88 1.24 -1.139 - Specimen broke into several pieces at failure

23-10(UC) 2.5 2.5 10.44 1.73 -2.05 A 2 70

23-1(DC) 0.8 0.8 2.54 0.0231 0 A 2 55

23-5(DC) 1.3 1.3 4.01 0.0335 0 A 1 50

23-9(DC) 2.5 2.5 5.93 0.585 0 A 2 55

26B-6(DC) 1.8 1.8 4.99 0.0869 0 A 2 60

26B-8(DC) 3.15 1.575 6.15 0.121 0 A 1 60

26B-4(UE) 1.764 1.023 0.145 3.44 -1.053 B 2 0

26B-6(UE) 1.75 1.75 -0.0165 4.01 -1.303 B 3 0

26B-8(UE) 1.002 2.004 0.486 3.48 -0.887 B 3 0

ERZ4(UE) 0.572 0.389 0.275 1.25 -0.490 A/B 1/1 50/0 Specimen had one shear plane and one fracture plane

10io and d 30: Effective axial and lateral stress in the specimen after consolidation.

'f yand d3f. Effective axial and lateral stress at failure.

Au: Excess pore pressure due to shear.

Mode, n, 4: See Figure 3.31 for illustration.
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Table B.14 Conventional Triaxial Strength of Quartzitic Phyllite (Ramamurthy, 1993) (Unit: MPa)
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beta 0 5 15 30 50 70
0 65.5856 83.5586 140.405 196.847 273.784 326.937

5 249.279
10 290.901
25 46.8468

30 57.6126 101.4865 186.216

35 45.4054
40 136.667 243.694
50 163.694
60 59.4595 66.982 124.91 176.667 234.865 278.649
65 98.3333

70 142.928 200.45 266.937
75 312.523

90 101.622 124.64 175 224.955 273.784 329.099
Note:
"Dhundiara Group (Permo Triassic, 200-280 m.y.) Phyllitic texture. Dark colored
groundmass is strongly foliated with concordant folded quartz veins of thickness
varying from 0.5 to 5.0 mm. The relative abundance of quartz and feldspar (Q + F)=
75%. Other minerals present are chlorite, muscovite, biotite and Fe-oxide."



Table B.15 Conventional Triaxial Strength of Carbonaceous Phyllite (Ramamurthy, 1993) (Unit: MPa)

beta 0 5 15 30 50 70

0 65.1274 85.5997 142.376 178.246 249.7 320.075

0 200.555
5 101.7916
10 196.237

15 284.453

25 38.5007 60.4123

30 37.4213 96.6792 201.844

35 138.666 258.186

40 187.811

55 102.4363
60 48.5757 77.6837 127.624 232.429 274.738

65 186.162 227.391

80 199.475

85 323.313
90 79.5202 115.465 178.718 207.391 272.729
Note:
"Dhundiara Group (Permo Triassic, 200-280 m.y.) Very similar to QP. Light grey
colored groundmass with nearly planer quartz and calcite veins. 'Pinch and swell'
structure in the veins at places. Q + F = 60-70% and present in both groundmass and
layers. Other minerals are chlorite, muscovite, biotite, calcite and Fe-oxide/sulfide.
Wavy extinction of quartz in the veins (the rock is from a shear zone)."



Table B.16 Conventional Triaxial Strength of Micaceous Phyllite (Ramamurthy, 1993) (Unit: MPa)

beta 0 5 15 30 50 70

0 67.5719 114.563 175.241 222.58 356.486 441.162

15 34.3491 63.9658 112.0905 148.804 137.5204 255.428

30 17.0474 31.2243 107.373 184.052
70 62.8059 251.85
80 138.503 199.37

90 97.9793 123.734 158.349 218.236 271.055 318.084
Note:
"Jutogh Group (Pre-Cambrian, > 350 m.y.) Light green colored rock with planer
foliations. Silky sheen on fresh exposed surfaces. Veins are absent. Texture grades
between schistose and slaty. Q + F = 40-45%, fine grained, randomly distributed.
Other minerals are chlorite, muscovite, biotite, Fe-oxide, graphite, tourmaline and
epidote."



Table B.17 Porosity and Density of Tournemire Shale (Niandou,1994)

Drying Temperature Porosity Density
65 oC 8.35% 2.72
80 oC 8.53% 2.73
150 oC 13.7% 2.76
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Table B.18 Triaxial Tests on Tournemire Shale Specimens

Bedding Plane Confining Pressure Loading Sequence

Orientation U3 (0) a3 (MPa)

0 0 2 Complete unloading

1 1 Complete unloading, 3 Monotonic loading

5 2 Partial unloading, 1 Complete unloading, 1 Monotonic loading

10 1 Partial unloading, 1 Complete unloading, 1 Monotonic loading

20 1 Complete unloading, 1 Monotonic loading

25 2 Monotonic loading

30 1 Partial unloading, 1 Complete unloading, 1 Monotonic loading

40 1 Partial unloading, 1 Complete unloading, 1 Monotonic loading

50 1 Partial unloading, 2 Monotonic loading

15 1 1 Monotonic loading

30 1 1 Monotonic loading

5 1 Partial unloading

40 1 Partial unloading

50 1 Partial unloading

45 1 2 Monotonic loading, 2 Complete unloading

5 1 Partial unloading

20 1 Monotonic loading

40 1 Partial unloading

50 1 Monotonic loading, 1 Partial unloading

60 1 1 Monotonic loading

5 1 Partial unloading

20 1 Monotonic loading

40 1 Partial unloading

50 1 Partial unloading

70 1 1 Monotonic loading

75 1 1 Monotonic loading

90 1 3 Monotonic loading, 1 Complete unloading

5 1 Complete unloading, 2 Partial unloading

10 1 Monotonic loading, 1 Complete unloading

20 1 Complete unloading

30 1 Partial unloading

40 1 Partial unloading

50 1 Partial unloading
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Table B.19 Axial Stress at Failure of Tournemire Shale Specimens (Niandou, 1994) (Unit: MPa)

P (o) 1 5 20 40 50
0 35.5957 60.1353 105.1894 144.002 159.84
20 29.9973
30 20.1708 35.6297 83.9269 113.0089 129.7113
45 23.2693 41.1078 77.9447 109.8361 129.9991
60 25.5043 44.855 108.6105
75 31.6297
90 47.056 58.6232 102.8111 136.4335 154.866

Table B.20 Post-Peak Axial Stress of Tournemire Shale Specimens (Niandou, 1994) (Unit: MPa)

P (0) 1 20 50
0 17.37 68
0 20.736
15 8.43
20 13.05 62.56
30 10.19 57.8 123.74
45 9.585
45 9
60 12.92
75 3.14
90 67.23 170.62
90 13.1 64.5 164.44



Table B.21 Conventional Triaxial Strength of Himalayan Quartzitic Schist (Behrestaghi, 1996) (Unit: MPa)

309

P (0) 5 15 35 50 100
0 222.979 301.141 349.405 398.838 508.027
15 199.237 258.971 301.531 342.921 440.577
30 141 188.114 246.741 278.938 412.217
45 176.992 212.616 257.474 293.076 371.28
60 191.151 254.416 304.999 334.856 411.869
90 289.67 357.469 417.245 431.035 512.665
Note:
"This is a fine grained rock with very well developed schistosity.
Quartz bands vary in thickness from 0.5 to 4 mm. The ground mass
appearing in the form of schistose bands, and predominantly made up of
crypto-crystalline to fine grained flaky micaceous (biotite) minerals,
preferably oriented with fine grained recrystallized quartz which are in
abundance. Subordinate and accessary minerals which are embedded in
the schistose ground mass are the quartz porphyroblast, potash and
plagioclase feldspars. The other accessaries present are some iron
minerals and zircon. Based on the semi-quantitative estimation from
X-ray diffractograms, the quartz constitutes about 43%, mica 15% and
feldspar 12.6% of the rock, with clay minerals forming the rest. The
predominant clay is kaolinite, and illite and chlorite are also present."

"The scanning electron micrographs ... obtained in perpendicular to the
foliations show strong preferred orientation of the minerals, i.e.,
granular, irregular, fine quartz grains aligned in alternate arrangement
with tabular flakes of micaceous minerals. This textural variation render
the rock behaves anisotropically."



Table B.22 Conventional Triaxial Strength of Himalayan Chlorite Schist (Behrestaghi, 1996) (Unit: MPa)

very fine grained, highly chloritized
with well developed schistosity,

thickness from 0.5 to 1 cm, highly

basaltic rock. The rock is
having the quartz bands
altered chlorite in ground

mass, with occasional porphyroblasts of augite. Thin sections show that
the augites are pleochroic, weathered and chloritized along margins.
Plagioclase varies in composition from labradorite to andesine. Flakes
of muscovite and other ferromagnesium minerals have also been seen.
The rock appears to be slightly over saturated with silica. It appears that
the quartz bands are formed due to filling of the foliation planes. The
rock contains 29% quartz, 25% chlorite, 11% mica, with clay minerals
forming the rest of the constituents."

"The X-ray diffractogram indicates the presence of chlorite along with
other minerals identified in thin section. The scanning electron
micrographs taken perpendicular to the foliation plane reveal the
textural contrast among the grains."
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P (0) 5 15 35 50 100
0 122.791 180 316.744 348.837 474.419
15 65.5814 143.721 266.512 304.186 397.674

30 62.7907 118.605 221.86 253.953 371.163

45 79.5349 129.767 181.395 245.581 332.093

60 90.6977 149.302 214.884 258.14 339.07
75 129.767 200.93 263.721 443.721

80 330.698

90 173.023 233.023 316.744 482.791
Note:
"This is a

aphaneric,

varying in



Table B.23 Conventional Triaxial Strength of Himalayan Quartz Mica Schist (Behrestaghi, 1996) (Unit:
MPa)

(°) 5 15 35 50 100
0 112.353 171.803 233.601 300.772 418.139
15 92.6897 138.232 216.222 297.291 397.682
30 74.5388 124.682 204.989 237.437 350.975
45 79.5294 99.6035 192.243 226.997 358.271
60 89.956 118.512 221.992 255.984 370.252

75 102.678 128.167 228.569 298.056 418.532
90 145.563 184.939 255.209 316.203 421.216
Note:
"This rock contains quartzitic bands of varying thickness from 1 to 1.5
cm, whereas micaceous bands are 1-2 mm in thickness and at times
show ptygmatic folding. It is a coarse grained rock with well defined
schistose texture. Recrystallized and elongated quartz grains with
sutured boundaries show strong preferred orientation of the rock.
Micaceous (biotite and muscovite) plates occurring in alternate order
with respect to quartzitic bands also show strong preferred orientation.
The presence of chlorite along with the aforementioned mineral
assemblage suggests that the rock belongs to low grade regional
metamorphic facies. Analysis of X-ray diffractogram of the rock reveals
that quartz (31%), chlorite (26%) and mica (22%) are the most
abundant minerals, followed by clay minerals such as kaolinite,
sepiolite and illite forming the rest of its constituents."

"The scanning electron micrographs ... shows the coarse nature of
grains in this rock along with strong preferred orientation of mica."



Table B.24 Conventional Triaxial Strength of Himalayan Biotite Schist (Behrestaghi, 1996) (Unit: MPa)

P (0) 5 15 35 50 100
0 80.0382 116.623 169.985 235.505 310.979
30 51.565 107.994 156.774 200.209 283.314

45 41.92 88.4315 163.878 205.807 295.754
60 74.2041 119.953 183.967 232.003 299.075
75 91.2446 144.579 219.31 239.117 302.396
90 102.95 149.415 222.612 269.115 322.458
Note:
"Megascopic study of this rock shows that it is characterized by thicker
foliation planes than quartz mica schist. The quartz feldspathic bands
varying in thickness from 2 to 7 mm and stretched to a length of 1-5
cm. Micaceous (biotite) flakes range in thickness from 2 to 5 mm. Thin
section study of the rock showed that Biotite schist is a coarse grained
rock with a well developed perfect schistose texture. Quartz grains are
deformed and elongated, occurring alternatively with biotite mica
flakes. Garnet occurs as an accessary and also shows preferred
orientation."

"On the basis of analysis of X-ray diffractograms of the biotite
schist, ... , it is found that biotite is the major constituent of the rock
(56%), followed by quartz (10%), whereas clay minerals, especially
sepiolite (20%), kaolinite (6%) and illite (5%), form the other
constituents of this rock. Coarse nature and preferred orientation of the
grains is evident from the scanning electron micrograph ...."



Table B.25 Axial Stress at Failure for Angers Schist (Duveau, 1998) (Unit: MPa)

P (0) 0 5 10 20 30 40
0 148.283 243.4263 240.1006 274.3325 340.4128 354.615

15 70.1885 95.56496 146.8347 158.0655 140.4212 187.4813

30 36.3574 37.74839 40.36171 42.5574 87.3441 97.249

45 10.59002 22.89935 26.33371 55.98475 60.4251 82.084

60 12.11816 23.84717 33.60024 54.6274 73.1269 88.0225

75 25.6078 56.00856 66.4578 95.79285 121.0013 139.5523

90 97.22125 189.5266 185.0632 240.0531 270.7164 336.9012

Note:
"The studied material is a middle Ordovician schist from Angers (France). It is a
rock of the family of schists with weak metamorphism, and characterized by well
marked schistosity planes which coincide with the stratification planes. The main
mineral constituents of this rock are chlorite, muscovite and quartz. Small quantities
of pyrite, calcite and chloritoide are also found. The size of grains varies from 10 to
20 mm."
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Appendix C Amadei's Solution

Amadei (1983) and Lekhnitskii (1963) presented the solutions for an anisotropic homogeneous
body bounded internally by a cylindrical surface of arbitrary cross-section. As stated in Chapter 5,
their solutions are very general and a simplified version is implemented in this research. It would
not be practical to describe the entire scope of their solutions and the detailed mathematical
treatment. Therefore, only the derivations for the stress distribution around a circular hole,
subject to a uniform internal pressure, embedded in a transversely isotropic medium will be
described here. The purpose for this appendix is to help the reader to understand the MATLAB
implementation (presented in Appendix D), instead of showing all the detailed derivations. For
more details, the reader is referred to Amadei (1983) and Lekhnitskii (1963).

C.1 Problem Statement and Assumptions

A circular hole of radius a is embedded in a transversely isotropic medium, whose stress-strain
relationship can be described by transversely isotropic linear elasticity. As shown in Figure C. 1, a
local coordinate system xyz is set up for the borehole, where z is the axis of the borehole while x
and y form its normal cross-section. A cylindrical system (r, 0) is set up on the plane xy (shown
in Figure C.2), so that any point in the xyz system can also be represented by a cylindrical
system (r, 0, z). The problem is presented and solved in the xyz system.

Generalized plain strain conditions are assumed along the axis of the hole (i.e. the z axis), so that
"all components of stress, strain, displacement, body and surface forces are to be identical in all
planes perpendicular to the hole axis" (Amadei, 1983), i.e. the derivative of these quantities with
regard to z are all zero.

In the xyz system, the far-field stress is expressed by:

x,O

z,O

Tyz,o

Tzx,o

I"Y

(1)

The constitutive law of the material can be expressed by:
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a41  a42  a43  a44  a45  a46

a51  a52  a53  a54  a55  a56

a61 a62 a63 a64 a65 a66

ax,O

C.,I

TZx,o1xyO1"YZ'
IZxv'o

(2)

or in a matrix form:

[],xyz =[A] [co (3)

where [A] is the elastic matrix of the material in the xyz coordinate system.

A uniform pressure q is applied on the wall of the hole, as shown in Figure C.2. Body forces are
assumed to be absent.

It has been stated in Chapter 5 that this problem is divided into three sub-problems:
1. The far-field stress is applied to an anisotropic linear elastic medium with no opening.
2. The hole is introduced into the medium. Existing stresses are relieved to zero around the

surface of the hole.
3. The surface of the hole is uniformly pressurized with the internal pressure.
The governing equations and the general method used to approach the problem will be
introduced first. Each of the sub-problems is then treated separately.

C.2 Governing Equations and the Introduction of Analytic Functions j*(zi) (i = 1,2,3)

With the assumptions stated above, the equation of equilibrium can be written as:

a- x  arxy 0+ = 0 (4)
ax &y

+ =0 (4)
ax ay

+ =0
ax ay

The strain-displacement equations are:

au av
Ex = -;y = -;z = 0;x y 

(5)
Tw sw aiu ev(5

The strain compatibility equations are:
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a2 8 26 82
y2 aX2 ax y (6)

8y 8x

Combining the condition F = 0 in Equation (5) and the constitutive equation, Equation (2), a,
can be expressed by:

Z = 1 (a31ox + a32t + a34r, + a35r + a36 ) (7)
a33

Two stress functions F(x,y) and P(x,y) are introduced to solve these equations. The stress
components (other than o) can be expressed as functions of F(xy) and P(xy):

a2F 82F

82F 8 _(8)XJ 2F 8xy I-Y 8x'=-_ = ;;r, =- -,
- oxy ; T. ay xI

These expressions, together with the expression for az (Equation (7)), can be substituted into the
constitutive equation (Equation(2)), so that the strains can be expressed with F(xy) and T(x,y).
These strains can then be substituted into the compatibility equations (Equation (6)) to give the
Beltrami Michell equations of compatibility:

L,4F +L1 - = 0L4F+ =0 (9)
L F + L2P = 0

L2, L3, and L4 are differential operators of the second, third and fourth order, which are defined
by:

82 82 82
4L = 44 2 2P45 +A558x ax 0y dy

a 3 a 3 a 3 a 3

L3 = -124 + (P25 1P46) x2y (14 + 56) 2 15  (10)8x3 8xfy Oxyy 3y
a4 a4 a4 a4 a4

L4 22 -- 226 + (2fl2 + 66) 2y 2 ,s6x- ,1 48 2x 6 8x38y 8x28y2f8XaY3 1 118

where /l = a a i3a "3 (i, j = 1,2,4,5,6), and ayi are the components of the elastic matrix [A] (refer
a33

to Equation (2)).

Lekhnitskii (1963) gave the general solution for Equation (9):
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F = 2 Re(Fl (zI) + F2(z2) + F3 (z3))

1 (11)T = 2 Re(AZF,'(z) '(+ F2( F(z3 )) (11)

in which Re stands for the real part of its parameter. Fi(zi) (i = 1,2,3) are analytic function of the
complex variables zi = x + puy, where (x,y) is the location of the point whose stress components
are calculated. ui (i = 1,2,3) are three roots of the equation:

14  )2 ()- 2 () = 0 (12)

where 12, 13 and 14 are the characteristic equations of the three differential operators L2 , L3 , L4,
respectively:

12 = /44 - 2,P4 5U + P5 5U
2

13 = -824 + (P25 1 846)/- (A14 + P56)U2 + / 15P 3  (13)

14 = /22 -2826p + (2/12 + 166)/I 2 - 2A6 1
3 +/3AP 4

Lekhnitskii (1963) proved that Equation (12) has only complex or purely imaginary roots. Three
of these roots are the conjugate of the other three. ui (i = 1,2,3), therefore, are the three roots of
Equation (12). Ai (i = 1,2,3) are defined as:

13(Pl).; = /3(P-2) 13 (3) (14)
1/2 P( )  12 ( ) /4(-3)

Lekhnitskii (1963) then introduced three analytic functions Oi(zi) (i = 1,2,3) which are defined by:

1
S(z) = F'(z); 02 (Z2 ) F2(Z2 ); F3 (z3); (15)

Combining Equation (11) and (15), it is obtained that:

8FN = 2 Re(b (zl) + 2 (z2) + A3 3 (z 3))ax
8F

= 2 Re(p/t, (z) +/P2 2 (z2 ) + 3 / 3 (z 3 )) (16)
ýy
T = 2 Re(A3 1 (Z) + +1 02 (z2) + 3 (3))

The stress components, which are expressed as functions of F(x,y) and W(x,y), are now expressed
with Oi(zi) (i = 1,2,3):

ox = 2 Re(P2t0(z 1) +• 2(z)+ (z))

r = 2 Re(O1'(z) +(z2)+ (z3

rz = -2 Re(,,'(z1) + .2  (z2 3) + •3))) (17)
zx = 2 Re(fil,;'(z1) + ,21 (z2 ) + 3p3¢ (z3 ))

ix = -2 Re(p '(z,) + (3 2 2 3 3 3
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The problem of finding the stress distribution around the hole is now transformed to the problem
of determining the three analytical functions A(zi) (i = 1,2,3). These analytical functions have to
be determined from the boundary conditions introduced in each of the sub-problems.

C.3 Application of the Far-Field Stress

In the first sub-problem, the far-field stress is applied to the transversely isotropic medium with
no opening. It is obvious that after this step, the stress in the medium is the assumed far-field
stress [ao]xyz.

C.4 Drilling a Hole with Zero Internal Pressure

A circular hold is then drilled in the transversely isotropic medium, with zero internal pressure.
Along the wall of the hole, the applied stresses must be reduced to zero. For any point (r = a, 6)
along the wall of the hole, the boundary conditions can be written as:

ox cos9 +'•. sin 0= -('.,0 cos9 + r-,o sin 9)

r. cos +oy sin 0 = -(r,, cos + cy, sin 9) (18)

r, cos9 + r, sin0 = -(r=, o cos9 + ,o sin 9)

Using Equation (17), these boundary conditions can be expressed as three equations of the
analytical functions A(zi) (i= 1,2,3). These analytical functions are solved to be:

(z_) = -- [(A2 3AA3 -,)l +(Z2A3- 'A7bl + 'A3 (P3 - ) P2 (19)

in which:

A = (P2 -33)+,(A -P3)+ A (/P3 - 2) (20)

2,+ 1- - 1 -
= a(21)

a a a
aE = Cy,o - iro); = - (r o - ix,o); = (,o -iro); (22)

The expressions of the analytical functions A4(zi) (i = 1,2,3) in Equation (19) can be substituted
into Equation (17) to give the stresses induced by drilling a hole with zero internal pressure. The
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stresses induced in this step are denoted [ch] z. After certain mathematical manipulations, it can
be shown that the components of the induced stress can be written as:

0x,h = boax,o + Crey,o +dlrxy,o + eZyz,O + f+ X,o

'y,h - b21 x, 0  1 C2 y,O + d 2 xy,0 + e 2 yz,O 
+ f2 xz,

*xy,h = b3 x,O + C3ry,o + d3ry,o + e3lyz,0 + f3yxz,o (23)

zx,h =b 4,ox,0 + c4 y,O + d + d4xy, 4yz,o + f4z,o

ryz,h = b5x,o + cs'y,o + drxy, + er + f 5 •z,o

The stress component Cz,h is expressed by all other stress components based on Equation (7):

,h 1 (a3x,h+ a32y,h + a34ryz,h 35 zx,h a36 xy,h ) (24)
a33

The coefficients bi, ci, ... f (i = 1,2,...,5) in Equation (23) are expressed by:

b, = -Re[iyl •U /23 -11) + iY2/ -2A3) + i(Y3 a 3 ( - A )

, =- Re[yup (1u2 - 2A3) + 72/J2 (/a A3 3 (A2 -/a2 1

d = Re[yl/•1 (.( - 1 + i/U2 -i/2 3A2233)+ y 21U( 3 - -Z + 3A - i/•) (25)
(25)

+ 73U3 A (1 -A 2 + iU1A/ - i/ 2A )]

e, = Re[/pay 1, 3 (P/3 -P/12) + 2  (1 - /3) /3 / /73A3(P 2 - '/1)]

f = - Re[iy,/, V21. 3 - i2 A 2 3 1 ) " iY3/a 3 (/ 2 - 1)]

b2 = - Re[iy, (2A 3 - 1) + iy2 (1- 33) + iy3 3 (7 1 -A 2)]

C2 = -R[7 ( 2  3A2 3) + y2 (3A 3/ 3 -/ + 3) 3 2(/PA -/ 23a)]

d2 = Re[y,(A23 -1+i/ 2 - i/ 3A2A3) + Y2 (12- A3 + i/3 AA3 )- (26l)
(26)

+ 7 3A. 3(2 -A 2 + ±i/A2 - i/2l )]

e2 = Re[y7,A3 (p3 - 2-/ )+ y27 (2  
- (1 3 )+7 3A3 (/ 2 - A/1)]

f 2 =-Re[i71A3(p 3 -/2 )+i7 2-3/ 1-/ 3 ) i7 3A3 (/2 -/1A)]

b3 = Re[iy,/l (A2 3 -1) + ii2 312 (1 -A1A 3) + i73 3A3 ( - A2)]

3 = Re[y,/pl (P2 -/a342A2) + 72/2 (A1A3/ 3 - A) + y73 1(/,2 -/a2A)]
d3 = -Re[y71u, (A2 -1 +i/ 2 -i/ A3) + 72 a 2(1(- - 3 + 2i/A2A3 P - i/1)

(27)
+ 73/ 3A33 (3 -22 + i/lA2 - i/a2 3)]

e3 = - Re[y/IA3(P,3 - /2) + 2/ 2A3 (/I - /3) + y3/ 3A(3 ( 2 - A)]
f3= Re[iy7/pA3-(3 -/3 2) +i7 2/ 2 3(/P -/3) + iy 3/2A333 / 2 - 1 )]
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4 = -Re[iY A(A21 ( 3 -1) + i 2U 2 ~ (- A•ý) + i' 37 3 (21 - AI)]

C4 = - Re[7 1/P1 (P2 - P3 A3) + ru 2A- (AVAA -) + y~73, (3A - 2A)]
d4 = Re[y1 rujA(A2A3 -1+ -ip2 3  )+ •2A2(1 -AA 3 + i AlA3 -W (28))

+y 3/A(/- A2 + i/ 1A2 -iu 2 •1 A
e4= Re[y1PAMA(u 3 -P 2)+y 2P2A3(A -223)+ 3,3 (u2 -A)]

f4 = -Re[i,A A (P3 -P2 2 A3 (A -P3 + 73A (P2 -3 A2

b¢ = Re[iyj,ý (22u, -u,) + iy2 ,A2 ( , - u A )+3 y, 3( -u, 2)]
c= Re[y 1k(A 2 - 3PYA 3 )+7222 (214 3 -A)+ 73 /i21)]

d, = -Re[y 1(A223, - 1 + iu 2 - )+M32A3 + y2 i'(1 -A 3 + ,i3AA 3 i(29)
(29)

+y 3(A -A +i/A4 -2iPA)]
es = -Re[y, AA (3 -P 2) + y2AA3( -( 3 )+ y,(u -(2 )
f, = Re[iy, AAZ (p3 - 2) + + iy 3) ( -2A)1

In these expressions, 7 (i = 1,2,3) are defined by:

a4 a (30)

With these coefficients, the stress induced in this sub-problem, [oh]xyz, can be calculated through
Equations (23) and (24).

C.5 Apply Uniform Internal Pressure q

An internal pressure q is finally applied along the wall of the hole. For any point (r = a, 0) along
the wall of the hole, the boundary conditions are written as:

o, cos 0 +r , sin 9 = q cos 9

ry, cosO + oy sinO= qsin9 (31)

,, cos +, sin 9 = 0

Using Equation (17), three equations of the analytical functions A(zi) (i = 1,2,3) can again be
obtained. For this sub-problem, these analytical functions are solved to be:

S(z) = qAza[(p 2 - ,3A2A3) + i(A2 -1)]/ 2

2 (z2) = qA2a[(23 3 - 1 )+ i(- 1A3)] / 2 (32)

3 (z3) = qA3a[(pA2 -p221) + i(2 - A2)]/2

in which:



1
A i = 1 (33)

Substituting Equation (32) into Equation (17), the induced stress due to the application of a
uniform internal pressure, [oq]xyz, can be expressed by:

x,q = llq;ay,q = 1 x2q; 'xy,q = 13q; rzx,q = 14q; yz,q = 15q; (34)

The stress component o,q is expressed by all other stress components based on Equation (7):

zq (31"x,q+ a32 y,q+ a34f yz, q + a35+ x,q a36"xy,q (35)
a33

The coefficients ii (i = 1,2,...,5) in Equation (34) are expressed by:
l1 = Re[y7p ý2 ((P 2 -P 3A2A3 ) + i(A2 -1))+y2U 2 (('A 3 - 1)i(-A 3))

2y3 ,34 ((2 -/2tjP) + i(A( -- ))]
A373 ((i 2 _-221) + 2i(A -A 2))]

13 = Re[ylt 1 ((U2 - /U3 2A 3 ) i('2 23 -1)) + y2 2 ((2A 3 t1 3 -P u 1 )+ i(1 - 2_A3)) +

3Y3/ ((P/-Z22 -2 ) + i( -A2))](36)

14= Re[4yjIl ((C2 -/. 3A-A) +i(A2A -1)) + 7y2P 2 ((42Z 3 /3 - PI) +i(1 - A)) +73/.73 ((•A2 -1 2 1 ) + i(A3 -2))]

14 = Re[AI• 1 (P 2 -/P 3 A2-)(2+ -1))+ 22P2 ((2'j 3 / 3 -/3) +/(1- A 3))+
73 ((ul•A -3/2 1 )+ i(A1 - A2))]

With these coefficients, the stress induced in this sub-problem, [oq]xyz, can be calculated.

Finally, the stress distribution around a circular hole, subject to a uniform internal pressure,
embedded in a transversely isotropic medium can be expressed by the superposition of the
induced stresses from all three sub-problems:

[ ]xyz= ]y + [h] Ixyz +[q]xyz (37)

The subscript "xyz" clearly shows that the calculated stress components are in the xyz system,
which is the local frame for the borehole. With this stress obtained, it is straightforward to use
tensor manipulation to obtain stress components in other coordinate systems.
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Figure C.1 Three Coordinate Systems in the Borehole Stability Problem

Y

4:7
(r, 0)

0

a

Figure C.2 Cross-Section of the Borehole and the Local Cylindrical System
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Appendix D MATLAB Code

The MATLAB code that implements the solutions described in Appendix C is listed in this
appendix. In order to make the program more readable, the variable names in the program

correspond to their representations in the solutions. For example, delta stands for A, gama

stands for y, kesi stands for F, etc. While writing this program, the Fortran code named "Berni

2" by Amadei (Amadei, 1983) was consulted.

325





%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The MATLAB program that calculates the stress distribution of a circular %
% hole embedded in a transversely isotropic media %

% Author: Jianyong Pei %

% Dept. of Civil and Environmental Engineering, MIT, May 2008 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [sgmxyz, sgm_stn, sgm_rqz, sgm_eig] = Calculate_Stress_Around_Borehole_InAnisotropicMedia ...

(radius,theta,beta n,alpha_n,beta_z,alpha_z,depth,p,q)

%%% Parameters In %%%%

% radius: radius of the point where the stress is calculated (m)

% theta: theta value of the point where the stress is calculated (radian)

% beta_n, alphan: Inclination and azimuth of the N direction (radian)

% beta_z, alpha_z: Inclination and azimuth of the borehole axis (radian)

% depth: the depth of the borehole (m)

% p: the formation pore pressure (MPa)

% q: the effective mud pressure in the borehole (MPa)

%%% Parameters Out %%%

% sgm_xyz: stress components in the xyz system (borehole local frame)

% sgmstn: stress components in the STN system (material system)

% sgm_rqz: stress in the (r,theta,z) system (cylindrical borehole local frame)

% sgm_eig: principal stresses

%%% Stress Unit: MPa, Modulus Unit: MPa %%%

%%% The anisotropic material properties %%%%%%%%%

Es = 38882; En = 29329; vst = 0.25; vns = 0.2;

Gns = Es*En/(Es+En+2*vns*Es); Gst = Es/2/(l+vst);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%% Total vertical stress in MPa, assuming total density of rock is 2.5 t/m3

temp = 2.5*1000*10*depth/l.Oe6;

%%% The in-situ effective stresses in MPa %%%

SGMV = temp-p; SGMh = 0.7*temp-p; SGMH = 0.85*temp-p;

SGM = [SGMh 0.0 0.0;

0.0 SGMH 0.0;

0.0 0.0 SGMV];

%%% The borehole radius (m) %%%

a = 1.0;

%%% The elastic matrix

E = [1/Es -vst/Es

-vst/Es 1/Es

-vns/En -vns/En

0 0

0 0

0 0

of the transversely isotropic rock

-vns/En 0 0 0;

-vns/En 0 0 0;

1/En 0 0 0;

0 1/Gns 0 0;

0 0 1/Gns 0;

0 0 0 1/Gst];

%%% Calculation begins here %%%

while (theta < 0)

theta = theta + 2*pi;

end

while (theta > pi + pi)

theta = theta - 2*pi;

end

degree = theta*180/pi;

if (degree <=135 && degree >= 46) (degree <= 315 && degree >=226)



[T_STN, T_xyz, Tsgm_STN, Teps_xyz] =...
Obtain_Transformation_Matrix_2(beta_z, alpha_z, beta_n, alpha_n);

degree = degree - 90; theta = theta - pi/2;

else

[T_STN, T_xyz, T_sgm_STN, T_eps_xyz] =

Obtain_Transformation_Matrix_l(beta_z, alpha_z, beta_n, alpha_n);

end

A = T_eps_xyz*T_sgm_STN'*E*T_sgmSTN*T_epsxyz';

sgm0 = T_xyz*SGM*T_xyz';

B = zeros(6,6);

for row = 1:6

for col = 1:6

B(row,col) = A(row,col) - A(row,3)*A(col,3)/A(3,3);

end

end

temp6 = -B(1,5)A2+B(1,l)*B(5,5);

temp5 = 2*(B(1,4)*B(1,5)-B(1,1)*B(4,5)-B(1,6)*B(5,5)+B(1,5)*B(5,6));

temp4 = -B(1,4)^2-2*B(1,5)*B(2,5)+B(1,1)*B(4,4)+4*B(1,6)*B(4,5)-2*B(1,5)*B(4,6)+

2*B(1,2)*B(5,5)-2*B(1,4)*B(5,6)-B(5,6)A^2+B(5,5)*B(6,6);

temp3 = 2*(B(1,5)*B(2,4)+B(1,4)*B(2,5)-B(1,6)*B(4,4)-2*B(1,2)*B(4,5)+B(1,4)*B(4,6)-B(2,6)*B(5,5)+

B(2,5)*B(5,6)+B(4,6)*B(5,6)-B(4,5)*B(6,6));

temp2 = -2*B(1,4)*B(2,4)-B(2,5)^ A2+2*B(1,2)*B(4,4)+4*B(2,6)*B(4,5)-2*B(2,5)*B(4,6)- ...
B(4,6)A^2+B(2,2)*B(5,5)-2*B(2,4)*B(5,6)+B(4,4)*B(6,6);

templ = 2*(B(2,4)*B(2,5)-B(2,6)*B(4,4)-B(2,2)*B(4,5)+B(2,4)*B(4,6));

tempO = -B(2,4)^2+B(2,2)*B(4,4);

temp = [temp6, temp5, temp4, temp3, temp2, templ, temp0];
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r = roots(temp);

miu = [r(1), r(3), r(5)]; miu bar = [r(2), r(4), r(6)];

= B(1,5)*miu(1)

= B(5,5)*miu(1)

= B(1,5)*miu(2)

= B(5,5)*miu(2)

= B(1,5)*miu(3)

= B(1,1)*miu(3)

A3- (B(1,4)+B(5,6))
A2-2*B (4,5) *miu (1)
^3- (B(1,4)+B(5,6))
^2-2*B(4,5)*miu(2)

^3-(B(1,4)+B(5,6))

^4-2*B (1,6) *miu(3)

*miu(1) A^2+(B(2,5)

+B(4,4);

*miu(2)^2+(B(2,5)

+B(4,4);

*miu(3) A2+(B(2,5)

A3+ (2*B (1,2) +B (6,

+B(4,6))*miu(1)-B(2,4);

+B(4,6))*miu(2)-B(2,4);

+B(4,6))*miu(3)-B(2,4);

6))*miu(3)^2-2*B(2,6)*miu(3)+B(2,2);

if (norm(131)<le-12)

131 = 0;

end

if (norm(132)<le-12)

132 = 0;

end

if (norm(133)<le-12)

133 = 0;

end

lambda = [-131/121, -132/122, -133/143];

delta = miu(2)-miu(1)+lambda(2)*lambda(3)*(miu(1)-miu(3))+lambda(1)*lambda(3)*(miu(3)-miu(2));

x = radius*cos(theta); y = radius*sin(theta);

z = [x+miu(1)*y, x+miu(2)*y, x+miu(3)*y];

sql = sqrt((z(1)/a)^2-1-miu(1)^2);
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sq2 = sqrt((z(2)/a)^2-l-miu(2)^2);

sq3 = sqrt((z(3)/a)^2-l-miu(3)^2);

sq = [sql, sq2, sq3];

if (degree > 90 && degree < 270)

sq = -sq;

end

kesil = (z(1)/a + sq(l))/(l-i*miu(1));

kesi2 = (z(2)/a + sq(2))/(l-i*miu(2));

kesi3 = (z(3)/a + sq(3))/(l-i*miu(3));

kesi = [kesil, kesi2, kesi3];

gamal = -l.0/delta/kesi(l)/sq(l);

gama2 = -l.0/delta/kesi(2)/sq(2);

gama3 = -l.0/delta/kesi(3)/sq(3);

gama = [gamal, gama2, gama3l;

bl = -l*real(i*gama(l)*miu(l)^2*(lambda(2)*lambda(3)-) ...

+i*gama(2)*miu(2) ^2*(l -lambda(l)*lambda(3)) ...

+i*gama(3)*miu(3)^2*lambda(3)*(lambda() -lambda(2)));

cl = -l*real(gama(l)*miu(1)^2*(miu(2)-miu(3)*lambda(2)*lambda(3))...

+gama(2)*miu(2)^2*(lambda(1)*lambda(3)*miu(3)-miu()) ...

+gama(3)*miu(3)^2*lambda(3)*(miu(l)*lambda(2)-miu(2)*lambda(1)));

dl = real(gama(l)*miu(l)^2*(lambda(2)*lambda(3)-l+i*miu(2)-i*miu(3)*lambda(2)*lambda(3)) ..

+gama(2)*miu(2)^2*(l-lambda(l)*lambda(3)+i*miu(3)*lambda(l)*lambda(3)-i*miu()) ...

+gama(3)*miu(3)^2*lambda(3)*(lambda(l)-lambda(2)+i*miu(1)*lambda(2)-i*miu(2)*lambda(l)));
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el = real(miu(1)^2*gama(1)*lambda(3)*(miu(3)-miu(2)) ...
+miu(2)^2*gama(2)*lambda(3)*(miu(i)-miu(3)) ...
+miu(3)^2*gama(3)*lambda(3)*(miu(2)-miu(1)));

fl = -l*real(i*gama(l) *miu(i)^2*lambda(3)*(miu(3)-miu(2))...

+i*gama(2)*miu(2)^ 2 * l a mb d a ( 3 ) * (miu(1)-miu(3)) ...
+i*gama(3)*miu(3)^2*lambda(3)*(miu(2)-miu(1)));

b2 = -1*real(i*gama(l)*(lambda(2)*lambda(3)-l) ...
+i*gama(2)*(l-lambda(1)*lambda(3))...

+i*gama(3)*lambda(3)*(lambda(i)-lambda(2)));

c2 = -l*real(gama(l)*(miu(2)-miu(3)*lambda(2)*lambda(3)) ..
+gama(2)*(lambda(l)*lambda(3)*miu(3)-miu(i)) ...
+gama(3)*lambda(3)*(miu(1)*lambda(2)-miu(2)*lambda(1)));

d2 = real(gama(l)*(lambda(2)*lambda(3)-l+i*miu(2)-i*miu(3)*lambda(2)*lambda(3)) ..
+gama(2)*(l-lambda(1)*lambda(3)+i*lambda(1)*lambda(3)*miu(3)-i*miu(1)) ..
+gama(3)*lambda(3)*(lambda(l)-lambda(2)+i*miu(1)*lambda(2)-i*miu(2)*lambda(1)));

e2 = real(gama(l)*lambda(3)*(miu(3)-miu(2))...

+gama(2)*lambda(3)*(miu(l)-miu(3))...

+gama(3)*lambda(3)*(miu(2)-miu(l)));

f2 = -l*real(i*gama(l)*lambda(3)*(miu(3)-miu(2)) ...
+i*gama(2)*lambda(3)*(miu(1)-miu(3))...

+i*gama(3)*lambda(3)*(miu(2)-miu(l)));

b3 = real(i*gama(l)*miu(l)*(lambda(2)*lambda(3)-)...



+i*gama(2)*miu(2)*(1-lambda(1)*lambda(3)) ...

+i*gama(3)*miu(3)*lambda(3)*(lambda(1) -lambda(2)));

c3 = real(gama(1)*miu(1)*(miu(2)-miu(3)*lambda(2)*ambda(3)) ...

+gama(2)*miu(2)*(lambda(1)*lambda(3)*miu(3)-miu(1))...

+gama(3)*miu(3)*lambda(3)*(miu(1)*lambda(2)-miu(2)*lambda(1)));

d3 = -1*real(gama(1)*miu(1)*(lambda(2)*lambda(3)-l+i*miu(2)-i*miu(3)*1ambda(2)*lambda(
3 )) ...

+gama(2)*miu(2)*(l-lambda(1)*lambda(3)+i*1ambda(1)*1ambda(3)*miu(3)-i*miu(1))...

+gama(3)*miu(3)*lambda(3)*(lambda(1)-lambda(2)+i*miu(1)*1ambda(2)-i*miu(2)*lambda(l)));

e3 = -1*real(miu(1)*gama(1)*lambda(3)*(miu(3)-miu(2 )) ...

+miu(2)*gama(2)*lambda(3)*(miu(1)-miu(3)) ..

+miu(3)*gama(3)*lambda(3)*(miu(2)-miu(1)));

f3 = real(i*gama(1)*miu(1)*lambda(3)*(miu(3)-miu(2)) ...

+i*gama(2)*miu(2)*1lambda(3)*(miu(1)-miu(3)) ...

+i*gama(3)*miu(3)*lambda(3)*(miu(2)-miu(1)));

b4 = -1*real(i*gama(1)*lambda(1)*miu(1)*(lambda(2)*lambda(3)-) ...

+i*gama(2)*lambda(2)*miu(2)*(l-lambda(1)*1ambda(3))...

+i*gama(3)*miu(3)*(lambda(1) -lambda(2)));

c4 = -1*real(gama(1)*lambda(l)*miu(1)*(miu(2)-miu(3)*lambda(2)*lambda(
3 )) ...

+gama(2)*lambda(2)*miu(2)*(lambda(1)*lambda(3)*miu(3)-miu()) ...

+gama(3)*miu(3)*(miu(1)*lambda(2)-miu(2)*1ambda(1)));

d4 = real(gama(1)*miu(1)*lambda(1)*(lambda(2)*1ambda(3)-l+i*miu(2)-i*miu(3)*1ambda(2)*lambda(
3 )) ...

+gama(2)*miu(2)*lambda(2)*(l-lambda(1)*lambda(3)+i*lambda(1)*lambda(3)*miu(3)-i*miu()) ..

+gama(3)*miu(3)*(lambda(1)-lambda(2)+i*miu(1)*1ambda(2)-i*miu(2)*lambda(l)));
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e4 = real(gama(1)*miu(1)*lambda(1)*lambda(3)*(miu(3)-miu(2)) ...

+gama(2)*miu(2)*lambda(2)*lambda(3)*(miu(1)-miu(3)) ..

+miu(3)*gama(3)*(miu(2)-miu(1)));

f4 = -1*real(i*gama(1)*miu(1)*lambda(1)*lambda(3)*(miu(3)-miu(2))...

+i*gama(2)*miu(2)*lambda(2)*lambda(3)*(miu(1)-miu(3)) ..

+i*gama(3)*miu(3)*(miu(2)-miu(1)));

b5 = real(i*gama(1)*lambda(1)*(lambda(2)*lambda(3)-1)...

+i*gama(2)*lambda(2)*(l-lambda(1)*lambda(3))...

+i*gama(3)*(lambda(1)-lambda(2)));

c5 = real(gama(1)*lambda(1)*(miu(2)-miu(3)*lambda(2)*1ambda(3))...

+gama(2)*lambda(2)*(lambda(1)*lambda(3)*miu(3)-miu(1))...

+gama(3)*(miu(1)*lambda(2)-miu(2)*lambda(1)));

d5 = -1*real(gama(1)*lambda(1)*(lambda(2)*lambda(3)-l+i*miu(2)-i*miu(3)*1ambda(2)*ambda(3)) ..

+gama(2)*lambda(2)*(1-lambda(1)*lambda(3)+i*1ambda(1)*lambda(3)*miu(3)-i*miu(1))...

+gama(3)*(lambda(1)-lambda(2)+i*miu(1)*lambda(2)-i*miu(2)*1ambda(1)));

e5 = -1*real(gama(1)*lambda(1)*lambda(3)*(miu(3)-miu(2)) ..

+gama(2)*1lambda(2)*lambda(3)*(miu(1)-miu(3))...

+gama(3)*(miu(2)-miu(1)));

f5 = real(i*gama(l)*lambda(1)*lambda(3)*(miu(3)-miu(2))...

+i*gama(2)*lambda(2)*lambda(3)*(miu(1)-miu(3)) ..

+i*gama(3)*(miu(2)-miu(l)));

11 = real(gama(l)*miu(1)*miu(1)*((miu(2)-miu(3)*1ambda(2)*1ambda(3))+i*(lambda(2)*1ambda(3)-1))



+gama(2)*miu(2)*miu(2)*((lambda(1)*lambda(3)*miu(3)-miu(1))+i*(l-lambda(1)*lambda(3))) ...
+gama(3)*lambda(3)*miu(3)*miu(3)*((miu(i)*lambda(2)-miu(2)*lambda(1))+i*(lambda(1)-lambda(2))));

12 = real(gama(1)*((miu(2)-miu(3)*lambda(2)*lambda(3))+i*(lambda(2)*1ambda(3)-1)) ...
+gama(2)*((lambda(1)*lambda(3)*miu(3)-miu(1))+i*(1-lambda(1)*1ambda(3)))...

+gama(3)*lambda(3)*((miu(l)*lambda(2)-miu(2)*lambda(1))+i*(lambda(1)-lambda(2))));

13 = -1*real(gama(1)*miu(1)*((miu(2)-miu(3)*lambda(2)*1ambda(3))+i*(lambda(2)*1ambda(3)-)) ...
+gama(2)*miu(2)*((lambda(1)*lambda(3)*miu(3)-miu(1))+i*(1-lambda(1)*1ambda(3)))...

+gama(3)*ambda(3)*miu(3)*((miu()*lambda(2)-miu(2)*ambda(1))+i*(lambda()-lambda(2))));

14 = real(gama(l)*lambda(l)*miu(l)*((miu(2)-miu(3)*lambda(2)*lambda(3))+i*(lambda(2)*lambda(3)-)) ...
+gama(2)*lambda(2)*miu(2)*((lambda(1)*lambda(3)*miu(3)-miu(1))+i*(l-lambda(1)*lambda(3))) ...

+gama(3)*miu(3)*((miu(1)*lambda iu(-miu(2)*ambda(1))+i*(lambda()-lambda(2))));

15 = -1*real(gama(l)*lambda(l)*((miu(2)-miu(3)*lambda(2)*lambda(3))+i*(lambda(2)*lambda(3)-)) ...

+gama(2)*lambda(2)*((lambda(1)*lambda(3)*miu(3)-miu(1))+i*(1-lambda(1)*lambda(3))) ...

+gama(3)*((miu(l)*lambda(2)-miu(2)*lambda(1))+i*(lambda(1)-lambda(2))));

bb = -(A(3,1)*bl+A(3,2)*b2+A(3,4)*b5+A(3,5)*b4+A(3,6)*b3)/A(3,3);

cc = -(A(3,1)*cl+A(3,2)*c2+A(3,4)*c5+A(3,5)*c4+A(3,6)*c3)/A(3,3);

dd = -(A(3,1)*dl+A(3,2)*d2+A(3,4)*d5+A(3,5)*d4+A(3,6)*d3)/A(3,3);

ee = -(A(3,1)*el+A(3,2)*e2+A(3,4)*e5+A(3,5)*e4+A(3,6)*e3)/A(3,3);

ff = -(A(3,1)*fl+A(3,2)*f2+A(3,4)*f5+A(3,5)*f4+A(3,6)*f3)/A(3,3);

11 = -(A(3,1)*11+A(3,2)*12+A(3,4)*15+A(3,5)*14+A(3,6)*13)/A(3,3);

sgmxh = bl*sgm0(1,1)+cl*sgm0(2,2)+dl*sgm0(1,2)+el*sgm0(2,3)+fl*sgm0(1,3);

sgmyh = b2*sgm0(1,1)+c2*sgm0(2,2)+d2*sgm0(1,2)+e2*sgm0(2,3)+f2*sgm0(1,3);

sgmzh = bb*sgm0(1,1)+cc*sgm0(2,2)+dd*sgm0(1,2)+ee*sgm0(2,3)+ff*sgm0(1,3);
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sgmxyh = b3*sgm0(1,1)+c3*sgm0(2,2)+d3*sgm0(1,2)+e3*sgm0(2,3)+f3*sgm0(1,3);

sgmxzh = b4*sgm0(1,1)+c4*sgm0(2,2)+d4*sgm0(1,2)+e4*sgm0(2,3)+f4*sgm0(1,3);

sgmyzh = b5*sgm0(1,1)+c5*sgm0(2,2)+d5*sgm0(1,2)+e5*sgm0(2,3)+f5*sgm0(1,3);

sgmxq = ll*q;

sgmyq = 12*q;

sgmzq = ll*q;

sgmxyq = 13*q;

sgmxzq = 14*q;

sgmyzq = 15*q;

sgmh = [sgmxh

sgmxyh

sgmxzh

sgmq = [sgmxq

sgmxyq

sgmxzq

sgmxyh sgmxzh;

sgmyh sgmyzh;

sgmyzh sgmzh];

sgmxyq sgmxzq;

sgmyq sgmyzq;

sgmyzq sgmzq];

sgm_xyz = sgm0 + sgmh + sgmq;

[temp, sgmeig] = eig(sgm_xyz);

sgmstn = TSTN*T_xyz'*sgm_xyz*T_xyz*T_STN';

T = [cos(theta)^2

sin(theta) ̂2

sin(theta) ̂2

cos(theta) ̂2

sin(2*theta);

-sin(2*theta);

-sin(2*theta)/2 sin(2*theta)/2 0

cos(theta) -sin(theta) 0;

sin(theta) cos(theta) 0;

0 0 cos(2*theta)];



temp = T*[sgm_xyz(l,1) sgm_xyz(2,2) sgm_xyz(3,3) sgm_xyz(2,3) sgm_xyz(3,1) sgm_xyz(1,2)] ';

sgm_rqz = [temp(1) temp(6) temp(5);

temp(6) temp(2) temp(4);

temp(5) temp(4) temp(3)];

end

function [T_STN, T_xyz, T_sgm_STN, T_eps_xyz] ...

Obtain_Transformation_Matrix_l(beta_z, alpha_z, beta_n, alpha_n)

is = cos(beta_n)*cos(alpha_n); ms = cos(beta_n)*sin(alphan); ns = -sin(beta_n);

It = -sin(alpha_n); mt = cos(alpha_n); nt = 0;

In = sin(beta_n)*cos(alpha_n); mn = sin(beta_n)*sin(alpha_n); nn = cos(betan);

T_STN = [is ms ns; It mt nt; In mn nn];

ix = cos(beta_z)*cos(alpha_z); mx = cos(beta_z)*sin(alpha_z); nx = -sin(beta_z);

ly = -sin(alpha_z); my = cos(alpha_z); ny = 0;

iz = sin(beta_z)*cos(alpha_z); mz = sin(beta z)*sin(alpha_z); nz = cos(beta_z);

T_xyz = [ix mx nx; ly my ny; iz mz nz];

T_sgmSTN ...

[is*is ms*ms

it*it mt*mt

In*in mn*mn

It*in mt*mn

In*is mn*ms

is*it ms*mt

ns*ns

nt*nt

nn*nn

nt*nn

nn*ns

ns*nt

2*ms*ns 2*ns*ls 2*ls*ms;

2*mt*nt 2*nt*it 2*it*mt;

2*mn*nn 2*nn*ln 2*ln*mn;

mt*nn+mn*nt nt*in+nn*It It*mn+ln*mt;

ms*nn+mn*ns ns*in+nn*is is*mn+in*ms;

ms*nt+mt*ns ns*it+nt*is is*mt+it*ms];
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Tepsxyz ...

[ix*ix mx*mx

ly*ly my*my

iz*iz mz*mz

2*ly*Iz 2*my*mz

2*iz*1x 2*mz*mx

2*ix*ly 2*mx*my

nx*nx

ny*ny

nz*nz

2*ny*nz

2*nz*nx

2*nx*ny

mx*nx nx*lx Ix*mx;

my*ny ny*ly ly*my;

mz*nz nz*iz iz*mz;

my*nz+mz*ny ny*iz+nz*ly ly*mz+iz*my;

mx*nz+mz*nx nx*lz+nz*ix ix*mz+lz*mx;

mx*ny+my*nx nx*ly+ny*ix Ix*my+ly*mx];

function [T_STN, T_xyz, T_sgm_STN, T_epsxyz] =...

Obtain_Transformation_Matrix_2(beta_z, alpha_z, beta_n, alphan)

is = cos(beta_n)*cos(alpha_n); ms = cos(beta_n)*sin(alpha_n); ns = -sin(beta_n);

It = -sin(alpha_n); mt = cos(alpha_n); nt = 0;

In = sin(beta_n)*cos(alpha_n); mn = sin(beta_n)*sin(alpha_n); nn = cos(beta_n);

TSTN = [is ms ns; It mt nt; In mn nn];

ix = -sin(alpha_z); mx = cos(alpha_z); nx = 0;

ly = -cos(beta_z)*cos(alpha_z); my = -cos(beta_z)*sin(alpha_z); ny = sin(beta_z);

iz = sin(beta_z)*cos(alpha_z); mz = sin(beta_z)*sin(alpha_z); nz = cos(beta_z);

T_xyz = [ix mx nx; ly my ny; iz mz nz];

T_sgm_STN ...

[is*is ms*ms

It*it mt*mt

In*in mn*mn

It*in mt*mn

ns*ns

nt*nt

nn*nn

nt*nn

2*ms*ns 2*ns*is 2*is*ms;

2*mt*nt 2*nt*it 2*it*mt;

2*mn*nn 2*nn*In 2*in*mn;

mt*nn+mn*nt nt*in+nn*it it*mn+in*mt;

end
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In*ls mn*ms

is*lt ms*mt

Tepsxyz ...

[lx*lx mx*mx

ly*ly my*my

iz*lz mz*mz

2*ly*lz 2*my*mz

2*lz*1x 2*mz*mx

2*lx*ly 2*mx*my

nn*ns

ns*nt

nx*nx

ny*ny

nz*nz

2*ny*nz

2*nz*nx

2*nx*ny

ms*nn+mn*ns ns*in+nn*1s is*mn+ln*ms;

ms*nt+mt*ns ns*it+nt*is is*mt+lt*ms];

mx*nx nx*1x lx*mx;

my*ny ny*ly ly*my;

mz*nz nz*lz lz*mz;

my*nz+mz*ny ny*lz+nz*ly ly*mz+lz*my;

mx*nz+mz*nx nx*lz+nz*lx lx*mz+iz*mx;

mx*ny+my*nx nx*ly+ny*lx ix*my+ly*mx];

end
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