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Abstract

In numerical optimization routines, computer-simulations are typically executed re-
peatedly in an on-line search to minimize some objective. Many computer-simulations,
however, are too resource-intensive to be incorporated directly. Instead, they are
evoked only to construct and validate off-line a simplified model that serves as a sim-
ulation surrogate in subsequent optimization studies. Surrogates are, by construction,
computationally inexpensive and therefore create a highly interactive and flexible op-
timization tool, particularly powerful in multipoint design studies.

In this thesis we present "basic" and Pareto surrogate formulations for optimiza-
tion, through an illustrative application from fluid dynamics. The critical ingredient
of both formulations is a nonparametric statistical validation and error estimation
procedure which, based on verifiable hypotheses, precisely quantifies the effect of
surrogate-for-simulation substitution on system predictability, stability, and opti-
mality.

The Pareto formulation extends the basic approach to multicriteria optimization
problems in which we wish to minimize multiple objectives. Any solution for which
all objectives cannot be further minimized is Pareto optimal. Geometrically, in the
space defined by the outputs as coordinates, the Pareto optimal solution set lies on
the boundary of the output achievable set which is closer to the origin; it is the
image of a low-dimensional manifold in the design space. The surrogate Pareto
formulation inexpensively identifies this manifold by appealing to the surrogate. As
a result, in the presence of many inputs and few outputs, it considerably reduces
the dimensionality of the optimization problem, and correspondingly improves the
surrogate error estimates.
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Chapter 1

Introduction

1.1 Motivation

For most engineering design and optimization problems, the objective is to improve

the performance of a physical system. The performance is characterized by the system

outputs which are a function of the design variables. Their relationship is not usually

available in an explicit form and, in many cases, numerical optimization routines rely

on a large-scale accurate numerical model of the physical system in the form of a

computer simulation.

In most current simulation-based optimization studies, a mathematical program-

ming procedure is called directly as many times as necessary for the solution of the

optimization problem. This approach, known as "direct insertion," offers predic-

tive accuracy and, for local searches, effective treatment of high-dimensional design

spaces. However, many simulations remain too resource-intensive, despite the advent

of fast and inexpensive parallel computers. Direct insertion may then be prohibitively

costly, inefficient in multipoint or "evolving" design frameworks, and incapable for

real-time interaction. It might even be terminated prematurely, since the number of

simulation calls cannot be determined a priori; and even if a solution is reached, it

might not be relevant for future studies with different design variables or objective



function.

An alternative, complementary approach to direct insertion is response surfaces

[1], or "surrogates" [2, 3], in which the large-scale simulation is evoked only to con-

struct and validate - off-line - a simplified input-output model; the model then

serves as a simulation surrogate in subsequent engineering optimization studies. The

major advantage of this approach is that, by construction, surrogates are computa-

tionally very inexpensive, and thus easily incorporated into optimization procedures.

Additionally, their low cost creates a very flexible environment for global and multi-

point design studies, with significant interactive and real-time potential. The number

of appeals to the simulation is predetermined, assuring a complete solution with a

fixed computational cost. Data from previous runs or other resources may also be

readily expoited by the surrogate approach.

The primary drawback of surrogate-based optimization is the introduction of a

new source of error. A surrogate validation strategy and associated error norms

must be developed to quantify the discrepancy between the surrogate and the accu-

rate simulation, and to estimate the effect on system predictability and optimality.

The former provides a bound on the behavior of the actual objective function in the

neighborhood of the surrogate-predicted minimizer, while the latter provides an as-

certainment of the additional computations required to improve upon the surrogate

result. Furthermore, the surrogate is a stationary substitute for a specific simulation;

adaptive screening techniques (alteration of the design variables for instance) cannot

be pursued rigorously.

In previous work [4, 5, 6, 7], a nonparametric statistical validation and error esti-

mation procedure was introduced, which, based on verifiable hypotheses, precisely -

albeit probabilistically - quantifies the effect of surrogate-for-simulation substitu-

tion on system predictability, stability, and optimality. The fundamental limitation of

this "basic" formulation is the rapid decrease in design localization and predictability

as the number of inputs, M, that is, the number of design variables, is increased -



the well-known curse of dimensionality.

1.2 Objective

One approach to reducing dimensionality is to more tightly couple the optimization

procedure to surrogate construction and validation [8]. A second approach, the one

we pursue in this thesis, is to identify a low-dimensional manifold in the design space

QC C RM (M design variables) as a region of "special interest." In particular, we

develop a surrogate Pareto formulation in which we exploit the concept of Pareto

optimality [9] to identify such a manifold; we then show that the minimizer of our

objective function must lie on this manifold, and that the image of this manifold in

the ouput space is the efficient frontier aA of the output achievable set A. Due to

the fact that any point not on MA is either not optimal or not achievable - which is

the underlying property of the efficient frontier - the identified manifold is certainly

the relevant restriction of Q for a large number of engineering optimization problems.

As a collateral benefit, we extend our earlier surrogate notions to problems with

objective functions that are subject to constrains. This class of problems, treated

in multiobjective or multicriteria optimization, is typically a much more realistic

model for engineering design than the corresponding scalar problem, and much more

cumbersome to solve without significantly restricting a priori the design space.

We shall see that there is a synergy between the surrogate and the Pareto no-

tions. In particular, the dimension reduction of the latter greatly sharpens the error

estimates which characterize the former, while the simplification associated with the

former renders the min-max scalarization subproblems required by the latter [10]

computationally tractable. Although the advantages of simplified models in Pareto

analysis have certainly been recognized [11], the benefits of Pareto analysis in mod-

eling efforts have not, to our knowledge, been previously recognized or exploited.



1.3 Outline

In this thesis we demonstrate both the basic and the Pareto formulation through an

illustrative application that involves fluid flow in a channel interrupted by a regular

periodic array of cylinders [12]. In Chapter 2, we define the optimization problem by

describing the physical system, the simulation models, and the design objectives. In

Chapter 3, we present the basic formulation as a foundation for subsequent develop-

ment of the Pareto formulation, which is presented in Chapter 4. Each formulation

comprises the same steps: surrogate construction; surrogate validation; surrogate-

based design; and, finally, error analysis. Lastly, in Chapter 5, we summarize the

main steps through an abstract formulation, and discuss outstanding problems and

potential palliatives. All the figures are found at the end of each chapter.



Chapter 2

Problem Definition

To effectively demonstrate our surrogate procedure, we choose an application from

computational fluid dynamics. The application is "real" in the sense that the associ-

ated simulations are sufficiently complex that surrogates are, in fact, required for the

solution of the optimization problem.

2.1 Physical System

The system that serves as our illustrative example is the "eddy-promoter channel

heat-exchanger" shown in Figure 2-1 (found at the end of the chapter). The system

is described by laminar two-dimensional incompressible unsteady fluid flow and heat

transfer in a channel interrupted by an infinite periodic array of cross-flow cylinders,

the "eddy-promoters." For simplicity, we consider fully developed flow in a single

periodic-cell of length L, where L is the separation distance between successive cylin-

ders; the flow is driven by an imposed pressure gradient, -(dfi/dý 1 ) (carats denote

dimensional quantities). The two channel walls and the cylinder are maintained at

uniform temperatures, T, and T,, respectively. Finally, our system is controlled by

a (non-feedback) oscillatory rotation of the eddy-promoter about the cylinder axis;

more precisely, we assume that the tangential velocity of the eddy promoter is de-



scribed by A sin -t', where t is time.

We choose for our nondimensionalization length scale the channel half-width, h,

for the velocity V = (-dj3/dil)h'/2p'', for time h/V, and for temperature AT =

T,- T, (> 0, say), where P and P are the density and kinematic viscosity of the fluid,

respectively. The governing equations are then the Navier-Stokes equations for the

(nondimensional) velocity and pressure, ((u1, u2), p),

Oui Oui op 2 1 a2ui
u + uj + U in , i = 1, 2, (2.1)

1t 9xj x2  Re Re &x3&x3
U = 0 in ), (2.2)

Oxi

where (x 1 , x 2) E VD is the single-cell periodic domain, Re = Vh1/ is the Reynolds

number, 6ij is the Kronecker-delta symbol, and summation over repeated indices is

assumed. The velocity and pressure are L(= L/h)-periodic, and the velocity vanishes

at all solid boundaries save the cylinder, where

ui (x 1 , x 2 t) = (A sinwt)?i. (2.3)

Here w = -lh/V, A = A/V, and i is the unit tangent vector on the eddy promoter

surface. The temperature T = (T, - T)/AT satisfies a passive scalar equation

BT OT 1 O2T
S+ U• = P in D, (2.4)at xj RePr axi Oxi

where Pr = P/& is the Prandtl number, and & is the thermal diffusivity of the fluid.

The temperature vanishes on the channel walls and is unity on the cylinder. Note that

we are interested only in the steady-periodic flows; it can be shown that the particular

initial conditions chosen are not important except as regards computational efficiency.

Although not crucial to our discussion here, we briefly summarize the physics of

the flow. For the fixed pressure-gradient Reynolds number studied here, Re = 250,

the unperturbed (A = 0) flow is steady and effectively parallel. However, at a



slightly higher Reynolds number, Re,, the flow undergoes a supercritical Hopf bifur-

cation caused by cylinder shear layer destabilization of the native channel Tollmien-

Schlichting waves [12]; the shear layer dictates growth-rate, while the Tollmien-

Schlichting waves govern frequency. For forcing frequencies w near the natural fre-

quencies of the unstable modes we expect a resonant response and hence a relatively

well-mixed flow.

We consider M = 2 inputs, or design variables, with which we shall optimize the

system: the amplitude, A, and frequency, w, of the dimensionless tangential velocity

of the eddy-promoter surface. All other quantities, including the channel geometry

depicted in Figure 2-1, are held fixed for the purpose of our analysis. The Prandtl

number is set equal to unity, and the Reynolds number is set to 250, which is below,

but close to, Rec of the primary supercritical Hopf bifurcation. In order to provide

proportional resolution in the error estimation, the analysis will actually be carried

out with respect to "log" inputs, p = (P1, p2) = (In A, ln w).

The input domain Q, the region in which the system inputs (Pl, P2) must reside,

is taken to be the box Q =_ (-2.30, 0) x (-2.77,0.63). This domain includes an

extended range of amplitudes, At = 0.1 < A < Au = 1.0, and a reasonably broad

band of frequencies, we = 0.063 < w < w, = 1.88; the latter is chosen to contain

the frequencies of the least stable linear modes of the unperturbed flow in order to

provoke subcritical resonance. Figure 2-2 shows the effect of the inputs, pi = In A

and P2 = In w, on the flow isotherms.

We consider K = 2 system outputs. The first output, 0 = ET(p), is the reduction

in the eddy-promoter temperature difference relative to the uncontrolled case, A = 0,

for a prescribed heat transfer rate. Here 0 is the output and OT(p) is the input-

output function, OT(p) : --+ ?; the superscript T refers to "truth," as defined

more precisely in Section 2.2. In order to calculate the temperature at fixed heat

transfer rate from our fixed cylinder-temperature calculation, we need only evoke the

linearity of the passive scalar equation (2.4). To wit, if we define the computed heat



transfer from the cylinder

b= VT .iid(C) (2.5)

then
b(A = 0)

b(p = (In A, In w)) '

where 7cvyl is the cylinder surface, d( is a differential line element, i~ is the unit normal

on "Dcyl, and < - > refers to temporal average. Our second output, w = HT(p), is

the nondimensional time-averaged power input per unit channel length required to

rotate the eddy-promoter at the prescribed rate w, given by

1 Re
IIT(p) = ColR 2- Asin wt Fiaijjd , (2.7)

4 L ( eyl

where aij is the viscous stress tensor and co = 1/1000 is a convenient scaling param-

eter. (Note that IT(p) = iiT(p)/(4pv3/h3), where fT(p) is the dimensional power

input.) We emphasize that no regularity assumptions are made on the input-output

functions given the presence of subcritical resonance and highly nonlinear behavior.

2.2 Hierarchy of Models

We shall denote the model presented in (2.6) and (2.7) as the truth model, MT,

from which we compute the truth input-output functions OT(p), IT(p). In fact,

we cannot solve (2.6) and (2.7) analytically, so we appeal to a highly accurate 8th-

order spectral element simulation (described below) integrated for sufficiently long

times such that all quantities of interest are effectively stationary. This truth model,

deemed effectively exact, is very expensive, requiring approximately six workstation

hours per input to compute the required outputs. Note that, in many cases, the truth

model might be a physical experiment, perhaps noisy [13].

In what follows, we shall also need approximations to the truth model. At the

next level in the hierarchy, we introduce the high-fidelity model, M, from which



we compute the high-fidelity input-output functions O(p), I1(p). The high-fidelity

model is defined by a 4th-order spectral element simulation integrated to a specified,

reasonably long time, t = tf(p) (tf(p) ranges from 300 to 500 depending on the

inputs). This model, which is considered accurate but not exact, is expensive but not

very expensive, requiring roughly 40 workstation minutes per input to compute the

required outputs.

Finally, at the lowest level in the hierarchy, we introduce the optimization model,

M, from which we compute what we shall denote the surrogate input-output func-

tions 6(p), H(p). In contrast to the first two high-level models, the optimization

model, at least in this thesis, is simply a response surface [1, 2]: the optimization

model input-output functions, 0(p) and II(p), are empirically constructed from cor-

responding high-fidelity-model data, with no independent underlying state-space

representation. In general, the surrogate input-output functions will be very in-

expensive to evaluate, requiring only a few workstation milliseconds per input; the

fidelity of the surrogate outputs is the subject of our error analysis.

The truth (8th-order, 11,000 spatial degrees-of-freedom) and high-fidelity (4 th-

order, 3,300 spatial degrees-of-freedom) simulations are performed with the NEK-

TON code [14] on an HP735/9000 workstation. The NEKTON code is based on

spectral element spatial discretizations [15], semi-implicit fractional time-stepping

schemes [16, 17, 18], and preconditioned conjugate gradient iterative solution proce-

dures [19]. For the high-fidelity model we take for initial condition the steady (A = 0)

solution for Re = 0; for the truth model we take as initial condition the corresponding

high-fidelity velocity and temperature fields at t = tf (p).



2.3 System Design

2.3.1 Optimization Problems

The optimization problems for our system can be generally stated as the minimization

of an objective function

T (p) = 0(p, OT(p), nT(p)), (2.8)

subject to constraints

T(p) __ p(p, ET(p), IIT(p)) 5 0, i = 1, ..., n, (2.9)

which may, and typically do, evolve during the design process. We impose the usual

conditions on pT(p) and the WT(p) so that this problem is well-posed, such as lower

semi-continuity of 4T(p). Note that we assume that the objective function and

constraints depend only on the inputs and the selected outputs, not on the general

system model MT.

One simple example of such an optimization problem is to search for the minimum

eddy-promoter temperature

OTin = min eT(p), (2.10)
{pEl}

and the corresponding minimizer, that is, the log-amplitude and log-frequency at

which this minimum occurs,

p* = arg min ET(p). (2.11)
{pEn)

In general, ()ni, shall refer to the minimum, and ()* to the minimizer, of any particular

optimization problem.



A slightly more interesting example is a constrained problem in which we look for

the minimum power subject to the temperature constraint OT(p) < 9, where 0 e 1R+

is given. In this case we require

Tin = min IIT(p), (2.12)
{pEnleOT(p)_<}

with corresponding minimizer

p*T = arg min nT(p). (2.13)
{pEnlOET(p)_<}

Both these optimization problems reflect the general notion that better heat exchang-

ers achieve lower temperatures at lower powers, a fact which will ultimately provide

the basis for a more general multiobjective formulation of which (2.10)-(2.11) and

(2.12)-(2.13) are special cases.

2.3.2 Optimization Frameworks

Most current simulation-based optimization frameworks rely on "direct insertion."

In this approach the truth simulation appears as a function call to a mathematical

programming procedure; typically, sensitivity derivatives [20] are also exploited to

provide more rapid convergence to the minimizer. As mention in the Introduction,

the advantages of this approach include predictive accuracy and, for local searches,

effective treatment of high-dimensional design spaces. The major disadvantage is

minimal control over simulation resources: a typical optimization procedure will re-

quire many evaluations of the objective function, 4DT(p), each of which requires an

appeal to MT to compute (at least) OT(p), IIT(p), each of which consumes many

hours of computation. A solution to the simple optimization problems (2.10)-(2.11),

which requires a global search over the input space Q, is practically impossible with

direct insertion (actually, it would take almost 7 years to find the minimum tem-

perature of a 100 x 100 uniform input grid over the input space with the current



technology). Subsequently, this approach suffers from inefficiency in multipoint de-

sign studies, inadequate robustness, and little interactive or real-time capability.

In contrast, in the surrogate approach proposed here, the high-fidelity model M

is evoked to construct the inexpensive surrogate input-output models O(p), H(p),

which are then validated against the truth model, MT. The truth and high-fidelity

models are then dismissed, and we consider a surrogate optimization problem in which

OT(p) and IIT(p) are replaced by 8(p) and 1i(p) in the objective function (2.8) and

constraints (2.9). For example, for (2.12), we look for the surrogate minimum (more

precisely surrogate-proposed minimum),

aimin = min II(p), (2.14)
{pEnie(p))<•}

and surrogate minimizer (more precisely surrogate-proposed minimizer)

* = arg min I,(p). (2.15)
{pEfle(p)<)}

The advantages of this approach include direct control over expensive simulation re-

sources, increased flexibility in global and multipoint design studies, and significant

interactive and real-time potential. For example, different 0 in (2.14) may be inves-

tigated without re-appeal to the truth or high-fidelity simulations.

The primary disadvantage of the surrogate approach is the introduction of a new

source of error, particularly problematic in high dimensional input spaces (large M).

We can identify two types of errors [4]. The first, related to predictability, stabil-

ity, and design localization, is concerned with the behavior of OT(p) and IHIT(p) for

p = (ln A, lnw) in the vicinity of F*. The second, optimality, is related to the prox-

imity of the surrogate minimizer f* to the true minimizer p*T, and the proximity

of the surrogate minimum, wmi,i, or perhaps IIT(p*), to the true minimum Twin-

These errors must be understood if the surrogate approach is to be useful. Unfor-

tunately, classical approximation theory is not particularly appropriate since (i) the



expense of OT(p) and IHT(p) permits only very few evaluations, and (ii) the complex-

ity of OT(p) and IIT(p) permits only minimal, typically non-quantitative, regularity

assumptions. Furthermore, the unknown distribution of minimizers in multipoint de-

sign studies precludes standard average-case error analyses in design space, such as in

Information-Based Complexity theory [21] or Bayesian loss-risk analysis [22, 23]. We

thus pursue a nonparametric statistical approach in order to obtain, at a prescribed

computational cost, calculable estimates based on verifiable hypotheses.
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Chapter 3

Surrogate Basic Formulation

We describe the algorithm and theory in four steps: surrogate construction; surrogate

validation; surrogate-based optimization; and error analysis. We consider in this

chapter only the simpler optimization problem (2.10)-(2.11).

3.1 Surrogate Construction

There are various approaches to the construction of surrogates [24]. For a problem as

complex as that considered here, a heuristic construction of O(p) and II(p), without

reference to the high-fidelity or truth models, will certainly fail to be sufficiently

accurate. We choose the simplest possible "empirical" construction, in which G(p)

and H(p), are taken to be linear interpolants of corresponding high-fidelity (input,

output) pairs on a triangulation of the design space Q. Note that the surrogate

framework makes no assumptions as to the construction method of the surrogate and

will accept, and assess, any surrogate input-output functions. We choose to construct

the surrogate input-output functions based on high-fidelity, rather than truth, data

in order to minimize computational effort; this is discussed further in Section 3.2.

In our example here, we perform a triangulation of Q based on NCo = 138 con-

struction nodes piO, ..., p?, as shown in Figure 3-1. The placement of the nodes is



based on prior knowledge of anticipated resonance and self-generated "a posteriori"

error estimates described further in Section 3.2. For each construction node, we per-

form a high-fidelity simulation to compute E(pýo) and fH(pýo), j = 1, ... , N cO. We

then explicitly form b(p) and fI(p) as the linear interpolants of the high-fidelity

input-output pairs (p, (pO)) ,...,N and (pCO, il(pO))j=1,...,No, respectively. The

interpolations, as well as all numerical calculations for this thesis are performed with

MATLAB codes. The values of the high-fidelity input-output pairs for the construc-

tion nodes are given in Appendix A. Contour plots of e(p) and 1l(p) are shown in

Figure 3-2. We see that the temperature is clearly affected by subcritical resonance,

while the cylinder power is relatively insensitive to the resonance phenomenon, in-

creasing monotonically with both amplitude and frequency.

3.2 Surrogate Validation

To describe our validation procedure we need to introduce two "prior" functions.

First, we define the importance function [25] (or "Bayesian prior") p(p) : Q - R1

which satisfies

p(p) 0, Vp E 0, p(p)dp = 1. (3.1)

The importance function reflects the designer's prejudice as to the ultimate distri-

bution of design points visited; note the sharpness, but not the validity, of our error

estimates will depend on judicious choice of p(p). Associated with this importance

function we define the measure of any subdomain D of Q as

p(V C Q) = fp(p)dp, (3.2)

which is simply a generalized relative volume. Note the measure of the entire input

domain is unity, p(Q) = 1. For our example here, we choose p(p) uniform.

We introduce two strictly positive scaling functions ge(P) :• - IJR+ and gn(p) :



0 -,+ R+, which are prior estimates for the discrepancy between the truth-model

input-output functions and the surrogate input-output functions, EOT(p)- - (p)l

and IHT(p) - H(p)l, respectively. The scaling functions are intended to serve two

purposes: localize the model prediction error in the input space, that is, permit

variations in our estimates over Q; and normalize different outputs, that is, ensure

that a large error in one output does not contaminate the joint bound to be developed

below. These scaling function priors are also the basis for the error estimators with

which the construction points are selected adaptively.

For our current example and the construction of Section 3.1, approximation theory

[26] suggests appropriate scaling functions ge(p) and gn(p). We consider e(p), with

analogous arguments applicable to H(p). First, we write

EOT(p) - &(p)I < lOT (p) - O(p)I + (O(p) - O(p)I. (3.3)

We then assume lOT(p) - E(p)I <« IO(p) --(p)l, and recognize that the latter, since

8(p) is a linear interpolant of O(p), is proportional to the Hessian of E(p). This

Hessian contribution is then estimated by the Hessian of 6(p). More precisely, on each

edge 7y of the triangulation we compute a scaled jump in Ve(p) -. ni, where i5, is the

unit normal on 7; these jumps are then distributed to the nodes of the triangulation;

finally, a small constant is included in ge(p) to guard against unbounded amplification

at points where ge(p) is small or vanishes. Our estimator is very similar to the "jump"

part of error estimators for first-order finite element approximations [27]; a detailed

description of how the scaling functions are calculated for our example is provided

in Appendix B. We calculate the values of the scaling functions at the construction

nodes (given in Appendix A), and then explicitely compute ge(p), for any input

vector p E Q, as the linear interpolant of the pairs (pso, gO(p °o)), j = 1, ... , NCO, in

the same manner as with the input-output pairs. Contour plots of the functions

go(p) and gn(p) will be given in Section 3.4.

We now describe the procedure with which we validate the surrogate model against



the truth model. We first choose parameters e1 E ]0, 1[ and E2 E ]0, 1[, and set the

validation sample size according to

N = n 16 (3.4)
In(1 -6)

where [xl is the smallest integer greater than x. We shall see in Section 3.4 that

the parameter E1 % 0(1/N) represents the measure of the uncharacterized region

- the region of Q over which the error in 8(p) and II(p) is unknown - while

62 O(e -E~N) is the significance level of our validation statement. We then draw N

independent identically distributed (i.i.d.) now-random inputs over the input space

2, Pi = (In Aj, In wi), i = 1, ..., N, according to the importance function p(p). Finally,

we perform truth calculations for each of these input vectors to compute the model

prediction error,

U max max (, (3.5)
i(1,...,N} (ge(Pi) gn(Pi)

which is simply the validation sample maximum over all (here K = 2) outputs.

For our particular example, we choose e1 = 0.025 and E2 = 0.26 which yields, from

(3.4), a validation sample size N = 53. For the random validation sample shown in

Figure 3-3, the corresponding model prediction error estimate is found from (3.5) to

be U = 0.53. The magnitude and significance of U will be interpreted in Section 3.4.

Before proceeding, we comment on the relative roles of the high-fidelity and the

truth models. Implicitly we assume that the high-fidelity model is, in fact, quite

accurate; the very expensive truth model is thus after-the-fact assurance that this

hypothesis is, in fact, valid - this final confirmation is critical if the surrogate is

to be used with any confidence in the design process. The assumed accuracy of the

high-fidelity model is reflected, first, in the construction of the surrogate from high-

fidelity, not (much more expensive) truth data, and second, in the specification of the

scaling functions ge(p) and gn(p). In fact, for the problems studied in this thesis, the



discrepancy between the truth model and the high-fidelity model is commensurate

to the discrepancy between the high-fidelity model and the surrogate (0.37 and 0.28

respectively), in contradiction with our previous assumption.

Nested Validation

A more systematic, but also more expensive, procedure is nested validation, in which

we first validate the high-fidelity outputs against the truth model to obtain UMIM,

and then validate the surrogate outputs against the high-fidelity model to obtain a

model prediction error UMf ; the total error is then given by U = UM1M + U•, .

To derive the sample sizes for each validation substep, we choose parameters ELMTM,

E 1M,M and E2MTM, E2M,)f SO that E1MTM + •1MM, = 1I and E2MT9Jj + E2, 4M -= 2,

and then set NMM and NM, [ according to (3.4). The advantage of nested valida-

tion is that one can accurately decompose the error into high-fidelity and surrogate

components. Thus one proceeds with surrogate construction only once a sufficiently

accurate high-fidelity model is obtained, with the truth model then decoupled from

all subsequent surrogate considerations. Combined with comparison, sequential, and

adaptive construction-validation procedures discussed in [28, 29], this approach can

be quite attractive. Unfortunately, the requisite sample sizes are considerably larger

than those required by non-nested validation. For example, in the problem studied

here, for an equal split of e, and E2, giving E1MTM = E1M,- = •2 = 0.0125 and

E2MTM 2, = = 0.13, we would need NMT, = 163 very expensive and

N-,- = 163 expensive calculations (instead of only N = 53 very expensive ones).

3.3 Surrogate-Based Design

As our example here, we choose for the design problem the minimum temperature

problem of (2.10)-(2.11). Following the recipe described on Section 2.3.2 we replace

this difficult problem with the much simpler problem in which the surrogate is sub-



stituted for the truth model: find j* such that

0min - 8(p*)= min )(p). (3.6)
{pEn}

In fact, for this particularly simple optimization problem and our piecewise-linear

surrogate input-output functions, 9 min is simply the minimum of O(p) over the con-

struction points, pýO, j = 1, ... , NcO. We thus readily find for the surrogate-based

minimizer P* = (inA*,ln &*) = (-0.69,-0.84), corresponding to min = 0.82-

an 18% improvement over the flow without cylinder oscillations (note that Lma -

max{pen)}(p) = 1.03). The power requirement for the minimum temperature is

f(p*) = 5.35.

3.4 Error Analysis

We first derive the validation statement in Section 3.4.1 that then leads to the inves-

tigation of predictability and optimality in Sections 3.4.2 and 3.4.3, respectively.

3.4.1 Validation Statement

Critical to our analysis is the uncharacterized region, T, defined as the (random)

subset of Q for which the surrogate error is greater than U:

mP E max () > U . (3.7)
ge(P) Ina(P)

We then define a random variable Z = p(T) which is the measure of the uncharacter-

ized region T. It is shown in Appendix C that the cumulative distribution function

of Z satisfies

Pr{Z < z} - Fz(z) > Fz(z), (3.8)



where

z(z) = 1 - (1 - z)N; (3.9)

variants of (3.9), which is effectively a classical tolerance limit result [22, 30], are

given in [4, 5].

It thus follows that for z = e1, and N given by (3.4), that Fz(e1) Ž 1 - E2, and

thus

Pr{/P(T) < Ell} 1 - E2, (3.10)

with

T(p) - (p)l Uge(P) (3.11)
IIT(p) - f,(p)I1 Ugn(p)

The probability in (3.10) is over the validation sample space: in a frequentistic inter-

pretation, t(T) < e1 will be true in a fraction 1 - e2 of Nensemble validation trials as

Nensemble -+ 00. The difficulty with (3.10)-(3.11) is that although we know that T is

volumetrically small, we do not know its location. The cost of reducing the size of

the uncharacterized region and/or increasing the confidence for its size, is reflected

on the number of validation points required.

For our particular example, the validation statement reads: With probability

greater than 1 - E2 = 0.74, the surrogate error is given by

EOT(p) - b(p)l I 0.53 ge(P), (3.12)

IHT (p) - f(P)I < 0.53 gn(p),

for any input p in a region Q2 \ T which is at least of measure 1 - el = 0.975 (97.5%

of 02). Figure 3-4 shows contours of the surrogate error |IT(p) - e(p)j, and an

illustrative region of measure E1 = 0.025 which may constitute T. Note from (3.11)

that contours of EOT(p) - 6(p)I are, in fact, contours of our scaling function ge(p)-



Nested-Validation Statement

We shall demonstrate here that we can provide analogous error statements for the

nested validation procedure. We define TM•M and T ',f as the (random) subsets

of 2 for which the surrogate error is greater than UMlM and UMj, respectively. It

then follows that

Pr{T{(TMM) < E1MTM} 1- E2MýM

Pr{,p(TM',) < E1MM} _ 1 - e•M,
(3.13)

Given that e1MM + E1M,M =

are independent, we have

Pr {p(TMT U T ',) < E'}

e 1 , e2 T••2M = 2 , and that the validation steps

S(Pr{(TMýM) < e1MM• })(Pr{I(TM')d < EiMx,})

> (1 - 2MM)( - M,

> 1 - (E2M M + 62M ) + 6 2MM ' 62M,

> 1 - 2.

We can therefore state that with

is given by

(3.14)

probability greater than 1 - e2 , the surrogate error

for any input p in a

IET(p) - 6(p)l <
InT(p) - H(p)I 5

region 0 \ (TJM,

(UM•M + UMJ) ge(p) (3.15)

(UMýM + U M,) gn(P)

U TM,,) which is at least of measure 1 - el.

3.4.2 Predictability Analysis

The deficiency with the validation statement is that, since the location of T is un-

known, p* might be within T, and the design process could be seriously misled. To

partially remedy this situation, in predictability analysis we examine how the truth

model performs in the vicinity of the minimizer F*. To this end we define a predic-



tion neighborhood, P( *, z), as a region of measure z = Kel, KI > 1, that (typically)

contains p*. To obtain a unique prediction neighborhood we introduce a distance

function 6(p), p E Q, and select P(p*, z) to be the region 7 of measure z within

some class of domains C which minimizes

r = max 6(p). (3.16)
{pE'R}

A schematic representation of a prediction neighborhood is shown in Figure 3-5.

We can then make the following nonparametric predictability statement: With

probability greater than 1 - E2, there is a subset F of P(p*, 1E,), I = P(p*, Kel) \ T,

of measure strictly greater than zero, such that

B{ < OET(p) - min < Bu
SVp E r. (3.17)

B' < IIT(p ) - fI (p*) < B"

Here B1, Bu, and B., Bu, are lower and upper bounds given by

0B = mi (-Uge(P) + [(p) - 0•i,]), (3.18)
{pEP(p*,Kel)}

B= max (Uge(P) + [(P) - Omin]), (3.19)

{pEP(p*,KE1)}

and

B7 = min (-Ugn(p) + [1f(p) - II(p*)]), (3.20)
{EP(p*,rE1)}

Bu = max (Ugn(p) + [M(p) - fi(p*)]), (3.21)
{pEP(p*,Kel)}

respectively. Note that no appeals to the truth or high-fidelity model are required

to compute (3.18)-(3.21). We can, of course, also compute the predictability of any

function of the selected outputs.

The proof of (3.18)-(3.21) is very simple given the validation statement (3.10)-



(3.11). First, we note that for p E P(p*, ke1),

eT (p) - 0min = [ET (p) - 6(P)] + [6(P) - jmin], (3.22)

HIT (p) - fl(p*) = [HIT(p) _- f(p)] + [fl(p) - fl(p*)]. (3.23)

Now, at all points p E F, -Uge(p) < OT(p)- 8(p) < Uge(p) and -Ugn(p) <

IIT(p) - I1(p) < Ugn(p). Furthermore, at all points p E F, [6(p) - 0in] is certainly

bounded from below by

min [(p) - imin],
{pe~(p* ,kel)}

from which (3.18) directly follows; similar arguments prove (3.19), (3.20), and (3.21).

Note that it is critical that the same r applies to both the temperature and power;

this in turn follows from the choice

y(p) = max ( le T( (p) - e(p)I I] T(p) - H(P)I ) (3.24)

in Appendix A.

We demonstrate the concept of predictability with two particular examples from

our illustrative application.

Example a

In the first example, we make no assumptions on the properties of OT(p) and

-IT(p). We set r. = 1, and choose our prediction neighborhood pa(f*,~1) to be the

ellipse that minimizes the upper bound B' given by (3.19); Pa (*, El) is shown in

Figure 3-6. We can then state that, with probability greater than 1 - 62 = 0.74, there

is a region F C pa(P*, e) of positive measure, /(Pr) > 0 , such that for all p E F,

B{ = -0.08 < OT(p) - 0min Bu = 0.13 (3.25)

B = -4.56 < IIT(p) - fI(p*) < B = 5.30.

Additionally, we can show that the expected measure of the region F is 61% of the



prediction neighborhood pa(p*, ej) [31]. Recalling that 0min = 0.82 and Omax = 1.03,

we see that the predictability in the temperature is not overly good, though the

bounds on the power are relatively sharp.

The statement includes several notions. First, there is the notion of predictability:

there exists a p E F such that the bounds (3.25) hold. We denote the predictability

gap (say, for the temperature) as B' - Bt, and note that this gap has two contri-

butions: the first term, which measures the accuracy of the surrogate and is propor-

tional to U; and the second term, which measures the sensitivity of the surrogate

about p = J*. The former vanishes as we improve our construction, that is, increase

NCO; the latter vanishes as we perform additional validation, that is, increase N so as

to decrease E1. Note that as we decrease El, Pa(p*, el) shrinks to p*, and hence for

p E F, OT(p) - min -+ 0, assuming continuity of E(p) at p*

In addition to predictability, we have a notion of genericity, in that (3.17) applies

for all p E F, a region of non-zero measure. We can even derive a weak sense of

stability by appealing to a theorem of set theory [32] related to density points: if we

introduce h x h open neighborhoods of p, N(p), then for all p E F, except perhaps

a set of measure zero,
p(F n n(p)) t(F 1 as h - 0. (3.26)

/-'(Af(p))

In words, (3.26) ensures that most p E F are surrounded by mostly other p E F,

thus providing stability to random infinitesimal disturbances. Stability is critical in

engineering analyses in which manufacturing variation and external disturbances may

introduce input noise.

Finally, we note that (3.17) provides a sense of design localization, that is, an

indication of the "ball" in which designs can be found for which predicted behavior will

obtain. In summary, we can state that, although ET(p*) will not equal e(p*) = 0 min,

there are many design points p' "near" p* - in Pa(p*, 1) - for which system

performance OT(p ') is "near" 0 min, as measured by the predictability gap B' - BM.



Example b

In our second example we focus exclusively on the temperature, and we further

assume that OT(p) is locally quasi-convex [33]. We recall that if OT(p) is quasi-

convex in a convex region sqc, the level sets of ET(p) in Qqc are convex, and that for

any pi E 2qc, P2 E (qc, and a e]0, 1[, ET(apl + (1 - a)p 2) 5 max(OT(pl), ET(p 2)).

We set . = 2, and choose pb(i*, 2E1) to be that ellipse of measure 2e1 with center *

that minimizes B' of (3.19); pb(j*, 2e1) is shown in Figure 3-7.

We can then state that, with probability greater than 1 - E2 = 0.74, there exists

a convex region Fco C pb(p*, 2e1) of measure j(Fco) > 61 such that, for all p E Fco,

E) (p) - 9min : B"•qc (3.27)

where

Bou' = max (Uge(p) + 8(p) - rmin) = 0.16. (3.28)

Furthermore, we can state that f* E rco. We thus obtain a much sharper sense of

stability in this case, as there must exist an open neighborhood about j* of nonzero

measure in which (3.27) is satisfied. There is no improvement, however, in design

localization or predictability gap.

The proof of (3.27) is relatively simple. First, we note that (3.27) applies for

F = pb(.*, 2e 1)\T without the assumption of quasi-convexity. But by quasi-convexity,

(3.27) thus also applies in Pco = Convex Hull(F). To see this, we recall that Feo is

the union of of all vectors (apl + (1 - a)p 2), (Pl E r, P2 E r), and hence, for any

p E Fco, ET(P) 5 min + B'oQC, since OT(p) is bounded on any segment PP2 by

max(ET (pl), eT(p2)). Note that this does not require that OT(p) - e(p)I be quasi-

convex. Since F C Fco, P(Fco) Ž p(IF) > 81, which completes the first part of the

proof.

For the second part of the proof, we show that f* E Fco. This part of the proof,

unlike the first part, requires , > 2 and point-symmetry of Pb(p*, 261) about j*.



We then proceed by contradiction, and assume that p* F]co. There is, then, a

separating hyperplane through Pj* for which (say) Fco lies entirely to the "left." But

by point-symmetry of Pb(p*, 2E1), this implies that p(Fco) < E1, which contradicts

the first part of the proof. (The argument is, clearly, more complex if p(p) is not

uniform.) Note that the proof as stated only requires OT(p) to be quasi-convex in

pb(p* 2E1). The proof can be extended to permit the selection of a specified footprint

F such that F C Fco, which is related to the problem of bounded but unknown noise

[6].

Finally, we remark that with the assumption of quasi-convexity, results similar to

(3.27) can now be obtained by e-net techniques [34]. In particular, if we enumerate

those M-simplices constructed from vertices of the validation sample which contain

p*, then from Jensen's inequality [22], ET(p*) can be bounded by the minimum

over all such simplices of the maximum of OT (p) at the associated M + 1 vertices.

We have not investigated the relative efficiency of the probabilistic and deterministic

approaches.

3.4.3 Optimality Analysis

We now turn to the issue of optimality, focusing exclusively on the temperature. In

earlier work [4, 5] constructive results for a region which contains the true minimizer

p*T based on assumptions of quasi-convexity on OT(p) were obtained. In practice,

these regions are quite large, and the assumption of quasi-convexity is thus dubi-

ous. We consider a different approach here, in which we ascertain the additional

computations required to improve upon the surrogate result.

We first compute

mo = min (p, 0, w). (3.29)
{pE9, e(p)-Uge(p)O<B<(p)+Ugoe(p), II(p)-Ugn(p)tw<_fl(p)+Ugn(p)}

We next consider a new sequence of i.i.d. random vectors P 1 , ..., Pj drawn according



to the importance function p(p) with which we have previously validated 8(p). We

then introduce the random variable

L = minj such that ((Pj) < (I, (3.30)

for which we will show that

Pr{L > t} > N- (3.31)-N+£

where N is the validation sample size. From (3.31) it follows that, if we select EL E

]0, 1[, and set (1L
m< (L-1) N, (3.32)

then the probability of drawing a sequence of random input vectors P1, ..., P, ac-

cording to p(p) and finding a point such that I(Pj) < (% is less than 1 - eL. Note

that the sample space associated with (3.31) is now the combined validation sample

Pi, i, ..., N, and post-validation sample P 1, ..., Pm.

To prove (3.32), we first note that p such that 4T(p) = 0(p, ET(p), InT(p))

< ,% must reside in some subset of T, ~R, since if p E t \ T, 6(p) - Uge(p) <

OT(p) 5< 6)(p) + Uge(p), and H (p) - Ugn (p) < IIT(p) 5 H(p) + Ugn(p). (It follows

that if M(T) = 0, then (, 5 ess infp~n IT(p).) With some attention to detail, we can

identify mappings z -+ R(z) and z -+ h(z), where z = p(T), and h(z) = p(R) 5 z.

We can then write

Pr{L > £} = Pr {L > lz}dFz (3.33)

= j(1 - h(z))'dFz (3.34)

> (1 - z)'dFz (3.35)

Sj(1 - z)'dFz (3.36)JO



= (1 - z)'N(l - z)Nl-dz (3.37)
N

(The slow 1/f decay results in logarithmic divergence: the expectation of L is infinite.)

Here (3.33) denotes the Riemann-Stieltjes integral; (3.34) reflects Pr{Pj ' R(z), j =

1, ..., e} = (1 - h(z))e, which is then bounded from below in (3.35) by (1 - z)'; finally,

(3.36) recognizes that for a decreasing function of z, q(z), fJ q(z)dFz 2 fo q(z)dFz,
as Fz never lies underneath Fz (see Appendix C). The evaluation of Fz (z) then gives

(3.37) and (3.38).

As a concrete example, we continue our eddy-promoter application, with IT(p) =

OT(p) as in the test case of Sections 3.3 and Section 3.4.2. It is readily computed

from (3.29) that o, = 0.77 for the surrogate and N = 53-point validation of Sections

3.1 and 3.2, respectively. We then set EL = 0.2, from which it follows that, even if

we perform m = (1/eL - 1) N = 212 truth evaluations, with probability greater than

0.2 there will be no points Pj which improve upon (,. If (I% is considered sufficiently

unimproved with respect to 0min (or perhaps, more conservatively, Omin +Bu), then the

additional expense is clearly not warranted. If Io <« Omin, then our surrogate model is

clearly not adequate, and must be improved. Note that we do not actually advocate

random search; rather, we exploit random search as a measure of computational

effort. This hypothesis is not too naive if, in fact, the surrogate model captures the

"smooth" behavior of OT(p), with only isolated basins unresolved; the latter is as

easily found by random search as by more sophisticated procedures. Indeed, (3.31)

may be viewed as an alternative to the usual basin of attraction results for (multistart)

random search procedures [25].



3.5 Surrogate Limitations

While the surrogate approach offers a complete framework for engineering design, it

will only be effective for low-dimensional input spaces, that is, M small. To under-

stand why, we recall that the upper predictability bound for (say) the temperature is

given by

B"e = max (Uge(p) + [(P) -9min]).
{pEP(p* ,re1)}

The second, sensitivity, term will typically scale with the "radius" of the prediction

neighborhood as defined by (3.16); the radius is, thus, a measure of both design

localization and predictability.

We now take the case in which Q = ]0, 1[M, the prediction neighborhoods are

hypercubes, and the importance function is uniform. The hypervolume of the pre-

diction neighborhood must be at least of measure el. It follows that the side of the

hypercube must be at least (e1 )1/M. By definition, the radius of the prediction neigh-

borhoods, rp, must then be at least ( 1 )/M )rp is minimized when P* is located in

the center of the hypercube, case in which it is equal to - (el)1/M). Typically, rp,

is much larger, especially in the case where j* is near a boundary of [2. In fact, for

any prediction neighborhood P there must exist a point p' E P such that, in at least

one input coordinate direction j , |pj - >j !(E1)'/M. It is simple to see why this

is true by contradiction: let's assume that for all coordinate directions j and for all

p' E P, jpj --p < (eI)/M. Then, rp < (. 1 ) 1/M, and consequently the prediction

neighborhood can be confined in a hypercube of side-length = 2rp < (e1)1/M. The

volume of the bounding hypercube must then be less than E1; this cannot hold since

the volume of the prediction neighborhood is at least .e. Therefore, rp > !(e1)I/M.

Since el - O(-0), it follows that at fixed e2, (6 1)1/M v (1)1/M. Thus as M -+ oo we

must either choose N r nM, i a fixed positive integer - which is clearly prohibitive

- or accept that rp -+ O(1) - clearly unattractive, as we will lose design localiza-

tion, and through the sensitivity contribution to (3.19), predictability. (Note that E6



decreases rapidly with N; e1, and hence the size of the uncharacterized region, is the

problem.)

A critical assumption in the above analysis is that p(p) is uniform. It is clear that

if we can anticipate where the f* will lie, p(p) can be focused in that area, and design

localization and predictability can be greatly improved. One approach is reliance on

the designer to specify an appropriate p(p); this, however, permits no a posteriori

analysis of when the technique will perform well. A more systematic approach is

described in the next chapter.
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Chapter 4

Surrogate Pareto Formulation

In Section 4.1 we briefly review several essential Pareto concepts, and conclude by

relating these concepts to our surrogate framework. In Sections 4.2, 4.3, 4.4, 4.5 we

then detail the steps of the surrogate Pareto formulation: surrogate construction;

surrogate validation; surrogate-based design; and error analysis.

4.1 Introduction

The notion of Pareto Analysis was first developed as an optimality concept in the

field of economics by the eponymous V. Pareto [9], who continued and expanded the

equilibrium concept introduced by Edgeworth [35] in 1881. In 1906 V. Pareto defined

an optimum for n consumers as a position that enjoys maximum ophelimity; and then

stated that "any displacement in parting from that position necessarily has the effect

of increasing the opfelimity that certain individuals enjoy, of being agreeable to some

and disagreeable to others."

The above statement has been the basis of a class of optimal solutions defined as

Pareto optimal by one of the founding fathers of quality improvement, J. Juran [36]

in 1951. The concept has also a separate mathematical history that was eventually

united with economics in game theory by E. Borel [37] in 1921. The history of the



subject has been traced by W. Stadler [38].

The application of Pareto optimization in engineering is a relatively recent event,

first referred to in the 1970's [39, 40]. Multicriteria optimization is certainly no longer

a novelty in engineering [10, 41, 42]. The widest application has been observed in

resources management and structural design. In disciplines such as fluid mechanics,

however, applications remain extremely rare - for reasons that will become clear

below.

The fundamental premise in Pareto analysis is that one can articulate preferences

on the selected outputs, or performance metrics: in our application, it is clear that a

lower temperature, 0, and a lower power, w, will typically represent better thermal-

hydraulic design. One then introduces the notion of the achievable set,

AT = {s IE 2 I 3p E 2 s.t. OT(p) < sl,HT(p) < S2}. (4.1)

where ( )T here refers, as before, to truth. Our interest is in the boundary of AT

(more precisely, that part of the boundary not at infinity), MAT, which we denote

the PO (Pareto Optimal) output manifold. This manifold is widely known in finance

as the efficient frontier; it was first identified by H. Markowitz [43], the founder of

portfolio optimization theory, in 1952. In engineering applications it is refered to as

the functional-efficient boundary, or weight-compliance diagram, or trade-off curve

[10]. The set of points in the input space, Q, which are pre-images of points s E aAT

under the mapping [eT(p), -IT(p)], is denoted the PO input manifold,

L£T = {p E Q 1 3s E AT s.t. OT(p) = s, nT(p) = s2}. (4.2)

The sets dAT and £CT are shown schematically in Figure 4-1. Note that although we

optimistically denote dAT and £T as K - 1 dimensional manifolds, where K is the

number of outputs (in our example K = 2), we do not in fact know that these sets,

in particular CT, have nice topological properties; however we contend that for many



engineering applications this will be the case.

The interest in OAT, and hence £T, is that all other outputs, and hence inputs,

correspond to design points which can be improved with respect to our stated prefer-

ences [44]. More precisely, for an output pair (0', w') not on OAT, there exists a p E Q

in £T such that ET(p) < 9' and IIT(p) 5 w' or ET(p) < 8' and IIT(p) < w'. For

our purposes here, the most critical point concerning dAT and £T is that, for a large

class of optimization problems, p*T E CT, and hence (ET(p*T), HT(p*T)) E OAT. In

particular, for any objective function q(p, si, 82) and constraint function V(p, sl, s2)

in (2.8) and (2.9) that do not depend explicitly on the first variable (p) and are non-

decreasing functions of s, and s2, a (presumed feasible) minimizer will always lie on

£T. (In fact, the class of objective functions and constraints can be enlarged even

further depending on the structure of £T.) Both our design problems of Section 2.3.1

satisfy these conditions, as does 0(p, sl, 82) = as 1 + OS2, in which a and 3 represent

trade-off coefficients.

It should be clear from the above that Pareto analysis will often be an ideal

framework for engineering analysis, in which a wide class of objective functions may

be readily considered. It is typically the case that (say) trade-off coefficients are not

known a priori, because the sensitivity of the problem is not yet understood; Pareto

analysis accommodates this uncertainty, and provides a flexible environment in which

to both articulate and realize design objectives.

The reason, or a reason, Pareto analysis is not more widespread is the difficulty

in determining OAT and £T. To construct OAT, we must reduce the vector multi-

criteria minimization problem to a series of scalar problems through a scalarization

process. Scalarization, also known as parameterization, can be carried out in several

ways: the most widely used methods are objective weighting, distance functions, con-

strained oriented transformation (trade-off method), and the min-max formulation

[10]. We choose here the min-max formulation (the one most frequently used), as

this is the only technique that can treat non-convexity; we have no reason to suspect,



and certainly cannot prove, that AT will be convex for our problem. Variations of

the min-max formulation and other scalarization methods can be found in [45].

The min-max method is based on the property that, at any point s in dAT, all

points s' such that s' < s1 , S' < s2, ... , S < SK are not in AT (if S' was in AT,

then s would not be Pareto optimal and hence not in dAT). To find the point s

for any direction in AT, it then suffices to find the vector which has at least one

component si ,i = 1, ..., K, (say the maximum), that cannot be further minimized;

in other words s is the point closer to the origin in a particular vector direction. We

then construct BDAT, by finding s for all directions. To do that, we first define a

scalarization parameter w, and scalarization space WT = [0, 1]. We then introduce

the function VT(p) = v,(eT(p), HT(p)), where v,(sl, s2) = max(wsl, (1- w)s 2).

The solution to the min-max problem for a particular w is a PO input, defined as

ýT(w) = arg m V(p) = arg min max(wE T (p), (1 - w)HT(p)). (4.3)
{pEn} {pEnt}

The solution is illustrated graphically in Figure 4-2. The corresponding PO output

pair is then given by

(oT ((T (w)), IIT (((W))) = min max(w0, (1 - w)w). (4.4)
{(G,u)EAT}

The PO sets are then defined as £T = (T(WT) and DAT = (ET(CT), IIT(CT)), which

represent the solution of many (in theory, infinite) min-max problems - a nontrivial

task given the expense of GT(p), HT(p).

The method is completed by executing three final steps. First, we have been

somewhat imprecise in our definition of the PO output manifold. In fact, "vertical"

and "horizontal" segments of DAT are not part of the PO output set; we must redefine

DAT as dAT with these segments removed. Second, and relatedly, these excised

vertical and horizontal segments correspond to intervals of w in [0, 1] for which (4.3)-

(4.4) does not have a unique solution; we redefine WT as [0, 1] with these intervals



removed. Third, and finally, if after the first two steps there still exist w for which

(T(w) is nonunique, we force uniqueness by selecting that solution of the min-max

problem (4.3) which is (say) smallest in the Euclidean norm. A consistent choice of

ST(w) is important in obtaining a smooth LT.

It is clear from the above analysis that the Pareto input manifold LT is precisely

the (or a) "special region" of 12 described in the Introduction on which we can focus

attention with some surety that we have, indeed, identified the design-relevant subset

of Q. For problems originally posed as multicriteria problems, or objectives and

constraints in (2.8)-(2.9) that satisfy the non-decreasing conditions described above,

there is no loss in performance; if these conditions are not satisfied, the results will,

admittedly, be sub-optimal. In any event, it can be easily inferred that Pareto analysis

offers the surrogate approach a dimension reduction from IM (0•) to RK-1 (LT),

(in our example from JR2 to JR1); the benefit of this reduction will be improved

localization and predictability. Conversely, the benefit of the surrogate approach to

Pareto analysis is the reduction of the scalarization problem to tractable form.

4.2 Surrogate Construction

Surrogate construction in the Pareto context involves two steps. The first step is

construction of a surrogate over all of Q, as in the basic formulation; it is essential to

note that this construction is based on the high-fidelity model, not the truth model,

and thus the need for increasing numbers of construction points with increasing input

dimension will be less debilitating. For our purpose here, we simply import the

surrogates 6(p), 1H(p) of Section 3.1.

The second step is the construction of the surrogate approximation to the truth

PO input and output manifolds. To this end, we define the surrogate achievable set

A as

S= s E R2 I 3p E Q s.t. O(p) 5 s81, (p) 5 s2}. (4.5)



Our interest is, of course, in isolating the boundary of A, A4 (appropriately sanitized

as described in the previous section), and the pre-image of A in Q2, C. We thus

introduce the scalarization space W C [0, 1], and the min-max problem

((w) = arg min max(wE(p), (1 - w)IH(p)), (4.6)
{pE)}

which represents a point in L. The corresponding PO output pair is then given by

(E(C(w)), H(C(w))) = min max(wO, (1 - w)w). (4.7)
{(0,W)EA}

The solution for all w E W gives £ = ý(() and c9A = (6(Z)), If(f)). Note that

W is not known a priori, but is determined as part of the solution procedure. The

elimination of redundant intervals of w in [0, 1] is intended to economize on subsequent

expensive truth validation computations, not on the inexpensive surrogate min-max

problems (4.6)-(4.7).

In the particular example of this thesis, 0(p) and Hi(p) are sufficiently inexpensive

that we may find 0A and £ by direct search. To wit, we construct a uniform 300 x 300

grid in the input space Q, and evaluate 8(p) and II(p) at each point. For each

w = k/1000, k = 0, 1, ..., 1000, we then compute max(we(p), (1 - w)H(p)) over the

input grid, and find the minimum by simple search. The resulting PO input and

output manifolds are shown in Figure 4-3; note A is, indeed, non-convex.

4.3 Surrogate Validation

As for surrogate construction, surrogate validation also now entails two steps. The

first validation step, related to optimality, is over the entire input domain Q with

respect to a prescribed importance and scaling functions, p(p) : QJR - R and ge(P),

gn(p), respectively, and a specified number of validation points, N. Although this

validation is over the entire input space, the results will serve only in "volumetric"



optimality analyses akin to that of Section 3.4.3; localization and predictability are

not, therefore, an issue, and N need not grow exponentially with M. (Note, in

particular, that 81 and 62 are not required, but only N, the sample size.)

For our particular eddy-promoter example, we simply take p(p) uniform, ge(P),

gn(p) as given in Section 3.2, and N = 53. This permits us to recycle the validation-

sample realization of Section 3.2 and Figure 3-3; we thus obtain U = 0.53 for our

global prediction error.

The second validation step is related to predictability. Here, we define a second

importance function p'(p) : Q --+ J which is only nonzero over a subdomain 2' C

2. We then introduce the associated normalized measure for any domain V C f',

A'(2D C f') = f, p'(p)dp. Note that now p'(Q') = 1. In general, p'(p) is concentrated

about L, that is, Q' is a tube or sheath that surrounds L. A convenient way to define

p'(p) is to introduce a random scalarization parameter W E W with density fw(w),

a random vector V distributed uniformly over the unit disk, and a radius parameter

r' (independent of the validation parameters). The importance function p'(p) is then

defined as the probability density of the random input vector P' given by

P' = (W) + Vr'. (4.8)

The corresponding input space f2' is then given by

2' = {p E Q I lip - (w)II < r', Vw E W}, (4.9)

where 11 II is the (here) Euclidean norm. We depict f2' in Figure 4-4 for r' = 0.5.
Once p'(p) is chosen, the remainder of the validation procedure follows according to

Section 3.2.

We illustrate the validation procedure for our particular example. We set fw(w)

such that ln(fl(p)) is uniform, in order to provide adequate resolution over the wide

range of powers. The fw(w) is simple to sample if we enumerate w on the surrogate



PO output manifold, DA, as a function of w = k/1000, k = 0, 1, ..., 1000. We then

readily find W by linearly interpolating those k/1000 that bracket the uniformly

chosen sample values of ln(IIH(p)) over the range from ln(wrmin) to ln(wma,). The

positive scaling functions g'(p) and gh(p) are taken to be ge(p) and gn(p) from the

basic formulation, now restricted to V2'. We set the parameters e' and e' to 0.06

and 0.26, respectively, which therefore requires, from (3.4), a validation sample size

N' = [ln e'/ln(l - e)1 = 22. We then draw N' = 22 i.i.d. input vectors P -=

(In A'2 , In w'j), i = 1, ..., N' according to the density p'(p); our particular realization is

shown in Figure 4-4. Finally, we perform N' = 22 expensive truth calculations, and

compute the model prediction error

U'= max max - I = 0.32. (4.10)
iE{1,...,N'} gk (PO) gi (Pý)

(See Appendix A for the validation data.) The local model prediction error, U' = 0.32,

is less than the global model prediction error, U = 0.53; this is expected, since £2' C Q2,

and N' < N. Note that N' < N since we can now afford a larger e'4; we could also

keep N' - N and e~ = 0.06, but reduce e6 to 0.037 to obtain greater significance.

4.4 Surrogate-Based Design

For our design problem we now choose (2.12)-(2.13). In particular we look for the

lowest possible power requirements for given temperatures #q, q E {1, ..., Q} - Q.

The Q different temperature requirements are intended to reflect the changing speci-

fications typical of most design studies. In the surrogate-based design procedure, we

substitute 6(p) for 8(p) and II(p) for II(p) to find

qin = min II(p), Vq E Q, (4.11)
{pEflne(p)<9 }



and corresponding (In A, In w) design points,

p*q = arg min 11(p), Vq E Q. (4.12)
{pEljO(p))< q}

By the arguments of Section 4.1, p*q E L C Q', and (q, w.in) E a, Vq E Q.

(In order to assure a feasible point for each specified temperature, we assume that

>q _ >min.)

In our particular example here, we take Q = 2, with =1 = 0.8245 and #2 = 0.93.

The solutions are found to be aEmli n = 3.74, 7i n = 0.33, and .*1 = (-0.89, -0.78), p7*2

(-2.15, -0.53), as shown in Figure 4-6. Note that these solutions can also be read-

ily found if we enumerate 0 and w on the trade-off curve as a function of w =

k/1000, k = 0, 1, ..., 1000. In particular, we first find those k/1000 which bracket 9,

and then perform (say) linear interpolation to obtain f* and i-mq

4.5 Error Analysis

4.5.1 Validation Statement

The optimality validation will be discussed in Section 4.5.3; we pass directly here to

the predictability-related validation statement. In complete analogy with the earlier

analysis of Section 3.4.1 we define the uncharacterized region T' as

T/ p f ax 0T(p) - 6(p) IFIT (p) - H(p) > U= {P ' max '(P) '(P) > U . (4.13)

It can then be shown that

Pr{p'(T') < e~'} 1 - e~, (4.14)



and

a (P) - (p) <  U'ge(P) Vp E Q'\ V. (4.15)
SVp \ T'. (4.15)

IHT(p) - H(p) U'gi(p)

As before, the difficulty with (4.15) is that we do not know the location of T'.

For our particular example the validation statement reads: With probability

greater than 1 - E = 0.74, the surrogate error is given by

IeT(p) - (p) < 0.32ge(p) (4.16)

IIIT(p)- f(p)l <  0.32 gh(p)

for any input p in a region Qt'\ T' which is at least of p'-measure 1- E' = 0.94(94% of

£f'). Figure 4-5 shows contours of surrogate error lOT(p) - b(p)l, and an illustrative

region of measure E' = 0.006 that may constitute T'. We recall that contours of

IOT(p) - e(p)I are, in fact, contours of our scaling function g'(p).

4.5.2 Predictability Analysis

We now form the predictability statement, analogous to the predictability statement

of Section 3.4.2. As before, we first introduce prediction neighborhoods p'q()*q, 1ie),

, > 1, Vq E Q. We can then state that, with probability greater than 1 - e~, Vq E Q

there exists a region r ' ' = p'q(p*q , (*qKe) \ T' of positive measure, p'(F'q) > ( 1 - 1)e6,

such that

E9T (p) 01 < BBySt Vp E F'q ,  (4.17)

where B'q and B, are given by

B q = max (U'g(p) + I(p) - O), (4.18)
{p'P'Q (p*q,E )}

and
B" = max (U'gI(P) + |H(p) - (4.19)mx [), (4.19)

{pIq(p*q,••e• j}



respectively. Note that in multipoint studies, the measure of of the region r 'q does not

decrease with q - the events of the predictability statement are not independent and

hence the bounds are jointly valid for all q. Note also that for simplicity we choose

here to pursue symmetric bounds, rather than the sharper non-symmetric bounds of

Section 3.4.2.

We now turn to our particular calculation. For each prediction neighborhood

pyq (p*q, e') we choose that region R' of measure e' that minimizes max{(p•e'} 6'q(p'),

where

(p)= ma (U'g(p') + Ie(p') - 9 I (U'g (p') + Ifi(p') - )min (4.20)

We choose for the temperature and power scalings t4 = 0.2 and e, = 3, respectively,

in order to provide roughly the same relative predictability in both outputs. We

emphasize that our estimates are joint over any choice of 4o, 1, and we can thus

interactively determine an appropriate distance function. The P'q(p*q, E') are readily

found by the Monte-Carlo method: 6'(.) is first evaluated at NMC points P' dis-

tributed according to p'(p); these points are sorted in order of increasing 6'(.); the

first e1 NMC points in this sorted list then "define" the prediction neighborhood. Here,

NMC = 10, 000; the e1NMc = 600 points around each minimizer with the smallest

6'(-) constitute the prediction neighborhoods, P'Iq(*q, e' ) shown in Figure 4-6.

The associated predictability statement is then: With probability greater than

1 - e' = 0.74, there exists a region F'1 [2 ] C p'1[2](p*1[ 2 ],ei) of positive measure,

A'(F '1 [2]) > 0, such that

SOET(p) _ 1[2]1 B 112] = 0.054 [0.044]
(4.21)HT(p)_ - H(*1[2]) I < B,11[2] = 0.81 [0.21],

where [] in (4.21) refers to the case q = 2. These results are illustrated graphically

in Figure 4-6.



We see that the predictability gaps do not overlap in 9 or w, which indicates that

(with probability > 1-E = 0.74) there exist design points which yield distinguishable

performance. The predictability is much better than for the basic formulation; note

that the q = 2 study is, in effect, equivalent to the design problem studied in Section

3.3. However, the predictability in the temperature is still not particularly good, the

reasons for which will be discussed in Chapter 5. As before, we also obtain notions

of genericity and stability, the latter with respect to all directions about p*; the

particular choice of r' must be informed by design considerations. Finally, design

localization is, of course, much improved over the basic formulation (see Figure 4-

6), even though e' > el, due to the dimension reduction intrinsic to the Pareto

formulation.

In summary, the Pareto analysis tells us that we may not be able to achieve actual

(true) performance of precisely imin, 91 (respectively, min, 2) at precisely p1 (re-

spectively, p*2), but that there are regions of nonzero measure near .*1 (respectively,
p*2), points p' of which will yield (ET(p'), IIT(p')) pairs close to n,, (respec-

tively, 2in, 2). The question remains, however, as to how close I and DA are to

£T and OAT.

4.5.3 Optimality Analysis

Although we cannot answer the question of how close 9.A is to OAT, we can, in a

fashion analogous to that of Section 3.4.3, indicate how much computational effort is

required to find a design point p which improves upon 9A, or more precisely, improves

upon an expanded achievable set Ao which differs from A by the order of the model

prediction error. To wit, we define a lower-bound achievable set as

Ao- = e sE 2 3p E Q s.t. G(p) - Uge(p) 5 s, H(p) - Ugn(p) < s2}, (4.22)



the boundary of which is denoted OA,0 ; note that A C Ao. It follows that if a point

p is found such that (0 = ET(p), W = IT(p)) ý Ao, then p must lie in T' (from

which it also follows that if p'(T') = 0, then AAo includes AT). To show this, we

note that if (0, w) ý Ao, there exists no point p' for which O(p') - Uge(p') 5 9,

fH(p') - Ugnr(p') 5 w, and particularly at p' = p we must have

E)(p) - Uge(p) > ET (p) (4.23)

or

H(p) - UgnI(p) > IIT (p). (4.24)

But (4.23)-(4.24) implies p E T', as desired.

The results of Section 3.4.3 can thus be directly imported. In particular, if we

set eL E [0, 1] and m according to (3.32), then the probability of drawing a sequence

of i.i.d. random input vectors P, ..., Pm according to p(p) and finding a point Pj

such that (ET(Pj), IIT(Pj)) ý A,, is less than 1 - EL; conversely, with probability

greater than eL, we will at best find an improvement to dA which lies in A0 \ A. The

conclusions which may be drawn are summarized in Section 3.4.3.

We show MA, for our particular example in Figure 4-7. If we set (say) eL = 0.5,

then m = 53, implying that after m = 53 additional (post-validation) appeals to the

truth model there is a greater than 0.5 probability that we will have improved upon OA

by no more than Ao\A. However, as in our example the potential reductions Ao\A are

considerable, we conclude that our models are not yet sufficiently accurate; nontrivial

improvement requires the sequential or adaptive procedures described in [28, 29].

When Ao \ A is sufficiently small, and we additionally hypothesize that E(p), II(p)

captures the smooth parts of OT (p), IlT(p), any further global improvement would be

difficult, and thus presumably ill-advised unless system performance is critical.
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Figure 4-1: Schematic representation of a PO input manifold LT (left) and output
manifold OAT (right).
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Figure 4-3: Surrogate PO input manifold L (left) and output manifold Md (right).
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Chapter 5

Final Remarks

5.1 Summary

We have presented basic and Pareto formulations of a nonparametric-validated computer-

simulation surrogate approach through an illustrative application from fluid dynam-

ics. The Pareto approach, when applicable, permits the consideration of a much

larger class of applications both as regards multicriteria problem statement and in-

put (design-variable) dimensionality.

The critical ingredients of both formulations have been developed and demon-

strated through the optimization problem associated with the eddy-promoter chan-

nel heat-exchanger. Many of the techniques used were problem-specific; we need

to emphasize that the user has significant freedom in adjusting the procedure ac-

cording to the requirements of the problem. Therefore, instead of summarizing our

work by refering again to the application of this thesis, we present in the next page

an abstract layout of the Surrogate Pareto formulation, where all the assumptions

concerning Pareto optimality hold.



SURROGATE PARETO FORMULATION

Design space ) --- + M inputs

mn E V C mMM

minimize objective function 4(m)

-NUMERICAL SIMULATION --- K outputs - Achievable set A

k= f(m) k E A CK

-- OPTIMIZATION PROBLEM +-- subject to constraints %Pi(m) < 0 i E 1V
find m* = arg mi n (m)

Fi(m)<o

and k* = f(m*)

k = f(m) -- + SURROGATE CONSTRUCTION --- + k = f(m)

Scaling function g(m) ---+

Pareto Optimal input : CPO C RM-1 - SCALARIZATION +- Surrogate Design space D

Pareto Optimal output : oAPO C IR
K - 1 , Use surrogate to +- Surrogate Achievable set A

find CPO and 8Apo

SURROGATE VALIDATION in )PO

Validation sample: N' = ( - E )ln(1 - m)
Error: U = max max

ie {1,.....N'} g'(m i)

mn* E PO --+ SURROGATE BASED DESIGN +- k E APO

find mn = arg_ min '(m)
'q (m)<o

and k f(m*)
',

j' =relative volume
4-

=prediction neighborhood
4-

SURROGATE VALIDATION in D
[ In 62 1

Validation sample: N ln(i- 6

Error: U = max max
iEf{1,...,N} g(mi)

ERROR ANALYSIS

Uncharacterized region: T' = {m E DP o .max (If(M)-K(m)) ,> U}
ValidationStatement

Pr{C1'(T') < E• 1 - '2 and If(m) - f(m)I _ U'g'(m) , Vm E )pO \ T'

Predictability

Pr If(m)-k i max (U'g'(m) + f(m) - > ) 1 - E2, m E \T', 1'( ' ) = E

{mEP' }

| P



5.2 Comments and Conclusions

In our particular application, the system was characterized by M = 2 inputs and

K = 2 outputs. The PO sets (OAT and £T) had nice topological properties and

consequently the graphical representation of the Pareto formulation was simple. In

higher dimensions, though, there is no guarantee that the PO input manifold will be

"connected"; it might be scattered in the design space. The sparsity of the PO input

points might weaken stability and amplify the sensitivity contribution. The latter will

result to higher predictability gaps that might yield undistinguishable performance.

Signs of such a pitfall appeared in practice. When a third input was introduced

(the Reynolds number), the resulting LT (now a two-dimensional surface) had a

few scattered pieces in the design space (RM=3 ); some of them were actually single

points. Partially, this problem can be cured by introducing an appropriate input

space Q' that captures the scattered pieces (or points.) Another possible palliative

would be to divide 2' into subdomains with different density functions.

Our results indicate another outstanding problem - the validation cost. Vali-

dation against the truth model is, by definition, very expensive. In the final Pareto

analysis of Section 4.5 the predominant contribution to the predictability gap is, in

fact, the surrogate error, not the sensitivity contribution; however, for K > 2, E1 must

certainly be decreased, and hence N, the number of truth evaluations, increased. In

fact, for purposes of validation, we need not evaluate O T (p), IHT(p) exactly, but only

obtain (sufficiently) sharp bounds on these quantities. Suggested methods to obtain

precise quantitative bounds are given in [46].

One other problem, associated with cost, is the fact that the high-fidelity model

is (here, and often) too inaccurate and too expensive. As described above, the major

contribution to the predictability gap of (3.25) are the terms lOT(p) - E(p)l and

1O(p) - 8(p)l; the former reflects the inaccuracy of O(p), the latter reflects the

expense of E(p) (which limits the construction sample size NCO). We believe that

Proper Orthogonal Decomposition (POD) techniques [47, 48] can be of relevance



here. Further discussion is again provided in [46].

In conclusion, the surrogate Pareto formulation developed in this thesis, although

at an early stage of evolution, offers a complete optimization framework. As it stands,

it is general enough to be applied to disciplines outside the engineering domain; or

lend some of its principles to other numerical optimization routines that face dimen-

sionality hurdles. At the same time, it is flexible enough to borrow ideas from other

work in the numerical optimization field. The combination of innovative bounding

and approximation techniques with the surrogate Pareto notions discussed here may

ultimately permit expensive simulations to participate in high-dimensional, multicri-

teria optimization problems.



Appendix A

Tables of data points for the

illustrative example

A.1 Surrogate construction data

P I 1 P2 O(pý0) o(p) 9o(Po) 9 (PCO)
1 -2.3025851e+00 -2.7672931e+00 9.7515526e-01 1.9604966e-01 1.0549496e-01 1.8538666e+00

2 -2.3025851e+00 -2.0892596e+00 9.7426909e-01 1.9747462e-01 1.0498366e-01 1.8690480e+00

3 -2.3025851e+00 -1.4063166e+00 9.6885322e-01 2.0383915e-01 1.1030071e-01 1.8717428e+00

4 -2.3025851e+00 -7.2607279e-01 9.5894777e-01 2.2180047e-01 1.2124586e-01 1.8299312e+00

5 -2.3025851e+00 -4.6655803e-02 9.5597759e-01 2.9214965e-01 1.2803880e-01 1.8521908e+00

6 -2.3025851e+00 6.3390426e-01 9.7561132e-01 3.7346645e-01 1.0561583e-01 1.9115034e+00

7 -1.8420007e+00 -2.7672931e+00 9.7412984e-01 4.8524615e-01 1.0475893e-01 1.8850619e+00

8 -1.8420007e+00 -2.0892596e+00 9.7174154e-01 4.8943105e-01 1.0549469e-01 1.9200140e+00

9 -1.8420007e+00 -1.4063166e+00 9.5946566e-01 5.0630550e-01 1.1614759e-01 1.9231544e+00

10 -1.8420007e+00 -7.2607279e-01 9.3629848e-01 5.5695028e-01 1.2834408e-01 1.8205171e+00

11 -1.8420007e+00 -4.6655803e-02 9.4196015e-01 7.3561262e-01 1.1389242e-01 1.8362460e+00

12 -1.8420007e+00 6.3390426e-01 9.7698879e-01 9.3831178e-01 1.0961114e-01 2.0325452e+00

13 -1.3815058e+00 -2.7672931e+00 9.7286543e-01 1.2032547e+00 1.0766624e-01 2.0337801e+00

14 -1.3815058e+00 -2.0892596e+00 9.6646189e-01 1.2135544e+00 1.0760021e-01 2.1202173e+00

15 -1.3815058e+00 -1.4063166e+00 9.3943878e-01 1.2546230e+00 1.2600721e-01 2.0733865e+00

16 -1.3815058e+00 -7.2607279e-01 8.6906632e-01 1.3982374e+00 1.5595140e-01 1.9765162e+00

17 -1.3815058e+00 -4.6655803e-02 9.2450551e-01 1.8486834e+00 1.1209197e-01 1.9103112e+00

18 -1.3815058e+00 6.3390426e-01 9.7924221e-01 2.3475698e+00 1.1698386e-01 2.4105247e+00

19 -9.2105205e-01 -2.7672931e+00 9.7116093e-01 2.9798720e+00 1.1273930e-01 2.4009458e+00

20 -9.2105205e-01 -2.0892596e+00 9.5482744e-01 3.0057202e+00 1.1649738e-01 2.6128366e+00



21 -9.2105205e-01 -1.4063166e+00 9.0264668e-01 3.0993735e+00 1.3294025e-01 2.1322611e+00

22 -9.2105205e-01 -7.2607279e-01 8.3471187e-01 3.4881390e+00 1.1321970e-01 2.0143479e+00

23 -9.2105205e-01 -4.6655803e-02 9.0886123e-01 4.5950960e+00 1.1809260e-01 2.0865610e+00

24 -9.2105205e-01 6.3390426e-01 9.8448267e-01 5.8930475e+00 1.2896092e-01 3.3108744e+00

25 -4.6044942e-01 -2.7672931e+00 9.7187185e-01 7.3709305e+00 1.1884880e-01 3.3055804e+00

26 -4.6044942e-01 -2.0892596e+00 9.3227409e-01 7.4297255e+00 1.3715349e-01 3.7440693e+00

27 -4.6044942e-01 -1.4063166e+00 8.6197488e-01 7.6133980e+00 1.2856515e-01 3.1139216e+00

28 -4.6044942e-01 -7.2607279e-01 8.6060138e-01 8.6358435e+00 1.3633901e-01 2.7428702e+00

29 -4.6044942e-01 -4.6655803e-02 9.2015138e-01 1.1281968e+01 1.1912484e-01 2.7597074e+00

30 -4.6044942e-01 6.3390426e-01 9.9720587e-01 1.4552053e+01 1.3580806e-01 5.5274464e+00

31 0.0000000e+00 -2.7672931e+00 9.6909631e-01 1.8204320e+01 1.3658389e-01 5.2888721e+00

32 0.0000000e+00 -2.0892596e+00 9.1125339e-01 1.8083822e+01 1.5093211e-01 5.4887010e+00

33 0.0000000e+00 -1.4063166e+00 8.6312545e-01 1.8540733e+01 1.8597217e-01 4.5071925e+00

34 0.0000000e+00 -7.2607279e-01 1.0148229e+00 2.2433865e+01 1.9296996e-01 4.6879636e+00

35 0.0000000e+00 -4.6655803e-02 9.6958979e-01 2.7412750e+01 1.4325132e-01 4.9654274e+00

36 0.0000000e+00 6.3390426e-01 1.0330104e+00 3.5676558e+01 1.4115709e-01 6.5793725e+00

37 -2.0722673e+00 -2.4237034e+00 9.7353546e-01 3.0847323e-01 1.0431214e-01 1.8693328e+00

38 -2.0722673e+00 -1.7484458e+00 9.7146408e-01 3.1305168e-01 1.1098659e-01 1.8705388e+00

39 -2.0722673e+00 -1.0661880e+00 9.6201766e-01 3.3162745e-01 1.1250447e-01 1.8616760e+00

40 -2.0722673e+00 -3.8682149e-01 9.3052078e-01 3.9200143e-01 1.1803443e-01 1.7976394e+00

41 -2.0722673e+00 2.9375862e-01 9.7395260e-01 5.2579070e-01 1.0977930e-01 1.8943505e+00

42 -1.6119410e+00 -2.4237034e+00 9.7190910e-01 7.6659015e-01 1.0548507e-01 1.9963171e+00

43 -1.6119410e+00 -1.7484458e+00 9.6674863e-01 7.7890669e-01 1.1699983e-01 1.9977118e+00

44 -1.6119410e+00 -1.0661880e+00 9.4664239e-01 8.2604043e-01 1.1941609e-01 1.8784055e+00

45 -1.6119410e+00 -3.8682149e-01 8.9688265e-01 9.9464359e-01 1.4607948e-01 1.8155977e+00

45 -1.6119410e+00 -3.8682149e-01 8.9688265e-01 9.9464359e-01 1.4607948e-01 1.8155977e+00

46 -1.6119410e+00 2.9375862e-01 9.7194368e-01 1.3162789e+00 1.1034040e-01 2.2199990e+00

47 -1.1513804e+00 -2.4237034e+00 9.6774667e-01 1.8980833e+00 1.0937315e-01 2.3103595e+00

48 -1.1513804e+00 -1.7484458e+00 9.5489154e-01 1.9298546e+00 1.2564492e-01 2.3131503e+00

49 -1.1513804e+00 -1.0661880e+00 9.2174111e-01 2.0420024e+00 1.3472865e-01 1.8964742e+00

50 -1.1513804e+00 -3.8682149e-01 8.5174757e-01 2.5619312e+00 1.4562327e-01 1.9474633e+00

51 -1.1513804e+00 2.9375862e-01 9.6817481e-01 3.3041313e+00 1.1385657e-01 2.8287739e+00

52 -6.9075006e-01 -2.4237034e+00 9.6205390e-01 4.7002372e+00 1.1924541e-01 3.0811751e+00

53 -6.9075006e-01 -1.7484458e+00 9.2361771e-01 4.7736621e+00 1.4328826e-01 2.8611890e+00

54 -6.9075006e-01 -1.0661880e+00 8.8977923e-01 5.0226231e+00 1.6868793e-01 2.8198741e+00

55 -6.9075006e-01 -3.8682149e-01 8.7333391e-01 6.3355295e+00 1.1962884e-01 2.2027219e+00

56 -6.9075006e-01 2.9375862e-01 9.6458043e-01 8.1723783e+00 1.2644382e-01 4.3186658e+00

57 -2.3029406e-01 -2.4237034e+00 9.5420485e-01 1.1612770e+01 1.2274984e-01 3.8361876e+00

58 -2.3029406e-01 -1.7484458e+00 8.6203002e-01 1.1680458e+01 1.5796035e-01 3.1185961e+00

59 -2.3029406e-01 -1.0661880e+00 9.0322346e-01 1.2770114e+01 2.0944709e-01 3.2460651e+00

60 -2.3029406e-01 -3.8682149e-01 9.3150590e-01 1.5728464e+01 1.2529881e-01 2.5646666e+00



61 -2.3029406e-01 2.9375862e-01 9.8292847e-01 2.0080173e+01 1.2634924e-01 3.8884627e+00

62 -3.4531119e-01 -8.9549094e-01 8.6186400e-01 1.0476015e+01 1.3540618e-01 2.6875686e+00

63 -3.4531119e-01 -5.5682332e-01 9.0751873e-01 1.1887442e+01 1.3346943e-01 2.5524126e+00

64 -3.4531119e-01 -2.1706700e-01 9.1022129e-01 1.3384343e+01 1.2191070e-01 2.9270573e+00

65 -3.4531119e-01 1.2363404e-01 9.4991805e-01 1.5055468e+01 1.1938727e-01 3.0915519e+00

66 -2.3016817e-01 -7.2607279e-01 9.2202917e-01 1.4109071e+01 1.3763741e-01 2.5445548e+00

67 -2.3016817e-01 -4.6655803e-02 9.4046937e-01 1.7692573e+01 1.1293426e-01 2.7712903e+00

68 -1.1518641e-01 -1.2368984e+00 8.6574355e-01 1.5046033e+01 1.9342175e-01 3.1434817e+00

69 -1.1518641e-01 -8.9549094e-01 9.3194224e-01 1.6621637e+01 1.5908297e-01 2.7865052e+00

70 -1.1518641e-01 -5.5682332e-01 9.6353235e-01 1.8685525e+01 1.4095557e-01 2.5905198e+00

71 -1.1518641e-01 -2.1706700e-01 9.4301571e-01 2.0864720e+01 1.2554065e-01 2.7650206e+00

72 -1.1518641e-01 1.2363404e-01 9.6462604e-01 2.3473180e+01 1.2593825e-01 2.8599390e+00

73 0.0000000e+00 -1.0661880e+00 9.9651911e-01 2.0250623e+01 2.2973782e-01 4.6772213e+00

74 0.0000000e+00 -3.8682149e-01 9.7300045e-01 2.4689525e+01 1.4256726e-01 4.6884103e+00

75 -2.0722673e+00 -6.1320803e-01 9.2442253e-01 3.6527421e-01 1.2421846e-01 1.7974893e+00

76 -1.8420007e+00 -2.7326156e-01 8.9613513e-01 6.7601441e-01 1.3275624e-01 1.8136880e+00

77 -1.3815058e+00 -2.7326156e-01 8.7731516e-01 1.6882407e+00 1.3380338e-01 1.8698529e+00

78 -1.3815058e+00 -5.0033520e-01 8.9031628e-01 1.4890098e+00 1.3327255e-01 1.8439417e+00

79 -1.1513804e+00 -6.1320803e-01 8.6769630e-01 2.2728223e+00 1.2912302e-01 1.9197172e+00

80 -1.9568700e+00 -5.5682332e-01 9.1374529e-01 4.6742590e-01 1.2401346e-01 1.8073073e+00

81 -1.6119410e+00 -6.1320803e-01 8.8898069e-01 9.1487863e-01 1.3318671e-01 1.8098343e+00

82 -1.6119410e+00 -1.6016884e-01 9.1101442e-01 1.1046688e+00 1.2940634e-01 1.8441630e+00

83 -1.8420007e+00 -5.0033520e-01 9.1192591e-01 5.9523748e-01 1.1530333e-01 1.8001935e+00

84 -2.3025851e+00 -3.8682149e-01 9.4211847e-01 2.4849445e-01 1.3019381e-01 1.8343672e+00

85 -2.0722673e+00 -1.6016884e-01 9.2697083e-01 4.4330196e-01 1.2796169e-01 1.8126271e+00

86 -1.1513804e+00 -1.6016884e-01 9.0259492e-01 2.7759616e+00 1.1886023e-01 1.9877286e+00

87 -1.1513804e+00 -8.4012901e-01 8.8140577e-01 2.1300148e+00 1.5602542e-01 1.9425628e+00

88 -1.8420007e+00 -9.5246838e-01 9.5650131e-01 5.2965799e-01 1.2137604e-01 1.8390433e+00

89 -1.3815058e+00 -9.5246838e-01 9.3551950e-01 1.3193556e+00 1.4646955e-01 1.8622060e+00

90 -9.2105205e-01 -9.5246838e-01 8.8945472e-01 3.2631735e+00 1.5955226e-01 1.9880213e+00

91 -1.6119410e+00 -8.4012901e-01 9.4122497e-01 8.5332276e-01 1.3694577e-01 1.8348027e+00

92 -9.2105205e-01 -1.1801008e+00 9.0474646e-01 3.1646646e+00 1.1843431e-01 1.9498051e+00

93 -1.1513804e+00 -1.2925301e+00 9.1983459e-01 1.9946438e+00 1.1294204e-01 1.9776905e+00

94 -1.3815058e+00 -1.1801008e+00 9.2957148e-01 1.2843602e+00 1.1633299e-01 1.8620993e+00

95 -2.0722673e+00 6.7096004e-02 9.6183228e-01 4.8580598e-01 1.2051928e-01 1.8196196e+00

96 -1.6119410e+00 6.7096004e-02 9.5006934e-01 1.2109082e+00 1.1314063e-01 1.9207750e+00

97 -1.1513804e+00 6.7096004e-02 9.3955157e-01 3.0326436e+00 1.1262040e-01 2.1178670e+00

98 -2.0722673e+00 -8.4012901e-01 9.6062824e-01 3.4183815e-01 1.2610963e-01 1.8024101e+00

99 -1.8420007e+00 1.8029878e-01 9.6848178e-01 7.9398126e-01 1.1553633e-01 1.9933559e+00

100 -1.3815058e+00 1.8029878e-01 9.6411868e-01 1.9992224e+00 1.1616441e-01 2.3243848e+00



101 -9.2105205e-01 1.8029878e-01 9.5657514e-01 4.9874683e+00 1.1919489e-01 3.1088230e+00

102 -6.9075006e-01 6.7096004e-02 9.3730204e-01 7.5046668e+00 1.1757306e-01 2.9908483e+00

103 -6.9075006e-01 -1.6016884e-01 8.9357316e-01 6.9443679e+00 1.2151528e-01 2.5380073e+00

104 -9.2105205e-01 -2.7326156e-01 8.8157372e-01 4.1776895e+00 1.2236945e-01 2.1107303e+00

105 -9.2105205e-01 -5.0033520e-01 8.4993203e-01 3.7677565e+00 1.4846986e-01 2.1645321e+00

106 -6.9075006e-01 -6.1320803e-01 8.5684865e-01 5.6577808e+00 1.4165351e-01 2.4555197e+00

107 -6.9075006e-01 -8.4012901e-01 8.1918146e-01 5.3506497e+00 1.5148492e-01 2.3567955e+00

108 -6.9075006e-01 -1.2925301e+00 8.9565113e-01 4.9148495e+00 1.2242882e-01 2.0345736e+00

109 -4.6044942e-01 -1.1801008e+00 8.8392096e-01 7.7589724e+00 1.4503466e-01 2.8842949e+00

110 -6.9075006e-01 -1.5202608e+00 8.8450173e-01 4.8239740e+00 1.4144203e-01 2.0717400e+00

111 -4.6044942e-01 -1.6358910e+00 8.6012548e-01 7.5163329e+00 1.4697707e-01 2.4853995e+00

112 -2.3029406e-01 -1.5202608e+00 8.3949726e-01 1.1795145e+01 1.7331664e-01 3.1956885e+00

113 -4.6044942e-01 1.8029878e-01 9.5165807e-01 1.2310677e+01 1.2486251e-01 3.8852962e+00

114 -4.6044942e-01 -2.7326156e-01 9.0170252e-01 1.0420700e+01 1.2237001e-01 2.4752954e+00

115 -4.6044942e-01 -5.0033520e-01 8.8957375e-01 9.6315023e+00 1.2169738e-01 2.3744788e+00

116 -4.6044942e-01 -9.5246838e-01 8.3818291e-01 8.2380648e+00 2.0034997e-01 2.7627952e+00

117 -2.3029406e-01 -1.2925301e+00 8.7246428e-01 1.1998112e+01 1.2074123e-01 3.1357701e+00

118 0.0000000e+00 -1.7484458e+00 8.9117761e-01 1.8165834e+01 1.3980681e-01 5.5621713e+00

119 0.0000000e+00 2.9375862e-01 1.0079612e+00 3.1201727e+01 1.4623276e-01 6.0647891e+00

120 -2.3025851e+00 2.9375862e-01 9.7428257e-01 3.3189004e-01 1.1026124e-01 1.8953131e+00

121 -1.9568700e+00 -3.3017713e-01 9.1514635e-01 5.1491577e-01 1.2339666e-01 1.7983512e+00

122 -1.7270960e+00 -4.4392549e-01 9.1042412e-01 7.6301051e-01 1.2077721e-01 1.7988252e+00

123 -1.4965558e+00 -5.5682332e-01 8.9114481e-01 1.1653517e+00 1.1857487e-01 1.8230608e+00

124 -1.4965558e+00 -3.3017713e-01 8.7173193e-01 1.3145310e+00 1.4220664e-01 1.8133823e+00

125 -1.2665577e+00 -4.4392549e-01 8.7418754e-01 1.9297047e+00 1.4555742e-01 1.8600627e+00

126 -1.2665577e+00 -6.6927519e-01 8.5734207e-01 1.7860977e+00 1.2588122e-01 1.8918732e+00

127 -1.0362010e+00 -5.5682332e-01 8.7083419e-01 2.9034706e+00 1.4278083e-01 2.0535183e+00

128 -1.0362010e+00 -7.8353683e-01 8.2465044e-01 2.7416273e+00 1.5944206e-01 2.0184508e+00

129 -8.0586805e-01 -7.8353683e-01 8.2370588e-01 4.3237375e+00 1.6287394e-01 2.0279496e+00

130 -2.1874723e+00 -3.8682149e-01 9.3686157e-01 3.1310297e-01 1.0990623e-01 1.8015022e+00

131 -1.9568700e+00 -4.4392549e-01 9.2218430e-01 4.8174599e-01 1.1698537e-01 1.7997092e+00

132 -1.7270960e+00 -3.3017713e-01 8.9245315e-01 8.2348601e-01 1.2974015e-01 1.7953063e+00

133 -1.6119410e+00 -5.0033520e-01 9.0155310e-01 9.4094669e-01 1.2974610e-01 1.8090779e+00

134 -2.1874723e+00 -6.6927519e-01 9.4611178e-01 2.8638619e-01 1.2304255e-01 1.7929290e+00

135 -1.7270960e+00 -5.5682332e-01 9.0191250e-01 7.3795927e-01 1.2825712e-01 1.8189770e+00

136 -1.4965558e+00 -6.6927519e-01 8.7572911e-01 1.1319600e+00 1.3859668e-01 1.8458037e+00

137 -1.3815058e+00 -3.8682149e-01 8.6848544e-01 1.5988181e+00 1.3384691e-01 1.8085060e+00

138 -1.8420007e+00 -3.8682149e-01 9.1660726e-01 6.2451770e-01 1.2861420e-01 1.8028019e+00

End of the table.



A.2 Surrogate Basic formulation validation data

# I P1 P2 O
T

(p) IIT(p) 6(p) i(p) ieThp-e ( )p) - 
I_ 

P )n (p )
__

1 -1.16 -1.47 0.93 2.11 0.94 1.87 0.07 0.11

2 -0.14 0.44 1.00 26.22 0.94 24.20 0.44 0.41

3 -1.68 -1.37 0.95 0.77 0.96 0.67 0.08 0.05

4 -2.12 -0.47 0.93 0.35 0.93 0.32 0.03 0.01

5 -1.75 -1.52 0.96 0.63 0.97 0.57 0.12 0.03

6 -1.09 0.48 0.98 4.23 0.97 3.70 0.05 0.18

7 -1.79 -2.32 0.97 0.57 0.98 0.51 0.12 0.03

8 -0.29 -0.37 0.92 14.27 0.86 13.89 0.52 0.15

9 -2.06 -1.23 0.96 0.35 0.97 0.32 0.07 0.02

10 -2.13 0.13 0.97 0.45 0.96 0.41 0.05 0.02

11 -1.60 -1.56 0.96 0.86 0.97 0.77 0.13 0.04

12 -1.29 -2.29 0.97 1.52 0.98 1.41 0.08 0.05

13 -1.19 -1.52 0.94 1.94 0.95 1.75 0.09 0.09

14 -1.80 0.11 0.96 0.86 0.94 0.79 0.20 0.03

15 -1.87 -1.91 0.97 0.49 0.98 0.44 0.12 0.03

16 -1.52 -1.16 0.94 1.01 0.95 0.94 0.03 0.04

17 -1.74 -1.38 0.95 0.67 0.96 0.59 0.08 0.04

18 -0.01 -2.55 0.95 17.86 0.92 18.28 0.22 0.08

19 -2.25 -1.71 0.97 0.23 0.99 0.21 0.14 0.01

20 -1.95 -0.89 0.96 0.44 0.97 0.41 0.11 0.02

21 -1.69 -0.29 0.90 0.90 0.85 0.85 0.40 0.03

22 -0.26 -1.29 0.87 11.52 0.85 11.49 0.20 0.01

23 -0.49 -0.14 0.91 10.68 0.84 10.15 0.53 0.19

24 -1.41 -1.32 0.94 1.20 0.94 1.14 0.03 0.03

25 -0.47 -0.05 0.92 11.03 0.85 10.74 0.53 0.11

26 -1.07 -1.36 0.91 2.43 0.92 2.26 0.02 0.08

27 -1.92 -0.44 0.92 0.53 0.92 0.49 0.01 0.02

28 -0.10 -1.90 0.89 15.37 0.87 15.35 0.10 0.01

29 -2.05 0.62 0.98 0.68 0.99 0.57 0.11 0.06

30 -1.45 -1.59 0.95 1.14 0.97 1.04 0.13 0.05

31 -0.10 0.28 0.99 26.10 0.93 25.02 0.48 0.22

32 -1.04 -1.61 0.93 2.49 0.95 2.33 0.10 0.07

33 -1.85 -0.99 0.96 0.54 0.97 0.49 0.11 0.02

34 -1.22 -0.52 0.87 2.07 0.86 1.94 0.08 0.07

35 -1.34 -0.23 0.89 1.91 0.84 1.76 0.35 0.08



36 -1.53 -0.05 0.93 1.41 0.88 1.31 0.43 0.05

37 -1.63 -1.67 0.96 0.78 0.98 0.72 0.11 0.03

38 -0.61 -0.37 0.88 7.63 0.83 7.23 0.46 0.17

39 -1.09 -1.97 0.96 2.29 0.96 2.11 0.02 0.08

40 -0.32 -2.30 0.95 9.99 0.93 9.78 0.16 0.05

41 -0.21 -0.96 0.91 13.88 0.84 13.67 0.37 0.07

42 -1.12 -1.37 0.92 2.23 0.92 2.03 0.03 0.10

43 -1.04 0.40 0.97 4.52 0.96 3.98 0.09 0.17

44 -1.91 -0.55 0.91 0.53 0.91 0.49 0.02 0.02

45 -0.16 0.21 0.98 22.63 0.91 21.97 0.48 0.18

46 -0.84 -1.45 0.90 3.70 0.90 3.53 0.01 0.08

47 -2.16 -2.24 0.97 0.27 0.99 0.24 0.13 0.01

48 -0.95 -1.99 0.95 2.90 0.95 2.75 0.01 0.06

49 -0.90 -0.30 0.88 4.35 0.82 4.15 0.44 0.09

50 -1.78 -0.32 0.90 0.75 0.86 0.70 0.25 0.03

51 -1.41 0.08 0.95 1.85 0.90 1.73 0.44 0.06

52 -0.18 0.53 1.01 25.83 0.95 23.10 0.40 0.50

53 -1.19 -0.99 0.91 1.93 0.93 1.82 0.09 0.05

End of the table.



A.3 Surrogate Pareto formulation validation data

P1 P2 eT(p) ]IT(p) 6(p) flp) eT(p)_ep)I InT(p)_p

1 -1.05 -0.82 0.82 2.52 0.85 2.65 0.16 0.23

2 -1.93 -0.57 0.91 0.47 0.91 0.50 0.03 0.09

3 -1.83 -0.28 0.86 0.65 0.90 0.69 0.28 0.11

4 -0.99 -0.82 0.80 2.88 0.84 3.00 0.22 0.23

5 -1.41 -0.68 0.86 1.27 0.87 1.36 0.10 0.20

6 -1.29 -0.67 0.84 1.63 0.86 1.72 0.16 0.20

7 -1.60 -0.62 0.88 0.88 0.89 0.93 0.07 0.14

8 -2.21 -0.53 0.93 0.27 0.94 0.29 0.06 0.06

9 -2.28 -0.60 0.95 0.22 0.95 0.24 0.04 0.05

10 -1.61 -0.57 0.89 0.88 0.89 0.93 0.07 0.14

11 -0.80 -0.78 0.79 4.31 0.82 4.43 0.23 0.19

12 -1.93 -0.56 0.91 0.47 0.91 0.50 0.01 0.09

13 -1.73 -0.35 0.88 0.75 0.90 0.81 0.16 0.18

14 -2.25 -0.50 0.93 0.25 0.94 0.27 0.06 0.05

15 -1.63 -0.60 0.88 0.84 0.89 0.88 0.06 0.14

16 -2.19 -0.46 0.93 0.28 0.93 0.31 0.01 0.07

17 -1.85 -0.31 0.87 0.61 0.90 0.66 0.26 0.12

18 -1.57 -0.61 0.88 0.95 0.89 1.01 0.08 0.16

19 -1.91 -0.26 0.86 0.56 0.91 0.60 0.32 0.11

20 -1.19 -0.69 0.82 1.99 0.85 2.11 0.19 0.25

21 -1.94 -0.54 0.91 0.46 0.91 0.49 0.02 0.08

22 -1.50 -0.70 0.88 1.06 0.88 1.13 0.05 0.16

End of the table.





Appendix B

Scaling Functions

We describe here the procedure by which we obtain the appropriate element-based

scaling function ge(p) , after we have performed a triangulation of our input space

Sbased on NCO construction nodes p~O, j = 1, ..., NCO, as shown in Figure 3-1. The

same procedure applies to gri(p).

For each edge y of the triangualation, we find e. and e2,, the two triangular

elements to which it belongs. Then, we compute the magnitude of the pi-component,

(n7)pl, and p2-component, (nri)p2, of the unit normal of each y, based on the position

(Pl, p2) of its vertices (endpoints), v1 and v2. For every element e, we compute the

area A , and we find the coefficients ae and b that satisfy the system of equations of

the element's vertex values which have the general form

aepl + b p2 + ce = O(p). (B.1)

Then, for every edge y we calculate a norm H,, given by

H, = (Ae Ae) (a - a e)(ny)pl + (be - be~)(n-)p 2 , (B.2)

the value of which we accumulate for both vertices v1 and v2. The norm H, is

basically a multiple of the absolute difference of the lengths of the normal vectors to



both sides of edge y: one normal vector lies in el and the other one in e', and their

lengths are given by ae4 (n-)p l + be (nfy)p 2 and Iae (ny)pl + b_ (n,)p2 , respectively.

For each construction node, pýO, the scaling function value, ge(p~o), is the cumulative

value of H7 for the corresponding vertex, divided by the number of elements to which

it belongs. In other words, the cumulative value of Hy at each vertex is the sum of

the values of the norms H, of all the edges that share that vertex. In the case where

-y lies on the boundary of Q and consequently it belongs to only one element, e , the

value of the norm H, is given by

H, = Ae) I(ae4)(n,), + (be )(n)p2 (B.3)

We can then explicitely compute ge(p), for any input vector p E Qt, as the linear

interpolant of the pairs (pýo, gE(po°)), j = 1, ..., Nco. To guard against unbounded

amplification at points where ge(p) is small or vanishes, we add a small constant.

For our problem, we found by performing numerical optimization of pseudo-validation

results, that by adding the value 0.05 -max(E(p)) to ge(p) we avoid singularities.

We will demonstrate now, through an example, that our scaling functions accu-

rately reflect the sum of the partial second derivatives of the input-output function.

We consider the following configuration:

SI)



The central node, has value G3, and is at a distance h from the other four nodes.

To obtain the scaling function value g3, we first compute the coefficients, ae, be, and

ce, for the four elements, e = 1, 2, 3, 4. Solving the matrix equation (B.1) for every

element, we find that

1a = G3 -G 2 b 1 G-G3 1=G3 ,
h h

a2 G4 -G 3 b2 G- G3 2 G3,
h h

a3 G 3 - G 2  G3G - G G3,
h h

a4 G 4 - G3 b4 G  - G 5 c4=G3
a, b4 =, c = Ga.

h h

We then compute the norm H. for all edges that have the central node as a vertex,

y = N, S, E, W (the letters stand for the directions). The area of every element is -,

and thus (Ae4 Ae4 ) = . We then have

h 221
HN= (a2 al)1 + (b2 - b' = = • G2 - 2G3 + G41,

Hs = I (a4 - a3)1 + (b4 - b3)0 = G2- 2G+ G4Hs = G2 - 2Ga + G4 ,

HE h (a- a 3)0 + (b1 - b)1 = |1G - 2G3+ G51 ,h G1 - 2G +

Hw = (a2 - a )0 + (b - b )1= - 1  -2G3 +Gg

The number of elements that the central node belongs to is 4, and therefore

12 2
93 = 1 G2- 2G3 + G41 + - 2G3+ G5 1 (B.4)

From the finite difference theory, we know that IGI G2  +G4 and CG,, I

Gi-2G+GsI (second term of the Taylor series); hence, B.4 is equivalent to

h 293 -- W2-- (ja xxj + JGyvj)" (B.5)



Note that this example is chosen specifically to demonstrate that our norm is in fact

better than the Laplacian norm, IV21 = IGxx + GyI = IGi + G2 - 4G 3 + G4 + G5 1,

since the latter could be zero in the case where G,, = -Gy, (a saddle node).



Appendix C

Validation Proof

Given a truth input-output function yT(p) : --+ f? we define the model prediction

error function, Ey(p) : Q -+ JR as

Ey(p) = IYT(p) - Y(p)I, (C.1)

where f(p) is the proposed surrogate. The function gy(p) need not be smooth or

even continuous. We then define a function Z(x) : [0, oo) -+ [0, 1] which gives the

measure of a subset of 0 in which Sy(p) is strictly greater than x E [0, oo), that is

Z(x) = E({p E Q I Sy(p) > x}). (C.2)

It is readily shown that the function Z(x) is right-continuous and non-increasing.

For a plateau of the function Ey(p), for which Ey(p) = xc, Vp E Q, C Q, the jump

in Z(x) is given by

lim (Z(xe - y) - Z(xc)) = (f~c), (C.3)

the measure of the set for which Ey(p) = x,.



The model prediction error is given by

(C.4)

where P 1, ... , PN are random input vectors distributed according to the probability

density function p(p) : 1 -+ JR. The random uncharacterized region is given by

Ty = {p E 12 IEy(p) > Uy}. (C.5)

We then define a random variable Z which represents the measure of this random

region Ty,

Z = p(Ty = {p E 2 I Ey(p) > Uy}) = Z(Ur). (C.6)

We are interested in computing the cumulative distribution function for Z, Fz(z) =

Pr{Z < z}.

To proceed, we set, for any z E [0, 1],

S= mmin (C.7)
{(z[o,oo)l(Z()<z}

Since Z(x) is a non-increasing function, we have from (C.7) that

Pr{Z(Uy) • z} = Pr{Uy >_ xz}. (C.8)

Now, let D be a subset of Q2 given by

D = {pE I Ey(p) _ xz}. (C.9)

The measure of the subset V is given by

(D) = inf Z(x),X<xz

Uy = max YYT(Pj) -Y(Pj),
jE{1,...,g}

D

(C.10)



where from (C.2), (C.7), and the properties of Z(x),

A(D) > z.

From the definition of Uy we have

Pr{Uy xz} = Pr{3j E {1,...,N} I Pj E )D}

= 1- Pr{Pj E \-D,Vj E {1,...,N}},

and it thus only remains to compute the probability that all the Pj are not in 2D.

To proceed, we note that since the Pj are i.i.d., the probability that all validation

points are outside the subset D is simply

= (Pr{P1 E f \ D})N

= (1-/2(D))N
(C.13)

But from (C.11) we know that

1 - D) _ 1 - z,

which then gives

Pr{Pj E \ D,Vj E {1,...,N}} < (1 - z)N.

Finally from (C.8) and (C.12), we obtain

(C.14)

(C.15)

Fz(z) 2 Fz(z),

(C.11)

(C.12)

Pr{Pj E \D, Vj E {1,...,N}}

(C.16)



where

Fz(z) = 1 - (1 - z)N. (C.17)

Note that Fz(z) = Fz(z) when Z(x) is continuous (which does not, of course, imply

that Ey(p) is continuous). Note also that Pr{Z < z} with strict inequality satisfies

Pr {Z < z} > FZ(Z), (C.18)

although Pr{Z < z } _ Fz(z) is potentially false if Z(x) is not continuous. In the

latter case, Z is not an absolutely continuous, but rather a mixed, random variable.

Lastly, we note that our proof is valid, in fact, for any positive function Ey, with

no explicit reference to Y or Y. We can thus directly obtain the result (C.18) for

E(p) = max lo(p) -a(p)n IT(P) - N(P)l) (C.19)
ge(P) gin(P)

or, indeed, for the maximum of any K scaled outputs.
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