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Abstract

Traditionally, the sampling of a signal is performed using a single component such as an
analog-to-digital converter. However, many new technologies are motivating the use of
multiple sampling components to capture a signal. In some cases such as sensor networks,
multiple components are naturally found in the physical layout; while in other cases like
time-interleaved analog-to-digital converters, additional components are added to increase
the sampling rate. Although distributing the sampling load across multiple channels can
provide large benefits in terms of speed, power, and resolution, a variety mismatch errors
arise that require calibration in order to prevent a degradation in system performance.

In this thesis, we develop low-complexity, blind algorithms for the calibration of dis-
tributed sampling systems. In particular, we focus on recovery from timing skews that
cause deviations from uniform timing. Methods for bandlimited input reconstruction from
nonuniform recurrent samples are presented for both the small-mismatch and the low-SNR
domains. Alternate iterative reconstruction methods are developed to give insight into the
geometry of the problem.

From these reconstruction methods, we develop time-skew estimation algorithms that
have high performance and low complexity even for large numbers of components. We also
extend these algorithms to compensate for gain mismatch between sampling components.
To understand the feasibility of implementation, analysis is also presented for a sequential
implementation of the estimation algorithm.

In distributed sampling systems, the minimum input reconstruction error is dependent
upon the number of sampling components as well as the sample times of the components. We
develop bounds on the expected reconstruction error when the time-skews are distributed
uniformly. Performance is compared to systems where input measurements are made via
projections onto random bases, an alternative to the sinc basis of time-domain sampling.
From these results, we provide a framework on which to compare the effectiveness of any
calibration algorithm.

Finally, we address the topic of extreme oversampling, which pertains to systems with
large amounts of oversampling due to redundant sampling components. Calibration algo-
rithms are developed for ordering the components and for estimating the input from ordered
components. The algorithms exploit the extra samples in the system to increase estimation
performance and decrease computational complexity.

Thesis Supervisor: Gregory W. Wornell
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Many systems require the estimation of a signal from measurements of it. However, the

system may not be able to directly observe the signal; instead, the input may first be

processed by an arbitrary channel before it is observed as shown in Figure 1-1. The goal

of the system is to invert the effects of the channel as best as possible in order to form an

estimate of the input signal.

Channel

X Y

Figure 1-1: General System Channel

By allowing the input and channel to be arbitrary, it is clear to see that the estimation

of input X from output Y is not well defined. Thus when analyzing such problems, we

incorporate all knowledge about the class of input signals and type of channel into the

problem. For example, the channel may be known or unknown. It may have certain

properties such as being memoryless, noisy, linear, time-invariant, continuous, or stable.

Similarly, the input may be restricted to a class of signals whose properties may include

being bandlimited, range-limited, L1, L2, continuous, discrete, or differentiable. For each

different scenario, a new approach for signal estimation can be developed with the goal of

minimizing some error criterion. For the input class of continuous-time bandlimited signals

and channel of distortion-free periodic sampling, the estimation of the input x(t) from the

output y[n] is the well-known sinc interpolation.

Often, a system may observe the input signal through the output of multiple distinct
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channels, as seen in Figure 1-2. Using the output of both channels, a system can improve

its estimation performance.

Channel 1

Channel 2

X Y1

Y2

Figure 1-2: 2-Channel Distributed System

In the MIMO (Multiple Input Multiple Output) wireless setup, multiple antennas are

used at the receiver to gather more information about the input. Because the channels have

independent gain and noise realizations, the system can leverage these variations to increase

the data rate and decrease the error. A similar situation arises in speaker localization

using microphone arrays. Single channels many only provide a speaker direction, whereas

three channels provides a 3-D position estimate, while even higher numbers of microphones

produce increasingly accurate estimates.

S R

Figure 1-3: Example systems with multiple channels to capture signal data: MIMO antennas
and microphone arrays

Another example of input reconstruction from multiple outputs is studied in [31]. Here

the channels are analog-to-digital converters uniformly spaced in time. Although recon-

struction is well known in this case, the authors study the optimal bit-allocation among the

converters. The tradeoff between number of converters and converter resolution is studied

in order to minimize the reconstruction noise.

When the channel is unknown, the first step can often be to estimate it. This can be
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performed with the aid of a training signal or blindly based on the channel output. One

case of channel estimation is studied in [50] where the input is an unknown deterministic

discrete signal and the channels are FIR filters. Under a certain set of necessary conditions,

the channels and input signals can be identified from only the observed outputs.

x(t) y[n]

w[n]

t = nT
∆ τ

Figure 1-4: Distributed Sampling Channel

In this thesis, we examine methods for signal estimation for the class of channels found in

distributed sampling systems. Observations of the input are attained through the outputs

of multiple periodic sampling components. Because the components are not necessarily

coordinated, each component may take samples starting at an arbitrary time with respect

to the other components. Thus, each component is modeled as a channel that applies an

arbitrary phase delay to the input and then periodically samples it, as seen in Figure 1-4.

In this manner, the sampling is distributed across multiple channels that may be located

on a single device or spread across multiple systems.

In order to reconstruct the input signal, it is necessary to calibrate the system. We

develop blind calibration methods for estimating the unknown delay parameters associated

with the sampling channels by restricting the input class to bandlimited input signals. Us-

ing these parameter estimates, multiple methods for efficient reconstruction are developed.

Bounds on system performance are also developed. We separately address the issue of

calibration in systems with a large amount of oversampling due a redundant number of

sampling channels. For this case, we develop alternative methods that exploit the sampling

redundancy in order to estimate the input.

1.1 Single Sampling Channel

We begin by examining the properties of a single sampling channel. To start, we assume

that the delays in the channel model above are zero and readdress this issue later in the

multi-channel distributed model. In the absence of noise, a channel samples periodically

with period Ts, i.e., y[n] = x(nTs), as seen in Fig. 1-5.
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Ch

TS

x(t) x[n]

Figure 1-5: Single sampling component operating on analog input

Given these output samples, there are multiple possible interpolations that can gener-

ate the information content between samples, shown in Fig. 1-6. However, without more

information on the input, it is unclear which choice is best.

Figure 1-6: Input estimation from linear and step interpolations of periodic samples

For certain classes of inputs, this confusion does not arise. In these cases, periodic

samples provide a complete representation and can be used to uniquely determine the input.

The most widely discussed class is bandlimited signals, where sampling theory states that

for an input with maximum frequency of B Hz, the input can be perfectly reconstructed by

sampling at a rate higher than fs = 2B. As we shall discuss later, additional benefit can

be gained by sampling faster than the Nyquist rate in certain situations.

This model of the channel as a periodic noise-free component is a bit optimistic. In

most setups, there are a variety of factors that cause errors in the sampling. Possible

distortions include an additive noise source or random phase. These issues can severely

limit the ability to reconstruct the input. In order to understand the non-idealities that

arise, we examine the problems that occur in the most common realization of a sampling

channel: the analog-to-digital converter.

1.1.1 Analog-To-Digital Converters

The most ubiquitous sampling component in today’s hardware is the analog-to-digital con-

verter (ADC). Just as its name implies, this piece of hardware converts an analog continuous-
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time signal into a digital discrete-time signal. In general, ADCs sample the analog input

periodically. To ensure a fixed amount of time between samples, ADCs use the system clock

and often sample at a certain fraction of its rate. Quantizing the signal while sampling al-

lows the analog values to be approximated through a set of 0/1 digital bits.

There are many architectures for implementing analog-to-digital conversion in hardware

[36]. The most popular design structures for ADCs are: pipelined, sigma-delta, successive

approximation register (SAR), flash, and folding. Each of these methods have their benefits

and drawbacks. For a given application, the type of converter is selected based on its:

• Rate (fs = 1/Ts) - speed of sampling measured in terms of samples/second or Hertz

• Power dissipation (Pd) - power consumed by converter during operation typically

measured in Watts

• Resolution (B) - stated number of quantization bits; another related measurement is

the effective number of bits (ENOB)

Also taken into consideration is the converter cost, which is commonly a function of its size

and thus power dissipation. One common figure-of-merit for comparing ADC performance

is

F =
Pd

2Bfs
, (1.1)

typically expressed in pJ/bit or fJ/bit. By this metric, increasing resolution by one bit

provides a similar performance increase as doubling the sampling speed or cutting the

power in half. We briefly examine the various types of converter architectures in order to

understand the errors that arise in sampling.

One commonly used architecture is the pipelined ADC due to its high resolution and fast

rate of operation. The converter works by using sequential stages, each stage determining

the next significant bit of the digital representation. The first stage determines the most

significant bit through a simple comparison. The subsequent stage then subtracts this

bit (after a digital-to-analog conversion) off of the input value. The new value is gained

by a factor of two and an identical comparison stage can be used to determine the next

significant bit. The method can also be generalized to compute multiple bits per stage.
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Pipelined converters provide a high rate and moderate resolution, while keeping die area

and power consumption low.

An alternative to the pipelined architecture is flash ADCs, which are useful due to their

extremely fast rates. They operate by comparing the input voltage to a reference ladder of

2B evenly spaced voltages, where each step requires a unique comparator. The exponential

number of comparators limits the resolution of such designs due to the extra space and cost

associated with more bits. Thus, current flash ADCs are low resolution (≤ 8 bits) but their

fast comparison time allows for rates over 1 Gsps (gigasample per second).

Sigma-delta ADCs offer a significantly higher resolution than any other ADC on the

market, reaching up to 24 bits. By highly oversampling the input signal, the noise can be

shaped to appear in out-of-band frequencies. After shaping, the noise is then filtered out

during the decimation process. This removal leads to higher resolutions, although overall

decimated rates are limited to below 10 Msps.
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Figure 1-7: Performance plot for various types of ADC architectures measuring stated
number of bits against the sampling rate.

The current performance capabilities of each type of converter is plotted in Fig. 1-7

(data courtesy of B. Ginsberg at MIT). The data points on the plot indicate the resolution

versus sampling rate for existing converter designs. As we can see, the sigma-delta points

dominate the high resolution regime and the flash dominate the high rate. The pipelined

ADCs provide the middle range and lie along the current performance line bound.

For a converter resolution of B bits and full voltage range of E volts, the quantization
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steps have size E/2B , giving an input-output function

xout = round

(

2B

E
xin

)

E

2B
. (1.2)

However, due to design issues in the various architectures, this ideal linearity is never

achieved. Problems such as capacitor mismatch or limited opamp gain lead to abnormalities

in the curve [7]. In Fig. 1-8, we plot the transfer curve for an ideal ADC (dashed-dot) and

compare it to the transfer curve for an example non-ideal ADC (solid dots). As we can see,

the various distortion sources lead to decreased performance and a lower number of effective

bits.
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Figure 1-8: Single ADC input-output transfer curves for ideal ADC, example ADC, and
linearized ADC.

To model the combination of distortion sources, we construct a first order approximation

of the transfer curve, which yields the dashed line plotted in Fig. 1-8. Thus, the converter

can be modeled through a gain g, which represents the line slope, and an amplitude offset

A, which represents the line intercept, such that

xout = A + gxin + w (1.3)

where w represents the remaining error, which we model to be Gaussian white noise. This

linearization of the transfer curve conceals the higher-order nonlinear effects that occur in

the ADC. Its general structure allows us to use it as a model for any converter architecture;

and it also forms a robust model for general sampling channels.
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1.1.2 Noise Sources

In (1.3), we model our noise as white Gaussian; however the noise is actually a combina-

tion from multiple sources. The most predominant sources being nonlinearities, thermal

noise, shot noise, quantization noise, and noise from sampling jitter. Each noise has its

own distribution, which we describe more carefully to justify the validity of the Gaussian

approximation.

Quantization noise occurs due to the rounding necessary for digital representation. As-

suming a wide range of input values, the quantization noise is modeled as having a uniform

distribution in the range [−E/2(B+1), E/2(B+1) ]. The variance of this noise decreases as we

increase the number of quantization bits

σ2
Q =

1

12

(

E

2B

)2

. (1.4)

Although quantization is the predominant source of error in some ADCs, we approximate

it as white Gaussian noise for analytic tractability.

The linearization of the ADC transfer curve masks the curve’s nonlinearities, which

results in another source of error. Nonlinear effects arise for several reasons in each type of

converter architecture and therefore have different characteristics. It is difficult to model this

noise more precisely without specifying the converter type and specific design parameters.

For this reason, we ignore the details of these nonlinear effects by modeling it as Gaussian

noise and develop calibration schemes that can broadly be applied to any ADC.

Thermal noise is generated by the effects of thermal motions on the electrons of a

circuit. The noise generally has uniform power across all frequencies, thus it is modeled as

white Gaussian noise. Another electronic noise is known as shot noise. The noise arises

due to the discrete nature of electron charge. These fluctuations are modeled as Poisson,

which approaches the Gaussian distribution for large values. Our ADC noise model fits

this Gaussian model; however, we consider the effects of thermal and shot noise to be

negligible in comparison to quantization noise. Clock jitter leads to another source of noise

in sampling. Because the ADC clock signal cannot be generated perfectly, each sample time

has a random perturbation from its ideal location. These small timing errors lead to a noise

whose power is proportional to frequency. Again, we ignore the specific treatment of this

noise because the timing skews we model in the distributed setup are significantly larger
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than the jitter.

1.1.3 High-speed ADC Applications

ADCs are found in a multitude of electronic devices from digital cameras to electrocar-

diogram machines. These devices have a wide range of sampling requirements in terms of

rate, resolution, and power. Although the current on-the-market ADCs are sufficient for

many applications, there are an increasing number of products that require faster sampling

due to very high bandwidth analog inputs. One common place is communication systems,

where data is being transmitted in the high frequency spectrum. Another recent area of

interest is imaging technologies that use millimeter wavelength signals. We briefly explore

some motiving examples.

Ultra-wideband (UWB) communication systems operate by spreading information con-

tent across multiple orthogonal frequency bands. By using low power in each band, UWB

can exploit the extra bandwidth to transmit while not interfering with other communica-

tion in the spectrum. Transmission often occurs through the use of signal pulses, which

occupy bandwidths in the range of 500MHz to 10GHz. High speed ADCs are necessary in

the channel receiver in order to ensure the signal pulses are detected. UWB technology is

proving useful in high-rate, short distance communication and continues to show promise

for other applications.

Software defined radio is another application which typically uses high-speed ADCs.

In this case, the transmitter and receiver use general purpose processors, rather than an

application specific integrated circuit (ASIC). The software on the processors allow for a

large amount of variability in the transmission scheme. Code rate and frequency band

are among the possible variables that can be dynamically changed in the system. In classic

software defined radio, the receivers directly digitize the high frequency RF signal. However,

to alleviate some of the burden, the signal may be demodulated to an intermediate band

before sampling with an ADC and performing the remaining computation in hardware.

Because the intermediate frequency is still large, a high-speed converter is still necessary

for sampling.

These systems have sampling requirements that are starting to exceed the limits of

the current state-of-the-art ADC performance. Although it may be possible for a single-

channel ADC to service the needs of all these applications in the future, the need for speed
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will always exist. Newer technologies will require faster sampling components. To address

this issue, multiple ADC systems can be implemented to increase the sampling rate of any

single ADC technology. The multi-ADC scheme not only applies to converter technologies

but also generalizes to any distributed sampling system.

1.2 Distributed Sampling Systems

By using multiple sampling channels on a common input, one can often increase the amount

of information known about the input and produce a better estimate. There are many

ways in which to combine the information from the individual channels. For example, in

bandlimited systems if the channels all have the same sampling times, their samples can

first be averaged to reduce noise effects.

In other systems, multiple sampling channels be used to distribute the sampling load

across channels. By staggering the timings of the channels, samples are attained at a larger

number of timing locations and the rate per channel can be decreased while still meeting the

Nyquist criterion. We describe the multi-channel system in the context of time-interleaved

ADCs, although this model generalizes to any distributed sampling system with multiple

channels.

1.2.1 Time-Interleaved ADCs

One widely explored application with distributed sampling is the time-interleaved analog-

to-digital converter (TIADC), where signal sampling is managed by multiple converters.

TIADCs operate in a round-robin manner. In a system of M converters, to realize a system

sampling period of Ts, each converter operates with sampling period MTs and a spacing of

Ts between consecutive converters. Thus, the sampling rate required by the ADCs in the

system is reduced by a factor of M .

There are many reasons to use distributed sampling on a chip. The use of a single

analog-to-digital converter (ADC) is often insufficient to handle the requirements of current

applications. The single converter may not be able sample fast enough or may consume a

large amount of power in order to do so. At high sampling rates, TIADCs offer an attractive

method of sampling by sharing the load across many converters, allowing for a lower amount

of overall power consumption and a greater control over sampling accuracy.
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Figure 1-9: Ideal time-interleaved ADC system with M converters

Although TIADCs may avoid some of the problems presented by using a single high

speed ADC, they also introduce a new set of problems. In particular, variations among the

individual ADCs in a time-interleaved system lead to inaccurate sampling [5, 41, 32, 48].

The primary source of error in TIADCs is timing skew, which is caused by signal path length

differences. Although system designers try to ensure that the clock signal and input signal

travel uniform distances to each converter, restrictions in the physical layout introduce

unavoidable errors. Even when clock and signal paths are precisely matched, variations in

gate delays also result in timing skew. The skew is often modeled as a fixed parameter of

the system, but may change after long periods of time.

Other sources of error in the individual converters are modeled as a gain mismatch and

amplitude offset as in (1.3). Because the converters are not identical, the gain and offsets

vary among the converters [14]. Although these gain and offset nonuniformities can degrade

performance, a variety of circuit based matching and calibration techniques exist to reduce

their effects. Therefore, in our development of calibration methods, we focus on the timing

mismatch.

These sources of error in TIADCs also provide a general model for the distributed

sampling system, where channels may have independent gains and time delays. In this

thesis, we develop calibration methods that are designed for the minimization of such errors.

We focus on methods which use digital post-sampling processing to increase the performance

in the TIADC system.
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1.2.2 Applications

With efficient calibration, the multi-channel TIADC can be used to replace the single chan-

nel ADC in any application. Although its power versus performance tradeoff has yet to

prove beneficial in the low-rate regime, it is being implemented in future high-speed appli-

cations such as UWB and millimeter imaging.

The TIADC channel model generalizes to other distributed sampling systems. Rather

than assuming all channels are on a common chip with a common clock signal, there are

many other natural realizations of the multi-channel model. Sensor networks that have

independent nodes sampling a common signal also face the same issues. Timing skew can

occur due to the lack of synchronization and physical locations can cause gain variations.

In the following section, we present the problem formulation and detail the possible

input signal classes which can be used for calibration.

1.3 Calibration Setup

We now describe the general problem setup for the multi-channel distributed sampling sys-

tem. The input to the system x(t) is modeled as a bandlimited signal with cutoff frequency

Ωc, i.e. the continuous time Fourier transform X(jΩ) = 0 for Ωc < |Ω|. The overall sam-

pling period Ts of the system is chosen to ensure that the sampling rate strictly exceeds the

Nyquist frequency, i.e., Ts < π/Ωc, thus creating some amount of excess bandwidth. The

signal recovery problem is to estimate

x[n] = x(nTs), (1.5)

which is bandlimited to ωc = ΩcTs < π, as accurately as possible from the component

outputs.

We model the output of the ith constituent component as

yi[n] = x(nMTs + τ ′
i) + wi[n] (1.6)

where the τ ′
i model the unknown timing shifts. Without loss of generality, we can choose

an arbitrary time reference, thus we let τ ′
0 = 0. In ideal systems which contain uniformly

spaced components, the timing shifts are spaced Ts time apart, i.e. τ ′
i = iTs.
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In systems with small amounts of error, the timing shifts can be modeled through their

deviation from uniform timing,

τ ′
i = iTs + τi (1.7)

where the τi represent the skew from uniform timing. The gains gi and offsets Ai are

assumed to be pre-calibrated although their treatment is considered in subsequent sections.

The wi[n] in (1.6) represents the aggregate noise, modeled as white Gaussian whose variance

primarily depends on the number of bits to which the input is quantized.

We use the following notation to represent the signal obtained by multiplexing the

component outputs

y[n] = yi

[

n − i

M

]

n (mod M) = i. (1.8)

This received signal is also referred to as the uncalibrated signal.

In Figure 1-10, an example sampling pattern is shown for M = 4 components. The

multiplexed output (1.8) is nonuniform periodic (recurrent) samples of the input.

T + τ1

Figure 1-10: Signal sampled with M = 4 sets of periodic samples. Dotted lines show
uniform samples. Solid lines show nonuniform samples.

1.3.1 Input Signal Classes

Within this thesis, we examine a variety of different input signal classes. The classes are

generated from models of real-world problems. We begin with arbitrary bandlimited sig-

nals and then examine narrower and broader classes of signals. In general, as we add more

restrictions to the input class, the complexity increases however there are often more char-

acteristics that can be used for blind calibration. We now introduce multiple situations that
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motivate these classes.

Bandlimited Input Signals

A continuous-time bandlimited signal is a signal whose power goes to zero outside a finite

frequency range. This class has long been used to model a variety of signals in the real

world. There are both mathematical and physical reasons to do so. Mathematically, it

provides a separate basis on which to represent and process the signal. And physically, it

can represent signals that are continuous and differentiable and where the rate at which

the variable changes is limited by a physical restriction. As we stated, this class is only a

model; thus, it is possible that the actual signal deviates from the class. We model this

deviation as error and ensure its effects are negligible as long as it stays small.

Stationary Signals

In many situations, the statistics of the input signal are constant over time, a property

known as stationarity. The statistics commonly dealt with are the mean and variance of

the signal, as well as the correlation between samples spaced by fixed distances apart. Fixed

mean and autocorrelation is known as wide-sense stationary.

Stationarity is a common property for models of signals in engineering systems. When

a communications channel is not changing rapidly, the signals transmitted and received

have a fixed power spectral density (implying a fixed autocorrelation) for a period of time.

This period is known as the coherence time for which the statistics are constant. Longer

coherence times for the spectrum are possible in systems like sensor networks and digital

subscriber line (DSL). For other channels, such as cell phone communications, the coherence

interval is shorter due to mobility and interference variations.

Arbitrary Signals

Although not built into the current model, arbitrary signals can also be sampled in a

distributed sampling system. The channel outputs provides a partial representation of

input but does not guarantee the possibility of perfect reconstruction. For example, in the

case of continuous-time Brownian motion as an input, the variance can be estimated but the

signal itself cannot be reconstructed from periodic samples. Also, a signal with sharp jumps

cannot be fully represented by its samples. In some systems, this partial representation is
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X(ejω) Y (ejω)

ππ

Figure 1-11: Example of aliasing due to periodic nonuniform sampling with M = 2 compo-
nents

sufficient; however, many systems desire the ability to uniquely determine the input. As

described in [2], unique reconstruction from nonuniform sampling is possible for other input

classes, such as shift-invariant spaces.

1.3.2 Bandlimited Class Restrictions

Although we specify that x[n] must be bandlimited, it is necessary to add additional re-

quirements on the input class in order to ensure that accurate blind reconstruction can be

obtained in a time-interleaved system. In particular, we restrict ourselves to the class of

nontrivial input signals for which nonuniform periodic sampling (with non-zero skew) yields

aliased content in the frequency band ωc < ω < π, i.e.

Y (ejω) 6= 0 for some ωc < ω < π. (1.9)

This requirement on the input is equivalent to saying that it must be possible to detect that

the received signal y[n] is not bandlimited to ωc. Without this requirement, the problem

becomes ill-posed as the input signal x(t) which generates output y[n] may not be unique.

It will be straightforward to establish that for our class of signals, the out-of-band energy

in ωc < ω < π for the estimated signal x̂[n] is zero if and only if the parameter values so

determined are the correct ones.

The calibration methods presented can also work for a larger class of signals, where the

aliased content due to nonuniform sampling appears in other bands of the spectrum; in

this case, the algorithms can be redefined with small modifications made to the filters, as

discussed in subsequent chapters.

To understand this better, we briefly examine some example subclasses of bandlimited
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input signals:

• Inputs x(t) which are spectrally ‘full’

X(ejω)











6= 0 |ω| ≤ ωc

= 0 ωc < |ω| ≤ π

(1.10)

Aliasing occurs in the band ωc < |ω| ≤ π and the algorithm can be used to accurately

estimate the unknown timing skews.

• Passband signals with aliasing in other bands, e.g.,

X(ejω)











6= 0 π
2 ≤ |ω| ≤ 2π

3

= 0 otherwise

(1.11)

For M = 2 converters, the aliasing in y[n] appears in the band π/3 ≤ |ω| ≤ π/2.

Thus, the signal is still bandlimited to 2π/3. The calibration algorithms which are

presented can be modified to handle such signals as long as the input signal band

π/2 ≤ |ω| ≤ 2π/3 is known to the system.

• Passband signals whose aliasing occurs in the passband, e.g.,

X(ejω)











6= 0 π
3 ≤ |ω| ≤ 2π

3

= 0 otherwise

(1.12)

For M = 2 converters, the aliasing also appears in the band π/3 ≤ |ω| ≤ 2π/3. Any

estimate of the timing skews will yield an estimate x̂[n] which lies in this passband;

thus, the signal cannot be accurately reconstructed.

In systems with M > 2 ADCs, the spectral content is aliased to M−1 locations and there

may be more locations in which the aliasing in y[n] is detectable. As shown in subsequent

chapters, knowledge of all aliasing spectrum locations with zero signal content will increase

calibration accuracy.
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1.4 Calibration Background

Digital calibration of analog circuitry has been present for many technological generations.

As new technologies require the use of higher performance analog circuitry, often the analog

components cannot realize the necessary system specifications in a power- and cost-efficient

manner. Also, process variations in chip production can require larger design margins to

keep chip yields high.

With digital performance scaling aggressively, large benefits can be achieved by finding

digital methods to compensate for inadequate analog circuit performance and allowing the

system designer to relax analog circuit constraints. Advantages can include a reduction in

cost, power consumption, and size, along with providing an increase in speed, accuracy,

testability, and system robustness. In the TIADC system, multiple ADCs can be used

to reduce the load on individual ADCs and digital compensation techniques can further

broaden the range of acceptable circuit designs.

The calibration of timing-skews requires a careful approach. Because the output of

an individual channel is under the Nyquist rate, it only provides partial representation of

the input. The traditional techniques of time-delay estimation are ineffective due to the

aliasing; thus multiple channels must be combined to estimate the input. This multiplexing

introduces timing skew between samples, whose effects are nonlinear.

There are many different possible approaches to system calibration (input reconstruc-

tion) in such systems. In general, the estimation of the mismatch parameters can be de-

coupled from the TIADC and reconstruction, as shown in Fig. 1-12. After the estimates

are formed, they can be used to modify the analog sampling circuit [26] or to modify the

reconstruction filter [11]. Also, some systems assume knowledge of the input at the estima-

tion box, usually with the use of a training signal. These two characteristics: whether the

system uses skew estimates in the analog or digital domain and whether the system uses a

training signal, can be used to differentiate the calibration algorithms. We briefly review

the literature background on calibration techniques that have been proposed in the past.

A training signal can be used in calibration by either pausing the normal input or by

injecting the training signal into the normal input. Because pausing the input leads to

system delays, this method is usually not preferred in practical implementation. Instead,

a known background signal can be added to the input, which facilitates the estimation of
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Figure 1-12: System layout of calibration decouples mismatch estimation and signal recon-
struction

the timing-skews. After skew estimation, this known signal is then subtracted away in the

digital domain. In [27], a basic method for training signal based estimation is presented

by inputting a reference function to the TIADC and measuring the difference between

the sampled value and the known value. Multiple types of training signals are analyzed,

including the ramp, triangular, and sine functions. The various implementations of such

a method require extra hardware, decrease the sampling resolution, and can require long

calibration times if performed in the background.

An alternate approach to calibration is to perform blind recovery using only the ADC

outputs. This approach does not require any dedicated time for calibration. Such methods

may use oversampling and take advantage of the excess bandwidth in the system to enable

parameter estimation. Or other properties of the input like stationary statistics can also

be exploited for estimation The primary focus is to perform calibration without placing

significant restrictions on the input class and while keeping computation complexity low

for large numbers of converters; however, it is often the case that one of these goals is not

achieved.

There has been growing interest in such blind methods for time-interleaved ADCs

[10, 39, 16, 25, 11, 44, 45, 23, 24, 49, 47]. Because computing the optimal parameter esti-

mates involves the minimization of a complicated nonlinear function of the timing-skews,

the solution is not analytically tractable and therefore difficult to implement in hardware.

Multiple calibration algorithms have been developed to approximate this solution.

In [39], a basic method for skew-estimation is presented by performing an exhaustive

search over the parameter space. By quantizing the M dimensional space of skews, each
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possible set of skew values can be tested to minimize a certain heuristic. Assuming there

are no local minima, the method can converge upon true values. Although some reduction

of the space is possible, the solution is exponential in terms of the number of timing skews

and requires are large amount of computation.

Other approaches impose a stationarity property on the input. By doing so, the sys-

tem can take advantage of the correlation between samples to produce a low complexity

calibration scheme. Only the computation of the difference between channel outputs is nec-

essary in [16]; while [44] focuses on designing a TIADC reconstruction filter whose output

matches the statistics of the input signal. For M = 2 converters, an efficient hardware

implementation is possible [45]; however estimation is difficult for systems operating close

to the Nyquist rate. An alternate 2-ADC blind calibration method that does not require

input stationarity is proposed in [25]. This method uses a modified phase detector to esti-

mate timing skew. Although the calibration algorithm has low complexity, it requires large

amounts of oversampling and does not generalize to M > 2 converters.

In [24, 24], a frequency based approach is presented that takes advantage of the fact

that only M −1 copies of the aliasing are present at the frequency band around zero. Time-

skews are picked to invert the aliasing effect and simplifications that reduce complexity are

also presented. Calibration shows promising performance for systems with few converters

(M = 2 in [23], M = 4 in [24]). For larger numbers of converters, the algorithm becomes

computationally inefficient because the complexity-reducing steps are no longer valid.

Calibration of systems with larger numbers of converters has been examined in [11],

which is presented in this thesis, and by other authors [49, 47]. By using Taylor series ap-

proximations to linearize the problem, vast advances have been made that reduce the com-

plexity while providing accurate parameter estimates. These methods address the problem

in both the time and frequency domain.

In general, these calibration schemes are designed to perform time-skew parameter es-

timation. From these estimates, it is necessary to provide a reconstruction method to

estimate the input. While the original method of nonuniform periodic reconstruction was

presented in [52], multiple methods have been developed that focus on efficient signal re-

construction [34, 17, 28, 29, 46, 12]. These works describe methods to reduce complexity

such as filter approximations and parallelization techniques In this thesis, we develop new

methods for both parameter estimation and signal reconstruction as well as bounds for their
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performance. We now detail an outline of the thesis.

1.5 Thesis Outline

The thesis is organized as follows. In Chapter 2, we present multiple methods of input

signal recovery in systems when the time-skews of the channels are known. Starting from

basic nonuniform reconstruction methods, we develop a reconstruction approximation that

can be efficiently implemented. We also develop a method that is optimal in the presence

of additive noise on the samples. Using the reconstruction approximation, we construct

and solve a least-squares formulation for estimating the unknown mismatch parameters in

Chapter 3. The estimation algorithm is developed for the small mismatch case, where the

time-skews τ are small in magnitude; however, it is also applicable to systems with larger

skews.

The performance bounds of nonuniform sampling with noise are computed in Chapter 4

through an examination of the eigenvalues of sampling matrices. The performance gain of

adding extra sampling components is also presented. This case of ’extreme oversampling’

is discussed in Chapter 5. By greatly increasing the number of channels, it is possible to

take advantage of the oversampling to reduce the calibration complexity. Algorithms are

presented for ordering samples and for efficiently estimating the input. We conclude with

a summarization of results and remarks about future work in Chapter 6.
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Chapter 2

Signal Reconstruction

In this chapter, we explore methods of signal reconstruction in distributed sampling systems,

as seen in Fig. 2-1. Distributed systems are able to sample an analog signal at a fast rate

by allowing nonuniform sampling. However, there is added complexity and noise sensitivity

when reconstructing uniform samples. We develop computationally efficient and noise-

resistant methods for signal reconstruction from periodic nonuniform samples when the

timings are known.

τ̂

x(t) y[n] x̂[n]
ReconstructionTIADC

Estimator

Mismatch

Figure 2-1: Signal Reconstruction

Methods for reconstruction of uniform samples from nonuniform samples have been

widely explored [4, 51, 2]. The case of periodic nonuniform sampling has also been stud-

ied in detail since it allows for practical implementations. In [17], the added structure

of the periodic nonuniform sampling is exploited to develop a filterbank that reconstructs

bandlimited inputs perfectly. More computationally efficient methods for approximate re-

constructions are given in [29, 46].

Reconstruction methods also operate in the presence of noise, which can be introduced

through a variety of sources including quantization and thermal noise. This noise can
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seriously degrade performance when reconstructing uniform samples from the nonuniform

samples [43]. This issue is addressed in the general setting for nonuniform sampling [2, 38];

however, it is often cursorily treated in efficient periodic nonuniform reconstruction.

We start by presenting a method for perfect reconstruction in the absence of noise. We

then construct an approximation of this reconstruction method. By re-writing the problem

in matrix form, we develop a low-SNR reconstruction scheme. Finally, we examine iterative

reconstruction solutions and present simulation results. The benefits of each method are

analyzed to determine the useful regime. The methods presented will also motivate the

mismatch estimation methods that are proposed in later sections.

2.1 Perfect Reconstruction

We first examine the relationship between output y[n] and uniform samples of the input

x[n] and then present methods of recovering x[n] from y[n]. We develop our reconstruction

for the high SNR (signal-to-noise ratio) regime, where σ2 → 0, and later introduce the

effects of noise on our signal estimation.

Because the input is bandlimited to Ωc and the sampling frequency is higher than the

Nyquist frequency, the input can be written as

x(t) =
∑

m

x[m] sinc(t/Ts − m). (2.1)

In the absense of noise, for n (mod M) = i, the output

y[n] = x(nTs + τi) (2.2)

=
∑

m

x[m] sinc((n − m) + τi/Ts). (2.3)

This received signal can be viewed as the output of a linear time-varying filter

y[n] = (fi ∗ x)[n] n (mod M) = i (2.4)

where the fi[n] filters represent the fractional sample delays in (2.3).

The general approach for input estimation is to invert the effects of the time-varying

filters in (2.4). Typically, the inverse of a time-varying filter is difficult to compute; however,
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due to the added structure of our formulation, there exists a closed form solution. In the

absence of noise, the input x[n] can be reconstructed from y[n] through another set of

time-varying filters gi[n] such that

x[n] = (gi ∗ y)[n] n (mod M) = i. (2.5)

To give insight into the methods used to construct these filters, we briefly introduce some

results from sampling theory.

A bandlimited analog signal can be reconstructed from its samples if the average sam-

pling rate is faster than the Nyquist rate. One general method of nonuniform reconstruction

is presented by Yao and Thomas [51]. Suppose x(t) is a finite energy, bandlimited signal,

X(jΩ) = 0 for |Ω| > Ωc − ǫ for some 0 < ǫ < Ωc. If the following properties are satisfied by

the sample timings,

|tn − n
π

Ωc
| < L < ∞ (2.6)

|tn − tm| > γ > 0 n 6= m, (2.7)

where tn is the time of the nth sample, then x(t) can be reconstructed from its samples

x(tn). The reconstructed signal x(t) is:

x(t) =

∞
∑

n=−∞

x(tn)
G(t)

G′(tn)(t − tn)
(2.8)

where

G(t) = (t − t0)

∞
∏

n=−∞,n 6=0

(

1 −
t

tn

)

. (2.9)

By plugging the periodic nonuniform sampling pattern into tn, the reconstruction (2.8) can

be simplified. In [52], this simplification is developed for the M component distributed

sampling system in the absense of noise

x(t) = γ(t)
∞
∑

α=−∞

M−1
∑

i=0

y[Mα + i]
ai(−1)αM

π(t − αTA − τ ′
i)/TA

(2.10)
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where

ai =
1

∏M−1
k=0,k 6=i sin(π(τ ′

i − τ ′
k)/TA)

, (2.11)

γ(t) =

M−1
∏

k=0

sin(π(t − τ ′
k)/TA) (2.12)

with TA = MTs denoting the sampling period of a single component and τ ′
k = kTs + τk.

The discrete time equivalent filter can be derived by sampling at times t = nTs.

Equation (2.10) performs perfect reconstruction when no noise is present in the system

and sample timings are known precisely. However, a large amount of computational power

is necessary to compute and implement the time-varying filters. Also, the reconstruction

is suboptimal in the presence of noise. In the following sections, we develop alternative

methods that address these issues more carefully.

2.2 Reconstruction Approximation

The reconstruction (2.10) is nonlinear in terms of the timing skews. To simplify this rela-

tionship, we turn to an approximation of the reconstruction equation where we assume that

the timing skews are small in magnitude (|τi| ≪ Ts). This approximation is valid within

the high-resolution time-interleaved ADCs, as discussed later. Aside from decreasing the

complexity of the reconstruction, the approximation presented will also allow for easier

estimation of the unknown mismatch parameters.

In Appendix A, we derive an approximation to (2.10) by the first-order Taylor series

around the point τ/Ts = 0, where vector τ represents the timing skews

τ = [τ1 τ2 ... τM−1]
T . (2.13)

At times t = nT , the approximation yields

x̂[n] ≈ y[n] −
τi

Ts
(h ∗ y) [n] n (mod M) = i (2.14)
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Figure 2-2: Recovery filterbank for an M component distributed sampling system using
time-skew values τ

where

h[n] =











0 n = 0

(−1)n

n otherwise

(2.15)

is a discrete-time derivative filter and τ0 = 0 as specified previously. The linearity of the τi

in (2.14) will be useful for our blind mismatch estimation.

A filterbank implementation of (2.14) is shown in Figure 2-2. Only one filter h[n] is

used and each sample of the filter output is multiplied by its corresponding timing skew.

The signals are multiplexed and added to y[n] to attain a reconstruction of the input. The

complexity is greatly reduced from the general equation but performance is sacrificed for

large skews. In Section 2.6, we plot the accuracy of this approximation.

2.3 Matrix Formulation

In order to ease future analysis, we rewrite our sampling and reconstruction equations in

a matrix form. Vectors are used to represent signals truncated to a block length of size

N and matrices are used to represent filters. This simplification of notation will motivate

the low-SNR reconstruction method, which is introduced in the next section. We reintro-

duce noise into the problem in order to accurately understand the sampling equations and

reconstruction approximation.
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2.3.1 Output Generation

To start, we write the distributed sampling output signal (2.3) with noise as

y = Fx + w (2.16)

with vectors representing the received signal, the uniformly sampled input signal, and the

noise signal

y =
[

y[0] y[1] . . . y[N − 1]
]T

(2.17)

x =
[

x[0] x[1] . . . x[N − 1]
]T

(2.18)

w =
[

w[0] w[1] . . . w[N − 1]
]T

(2.19)

and matrix

Fk,l = sinc((k − l) + τi/Ts) i = k (mod M) (2.20)

where 0 ≤ k, l ≤ N − 1. By using matrix notation to describe the sampling, we are

performing an approximation by truncating the signal into blocks and approximating filter

tails. We assume that these edge effects can be ignored by choosing a sufficiently large block

size, although their treatment is more carefully handled during simulation.

Similar to the approximation (2.14), we can also compute the first order expansion of the

sinc terms in the fi from (2.4) around the point τi/Ts = 0. This yields the approximation

y[n] ≈ x[n] +
τi

Ts
(h ∗ x) [n] + w[n] n (mod M) = i (2.21)

where h[n] is given in (2.15). In matrix form, (2.21) becomes

y = x +
M−1
∑

i=1

τi

Ts
DiHx + w (2.22)

with N × N Toeplitz matrix H representing the h filter, i.e., Hk,l = h[k − l]. The Di are
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N × N diagonal matrices that select the entries from the ith channel,

[Di]k,l =











1 k = l, i = k(mod M)

0 otherwise

(2.23)

where 0 ≤ k, l ≤ N − 1.

Simplifying (2.22) further,

y = (I + TH)x + w (2.24)

where T is a diagonal matrix containing the skews

Tk,l =











τi k = l, k − 1 (mod M) = i

0 otherwise

(2.25)

and τ0 = 0 as stated previously. The matrix equations (2.16) and (2.24) yield the actual

and approximate relationship, respectively, between x and y.

2.3.2 Input Reconstruction

In a similar fashion, we can rewrite the reconstruction equation (2.10) as

x̂ = Gy (2.26)

where for l = r(mod M)

Gk,l = γ(kTs)
ar(−1)(l−r)M

π(kTs − (l − r)TA − τ ′
i)/TA

(2.27)

as defined in (2.10). Vector x̂ represents the estimated signal

x̂ =
[

x̂[0] x̂[1] . . . x̂[N − 1]
]T

. (2.28)

Note that in the absence of noise, the reconstruction equation will fully invert the nonuni-

form samples. Thus, ignoring the matrix edge effects, we find that G ≈ F−1.
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The small timing skew approximation for reconstruction (2.14) yields matrix equations

x̂ = y −
M−1
∑

i=1

τi

Ts
DiHy (2.29)

= (I − TH)y, (2.30)

where Di, H, T are defined previously. The matrix equations (2.26) and (2.30) yield the

actual and approximate relationship, respectively, between x̂ and y.

By combining the sampling and reconstruction approximations (2.24) and (2.30), we

find that

x̂ = (I − TH) (I + TH)x + (I −TH) w (2.31)

= (I − THTH)x + (I − TH)w. (2.32)

As expected, in the absence of noise, the reconstruction approximation is accurate up to

the second order in τi.

2.4 Noisy Signal Reconstruction

Until now, we have ignored the treatment of noise within the reconstruction. In cases

where the input is oversampled, the reconstruction filter must be modified in order to

reduce the noise effect on the estimate. Designing new filters to optimally handle the

noise is intractable in the signal domain since it requires the inverse of more complicated

time-varying filters. Instead, we use the matrix representation of the system to aid in the

development of our algorithm. We now present a method for signal reconstruction from

noisy periodic nonuniform samples when timing-skews are known. We begin by introducing

a naive estimation method and then introduce a constrained least-squares formulation that

allows for increased accuracy in the low-SNR setting.

2.4.1 Naive Least-Squares Estimation

The least-squares (LS) estimate for the input signal is given by

x̂LS = arg min
x

‖hxb − F(τ )x‖2 (2.33)
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where we now explicitly indicate the dependence of F on the vector of timing skews τ .

Because the noise w is modeled as white Gaussian, the LS estimate is equivalent to the

maximum-likelihood (ML) estimate. The solution is equal to

x̂LS = (FT F)−1FT y = F−1y (2.34)

since F is invertible when the τi are sufficiently small.

This estimation method is equivalent to the inverse filterbank (2.10). The estimate

performs well in high SNR situations. However, as noise power increases, it is clear to

see that this estimate is suboptimal since it is not guaranteed to be bandlimited. A more

accurate estimate of x can be produced by enforcing the bandlimited constraint on the

estimator x̂. We label this as the filtered least-squares (FLS) estimator:

x̂FLS = LF−1y. (2.35)

where L is a matrix implementing a lowpass filter bandlimited to ωc.

By plugging in for y in the estimator, we find

x̂FLS = LF−1(Fx + w) (2.36)

= x + LF−1w. (2.37)

Thus the error term equals eFLS = LF−1w.

2.4.2 Constrained Least-Squares Estimation

We develop a more accurate estimator by imposing the bandlimited requirement directly

into the least-squares estimation. The constrained least-squares (CLS) optimization prob-

lem is given by

x̂CLS = arg min
x∈S

‖y − F(τ )x‖2 (2.38)

where S = {x | x ∈ RN , Lx = x}.

By introducing a secondary variable z, where x = Lz, we can remove the constraint in
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the LS formulation

ẑCLS = arg min
z

‖y − FLz‖2 (2.39)

x̂CLS = LẑCLS. (2.40)

First, we must compute ẑCLS. Because the matrix L is singular (high frequency vectors

lie in the nullspace), the product matrix FL is also singular; therefore it is not possible to

take the inverse of this matrix in order to compute the maximum likelihood estimate ẑCLS.

Instead, we use the pseudoinverse

ẑCLS = (FL)†y (2.41)

where (·)† is given by the Moore-Penrose pseudoinverse [40]

(FL)† = lim
δ→0

((FL)T (FL) + δI)−1(FL)T . (2.42)

The overall solution is given as

x̂CLS = L(FL)†y. (2.43)

To compute the CLS estimator error, we plug in for y and find

x̂CLS = L(FL)†(Fx + w) (2.44)

= x + (FL)†w. (2.45)

The error term equals eCLS = (FL)†w.

2.4.3 Reconstruction matrix operations

We now analyze the matrix operations in this estimator. The lowpass filter matrix can be

implemented by a frequency sampling filter matrix, i.e.

L = D−1ΣLD (2.46)
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where D is the N × N DFT matrix, and ΣL is the frequency response of the filter. Since

L represents a lowpass filter with cutoff frequency ωc, it is equivalent to having the (N −

k) eigenvalues that correspond to the low frequency eigenvectors equal to one and the

k eigenvalues that correspond to high frequency eigenvectors equal to zero, where k =

⌊N(π − ωc)/π⌋. The N × N eigenvalue matrix is given by

ΣL =





IN−k 0

0 0



 . (2.47)

It is clear to see that the nullspace of L corresponds to linear combinations of high frequency

vectors.

The pseudoinverse of L is equivalent to inverting all the non-zero eigenvalues. Because

each of these eigenvalues is equal to one, their inverses are equal to one (and the zero

eigenvalues remain zero). Thus we find that L† = L. Note that without the frequency

sampling approximation (2.46), the matrix L may have very small non-zero eigenvalues.

When the matrix is inverted, these eigenvalues become very large but their effects can be

negated with a power constraint on x̂, [19].

Now, we analyze the properties of the product FL. The singular value decomposition

is given by

FL = UΣFLVT (2.48)

where U and V are N × N orthonormal matrices. It is easy to see that because F is full

rank, the nullspace N (FL) = N (L) and has rank N − k. Thus ΣFL can be decomposed as

ΣFL =





ΣS 0

0 0



 (2.49)

where ΣS is an (N − k) × (N − k) diagonal matrix.

The bottom k rows of VT span the high frequency nullspace of L, and the top rows

span the low frequency space. Again, since (FL)† inverts only the non-zero eigenvalues, we

find that

(FL)†FL = VΣLVT = L (2.50)
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where the second equality holds because the nullspaces of FL and L are equal and the

low frequency subspace has unity eigenvalues. This simplification does not imply anything

about the product FL(FL)†. For similar reasons, it is easy to see that L(FL)† = (FL)†.

From the analysis above, we can better interpret the CLS estimator. First, the received

signal is projected into the space of τ -spaced periodic nonuniform samples of any possible

bandlimited signal, i.e. the space spanned by FL. This produces the intermediate estimate

FL(FL)†y. The nonuniform sampling is then inverted by applying F−1. Thus, the noise

reduction occurs on the nonuniform samples before the signal reconstruction.

Fig. 2-3 shows a graphical representation of the CLS and FLS estimators. Convex set B

represents signals bandlimited to ωc and convex set Fτ represents signals that can be written

as Fs, where s ∈ B. The input x begins in B. The periodic nonuniform sampling produces

the signal Fx in Fτ and the noise perturbs the signal away from this set to y = Fx + w.

As described above, the CLS estimator removes noise before reconstruction by projecting

y into Fτ and then producing its compliment in B. On the other hand, the FLS estimator

removes noise after reconstruction by first inverting the nonuniform sampling (producing

F−1y) and then projecting into B.

The CLS approach provides a more efficient method for noise reduction than the equiv-

alent frequency-domain techniques for signal estimation, which are not as easily realizable

in hardware. It also provides insight into optimal methods for treating noise when develop-

ing practical reconstruction filters. In the following section, we will show the performance

improvement of the CLS estimator over the naive FLS method.

2.4.4 Analysis of Estimators

To compare the estimators, we analyze their bias, variance, and efficiency. From (2.37) and

(2.45), it is clear that estimators FLS and CLS are unbiased, i.e., E[x̂] = x. The unbiased

property is due to the fact that the expectation of any linear combination of the noise w[n]

is zero.

The covariance matrices of the noise are given by

ΛFLS = E[eFLS eT
FLS] = σ2L(FT F)−1LT (2.51)

ΛCLS = E[eCLS eT
CLS] = σ2(FL)†(FL)†

T
. (2.52)
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Figure 2-3: Graphical representation of the estimator operations. Set B represents the
convex set of bandlimited signals. Set Fτ represents the convex set of signals that can be
written as Fs, where s ∈ B.

From these matrices, we can calculate the average variances

σ2
FLS =

1

N
σ2 tr(L(FTF)−1LT ) (2.53)

σ2
CLS =

1

N
σ2 tr((FL)†(FL)†

T
). (2.54)

Because comparing the errors is not analytically tractable, we numerically calculate them

in Section 2.6 and verify that σ2
CLS ≤ σ2

FLS, where equality holds if no noise is present in

the system.

An estimator is efficient if its error variance achieves the Cramer-Rao bound (CRB). In

[20], the CRB is redefined for constrained parameter estimation problems. For the problem

of

x̂ML = arg max
g(x)=0

py|x(y|x) (2.55)

where the g(·) function may contain multiple nonlinear equations, the constrained CRB

bound is given by

Λx̂ ≥ J−1 − J−1G(GT J−1G)−1GT J−1 (2.56)
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where

J = −E
[

∇x ln py|x(y|x) · ∇T
x ln py|x(y|x)

]

(2.57)

is the Fisher information matrix and

G = ∇xgT (x) (2.58)

is the N × N gradient matrix of the constraints. In the time interleaved component setup,

the constraints enforce that the estimate is bandlimited, g(x) = (I − L)x. We find

J = FTF, G = (I − L)T (2.59)

yielding the bound on Λx̂ given in (2.56). Thus, we have the individual variance bound as:

var[x̂i(y)] ≥ [Λx̂]i,i. (2.60)

It is clear that the CLS estimate will achieve the CRB for the constrained ML problem

because the constraints are linear. This property can also be seen because the CLS estimate

is directly minimizing the Gaussian noise, whereas the FLS estimate indirectly minimizes

the noise through a colored function of it. Therefore, by incorporating the bandlimited

constraint into the LS estimation, we create an unbiased estimator x̂CLS that performs

better than the naive ’reconstruct and filter’ estimator x̂FLS.

2.5 Iterative Methods of Reconstruction

Alternative techniques for reconstruction are now developed by using iterative methods.

The use of iterations can allow for a deeper understanding of the signal geometries; however

these methods are often too complex for practical implementation.

2.5.1 Frame Method

In [2], a reconstruction method is developed for an arbitrary nonuniform sampling pattern

in the presence of noise. The method applies for any shift-invariant space, which is spanned

52



by a generator φ,

x(t) =
∑

k

x[k]φ(t − k). (2.61)

We apply this technique to the periodic nonuniform sampling of distributed sampling, where

φ(t) = sinc(t/Ts). For the moment, we will ignore the system noise and later show stability

when it is present.

In a general shift-invariant space, we can think of each sample y[n] as a projection of

the input x(t) onto a shifted copy of a function K(t),

y[n] = x(tn) = 〈x,Ktn〉 =

∫

x(t)Ktn(t)dt. (2.62)

where Ktn(t) = K(t − tn). For distributed periodic sampling,

Ktn(t) = sinc((t − tn)/Ts), (2.63)

where tn = nTs + τn and τn = τi for i = n(mod M). As long as the Nyquist condition is

satisfied, the Ktn functions form a Hilbert frame for the bandlimited space B, implying that

there exists α > 0 and β < ∞ such that

α‖x‖2 ≤
∑

n

|〈x,Ktn〉|
2 ≤ β‖x‖2 (2.64)

for all x ∈ B. For any frame, there exists a dual frame K̃ such that the input x(t) can be

uniquely determined [9] by

x(t) =
∑

n

〈x,Ktn〉K̃tn(t) =
∑

n

y[n]K̃tn(t). (2.65)

Thus, the dual frame K̃ acts as an interpolating function for the nonuniform samples. For

our distributed sampling setup, both equations (2.8) and (2.10) provide solutions for the

dual frame. However, without knowledge of the dual frame, there also exists an iterative

method that provides an equivalent solution.

53



Starting from the initial samples y0[n], we can form a first estimate of the input x(t) as

x̂1(t) =
∑

n

〈x,Ktn〉Ktn(t) =
∑

n

y0[n]Ktn(t). (2.66)

From this estimate of the input, we can resample at times t = tn, forming the signal

y1[n] = x̂1(tn). At the next time step, we can form a new estimate based upon our initial

estimate and our updated samples,

x̂2(t) = x̂1(t) − λ
∑

n

y1[n]Ktn(t) + λx̂0(t) (2.67)

where λ is a step-size equal to 2/(α + β) from (2.64). Recursively, we can iterate between

forming a new input estimate and sampling at times tn

x̂(i+1)(t) = x̂i(t) − λ
∑

n

yi[n]Ktn(t) + λx̂0(t) (2.68)

y(i+1)[n] = x̂(i+1)(tn). (2.69)

The method converges to the input x̂∞(t) = x(t) and y∞[n] = y[n]. This iterative algorithm

works by continually re-influencing the estimate of the input by the known values at times

tn. In the presence of noise, the method is stable and converges to a point within a noise

ball around the true value [2].

2.5.2 Projection onto Convex Sets Method

An alternate iterative procedure can be derived in discrete-time from the projection onto

convex sets (POCS) method. To setup this reconstruction method, we first quantize our

timing skews by a factor of Ts/v, where v is the time quantization size. By doing so, we can

rewrite the entire problem in the discrete domain. The input to the distributed sampling

system is the oversampled signal xov[n] = x(nTs/v) and the ith component selects samples

yi[n] = xov[nvM + (i − 1)v + δi], (2.70)

where δi is τi quantized by Ts/v, i.e.,

δi = round

(

τi

Ts/v

)

. (2.71)
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The output of all the components can now be written as a signal on this finely spaced

grid by filling in the known samples and substituting zero for all unknown samples

yov[n] =











xov[n] for n ∈ T

0 otherwise

(2.72)

where T is the set of times of the component samples, i.e. T = {kvM + iv + δi} for integer

k and 0 ≤ i < M . In vector form, we take blocks of vN samples from the signals xov[n] and

yov[n] to form

yov = Sxov (2.73)

where S is a 0/1 diagonal matrix

Sj, =











1 j ∈ T

0 otherwise

. (2.74)

Thus, the vector yov is zero except in the locations where the samples are known from the

components. This received vector is the effective multiplexing of the outputs.

To estimate the input in this discretized time-skew setup, we use the method of POCS,

which provides an iterative algorithm for finding the unique common point between two

convex sets if one exists [37],[6]. Beginning at a point in one of the sets, the common point

can be achieved by alternating orthogonal projections between sets. In the distributed

system, the first convex set, C, represents bandlimited vectors in RvN with cutoff ωc/v.

The second set, D, represents all vectors where the value of the vector in positions T are

equal to value of the component outputs at these times. It is easy to verify that both of

these sets are convex and xov is the unique common point.

The orthogonal projection from set C to D occurs by replacing the vector values at times

T by the value of the component outputs at these times. The projection from D to C can

be implemented by applying a lowpass filter L with cutoff ωc/v. Our input yov begins in D

and iterating between the projections will lead us to xov as follows:
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yov x̂ov

LPF

Reset Values

Figure 2-4: POCS Signal Reconstruction

Initialization:

x̂0
D = yov (2.75)

(2.76)

Iterative Step:

x̂i
C = Lx̂i−1

D (2.77)

x̂i
D = (I − S)x̂i

C + yov . (2.78)

The projections converge to

x̂∞
ov =

∞
∑

i=0

((I − S)L)iyov (2.79)

= (I − (I − S)L)−1yov (2.80)

= xov (2.81)

because Lx = 0 and yov can be written as (I−(I−S)L)xov . Figure 2-4 shows the input and

system diagram for the iterative process. The convergence speed is inversely proportional

to the value of v. In this iterative process, the noise is removed within the lowpass filter

projections.

2.6 Reconstruction Simulation Performance

In this section, we numerically evaluate the performance characteristics of the reconstruction

methods. We present our system performance in the context of time-interleaved ADCs,

where noise occurs due to quantization and performance is measured in terms of effective
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number of bits. We compare the effective number of bits for the reconstruction without

calibration y[n], to the reconstruction with calibration, i.e., x̂[n].

2.6.1 Effective Number of Bits (ENOB)

To measure effective bits, we first compute the signal-to-noise ratio (SNR) of the recovered

signal x̂[n]

SNRx̂ = 10 log10

∑

x[n]2
∑

(x[n] − x̂[n])2
. (2.82)

The uncalibrated signal SNR can be calculated in a similar fashion. The effective SNR of

a signal is then related to the number of effective bits via B = (SNR − 1.76)/6.02. This

formula is based on the common assumption of a uniform distribution of input signal values.

In the tests, the converters quantize the input at 12-bit resolution, which generates the

noise wi[n]; the performance is measured through the increase in effective bits between the

uncalibrated and calibrated signals. We will present the performance of each of the non-

iterative reconstruction methods and discuss the tradeoffs between the amount of excess

bandwidth, block size, number of converters and input SNR (effective bits).

For each simulation, we randomly select the M−1 converter timing skews independently

using a uniform distribution. Increasing the range of this distribution yields a lower number

of effective bits in the uncalibrated signal y[n]. Performance is measured for both small and

large magnitude skews. The tests are performed using bandlimited Gaussian noise as input

on 12-bit converters, with block sizes of 215 samples and 33% extra oversampling. The gains

are uniform among all converters.

Figures 2-5 and 2-6 show the relationship between the timing skew size and effective

number of uncalibrated bits. Each point on the graph represents a different random selection

of timing skews. The x-axis shows the total amount of skew (
∑

|τi|/T ). In the case of a

M = 2 converter system, the x-axis represents the magnitude of the skew |τ1|/T and the

y-axis represents the resulting number of effective bits in the uncalibrated signal y[n]. For

M = 16, we compute the summation of the skew magnitudes and use this as measurement

for the sampling inaccuracy of the entire system. As expected, for increasing amounts of

timing skew, the error in the uncalibrated signal increases, thus decreasing the effective

number of bits.
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Figure 2-5: Effective number of uncalibrated bits vs. sum absolute timing skew (
∑

|τ |/Ts)
for a 12-bit 2-ADC system. Each ’x’ on the curve represents a unique test where the timing
skew and input signal are chosen at random.
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Figure 2-6: Effective number of uncalibrated bits vs. sum absolute timing skew (
∑

|τ |/Ts)
for a 12-bit 16-ADC system. Each ’x’ on the curve represents a unique test where the timing
skews and input signal are chosen at random.
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We can also calculate these curves analytically by computing the SNR

Output Bits =
1

6.02
10 log







σ2
x

1
M

∑

(

τi

Ts

)2
σ2

d + σ2
w






(2.83)

≈ k −
20

6.02
log

(

∑ |τi|

Ts

)

(2.84)

where σ2
x is the power of the input signal and σ2

d is the power of the derivative signal

(∂/∂t)x(t)|t=nTs
.

2.6.2 Reconstruction Approximations

To reduce the complexity of reconstruction, (2.14) is used as a linearization of (2.8). As-

suming knowledge of the timing skews, we compare the reconstruction accuracy of the these

methods in Fig. 2-7 for the M = 2 system and Fig. 2-8 for the M = 16 system. Again, we

simulate with random bandlimited Gaussian inputs.

In the figures, we first show the full reconstruction (2.8) and the no reconstruction (un-

calibrated) curves. Due to out-of-band noise and filter truncation effects, the full calibration

(dots) is limited below 12 bits for larger skews. The first order reconstruction approxima-

tion (x’s) matches the full performance above six effective bits, and drops off linearly in

calibrated bits for low numbers of uncalibrated bits.

By using higher order terms in the Taylor series, it is possible to generate increasingly

accurate approximations. In Appendix A, we derive the second-order approximation and

present a simple way to construct other orders. In Figs. 2-7 and 2-8, the second-order

approximation (circles) performs better than the first-order by matching the ideal perfor-

mance for greater than four uncalibrated bits. Similarly, the third-order (squares) matches

for greater than two bits.

Note that these performance curves are signal dependent. As shown in the previous sec-

tion, they are based upon the power of the input signal as well as the power of the derivative

of the input. The class of bandlimited Gaussian inputs was chosen due to its robust prop-

erties of representing signals. Through simulations, we verified that the performance curves

for other signals have similar behavior.

As we shall see, the performance of the mismatch estimation algorithms are limited

by the reconstruction equations that are used. Therefore, it is important to understand
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Figure 2-7: Comparison of ideal reconstruction equation to Taylor series approximations for
a 12-Bit 2-ADC system with bandlimited Gaussian inputs. First-order (squares), second-
order (circles), and third-order (x’s) reconstruction performance curves are compared with
full reconstruction and no reconstruction performance curves.

which approximation is sufficient in order to achieve the target performance for the signal

estimate.

2.6.3 Noisy Estimators

We now analyze the performance of the FLS and CLS estimators. To do this, we compute

the traces of the covariance matrices of the estimators. As expected, in all cases, the noise

power is lower for the CLS estimator. The performance is measured in terms of the increase

in effective bits of the CLS estimator over the FLS estimator. The results in Fig. 2-9 were

simulated with a 12-bit 2-ADC system with block lengths of 512 samples. We present the

performance for varying oversampling ratios and timing skew size.

The plot shows that for small amounts of timing skew, the CLS estimate only provides

marginal improvements in effective bits. However, the benefits of the estimator are more

visible for higher levels of timing skew and oversampling. This effective bit increase is

independent of the starting number of effective bits because the signal power remains the

same. Thus, the 0.1 bit increase obtained for the 2-ADC system with cutoff ωc = 0.75π

(33% oversampling) and 40% timing skew holds even for low-resolution converters.

Fig. 2-10 shows performance in a 16-ADC system for tests where the set of timing skews

is chosen at random and the cutoff is ωc = 0.75π. The system timing error is measured
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Figure 2-8: Comparison of ideal reconstruction equation to Taylor series approximations for
a 12-Bit 16-ADC system with bandlimited Gaussian inputs. First-order (squares), second-
order (circles), and third-order (x’s) reconstruction performance curves are compared with
full reconstruction and no reconstruction performance curves.

by the sum of the magnitudes of the timing skews
∑

|τi|/T . In this case, reconstruction

for an average timing skew of ∼ 16% yields a 0.1 bit increase in resolution. As expected,

the curves for the 2-ADC and 16-ADC system are approximately equal when the axis are

normalized by the number of converters.

In this chapter, we have presented a variety of reconstruction schemes based upon the

original nonuniform periodic reconstruction. First, we developed a first-order approximation

and then developed a low-SNR method. From frame theory, we also presented iterative re-

covery methods. Finally, we demonstrated the performance difference between the methods

through simulations.

We now turn to the problem of parameter estimation in systems where the timing skews

are unknown. The reconstruction methods presented here will motivate efficient methods

for system calibration.
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Figure 2-9: Effective bit increase of estimator CLS over FLS in a 2-ADC system for varying
amounts of skew. Average performance is plotted for different cutoff frequencies (amounts
of oversampling).
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Figure 2-10: Effective bit increase of estimator CLS over FLS in a 16-ADC system with
ωc = 0.75π. System timing skew is measured by

∑

|τi|/T . Each x on the plot represents a
random set of skews.
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Chapter 3

Small Mismatch Case

In many systems, a moderate level of timing control of the individual sampling components

is present. Often system designers set the time spacing between components as accurately as

possible. In TIADCs, the timing is controlled through a careful layout of components, while

in other distributed systems the timing may be controlled by synchronization. Although

this control may not be enough to provide perfectly uniform spacing between sampling

components, it is often enough to ensure that the timing mismatch errors are small in

magnitude. To ensure the overall system is within the performance specifications, it is

necessary to calibrate and estimation the timing skews, as seen in Fig. 3-1.

τ̂

x(t) y[n] x̂[n]
TIADC Reconstruction

Estimator

Mismatch

Figure 3-1: Parameter Mismatch Estimation

In this chapter, we focus on calibration methods for the small timing mismatch regime.

To begin, we describe the small mismatch framework. Using the reconstruction approxi-

mation (2.30), we develop a least-squares method for estimating the unknown time-skews.

We finish by generalizing to systems where nonuniform gains also exist and discuss prac-

tical adaptive implementations. Simulations are performed for various scenarios including

systems where the skews lie outside the small mismatch range.
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The system input x(t) is modeled as a deterministic bandlimited signal as specified in

Section 1.3. We model the output of the ith constituent channel as

yi[n] = x(nMTs + iTs + τi) + wi[n] (3.1)

where the τi model the unknown skews from uniform sampling. We also make the as-

sumption that the timing skews are relatively small, e.g., not more than 20% of the overall

sampling period. For ease of analysis, we assume the input is quantized with high-resolution,

wi[n] ≈ 0; however the effects of quantization noise are considered within the subsequent

simulations. The goal of the calibration algorithm is to estimate timing-skews τi from the

output y[n].

In our formulation, we develop an algorithm that seeks to estimate the unknown timing

skews τi that provide a signal reconstruction with no out-of-band energy (in the absence of

quantization noise and modeling error). Thus, we try to pick the bandlimited signal that

best corresponds to the component outputs through nonuniform recurrent sampling.

3.1 Least-Squares Formulation

There are many methods and heuristics that we can use to estimate the input; one of the

most natural is the maximum-likelihood estimate. Because the noise w is modeled as white

Gaussian, the ML estimate of the nonrandom unknown parameters x[n] and τ reduces to

the least-squares problem

[x̂ τ̂ ] = arg min
x,τ

‖y − Fτx‖2 (3.2)

where we now explicitly indicate the dependence of F on τ . As it is stated, this optimization

problem has multiple solutions that produce zero square-error, e.g. τ̂ = 0 and x̂ = y. Thus,

we must specify a way to determine which solution is best. Rather than imposing any

restriction on the timing skew estimate (such as a magnitude bound), we constrain the

input signal to being bandlimited, as is assumed in the problem setup.

By introducing the bandlimited restriction on x, we arrive at the constrained optimiza-
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tion problem

[x̂ τ̂ ] = arg min
x∈B,τ

‖y − Fτx‖2 (3.3)

where

B = {z | z ∈ RN , Lz = z}, (3.4)

again L is the matrix implementing a lowpass filter bandlimited to ωc. Because of noise

issues, the actual values may not yield zero error. It is also possible that multiple minimizing

solutions exist; however the noise affects the estimate smoothly and all solutions lie within

a noise ball around the true values.

To solve this optimization problem, we can split the problem into sequential optimiza-

tions

[x̂ τ̂ ] = arg min
τ

arg min
x∈B

‖y − Fτx‖2. (3.5)

As shown in section 2.4.2, the solution to the inside optimization is the constrained least

squares (CLS) estimate, thus

τ̂ = arg min
τ

‖(I − FτL(FτL)†)y‖2 (3.6)

Because of the nonlinear dependence of τ in F and in the pseudoinverse, the minimization

is difficult to compute in closed form and an alternate approach must be taken in order to

reduce the complexity.

3.2 Skew Mismatch Estimation via Least-Squares

Due to the difficult nature of the joint τ and x optimization, we develop an indirect approach

of estimating these parameters: first computing an estimate of the timings skews τ and then

using these estimates to estimate x through one of the methods presented in Chapter 2. It

is clear to see that for accurate reconstruction, the estimated signal must be bandlimited,
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Figure 3-2: Reconstruction aliasing shown for different skew estimates. Out-of-band energy
goes to zero iff the estimates are equal to the true skew values.

i.e.,

x̂ = Lx̂ (3.7)

because any power in the high frequency directions is orthogonal to the input signal content.

For a given skew estimate τ̂ , the basic input estimator is given as

x̂ = F−1(τ̂ )y, . (3.8)

The bandlimited condition implies that for an accurate of choice of timing skews τ̂ = τ

(L − I)F−1(τ̂ )y = 0 (3.9)

It can be shown that all other choices of τ̂ 6= τ produce estimates x̂ that are not bandlimited,

as seen in Fig. 3-2 and proved in Appendix B. In the absence of noise, the timing skews in

equation (3.9) can be computed by the linear equations attained by using the approximation

F−1(τ ) = (I − TH).

In practice, no solution exists due to modeling error in the approximation (2.14) and

quantization error; therefore, the optimization is formulated as a least-squares problem that

computes the timing skews τ̂ that minimize the out-of-band energy in the input estimate x̂

τ̂ = arg min
τ

‖(L − I)F−1(τ̂ )y‖2. (3.10)

We have reduced the parameter space of the joint minimization (3.3) by removing the need

to estimate x directly. Using the approximation (2.30), our least-squares minimization
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becomes

τ̂ = arg min
τ

‖(L − I)(I − TH)y‖2 (3.11)

where the T matrix is the only term depending on the timing skews τ . Rewriting this

minimization directly in terms of τ , we find

τ̂ = arg min
τ

‖γ − Rτ‖ (3.12)

where

R =











| | |

r1 r2 . . . rM−1

| | |











, ri = (L − I)DiHy (3.13)

and

γ = (L − I)y. (3.14)

The solution to the over-constrained least-squares estimation problem is given by

τ̂ =
(

RTR
)−1

RT γ. (3.15)

where the inversion of RTR is possible because for N ≫ M and nontrivial y, the matrix

R has full column rank. Thus, with O(M2N) complexity, the optimal solution τ̂ can be

computed. Uniform samples of the input signal can then be recovered from the timing skew

estimates via any nonuniform periodic reconstruction method from Chapter 2.

3.2.1 Geometric Picture

There are multiple geometric ways to understand the operations of the LS estimation. One

interpretation of the algorithm is that the least-squares method computes the signal in

the convex set of signals x̂[n; τ̂ ] spanned by τ̂ that is closest to the convex set of signals

bandlimited to ωc. When we introduce back the noise in the system, the estimate deviates

from the true value but the estimate error changes in a stable manner with respect to the
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Figure 3-3: Graphical representation of the timing skew and signal estimation operations.
Set B represents the convex set of bandlimited signals. Set Fτ represents the convex set of
signals that can be written as Fs, where s ∈ B. Timing skew estimates can be derived from
the values that minimize eF and eC respectively.

noise power. Similar to the POCS algorithm in Section 2.5, it is possible to implement this

in a sequential projections manner.

In the second interpretation, we examine the calibration algorithm in the context of

Fig. 3-3. The skew estimator developed here seeks to find the timing skews that minimize the

amount of out-of-band energy in the reconstructed signal. This optimization is equivalent

to choosing τ to the minimize the distance between F−1
τ̂

y and LF−1
τ̂

y, shown as vector eF

in Fig. 3-3.

An alternate method for timing skew estimation can be developed by picking the skew

values that minimize the distance between y and its projection into set Fτ̂ , i.e. Fτ̂L(Fτ̂L)†y.

This distance is shown as vector eC in the figure. This skew estimation is equivalent to the

joint least-squares estimate in (3.6). Although this method is expected to have better

performance because it directly minimizes the noise, the difficulty of implementing it makes

it less desirable.

Finally, we discuss two extensions to basic least-squares procedure. First we develop an

iterative method for computing increasingly accurate estimates; after which we present a

method for incorporating unknown component gains into the estimation procedure.
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3.2.2 Relinearization

For values of τi/Ts that are not sufficiently close to zero, the approximation given by (2.14)

may only provide a coarse reconstruction of the original signal because it relies on a Taylor

series expansion of (2.10) around τ = 0. In this section, we present an iterative method for

improving the accuracy of the initial least-squares estimate. Similar to Newton’s method,

we perform successive approximations by first computing the least-squares estimate τ̂ by

(3.15) and then computing the first order Taylor series approximation of x[n] around the

updated point τ = τ̂

x̂[n] ≈ x[n]
∣

∣

∣

τ=τ̂
+

M−1
∑

i=1

∂x[n]

∂τi

∣

∣

∣

τ=τ̂
(τi − τ̂ ). (3.16)

as shown in Appendix A.

From this updated reconstruction formula, it is possible to formulate a new least-squares

problem whose solution is a more accurate estimate of τ . With increasingly accurate es-

timates τ̂ , the local approximation of x[n] can improve and allow for better estimation.

Simulation in subsequent sections demonstrate this performance increase. An alternate ap-

proach to achieving increasingly accurate estimates is to incorporate a higher order Taylor

series expansion.This technique has been explored for a similar problem in [33].

3.2.3 Gain Mismatch Calibration

In the general calibration of distributed sampling systems, nonuniform gains can also exist

among the constituent components. In this setup, the output of the ith component is

modeled as

yi[n] = gix(nMTs + iTs + τi) + wi[n]. (3.17)

where the gi are unknown gains. Although the gains vary among the components, we assume

that each gain is within 10% of unity. For high resolution components, one can conveniently

compensate for the system gains without excessive noise enhancement by multiplying each

component output yi[n] by 1/gi. Without loss of generality, we set g0 = 1.

By folding the gain recovery into the reconstruction equation (2.10), we can compute the

Taylor series approximation around the point τ = 0,g = 1, where g = [g1 g2 ... gM−1]
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and 0, 1 are vectors of zeros and ones respectively, shown in Appendix A. From this first

order approximation, we can setup a similar least squares problem that now includes gains

in the vector of unknown parameters

θ̂ = arg min
θ

‖γ − Rθ‖ (3.18)

where

θ =





τ

1/g



 (3.19)

R =











| | | |

r1 . . . rM−1 s1 . . . sM−1

| | | |











(3.20)

ri = (L − I)DiHy (3.21)

si = −(L − I)Diy (3.22)

γ = (L − I)D0y (3.23)

and for notational compactness 1/g is used to denote a vector containing the inverses of the

gains. Again, relinearization techniques around (x̂, τ̂ ) allow for an increase in performance.

The performance of the least-squares method with both unknown gains and timing skews

is presented in Section 3.3.

3.2.4 Adaptive Filter Implementation

In the development of the least-squares calibration algorithms, it was convenient to use

vectors to represent time-domain signals and matrices to represent filtering operations. This

notation allows for greater insight into the methods developed for parameter estimation and

signal reconstruction.

In practice, the block implementation of such a system may be cumbersome for efficient

implementation as it requires the multiplication of large matrices. As mentioned earlier,

FIR filters may be used to replace the matrix operations, such as those discussed in [44], [23],

[29],[46]. For example, reconstruction (2.30) can be simplified through the FIR derivative

filter presented in (2.14). We now use these filter implementations to develop the least-
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squares calibration into a sequential algorithm via an adaptive filter structure.

The block implementation of the timing skew estimate (3.15) takes O(M2N) complexity

and a large amount of memory. We develop a recursive least-squares (RLS) implementation

that distributes the computation over time and sequentially adapts to shifts in parameters.

To start, we rewrite the matrix R in terms of its rows u, where each row now represents

signal values at a certain time step

R =
[

u[0]T u[1]T . . . u[N − 1]T
]T

(3.24)

u[n] =
[

r1[n] r2[n] . . . rM−1[n]
]

(3.25)

where ri[n] is the nth element of ri. The values can also be computed by the filtering

operations

ri[n] =
∑

m(mod M)=i

p[n − m]s[m] (3.26)

where the filter p implements the high-pass filter (I − L) and s[n] = (h ∗ y)[n]. Also, the

vector γ in (3.14) can be written as individual elements γ[n], where γ[n] = (p ∗ y)[n].

In the recursive setup [22], at time step n, we use u[n] and γ[n] in order to update

our filter taps (timing skews). We define a forgetting factor λ such that the weight of the

(n − i)th sample is λ−i, where λ = 1 yields the traditional least squares estimate. We also

define a regularization constant δ to stabilize the solution. The recursive solution to the

least-squares estimation (3.15) is given by:

RLS Initialization

τ̂ [0] = 0 (3.27)

P[0] = δI (3.28)
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RLS Update

π[n] = P[n − 1]u[n] (3.29)

k[n] =
π[n]

λ + uT [n]π[n]
(3.30)

ξ[n] = γ[n] − τ̂T [n − 1]u[n] (3.31)

τ̂ [n] = τ̂ [n − 1] + k[n]ξ[n] (3.32)

P[n] = λ−1P[n − 1] − λ−1k[n]uT [n]P[n − 1] (3.33)

where P represents an estimate of the input u auto-correlation, which aids in whitening.

The adaptive filter both spreads the computational complexity across time and handles

time skews that vary with time. Instead of O(M2N) complexity every N samples, we now

have O(M2) complexity every sample. Using δ = 0.001 and λ = 0.95, we find that the

performance of the block algorithm is matched after the steady state is reached, as shown

in Sec. 3.3.6.

In practice, the RLS algorithm above is often replaced by the lower complexity least

mean-squares (LMS) algorithm. In LMS, no estimation of the covariance matrix P is made.

Instead the τ̂ estimates are updated by the gradient direction that minimizes the ξ[n] error

(the direction to minimize the out-of-band energy):

LMS Update

ξ[n] = γ[n]− τ̂T [n − 1]u[n] (3.34)

τ̂ [n] = τ̂ [n − 1] + µu[n]ξ[n] (3.35)

where µ denotes the step-size parameter of the update. Figure 3-4 shows a system imple-

mentation of the reconstruction algorithm.

While the convergence rate of LMS is generally slower than RLS, the LMS algorithm

only requires O(M) complexity per sample, making it more attractive for system imple-

mentations. In simulations performed with a sufficiently small step-size, the algorithm

converged to the same skew estimates as the RLS method. Table 3.1 shows a comparison

of the sequential algorithms.
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y[n]

h

x̂[n]

LMS

Figure 3-4: System implementation of the LMS adaptive filter for timing skew estimation.
The ’LMS’ box operates on y[n] and (h ∗ y)[n] to produce estimates of the skews τ

Method Computation/ Computation/ Convergence
Block Sample Speed

Block LS O(M2N)

RLS O(M2N) O(M2) Moderate

LMS O(MN) O(M) Slow

Table 3.1: Speed and compolexity comparison of sequential least-squares methods to block
least-squares method

3.2.5 Other Signal Classes

In Section 1.3.2, we discussed the valid classes of input signals that can be used to calibrate

a distributed sampling system. The main requirement imposed is that the system must have

knowledge of a spectrum band where discrete time aliasing occurs with nonuniform sampling

and where the input spectrum is also zero. For signals that are non-zero in 0 ≤ |ω| < ωc,

aliasing exists in the ωc < |ω| < π band and the current lowpass filter L with cutoff ωc used

in calibration is sufficient. If the aliasing exists in a different known band, S ⊂ [0, π), the

lowpass filter matrix L, which imposes the bandlimited constraint, can be replaced with a

bandpass filter (notching out the S band). This new filter imposes the constraint that the

reconstructed signal has minimal energy content in the known aliasing band.

For completely blind calibration, the input spectrum may be unknown. In this case, it

may be possible to determine the aliasing band based off the spectrum of the output. For

input signals with almost constant power across frequencies, the output frequency bands

with lower power contain the aliasing and be treated as out-of-band spectrum.

For certain non-bandlimited signals, the same general method can be applied by replac-

ing the sampling matrix and signal class. The method presented exploits the convex struc-

ture of the input class as well as the fact that the sampling frame provides an overredudant

basis. If these two properties are satisfied, solutions can be obtained through straightfor-
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ward changes in the formula. One such input class is the shift-invariant spaces described in

Section 2.5.

3.3 Performance Results

To measure the performance of the calibration algorithms, we simulate random bandlimited

Gaussian inputs, as described in Section 2.6: using 215 samples/block, 33% oversampling,

12-bit converters, and unity gains. After the timing skews are estimated, the final estimate

x̂[n] is produced using the time-skew estimates in the ideal reconstruction formula (2.10)

for additional precision.

3.3.1 LS and ReLin Calibration

In Figures 3-5 and 3-6, we plot the performance of the calibration methods by showing the

effective bits of the calibrated signal vs. uncalibrated signal for systems with 2 ADCs and

16 ADCs respectively. For each trial, a random bandlimited Gaussian signal is generated

along with a random set of timing skews. The trial signal is calibrated (skews and signal

estimated) and performance is plotted with a point on each of the curves.

The full calibration upper bound (squares) shows recovery performance in each trial

when the true skew values are used in the ideal reconstruction formula; note that out-

of-band energy in the input, quantization noise, and numerical precision errors limit the

accuracy below 12 effective bits for large skews. The lower bound (dashed line) plots the

performance when no recovery is performed, i.e. effective output bits equals effective input

bits. Recovery performance is shown for the least-squares ’LS’ estimate (circle); and for

the 2-ADC system, performance is also shown for multiple iterations of the relinearization

’ReLin’ method (x). The number of iterations is approximately equal to 100τ1/T .

As the timing skew decreases (increasing number of uncalibrated bits), the recovery

algorithm yields a higher number of effective output bits. The performance lines intersect

at the point (0, 0) and exhibit a linear behavior until they intersect the upper bound in

performance, at which point performance is capped. Using the single least-squares ’LS’

calibration, any input above four effective bits achieve the upper bound. As the number of

calibration iterations increases, the slope of the ’ReLin’ calibration curve increases and the

curve moves closer to the full calibration curve. With many iterations of the relinearization

74



0 2 4 6 8 10 12
0

2

4

6

8

10

12

Effective Bits of Uncalibrated Signal

E
ffe

ct
iv

e 
B

its
 o

f C
al

ib
ra

te
d 

S
ig

na
l

 

 

Full Cal
ReLin
LS
Uncal

Figure 3-5: Effective number of calibrated bits vs. uncalibrated bits for a 12-bit 2-ADC
system with unknown timing skews. Performance is measured using the least-squares (LS)
estimate and the relinearization (ReLin) estimate for a bandlimited Gaussian input over-
sampled by 33%.
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Figure 3-6: Effective number of calibrated bits vs. uncalibrated bits for a 12-bit 16-ADC
system with unknown timing skews. Performance is measured using the least-squares (LS)
estimate for a bandlimited Gaussian input oversampled by 33%.
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method, large timing skews producing signals as low as 1.8 effective bits can achieve the

same bound.

The LS performance is limited by how well the reconstruction approximation (I−TH)

performs in comparison to F−1. The combination of ’Least-squares skew estimate’+’Ideal

reconstruction using τ̂ ’ employed here matches the performance curve of the ’First-order

reconstruction using true τ ’ seen in Fig. 2-7. Thus, the calibration only produces an estimate

as good as the reconstruction approximation can yield. Alternate tests verify this limitation

by showing that second order implementation of the LS skew estimate, shown in Appendix

A,

τ̂ = arg min
τ

‖(L − I)(I − TH + T2H2 − THTH)y‖2 (3.36)

combined with the ideal reconstruction formula has performance that matches the second-

order reconstruction in Fig. 2-7.

In the 16-ADC system, the performance of the single least-squares calibration matches

the full calibration curve for input signals with greater than 5.5 effective bits. Like the

2-ADC case, performance is limited by the accuracy of the approximation, which is shown

in Fig. 2-8. Although the relinearization performance is withheld to allow for clarity in

the graph, tests show that for uncalibrated signals with more than 4.5 effective bits, re-

linearization can achieve the upper bound in performance. For the 16-ADC system with

five effective uncalibrated bits, the relinearization method achieves an output performance

of 11.5 bits, which is 2.5 bits better than the least-squares method. The relinearization

performance drops off sharply as we decrease the number of effective input bits below 4.5.

In this range, some tests even showed a ’ReLin’ performance lower than ’LS’, possibly due

to a nonlinear structure around the point of approximation.

The input class of bandlimited Gaussian signals is used due to its robust properties.

The class provides the minimum deviation from all possible classes of bandlimited inputs by

maximizing the signal entropy for a fixed power. However, to test other signals, calibration

was also performed using single tone inputs. The trials showed similar performance to

the wideband signals; however, tests required that the out-of-band spectrum be specified

precisely based on the input tone frequency.
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3.3.2 Cutoff Frequency Considerations

In the time-interleaved setup, sampling generally occurs after the use of an anti-aliasing

filter in the analog domain. This filter ensures that high frequencies are not aliased during

sampling. Although we model the uniformly sampled signal x[n] to have cutoff frequency

ωc, we cannot guarantee that the signal has non-zero spectral content for ω < ωc or that

the spectral content goes to zero for ω > ωc, which may lead to degraded performance. If

the spectrum is known, this issue can often be resolved by changing the cutoff frequency

of the lowpass filter used in skew estimation. However, the spectrum of the input is not

always known a priori and we examine this case further through simulations.

We first tested the effects of zero content in a range ωs < ω < ωc by using lowpass

filters whose cutoff frequencies were (5%, 10%, 20%) larger than the maximum frequency

of the signal. The performance for the 10% and 20% cases are presented in Fig. 3-7. In

each of the cases, the LS performance remained the same as the base case, while the ReLin

performance decreased with larger filter cutoff frequencies. The ReLin degradation is clear

for fewer than four uncalibrated bits. For two uncalibrated bits, the (5%, 10%, 20%) cases

yielded a ReLin calibration decrease of (0.4, 1.8, 4.0) bits from the base case.

We also tested the effects of non-zero signal in ω > ωc by using inputs that have varying

amounts of out-of-band signal content. As a general model for the out-of-band content, we

added a white Gaussian signal into this spectrum (ωc < ω) with a power (20, 40, 60)dB lower

than the main band (ω < ωc). The −20dB and −40dB performance curves are presented

in Fig. 3-8. At −60dB, the out-of-band energy did not affect calibration performance,

while −40dB, performance only degraded slightly. The −20dB case yielded a significant

drop: for (3, 5, 7) uncalibrated bits, LS calibration dropped by approximately (2, 6, 5) bits

respectively.

The results of both sets of filtering tests are as expected: out-of-band signal content

can decrease performance by obscuring the aliased content in this band and larger than

necessary filter cutoffs allow for a smaller region for aliasing to be detected, which more

visibly degrades performance during relinearization.
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Figure 3-7: Calibration performance on systems with varying lowpass filter cutoffs, (10%
overestimated filter cutoff on left, 20% on right). Plots show effective number of calibrated
bits vs. uncalibrated bits for a 12-bit 2-ADC system with unknown timing skews.
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Figure 3-8: Calibration performance on systems with varying levels of out-of-band signal
content, (−40dB on left, −20dB on right). Plots show effective number of calibrated bits
vs. uncalibrated bits for a 12-bit 2-ADC system with unknown timing skews.
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3.3.3 Block Size, Oversampling, and Quantization Level

Tradeoffs in performance were also measured for varying input block sizes and amounts

of oversampling. After a baseline amount of oversampling (15%) and block size (213 sam-

ples/ADC), varying these parameters had marginal effects on the performance. However,

the convergence speed of the algorithm was highly dependent on the oversampling factor;

with more oversampling, fewer relinearization iterations were necessary to achieve the same

performance. To model lower resolution ADCs, the input was also quantized to 4-bit and

8-bit levels. Performance curves were similar to the 12-bit curves with upper bound limits

at 4 bits and 8 bits respectively.

For a fixed oversampling rate, tests with smaller numbers of converters showed bet-

ter performance. With more converters, the number of timing skews increased causing

additional sources of estimation error. In general, the decrease in performance for larger

numbers of ADCs is more apparent at lower levels of uncalibrated bits.

3.3.4 Practical Filter Lengths

To test the tradeoff between complexity and performance, simulations were also conducted

with truncated filters, Figs. 3-9 and 3-10 . Using the recursive least-squares (RLS) imple-

mentation, the filtering processes of p[n] and h[n] were limited to (175, 75, 30) and (30, 10, 5)

taps respectively. Shortening the high-pass filter p did not significantly change the perfor-

mance of the LS calibration; however, the ReLin performance decreased with shorter filters.

For three uncalibrated bits, the 175 tap ReLin increased LS performance from 8 to 11 bits;

but the 30 tap ReLin remained at 8 bits. The h[n] derivative filter had the opposite effect:

LS performance decreased with fewer taps but ReLin performance remained the same. For

five uncalibrated bits, the five tap LS provided six calibrated bits whereas the 30 tap filter

yielded 11 calibrated bits. Thus, different system implementations will require a different

set of filter lengths based upon the computational power and performance requirements.

Aside from low parameter estimation complexity, real-time systems will also require

low input reconstruction complexity. In Chapter 2, we compared multiple reconstruction

methods of varying complexity: the noise-free ideal method, the approximation method,

and the high-noise method. As discussed previously, the high-noise (Constrained Least

Squares) method is computationally inefficient due to the matrix inversions involved. Thus,
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Figure 3-9: LS and ReLin calibration performance for varying number taps in the low-
pass filter. Three distinct ’LS’ curves from top to bottom representing filters of lengths
(175, 75, 30). Plots show effective number of calibrated bits vs. uncalibrated bits for a
12-bit 2-ADC system with unknown timing skews.
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Figure 3-10: LS and ReLin calibration performance for varying number taps in the derivative
h filter. Three distinct ’ReLin’ curves from top to bottom representing filters of lengths
(30, 10, 5). Plots show effective number of calibrated bits vs. uncalibrated bits for a 12-bit
2-ADC system with unknown timing skews.
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we are left to analyze the performance-complexity tradeoff of the first two methods.

The noise-free full reconstruction (2.10) uses a different filter for each of the M sam-

pling converters. The filter is non-linearly dependent upon the skew estimates and requires

a significant number of multiplies to compute. On the other hand, the reconstruction ap-

proximation only has one filter, which is fixed. This filter is used in skew estimation so no

extra filtering is necessary. Using the approximation in reconstruction as well as parameter

estimation saves computation, takes less memory, and does not require extra computation

with changing timing skews. However, the system is limited by the approximation used in

skew estimation, thus for least-squares estimates, it is sufficient to use the approximation

in reconstruction. For relinearization and more complicated skew estimate procedures, the

full reconstruction may provide a necessary improvement.

3.3.5 Relinearization Iterations

As stated before, the tests were performed with ∼ 100τ/Ts iterations. This number was

selected manually as iterations past this point generally made little improvement. In prac-

tice, the system does not have knowledge of τ and the number of iterations cannot be set

in this manner. Instead, the system can implement a cutoff τs such that when the skew

estimates between iterations do not change by more than τs, the iterations stop.

Other methods include amplifying or attenuating the skew change between iterations

through a step-size. The use of step-size is already present in sequential method in Section

3.2.4 through the µ parameter. This step-size can also be variable and depend on the

dynamics of the skew changes.

3.3.6 Sequential Implementation

In Sec. 3.2.4, we presented the RLS and LMS methods as two possible sequential implemen-

tations of the least-squares calibration algorithm. In Fig. 3-11, we show the convergence

speeds of these algorithms by plotting the calibrated ENOB over time for a fixed set of skews.

At each point in time, skew estimates are calculated. Theses estimates are then used over

the entire signal in order to determine the ENOB. We used system parameters of δ = 0.001,

λ = 0.95 for the RLS algorithm and µ = 0.05 for the LMS algorithm. Performance is

compared against the block calibration performance with block size N = 215 = 32768.

As we can see, the block calibration has a performance of ∼ 7.5 effective bits. The
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Figure 3-11: Speed of convergence for RLS and LMS shown through calibrated ENOB
performance and compared to the block calibration for an M = 4 component system

test shows convergence of RLS after 2000 samples and LMS after 15000 samples. Thus,

convergence rate of RLS is faster than the LMS; however the complexity of computation

is lower for LMS. Within this simulation, the RLS fluctuates after it reaches the block

performance. These fluctuations can be minimized by changing the forgetting factor λ over

time.

By dynamically changing the (λ, µ) parameters over time, we can increase the converg-

erence speed by first using a large stepsize and then using a smaller stepsize. However, if a

sudden change in the skew parameters occurs, it can result in a longer time for convergence.

3.3.7 TIADC Gains

Additional tests were performed for signal calibration in time-interleaved systems that con-

tain both unknown timing skews and unknown gains. The M−1 gains were chosen indepen-

dently using a uniform distribution. Although the initial least-squares estimate was often of

poor quality, the relinearization technique achieved ∼ 10 bit performance for systems with

M ≤ 8 converters and with greater than five uncalibrated bits. This performance is similar

to the tests when only timing skews were unknown. For systems with M = 16 converters,

the gain and skew parameter estimation converged to a local minimum, often not close to

the true parameters.
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Figure 3-12: Effective number of calibrated bits vs. uncalibrated bits for varying numbers
of ADCs with unknown gains and timing skews.

When gain mismatches are present, the number of uncalibrated bits can be both a

function of the range of the timing skew and the range of the gains, i.e. a 4-bit signal can

be produced by high timing skews or high gains. Signal recovery performance is dependent

on whether the gain range or timing skew range is higher. When a larger gain range causes

the decrease in uncalibrated bits, the calibration methods are slightly more effective than

when a larger skew range causes the decrease in bits. In the gain case, convergence speed

of the algorithm proved to be a bigger issue. The convergence was highly dependent on the

oversampling factor; with more oversampling, the methods required fewer relinearizations.

In the gain case, convergence speed of the algorithm proved to be a bigger issue. The

convergence was highly dependent on the oversampling factor; with more oversampling, the

methods required fewer relinearizations.

3.4 Hardware Feasibility

In this section, we explicitly state the signal processing operations necessary for calibration

and analyze the feasibility of a hardware implementation. As noted previously, the RLS

and LMS algorithms of Sec. 3.2.4 are more suited for hardware than the block approach

due to their lower memory requirements and distribution of computation. The decreased
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complexity of the LMS algorithm makes it the most attractive candidate for implementation.

We now analyze an LMS hardware implementation.

LMS Implementation

γ[n] =
n+k
∑

m=n−k

p[m]y[n − m] (3.37)

s[n] =

n+k
∑

m=n−k

h[m]y[n − m] (3.38)

ui[n] =
∑

m(mod M)=i
|m−n|<k

p[n − m]s[m] i = n (mod M) (3.39)

ξ[n] = γ[n] − τ̂T [n − 1]u[n] (3.40)

τ̂ [n] = τ̂ [n − 1] + µu[n]ξ[n] (3.41)

x̂[n] = y[n] − τ̂i[n − 1]s[n] i = n (mod M) (3.42)

In Sec. 3.3.6, we showed that convergence occurs within 15000 samples. For a 500 Mhz

TIADC, this implies convergence in 0.03ms, a speed which is acceptable in most systems.

This value can be reduced further if necessary. Because convergence time is not a problem,

we now examine the calibration complexity.

For LMS implementation, filtering operations are necessary to create signals u[n] and

[n]. In Sec. 3.3.4, we show that ∼ 30 taps (k = 15) are necessary in the h[n] and p[n] filters

in order to achieve sufficiently-high calibration performance (without using relinearization).

From (3.37) above, we see that computing γ[n] only requires a total of 30 multiplies per

time step. Likewise, creating all the elements in vector u[n] requires 30+30 = 60 multiplies

per time step in (3.38) and (3.39). Multiplying the skew estimates τ̂ and u in (3.40) takes M

multiplies, and finally multiplying u and ξ in (3.41) is another M multiplies. Finally, (3.42)

requires a single additional multiply. This leads to a total of ∼ 90+2M multiplies/samples.

Thus, calibration can be performed using any general purpose DSP.

In order to compute γ[n], a total of 2k values of y[n] need to be stored. Note the

computation of ui[n] requires the computation of s[n], thus we need to increase the buffer

size by 2k samples in order to ensure s[n] has been calculated.

The resulting performance of this LMS implementation is given under the ’LS’ curve in

Fig. 3-5 for M = 2 and Fig. 3-6 for M = 16. A further reduction in complexity is possible
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through better filter design. Increased performance can also be obtained via relinearization,

however more steps are required to recompute the M filters and longer filter lengths are

necessary.

Until now, we have focused on the case of small timing mismatch. We developed a

least-squares calibration method based on the approximation of the reconstruction equation.

Generalizations to increase performance through relinearization and to handle gains were

also presented. To reduce complexity, we developed sequential algorithms using adaptive

filters. Performance plots were also presented for a variety of cases to understand the

practicality of the calibration scheme.

In the next chapter, we explore the bounds on calibration performance when computa-

tional complexity is not a constraint. These bounds provide an understanding of how well

the calibrations methods compare against the optimal performance.
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Chapter 4

Resampling Performance Bounds

A variety of calibration algorithms exist for the mitigating of mismatch errors; however, it

is unclear what the bounds of calibration performance are for reconstructing the signal. In

this chapter, we compute bounds on the expected performance when the timing skews are

distributed uniformly.

Thus, we would like to address the question, what is the best we can do in estimating

the input from the output samples? Also, how does the performance change if we change

the oversampling factor? By answering these questions, we setup a framework on which to

compare the effectiveness of all calibration algorithms in such systems.

When performing calibration, we often decouple the problems of skew estimation and

signal reconstruction. For our performance analysis, we remove the problem of skew esti-

mation. There are multiple reasons for doing so. With low levels of sampling noise, the

skews can be uniquely determined given sufficient computational power. To do so, one can

perform a brute force search through the entire parameter space for the skews that produce

an accurate reconstruction. This search is possible due to the local continuity of out-of-band

energy with respect to the skews. Also, with sufficiently long block lengths, the effects of

noise on the estimates can be averaged out.

Accordingly, we focus on input signal reconstruction when the timing skews are known,

as in Section 2.4. The goal is to minimize the effects of the sampling noise on the input

estimate. Unlike the skew estimation, these effects are not averaged out over time since

each sample sees a different noise realization. To measure the input estimation error, we

calculate the distribution of eigenvalues for the sampling matrices in (2.16) and how it varies
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with (M,M0).

4.1 Sampling Matrices

Within our setup, we assume that the sampling period of the individual components is

fixed at M0Ts; where at least M0 components are necessary to achieve an overall sampling

period of Ts. The number of sampling components is M ≥ M0, and we label the factor of

oversampling as r = M/M0.

We use the matrix formulation from (2.16) where N × 1 vector x represents the deter-

ministic input sampled at rate Ts. The N × 1 vector y vector the nonuniform recurrent

samples with the same average period as x,

y = Fx + w. (4.1)

This expansion of this equation is equal to
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(4.2)

where the f
j
i represent rows of F, which are functions of the skews, f j

i [n] = sinc(jM + i−n)

for 0 ≤ n ≤ N − 1. The individual components sample with period M0Ts implying N0 =

N/M0

We group together the rows with common skews in order to reorganize our matrices in

terms of sampling components rather than sample times
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
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
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x + w (4.3)
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where each N0 × N sampling matrix Fi represents rows of sinc functions corresponding to

a single component i and yi is the corresponding received vector. Therefore, the overall

sampling matrix F is the concatenation of the matrix from each component. We now

examine these sampling matrices in detail.

4.1.1 Single Component Sampling Matrix

Let us start with a simple sampling matrix F corresponding to a single component. The

vector x represents the input sampled at times t = nTs. Suppose a single component also

samples with period Ts, starting at time t = 0. It captures samples at the exact time and

rate as the desired signal x. The sampling matrix in this case is the identity matrix F = I,

i.e., y[n] = x[n] + w[n].

Now, suppose the component samples at half this rate (period 2Ts) and starts at time

t = 0, the corresponding N/2×N sampling matrix is every other row of the identity matrix

F =

















1 0 0 · · · 0 0

0 0 1 · · · 0 0
...

...

0 0 0 · · · 1 0

















. (4.4)

In the signal domain, this matrix is equivalent to y[n] = x[2n]+w[n]. Both of these sampling

matrices have the property that their rows are orthonormal i.e.,

FFT = I. (4.5)

It is also possible for a component to have a non-zero starting time, e.g. t0 = Ts/2.

For a sampling period of Ts, the matrix can be approximated through the matrix [F]i,j =

sinc(i−j+1/2), for 0 ≤ i, j ≤ N−1. This sampling is equivalent to y[n] = x[n+1/2]+w[n],

where x[n + 1/2] represents a 1/2 sample fractional delay on x[n]. The effects of filter and

signal truncation are discussed later. For a component with the same start time t0 = Ts/2

and double the sampling period 2Ts, the corresponding N/2 × N sampling matrix can be

formed by selecting every other row.

The sampling matrices can be viewed as orthogonal projection directions. The period Ts

sampling matrices have size N × N and have orthonormal rows which span the RN space.
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Thus, these matrices sample at the full dimensionality of the space. By selecting certain

rows like the period 2Ts matrices, we attain a subset of orthonormal vectors for the space.

We define these matrices as 1/2-rate; they use sinc functions to sample half the dimensions

of the space.

4.1.2 Multiple Sampling Matrices

In the distributed sampling setup, we use multiple components with different starting times

to ensure that the signal is oversampled. Thus, we analyze sampling matrcies F that are a

combination of more than one component. By using two sampling components, i.e. 1/2-rate

matrices, the overall sampling matrix is

F =





F0

F1



 (4.6)

where F0 corresponds to a 1/2 rate component starting at τ0, i.e., [F0]k,l = sinc(2k− l−τ0).

Similarly, F1 corresponds to a 1/2 rate component starting at τ1. The matrix F has full

row rank with probability one.

In the absence of noise, the input can be reconstructed by applying the inverse of the

sampling matrix to the component outputs x = F−1y. However, our goal is to understand

the effects of noise on the input estimate. For now, we ignore the fact that x lies in a

smaller dimensional subspace of RN , i.e., the bandlimited property, and address this later.

Applying the inverse matrix to noisy components yields the signal estimate

x̂ = x + F−1w. (4.7)

It is important to understand how this inverse F−1 changes with the sample timings of the

components. Although F has full rank, the matrix may be ill-conditioned if the sampling

components are spaced very close to each other in time. The ill-conditioning is caused by

having a singular value close to zero. In this case, the projection of input x along some

basis directions becomes dominated by the noise in that direction, and the estimate will

have a large amplification of noise along the singular direction. The resulting estimate error

σ2
x̂ =

1

N
tr((F−1)(F−1)T )σ2

w (4.8)
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increases in this case.

Thus, different sets of starting times (τ0,τ1) for the sampling components result in widely

varying estimate errors (4.8). For components which sample at identical times (which has

probability 0), the matrix F becomes singular. On the other hand, with components evenly

spaced apart τ1 − τ0 = Ts, the matrix F becomes orthonormal again and all singular values

are equal to 1. It is easy to show that uniform spacing will minimize the overall noise in

the estimate, σ2
x̂ = σ2

w.

In the case of M = 3 components with period 2Ts, the 3N/2 × N sampling matrix F

is now the concatenation of three 1/2-rate matrices. The optimal signal estimate is now

computed by applying the pseudoinverse of the sampling matrix, yielding error

σ2
x̂ =

1

N
tr((F†)(F†)T )σ2

w (4.9)

=
1

N
tr((FTF)†)σ2

w (4.10)

=
1

N

(

N−1
∑

i=0

1

σ2
i

)

σ2
w (4.11)

where the σi are the singular values of F.

Similar to the two component case, the matrix becomes ill-conditioned if the components

are close in timing; and evenly spaced components yield all singular values equal to 1.5,

resulting in the lowest noise variance. What benefit is there to adding the third component?

First, the noise variance drops to σ2
x̂ = 2σ2

w/3 for evenly spaced components. Also, if the

component timings have a uniform distribution, the third component reduces the probability

that F is ill-conditioned.

Now, we can finally analyze the general (M,M0) setup, where M components are used

to sample when only M0 are required, as described in Section 5.1. In this case, the sampling

matrix F is the concatenation of M component 1/M0-rate matrices. The individual N/M0×

N matrices are

[Fi]k,l = sinc(kM0 − l − τi), (4.12)

where τi is the sampling shift (start time) of component i, where 0 ≤ τ < M0Ts. The total

size of F is rN × N , where again r is the oversampling factor M/M0. Because the rows
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have unit norm, the sum of the singular values for any set of sampling skews τ is equal to

N−1
∑

i=0

σ2
i = tr(FFT ) (4.13)

= ‖F‖2
F (4.14)

= rN (4.15)

where ‖ · ‖F represents the Frobenius norm.

For this fixed singular value sum, the set of component timings τ that minimize the

estimate error (4.11) have a sampling matrix whose singular values are equal,

σ2
opt = arg min

P

σ2
i
=rN

1

N
tr((FTF)†)σ2

w (4.16)

= arg min
P

σ2
i
=rN

∑ 1

σ2
i

(4.17)

= r (4.18)

where σ2
opt is the optimizing set of singular values (also shown in [21]). Thus, the minimum

possible error is

σ2
x̂ =

1

r
σ2

w (4.19)

and there are multiple sets of timing skews which can achieve this value.

In particular, this minimum error is achieved when the M sampling matrices can be

combined to form r unitary matrices. This situation is present in multiple timing setups,

including the case of M uniformly spaced components and the case of M0 uniformly spaced

times with a redundancy of r components at each time (assuming an integer r). In each of

these cases, the F matrix can be divided into r unitary matrices.

Note, our setup is fundamentally different than a system which observes noisy signal

through noisy sampling, y[n] = x(tn)+w(tn). In this second situation, the noise realization

is fixed, i.e. all components sampling at time t = 0 will observe the same value x(0)+ w(0).

Unlike the previous setup, which benefited equally from having r sets of M0 evenly spaced

components sampling at the same time as from having the r sets sampling uniformly, in

the fixed noise setup the identically timed sets have lower performance. For fixed AWGN
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noise on the continuous signal x(t), optimal performance is achieved with non-overlapping

sets of components.

This can be viewed geometrically as wanting the maximum amount of spacing between

the orthonormal vectors of the r unitary bases. Returning to our original setup, we ignore

any fixed noise on the input and consider it to be random between each sample.

Throughout the previous discussion, we implied that an integer number of components

is necessary to sample the input at Nyquist rate, i.e., M0 ∈ Z. It also possible for M0 to be

a fraction, e.g., M0 = 1.5 components samples with period 3Ts/2 to form 2/3-rate sampling

matrices. The same results hold; however we continue to imply integer M0 due to its direct

physical meaning.

Within our representation of the distributed sampling problem, we use matrices to

represent filtering operations and vectors to represent signals. Although truncation effects

occur due to the finite block length, we consider the effects negligible for sufficiently large

N . This assertion is verified in simulations where we use a N + 2 × N sized matrix to

provide extra resolution to the first and last sample of x. For large N , the decrease in error

is marginally small, allowing for the truncations to be made without significant changes in

performance.

Although uniformly spaced components achieve minimum error, the M components in

setups like extreme oversampling have a uniform distribution and no guarantee can be made

on their spacing. In order to quantify the performance bound, it is necessary to analyze the

distribution and statistics of the reconstruction noise in the extreme setup. To do so, we

will first provide a lower bound on the expected performance of the sinc sampling matrix.

We then compare this result to the expected error for sampling projections using arbitrary

random matrices.

4.2 Random Sampling Skews

For systems with a large number of components, we model their skews τi as being uniformly

distributed in the [0,M0Ts] interval. The randomness of these skews leads to a random

charateristic of the sampling matrices, i.e., the projection directions for each sampling

component are not deterministic. The noise power depends on these skew values and how

they are spaced.
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For example, suppose that the set of skews are all located close to each other, the

resulting projection directions of the matrices will also be close together. In this case, the

input in these directions will have high-SNR, but the overall SNR will be dominated by the

lack of components sampling in other directions. As we increase the oversampling factor,

the probability of all the skews being close together decreases and the expected noise on

the input estimate also decreases. In this section, we compute statistics of the noise power

for randomly distributed timing skews and we measure how they change with respect to

system parameters such as r or M0. For an ease of notation, we assume that the sampling

period is unity, Ts = 1.

Let us briefly restate the problem. We model the sampling matrix F as the concatenation

of M independent 1/M0-rate matrices. The reconstruction error for such a system is directly

proportional to tr((FT F)†). Thus, we aim to calculate the distribution of this error and

how it varies with (M,M0).

As seen before, the tr is related to the singular values of F. For M ≥ M0, with probability

one, all singular values are greater than zero. It is clear to see that

σFT F = σ2
F = λFT F = σ−1

(FT F)†
= σ−2

F† = λ−1
(FT F)†

. (4.20)

By calculating the moments of any term above, we can calculate the moments of any other

term.

We define new N × N matrices

Gi = FT
i Fi for 0 ≤ i ≤ M − 1 (4.21)

and

G = FTF =
∑

i

FT
i Fi =

∑

i

Gi. (4.22)

where F is the sampling matrix for M components, as seen in (4.3). The eigenvalues of G

and Gi are related to the singular values of F and Fi, respectively, by (4.20). The elements
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of G are given by

[G]k,l =
M−1
∑

i=0

N/M0−1
∑

n=0

sinc(nM0 − k − τi) sinc(nM0 − l − τi) (4.23)

for 0 ≤ k, l ≤ N − 1.

Due to the complicated structure of matrix G, it seems analytically intractable to com-

pute the error, i.e., tr(G−1), from (4.23). Instead, we look to lower bound the error. Because

the error varies highly for different sets of timing skews, we bound its expecation and see

how this changes with r and M0.

4.2.1 Error Lower Bound

Because G is a positive semidefinite matrix, the input estimation error is bounded by

1

N

N−1
∑

k=0

1

λk
≥

1

N

N−1
∑

k=0

1

Gk,k
(4.24)

where λ is used to designate the eigenvalues of G. Therefore, to lower bound the expected

error, we compute the expectation

Eτ

[

1

Gk,k

]

= Eτ









M−1
∑

i=0

N/M0−1
∑

n=0

sinc(nM0 − k − τi)
2





−1

 (4.25)

For finite block lengths, the expectations above are difficult to compute because they change

depending on the value of k. We avoid this issue by examing the limiting value as we take

the block length N to infinity. To do this, we redefine our indexing to [−N/2 + 1,N/2]

instead of [0, N − 1]. In doing so, the x vector from (4.3) represents x[−N/2 + 1] to x[N/2]

and the F and G matrices also change their indexing. These changes allow us to take the

limit without any changes necessary in the development.

lim
N→∞

Eτ

[

1

Gk,k

]

= lim
N→∞

Eτ













M−1
∑

i=0

N

2M0
∑

n= 1
M0

(−N

2
+1)

sinc(nM0 − τi)
2







−1




(4.26)

where the dependence on k drops out because the τ parameters are distributed uniformly

between [0,M0]. By bringing the limit inside the expectation, we see this reduces to sum-
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ming samples of the sinc function. By Parseval’s equation, we find

Eτ

[

1

Gk,k

]

= Eτ





(

∑

i

1

2π

∫ 2π

0

1

M2
0

M0−1
∑

l=0

M0−1
∑

m=0

e
−j

“

ω− 2π

M0
l
”

τie
j
“

ω− 2π

M0
m

”

τi

)−1


(4.27)

= Eτ





(

M

M0
+

1

M2
0

∑

i

M0−1
∑

u=1

(M0 − u)
(

e
j 2π

M0
uτi + e

−j 2π

M0
uτi

)

)−1


 (4.28)

= Eτ





(

M

M0
+

2

M2
0

∑

i

M0−1
∑

u=1

(M0 − u) cos

(

2π

M0
uτi

)

)−1


 (4.29)

For M0 = 2, this becomes

Eτ

[

1

Gk,k

]

= Eτ





(

M

2
+

1

2

∑

i

cos (πτi)

)−1


 (4.30)

=
2

M
Eτ





∞
∑

j=0

(

−1

M

∑

i

cos (πτi)

)j


 (4.31)

=
2

M
+

2

M

∞
∑

j=1

1

M2j
Eτ





(

∑

i

cos (πτi)

)2j


 (4.32)

The expectation for j = 1 becomes

Eτ





(

∑

i

cos (πτi)

)2


 = Eτ

[

∑

i

cos (πτi)
2

]

(4.33)

= Eτ

[

∑

i

(1 + cos (2πτi)) /2

]

(4.34)

=
M

2
(4.35)

and using similar techniques, we can show that for j = 2,

Eτ





(

∑

i

cos (πτi)

)4


 =
M(2M + 1)

8
. (4.36)

We can derive a lower bound of the M0 = 2 case by ignoring any higher order terms in
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(4.32),

Eτ

[

1

Gk,k

]

≥
8M3 + 4M2 + 2M + 1

4M4
(4.37)

=
64r3 + 16r2 + 4r + 1

64r4
. (4.38)

Therefore, the average error for uniformly distributed skews and M0 = 2 is lower-bounded

by (4.38). The tightness of the bound is dependent on the inverse diagonal inequality (4.24).

For high values of r, this bound goes to 1/r as is the optimal value (4.19).

For M0 > 2, the power series bounding technique is no longer valid and we resort

to simulations of the lower bound. In Section 4.4, we provide a comparison between the

expected estimate error of the sampling matrices and the lower bound developed here.

4.2.2 Adding the Subspace Constraint

The analysis has assumed that x is an arbitrary vector; in actuality, it is restricted to the

bandlimited subspace, i.e. (I − L)x = 0. By incorporating this constraint, the optimal

estimator is now x̂ = L(FL)†y, as given in (2.43). The lower bound can be rederived

in a similar manner as above. The resulting bound replaces variables M0 and τi with

M ′
0 = M0ωc/π and τ ′

i = τiωc/π; and the eigenvalues are also scaled down by a factor of

ωc/π. Therefore, we find

Eτ

[

1

λ

]

= ω′
cEτ









M

M0ω′
c

+
2

(M0ω′
c)

2

∑

i

M0ω′
c−1

∑

u=1

(

M0ω
′
c − u

)

cos

(

2πuτi

M0ω′
c

)





−1

 (4.39)

where ω′
c = ωc/π represents the fraction of eigenvalues of L that are equal to one. The

summation above assumes M0ω
′
c is an integer, which only adds a small restriction to the

applicable cases.

4.2.3 Graphical Meaning

There is a nice graphical interpretation of the bound generated in (4.26). In general, the

estimation noise is dominated by the smallest eigenvalues. These eigenvalues correspond to

the directions in which the sinc sampling matrices are deficient, e.g., if the F matrix has

very low values for every element in column j, then we expect smaller eigenvalues for the

97



eigenvectors in this direction, resulting in a higher error in the estimate of the jth sample.

Likewise, if column j has large elements, we say that the sampling matrices are ’focusing’

more power and we expect the estimate of this sample to be better. This intuition is slightly

flawed in that a matrix such as

F =

















1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

















(4.40)

appears to have sufficient power in each column however two eigenvalues are at zero and

the estimator error blows up. One fix to this problem is to view the problem in a continous

time domain.

We begin with M component skews on the interval [0,M0]. Each component has a

corresponding sinc function that is related to it, i.e., sinc(t − τi) for component i. By

sampling with component i, the input signal is being projected onto samples of this sinc

function. We can think about each component as having a finite amount of power it

dedicates to time t′, where 0 ≤ t′ < M0. Because the M0-length intervals repeat, the

total power to time t′ by component i is

fi(t
′) =

∑

k

sinc(t′ + kM0 − τi)
2. (4.41)

Whereas in the previous example (4.40), we discussed the case of the sums over discrete

columns; in this case, we are taking the sums over interpolated columns at time t′ in the

continous space. Therefore the power dedicated to time t by all components is

f(t′) =
∑

i

∑

k

sinc(t′ + kM0 − τi)
2. (4.42)

The correponding error at time t′ is the inverse of this value. By taking the expectation

of this inverse, the result is independent of t′ because τi is distributed uniformly; therefore

we set t′ = 0. This results in the exact expectation in equation (4.26) of the bound that

we calculated. Therefore, the bound is inverting the ’channel’ for each of the locations

0 ≤ t′ < M0 and averaging these noise errors.
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Figure 4-1: Sum of wrapped sinc function for (M,M0) = (4, 2). The dashed curves represent
main sinc lobe in [0,M0], dashed-dot curves represent sinc wrapping from other intervals,
the solid curve represent sum of sinc2.

In Fig. 4-1, we plot an example of the sinc sum over the [0,M0] interval for a (M,M0) =

(4, 2) system. Because there are fewer components sampling around time t′ = 1.15, the sum

(solid curve) is minimized at this time and the error in estimating this direction is higher.

4.3 Random Unitary Matrices

In this section, we compare the performance of the sinc sampling matrices to random

matrices that are not restricted to the sinc structure. For an N dimensional space, we

define the class of 1/M0-unitary matrices as matrices containing N/M0 orthonormal rows.

Although the Fi sampling matrices are 1/M0-unitary, their sampling is limited to projecting

the input onto sinc functions, as shown in Fig. 4-2. By broadening the 1/M0-rate matrix

class to arbitrary 1/M0-unitary matrices, we expect to achieve an lower-bound on the error

due to the added degrees of freedom.

1
M0

-Unitary

1
M0

-Rate

Figure 4-2: 1/M0-rate sinc sampling matrices are a subset of the 1/M0-unitary matrices

Each matrix Fi is now modeled N/M0 rows of a random unitary matrix, where we use
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a uniform distribution over all possible unitary matrices. This distribution is also known as

the Haar distribution (in contrast to the Wishart distribution for matrices with independent

Gaussian entries). The Gi matrices can now be written as

Gi = QiΣiQ
T
i (4.43)

where the Qi are random orthonormal matrices and Σi is a diagonal matrix of eigenvalues

(N/M0 at one and the rest at zero). In other words, the Gi are random matrices whose

eigenvalues are distributed with CDF

F (λ) =
1

N
#{λm : λm ≤ λ} (4.44)

=



























0 λ < 0

1 − 1/M0 0 ≤ λ < 1

1 1 ≤ λ

. (4.45)

From this characterization, we can derive information about the overall sampling matrix.

To do so, we would like to calculate the eigenvalue distribution of a sum of M random

matrices, each with distribution (4.45). We use tools from random matrix theory and free

probability to aid in our analysis [15].

It is useful to examine the geometrical pictures of these operations. In general, for two

matrices A and B, the eigenvalues of each λA and λB tell us little about the eigenvalues of

the sum λA+B or product λAB . For example, fixed 1/2-unitary matrices (F1,F2) produce

(G1,G2) whose summation G1 + G2 has different possible eigenvalues.

The eigenvalues of the sum are all one if GT
1 G2 = 0, i.e., all the projection vectors in F1

are orthogonal to vectors in F2. Half eigenvalues are two and half are zero if G1 = G2, i.e.,

all the projection vectors in F1 are aligned with the vectors in F2. And a range of other

eigenvalues are also possible with other matrices. Thus, we think of each matrix Fi as a set

of projection directions. The farther apart the directions are, the more well balanced the

eigenvalues of G will be.

Figure 4-3 shows three different examples of M − 2 components in an M0 = 1.5 system.

The projection vectors of the first component (solid) and the second component (dashed)

are plotted in (x, y, z) coordinates. In the first plot, three vectors are orthogonal, and the

100



Figure 4-3: Projection directions of random matrices

fourth adds more information about the (x, y) plane. In the second plot, the first and

second component are redundant and no information is gather about the z direction. And

the third plot shows a random pair of components where the close spacing of projection

vectors may decrease the eigenvalues in one direction.

When dealing with random matrices, the matrices are defined in terms of their eigenval-

ues. The eigenvectors, on the other hand, are chosen using the Haar distribution. Because

of this unitary invariance of the projection directions, it is possible to make more precise

claims on the eigenvalues of a summation of random matrices and on the eigenvalues of a

product of random matrices. In the next section, we present different representations for

these matrices, which allow us to calculate the eigenvalues of certain operations, such as

addition and multiplication.

4.3.1 Random Matrix Representations

There are multiple ways to define and classify subclasses of random matrices. In this

discussion, we limit ourselves to matrices that have a limiting eigenvalue distribution, i.e.,

as we increase the size N of the matrix, the eigenvalue distribution converges to a fixed

distribution F (λ). It is clear that our Gi matrices fall into this category.

There are multiple transforms of the limiting distribution that yield other useful repre-

sentations. To start, we describe the basic Stieljes transform, which is calculated by

mG(z) =

∫

1

λ − z
dF (λ) (4.46)

= Eλ

[

1

λ − z

]

. (4.47)
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This transform can also be rewritten in terms of the eigenvalue moments

mG(z) = −
∞
∑

i=0

E[λi]
1

zi+1
. (4.48)

Therefore, if we can compute mG−1(z), we can make statements about the moments of the

estimation error.

To do so, we will follow a simple series of steps

mGi
(z) → mG(z) → mG−1(z) (4.49)

where the first arrow involves the summation of random matrices and second involves the

inversion.

The Stieljes transform of the eigenvalue distribution of Gi is given by

mGi
(z) = −

1

z

(

1 +
1

M0

1

z − 1

)

. (4.50)

We can rewrite this transform as a bivariate polynomial

Lm(z),z =
∑

i

∑

j

ai,jm
izj (4.51)

where the solution to Lm(z),z = 0 is given by Stieljes polynomial m(z). In our case

LmGi
(z),z = M0mz2 − M0mz + M0z − M0 + 1, (4.52)

and the solution is given by (4.50). These transforms are computed using the rmtool toolbox

developed in [42].

Through other matrix operations described in [42], we can compute the eigenvalues for an

addition of random matrices by the free probability addition of their bivariate polynomials.

By doing so, we find that the summation of M matrices Gi in (4.22) has a bivariate

polynomial

LmG(z),z = m2(M0z
2 − M0Mz) − m(M0M − 2M0z − M2 + M0Mz) + M0 − M0M.(4.53)

From this equation, we can compute the distribution of the eigenvalues of G.
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Figure 4-4: PDF of eigenvalues of G for r = 4 factor oversampling and varying numbers of
base components M0

The distribution of the eigenvalues for r = 4 is plotted in Fig. 4-4 for varying numbers

of base components M0. The plot represents the marginal distribution but can be viewed

as a histogram of eigenvalues for large N . As M0 increases, the PDF of the eigenvalues

shifts its density to left while broadening its support. This result is expected; by fixing

the oversampling ratio and increasing M0, the rM0 matrices can align to produce larger

eigenvalues in some directions and smaller eigenvalues in others.

In Fig. 4-5, the eigenvalue distribution is shown for M0 = 4 components and varying

oversampling ratios. By increasing the redundancy r, the PDF tends towards a uniform

distribution with a higher mean. These distribution plots allow us to understand how

the eigenvalues grow with oversampling ratio, which directly translates to how the input

estimation error shrinks with oversampling ratio.

Because analytically calculating the distribution function is difficult in closed form, we

instead solve for the moments of the eigenvalues. Using (4.11), we find

E [λ] = r (4.54)

E
[

λ2
]

= r2 + r − r/M0. (4.55)

and the expectations of the negative moments can be computed from

Lm
G−1 (z),z = (M0z − M0Mz2)m2 + (M0M − M0Mz − zM2)m − M2. (4.56)
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Figure 4-5: PDF of eigenvalues of G for M0 = 4 factor oversampling and varying oversam-
pling ratios r

We find that for r > 1

E

[

1

λ

]

=
1

r − 1

(

1 −
1

rM0

)

(4.57)

E

[

1

λ2

]

=
1

r2

1

(r − 1)3
1

M2
0

(rM0 − 1)
(

r2M0 − 2r + 1
)

(4.58)

These statistics are the limiting values as the matrix size goes to infinity. From these

equations, we see that as the oversampling factor r increases, the error goes to zero as 1/r

and variance goes to zero as 1/r3.

These expected error values give insight into the geometry of the problem and the added

benefit of not restraining the sampling matrices to sinc functions. The expectations for any

value of M0 are bounded between

1

r
< E

[

1
λ

]

<
1

r − 1
(4.59)

1

r2
< E

[

1
λ2

]

<
r

(r − 1)3
(4.60)

where the limits are taken for M0 = 1 and M0 → ∞. For a given oversampling factor

r, if the performance is low because M0 components is too large, then adding M0 more

components, i.e., r + 1 oversampling, will achieve the same performance as if M0 = 1 with

r held constant.
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In Section 4.4, the simulations show that the expected error 1/M0-unitary matrices is a

lower bound for the 1/M0-rate matrices. It remains to be proven that this bound holds for all

values of r and M0; however, such a result would imply that the decreased degrees of freedom

in the randomness of each 1/M0-rate matrix leads to a higher probability of the skews

bunching closer. This skew bunching leads to projection directions being aligned closer

together and produces a higher error in the other directions, which dominates estimation

performance.

4.3.2 Adding the Subspace Constraint

For a bandlimited input, we find GL = LTFTFL, where L is represented through a random

matrix with Nω′
c eigenvalues at one and the rest at zero. This formulation allows us to

keep the random matrix representation, without having to represent x through its subspace

equivalent representation. The bivariate polynomials for the GL are

LmG
L

(z),z = (−Mz2 + z3)M0m
2 + ((−2z + ω′

cz − z2)M0M + M2z + 2z2M0)m

+M2 − M0M − M2ω′
c − M0Mz + ω′

cM0M + M0z (4.61)

Lm
G

†
L

(z),z = (−z3M0M + z2M0)m
2 + (((2ω′

c − 3)z2 + z)MM0 + 2zM(ω′
c − 1) − M2z2)m

−((ω′2
c − 3ω′

c + 2)z + ω′
c − 1)M0M + (ω′

c − 1)2M0 + (ω′
c − 2)M2z (4.62)

yielding moments

E [λ] = ω′
cr (4.63)

E
[

λ2
]

=
ω′

cr

M0
(rM0 + M0ω

′
c − ω′

c) (4.64)

E

[

1

λ

]

=
ω′

c

rM0

rM0 − ω′
c

r − ω′
c

(4.65)

E

[

1

λ2

]

=
ω′

c

r2M2
0

r3M2
0 − 3ω′

cr
2M0 + ω′2

c r(M0 + 2) − ω′3
c

(r − ω′
c)

3
. (4.66)
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Figure 4-6: PDF of eigenvalues of GL = LTFTFL for r = 4 factor oversampling and varying
numbers of base components M0. The plot omits an impulse of area 1−ω′

c = 0.25 at λ = 0.

Again, the first and second order moments of the error are bounded w.r.t the oversampling

ratio

ω′
c

r
< E

[

1
λ

]

<
ω′

c

r − ω′
c

(4.67)

ω′
c

r2
< E

[

1
λ2

]

<
ω′

cr

(r − ω′
c)

3
. (4.68)

The distribution of the eigenvalues for r = 4 is plotted in Fig. 4-6. As expected, the

PDFs have the same general shapes as the Fig. 4-4, except that the density is reduced at

every point due the 1 − ω′
c fraction of eigenvalues at zero.

4.4 Bound Comparison

Within this chapter, we have presented methods for analyzing and bounding the expected

error of a distributed sampling system with uniformly distributed skews and a deterministic

bandlimited input. The skews are treated as known values and the error is measured through

the input estimate error, tr(G−1)σ2
w. We now plot the performance by fixing the number

of base components M0 and testing different oversampling factors.

In Figs. 4-7 and 4-8, the noise error curves are plotted for M0 = 2 and M0 = 8 respec-

tively. The x-axis represents the oversampling ratio and the y-axis represents the scaling
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Figure 4-7: Average error versus oversampling factor for M0 = 2 components. Curves
plotted for sinc sampling matrices error, 1/M0-unitary matrices error, derived lower bound,
and minimum possible error.

factor on the error, which can be translated into effective bits loss. In each plot, four curves

are shown.

The top curve in solid is the average simulated error of the sinc sampling matrices, where

each trial selects the rM0 skews at random in the [0,M0] interval. The bottom solid curve

represents the best possible error 1/r, which corresponds to evenly spaced components.

The dashed curve is the error when random 1/M0-unitary matrices are used instead of the

sampling matrices. Finally, the dashed-dot line repesents the lower bound from Section

4.2.1. In Fig. 4-7, this curve is the derived lower bound (4.38); while in Fig. 4-8, this curve

is the simulated lower bound (4.24).

As we can see, the curves in both plots quickly converge to 1/r. The random matrix

performance curve provides a better lower bound than the one derived; however, analysis

is deficient in proving the random matrices are a lower bound. The variance of the error

for these sampling matrices can be simulated and tests have shown higher variance values

than for the random 1/M0-unitary matrices. Simulations were also carried out for the

bandlimited signal case using the GL matrices. In this case, the curves had similar shape

to the non-bandlimited case with the visible difference being a ω′
c factor reduction of noise.

Figure 4-9 plots the average error scaling for varying M0 when the oversampling ratio is

fixed, r = 2. Due to the difficulty of simulating matrices where N and M0 are both large,

the plots are limited to M0 = 8 components. The error power of the optimal spacing is fixed
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Figure 4-8: Average error versus oversampling factor for M0 = 8 components. Curves
plotted for sinc sampling matrices error, 1/M0-unitary matrices error, derived lower bound,
and minimum possible error.
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Figure 4-9: Average error versus number of base components for r = 2 components. Curves
plotted for sinc sampling matrices error, 1/M0-unitary matrices error, derived lower bound,
and minimum possible error.
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at 0.5. The 1/2-unitary matrices converge to a unit error scaling for large M0; however, the

1/2-rate sinc matrices have a rapidly increasing error.

Although we can see that a significant amount of noise reduction is possible by using

oversampling, the previously developed calibration algorithms actually decrease in perfor-

mance for increasing numbers of sampling components due to the extra mismatch param-

eters that need to be estimated. In the next chapter, we explore systems with a highly

redundant number of sampling components and develop methods for efficient and accurate

calibration.
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Chapter 5

Extreme Oversampling

Within the previous chapter, we examined the expected noise reduction from increasing the

amount of oversampling by using extra sampling components. Using the skew estimation

and calibration methods of Chapters 2 and 3, this performance gain is not achievable due

to the added difficulty of estimating extra skew parameters. In this chapter, we focus on

developing calibration methods for the extremely oversampled system and present methods

that exploit the extra sampling components to increase performance and reduce complexity.

In order to ensure a system operates at a required performance target, system engineers

often incorporate a design overhead into the system. The amount of overhead is determined

by the tradeoff between the added benefit to added cost of the overhead. When the added

costs are small, systems are often greatly over-provisioned and a redundant amount of

resources are dedicated to tasks.

Figure 5-1: Example Sensor Network

In distributed sampling systems, such as sensor networks, the cost of sampling compo-

nents is often low, allowing the system to use more than the required number of components

to sample the input signal. For example, a system that needs five sampling components
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operating at a certain rate may be use 100 components at that same rate. In this case of ex-

treme oversampling, the base component receives an abundant amount of samples and uses

them to estimate the input signal. We examine the properties of extreme oversampling sys-

tems and propose signal reconstruction techniques that take advantage of the redundancy

in order to reduce complexity.

Because the system is completely uncoordinated, the ordering between the sampling

components is not known. The main component receives M sets of periodic samples with-

out any knowledge about the alignment of the samples. This allows for the discrete indexing

to be misaligned, e.g., the sample time of y2[n] lying between the times of y1[n + 1] and

y1[n+2]. Although it is possible to apply one of the blind calibration techniques in Section

1.4, the performance is low and the computational complexity is high for the large num-

bers of components and large skews found in the extreme oversampling case. We develop

high-performance calibration algorithms for this setting. In our development, rather than

handle the component ordering and calibration at the same time, we treat each problem

independently in order to perform signal recovery.

5.1 Problem Formulation

The input x(t) is now modeled as a stationary bandlimited zero-mean Gaussian process

with a flat power spectral density

Sxx(jΩ) =











γ2/Ωc for Ω ∈ [−Ωc,Ωc],

0 otherwise.

(5.1)

As described in Section 1.3.1, this flat-spectrum signal class is typical of the narrowband

signals found in, e.g., communication systems, where the statistics are constant for a time

block; however the results are not sensitive to this aspect of the model.

As in Chapter 4, the sampling period of each individual component is M0Ts. In the

case of extreme oversampling, the number of sampling components (M) greatly exceeds the

necessary number for Nyquist sampling (M0). The average sampling period is Ts/r, where

r = M/M0 is the oversampling factor.

The lack of coordination among the nodes leads to arbitrary shifts in the component

timings. Because of these arbitrary skews, the output of the ith component is now modeled
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as

yi[n] = x(nM0Ts + τ ′
i) + wi[n] (5.2)

where the τ ′
i represent the overall timing shifts. Without loss of generality, we set τ ′

0 = 0;

thus all sampling timings are relative to the timing of the first component.

Because of the nature of the problem formulation, it is possible that the timing skews

τ ′
i may be greater than the sampling period of a single component M0Ts, thus causing a

misalignment between components in the discrete indexes. To model this, we separate the

overall timing shift into an integer alignment factor mi and the time skew τi, where

τ ′
i = miM0Ts + τi (5.3)

and 0 ≤ τi < M0Ts. Note that these skews τi are different than the ones in previous

chapters because they model an absolute skew from the first component (rather than a

deviation from the ideal location). The output of the ith component is

yi[n] = x((n + mi)M0Ts + τi) + wi[n] (5.4)

where mi and τi are unknown parameters. Because the τ ′
i parameters are arbitrary, we

model their respective τi skews as having a uniform distribution in the [0,M0Ts] interval.

This random model for the skews will prove useful when estimating the system calibration

performance.

Again, the signal recovery problem is to estimate the input x(t), or equivalently x[n] =

x(nTs), as accurately as possible from the component outputs. Figure 5-2 shows an over-

sampling system with the top lines representing uniform sample timing with M0 = 2 com-

ponents and the bottom lines representing an example nonuniform sampling pattern with

M = 6 components.

In the previous sections, we proposed algorithms that estimate the timing skews of

the sampling components and subsequently perform reconstruction. It is possible to apply

similar techniques in the extreme oversampling case; however, the estimation of all the

mismatch parameters is difficult. It is both computationally intensive and more sensitive

to noise. For these reasons, we propose the development of alternative strategies that are
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Figure 5-2: Extreme oversampling system with oversampling factor r = 3. Top lines repre-
sent uniform sample timing with M0 = 2 components. Bottom lines represent an example
nonuniform sampling pattern with M = 6 components.

tailored to the extreme oversampled system.

There are two major questions in the oversampled system: how to handle the arbitrarily

large timing skews and how to efficiently handle the large number of components. We start

by decoupling the component alignment problem from the signal recovery problem. The

alignment problem is to compute the integers mi and order the timing skews τi. By doing

so, we reduce the effective size of each timing shift τ ′
i .

After ordering, the timing skews τi still exist and the input signal must be estimated

from the ordered samples. Subsequently, we develop two methods for mismatch calibration

from ordered samples. The first approach uses subset selection in order to reduce the

effective number of sampling components. The second approach provides a method for

signal estimation through simple filtering operations.

5.2 Ordering Component Samples

In this section, we address the case of unordered sampling and propose methods for ordering

the samples. There are a variety of sampling scenarios that deal with unordered sets of

samples. One such example is a sensor network, seen in Fig. 5-1. Here, each node collects

periodic samples of a common signal and stores these samples into memory. The base station

gathers the information but does not have access to when each node started sampling.

Another example of unordered sampling is image super-resolution, where multiple images

of a common scene are used in order to construct an image with a higher resolution. This

2-D generalization of the sampling problem faces the issue of unordered sampling because

images are not always aligned perfectly.
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To address the ordering problem, we first examine the case where the integer shifts

are zero, mi = 0 for all i, and address methods to handle them later. By doing so, the

component signals will be aligned such that the time shift τ ′
i,j is reduced to time-skew τi,j.

Line Circle

0 MTs

0 = MTs

Figure 5-3: ’Line’ and ’Circle’ methods of visualizing component layout

To visualize the component layout of skews τi, we use two methods: ’Line’ and ’Circle’.

In the traditional ’Line’ method, a line represents time, starting at 0 and ending at M0Ts.

The timing skews τi of each component can be shown on this line. In this case, components

with small skews appear to sample at very different times than components with large

skews. In the ’Circle’ methods, we wrap the line into a circle, where the starting point

equals the ending point. Again, we can show the timing of each component on the circle.

The added benefit of this method is that the smallest skew component and the largest skew

component are close in distance even though their skews are far apart, which represents the

high correlation between their signals. Each method of visualizing the skews will be useful

in subsequent development.

There are multiple ways for estimating the ordering of the sampling components. We

chose a pairwise approach that measures the relationship between pairs of signals rather

than looking at the complete set of component signals simultaneously. By doing so, we

reduce the computational complexity.

5.2.1 Generating Correlation and Distance Matrices

To order the components, we first generate a matrix of distance approximations between

pairs of components. The method is motivated by the observation that components close

in timing will have a high correlation between their samples. Using these matrices, we can

generate a global ordering map for the components.
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Because the system does not have access to sample timings, we must estimate the relative

timing between signals yi[n] and yj[n]. We define a measurement g(·, ·) on pairs of signals

that allow us to coarsely estimate the timing difference

τ̂i,j = g(yi[n], yj[n]). (5.5)

where τi,j = τi − τj.

In systems where each component samples above the Nyquist frequency, the timing

difference can be computed via standard time-delay estimation techniques, where the peak

of the convolution is often used [30, 18]. The same techniques are not always possible in

systems where individual components sample under the Nyquist frequency.

For a moment, let us try to use a similar convolution estimator for arbitrary bandlim-

ited signals where each component undersamples the input. Because it is not possible to

interpolate each received signal yi[n] in order to perform the continuous time convolution,

only discrete shifts can be calculated

s[k] =
∑

yi[n]yj[n − k]. (5.6)

However, these values do not provide ample information to determine the time delay. For

example, suppose the input x(t) is generated as follows

x(t) =
∑

xq[n] sinc(t/Ts − n) (5.7)

xq[3n] = 1 (5.8)

xq[3n + 1] = 0 (5.9)

xq[3n + 2] = 1.01 (5.10)

where Tq is the Nyquist frequency. If we pick components y0 and y1 with periods 3Tq, it is

possible that y0[n] = 1 and y1[n] = 1.01 for all n. These two components have a large dot

product even though their timing difference is large.

Because the peak of the autocorrelation is not computable with undersampled signals,

we develop an alternate estimation method that exploits the stationarity property of our

input. Our approach to timing estimation is to assume that the timing skew between two
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sets of samples has a magnitude proportional to the Euclidean distance between them,

|τ̂i,j| ≈ fd

(

1

N

∑

n

(yi[n] − yj[n])2

)1/2

, (5.11)

where fd is some increasing function. Thus, if two components are close in timing, we

expect the distance between their signals will be small. This relationship can be made more

precise by focusing on our input class of wide-sense stationary signals. Because the variance

is fixed, equation (5.11) can be replaced with skew estimate equation

|τ̂i,j| ≈ fc

(

1

N

∑

n

yi[n]yj[n]

)

, (5.12)

where function fc equals the inverse of the autocorrelation function.

The computation
∑

yi[n]yj[n] provides an estimate of Rx,x(τi,j). By inverting the auto-

correlation value, we form an estimate of the timing difference τi,j. Other autocorrelation

techniques are discussed in [16, 44] for a general nonuniform periodic system; however, the

extreme oversampling system allows for greater accuracy due the close spacing of neighbor-

ing components.

We briefly examine the example input class of bandlimited Gaussian signals x(t) with

power spectral density (PSD)

X(jω) =











π
Ωc

|Ω| < Ωc

0 otherwise

. (5.13)

The autocorrelation is given by

Rx,x(τ) = sinc(Ωcτ/π) (5.14)

as shown in Fig. 5-4.

If we find that the correlation estimate between two components is equal to 0.9, we

know that the timing difference between the components (in the absence of noise) is equal

to R−1
x,x(0.9) = +/−0.79. Thus, we have formed a method for estimating the absolute value

of the timing difference, which is based off the correlation between components. Because

the autocorrelation is symmetric, each absolute timing estimate yields two possibilities for
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Figure 5-4: Power spectral density (PSD) and autocorrelation Rxx for a bandlimited Gaus-
sian signal.

the true timing skew.

This method is accurate for estimating timing differences that are small in magnitude,

but we must explore what happens when the components are spaced far apart. Suppose

that the correlation is equal to 0.1; in this case, there are multiple absolute timings that

could yield this correlation. Rather than dealing with large numbers of possible timing

skews, we focus our attention on the correlations that correspond to one absolute timing

(two possible timing skews) and ignore all other correlation values. In the next section, we

define a range of correlations for which this property holds.

For any signal with a continuous PSD over a finite support, it is possible to show that

the autocorrelation function will have a unique peak at τ = 0. Also, the function is non-

increasing in a range [−τc, τc] around the peak, i.e. Rx,x(τ) ≤ Rx,x(0) for 0 ≤ |τ | < τc.

For a given input spectrum, it is necessary to compute the largest coherence range τc such

that the autocorrelation values of the peak lobe within this interval are greater than the

autocorrelation values anywhere outside this interval, i.e. Rx,x(τc) > Rx,x(τ) for τ > τc.

Therefore, given τc, all autocorrelation estimates between Rx,x(τc) and Rx,x(0) correspond

to a single absolute timing, as shown in Fig. 5-5.

The analysis provides a definition of a coherence interval, however no explicit solution is

possible. Because each power spectral density has a different autocorrelation, the coherence

range τc must be calculated from an estimate of the input spectrum. In general, a narrow

spectrum corresponds to slower decaying autocorrelation and a larger coherence interval;

however, slower decay also implies an autocorrelation estimates that are more sensitive to
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Figure 5-5: Autocorrelation plot of bandlimited Gaussian signal showing the valid coherent
range where a autocorrelation value corresponds to at most two timing skews.

noise.

By calculating the coherence range for the input class, we can now order the components.

We begin by computing the pairwise correlation between each pair of components i and j.

Only the correlations that correspond to timing differences within the coherence range are

kept and all others are deleted. This is equivalent to keeping track of only the closest

neighbors. Because this method does not consider discrete shifts mi, we are implicitly using

the ’Line’ method where components with skews of ǫ and MTs − ǫ are not neighbors. From

these computations, we can form a correlation matrix

[RL]i,j =











∑

n yi[n]yj [n] if
∑

yi[n]yj[n] > Rxx(τc)

0 otherwise

(5.15)

by zeroing out any component outside the coherence range. The corresponding distance

matrix is

[DL]i,j =











R−1
xx (
∑

n yi[n]yj [n]) if
∑

yi[n]yj [n] > Rxx(τc)

∞ otherwise

(5.16)

where the positive values of the inverse autocorrelation are taken.

The introduction of integer offsets mi only adds a small amount of complexity. To test

whether a pairwise offset mi,j = mi − mj is valid, we simply check to see whether the
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corresponding correlation
∑

yi[n]yj[n + mi,j] produces a value in the correlation coherence

range [Rx,x(τc), Rx,x(0)]. For pairs of components with small |τi,j|, the correct value of mi,j

will result in a high correlation. Any incorrect value of mi,j causes a dramatic reduction

in the correlation and can be thrown out. If no value of mi,j produces a high enough

correlation, this implies that components i and j are not neighbors.

In order to simultaneously obtain the correlations for multiple values of mi,j, it is only

necessary to compute the convolution between yi[n] and yj[−n]. Because different values

of mi,j correspond to vastly different τ ′
i,j this method is resilient to noise errors. Because

skew τi ordering is on a finer scale, it is necessary to calibrate for the mi,j parameters first.

When dealing with these integers shift mi,j, we are switching to the ’Circle’ method

of timing skews. Components that have skews on opposite sides of 0,M0Ts point, i.e.,

τi − τj + M0Ts < τc, will produce high correlation values. Thus, it is necessary to increase

these estimates of mi,j by one in order to construct a stable component ordering. With these

modified mi,j integer shifts, the corresponding correlation and distance matrices using the

’Circle’ method are

[RC]i,j =



























∑

n yi[n]yj[n + mi,j] if
∑

yi[n]yj[n + mi,j] > Rxx(τc)

∑

n yi[n]yj[n + mi,j − 1] if
∑

yi[n]yj[n + mi,j − 1] > Rxx(τc)

0 otherwise

(5.17)

and a corresponding distance matrix

[DC]i,j =



























R−1
xx (
∑

n yi[n]yj[n + mi,j]) if
∑

yi[n]yj [n + mi,j] > Rxx(τc)

R−1
xx (
∑

n yi[n]yj[n + mi,j − 1]) if
∑

yi[n]yj [n + mi,j − 1] > Rxx(τc)

∞ otherwise.

(5.18)

From these matrices, it is possible to construct a global ordering.

5.2.2 Global Ordering from Pairwise Estimates

In the previous section, we presented a method for generating distance estimates between

pairs of component. From these estimates, there are multiple ways to generate a global

ordering of the components.
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Greedy Nearest Neighbor

We start by presenting a simple greedy algorithm that works in O(M) time in the absence

of noise. We use the ’Line’ method (RL and DL) and later take into account the circular

structure. For each component yi, we can form a list from matrix DL that contains the

neighbors ordered by closest distance (highest correlation). No information of the sign of

the timing difference is known; the list is only in terms of absolute distance from component

i, which ignores whether the components may sample before or after the list component.

Using these M lists of neighbors for the components, we can now form a global ordering.

Let us start with an arbitrary component i who has γi neighbors in its coherence range

ordered as {C(i,1), C(i,2), ..., C(i,γi)}, where C(i,1) corresponds to the index of the component

closest to component i. This component C(i,1) can either sample before or after component

i; without loss of generality, we say that it fires after i. Now, the second component C(i,2)

either samples before i or after C(i,1). In order to resolve this question, we look at the list

corresponding to component C(i,2). If C(i,2) is closer to C(i,1) than it is to i, we determine

that it samples after C(i,1); otherwise, it samples before i. Note that if C(i,1) is not on the

list of C(i,2), we determine that i is closer since it is guaranteed to be on the list.

After these steps, we know the relative order of components {i, C(i,1), C(i,2)}. Likewise

we can continue to sequentially add the γi − 2 neighboring components to the ordering

by determining whether each component is closer to the first ordered element or the last

ordered element. After ordering the list for component i, we continue to component C(i,1)

and so on until all components are in the ordering.

Let us look at an example case of M = 8 components, with the lists of neighbors for

each component already computed.

1 : 4 6 2

2 : 6 1

3 : 5

4 : 1 5 6

5 : 4 3

6 : 1 4 2

→

4 1 6 2

1 6 2

3 5

5 4 1 6

3 5 4

4 1 6 2

(5.19)

Stitching together these lists, we get the global ordering {3, 5, 4, 1, 6, 2} for the components.
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Therefore, provided that neighbors exist within the τc range for each component and no

errors exist, we can compute a complete ordering map

α = {α0, ..., αM−1}, (5.20)

where αk represents the component number for the k-th ordered component, i.e. ταk
< ταl

for all k < l. Note, it is possible that the component list ordering is reversed but this issue

can be resolved through a simple measurement on the signal estimate developed below.

From estimates of the integer alignments mi and ordering of the time-skews α, we can

create the ordered oversampled output yos[n],

yos[n] = yαi

[

n − i

M
− mi

]

n (mod M) = i. (5.21)

for 0 ≤ i ≤ M − 1. This discrete time signal has an average sampling period of Ts/r.

The nearest-neighbors approach has a low computing-time; however, any errors in the

neighbor lists causes the method to fail to produce the correct ordering. Errors arise in

the form of permutations in the neighborhood lists. There are multiple reasons that this

can happen. First, the correlation calculation (5.15) is only an estimate of the correlation.

For an N -length block of samples from each component, the variance of this correlation

estimate decays as 1/N . If the error in the estimate is high, a permutation error may occur

with another neighbor. Another source of error is the zero slope of the autocorrelation at

τ = 0. Any skews in a neighborhood around this point have similar autocorrelation values,

making them sensitive to noise. Lastly, although the stationary statistics are modeled as

being constant, slight deviations can change the correlation estimates.

Vector ordering

In this section, we introduce an alternate method for global ordering that is more robust to

errors. Rather than looking a single pairwise relationship for component i, we use a vector

of correlations rLi, which is the ith row of RL. The basic motivation is that components i

and j that are close in timing will have corresponding vectors rLi and rLj that are close in

distance because they will have similar correlation values for their neighbors. The algorithm

can still be performed in a greedy way, where the first component selects the closest neighbor

and so on.
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The algorithm is robust to errors in correlation because multiple correlations are being

considered simultaneously. Basic simulations were performed to compare the ordering per-

formance of the greedy nearest neighbor method and vector ordering method. Simulations

show an increase in performance with vector ordering when larger amounts of noise are

present. In cases with high noise, the incorrect decisions made by the greedy nearest neigh-

bor algorithm propagate to produce increasingly inaccurate orderings. The performance of

both methods can increase if the ’Circle’ correlation and distance matrices are used. The

corresponding list representation is invariant to any circular shift.

Advanced ordering methods

Both of the methods presented previously are greedy methods, where the closest measured

component is added to the list at each time step. These methods have the benefit of be-

ing low complexity but do not fully incorporate the global structure. A variety of other

approaches have been used to address similar problems in the past; in particular, we re-

formulate the sampling component ordering as a traveling salesman problem and a linear

ordering problem. Using these alternative formulations, we can draw upon a wide variety

of other algorithms that have been developed.

The component ordering problem can be rewritten in a graph form where vertices rep-

resent components. An edge exists between vertices i and j if the distance between these

components DCi,j is finite. The edge lengths are given by their corresponding values in DC.

In this case, the goal of the ’Circle’ component ordering is to find a loop in the graph that

visits every point and has the minimum overall distance. This formulation is equivalent to

the traveling salesman problem (TSP) [35]. Although the geometry of the ordering problem

is simpler than the general TSP problem, the noise on the correlation estimates distorts the

geometry. Because the TSP problem is non-polynomial (NP-complete), only approximate

solutions are possible in polynomial time. These TSP solutions applied to the component

ordering problem are expected to be less sensitive to noise since they use a global approach.

An alternative ordering approach is possible through a linear ordering formulation. For

any given matrix, the problem of linear ordering aims to compute the permutations of rows

and columns in a matrix that maximize the sum of the weights in the upper triangle [1].

This formulation is equivalent to finding a component ordering such that the distance from

first to last component is minimized in DL. Again, this problem is NP-complete and various
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approximate solutions have been developed.

These complicated methods of addressing the component ordering problem are useful

when the amount of oversampling r is extremely high or when noise is present. Although

we do not develop any specific algorithm, the reformulation gives insight into other global

approaches that can be used for ordering from a distance matrix.

5.2.3 Ensuring Existence of Neighbors

The ordering methods proposed above rely on the assumption that each component has a

multiple element list of neighbors within distance τc; however, with a random distribution

of skews τi this can never be guaranteed. In this section, we define a failure event if a

component does not have both a left-side and a right-side neighbor. Although the minimum

number of components necessary to prevent any failures is M = M0Ts/τc, a significantly

larger number of components is required to ensure no failures exist with high probability.

We analyze the probability for a failure and how this decreases with the oversampling level

r.

In the ’Line’ formulation, the first and last components are allowed to have only a right-

side and left-side neighbor respectively. Because the ‘Line’ probability of failure is strictly

less than the ’Circle’ probability of failure, we focus on upper-bounding the latter. The

skews τi are random parameters with uniform distributions in the interval [0,M0Ts). With

the ’Circle’ method, for any component i, the neighbors locations are random with uniform

distribution [−M0Ts/2,M0Ts/2].

We use Ai as an indicator variable that denotes the event that component i does not

have a right-side neighbor. The probability of this event is

P [Ai] =

(

1 −
τc

M0Ts

)M−1

(5.22)

By the union bound, the probability event that at least one component does not have a

right-side neighbor is given as

P [A] ≤ M0

(

1 −
τc

M0Ts

)M

(5.23)

A failure occurs when components have neither left-side nor right-side neighbors. It is clear

to see that this event is equivalent to the event A in (5.23). Thus the probability of failure
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Figure 5-6: Probability of failure for various oversampling factors r in an M0 = 4 system
with coherence range τc/Ts = 0.2

decays exponentially in M . Fig. 5-6 shows a plot of the probability of failure for varying

values of oversampling value r, with (M0, Ts, τc) = (4, 1, 0.2).

5.3 Efficient Calibration

Using the methods of Section 5.2, we are able to order the samples from all the components;

however the exact skew values remain unknown. There exist a variety of applications for

which the extreme ordered signal is found naturally. One example is antenna arrays where

multiple antennas are lined up to receive a signal. The ordering of the antennas is often

known but the spacing may not be uniform.

From these ordered signals, it is still necessary to reconstruct the input signal. Although

the effective size of the timing skews has been reduced, the computational complexity of

the calibration methods from Chapter 3 is still too high for the large number of sampling

components.

We now propose two alternative methods for signal reconstruction in the ordered, ex-

treme oversampled system. The first method uses subset selection to choose an optimal set

of components from which to perform calibration. The second method provides a direct

reconstruction method through the use of a single lowpass filter.
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5.3.1 Subset Selection via Downsampling

Subset selection can be used in a highly oversampled system in order to reduce the compu-

tational complexity of input estimation. The goal is to pick the optimal set of M0 sampling

components

β = {β0, ..., βM0−1}, (5.24)

where βk is the index of the kth component selected, and throw out the samples from the

other components. Optimality is defined by the set that produces the smallest amount of

parameter estimation error. After selecting the subset, the individual component signals

are multiplexed to create z[n],

z[n] = yβi

[

n − i

M

]

n (mod M0) = i. (5.25)

where we assume that the integer shifts mi are previously calibrated.

The multiplexed signal has the same sampling rate as the input. We can use it as a

direct estimate of the input x̂[n] = z[n], or we can apply a time-skew calibration method

like the ones described in the previous chapter. In both cases, choosing components that

are evenly spaced in time reduces the deviation from uniform sampling, which reduces input

estimation error. An efficient way of subset selection is to use every rth ordered component,

resulting in the downsampling of (5.21) by r.

We develop analysis for the performance of this downsampling method by using tools

from order statistics [3]. This allows us to bound the distribution of the uncalibrated

downsampled signal SNR. In turn, by using least-square calibration, the input/output SNR

plots of Section 3.3 will yield the distribution of the calibrated downsampled signal SNR.

For subset selection in the example system of M0 = 2 and M = 6 seen in Figure 5-2, it

is necessary to select two out of the six components. Suppose we select the first component

as the first ordered component, i.e. β0 = 0, in the signal z[n]. The downsampling approach

for subset selection is to select the middle component of the remaining five components as

the second component β1 in the subset signal z[n]. This component will have a time-skew

whose distribution is determined by the PDF of the median element in five independent

samples of a uniform distribution. From this PDF, we can calculate the distribution on
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the downsampled signal SNR and subsequently the calibrated signal SNR. By increasing

the oversampling factor r (for fixed M0), the distribution of the median time-skew of the

2M − 1 components will concentrate around Ts, such that uniform timing is approximated

in z[n], as we shall see in the following analysis.

For the case of M0 > 2, the statistics of the time-skews of the selected components

become more complex. In many of these cases, the distributions cannot be explicitly cal-

culated. Instead, we must rely on approximations or simulations to generate performance

results. We let τβ be the vector of skew from the M0 components selected

τβ =
[

τβ0 τβ2 . . . τβM0−1

]

(5.26)

and ξ be the skews normalized by the period of each component

ξ =
τβ

M0Ts
. (5.27)

The distribution of the downsampled component skews is

f(ξ) =
(M − 1)!

(

M
M0

− 1
)

!M0

M0
∏

i=1

(ξi − ξi−1)
M/M0−1 (5.28)

where ξ0 = 0 and ξM0 = 1.

From this PDF, we can compute the moments from the general equation

E

[

M0−1
∏

i=1

ξαi

i

]

=
(M − 1)!

(

(M − 1) +
∑M0−1

i=1 αi

)

!

ado−1
∏

i=1

(

i M
M0

− 1 +
∑i

j=1 αj

)

!
(

i M
M0

− 1 +
∑i−1

j=1 αj

)

!
. (5.29)
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For a single variable, this yields

E [ξv] =
(M − 1)!

(M − 1 + 1)!

(

v M
M0

− 1 + 1
)

!
(

v M
M0

− 1
)

!
(5.30)

=
v

M0
(5.31)

E
[

ξ2
v

]

=
(M − 1)!

((M − 1) + 2)!

(

v M
M0

− 1 + 2
)

!
(

v M
M0

− 1
)

!
(5.32)

=
v(vM + M0)

M2
0 (M + 1)

(5.33)

var [ξv] =
v(vM + M0)

M2
0 (M + 1)

−
v2

M2
0

(5.34)

=
−v2 + vM0

M2
0 (M + 1)

(5.35)

As expected, the expectation of the timing skews yields uniform spacing between compo-

nents, and the variance goes to zero for increasing numbers of components M .

The expected sum of the square deviations from uniform spacing is given by

Sum Skew Err =

M0−1
∑

v=1

V ar [ξv] (5.36)

=
−1

M2
0 (M + 1)

∑

v2 +
M0

M2
0 (M + 1)

∑

v (5.37)

=
−1

M2
0 (M + 1)

M0(M0 − 1)(2M0 − 1)

6
+

M0

M2
0 (M + 1)

M0(M0 − 1)

2
(5.38)

=
M2

0 + 1

6M0(M + 1)
(5.39)

≈
M0

6M
(5.40)

The number of effective bits is given in (2.83)

Output Bits =
10

6.02
log

(

σ2
x

1
M0

∑

(ξi −
i

M0
)2σ2

d + σ2
w

)

. (5.41)

With small timing skew errors, the skew noise will dominate the quantization/thermal noise,

1
M0

∑

(ξi −
i

M0
)2σ2

d >> σ2
w. Thus, we find for a B-bit component,

Output Bits ≈ B −
10

6.02
log

σ2
d

M0

∑

(ξi −
i

M0
)2. (5.42)

128



By Jensen’s inequality,

E

[

log
∑

(ξi −
i

M0
)2
]

≤ log E

[

∑

(ξi −
i

M0
)2
]

(5.43)

= log
M2

0 + 1

6M0(M + 1)
(5.44)

since (− log) is a convex function. Thus, we are able to form a lower bound on the expected

number of output bits

E [Output Bits] ≈ B −
10

6.02
E

[

log
1

M0

∑

ξ2
i σ

2
d

]

(5.45)

≥ k −
10

6.02
log

M0

M
(5.46)

where k = B − 10
6.02 log(σ2

d/6M0). Thus, we expect the number of bits to grow as 1.66 log r,

i.e., half bit increase for each double in oversampling factor. The results are presented for

the cases of r = 2 and r = 8 in Section 5.3.3. The effective bits of the signal can be increased

further by using the small-skew least-squares calibration method in Chapter 3.

There are many other methods of subset selection which we leave to be explored in future

research. These cases include random selection, where each sample is randomly drawn using

some prior distribution over the components. Alternatively, one can explore the accuracy

of the timing estimates generated by inverting the autocorrelation. Using these estimates,

it may be possible to select more evenly spaced components than the simple downsampling

method.

Although the downsampling method generates approximately evenly spaced compo-

nents, it does not exploit the extra sample values gathered in the extreme oversampled

system. In the next section, we present an alternative method that uses the extra sample

values.

5.3.2 Lowpass Filter Method

Until now, we have provided methods for reducing the number of effective components in

the extreme oversampling system; we now develop a signal reconstruction method that uses

all the sample values. This low complexity method estimates the input by: ordering the

components, multiplexing their outputs, and lowpass filtering the samples. We analyze the

performance of this method, which exploits the oversampling in the system.

129



Figure 5-7: Lowpass filter method. The samples obtained from the nonuniform sampling
pattern are treated as samples on a uniform grid.

In Figure 5-7, the nonuniform sample times are treated as uniform sample times. The

use of all samples shrinks the bandwidth of the signal from ωc to ωc/r. The noise intro-

duced through the time-skews in the nonuniform samples is then reduced by filtering the

oversampled signal.

To calculate the error of such a scheme, we can re-examine the statistics for each indi-

vidual component, where 0 ≤ i ≤ M − 1

E [ξi] =
i

M
(5.47)

E
[

ξ2
i

]

=
i(i + 1)

M(M + 1)
(5.48)

V ar [ξv] =
v(vM + M0)

M2
0 (M + 1)

−
v2

M2
0

(5.49)

=
iM − i2

M2(M + 1)
. (5.50)

This yields a total error of

Sum Skew Error =

M−1
∑

i=1

V ar [ξi] (5.51)

=
M(M − 1)M/2 − (M − 1)M(2M − 1)/6

M2(M + 1)
(5.52)

=
M − 1

6M
. (5.53)

As we increase the oversampling factor r and therefore increase the number of components

M , the error converges to a constant value. The increased oversampling also provides a

larger band from which the noise can be filtered; thus providing a noise reduction.

As done previously, the skew error can be used in order to calculated the expected

effective number of bits of the lowpass filtered signal. In the next section, we plot the sim-

ulation performance for this lowpass filtering method and explore the relationship between

oversampling factor r and calibrated signal SNR.
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5.3.3 Estimation Performance from Ordered Samples

We now simulate the performance of the two input estimation algorithms. For a given

oversampling factor r and base components number M0, tests were performed by randomly

selecting skews from a uniform distribution. The samples were first ordered and then

the effective number of bits for each method was calculated. Normalized histograms of

performance are plotted in Figs. 5-8 and 5-9.

As expected, simulations show an increase in effective bits for larger oversampling ratios.

For both methods, each factor of two increase in r leads to a half bit increase in effective

bits. By increasing the base component number M0 from two to eight, average performance

drops by approximately one bit in each case.

In this chapter, we have split the problem of calibration for extreme oversampling sys-

tems into many subproblems. Although the goal is low-complexity, the arbitrary sized

timing skews introduce difficult challenges. By first ordering the components, the errors

that occur are less deleterious than directly trying to estimate the timing skews. Downsam-

pling and filtering the oversampled signal are both efficient ways of estimating the input.
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Figure 5-8: Normalized histogram of effective number of bit performance for downsam-
pling method (left) and lowpass filtering method (right) for M0 = 8 system and varying
oversampling factors
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Figure 5-9: Normalized histogram of effective number of bit performance for downsam-
pling method (left) and lowpass filtering method (right) for M0 = 8 system and varying
oversampling factors
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Chapter 6

Conclusion

In this thesis, we explored the topic of calibration for distributed sampling systems. Al-

though a variety of mismatch effects occur in such systems, we focused on the calibration

of component timing skews. Calibration is treated as deterministic parameter estimation

problems, requiring unbiased estimates of the input and using no prior on the skews. We

examined the problems of mismatch estimation and input reconstruction in such systems

and developed new methods for efficient calibration.

6.1 Contributions

In Chapter 2, we explored the problem of signal reconstruction from nonuniform recurrent

sampling in many different regimes. To begin, we used Taylor series approximations of the

ideal reconstruction in order to generate a reconstruction formula that is linear in terms of

the unknown mismatch parameters. The approximation accuracy is high for small timing-

skews; and higher orders can be incorporated to increase the accuracy for the larger skews.

We also developed a reconstruction for the low-SNR scenario when the signal is oversampled.

By restricting the input to a bandlimited subspace in the estimation, the resulting estimator

achieves the Cramer-Rao bound. Finally, we presented two iterative algorithms, both which

involved projections between subspaces in order to converge upon an estimate of the input

signal. Aside from providing a way for reconstruction, these four techniques all give insight

into the geometry of the input and output signal space and they motivate new methods for

mismatch parameter estimation.

Using the reconstruction linearization, we developed a least-squares method for param-
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eter estimation in Chapter 3. We exploit the linearity of time-skew parameters in high-

resolution converters where skews are small relative to the sampling period. The estimation

method is motivated by the fact that only the actual values of the timing skews will result

in a input estimate that is bandlimited. The least-squares formulation computes the skews

that minimize the out-of-band energy of the reconstruction. Due to the linear relationship

of the skews in the approximation, the problem can be solved in a closed form. Adaptive

filter techniques are presented to make the estimation sequential and reduce the compu-

tation and storage requirements. With the addition of unknown gains and relinearization

techniques, the method is robust towards handling a broader class of distributed sampling

systems. The algorithm shows promising performance and its ability to scale easily makes

it an attractive solution for large numbers of components.

Simulation results were presented for various distributed sampling systems. For the

2-ADC system, a single least-squares estimate increased the effective resolution, in one

case from five to 12 bits. Using relinearization, the estimation showed increases from 2

to 10 effective bits. In the 16-ADC system, the resolution increased from 6 to 12 bits.

Performance changes were also presented for incorrect assumptions on the input spectrum,

truncated filters, and gain mismatches. The simulations were limited to fewer than 32

components due to the large numbers of samples necessary to calibrate otherwise.

To understand the limits of calibration performance, we analyzed bounds on the ex-

pected error for nonuniform periodic sampling when the skews are distributed uniformly in

Chapter 4. A lower-bound was derived for the estimate error from sampling matrices. We

compared this to the expected error for random matrices and showed the loss by restricting

our sampling matrices to sinc functions. The effects of increasing the oversampling rate

through extra converters was also presented.

By using many extra components, a system enters the extreme oversampling regime,

where both arbitrary skew sizes and large numbers of components give rise to a new set

of problems. In Chapter 5, we developed calibrations algorithms that address this case

by separating the problem of component ordering from the problem of signal estimation.

Stationary properties of the input are used to estimate the distance between components

through the autocorrelation. From these distance estimates, there are a variety of meth-

ods to produce a global ordering map of the component timings. The input can then be

estimated via subset selection by downsampling or by lowpass filtering and downsampling.
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Simulated distributions of performance were presented for both estimation algorithms.

6.2 Future Work

We now consider some directions for future research and development that have been mo-

tivated by this thesis.

6.2.1 Hardware Implementation

The least-squares calibration method offers high performance and significantly reduces the

complexity compared to any previous method for M > 4 components. However, the amount

of complexity acceptable for real-time hardware implementation requires further investiga-

tion. Modifications to the algorithm to reduce filter size were briefly explored but further

analysis must be conducted to optimize the filters. Also, the relinearization methods cur-

rently require the computation of more complicated filters. Although the skew estimation

can be spread across long periods of time, efficient methods are necessary for implementing

the relinearized recovery filter.

6.2.2 Noise Sensitivity

While constructing the least-squares calibration method for estimating the timing skews, we

assumed the noise on the input was not large enough to affect the skew estimation. However,

for lower resolution converters or higher amounts of thermal or shot noise, the noise can

significantly degrade performance. The error propagates through the calibration process;

thus understanding the relationship between noise variance and estimate error as well as

between estimate error and signal reconstruction error is important for practical system

design. Each type of error has a different affect on the calibration process. Thermal or shot

noise on the skew estimate can be averaged out with longer block lengths while quantization

has a fixed cost. Although some of these effects were analyzed through simulations, a more

formal analysis can also provide a better understanding on how to reduce these errors.

6.2.3 Architecture Dependent Nonlinearities

The first order model of the ADC provides a broad umbrella under which many nonlinear-

ities are masked. For many ADC architectures, large benefits can be gained by specifying
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the major nonlinear effects and why they occur. For example, errors in pipeline converters

can cause gaps in the converter output codes. Or in flash converters, errors can arise in the

form of bit flips or out-of-sequence bits. In each case, performance can increase for each

specific chip design by carefully tailored calibration algorithms. While some errors such as

out-of-sequence bits are hard to model, other errors can inspire algorithms which are useful

for a broader class of sampling components.

6.2.4 Extremely Fast Calibration

Within the extreme oversampling problem, correlation estimates were measured between

each pair of components in order to form a distance matrix. From the matrix, we computed

a global ordering of components. The skews were allowed to be larger than a component

sampling period. The added computation to handle arbitrary skews makes components

ordering almost as challenging as skew estimation. Rather than restrict the skews to being

small deviations from uniform timing, as is done in the small-mismatch regime, another

useful model is letting the components be unordered within a single sampling interval.

The old methods can still be applied, but new approaches also exist and do not require a

stationary input. With a focus on speed, we can experiment with other approaches, like

a greedy method that continually selects the next closest sample out of the M samples in

that interval.

6.2.5 Nonuniform Sampling Periods

Throughout our development, we assumed that the distributed components all sample with

the same period. This assumption may not always be true. If the components do not use a

common clock signal, the synchronization of clock periods is sometimes equally as difficult as

creating uniform timing. While gain mismatch and amplitude offset were treated cursorily,

if significant period mismatch exists, it can lead to the largest sources of error. In this case,

new calibration methods must be developed to estimate the component period as well as the

time skew. A similar modified least-squares approach may be possible, but a low-complexity

reconstruction method is necessary.
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6.2.6 Compressed Sensing

A large number of similarities exist between the nonuniform sampling problem and the

problem of compressive sensing. In compressive sensing, an unknown signal of length N

is sparse in some basis Ψ, having support k << N in Ψ, i.e., x = Ψz where ||z||0 = k.

The signal is observed through noise-free projections onto vectors in an alternate matrix

Φ, i.e., y = Φx. The goal is to be able to reconstruct the signal using as few observations

(projections) as possible.

Results have shown that by choosing a Φ that is incoherent with Ψ, where coherency

is a quantitative measure of the similarity between basis, the signal can be accurately

reconstructed with P = O(k log(N)) measurements [8, 13]. This greatly reduces the amount

of measurements that need to be made. The theory extends to the bandlimited space where

signals are sparse in the frequency domain.

As research progresses for understanding the effects of noise in the compressed sensing

problem, there may be insight to be gained about how noise affects input estimation in the

distributed sampling setup.
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Appendix A

Derivation of Reconstruction

Approximations

In this section, we present two derivations of the reconstruction approximation (2.14) based

on the small-skew assumption. In the first derivation, we compute the first-order Taylor

series of reconstruction equation (2.10) with respect to the timing-skews. The details of the

derivation give insight into whether the approximations are valid on a term-by-term basis.

In the second derivation, we invert the Taylor series of the output generation equation (2.3).

This method obscures the details of the approximation; however it is less complicated and

generalizes well for the computation of higher order approximation.

A.1 Approximation via Input Reconstruction Equation

We start by rewriting the problem in discrete-time domain and then compute the approxi-

mation of the time-variant reconstruction filter. The discrete time equivalent of (2.10) can

be specified by sampling at times t = nTs.

x[n] = x(nTs) (A.1)

= γ(nTs)
∞
∑

α=−∞

M−1
∑

i=0

y[Mα + i]
ai(−1)αM

π(n − αM − i − τi/Ts)/M
(A.2)
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where

ai =
1

∏M−1
k=0,k 6=i sin(π((i − k) + (τi − τk)/Ts)/M)

(A.3)

γ(nTs) =

M−1
∏

k=0

sin(π(n − k − τk/Ts)/M) (A.4)

In order to produce a first-order approximation of this reconstruction filter, we compute

the Taylor series around the point τ = 0.

x̂[n] ≈ x[n]|τ=0 +

M−1
∑

j=1

∂x[n]

∂τj

∣

∣

∣

∣

τ=0

τj (A.5)

To aid our development, we introduce the following variables

νa,b = sin(π(a − b − τb/Ts)/M) (A.6)

ν ′
a,b = cos(π(a − b − τb/Ts)/M) (A.7)

ηa,b = sin(π((a − b) + (τa − τb)/Ts)/M) (A.8)

η′a,b = cos(π((a − b) + (τa − τb)/Ts)/M) (A.9)

ξa,b = sin(π(a − b)/M) (A.10)

ξ′a,b = cos(π(a − b)/M) (A.11)

ζa,b,c = π(a − bM − c − τc/Ts)/M (A.12)

ρa,b,c = π(a − bM − c)/M (A.13)

Evaluating the first term of (A.5), we find

x[n]|τ=0 =
∞
∑

α=−∞

M−1
∑

i=0

y[Mα + i]

∏M−1
k=0 ξn,k

∏M−1
k=0,k 6=i ξi,k

(−1)αM

ρn,α,i
(A.14)

= y[n](−1)αM (−1)(n−i) lim
p→i

ξp,i

ρp,0,i
(A.15)

= y[n] (A.16)

because the product
∏M−1

k=0 ξn,k = 0 for all n and the denominators are non-zero for n 6=

αM + i.

To compute the second term of (A.5), we start by separating the terms that depend on
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τj in x[n].

x[n] =
∞
∑

α=−∞

M−1
∑

i=0

y[Mα + i]

∏M−1
k=0 νn,k

∏M−1
k=0,k 6=i ηi,k

(−1)αM

ζn,α,i
(A.17)

=

∞
∑

α=−∞

M−1
∑

i=0,i6=j

y[Mα + i]

∏M−1
k=0,k 6=j νn,k

∏M−1
k=0,k 6=i,j ηi,k

(−1)αM

ζn,α,i

[

νn,j

ηi,j

]

+

∞
∑

α=−∞

y[Mα + j](−1)αM





M−1
∏

k=0,k 6=j

νn,k





[

1
∏M−1

k=0,k 6=j ηj,k

νn,j

ζn,α,j

]

(A.18)

Using the following derivatives,

∂

∂τj

νn,j

ηi,j
= −

π

MTs

[

ν ′
n,j

ηi,j
−

νn,jη
′
i,j

η2
i,j

]

(A.19)

∂

∂τj

νn,j

ηi,j

∣

∣

∣

∣

τ=0

= −
π

MTs

[

ξ′n,j

ξi,j
−

ξn,jξ
′
i,j

ξ2
i,j

]

(A.20)

∂

∂τj

1
∏M−1

k=0,k 6=j ηj,k

νn,j

ζn,α,j
= −

π

MTs

1
∏M−1

k=0,k 6=j ηj,k




ν ′
n,j

ζn,α,j
−

νn,j

ζ2
n,α,j

−
νn,j

ζn,α,j

M−1
∑

l=0,l 6=j

η′j,l
ηj,l



 (A.21)

∂

∂τj

1
∏M−1

k=0,k 6=j ηj,k

νn,j

ζn,α,j

∣

∣

∣

∣

∣

τ=0

= −
π

MTs

1
∏M−1

k=0,k 6=j ξj,k




ξ′n,j

ρn,α,j
−

ξn,j

ρ2
n,α,j

−
ξn,j

ρn,α,j

M−1
∑

l=0,l 6=j

ξ′j,l
ξj,l



 , (A.22)

we find

∂

∂τj
x[n]

∣

∣

∣

∣

τ=0

= −
π

MTs





∞
∑

α=−∞

M−1
∑

i=0,i6=j

y[Mα + i]

∏M−1
k=0,k 6=j ξn,k

∏M−1
k=0,k 6=i ξi,k

(−1)αM

ρn,α,i

[

ξ′n,j −
ξn,jξ

′
i,j

ξi,j

]

∞
∑

α=−∞

y[Mα + j](−1)αM

∏M−1
k=0,k 6=j ξn,k

∏M−1
k=0,k 6=j ξj,k





ξ′n,j

ρn,α,j
−

ξn,j

ρ2
n,α,j

−
ξn,j

ρn,α,j

M−1
∑

l=0,l 6=j

ξ′j,l
ξj,l







 .(A.23)

We now evaluate this derivative w.r.t. τj in two cases.
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Case 1: j 6= n(mod M)

In evaluating (A.23), the product

M−1
∏

k=0,k 6=j

ξn,k = 0 (A.24)

because ξn,mod(n,M) = 0. The denominators in (A.23) are non-zero for this case; thus, the

expression reduces to zero,

∂

∂τj
x[n]

∣

∣

∣

∣

τ=0

= 0 (A.25)

for j 6= n(mod M).

Case 2: j = n(mod M):

Let n = Mβ + j. Using the fact that

∏M−1
k=0,k 6=n(mod M) ξn,k
∏M−1

k=0,k 6=i ξi,k

= (−1)(n−i−β), (A.26)

and ξ′n,j = (−1)β the derivative in this case simplifies to

∂

∂τj
x[n]

∣

∣

∣

∣

τ=0

= −
∞
∑

α=−∞

M−1
∑

i=0,i6=j

y[Mα + i]
(−1)n−i−β+αM+β

ρn,α,i

π

MTs

−
∑

α6=β

y[Mα + j]
(−1)n−i−β+αM+β

ρn,α,i

π

MTs
+ y[Mβ + j] × 0 (A.27)

= −
∑

m6=n

y[m]
(−1)n−m

n − m
(A.28)

= −(h ∗ y)[n] (A.29)

By plugging (A.16) and (A.29) into (A.5), we form the reconstruction approximation (2.14).

In the correction of a single sample, the derived reconstruction method is equivalent to

making the approximation that all the neighbors of a sample are on a uniform grid.
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A.2 Approximation via Output Generation Equation

We now present an alternative derivation of the reconstruction approximation by computing

the Taylor series of the sinc terms in the output generation (2.3) and then inverting this

equation. The sinc function at times t = nTs + τi reduces to

sinc(n + τi/Ts) = sinc(n) + τi
∂

∂τi
sinc(t/Ts)

∣

∣

∣

∣

t=nTs

+ O(τ2
i ) (A.30)

=











τi
−1n

n + O(τ2
i ) n 6= 0

1 + O(τ2
i ) n = 0

(A.31)

The expansion of the sampling equation becomes

y[n] =
∑

m

x[m] sinc((n − m) + τi/Ts) (A.32)

= x[n] + τi(h ∗ x)[n] + O(τ2
i ) (A.33)

for i = n(mod M).

It is easy to see that the first-order approximation of the inverse

x[n] ≈ y[n] − τi(h ∗ y)[n] (A.34)

is accurate to O(τ 2).

A.3 Higher-order Approximations

To attain increasingly accurate approximations, we can add higher-order terms to (A.31).

For i = n(mod M), the sampling equations expands to

y[n] =
∑

m

x[m] sinc((n − m) + τi/Ts) (A.35)

= x[n] +
∑

j

1

j!
τ j
i (hj ∗ x)[n] (A.36)
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and the filter

hj [n] =
∂j

∂tj
sinc(t/Ts)

∣

∣

∣

∣

t=nTs

. (A.37)

For the second-order expansion, filter h1[n] is given by (2.15) and filter

h2[n] =











2 (−1)n+1

n2 n 6= 0

−3.3438 n = 0

(A.38)

The second-order reconstruction is

x̂[n] = y[n] − τi(h1 ∗ y)[n] −
1

2!
τ2
i (h2 ∗ y)[n] + τi(h1 ∗ r1)[n] (A.39)

where r1[n] = τj(h∗y)[n] for j = n(mod M). Expansions of higher orders can be computed

in a similar manner, where the reconstruction for the jth order expansion increases by j

extra terms from the (j − 1)th order expansion.

A.4 Relinearization Derivation

When the starting estimate of the timing-skews is non-zero, a more accurate approximation

can be achieved by linearizing the reconstruction around the current estimate. To do so,

we rewrite the timing skews in terms of the current estimates τ̄ and the error terms τ̃

τ = τ̄ + τ̃ . (A.40)

While treating τ̄ as a constant in (A.2), we relinearize around τ̃ = 0. The explicit com-

putation of (3.16) is omitted due to its length but is routine and can be solved using any

numerical toolbox.

A.5 Gain Derivation

Nonuniform gains among the channels can be modeled as multiplicative factors gi to each

component. To add gain compensation in the reconstruction, the outputs from the ith

component y[Mα + i] terms in (A.2) are multiplied by κi = 1/gi, for all 0 ≤ i < M . The
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new linearization is computed around τ = 0, κ = 1,

x̂[n] ≈ x[n]|τ=0,κ=1 +
M−1
∑

j=1

∂x[n]

∂τj

∣

∣

∣

∣

τ=0,κ=1

τj +
M−1
∑

j=1

∂x[n]

∂κj

∣

∣

∣

∣

τ=0,κ=1

(κj − 1). (A.41)

Because the reconstruction is linear in the gain κ, the first and second terms are equivalent

to the skew-only derivation. The third term is

∂x[n]

∂κj

∣

∣

∣

∣

τ=0,κ=1

=

∞
∑

α=−∞

y[Mα + j]

∏M−1
k=0 ξn,k

∏M−1
k=0,k 6=j ξj,k

(−1)αM

ρn,α,j
(A.42)

=











y[n] j = n(mod M)

0 otherwise

(A.43)

This yields the overall first-order approximation for i = n(mod M)

x̂[n] = x[n] −
τi

Ts
(h ∗ y)[n] + (κi − 1)x[n] (A.44)

= κix[n] −
τi

Ts
(h ∗ y)[n]. (A.45)

The gain term only affects the x[n] term. Note, in the small gain mismatch domain, the κi

term can be represented as

κi =
1

gi
=

1

1 + g̃i
≈ 1 − g̃i (A.46)

where g̃i is the mismatch. Therefore, estimating the invese gain κi is equivalent to estimating

the gain directly.
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Appendix B

Uniqueness of Timing Skews

In the absence of noise, only the true time-skew parameters τ̂ = τ will yield a reconstructed

signal with no out-of-band energy. To show this, we start by presenting the reconstruction

equation for M = 2 ADCs. We show that for τ̂ 6= τ , the output will not be bandlimited.

Although the case of M > 2 can be proven in a similar manner, we use approximation

(2.14) to simplify the analysis.

In this section, we look at the 2-ADC system and examine the output of the recon-

struction filterbank generated by plugging the estimate τ̂ into (2.10). By doing so, we also

gain insight into the effects of inaccurate estimates and quantization noise on the recovery

performance. First, we calculate the Fourier transform of the actual output of the ADCs.

Next, we construct our filterbank based off the estimated parameters. Then, we compute

the output of the filterbank and study how the output changes as the estimates vary from

their true values.

Using X(ejω) as Fourier transform of the oversampled input signal, we get the ADC

outputs equal to

Y0(e
jω) =

1

2

1
∑

k=0

X(ej(ω−2πk)/2)) (B.1)

Y1(e
jω) =

1

2

1
∑

k=0

ej(ω−2πk)τ/2X(ej(ω−2πk)/2)) (B.2)

for −π ≤ ω ≤ π.

These signals Y0(e
jω) and Y1(e

jω) are now the inputs to our reconstruction filterbank,

which is constructed from (2.10). Let us follow these signals through the filterbank and
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compute the outputs of each component. We shall use the following notation to represent

the two halves (positive/negative frequency) of the Fourier transform:

A+(ejω) =











A(ejω) for 0 ≤ ω < π

0 for −π ≤ ω < 0

(B.3)

A−(ejω) =











0 for 0 ≤ ω < π

A(ejω) for −π ≤ ω < 0

(B.4)

A(ejω) = A+(ejω) + A−(ejω) (B.5)

First, the signals are upsampled by a factor of 2, creating signals S0 and S1:

S0(e
jω) =

1

2

(

X+(ej(ω+π)) + X(ejω) + X−(ej(ω−π))
)

(B.6)

S1(e
jω) =

1

M

(

X+(ej(ω+π))ej(ω+π)τ + X(ejω)ejωτ (B.7)

+X−(ej(ω−π))ej(ω−π)τ
)

for −π ≤ ω ≤ π.

Next, the signals S0(e
jω) and S1(e

jω) are filtered via filterbank realization of (2.10),

Ĥ0(e
jω) and Ĥ1(e

jω), producing outputs R0(e
jω) and R1(e

jω). The filters, which are com-

puted from the estimate τ̂ , are given by

Ĥ0(e
jω) =











− 1
2j 2a0e

jπτ̂/ξ for −π ≤ ω < 0

1
2j 2a0e

−jπτ̂/ξ for 0 ≤ ω < π

(B.8)

Ĥ1(e
jω) =











1
2j 2a0e

−jπτ̂/ξe−j2τ̂ω/ξ for −π ≤ ω < 0

− 1
2j 2a0e

jπτ̂/ξe−j2τ̂ω/ξ for 0 ≤ ω < π

. (B.9)

The reconstructed signal is the sum of R0(e
jω) and R1(e

jω):

X̂(ejω) = a0
2j [ (e−jπτ̂/2 − ejπτ̂/2ej(τ−τ̂)ω)X+(ejω) (B.10)

− (ejπτ̂/2 − e−jπτ̂/2ej((τ−τ̂)ω+τπ))X+(ej(ω+π))

− (ejπτ̂/2 − e−jπτ̂/2ej(τ−τ̂)ω)X−(ejω)

+ (e−jπτ̂/2 − ejπτ̂/2ej((τ−τ̂)ω−τπ))X−(ej(ω−π)) ] .
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The reconstructed signal will have no ’out-of-band’ energy if and only if the aliased

terms cancel each other out in these bands. This is equivalent to ensuring that

(ejπτ̂/2 − e−jπτ̂/2ej((τ−τ̂)ω+τπ))X+(ej(ω+π)) = 0 (B.11)

Assuming that the aliased signal has signal content in this band, we find that

(ejπτ̂/2 − e−jπτ̂/2ej((τ−τ̂ )ω+τπ)) = 0 (B.12)

−jπτ̂/2 + j((τ − τ̂)ω + τπ) = jπτ̂/2 (B.13)

(τ − τ̂)(ω + π) = 0, (B.14)

which is only true iff τ = τ̂ . Thus, if the timing skew estimate is incorrect, the signal is

guaranteed to have out-of-band energy.

To generalize to the M > 2 component system, we define the error signal e[n] for an

arbitrary estimate τ̂ as follows

e[n] = x̂[n; τ ] − x̂[n; τ̂ ] (B.15)

=











0 n (mod M) = 0

τ̂i−τi

Ts
(h ∗ y) [n] n (mod M) = i

(B.16)

when using approximation formula (2.14). The reconstruction x̂[n; τ̂ ] is bandlimited when

e[n] is bandlimited, which is only true if τ̂ = τ .
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